
U-Boost NAS: Utilization-Boosted
Differentiable Neural Architecture Search

Ahmet Caner Yüzügüler(B) , Nikolaos Dimitriadis , and Pascal Frossard

EPFL, Lausanne, Switzerland
{ahmet.yuzuguler,nikolaos.dimitriadis,pascal.frossard}@epfl.ch

Abstract. Optimizing resource utilization in target platforms is key to
achieving high performance during DNN inference. While optimizations
have been proposed for inference latency, memory footprint, and energy
consumption, prior hardware-aware neural architecture search (NAS)
methods have omitted resource utilization, preventing DNNs to take full
advantage of the target inference platforms. Modeling resource utiliza-
tion efficiently and accurately is challenging, especially for widely-used
array-based inference accelerators such as Google TPU. In this work,
we propose a novel hardware-aware NAS framework that does not only
optimize for task accuracy and inference latency, but also for resource
utilization. We also propose and validate a new computational model
for resource utilization in inference accelerators. By using the proposed
NAS framework and the proposed resource utilization model, we achieve
2.8 − 4× speedup for DNN inference compared to prior hardware-aware
NAS methods while attaining similar or improved accuracy in image
classification on CIFAR-10 and Imagenet-100 datasets. (Source code is
available at https://github.com/yuezuegu/UBoostNAS).

Keywords: Hardware-aware neural architecture search · DNN
inference · Hardware accelerator · Resource utilization

1 Introduction

Deep neural networks (DNN) have drastically evolved in recent years to push
the limits in numerous computer vision tasks such as image recognition, object
detection, and semantic segmentation [14,20]. To reach state-of-the-art perfor-
mance, today’s DNN models contain hundreds of layers to boost their perfor-
mance. However, this comes at the expense of high computational complexity,
which often leads to long inference latency in resource-constraint settings (e.g.,
mobile devices) [31,34]. It therefore becomes important to co-optimize model
accuracy with inference runtime metrics, which is an important area of research
in the design of effective DNN architectures [34].

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-19775-8 11.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Avidan et al. (Eds.): ECCV 2022, LNCS 13672, pp. 173–190, 2022.
https://doi.org/10.1007/978-3-031-19775-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19775-8_11&domain=pdf
http://orcid.org/0000-0001-7809-9897
http://orcid.org/0000-0003-3955-111X
http://orcid.org/0000-0002-4010-714X
https://github.com/yuezuegu/UBoostNAS
https://doi.org/10.1007/978-3-031-19775-8_11
https://doi.org/10.1007/978-3-031-19775-8_11


174 A. C. Yüzügüler et al.

The effective usage of hardware resources (i.e., hardware utilization) in tar-
get inference platforms may vary depending on the architecture of a DNN model
(e.g., layer types or channel dimensions). For instance, the depthwise convolution
operation, which is popularly used in DNNs, has been shown to reduce the hard-
ware utilization down to 1% in inference platforms [13]. Likewise, the channel and
filter dimensions of DNN layers also have a significant impact on hardware uti-
lization due to mismatches between DNN dimensions and target inference plat-
forms [9,30]. As a result, unoptimized DNN models unfortunately run on inference
platforms with low hardware utilization, hindering their performance (FLOPS/s)
and increasing the latency. For example, average FLOPS/s utilization in Google’s
TPUv4 accelerator is 33% [17], which results in about three times slower inference
than what could be achieved with a fully-utilized platform.

Prior works have proposed hardware-aware neural architecture search meth-
ods to co-optimize model accuracy and hardware performance metrics [32]. These
methods use latency [34,35,37], energy consumption [41], or memory footprint
[26] as the hardware performance metrics, which allows to improve the compu-
tational efficiency of the DNN architectures. However, no prior work uses hard-
ware utilization as an optimization objective, which leads to DNN models with low
efficiency in inference platforms. Moreover, prior hardware-aware NAS methods
rely on either “black-box” hardware models, where these metrics are measured in
physical devices and stored in look-up tables, or simplistic models such as roofline
[13,23] to estimate the hardware performance metrics of the target inference plat-
forms. Unfortunately, these models are impractical, have limited precision, or are
non-differentiable, which hinders their effective use in NAS methods.

While prior hardware-aware NAS frameworks mostly focus on inference
latency (i.e., execution time in terms of seconds), we argue that this does not
necessarily lead to effective usage of hardware resources (i.e., percentage of pro-
cessing elements actively used during computation) at the inference platforms.
Therefore, we propose a NAS method that co-optimizes hardware utilization
along with model accuracy and latency. To do so, we develop a hardware uti-
lization model for inference platforms and use it to estimate the hardware uti-
lization while searching for the optimal DNN architecture in image classification
tasks. Moreover, we provide a smooth relaxation for the proposed utilization
model to allow differentiable NAS, which is orders of magnitude less costly than
other NAS methods. To the best of our knowledge, this is the first work that
addresses hardware utilization in DNN inference using neural architecture search.
We demonstrate through extensive experiments and hardware simulations that
DNN models produced by our proposed NAS method run 2.8− 4× faster in tar-
get inference platforms compared to prior hardware-aware NAS methods that
are agnostic to resource utilization.

