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Abstract. Recently, Deepfake arises as a powerful tool to fool the exist-
ing real-world face detection systems, which has received wide attention
in both academia and society. Most existing forgery face detection meth-
ods use heuristic clues to build a binary forgery detector, which mainly
takes advantage of the empirical observation based on abnormal texture,
blending clues, or high-frequency noise, etc.. However, heuristic clues only
reflect certain aspects of the forgery, which might lead to model bias or sub-
optimization. Our recent observations indicate that most of the forgery
clues are hidden in the informative region, which can be measured quan-
titatively by the classic information maximization theory. Motivated by
this, we make the first attempt to introduce the self-information metric
to enhance the feature representation for forgery detection. The proposed
metric can be formulated as a plug-and-play block, termed self-information
attention (SIA) module, which can be integrated with most of the top-
performance deep models to boost their detection performance. The SIA
module can explicitly help the model locate the informative regions and
recalibrate channel-wise feature responses, which improves both model’s
performance and generalization with few additional parameters. Extensive
experiments on several large-scale benchmarks demonstrate the superior-
ity of the proposed method against the state-of-the-art competitors.

Keywords: Face forgery detection · Information maximization ·
Attention mechanism

1 Introduction

Recently, face forgery generation methods have received lots of attention in the
computer vision community [12,21,40,46,49,53], which may cause severe trust
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issues and seriously disturb the social order. For example, the producer can forge
the video of world leaders to influence or manipulate politics and social sentiment.
Even worse, these fake videos are of high quality and can be easily generated by
open-source codes like DeepFaceLab. Therefore, it is urgent to develop effective
face forgery detection methods to mitigate malicious abuse of face forgery.

A simple way is to model face forgery detection as a binary classification prob-
lem [1,12,16,44]. Basically, a pretrained convolutional neural network (CNN) is
used to distinguish the authenticity of the input face, which is a golden standard
in Deepfake-Detection-Challenge [12]. However, the generated fake faces become
more and more authentic, which means the differences between real and fake
faces are more subtle. Although CNN models possess discriminative features, it
is still hard to directly use such models to capture those forgery clues in a unified
framework, resulting in unsatisfactory performance.

Fig. 1. Visualization of self-information
map and manipulation ground truth mask
for forgery faces by different manipula-
tions (Deepfakes and FaceSwap). The self-
information map is calculated by Eq. 1. The
ground truth mask is generated by subtract-
ing the forged faces and the corresponding
real faces with some morphological transfor-
mations

To tackle this issue, many heuris-
tic methods [7,11,17,23,32,45] usu-
ally use the prior knowledge or
observed clues to learn more discrim-
inative features, which are instru-
mental in distinguishing real and fake
faces. For example, F3-Net [39] learns
forgery patterns with the awareness
of frequency, Gram-Net [32] lever-
ages global image texture representa-
tions for robust fake image detection,
and Face X-ray [27] takes advan-
tage of blending boundary for a
forged image to enhance the perfor-
mance. Though these methods can
help to improve the performance,
these heuristic methods lack uni-
fied theoretical support and only
reflect certain aspects of the face
forgery, leading to model bias or sub-
optimization.

To address this issue, we revisit face forgery detection from a new per-
spective, i.e., face forgery is highly associated with high-information content.
Inspired by [5,6], we make the first attempt to introduce self-information as a
theoretic guidance to improve the discriminativeness of the model. Specially,
self-information can be easily defined by the current or surrounding regions [43],
where a high-information region is significantly different from their neighbor-
hoods that can reflect the amount of information of the image content. Moreover,
we find that most existing clues are always in high self-information regions. For
example, due to the instability of the generative model, some abnormal textures
always appear in forgery faces. These high-frequency artifacts are often very dif-
ferent from the surrounding facial features or skin, where the self-information
can highlight these clues. Another example is blending artifacts. Face x-ray [27]
demonstrate that the forged boundary is widely existed in forgery faces because
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of blending operation. The skin color or texture difference between real and
forgery part enlarge the self-information in blending artifacts regions. Motivated
by this observation, we design a novel self-information attention module called
Self-Information Attention (SIA), which calculates pixel-wise self-information
and uses it as a spatial attention map to capture more subtle abnormal clues.
Additionally, the SIA module calculates the average self-information of each
channel’s feature map and uses it as attention weights to select the most infor-
mative feature map. As shown in Fig. 1, the self-information map of the original
image highlight the same region as the ground truth mask, which indicates its
effectiveness in face forgery detection task.

We conduct our experiments on several widely-used benchmarks. And exper-
imental results show that our proposed method significantly outperforms the
state-of-the-art competitors. Particularly, the proposed SIA module can be flex-
ibly plugged into most CNN architectures with little parameter increase. Our
main contributions can be summarized as follows:

– We propose a new perspective for face forgery detection based on informa-
tion theory, where self-information is introduced as a theoretic guidance for
detection models to capture more critical forgery cues.

