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Abstract. Continual learning (CL) requires a model to continually
learn new tasks with incremental available information while retaining
previous knowledge. Despite the numerous previous approaches to CL,
most of them still suffer forgetting, expensive memory cost, or lack suffi-
cient theoretical understanding. While different CL training regimes have
been extensively studied empirically, insufficient attention has been paid
to the underlying theory. In this paper, we establish a probabilistic frame-
work to analyze information flow through layers in networks for sequen-
tial tasks and its impact on learning performance. Our objective is to
optimize the information preservation between layers while learning new
tasks. This manages task-specific knowledge passing throughout the lay-
ers while maintaining model performance on previous tasks. Our analysis
provides novel insights into information adaptation within the layers dur-
ing incremental task learning. We provide empirical evidence and practi-
cally highlight the performance improvement across multiple tasks. Code
is available at https://github.com/Sekeh-Lab/InformationFlow-CL.

Keywords: Continual learning · Information flow · Forgetting

1 Introduction

Humans are continual learning systems that have been very successful at adapt-
ing to new situations while not forgetting about their past experiences. Simi-
lar to the human brain, continual learning (CL) tackles the setting of learning
new tasks sequentially without forgetting information learned from the previous
tasks [3,15,20]. A wide variety of CL methods mainly either minimize a loss func-
tion which is a combination of forgetting and generalization loss to reduce catas-
trophic forgetting [11,13,18,30,31] or improve quick generalization [7,27]. While
these approaches have demonstrated state-of-the-art performance and achieve
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some degree of continual learning in deep neural networks, there has been lim-
ited prior work extensively and analytically investigating the impact that differ-
ent training regimes can have on learning a sequence of tasks. Although major
advances have been made in the field, one recurring problem that still remains
not completely solved is that of catastrophic forgetting (CF). An approach to
address this goal is to gradually extend acquired knowledge learned within lay-
ers in the network and use it for future learning. While the CF issue has been
extensively studied empirically, little attention has been paid from a theoretical
angle [10,18,21]. To the best of our knowledge, there are no works which explain
what occurs when certain portions of a network are more important than others
for passing information of a given task downstream to the end of the network. In
this paper, we explore the CL performance and CF problem from a probabilistic
perspective. We seek to understand the connection of the passing of information
downstream through layers in the network and learning performance at a more
in-depth and fundamental theoretical level. We integrate these studies into two
central questions:

(1) Given a sequence of joint random variables and tasks, how much does infor-
mation flow between layers affect learning performance and alleviate CF?

(2) Given a sequence of tasks, how much does the sparsity level of layers on
task-specific training influence the forgetting?

The answers to these questions are theoretically and practically important
for continual learning research because: (1) despite the tangible improvements in
task learning, the core problem of deep network efficiency on performance assists
selective knowledge sharing through downstream information within layers; (2)
a systematic understanding of learning tasks provides schemes to accommodate
more tasks to learn; and (3) monitoring information flow in the network for each
task alleviates forgetting.

Toward our analysis, we measure the information flow between layers given
a task by using dependency measures between filters in consecutive layers con-
ditioned on tasks. Given a sequence of joint random variables and tasks, we
compute the forgetting by the correlation between task and trained model’s loss
on the tasks in the sequence. To summarize, our contributions in this paper are,

– Introducing the new concept of task-sensitivity, which targets task-specific
knowledge passing through layers in the network.

– Providing a theoretical and in-depth analysis of information flow through
layers in networks for task sequences and its impact on learning performance.

– Optimizing the information preservation between layers while learning new
tasks by freezing task-specific important filters.

– Developing a new bound on expected forgetting using optimal freezing mask.
– Providing experimental evidence and practical observations of layer connec-

tivities in the network and their impact on accuracy.

Organization: The paper is organized as follows. In Sect. 2 we briefly review
the continual learning problem formulation and fundamental definitions of the
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performance. In addition, a set of new concepts including task sensitivity and
task usefulness of layers in the network is introduced. In Sect. 3 we establish
a series of foundational and theoretical findings that focus on performance and
forgetting analysis in terms of the sensitivity property of layers. A new bound on
expected forgetting based on the optimal freezing mask is given in this section.
Finally, in Sect. 5 we provide experimental evidence of our analysis using the
CIFAR-10/100 and Permuted MNIST datasets. The main proofs of the theorems
in the paper are given in the supplementary materials, although in Sect. 3.4 we
provide the key components and techniques that we use for the proofs.