In this paper, we make the following contributions:

– We show that hardware utilization in DNN inference is sensitive to layer types
and dimensions of the architecture, and that fine-tuning a DNN architecture
may significantly improve hardware utilization while maintaining the model
accuracy.



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 175

– We propose a computational model for hardware utilization in modern infer-
ence platforms that estimates the measured utilization with significantly
higher accuracy compared to prior models. We also provide a smooth relax-
ation of the proposed computational model to enable gradient-based opti-
mization.

– We propose a differential neural architecture search framework that does not
only optimize for task accuracy and inference latency, but also resource uti-
lization at target inference platforms.

– We perform image classification experiments on the CIFAR-10 and Imagenet-
100 datasets as well as detailed hardware simulations to show that the pro-
posed utilization-aware NAS method significantly improves the hardware uti-
lization and inference latency on typical computer vision tasks.

2 Related Work

Neural architecture search methods aim to automate the design process for DNN
architectures that can achieve high accuracy on the given machine learning tasks
with low latency and improved efficiency in target inference platforms. In fact,
recent work has shown that DNNs produced with hardware-aware NAS meth-
ods outperform the hand-crafted DNNs in terms of accuracy and latency [34].
However, NAS methods require vast amounts of computational power, which
motivates researchers to study more efficient methods.

Early versions of NAS methods used reinforcement learning [28,34,44,45],
evolutionary algorithms [26,29], and Bayesian optimization [3]. However, such
methods operate on a discrete search space and require vast amounts of com-
putational resources, as they need to perform many trials while searching for
an optimal architecture in an exponentially-increasing hyperparameter space.
To mitigate the prohibitive cost of architecture search, many techniques such
as weight-sharing [28] and one-shot NAS [2] have been proposed. While these
techniques reduce the cost of each trial by allowing to reuse trained parameters,
they still require many trials to find the optimal DNN architecture.

Recent works proposed differentiable NAS methods [4,5,24,27,38,40] to opti-
mize DNNs both at microarchitecture [25] and macroarchitecture [37] levels using
gradient-based algorithms. In these methods, a continuous relaxation is applied
to the categorical decisions using a set of trainable weights (i.e., architectural
parameters). Because differentiable NAS methods use the information from gra-
dients with respect to the architectural parameters during training, they achieve
faster convergence than their non-differentiable counterparts. Moreover, Wan et
al. [35] introduced a differentiable masking technique, which allows to fine-tune
channel dimensions and improve the resulting DNN’s accuracy.

NAS methods have also been proposed towards optimizing additional perfor-
mance metrics along with task accuracy, such as hardware related ones. To that
end, prior works focused on accelerating inference on resource-constrained tar-
get platforms and proposed hardware(platform)-aware neural architecture search
[33–35,37,42]. This type of NAS methods typically use a multi-objective loss



176 A. C. Yüzügüler et al.

function that includes terms for the model’s predictive accuracy (e.g., cross-
entropy) and hardware performance metric (e.g., latency or energy). While the
accuracy term is easily calculated based on the given task using a validation
dataset, the hardware performance metric depends on multiple variables such
as the DNN architecture and the hardware specifications of the target platform,
making its accurate estimation complex and leading to various proposed tech-
niques. Early versions of hardware-aware NAS used real-time measurements from
inference platforms [34,41]. However, this approach is not practical because it
requires the physical devices to be accessible during architecture search. More
recent hardware-aware NAS methods consider the target hardware as a black-
box [9,33,35,37], where a look-up table stores hardware measurements for all
possible combinations of architectural decisions. This technique is also imprac-
tical because the number of required measurements grows combinatorially with
the number of hyperparameters in the search space and the resulting models
are not differentiable; therefore, they are not eligible to be used in differentiable
NAS methods, which are among the most effective NAS methods.

To make the hardware performance metric differentiable, prior work pro-
posed to use surrogate models such as linear regression [39] or neural networks
[8]. However, such models require large numbers of samples for training and are
hard to interpret. Some prior works also exploit the fact that a DNN’s total
latency is equal to the sum of individual layers’ latency to obtain a differentiable
latency model [33,35,37]. While this approach allows making inter-layer opti-
mizations (e.g., which layers to keep or discard), it does not allow for intra-layer
optimizations (e.g., operator type and channel dimensions); thus, they do not
offer a complete solution. Other prior works proposed analytical hardware mod-
els, which estimates the hardware performance metrics using a cycle-accurate
model [26] or a roofline model [13,23]. However, those models consider only
memory bottlenecks, ignoring the other major sources of underutilization (e.g.,
dimension mismatches), leading to significant discrepancies between the esti-
mated and actual values of runtime measurements. Unlike previously proposed
hardware models, our novel analytical model for hardware utilization offers accu-
rate estimation of the utilization in inference platforms while allowing gradient
descent to perform both inter- and intra-layer optimizations in the NAS solution.

