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Abstract. Despite promising success in intra-dataset tests, existing
face anti-spoofing (FAS) methods suffer from poor generalization ability
under domain shift. This problem can be solved by aligning source and
target data. However, due to privacy and security concerns of human
faces, source data are usually inaccessible during adaptation for practi-
cal deployment, where only a pre-trained source model and unlabeled
target data are available. In this paper, we propose a novel Source-free
Domain Adaptation framework for Face Anti-Spoofing, namely SDA-
FAS, that addresses the problems of source knowledge adaptation and
target data exploration under the source-free setting. For source knowl-
edge adaptation, we present novel strategies to realize self-training and
domain alignment. We develop a contrastive domain alignment mod-
ule to align conditional distribution across different domains by aggre-
gating the features of fake and real faces separately. We demonstrate
in theory that the pre-trained source model is equivalent to the source
data as source prototypes for supervised contrastive learning in domain
alignment. The source-oriented regularization is also introduced into self-
training to alleviate the self-biasing problem. For target data exploration,
self-supervised learning is employed with specified patch shuffle data
augmentation to explore intrinsic spoofing features for unseen attack
types. To our best knowledge, SDA-FAS is the first attempt that jointly
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optimizes the source-adapted knowledge and target self-supervised explo-
ration for FAS. Extensive experiments on thirteen cross-dataset testing
scenarios show that the proposed framework outperforms the state-of-
the-art methods by a large margin.

Keywords: Face anti-spoofing · Source-free domain adaptation

1 Introduction

Face recognition (FR) systems are widely employed for human-computer inter-
action in our daily life. Face anti-spoofing (FAS) is crucial to protect FR systems
from presentation attacks, e.g., print attack, video attack and 3D mask attack.
Traditional FAS methods extract texture patterns with hand-crafted descrip-
tors [8,15,24].
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Fig. 1. A practical application scenario for face anti-spoofing. In the pre-training phase,
the company builds a model based on the collected face data. When deployed on the
user side, few collected unlabeled data can improve the performance through adap-
tation, but has distribution discrepancies with source knowledge. Moreover, due to
privacy and security concerns of face data, users have no access to any source data of
the company but the trained model.

With the rise of deep learning, convolutional neural networks (CNNs) have
been adopted to extract deep semantic features [40,45,46]. Despite promising
success in intra-dataset tests, these methods are dramatically degraded in cross-
dataset tests where training data are from the source domain and test data are
from the target domain with different distributions. The distribution discrepan-
cies in illumination, background and resolution undermine the performance and
an adaptation process is required to mitigate domain shift.

Domain adaptation (DA) based methods leverage maximum mean discrep-
ancy (MMD) loss [16,32] and adversarial training [12,35,36] to align the source
and target domains, which need to access source data. Unfortunately, they might
be infeasible for sensitive facial images due to the restriction by institutional poli-
cies, legal issues and privacy concerns. For example, according to the General
Data Protection Regulation (GDPR) [30], institutions in the European Union
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Fig. 2. The t-SNE visualization of extracted features and corresponding faces under
O & M & I→C. Same border color for faces with the same identity. (a) SOTA-SFDA
method SHOT [17] achieves marginal distribution alignment, which is prone to map the
features of real and fake faces together. (b) Our method with conditional distribution
alignment separates them well and increases the discrimination ability. (c) Intra-class
and inter-class distance of extracted features for SHOT and our SDA-FAS.

are regulated to protect the privacy of their data. Figure 1 illustrates a practi-
cal application scenario of source-free domain adaptation for FAS. A model is
first pre-trained based on the (large-scale) source data and is released for deploy-
ment. In the deployment phase, the source data cannot be shared for adapting the
pre-trained model to the target data, as they contain sensitive biometrics infor-
mation. Besides, face images acquired under different illumination, background,
resolution or using cameras with different parameters will lead to distribution
discrepancies between source and target data. These distribution discrepancies
have to be overcome using only the pre-trained source model and unlabeled target
data. Domain generalization (DG) methods [11,26,27] learn a robust source model
without exploiting the target data and achieve limited performance in practice.
Consequently, Source-Free Domain Adaptation (SFDA) for face anti-spoofing is
an important yet challenging problem remained to be solved.