– We specially design a novel attention module based on self-information, which
helps the model capture more informative regions and learn more discrimi-
native features. Besides, the SIA attention can be plugged into most existing
2D CNNs with negligible parameter increase.

– Extensive experiments and visualizations demonstrate that our method can
achieve consistent improvement over multiple competitors with a comparable
amount of parameters.

2 Related Work

2.1 Forgery Face Manipulation

Face forgery generation methods have a security influence on scenarios related
to identity authentication, which achieve more and more attention in computer
vision communities. In particular, deepfakes is the first deep learning based face
identity swap method [49], which uses two Autoencoders to simulate changes
in facial expressions. The other stream of research is to design GAN based
models [4,14,15,21] for generating entire fake faces. Recently, graphics-based
approaches are widely used for identity transfer, which are more stable com-
pared with deep learning based approaches. For instance, Face2Face [50] is
can operate face swap using only an RGB camera in real-time. Averbuch-Elor
et al. [3] proposed a reenactment method that deforms the target image to
match the expressions of the source face. NeuralTextures [48] renders a fake
face via computing reenactment result with neural texture. Kim et al. [25] com-
bined image-to-image translation network with computer graphics renderings
to convert face attributes. These forgery methods focus on manipulate high-
information areas and may leave some high-frequency subtle clues, thus we intro-
duce self-information learning to assist in identifying forged faces.
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2.2 Face Forgery Detection

To detect the authenticity of input faces, early works usually extract low-level
features such as RGB patterns [36], inconsistency of JPEG compression [2],
visual artifacts [35]. More recently, binary convolution neural network has been
widely used to this task [12] and achieve better performance. However, directly
using vanilla CNN tend to extract semantic information while may ignore the
subtle and local forgery patterns [54]. Thus, some heuristic methods are pro-
posed, which leverage observation or prior knowledge to help model to mine
the forgery pattern. For instance, Face X-ray [27] is supervised by the forged
boundary. F3-Net [39] leverage frequency clues as to the auxiliary to RGB fea-
tures. Local-Relation [9] measures the similarity between features of local regions
based on the observation of inconsistency between forgery parts and real parts.
However, these methods still cannot cover all the forgery clues, leading to sub-
optimal performance. Thus, we introduce self-information to help the model
capture informative region adaptively. In addition, our proposed method only
contains a few parameters and can serve as a plug-and-play module upon several
backbones.

3 Proposed Method

3.1 Preliminaries

Problem Formulation. Many works [24] have been proposed to identify a given
face, real or fake, but most of them are based on experimental observations that
show the remarkable difference between real and fake faces. Recent work [35]
found that these observations belong to the discriminative artifacts clues that
are subtle but abnormal compared with their neighborhoods, because of the
generative model’s instability and the imperfection of the blending methods. On
the other hand, existing models just consider one or a small number of these
different clues, which are integrated into the vanilla CNN, leading to bias or
sub-optimization model. These raise a natural question that, is there a metric
that can adaptively capture differential information? To answer this question,
this paper focuses on the information theory and uses classical self-information
to adaptively qualify the saliency clues.

Self-information Analysis. The self-information is a metric of the informa-
tion content related to the outcome of a random variable [5], which is also called
surprisal, i.e., it can reflect the surprise of an event’s outcome. Given a ran-
dom variable X with probability mass function PX , the self-information of X
as outcome x is IX(x) = −log(PX(x)). As a result, we can derive that the
smaller its probability, the higher the self-information it has. That is, the more
different the region from its neighboring patches, the more self-information it
contains. Inspired by [5,43], self-information can apply to the joint likelihood of
statistics in a local neighborhood of the current patch, which provides a trans-
formation between probability and the degree of information inherent in the
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Fig. 2. The overview of our face forgery detection framework with Self-information
attention (SIA) module. The SIA module is embedded in the middle layer of CNN.
The orange dotted block means the channel attention part, while the blue dotted block
represents the spatial attention part. The details of self-information is shown in Fig. 3
(Best viewed in color) (Color figure online)

local statistics. For face forgery detection, the heuristic unusual forgery clues
(such as high-frequency noise, blending boundary, abnormal textures, etc.) are
hidden in the high-information context. Therefore, it is intuitive to introduce
the self-information metric into face forgery detection to help model additively
learn high-information features.

3.2 Overall Framework

In this paper, we design a new attention mechanism, that is based on the self-
information metric, which could highlight the manipulated regions. We call
this newly defined model as Self-Information Attention (SIA) module, whose
overview framework is shown in the Fig. 2. In particular, the proposed SIA mod-
ule mainly contains three key parts: 1) Self-Information Computation: To
capture the high-information content region, we calculate the self-information
from the input feature map and output a new discriminative attention map. 2)
Self-Information based Dual Attention: To maximize the ability of using
self-information by backbone model, the self-information from the input feature
map would be used on both channel-wise attention and spatial-wise attention.
3) Self-Information Aggregation: Motivated by [19,54], we densely forward
all previous self-information feature maps to the current SIA block, which is to
preserve the detail area to the greatest extent.

