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Abstract. In this work, we study multi-domain learning for face anti-
spoofing (MD-FAS), where a pre-trained FAS model needs to be updated
to perform equally well on both source and target domains while only
using target domain data for updating. We present a new model for MD-
FAS, which addresses the forgetting issue when learning new domain
data, while possessing a high level of adaptability. First, we devise
a simple yet effective module, called spoof region estimator (SRE),
to identify spoof traces in the spoof image. Such spoof traces reflect
the source pre-trained model’s responses that help upgraded models
combat catastrophic forgetting during updating. Unlike prior works
that estimate spoof traces which generate multiple outputs or a low-
resolution binary mask, SRE produces one single, detailed pixel-wise
estimate in an unsupervised manner. Secondly, we propose a novel frame-
work, named FAS-wrapper, which transfers knowledge from the pre-
trained models and seamlessly integrates with different FAS models.
Lastly, to help the community further advance MD-FAS, we construct a
new benchmark based on SIW, SIW-Mv2 and Oulu-NPU, and intro-
duce four distinct protocols for evaluation, where source and target
domains are different in terms of spoof type, age, ethnicity, and illu-
mination. Our proposed method achieves superior performance on the
MD-FAS benchmark than previous methods. Our code is available at
https://github.com/CHELSEA234/Multi-domain-learning-FAS.

1 Introduction

Face anti-spoofing (FAS) comprises techniques that distinguish genuine human
faces and faces on spoof mediums [6], such as printed photographs, screen replay,
and 3D masks. FAS is a critical component of the face recognition pipeline that
ensures only genuine faces are being matched. As face recognition systems are
widely deployed in real world applications, a laboratory-trained FAS model is
often required to deploy in a new target domain with face images from novel
camera sensors, ethnicities, ages, types of spoof attacks, etc., which differ from
the source domain training data in the laboratory.
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Fig. 1. We study multi-domain learning face anti-spoofing (MD-FAS), in which the
model is trained only using target domain data. We first derive the general formulation
of FAS models, which contains Spoof Cue Estimate Layers (SCE layers) and multi-scale
feature extractor (MsFE). Based on these two components, we propose FAS-wrapper
that can be adopted for any FAS models, as depicted in (c). (a) and (b) represent the
naive fine-tuning and joint training.

In the presence of a large domain-shift [23,50,58] between the source and
target domain, it is necessary to employ new target domain data for updating
the pre-trained FAS model, in order to perform well in the new test environment.
Meanwhile, the source domain data might be inaccessible during updating, due
to data privacy issues, which happens more and more frequently for Personally
Identifiable Information (PII). Secondly, the FAS model needs to be evaluated
jointly on source and target domains, as spoof attacks should be detected regard-
less of which domain they originate from. Motivated by these challenges, the goal
of this paper is to answer the following question:

How can we update a FAS model using only target domain data, so that the
upgraded model can perform well in both the source and target domains?

We define this problem as multi-domain learning face anti-spoofing (MD-
FAS), as depicted in Fig. 1. Notably, Domain Adaptation (DA) works [14,27,
31,38,51] mainly evaluate on the target domain, whereas MD-FAS requires a
joint evaluation. Also, MD-FAS is related to Multiple Domain Learning (MDL)
[17,44,45], which aims to learn a universal representation for images in many
generic image domains, based on one unchanged model. In contrast, MD-FAS
algorithm needs to be model-agnostic for the deployment, which means the MD-
FAS algorithm can be tasked to update FAS models with various architectures or
loss functions. Lastly, the source domain data is unavailable during the training
in MD-FAS, which is different from previous domain generalization methods in
FAS [20,36,42,53] or related manipulation detection problems [5].
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There are two main challenges in MD-FAS. First, the source domain data
is unavailable during the updating. As a result, MD-FAS easily suffers from
the long-standing catastrophic forgetting [25] in learning new tasks, gradually
degrading source domain performance. The most common solution [12,22,29] to
such a forgetting issue is to use logits and class activation map (grad-CAM) [52]
restoring prior model responses when processing the new data. However, due to
the increasingly sophisticated spoof image, using logits and grad-CAM empir-
ically fail to precisely pinpoint spatial pixel locations where spoofness occurs,
unable to uncover the decision making behind the FAS model. To this end, we
propose a simple yet effective module, namely spoof region estimator (SRE ), to
identify the spoof regions given an input spoof image. Such spoof traces serve as
responses of the pre-trained model, or better replacement to logits and activation
maps in the MD-FAS scenario. Notably, unlike using multiple traces to pinpoint
spoofness or manipulation in image [31,69], or low-resolution binary mask as
manipulation indicator [10,33,64], our SRE offers a single and high-resolution
detailed binary mask representing pixel-wise spatial locations of spoofness. Also,
many anti-forgetting algorithms [8,13,40,46,49,54] usually require extra mem-
ory for restoring exemplar samples or expanding the model size, which makes
them inefficient in real-world situations.