Recently, SFDA has been considered to tackle a similar issue on image classi-
fication [1,17,41,42]. In image classification, label consistency among data with
high local affinity is encouraged [41,42] or marginal distribution of source and
target domains is implicitly aligned [1,17] to harmonize the clustered features
in the feature space. Different from image classification, in FAS, fake faces of
the same identity have similar facial features, whereas real faces of different
identities differ. The intra-class distance between real faces of different identities
probably exceeds the inter-class distance between real and fake faces of the same
identity [11,27]. Clusters of features do not exist in FAS and SFDA models for
image classification inevitably lead to degraded performance. Table 1 and Fig. 2
provide empirical results as supporting evidence, where SHOT [17], the state-
of-the-art SFDA method, tends to cluster the features of real and fake faces
together and obscures the discrimination ability. These problems urge a SFDA
method designed specifically for FAS to achieve promising performance.

Lv et al. [20] accommodate to source-free setting for FAS by directly applying
self-training but lack specific design for sufficiently exploring FAS tasks. The per-
formance gain by adaptation is trivial (i.e., 1.9% HTER reduction on average),
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as shown in Table 1. To summarize, challenges to source-free domain adaptation
for FAS include source knowledge adaptation and target data exploration.

– Source knowledge adaptation. Existing self-training and marginal domain
alignment cannot adapt source knowledge well in FAS, especially when source
data are unavailable. The target pseudo labels generated by the source model
are noisy, especially under domain shift, leading to the accumulated error of
self-training. Marginal distribution alignment is prone to cluster the features
of real and fake faces and greatly degrades the discrimination ability for FAS.

– Target data exploration. Unseen attack types in the target data lead to
enormous domain discrepancies where source knowledge is inapplicable and
biased. It is indispensable to explore target data by itself to boost generaliza-
tion ability. However, target data exploration is ignored in existing methods.

To address these issues, we propose a novel Source-free Domain Adaptation
for Face Anti-Spoofing, namely SDA-FAS. Regarding source knowledge adap-
tation, we design novel strategies for self-training and domain alignment. We
develop a contrastive domain alignment module for mitigating feature distribu-
tion discrepancies under a source-free setting. The pre-trained classifier weight is
employed as the source prototypes with a theoretical guarantee of equivalence in
training. We also introduce the source-oriented regularization into self-training
to alleviate a self-biasing problem. For target data exploration, self-supervised
learning is implemented with specified patch shuffle data augmentation to mine
the intrinsic spoofing features of the target data, which also mitigates the reliance
on pseudo-labels and boosts the tolerance to interfering knowledge transferred
from the source domain. Contributions of this paper are summarized as below:

– We propose a novel contrastive domain alignment module to align the features
of target data with the source prototypes of the same category for mitigating
distribution discrepancies with theoretical support.

– We implement self-supervised learning with specified patch shuffle data aug-
mentation to explore the target data for robust features in the case where
unseen attack types emerge and source knowledge is unreliable.

– Our method is evaluated extensively on thirteen cross-dataset testing bench-
marks and outperforms the state-of-the-art methods by a large margin.

To our best knowledge, SDA-FAS is the first attempt that unifies the transfer
of pre-trained source knowledge and the self-exploration of unlabeled target data
for FAS under a practical yet challenging source-free setting.

2 Related Work

Face Anti-spoofing. Existing face anti-spoofing (FAS) methods can be classi-
fied into three categories, i.e., handcrafted, deep learning, and DG/DA methods.
Handcrafted methods extract the frame-level features using handcrafted descrip-
tors such as LBP [8], HOG [15] and SIFT [24]. Deep learning methods boost the
discrimination ability of extracted features. Yang et al. [40] first introduce CNNs
into FAS, and Xu et al. [39] design a CNN-LSTM architecture to extract temporal
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features. Intrinsic spoofing patterns are further explored with pixel-wise supervi-
sion [44], e.g., depth maps [18], reflection maps [43] and binary masks [19]. These
methods achieve remarkable performance in intra-dataset tests but degrade sig-
nificantly in cross-dataset tests due to distribution discrepancies.

DG and DA have been leveraged to mitigate domain shift in cross-dataset
tests. DG methods focus on extracting domain invariant features without target
data. MADDG [27] learns a shared feature space with multi-adversarial learning.
SSDG [11] develops a single-side DG framework by only aggregating real faces
from different source domains. DA methods achieve the domain alignment using
source data and unlabeled target data. Maximum mean discrepancy (MMD)
loss [16,32] and adversarial training [12,35,36] are leveraged to align the feature
space between the source and target domains. Quan et al. [25] present a transfer
learning framework to progressively make use of unlabeled target data with
reliable pseudo labels for training. However, these methods fail to work or suffer
from poor performance in a practical yet challenging source-free setting, which
considers the privacy and security issues of sensitive face images.

