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Abstract. Monocular 3D detection has drawn much attention from the
community due to its low cost and setup simplicity. It takes an RGB
image as input and predicts 3D boxes in the 3D space. The most chal-
lenging sub-task lies in the instance depth estimation. Previous works
usually use a direct estimation method. However, in this paper we point
out that the instance depth on the RGB image is non-intuitive. It is cou-
pled by visual depth clues and instance attribute clues, making it hard to
be directly learned in the network. Therefore, we propose to reformulate
the instance depth to the combination of the instance visual surface depth
(visual depth) and the instance attribute depth (attribute depth).
The visual depth is related to objects’ appearances and positions on
the image. By contrast, the attribute depth relies on objects’ inherent
attributes, which are invariant to the object affine transformation on the
image. Correspondingly, we decouple the 3D location uncertainty into
visual depth uncertainty and attribute depth uncertainty. By combining
different types of depths and associated uncertainties, we can obtain the
final instance depth. Furthermore, data augmentation in monocular 3D
detection is usually limited due to the physical nature, hindering the
boost of performance. Based on the proposed instance depth disentan-
glement strategy, we can alleviate this problem. Evaluated on KITTI,
our method achieves new state-of-the-art results, and extensive ablation
studies validate the effectiveness of each component in our method. The
codes are released at https://github.com/SPengLiang/DID-M3D.
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1 Introduction

Monocular 3D object detection is an important topic in the self-driving and
computer vision community. It is popular due to its low price and configuration
simplicity. Rapid improvements [5,6,25,28,36,60] have been conducted in recent
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Fig. 1. We decouple the instance depth into visual depths and attribute depths due
to the coupled nature of instance depth. Please refer to the text for more details. Best
viewed in color with zoom in.

years. A well-known challenge in this task lies in instance depth estimation, which
is the bottleneck towards boosting the performance since the depth information
is lost after the camera projection process.

Many previous works [2,12,39] directly regress the instance depth. This man-
ner does not consider the ambiguity brought by the instance depth itself. As
shown in Fig. 1, for the right object, its instance depth is the sum of car tail depth
and half-length of the car, where the car length is ambiguous since both car’s left
and right sides are invisible. For the left object, except for the intuitive visible
surface depth, the instance depth further depends on the car dimension and ori-
entation. We can observe that the instance depth is non-intuitive. It requires the
network to additionally learn instance inherent attributes on the instance depth
head. Previous direct estimation and mediate optimization methods do not fully
consider this coupled nature. Thus they lead to suboptimal performance on the
instance depth estimation, showing less accurate results.

Based on the analysis above, in this paper we propose to decouple the instance
depth to instance visual surface depth (visual depth) and instance
attribute depth (attribute depth). We illustrate some examples in Fig. 1. For
each point (or small patch) on the object, the visual depth denotes the absolute
depth towards the agent (car/robot) camera, and we define the attribute depth
as the relative depth offset from the point (or small patch) to the object’s 3D
center. This decoupled manner encourages the network to learn different feature
patterns of the instance depth. Visual depth on monocular imagery depends on
objects’ appearances and positions [11] on the image, which is affine-sensitive.
By contrast, attribute depth highly relies on object inherent attributes (e.g.,
dimensions and orientations) of the object. It focuses on features inside the RoI,
which is affine-invariant. (See Sect. 4.1 and 4.2 for detailed discussion). Thus the
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attribute depth is independent of the visual depth, and decoupled instance depth
allows us to use separate heads to extract different types of features for different
types of depths.

Specifically, for an object image patch, we divide it into m × n grids. Each
grid can denote a small area on the object, with being assigned a visual depth
and the corresponding attribute depth. Considering the occlusion and 3D loca-
tion uncertainty, we use the uncertainty to denote the confidence of each depth
prediction. At inference, every object can produce m × n instance depth predic-
tions, thus we take advantage of them and associated uncertainties to adaptively
obtain the final instance depth and confidence.