2 Problem Formulation

In supervised continual learning, we are given a sequence of joint random vari-
ables (Xt, Tt), with realization space Xt × Tt where (xt, yt) is an instance of the
Xt × Tt space. We use ‖.‖ to denote the Euclidean norm for vectors and ‖.‖F to
denote the Frobenius norm for matrices. In this section, we begin by presenting
a brief list of notations and then provide the key definitions.

Notations: We assume that a given DNN has a total of L layers where,

– F (L): A function mapping the input space X to a set of classes T , i.e. F (L) :
X �→ T .

– f (l): The l-th layer of F (L) with Ml as number of filters in layer l.
– f

(l)
i : i-th filter in layer l.

– F (i,j) := f (j) ◦ . . . ◦ f (i): A subnetwork which is a group of consecutive layers.
– F (j) := F (1,j) = f (j) ◦ . . . ◦ f (1): First part of the network up to layer j.
– σ(l): The activation function in layer l.
– ˜f

(l)
t : Sensitive layer for task t.

– ˜F
(L)
t := F

(L)
t / ˜f

(l)
t : The network with L layers when l-th sensitive layer ˜f (l) is

frozen while training on task t.
– π(Tt): The prior probability of class label Tt ∈ Tt.
– ηtl, γtl: Thresholds for sensitivity and usefulness of l-th layer f (l) for task t.

In this section, we revisit the standard definition of training performance and
forgetting and define the new concepts task-sensitive layer and task-useful layer.

Definition 1. (Task-Sensitive Layer) The l-th layer, f (l), is called a t-task-
sensitive layer if the average information flow between filters in consecutive lay-
ers l and l + 1 is high i.e.

Δt(f (l), f (l+1)) :=
1

Ml Ml+1

Ml
∑

i=1

Ml+1
∑

j=1

ρ
(

f
(l)
i , f

(l+1)
j |Tt

)

≥ ηlt, (1)

where ρ is a connectivity measure given task Tt such as conditional Pearson
correlation or conditional Mutual Information [4,5]. In this work we focus on
only Pearson correlation as the connectivity measure between layers l and l + 1.
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Without loss of generality, in this work we assume that filters f
(l)
i , i =

1, . . . ,Ml, are normalized such that

E(Xt,Tt)∼Dt

[

f
(l)
i (Xt)|Tt

]

= 0 and V

[

f
(l)
i (Xt)|Tt

]

= 1, l = 1, . . . , L,

Therefore the Pearson correlation between the i-th filter in layer l and the
j-th filter in layer l + 1 becomes

ρ(f (l)
i , f

(l+1)
j |Tt) := E(Xt,Tt)∼Dt

[

f
(l)
i (Xt)f

(l+1)
j (Xt)|Tt

]

. (2)

Note that in this paper we consider the absolute value of ρ in the range [0, 1].

Definition 2. (Task-Useful Layer) Suppose input Xt and task Tt have joint
distribution Dt. For a given distribution Dt, the l-layer f (l) is called t-task-useful
if there exist two mapping functions Gl : Ll �→ Tt and Kl : Xt �→ Ll such that

E(Xt,Tt)∼Dt

[

Tt · Gl ◦ f (l)(Kl−1 ◦ Xt)
]

≥ γtl. (3)

Note that here f (l) is a map function f (l) : Ll−1 �→ Ll.

Within this formulation, two parameters determine the contributions of the
l-th layer of network F (l) on task Tt: ηtl the contribution of passing forward the
information flow to the next consecutive layer, and γtl, the contribution of the
l-th layer in learning task Tt. Training a neural network F

(L)
t ∈ F is performed

by minimizing a loss function (empirical risk) that decreases with the correlation
between the weighted combination of the networks and the label:

E(Xt,Tt)∼Dt

{

Lt(F
(L)
t (Xt), Tt)

}

= −E(Xt,Tt)∼Dt

{

Tt ·
(

b +
∑

Ft∈F
wFt

· F
(L)
t (Xt)

)}

.

