
You Already Have It: A Generator-Free
Low-Precision DNN Training Framework

Using Stochastic Rounding

Geng Yuan1 , Sung-En Chang1 , Qing Jin1 , Alec Lu2 , Yanyu Li1 ,
Yushu Wu1 , Zhenglun Kong1 , Yanyue Xie1 , Peiyan Dong1 ,

Minghai Qin1 , Xiaolong Ma3 , Xulong Tang4 , Zhenman Fang2 ,
and Yanzhi Wang1(B)

1 Northeastern University, Boston, MA 02115, USA
yanz.wang@northeastern.edu

2 Simon Fraser University, Burnaby, BC V5A 1S6, Canada
3 Clemson University, Clemson, SC 29634, USA

4 University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract. Stochastic rounding is a critical technique used in low-
precision deep neural networks (DNNs) training to ensure good model
accuracy. However, it requires a large number of random numbers gener-
ated on the fly. This is not a trivial task on the hardware platforms such
as FPGA and ASIC. The widely used solution is to introduce random
number generators with extra hardware costs. In this paper, we innova-
tively propose to employ the stochastic property of DNN training process
itself and directly extract random numbers from DNNs in a self-sufficient
manner. We propose different methods to obtain random numbers from
different sources in neural networks and a generator-free framework is
proposed for low-precision DNN training on a variety of deep learning
tasks. Moreover, we evaluate the quality of the extracted random num-
bers and find that high-quality random numbers widely exist in DNNs,
while their quality can even pass the NIST test suite.

Keywords: Efficient training · Quantization · Stochastic rounding

1 Introduction

To fully unleash the full power of the deep neural networks (DNNs) on various
resource-constrained edge computing devices, DNN model compression [5,39,40]
[17,18,22,26,28,29,31,34,50] has become the fundamental element and core
enabler to bridge the gap between algorithm innovation and hardware implemen-
tation [6,11–13,21,25,27,30,35,47–49]. Recently, a surge of research efforts has

G. Yuan and S.E. Chang—These authors contributed equally.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-19775-8 3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13672, pp. 34–51, 2022.
https://doi.org/10.1007/978-3-031-19775-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19775-8_3&domain=pdf
http://orcid.org/0000-0001-9844-992X
http://orcid.org/0000-0001-8585-503X
http://orcid.org/0000-0001-8795-9297
http://orcid.org/0000-0002-3315-7368
http://orcid.org/0000-0003-1240-4785
http://orcid.org/0000-0001-9883-7973
http://orcid.org/0000-0002-8120-4456
http://orcid.org/0000-0002-4325-521X
http://orcid.org/0000-0001-5287-5149
http://orcid.org/0000-0001-5172-5309
http://orcid.org/0000-0003-3753-7648
http://orcid.org/0000-0002-3385-2053
http://orcid.org/0000-0003-0603-9697
http://orcid.org/0000-0002-3024-7990
https://doi.org/10.1007/978-3-031-19775-8_3
https://doi.org/10.1007/978-3-031-19775-8_3

You Already Have It: A Generator-Free Low-Precision DNN 35

been devoted to low-precision DNN training to better satisfy the limitation of the
computation and storage resources on edge devices [52,53]. However, the com-
monly used rounding schemes, such as round-up (ceiling), round-down (floor), or
rounding-to-nearest, usually lead to severe accuracy degradation in low-precision
training scenarios [14]. The reason is that the small gradients below the minimum
representation precision are always rounded to zero, hence an information loss
for weight updates [16]. Therefore, prior works propose the stochastic rounding
scheme to help preserve information and enable low-precision training achieving
similar accuracy as the full-precision floating-point training [14,32].

Stochastic rounding is to round up or round down a number (e.g., the gradi-
ent) in a probabilistic way. And the probability is proportional to the proximity
of the number and its nearby low-precision representation level. In specific, for
each time of stochastic rounding and each number to be rounded, a random
number needs to be generated to indicate the probabilistic rounding decision.

However, generating a large number of high-quality random numbers in par-
allel on hardware-based deep learning platforms such as FPGA and ASIC is not
a trivial task [2,24]. The commonly used solution is to incorporate a large num-
ber of random number generators (RNGs) [19] to generate random numbers on
the fly [32,38]. This will inevitably introduce extra hardware costs and complex-
ity. Many prior works just assume the stochastic rounding can be appropriately
incorporated in their design by default but barely care about its actual imple-
mentation [43,52,53]. For example, considering a representative FPGA-based
DNN training design [23], incorporating stochastic rounding will increase 23%
hardware costs (i.e., LUTs) [33] to fulfill its computation parallelism.

With the trend of stochastic rounding becoming a “must-do” step in low-
precision DNN training [43,46,52,53], we may raise the following question. Is
there a more efficient way to obtain the random numbers without using extra
hardware? Fortunately, the answer is positive. One important thing that is
neglected by the prior works is that the neural network training process is based
on a certain degree of randomness, for example, the randomness introduced by
the mini-batch training with stochastic gradient descent and the randomly shuf-
fled training samples. This indicates that the neural network itself is supposed
to be a potential source of random numbers.

In this paper, we innovatively propose to employ the stochastic property
of the neural network training process to directly extract random numbers
from neural networks. We consider the dynamically changed trainable parame-
ters, training data, and intermediate results during the training process can be
regarded as source data with randomness, and random numbers with arbitrary
bits can be extracted from them. We propose two methods of random number
extraction. One is to extract the corresponding number of bits directly from a
source data, but the random numbers obtained in this way are heavily affected
by the distribution of the source data. Therefore, we further propose the method
of extracting the least significant bit (LSB) from multiple source data and syn-
thesizing a random number with multiple bits (e.g., 8 bits). This method greatly
improves the randomness of the obtained random numbers.