Secondly, to develop an algorithm with a high level of adaptability, it is
desirable to keep original FAS models intact for the seamless deployment while
changing the network parameters. Unlike methods proposed in [44,45] that spe-
cialize on the certain architecture (e.g., ResNet), we first derive the general
formulation after studying FAS models [30,34,37,53,63,65], then based on such
a formulation we propose a novel architecture, named FAS-wrapper (depicted in
Fig. 2), which can be deployed for FAS models with minimum changes on the
architecture.

In summary, this paper makes the following contributions:
� Driven by the deployment in real-world applications, we define a new prob-

lem of MD-FAS, which requires to update a pre-trained FAS model only using
target domain data, yet evaluate on both source and target domains. To facili-
tate the MD-FAS study, we construct the FASMD benchmark, based on existing
FAS datasets [7,34,36], with four evaluation protocols.

� We propose a spoof region estimator (SRE ) module to identify spoof traces
in the input image. Such spoof traces serve as the prior model’s responses to help
tackle the catastrophic forgetting during the FAS model updating.

� We propose a novel method, FAS-wrapper, which can be adopted by any
FAS models for adapting to target domains while preserving the source domain
performance.

� Our method demonstrates superior performance over prior works, on both
source and target domains in the FASMD benchmark. Moreover, our method
also generalizes well in the cross-dataset scenario.



Multi-domain Learning for Updating Face Anti-spoofing Models 233

Table 1. We study the multi-domain learning face anti-spoofing, which is different to
prior works.

Paradigm Method Source free Learning new domain Joint evaluation Model agnostic Anti-forgetting mechanism

Face anti-spoofing domain learning SSDG [20] ✘ ✔ ✔ ✔ N/A

MADDoG [53] ✘ ✔ ✔ ✔ N/A

FSDE-FAS [61] ✘ ✔ ✔ ✔ N/A

Anti-forgetting learning EWC [25] ✔ ✘ ✔ ✔ Prior-driven

iCaRL [46] ✔ ✘ ✔ ✔ Replay

MAS [4] ✔ ✘ ✔ ✔ Prior-driven

LwF [29] ✔ ✘ ✔ ✔ Data-driven (class prob.)

LwM [12] ✔ ✘ ✔ ✔ Data-driven (feat. map)

Multi-domain learning DAN [14] ✘ ✔ ✘ ✔ N/A

OSBP [51] ✘ ✔ ✘ ✔ N/A

STA [31] ✘ ✔ ✘ ✔ N/A

CIDA [27] ✔ ✔ ✘ ✘ N/A

Seri. Adapter [44] ✔ ✔ ✔ ✘ N/A

Para. Adapter [45] ✔ ✔ ✔ ✘ N/A

Multi-domain learning face anti-spoofing FAS-wrapper (Ours) ✔ ✔ ✔ ✔ Data-driven (spoof region)

2 Related Works

Face Anti-spoofing Domain Adaptation. In Domain Adaption (DA) [14,
27,31,38,51], many prior works assume the source data is accessible, but in
our setup, source domain data is unavailable. The DA performance evaluation
is biased towards the target domain data, as source domain performance may
deteriorate, whereas FAS models need to excel on both source and target domain
data. There are some FAS works that study the cross-domain scenario [20,36,
43,53,56,59,61]. [61] is proposed for the scenario where source and a few labeled
new domain data are available, with the idea to augment target data by style
transfer [62]. [53] learns a shared, indiscriminative feature space without the
target domain data. Besides, [20] constructs a generalized feature space that has
a compact real faces feature distribution in different domains. [36] also works on
unseen domain generalization. But the same as the other works, the new domain
is not based on bio-metric patterns (i.e., age). Being orthogonal to prior works,
the source domain data in our study is unavailable, which is a more challenging
setting, as shown in Table 1.

Anti-forgetting Learning. The main challenge in MD-FAS is the long-
studied catastrophic forgetting [25]. According to [11], there exist four solutions:
replay [8,46,54], parameter isolation [13,40,49], prior-driven [4,25,28] and data-
driven [12,22,29]. The replay method requires to restore a fraction of training
data which breaks our source-free constraint, e.g., [47] needs to store the exem-
plar training data. Parameter isolation methods [13,40,49] dynamically expand
the network, which is also discouraged due to the memory expense. The prior-
driven methods [4,25,28] are proposed based on the assumption that model
parameters obey the Gaussian distribution, which is not always the case. The
data-driven method [3,15,16,19] is always more favored in the community, due
to its effectiveness and low computation cost. However, the development of data-
driven methods is dampened in the FAS, since the commonly-used pre-trained
model responses (e.g., class probabilities [29] and grad-CAM [12]) fail to capture
spoof regions. In this context, our SRE is a simple yet effect way of estimating
the spoof trace in the image, which serves as the responses of the pre-train model.
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Fig. 2. (a) Given the source pre-trained model that contains feature extractor fS ,
we fine-tune it with the proposed spoof region estimator (SRE) on the target domain
data, in which we use preliminary mask (Ipre) to assist the learning (see Sect. 3.2).
Then, we obtain a well-trained SRE and a new feature extractor fT which specializes
in the target domain. (b) In FAS-wrapper, SRE helps fS and updated model (fnew)
generate binary masks indicating spoof cues, which serve as model responses given an
input image (I). LSpoof prevents the divergence between estimated spoof traces, to
combat catastrophic forgetting. Meanwhile, using two multi-scale discriminators (DisS

