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Abstract. Strong image search models can be learned for a specific
domain, i.e. set of labels, provided that some labeled images of that domain
are available. A practical visual search model, however, should be versa-
tile enough to solve multiple retrieval tasks simultaneously, even if those
cover very different specialized domains. Additionally, it should be able to
benefit from even unlabeled images from these various retrieval tasks. This
is the more practical scenario that we consider in this paper. We address
it with the proposed Grappa, an approach that starts from a strong pre-
trained model, and adapts it to tackle multiple retrieval tasks concurrently,
using only unlabeled images from the different task domains. We extend
the pretrained model with multiple independently trained sets of adaptors
that use pseudo-label sets of different sizes, effectively mimicking differ-
ent pseudo-granularities. We reconcile all adaptor sets into a single unified
model suited for all retrieval tasks by learning fusion layers thatwe guide by
propagating pseudo-granularity attentions across neighbors in the feature
space. Results on a benchmark composed of six heterogeneous retrieval
tasks show that the unsupervised Grappa model improves the zero-shot
performance of a state-of-the-art self-supervised learning model, and in
some places reaches or improves over a task label-aware oracle that selects
the most fitting pseudo-granularity per task.

1 Introduction

The last few years have witnessed progress on image retrieval: successful mod-
els can be trained, provided that a set of labeled images from the domain of
interest (not necessary from the same categories) is available for training, as
in the common deep metric learning scenario. Those models are as powerful as
they are specialized: it has been shown, and we confirm in our experiments, that
one model carefully tailored for one domain (e.g . bird species) tend to perform
poorly to a neighboring yet different domain (e.g . dog breeds).

Here, we argue that a practical visual search system should be able to solve
multiple retrieval tasks simultaneously, without needing to explicitly specialize
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for each task. Consider for example a visual search system specialized to fauna
and flora. In such a system, the image database covers a broad range of fine-
grained domains, e.g . from searching among different insect species to different
kinds of mushrooms. For the system to also handle coral species, it should be as
simple as providing a set of unlabeled coral images.
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Fig. 1. Grappa is an unsupervised method
that trains a single model with higher
zero-shot performance (measured with R-
Precision or RP) than the pretrained
DINO [9] model, over several retrieval tasks.

In parallel, the field has worked
towards pretraining large and generic
models for visual representations
that can be used, often as a black
box, to extract features for new tasks.
Among those, models trained in a
self-supervised way have shown to
be versatile to various target tasks,
including image retrieval [9,21].

In this work, we assume access to
such a large pretrained model that
already provides good zero-shot per-
formance. We also assume access to
an unlabeled set of images possibly
from multiple tasks. We propose to
adapt the initial model so it performs
even better on multiple image retrieval tasks simultaneously, i.e. when this same
adapted model is used to extract features for all tasks.

This raises two questions. First, how should we perform adaptation? Fine-
tuning is prohibitively costly especially for large pretrained models, and does
not always transfer well. As an alternative to fine-tuning, and inspired by an
early work on multi-task training [46] and a recent trend in natural language
processing [27,41], we propose to use adaptor layers. Adaptors are embedded
in between architecture blocks, and are the only weights learned, the ones from
the original pretrained model remaining fixed. Our experiments show that this
composite architecture allows for a versatile adaptation of a strong initial model
by adjusting only a small percentage of the model parameters.

Second, how should we reconcile various retrieval tasks in a single model?
A retrieval task focuses on a given set of visual concepts, often associated to
a particular granularity. Yet, unlike in classification for which the granularity
is known beforehand, the granularity of a retrieval task is context dependent,
and depends on the gallery of images where visual search is performed. We
therefore propose learning different sets of adaptors, each set tailored to one
specific granularity. As we assume that training images are unlabeled, not even
to indicate the retrieval task they correspond to, we propose to automatically
define levels of granularity by partitioning the training set into more and more
clusters. As a result, each partition corresponds to a different set of pseudo-labels.
We then independently train one set of adaptors for each pseudo-granularity.

Next, we need to reconcile these different sets of adaptors into a single multi-
purpose retrieval model. One option is to combine them with a naive fusion mecha-
nism. The resulting model improves results on all retrieval tasks, showing the clear
benefit of a multi-granularity understanding of the data. Another option is to go
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one step further and to achieve adaptor fusion via attention propagation. In this
case, we require consistency between the adaptor attention of nearest neighbors in
the feature space. We observe this fusion mechanism further improves the model.