3.3 Self-information Computation

Let f t ∈ RC×H×W denotes the input of the t-th SIA module with C chan-
nels and spatial shape of H × W , where f t

k(i, j) denotes the k-th channel’s
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Fig. 3. Visualization of Self-Information Computation. Rf denotes the local receptive
filed region, and Rc is the channel offset region (Best viewed in color)

pixel of f t located by the coordinate (i, j). As mentioned before [5], the self-
information can be approximated by the joint probability distribution of the
current pixel together with its neighborhoods with Gaussian kernel function.
Different with previous work [5], we consider the self-information through two
orthogonal dimensions, one is to find the neighborhoods in the spatial dimension,
and the other is to search the neighborhoods in channel dimension.

We define the spatial space intra-feature self-information as:

Iintra(f t
k(i, j)) = − log

∑

m,n∈Rf

e− ||ft
k(i,j)−ft

k(i+m,j+n)||2
2h2 , (1)

where Rf are the local receptive filed region near the pixel (i, j), m and n are
the pixel indexes in the Rf , and h is the bandwidth.

When the neighborhoods are located in the channel dimension, we define the
self-information in channel as inter-feature self-information Iinter, which is shown
as:

Iinter(f t
k(i, j)) = − log

∑

s∈Rc

e− ||ft
k(i,j)−ft

k+s(i,j)||2

2h2 , (2)

where s is the index of the channel offset region Rc. The inter-feature self-
information could help us avoid some observation noise that exists in the chan-
nels.

As a result, the whole self-information I
(
fk

)
can be formulated as:

I(f t
k(i, j)) = Iintra(f t

k(i, j)) + λIinter(f t
k(i, j)), (3)

where λ is the weight parameter that balance the importance of the inter-feature
self-information. The Fig. 3 illustrates the computation of self-information.

3.4 Self-information Based Dual Attention

We propose a new dual attention model, where the saliency is qualified by the
self-information measure [6]. Inspired by [20], we consider the saliency features
through spatial dimension and channel dimension.
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Spatial-Wise Attention Module. We introduce a spatial attention module
based on self-information, as the flowchart shown in Fig. 2. In detail, we calculate
each pixel’s self-information features I(f t

k) via Eq. 3. Then, we use the Sigmoid
function to normalize such features and output the self-information based spatial
attention map. Finally, we perform an element-wise multiply operation with the
input feature f t

k. The whole formulation of the Spatial-wise Attention Module is
shown as follows:

sk = Sigmoid(I(f t
k)) ∗ f t

k. (4)

This attention map focuses on the high-information region with little parameter
improvement, which can adaptively enhance many artifact subtle clues, such as
blending boundary and high-frequency noise. For more details please refer to the
Sect. 4.

Channel-Wise Attention Module. Apart from the spatial attention module,
we further introduce the channel attention module, which pipeline is illustrated
in Fig. 2. Similar to [20], we calculate the average self-information of channel
feature maps and generate channel-wise statistical feature ck for the k-th element
of f t as follows:

ck =
1

H × W

H∑

i=1

W∑

j=1

I(f t
k). (5)

To mitigate the problem of training stability, we opt to employ a simple linear
transform with sigmoid activation on vector c = {c1, c2...cC} as channel attention
c′:

c′ = Sigmoid(Wc), (6)

where W ∈ RC×C is the linear function. This module could improve the self-
information of the feature map that contains high-information, which helps
locate the saliency in explicit contents.

Dual Attention Module Embedded in CNN. Finally, we combine the two
attention modules mentioned above and perform an element-wise sum operation
between the processed attention map and fk to output a residual error feature
ok ∈ RC×H×W , which formulated as:

Ok = c′
k ∗ sk + f t

k. (7)

The proposed SIA module is a flexible module, which can be easily inserted
into any CNN-based architecture. Also, we can also flexibly choose the spatial
attention module and the channel attention module. The SIA module does not
increase many parameters yet can enhance the performance of the model.

3.5 Self-information Aggregation

General CNN such as EfficientNet [47] usually use down-sampling operations
to reduce the parameters and expand the receptive field, which tend to elimi-
nate subtle clues with high information content in face forgery detection task.
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To overcome this problem, inspired by [22], we design a self-information aggre-
gation operation, cascading different levels of SIA modules via self-information
attention map. Thus the local and subtle forgery clues can be preserved. As
shown in Fig. 2, we add the attention map of the previous stage with the current
input feature map to preserve the shallow high informative texture. Due to the
different sizes of attention maps at different levels, we use 1 × 1 convolution to
align the number of channels and use the interpolation method to align the size
of the feature map. This alignment operation could be presented as the function
Align. As a result, the t-th input feature f t can be defined as:

f t =
t−1∑

i=1

Aligni(I(f i)) + mt, (8)

where mt is the feature map adjacent to the t-th SIA module.