Furthermore, prior works usually are limited by the diversity of data augmen-
tation, due to the complexity of keeping alignment between 2D and 3D objects
when enforcing affine transformation in a 2D image. Based on the decoupled
instance depth, we show that our method can effectively perform data augmen-
tation, including the way using affine transformation. It is achieved by the affine-
sensitive and affine-invariant nature of the visual depth and attribute depth,
respectively (See Sect. 4.3). To demonstrate the effectiveness of our method, we
perform experiments on the widely used KITTI dataset. The results suggest that
our method outperforms prior works with a significant margin.

In summary, our contributions are listed as follows:

1. We point out the coupled nature of instance depth. Due to the entangled
features, the previous way of directly predicting instance depth is suboptimal.
Therefore, we propose to decouple the instance depth into attribute depths
and visual depths, which are independently predicted.

2. We present two types of uncertainties to represent depth estimation confi-
dence. Based on this, we propose to adaptively aggregate different types of
depths into the final instance depth and correspondingly obtain the 3D local-
ization confidence.

3. With the help of the proposed attribute depth and visual depth, we allevi-
ate the limitation of using affine transformation in data augmentation for
monocular 3D detection.

4. Evaluated on KITTI benchmark, our method sets the new state of the art
(SOTA). Extensive ablation studies demonstrate the effectiveness of each
component in our method.

2 Related Work

2.1 LiDAR-Based 3D Object Detection

LiDAR-based methods utilize precise LiDAR point clouds to achieve high per-
formance. According to the representations usage, they can be categorized into
point-based, voxel-based, hybrid, and range-view-based methods. Point-based
methods [37,42,51] directly use raw point clouds to preserve fine-grained struc-
tures of objects. However, they usually suffer from high computational costs.
Voxel-based methods [30,50,53,56,58] voxelize the unordered point clouds into
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regular grids so that the CNNs can be easily applied. These methods are more
efficient, but voxelization introduces quantization errors, resulting in informa-
tion loss. To explore advantages of different representations, some hybrid meth-
ods [8,32,41,43,52] are proposed. They validate that combining point-based and
voxel-based methods can achieve a better trade-off between accuracy and effi-
ciency. Range-view-based methods [1,4,13,19] organize point clouds in range
view, which is a compact representation of point clouds. These methods are also
computationally efficient but are under-explored.

2.2 Monocular 3D Object Detection

Due to the low cost and setup simplicity, monocular 3D object detection is
popular in recent years. Previous monocular works can be roughly divided into
image-only based and depth-map based methods. The pioneer method [6] inte-
grates different types of information such as segmentation and scene priors for
performing 3D detection. To learn spatial features, OFTNet [40] projects 2D
image features to the 3D space. M3D-RPN [2] attempts to extract depth-aware
features by using different convolution kernels on different image columns. Kine-
matic3D [3] uses multi-frames to capture the temporal information by employing
a tracking module. GrooMeD-NMS [18] develops a trainable NMS-step to boost
the final performance. At the same period of time, many works fully take advan-
tage of the scene and geometry priors [23,44,48,59]. Due to the ill-posed nature
of monocular imagery, some works resort to using the dense depth estimation
[12,26,35,39,46,47,49]. With the help of estimated depth maps, RoI-10D [29]
use CAD models to augment training samples. Pseudo-LiDAR [27,49] based
methods are also popular. They convert estimated depth maps to point clouds,
then well-designed LiDAR 3D detectors can be directly employed. CaDDN [39]
predicts a categorical depth distribution, to precisely project depth-aware fea-
tures to 3D space. In sum, benefiting from rapid developments of deep learning
technologies, monocular 3D detection has conducted remarkable progress.