To summarize, our contribution is threefold. First, we palliate the absence of
image and task labels by creating sets of pseudo-labels, with the goal of approx-
imating any possible granularities in a given set of retrieval tasks. Second, we
propose a way to extend transformer-based architectures with adaptors, and a
training framework that tailors individual sets of adaptors to different pseudo-
granularities. Third, we propose a number of ways for fusing the adapter features,
e.g . via augmentation invariance or via propagating attention from neighbors in
the image features space. We validate our approach on a collection of datasets
for deep metric learning and we show that Grappa improves over the success-
ful DINO pretrained model, a model known to already obtain strong zero-shot
performance on all these retrieval tasks (see Fig. 1).

2 Related Work

The task we tackle in this paper strongly relates to deep metric learning. It
requires specific architectural changes of neural networks to extend them with
adaptors. Note that our task can be seen as solving a zero-shot problem, i.e. it
requires no labeled data from the downstream datasets and learns a single model
for all tasks, something fairly uncommon in transfer learning.

Deep Metric Learning (DML). DML aims to learn a metric between data
points that reflects the semantic similarity between them. It plays an important
role in a wide range of tasks such as image clustering [7,26], unsupervised learn-
ing [8,10,24], and visual search [6,19,47]. Recent DML approaches typically learn
visual similarity using either a pair-based loss [11,22,30,40,53] which considers
pair-wise similarities, a proxy-based loss [14,23,31,57,58], which considers the
similarity between samples and class representative proxies, or a contextual clas-
sification loss [5,16,50,65]. In most cases, DML approaches finetune an ImageNet
pretrained model for each target retrieval task, and each of those finetuned models
fall short when applied to other retrieval tasks. We aim at a more versatile visual
search system that handles multiple retrieval tasks with a single model.

Neural Architectures with Adaptation Layers. Adaptation layers (or
adaptors) have emerged [27,41,46,59] as a way to avoid common problems ris-
ing in sequential finetuning or multi-task learning when trying to finetune large
pretrained models to solve multiple tasks, namely the issues of catastrophic for-
getting [36] and task imbalance. Rebuffi et al .. [46] were the first to introduce
adaptors to visual recognition tasks, adapting a convolutional model to many
classification tasks. Adaptors have also been used with transformer architectures
for natural language processing [27]; bottleneck layers are added to all the blocks
of a pretrained model and finetuned, keeping the underlying model fixed.

Recently, Pfeiffer et al .. [41] introduced a way to share knowledge between
adaptors using an adaptor fusion layer within a two-stage learning framework:
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adaptors are trained independently in the first stage, they are kept fixed while
only the fusion layer is trained in the second stage. All the methods mentioned
above still result in models that specialize to a single task; e.g. [41] learns a
separate fusion layer per downstream task, whereas we would like to learn a
single model for all tasks.

Zero-Shot Problems. The field has recently taken an interest in pretrain-
ing large models, sometimes called zero-shot models, using large quantities of
data. Those have been shown to be versatile and applicable to many target
tasks. Among them, self-supervised models [8–10,24,64] are trained using self-
defined pseudo-labels as supervision and typically millions of images (e.g . from
ImageNet [13]). Recent works [20,54] exploit even larger yet uncurated, sets of
unlabeled images to enhance the quality of the learned representations. Oth-
ers [28,45,66] have leveraged multiple modalities, e.g . training visual represen-
tations so they are similar to the textual representations of their associated text.
Those self-supervised or multimodal methods offer excellent initialization to be
finetuned for a wide range of downstream tasks. Sometimes they are used in a
zero-shot setting: a single model is used as a feature extractor, typically to solve
multiple tasks. This is the regime we study here, but we further assume that a
small amount of unlabeled data from the downstream tasks exists.

Relation to Other Transfer Tasks. The idea of transferring a model trained
for a given task to a related one has become central to computer vision [49,51],
and appears in many research fields such as task transfer [63], domain adapta-
tion [12] or self-supervised learning [9,18,39]. Yet, in all those, the initial model
is only a starting point and it is typically not only extended, but also retrained
for each task of interest, leading to a multitude of specialized models. In our
work, we need a single model to perform well across retrieval tasks. In that
regard, this work is closer to zero-shot transfer of the large pretrained models
discussed above. Also related are Mixtures of Experts (MoE) [44,48,52,62], an
ensembling technique that decomposes a predictive problem into subtasks, train-
ing one expert for each. Although MoE architectures may look similar to ours at
first glance, they typically rely on gating and pooling mechanisms that learn to
predict, in a supervised way, which experts to trust, and how to combine them.
Similar to typical transfer approaches, they build one specialized model for each
target task. Here, we focus on a purely unsupervised task: no labels are provided
to indicate image semantic content nor the retrieval task images belong to.

