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Abstract. Few-shot action recognition aims to recognize actions in test
videos based on limited annotated data of target action classes. The dom-
inant approaches project videos into a metric space and classify videos
via nearest neighboring. They mainly measure video similarities using
global or temporal alignment alone, while an optimum matching should
be multi-level. However, the complexity of learning coarse-to-fine match-
ing quickly rises as we focus on finer-grained visual cues, and the lack
of detailed local supervision is another challenge. In this work, we pro-
pose a hierarchical matching model to support comprehensive similarity
measure at global, temporal and spatial levels via a zoom-in matching
module. We further propose a mixed-supervised hierarchical contrastive
learning (HCL), which not only employs supervised contrastive learning
to differentiate videos at different levels, but also utilizes cycle consis-
tency as weak supervision to align discriminative temporal clips or spatial
patches. Our model achieves state-of-the-art performance on four bench-
marks especially under the most challenging 1-shot recognition setting.

Keywords: Few-shot learning · Action recognition · Contrastive
learning

1 Introduction

Large-scale video datasets [5,13] have greatly accelerated the research on action
recognition using deep neural networks [31], which however, is data-hungry and
hard to generalize well on new classes with limited training examples. Therefore,
few-shot action recognition (FSAR) [3,48] has attracted more and more atten-
tion. One of the mainstream approaches for FSAR is the metric-based method
[32,41]. The key idea is to learn a generalizable metric from action classes with
abundant labeled videos, and such metric can be used to measure the similarity
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between any videos. In this way, we recognize the few-shot classes by computing
the similarity between the query video and the few labeled videos.

Fig. 1. Metric-based approaches for FSAR learn a metric space to measure video sim-
ilarities. In addition to global cues, the video representation in the space should hier-
archically capture temporal dynamics and discriminative spatial regions to correctly
match query videos with support videos.

There is no doubt that an ideal metric should be learned from multi-levels
for accurate video matching e.g., at instance, clip, frame or even patch level.
However, the matching complexity drastically rises from coarse- to fine-grained,
and combining the alignment of these different granularities is quiet challenging.
For example, global matching refers only to the similarity of a pair of features,
while patch matching may need to deal with a large number of patch-to-patch
alignment. Subject to this limitation, existing metric-based FSAR works sim-
ply compare two videos from a single granularity, mainly including global or
temporal matching. The global matching approaches [11,20] encode a video as
a fixed-size vector to compute similarities, which fail to differentiate different
temporal dynamics such as “moving towards” or “moving away” as shown in
Fig. 1. The temporal matching approaches instead leverage temporal alignment
between frames [4] or clips [29]. Despite great progress, these works suffer from
condensed spatial information. For example, actions “playing trombone” and
“playing trumpet” in Fig. 1 have similar temporal movements. One needs to
focus on discriminative spatial regions of the instrument in order to classify
them correctly. Therefore, a mechanism to reliably and efficiently capture vari-
ous alignment in videos is necessary.

Another challenge to learn both coarse- and fined-grained alignment simul-
taneously lies in the learning approach on few-shot sets. Earlier FSAR methods
[3,20,41] employ cross entropy loss to train on global features, which are prone
to overfit and do not generalize well for few-shot classes. More recent works
[29] adopt supervised contrastive loss [17] in episodic training, where a limited
number of action classes are used per training iteration. Such episodic training
mimics standard N -way K-shot setting [32], but it cannot take full advantage
of contrastive learning, which usually requires diverse and large number of nega-
tive examples [14,45] to learn good representations. In addition, the supervisions
are only available at the video level, and it is expensive to manually annotate
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temporal or spatial alignment between videos to train fine-grained matching.
Therefore the training becomes quite challenging without detailed annotations.

