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Abstract. Software development for robotics applications is still a
major challenge that becomes even more complex when considering a
Multi-Robot System (MRS). Such a distributed software has to perform
multiple cooperating tasks in a well-coordinated manner to avoid unsatis-
factory emerging behavior. This paper provides an approach for program-
ming MRSs at a high abstraction level using the programming language
X-KrAIlM. The computation and communication model of X-KLAIM,
based on multiple distributed tuple spaces, permits to coordinate with
the same abstractions and mechanisms both intra- and inter-robot inter-
actions of an MRS. This allows developers to focus on MRS behavior,
achieving readable and maintainable code. The proposed approach can
be used in practice through the integration of X-KLAIM and the pop-
ular robotics framework ROS. We show the proposal’s feasibility and
effectiveness by implementing an MRS scenario.

Keywords: Multi-robot systems - Multiple tuple spaces + X-KLAIM -
ROS

1 Introduction

Autonomous robots are software-intensive systems increasingly used in many
different fields. Their software components interact in real-time with a highly
dynamic and uncertain environment through sensors and actuators. To com-
plete tasks that are beyond the capabilities of an individual autonomous robot,
multiple robots are teamed together to form a Multi-Robot System (MRS). An
MRS can take advantage of distributed sensing and action, and greater reliabil-
ity. On the other hand, an MRS requires robots to cooperate and coordinate to
achieve common goals.
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The development of the software controlling a single autonomous robot is still
a challenge [24,31,49]. This becomes even more arduous in the case of MRSs [14,
25], as it requires dealing with multiple cooperating tasks to drive the robots
to work as a well-coordinated team. To meet this challenge, various software
libraries, tools and middlewares have been proposed to assist and simplify the
rapid prototyping of robotics applications. Among them, nowadays, a prominent
solution is ROS (Robot Operating System [52]), a popular framework largely
used in both industry and academia for writing robot software. On the one
hand, ROS provides a layer to interact with a multitude of sensors and actuators,
for a large variety of robots, while abstracting from the underlying hardware.
On the other hand, programming with ROS still requires dealing with low-level
implementation details; hence, robotics software development remains a complex
and demanding activity for practitioners from the robotic domain. To face this
issue, many researchers have proposed using higher-level abstractions to drive
the software development process and then resorting to tools for the automated
generation of executable code and system configuration files. Many proposals in
the literature are surveyed in [11,13,49,50].

Along this line of research, we introduced in [5] an approach for programming
a single-robot system. Specifically, we propose using the language X-KLAIM [7]
to program the components of a robot’s software. This choice is motivated by the
fact that X-KLAIM provides mechanisms, based on distributed tuple spaces, for
coordinating the interactions between these software components at a high level
of abstraction. The integration of X-KrLAIM with ROS permits the application
of the approach in practice.

In this paper, we take a step forward in this direction by extending the app-
roach in [5] to program MRSs. In fact, the X-KLAIM’S computation and commu-
nication model is particularly suitable for dealing both with (%) the distributed
nature of the architecture of each robot belonging to an MRS, where the soft-
ware components dealing with actuators and sensors execute concurrently, and
(#i) the inherent distribution of the MRS, which is formed by multiple interact-
ing robots. Notably, the same tuple-based mechanisms are used both for intra-
and inter-robot communication. This simplifies the design and implementation
of MRS’s software in terms of an X-KLAIM application distributed across both
multiple threads of execution and multiple hardware platforms, resulting in a
better readable, maintainable, and reusable code.

Our framework can be thought of as a proof-of-concept implementation for
experimenting with the applicability of the tuple space-based paradigm to MRS
software development. To show the execution of the generated code, we use a
simulator of robot behaviors in complex environments. To illustrate the proposed
approach, we consider a warehouse scenario, where an MRS involving an arm
robot and two delivery robots manages the movement of items.

The rest of the paper is organized as follows. In Sect. 2, we provide some back-
ground notions concerning the X-KLAIM language, while in Sect.3 we present
our approach. In Sect. 4 we (partially) illustrate the implementation of a simple
robotics scenario according to the proposed approach. In Sect.5 we present a
systematic analysis of the strictly related work, while in Sect. 6 we conclude and
touch upon directions for future work.
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2 The X-KLAIM Language

This section briefly describes the key ingredient of the approach we propose: the
programming language X-KLAIM.! We refer the interested reader to the cited
sources in the following for a complete account.