and DisT ), FAS-wrapper transfers the knowledge from two teacher models ( fS and
fT ) to fnew via the adversarial training. (c) The update model fnew and SRE can be
used for the inference.

Multi-domain Learning. Mostly recently, many large-scale FAS datasets with
rich annotations have been collected [30,67,68] in the community, among which
[30] studies cross-ethnicity and cross-gender FAS. However they work on multi-
modal datasets, whereas our input is a single RGB image. In the literature,
our work is similar to the multi-domain learning (MDL) [41,44,45], where a
re-trained model is required to perform well on both source and target domain
data. The common approaches are proposed from [44,45] based on ResNet [18],
which, compared to [26,55], has advantages in increasing the abstraction by
convoluation operations. In contrast, an ideal MD-FAS algorithm, such as FAS-
wrapper, should work in a model-agnostic fashion.

3 Proposed Method

This section is organized as follows. Section 3.1 summarizes the general formu-
lation of recent FAS models. Sectons 3.2 and 3.3 introduce the spoof region esti-
mator and overall FAS-wrapper architecture. Training and inference procedures
are reported in Sect. 3.4.

3.1 FAS Models Study

We investigate the recently proposed FAS methods (see Table 2) and observe
that these FAS models have two shared characteristics. Spoof Cue Estimate.
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Beyond treating FAS as a binary classification problem, many SOTA works
emphasize on estimating spoof clues from a given image. Such spoof clues are
detected in two ways: (a) optimizing the model to predict auxiliary signals such
as depth map or rPPG signals [34,63,65]; (b) interpreting the spoofness from
different perspectives: the method in [21] aims to disentangle the spoof noise,
including color distortions and different types of artifacts, and spoof traces are
interpreted in [35,37] as multi-scale and physical-based traces.

Table 2. Summary of recent FAS models.

Method Year Number of scale Spoof cue estimate

Auxiliary [34] 2018 3 Depth and rPPG signal

Despoofing [21] 2018 3 Color distortions,
and display artifacts

MADD [53] 2019 3 Depth

CDCN [65] 2020 3 Depth

STDN [37] 2020 3 Color range bias, content and
texture pattern, and depth

BCN [63] 2020 3 Patch, reflection and depth

PSMM-Net [30] 2021 4 Depth, RGB and infrared image

PhySTD [35] 2022 4 Additive and inpainting trace,
and depth

Multi-scale Feature Extrac-
tor. Majority of previous FAS
methods adopt the multi-scale
feature. We believe such a multi-
scale structure assists in learning
information at different frequency
levels. This is also demonstrated
in [37] that low-frequency traces
(e.g., makeup strokes and specu-
lar highlights) and high-frequency
content (e.g., Moiré patterns) are
equally important for the FAS models’ success.

As a result, we formalize the generic FAS model using two components:
feature extractor f and spoof cue estimate (SCE) layers (or decoders) g. When
f takes an input face image, denoted as I, the output feature map at t-th layer
of the feature extractor f is ft(I). The size of ft(I) is Ct × Ht × Wt, where Ct

is the channel number, and Ht and Wt are respectively the height and width of
feature maps.

3.2 Spoof Region Estimator

Motivation. Apart from the importance of identifying spoof cues for FAS per-
formance, we observe that spoof trace also serves as a key reflection of how differ-
ent models make the binary decision, namely, different models’ activations on the
input image. In other words, although different models might unanimously classify
the same image as spoof, they in fact could make decisions based on distinct spatial
regions, as depicted in Fig. 6. Thus, we attempt to prevent the divergence between
spoof regions estimated from the new model (i.e., fnew) and source domain pre-
trained model (i.e., fS), such that we can enable fnew to perceive spoof cues from
the perspective of fS , thereby combating the catastrophic forgetting issue. To this
end, we propose a spoof region estimator (SRE ) to localize spatial pixel positions
with spoof artifacts or covered by spoof materials.

