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Abstract. Face clustering is a promising way to scale up face recog-
nition systems using large-scale unlabeled face images. It remains chal-
lenging to identify small or sparse face image clusters that we call hard
clusters, which is caused by the heterogeneity, i.elet@tokeneonedot, high
variations in size and sparsity, of the clusters. Consequently, the conven-
tional way of using a uniform threshold (to identify clusters) often leads
to a terrible misclassification for the samples that should belong to hard
clusters. We tackle this problem by leveraging the neighborhood infor-
mation of samples and inferring the cluster memberships (of samples)
in a probabilistic way. We introduce two novel modules, Neighborhood-
Diffusion-based Density (NDDe) and Transition-Probability-based Dis-
tance (TPDi), based on which we can simply apply the standard Den-
sity Peak Clustering algorithm with a uniform threshold. Our experi-
ments on multiple benchmarks show that each module contributes to the
final performance of our method, and by incorporating them into other
advanced face clustering methods, these two modules can boost the per-
formance of these methods to a new state-of-the-art. Code is available
at: https://github.com/echoanran/On-Mitigating-Hard-Clusters.
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1 Introduction

Face recognition is a classical computer vision task [13,21,34] that aims to infer
person identities from face images. Scaling it up relies on more annotated data
if using deeper models. Face clustering is a popular and efficient solution to
reducing the annotation costs [5,15,16,27].
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Fig. 1. (a) and (b) show the ground-truth distribution of the face identity clusters on
MS1M 5.21M dataset [8]. (a) is for cluster size, i.elet@tokeneonedot, the number of
samples in a cluster. (b) is for cluster sparsity, which is defined as the average cosine
distance of all pair of samples in a cluster, e.g let@tokeneonedot, for cluster C we

have Sparsity(C) = 1 −
∑

ij∈C,i�=j cosine<xi,xj>

|C|(|C|−1)
where |C| denotes the cluster size. (c)

and (d) show the performances (Pairwise F-score) of three top-performing methods,
GCN(V+E) [31], Pair-Cls [14], and STAR-FC [23], compared to ours, on five cluster
subsets with descending size (from sz-1 to sz-5) and ascending sparsity (from sp-1 to
sp-5), respectively.

Problems. Face clustering is challenging due to that 1) recognizing person
identities is a fine-grained task; 2) the number of identities is always large,
e.g let@tokeneonedot, 77k on MS1M 5.21M dataset [8]; and 3) the derived face
clusters are often of high variations in both size and sparsity, and small or sparse
clusters—we call hard clusters—are hard to identify. Figure 1(a) and (b) show
the distributions of ground-truth clusters on MS1M 5.21M dataset. For Fig. 1(c)
and (d), we first group these clusters into five subsets based on a fixed ranking
of size and sparsity, respectively, and then evaluate three top-performing meth-
ods and ours on each subset. It is clear that the performance drops significantly
for hard clusters, e.g let@tokeneonedot, in subsets sz-5 and sp-5, particularly on
metric Recall (see Fig. 2). We think the reason is two-fold: 1) small clusters are
overtaken by large ones; 2) samples of sparse clusters are wrongly taken as “on”
low-density regions, i.elet@tokeneonedot, the boundaries between dense clusters.

Fig. 2. Pairwise precision and recall (of the
three baselines) that elaborates the results in
Fig. 1(c) and (d). The recall of hard cluster sub-
sets shows a significant drop.

We elaborate these based
on Density Peaking Clustering
(DPC) [22] which has shown
the impressive effectiveness in
state-of-the-art face clustering
works [14,31]. DPC requires point-
wise density and pair-wise dis-
tance to derive clustering results.
The density is usually defined as
the number of neighbor points
covered by an ε-ball around each
point [4], and the distance is stan-
dard cosine distance. We find that
both density and distance are highly influenced by the size and sparsity of latent
clusters in face data. For example, 1) smaller clusters tend to have lower density
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as shown in Fig. 3(a), so they could be misclassified as big ones by DPC, and 2)
to identify positive pairs, higher-sparsity (lower-sparsity) clusters prefer a higher
(lower) distance threshold, as indicated in Fig. 3(b), so it is hard to determine a
uniform threshold for DPC.