3 A Granularity-Aware Multi-purpose Retrieval Model

In this section we present Grappa, a method for adapting a pretrained model to
multiple retrieval tasks simultaneously, in an unsupervised way. We first formal-
ize our task, i.e. visual search over several retrieval tasks using a single model
(Sect. 3.1). We then present an overview of the approach (Sect. 3.2). Next, we
detail each step, i.e. building multiple granularities (Sect. 3.3), learning adaptors
using granularity-aware pseudo-labels (Sect. 3.4), and learning to fuse them by
propagating adaptor attention across feature space neighbors (Sect. 3.5).
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3.1 Background

Our task of interest, visual search on multiple retrieval tasks, can be seen
as a variant of the standard deep metric learning (DML) task. The most common
protocol in DML is to a) split the classes1 into disjoint train and test sets of
labels; b) learn a separate model for each retrieval task on the corresponding
train split; c) perform retrieval on all images of the (unseen) test split of classes.

Our setting has several key differences. First, we solve multiple retrieval tasks
simultaneously. This means that we do not learn one model for each but a single
model that will be used for all tasks. Second, we only assume access to a set
of unlabeled images from each retrieval task, and do not have access to labeled
training sets, unlike standard DML methods. Even more challenging, unlabeled
training images are provided jointly without knowing which target retrieval task
they correspond to nor the total number of retrieval tasks.

More formally, let T be the set of m retrieval tasks that we want to simul-
taneously tackle. Each task T t is associated with a training and a test set. At
train time, we are provided with a fused training set D composed of the union
of all training sets of the m datasets in T . As mentioned earlier, images are not
associated to any class or task label.

With so many unknowns on the target retrieval tasks, an obvious choice
is to start with a large pretrained model. Self-[9,10,24] or weakly-[28,45]
supervised learning have been shown to lead to strong models that generalize
well and exhibit high zero-shot transfer performance. We assume that we are
given such a model. Here, we base our work on the recently proposed Visual
Transformer (ViT) [15], a popular, efficient, and highly performing architecture,
pretrained in a self-supervised way with DINO [9].

We set our pretrained model M to be a ViT with L transformer layers and
an input patch size P × P pixels. Input image x ∈ R

H×W×C is reshaped into
a sequence of T flattened 2D patches where T = HW/P 2. The transformer
uses constant latent vector size D through all of its layers, so flattened patches
are first mapped to D dimensions with a trainable linear projection and con-
catenated in h0, together with a prepended learnable [class] token and added
position embeddings. The transformer encoder [55] consists of alternating blocks
of multi-headed self-attention (MSA) and MLP (which contain two layers with a
GELU non-linearity). LayerNorm (LN) is applied before every block, and resid-
ual connections after every block. Formally, each layer of M (shown with a gray
background on Fig. 3, left) is given by:

hl = MLP(LN(h̃l)) + h̃l, h̃l = MSA(LN(hl−1)) + hl−1, (1)

for l = {1 . . . L}. The image representation z is the output of the [class] token
after the last layer hL, i.e. z = LN(hL)[class]. We refer the reader to [15] for
more details about the ViT architecture.

1 We will use the term classes to refer to sets of images with the same label, whether
the latter represents object instances or fine-grained classes.
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(a) Step 1 (b) Step 2 and Step 3

Fig. 2. Training of the proposed Grappa. Left: granularities correspond to pseudo-
labels Pi obtained by multiple clusterings of the feature space (Step 1). Right: we
learn the granularity-aware adaptors (Step 2, in green), and then learn how to fuse
them (Step 3, in blue). For this example, N=3. (Color figure online)

3.2 Method Overview

Our method builds on the VIT [15] model M pretrained with DINO [9], that we
treat as an architectural backbone. We extend and train it in an unsupervised
way using D. The training process consists of three steps (summarized in Fig. 2):

• Step 1: Learning pseudo-labels. We build multiple sets of pseudo-labels.
Each set partitions the feature space using clustering and corresponds to a
different pseudo-granularity. This process is illustrated in Fig. 2a.

• Step 2: Learning adaptors for each pseudo-label set independently.
We learn a set of adaptors specific to each pseudo-granularity using a classi-
fication loss. This process is depicted by the green arrows in Fig. 2b.

• Step 3: Learning to fuse adaptors. We learn a set of fusion layers to
merge the outputs of multiple adaptors using a transformation invariance
or an attention propagation loss, i.e. neighboring images should have simi-
lar attentions over adaptors. This process is depicted by the blue arrows in
Fig. 2b.

