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Abstract. Few-shot action recognition aims to recognize novel action
classes using only a small number of labeled training samples. In this
work, we propose a novel approach that first summarizes each video into
compound prototypes consisting of a group of global prototypes and a
group of focused prototypes, and then compares video similarity based
on the prototypes. Each global prototype is encouraged to summarize
a specific aspect from the entire video, e.g., the start/evolution of the
action. Since no clear annotation is provided for the global prototypes,
we use a group of focused prototypes to focus on certain timestamps in
the video. We compare video similarity by matching the compound pro-
totypes between the support and query videos. The global prototypes are
directly matched to compare videos from the same perspective, e.g., to
compare whether two actions start similarly. For the focused prototypes,
since actions have various temporal variations in the videos, we apply
bipartite matching to allow the comparison of actions with different tem-
poral positions and shifts. Experiments demonstrate that our proposed
method achieves state-of-the-art results on multiple benchmarks.

Keywords: Few-shot action recognition · Compound prototype ·
Prototype matching

1 Introduction

Difficulty in collecting large-scale data and labels promotes the research on few-
shot learning. Built upon the success of few-shot learning for image understand-
ing tasks [10,16,26,33,36,37,53,54,62], many begin to focus on the few-shot
action recognition task [28]. Once realized, such techniques could greatly allevi-
ate the cost of video labeling [20] and promote real-world applications where the
labels in certain scenarios are hard to acquire [25].

Most few-shot action recognition works determine the category of a query
video using its similarity to the few labeled support videos. Many works [18,73,
74] follow ProtoNet [47] to first learn a prototype for each video and compute the
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video similarity based on the similarity of the prototypes. To better consider the
temporal dependencies in videos (e.g., temporal ordering and relation), recent
works construct sub-sequence prototypes using different parts of the videos and
calculate video similarity by matching the support-query prototypes [5,44].

While temporal dependencies are considered, limitations still exist in previ-
ous methods. Firstly, without considering spatial information, previous methods
cannot fully exploit the spatiotemporal relation in the videos for distinguishing
actions like “put A on B” and “put A besides B” because they differ only in
the relative position of the objects. Secondly, the sub-sequence prototypes come
from fixed temporal locations, so that they cannot well handle the actions that
happen at different speeds. Thirdly, it is computationally costly to exhaustively
compute the similarity between all pairs of sub-sequence prototypes [44].

To address the limitations and achieve more robust few-shot action recogni-
tion, we explore how to: (1) better generate prototypes that can robustly encode
spatiotemporal relation in the videos, (2) enable the prototypes to flexibly encode
the actions done with different lengths and speeds, and (3) match the prototypes
between two videos without exhaustively comparing all prototype pairs.

One straightforward way to address the first point is to use object features
extracted from object bounding boxes [22]. However, we observed in our prelim-
inary experiments only limited performance gain when previous methods [44,70]
directly use them as additional inputs. In this work, we propose a multi-relation
encoder to effectively encode the object features, by considering the spatiotem-
poral relation among objects across frames, the temporal relation between dif-
ferent frame-wise features, as well as the relation between object features and
frame-wise features.

For the second and third points, we propose to generate global prototypes that
consider all frames in the input video. This is done by taking advantage of the self-
attention mechanism of Transformers [51]. Since it is difficult to represent a wide
variety of actions by using a single prototype, we instead use a group of prototypes
to represent each action. We match the support-query similarity by fixed 1-to-1
matching, i.e., the i-th prototype of the query video is always matched with the
i-th prototype of the support video. Thus, during training, each prototype will try
to capture a certain aspect of the video. To avoid all prototypes to be the same, we
apply a diversity loss when learning the prototypes, so that they are encouraged
to capture different aspects of the action (e.g., one prototype captures the start
of the action, and another prototype captures the action evolution).