Our Solution. Our clustering framework is based on DPC, and we aim to
solve the above issues by introducing new definitions of point-wise density and
pair-wise distance. We propose a probabilistic method to derive a size-invariant
density called Neighborhood-Diffusion-based Density (NDDe), and a sparsity-
aware distance called Transition-Probability-based Distance (TPDi). Applying
DPC with NDDe and TPDi can mitigate hard clusters and yield efficient face
clustering with a simple and uniform threshold.

Fig. 3. (a) The average standard density of clus-
ters on each subset. (b) The probability density
function on each subset with respect to the posi-
tive pairs. “Pos” indicates “Positive”, and “Neg” for
“Negative”.

We first build a transi-
tion matrix where each row
contains the normalized sim-
ilarities (predicted by a pre-
trained model as in related
works [14,23,29,31]) between
a point and its K-nearest
neighbors, and each column is
the transition probability vec-
tor from a point to the oth-
ers. Then, for NDDe, we spec-
ify a diffusion process on the
matrix by 1) initializing a uni-
form density for each point,
and 2) distributing the density to its K-nearest neighbors, where the distri-
bution strength is proportional to the transition probability, until converge. The
derived NDDe is invariant to the cluster size and thus free from the issue of
small clusters. We provide the theoretical justification and empirical validation
in Sect. 4.2. For TPDi, we define a relative closeness that equals the inner prod-
uct between two points’ transition probability vectors (corresponding to two
columns on the transition matrix). We assume two points are close if they have
similar transition probabilities to their common neighbors. Our TPDi can yield
more uniform sparsity (in clusters) than conventional distances such as cosine or
Euclidean, and thus free from the issue of sparse clusters. Our justification and
validation are in Sect. 4.3.

Our main contributions are threefold. 1) We inspect face clustering problem
and find existing methods failed to identify hard clusters—yielding significantly
low recall for small or sparse clusters. 2) To mitigate the issue of small clusters,
we introduce NDDe based on the diffusion of neighborhood densities. 3) To
mitigate the issue of sparse clusters, we propose the relative distance TPDi that
can facilitate a uniform sparsity in different clusters. In experiments, we evaluate
NDDe and TPDi on large-scale benchmarks and incorporate them into multiple
baselines to show their efficiency.
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2 Related Work

Face clustering has been extensively studied as an important task in the field
of machine learning. Existing methods can be briefly divided into traditional
methods and learning-based methods.

Traditional Methods. Traditional methods include K-means [18], HAC [24],
DBSCAN [6] and ARO [20]. These methods directly perform clustering on the
extracted features without any supervision, and thus they usually seem simple
but have obvious defects. K-means [18] assumes the cluster shape is convex and
DBSCAN [6] assumes that the compactness of different clusters is homogeneous.
The performances of these two methods are limited since both assumptions are
impractical for face data. The scale of unlabeled face images is usually large, and
from this perspective, traditional methods are low-efficient and thus not suitable
for face clustering task. The computational efficiency of HAC [24] is not accept-
able when handling millions of samples. To achieve better scalability, Otto et
al let@tokeneonedot [20] proposed ARO that uses an approximate rank-order
similarity metric for clustering, but its performance is still far from satisfactory.

Learning-Based Methods. To improve the clustering performance, recent works
[7,14,23,28,29,31–33] adopt a learning-based paradigm. Specifically, they first
train a clustering model using a small part of data in a supervised manner and
then test its performance on the rest of the data. CDP [33] proposed to aggregate
the features extracted by different models, but the ensemble strategy results in a
much higher computational cost. L-GCN [29] first uses Graph Convolutional Net-
works (GCNs) [12] to predict the linkage in an instance pivot subgraph, and then
extracts the connected components as clusters. LTC [32] and GCN(V+E) [31]
both adopt two-stage GCNs for clustering with the whole K-NN graph. Specifi-
cally, LTC generates a series of subgraphs as proposals and detects face clusters
thereon, and GCN(V+E) learns both confidence and connectivity via GCNs. To
address the low-efficiency issue of GCNs, STAR-FC [23] proposed a local graph
learning strategy to simultaneously tackle the challenges of large-scale train-
ing and efficient inference. To address the noisy connections in the K-NN graph
constructed in feature space, Ada-NETS [28] proposed an adaptive neighbor dis-
covery strategy to make clean graphs for GCNs. Although GCN-based methods
have achieved significant improvements, they only use shallow GCNs resulting
in a lack of high-order connection information, and in addition, their efficiency
remains a problem. Pair-Cls [14] proposed to use pairwise classification instead
of GCNs to reduce memory consumption and inference time. Clusformer [19]
proposed an automatic visual clustering method based on Transformer [25].