3 Modeling Resource Utilization in Inference Platforms

Prior hardware-aware NAS frameworks optimize DNN architectures solely
for inference latency, leading to poor resource utilization. For instance, such
hardware-aware NAS frameworks can easily reduce the inference latency by lim-
iting the number of layers in DNN architectures but can not improve hardware
utilization unless specific characteristics (e.g., operator types, channel dimen-
sions) of the layers are taken into consideration while performing the architec-
ture search. We adopt a different approach and use both latency and utilization
as optimization goals along with task accuracy. Modeling hardware utilization
is, however, challenging especially for specialized hardware architectures such
as systolic arrays [22], which are widely used in DNN inference platforms (e.g.,



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 177

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Hardware accelerator chip

O
n-

ch
ip

m
em

or
y

. . .

. . .

. . .

. . .

...
...

...
...

O
ff-

ch
ip

m
em

or
y

Fig. 1. Illustration of an array-based hardware accelerator.

Google TPU [18] or Tesla FSD chip [1]) due to their unique dataflow patterns. In
this section, we first briefly explain these dataflow patterns, and then introduce
a novel utilization model for such accelerators.

3.1 Dataflows on Hardware Accelerators

Matrix multiplication operations constitute the vast majority (∼98% [1]) of DNN
operations; thus, inference platforms adopt array-based architectures [1,6,18,30].
Figure 1 depicts a typical array-based hardware accelerator, which consists of an
array of processing elements (PE), on-chip, and off-chip memory. Unlike general-
purpose CPU and GPUs, PEs in such architectures can easily share data between
each other through an on-chip interconnection, which allows them to perform
matrix multiplication with high efficiency and minimum delay.

While there exist various mapping and dataflow schemas to perform a matrix
multiplication on an array-based architecture [6], without loss of generality, we
assume one of the most commonly used dataflow in this paper, namely weight
stationary [18]. In this dataflow, the accelerator first loads model weights and
activations from an off-chip memory, and stores them on the on-chip memory.
Then, the weight matrix is first spatially mapped onto the two-dimensional array,
the activation matrix is streamed along the PE rows, and partial sums are accu-
mulated along the PE columns [18]. The partial sums that are obtained at the
last PE row correspond to the results of the matrix multiplication. The final
results are either stored in the on-chip memory to be used in next layers, or
written back to the off-chip memory.

While theoretically allowing faster multiplication, array-based accelerators in
practice often suffer from low resource utilization due to unoptimized DNN archi-
tectures. For instance, the average utilization of Google’s TPUv1 and TPUv4
are 20% [18] and 33% [17], where the leading source of underutilization is the
mismatches between DNN layer and array dimensions. In such cases, the acceler-
ator can run only at a fraction of its processing capacity (FLOPS/s), resulting in



178 A. C. Yüzügüler et al.

w

h

c

W . . .

f filters

k2

k1

c

X

. . .

batch size b

CONV-to-GEMM

k1k2c

f

Ŵ

hwb

k1k2c

X̂

Tiling

s2

hwb

s2

s1

Fig. 2. Mapping stages for CONV operations onto array-based architectures.

slower execution and longer runtime. Hence, it is crucial to optimize DNN archi-
tectures in a way to improve the target platform’s resource utilization, which
will allow faster DNN inference. To that end, we argue that resource utilization
must be addressed while designing DNN architectures with NAS.

3.2 Proposed Utilization Model

To be processed on an array-based accelerator, a DNN layer is first converted
into a general matrix multiplication (CONV-to-GEMM) [16] and then tiled to
match the dimensions of the array of processing elements. Figure 2 illustrates the
CONV-to-GEMM conversion and tiling processes. Let us consider the following
convolutional operation:

Yh×w×f×b = Xh×w×c×b ∗ Wk1×k2×c×f (1)

where h and w are the input image sizes, c is the number of input channels,
b is the batch size, k1 and k2 are kernel sizes, and f is the number of filters,
assuming a stride of 1. The matrix multiplication equivalent to the convolution
operation is:

Ŷhwb×f = X̂hwb×k1k2cŴk1k2c×f (2)

where X̂, Ŵ , and Ŷ are obtained by rearranging the dimensions of X, W , and Y .
Let us consider the mapping of this matrix multiplication operation onto the

array of processing elements with s1 rows and s2 columns. Since such an array
can process a matrix with a maximum size of s1 ×s2, X̂ and Ŵ must be divided
into smaller tiles. The multiplication operation with the tiled operands is:



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 179

100 200 300 400 5000

Number of output channels

0

100

80

60

40

20

U
til

iz
at

io
n 

(%
)

Cloud TPU
Proposed Model

Roofline

Fig. 3. Measured utilization on Cloud
TPUv2 versus predicted utilization with
roofline and the proposed model.

100 200 300 400 5000

Number of output channels

0

100

80

60

40

20

U
til

iz
at

io
n 

(%
)

Smooth
Exact

Fig. 4. Proposed utilization model with
exact ceil function and its smooth appro-
ximation using the generalised logistic
function.

ŷj
hwb×s2

=
I∑

i=1

x̂i
hwb×s1

ŵij
s1×s2

(3)

where x̂i, ŵij , and ŷj are obtained from X̂, Ŵ , and Ŷ as follows:

Ŷ =
[
ŷ1 . . . ŷJ

]
, X̂ =

[
x̂1 . . . x̂I

]
, Ŵ =

⎡

⎢⎣
ŵ11 . . . ŵ1J

...
. . .