3.6 Loss Function

We use the Cross-entropy as loss function, which is defined as:

Lce = − 1
n

n∑

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi), (9)

where n is the number of images, ŷi is the prediction of the i-th fake image, and
yi is the label of the sample.

4 Experiment

In this section, we evaluate the proposed SIA module against some state-of-the-
art face forgery detection methods [1,8,10,11,13,18,27,34,39,47,54] and some
attention techniques [20,32,42]. We explore the robustness under unseen manip-
ulation methods and conduct some ablation studies, and further give some visu-
alization results.

4.1 Experimental Setup

Datasets. We conduct our experiments on several challenging dataset to evalu-
ate the effectiveness of our proposed method. FaceForensics++ [40] is a large-
scale deepfake detection dataset containing 1, 000 videos, in which 720 videos are
used for training and the rest 280 videos are used for validation or testing. There
are four different face synthesis approaches, including two graphics-based meth-
ods (Face2Face and FaceSwap) and two learning-based approaches (DeepFakes
and NeuralTextures). The videos in FaceForensics++ have two kinds of video
quality: high quality (C23) and low quality (C40). Celeb-DF [30] is another
widely-used Deepfakes dataset, which contains 590 real videos and 5, 639 fake
videos. In Celeb-DF, the DeepFake videos are generated by swapping faces for
each pair of the 59 subjects. Following the prior works [39,47,54], we use the
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Table 1. Comparison on FaceForensics++
dataset in terms of ACC and AUC with dif-
ferent qualities (HQ and LQ). The highest
results are highlighted in bold. The F3-Net
use 0.5 as a threshold

Methods ACC
(LQ)

AUC
(LQ)

ACC
(HQ)

AUC
(HQ)

MesoNet [1] 70.47 – 83.10 –

Face X-ray [27] – 61.60 – 87.40

Xception [10] 86.86 89.30 95.73 96.30

Xception-ELA [18] 79.63 82.90 93.86 94.80

Xception-PAF [8] 87.16 90.20 – –

Two Branch [34] 86.34 86.59 86.34 86.59

EfficientNet-B4 [47] 86.95 88.91 96.63 99.18

F3-Net [39] 86.89 93.30 97.31 98.10

MAT [54] 88.69 90.40 97.60 99.29

SPSL [31] 81.57 82.82 91.50 95.32

RFM [51] 87.06 89.83 95.69 98.79

Freq-SCL [26] 89.00 92.39 96.69 99.28

Ours 90.23 93.45 97.64 99.35

Table 2. Cross-dataset evaluation
from FF++ (LQ) to deepfake class
of FF++ and Celeb-DF in terms of
AUC. The highest results are high-
light in bold

Methods FF++ Celeb-DF

Two-stream [55] 70.10 53.80

Meso4 [1] 83.00 53.60

FWA [29] 80.10 56.90

DSP-FWA [29] 93.00 64.60

Xception [40] 95.50 65.50

EN-b4 [12] 96.39 71.10

Multi-task [37] 76.30 54.30

Capeule [38] 96.60 57.50

SMIL [28] 96.80 56.30

Two Branch [34] 93.18 73.41

MAT [54] 96.41 72.50

GFF [33] 95.73 74.12

SPSL [31] 96.91 76.88

Ours 96.94 77.35

multi-task cascaded CNNs to extract faces, and we randomly select 50 frames
from each video to construct the training set and test set. WildDeepfake [56]
is a recently released forgery face dataset that contains 3805 real face sequences
and 3509 fake face sequences, which is obtained from the internet. Therefore,
wild deepfake has a variety of synthesis methods, backgrounds, and ids.

Evaluation Metrics. We apply accuracy score (ACC) and area under the
receiver operating characteristic curve (AUC) as our basic evaluation metrics.

Implementation Details. We use EfficientNet-b4 [47] pretrained on the Ima-
geNet as our backbones, which are widely used in face forgery detection. The
backbone contains seven layers, and we put our proposed SIA module in the
output of layer1, layer2, and layer4. This is due to the shallow and middle layers
contain low-level and middle-level features, which reflect the subtle artifact clues
well. We resize each input face to 299 × 299. The hyperparameters λ in Eq. 3 is
set to 0.5. We use Adam optimizer to train the network’s parameters, where the
weight decay is equal to 1e − 5 with betas of 0.9 and 0.999. The initial learning
rate is set to 0.001, and we use StepLR scheduler with 5 step-size decay and
gamma is set to 0.1. The batch size is set to 32.