36 G. Yuan et al.

Based on that, we argue that when a random number is needed during DNN
training, it is not necessary to use an additional random number generator to
generate one because you already have it. We can directly extract random num-
bers from the network by leveraging the stochastic property of the DNN training
process. Therefore, we propose a generator-free framework as a more flexible and
hardware-economic solution for low-precision DNN training. And we utilize the
extracted random numbers for stochastic rounding in a self-sufficient manner to
achieve high model accuracy.

We investigate the quality of random numbers extracted from different types
of source data (e.g., trainable parameters, intermediate results). And we find
that high-quality random numbers can be widely extracted from certain types
of source data (e.g., the gradient of weights) without delicate selections. Most
impressively, we find that the extracted random numbers can pass the entire
NIST test suite SP800-22 [37], which is one of the most widely used testing suits
for random numbers. Note that even the most widely used linear-feedback shift
register (LFSR)-based random number generator fails some of the tests.

Moreover, besides obtaining random numbers with uniform distribution
needed for stochastic rounding, we further propose a method that can obtain
random numbers with arbitrary distributions (e.g., Gaussian and Beta distri-
bution) using the pixels of training data. This further enhances the flexibility
of our framework, and it is much more difficult to be achieved when using the
conventional hardware-based random number generators.

To validate the effectiveness of our proposed methods, we conduct compre-
hensive experiments on a variety of deep learning tasks, including image classifi-
cation task on CIFAR-10/100 dataset using ResNet-20/ResNet-32 and ImageNet
dataset using ResNet-18, image super-resolution task on Set-5 and DIV2K using
WDSR, and various natural language processing tasks using BERT. Compared
to conventional methods that use random number generators, our generator-free
methods can achieve similar accuracy with a 9% reduction in hardware costs.

The contributions of our paper are summarized as follows:
– Unlike the conventional methods that require many random number gen-

erators, we innovatively propose a generator-free framework, which directly
extracts random numbers from the neural network by employing the random-
ness of the training process.

– We explore the validity of different sources for random number extraction.
Then, we propose different random number extraction methods and analyze
the quality of the extracted random numbers.

– Our methods can widely extract high-quality random numbers that can pass
the entire NIST test suite SP800-22, while the widely used LFSR-based ran-
dom number generator cannot.

– Besides successfully extracting the uniformly distributed random numbers for
stochastic rounding, we further propose an image pixel-based method that can
obtain random numbers with arbitrary distribution, which is hard to achieve
using hardware random number generators.

– Finally, we validate the effectiveness of our generator-free framework on vari-
ous tasks, including image classification, image super-resolution, and natural

You Already Have It: A Generator-Free Low-Precision DNN 37

language processing. Our framework successfully achieves the same accuracy
as the convention methods while eliminating the hardware costs of random
number generators.

2 Background

2.1 Rounding Schemes

Rounding technique has been widely used in a range of scientific fields. It usually
occurs when compressing the representation precision of a number. The rounding
technique can be generally formulated as follows:

Round(x) =

{
�∗�x, with probability p(x),
�∗�x + ε, with probability 1 − p(x),

(1)

where Round(x) denotes the rounding scheme applied to a given value x. The
�∗�x represents to floor the x to the its nearest representation level. And ε is the
representation precision. The probability p(x) ∈ [0, 1] and the different rounding
schemes can be distinguished by using different constraints on p(x).

For example, the round-up (ceiling) or round-down (floor) scheme sets p(x) =
0 or p(x) = 1 consistently. On the other hand, the probability constraint can
also relate to x, such as in the round-to-nearest scheme [1] and the stochastic
rounding scheme [14,16]. In the round-to-nearest scheme, the probability is set
to p(x) = 1 for x ∈ [0, ε

2) and p(x) = 0 for x ∈ [ε
2 , ε). Instead of the deterministic

rounding schemes above, the stochastic rounding scheme lets p(x) = 1− x−�∗�x
ε ,

making the expected rounding error to be zero, i.e., E(Round(x)) = x. Therefore,
stochastic rounding is considered an unbiased rounding scheme [45].

2.2 Stochastic Rounding in Low-Precision DNN Training

Fig. 1. Conventional stochastic
rounding unit design on hardware.

Due to the challenges of the intensive compu-
tation and storage in DNN training, quanti-
zation techniques are commonly used to save
hardware resources, which is especially critical
for resource-limited devices such as FPGAs
and ASICs. In a low-precision DNN training
process, data from several sources are mainly
to be quantized, including weights, activa-
tions, gradients, and errors [44]. The later
works [8,46] further propose to quantize the
batch normalization (BN) and the optimizer. Among those sources, the model
accuracy is largely sensitive to gradient quantization.

The prior work [14] shows that the DNN training is hard to converge
under 16-bit precision gradients when using the conventional rounding-to-nearest
scheme. And the 16-bit precision is not even a considerably low-precision com-
pared to 8-bit, 4-bit, even the binary precision. The reason is that when using

38 G. Yuan et al.

A A A

E

W W W

E E

G G G

A

Loss

A A

E

W W W

E E

G G G

Loss

R
an

do
m

 N
um

be
r

Ex
tr

ac
to

r

Extract RNs
Assign RNs

Dataflow

Forward Propagation

Backward Propagation

Forward Propagation

Backward Propagation

(a) Conventional Design (b) Our Proposed Design

RNG
Array

RNG
Array

RNG
Array

RNG

RNG Array

R
N

G
 M

as
ks

R
N

G
 S

ee
ds

RNG
RNG
RNG
RNG

RNG
RNG

Fig. 2. Overall dataflow in DNN training and the comparison of (a) the conventional
design that uses random number generators for stochastic rounding and (b) our pro-
posed generator-free design. The A, W, E, and G stand for Activations, Weights, Errors,
and Gradients, respectively. And the � represents the convolution operation.

the rounding-to-nearest scheme on low-precision gradients the small gradients
below the minimum representation precision are always rounded to zero. This
will incur the information loss for weight updates [16]. And by using stochastic
rounding scheme, this issue can be mitigated [14]. With the help of stochastic
rounding, recent works further quantize the gradients to 8-bit precision while
still maintaining a comparable accuracy as the full-precision (i.e., floating-point
32 bits) training.