2.3 Estimation of Instance Depth

Most monocular works directly predict the instance depth. There are also some
works that use auxiliary information to help the instance depth estimation in
the post-processing. They usually take advantage of the geometry constraints
and scene priors. The early work Deep3DBox [31] regresses object dimensions
and orientations, the remaining 3D box parameters including the instance depth
are estimated by 2D-3D box geometry constraints. This indirect way has poor
performance because it does not fully use the supervisions. To use geometric pro-
jection constraints, RTM3D [21] predicts nine perspective key-points (center and
corners) of a 3D bounding box in the image space. Then the initially estimated
instance depth can be optimized by minimizing projection errors. KM3D [20] fol-
lows this line and integrates this optimization into a end-to-end training process.
More recently, MonoFlex [55] also predicts the nine perspective key-points. In
addition to the directly predicted instance depth, it uses the projection heights
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Fig. 2. Network framework. The overall design follows GUPNet [25]. The estimated
2D boxes are used to extract specific features for each object, followed by 3D box
heads, which predict required 3D box parameters. The red parts in 3D heads denote
the newly-proposed components. They are used to decouple the instance depth.

in pair key-points, using geometric relationships to produce new instance depths.
MonoFlex develops an ensemble strategy to obtain the final instance depth. Dif-
fering from previous works, GUPNet [25] proposes an uncertainty propagation
method for the instance depth. It uses estimated object 3D dimensions and
2D height to obtain initial instance depth, with additionally predicting a depth
bias to refine the instance depth. GUPNet mainly focuses on tackling the error
amplification problem in the geometry projection process. MonoRCNN [44] also
introduces a distance decomposition based on the 2D height and 3D height. Such
methods use geometric or auxiliary information to refine the estimated instance
depth, while they do not fully use the coupled nature of the instance depth.

3 Overview and Framework

Preliminaries. Monocular 3D detection takes an image captured by an RGB
camera as input, predicting amodal 3D bounding boxes of objects in 3D space.
These 3D boxes are parameterized by the 3D center location (x, y, z), dimension
(h,w, l), and the orientation (θ). Please note, in the self-driving scenario, the
orientation usually refers to the yaw angle, and the roll and pitch angles are
zeros by default. Also, the ego-car/robot has been calibrated.

In this paragraph, we provide an overview and describe the framework. The
overall framework is shown in Fig. 2. First, the network takes an RGB image
I ∈ R

H×W×3 as the input. After feature encoding, we have deep features F ∈
R

H
4 ×W

4 ×C , where C is the channel number. Second, deep features F are fed into
three 2D detection heads, namely, 2D heatmap H ∈ R

H
4 ×W

4 ×B, 2D offset O2d ∈
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R
H
4 ×W

4 ×2, and 2D size S2d ∈ R
H
4 ×W

4 ×2, where B is the number of categories. By
combining such 2D head predictions, we can achieve 2D box predictions. Then,
with 2D box estimates, single object features are obtained from deep features
F by RoI Align. We have object features Fobj ∈ R

n×7×7×C , where 7 × 7 is the
RoI Align size and n refers to the number of RoIs. Finally, these object features
Fobj are fed into 3D detection heads to produce 3D parameters. Therefore, we
have 3D box dimension S3d ∈ R

n×3, 3D center projection offset O3d ∈ R
n×2,

orientation Θ ∈ R
n×k×2 (we follow the multi-bin design [31] where k is the bin

number), visual depth Dvis ∈ R
n×7×7, visual depth uncertainty Uvis ∈ R

n×7×7,
attribute depth Datt ∈ R

n×7×7, and attribute depth uncertainty Uatt ∈ R
n×7×7.

Using the parameters above, we can achieve the final 3D box predictions. In the
following sections, we will detail the proposed method.

4 Decoupled Instance Depth

We divide the RoI image patch into 7 × 7 grids, assigning each grid a visual
depth value and an attribute depth value. We provide the ablation on the grid
size for visual and attribute depth in experiments (See Sect. 5.4 and Table 4). In
the following, we first detail the two types of depths, followed by the decoupled-
depth based data augmentation, then introduce the way of obtaining the final
instance depth, and finally describe loss functions.

4.1 Visual Depth

The visual depth denotes the physical depth of the object surface on the small
RoI image grid. For each grid, we define the visual depth as the average pixel-
wise depth within the grid. If the grid is 1 × 1 pixel, the visual depth is equal
to the pixel-wise depth. Given that a pixel denotes the quantified surface of the
object, we can regard visual depths as the general extension of pixel-wise depths.