X-Kram is based on KLAM (Kernel Language for Agents Interaction and
Mobility, [15]), a formal language devised to design distributed applications con-
sisting of (possibly mobile) software components deployed over the nodes of a
network infrastructure. KLAIM generalizes the notion of generative communica-
tion, introduced by the coordination language Linda [33], to multiple distributed
tuple spaces. A tuple space is a shared data repository consisting of a multiset
of tuples. Tuples are anonymous sequences of data items that are associatively
retrieved from tuple spaces using a pattern-matching mechanism. Tuple spaces
are identified through localities, which are symbolic addresses of network nodes
where processes and tuples can be allocated.

Processes can run concurrently, either at the same node or at different
nodes, by executing actions to exchange tuples and to move processes. Action
out(tuple)@nodelocality adds the specified tuple to the tuple space of the tar-
get node identified by nodelocality. A tuple is a sequence of actual fields,
i.e., expressions, localities, or processes. Action in(template)@nodelocality (resp.,
read(template)@nodelocality) withdraws (resp., reads) tuples from the tuple space
hosted at nodelocality. The process is blocked until a matching tuple is found.
Templates are sequences of actual and formal fields, where the latter are used
to bind variables to values, localities, or processes. A template matches a tuple
if both have the same number of fields and corresponding fields do match; two val-
ues/localities match only if they are identical, while formal fields match any value
of the same type. Upon a successful matching, the template variables are replaced
with the values of the corresponding actual fields of the accessed tuple. Action
eval(Process)@nodelocality sends Process for execution to nodelLocality. A process
can use the reserved locality self to refer to its current hosting node.

The implementation of KLAIM consists of the Java package KLAvA (KLAIM
in Java [4]), which provides the KLAIM concepts in terms of Java classes and
methods, and X-KLAIM (eXtended KrAmM [7]), a Java-like programming lan-
guage providing KLAIM constructs besides the typical high-level programming
constructs. X-KLAIM is translated into Java code that uses the Java package
Krava. An X-KLAIM program can smoothly access any Java type and Java
library available in the project’s classpath. X-KLAIM comes with a complete
IDE support based on Eclipse. The syntax of X-KLAIM is similar to Java, thus
it should be easily understood by Java programmers, but it removes much “syn-
tactic noise” from Java.

3 The X-KLAIM Approach to Multi-robot Programming

In this section, we provide an overview of our approach, and the resulting soft-
ware framework, for programming MRS applications using ROS and X-KLAIM.

! https://github.com /LorenzoBettini/xklaim.
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A single autonomous robot has a distributed architecture, consisting of
cooperating components, in particular sensors and actuators. Such cooperation
is enabled and controlled by the ROS framework,? which provides tools and
libraries for simplifying the development of complex controllers while abstract-
ing from the underlying hardware. The core element of the ROS framework is
the message-passing middleware, which enables hardware abstraction for a wide
variety of robotic platforms. Although ROS supports different communication
mechanisms, in this paper we only use the most common one: the anonymous
and asynchronous publish/subscribe mechanism. For sending a message, a pro-
cess has to publish it in a topic, which is a named and typed bus. A process
that is interested in such message has to subscribe to the topic. Whenever a
new message is published in the topic, the subscriber will be notified. Multiple
publishers and subscribers for the same topic are allowed.

MULTI-ROBOT SYSTEM

ArmRobot

DeliveryRobot2

DeliveryRobot1l

Fig. 1. Software architecture of an MRS in X-KLAIM.

When passing from a single-robot system to an MRS, the distributed and
heterogeneous nature of the overall system becomes even more evident. The
software architecture for controlling an MRS reflects such a distribution: each
robot is equipped with ROS, on top of which the controller software runs. This
allows the robot to act independently and, when needed, to coordinate with the
other robots of the system to work together coherently.

In X-KLAIM the distributed architecture of the MRS’s software is naturally
rendered as a network where the different parts are deployed. As shown in Fig. 1,
we associate an X-KLAIM node to each robot of the MRS. In its turn, the internal
distribution of the software controller of each robot is managed by concurrent
processes that synchronize their activities using local data, i.e., tuples stored in
the robot’s tuple space. Inter-robot interactions rely on the same communica-
tion mechanism by specifying remote tuple spaces as targets of communication
actions.