Many literatures that focus on algorithm optimization for low-precision train-
ing assume the stochastic rounding can be appropriately incorporated in their
design by default [43,52,53], and they barely care about the actual implemen-
tation of stochastic rounding on hardware. However, implementing stochastic
rounding for low-precision DNN training on hardware is not a trivial task. The
stochastic rounding units (SRUs) are commonly used in prior designs [32,38].
Figure 1 shows the general SRU design on hardware. Assume 8-bit precision is
used for DNN training. The 16-bit input data of a SRU is obtained from the
convolution result of 8-bit activations and 8-bit errors. A 8-bit random number
generator is needed in each SRU to generate random numbers on the fly. The
linear-feedback shift register (LFSR) is usually used as the RNG [33]. The gener-
ated random number will concatenate with eight zeros as its higher bits and add
to the input data. Then the stochastic rounded 8-bit gradient can be obtained
by cropping the lower 8 bits away on the 16-bit output data of the adder.

3 A Generator-Free Framework for Low-Precision DNN
Training

3.1 Framework Overview

As we mentioned in Sect. 2.2, in order to mitigate the information loss and
achieve high accuracy, the stochastic rounding technique is indispensable in
low-precision DNN training. Since each gradient requires independent stochastic
rounding and a RNG can only generate one random number at each time, in

You Already Have It: A Generator-Free Low-Precision DNN 39

the conventional design, the RNG array modules are used to fulfill the computa-
tion parallelism, as shown in Fig. 2 (a). In each RNG array module, there are a
large number of RNGs needed. This will introduce considerable hardware costs,
especially for high throughput designs. And to make RNGs work independently
(i.e., generate independent random numbers), each RNG also needs to have its
corresponding seed and mask. This also introduces extra storage overhead.

In this work, we argue that it is unnecessary to use RNGs to generate ran-
dom numbers during the DNN training process. The reason is that the DNN
training process is based on a certain degree of randomness, such as the mini-
batch training with stochastic gradient descent and the randomly shuffled train-
ing samples. We are supposed to find random numbers directly from the neu-
ral network. Therefore, we propose a generator-free framework for low-precision
DNN training. As shown in Fig. 2 (b), instead of using RNG arrays, we propose
to use a random number extractor module to extract random numbers from dif-
ferent sources in the neural network (in Sect. 3.2). And we propose two methods
to extract random numbers from the source data (in Sect. 3.3). Besides obtaining
the uniformly distributed random numbers used for stochastic rounding, we also
find a method that can obtain random numbers with arbitrary distribution (in
Sect. 3.4).

3.2 Source of Random Numbers

We consider the accessible data during the neural network training as the source
data. The source that can be potentially used for random number extracting
should satisfy certain characteristics. The first characteristic is that the source
data should be dynamically changing and have stochasticity over time during
the training process. The second characteristic is that the source should have a
large amount of source data that can fulfill the computation parallelism.

By considering the above characteristics, several candidate sources can be
potentially used for random number extraction, including the trainable param-
eters, intermediate computation results, and input data from training samples,
as shown in Fig. 2 (b). However, not all the candidate sources are suitable for
random number extraction. For example, the intermediate results (activations)
after the ReLU layers will contain a large number of zeros, which significantly
biased data distribution. Extracting random numbers from such sources cannot
obtain high-quality random numbers with uniform distribution, which is desired
for stochastic rounding. Therefore, the model accuracy will degrade considerably.

In this work, we explore the quality of random numbers extracted from dif-
ferent sources and evaluate the performance of low-precision training using the
extracted random numbers. We find that the weights and the gradients of weights
can generally be used as good sources to extract high-quality random numbers.
On the contrary, the sources such as activations and the errors (the gradient of
the Conv layers’ outputs) are bad sources for random number extraction, and
hence a bad low-precision training accuracy. Note that this bad accuracy can
be improved using our proposed number-mapping strategy (will be explained
in Sect. 3.3), but it is still lower than the accuracy achieved by using random

40 G. Yuan et al.

Source Data

Input Data
Weights

Activations
Gradients

Errors LSB

#1 Direct source
bits extraction

#2 Synthesize using
multiple source LSBsRandom numbers

obtained
(with 3-bit precision)

11 00 0 01 1

0 0 1
1 6

1 1010 01 1
0 0101 00 0
1 0110 00 1
1 1010 01 0
0 0101 00 1
1 0110 00 1

01 01 1 11 0

1 1 0} } 1 0 1
5 3

0 1 1} }

Fig. 3. The two proposed methods of extracting random numbers from source data in
DNN training process.

numbers extracted from good sources. More details and comparison results are
presented in Sect. 4.3.