Formulation. Let us formulate the spoof region estimate task. We denote the
pixel collection in an image as DI = {(x1, y1), (x2, y2), ..., (xn, yn)}, the proposed
method aims to predict the region where the area of presentation attack can be
represented as a binary mask, denoted as Dpred = {(x1, y

′
1), (x2, y

′
2), ..., (xn, y′

n)},
where xi, yi and y′

i respectively represent the pixel, ground truth pixel label, and
predicted label at i th pixel. Also, the spoof region estimate task can be regarded
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Fig. 3. The preliminary mask generation process: (a) the spoof image, (b) the live
reconstruction, (c) and (d) are difference image in RGB and gray format, and (e) is
the preliminary spoof mask.

as a pixel-level binary classification problem, namely pixel being live or spoof,
thus we have yi ∈ {oLive, oSpoof}. Note that i ∈ {1, 2, 3..., n} and n is the total
number of pixels in the image.

Method. As depicted in Fig. 2, we insert a SRE module in the source pre-
trained model, between the feature extractor fS and spoof cue estimate layers gS .
The region estimator converts fs(I) to a binary mask M with the size Ht′ ×Wt′ .
In the beginning of the training, we create the preliminary mask to supervise SRE
for generating the spoof region. The preliminary mask generation is based on the
reconstruction method proposed in [37], as illustrated in Fig. 3. In particular, we
denote input spoof image as Ispoof and use the method in [37] to reconstruct its
live counterpart Îlive. By subtracting Ispoof from Îlive, and taking the absolute
value of the resulting image, we obtain the different image Id, whose size is
C0 × H0 × W0 where C0 is 3. We convert Id to a gray image Îd, by summing
along with its channel dimension. Apparently, Îd has the size as C1 × H0 × W0

where C1 is 1. We assign each pixel value in the preliminary mask by applying
a predefined threshold T ,

p′
ij =

{
0 pij < T

1 pij ≥ T,
(1)

where pixels in Îd and Ipre are pij and p′
ij respectively.

Evidently, the supervisory signal Ipre is not the ground truth. Inspired by [10]
that a model can generate the manipulation mask by itself during training proce-
dure, we only use Ipre as the supervision at the first a few training epochs, then
steer the model itself to find the optimal spoof region by optimizing towards a
higher classification accuracy. More details are in Sect. 3.4.

Discussion. Firstly, we discuss the difference to prior spoof region estimate
works. The previous methods [35,37] use various traces to help live or spoof image
reconstruction, while our goal is to pinpoint the region with spoof artifacts, which
serves as pre-trained model’s responses to help the new model behave similar to
the pre-trained one(s), alleviating the forgetting issue. [10] offers low-resolution
binary masks as the supervisory signal, but our self-generated Ipre can only
bootstrap the system. Also, [69] proposes an architecture for producing multiple
masks, which is not practical in our scenario. Thus our mask generation method
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is different from theirs. Finally, SRE can be a plug-in module for any given FAS
model, and details are in Sect. 5.4.

3.3 FAS-Wrapper Architecture

Motivation. We aim to deliver an update algorithm that can be effortlessly
deployed to different FAS models. Thus, it is important to design a model agnos-
tic algorithm that allows the FAS model to remain intact, thereby maintaining
the original FAS model performance. Our FAS-wrapper operates in a model-
agnostic way where only external expansions are made, largely maintaining the
original FAS model’s ability.

As depicted in Fig. 2, we denote the source pre-trained feature extractor fS

as source teacher, and the feature extractor after the fine-tuning procedure as
target teacher (fT ). Instead of using one single teacher model like [20], we use fS

and fT to regularize the training, offering the more informative and instructive
supervision for the newly upgraded model, denoted as fnew. Lastly, unlike prior
FAS works [20,53,61] which apply the indiscriminative loss on the final output
embedding or logits from fS , we construct multi-scale discriminators that oper-
ate at the feature-map level for aligning intermediate feature distributions of
fnew to those of teacher models (i.e., fT and fS). Motivations of the multi-
scale discriminators are: (a) the multi-scale features, as a common FAS model
attribute (Sect. 3.1), should be considered; (b) the adversarial learning can be
used at the feature-map level which contains the richer information than final
output logits.

Method. We construct two multi-scale discriminators, DisS and DisT , for
transferring semantic knowledge from fS and fT to fnew respectively, via an
adversarial learning loss. Specifically, at l-th scale, DisSl and DisTl take the
previous discriminator output and the l-th scale feature generated from feature
extractors. We use dS

l and dT
l to represent two discriminators’ outputs at l-th

level while taking teacher generated features (i.e., fS
l (I) and fT

l (I)), and d′S
l

and d′T
l while taking upgraded model generated feature, fnew

l (I). Therefore, the
first-level discriminator output are:

dS
1 = DisS1 (fS

1 (I)), dT
1 = DisT1 (fT

1 (I)), (2)

d′S
1 = DisS1 (fnew

1 (I)), d′T
1 = DisT1 (fnew

1 (I)), (3)

and discriminators at following levels take the l-th (l > 1) backbone layer output
feature and the previous level discriminator output, so we have:

dS
l = DisSl (fS

l (I)) ⊕ dS
l−1), dT

l = DisTl (fT
l (I)) ⊕ dT

l−1), (4)

d′S
l = DisSl (fnew

l (I)) ⊕ d′S
l−1), d′T

l = DisTl (fnew
l (I)) ⊕ d′T

l−1). (5)

After obtaining the output from the last-level discriminator, we define LDS
and

LDT
to train Diss and Dist, and LS and LT to supervise fnew.