...
ŵI1 . . . ŵIJ

⎤

⎥⎦ (4)

where I and J represent the number of tiles obtained from first and second
dimensions of the matrix Ŵ and they are equal to

⌈
k1k2c

s1

⌉
1 and

⌈
f
s2

⌉
, respec-

tively. In the computation of the output matrix Ŷ , the number of tile multipli-
cation operations (x̂iŵij) is, therefore, equal to

⌈
k1k2c

s1

⌉
.
⌈

f
s2

⌉
.

As mentioned in Sect. 3.1, we assume a weight stationary dataflow, in which
the elements of ŵij are spatially distributed to the array and x̂i are loaded onto
the array row by row. Processing a tile operation, thus, takes as many cycles as
the number of rows in x̂i, namely hwb. Multiplying the cycles per tile operation
by the number of tile operations, we obtain the total execution runtime (latency)
in terms of the number of cycles as follows:

RUNTIME =
⌈

k1k2c

s1

⌉ ⌈
f

s2

⌉
hwb (5)

The utilization of processing elements can be simply calculated as the ratio of
the average throughput to the peak throughput. The average throughput (i.e.,
operations per unit time) is the total number of operations performed during
the execution time. Using Eq. 5 and the number of multiply-and-accumulate
1 The ceil function is defined as �x� = min{n ∈ Z : n ≥ x}.



180 A. C. Yüzügüler et al.

operations required to calculate Ŷ , which is equal to hwbk1k2cf , we finally obtain
the utilization as follows:

UTIL =
k1k2cf

s1s2

⌈
k1k2c

s1

⌉ ⌈
f
s2

⌉ (6)

Consider the case where the convolutional layer’s dimensions exactly match
the array dimensions: k1k2c = s1 and f = s2. Then, Eq. 6 simplifies to a utiliza-
tion of 1, and the inference platform runs at full capacity. However, if the layer
dimensions are slightly increased, for instance k1k2c = s1 + 1, the ceil function
reveals a significant drop in utilization since

⌈
k1k2c

s1

⌉
=

⌈
s1+1

s1

⌉
= 2, resulting in a

utilization of about 0.5. In other words, a slight modification in layer dimensions
may lead to a significant change in hardware utilization.

To validate the proposed utilization model and to demonstrate the impact
of channel dimensions on hardware utilization, we performed dense and convo-
lutional DNN inference with varying numbers of output channels on a Cloud
TPU v2 and measured the runtime and utilization values using Google Cloud’s
XLA op profiler tool. Figure 3 shows the result of our experiment as well as
estimated values with the proposed and roofline [36] models. Because Cloud
TPUv2 have an array size of 128 × 128, we observe significant drops in utiliza-
tion when the channel dimensions exceed multiples of 128. The roofline model,
which accounts only for memory bottleneck, does not capture these drops in
utilization, leading to a discrepancy up to 40% between measured and estimated
values. The proposed utilization model, however, accounts for the dimension
mismatches and is able to estimate the actual utilization value with an error of
only up to 2%.

Moreover, hardware utilization also varies significantly across different layer
types. For instance, depthwise convolutional layers [31], which are widely used
in mobile applications, have only a single filter (f = 1) and perform convolu-
tion operations channel-by-channel. As a result, depthwise convolutional layers
require matrix multiplications with dimensions equal to the hwb × k1k2 and
k1k2 × 1, which is much smaller than the standard convolutional layers. The
small matrix dimensions inherent to depthwise convolution often lead to a hard-
ware utilization as low as 1% [7,13], which reduces their inference performance
in array-based accelerators. In short, hardware utilization is highly sensitive to
both layer type and layer dimensions, and their impact must be accounted for
when searching for the optimal DNN architecture.

4 Proposed NAS Framework

Using the proposed utilization model, we introduce a utilization-aware differ-
entiable NAS framework. In this Section, we first explain how we approximate
the proposed utilization model, then we formulate our multi-objective loss func-
tion, and finally, we describe the NAS algorithm used to search optimal DNN
architectures.



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 181

4.1 Approximation of the Utilization Function

The ceil function in Eq. 5 is not differentiable and can only be used as a collec-
tion of point estimates. This limits the effectiveness of the neural architecture
search and allows only for evolutionary or reinforcement learning methods, which
require orders of magnitude more computational resources compared to differ-
entiable methods. For this reason, we use the generalised logistic function to
obtain a smooth approximation of ceil function:

CEILsmooth(x) =
∑

i

[
1 +

exp (−B(x − wi))
C

]−1/v

(7)

where wi are intervals between zero and a fixed value; C, B, and v are con-
stants that adjust the smoothness of the approximation. We empirically selected
C = 0.2, B = 20, and v = 0.5, which leads to a smooth and accurate approxima-
tion of the original ceil function. Figure 4 show a comparison between the true
utilization, denoted as hard, and its smooth counterpart. We verify that both
hard and smooth utilization models yield peak utilization values at the same
channel dimensions. Therefore, we replace the original utilization model with its
smooth approximation in the proposed NAS framework.