3.3 Methods of Random Number Extraction

After determining the potential sources for random number extraction, we also
need to have an appropriate method to extract the actual random numbers.
Method #1: direct source bits extraction. The first method is to directly
extract random number with certain bits from the source data. As shown in the
left-hand side of Fig. 3, assuming the source data matrix/tensor could be one
layer’s weights, gradients, activations, errors, or input pixels of training samples,
from each source data in the matrix/tensor we can extract a random number.
The number of bits to extract depends on the required representation precision
of the random number. We prefer to use the n lowest bits (e.g., 3 bits) since they
are usually the fraction bits that will change frequently. The random numbers
obtained in this method do have a certain degree of randomness; however, they
are heavily affected by the distribution of the source data. If the distribution
of source data is far from uniform, the accuracy of low-precision training will
be compromised. This is because non-uniformly distributed random numbers
introduce rounding bias during the training process, while the ideal stochastic
rounding is unbiased.
Method #2: synthesize using multiple source LSBs. To overcome the
non-ideal distribution of the source data, we further propose to synthesize a
random number using the least significant bit (LSB) extracted from different
source data. As shown in the right-hand side of Fig. 3, a 3-bit random number

You Already Have It: A Generator-Free Low-Precision DNN 41

Random number

C
ou

nt
s

C
ou

nt
s

Random number Training iteration

Training iterationRandom number Random number

(a)

(b)

(c)

(d)

(e)

(f)

200
400
600
800

1000

0
0 1 2 3 4 5 6 7

200

400

600

800

1000

0
0 1 2 3 4 5 6 7

200

400

600

800

1000

0
0 1 2 3 4 5 6 7

200
400
600
800

1000

0
0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

0
0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

1
2
3
4
5
6
7

0

Distribution of Directly Extracted Random Number (3-bit)

Distribution of Synthesized Random Number using LSB (3-bit)

Early Training Stage Late Training Stage

Late Training StageEarly Training Stage

Visualization on Randomness
(Early Training Stage)

Visualization on Randomness
(Late Training Stage)

Sy
nt

he
si

ze
d

nu
m

be
r

Sy
nt

he
si

ze
d

nu
m

be
r

Fig. 4. The performance of the proposed two random number extraction methods in
low-precision DNN training using ResNet-20 on CIFAR-10. (a), (b), (c), and (d) show
the distribution of the extracted random numbers collected over 20 training epochs
at the early training stage and late training stage, respectively. (e) and (f) show the
changing trace (randomness) of the extracted (synthesized) random numbers at the
early and late training stages, respectively.

is synthesized by using three LSBs from three different source data. The LSB
of source data is the most frequently changed bit and is independent to other
source data. Compared to method #1, the synthesized random numbers have
much better quality that is closer to the ideal uniform distribution, making them
valid for low-precision DNN training. Though synthesizing random numbers con-
sumes more source data than directly extracting random numbers with certain
bits, the synthesized random numbers are still enough to fulfill the computation
parallelism due to the adequate sources for the extraction.

During DNN training, the extracted random numbers will be directly
assigned to the corresponding stochastic rounding unit to replace the RNGs.
In this way, the hardware costs of RNGs can be eliminated. Another advantage
of our proposed methods is that the extracted/synthesized random numbers are
free from periodic repetition, which is a common issue for the RNGs [36].

Figure 4 shows the quality of extracted random numbers obtained using our
methods during a real low-precision DNN training process using ResNet-20 on
CIFAR-10 dataset. We pick a location from the second last layer’s gradients
and observed the random numbers extracted from the same source data location
(three locations are picked for the synthesizing method). We collect the extracted
random numbers over 20 training epochs. From Fig. 4 (a), (b), (c), and (d) we
can see that the synthesizing method provides random numbers with higher
quality than the directly extracting method in both the early training stage

42 G. Yuan et al.

and late training stage. And Fig. 4 (e) and (f) shows the synthesized random
numbers obtained in 80 consecutive training iterations. The high randomness
can be observed in both the early training stage and the late training stage.
Extraction with Number-Mapping Strategy. As we mentioned in Sect. 3.2,
some source data such as activations (has a large number of zeros) are signifi-
cantly biased. None of the above two extraction methods can obtain high-quality
random numbers. When using such bad random numbers for stochastic round-
ing in low-precision training, the network even cannot converge. However, if we
extract random numbers (e.g., 3-bits) and use a simple mapping strategy which
maps the extracted even numbers to the middle numbers within the range (e.g.,
{0, 1, 2, 3, 4, 5, 6, 7} → {3, 1, 2, 7, 4, 6, 5, 0}), then the extracted random numbers
will form a bell-like distribution. This can effectively improve the trained model
accuracy. Though this method cannot outperform the model accuracy obtained
by extracting random numbers from good sources, it still has better accuracy
than using nearest rounding. The reason is that the bell-like distribution makes
the rounding becomes a hybrid scheme between the ideal stochastic rounding
(with uniform random number distribution) and nearest rounding. It mitigates
the biases introduced by the bad data distribution while preserving a certain
degree of randomness. But we still suggest directly extracting high-quality ran-
dom numbers from good sources. More details are discussed in Appendix.

3.4 Obtaining Random Numbers with Arbitrary Distribution

In our generator-free framework, besides extracting the uniformly distributed
random numbers for stochastic rounding, we further propose a novel image-
pixel-based random number extraction method that can extract random numbers
with an arbitrary distribution. And this is hard to be achieved in conventional
methods using fixed hardware random number generators.

As shown in Fig. 5, in DNN training, the training samples in a training
dataset will be divided into several mini-batches. If we look at the value of
the same pixel location over a training epoch (i.e., n mini-batches), we will find
the values of a pixel location scattered within a range following a certain distri-
bution. In each training epoch, every training sample is guaranteed to be used
once, but the order of the training samples used is different due to the dataset
shuffling for each training epoch. This indicates two facts: ① the value distri-
bution of a pixel location will remain the same over the entire training process;
② the order of values presented in a pixel location is varied between different
epochs. These two properties give us a unique opportunity for random number
extraction. In our method, we divide the value range of a pixel location into 2n

intervals (e.g., 8 intervals for 3-bit random number, as shown in Fig. 5) using
2n − 1 threshold levels. Then, depending on the interval in which the pixel value
is located, the corresponding random number can be obtained. Since the value
distributions of different pixel locations are varied, each pixel requires its own
threshold levels. The threshold levels are unique for a certain dataset and can be
easily obtained offline. For each training mini-batch, each pixel of input image
can create a random number.

