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Abstract. Facial pose estimation refers to the task of predicting face
orientation from a single RGB image. It is an important research topic
with a wide range of applications in computer vision. Label distribu-
tion learning (LDL) based methods have been recently proposed for
facial pose estimation, which achieve promising results. However, there
are two major issues in existing LDL methods. First, the expectations
of label distributions are biased, leading to a biased pose estimation.
Second, fized distribution parameters are applied for all learning sam-
ples, severely limiting the model capability. In this paper, we propose an
Anisotropic Spherical Gaussian (ASG)-based LDL approach for facial
pose estimation. In particular, our approach adopts the spherical Gaus-
sian distribution on a unit sphere which constantly generates unbiased
expectation. Meanwhile, we introduce a new loss function that allows
the network to learn the distribution parameter for each learning sample
flexibly. Extensive experimental results show that our method sets new
state-of-the-art records on AFLW2000 and BIWI datasets.
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1 Introduction

The task of facial pose estimation is to estimate the orientation of the face from
a single RGB image. It plays an important role in many real-world applications,
including driver’s monitoring system [16,33], human-computer interaction [4,29]
and face alignment [3,44]. With the recent advance of deep learning in com-
puter vision [5,6,19,25,26,43], learning-based facial pose estimation has become
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a dominant approach, achieving promising results [1,2,35,38]. However, as a
general problem in deep learning, data shortage also limits the concurrent meth-
ods for facial pose estimation to achieve superior performance. How to effectively
estimate the facial pose with limited data remains a challenge, which is the focus
of this work.
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Fig.1. (a) Example of Biased Expectation for 1D Gaussian label distribution.
The distribution from original pitch = 120° in the range (—180°,+180°] gives a biased
expectation of the label. The condition becomes worse as the original angle gets closer to
180° or —180°. (b) E and R denote Euler angles and rotation matriz, respectively.
Euler angles have inconsistent representations for profile faces. The Red and Blue
values show evident discrepancies when denoting similar profile poses. Applying LDL
on Euler angles inevitably introduces heavily noisy supervision. In contrast to Euler
angles, the corresponding elements in rotation matrices are close to each other. All
samples are from the 300W-LP dataset [45]. (Color figure online)

Recently, label distribution learning (LDL) has been introduced to address
the issue of insufficient training data. These LDL methods aim at reconstructing
new labels of the distribution around the original ones for training, which pro-
mote the learning of facial images not only from their own labels but also the
adjacent ones. LDL has shown its effectiveness in tasks such as facial age estima-
tion [15], facial attractiveness estimation [9] and crowd counting [49]. However,
the exploration of LDL application to facial pose estimation is insufficient.

To date, LDL in the task of facial pose estimation are mainly applied on
Euler angles which are known as pitch, yaw and roll. A seminal work from [14]
proposed to use a 2D Gaussian Distribution to describe the probability distribu-
tion between pitch and yaw in the range of (—90°,+90°). Liu et al. [28] followed
the track and converted each Euler angle label to a 1D Gaussian distribution.
They also expand the task to the one of wild range. Therefore, each face image
corresponds to three 1D Gaussian distributions (i.e., ppitch, Pyaw a0d proy). For
instance, an original label of the pitch angle (120°) can be used to generate
a Gaussian distribution in (—180°,180°] (see Fig.1a). Through predicting the
probability of each integer degree in set S = {—179°, —178°,--- ,179°,180°} and
compute the cross entropy loss, the task can be considered as the combination
of both regression and classification.
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Fig.2. (a) 2D distribution [2] generated by the first two elements of a column
vector of rotation matrices (we omit the third element for visualization). The limit of
range [—1,1] in two directions results in biased expectation. (b) Spherical Gaussian
Distribution (ours) guarantees unbiased expectation.