In this paper, we tackle the above challenges by comparing any two videos
based on: global video representations, temporally aligned clip representations to
capture temporal orders, and spatially aligned patch representations to encode
detailed spatial information. To be specific, we firstly propose a hierarchical
matching model to more comprehensively and efficiently measure video similari-
ties. Our proposed model matches videos progressively from coarse-level to fine-
grained level, using features of coarse level to focus on local information at finer-
grained level e.g., from clip to patch. Such matching mechanism, called zoom-in
matching module, alleviates the complexity of hierarchical matching to better
scale up when aligning fine-grained visual cues like clips or patches. Secondly,
we develop a hierarchical contrastive learning (HCL) algorithm for coarse-to-fine
video representation learning. Specifically, we develop a mixed-supervised con-
trastive learning to avoid the limitations of previous episodic training paradigm
and thus learn more discriminatively. In addition to supervised contrastive learn-
ing, we use cycle consistency to build temporal and spatial associations between
videos of the same action class. It enables contrastive learning of discrimina-
tive local information via weak supervision − meaning that only class labels
are given. Note that noises of irrelevant cues from contexts are unavoidable
when building the local contrastive alignment, we thus incorporate a semantic
attention component to suppress them. We carry out extensive experiments on
four FSAR benchmarks including Kinetics, SSv2, UCF-101 and HMDB-51. Our
approach achieves state-of-the-art results under various few-shot settings, and
superior performance in the more challenging cross-domain evaluation as well.

In summary, our contributions are three-fold:

– We propose a hierarchical matching model for FSAR. The hierarchical archi-
tecture utilizes a zoom-in matching module to alleviate the complexity and
computation cost for multi-level matching, therefore video similarities using
coarse-to-fine cues can be measured.

– We propose the mixed-supervised hierarchical contrastive learning (HCL) to
learn generalizable and fine-grained video representations, by using cycle con-
sistency for weakly-supervised spatial-temporal association. Additionally, a
semantic attention component is applied to suppress contextual noises.

– We carry out experiments on four benchmark datasets to validate our model,
which achieve state-of-the-art performance especially under the 1-shot setup.

2 Related Work

Action Recognition has received significant improvements thanks to deep neu-
ral networks [15,18]. Early deep models [16,31,42] adopt 2D CNNs in temporal
domain. 3D CNNs [38] are then proposed to encode short-range temporal dynam-
ics in videos. Just to name a few, Carreira et al. [5] propose I3D to inflate 2D
CNN to 3D CNN; Tran et al. [39] and Qiu et al. [30] decompose 3D convolu-
tion into 2D and 1D convolutions for efficiency; Wang et al. [43] insert non-local
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blocks into 3D CNNs. More recently, transformer architectures [1,2] are exploited
in video domain to capture long-range dependency. Despite strong performance,
these models are hard to generalize to new action classes with limited examples.
In this work, we focus on few-shot action recognition.

Few-shot Learning approaches can be categorized into three types: generative
methods [22,26], optimization-based methods [10,44], and metric-based meth-
ods [24,32,35,36,41]. The generative method synthesizes new data of few-shot
classes to enlarge the training data. The optimization-based method learns a
good initialization of the network, which can be easily fine-tuned to an unseen
target task without sufficient labels. Instead, metric-based method aims to learn
a metric to measure similarities of images or videos, and then employs nearest
neighboring for classification. Most existing few-shot action recognition works
[4,8,48] follow the metric-based approach. Fu et al. [11] employ global video
features on RGB and depth modalities for similarity measure. To capture tem-
poral dynamics in the video, Zhu et al. [48] use a compound memory network
to reserve the representation of key frames. Zhang et al. [47] align short-range
while discarding long-range dependencies using a permutation invariant atten-
tion with jigsaws for self-supervised training. Cao et al. [4] propose to minimize
the temporal distance of pairwise video sequences based on the DTW algorithm.
Perrett et al. [29] use attention mechanism to construct query-specific class pro-
totype for clip matching. Different from previous works, we exploit a hierarchical
matching to capture from coarse to fine information for comparison of videos.

Contrastive Learning has shown great capability to learn generic representa-
tions from unlabeled data [14,28] in recent years. Wu et al. [45] aim to push differ-
ent augmentations of an instance closer in the embedding space using a memory
bank to store instance vectors, which is followed by several works [27,37,46].
Khosla et al. [17] extend to learn contrast under class supervision. Recent works
[12,34] point out that contrastive learning helps to avoid few-shot learning from
limitations like over-fitting [6,21] or supervision collapse [8], which serves as
auxiliary losses to learn the representation alignment.