In general, existing learning-based methods have achieved significant
improvements by focusing on developing deep models to learn better repre-
sentation or pair-wise similarities, but they failed to identify and address the
aforementioned hard cluster issues. In this paper, we explore face clustering task
from a new perspective. Based on DPC [22], we propose a size-invariant point-
wise density NDDe and a sparsity-aware pair-wise distance TPDi, which can be
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incorporated into multiple existing methods for better clustering performance,
especially on hard clusters.

3 Preliminaries

Problem Formulation. Given N unlabelled face images with numerical fea-
ture points X = {x1, x2, · · · , xN} ⊂ IRN×D, which are extracted by deep face
recognition models, face clustering aims to separate these points into disjoint
groups as X = X1

⋃
X2...

⋃
Xm, such that points with the same identity tend

to be in the same group, while points with different identities tend to be in
different groups.

Data Preprocessing. Following the general process of learning-based face
clustering paradigm, the dataset X is split into a training set and a test set,
X = Xtrain

⋃
Xtest. For a specific learning-based face clustering method, a clus-

tering model is first trained on Xtrain in a supervised manner, and then the
clustering performance is tested on Xtest. Without loss of generality, we always
denote the features and labels as X = {x1, x2, · · · , xN} and l = {l1, l2, · · · , lN},
respectively, for both training stage and test stage.

Density Peak Clustering (DPC). DPC [22] identifies implicit cluster centers
and assigns the remaining points to these clusters by connecting each of them to
the higher density point nearby, which is adopted by several state-of-the-art face
clustering methods [14,31]. In this paper, we also adopt DPC as the clustering
algorithm. Given point-wise density ρ = {ρ1, ρ2, · · · , ρN} and pair-wise distance
(dij)N×N , for each point i, DPC first finds its nearest neighbor whose density is
higher than itself, i.elet@tokeneonedot,

ĵ = argmin{j|ρj>ρi}dij ,

If ĵ exists and diĵ < τ , then it connects i to ĵ, where τ is a connecting threshold.
In this way, these connected points form many separated trees, and each tree
corresponds to a final cluster. Note that τ is uniform for all clusters, so consistent
point-wise density ρ and pair-wise distance (dij)N×N are essential for the success
of DPC. To solve hard cluster issues, we propose a size-invariant density called
Neighborhood-Diffusion-based Density (NDDe) and a sparsity-aware distance
called Transition-Probability-based Distance (TPDi) for better ρ and (dij)N×N .

4 Method

Figure 4 shows the overall framework consisting of four steps. First, we construct
a transition matrix by learning the refined similarities between each point and its
K-nearest neighbors using a model consisting of a feature encoder F and a Multi-
Layer Perceptron (MLP). The second step uses our first novel module: computing
Neighborhood-Diffusion-based Density (NDDe) by diffusing point-wise density
on the neighboring transition matrix, which is invariant to cluster size. The
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Fig. 4. Overview. Our method consists of four steps: (1) Constructing transition matrix
P . Feature encoder F is for feature refinement, which can be Transformer, GCNs, or
a feature aggregation module, and after that, an MLP is used to predict the similarity
between each anchor point and its neighbors. (2a) Computing NDDe for each point
through a diffusion process. (2b) Computing TPDi to measure the distance between
points. (3) Applying DPC with NDDe and TPDi to obtain final clustering result.

third step is our second novel module: computing Transition-Probability-based
Distance (TPDi) by introducing a relative closeness, which is aware of cluster
sparsity. Fourth, we directly apply DPC with NDDe and TPDi to derive the
final clustering result.

4.1 Constructing Transition Matrix

The standard way of construction the transition matrix is to compute the simi-
larity between the deep features of pair-wise samples. The “similarity” can be the
conventional cosine similarity or the learned similarity in more recent works such
as [14,23,31]. To reduce the memory consumption of using GCNs [23,31] for sim-
ilarity learning, Pair-Cls [14] simply learns the similarity via pair-wise classifica-
tion by deciding whether two points share the same identity. However, in Pair-Cls,
all pairs are completely independent during training. We argue that the similar-
ity between a point and one of its neighbors usually depends on the similarities
between the point and its other neighbors. Therefore, in our work, we adopt the
same pair-wise classification, i.elet@tokeneonedot, using an MLP to predict the
similarity, and besides that, we leverage a collaborative prediction manner by con-
sidering the similarities between each point (as an anchor) and its neighbors as a
whole to improve the robustness of the prediction, similar to [14,19].