You Already Have It: A Generator-Free Low-Precision DNN 43

Training
Dataset

Mini-batch 2

Mini-batch n

Mini-b
atch 1

Pixel value distribution over dataset

Pixel value
0 0 50 100 150 200 250

50
100
150
200
250
300
350

Threshold array

Threshold
Levels

Beta distribution

0 1 2 3 4 5 6 7

C
ou

nt
s

Value of random numbers
0 1 2 3 4 5 6 70

2

4
6

8
10

12

C
ou

nt
s

(1
e3

)

Distribution of extracted random numbers

Fig. 5. Extract random numbers with arbitrary distribution using the image-pixel-
based extraction method.

It is worth noting that the content in the edge pixels of images are often
the background. As a result, the values of those edge pixels are more likely to
be concentrated in very large or small, making it possible that some intervals
are indistinguishable and fail to obtain the well-distributed random numbers.
Therefore, we exclude the edge pixels for random number extraction.

In Fig. 5, we show a real example that uses our image-pixel-based method
obtaining random numbers with the beta distribution (α = 1, β = 2). It can be
observed that a high-quality beta distribution is obtained. Besides, we can also
obtain other desired distributions by simply modifying the threshold levels. And
the threshold arrays can be easily generated offline by going over the training
dataset once. More details are shown in Appendix.

4 Results

4.1 Experiments Setup

In this Section, we evaluate our proposed framework and methods on various
practical deep learning tasks, including image classification task, image super-
resolution task , and natural language processing tasks. All of our models includ-
ing the full-precision (FP) models and the low-precision (LP) models are trained
on a GPU server with 4× NVIDIA 2080Ti GPUs. The PyTorch framework is
used for model training. For the low-precision training, we quantize all weights,
activations, gradients, and errors using fewer bits (detailed numbers are given in
corresponding result tables). The “Ours” method in the result tables indicates
the results obtained using our generator-free framework, which extracts random
numbers from the network as we proposed. To make fair comparisons, in the
“LP” method, we adopt the same training hyperparameters as our generator-
free method, but with the random numbers generated from the simulated RNGs.

44 G. Yuan et al.

Table 1. Accuracy comparison of ResNet-20 and ResNet-32 on CIFAR-10 and CIFAR-
100 dataset. W: weight, A: activation, G: gradient.

Model Method Precision Generator Accuracy Model Method Precision Generator Accuracy

(W/A/G) Free (W/A/G) Free

CIFAR10 CIFAR100

ResNet-20 FP 32-bit - 92.17 ResNet-32 FP 32-bit - 74.53

Zhu et al. [53] 8-bit × 92.12 LPstochastic 8-bit × 74.47

Ours 8-bit � 92.15 Ours 8-bit � 74.41

LPstochastic 6-bit × 91.83 LPstochastic 6-bit × 74.03

Ours 6-bit � 91.88 Ours 6-bit � 74.06

We simulate the behavior of LFSR-based RNGs to generate random numbers
for the “LP” method. For all our results, if not specified, they are extracted from
the gradients of the model’s second layer by synthesizing using multiple source
LSBs method (i.e., Method#2) and without using number-mapping strategy.
We mainly evaluate four different extraction sources including the activations
(i.e., Conv outputs, before BN and ReLU), errors (the gradients of activations),
weights, and gradient (of weights).

4.2 Accuracy of Low-precision DNN Training

Accuracy for Image Classification. We evaluate our framework on CIFAR-
10/100 dataset [20] using ResNet-20/32 [15]. The results are shown in Table 1.
The 8-bit precision and 6-bit precision are used, respectively. For the 8-bit preci-
sion results on CIFAR-10, we compare our method with Zhu et al. [53]. Both of
methods achieve similar accuracy as the FP result, thanks to the superiority of
stochastic rounding. However, 16-bit RNGs are required in Zhu et al. [53], while
we are generator-free. With the 6-bit precision, though both the LP method and
our method have around 0.3% accuracy degradation, our method still achieves
similar accuracy as the LP method. For the results on CIFAR-100 using ResNet-
32, since the CIFAR-100 task is harder than CIFAR-10, all results with 8-bit
precision start to have a minor accuracy degradation compared to the FP result.
And for both 8-bit precision and 6-bit precision, our generator-free method can
achieve similar accuracy as the LP method that requires RNGs.

Table 2 shows the results on ImageNet dataset [7] using ResNet-18. Our
generator-free method achieve the same accuracy as the floating point train-
ing result. We have a clear advantage compared to nearest rounding method.
More importantly, our method also outperforms the hardware random number
generator-based method (LPstochastic) with a 0.4% margin. The reason is that
our extracted random numbers have higher quality, which has a more critical
impact on the harder dataset (ImageNet v.s. CIFAR).

Accuracy for Other Tasks. Table 3 shows the comparison results for image
super-resolution task using WDSR-B network [10]. The model is trained on
DIV2K [41] dataset and tested on Set-5 [3] and DIV2K dataset. We evaluate our

You Already Have It: A Generator-Free Low-Precision DNN 45

Table 2. Comparison with existing works using ResNet-18 on ImageNet dataset.