3 Method

Problem Formulation. In few-shot action recognition (FSAR) setting, videos
in a dataset are split into two sets Dbase and Dnovel. Action classes in Dbase and
Dnovel are disjoint. Dbase contains abundant labeled videos per action class and is
used for training, while Dnovel is used to evaluate few-shot learning performance
in a N -way K-shot manner. Such evaluation consists of a series of tasks called
episodes [32]. For each episode, we randomly sample N action classes with K
videos per class from Dnovel as “support set”. The rest videos of the N action
classes in Dnovel are used to sample “query set” for testing. A model is evaluated
by averaging recognition performances over all episodes.
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Our Idea. We follow the metric-based methods [32,41] to learn a metric space
based on Dbase, where classification can be performed by computing similarities
among videos in the query set and support set. However, previous works fail to
optimize coarse-to-fine representations with multi-level alignment. In this work,
we propose to leverage multi-level matching at global, temporal and spatial lev-
els, by developing a hierarchical matching model paired with a mixed-supervised
hierarchical contrastive learning (Sect. 3.3). Our hierarchical matching model
consists of a video encoder to extract multi-level visual cues (Sect. 3.1) and a
zoom-in matching module to measure video similarities hierarchically (Sect. 3.2).

Fig. 2. Network structure of the video encoder. It firstly encodes a video into a sequence
of contextualized patches and then generates global embedding x, temporal embeddings
C and spatial embeddings P for the video.

3.1 Video Encoder

The video encoder contains a CNN backbone [15] and a transformer block [40] to
extract contextualized video representations as shown in Fig. 2. To be specific, we
uniformly sample t frames as inputs for each video. The CNN backbone extracts
a feature map with size h × w for each frame. We flatten feature maps of all
frames into a sequence of t×h×w patches. Then the transformer block encodes
the space-time position [2] of each patch and employs self-attention to model
space-time relationships among all the patches. Let P = {p1, p2, ...pthw} be the
output embeddings of all patches, where pi ∈ R

d and d is the dimensionality.
We adopt average pooling on the spatial dimension h × w per frame to obtain
frame features F = {f1, f2, ...ft}, fi ∈ R

d. In this paper, we define multi-level
visual cues for the following zoom-in matching.

First, we apply average pooling over all frame embeddings to generate a global
representation x for the video, which is prone to lose fine-grained temporal and
spatial details. Second, to capture temporal sensitive cues, we sample Nc clips
C = {c1, c2, ...cNc

} from continuous frames to capture various temporal scales in
the video similar to [29]. A clip ci = {fi1 , fi2 , ...fi|ci|} is a subset of F with |ci|
frames and its embedding is computed as follows to keep the temporal order:

ci = MLP([fi1 ; fi2 ; · · · fi|ci| ]), ci ∈ R
d (1)
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where [; ] denotes vector concatenation and MLP is a multi-layer perceptron.
Note that we reuse ci to denote both clip and its embedding and so does the
patch pi. Finally, we use patch embeddings P to provide spatial visual cues.

3.2 Zoom-in Matching Module

Given the above multi-level representations, i.e., global embedding x, temporal
embeddings C and spatial embeddings P, we progressively zoom-in to measure
similarities of a query video v and a support video v̂ at three coarse-to-fine levels.

Fig. 3. Illustration of our model. Top: hierarchical matching with a zoom-in module to
compare coarse-to-fine video similarities, using multi-level visual cues including global

embedding , clip embedding and patch embedding ; Bottom: Mixed-supervised
hierarchical contrastive learning (HCL) including five contrastive loss terms Lg, Lt, Ls

and Ltc, Lsc that are described in Sect. 3.3.

Global Matching. We directly compute a cosine similarity g(.) between x and
x̂ for global matching, which is written by:

Φg(v, v̂) = g(x, x̂) =
x

||x|| � x̂

||x̂|| , (2)

where || · || means L2 norm and � denotes inner-product operation.

Temporal Matching. Temporal information is important to distinguish
actions especially for those with similar objects but in different temporal orders,
such as “open the door” and “close the door”. We therefore propose to match
videos in a finer-grained clip level which captures local temporal dynamics. We
use clip features C, Ĉ to compute temporal matching scores between v and v̂.
To be specific, for each ci ∈ C, we pick its most similar clip in Ĉ and form a
temporally matched pair (ci, ĉi). We rank all pairs by their feature similarity
and select top T pairs to compute the temporal matching score:

Φt(v, v̂) =
1
T

∑T

i=1
g(ci, ĉi). (3)
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Spatial Matching. The discriminative spatial regions to differentiate actions
can be small, such as “eat burger” vs. “eat doughnuts”, making the spatially
condensed embeddings C less effective to capture such fine-grained information.
We further apply spatial matching between patches from the temporally aligned
clip pairs (ci, ĉi), i ∈ [1, T ] mentioned above. By doing so, we avoid to enumer-
ate all possible patch-to-patch alignment in the entire video, which contains a
numerous number of noisy information with a large burden of computation cost.
Similar to temporal matching, for each picked clip pair, we align each patch pi,j
in ci with the most similar patch p̂i,j in clip ĉi, and select top S aligned patches
by the similarity score. In this way, we obtain T × S patch pairs from the video
to compute the spatial matching score as follows, where αi,j = 1 if semantic
attention component is not used.

Φs(v, v̂) =
1

TS

T∑

i=1

S∑

j=1

αi,jg(pi,j , p̂i,j). (4)

Semantic Attention Component. Not all aligned patches with high simi-
larity are relevant to the action. For example, videos with similar backgrounds
are likely to rank background patch pairs on the top. To suppress noises from
semantically irrelevant patch pairs, we propose to re-weight the semantic corre-
lation of each patch pair with the action. In particular, assume the action class
of the support video v̂ is ŷ, we use BERT [7] to obtain its class embedding as
eŷ. Then the semantic attention weight of patch pi,j in clip ci is reassigned as:

αi,j =
exp(pi,jWeŷ/

√
d)

∑Np

k=1 exp(pi,kWeŷ/
√

d)
, (5)

where W denotes a projection matrix and Np is the number of patches in clip ci,
d is the dimensionality. The αi,j added in Eq. 4 emphasizes semantically salient
patches and disregard irrelevant background noises in matching.

The final matching score Φ(v, v̂) between video v and v̂ is aggregated from
the three hierarchical matching scores as follows. We use Φ(v, v̂) to compare the
similarity between any videos during the evaluation and inference.

Φ(v, v̂) = Φg(v, v̂) + Φt(v, v̂) + Φs(v, v̂). (6)

Computation Cost Analysis. The zoom-in module mainly reduces the cost of
spatial matching. Assuming we enumerate all clips with 2 frames in the video for
the pairwise matching (C2

t clips per video). The zoom-in module applies temporal
matching across video clips and then selects the top-T aligned clips for spatial
matching (T � C2

t ). Hence, the computation complexity for spatial matching
is O(T 2h2w2). The model without zoom-in module, however, applies spatial
matching for all video clips instead of the top ones. Therefore, the complexity is
O(t4h2w2), which is more computationally expensive.
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3.3 Mixed-Supervised Hierarchical Contrastive Learning

In order to learn coarse-to-fine representations, we propose mixed-supervised
hierarchical contrastive learning (HCL) as shown in Fig. 3 for training visual cues
of temporal and spatial levels. Apart from supervised constrastive learning to
differentiate videos of different classes, our HCL further utilizes cycle consistency
to enable spatio-temporal constrastive learning in a weakly-supervised manner.
Supervised Contrastive Learning. Given a mini-batch of B videos, we com-
pute the global similarity Φg(vi, vj) between any two videos vi and vj in the
batch. A video pair (vi, vj) where i, j ∈ [1, B], i �= j is positive only when yi = yj ,
otherwise it is negative. The global contrastive loss is then written as follows:

Lg = − 1

B2

∑

i�=j

1yi=yj log
exp(Φg(vi, vj)/τ)

∑B
k=1 1k �=iexp(Φg(vi, vk)/τ)

, (7)

where τ is temperature hyper-parameter and 1 is an indicator function. To
be noted, our supervised contrastive learning is different from previous works
based on episodic training [32], which only allows negative examples within the
N video classes in each episode. Our training instead contains more diverse
negative examples, which are demonstrated to be beneficial for representation
learning [6,23,25]. Similarly, we use the temporal matching score Φt(vi, vj) and
spatial matching score Φs(vi, vj) to compute Lt and Ls respectively as Eq. (7).