However, learning prototypes to represent different aspects of the action (e.g.,
the start/end of the action) is a difficult task even with annotation [9,40,41].
Thus, it is not sufficient to compute video similarity only by the global proto-
types. To make the similarity measurement more reliable, we generate another
group of focused prototypes, where each prototype is encouraged to focus on
certain timestamps of the video. Since actions may happen in different parts of
the videos at different speeds [34], it is not correct to compare the same times-
tamp between two videos. We therefore use bipartite matching to match the
focused prototypes between the support and query videos, so that comparison
of actions with different lengths and speeds can be done.
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Our method uses the compound of two groups of prototypes, which we call
compound prototypes, for calculating video similarity. On multiple benchmark
datasets, our method outperforms previous methods significantly when only one
example is available, demonstrating the superiority of using our compound pro-
totypes in similarity measurement.

To summarize, our key contributions include:

– A novel method for few-shot action recognition based on generating and
matching compound prototypes.

– Our method achieves state-of-the-art performance on multiple benchmark
datasets [7,19,30], outperforming previous methods by a large margin.

– A detailed ablation study showing the usefulness of leveraging object infor-
mation for few-shot action recognition and demonstrating how the two groups
of prototypes encode the video from complementary perspectives.

2 Related Works

Few-Shot Image Classification methods can be broadly divided into three
categories. The transfer-learning based methods [14,45,57] use pre-training and
fine-tuning to increase the performance of deep backbone networks on few-shot
learning. The second line of works focuses on rapidly learning an optimized classi-
fier using limited training data [1,2,17,21,46,58,67]. The third direction is based
on metric learning, whose goal is to learn more generalizable feature embeddings
under a certain distance metric [27,29,47,52]. The key to metric-learning based
methods is to generate robust representations of data under a certain metric, so
that it may generalize to novel categories with few labeled samples. Our work
falls into this school of research and focus on the more challenging video setting.

Few-Shot Action Recognition methods [3,24,34,42,43,50,61,74,75]
mainly fall into the metric-learning framework. Many works follow the scheme
of ProtoNet [47] to compute video similarity based on generated prototypes.
For learning better prototypes, ProtoGAN [32] synthesizes additional feature,
CMN [72,73] uses a multi-layer memory network, while ARN [69] uses jigsaws for
self-supervision and enhances the video-level representation via spatial and tem-
poral attention. There are also methods that perform pretraining with semantic
labels [56,59,60] or use additional information such as depth [18] to augment
video-level prototypes. Our method uses another form of additional informa-
tion: the object bounding box from pretrained object detectors [22].

The temporal variance of actions form a major challenge in few-shot
action recognition task [34]. To better model temporal dependencies, recent
researches put more focus on generating and matching sub-video level proto-
types. OTAM [5] uses a generalized dynamic time warping technique [8] to
monotonously match the prototypes between query and support videos. ITA-
Net [70] first implicitly aggregates information for each frame using other frames,
and conducts a 1-to-1 matching of all prototypes. However, these two methods
use frame-wise prototypes, thus cannot well capture the higher-level temporal
relation in multiple frames. Recently, TRX [44] constructs prototypes of different
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cardinalities for query and support videos, and calculate similarity by matching
all prototype pairs. However, since TRX can only match prototypes with the
same cardinality (e.g., three-frame prototypes matches with three-frame proto-
types), it is hard to align the actions with different evolving speeds (e.g., one
takes 2 frames while the other takes 4 frames). Also, the exhaustively matching
of all pairs is computationally expensive.

We summarize three main differences compared with previous works: (1)
We encode spatiotemporal object information to form more robust prototypes.
(2) We generate a compound of global and focused prototypes to represent the
actions from diverse perspectives. (3) The two groups of prototypes are efficiently
matched to robustly compute video similarity.

Transformers [51] have recently acquired remarkable achievements in com-
puter vision [6,13,15,38,64,68]. FEAT [65] represents early work that applies
transformer in the few-shot learning task, and TRX [44] first introduces Trans-
former [15] into the few-shot action recognition task. Different from TRX, we
apply a Transformer encoder-decoder to generate compound prototypes, and
show that this is more effective in the few-shot action recognition scenario.