4.2 Experimental Results

Intra-dataset Testing. We evaluate the performance under two quality set-
tings on FaceForensics++. Note that the results of F3-Net use a threshold of
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Table 3. Performance on Celeb-DF and
WildDeepfake datasets in terms of ACC
and AUC

Method Celeb-DF WildDeepfake

ACC AUC ACC AUC

Xception [10] 97.90 99.73 77.25 86.76

EfficientNet-B4 [47] 97.63 99.20 81.63 90.36

RFM [51] 97.96 99.94 77.38 83.92

F3-Net [39] 95.95 98.93 80.66 87.53

MAT [54] 97.84 99.81 82.86 90.71

Ours 98.48 99.96 83.95 91.34

Table 4. ACC of different pretrained
backbones on FaceForensics++ HQ,
FaceForensics++ LQ and Celeb-DF
datasets

Backbone FF++

(HQ)

FF++

(LQ)

Celeb-

DF

EffecinetNet-b0 96.32 85.66 97.81

EffecinetNet-b0+Ours 96.95 87.03 98.37

XceptionNet 95.73 86.86 97.90

XceptionNet+ours 96.85 87.30 98.03

MobileNet-v2 95.58 85.19 97.41

MobileNet-v2+Ours 97.05 86.78 98.22

0.5. The overall results in Table 1 show that the proposed method obtains state-
of-the-art performance on the both high-quality and low-quality settings. Com-
pared Freq-SCL [26] and SPSL [31] leverage frequency clues as to the auxiliary
to RGB features, both of which convert RGB image into the frequency domain
together with a dual-stream framework. Both two methods boost performance
via input perspective, but our method takes consideration of promoting repre-
sentation learning. Compared with the recent attention based Multi-attentional
[54], our method achieves better performance. This is because that SIA gives
more accurate guidance for the attention mechanism on both channel-wise and
spatial-wise dimensions, which provide more adaptive information for the model.

To further demonstrate the effectiveness of our method, we evaluate the
SIA module on two famous forgery datasets: Celeb-DF and WildDeepfake. The
results are shown in Table 3. We can observe that our SIA outperforms all com-
parison methods. Specifically, compared with F3-Net which requires 80M param-
eters and 21G macs, our EN-b4+SIA only contains 35M parameters and 6.05G
macs and achieves about 3% improvement on both two datasets. In addition,
we evaluate the proposed SIA module on DFDC [12] dataset and achieve SOTA
performance with 82.31% in terms of ACC and 90.96% in terms of AUC. Due
to the page limit, we put the results in the supplementary material.

Cross-Dataset Testing. To further demonstrate the generalization of SIA, we
conduct cross-dataset evaluations. Specifically, following the setting of [34], we
train our model on FF++ (LQ) and test it on Deepfakes class and Celeb-DF.
The quantitative results are shown in Table 2, we can observe that our method
obtain state-of-the-art performance especially in cross-database setting. Our SIA
outperforms by 4% and 2% in terms of AUC compared with the recent SPSL
and GFF on cross-dataset setting and achieve slight improvement on the intra-
dimain setting. The reason for the improvement is that our module guide the
backbone focuses on the informative subtle details which are commonly present
on all forgery face.

Dependency on Backbone. The proposed SIA module is a plug-and-play
block, which can be embedded in any deep learning based model. Therefore, we
verify the effectiveness of the SIA module by using different backbones. We select
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Table 5. Quantitative results on Celeb-DF and FaceForensics++ dataset with different
qualities (HQ and LQ). The compared methods are all plug-and-play attention mod-
ules. The last column represents the parameter increase after adding the corresponding
module. The highest results are highlighted in bold

Method FF++ (HQ) FF++ (LQ) Celeb-DF Parameter increase

ACC AUC EER ACC AUC EER ACC AUC EER

Baseline+Selayer 97.05 99.20 4.04 89.05 90.99 19.01 98.00 99.65 2.15 45k

Baseline+NL 96.79 99.16 4.20 89.55 91.34 19.50 97.89 99.61 2.20 764k

Baseline+Selayer+NL 97.21 99.25 3.95 89.78 91.56 18.98 97.80 99.68 2.04 811k

Baseline+GSA 94.68 97.92 7.03 88.92 89.03 22.32 97.88 99.63 2.63 1024k

Ours 97.64 99.35 3.83 90.23 93.75 18.57 98.48 99.96 1.87 42k

the EffecinetNet-b0, MobileNet-v2, and XceptionNet as other backbones, and
we evaluate the results on FaceForensics++ and Celeb-DF. All the SIA module
is embedded in the first and middle layer. For instance, for the EffiecientNet-
b0, we put out the module after the 2th, 3th and 5th MBConvBlock. For the
XceptionNet, our module is inserted between 3th block and 4 block. As for the
MobileNet-v2, the module is embedded after the 3th and 7th InvertedResidual
block. The result is shown in Table 4. We find that our methods do improve
the network performance regardless of the types of backbones, which proves the
flexibility and generality of our method.