Albeit being simple and effective, applying LDL on Euler angles has several
obstacles: @ Euler angle is not a continuous rotation representation and LDL
deteriorates the issue by contributing the learning of adjacent angles. The dis-
continuity is embodied in the Euler angle labels of profile faces (see Fig.1b).
Since similar profile images have very different Euler angle labels, converting
the angles to distributions cannot help the learning of adjacent labels; @ Gaus-
sian distribution labeling on Euler angles leads to biased expectations. Since the
angle is limited to a certain range (—180°,180°], probabilities assigned in the
shadow area make the expectation of labels incorrectly shift to left (see Fig. 1a);
and @ concurrent LDL methods utilize the variance of Gaussian distribution as
a hyper-parameter which is fixed during training. This is computationally ineffi-
cient because they need to perform an exhaustive search to cherry pick the best
parameter setting. Besides, using the same distribution for all the poses is not
aligned with the real situation. Since faces at different poses have diverse contri-
butions to adjacent faces, the network should learn the distribution parameters
adaptively.

The first issue was studied in [2], which identifies the discontinuity issue of
Fuler angle and proposed a vector-based representation to train the network. In
other words, they let the neural network learn the rotation matrices from facial
images. Rotation matrices can form a continuous special orthogonal group SO(3)
and can circumvent the problem of discontinuity. However, they still failed to
recognize the issue of biased expectation. Since every element of the rotation
matrix stays in the range of [—1,1], they convert each element to a Gaussian
distribution in range [—1,1] and let the network learn the distribution in an
element-wise manner. Consequently, the issue of biased expectation is inevitably
similar to Euler angles. To our best knowledge, the second and third issues
remain largely under-explored in existing literature.
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In light of the foregoing discussions, we are motivated to present our
Anisotropic Spherical Gaussian (ASG)-based label distribution learning method
for facial pose estimation. Specifically, we treat each column vector of the rota-
tion matrix as an entity and map them to a spherical Gaussian distribution
respectively. Due to the symmetric distribution of ASG, our approach guaran-
tees for an unbiased expectation of label distributions. The difference between
ASG and the method in [2] is demonstrated in Fig. 2. Armed with the spherical
Gaussian distribution, we further design a new loss function for the network
to learn the distribution parameters adaptively during the training stage. This
enables every facial image to adjust contribution to adjacent poses based on its
pose. Ablation studies show that it can transcend the cherry-picked parameter
by at least 4.0% when trained on 3000W-LP and tested on AFLW2000 dataset.

Our method enjoys a few attractive qualities: @ it ensures the network learns
the distribution with unbiased expectation. Since most existing methods have
biased expectations (unless the original ground truth is exactly in the middle),
we observe significant performance gain from our method; @ the capacity of
learnable ASG distribution parameters allows the network to adjust the param-
eter for each pose, enabling a fine-grained prediction; ® all the performance
achievement comes from optimization on representation of rotation without
increasing the size of neural networks. Our approach achieves state-of-the-art
performance with a very light-weighted backbone network, i.e., ResNet18 [19].
Specifically, we decrease the Mean Absolute Error (MAE) by 0.27° (6.9% |)
compared to [1] and 0.19° (5.0% |) compared to [38] when tested on AFLW2000
dataset [51]; and @, our method is the first attempt that adopts directional
statistics in the task of pose estimation. We believe it can help invoke more
thoughts for further exploration in the community. Our contributions are sum-
marized below:

— We propose a novel ASG-LDL method which encodes each column vector of
the rotation matrix as an anisotropic spherical gaussian on a unit sphere. Our
method addresses the issue of biased expectation that is under-explored in
previous works.

— We propose a novel training paradigm that allows the network to learn the
distribution parameters adaptively. The flexibility allows the network to learn
individual distribution parameters for each pose.

— We conduct extensive experiments on two benchmarks. Experimental results
show the effectiveness of our method. With a light-weight ResNet-18 as the
backbone, our method achieves state-of-the-art results and outperforms many
strong baselines with a heavier backbone (i.e., ResNet-50).