4.2 Multi-objective Loss Function

Let F be the hypothesis class of neural networks that characterizes the search
space. The candidate neural network α ∈ F implements the function fα : X → Y
where X and Y are the domains of the input and the output for our dataset D,
respectively. Let (x, y) ∈ X × Y be a sample. Then the loss function consists of
three terms:

L(x, y, α) = Lclassification(fα(x), y) + λ · Llatency(α) − β · Lutilization(α) (8)

where λ > 0 and β > 0 determine the tradeoff between the accuracy, latency
and utilization. The classification loss corresponds to cross-entropy, while the
latency and utilization terms have been discussed in the previous section.

4.3 NAS Algorithm

The search algorithm employs a hierarchical search similar to prior work
[25,35]. Concretely, it consists of three stages: microarchitecture search, macro-
architecture search and training of the selected architecture α ∈ F . The first
stage searches for layer types and connections using a model of a single cell
and fixed channel dimensions. After obtaining the optimal candidate cell, the
macroarchitecture stage constructs a model with k sequential cells sequentially
and searches for the optimal channel dimensions cell-wise using the Dmasking
method [35]. In both stages, each architectural decision (i.e., type of operator in
the former and number of channels in the latter) is modelled by a probability
simplex of dimension m equal to the number of choices and is parameterized by
Gumbel-Softmax [15].



182 A. C. Yüzügüler et al.

5 Experiments

To evaluate the effectivenes of the proposed method, we perform image classi-
fication experiments on the CIFAR10 and ImageNet100 datasets and compare
our results with prior work. In this section, we first explain our experimental
setup, then analyse the characteristics of the DNN architectures obtained with
the proposed method, and finally, report and discuss the performance results of
our experiments.

Experimental Setup. We perform experiments on widely used computer vision
datasets, namely CIFAR10 [21] and ImageNet100, which is a subset of the Ima-
genet (ILSVRC 2012) classification dataset [10] with randomly-selected 100
classes. As in prior work [25,37], the optimal-architecture search stage for both
datasets is performed on a proxy dataset, namely CIFAR10. We compare the
results of our proposed method against three hardware-aware NAS methods that
use FLOPS [12], Roofline [23], and Blackbox [37] models to estimate the latency.
In FLOPS baseline, we simply calculate the latency as the number of operations
required to perform inference divided by the theoretical peak throughput of infer-
ence platform assuming full-utilization. In Roofline baseline, we consider two
modes, namely memory-bound and compute-bound. While the compute-bound
mode is the same as the FLOPS baseline, in memory-bound mode, we calculate
the latency as the memory footprint size divided by the off-chip bandwidth. In
Blackbox baseline, we fill a lookup table with latency values for all layer types
and dimensions with a quantization of 16 obtained with the hardware simula-
tor, and retrieve these values during architecture search using nearest-neighbor
interpolation.

Search Space. The cell architecture and search space are inspired by the
DARTS architecture [25] with a few minor modifications. In all search and train-
ing stages, the candidate architecture consists of a preparatory block, k stack
of cells, and a fully connected classifier. Each cell is a multigraph whose edges
represent different operators, including depthwise separable, dilated, and stan-
dard convolutional layers as well as identity and zero operations corresponding
to residual and no connections, respectively. Candidate kernel sizes for all con-
volutional layers are 3× 3 and 5× 5. Each cell has two input nodes connected to
the output nodes of two previous cells. Each convolution operation has a stride
of 1 and is followed by batch normalization and ReLU activation functions. The
channel search space corresponds to a dimension range of 64 to 280 with incre-
ments of 8. For CIFAR10, we use a stack of three cells (k = 3), each of which is
followed by a 2 × 2 maxpooling layer. To accomodate the increased complexity
of ImageNet100, we use a stack of nine cells (k = 9), where only one of every
three cells is followed by maxpooling. More details about the search space are
given in appendix.



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 183

Fig. 5. Experiments on CIFAR10 dataset. Upper left corner is optimal. The dashed
lines connect the points in the Pareto Front of each method.

NAS Settings. During the microarchitecture and channel search stages, the
first 80% of the batches of each epoch is used to train model weights, while the
last 20% is used to train the architectural parameters using a batch size of 64.
The weights are optimized with Stochastic Gradient Descent (SGD) with learn-
ing rate 0.05, momentum 0.9 and weight decay 3e − 4, while the architectural
parameters use Adam [19] with learning rate 0.1. The microarchitecture and
channel search stages last 10 and 30 epochs, respectively. To improve conver-
gence, the temperature parameter τ of the Gumbel-Softmax is annealed expo-
nentially by 0.95 per epoch from the initial value of 1. For fairness, we use the
same NAS algorithm and hyperparameters for all baselines and the proposed
method. After the search stages are completed, the selected DNN architecture
is trained from scratch. In CIFAR10 experiments, we train the models for 200
epochs with a batch size of 64 using the original image resolution of 32 × 32.
In ImageNet100 experiments, we train the models for 70 epochs with a batch
size of 256 using an input resolution of 128 × 128. For both datasets, we use a
preprocessing stage consisting of normalization, random crop and vertical flip.