Source-Free Domain Adaptation. Domain adaptation aims at transferring
knowledge from source domain to target domain. Recently, source-free domain
adaptation (SFDA) has been considered to address privacy issues. PrDA [14]
progressively updates the model in a self-learning manner with filtered pseudo
labels. Based on the source hypothesis, SHOT [17] aligns the marginal distribu-
tion of source and target domains via information maximization. DECISION [1]
further extends SHOT to a multi-source setting. TENT [34] adapts batch nor-
malization’s affine parameters with an entropy penalty. NRC [41] exploits the
intrinsic cluster structure to encourage label consistency among data with high
local affinity. However, existing works cannot be easily employed in FAS due to
the different nature of tasks. Recently, Lv et al. [20] realize SFDA for FAS by
directly using the pseudo labels for self-training, but suffer from trivial perfor-
mance gain after adaptation due to the accumulated training error brought by
noisy pseudo labels, especially under domain shift.

Contrastive Learning. Contrastive learning is popular for self-supervised rep-
resentation learning. To obtain the best feature representations, the InfoNCE
loss [22] is introduced to pull together an anchor and one positive sample (con-
structed by augmenting the anchor), and push apart the anchor from many neg-
ative samples. Besides, self-supervised features can be learned by only matching
the similarity between the anchor and the positive sample [3,5]. Contrastive
learning is also introduced into image classification in a supervised manner [13],
where categorical labels are used to build positive and negative samples.

3 Proposed Method

3.1 Overview

We consider the practical source-free domain adaptation setting for face anti-
spoofing, in which only a trained source model and unlabeled target domain
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Fig. 3. (a) The overall architecture contains a pre-trained source model (in blue) and
a trainable target model with three modules (in orange). For self-training with source
regularization, pseudo labels yt

T and ys
T generated by target and source model supervise

the outputs ỹt and ỹt2s, respectively. (b) Contrastive domain alignment. The features
of target data are pulled with the source prototypes of the same category (in green
arrow) and pushed away from different categories (in red arrow) for conditional domain
alignment. (c) Target self-supervised exploration. The original image and its patch
shuffled view are sent to the student and teacher network. The output distributions
are matched by minimizing the KL divergence, i.e., augmented features are pulled with
features after scaling, which facilitates the learning of a compact feature space

data are available for adaptation. To recover the knowledge in the pre-trained
source model, we leverage a self-training way to generate pseudo labels for target
supervision. To alleviate the self-biasing problem caused by vanilla self-training,
we introduce the source-oriented pseudo labels as regularization in Sect. 3.2.
Considering that general SFDA methods align the marginal distribution, they
could fail in adapting the source knowledge and mitigating domain shift in FAS
where intra-class distances are prone to being larger than inter-class distances.
Therefore, we propose a novel contrastive domain alignment module tailored for
FAS that aligns target features to source prototypes for conditional distribution
alignment with theoretical insights in Sect. 3.3. For unseen attack types not cov-
ered by the source knowledge, we introduce a target self-supervised exploration
module with patch shuffle data augmentation to get rid of the facial structure
and mine the intrinsic spoofing features in Sect. 3.4.

Figure 3 illustrates the overall architecture of our proposed framework that
consists of a pre-trained source model and a trainable target model. The pre-
trained source model consists of a feature extractor and a one-layer linear classi-
fier, the parameters of which are fixed during adaptation. The feature extractor
consists of a transformer encoder for feature encoding and a convolution layer
for feature embedding. The target model consists of a student network and a
teacher network. The student network consists of a feature extractor with multi-
branch classifiers. The parameters of each target module are initialized by the
parameters of the pre-trained source model.
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3.2 Self-training with Source Regularization

Self-training Baseline (ST). Given the target domain data DT = {xT } and
the student network of the target model ft = ht ◦ gt (initialized by fs), the
network output is ỹt = ht(gt(xT )) and the self-training loss is

LST = 1
(
max

(
ctT

) ≥ γ
) Lce(ỹt,yt

T ), (1)

where ctT = σ(ht(gt(xT ))) is the prediction confidence, yt
T = argmax(ht(gt(xT )))

is the generated pseudo label, and 1 ∈ {0, 1} is an indicator function that values
1 only when the input condition holds. γ is the confidence threshold to select
out more reliable pseudo-labels.