Weakly-Supervised Contrastive Learning via Cycle Consistency. The
temporal and spatial matching relies on fine-grained alignment of features at
the clip and patch level respectively. To enhance such alignment, we propose to
leverage cycle consistency in temporal and spatial contrastive learning. Given
video v and v̂ of the same action class, we build temporal cycle consistency [9]
of their top T aligned clip pairs as supervision for training. For each clip ci ∈ C,
we first compute its soft nearest neighbor ĉj∗ ∈ Ĉ, which is:

ĉj∗ =
Nc∑

j=1

β̂j ĉj , where β̂j =
exp(g(ci, ĉj))∑Nc

k=1 exp(g(ci, ĉk))
. (8)

Nc is the clip number of video. Then we track back ĉj∗ to find its nearest neighbor
ci∗ in v. If the alignment is well trained, the pair (ci, ci∗) should satisfy the cycle
consistency so that ci = ci∗ . Therefore, the temporal cycle consistency loss is:

Ltc(v, v̂) = − 1
T

T∑

i=1

log
exp(g(ĉj∗ , ci))∑T

k=1 exp(g(ĉj∗ , ck))
. (9)

The temporal cycle consistency allows to learn from clip-to-clip association to
improve the temporal alignment. We average such losses of all pairwise videos
of the same class in a mini-batch as Ltc.

It is however more challenging to extend the temporal cycle consistency in
the spatial domain. Similar to challenges in spatial matching, firstly, searching all
patches in videos is computationally expensive. Secondly, it is also unnecessary
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to enforce every patch to satisfy cycle consistency, e.g., semantically irrelevant
patches. Therefore, we only build such patch-level consistency for the top T
similar clip pairs from two videos of the same class. For each clip pair (c, ĉ), the
spatial cycle consistency is built on top of their patch sets:

Lsc(c, ĉ) = − 1
Np

Np∑

i=1

αilog
exp(g(p̂j∗ , pi))∑Np

k=1 exp(g(p̂j∗ , pk))
, (10)

where p̂j∗ is the soft nearest neighbor computed similarly as Eq. (8), Np is the
patch number of a clip, αi is the semantic attention weight using Eq. 5. When
αi is small, the gradient will be down weighted because it implies that the patch
pi has weak semantic association with the action. We average the loss for all
selected clip pairs in a batch as Lsc.

We combine all these contrastive losses and the traditional supervised cross-
entropy loss Lce = −log p(y|x) as the following overall training objective, where
λg, λt, λs are hyper-parameters to balance the losses for multi-scale visual cues:

L = Lce + λgLg + λt(Lt + Ltc) + λs(Ls + Lsc), (11)

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on four datasets, including Kinetics [5],
Something v2 (SSv2) [13], HMDB-51 [19], and UCF-101 [33]. Kinetics and SSv2
are the most widely used benchmarks for few-shot action recognition. For Kinet-
ics benchmark, we follow the split in [48] for fair comparison. It uses a subset of
Kinetics by selecting 100 action classes with 100 videos per class from the whole
dataset. The 100 classes are split into 64, 12 and 24 classes as the training, val-
idation and testing set respectively. For SSv2 benchmark, we adopt two splits
proposed in [49] and [4] denoted as SSv2† and SSv2∗ respectively. SSv2∗ contains
nearly 70,000 training samples for 64 training classes. Each class has over 1,000
training samples on average which is 10 times larger than class samples in SSv2†.
For HMDB-51 and UCF-101, we use the split from [47].

Implementation Details. We use ResNet-50 [15] pre-trained on ImageNet
[18] as CNN backbone for fair comparison with previous works [3,8,48]. The
semantic embeddings for action classes are obtained from a pretrained BERT
[7]. For each video, we uniformly sample 8 frames and resize the frame scale into
224 × 224. The number of clips and patches selected in temporal and spatial
matching is T = 10 and S = 10. During training, the weight of λg, λt and λs

for hierarchical contrastive loss is set as 0.5, 0.3 and 0.3. We train our model
for 15 epochs with 3,000 steps for each epoch. Our model is optimized via SGD
with the learning rate of 0.001, which is decayed every 6 epochs by 0.5. We
randomly sample 24 classes with 2 videos per class in a mini-batch. We provide
more details and our codes in the supplementary material.
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Evaluation Protocol. We evaluate the performance of our model under 5-way
K-shot setup with K ∈ {1, 2, 3, 4, 5}. We randomly sample 10,000 episodes from
Dnovel in testing. The performance is the average of all episodes.