Model Method Precision Generator Accuracy

(W/A/G) Free

ResNet-18 WAGEUBN [46] 8-bit × 67.40

FP8 [43] 8-bit × 67.34

Uint8 [53] 8-bit × 69.67

ADint8 [52] 8-bit × 70.21

FP 32-bit - 71.12

LPnearest 8-bit - 68.13

LPstochastic 8-bit × 70.72

Ours 8-bit � 71.10

framework using input size of 640×360 and 320×180 for 2× and 4× resolution
up scaling, respectively. And Table 4 shows the evaluation results for natural
language processing (NLP) tasks using BERT [9] on a variety of datasets from the
General Language Understanding Evaluation (GLUE) [42] benchmark. From the
results, we can observe that the image super-resolution task is more sensitive to
low-precision training compared to classification and NLP tasks. Our generator-
free method consistently achieves similar accuracy as the conventional method,
which validates the effectiveness of our proposed methods and framework.

4.3 Comparison of Different Extraction Sources

We first investigate the low-precision training model accuracy using extracted
random numbers from different sources including activations, errors, weights,
and gradients. And for each type of source, we also cover different layers from
the first, middle, and last part of the model. From Table 5 we can find consis-
tent phenomenons on both datasets. The errors are the worst source for random
number extraction, and its later layers are relatively better than the front lay-
ers. This is because the errors generally contain a dominant number of zeros in
low-precision training, which will significantly bias the distribution of random
numbers. The weights and gradients are the two of the good sources which can

Table 3. Accuracy comparison for image super-resolution using WDSR-B network on
SET-5 and DIV2K dataset.

Upscale rate Method bits PSNR PSNR Y SSIM PSNR PSNR Y SSIM

SET-5 DIV2K

2x FP 32 34.9591 37.0072 0.9564 33.3994 34.9098 0.9356

LPstochastic 8 34.1163 36.4235 0.9516 32.8305 34.5763 0.9317

Ours 8 34.1971 36.5799 0.9535 32.8124 34.5243 0.9308

4x FP 32 28.8708 30.6974 0.8691 27.9794 29.4714 0.8133

LPstochastic 8 28.3235 30.2768 0.8647 27.6667 29.2359 0.8045

Ours 8 28.3351 30.2786 0.8662 27.6182 29.2295 0.8039

46 G. Yuan et al.

Table 4. Accuracy comparison for natural language processing tasks using BERT.

Method bits MRPC STS-B RTE COLA MNLI QQP SST2 QNLI Avg

FP 32 89.66 89.19 66.43 57.27 84.37 91.18 92.66 91.40 82.77

LPstochastic 8 89.58 88.86 66.43 56.92 84.25 91.13 92.61 91.22 82.61

Ours 8 89.62 88.82 66.37 57.04 84.35 90.92 92.65 91.14 82.62

Table 5. Comparison of low-precision training model accuracy using extracted random
numbers from different sources. We use 6-bit quantization on weights, activations,
errors, and gradeints. 6-bit random numbers are extracted for stochastic rounding.

Model Source layer-2 layer-10 layer-19 Model Source layer-2 layer-18 layer-31

CIFAR10 CIFAR100

ResNet-20 Activation 90.36 89.97 87.40 ResNet-32 Activation 70.19 70.41 68.66

Error 71.11 72.87 74.91 Error 8.34 11.59 54.22

Weight 91.76 91.69 91.62 Weight 73.32 73.30 73.39

Gradient 91.88 91.47 91.68 Gradient 74.06 73.91 73.87

achieve high training accuracy because they generally tend to have a normal
distribution which will make the LSB has relatively balanced zeros and ones.
However, based on our observations, we found the weights have a much lower
flipping rate on their LSB compared to the gradients. We conjecture that this
is caused by the low-precision representation in training, which limits the small
perturbation on weights to a certain degree compared to the floating-point 32-bit
training. This makes the gradient a better source for random number extraction.
The evaluation of information entropy will be shown in Sect. 4.4 and more dis-
cussions can be found in Appendix.

4.4 Randomness Tests and Hardware Saving

To quantitatively evaluate the quality of the extracted random numbers, we
test the information entropy of the random numbers throughout the training
process. The results are shown in Table 6. We can find that the random numbers
extracted from weight and gradient have highest information entropy and they
are close to 6-bit. Combining the accuracy results from the Table 5, we can find a
positive relationship between the information entropy and the final low-precision
training accuracy. We also test the quality of extracted random numbers using
the widely used NIST test suite SP800-22 [37]. And we surprisingly find that the
random numbers extracted from gradients can generally pass the entire tests,
which indicates the random numbers has very high quality. Note that even the
widely used LFSR-based random number generators can fail the NIST test. More
details are discussed in Appendix.

From the hardware perspective, compared to hardware-based random num-
ber generators, our generator-free approach does not require any arithmetic or
logical expressions (do no use LUT), and thus is more hardware-friendly and
enables resource-efficient design implementations. We estimate the LUT saving

You Already Have It: A Generator-Free Low-Precision DNN 47

Table 6. The information entropy of extracted random numbers. The results are tested
on CIFAR-100 dataset ResNet-32 with 6-bit quantization and 6-bit random numbers.

Source Ideal Activation Error Weight Gradient

Entropy (bits) 6 4.9738 2.8017 5.8429 5.8774

using Xilinx Vitis high-level synthesis (HLS) tool and based on the representative
FPGA-based DNN training design methodology [23] with LFSR-based stochas-
tic rounding unit (SRU) design [33]. We can successfully save 38.5% and 9%
LUTs costs of the SRU and the overall design, respectively. Note that the LUTs
are considered a tight resource in FPGA-based DNN training design. Generally,
a design prefers not to reach a high LUTs utilization rate since it will lead to
routing problems on the FPGA that can significantly slow down the working fre-
quency [51]. Even in the FPGA vendor’s (Xilinx) design [4], the LUT utilization
does not pass 70% on edge FPGA (PYNQ-Z1) or 50% on cloud FPGAs (AWS
F1). Therefore, the LUTs reduction achieved by our method is considerable.