(4)
We remove offset b without loss of generality. Define

�t(ω) := −
∑

Ft∈F
wFt

· F
(L)
t (Xt), (5)

therefore the loss function in (4) becomes E(Xt,Tt)∼Dt
{Tt · �t(ω)}. Let ω∗

t be the
set of parameters when the network is trained on task Tt that minimizes (4):

ω∗
t := argminωt

E(Xt,Tt)∼Dt
{Tt · (�t(ωt))} , (6)

where �t is defined in (5). The total risk of all seen tasks t < τ is given by

τ
∑

t=1

E(Xt,Tt)∼Dt
{Tt · �t(ωτ )} . (7)

The set of parameters when the network F (l) is trained after seeing all tasks
is the solution of minimizing the risk in (7) and is denoted by ω∗

τ .
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Definition 3. (Performance Difference) Suppose input Xt and task Tt have
joint distribution Dt. Let ˜F

(L)
t := F

(L)
t / ˜f

(l)
t ∈ F be the network with L layers

when l-layer f (l) is frozen while training on task t. The performance difference
between training F

(L)
t and ˜F

(L)
t is defined as

d(F (L)
t , ˜F

(L)
t ) := E(Xt,Tt)∼Dt

{

Lt(F
(L)
t (Xt), Tt) − Lt( ˜F

(L)
t (Xt), Tt)

}

. (8)

Let ω∗
t and ω̃∗

t be the convergent parameters after training F
(L)
t and ˜F

(L)
t has

been finished for task Tt, respectively. Define the training deviation for Tt as:

δt(ω∗
t |ω̃∗

t ) := �t(ω∗
t ) − �t(ω̃∗

t ). (9)

The optimal performance difference in Definition 3 is the average of δt in
(9):

d(F (L)
t , ˜F

(L)
t ) = E(Xt,Tt)∼Dt

[Tt · δt(ω∗
t |ω̃∗

t )] = E(Xt,Tt)∼Dt

[

Tt ·
(

�t(ω∗
t )−�t(ω̃∗

t )
)]

.

3 Continual Learning Performance Study

Our goal is to decide which filters trained for intermediate task Tt to prune/freeze
when training the network on task Tt+1, given the sensitivity scores of layers
introduced in (1), so that the predictive power of the network is maximally
retained and not only does forgetting not degrade performance but we also gain
a performance improvement. In this section, we first take an in-depth look at the
layers and show the relationship between task sensitive and task useful layers.
Second we provide an analysis in which we show that sensitive layers affect
performance if they get frozen while training the network on the new task.

3.1 Performance Analysis

The motivation of our objective in this section is that the difference between the
loss functions produced by the original network F (L) and the frozen network ˜F

(L)
t

should be maximized with respect to sensitive and important filters. We begin
by showing that sensitive layers are useful in improving network performance.

Theorem 1. For a given sequence of joint random variables (Xt, Tt) ∼ Dt and
network F (L), if the l-th layer, f (l) is t-task-sensitive then it is t-task-useful.

Theorem 2. Suppose input xt and label yt are samples from (Xt, Tt) with joint
distribution Dt. For a given distribution Dt, if the layer l is a t-task-useful layer,

E(Xt,Tt)∼Dt

[

Tt · Gl ◦ f (l)(Kl−1 ◦ Xt)
]

≥ γtl, (10)

where Gl : Ll �→ Tt and Kl : Xt �→ Ll are map functions. Then removing layer l
decreases the performance i.e.

d(F (L)
t , ˜F

(L)
t ) := E(Xt,Tt)∼Dt

{

Lt(F
(L)
t (Xt), Tt) − Lt( ˜F

(L)
t (Xt), Tt)

}

> K(γtl).
(11)

Here ˜F
(L)
t := F

(L)
t / ˜f

(l)
t ∈ F is the network with L layers when layer l is

frozen while training on task t. The function K(γtl) is increasing in γtl.
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An immediate result from the combination of Theorems 1 and 2 is stated below:

Theorem 3. Suppose input xt and label yt are samples from joint random vari-
ables (Xt, Tt) with distribution Dt. For a given distribution Dt, if the layer l is a
t-task-sensitive layer i.e. Δt(f (l), f (l+1)) ≥ ηtl, then the performance difference
between d(F (L)

t , ˜F
(L)
t ) is bounded as

d(F (L)
t , ˜F

(L)
t ) := E(Xt,Tt)∼Dt

{

Lt(F
(L)
t (Xt), Tt) − Lt( ˜F

(L)
t (Xt), Tt)

}

≥ g(ηtl),
(12)

where g is an increasing function of ηtl. Here ˜F
(L)
t := F

(L)
t / ˜f

(l)
t−1 ∈ F is the

network with L layers when layer l is frozen while training on task t.