3 Method

3.1 Problem Setting

In few-shot action recognition, a model aims to recognize an unlabeled video
(query) into one of the target categories each with a limited number of labeled
examples (support set) [5,44]. We follow the common practice [17,52] to use
episodic training, where in each episode a C-way K-shot problem is sampled:
the support set S = {Xj

s}C×K
j=1 is composed of C × K labeled videos from C

different classes where each class contains K samples. The query set contains N
unlabeled videos Q = {Xi

q}N
i=1. The goal is to classify each video in the query

set as one of the C classes.

3.2 Proposed Method

We propose a new method for few-shot action recognition by generating and
matching compound prototypes between query and support videos. As shown in
Fig. 1, given the video input, a feature embedding network first extracts global
(frame-wise) features Fg. To better model the actions involving multiple objects,
we obtain object bounding boxes by a pretrained object detector [22], and extract
object features Fo using the same embedding network. Then a multi-relation
encoder uses Fg and Fo to output multi-relation features Fm containing spa-
tiotemporal global-object relations. Then a compound prototype decoder gen-
erates global prototypes Pg and focused prototypes Pf for each video. During
similarity calculation, we use fixed 1-to-1 matching on the global prototypes and
bipartite matching on the focused prototypes, encouraging the similarity to be
computed robustly from diverse perspectives. We introduce the details of each
component below.
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Fig. 1. Illustration of our proposed method on a 3-way 1-shot problem. First, the
videos are processed by an embedding network to acquire global (frame-level) features
Fg and object features Fo. Features Fg and Fo are equipped with 1D and 3D positional
encoding (PE), respectively, and then used by a multi-relation encoder (Sect. 3.2) to
encode global-global, global-object and object-object information into a multi-relation
feature Fm. Using Fm, a Transformer-based compound prototype decoder transforms
the learnable tokens Tg,Tf into compound prototypes that represent the input video
(Sect. 3.2). The compound prototypes is consisted of several global prototypes Pg

(green squares) and focused prototypes Pf (blue squares). They are applied with dif-
ferent loss and different matching strategies, so that each global prototype captures a
certain aspect of the action summarized from the whole video, and each focused pro-
totype focuses on a specific temporal location of the video. The final similarity score
is calculated as the average similarity of all matched prototype pairs between support
and query videos. (Color figure online)

Feature Embedding. For each input video X ∈ S ∪ Q, we sample T frames
following the sampling strategy of TSN [55]. We use an embedding network to
acquire a global (frame-level) feature representation for each video Fg ∈ R

T×d,
where d is the feature dimension. Additionally we extract object features via
ROI-Align [22] using the predicted bounding boxes on each frame. We use only
B most confident boxes on each frame, forming object features Fo ∈ R

BT×d.

Multi-relation Encoder. To better generate prototypes that are discrimina-
tive for actions involving multiple objects, we propose to use a multi-relation
encoder to encode the spatiotemporal information from Fg and Fo. We specif-
ically consider the following three relations: global-global (frame-wise) relation,
global-object relation, object-object relation, and apply transformer [51] as the
base architecture to allow relation modeling across frames. As shown in Fig. 1,
the encoder consists of three relation encoding transformers (RETs). The global-
global RET (RETgg) and the object-object RET (REToo) are identical except
the input. They take as input the global feature Fg and the object feature Fo

respectively, and use the input to generate the query Q, key K and value V
vectors for the transformer:

Fgg = RET gg(Q = K = V = Fg) (1)
Foo = RET oo(Q = K = V = Fo), (2)
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The global-object RET (RETgo) works differently, where it maps Fg as query
vector, while Fo as key and value vectors:

Fgo = RET go(Q = Fg, K = V = Fo). (3)

The output size of each RET is the same as its input query vector. Thus, each
of the T frame would have B +2 features with dimension d. We concatenate the
three outputs into a multi-relation feature Fm ∈ R

(B+2)T×d.
Positional encoding (PE) is shown to be effective in transformer-based archi-

tectures [38,39,51]. We also use PE but omit in the equations for simplicity. For
Fg we use 1D PE to encode the temporal location of each frame, and for Fo we
apply 3D PE, encoding both spatial and temporal location of each object.