4.5 Discussion and Future Works

In this paper, we pave a new way to obtain random numbers for low-precision
training. We explore the performance of different types of sources heuristically,
and a systematic exploration can be done for future works. By finding a large
number of high-quality random numbers that can be easily extracted from DNNs,
our work may also inspire more research in the security field. Moreover, besides
the random numbers used by stochastic rounding, our image-pixel-based method
can also extract random numbers with arbitrary distribution, which can be
potentially used for a broader range of tasks and is worth being further investi-
gated.

5 Conclusion

In this paper, we argue that when random numbers are needed during the DNN
training, it is unnecessary to pay extra hardware costs for random number gen-
erators because we already have them. Therefore, we explore the validity of
different sources and methods for high-quality random number extraction. We
propose a generator-free framework to extract and use the random numbers
during low-precision DNN training. Moreover, we propose an image-pixel-based
method that can extract random numbers with arbitrary distribution, which is
hard to achieve using hardware random number generators. Our framework suc-
cessfully achieves the same accuracy as the convention methods while eliminating
the hardware costs of random number generators.

Acknowledgement. This work was partly supported by NSF CCF-1919117 and
CCF-1937500; NSERC Discovery Grant RGPIN-2019-04613, DGECR-2019-00120,
Alliance Grant ALLRP-552042-2020; CFI John R. Evans Leaders Fund.

48 G. Yuan et al.

References

1. IEEE standard for floating-point arithmetic. IEEE Std 754–2019 (Revision of IEEE
754–2008), pp. 1–84 (2019). https://doi.org/10.1109/IEEESTD.2019.8766229

2. Best, S., Xu, X.: An all-digital true random number generator based on chaotic
cellular automata topology. In: 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–8. IEEE (2019)

3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In: Pro-
ceedings of the British Machine Vision Conference, pp. 135.1–135.10. BMVA Press
(2012)

4. Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. ACM Trans. Reconfigurable Technol. Syst.
(TRETS) 11(3), 1–23 (2018)

5. Chang, S.E., et al.: Mix and match: a novel FPGA-centric deep neural net-
work quantization framework. In: 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 208–220. IEEE (2021)

6. Chu, C., Wang, Y., Zhao, Y., Ma, X., Ye, S., Hong, Y., Liang, X., Han, Y., Jiang,
L.: PIM-prune: fine-grain DCNN pruning for crossbar-based process-in-memory
architecture. In: 2020 57th ACM/IEEE Design Automation Conference (DAC),
pp. 1–6. IEEE (2020)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition, pp. 248–255. IEEE (2009)

8. Dettmers, T., Lewis, M., Shleifer, S., Zettlemoyer, L.: 8-bit optimizers via block-
wise quantization (2021)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

10. Fan, Y., Yu, J., Huang, T.S.: Wide-activated deep residual networks based restora-
tion for BPG-compressed images. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 2621–2624 (2018)

11. Fang, H., Mei, Z., Shrestha, A., Zhao, Z., Li, Y., Qiu, Q.: Encoding, model, and
architecture: Systematic optimization for spiking neural network in FPGAs. In:
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pp. 1–9. IEEE (2020)

12. Fang, H., Shrestha, A., Zhao, Z., Qiu, Q.: Exploiting neuron and synapse filter
dynamics in spatial temporal learning of deep spiking neural network. In: Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence.
IJCAI’20 (2021)

13. Fang, H., Taylor, B., Li, Z., Mei, Z., Li, H.H., Qiu, Q.: Neuromorphic algorithm-
hardware codesign for temporal pattern learning. In: 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 361–366. IEEE (2021)

14. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: International conference on machine learning, pp.
1737–1746. PMLR (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pp. 770–778 (2016)

https://doi.org/10.1109/IEEESTD.2019.8766229
http://arxiv.org/abs/1810.04805

You Already Have It: A Generator-Free Low-Precision DNN 49

16. Höhfeld, M., Fahlman, S.E.: Probabilistic rounding in neural network learning with
limited precision. Neurocomputing 4(6), 291–299 (1992)

17. Hou, Z., et al.: Chex: channel exploration for CNN model compression. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12287–12298 (2022)

18. Kong, Z., et al.: SPViT: Enabling faster vision transformers via soft token pruning.
arXiv preprint arXiv:2112.13890 (2021)

19. Krawczyk, H.: LFSR-based hashing and authentication. In: Annual International
Cryptology Conference, pp. 129–139. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 15

20. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

21. Li, Y., Fang, H., Li, M., Ma, Y., Qiu, Q.: Neural network pruning and fast training
for DRL-based UAV trajectory planning. In: 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 574–579. IEEE (2022)

22. Liu, N., et al.: Lottery ticket preserves weight correlation: is it desirable or not?
In: International Conference on Machine Learning (ICML), pp. 7011–7020. PMLR
(2021)

23. Luo, C., Sit, M.K., Fan, H., Liu, S., Luk, W., Guo, C.: Towards efficient deep
neural network training by FPGA-based batch-level parallelism. J. Semiconduct.
41(2), 022403 (2020)

24. Luo, Y., Wang, W., Best, S., Wang, Y., Xu, X.: A high-performance and secure
TRNG based on chaotic cellular automata topology. IEEE Trans. Circuit Syst. I:
Regul. Pap. 67(12), 4970–4983 (2020)

25. Ma, X., et al.: PCONV: the missing but desirable sparsity in DNN weight pruning
for real-time execution on mobile devices. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), vol. 34, pp. 5117–5124 (2020)

26. Ma, X., et al.: Non-structured DNN weight pruning-is it beneficial in any platform?
IEEE Transactions on Neural Networks and Learning Systems (TNNLS) (2021)