Here, we elaborate a general formulation. For a sample point i, we first find
its K-nearest neighbors denoted as nbri = {i1, · · · , iK}, and then generate the
following token sequence:

x̃i = [xi, xi1 , xi2 , · · · , xiK ].
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Our similarity prediction model first takes x̃i as input, and outputs K + 1
features after feature encoder F :

{ti, ti1 , · · · , tiK} = F(x̃i),

where F can be Transformer [25], GCNs [23,31] or a simple feature aggregation
module [14] (aggregate features of neighbors and concatenate to the feature of
anchor). Then, for each neighbor ij , j = 1, ...,K, ti are concatenated with tij
and fed into an MLP with Sigmoid function to estimate the probability of that
i and ij share the same identity:

pij = MLP([ti, tij ]).

Assuming lij is the ground-truth label, lij = 1 if li = lij and lij = 0 vice
versa. The total loss function is formulated as:

L = −
N∑

i=1

K∑

j=1

(lij log pij + (1 − lij) log(1 − pij)). (1)

Once the model converges, its predicted similarity takes the anchor’s feature as
well as its respective neighborhoods’ features into consideration. Then, we can
derive the similarity matrix ŜN×N by applying this model on the test set.

Finally, we assume di =
∑N

j=1 ŝij as the measure of the volume around
point i, and generate the probability transition matrix P with each element as
pij = ŝij/di. The size of P is N × N . Please note that Ŝ is a sparse matrix
where each row contains K + 1 non-zero elements (itself and its top-K nearest
neighbors). Therefore, P is also sparse. We highlight that the above approach
is not the only way to construct the transition matrix P , and we show the results
of using other approaches to obtain P in the experiment section.

4.2 Neighborhood-Diffusion-Based Density

In this section, we propose a new definition of the point-wise density, called
NDDe, to alleviate the issue of small-size clusters. In the transition matrix P ,
each element Pij denotes the probability from one point i to its specific neighbor
j. It satisfies the conservation property, i.elet@tokeneonedot,

∑
j Pij = 1, which

induces a Markov chain on X. Denoting L = I − P as the normalized graph
Laplacian, where I is the identity matrix. We can specify a diffusion process as
follows, {

∂
∂tρi(t) = −Lρi(t),
ρi(0) = 1.

(2)

where ρi(t) is the density of point i at t-th step. Starting from a uniformly ini-
tialized density, the diffusion process keeps distributing the density of each point
to its K-nearest neighbors, following the corresponding transition probabilities
in P , until converged to a stationary distribution. The diffusion density thus can
be induced as:

ρi = lim
t→∞ ρi(t). (3)
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Fig. 5. (a) and (b) show the average values of the standard density and our NDDe
on five cluster subsets from MS1M 5.21M dataset, respectively. NDDe is shown to be
more uniform, i.e., small clusters are alleviated. (c) and (d) show the probability density
functions of using the conventional cosine distance and TPDi on five cluster subsets
from MS1M 5.21M dataset, respectively. Using TPDi makes it easier to decide a more
uniform threshold to separate positive and negative pairs, in all subsets including the
sparsest one “sp-5”.

Justification of Local Properties of Diffusion Density. The diffusion process is
local because each point transits its density to K-nearest neighbors and itself
(based on the transition matrix P ). If considering the ideal situation when P is
closed, which means pij > 0 if and only if xi and xj share the same identity, we
have the following theorem.

Theorem 1. Assume the dataset X can be split into m disjoint clusters:
i.elet@tokeneonedot, X = X1

⋃
...

⋃
Xm. Define ρ̄i =

∑
j∈X i

ρ(j)

|Xi| is the average
density of Xi, and we have ρ̄1 = · · · = ρ̄m = 1 where |Xi| is the number of
points in Xi.

Theorem 1 demonstrates that the average diffusion densities in all clusters
are the same regardless of cluster sizes. In a dynamic sense, the diffusion process
can elevate the density of latent small clusters, and thus enable DPC algorithm
to identify density peaks in such clusters. To further demonstrate our claim, we
divide clusters in MS1M 5.21M dataset into five subsets according to cluster
sizes and calculate the average diffusion density for each subset. As shown in
Fig. 5(a)(b), compared with the standard density, the average NDDe for different
subsets are much more comparable.