Metrics. For all experiments, we report top-1 classification accuracy from the
test datasets. Runtime and utilization values are measured by running the DNN
models on our custom-made cycle-accurate hardware simulator. Correctness of
our hardware simulator is validated against an RTL design of a systolic array
architecture. During the hardware simulations, we assumed an array size of 128×
128 as in Cloud TPUv4 [17] with a 15 MB on-chip memory and an 80 GB/s off-
chip memory bandwidth and 1 GHz clock frequency. To quantify the trade-off
between accuracy and latency, we calculate the hypervolume score [43], which is
calculated as the volume of the union of axis-aligned rectangles from each point
in a Pareto front [11]. We select the reference point to calculate the hypervolume



184 A. C. Yüzügüler et al.

xl−1 xl−2

+ +

+

xl

U-Boost
xl−1 xl−2

+ +

+

xl

FLOPS

Convolution Depthwise Separable Convolution

Dilated Convolution

Zero

Identity+ Tensor addition

Fig. 6. Visualization of the CIFAR10 cells obtained from U-Boost and FLOPS models
during the microarchitecture search stage.

score as the perfect oracle: 100% accuracy with zero runtime. Consequently, lower
scores indicate design points that are close to the ideal.

5.1 CIFAR10 Experiments

To evaluate the proposed method on CIFAR10 dataset, we set the utilization
coefficient β = 1 in Eq. 8 and vary the latency coefficient λ ∈ {0.1, 0.5, 1, 5}
for all baselines to control accuracy-latency trade-off. Figure 5 shows the accu-
racy and latency of the DNN architectures found by the proposed method and
baselines. We observe that U-Boost significantly improves the accuracy-latency
Pareto front with a 2.8 − 4× speedup in runtime compared to baseline methods
while achieving comparable accuracy. The improvement in the Pareto front is
also reflected in the hypervolume metric: U-Boost has a hypervolume of 0.39
whereas FLOPS, Roofline, and Blackbox baselines have hypervolumes of 2.68,
1.86, and 1.47, respectively, corresponding to an improvement in the range of
3.7 − 6.8×.

The reason why U-Boost achieves better accuracy-latency Pareto front is
mainly because the selected cell microarchitecture and channel dimensions are
well-suited for the target inference platform. To validate this insight, we ana-
lyze and compare the cell microarchitecture and channel dimensions selected
by U-Boost and other baselines. Figure 6 depicts examples of cell microarchi-
tectures selected by U-Boost and FLOPS baseline. We observe that the cell
microarchitecture selected by FLOPS baseline mostly consists of depthwise sep-
arable convolutional layers because they require a smaller number of operations.
However, these layers run at low utilization at the inference platforms, which
increases their latency. By contrast, the cell microarchitecture selected by U-
Boost consists of standard or dilated convolutional layers because U-Boost is



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 185

32 64 96 128 160 192 224 256
Number of output channels

0

10

20

30

40

50

H
ist
og
ra
m

U-Boost
Blackbox
FLOPS
Utilization

0

20

40

60

80

100

U
til
iz
at
io
n
(%

)

Fig. 7. Histogram of channel dimensions found by U-Boost as well as FLOPS and
Blackbox baselines on CIFAR10 dataset.

utilization-aware and it chooses layers that run at higher utilization in target
platforms, reducing the latency.

Besides the cell microarchitecture, we also analyze the channel dimensions
selected by the U-Boost and other baselines. Figure 7 shows the histogram of
channel dimensions selected by U-Boost, FLOPS, and Blackbox baselines. We
observe that the channel dimensions selected by FLOPS and Blackbox baselines
are mostly concentrated on each end of the search space, which is bounded by
channel dimensions of 64 and 280, rather than dimensions that correspond to
high utilization. As a consequence, DNN architectures with such layers run at low
utilization in target inference platforms. Unlike FLOPS and Blackbox baselines,
we observe that the channel dimensions selected by U-Boost are concentrated on
either 128 or 256, which are multiples of the array size and correspond to high
utilization. As such, the DNN architectures selected by U-Boost run at high
utilization, accelerating the inference at target platforms.

5.2 ImageNet100 Experiments

To show the effectiveness of the proposed method on a more complex dataset,
we also perform a set of experiments on ImageNet100. For this set of exper-
iments, we set the latency coefficient λ ∈ {0.1, 1.0} to control the accuracy-
latency tradeoff. Table 1 reports the results of these experiments. We observe
that FLOPS and Roofline baselines result in poor inference hardware utilization
(< 10%) as they estimate hardware performance inaccurately during the archi-
tecture search. The second best method in terms of utilization, namely Blackbox,
improves the hardware utilization to 69% as it can estimate the hardware per-
formance accurately during the search. Still, around 30% of hardware resources
remain unutilized during inference as the Blackbox method can not find the
optimal channel dimension since it operates on a discrete search space and is
unable to exploit gradient information to successfully navigate the search.



186 A. C. Yüzügüler et al.

Table 1. Experimental results for ImageNet100 experiments. Underlined measurements
show best per column (λ), bold show best per metric. Number of parameters reported
in millions.