One important takeaway from this theorem is that as sensitivity between lay-
ers ηtl increases the performance gap between the original and frozen network’s
loss functions increases. An important property of filter importance is that it
is a probabilistic measure and can be computed empirically along the network.
The total loss (empirical risk) on the training set for task Tt is approximated by
1

|Tt|
∑

(xt,yt)

yt�t(ωt;xt, yt), where �t is a differentiable loss function (5) associated

with data point (xt, yt) for task Tt or we use cross entropy loss.

3.2 Forgetting Analysis

When sequentially learning new tasks, due to restrictions on access to examples
of previously seen tasks, managing the forgetting becomes a prominent challenge.
In this section we focus on measuring the forgetting in CL with two tasks. It is
potentially possible to extend these findings to more tasks.
Let ω∗

t and ω∗
t+1 be the convergent parameters after training has been finished

for the tasks Tt and Tt+1 sequentially. Forgetting of the t task is defined as

Ot := �t(ω∗
t+1) − �t(ω∗

t ) (13)

In this work, we propose the expected forgetting measure based on correlation
between task Tt and forgetting (13) given distribution Dt:

Definition 4. (Expected Forgetting) Let ω∗
t and ω∗

t+1 be the convergent or opti-
mum parameters after training has been finished for the t and t + 1 task sequen-
tially. The expected forgetting denoted by EOt is defined as

EOt := E(Xt,Tt)∼Dt

[

Tt ·
∣

∣

(

�t(ω∗
t+1) − �t(ω∗

t )
) ∣

∣

]

. (14)

Theorem 4. Suppose input xt and label yt are samples from joint distribution
Dt. For a given distribution Dt, if the layer l is a t-task-useful layer,

E(Xt,Tt)∼Dt

[

Tt · Gl ◦ f (l)(Kl−1 ◦ Xt)
]

≥ γtl, (15)
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then expected forgetting EOt defined in (14) is bounded by ε(γtl), a decreasing
function of γtl i.e.

˜EOt := E(Xt,Tt)∼Dt

{

Lt( ˜F
(L)
t+1(Xt), Tt) − Lt(F

(L)
t (Xt), Tt)

}

< ε(γtl), (16)

where ˜F
(L)
t+1 := F

(L)
t+1/

˜f
(l)
t+1 ∈ F is the network with L layers when layer l is frozen

while training on task t + 1.

A few notes on this bound: (i) based on our finding in (16), we analytically
show that under the assumption that the l-th layer is highly t-task-useful i.e.
when the hyperparameter γtl is increasing then average forgetting is decreasing
if we freeze the layer l during training the network on new task Tt+1. This
is achieved because ε(γtl) is a decreasing function with respect to γtl; (ii) by a
combination of Theorems 1 and 2 we achieve an immediate result that if layer l is
t-task-sensitive then forgetting is bounded by a decreasing function of threshold
ηtl, ε(ηtl); (iii) We prove that the amount of forgetting that a network exhibits
from learning the tasks sequentially correlates with the connectivity properties
of the filters in consecutive layers. In particular, the larger these connections
are, the less forgetting happens. We empirically verify the relationship between
expected forgetting and average connectivity in Sect. 5.

3.3 A Bound on EOt Using Optimal Freezing Mask

Let ω∗
t be the set of parameters when the network is trained on task Tt, the

optimal sparsity for layer f (l) with optimal mask m∗(l)
t+1 while training on task

Tt+1 is achieved by

(ω∗
t+1,m

∗(l)
t+1) := arg min

ωt+1,m
E(Xt,Tt)∼Dt

{

∣

∣Tt ·
(

�t(m
(l)
t+1 	 ωt+1) − �t(ω∗

t )
)∣

∣

}

, (17)

where m∗(l)
t+1 is the binary mask matrix created after freezing filters in the l-th

layer after training on task Tt (masks are applied to the past weights) and before

training on task Tt+1. Denote P ∗(l)
m =

‖m∗(l)
t+1‖0

|ω∗(l)
t+1| the optimal sparsity of frozen

filters in layer l in the original network F (L).