LS = −Exp∼Ps [log(d
S
l )] − Exf∼Pnew [log(1 − d′S

l )], (6)
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LT = −Exp∼Pt [log(d
T
l )] − Exf∼Pnew [log(1 − d′T

l )], (7)

LDs = −Exp∼Ps [log(1 − dS
l )] − Exf∼Pnew [log(d′S

l )], (8)

LDt = −Exp∼Pt [log(1 − dT
l )] − Exf∼Pnew [log(d′T

l )]. (9)

Discussion. The idea of adopting adversarial training on the feature map for
knowledge transfer is similar to [9]. However, the method in [9] is for the online
task and transferring knowledge from two models specialized in the same domain.
Conversely, our case is to learn from heterogeneous models which specialize in
different domains. Additionally, using two regularization terms with symmetry
based on the two pre-trained models, is similar to work in [66] on the knowledge
distillation topic that is different to FAS. However, the same is the effect of
alleviating the imbalance between classification loss and regularization terms, as
reported in [24,66].

3.4 Training and Inference

Our training procedure contains two stages, as depicted in Fig. 2. Firstly, we fine-
tune given any source pre-trained FAS model with the proposed SRE, on the
target dataset. We optimize the model by minimizing the �1 distance (denoted
as LMask) between the predicted binary mask M and Ipre, and the original loss
LOrig that is used in the training procedure of original FAS models. After the
fine-tuning process, we obtain well-trained SRE and a feature extractor (fT ) that
is able to work reasonably well on target domain data. Secondly, we integrate
the well-trained SRE with the updated model (fnew) and the source pre-trained
model (fS), such that we can obtain estimated spoof cues from perspectives
of two models. We use LSpoof to prevent the divergence between spoof regions
estimated from fnew and fS . Lastly, we use LS and LT as introduced in Sect. 3.3
for transferring knowledge from the fS and fT to fnew, respectively. Therefore,
the overall objective function in the training is denoted as Ltotal:

Ltotal = λ1LOrig + λ2LSpoof + λ3LS + λ4LT , (10)

where λ1-λ4 are the weights to balance the multiple terms. In inference, we only
keep new feature extract fnew and SRE, as depcited in Fig. 2 (c).

4 FASMD Dataset

We construct a new benchmark for MD-FAS, termed FASMD, based on SiW [34],
SiW-Mv2 [36]1 and Oulu-NPU [7]. MD-FAS consists of five sub-datasets: dataset
A is the source domain dataset, and B, C, D and E are four target domain
datasets, which introduce unseen spoof type, new ethnicity distribution, age
distribution and novel illumination, respectively. The statistics of the FASMD
benchmark are reported in Table 3.

1 We release SiW-Mv2 on CVLab website.

http://cvlab.cse.msu.edu/siw-m-spoof-in-the-wild-with-multiple-attacks-database.html 


Multi-domain Learning for Updating Face Anti-spoofing Models 239

Fig. 4. Representative examples in source and target domain for spoof and illumination
protocols.

Fig. 5. The distribution of ethnicity and age in source and target domain subsets.

Table 3. The FASMD benchmark. [Keys: eth.=
ethnicity, illu.= illumination.]

Video Num/Subject Num

Dataset ID Train Test

A (Source) 4, 983/603 2, 149/180

B (New spoof type) 1, 392/301 383/71

C (New eth. distribution) 1, 024/360 360/27

D (New age distribution) 892/157 411/43

E (New illu. distribution) 1, 696/260 476/40

New Spoof Type. As illus-
trated in Fig. 4, target domain
dataset B has novel spoof types
that are excluded from the source
domain dataset (A). The motiva-
tion for this design is, compared
with the print and replay that are
prevalent nowadays, other new
spoof types are more likely to
emerge and cause threats. As a
result, given the fact that, five
macro spoof types are introduced
in SIW-Mv2 (print, replay, 3D mask, makeup and partial manipulation attack),
we select one micro spoof type from other three macro spoof types besides print
and replay to constitute the dataset B, which are Mannequin mask, Cosmetic
makeup and Funny eyes.

New Ethnicity Distribution. In reality, pre-trained FAS models can be
deployed to organizations with certain ethnicity distribution (e.g., African Amer-
ican sports club). Therefore, we manually annotate the ethnicity information of
each subject in three datasets, then devise the ethnicity protocol where dataset
A has only 1.1% African American samples, but this proportion increases to
52.3% in dataset C, as depicted in Fig. 5.