Compound Prototype Decoder. The compound prototype decoder also fol-
lows the transformer architecture [6,11,49,51], so that the prototypes can be
generated by considering feature of all frames via self-attention. As shown in
Fig. 1, the input to the prototype decoder are two groups of learnable tokens
Tg ∈ R

mg×d and Tf ∈ R
mf ×d. A multi-head attention layer first encodes

the tokens into T̂g and T̂f , then another multi-head attention layer trans-
forms them into two groups of prototypes Pg = {pg,k}mg

k=1 ∈ R
mg×d and

Pf = {pf,k}mf

k=1 ∈ R
mf ×d. For simplicity, we omit the subscripts g,f and all

normalization layers, thus the equation can be written as:

Q = T̂WQ, K = FmWK , V = FmWV , (4)

where WQ,WK ,WV ∈ R
d×d are linear projection weights, then we have

A = softmax(
QKT

√
d

), P = FFN(AV ), (5)

where A ∈ R
m×(B+2)T is the self-attention weights, and FFN denotes feed for-

ward network.
To encourage the prototypes to capture different aspects of the action, we

apply constraints on the two groups of prototypes individually. For the global
prototypes Pg, we add a diversity loss to maximize their diversity:

Ldiv =
∑

i�=j

sim(pg,i, pg,j), (6)

where sim denotes the cosine similarity function.
Since learning Pg to robustly represent each aspect of the action (e.g., the

start of the action) is difficult even with annotation [63,66]. To increase the over-
all robustness, for the focused prototypes Pf , we instead add regularization on
the self-attention weight Af so that different pf can focus on different temporal
locations of the video:

Latt =
∑

i�=j

sim(αf,i, αf,j). (7)
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Here αf,i ∈ R
(B+2)T denotes the i-th row in Af .

Compound Prototype Matching. Cooperating with the compound proto-
types, we use different matching strategies to calculate the overall similarity
between two videos. As shown in Fig. 1, for the global prototypes Pg, we match
the query and support prototypes in a 1-to-1 manner, i.e., the i-th prototype of
the query video is always matched with the i-th prototype of the support video.
To calculate the global prototypes’ overall similarity score between video a and
video b, we average the similarity score of all the mg global prototypes:

sa,b
g =

1
mg

mg∑

k=1

sim(pa
g,k, pb

g,k). (8)

Thus, to maximize the similarity score of correct video pairs and minimize the
similarity of incorrect video pairs during episodic training, each pg will try to
encode a certain aspect of the action, e.g., the start of the action. This phe-
nomenon is supported by our experiments in Sect. 4.

For the focused prototypes Pf , we apply a bipartite matching-based similar-
ity measure. Since different actions may happen in different temporal positions
in the videos, the bipartite matching enables the temporal alignment of actions,
allowing the comparison between actions of different lengths and at different
speeds. Formally speaking, for P a

f of video a and P b
f of video b, we find a bipar-

tite matching between these two sets of prototypes by searching for the best
permutation of mf elements with the highest cosine similarity using the Hun-
garian algorithm [31]. Denote σ as the best permutation, the similarity score of
P a

f and P b
f is calculated by:

si,j
d =

1
mf

mf∑

k=1

sim(pa
f,k, pb

f,σ(k)). (9)

Finally, the similarity score is computed by a weighted average of sg and sf :
sa,b = λ1s

a,b
g + λ2s

a,b
f . During training, this similarity score is directly regarded

as logits for the cross-entropy loss Lce. The total loss function is a weighted sum
of three losses: L = w1Lce + w2Ldiv + w3Latt. During inference, we assign the
label of the query video as the label of the most similar video in the support set.

4 Experiments

We conduct experiments on four public datasets. Kinetics [7] and Something-
something V2 (SSv2) [19] are two most frequently used benchmarks for few-shot
action recognition. These two datasets are both splitted as 64/12/24 classes for
train/val/test. For SSv2, we use both the split from CMN [72] (SSv2◦) and the
split from OTAM [5] (SSv2�). Recently, Zhang et al. [69] proposed new splits
for HMDB [30] and UCF [48] datasets. We also conduct experiments on these
two datasets using the split from [69].
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Since our method’s performance is competitive in both standard 1-shot 5-
way setting and 5-shot 5-way setting, in this section we only demonstrate 1-shot
results and place 5 shot results in the supplementary due to page limitation.
Following previous works, we report the average result of 10,000 test episodes in
the experiments.