2 Related Work

This section summarizes the recent progresses in the related fields regarding
facial pose estimation, label distribution learning and spherical Gaussian distri-
bution.
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Facial Pose Estimation. Recently, landmark-free learning based methods have
become popular. By training an end-to-end deep neural network, it can estimate
the face poses using global information and can be more robust to the envi-
ronment variations. [35] puts forward a CNN with a multi-loss function that
performs binned classification to regress three Euler angles. [46] proposes a fine-
grained structure by learning global spatial feature importance that improves the
results. [20] formulates face pose estimation using quaternion-annotated labels
to avoid the ambiguity problem in Euler angle representation. [1] proposes a
Faster RCNN based network to regress 6DoF pose of faces by performing pose
estimation and face alignment simultaneously. [38] puts forward a multi-modal
network that can perform three tasks of head pose estimation, landmark-based
face alignment and localization of face simultaneously. By the combination of
three tasks they achieve state-of-the-art results. All of the above methods per-
form the training process through direct regression. Differently, we approach the
problem as a label distribution learning task.

Label Distribution Learning. Label distribution learning [30] is a learning
paradigm that is first proposed for facial age estimation [15,27]. [15] finds that
faces at close ages look similar. Therefore, they map each face image to a label
distribution which covers a certain number of ages. Through this way one face
image can contribute to not only the learning of its chronological age, but also
the learning of its adjacent ages. LDL also shows it effectiveness in similar tasks
such as facial attractiveness estimation [9], crowd counting [49] and movie rating
prediction [13] ete. [8] applies a similar approach on ordinal regression such as
image ranking and monocular depth estimation. [2] shows that the evaluation
metric, mean absolute error of Euler angles (MAE), cannot reflect the actual
performance especially for profile faces. Instead, they propose to use mean abso-
lute error of vectors (MAEV) as a new metric. However, all the methods give
biased expectation from the distribution, which severely limits the performance
of neural network.

Spherical Gaussian Distribution. Spherical Gaussian (SG) distribution, also
known as von Mises-Fisher distribution [11], is commonly used to simulate the
properties of illumination and reflection in computer graphics. [18] uses SG to
estimate multiple light sources and reflectance properties. [39] approximates the
normal distribution function (NDF) by a mixture of SGs. [7] uses SG for the
approximation of Bidirectional Transmittance Distribution Function (BTDF)
for real-time estimation of environment lighting. However, SG only describes
an isotropic distribution. [42] further proposes the ASG distribution which can
describe an anisotropic distribution for rendering applications. Inspired by the
above work, we successfully extend ASG to the field of head pose estimation.

6D Object Pose Estimation. 6D object pose estimation includes estimation
of 3D location and 3D orientation. The latter task resembles our head pose esti-
mation. The approaches for 6D object pose estimation can be generally classified
into two categories. The first type such as [34,37,47] first capture instance infor-
mation and keypoints from images to determine locations of objects, then build
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Fig. 3. The overall framework. The dashed lines are only used in the training stage.
For simplicity, we only visualize one head r2 but each head has the same working
pipeline.

the correspondence between the 2D and 3D keypoints. After that, they obtain 6D
pose estimation by solving the PuP problem [24]. The other category of methods
such as [12,31,41] use neural networks to estimate orientation of objects directly.
To our knowledge, the use of spherical Gaussian is a new attempt in the task of
pose estimation.

3 Proposed Method

3.1 Overview

Our overall framework is illustrated in Fig. 3. The network learns the pose infor-
mation from a cropped human facial image. To demonstrate the advantage of
our approach, we choose light-weighted ResNet-18 as our backbone network. We
append three heads to the ResNet-18 backbone as each head corresponds to one
pose vector. They work collectively to perform the facial pose estimation. Dur-
ing training, the backbone first extracts the features from the input image and
then feeds them to each of the heads, which is supervised by the classification
and regression loss respectively. During inference, the three heads work collab-
oratively to predict the rotation matrix through singular value decomposition
(SVD). We elaborate our method in the following sections.
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Fig. 4. Visualization of ASG distributions of different A and n when r = [0, 0, 1]T.
a) ASG distribution on a unit sphere; b) visualization of sampled points with proba-
bilities when M = 600.