Definition 5. (Task-Fully-Sensitive Layer) The l-th layer, f (l), is called a t-
task-fully-sensitive layer if the average information flow between filters in layers
l and l + 1 is maximum i.e. Δt(f (l), f (l+1)) → 1 (a.s.). Note that here ρ in (1)
is a connectivity measure which varies in [0, 1].

Theorem 5. Suppose input xt and label yt in space Xt × Tt are samples from
random variables (Xt, Tt) with joint distribution Dt. For a given distribution Dt,

if layer l is t-task-fully-sensitive and P ∗(l)
m =

‖m∗(l)
t+1‖0

|ω∗(l)
t+1| → 1 (a.s.), this means that

the entire layer l is frozen when training on task Tt+1. Let ω̃
∗(l)
t+1 be the optimal
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weight set for layer l, masked and trained on task Tt+1, ω̃
∗(l)
t+1 = m∗(l)

t+1 	 ω∗(l)
t+1,

Then the expected forgetting ˜EOt defined in

˜EOt = E(Xt,Tt)∼Dt

{

|Tt ·
(

�t(ω̃∗
t+1) − �t(ω∗

t )|
)}

, is bounded by

˜EOt ≤ 1
2
E(Xt,Tt)∼Dt

{

Tt · λmax
t

(

C +
Cε

λmax
t

)2
}

, C & Cε are constants, (18)

and λmax
t is the maximum eigenvalue of Hessian ∇2�t(ω∗

t ).

Based on the argumentation of this section, we believe the bound found
in (18) can provide a supportive study in how freezing rate affects forgetting
explicitly. In [18], it has been shown that lower λmax

t or equivalently wider loss
function Lt leads to less forgetting however, our bound in (18) is not a monotonic
function of maximum eigenvalue of Hessian. Therefore we infer that when a layer
has highest connectivity, freezing the entire layer and blocking it for a specific
task does not necessarily control the forgetting. Our inference is not only tied
to the reduction of λmax

t which describes the width of a local minima [12], but
we also need to rely on other hidden factors that is undiscovered for us up to
this time. Although we believe that to reduce forgetting, each task should push
its learning towards information preservation by protecting sensitive filters and
can possibly employ the same techniques used to widen the minima to improve
generalization.

3.4 Key Components to Prove Theorems

The main proofs of Theorems 1–5 are provided in supplementary materials,
however in this section, we describe a set of widely used key strategies and
components that are used to prove findings in Sect. 3.

Theorem 1. To prove that a task-sensitive layer is a task-useful layer, we use key
components: (I) Set σj(s) = s.σj(s) where σj is activation function:

Δt(f (l), f (l+1)) ∝
Ml
∑

i=1

∑

yt∈Tt

π(yt)E

⎡

⎣

Ml+1
∑

j=1

σj

(

f
(l)
i (Xt)

)

|Tt = yt

⎤

⎦ . (19)

(II) There exist a constant Ct such that

Ct

Ml
∑

i=1

∑

yt∈Tt

ytπ(yt)EXt|yt

[

f
(l)
i (Xt)|Tt = yt

]

≥
Ml
∑

i=1

∑

yt∈Tt

π(yt)E

⎡

⎣

Ml+1
∑

j=1

σj

(

f
(l)
i (Xt)

)

|Tt = yt

⎤

⎦ . (20)

Theorem 2. Let ω∗
t and ω̃∗

t be the convergent or optimum parameters after train-
ing F

(L)
t and ˜F

(L)
t has been finished for task t, respectively. Here we establish

three important components:
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(I) Using Taylor approximation of �t around ω̃∗
t :

�t(ω∗
t ) − �t(ω̃∗

t ) ≈ 1
2
(ω∗

t − ω̃∗
t )T ∇2�t(ω̃∗

t )(ω∗
t − ω̃∗

t ). (21)

(II) Let ˜λmin
t be the minimum eigenvalue of ∇2�t(ω̃∗

t ), we show

1
2
E(Xt,Tt)∼Dt

[

Tt ·
(

(ω∗
t − ω̃∗

t )T ∇2�t(ω̃∗
t )(ω∗

t − ω̃∗
t )

)]

≥ 1
2
E(Xt,Tt)∼Dt

[

Tt ·
(

˜λmin
t ‖ω∗

t − ω̃∗
t ‖2

)]

. (22)

(III) There exist a constant C(l) and a map function Gl : Ll �→ Tt such that

E(Xt,Tt)∼Dt

[

Tt · Gl ◦ σ
(l)
t

(

(ω∗
t − ω̃∗

t )Xt

)

]

≤ C(l)
E(Xt,Tt)∼Dt

[

Tt · Gl ◦
∣

∣σ
(l)
t (ω∗

t Xt) − σ
(l)
t (ω̃∗

t Xt)
∣

∣

]

. (23)

Theorem 4. Let ω̃∗
t+1 be the optimal weight after training ˜F

(L)
t+1 on task t + 1.