These three stages lead to a single model we denote as M∗, that unifies
the multiple granularities, and consists of: the pretrained model M used as a
frozen backbone (its parameters are kept fixed during the entirety of the process),
embedded adaptors Ai, and fusion layers F . This single model is used as a unique
feature extractor for all retrieval tasks considered in our benchmark. We denote
our method Grappa, that stands for learning Granularity-aware Adaptors by
Attention Propagation. The following subsections detail the learning stages.
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Fig. 3. Architecture of the lth layer of the Grappa model, for N=3 adaptors.

3.3 Step 1: Learning Pseudo-labels

We would like to build multiple sets of pseudo-labels such that they partition the
feature space at different ‘granularities’. We can approximate this partitioning
by estimating multiple sets of clusters while varying the number of centers.

In practice, we extract features using the pretrained model M. Let z =
f(x;M) be the feature of an image x ∈ D. Let the set of all features for training
set D be Z = {f(x;M),∀x ∈ D}. To get multiple sets of pseudo-labels, we
cluster the full set of features Z into sets of centroids Ci, i = 1..N , of respectively
ki clusters, where ki gets monotonically larger as i approaches N . This produces
N sets of pseudo-labels P1, . . . ,PN . For each pseudo-label set Pi, an image x ∈
D, is associated to a pseudo-label given by Pi(x) = arg minc∈Ci

||z − c||, for
z = f(x;M). We rely on the vanilla k-means clustering algorithm [34] with k-
means++ [1] initialization, a common choice for the size of our benchmark. For
even larger datasets, more scalable variants could be used, like hierarchical [42],
approximate [2], or quantized [3] k-means.Note that other works have used k-
means to define pseudolabels [7,60]. Yet, our work is the first to learn multiple
sets and subsequently use all of them.

3.4 Step 2: Learning Adaptors for Each Pseudo-label Set

Given the N sets of pseudo-labels computed in the previous step, we now would
like to learn adaptors tailored to each pseudo-label set, i.e. to each pseudo-
granularity. We use the pretrained model M as a backbone and extend it by
embedding an adaptor at every layer. We then learn the adaptor parameters
while keeping the backbone ones frozen. We learn a set of L adaptors for each
pseudo-granularity in an independent way.

Adaptor Architecture. Recent works in natural language processing [27,43,59]
have embedded adaptor layers in transformer architectures. We follow a similar
design and embed L adaptors, one at the end of each transformer layer of M.

Formally, we learn a separate set of adaptors Ai for each pseudo-label set
Pi, i = {1, . . . , N}. Each set Ai consists of L adaptors, denoted as A1

i , . . . ,AL
i .

These adaptors are bottleneck layers with an intermediate dimensionality of D′

(where D′ < D), a GELU layer [25] in between, and a residual connection at
the end. Since we are modifying the architecture of M by interleaving it with
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blocks, we need to revisit notations. The output of layer l in M (after the basic
ViT block) is now defined as h̄l = MLP(LN(h̃l)) + h̃l. The output of the new
layer l (the original VIT block combined with an adaptor) can still be denoted
as hl. Details of the overall architecture are shown in Fig. 3.

Learning the Adaptors. Given a set of pseudo-labels Pi, we can learn the
parameters of the set of adaptors Ai via a supervised cross entropy loss. Specif-
ically, we use the norm-softmax loss [33,57,58,65] that, for image x, is given
by:

Lcls(x; y) = log
exp(γ cos θy)

∑ki

y′=1 exp(γ cos θy′)
, (2)

where γ is a scale factor, cos θy is the cosine similarity to the classifier of class
y, and the loss is guided by the pseudo-labels, i.e. y = Pi(x). After learning the
parameters for each set Pi, we keep the adaptors and discard the classifiers.

3.5 Step 3: Learning to Fuse Adaptors

The process described in Sect. 3.4 leads to N separate sets of adaptors, each tai-
lored to a different pseudo-granularity. The next step is to unify all adaptor sets
into a single architecture. To that end, we append (i.e. stack) the N adaptors for
each layer in parallel, as shown in Fig. 3. We then concatenate adaptor outputs in
a tensor Ul ∈ R

N×T×D for each layer l = {1, . . . , L}, where each row corresponds
to the output of one adaptor for this layer. Here, another residual connection is
added, giving the model the opportunity to bypass the adapter if needed. Tensor
Ul is therefore given by Ul = {Al

i(h̄
l) + MLP (LN(h̃l)), i = 1..N} and is then

fed, together with h̄l, to a fusion layer, as detailed below.