Though self-training is effective in exploring unlabeled data [29], due to
domain shift, it leads to the accumulated error and results in a self-biasing prob-
lem caused by noisy pseudo labels. As shown in Fig. 5, the accuracy of pseudo
labels for ST gradually drops to about 50%, which is no better than a ran-
dom guess for binary classification. Therefore, we introduce the regularization
of source-oriented knowledge to alleviate the self-biasing problem.

Source-Oriented Regularization (SR). The target data DT = {xT } are
fed into the fixed pre-trained source model fs = hs ◦ gs to obtain the source-
oriented pseudo labels ys

T = argmax(hs(gs(xT ))) and prediction confidence
csT = σ(hs(gs(xT ))). The cross-entropy loss for SR compares the output ỹt2s =
ht2s(gt(xT )) of ht2s with ys

T as

LSR = 1 (max (csT ) ≥ γ) Lce(ỹt2s,ys
T ) (2)

Then, ST and SR are dynamically adjusted during training. Due to domain
shift, the target model produces many noisy pseudo labels in the early stage
of training and generates more reliable pseudo labels as the training proceeds.
Thus, we assign higher importance to SR at first and gradually increase the
importance of ST. The overall loss is formulated as

LSSR = α · LST + (1 − α) · LSR. (3)

Here, the hyperparameter α gradually increases from 0 to 1.

3.3 Contrastive Domain Alignment

As discussed in Sect. 1, in real applications, faces are captured by various cam-
eras under different environments, leading to distribution discrepancies in illu-
mination, background and resolution. To mitigate the distribution discrepancies
between source and target domains, DA methods employ MMD loss or adver-
sarial learning, which requires full access to the source data. In the source-free
setting, based on the source hypothesis, existing SFDA methods [1,17] align
the marginal distributions of the source and target domains, i.e., P (gt(xS)) =
P (gt(xT )).

However, such a marginal distribution alignment regardless of the categories
suffers degraded performance in FAS. Since the intra-class distance tends to
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exceed the inter-class distance in FAS, features of different categories exhibit close
proximity. For example, given a real subject, the corresponding fake faces with the
same identity have similar facial features, while the real faces with different identi-
ties have different facial features. As shown in Fig. 2, such a marginal distribution
alignment [17] may align the features of real faces with those of fake ones, which
implies the different conditional distribution P (gt(xS)|yS) �= P (gt(xT )|yT ) and
affects the discrimination ability.

Thus, as shown in Fig. 3(b), we propose a contrastive domain alignment mod-
ule to align the conditional distribution between the source and target domains.
Due to the inaccessibility of source data, we propose to use the weights of pre-
trained classifier hs as the feature embeddings of the source prototype to compute
the supervised contrastive loss.

Proposition 1. Given a trained model fs = hs ◦ gs, where gs is the feature
extractor and hs is the one-layer linear classifier, the �2-normalized weight vec-
tors {wreal

s ,wfake
s } of the classifier are the equivalent representation of the fea-

ture embeddings {zreals , zfakes } of the source prototypes for calculating the super-
vised contrastive loss.

Proof. Please refer to the supplementary material.

With the generated pseudo labels denoting the category of the feature embed-
dings of the target data anchor, we have the supervised contrastive loss as

LCDA = −
Nt∑

i=1

M∑

m=1

[
1(max(ct,iT ) ≥ γ,yt,i

T = m)·log
exp(〈zit,wm

s 〉/τ)
∑M

j=1 exp(〈zit,wj
s〉/τ)

]
, (4)

where ct,iT = σ(ht(gt(xi
T )), yt,i

T = argmax(ht(gt(xi
T ))), zit = gt(xi

T ), 〈·, ·〉 denotes
the inner product, τ is the temperature parameter, and M is the number of
total categories. The contrastive domain alignment module has two properties:
(1) pull together the feature embeddings of real (fake) faces in the target domain
and those of the same category in the source domain to align the conditional
distribution (green arrow in Fig. 3 (b)); (2) push apart the feature embeddings
of real (fake) faces in the target domain from those of different categories in the
source domain to enhance the discrimination ability (red arrow in Fig. 3 (b)).