Baselines. We compare our method with recent works reporting state-of-the-
art performance, including MatchNet [52], CMN [73], OTAM [5], TRN [71],
ARN [69], TRX [44], ITA-Net [70]. Following [74], we also compare with the few-
shot image classification model FEAT [65] which is also based on transformers.
Specifically, since no previous works used object detector in few-shot action
recognition, for a fair comparison with previous works, we conduct experiments
in two settings: (1) we give baseline methods the same input (both Fg and
Fo) as our method and compare the performance. We denote the baselines as
“Baseline+” in this setting. (2) We discard the object detector in our method
and use only Fg as input and RETgg as the encoder. We denote our method in
this setting as “Ours-”.

To enable previous methods to take object features as input, we choose to
compare with methods TRX+, FEAT+, and ITA-Net+ because they also use
transformer-based architectures like our method, thus no modification on the
model architecture is needed. For completeness, we also compare MatchNet+
and TRN+ without transformer architecture. For these two methods, we reshape
the object features Fo to F ′

o ∈ R
T×Bd as input. Since these two works are not

designed to input the object features, we train an ensembled network, one with
Fg as input and the other with F ′

o as input. We use the public implementa-
tion of TRX and implement ITA-Net by ourselves. More details about baseline
implementation can be found in the supplementary material. Recently, several
works [4,56,74] pretrain the backbone on the meta-training set and found this
pretraining to be useful for few-shot action recognition. To compare with the
majority of prior works, we do not follow this setting in our experiments.

Implementation Details. We use ResNet-50 [23] pretrained on ImageNet [12]
as the backbone of embedding network, and a fixed Mask-RCNN [22] trained
on COCO dataset [35] is used as the bounding box extractor. We select B = 3
most confident object bounding boxes per frame. The pre-processing steps follow
OTAM [5] where we also sample T = 8 frames with random crop during training
and center crop during inference. The model and the backbone is optimized using
SGD with an initial learning rate of 0.001 and decaying every 20 epochs by 0.1.
The embedding network except its first BatchNorm layer is fine-tuned with 1/10
learning rate. The training is stopped when the loss on the validation set is
greater than the average of the previous 5 epochs. Unless otherwise stated, we
report result using mg = mf = 8, λ1 = λ2 = 0.5, w1 = 1, w2 = w3 = 0.1.
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Table 1. Results of 5-way 1-shot experiments on 5 dataset splits. Methods marked
with * indicates results of our implementation with the original reported results shown
in parenthesis. The bottom and upper block are results with and without using object
features, respectively. For ITA-Net, result on SSv2◦ comes from Table 5 of [70].