First Option: Fusion by Average Pooling. A straightforward way of fusing
the outputs of the N adaptors is to treat them as equally important and average
them. The fusion layer therefore is simply an average pooling layer that takes
tensor Ul ∈ R

N×T×D as input and computes the mean over its first dimension.
We refer to this simpler version of our approach as Grappa-avg.

Second Option: Learning to Fuse. Treating all adaptors as equally important
for any input image goes against our intuition that different retrieval tasks are
more related to certain granularities, and hence more suited for the correspond-
ing adaptors. We therefore design a fusion layer with trainable parameters, that
can learn to weigh the different adaptor outputs. We use a simple dot-product
self-attention architecture over the sequence of N adaptor outputs. Yet, we make
two crucial modifications to the vanilla query-key-value self-attention: a) To learn
an image-level attention, we average over the T spatial tokens; b) Given that we
want to fuse the adaptors but do not want to alter the adaptor representations,
we omit the linear projection of the value branch, and only learn projections for
the query and key branches that affect the re-weighting of adaptor features.

Specifically, the fusion layer learns an attention vector of size N over the
adaptors, given inputs h̄l and Ul, by F l(h̄l,Ul) = αl(h̄l,Ul)Ul, where vector
αl(h̄l,Ul) ∈ R

N is given by:
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αl(h̄l,Ul) = softmax

((
Q

∑
T h̄l

) (
K

∑
T Ul

)T

√
D

)

(3)

where l = {1, . . . , L}, Q and K are linear projections of size D × D. A final
residual connection is added after the fusion layer. The architecture details of
a complete layer are shown in Fig. 3. The latter comprises the ViT block, the
adaptors, and the fusion layer, all appended in a residual fashion.

Given pretrained model M and multiple sets of adaptors, one way to build a
single model is to select one set of adaptors per image. This amounts to guessing
which pseudo-granularity best fits each image. We argue that, in a generic visual
search system, “picking a granularity” for a query image depends less on the
image content than on the retrieval task, i.e. the gallery used at test time.
Given a dog image query, for example, the only way to know if we are looking
for any dog image or only images of the same dog breed, is by looking at the
local structure of the gallery around that image. Both scenarios might favor
different representations; our system reconciles them by learning a combination
of adaptors. Obviously, we do not have access to the test images during training.
Yet, we assume access to unlabeled set of images D, representative of the target
retrieval tasks, or at least of their granularity. Again, these images are provided
without task labels, we do not know which retrieval task they correspond to.

Without any other supervisory signal, we argue that the local neighborhood
in the feature space of the training set D can be used to approximate the “gran-
ularity” of a query. In other words, we assume that visually similar images from
D should yield similar attention vectors over the sets of adaptors. We therefore
propose to learn to fuse adaptors using a loss on neighboring image pairs in the
feature space. In this step, the backbone model M and the adaptors remain
frozen. The fusion layer only learns K and Q, two linear projections that are
multiplied to give the attention vectors αl, for each ViT encoder l. This means
that any loss applied to this fusion step only re-weights adaptor features. We
denote the final model, composed of the backbone with all embedded adaptors
and their fusion, as M∗, and the corresponding feature extractor as f∗(x,M∗).

Attention Propagation Loss. As mentioned, we propose to train the fusion
layer leveraging the assumption that neighboring image pairs in the feature space
should use similar attentions over adaptors. Let Nk(x;D) denote the k nearest
neighbors of x from dataset D. We define neighbors (xi,xj) as a pair of inputs
such that xj ∈ Nk(xi;D). Although neighbors could be built using the pretrained
model z = f(x,M) (static k-NN), the representations z̃ = f∗(x,M∗) from the
learned model M∗ provide a better estimation. This requires to periodically
update neighbors during training (in practice we do it at every epoch). Given
a pair of neighboring features, we bring their adaptor attentions close to each
other and strive for attention consistency.

Attention consistency is enforced using the pairwise Barlow Twins loss [64].
Given a batch of image pairs, the loss is defined over the output representations
z̃i = f∗(xi;M∗), z̃j = f∗(xj ;M∗) of our model, computed over the D × D
cross-correlation matrix C and averaged over the batch, i.e.:
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LBT =
∑

n

(1− Cnn)2 + β
∑

n

∑

m�=n

(Cnm)2, Cnm =

∑
b g(ẑi)

b,ng(ẑj)
b,m

√∑
b(g(ẑi)

b,n)2
√∑

b(g(ẑj)
b,m)2

, (4)

where b iterates over pairs in the batch, n and m iterate over feature dimensions,
β is a hyperparameter and g(·) is a MLP projector appended to the model and
discarded after training. We refer the reader to [64] for more details.