4.2 Ablation Study

Q1: Is Hierarchical Contrastive Learning More Effective Than Tra-
ditional Training Methods? We compare different variants of HCL train-
ing losses and the traditional cross-entropy loss in Table 1. Please note that the
temporal or spatial matching will be removed during inference if the correspond-
ing contrastive loss is not used in training. Row 1 simply adopts a pretrained
ResNet-50 to extract global representations and does not involve any training on
the video dataset. It already achieves 59.9% and 80.1% accuracy under 1-shot
and 5-shot setups on Kinetics, which serves as a strong baseline. Row 2 adds
a spatial-temporal transformer on top of the CNN backbone and fine-tunes the
whole model via Lce. The temporal information and fine-tuning brings stable
improvements over row 1 especially on SSv2∗ which focuses more on temporal
orders.

Table 1. Ablation of training objectives. Lce denotes cross entropy loss, Lg is global
contrastive loss, Lt + Ltc and Ls + Lsc represent temporal/spatial contrastive loss
enhanced with cycle consistency loss.

HCL Kinetics SSv2∗

Lce Lg Lt+Ltc Ls+Lsc 1-shot 5-shot 1-shot 5-shot

1 × × × × 59.9 80.1 29.5 44.1

2 � × × × 62.5 81.6 37.8 55.0

3 × � × × 54.9 76.4 34.0 50.9

4 � � × × 66.1 82.7 40.3 56.7

5 � � � × 70.4 83.9 45.4 62.6

6 � � × � 72.3 84.7 41.5 58.4

7 � � � � 73.7 85.8 47.3 64.9

In row 3, we use the global contrastive loss Lg alone for training, which
however obtains poor performance on Kinetics even compared with the model
without fine-tuning in row 1. Combining Lg with Lce performs better compared
to using them separately, showing the two types of training objectives are com-
plementary. Lce alone may suffer from over-fitting especially on Kinetics while
Lg can improve the generalization of the learned features. Both the temporal and
spatial contrastive learning are beneficial as shown in row 5 and 6 respectively.
Using both temporal contrastive loss and its corresponding cycle consistency
loss, Lt + Ltc brings significant improvements especially on SSv2∗ with +5.1%
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for 1-shot and +5.9% for 5-shot setups. On the opposite, Ls + Lsc is more effec-
tive on Kinetic dataset with +6.2% for 1-shot and +2.0% for 5-shot. The results
align with our observation that SSv2∗ focuses more on the temporal orders and
Kinetics is more discriminative in the spatial dimension. Finally, we achieve the
best results by combining Lg, Lt + Ltc and Ls + Lsc in row 7.

Table 2. Ablation of temporal and spatial
cycle consistency losses.

Kinetics SSv2∗

Ltc Lsc 1-shot 5-shot 1-shot 5-shot

1 × × 72.1 84.3 44.7 62.5

2 � × 72.4 84.7 46.9 64.5

3 × � 73.1 85.2 46.2 64.0

4 � � 73.7 85.8 47.3 64.9

Table 3. Ablation of semantic attention
module.

Kinetics SSv2∗

semantic att 1-shot 5-shot 1-shot 5-shot

1 × 71.3 84.4 46.3 64.2

2 � 73.7 85.8 47.3 64.9

Q2: Is Spatio-Temporal Cycle Consistency Beneficial to Hierarchi-
cal Contrastive Learning? In Table 2, we compare models with and without
temporal and spatial cycle consistency loss Ltc, Lsc. Without Ltc, our model’s
performance on SSv2∗ decreases with −1.5% for 1-shot and −0.9% for 5-shot
(row 3 vs. row 4). Significant performance degradation can also be observed on
Kinetics by removing Lsc (row 2 vs. row 4). These results indicate that both tem-
poral and spatial cycle consistency losses are beneficial to learning fine-grained
association.
Q3: Does Semantic Attention Component Help Spatial Matching and
Spatial Cycle Consistency Training? In Table 3, we validate the contribu-
tion of semantic attention component for spatial matching in Eq. (4). By remov-
ing the semantic attention, the performance of our model on Kinetics drops
by −2.4% for 1-shot and −1.4% for 5-shot. Note that the semantic attention
weight in Eq. 10 will also be removed. The results demonstrate that re-scaling
semantic weight is helpful in learning spatial associations by focusing on seman-
tically relevant patches and eliminating background noises. On SSv2∗, only slight
improvement can be observed due to its temporal inclination.
Q4: What is the Performance of Zoom-in Matching at Different Lev-
els? In Table 4, we explore different combinations of zoom-in matching at test
time. Table 4(a) uses Lce for training. We can see temporal or spatial match-
ing alone does not outperform global matching on Kinetics. Table 4(b) employs
our HCL training algorithm. Instead, the temporal or spatial matching achieves
superior performance on Kinetics, which proves that HCL is beneficial to learn
fine-grained alignment. The two matching’s improvement is more significant on
SSv2∗ and Kinetics respectively, since SSv2∗ mainly focuses on temporal vari-
ation while spatial cue plays a more important role on Kinetics. In addition,
the combination of global, temporal and spatial matching improves individual
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Table 4. Ablation of zoom-in matching at different levels using Lce or hierarchical
contrastive loss (HCL), where G, T and S denote the global, temporal and spatial
matching respectively