New Age Distribution, Likewise, a FAS model that is trained on source
domain data full of college students needs to be deployed to the group with a
different age distribution, such as a senior care or kindergartens. We estimate
the age information by the off-the-shelf tool [48], and construct dataset D to
have a large portion of subjects over 50 years old, as seen in Fig. 5.
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New Illumination. Oulu-NPU dataset has three different illumination ses-
sions, and we use methods proposed in [71] to estimate the lighting condition
for each sample in SIW and SIW-Mv2 datasets. Then we apply K-means [39] to
cluster them into K groups. For the best clustering performance, we use “eblow
method” [57] to decide the value of K. We annotate different illumination ses-
sions as Dark, three Front Light, Side Light, and two Bright Light (Fig. 4), then
dataset E introduces the new illumination distribution.

5 Experimental Evaluations

5.1 Experiment Setup

We evaluate our proposed method on the FASMD dataset. In Sect. 5.3, we report
FAS-wrapper performance with different FAS models, and we choose PhySTD [35]
as the FAS model for analysis in Sect. 5.2, because PhySTD has demonstrated
competitive empirical FAS results. Firstly, we compare to anti-forgetting methods
(e.g., LwF [29], MAS [4] and LwM [12]). Specifically, based on the architecture of
PhySTD, we concatenate feature maps generated by last convolution layers in dif-
ferent branches, then employGlobalAveragePooling and fully connected (FC) lay-
ers to convert concatenated features into a 2-dimensional vector. We fix the source
pre-trained model weights and only train added FC layers in the original FAS
task, as a binary classifier. In this way, we can apply methods in [4,12,29] to this
binary classifier. For multi-domain learning methods (e.g., Serial and Parallel Res-
Adapter [44,45]), we choose the 1 × 1 kernel size convolution filter as the adapter
and incorporate into the PhySTD as described in original works (see details in the
supplementary material). We use standard FAS metrics to measure the perfor-
mance, which are Attack Presentation Classification Error Rate (APCER), Bona
Fide Presentation Classification Error Rate (BPCER), and Average Classification
Error Rate ACER [1], Receiver Operating Characteristic (ROC) curve.

Implementation Details. We use Tensorflow [2] in implementation, and we
run experiments on a single NVIDIA TITAN X GPU. In the source pre-train
stage, we use a learning rate 3e–4 with a decay rate 0.99 for every epoch and
the total epoch number is 180. We set the mini-batch size as 8, where each
mini-batch contains 4 live images and 4 spoof images (e.g., 2 SIW-Mv2 images,
1 image in SIW and OULU-NPU, respectively). Secondly, we keep the same
hyper-parameter setting as the pre-train stage, fine-tune the source domain pre-
trained model with SRE at a learning rate 1e–6. The overall FAS-wrapper is
trained with a learning rate 1e–7.

5.2 Main Results

Table 4 reports the detailed performance from different models on all four pro-
tocols. Overall, our method surpasses the previous best method on source and
target domain evaluation in all categories, with the only exception of the tar-
get domain performance in the illumination protocol (0.3% worse than [12]).
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Table 4. The main performance reported in TPR@FPR=0.5%. Scores before and
after “/” are performance on the source and target domains respectively. [Key: Best,
Second Best, except for two teacher models and upper bound performance in the
first three rows ( )].

Method Training data Spoof Age Ethnicity Illumination Average

Upper Bound Source + Target 89.5/52.5 86.7/82.3 87.7/62.8 89.0/74.4 88.2/68.0

Source Teacher Source 84.2/39.8 84.2/72.8 84.2/59.2 84.2/64.4 84.2/59.1

Target Teacher Target 73.5/51.5 67.9/80.8 77.2/61.9 65.0/71.8 70.9/66.3

LwF [29] Target 74.8/50.8 71.7/77.9 71.0/59.8 65.3/69.2 70.7/64.4

LwM [12] Target 76.5/51.0 71.5/80.0 76.0/62.0 71.0/71.8 73.8/65.9

MAS [4] Target 73.4/48.8 68.3/78.6 73.5/60.9 66.0/65.9 71.4/63.5

Seri. RA [44] Target 74.3/51.4 72.6/79.8 72.0/61.7 67.0/70.4 71.5/65.8

Para. RA [45] Target 75.5/51.2 73.0/79.7 72.0/61.5 68.0/69.3 72.1/65.4

Ours - (LT + LS) Target 80.3/50.5 77.1/79.0 75.1/61.3 77.2/69.4 77.4/65.1

Ours - LT Target 80.5/50.8 79.0/79.4 76.1/61.5 78.3/70.2 78.5/77.4

Ours - LSpoof Target 75.5/51.0 70.4/79.3 74.9/62.1 70.1/70.0 72.7/65.6

Ours Target 81.8/51.5 79.5/80.6 76.8/62.3 79.6/71.5 79.4/66.4

More importantly, regarding performance on source domain data, it is impres-
sive that our method surpasses the best previous method in all protocols by
a large margin (e.g., 5.3%, 6.5%, 0.8% and 8.6%, and 5.6% on average). We
believe that, the proposed SRE can largely alleviate the catastrophic forgetting
as mentioned above, thereby yielding the superior source domain performance
than prior works. However, the improvement diminishes on the new ethnicity
protocol. One possible reason is that the print and replay attacks account for
a large portion of data in new ethnicity distribution, and different methods,
performance on these two common presentation attacks are similar.