4.3 Transition-Probability-Based Distance

In this section, we introduces our new definition of the pair-wise distance, called
TPDi, to solve the issue of varying sparsity in latent face clusters. TPDi depicts
the similarity between two points based on their respective transition proba-
bilities (in P ) to the common neighbors. Assuming Cij = nbri ∩ nbrj contains
the common neighbors in the K-nearest neighbors of both point i and j. TPDi
between them is defined as:

dij = 1 −
∑

c∈Cij

√
picpjc. (4)
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Algorithm 1: Pseudocode for our method
Input: Face dataset X = {x1, . . . , xN}, number of nearest neighbors K,

pre-trained similarity prediction model Φ, convergence threshold ε,
connecting threshold τ .

Output: clusters C.
1 procedure CLUSTERING
2 for each point i:

3 Find its K-nearest neighbors nbri = {ik}K
k=1 and construct x�

i ;

4 Inference the similarities {si,j}K
j=1 between them via Φ(x�

i );

5 Obtain the pair-wise similarity matrix ŜN×N , and compute PN×N ;
6 Compute the point-wise density ρN×1 via NDDe(P );
7 Compute the pair-wise distance (dij)N×N via TPDi(P );
8 Obtain clusters C via DPC(ρ, (dij)N×N );
9 end procedure

10 function NDDe(P )
11 Initialize ρpre = {1}N×1

12 while ||ρ − ρpre||2 > ε:
13 ρ = ρpre; ρpre = P × ρ;
14 return ρ
15 end function
16 function TPDi(P )
17 for each pair of points i, j:
18 Compute dij as shown in Eq. 4;
19 return (dij)N×N

20 end function

We highlight that TPDi has three impressive properties: (1) By Cauchy-

Schwarz inequality, we have
(∑

c∈Cij

√
picpjc

)2

≤ (
∑

c∈Cij
pic)(

∑
c∈Cij

pjc) ≤ 1,
so it is easy to check 0 ≤ dij ≤ 1, which implies that dij can be a valid metric. (2)
dij = 0 if and only if pic = pjc for all c = 1, ..., N , which implies that dij is small
when i and j share as many as common neighbors. It is consistent with the moti-
vation of TPDi. (3) Compared with cosine distance, TPDi of negative pairs and
positive pairs are better separated, regardless of cluster sparsity (Fig. 5(c)(d)).
So it is easier to choose a uniform threshold for TPDi.

Remark 1. If considering a simple case when each point transits to its neighbors
with equal transition probability 1

K , we have dij = 1 − 2Jaccard(i,j)
(1+Jaccard(i,j)) , where

Jaccard(i, j) is the Jaccard similarity [9]. This implies that the TPDi is a gen-
eralization of Jaccard distance, which also demonstrate the feasibility of TPDi.

4.4 Overall Algorithm

The overall clustering procedure is summarized in Algorithm 1. In our imple-
mentation, we use an iterative method as an approximation of Eq. 3.
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5 Experiments

5.1 Experimental Settings

Datasets. We evaluate the proposed method on two public face clustering
benchmark datasets, MS1M [8] and DeepFashion [17]. MS1M contains 5.8M
images from 86K identities and the image representations are extracted by Arc-
Face [5], which is a widely used face recognition model. MS1M is split into
10 almost equal parts officially. Following the same experimental protocol as
in [14,23,31], we train our model on one labeled part and choose parts 1, 3,
5, 7, and 9 as unlabeled test data, resulting in five test subsets with sizes of
584K, 1.74M, 2.89M, 4.05M, and 5.21M images respectively. For DeepFashion
dataset, following [31], we randomly sample 25,752 images from 3,997 categories
for training and use the other 26,960 images with 3,984 categories for testing.

Metrics. The performances of face clustering methods are evaluated using two
commonly used clustering metrics, Pairwise F-score (FP ) [3] and BCubed F-
score (FB) [1]. Both metrics are reflections of precision and recall.

Implementation Details. Our similarity prediction model consists of one
transformer encoder layer [26] as F and an MLP. The input feature dimen-
sion, feedforward dimension, number of heads for F are set to 256, 2048, 8,
respectively. LayerNorm [2] is applied before Multi-head Attention module and
Feed Forward module in F , according to [30]. Dropout is set to 0.2. The MLP
consists of three linear layers (512 → 256, 256 → 128, 128 → 1) with ReLU as
the activation function for the first two layers and Sigmoid for the last layer.
Adam [11] is used for optimization. For the computation of NDDe, we set the
number of top nearest neighbors K to 80 for MS1M and 10 for DeepFashion
(the same as previous works [14,31]). Convergence threshold ε is set to 0.05.
Connecting threshold τ is searched within the range of [0.5, 0.9] with a step of
0.05 on MS1M 584K dataset, and is fixed to 0.7 for all experiments.