3.4 Target Self-supervised Exploration

For FAS applications, novel fake faces are continuously evolved and it is likely to
encounter diverse attack types or collecting ways unseen in the source data. For
example, spoofing features of 2D attacks and 3D mask attacks are quite different.
For the cases where distribution discrepancies are enormous and source knowl-
edge fails to apply, the generalization ability will decrease. Thus, we introduce
a target self-supervised exploration (TSE) module to mine the valuable infor-
mation from the target domain. However, traditional data augmentation fails to
fit with the spirit of FAS to capture detailed features. Taking the whole image
as input will inevitably introduce global facial information. Thus, to suppress
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facial structure information as the biased source knowledge that leads to larger
intra-class distances than inter-class distances, patch shuffle [47] is leveraged as
a data augmentation strategy to destroy the face structure and learn a more
compact feature space. Moreover, TSE is naturally independent of pseudo labels
and can boost the tolerance to the wrongly transferred source supervision. The
difference between our method and self-supervised methods [3,5] lies in the fact
that we utilize the patch shuffle augmentation specifically for FAS and the target
model is initialized by the pre-trained source model.

Specifically, a Siamese-like architecture is implemented to maximize the sim-
ilarity of two views from one image [4], which consists of a student network (i.e.,
gstut � gt, h

stu
t � ht, f

stu
t � ft) and a teacher network f tea

t = gteat ◦ htea
t . The

student network is optimized by gradient descent, whereas the teacher network is
updated with an exponential moving average (EMA). Given a target data xT , a
patch-disordered view xT ′ is obtained by splitting and splicing. We firstly divide
the image into several patches and then randomly permute the image patches to
form a new image as a jigsaw. The original view xT and patch-permuted view x′

T

are alternatively fed into the student and teacher networks to obtain two pairs
of output probability distributions {Pstu, P ′

tea} and {P ′
stu, Ptea}. Since the two

views contain the same detailed real/fake features, the output should be consis-
tent, which is matched by minimizing the Kullback-Leibler (KL) divergence.

LTSE = DKL(P ′
tea‖Pstu) + DKL(Ptea‖P ′

stu) (5)

After updating θt with Eq. (5) by gradient descent, the parameters θteat of the
teacher network are updated with an EMA as θteat ← lθteat + (1 − l)θt. l is the
rate parameter.

The proposed framework for FAS is trained in an end-to-end manner as

L = LSSR + λ1 · LCDA + λ2 · LTSE, (6)

where λ1 and λ2 are hyper-parameters to balance the losses.

4 Experiments

4.1 Experimental Settings

Datasets. Evaluations are made on five public datasets: Idiap Replay-Attack [7]
(denoted as I), OULU-NPU [2] (denoted as O), CASIA-MFSD [50] (denoted as
C), MSU-MFSD [38] (denoted as M) and CelebA-Spoof [49] (denoted as CA).
CA is significantly largest with huge diversity.

Testing Scenarios. Following [27], one dataset is treated as one domain. For
simplicity, we use A & B→C for the scenario that trains on the source domains
A and B, and tests on the target domain C. There are thirteen scenarios in total:

– Multi-source Domains Cross-dataset Test: O & C & I→M, O & M &
I→C, O & C & M→I, and I & C & M→O.



520 Y. Liu et al.

Table 1. HTER and AUC for multi-source domains cross-dataset test. From top to
bottom, compared methods are state-of-the-art deep learning FAS (DL-FAS), DG based
FAS (DG-FAS), DA based FAS (DA-FAS), SFDA based FAS (SFDA-FAS) and state-of-
the-art general SFDA methods (SOTA-SFDA). SourceOnly is our pre-trained source
model and (best) is the target model after adaptation. Our average result is based
on 3 independent runs with different seeds to report the mean value with standard
deviation. Lv et al.(base) is the pre-trained source model and (SE) is the target model
after adaptation. † indicates our reproduced results with the released code.