Method SSv2◦ SSv2� Kinetics HMDB UCF

MatchNet∗ [52] 34.9 (31.3) 35.1 54.6 (53.3) 50.1 70.3

CMN [73] 36.2 – 60.5 – –

ARN [69] – – 63.7 45.5 66.3

OTAM [5] – 42.8 73.0 – –

TRN∗ [5,71] 35.9 39.6 (38.6) 68.6 (68.4) 52.3 76.3

FEAT∗ [65] 38.4 45.5 73.0 56.1 75.8

ITA-Net∗ [70] 38.4 (38.6) 46.1 72.6 56.5 76.0

TRX∗ [44] 37.1 (36.0) 41.5 (42.0) 64.6 (63.6) 54.4 77.7

Ours- 38.9 49.3 73.3 60.1 71.4

MatchNet+∗ 35.6 36.5 57.6 52.8 72.8

TRN+∗ 38.1 41.3 71.4 55.3 79.7

FEAT+∗ 43.1 46.6 73.9 61.5 79.7

ITA-Net+∗ 43.7 48.9 74.4 61.6 79.5

TRX+∗ 39.4 44.2 71.8 60.1 81.2

Ours 57.1 59.6 81.0 80.3 79.0

4.1 Results

Table 1 shows result comparison with baseline methods. In the upper block,
our model slightly outperforms previous works even without using the object
detector on 4 of the 5 dataset/splits. This suggests that compared with other
prototype generation methods, our proposed approach to generate and match
the compound prototypes enables better similarity measurement for few-shot
action recognition. From the comparison of baseline methods with their “+”
variants, we can see that these methods cannot fully exploit the information
brought by the object features. When object features are added as input, our
full model significantly outperforms previous methods that use the same input.
Compared with the performance of our method in the upper block, the object
features significantly stimulates the potential of our proposed compound proto-
type matching scheme, by improving the accuracy on the SSv2 dataset for over
10%, the Kinetics dataset for 7.7% and the HMDB dataset for over 20%. In the
ablation study, we show even better performance can be achieved by carefully
adjusting the number of prototypes mg and mf .
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Table 2. Results comparison of different meth-
ods when using/not using object information,
and using/not using our proposed encoder.

Encoding Prototype SSv2◦ SSv2� Kinetics

Backbone only

(w/o. object

features)

None 34.9 35.1 54.6

ITA-Net 38.4 45.5 72.6

TRX 37.1 41.5 64.6

Ours 37.9 48.5 72.5

Our encoder

(w/o. object

features)

None 35.3 37.2 59.4

ITA-Net 38.6 46.5 73.0

TRX 38.2 44.4 68.9

Ours 38.9 49.3 73.3

Concat (w.

object

features)

None 35.6 36.5 57.6

ITA-Net+ 43.7 48.9 74.4

TRX+ 39.4 44.2 71.8

Ours 42.1 49.1 79.2

Our encoder

(w. object

features)

None 39.1 42.5 58.4

ITA-Net+ 44.0 50.7 73.3

TRX+ 46.3 48.4 73.4

Ours 57.1 59.6 81.0

Table 3. Results comparison of our
model using different encoding rela-
tions with different number of global
prototypes and focused prototypes.

Setting Fgg Fgo Foo SSv2� Kinetics

mg = 8,

mf = 8
� × × 49.3 73.3

× � × 47.3 69.1

× × � 55.5 73.6

� � × 49.6 75.0

� × � 57.7 79.7

× � � 57.8 77.1

� � � 59.6 81.0

mg = 16,

mf = 0
� × × 38.9 65.5

× � × 38.8 65.2

× × � 38.5 64.0

� � � 39.3 66.1

mg = 0,

mf = 16
� × × 41.9 72.3

× � × 34.4 73.7

× × � 29.3 61.0

� � � 44.0 76.7

Our method does not achieve state-of-the-art results on the UCF dataset.
One reason is that classes in the UCF dataset can be easily distinguished only
from appearance. This causes our multi-relation encoder to overfit. If we remove
this encoder and directly use concatenation of object and global features as input
to the compound prototype decoder, our method can achieve the state-of-the-art
accuracy of 87.7. This reveals one limitation of our method, i.e., easy to overfit
on simple datasets.

4.2 Ablation Study

Effect of Object Features. While there exist previous studies that leverage
additional information for few-shot action recognition [18], no work has inves-
tigated the use of object features as in our method. One may argue that the
performance improvement of our method only comes from the use of object fea-
tures. However, in Table 1 we find that performance gain of previous methods
is limited if object features are additionally used as input. Here, we show that
a boost in performance only happens when object features, our multi-relation
encoder, and our decoder are used together.