Compared with Attention Methods. We compare the proposed method
with several classical attention-based methods to show the effectiveness of self-
information in this task: (1) Baseline: The EffecinetNet-b4 pretrained on the
ImageNet. (2) Baseline+SE-layer [20]: The channel attention module. (3)
Baseline+Non-local [52]: Non-local attention has been used in deepfake detec-
tion [32]. Here we use the Gaussian embedded version with both batchnorm layer
and sub-sample strategy. (4) Baseline+SE-layer+Non-local: We use the SE-
layer and Non-local to realize both channel attention and spatial attention mod-
ule. (5) Baseline+GSA [42]: GSA is the state-of-the-art attention module that
considers both pixel content and spatial information. Here the number heads are
set to 8, and the dimensional key is set to 64.

The comparison results are reported in Table 5. The results show that our
proposed SIA module outperforms all the reference methods on both two bench-
marks. Specifically, after adding our SIA module on the baseline, the performance
has about 1.5% ACC improvement with little parameters increase. This reflects
that the self-information does fit for face forgery detection task.

4.3 Ablation Study

Impact of Different Components. To further explore the impact of differ-
ent components of SIA module, we split each part separately for experimental
verification. The ACC and AUC results on FF++ (LQ) are shown in Table 6.
The results demonstrate that the three key components have a positive effect
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Table 6. Abalation study on FaceForen-
sics++(LQ) dataset

Spatial Channel Aggregation ACC AUC

� 89.65 91.95

� 89.83 91.34

� � 89.90 92.43

� � � 90.23 93.75

Table 7. Comparative experiment of
module insertion position

Layers ACC on FF++ AUC on FF++

L1, L2, L3 89.56 92.73

L1, L2, L4 90.23 93.75

L3, L4, L5 89.14 91.15

L1, L4, L6 88.35 90.21

on the performance, all of which are necessary for the face forgery detection.
Among them, spatial attention has a relatively large impact on performance,
which demonstrate the importance of capturing high-information regions for the
face forgery task.

Impact of Embedding Layer. We further conduct some ablation experiments
to explore the effect of insertion place of our method. The attention module is
embedded in different layers of EffiecientNet-b4 and tested on the FaceForen-
sics++ LQ dataset. The results on the left of Table 7 show that the best perfor-
mance is achieved when the attention module is embedded in layer1, layer 2 and
layer4, which is in the shallow and middle of the backbone. The SIA module is
derived from the theory of self-information (SI), which is usually built on the
shallow structural and textural features. Therefore, it is intuitive to insert the
SIA module in the shallow layers, which helps enhance SI. In the middle lay-
ers, SIA module helps reduce the global inconsistency bringing from long-range
forgery patterns and pass the useful local and subtle forgery information via the
self-information aggregation scheme. However, in deeper layers, down-sampling
operation will neglect many local and subtle forgery information, in which SI
can hardly find useful cues for forgery detection. In sum, it is natural and rea-
sonable to plug SIA into either shallow or middle layers (L1, L2, L4), and our
experiments indeed had verified this.

4.4 Visualization and Analysis

Analysis on SIA Module. To analysis our attention module, we visualize the
feature maps from different channels sorted by channel-wise attention weight
and the highest weight channel’s SIA map. Figure 4 shows the result (all visual-
izations are colored according to the normalized feature map). We can observe
that the channels with high self-information contain more local high-frequency
clues and subtle details, while the lower ones have more semantic information
and smoother clues which is less helpful for the face forgery detection task. In
addition, the self-information based attention map enhances high-information
areas such as mouth, eyes, high-frequency textures, and blending boundary, while
weakening repetitive low-frequency areas. These visualizations demonstrate that
our SIA module can effectively mine the informative channels and subtle clues,
which are critical for performance improvement.
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Fig. 4. Visualization of our channel-wise attention scores and their corresponding SIA
maps. The feature maps are sorted according to the attention weights from low to high.
The last column shows the SIA map calculated by the highest channel score feature
map (Best viewed in color)

Visualization of Grad-CAM. We apply Grad-CAM [41] and Guided Grad-
CAM tools to the baseline model and our model, which are widely-used methods
to explain the attention of deep neural networks. The Grad-CAM can identify
the regions that the network considers import, while Guided Grad-CAM can
reflect more details of activation. Through Fig. 5, we can observe that our module
helps the network to capture more subtle artifacts compared with the baseline
backbone. The red circle indicates the obvious high-information forgery details.
We also find that the baseline model ignores these artifacts (white circle) while
our SIA module helps networks pay more attention to these clues. For example,
the forgery face in the fourth line has an obvious blending boundary, but the
baseline CAM does not pay attention to this area. After going through our SIA
module, the network clearly focuses on this high-information area. Furthermore,
the activation area of the guided grad-cam is larger than the baseline, because
our module help the network enhances the most informative channel.
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Fig. 5. Grad CAM and Guided Grad CAM on baseline model and our proposed model
(layer 1 of EffiecientNet-B4). The red circles indicate obvious clues that are ignored
by previous approach but well captured by our method (Best viewed in color) (Color
figure online)