In practice, to program the behaviors of the robots forming an MRS, we
enabled X-KLAIM programs to interact with robots’ physical components by

2 https://www.ros.org/.
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integrating the X-KLAIM language with the ROS middleware. The communica-
tion infrastructure of the integrated framework is based on ROS Bridge. This
is a server included in the ROS framework that provides a JSON API to ROS
functionalities for external programs. This way, the ROS framework installed
in a robot receives and executes commands on the physical components of the
robot, and gives feedback and sensor data. The use of JSON enables the inter-
operability of ROS with most programming languages, including Java. As an
example, we report in Fig. 2 a message pose in the JSON format published on
the ROS topic /goal, providing information for navigating a delivery robot to a
given goal position. In our example, the goal is the position (—0.21,0.31), which
is close to the position of the arm robot.

{ "topic":"/robotl/move_base_simple/goal",
"msg":{ "header": { ... },
"pose": { "position": { "x": —0.21, "y": 0.31, "z": 0.0 },
"orientation": { ..} } } }

Fig. 2. Example of a JSON message for the /goal topic.

X-KLAIM programs can indirectly interact with the ROS Bridge server, pub-
lishing and subscribing over ROS topics, via objects provided by the Java library
java_rosbridge.® In its own turn, java_rosbridge communicates with the ROS
Bridge server, via the WebSocket protocol, by means of the Jetty web server.*

ROS permits to check the execution of the code generated from an X-KLAIM
program by means of the Gazebo® simulator. Gazebo [42] is an open-source sim-
ulator of robot behaviors in complex environments that is based on a robust
physics engine and provides a high-quality 3D visualization of simulations.
Gazebo is fully integrated in ROS; in fact, ROS can interact with the simulator
via the publish-subscribe communication mechanism of the framework. The use
of the simulator is not mandatory when ROS is deployed in real robots. However,
even in such a case, the design activity of the MRS software may benefit from
the use of a simulator, to save time and reduce the development cost.

Since the X-KLAIM compiler generates plain Java code, which depends only
on KrLAvVA and a few small libraries, deploying an X-KLAIM application can be
done by using standard Java tools and mechanisms. In the context of this paper,
it is enough to create a jar with the generated Java code and its dependen-
cies (KLAVA and java_rosbridge), that is, a so-called “fat-jar” or “uber-jar”,
and deploy it to a physical robot where a Java virtual machine is already
installed. Under that respect, X-KLAIM provides standard Maven artifacts and
a plugin to generate Java code outside Eclipse, e.g., in a Continuous Integra-
tion server. Moreover, the dependencies of an X-KLAIM application, including
java_rosbridge, are only a few megabytes, which makes X-KLAIM applications
suitable also for embedded devices like robots.

3 https://github.com/h2r/java_rosbridge.

4 Jetty 9: https://www.eclipse.org/jetty/.
5 https://gazebosim.org)/.
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4 The X-KLAIM Approach at Work on an MRS Scenario

To illustrate the proposed approach, in this section, we show and briefly comment
on a few interesting parts of implementing a warehouse scenario® involving an MRS
that manages the movement of items. As shown in Fig. 3, the MRS is composed
of an arm robot and two delivery robots, and the warehouse is divided into two
sectors, each one served by a delivery robot. The arm robot, positioned in the center
of the warehouse, picks up one item at a time from the ground, calls the delivery
robot assigned to the item’s sector, and releases the item on top of the delivery
robot. The latter delivers the item to the appropriate delivery area, which depends
on the item’s color, and then becomes available for a new delivery.

arm robot

O A O

delivery robot 1 I ] I delivery robot
items

sector 1 sector 2

Fig. 3. Warehouse scenario.

In Fig.4 we show a part of the network for our implementation of the sce-
nario. Each robot is rendered as an X-KLAIM node, whose name represents its
locality (see Sect.2). We have one or several processes for each node implement-
ing the robot’s main tasks. Each node creates processes locally and executes
them concurrently using the X-KLAIM operation eval. Processes are paramet-
ric concerning the URI of the ROS bridge WebSocket. As already discussed
in Sect. 3, the execution of an X-KLAIM robotics application requires the ROS
Bridge server to run, providing a WebSocket connection at a given URI. In the
code of our example application, we consider the ROS Bridge server running
on the local machine (0.0.0.0) at port 9090. Similarly, to execute the code in
a simulated environment and obtain a 3D visualization of the execution, the
Gazebo simulator has to be launched with the corresponding robot description.
At this point, our application can be executed by running the Java class Main,
which the X-KLAIM compiler has generated. A few processes require additional
parameters like the robot and sector id and the locality of other nodes (e.g., the
arm’s node locality in MoveToArm).