5.2 Method Comparison

We compare the proposed method with a series of clustering baselines, includ-
ing both traditional methods and learning-based methods. Traditional methods
include K-means [18], HAC [24],DBSCAN [6], and ARO [20]. Learning-based
methods include CDP [33], L-GCN [29], LTC [32], GCN (V+E) [31], Clus-
former [19], Pair-Cls [14], STAR-FC [23], and Ada-NETS [28]. Since NDDe and
TPDi can be incorporated into existing face clustering methods for better per-
formance, we also incorporate them into GCN (V+E), Pair-Cls, and STAR-FC
by using the three methods to obtain the transition matrix P , which are denoted
as GCN(V+E)++, Pair-Cls++, and STAR-FC++, respectively.
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Table 1. Comparison on MS1M when training with 0.5M labeled face images and
testing on five test subsets with different numbers of unlabeled face images. FP , FB are
reported. GCN(V+E)++, Pair-Cls++ and STAR-FC++ denote incorporating NDDe
and TPDi into the corresponding methods. The best results are highlighted with bold.

#Images 584K 1.74M 2.89M 4.05M 5.21M

Method/metrics FP FB FP FB FP FB FP FB FP FB

K-means [18] 79.21 81.23 73.04 75.20 69.83 72.34 67.90 70.57 66.47 69.42

HAC [24] 70.63 70.46 54.40 69.53 11.08 68.62 1.40 67.69 0.37 66.96

DBSCAN [6] 67.93 67.17 63.41 66.53 52.50 66.26 45.24 44.87 44.94 44.74

ARO [20] 13.60 17.00 8.78 12.42 7.30 10.96 6.86 10.50 6.35 10.01

CDP [33] 75.02 78.70 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92

L-GCN [29] 78.68 84.37 75.83 81.61 74.29 80.11 73.70 79.33 72.99 78.60

LTC [32] 85.66 85.52 82.41 83.01 80.32 81.10 78.98 79.84 77.87 78.86

GCN(V+E) [31] 87.93 86.09 84.04 82.84 82.10 81.24 80.45 80.09 79.30 79.25

Clusformer [19] 88.20 87.17 84.60 84.05 82.79 82.30 81.03 80.51 79.91 79.95

Pair-Cls [14] 90.67 89.54 86.91 86.25 85.06 84.55 83.51 83.49 82.41 82.40

STAR-FC [23] 91.97 90.21 88.28 86.26 86.17 84.13 84.70 82.63 83.46 81.47

Ada-NETS [28] 92.79 91.40 89.33 87.98 87.50 86.03 85.40 84.48 83.99 83.28

GCN(V+E)++ 90.72 89.28 86.06 84.36 85.97 84.24 84.76 83.10 83.69 82.26

Pair-Cls++ 91.70 89.94 88.17 86.50 86.49 84.76 85.25 83.50 83.74 82.61

STAR-FC++ 92.35 90.50 89.03 86.94 86.70 85.16 85.38 83.93 83.94 82.95

Ours 93.22 92.18 90.51 89.43 89.09 88.00 87.93 86.92 86.94 86.06

Results on MS1M. Experimental results on MS1M dataset are shown in
Table 1, which contains both FP and FB on five test subsets with different scales.
We can observe that 1) Our method consistently outperforms the other methods
in terms of both metrics, especially for large-scale subsets, e.g let@tokeneonedot,
the improvements of our method on 4.05M and 5.21M subsets are more than
2.5%. 2) By incorporating NDDe and TPDi into GCN (V+E), Pair-Cls and
STAR-FC, their ++ versions achieve better clustering performance than the
original versions, e.g let@tokeneonedot, compared to GCN (V+E), the perfor-
mance gains brought by GCN(V+E)++ are more than 3% on large-scale test
subsets, which demonstrates that NDDe and TPDi can raise the performance of
other methods to a new state-of-the-art.