(a) Cross Entropy Loss Lce

Match Kinetics SSv2∗

G T S 1-shot 5-shot 1-shot 5-shot

1 � × × 62.5 81.6 37.8 55.0

2 × � × 62.1 81.3 40.5 57.0

3 × × � 59.0 79.8 33.2 49.5

4 � � × 62.9 81.8 40.2 56.6

5 � × � 63.8 82.2 38.5 55.4

6 � � � 64.4 82.5 40.8 57.3

(b) Hierarchical Contrastive Loss

Match Kinetics SSv2∗

G T S 1-shot 5-shot 1-shot 5-shot

1 � × × 69.1 83.2 42.9 59.2

2 × � × 71.3 84.2 45.9 62.9

3 × × � 71.8 84.5 38.1 53.2

4 � � × 71.5 84.3 46.4 63.5

5 � × � 72.7 84.9 43.7 59.8

6 � � � 73.7 85.8 47.3 64.9

performances whether using Lce or our HCL. It shows that different levels are
complementary with each other and zoom-in matching needs to equip with HCL
for effective hierarchical alignment.

Table 5. Comparison with SOTA methods on Kinetics and SSv2.

Match Method Kinetics SSv2† SSv2∗

1-shot 2-shot 5-shot 1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Global MAML [10] 54.2 65.5 75.3 30.9 35.1 41.9 – – –

ProtoNet [32] 59.1 73.6 83.5 30.9 37.2 47.2 34.0 41.2 51.7

TARN [3] 66.6 74.6 80.7 – – – – – –

Temporal CMN [48] 60.5 70 78.9 36.2 42.1 48.8 – – –

TAM [4] 73.0 – 85.8 – – – 42.8 – 52.3

TRX [29] 64.6 76.4 85.5 34.7 43.5 56.8 38.1 49.1 63.9

Hierarchical Ours 73.7 79.1 85.8 38.7 45.5 55.4 47.3 54.5 64.9

4.3 Comparison with State-of-the-Art Methods

In Table 5, we compare our method with state-of-the-art approaches on Kinetics
and SSv2 benchmarks. The global matching approaches [20,32] are less com-
petitive to temporal matching approaches [4,8] and our hierarchical model in
general. Our proposed model outperforms previous temporal approaches by a
large margin under 1-shot and 2-shot evaluations and is comparable under 5-
shot setting on all datasets. When labels are extremely limited as in the 1-shot
setting, our model achieves +9.1%, +4.0% and +9.2% improvements on Kinet-
ics, SSv2† and SSv2∗ respectively compared to TRX [8]. The improvements from
our model are more significant on SSv2 benchmarks. For example, though our
model slightly outperforms TAM [4] by 0.7% under 1-shot setting on Kinetics, it
beats TAM [4] by +4.5% and +12.6% under 1-shot and 5-shot settings on SSv2∗,
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which indicates that our method has stronger capability of temporal reasoning.
In addition, the performance is more encouraging on SSv2∗, where we obtain
significant improvements under all settings from 1-shot to 5-shot. Considering
SSv2∗ has more training samples (more than 70,000 videos) than other datasets
like Kinetics (7,600 videos), we believe that our HCL is able to benefit more
from large-scale datasets compared with other approaches.

Table 6. Comparison with SOTA methods on UCF-101 and HMDB-51.