5 The complete source code of the scenario implementation, and a screencast showing
its execution on Gazebo, can be found at https://github.com/LorenzoBettini/xklaim-
ros-multi-robot-warehouse-example.
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The code should be easily readable by a Java programmer. We mention a few
additional X-KLAIM syntax features to make the code more understandable.
Such types as String and Double are Java types, since, as mentioned above,
X-KLAIM programs can refer directly to Java types. In the code snippets, we
omitted the Java-like import statements. Variable declarations start with val or
var, for final and non-final variables, respectively. The types of variables can be
omitted if they can be inferred from the initialization expression. Here we also see
the typical KLAIM operations, read, in and out, acting on possibly distributed
tuple spaces. Formal fields in a tuple are specified as variable declarations, since
formal fields implicitly declare variables that are available in the code occurring
after in and read operations (just like in KLAIM).

In Fig. 4, the main processes of the nodes wait for specific matching tuples
before starting a new loop. To make things simpler, the loop is infinite, but
we could easily rely on a termination condition to stop the whole example’s
net. The main idea behind the implementation of our example is that processes
coordinate themselves through the X-KLAIM tuple space-based communication.
On the other hand, the processes still rely on the ROS bridge to coordinate the

net MRS {
node Arm {

val rosbridgeWebsocketURI = "ws://0.0.0.0:9090"

while (true) {
in("initialPosition")@self
in("item", var String itemld, var String sector, var String itemType,

var Double x, var Double y) @self

eval(new GetDown(rosbridgeWebsocketURLx,y)) @self
eval(new Grip(rosbridgeWebsocketURI)) @self
eval(new GetUp(rosbridgeWebsocketURI,x,y)) @self
eval(new Rotate(rosbridgeWebsocketURI,sector)) @self
eval(new Lay(rosbridgeWebsocketURI)) @self
eval(new Release(rosbridgeWebsocketURLitemld,itemType)) @self
eval(new GoTolnitialPosition(rosbridgeWebsocketURI)) @self

}

}
node DeliveryRobot1 {

val rosbridgeWebsocketURI = "ws://0.0.0.0:9090"

val robotld = "robot1"

val sector ="sectorl"

while (true) {
in("availableForDelivery")@self
eval(new MoveToArm(rosbridgeWebsocketURI,robotld,sector,Arm)) @self
eval(new Deliverltem(rosbridge WebsocketURI,robotld, Arm)) @self

}

}
node DeliveryRobot2 { ... }

node SimuationHandler { ... }

}

Fig. 4. The X-KLAIM net of the warehouse scenario.
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physical parts of the robots themselves. This approach can be seen in the code
of two of the processes we comment on in this section.

In Fig. 5 we show the code of the process Rotate, executed in the node Arm.
All the processes of this example start by waiting for a specific tuple before
executing the main body. This way, the processes that execute in parallel (see
the eval in Fig.4) can coordinate themselves: a process will effectively begin its
task only after the previous process terminated its task. Then, the process creates
the ROS bridge and initializes a publisher for the topic related to the control of
the arm movements. After creating the joint positions for the arm movement,
the process publishes the trajectory to rotate the arm. The process also inserts
a tuple, consisting of an identifier string and the sector, in its local tuple space.
The presence of this tuple triggers the call for a delivery robot. In fact, as shown
later in Fig.6, such a tuple is consumed by the MoveToArm process, which is
executed by the delivery robots. This form of tuple-based interaction between
the two kinds of robots allows the arm’s code not to depend on the number, the
status, and the identities of the delivery robots. This way, the introduction of
new delivery robots in the scenario would not affect the code of the arm robot.

proc Rotate(String rosbridgeWebsocketURI, String sector) {

in("getUpCompleted")@self

val bridge = new XklaimToRosConnection(rosbridgeWebsocketURI)

val pub = new Publisher("/arm_controller/command",

"trajectory_msgs/JointTrajectory", bridge)

val jointPositions = #[—0.9546, —0.20, —0.7241, 3.1400, 1.6613, —0.0142]

val JointTrajectory rotateTrajectory = new JointTrajectory().positions(jointPositions)
JjointNames(#["joint1"," joint2","joint3"," joint4","joint5"," joint6"])

out("itemReadyForTheDelivery", sector) @self

pub.publish(rotate Trajectory)

bridge.subscribe(

SubscriptionRequestMsg.generate(" /arm_controller/state").
setType("control_msgs/JointTrajectoryControllerState").
setThrottleRate(1).setQueueLength(1),