Results on Hard Clusters. To demonstrate that our method is capa-
ble of tackling the issues of small clusters and sparse clusters, we conduct
experiments by adding NDDe and TPDi one by one to our baseline model,
i.elet@tokeneonedot, the model with the same transition matrix but the density
and distance computed in the standard way. As shown in the last three rows in
Table 2 and Table 3, both NDDe and TPDi have raised the performance of the
baseline model to a new level, especially on hard clusters.

We also reproduce GCN(V+E), Pair-Cls and STAR-FC for comparison, all
of which employ a clustering algorithm just as or similar to DPC, as shown in the
first two rows in Table 2 and Table 3. It is worth noticing that the improvements
brought by our method over the three top-performing methods keep increasing
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Fig. 6. (a) and (b) show Pairwise precision and recall of three baselines and our method.
Significant improvements of our method in terms of recall can be observed. (c) ROC
curves of the three baselines and our method. (d) Optimal threshold τ for the five test
subsets of MS1M dataset.

on five cluster subsets with descending size or ascending sparsity. As shown in
Fig. 6(a)(b), the improvements of our method in terms of Pairwise recall are
more significant than Pairwise precision. All the experimental results show the
success of our method in mitigating hard clusters, owing to NDDe and TPDi.

The Superiority of TPDi. Figure 6(c) shows the receiver operating character-
istic (ROC) curves of three top-performing methods and ours, which are obtained
by computing true/false positive rate at various distance threshold settings. Our
method achieves the highest Area Under Curve (AUC), which illustrates that
TPDi endows our method with a good measure of separability. To show that

Table 2. The effectiveness of NDDe and TPDi. FP and FB of five cluster subsets from
MS1M 5.21M with descending size (from sz-1 to sz-5) are reported.

sz-1 sz-2 sz-3 sz-4 sz-5 total

FP FB FP FB FP FB FP FB FP FB FP FB

GCN(V+E) 89.06 90.52 84.52 84.81 75.17 75.84 61.28 63.03 44.15 52.49 78.77 79.08

Pair-Cls 90.02 90.65 86.03 86.20 80.21 80.80 72.37 73.72 59.28 65.30 82.19 81.63

STAR-FC 90.47 91.13 85.75 86.11 78.35 78.78 66.49 67.44 46.65 51.21 83.74 82.00

Baseline 57.54 63.45 52.39 55.89 43.84 47.62 37.84 41.77 34.67 42.23 41.49 50.76

+NDDe 83.67 86.06 78.38 78.95 69.63 70.28 60.19 61.49 49.85 54.53 72.47 74.39

+TPDi(Ours) 92.35 93.18 89.88 89.91 85.08 85.28 78.35 79.19 65.56 71.33 86.94 86.06

Table 3. The effectiveness of NDDe and TPDi. FP and FB of five cluster subsets from
MS1M 5.21M with ascending sparsity (from sp-1 to sp-5) are reported.

sp-1 sp-2 sp-3 sp-4 sp-5 total

FP FB FP FB FP FB FP FB FP FB FP FB

GCN(V+E) 94.63 94.66 92.73 91.52 87.47 85.13 77.44 73.09 53.99 45.95 78.77 79.08

Pair-Cls 95.52 95.24 93.22 92.46 89.24 87.66 81.84 78.84 62.73 57.51 82.19 81.63

STAR-FC 96.18 95.27 92.92 91.50 88.50 85.96 80.78 76.54 60.81 53.56 83.74 82.00

Baseline 63.16 63.84 62.23 62.95 57.32 58.09 49.19 50.20 32.98 35.48 41.49 50.76

+NDDe 92.30 91.00 87.47 85.70 82.11 79.30 72.69 69.97 52.53 51.17 72.47 74.39

+TPDi(Ours) 97.25 96.96 95.10 94.59 92.24 91.08 86.23 84.23 69.08 64.83 86.94 86.06
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Fig. 7. Top-20 images ranked by distance, using an image in hard clusters as probe.

by using TPDi, our method can yield efficient face clustering with a uniform
connecting threshold τ , we conduct experiments using different τ (from 0.5 to
0.9, with a step of 0.05) on all the test subsets of MS1M dataset, as shown in
Fig. 6(d). It can be observed that the best τ is the same for test subsets with
varying scales. To be specific, given τ = 0.7, our method consistently achieves
the highest FP on all test subsets. Figure 7 shows the discovery results of sev-
eral methods with the image in the first column as a probe, and the images are
ranked in ascending order of distance. We can observe that the discovery result
of our method contains the most number of positive images.