We test the performance of multiple methods with and without using object
information, and also with and without using our multi-relation encoder. In
Table 2, the first block uses neither object feature nor our multi-relation encoder,
and the second block uses our encoder but with only the global-global relation
RETgg. From the comparison between these two blocks, we can see that our
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multi-relation encoder can improve the performance of all methods, but not sig-
nificantly. In the third block of Table 2, we concatenate each frame-wise feature
with its corresponding object features as input. The comparison between this
block and the first block shows the improvement brought by object features:
around 2–5% on SSv2 dataset, and 2– 6% on Kinetics dataset. Finally, in the
fourth block of Table 2, both object features and our multi-relation encoder are
used. Comparing this block with the second and third blocks, all methods get
more improvement. This shows that using our multi-relation encoder to consider
multiple relations across frames can better leverage the information brought
by the object features. Among all methods in the fourth block of Table 2, our
method enjoys the most significant performance gain. This indicates that while
the object features bring additional information, our method can best leverage
this information to help the few-shot action recognition task.

Impact of Multi-relation Feature Encoding. To see how does the multi-
relation feature encoding contribute to the performance, we conduct ablation
study of our method considering only subsets of {Fgg,Fgo,Foo}. We also vary the
number of global prototypes mg and focused prototypes mf to see the influence
of feature encoding on each group of prototypes.

Results can be seen in Table 3. From the experiments with mg = mf = 8,
the SSv2� dataset gets much improvement from the use of object-object fea-
ture Foo, while the Kinetics dataset benefits more from the global-global feature
Fgg. This is reasonable since SSv2 dataset includes more actions with multiple
objects. From the experiments with mg = 16, the global prototypes seem to work
equally well using the three encoded features on both datasets. The experiments
with mf = 16 suggest that focused prototypes work better with global-global
relations. When using all three features (last row of each block), the compar-
ison between different choices of mg and mf indicates that the two groups of
prototypes capture complementary aspects of the action, since the performances
got significantly improved when two groups of prototypes both present. A more
detailed figure showing the accuracy difference of each action class can be found
in the supplementary material.

4.3 Analysis of Compound Prototypes

The core of our proposed method is the generation and matching of compound
prototypes. In this section we conduct extensive experiments to get a more com-
prehensive understanding of the two groups of prototypes.

What Aspect of the Action Does Each Prototype Capture? We address
this question by investigating the self-attention operation that generates the
prototypes. From Eq. 5, the self-attention weight α ∈ R

(B+2)×T on each frame
represents from which part of the video does each prototype gather its informa-
tion. To better understand the prototypes, we visualize this attention in Fig. 2
using two 1-shot 2-way examples. In the visualization we average the B + 2
attention weights in each frame, forming α̃ ∈ R

T , and show this averaged value
on each of the T = 8 frames. For clarity we only show 2 global prototypes and 2
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Fig. 2. Visualization of the self-attention weight of two global prototypes and two
focused prototypes on each timestamp of the input. Attention weights higher than
average (0.125) are marked in black. We can see the global prototypes capture a certain
aspect of the action in the video, regardless of temporal location: pg,2 - the start of
the action; pg,6 - the frames without hand. Meanwhile, the focused prototypes mainly
attend on fixed timestamps of the video: pf,1 - the end of the video; pf,2 - the middle
part of the video. Example to the left comes from the SSv2◦ dataset and the example
to the right is from SSv2�. Video similarity scores s and similarity scores of matched
prototypes p∗ ∼ p∗ are shown at the bottom.

focused prototypes in each video. We also show the video similarity scores and
the similarity of matched prototypes at the bottom of the figure.

The visualization is shown in Fig. 2. We first analyze the attention of each
prototype. In all videos, the global prototype pg,2 have high attention weights on
the start of the action (not the start of the video), and pg,6 pays more attention
to the frames that contain appearance change compared with other frames (no
hand existence). This is expected since Ldiv forces each global prototype to be
different, while the 1-to-1 matching encourages each global prototype to focus
on similar aspects so that correct video similarity can be predicted. For the
focused prototypes, pf,1 usually gives high attention to the last few frames, and
pf,2 pays more attention on the middle frames. This is also expected since Latt

refrains the focused prototypes to attend on similar temporal locations, and
bipartite matching allows similar actions to be matched even when they are at
different temporal locations of the videos. A similar phenomenon exists in the
object detection task [6], where each object query focuses on detecting objects
in a specific spatial location of the image.
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Fig. 3. Visualization of self-attention
weights of Ps and Pd for all samples on the
test set of SSv2� and Kinetics datasets.