Originally, i.e. in [64], this loss was defined over two transformed versions
of the same image (xi = t(x),xj = t(x)). When image pairs are created using
image transformations, Eq. (4) defines a transformation consistency (TC) loss
or LTC . This is a variant that we consider in our benchmark, referred to as
Grappa-T. However, we are interested in applying this loss on neighboring pairs
in the feature space, (xi,xj) such as xj ∈ Nk(xi;D), and using it for atten-
tion propagation. In this case, we depart from [64] and follow the recent TLDR
method [29] which uses the Barlow Twins loss over neighbor pairs for learn-
ing a feature encoder for dimensionality reduction. Similarly, we use the Barlow
Twins loss on image pairs defined using the k-NN graph. We denote the loss in
Eq. (4) as an attention consistency (AC) loss, or LAC , and refer to this variant
as Grappa-N.

4 Experiments

In this section we validate the proposed Grappa on several retrieval tasks. These
tasks are collected in a new benchmark that we introduce, called MRT. It unifies
6 fine-grained classification datasets under a retrieval setting. We show statistics
and present the evaluation protocol of this benchmark in Sect. 4.1, we present
the methods we compare in Sect. 4.2 and we report all results in Sect. 4.3.

Implementation Details. We use ViT-Small [15] as a backbone architecture,
with a patch size of 16 pixels and DINO [9] pre-trained weights. We generate
N=8 sets of pseudo-labels on the training set of MRT, respectively composed of
256, 1024, 4096, 8,192, 16,384, 32,768, 65,536, and 131,072 clusters. We learn a
set of adaptors for each pseudo-label set, using the norm-softmax loss from Eq.
(2) and an Adam optimizer with a learning rate and weight decay of 0.001. We
train the fusion layer over these adaptors using the Barlow Twins loss [64] and
the LARS optimizer [61]. We used the same hyper-parameters for the scaling and
β as suggested in [64], and a learning rate and weight decay of 0.5 and 0.001.

Evaluation Metrics. Recent works [17,37] in DML have questioned standard
evaluation metrics (i.e. Recall@1) and argue they are not fair. Thus, we report
the R-Precision (RP) and MAP@R metrics recently introduced in [37].

4.1 Multiple Retrieval Tasks (MRT) Benchmark

Data. The Multiple Retrieval Tasks (MRT) benchmark combines the 6 following
fine-grained datasets under a retrieval setting: Aircraft [35], Cars [32], CUB [56],
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Table 1. Statistics of the Multiple Retrieval Tasks (MRT) benchmark. It is
composed of 6 datasets. Classes in train and test are disjoint. We provide the number
of classes as a reference, but labels are never used during training.

Dataset Training Testing

# Classes # Images # Classes # Images

Aircraft [35] 50 5,000 50 5,000

Cars [32] 98 8,054 98 8,131

CUB [56] 100 5,864 100 5,924

Flowers [38] 51 3,870 51 4,319

Food-101 [4] 51 51,000 50 50,000

Products [40] 11,318 59,551 11,316 60,502

MRT 11,668 133,339 11,665 133,876

Flowers [38], Food-101 [4], and Stanford online products (Products) [40]. We
follow standard practice in the DML community and, for each dataset, assign
the first half of the classes (ordered alphabetically) for training and the second
half for testing. We then combine images from all the training splits into a single
training set D of 133,339 images and discard their class and dataset labels. This
is the training set we use to learn the pseudo-labels, as well as the adaptor and
the fusion parameters. We show statistics for all datasets in Table 1.

Evaluation Protocol. Models are trained on the combined training set D with-
out task nor class labels. Evaluation is performed on the test split of each task
independently, following a leave-one-out protocol: each image is used as a query
once to rank all the other images in the test set. For evaluation, relevance is
defined according to class labels and we report mean average precision (MAP@R
or mAP) and R-Precision (RP) over all queries.

4.2 Compared Methods

Baselines. First and foremost, we compare with the DINO pretrained visual
transformer of [9], a self-supervised model trained on ImageNet1K. It obtains
impressive zero-shot performance on retrieval and constitutes a very strong base-
line.2 We denote this baseline as DINO or simply M in Table 2 and Fig. 4.