Match Method UCF-101 HMDB-51

1-shot 5-shot 1-shot 5-shot

Global ProtoNet [32] 67.2 93.0 44.2 72.0

Temporal TARN [3] 66.3 – 45.5 60.6

Temporal TRX [29] 81.3 95.9 52.0 75.6

Hierarchical Ours 82.6 94.5 59.1 76.3

We further provide comparisons on UCF-101 and HMDB-51 in Table 6, which
contain much less training data than Kinetics and SSv2. Our method signifi-
cantly improves over TRX [8] on HMDB-51 e.g., +7.1% for 1-shot and +0.7% for
5-shot. On UCF-101, HCL shows improvement for 1-shot but a slight decreases
for 5-shot over TRX [8]. In general, our model is robust to various action cat-
egories, whether they focus on spatial information (e.g., Kinetics) or temporal
orders (e.g., SSv2). Our model is more effective when the training classes have
abundant samples in Dbase and the test classes have extremely few samples in
Dnovel (e.g., SSv2∗), which is exactly the situation in real applications.

Table 7. Comparison on more challenging cross-domain evaluation setting.

Method Kinetics → UCF-101 Kinetics → HMDB-51

1-shot 5-shot 1-shot 5-shot

MAML [10] 62.4 80.7 43.9 59.3

ProtoNet [32] 67.8 84.2 48.5 63.0

Ours 76.1 90.6 54.2 69.5

4.4 Cross-Domain Evaluation

To further validate the generalization capability of our model, we design a new
cross-domain FSAR setting similar to [6]. We use the training split in Kinetics
as Dbase and the testing splits in UCF-101 and HMDB-51 as Dnovel. Then we
remove overlapped classes between Kinetics training set and the testing set.
Such evaluation is more challenging, which requires the learned model not only
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generalizes on new action classes but also on new video domains. We compare our
model with an optimization-based model MAML [10] and a metric-based model
ProtoNet [32]. Table 7 presents the cross-domain results. We achieve significantly
better performances than the other methods, with 8.3% and 5.7% gains under
1-shot setting on UCF-101 and HMDB-51 datasets respectively. It proves that
our model can adapt well to novel actions in different domains from the base
classes in the training set.

move sth towards the camera move sth across a surface w/o falling down

move sth away from the camera

move sth towards the camera

move sth across a surface util it falls down

move sth across a surface w/o falling down

play trumpet dance charleston stretch arm

play trumpet dance charleston stretch arm

hurl (sport)dance balletplay drums

QQ

Global 
Matching

Hierarchical
Matching

Temporal 
Matching

Hierarchical
Matching

Q

Fig. 4. Global/temporal matching vs. hierarchical matching. We show the most similar
video in support sets for each query video using the matching approach.

play ukulele push car

QQ

S1

S2

S3

Q

S1

S2

S3

Fig. 5. Discriminative patch pairs between query and support videos. Q denotes the
query, S1, S2 and S3 are three distinct support videos from the same class.

4.5 Quality Analysis

Figure 4 provides qualitative comparisons for global, temporal matching with
our hierarchical matching. Global matching fails to differentiate videos with
similar appearances but different temporal orders, while temporal matching fails
in recognizing detailed spatial information. Our hierarchical matching considers
both temporal orders and discriminative spatial patches, and thus it can classify
videos more accurately. Figure 5 presents examples of discriminative patch pairs
between query and support videos in spatial matching with our model. First, our
model is able to select semantically relevant pairs in matching. For example, it
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selects patches of the person’s hand and the instrument in “play ukulele” action,
and patches of the person and an car in “push car” action. Secondly, our model
can effectively align patches with other videos in the support set.

5 Conclusion

In this paper, we propose a hierarchical matching approach for few-shot action
recognition. Our model, equipped with a zoom-in matching module, hierarchi-
cally build coarse-to-fine alignment between videos without complex computa-
tion. Therefore, video similarities on few sets can be measured from multiple
levels. Moreover, to learn discriminative temporal and spatial associations, we
propose a mixed-supervised hierarchical contrastive learning (HCL) algorithm,
which utilizes cycle consistency as weak supervision to combine with supervised
learning. We carry out extensive experiments to evaluate our proposed model on
four benchmark datasets. Our model achieves the state-of-the-art performances
especially under 1-shot setting. It shows better generalization capacity in a more
challenging cross-domain evaluation as well.
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