The visual depth in monocular imagery has an important property. For a
monocular-based system, visual depth highly relies on the object’s 2D box size
(the faraway object appears small on the images and vice versa) and the position
on the image (lower v coordinates under image coordinate system indicate larger
depths) [11]. Therefore, if we perform an affine transformation to the image,
the visual depth should be correspondingly transformed, where the depth value
should be scaled. We call this nature the affine-sensitive.

4.2 Attribute Depth

The attribute depth refers to the depth offset from the visual surface to the
object’s 3D center. We call it attribute depth because it is more likely related to
the object’s inherent attributes. For example, when the car orientation is parallel
to z-axis (depth direction) in 3D space, the attribute depth of the car tail is
the car’s half-length. By contrast, the attribute depth is car’s half-width if the
orientation is parallel to x-axis. We can see that the attribute depth depends on
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Fig. 3. Affine transformation based data augmentation. We do not change the object’s
inherent attributes, i.e., attribute depths, dimensions, and observation angles. The
visual depth is scaled according to the 2D height scale factor. The 3D center projection
is transformed together with the image affine transformation.

the object semantics and its inherent attributes. In contrast to the affine-sensitive
nature of visual depth, attribute depth is invariant to any affine transformation
because object inherent characteristics will not change. We call this nature the
affine-invariant.

As described above, we use two separate heads to estimate the visual depth
and attribute depth, respectively. The disentanglement of instance depth has
several advantages: (1) The object depth is decoupled in a reasonable and intu-
itive manner, thus we can more comprehensively and precisely represent the
object; (2) The network is allowed to extract different types of features for dif-
ferent types of depths, which facilitates the learning; (3) Benefitting from the
decoupled depth, our method can effectively perform affine transformation based
data augmentation, which is usually limited in previous works.

4.3 Data Augmentation

In monocular 3D detection, many previous works are limited by data augmen-
tation. Most of them only employ photometric distortion and flipping transfor-
mation. Data augmentation using affine transformation is hard to be adopted
because the transformed instance depth is agnostic. Based on the decoupled
depth, we point out that our method can alleviate this problem.

We illustrate an example in Fig. 3. Specifically, we add the random cropping
and scaling strategy [57] in the data augmentation. The 3D center projection
point on the image follows the same affine transformation process of the image.
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The visual depth is scaled by the scale factor along y-axis on the image because
d = f ·h3d

h2d
, where f, h3d, h2d is the focal length, object 3D height and 2D height,

respectively. Conversely, the attribute depth keeps the same due to its affine-
invariant nature. We do not directly scale the instance depth, as this manner
will implicitly damage the attribute depth. Similarly, other inherent attributes of
objects, i.e., the observation angle and the dimension, keep the same as original
values. We empirically show that the data augmentation works well. We provide
the ablations in experiments (See Sect. 5.4 and Table 3).

Fig. 4. Depth flow for an object. We use the visual depth, attribute depth, and the
associated uncertainty to obtain the final instance depth.

4.4 Depth Uncertainty and Aggregation

The 2D classification score cannot fully express the confidence in monocular
3D detection because of the difficulty in 3D localization. Previous works [25,45]
use the instance depth confidence or 3D IoU loss, integrating with 2D detec-
tion confidence to represent the final 3D detection confidence. Given that we
have decoupled the instance depth into visual depth and attribute depth, we
can further decouple the instance depth uncertainty. Only when an object has
low visual uncertainty and low attribute depth uncertainty simultaneously, the
instance depth can have high confidence.

Inspired by [16,25], we assume every depth prediction is a Laplace distri-
bution. Specifically, for each visual depth dvis in Dvis ∈ R

n×7×7 and the cor-
responding uncertainty uvis in Uvis ∈ R

n×7×7, they follow the Laplace distri-
bution L(dvis, uvis). Similarly, the attribute depth distribution is L(datt, uatt),
where datt in Datt ∈ R

n×7×7 and uatt in Uatt ∈ R
n×7×7. Therefore, the

instance depth distribution derived by associated visual and attribute depth
is L(d̃ins, ũins), where d̃ins = dvis + datt and ũins =