3.2 Motivation

When we use a rotation matrix Rsx3 = [ro, 71, 2] to describe facial poses, the
three column vectors rg, 1, 72 are equivalent to three pose vectors in Fig. 3, i.e.
left (blue), down (green) and front (red) vectors respectively [2]. Therefore, for a
ground truth pose vector r;,i = {0, 1,2}, any direction v surrounding it can also
be regarded as an alternative legitimate label. The smaller the angle difference
is, the more likely that the vector v is a valid label. Therefore, all the probabil-
ities of a direction v, that can be considered as a legitimate label, constitute a
probability distribution on a unit sphere. Intuitively, the probability distribution
can be represented using an isotropic spherical Gaussian (SG) model, since the
probability is only related to the angle between v and r;. However, human faces
change at different rates when rotating along different axes. For example, rolling
a face with 45° does not change the observed area of the face, while nodding or
raising the face for 45° makes large portion of facial area self-occluded. Based on
this observation, we propose to use ASG distribution which is able to capture
the anisotropic features along different axes.

3.3 Label Distribution Construction

All three pose vectors constitute an orthogonal coordinate system. For each
ground truth pose vector r;, we can calculate the portion G* that a direction v
accounts for a full class description of the sample:
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G'(v; R\ 1)) = ¢ S(v;r) - e A@T) 0w re)”
where i = {0, 1,2}
j=(i+1) mod3
k = (i+2) mod 3. (1)

Here, R = [ro,71,7T2]. A and 7 are the parameters that control the decreasing
speed of possibility along r; and 7. Figure 4a illustrates the spherical Gaussian
distribution of different A and 7. ¢ is the normalization term that ensures the sum
of probability distribution to be 1. S(v;r;) = max(v - r;,0) is the smooth term.
Since the exponential part B(v) = e*)‘(”'”)k“(”'”)a also known as Bingham
distribution [23], is antipodally symmetric and has two peaks at v = +r;. We
keep only the peak of v = r; with the smooth term S(v;r;).

To convert a vector to a distribution, we first adopt spherical Fibonacci lattice
algorithm [17] to sample M near-equidistant points from an unit sphere, denoted
by D = {dy,ds,- - ,dy} where d; € R? (see Fig. 3). Note that we only perform
the sampling once, thus all pose vectors share a same set of sampled points.
During the training stage, for any ground truth vector label r;, the network first
predicts parameters A and n and then use them to calculate the probabilities for
all the sampled points P, = {p{,p4, -+ ,p%,}. The probability of point k can
be obtained by the normalization:

eXp{Gi(vz_c; R}
Zév; exp{G*(vj; R, [\, 0]}

The process of label distribution generation is applied on all three column
vectors g, T1 and ro. Therefore, we can obtain three sets of probability distri-
bution Py, Pr, and P,, with the same size of M. The probability distribution
on sampled points are visualized in Fig. 4b.

(2)

P =

3.4 Working Pipeline

Training. In the training stage, the backbone-encoded features are first fed
into three heads separately (See Fig. 3). Each head has one fully connected (FC)
layer, which outputs a vector with size of M +2. The first M elements denote the
ASG probabilities of sampled points for the corresponding pose vector, which
is normalized by a softmax layer to generate the probability distribution Q,, =
{¢t,¢5,- -+ ,q%,}. Therefore the expectation of the distribution is given by:

M
i =Eo, [D] = dids. 3)
k=1
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The last two elements of the output vector from the FC layer correspond to
the parameters (A;,7;). In conjunction with the sampled point set D and the
ground truth vector r;, the network is able to generate the distribution target
Pr, using Eq. 1 and 2.

Loss Function. To supervise our method, our training loss consists of two
terms: classification loss L5 and regression loss L,..4. The overall loss L is given
by:

L=2Lys+ OzLTeg. (4)

More concretely, we adopt mean square error (MSE) loss function for regres-
sion Lreqg = MSE (7;,7;) and Kullback-Liebler (KL) divergence for classification
Leis = Dkn(Pr,]|9Qr,). The value of the trade-off parameter « is in the range of
[0,1]. We find its optimal value in our experiments.