Here are the key components we need to use to prove the theorem: (I) we show

E(Xt,Tt)∼Dt

{

Tt ·
(

�t(ω̃∗
t+1) − �t(ω̃∗

t )
)}

≤ 1
2
E(Xt,Tt)∼Dt

{

Tt · ˜λmax
t ‖ω̃∗

t+1 − ω̃∗
t ‖2

}

,

(24)

(II) Let w̃′
t be the convergent or (near-) optimum parameters after training ˜F

(L)
t

and ˜λmax
t be the maximum eigenvalue of ∇2�t(ω̃∗

t ):

∇�t(ω̃′
t) − ∇�t(ω̃∗

t ) ≈ ∇2�t(ω̃∗
t )(ω̃′

t − ω̃∗
t ) ≤ ˜λmax

t ‖ω̃′
t − ω̃∗

t ‖, (25)

(III) If the convergence criterion is satisfied in the ε-neighborhood of ω̃∗
t , then

‖ω̃∗
t+1 − ω̃∗

t ‖ ≤ Cε

˜λmax
t

, Cε = max{ε, 2
√

ε}.

Theorem 5. Denote ω̃
∗(l)
t+1 = m∗(l)

t+1 	 ω∗(l)
t+1 where m∗(l)

t+1 is the binary freezing
mask for layer l. For the optimal weight matrix ω̃∗

t+1 with mask m∗
t+1, define

˜EOt = E(Xt,Tt)∼Dt

{

|Tt ·
(

�t(ω̃∗
t+1) − �t(ω∗

t )
)

|
}

.

(I) Once we assume that only one connection is frozen in the training process,
we can use the following upper bound of the model [14]:

|�t(ω̃∗
t+1) − �t(ω∗

t+1)| ≤
‖ω∗(l)

t+1 − ω̃
∗(l)
t+1)‖F

‖ω∗(l)
t+1‖F

L
∏

j=1

‖ω∗(l)
t+1‖F , (26)

(II) Under the assumption P ∗(l)
m =

‖m∗(l)
t+1‖0

|ω∗(l)
t+1| → 1, we show

˜EOt ≤ E(Xt,Tt)∼Dt

{

Tt · |
(

�t(ω∗
t+1) − �t(ω∗

t )
)

|
}

. (27)
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4 Related Work

In recent years significant interest has been given to methods for the sequen-
tial training of a single neural network on multiple tasks. One of the primary
obstacles to achieving this is catastrophic forgetting (CF), the decrease in perfor-
mance observed on previously trained tasks after learning a new task. As such,
overcoming CF is a primary desiderata of CL methods. Several approaches have
been taken to address this problem, including various algorithms which mitigate
forgetting, as well as investigation into the properties of CF itself.

Catastrophic Forgetting: The issue of catastrophic forgetting isn’t new [1,17],
however the popularity of deep learning methods has brought it renewed atten-
tion. Catastrophic forgetting occurs in neural networks due to the alterations of
weights during the training of new tasks. This changes the network’s parameters
from the optimized state achieved by training on the previous task. Recent works
have aimed to better understand the causes and behavior of forgetting [6,22], as
well as to learn how the specific tasks being trained influence it and to empiri-
cally study its effects [9,19]. Such theoretical research into CF provides solutions
to mitigate catastrophic forgetting beyond the design of the algorithm. Similarly,
our investigation into the relationship between information flow and CF provides
a useful tool for reducing forgetting independent of a specific algorithm.

Continual Learning: Several methods have been applied to the problem of CL.
These generally fall into four categories: Regularization [13,32], Pruning-Based
[16,26,28], Replay [25,29], and Dynamic Architecture approaches [23,31]. Reg-
ularization approaches attempt to reduce the amount of forgetting by imple-
menting a regularization term on previously optimized weights based on their
importance for performance. Replay methods instead store or generate samples
of past tasks in order to limit forgetting when training for a new task. Dynamic
architectures expand the network to accommodate new tasks. Lastly, Pruning-
based methods aim to freeze the most important partition of weights in the
network for a given task before pruning any unfrozen weights.