Table 4. Comparison on DeepFashion.
#Clusters, FP , FB and computing time
are reported.

Method #Clusters FP FB Time

K-means [18] 3991 32.86 53.77 573 s

HAC [24] 17410 22.54 48.7 112 s

DBSCAN [6] 14350 25.07 53.23 2.2 s

ARO [20] 10504 26.03 53.01 6.7 s

CDP [33] 6622 28.28 57.83 1.3 s

L-GCN [29] 10137 28.85 58.91 23.3 s

LTC [32] 9246 29.14 59.11 13.1 s

GCN(V+E) [31] 6079 38.47 60.06 18.5 s

Pair-Cls [14] 6018 37.67 62.17 0.6 s

STAR-FC [23] – 37.07 60.60 –

Ada-NETS [28] – 39.30 61.05 –

Ours 8484 40.91 63.61 4.2 s

Results on DeepFashion. For Deep-
Fashion dataset, clustering task is much
harder since it is an open set problem.
It can be observed that our method also
uniformly outperforms the other meth-
ods in terms of both FP and FB with
comparable computing time, as shown
in Table 4.

5.3 Ablation Study

To demonstrate the effectiveness of
NDDe and TPDi, we conduct an abla-
tion study on MS1M 5.21M dataset, as
shown in Table 5. All these four meth-
ods use the same transition matrix as described in Sect. 4.1. M1 is our baseline
model, which uses the standard density and cosine distance. M2 is obtained by
replacing the cosine distance in M1 with TPDi, M3 is obtained by replacing
the standard density in M1 with NDDe, and M4 is the proposed method using
both NDDe and TPDi as the density ρ and distance (dij)N×N required by DPC.
Table 5 shows that both NDDe and TPDi contribute to the final clustering per-
formance. And the improvement brought by NDDe is more significant, which
illustrates that NDDe is essential for the success of our method.



542 Y. Chen et al.

5.4 Face Recognition

Table 5. Ablation study of NDDe and TPDi on MS1M. FP and FB are reported.

NDDe TPDi 584K 1.74M 2.89M 4.05M 5.21M

FP FB FP FB FP FB FP FB FP FB

M1 53.03 56.75 47.80 53.84 45.07 52.41 43.29 51.56 41.49 50.76

M2 � 61.07 59.81 59.29 58.26 58.66 57.40 58.37 57.00 57.88 56.48

M3 � 82.98 80.33 78.79 77.87 76.32 76.42 74.08 75.28 72.47 74.39

M4 � � 93.22 92.18 90.51 89.43 89.09 88.00 87.93 86.92 86.94 86.06

Fig. 8. Rank-1 face identification accuracy
on MegaFace with 1M distractors.

To further show the potential of our
method in scaling up face recogni-
tion systems using large-scale unla-
beled face images, we use our method
to generate pseudo-labels for unla-
beled face images and use them to
train face recognition models. For
a fair comparison, we adopt the
same experimental setting as in [23,
31,32]. We use a fixed number of
labeled data and different ratios of
unlabeled data with pseudo-labels to
train face recognition models and
test their performance on MegaFace
benchmark [10] taking the rank-1 face identification accuracy with 1M distrac-
tors as metric. In Fig. 8, the upper bound is trained by assuming all unlabeled
data have ground-truth labels, and the other five curves illustrate that all the
methods benefit from an increase of the unlabeled data with pseudo-labels. And
it can be observed that our method consistently achieves the highest perfor-
mance given any ratio of unlabeled data, and improves the performance of the
face recognition model from 58.20% to 80.80%, which is the closest to the upper
bound.

6 Conclusion

In this paper, we point out a key issue in face clustering task—the low recall of
hard clusters, i.elet@tokeneonedot, small clusters and sparse clusters. We find
the reasons behind this are 1) smaller clusters tend to have a lower density,
and 2) it is hard to set a uniform (distance) threshold to identify the clusters
of varying sparsity. We tackle the problems by proposing two novel modules,
NDDe and TPDi, which yield the size-invariant density and the sparsity-aware
distance, respectively. Our extensive ablation study shows that each of them
contributes to improving the recall on hard clusters, consistently on multiple
face clustering benchmarks.



On Mitigating Hard Clusters for Face Clustering 543

Acknowledgments. This work is supported by the National Key R&D Program of
China under Grant 2020AAA0103901, Alibaba Group through Alibaba Research Intern
Program, and Alibaba Innovative Research (AIR) programme.

References
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