√
u2

vis + u2
att. Then we use

D̃ins(patch) ∈ R
n×7×7 and Ũins(patch) ∈ R

n×7×7 to denote the instance depth
and the uncertainty on the RoI patch. We illustrate the depth flow process in
Fig. 4.
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To obtain the final instance depth, we first convert the uncertainty to prob-
ability [16,25], which can be written as Pins(patch) = exp(−Ũins(patch)), where
Pins(patch) ∈ R

n×7×7. Then we aggregate the instance depth on the patch to the
final instance depth. For the ith object (i = 1, ..., n), we have:

dins =
∑ D̃ins(patch)iPins(patch)i∑

Pins(patch)i

(1)

The corresponding final instance depth confidence is:

pins =
∑

(
Pins(patch)i∑
Pins(patch)i

Pins(patch)i) (2)

Therefore, the final 3D detection confidence is p = p2d ·pins, where p2d is the 2D
detection confidence.

4.5 Loss Functions

2D Detection Part: As shown in Fig. 2, for the 2D object detection part,
we follow the design in CenterNet [57]. The 2D heatmap H aims to indicate
the rough object center on the image. The size is H

4 × W
4 × B, where H,W

is the input image size and B is the number of categories. The 2D offset O2d

refers to the residual towards rough 2D centers, and the 2D size S2d denotes
the 2D box height and width. Following CenterNet [57], we have loss functions
LH ,LO2d ,LS2d , respectively.

3D Detection Part: For the 3D object dimension, we follow the typical trans-
formation and loss design [2] LS3d . For the orientation, the network predicts the
observation angle and uses the multi-bin loss [31] LΘ. Also, we use the 3D center
projection on the image plane and the instance depth to recover the object’s 3D
location. For the 3D center projection, we achieve it by predicting the 3D projec-
tion offset to the 2D center. The loss function is: LO3d = SmoothL1(O3d, O

∗
3d).

We use ∗ to denote corresponding labels. As mentioned above, we decouple the
instance depth into visual depth and attribute depth. The visual depth labels
are obtained by projecting LiDAR points onto the image and the attribute
depth labels are obtained by subtracting instance depth labels with visual
depth labels. Combing with the uncertainty [9,16], the visual depth loss is:
LDvis

=
√
2

uvis
‖dvis − d∗

vis‖ + log(uvis), where uvis is the uncertainty. Similarly,
we have attribute depth loss LDatt

and instance depth loss LDins
. Among these

loss terms, the losses concerning instance depth (LDvis
, LDatt

, and LDins
) play

the most important role since they matter objects’ localization in the 3D space.
We empirically set 1.0 for weights of all loss terms, and the overall loss is:

L = LH + LO2d + LS2d + LS3d + LΘ + LO3d + LDvis
+ LDatt

+ LDins
(3)
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Table 1. Comparisons on KITTI testing set. The red refers to the highest result and
blue is the second-highest result. Our method achieves state-of-the-art results. Note
that DD3D [33] uses a large private dataset (DDAD15M), which includes 15M frames.