Table 5. The average performance of the dif-
ferent methods in four protocols. The scores
before and after “/” are performance on source
and target domains. [Key: Best, Second Best,
except for two teacher models and upper bound
performance in first three rows ( )].

Method APCER (%) BPCER (%) ACER (%)

Upper Bound 3.7/4.5 5.8/13.3 5.2/13.3

Source Teacher 4.1/4.8 7.4/23.0 6.1/23.0

Target Teacher 6.6/4.6 6.4/14.2 5.5/10.0

LwF [29] 6.4/5.6 8.1/15.9 6.8/11.2

LwM [12] 5.6/4.3 8.0/14.0 6.3/11.1

MAS [4] 6.7/5.3 8.4/13.9 6.8/11.2

Seri. RA [44] 6.3/5.0 8.4/15.0 6.7/11.3

Para. RA [45] 6.2/7.6 8.4/13.4 6.7/11.0

Ours - (LS + LT ) 4.8/6.5 9.1/15.6 6.9/11.1

Ours - LT 4.5/5.2 8.3/14.9 6.4/10.1

Ours - LSpoof 6.0/8.8 8.0/14.2 7.0/11.5

Ours 4.2/4.2 7.8/13.5 6.0/8.9

Additionally, Table 5 reports
the average performance on four
protocols in terms of ACPER,
BCPER and ACER. Our method
still remains the best, besides
BPCER on the target domain
performance. It is worth mention-
ing that we have 4.2% APCER
on source domain data and 8.9%
ACER on target domain data,
which are better than best results
from prior works, namely 5.6%
APCER in [12] and 11.0% ACER
in [45]. Furthermore, in Sect. 5.4,
we examine the adaptability of
our proposed method, by incor-
porating it with different FAS
methods.
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Table 6. (a) The FAS-wrapper performance with different FAS models; (b) Perfor-
mance of adopting different architecture design choices.

TPR@FPR=0.5%

(Source/Target)
PhySTD [35] CDCN [65] Auxi.-CNN [34]

Naive Fine. 70.9/66.3 69.2/63.2 63.3/61.3

Full (Ours) 79.4/66.4 74.8/62.7 70.3/61.3

Full - LSpoof 72.7/65.6 74.1/62.5 69.0/61.4

Full - LDt 78.5/64.4 73.1/62.3 69.1/61.3

Full - (LT + LS) 77.3/65.1 71.6/62.1 65.6/61.3

TPR@FPR=0.5%

LSpoof + Multi-disc. (Ours) 79.4/66.4

LSpoof + Multi-disc. (same weights) 75.0/65.8

LSpoof + Single disc. (concat.) 74.4/66.0

LSpoof + [60] 65.2/63.2

Fig. 6. Spoof region estimated from different models. Given input image (a), (b) and
(c) are model responses from [35] and [34], respectively. Detailed analyses in Sect. 5.4.

Ablation Study Using LSpoof . SRE plays a key role in FAS-wrapper for
learning the new spoof type, as ablating the LSpoof largely decreases the source
domain performance, namely from 79.4% to 72.7% on TPR@FPR = 0.5%
(Table 4) and 1.8% on APCER (Table 5). Such a performance degradation sup-
ports our statement that, LSpoof prevents divergence between spoof traces esti-
mated from the source teacher and the upgraded model, which helps to combat
the catastrophic forgetting issue, and maintain the source domain performance.

Ablation Study Using LS and LT . Without the adversarial learning loss
(LS + LT ), the model performance constantly decreases, according to Table 4,
although such impacts are less than removal of LSpoof , which still causes 2.0%
and 1.3% average performance drop on source and target domains. Finally, we
have a regularization term LT which also contributes to performance. That is,
removing LT hinders the FAS performance (e.g., 1.0% ACER on target domain
performance), as reported in Table 5.