While pruning-based methods are able to remove forgetting by freezing and
masking weights, they are often implemented to make simple pruning decisions,
either using fixed pruning percents for the full network or relying on magnitude-
based pruning instead of approaches which utilize available structural informa-
tion of the network. Other recent works have demonstrated the importance of
structured pruning [2,8], suggesting that pruning-based CL methods would ben-
efit from taking advantage of measures of information such as connectivity. While
these methods commonly use fixed pruning percentages across the full network,
some works outside of the domain of CL investigate different strategies for select-
ing layer-wise pruning percents, and together they demonstrate the importance
of a less homogeneous approach to pruning [14,24].
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5 Experimental Evidence

To evaluate the influence of considering knowledge of information flow when
training on sequential tasks, we perform multiple experiments demonstrating
improved performance when reducing pruning on the task-sensitive layers defined
in Definition 1. The experimental results section is divided into two main parts
aligning with the overall goal of analyzing downstream information across layers.
The first part discusses the performance of CL in the context of protecting highly
task-sensitive layers during pruning when adding multiple tasks in a single neural
network as in [16]. The second part focuses on the connectivity across layers given
tasks and how connectivity varies across the layers and between tasks.

Fig. 1. The average accuracy across tasks is reported for varying values of n when k =
2%(left) and k when n = 4(right), where n is the number of layers selected for reduced
pruning and k is the hyper-parameter dictating how much the pruning on selected
layers is reduced by. We compare the performance when the n layers are selected as
the most (top-n), least (bottom-n), or randomly chosen (random-n) connected layers

Setting: We carry out training with a VGG16 model on a split CIFAR-10/100
dataset, where task 1 is CIFAR-10 and tasks 2–6 are each 20 consecutive classes
of CIFAR-100. We perform experiments on the Permuted MNIST dataset to
determine how the characteristics of information flow differ between datasets
(supporting experiments on MNIST are included in the supplementary materi-
als). Three trials were run per experiment. After training on a given task Tt,
and prior to pruning, we calculate Δt(f (l), f (l+1)) between each adjacent pair of
convolutional or linear layers as in 1. Connectivity figures are plotted by layer
index, which includes all VGG16 layers (ReLu, pooling, conv2D, etc.), however
only trainable layers are plotted. As a baseline we prune 80% of the lowest-
magnitude, unfrozen weights in each layer (freezing the remaining 20%).

5.1 How Do Task Sensitive Layers Affect Performance?

Top-Connectivity Layer Freezing: For this experiment we select the n layers with
the highest value of Δt and prune k% fewer weights in those layers for Task Tt,
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Fig. 2. For each layer the average connectivity value with the subsequent layer is
reported. The connectivities are plotted for each task in CIFAR-10/100, for various k
when n = 4 most connected layers are selected for reduced pruning.

Fig. 3. The average connectivities across layers with the subsequent layer is reported.
The scores are plotted for each task in CIFAR-10/100, when the n most-connected
layers are selected to have their pruning percent reduced by k = 2%.

where both n and k are hyper-parameters. This reduction is determined indi-
vidually for each task, and only applies to the given task. By reducing pruning
on the most task-sensitive layer, information flow through the network is better
maintained, preserving performance on the current task. This is demonstrated
in Fig. 1, in which selecting the most connected layers for reduced pruning out-
performs selecting the least connected or random layers. Although n and k have
the same values in each case, by selecting the top-n layers we better maintain
the flow of information by avoiding pruning highly-connected weights. By tak-
ing values of n > 1, we can account for cases where reducing the pruning on a
single layer doesn’t sufficiently maintain the flow of information above the base-
line. Figure 1 also shows that the performance increase for pruning the top-n
connected layers varies depending on the reduction in pruning k.

Connectivity Analysis: To better characterize our measure of information flow
and determine which layers are most task-sensitive, we plot the values of Δt
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for each convolutional or linear layer, as in Figs. 2, 3, and 4. These figures show
how connectivity varies over several experimental setups as we change n and k
during the freezing of the top-n connected layers. We compare these trends to
those seen when performing the baseline (n, k = 0) on Permuted MNIST.