Inference. In the inference stage, we first concatenate the three pose vectors
70,71, T2 generated by the three heads from the learned network to obtain matrix
R = [F'g, 71, 72]. We then obtain its closest rotation matrix through singular
value decomposition (SVD). Given a matrix R =UXV7", its closest rotation
matrix is obtained by R = UV,
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Fig. 5. (a) Visualization of the angle between two adjacent points. (b) Relationship
between the number of sampling points M and the angle between two adjacent points.

4 Experiments

4.1 Datasets and Metrics

We conduct an extensive set of experiments to evaluate our approach on three
benchmarks: 300W-LP [51], AFLW2000 [52] and BIWI [10]. 300W-LP is a syn-
thesized dataset which contains 122,450 images with large varieties in facial poses
and identities. Image samples in 300W-LP are synthesized from 300W dataset
[36] which includes around 4,000 images. AFLW2000 contains the first 2,000
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images of the popular AFLW [32] dataset with diverse facial poses in the wild.
The dataset is commonly used as the test set to evaluate model performances.
BIWTI is collected in an indoor environment with an RGB-D camera. It provides
accurate ground truth labels. This dataset is also widely used for depth-based
facial pose estimation. Since bounding boxes of human heads are not provided
in BIWI, we use MTCNN [48] to detect and crop the face areas.

To ensure a fair comparison with different methods, we follow the same exper-
iment scenarios applied in [20,35,46] and discard the test samples with Euler
angles beyond the range of [—99°,99°]. Scenario 1: We train our network on
300W-LP and test on both AFLW2000 and BIWI datasets. Scenario 2: We
perform the 3-fold cross validation on the BIWI dataset. We randomly split the
BIWI dataset into 3 groups. Each group contains 8 videos and the videos of the
same person appear only in one group. We use mean absolute error of Euler
angles (MAE) as our metric.

Table 1. MAE and MAEYV results of different representations of rotation under
scenario 1 and 2. All use the ResNet-18 as backbone. We highlight the best results.

. . Euler Angle Errors Vector Errors
Train | Test | Representation
Pitch Yaw Roll | MAE | Left down front MAEV

Euler angles 6.36 4.64 4.84 | 528 |6.71 597 7.62 6.76

E = Lie algebra 5.62 3.92 4.04 | 4.52 | 5.84 5.13 6.52 5.83

o 2 ] Quaternion 577 4.01 4.20 | 4.66 | 5.63 5.62 6.57 5.94

= Rotation matrix | 5.46 3.71 3.77| 4.31 | 5.52 4.97 5.92 5.47

% Euler angles 6.43 4.22 4.08 | 491 |6.08 5.72 6.13 5.98

« E = Lie algebra 587 3.39 3.73 | 4.33 | 582 5.66 542 5.63

M Z Quaternion 6.11 3.54 3.61| 4.42 | 579 588 5.61 5.76

Rotation matrix | 5.43 3.52 3.63 | 4.19 | 5.74 5.10 5.12 5.32

Euler angles 4.07 3.76 3.73 | 3.85 | 4.52 4.89 4.57 4.66

; % ; f§\ Lie algebra 3.46  3.21 3.11 | 3.26 | 4.31 4.22 4.18 4.24

nE |me Quaternion 3.52 3.35 3.24 | 3.37 | 451 4.32 4.20 4.34

Rotation matrix | 3.08 3.16 3.01 | 3.08 |4.12 4.16 4.02 4.10

4.2 Implementation Detail

There are two hyper-parameters in our approach. One is the coefficient a for
the regression loss term L,.,. Another one is the number of sampled points M.
Figure 5 shows the relationship between number of sampled points M and angle
between adjacent points. We set « = 0.2 and M = 600 in our experiments.