5 Conclusion

In this work, we propose an information theoretic framework with self-
Information Attention (SIA) for effective face forgery detection. The proposed
SIA module has a strong theoretic basis, which leads to an effective and inter-
pretable method that can achieve superior face forgery detection performance
with negligible parameter increase. Specially, self-information of each feature
map is extracted as the bases of dual attention to help model capture the
informative regions which contains critical forgery clues. Experiments on sev-
eral datasets demonstrate the effectiveness of our method.

Future Work. Currently, we only evaluate our SIA module on the RGB domain.
In future work, we will evaluate it in the frequency domain to further demon-
strate its effectiveness and generality.



SIA for Face Forgery Detection 125

Acknowledgments. This work was supported by the National Science Fund for Dis-
tinguished Young Scholars (No. 62025603), the National Natural Science Foundation
of China (No. U21B2037, No. 62176222, No. 62176223, No. 62176226, No. 62072386,
No. 62072387, No. 62072389, and No. 62002305), Guangdong Basic and Applied Basic
Research Foundation (No. 2019B1515120049, and the Natural Science Foundation of
Fujian Province of China (No. 2021J01002).

References

1. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video
forgery detection network. In: WIFS, pp. 1–7. IEEE (2018)

2. Agarwal, S., Farid, H.: Photo forensics from JPEG dimples. In: WIFS, pp. 1–6.
IEEE (2017)

3. Averbuch-Elor, H., Cohen-Or, D., Kopf, J., Cohen, M.F.: Bringing portraits to life.
ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)

4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

5. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances
in Neural Information Processing Systems, pp. 155–162 (2005)

6. Bruce, N., Tsotsos, J.: Attention based on information maximization. J. Vis. 7(9),
950–950 (2007)

7. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., Yang, X.: End-to-end reconstruction-
classification learning for face forgery detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4113–4122 (2022)

8. Chen, M., Sedighi, V., Boroumand, M., Fridrich, J.: JPEG-phase-aware convolu-
tional neural network for steganalysis of JPEG images. In: Proceedings of the 5th
ACM Workshop on Information Hiding and Multimedia Security, pp. 75–84 (2017)

9. Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face
forgery detection. In: AAAI (2021)

10. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
CVPR, pp. 1251–1258 (2017)

11. Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors
as convolutional neural networks: an application to image forgery detection. In:
Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia
Security, pp. 159–164 (2017)

12. Dolhansky, B., et al.: The deepfake detection challenge dataset. arXiv preprint
arXiv:2006.07397 (2020)

13. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE
Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

14. Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial
soft biometrics for recognition in the wild: recent works, annotation, and cots
evaluation. IEEE Trans. Inf. Forensics Secur. 13(8), 2001–2014 (2018)

15. Goodfellow, I., et al.: Generative adversarial nets. In: NeurlPS, pp. 2672–2680
(2014)

16. Gu, Q., Chen, S., Yao, T., Chen, Y., Ding, S., Yi, R.: Exploiting fine-grained face
forgery clues via progressive enhancement learning. In: AAAI, vol. 36, pp. 735–743
(2022)

17. Gu, Z., et al.: Spatiotemporal inconsistency learning for deepfake video detection.
In: ACM MM, pp. 3473–3481 (2021)

http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/2006.07397


126 K. Sun et al.

18. Gunawan, T.S., Hanafiah, S.A.M., Kartiwi, M., Ismail, N., Za’bah, N.F., Nordin,
A.N.: Development of photo forensics algorithm by detecting photoshop manipula-
tion using error level analysis. Indones. J. Electr. Eng. Comput. Sci. 7(1), 131–137
(2017)

19. Guo, Z., Yang, G., Chen, J., Sun, X.: Fake face detection via adaptive manipulation
traces extraction network. Comput. Vis. Image Underst. 204, 103170 (2021)

20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–
7141 (2018)

21. Huang, D., De La Torre, F.: Facial action transfer with personalized bilinear regres-
sion. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7573, pp. 144–158. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33709-3 11

22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR, pp. 4700–4708 (2017)

23. Huang, Y., et al.: FakePolisher: making deepfakes more detection-evasive by shal-
low reconstruction. arXiv preprint arXiv:2006.07533 (2020)

24. Juefei-Xu, F., Wang, R., Huang, Y., Guo, Q., Ma, L., Liu, Y.: Countering malicious
deepfakes: survey, battleground, and horizon. arXiv preprint arXiv:2103.00218
(2021)

25. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) 37(4), 1–14
(2018)