Approaches Venue Runtime APBEV (IoU=0.7)|R40 AP3D (IoU=0.7)|R40

Easy Moderate Hard Easy Moderate Hard

MonoGRNet [38] AAAI19 400ms 18.19 11.17 8.73 15.74 9.61 4.25

ROI-10D [29] CVPR19 200ms 9.78 4.91 3.74 4.32 2.02 1.46

MonoPSR [17] CVPR19 200ms 18.33 12.58 9.91 10.76 7.25 5.85

M3D-RPN [2] ICCV19 160ms 21.02 13.67 10.23 14.76 9.71 7.42

AM3D [27] ICCV19 400ms 25.03 17.32 14.91 16.50 10.74 9.52

MonoPair [9] CVPR20 60ms 19.28 14.83 12.89 13.04 9.99 8.65

D4LCN [12] CVPR20 200ms 22.51 16.02 12.55 16.65 11.72 9.51

RTM3D [21] ECCV20 40ms 19.17 14.20 11.99 14.41 10.34 8.77

PatchNet [26] ECCV20 400ms 22.97 16.86 14.97 15.68 11.12 10.17

Kinematic3D [3] ECCV20 120ms 26.69 17.52 13.10 19.07 12.72 9.17

Neighbor-Vote [10] MM21 100ms 27.39 18.65 16.54 15.57 9.90 8.89

Ground-Aware [23] RAL21 50ms 29.81 17.98 13.08 21.65 13.25 9.91

MonoRUn [5] CVPR21 70ms 27.94 17.34 15.24 19.65 12.30 10.58

DDMP-3D [46] CVPR21 180ms 28.08 17.89 13.44 19.71 12.78 9.80

Monodle [28] CVPR21 40ms 24.79 18.89 16.00 17.23 12.26 10.29

CaDDN [39] CVPR21 630ms 27.94 18.91 17.19 19.17 13.41 11.46

GrooMeD-NMS [18] CVPR21 120ms 26.19 18.27 14.05 18.10 12.32 9.65

MonoEF [59] CVPR21 30ms 29.03 19.70 17.26 21.29 13.87 11.71

MonoFlex [55] CVPR21 35ms 28.23 19.75 16.89 19.94 13.89 12.07

MonoRCNN [44] ICCV21 70ms 25.48 18.11 14.10 18.36 12.65 10.03

AutoShape [24] ICCV21 40ms 30.66 20.08 15.95 22.47 14.17 11.36

GUPNet [25] ICCV21 34ms 30.29 21.19 18.20 22.26 15.02 13.12

PCT [47] NeurIPS21 45ms 29.65 19.03 15.92 21.00 13.37 11.31

MonoCon [22] AAAI22 26ms 31.12 22.10 19.00 22.50 16.46 13.95

DD3D [33] ICCV21 - 32.35 23.41 20.42 23.19 16.87 14.36

DID-M3D (ours) ECCV22 40ms 32.95 22.76 19.83 24.40 16.29 13.75

Improvements +1.83 +0.66 +0.83 +1.90 -0.17 −0.20

5 Experiments

5.1 Implementation Details

We conduct experiments on 2 NVIDIA RTX 3080Ti GPUs with batch size 16.
We use the PyTorch framework [34]. We train the network with 200 epochs and
employ the Hierarchical Task Learning (HTL) [25] training strategy. The Adam
optimizer is used with the initial learning rate 1e−5. The learning rate increases
to 1e − 3 in the first 5 epochs by employing the linear warm-up strategy and
decays in epoch 90 and 120 with rate 0.1. We set k 12 in the multi-bin orientation
Θ. For the backbone and head, we follow the design in [25,54]. Inspired by
CaDDN [39], we project LiDAR point clouds onto the image frame to create
sparse depth maps and then depth completion [15] is performed to generate
depth values at each pixel in the image. Considering the space limitation, we
provide more experimental results and discussion in the supplementary material.
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5.2 Dataset and Metrics

Following the commonly adopted setup in previous works [2,12,18,24], we per-
form experiments on the widely used KITTI [14] 3D detection dataset. The
KITTI dataset provides 7,481 training samples and 7,518 testing samples, where
training sample labels are publicly available and the labels of testing samples
keep secret in the KITTI website, which are only used for online evaluation and
ranking. To conduct ablations, previous work further divides the 7,481 samples
into a new training set with 3,712 samples and a val set with 3,769 samples. This
data split [7] is widely adopted by most previous works. Additionally, KITTI
divides objects into the easy, moderate, and hard level according to the object
2D box height (related to the depth), occlusion and truncation levels. For eval-
uation metrics, we use the suggested AP40 metric [45] under the two core tasks,
i.e., 3D and bird’s-eye-view (BEV) detection.

Fig. 5. Qualitative results on KITTI val set. Red: ground-truth 3D boxes; Green: our
predictions. We can observe that the model conducts accurate 3D box predictions. Best
viewed in color with zoom in.