Methods O & C & I →M O & M & I→C O & C & M→I I & C & M→O

HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑
DL-FAS Binary CNN [40] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54

Auxiliary [18] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61

DG-FAS RFM [28] 17.30 90.48 13.89 93.98 20.27 88.16 16.45 91.16

SSDG-R [11] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54

D2AM [6] 15.43 91.22 12.70 95.66 20.98 85.58 15.27 90.87

DA-FAS SDA [37] 15.4 91.8 24.5 84.4 15.6 90.1 23.1 84.3

ADA [35] 16.9 - 24.2 - 23.1 - 25.6 -

Wang et al. [36] 16.1 - 22.2 - 22.7 - 24.7

Quan et al. [25] 7.82±1.21 97.67±1.09 4.01±0.81 98.96±0.77 10.36±1.86 97.16±1.04 14.23±0.98 93.66±0.75

SFDA-FAS Lv et al. [20](base) 19.28 - 27.77 - 23.58 - 18.22 -

Lv et al. [20](SE) 18.17 - 25.51 - 20.04 - 17.5 -

SOTA-SFDA TENT† [34] 9.58 96.18 16.67 93.12 11.25 95.63 14.13 93.20

SHOT† [17] 8.33 95.45 17.96 91.67 9.75 96.64 13.33 93.77

Ours SourceOnly 12.50 93.71 20.00 90.53 16.25 90.99 17.26 91.80

SDA-FAS (best) 5.00 97.96 2.40 99.72 2.62 99.48 5.07 99.01

SDA-FAS (avg.) 5.97±1.19 97.38±0.54 3.08±0.24 99.54±0.19 3.54±0.46 99.11±0.41 6.52±1.26 98.37±0.25

(a) O&C&I M (b) O&M&I C (c) O&C&M I (d) I&C&M O

Fig. 4. ROC curves for multi-source domains cross-dataset test on O, C, I and M.

– Limited Source Domains Cross-dataset Test: M & I→C and M & I→O.
– Cross-dataset Test on Large-scale CA: M & C & O→CA.
– Single Source Domain Cross-dataset Test: C→I, C→M, I→C, I→M,

M→C, and M→I.

Evaluation Metrics. Following [11,27], Half Total Error Rate (HTER) (half
of the summation of false acceptance rate and false rejection rate) and the Area
Under the Curve (AUC) are used as the evaluation metrics.

Implementation Details. Following [11], MTCNN [48] is adopted for face
detection. The detected faces are normalized to 256 × 256× 3 as inputs. DeiT-S
[31] pre-trained on ImageNet is used as the transformer encoder. For pre-training
on the source data, we randomly specify a 0.9/0.1 train-validation split and get
the optimal model based on the HTER of the validation split. For adaptation,
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the model is finetuned on the train set of target data and test on the test set,
ensuring the test set is unseen in the whole procedure. The source code is released
at https://github.com/YuchenLiu98/ECCV2022-SDA-FAS.

4.2 Experimental Results

Multi-source Domains Cross-dataset Test. Table 1 shows our SDA-FAS
improves conventional deep learning FAS methods a lot by mitigating distribu-
tion discrepancies across different datasets. Besides, SDA-FAS performs better
than DG based methods by exploiting unlabeled target data, as shown in Fig. 4.
Moreover, SDA-FAS even outperforms the state-of-the-art DA method Quan et
al. under a more challenging source-free setting, i.e., 7.71% HTER reduction and
4.71% AUC gain (lower HTER and higher AUC for better performance) for I
& C & M→O that tests on the largest O dataset (among I, C, M and O). Fur-
thermore, compared with SFDA based FAS method Lv et al. (SE), we greatly
improve the performance, i.e., 3.77% vs. 20.30% HTER on average. Based on the
pre-trained source model, our SDA-FAS achieves a large performance gain after
adaptation with 12.7% HTER reduction on average, while Lv et al. only achieve
1.9%, validating the effectiveness of our adaptation framework. Finally, our SDA-

Table 2. HTER and AUC for test on O and C
with limited source domain datasets.

Methods M & I→C M & I→O

HTER(%) AUC(%) HTER(%) AUC(%)

LBPTOP [9] 45.27 54.88 47.26 50.21

SSDG-M [11] 31.89 71.29 36.01 66.88

RFM [28] 36.34 67.52 29.12 72.61

D2AM [6] 32.65 72.04 27.70 75.36

SourceOnly 31.11 77.10 35.14 70.73

SDA-FAS 15.37 91.35 22.53 83.54

Table 3. HTER and AUC for test
on large-scale CA.

Methods M & C & O→CA

HTER(%) AUC(%)

GRL Layer [10] 29.1 76.4

Domain-confusion [33] 33.7 70.3

Saha et al. [26] 27.1 79.2

Panwar et al. [23] 26.1 80.0

SourceOnly 29.7 77.5

SDA-FAS 18.9 90.9

Table 4. HTER(%) for single source domain cross-dataset test on C, I, and M datasets.