Fig. 4. Performance on the SSv2� and
Kinetics datasets when changing the
number of global/focused prototypes.

In the left example, both the prototype pairs < pa
g,2,p

b
g,2 > and < pa

g,6,p
b
g,6 >

have high similarity scores (0.53 and 0.49 shown at the bottom of the left exam-
ple). This indicates that video a and b have similar starts, and the intra-video
appearance change is also similar. Thus the query action is correctly classified as
“Pretending to take something from somewhere”. In the right example, we can
see the effectiveness of the focused prototypes. By Hungarian matching, px

f,1 is
matched with py

f,2. Since they both encode the frames where the hands just tip
the objects over, these two prototypes give high similarities, enabling the query
action of “Tipping something over” to be correctly recognized.

A statistical analysis of self-attention weights can be found in Fig. 3 showing
the average response of the first 4 global prototypes and the first 4 focused proto-
types on all videos of the test set. As a result of the loss functions Ldiv, Latt and
the matching strategies, on both SSv2� and Kinetics datasets, Pg (first 4 rows)
have a more uniform attention distribution, while Pf have obvious temporal
regions of focus. The diversity of the prototypes ensures a robust representation
of the videos, thus similarity between videos can be better computed during the
few-shot learning process.

How Much Does Each Group of Pprototype Contribute? To find the
answer, we test our method using different numbers of prototypes (mg and mf )
and show the results in Fig. 4. Although the best combination of mg and mf

are different for each dataset, the performance gets better when the number of
prototypes increases, and after a certain threshold, the result saturates because
of the overfitting on the training data. Best results on both SSv2� (62.0) and
Kinetics (86.9) datasets are achieved when mf is larger than mg. Although
mg = mf = 8 is not the optimal setting, we apply this setting in Sect. 4.1
and Sect. 4.2 since it is the most stable setting on all datasets. A method to
automatically choose the number of prototypes is left for our future work.

Also, we show the class accuracy improvement when our method uses both
groups of prototypes compared with our method using only one group of
prototype. In Fig. 5, orange bars denote the accuracy difference between the
mg = mf = 8 setting and the mg = 16,mf = 0 setting, which indicates the
performance gain by introducing the focused prototypes. Blue bars, on the other
hand, show the accuracy improvement brought by the global prototypes. We
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Fig. 5. Class accuracy improvement when our method uses mg = mf = 8 prototypes
compared to: orange bars: mg = 16, mf = 0; blue bars: mg = 0, mf = 16. S stands for
the abbreviation of “something”. (Color figure online)

can see on the SSv2� dataset that when combining the two groups of prototypes,
some hard classes like “pulling S out of S”, “pulling S from left to right” and
“pushing S from right to left” can be better distinguished. From the results of the
two datasets, we observe the focused prototypes are more effective in the Kinet-
ics dataset. This is because the Kinetics dataset focuses more on appearance,
which can be better captured and compared by the focused prototypes.

Will Wrong Bipartite Matching Destroy the Temporal Ordering of
Actions? Although we observe great performance gain brought by Pf in Table 3
and Fig. 5, the bipartite matching will unavoidably produce some wrongly
matched prototype pairs when creating the correct matchings. Our additional
experiments in the supplementary show that filtering the matched prototypes
with low similarity negatively affects the convergence of the model. One reason is
that positional encoding implicitly encodes the temporal ordering of the frames
within each prototype. During training, the similarity scores of all the wrong
matching pairs are learned to be small and so that the final similarity score can
be dominated by the similarity score of the correctly matched prototype pairs.

5 Conclusion

In this work, we introduce a novel method for few-shot action recognition by
generating global and focused prototypes and compare video similarity based
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on the prototypes. When generating the prototypes, we encode spatiotemporal
object relations to address the actions that involve multiple objects. The two
groups of prototypes are encouraged to capture different aspects of the input
by different loss functions and matching strategies. In our future work, we will
explore a more flexible prototype matching strategy that can avoid the mismatch
in the bipartite matching.
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