5.3 Performance on KITTI Benchmark

We compare our method (DID-M3D) with other methods in KITTI test set,
which is the official benchmark for monocular 3D object detection. The results
are shown in Table 1. We can see that our method achieves a new state-of-the-art.
For example, compared to GUPNet [25] (ICCV21 ), we boost the performance
from 21.19/15.02 to 22.26/16.29 under the moderate setting. As for PCT [47]
(NeurIPS21 ), we exceed it with 3.23/2.92 AP under the moderate setting, which
is a significant improvement. When compared to the recent method MonoCon
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[22] (AAAI22 ), our method still shows better performance on all BEV metrics
and a 3D metric. Also, the runtime of our method is comparable to other real-
time methods. Such results validate the superiority of our method. Additionally,
to demonstrate the generalizability on other categories, we perform experiments
on cyclist and pedestrian categories. As shown in Table 5, our method brings
obvious improvements to the baseline (without employing the proposed compo-
nents). The results suggest that our method works well for other categories.

Moreover, we provide qualitative results on the RGB image and 3D space
in Fig. 5. We can observe that for most simple cases (e.g., close objects without
occlusion and truncation), the model predictions are quite precise. However, for
the heavily occluded, truncated, or faraway objects, the orientation or instance
depth is less accurate. This is a common dilemma for most monocular works due
to the limited information in monocular imagery. In the supplementary material,
we will provide more experimental results and make detailed discussions on
failure cases.

5.4 Ablation Study

To investigate the impact of each component in our method, we conduct detailed
ablation studies on KITTI. Following the common practice in previous works,
all ablation studies are evaluated in the val set on the car category.

Decoupled Instance Depth. We report the results in Table 2. Experiment
(a) is the baseline using the direct instance depth prediction. To make fair com-
parisons, for the baseline, we also employ the grid design (Experiment (b)).
Similar to our method, it means that the network also produce 7 × 7 instance
depth predictions for every object, which are all supervised in training and aver-
aged at inference. Then, we decouple the instance depth into visual depths and
attribute depths (Experiment (b) → (c)), this simple modification improves the
accuracy significantly. This result indicates the network performs suboptimally
due to the coupled nature of instance depth, demonstrating our viewpoint. From
Experiment (c) → (d, e), we can see that the depth uncertainty brings improve-
ments, because the uncertainty stabilizes the training of depth, benefiting the
network learning. When simultaneously enforcing both two types of uncertainty,
the performance is further boosted. Please note, the decoupled instance depth
is the precondition of decoupled uncertainty. Given that the two types of depth
uncertainty are achieved, we can obtain the final instance depth uncertainty
(Experiment (f) → (g)). This can be regarded as the 3D location confidence.
It is used to combine with the original 2D detection confidence, which brings
obvious improvements. Finally, we can use the decoupled depth and correspond-
ing uncertainties to adaptively obtain the final instance depth (Experiment (h)),
while previous experiments use the average value on the patch. We can see that
this design enhances the performance. In summary, by using the decoupled depth
strategy, we improve the baseline performance from 16.79/11.24 to 22.76/16.12
(Experiment (b) → (h)). It is an impressive result. Overall, the ablations validate
the effectiveness of our method.
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Table 2. Ablation for decoupled instance depth. “Dec.”: decoupled; “ID.”: instance
depth; “uvis”: visual depth uncertainty; “uatt”: attribute depth uncertainty; “Conf.”:
confidence; “AA.”: adaptive aggregation.

Experiments Grid Dec. ID. uvis uatt ID. Conf. ID. AA. APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

(a) 19.84/14.07 16.25/11.20 14.13/9.97

(b) � 21.01/14.67 16.79/11.24 15.41/10.18

(c) � � 22.98/16.95 18.72/13.24 16.57/11.23

(d) � � � 25.13/16.85 19.84/13.45 17.19/12.03

(e) � � � 24.83/17.29 19.66/13.50 17.06/11.48

(f) � � � � 25.23/18.14 20.06/13.91 17.63/12.52

(g) � � � � � 29.34/21.51 21.53/15.57 18.55/12.84

(h) � � � � � � 31.10/22.98 22.76/16.12 19.50/14.03

Affine Transformation Based Data Augmentation. In this paragraph
we aim to understand the effect of affine transformation based data augmen-
tation. The comparisons are shown in Table 3. We can see that the method obvi-
ously benefits from affine-based data augmentation. Note that the proper depth
transformation is very important. When enforcing affine-based data augmenta-
tion, the visual depth should be scaled while the attribute depth should not be
changed due to their affine-sensitive and affine-invariant nature, respectively. If
we change the attribute depth without scaling visual depth, the detector even
performs worse than the one without affine-based data augmentation (AP3D