Methods C→I C→M I→C I→M M→C M→I avg

Auxiliary [18] 27.6 - 28.4 - - - -

Li et al. [16] 39.2 14.3 26.3 33.2 10.1 33.3 26.1

ADA [35] 17.5 9.3 41.6 30.5 17.7 5.1 20.3

Wang et al. [36] 15.6 9.0 34.2 29.0 16.8 3.0 17.9

USDAN-Un [12] 16.0 9.2 30.2 25.8 13.3 3.4 16.3

Lv et al. [20] (base) 21.1 - 34.4 - - - -

Lv et al. [20] (SE) 18.9 - 30.1 - - - -

SourceOnly 37.1 27.1 34.6 27.5 27.6 17.9 28.6

SDA-FAS 11.5 10.4 19.6 24.1 10.0 3.7 13.2

https://github.com/YuchenLiu98/ECCV2022-SDA-FAS
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FAS outperforms the state-of-the-art general SFDA methods by proposing an
adaptation framework specifically designed for FAS.

Limited Source Domains Cross-dataset Test. Compared with state-of-the-
art DG method D2AM, SDA-FAS improves the performance a lot by effectively
using available unlabeled target data, i.e., 17.28% HTER reduction and 19.31%
AUC gain for M & I→C, as shown in Table 2.

Cross-dataset Test on Large-Scale CA. For the most challenging test M
& C & O→CA, where CA is much larger with unseen spoofing types (3D mask
attacks), our SDA-FAS reduces HTER by 7.2% and increases AUC by 10.9% in
comparison to the state-of-the-art DA method Panwar et al., as shown in Table 3.
The promising results under a more practical source-free setting demonstrate
that our method is effective and trustworthy for complex real-world scenarios.

Single Source Domain Cross-dataset Test. Table 4 shows that under a more
difficult source-free setting, SDA-FAS outperforms all DA methods under four
of the six tests and achieves the best average result (13.2% HTER). Besides,
compared with the SFDA method Lv et al., SDA-FAS achieves a much larger
performance gain after adaptation, 15.0% vs. 4.3% HTER reduction for I→C.

Table 5. Ablation studies on different components of our proposed SDA-FAS.

ST SR CDA TSE O & C & I→M O & M & I→C O & C & M→I I & C & M→O

HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%)

� � � � 8.33 95.02 8.89 97.12 8.50 96.33 14.68 93.13

� � � � 7.08 96.42 6.67 97.97 6.25 98.49 9.44 96.76

� � � � 5.42 97.35 4.44 98.85 4.37 98.96 7.50 97.72

� � � � 5.00 97.96 2.40 99.72 2.62 99.48 5.07 99.01

Table 6. HTER and AUC for
unseen 3D mask attack type test
on part of CA.

Methods M & C & O→CA(3D mask)

HTER(%) AUC(%)

Ours w/o TSE 20.52 89.91

Ours 11.27 97.06

Table 7. AUC(%) of the cross attack type test
on C, I and M. Two attack types of unlabeled
target data are used for training and tested on
unseen attack type.

Methods CASIA-MFSD (C) Replay-Attack (I) MSU (M)

Video Cut Warped Video Digital Printed Printed HR Mobile

DTN [19] 90.0 97.3 97.5 99.9 99.9 99.6 81.6 99.9 97.5

Ours 98.3 97.7 97.6 99.9 99.5 99.3 86.3 99.6 97.8

4.3 Ablation Studies

Each Component of the Network. The proposed framework and its vari-
ants are evaluated on multi-source domains cross-dataset test. Table 5 shows
that, based on ST, SR improves the performance by introducing source-oriented
regularization to alleviate the self-biasing problem. Besides, the performance
improves with CDA added, demonstrating the effectiveness of conditional
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domain alignment to mitigate distribution discrepancies and enhance the dis-
crimination ability. Moreover, TSE can further improve the performance, espe-
cially on the large test dataset (e.g., I & C&M→O), reflecting its power in
self-exploring valuable information in large target data.