λ Acc. (%, ↑) Runt. (ms, ↓) Util. (%, ↑) HV (↓) # Params

0.1 1.0 0.1 1.0 0.1 1.0 (across λ) 0.1 1.0

Blackbox 87.5 87.8 4.8 4.05 69.3 68.5 49.4 70.5 55.5

Roofline 86.5 84.0 4.7 3.5 6.8 4.8 72.2 13.7 5.7

FLOPS 87.2 78.4 6.1 3.45 5.5 3.1 108 14.4 3.5

U-Boost 87.8 87.9 2.2 1.05 91.1 78.6 12.7 47.3 30.1

By contrast, the proposed U-Boost method, which both estimates the hard-
ware performance accurately and uses the information from gradients to find the
optimal cell microarchitecture and channel dimensions, achieves inference hard-
ware utilization up to 91%, which is 1.3× higher than the second best baseline.
Consequently, DNN architectures obtained with U-Boost achieve the best top-1
accuracy (87.9%), which is 0.1%, 0.7%, and 1.4% higher than the best of Black-
box, FLOPS, and Roofline baselines, respectively, while achieving speedups of
2.1× and 3.3× compared to the second best baselines across λ values. These
results reiterate the importance of incorporating and correctly modeling utiliza-
tion in hardware-aware NAS for computer vision tasks.

6 Conclusion

In this paper, we have illustrated the importance of resource utilization in run-
time characteristics on target inference platforms. We demonstrated that by opti-
mizing DNN architectures in terms of resource utilization as well as task accuracy
and latency, we achieve significant improvement in accuracy-latency Pareto front.
We proposed a utilization-aware differentiable NAS method, namely U-Boost.
We provided an analytical model for resource utilization in widely used array-
based hardware accelerators, which allows estimating the utilization efficiently
and accurately during the architecture search. Through extensive experiments on
popular computer vision datasets and detailed hardware simulations, we showed
that the proposed U-Boost NAS method achieves 2.8 − 4× inference latency
speedup with similar or improved accuracy, compared to utilization-agnostic
NAS methods. This work highlights the importance of a holistic approach for
hardware-aware NAS and the proposed method enables the design of DNNs with
improved performance in inference accelerators.

Acknowledgements. The work of Ahmet Caner Yüzügüler was supported by the
Hasler Foundation (Switzerland) and Nikolaos Dimitriadis was supported by Swisscom
(Switzerland) AG.



U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 187

References

1. Bannon, P., Venkataramanan, G., Sarma, D.D., Talpes, E.: Computer and redun-
dancy solution for the full self-driving computer. In: 2019 IEEE Hot Chips 31
Symposium (HCS), Cupertino, CA, USA, 18–20 August 2019, pp. 1–22. IEEE
(2019)

2. Bender, G., Kindermans, P., Zoph, B., Vasudevan, V., Le, Q.V.: Understanding
and simplifying one-shot architecture search. In: Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, 10–15 July 2018, vol. 80, pp. 549–558. PMLR (2018)

3. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12–14 December 2011, Granada, Spain, pp. 2546–2554 (2011)

4. Cai, H., Zhu, L., Han, S.: Proxylessnas: direct neural architecture search on target
task and hardware. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

5. Chang, J., Zhang, X., Guo, Y., Meng, G., Xiang, S., Pan, C.: DATA: differen-
tiable architecture approximation. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 874–884 (2019)

6. Chen, Y., Emer, J.S., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: 43rd ACM/IEEE Annual Inter-
national Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea,
18–22 June 2016, pp. 367–379. IEEE Computer Society (2016)

7. Cho, H.: Risa: a reinforced systolic array for depthwise convolutions and embedded
tensor reshaping. ACM Trans. Embed. Comput. Syst. 20(5s), 53:1-53:20 (2021)

8. Choi, K., Hong, D., Yoon, H., Yu, J., Kim, Y., Lee, J.: DANCE: differentiable accel-
erator/network co-exploration. In: 58th ACM/IEEE Design Automation Confer-
ence, DAC 2021, San Francisco, CA, USA, 5–9 December 2021, pp. 337–342. IEEE
(2021)

9. Dai, X., et al.: Chamnet: towards efficient network design through platform-aware
model adaptation. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 11398–11407.
Computer Vision Foundation/IEEE (2019)

10. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-
scale hierarchical image database. In: 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), 20–25 June 2009, Miami,
Florida, USA, pp. 248–255. IEEE Computer Society (2009)

11. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA) for multiobjective
optimization. C.R. Math. 350, 313–318 (2012)

12. Gordon, A., et al.: Morphnet: fast & simple resource-constrained structure learning
of deep networks. In: 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1586–
1595. Computer Vision Foundation/IEEE Computer Society (2018)

13. Gupta, S., Akin, B.: Accelerator-aware neural network design using automl. CoRR
abs/2003.02838 (2020)

14. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October
2017, pp. 2980–2988. IEEE Computer Society (2017)



188 A. C. Yüzügüler et al.

15. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

16. Jordà, M., Valero-Lara, P., Peña, A.J.: Performance evaluation of cudnn convolu-
tion algorithms on NVIDIA volta gpus. IEEE Access 7, 70461–70473 (2019)