We implement our proposed approach based on PyTorch and adopt ResNet-
18 [19] as the backbone. In training, we adopt Adam optimizer with the initial
learning rate of 0.0001. The total training epoch is set to be 50 with the decay
rate of 0.95 for every epoch. Batch size is set to be 64 and every image is
resized to 224 x 224. All the experiments are conducted on a RTX 2080 Ti GPU.
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We augment training images with random crop, noise and random zoom with
scale from 0.8 to 1.2.

Table 2. Comparison with state-of-the-art methods on the AFLW2000 and BIWI
datasets. All methods are trained on 300W-LP. We highlight the best results and our
results.

Method Backbone AFLW2000 BIWI (full)
Pitch Yaw Roll MAE | Pitch Yaw Roll MAE
3DDFA [51] Two-stream 27.09 4.71 28.43 20.08 | 41.90 5.50 13.22 20.21
Dlib [22] - 11.25 8.49 22.83 14.19 | 13.00 11.86 19.56 14.81
HPE [21] ResNet-50 6.18 4.87 4.80 5.28 5.18 4.57 3.12 4.29
Hopenet [35] ResNet-50 7.12 5.31 6.13 6.19 5.89 6.01 3.72 5.20
Quatnet [20] GoogLeNet 5.62 3.97 3.92 4.50 | 549 4.01 294 4.15
Liu et al. [28] ResNet-50 5.06 3.03 3.68 3.93 5.61 4.12  3.15 4.29
FSA-Net [46] SSR-Net 6.34 4.96 4.78 5.36 5.21 4.56 3.07 4.28
TriNet [2] ResNet-50 5.77 4.20 4.04 4.67 4.75 3.05 4.11 3.97
MNN [38] Encoder-Decoder | 4.69 3.34 3.48 3.83 4.61 3.98 2.39 3.66
img2pose [1] ResNet-18 5.03 3.43 3.28 3.91 3.55 457 3.24 3.79
Ours ResNet-18 4.74 3.08 3.11 3.64 3.52 4.21 3.10 3.61

4.3 Analysis of Rotation Representations

Even though there are multiple ways to describe a rotation and the most com-
monly used ones include Euler angles, quaternion, Lie algebra and rotation
matrices, it remains under-studied that which representation is the best option
for the task of facial pose estimation. [2] briefly discussed Euler Angle and quater-
nions. However, they omitted Lie algebra and did not provide any experimental
support. We implement a thorough comparison between the performances of dif-
ferent representations using the same backbone of ResNet-18 (see Table 1). Since
MAE is not an accurate measure for profile faces, we also adopt mean absolute
error of vectors (MAEV) to make a comprehensive comparison. Experiments
show that rotation matrices achieve the best result among all representations
under both scenarios.

The experimental results accord with the continuity properties of each rep-
resentation. As shown by the work [40,50], it needs at least 5 dimensions to
describe the rotation continuously, otherwise it incurs discontinuity issue similar
to Euler angles. Both Euler angle and Lie algebra € R3 and quaternion € R*.
Therefore, none of them can describe the rotation continuously. Here we include
some cases when the phenomenons of discontinuity occur. For a unit quaternion
q = w+ri+yj+zk, where w?+22+y?+2% = 1. Then (1,0, 0,0) and (—1,0,0,0)
represents the same rotation. For Lie algebra s0(3) which is denoted by an anti-
symmetric matrix ¢” where ¢ = fa and a € R3, |a||z = 1,0 € [, +7]. For
any a, faces have similar appearances when 6 approaches m and —m. Therefore,
the rotation matrix is the best representation in terms of the performance and
continuity property.
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Table 3. Comparison between direct regression and distribution learning. Results
are obtained on the AFLW2000 and BIWI benchmarks.