Portion of Target Data Used. Firstly, we randomly sample 10% and 50% of
live and spoof faces in the training set for adaptation. Table 8 shows, even with
10% training samples, SDA-FAS improves the performance a lot, manifesting the
validity for real scenarios with few data. For example, SDA-FAS reduces HTER
by 9.44% after adaptation using only 24 unlabeled samples in C. Secondly, for
extreme cases in FAS where live faces are much larger than spoof faces, we
randomly sample 5%, 10% and 50% of spoof faces in the training set. With
only 5% spoof faces (i.e., 9 samples), SDA-FAS reduces HTER by 8.71% after
adaptation to C, demonstrating the effectiveness for more challenging scenarios.

Unseen Attack Types. To further evaluate TSE in self-exploring the target
data, we reconstitute CA test set with all real faces and only 3D mask attack
faces (unseen in the source data where only 2D attack types exist), and conduct
experiments under M & C & O→CA (3D mask). As shown in Table 6, TSE
significantly improves the performance, i.e., 9.25% HTER reduction and 7.15%
AUC gain, demonstrating its effectiveness in self-exploring novel attack types
in the case where the source knowledge fail to apply. Corresponding qualitative
analysis is conducted in the supplementary material by visualizing a few hard
3D mask faces. Moreover, following protocols in [19], only partial attack types
with unlabeled target data are tested. Table 7 shows our method outperforms
DTN [19] that is fully supervised with labeled data. By adapting source knowl-
edge, our method achieves better performance in an unsupervised manner.

Statistics of Pseudo Labels. As shown in Fig. 5, self-training (ST) results
in a self-biasing problem and the accuracy of pseudo labels gradually drops to
less than 50%. Self-training with source-oriented regularization (SSR) can alle-
viate the self-biasing problem, and the accuracy achieves a steady improvement
to 70%. Moreover, with CDA mitigating domain discrepancies and TSE self-
exploring target data, SDA-FAS achieves the highest accuracy exceeding 90%.

Table 8. Experiments on different portion of target train data and spoof faces.
L denotes live faces and S denotes spoof faces, respectively.

Protocols O & C & I→M O & M & I→C O & C & M→I I & C & M→O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

0% (L+S) 12.50 93.71 20.00 90.53 16.25 90.99 17.26 91.80

10% (L+S) 10.00 96.10 10.56 95.86 8.50 98.21 10.07 96.60

50% (L+S) 7.14 96.45 5.37 99.04 4.87 98.93 7.08 98.30

100%L+5%S 10.00 95.74 11.29 95.24 9.28 95.70 10.76 96.24

100%L+10%S 8.57 96.04 8.33 97.53 7.50 97.57 9.65 96.38

100%L+50%S 5.71 98.52 3.52 99.37 3.75 99.28 5.83 98.70
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Fig. 5. Reliable samples ratio (dashed line) and pseudo labels accuracy (solid line)
with respect to the updating iteration.

4.4 Visualizations

Attention Map. Figure 6 shows that, for real faces in rows 1 and 3, our method
exhibits dense attention maps to effectively capture the physical structure of
human faces. For the cut attack in row 2, the cut area of eyes is precisely specified,
whereas the finger hint holding the paper is detected for the print attack in row
4. The attention maps suggest that SDA-FAS can model the features of live
faces well and also precisely capture the intrinsic and detailed spoofing cues.
Therefore, it can generalize well to the target domain.

Feature Space. We select all samples of target data for t-SNE visualizations.
As shown in Fig. 7, after adaptation, the features of fake faces and real faces are
better separated on the target domain compared to those before adaptation.

Fig. 6. Attention maps [3] from the last layer of the transformer encoder under
O & M & I→C. Column 1: cropped input image. Columns 2–7: six heads of the trans-
former encoder. Rows 1–2: attention maps for subject 1’s real face and paper-cut attack.
Rows 3–4: attention maps for subject 2’s real face and print photo attack.
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(a) Before adaptation (b) After adaptation

Fig. 7. The t-SNE [21] visualization of the extracted features by our model with adap-
tation (right) and without adaptation (left) under O & M & I→C.

5 Conclusion

In this paper, we propose a novel adaptation framework for face anti-spoofing
under a practical yet challenging source-free setting, which protects the security
and privacy of human faces. Specifically, source-oriented regularization is intro-
duced to alleviate the self-biasing problem of self-training. Besides, we propose a
novel contrastive domain alignment module to align the conditional distribution
across domains for mitigating the discrepancies. Moreover, self-supervised learn-
ing is adopted to self-explore the target data for robust features under enormous
domain discrepancies where source knowledge is inapplicable. Extensive experi-
ments validate the effectiveness of our method statistically and visually.
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