27. Ma, X., et al.: An image enhancing pattern-based sparsity for real-time inference
on mobile devices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV
2020. LNCS, vol. 12358, pp. 629–645. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58601-0 37

28. Ma, X., et al.: Effective model sparsification by scheduled grow-and-prune meth-
ods. In: Proceedings of the International Conference on Learning Representations
(ICLR) (2021)

29. Ma, X., et al.: BLCR: Towards real-time DNN execution with block-based
reweighted pruning. In: International Symposium on Quality Electronic Design
(ISQED), pp. 1–8. IEEE (2022)

30. Ma, X., et al.: Tiny but accurate: a pruned, quantized and optimized memristor
crossbar framework for ultra efficient DNN implementation. In: 2020 25th Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 301–306. IEEE
(2020)

31. Ma, X., et al.: Sanity checks for lottery tickets: does your winning ticket really win
the jackpot? In: Advances in Neural Information Processing Systems (NeurIPS),
vol. 34 (2021)

32. Mikaitis, M.: Stochastic rounding: algorithms and hardware accelerator. In: 2021
International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2021)

33. Na, T., Ko, J.H., Kung, J., Mukhopadhyay, S.: On-chip training of recurrent neural
networks with limited numerical precision. In: 2017 International Joint Conference
on Neural Networks (IJCNN), pp. 3716–3723. IEEE (2017)

http://arxiv.org/abs/2112.13890
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/978-3-030-58601-0_37
https://doi.org/10.1007/978-3-030-58601-0_37

50 G. Yuan et al.

34. Niu, W., et al.: GRIM: a general, real-time deep learning inference framework for
mobile devices based on fine-grained structured weight sparsity. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI) (2021)

35. Niu, W., et al.: PatDNN: achieving real-time DNN execution on mobile devices with
pattern-based weight pruning. In: Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 907–922 (2020)

36. Roth Jr, C.H., John, L.K.: Digital systems design using VHDL. Cengage Learning
(2016)

37. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, Booz-allen and hamilton inc mclean va (2001)

38. Su, C., Zhou, S., Feng, L., Zhang, W.: Towards high performance low bitwidth
training for deep neural networks. J. Semiconduct. 41(2), 022404 (2020)

39. Sun, M., et al.: FILM-QNN: Efficient FPGA acceleration of deep neural net-
works with intra-layer, mixed-precision quantization. In: Proceedings of the 2022
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
134–145 (2022)

40. Sun, M., et al.: VAQF: fully automatic software-hardware co-design framework for
low-bit vision transformer. arXiv preprint arXiv:2201.06618 (2022)

41. Timofte, R., Gu, S., Wu, J., Van Gool, L.: NTIRE 2018 challenge on single image
super-resolution: methods and results. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 852–863 (2018)

42. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: A multi-
task benchmark and analysis platform for natural language understanding. In:
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pp. 353–355 (2018)

43. Wang, N., Choi, J., Brand, D., Chen, C.Y., Gopalakrishnan, K.: Training deep neu-
ral networks with 8-bit floating point numbers. In: Advances in neural information
processing systems, vol. 31 (2018)

44. Wu, S., Li, G., Chen, F., Shi, L.: Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680 (2018)

45. Xia, L., Anthonissen, M., Hochstenbach, M., Koren, B.: A simple and efficient
stochastic rounding method for training neural networks in low precision. arXiv
preprint arXiv:2103.13445 (2021)

46. Yang, Y., Deng, L., Wu, S., Yan, T., Xie, Y., Li, G.: Training high-performance
and large-scale deep neural networks with full 8-bit integers. Neural Netw. 125,
70–82 (2020)

47. Yuan, G., et al.: TinyADC: Peripheral circuit-aware weight pruning framework for
mixed-signal DNN accelerators. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 926–931. IEEE (2021)

48. Yuan, G., et al.: Improving DNN fault tolerance using weight pruning and differ-
ential crossbar mapping for ReRAM-based edge AI. In: 2021 22nd International
Symposium on Quality Electronic Design (ISQED), pp. 135–141. IEEE (2021)

49. Yuan, G., et al.: An ultra-efficient memristor-based DNN framework with struc-
tured weight pruning and quantization using ADMM. In: 2019 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6.
IEEE (2019)

50. Yuan, G., et al.: MEST: Accurate and fast memory-economic sparse training
framework on the edge. In: Advances in Neural Information Processing Systems
(NeurIPS), vol. 34 (2021)

http://arxiv.org/abs/2201.06618
http://arxiv.org/abs/1802.04680
http://arxiv.org/abs/2103.13445

You Already Have It: A Generator-Free Low-Precision DNN 51

51. Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., Cong, J.: Caffeine: toward uni-
formed representation and acceleration for deep convolutional neural networks.
IEEE Trans. Comput. Aid. Design Integr. Circ. Syst. 38(11), 2072–2085 (2018)

52. Zhao, K., et al.: Distribution adaptive INT8 quantization for training CNNs. In:
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (2021)

53. Zhu, F., et al.: Towards unified INT8 training for convolutional neural network.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1969–1979 (2020)

	You Already Have It: A Generator-Free Low-Precision DNN Training Framework Using Stochastic Rounding
	1 Introduction
	2 Background
	2.1 Rounding Schemes
	2.2 Stochastic Rounding in Low-Precision DNN Training

	3 A Generator-Free Framework for Low-Precision DNN Training
	3.1 Framework Overview
	3.2 Source of Random Numbers
	3.3 Methods of Random Number Extraction
	3.4 Obtaining Random Numbers with Arbitrary Distribution

	4 Results
	4.1 Experiments Setup
	4.2 Accuracy of Low-precision DNN Training
	4.3 Comparison of Different Extraction Sources
	4.4 Randomness Tests and Hardware Saving
	4.5 Discussion and Future Works

	5 Conclusion
	References