6 Discussion

In-depth Analysis of Bounds: The bound established in Theorem 3 shows that the
performance gap between original and adapted networks with task-specific frozen
layers grows as the layers contribute more in passing the information to the next
layer given tasks. This gap has a direct relationship with the activations’ lipschitz
property and the minimum eigenvalues of the Hessian at optimal weights for the
pruned network. From the forgetting bound in Theorem 4, we infer that as a
layer is more useful for a task then freezing it reduces the forgetting more. In
addition from Theorem 5, we establish that the average forgetting is a non-linear
function of width of a local minima and when the entire filters of a fully sensitive
layer is frozen the forgetting tends to a tighter bound.

Fig. 4. The average connectivity for each layer is reported for training on Permuted
MNIST. Training was done with the baseline setting when n, k = 0. Each of the 10
tasks in the Permuted MNIST dataset are plotted.

Information Flow: The connectivities plotted in Figs. 2, 3, and 4 display patterns
which remain generally consistent for a given dataset, but have noticeable dif-
ferences between each dataset. For Figs. 2 and 3 tasks 2–6, which correspond to
CIFAR-100, show larger connectivities across most of the network compared to
CIFAR-10, particularly in the early and middle layers. Meanwhile, for MNIST
we observe connectivities which are much different from those of CIFAR-10 and
CIFAR-100. These observations suggest that when applied to different datasets,
the task sensitivity of the layers in a network (VGG16 in this case) differ, indicat-
ing that the optimal freezing masks and pruning decisions differ as well. Further,
Fig. 4 prominently shows that as subsequent tasks are trained, the connectivity
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of the early layers increases while the later layers’ connectivity values decrease.
This can also be seen to a lesser extent in Figs. 2 and 3, where the peak in the
last four layers decreases, while the first three layers take larger values for later
tasks. This indicates that not only is the data important for determining which
layers are task-sensitive, but the position of a given task in the training order is
as well. For the data shown here, we would suspect the optimal freezing mask
to more readily freeze the earlier, more highly connected layers, in the network.

Top-n Layer Freezing: The selection of the most connected layers in Fig. 1 demon-
strated an improvement over the baseline, least connected, or randomly cho-
sen layers, showing that the improved performance isn’t simply due to freezing
more weights. While the performance improves for top-n freezing, the standard
deviation also noticeably increases and overlaps the bottom-n results. This was
observed for all top-n experiments, and may be linked to the observations in
Figs. 2 and 3 that the top-n connected layers are found at the beginning of the
network, as perhaps repeated freezing of early layers has a more destabilizing
effect. While further work is needed to see if these results can be further improved
upon, these observations lend support to the idea that making pruning decisions
by utilizing knowledge of information flow in the network is an available tool to
retain performance in pruning-based continual learning applications.

7 Conclusion

We’ve theoretically established a relationship between information flow and
catastrophic forgetting and introduced new bounds on the expected forgetting.
We’ve shown empirically how the information flow (measured by the connectivity
between layers) varies between the layers of a network, as well as between tasks.
Looking ahead these results highlight future possible directions of research in
investigating differences in connectivity trends between various datasets, using a
probabilistic connectivity measure like mutual information, and investigation on
which portions of a network would be most important for passing information.

Finally, we have also empirically demonstrated that utilizing the knowledge
of information flow when implementing a pruning-based CL method can improve
overall performance. While these core experiments would benefit from further
supporting investigations, such as the effects of different networks or tuning
hyper-parameters beyond n and k, the reported results nonetheless show promis-
ing support for the utility of information flow. Here we limited our investigation
to using connectivity when determining the extent of pruning/freezing within
a layer, however it would be of significant interest to see possible applications
in determining which weights are pruned (as an alternative to magnitude-based
pruning), or even the use of information flow in CL methods which don’t utilize
pruning. These are left as a very interesting future work.

While this paper uses common CL datasets for validation of our theoretical
work and focuses on pruning-based methods, applying the methods to a number
of larger/more complex datasets will be the focus of more empirical future work,
and may help further assess our method’s capabilities as well as whether or not
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the connectivity trends seen here also reflect other, more complex datasets. The
core theory and measure of information flow are independent of the scale of the
data, so the method is expected to still work with larger datasets.
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