5.3 Adaptability Analysis

We apply FAS-wrapper on three different FAS methods: Auxi.-CNN [34],
CDCN [65] and PhySTD [35]. CDCN uses a special convolution (i.e., Central
Difference Convolution) and Auxi.-CNN is the flagship work that learns FAS
via auxiliary supervisions. As shown in Table 6 (a), FAS-wrapper can consis-
tently improve the performance of naive fine-tuning. When ablating the LSpoof ,
PhySTD [35] experiences the large performance drop (6.7%) on the source
domain, indicating the importance of SRE in the learning the new domain. Like-
wise, the removal of adversarial learning loss (e.g., LT + LS) leads to difficulty
in preserving the source domain performance, which can be shown from, on the
source domain, CDCN [65] decreases 3.2% and Auxi-CNN [34] decreases 4.7%.
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This means dual teacher models, in the FAS-wrapper, trained with adversarial
learning benefit the overall FAS performance. Also, we visualize the spoof region
generated from SRE with [34,35] in Fig. 6. We can see the spoof cues are differ-
ent, which supports our hypothesis that, although FAS models make the same
final binary prediction, they internally identify spoofness in different areas.

5.4 Algorithm Analysis

Spoof Region Visualization. We feed output features from different models
(i.e., fS , fT and fnew) to a well-trained SRE to generate the spoof region, as
depicted in Fig. 7. In general, the fS produces more accurate activated spoof
regions on the source domain images. For example, two source images in new
spoof category have detected makeup spoofness on eyebrows and mouth (first
row) and more intensive activation on the funny eye region (second row). fT has
the better spoof cues estimated on the target domain image. For example, two
target images in the new spoof category, where spoofness estimated from fT is
stronger and more comprehensive; in the novel ethnicity category, the spoofness
covers the larger region. With LSpoof , the updated model (fnew) identifies the
spoof traces in a more accurate way.

Explanability. We compare SRE with the work which generate binary masks
indicating the spoofness [10], and works which explain how a model makes a
binary classification decision [52,70]. In Fig. 8, we can observe that our generated
spoof traces can better capture the manipulation area, regardless of spoof types.
For example, in the first print attack image, the entire face is captured as spoof
in our method but other three methods fail to achieve so. Also, our binary mask
is more detailed and of higher resolution than that of [10], and more accurate
and robust than [52,70]. Notably, we do not include works in [35,37,69] which
use many outputs to identify spoof cues.

Architecture Design. We compare to some other architecture design choices,
such as all multi-scale discriminators with the same weights, concatenation of

Fig. 7. Given the input spoof image (a), spoof regions generated by SRE with two
teacher models (i.e., fS and fT ) in (b) and (c), and the new upgraded model (fnew)
in (d), for different protocols. Detailed analyses are in Sect. 5.4.
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Fig. 8. Different spoof estimate methods. Given input image (a), (b) and (c) are the
spoof regions estimated from ours and [10]. (d) and (e) are the activated map from
methods in [52,70].

different scale features and one single discriminator. Moreover, we use correla-
tion similarity table in [60] instead of multi-scale discriminators for transfering
knowledge from fS and fT to fnew. Table 6(b) demonstrates the superiority of
our architectural design.

5.5 Cross-Dataset Study

We evaluate our methods in the cross-dataset scenario and compare to SSDG [20]
and MADDG [53]. Specifically, we denote OULU-NPU [7] as O, SIW [34] as
S, SIW-Mv2 [36] as M, and HKBU-MARs [32] as H. We use three datasets as
source domains for training and one remaining dataset for testing. We train three
individual source domain teacher models on three source datasets respectively.
Then, as depicted in Fig. 9, inside FAS-wrapper, three multi-scale discriminators
are employed to transfer knowledge from three teacher models to the updated
model fnew which is then evaluated on the target domain. Notably, we remove
proposed SRE in this cross-dataset scenario, as there is no need to restore the
prior model responses.

Fig. 9. We adapt FAS-wrapper for the cross-dataset scenario.
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Table 7. The cross-dataset comparison.

O&M&H to S O&W&H to M M&S&H to O M&S&O to H

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MADDG [53] 16.7 90.5 50.3 60.7 17.6 73.0 33.2 73.5

SSDG-M [20] 11.1 93.4 29.6 67.1 12.1 89.0 25.0 82.5

SSDG-R [20] 13.3 93.4 29.3 69.5 13.3 83.4 28.9 81.0

Ours 15.4 93.6 28.1 68.4 14.8 85.6 27.1 83.8

The results are reported in Table 7, indicating that our FAS-wrapper also
exhibits a comparable performance on the cross-dataset scenario as prior works.

6 Conclusion

We study the multi-domain learning face anti-spoofing (MD-FAS), which
requires the model perform well on both source and novel target domains, after
updating the source domain pre-trained FAS model only with target domain
data. We first summarize the general form of FAS models, then based on which
we develop a new architecture, FAS-wrapper. FAS-wrapper contains spoof region
estimator which identifies the spoof traces that help combat catastrophic forget-
ting while learning new domain knowledge, and the FAS-wrapper exhibits a high
level of flexibility, as it can be adopted by different FAS models. The performance
is evaluated on our newly-constructed FASMD benchmark, which is also the first
MD-FAS dataset in the community.
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