downgrades from 12.76 to 12.65). It is because this manner misleads the net-
work in the training with incorrect depth targets. After revising visual depth,
the network can benefit from the augmented training samples, boosting the per-
formance from 19.05/12.76 to 21.74/15.48 AP under the moderate setting. We
can see that the improper visual depth can result in larger impacts compared to
the improper attribute depth on the final performance, as the visual depth has
a larger value range. Finally, we obtain the best performance when employing
the proper visual depth and attribute depth transformation strategy.

Table 3. Ablation for affine transformation based data augmentation. “Aff. Aug.” in
the table denotes the affine-based data augmentation.

w/Aff. Aug. Scaled dvis Scaled datt APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

25.63/17.61 19.05/12.76 16.34/11.21

� 26.97/18.98 19.80/14.33 17.71/12.00

� � 22.23/15.27 18.98/12.65 16.52/10.75

� � � 28.67/21.43 21.74/15.48 18.76/13.47

� � 31.10/22.98 22.76/16.12 19.50/14.03
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Grid Size for Visual and Attribute Depth. As described in Sect. 4, we
divide the RoI image patch into m×m grids, where each grid has a visual depth
and an attribute depth. This paragraph investigates the impact brought by the
grid size. When increasing grid size m, visual depths and attribute depths are
becoming fine-grained. This tendency makes visual depth more intuitive, which
is close to the pixel-wise depth. However, the fine-grained grid will lead to sub-
optimal performance in terms of learning object attributes since the attributes
focus on the overall object. It indicates that there exists a trade-off. Therefore,
we perform ablations on the grid size m, as shown in Table 4. We achieve the
best performance when m is set to 7.

Table 4. Ablation for the grid size on visual depth and attribute depth.

Grid size APBEV /AP3D (IoU=0.7)|R40

Easy Moderate Hard

1 × 1 26.11/19.39 18.76/13.01 16.00/11.34

3 × 3 27.03/19.73 19.91/14.33 18.10/12.25

5 × 5 29.20/21.36 21.53/15.13 18.61/12.53

9 × 9 30.21/21.78 22.28/14.98 18.93/12.47

13 × 13 29.88/21.67 21.97/15.29 18.96/12.72

19 × 19 28.20/20.36 21.53/15.13 18.61/12.53

7× 7 31.10/22.98 22.76/16.12 19.50/14.03

Table 5. Comparisons on pedestrian and cyclist categories on KITTI val set under
IoU criterion 0.5. Our method brings obvious improvements to the baseline.

Approaches Pedestrian, APBEV /AP3D|R40 Cyclist, APBEV /AP3D|R40

Easy Moderate Hard Easy Moderate Hard

Baseline 5.97/5.13 4.75/3.88 3.87/3.05 5.11/4.27 2.68/2.46 2.50/2.17

Baseline+Ours 8.86/7.27 7.01/5.87 5.46/4.89 6.13/5.54 3.09/2.59 2.67/2.49

6 Conclusion

In this paper, we point out that the instance depth is coupled by visual depth
clues and object inherent attributes. Its entangled nature makes it hard to be
precisely estimated with the previous direct method. Therefore, we propose to
decouple the instance depth into visual depths and attribute depths. This manner
allows the network to learn different types of features for instance depth. At
the inference stage, the instance depth is obtained by aggregating visual depth,
attribute depth, and associated uncertainties. Using the decoupled depth, we
can effectively perform affine transformation based data augmentation on the
image, which is usually limited in previous works. Finally, extensive experiments
demonstrate the effectiveness of our method.
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