17. Jouppi, N.P., et al.: Ten lessons from three generations shaped Google’s TPUv4i:
Industrial product. In: 48th ACM/IEEE Annual International Symposium on Com-
puter Architecture, ISCA 2021, Valencia, Spain, 14–18 June 2021, pp. 1–14. IEEE
(2021)

18. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, 24–28 June 2017, pp. 1–12. ACM
(2017)

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

20. Kokkinos, I.: Ubernet: training a universal convolutional neural network for low-
, mid-, and high-level vision using diverse datasets and limited memory. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, 21–26 July 2017, pp. 5454–5463. IEEE Computer Society (2017)

21. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

22. Kung, H.T.: Why systolic architectures? Computer 15(1), 37–46 (1982)
23. Li, S., et al.: Searching for fast model families on datacenter accelerators. In: IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual,
19–25 June 2021, pp. 8085–8095. Computer Vision Foundation/IEEE (2021)

24. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5 2

25. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, 6–9 May 2019. OpenReview.net (2019)

26. Marchisio, A., Massa, A., Mrazek, V., Bussolino, B., Martina, M., Shafique, M.:
Nascaps: a framework for neural architecture search to optimize the accuracy and
hardware efficiency of convolutional capsule networks. In: IEEE/ACM Interna-
tional Conference On Computer Aided Design, ICCAD 2020, San Diego, CA, USA,
2–5 November 2020, pp. 114:1–114:9. IEEE (2020)

27. Nayman, N., Noy, A., Ridnik, T., Friedman, I., Jin, R., Zelnik-Manor, L.: XNAS:
neural architecture search with expert advice. In: Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December, pp. 1975–1985 (2019)

28. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. In: Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15
July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 4092–4101.
PMLR (2018)

https://doi.org/10.1007/978-3-030-01246-5_2


U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search 189

29. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: The 33rd AAAI Conference on Artificial Intelligence,
AAAI 2019, The 31st Innovative Applications of Artificial Intelligence Conference,
IAAI 2019, The 9th AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2019, Honolulu, Hawaii, USA, 27 January - 1 February 2019, pp.
4780–4789. AAAI Press (2019)

30. Samajdar, A., Joseph, J.M., Zhu, Y., Whatmough, P.N., Mattina, M., Krishna, T.:
A systematic methodology for characterizing scalability of DNN accelerators using
scale-sim. In: IEEE International Symposium on Performance Analysis of Systems
and Software, ISPASS 2020, Boston, MA, USA, 23–25 August 2020, pp. 58–68.
IEEE (2020)

31. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2:
inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22
June 2018, pp. 4510–4520. Computer Vision Foundation/IEEE Computer Society
(2018)

32. Smithson, S.C., Yang, G., Gross, W.J., Meyer, B.H.: Neural networks designing
neural networks: multi-objective hyper-parameter optimization. In: Proceedings
of the 35th International Conference on Computer-Aided Design, ICCAD 2016,
Austin, TX, USA, 7–10 November 2016, p. 104. ACM (2016)

33. Stamoulis, D., et al.: Single-path nas: designing hardware-efficient convnets in less
than 4 hours. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M.,
Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11907, pp. 481–497.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46147-8 29

34. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, 16–20 June 2019, pp. 2820–2828. Computer Vision Foun-
dation/IEEE (2019)

35. Wan, A., et al.: Fbnetv2: differentiable neural architecture search for spatial and
channel dimensions. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 12962–
12971. Computer Vision Foundation/IEEE (2020)

36. Williams, S., Waterman, A., Patterson, D.A.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

37. Wu, B., et al.: Fbnet: hardware-aware efficient convnet design via differentiable
neural architecture search. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 10734–
10742. Computer Vision Foundation/IEEE (2019)

38. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search.
In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

39. Xiong, Y., et al.: Mobiledets: searching for object detection architectures for mobile
accelerators. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, 19–25 June 2021, pp. 3825–3834. Computer Vision Founda-
tion/IEEE (2021)

40. Xu, Y., et al.: PC-DARTS: partial channel connections for memory-efficient archi-
tecture search. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020)

https://doi.org/10.1007/978-3-030-46147-8_29


190 A. C. Yüzügüler et al.

41. Yang, T.-J., et al.: NetAdapt: platform-aware neural network adaptation for mobile
applications. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11214, pp. 289–304. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01249-6 18

42. Zhang, L.L., Yang, Y., Jiang, Y., Zhu, W., Liu, Y.: Fast hardware-aware neural
architecture search. In: 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020,
pp. 2959–2967. Computer Vision Foundation/IEEE (2020)

43. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

44. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

45. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp.
8697–8710. Computer Vision Foundation/IEEE Computer Society (2018)

https://doi.org/10.1007/978-3-030-01249-6_18
https://doi.org/10.1007/978-3-030-01249-6_18

	U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search
	1 Introduction
	2 Related Work
	3 Modeling Resource Utilization in Inference Platforms
	3.1 Dataflows on Hardware Accelerators
	3.2 Proposed Utilization Model

	4 Proposed NAS Framework
	4.1 Approximation of the Utilization Function
	4.2 Multi-objective Loss Function
	4.3 NAS Algorithm

	5 Experiments
	5.1 CIFAR10 Experiments
	5.2 ImageNet100 Experiments

	6 Conclusion
	References