26. Li, J., Xie, H., Li, J., Wang, Z., Zhang, Y.: Frequency-aware discriminative feature
learning supervised by single-center loss for face forgery detection. In: CVPR, pp.
6458–6467 (2021)

27. Li, L., et al.: Face X-ray for more general face forgery detection. In: CVPR, pp.
5001–5010 (2020)

28. Li, X., et al.: Sharp multiple instance learning for deepfake video detection. In:
ACM MM, pp. 1864–1872 (2020)

29. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv
preprint arXiv:1811.00656 (2018)

30. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a new dataset for deepfake
forensics. arXiv preprint arXiv:1909.12962 (2019)

31. Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in
frequency domain. In: CVPR, pp. 772–781 (2021)

32. Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in
the wild. In: CVPR, pp. 8060–8069 (2020)

33. Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with
high-frequency features. In: CVPR, pp. 16317–16326 (2021)

34. Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-
branch recurrent network for isolating deepfakes in videos. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 667–684.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6 39

35. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deep-
fakes and face manipulations. In: WACVW, pp. 83–92. IEEE (2019)

36. McCloskey, S., Albright, M.: Detecting GAN-generated imagery using color cues.
arXiv preprint arXiv:1812.08247 (2018)

37. Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for
detecting and segmenting manipulated facial images and videos. arXiv preprint
arXiv:1906.06876 (2019)

38. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: using capsule networks
to detect forged images and videos. In: ICASSP, pp. 2307–2311. IEEE (2019)

https://doi.org/10.1007/978-3-642-33709-3_11
https://doi.org/10.1007/978-3-642-33709-3_11
http://arxiv.org/abs/2006.07533
http://arxiv.org/abs/2103.00218
http://arxiv.org/abs/1811.00656
http://arxiv.org/abs/1909.12962
https://doi.org/10.1007/978-3-030-58571-6_39
http://arxiv.org/abs/1812.08247
http://arxiv.org/abs/1906.06876


SIA for Face Forgery Detection 127

39. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery
detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58610-2 6

40. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
Forensics++: learning to detect manipulated facial images. In: ICCV, pp. 1–11
(2019)

41. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
ICCV, pp. 618–626 (2017)

42. Shen, Z., Bello, I., Vemulapalli, R., Jia, X., Chen, C.H.: Global self-attention net-
works for image recognition. arXiv preprint arXiv:2010.03019 (2020)

43. Shi, B., Zhang, D., Dai, Q., Wang, J., Zhu, Z., Mu, Y.: Informative dropout for
robust representation learning: a shape-bias perspective. In: ICML, vol. 1 (2020)

44. Stehouwer, J., Dang, H., Liu, F., Liu, X., Jain, A.: On the detection of digital face
manipulation. In: CVPR (2019)

45. Sun, K., et al.: Domain general face forgery detection by learning to weight. In:
AAAI, vol. 35, pp. 2638–2646 (2021)

46. Sun, K., Yao, T., Chen, S., Ding, S., Li, J., Ji, R.: Dual contrastive learning for
general face forgery detection. In: AAAI, vol. 36, pp. 2316–2324 (2022)

47. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural
networks. In: ICML (2019)
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49. Thies, J., Zollhöfer, M., Nießner, M., Valgaerts, L., Stamminger, M., Theobalt, C.:
Real-time expression transfer for facial reenactment. ACM Trans. Graph. 34(6),
183-1 (2015)

50. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face:
real-time face capture and reenactment of RGB videos. In: CVPR, pp. 2387–2395
(2016)

51. Wang, C., Deng, W.: Representative forgery mining for fake face detection. In:
CVPR, pp. 14923–14932 (2021)

52. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR,
pp. 7794–7803 (2018)

53. Wang, X., Yao, T., Ding, S., Ma, L.: Face manipulation detection via auxiliary
supervision. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H.,
King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 313–324. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63830-6 27

54. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional
deepfake detection. In: CVPR (2021)

55. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for
tampered face detection. In: CVPRW, pp. 1831–1839. IEEE (2017)

56. Zi, B., Chang, M., Chen, J., Ma, X., Jiang, Y.G.: WildDeepfake: a challenging
real-world dataset for deepfake detection. In: ACM MM, pp. 2382–2390 (2020)

https://doi.org/10.1007/978-3-030-58610-2_6
http://arxiv.org/abs/2010.03019
https://doi.org/10.1007/978-3-030-63830-6_27

	An Information Theoretic Approach for Attention-Driven Face Forgery Detection
	1 Introduction
	2 Related Work
	2.1 Forgery Face Manipulation
	2.2 Face Forgery Detection

	3 Proposed Method
	3.1 Preliminaries
	3.2 Overall Framework
	3.3 Self-information Computation
	3.4 Self-information Based Dual Attention
	3.5 Self-information Aggregation
	3.6 Loss Function

	4 Experiment
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Ablation Study
	4.4 Visualization and Analysis

	5 Conclusion
	References