The Grappa architecture adds an extra set of parameters in the form of
adaptors and fusion layers. To verify that improvements do not simply come
from these extra parameters, we report results with a second baseline that has
the same number of parameters as the Grappa models, but uses no pseudo-
granularity-based adaptors nor the proposed attention consistency loss. Instead
of following Step 2, we randomly initialize adaptors and finetune them when
learning the fusion. For the latter, we use the Barlow Twins loss from Eq.(4),
with transformation consistency, and train it on the training set of MRT, similar
to Grappa. We denote this baseline: M∗ (random).
2 We chose DINO over the CLIP [45] model as the training set of CLIP is not public.

Therefore the data in MRT might be part of its 400M image-text training pairs.
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Table 2. Results on the Multiple Retrieval Task (MRT) benchmark. We
report MAP@R (mAP) and RP on the six datasets of MRT, obtained by a single
model from those listed in Sect. 4.2, all unsupervised. The oracle (in gray) is not
comparable as it selects the set of adaptors that performs best for each task.

Aircraft Cars CUB Flowers Food-101 Products

RP mAP RP mAP RP mAP RP mAP RP mAP RP mAP

DINO (M) 17.5 9.2 9.0 3.5 33.6 22.9 62.5 57.0 27.0 16.1 34.1 31.5

Results without pseudo-granularity adaptors

M + A1 15.4 7.8 7.9 2.7 16.2 7.8 62.8 56.9 22.1 11.6 32.0 29.5

M∗ (random) 11.8 5.0 6.2 1.7 11.0 4.5 62.7 56.2 21.9 11.2 28.9 26.5

Results using only a single set of pseudo-granularity adaptors

M + P1 18.0 9.5 8.9 3.4 33.3 22.7 63.3 57.6 29.0 17.9 32.2 29.6

M + P2 18.0 9.5 9.1 3.6 34.9 24.1 66.7 61.3 29.3 18.1 32.7 30.1

M + P3 18.3 9.7 9.6 3.8 35.3 24.5 67.9 62.7 29.5 18.4 34.5 31.9

M + P4 18.1 9.5 9.7 3.9 35.2 24.3 67.9 62.6 29.6 18.4 35.8 33.1

M + P5 17.6 9.1 9.8 3.9 33.5 22.6 67.5 62.2 29.5 18.4 37.7 34.9

M + P6 17.3 8.7 9.8 3.9 31.4 20.3 66.9 61.5 29.4 18.3 39.7 36.8

M + P7 16.3 8.0 9.4 3.7 26.5 15.8 64.9 59.1 28.8 17.8 42.4 39.6

M + P8 12.6 5.4 7.5 2.7 14.8 6.6 56.7 49.8 22.1 11.9 46.5 43.7

Oracle (O) 18.3 9.7 9.8 3.9 35.3 24.5 67.9 62.7 29.6 18.4 46.5 43.7

i.e. only P3 P5–P6 P3 P3–P4 P5 P8

Results using 8 pseudo-granularity adaptors and fusion (M∗)

Grappa-avg 17.9 9.3 9.8 3.9 34.1 23.1 66.5 61.2 30.4 19.2 37.1 34.4

Grappa-T 18.1 9.5 9.8 3.9 34.4 23.5 66.5 61.2 30.4 19.2 35.9 33.2

Grappa-N 18.1 9.5 9.9 4.0 35.1 24.1 67.2 61.9 30.5 19.3 36.3 33.6

vs. DINO (↑ 0.6) (↑ 0.3) (↑ 0.9) (↑ 0.5) (↑ 1.5) (↑ 1.2) (↑ 4.7) (↑ 4.9) (↑ 3.5) (↑ 3.2) (↑ 2.2) (↑ 2.1)

Proposed. We report results for models with adaptor fusion described in Sect. 3
together with results for individual adaptors. More precisely, we build N pseudo-
label sets on the training set of MRT and train N sets of adaptors on these
pseudo-labels independently. We report their individual performance as M +
Pi. As mentioned above, we use DINO as a backbone and keep it frozen.

Then, using MRT’s training set again, we combine these N adaptors into
a single model and train the fusion layer using i) a Barlow Twins loss on the
final representation when creating pairs from two augmented views, reported as
Grappa-T, and ii) our proposed Attention Consistency framework which relies
on the local neighborhood, reported as Grappa-N. We also report results for the
case where the fusion is an average pooling layer, denoted as Grappa-avg.

An Adaptor Selector Oracle. What if we could choose the best performing
pseudo-granularity for each retrieval task? Obviously, this requires access to the
test set labels. This also results in a different representation per task, which
departs from the universal representation we seek to learn. For these reasons, we
only consider this variant as an oracle, and its results should not be compared
with others. We still provide it as a reference, showing how much could be
achieved if we set the attention as a one-hot vector that only enables the best
possible pseudo-granularity adaptor. We denote the oracle as O.
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4.3 Results

We present our results in Table 2 and Fig. 4. Again, note that, unlike the common
DML experimental setting, we use a unique model for all retrieval datasets and
no class nor task labels during training. We make the following observations.