Training set 300W-LP BIWI (70%)
Testing set ALFW2000 | BIWI (full) | BIWI (30%)
Direct regression | 4.31 4.19 3.08
SG learning 3.79 3.71 2.93
ASG learning 3.64 3.61 2.77

4.4 Comparison with State-of-the-Arts

We compare the performance of our method with other state-of-the-art methods
(see Table 2) under scenario 1. Since the training/test set division in scenario 2 is
arbitrary and thus is not adopted by methods [1,38], we choose only scenario 1
for comparison. The results of the compared methods are directly cited from
their original papers. Liu et al. [28] is the first work that follows the distribution
learning paradigm for wild pose estimation. Different from our work, they convert
the Euler angles to 3 Gaussian distributions with the same variance. Even though
they use the ResNet-50 as the backbone which is deeper than our ResNet-18, our
ASG-based distribution learning surpasses their performance. FSA-Net [46] and
TriNet [2] take advantage of the combination of attention module and capsule
network and append them to the backbone network to improve the learning
ability of the network. Even though both have more complex structures and
more parameters than our network, their performance is inferior to ours.

It is worth mentioning that some of the methods such as MNN [38] and
img2pose [1] also use face landmarks in a weakly supervised manner to help
improve the performance of network. To highlight the effectiveness of our distri-

Ground
Truth

TriNet

img2pose

Ours

Y’ :
1-E.?/ A’m ' P2

Fig. 6. Qualitative comparison of different methods. Trained on 300W-LP and
tested on AFLW2000.
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bution learning strategy, we make the network learn the pose estimation without
the landmark labels. Experiments show that even though less information is pro-
vided, our network still achieves better performance. The qualitative results are
demonstrated in Fig. 6. It can be seen that our approach makes more accurate
predictions when faces are partially occluded.

Table 4. Comparison between adaptive parameters learning and fixed ASG param-
eters. Results are obtained on the AFLW2000 and BIWI benchmarks.

Training set 300W-LP BIWI (70%)
Testing set AFLW2000 | BIWT (full) | BIWI (30%)
A=1,n=1 3.79 3.84 2.92
A=5n=5 3.86 3.97 3.03
A=1,n=5 3.92 4.03 2.97
Adaptive parameters | 3.64 3.61 2.77

Table 5. Comparison of the effects of different loss terms. Results are obtained on
the AFLW2000 and BIWI benchmarks.

Training set | 300W-LP BIWI (70%)
Testing set | ALFW2000 | BIWT (full) | BIWT (30%)
Leis 3.67 3.68 2.81
Lreg 431 4.19 3.08
Los + Lreg | 3.64 3.61 2.77

4.5 Ablation Study

In this section, we investigate the effectiveness of our method by carrying out
ablation experiments on the adaptive ASG label distribution learning and dif-
ferent loss components.

Distribution Learning vs. Regression. We examine the advantages of the
ASG distribution to isotropic SG distribution and use the direct regression of
the rotation matrix as baseline. Results are shown in Table 3. Our ASG distribu-
tion can effectively improve the performance compared with other two baseline
methods.

Adaptive Parameters wvs. Fixed Parameters. We conduct experiments
to compare the performance of methods with adaptive parameters and fixed
parameters (see Table4). While achieving superior performance over the fixed
parameters, our adaptive parameter learning is computationally efficient as it
avoids the exhaustive search of parameters. All the ASG parameters A and 7
learned by the samples in the 300W-LP dataset are demonstrated in Fig. 7. We
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Fig. 7. Visualization of n and A distribution for three pose vectors ro, 71 and 72 of all
the samples in different ranges of Yaw. All trained on the 300W-LP dataset.

divide the angle of yaw into three equal ranges. It is worth noting that our learn-
ing behavior follows a clear pattern. For instance, the parameter distributions
in the first and third columns resemble each other. Because turning faces to left
and right results in symmetric images, the parameters of ASG should be similar.
This is reflected by the distribution of parameters.

Loss Functions. We examine the effectiveness of each loss term (see Table5).
Notice when only L., is applied, the network is supervised by the arbitrary
distribution with expectation of the same as the ground truth. The above results
confirm that the classification term and regression term can work collaboratively
to operate effective label distribution learning for the facial pose estimation.

5 Conclusion

In this paper, we introduce a novel ASG-based Label Distribution Learning
method for estimating facial pose. This is the first attempt to include directional
statistics in the estimation of pose. We anticipate that this work will illustrate
potential future directions for the community to investigate.
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