DINO [9] Pseudo-granularity Pi Oracle O (maxi Pi) Grappa-avg Grappa-T Grappa-N

M P1P2P3P4P5P6P7P8 O M∗16

17

18

RP Aircraft

M P1P2P3P4P5P6P7P8 O M∗8

8.5

9

9.5

10

RP Cars

M P1P2P3P4P5P6P7P8 O M∗30

32

34

36

RP CUB

M P1P2P3P4P5P6P7P8 O M∗60

62

64

66

68

RP Flowers

M P1P2P3P4P5P6P7P8 O M∗

26

28

30

RP Food-101

M P1P2P3P4P5P6P7P8 O M∗

35

40

45

RP Products

Fig. 4. Results per dataset in MRT. All 6 datasets use the same model.

Baselines. We confirm the initial observation [9] that, for common DML
datasets, DINO is a very strong baseline. It achieves good performance even
on the more challenging metrics RP and MAP@R. Also, it turned out to be
very challenging to improve over DINO by keeping its backbone frozen and
embedding extra modules. We did our best to learn the additional modules from
scratch, but were unsuccessful. Rows 2–3 of Table 2 report the best results after
hyper-parameter tuning for a single set (no fusion) and for 8 sets of adaptors
with fusion. Embedding randomly initialized modules typically deteriorates the
performance. This makes separately trained pseudo-granularity adaptors all the
more important.

Using a Single Set of Adaptors. In rows 4–12 of Table 2 we report results
when only using adaptors from a single pseudo-granularity; these results are
also visualized as lavender-colored points in Fig. 4. We observe that, for each
dataset, there exists at least one pseudo-label set that improves over DINO,
and that the best one (reported as Oracle O) is different for different retrieval
tasks. The oracle results use separate models, and selecting the best one for each
task requires access to labels. Considering each set of adaptors as a separate
model, some improve over DINO on several retrieval tasks, showing that even
individual pseudo-granularities-specific sets of adaptors can be useful. Yet, as we
will see next, higher gains can be achieved by fusing multiple adaptors into a
single model.
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Fusion and Attention Consistency. The bottom part of Table 2 shows the
performance of the final model M∗ that combines adaptors from all eight pseudo-
granularities (P1 . . . P8). We see that using the proposed attention consis-
tency (AC) loss over neighborhood pairs results in an even stronger model that
improves over DINO and over the Grappa-T variant that uses pairs from dif-
ferent augmentations of the same image, in all datasets. In fact, we see that
in most cases (i.e. apart from Products), the proposed AC loss is able to give
results on-par with the oracle O that would select the right pseudo-granularity
for each dataset. Moreover, for Food-101 and Cars, Grappa outperforms the best
adaptor for the dataset, showing that this oracle is not necessarily an upper
bound: combining pseudo-granularities is beneficial. It is also worth noting that
the simpler and parameter-free fusion of the Grappa-avg model is still improving
over DINO in all cases, while it is also the best performing Grappa variant on
the instance-level Products dataset.

Qualitative Results. Figure 5 presents qualitative results for two queries from
the MRT benchmark. We present two cases where Grappa-N achieves signifi-
cantly higher recall than DINO, i.e. cases where the local feature space is adapted
in a way that images from the correct class are closer together.

Failure Cases. As we see from Table 2 and Fig. 4, our fusion mechanism is not
able to learn that P8 is the best pseudo-granularity for Products. We attribute
this to the different topology of that dataset and the fact that hyperparameters
were chosen to optimize performance for the union of the six benchmarks.

DINO

Grappa

DINO

Grappa

Fig. 5. Qualitative results. Queries (first column) from Flowers and Food-101 and
their top 5 retrieved results (columns 2-6) by DINO [9] and Grappa-N.
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5 Conclusions

We present Grappa, an unsupervised approach for adapting a large pretrained
backbone to simultaneously tackle multiple retrieval tasks, given only an unla-
beled set of training images associated to these retrieval tasks. We show that one
can adapt a large pretrained visual transformer using a set of pseudo-granularity
adaptors and simple fusion layers. Our Grappa models bring consistent gains over
the strong DINO [9] baseline on all six retrieval tasks we adapt to. We envision
this work as a first step towards models that dynamically adapt.

Acknowledgements. MIAI@Grenoble Alpes (ANR-19-P3IA-0003).
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