[ data, stringRep |
val actual = data.get("msg").get("actual").get("positions")
var delta = 0.0
val tolerance = 0.008
for (var i = 0; i < jointPositions.size; i++)

delta += Math.pow(actual.get(i).asDouble() — jointPositions.get(i), 2.0)
val norm = Math.sqrt(delta)
if (norm <= tolerance) {

out("rotationCompleted")@self

bridge.unsubscribe(" /arm_controller/state")

}
D

Fig. 5. The X-KLAIM Rotate process.
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The process then uses the Java API provided by java_rosbridge for subscribing
to a specific topic (we refer to java_rosbridge documentation for the used API). The
last argument is a lambda expression (i.e., an anonymous function). In X-KrLAIM,
lambda expressions have the shape [ paraml, param2, ... | body ], where the
types of the parameters can be omitted if they can be inferred from the context.
The lambda will be executed when an event for the subscribed topic is received.
In particular, the lambda reads some data from the event (in JSON format) con-
cerning the “positions”. ROS dictates the JSON message format. To access the
contents, we use the standard Java API (data is of type JsonNode, from the
jackson-databind library). The lambda calculates the delta between the actual
joint positions and the destination positions to measure the arm movement’s com-
pleteness. The if determines when the arm has completed the rotation movement,
according to a specific tolerance. When that happens, the lambda activates the
process responsible for raising the object (GetUp in our example, see Fig. 4). This
is achieved, once again, by inserting a specific tuple in the local tuple space. Finally,
we can unsubscribe from the topic so that this process will receive no further noti-
fications from the ROS bridge.

proc MoveToArm(String rosbridgeWebsocketURI,String robotld,String sector,Locality arm) {
val x = —0.21
valy =0.31
in("itemReadyForTheDelivery" sector)@arm
val bridge = new XklaimToRosConnection(rosbridgeWebsocketURI)
val pub = new Publisher("/" + robotld + "/move_base_simple/goal",
"geometry_msgs/PoseStamped", bridge)
val destination = new PoseStamped().headerFrameld("wor1ld")
.posePositionX Y (x, y).poseOrientation(1.0)
pub.publish(destination)
bridge.subscribe(
SubscriptionRequestMsg.generate(" /" + robotld + "/amcl_pose").setType(
"geometry_msgs/PoseWithCovarianceStamped").setThrottleRate(1).setQueueLength(1),
[ data, stringRep |
var mapper = new ObjectMapper()
var rosMsgNode = data.get("msg")
var current_position = mapper.treeToValue(rosMsgNode, PoseWithCovarianceStamped)
val tolerance = 0.16
var deltaX = current_position.pose.pose.position.x — destination.pose.position.x
var deltaY = current_position.pose.pose.position.y — destination.pose.position.y
if (deltaX <= tolerance && deltaY <= tolerance) {
val pubvel = new Publisher("/" + robotld + "/cmd_vel",
"geometry_msgs/Twist", bridge)
pubvel.publish(new Twist())
out("ready")@arm
out("readyToReceiveTheItem")@self
bridge.unsubscribe(" /" + robotld + "/amcl_pose")

Fig. 6. The X-KLAIM MoveToArm process.
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In Fig. 6 we show the code of the process MoveToArm, executed in the node
DeliveryRobot1l. This process is responsible for moving the delivery robot to the
arm to get the item deposited on the robot by the arm. The structure of this process
is similar to the previous one. Since the arm robot has a fixed position in our sce-
nario, the coordinates x and y are defined as constants. As anticipated above, this
process first waits for a tuple deposited by the Rotate process (Fig. 5). Recall that
the Rotate process deposits such a tuple at its locality, so the process MoveToArm
retrieves a matching tuple at the locality of the node of the arm (passed as a param-
eter to the process). The process then publishes the destination position on the
ROS bridge and waits until the destination is reached by subscribing to a specific
topic. As before, we specify a lambda that decides when the destination has been
reached. Also in this case, we use the published information as JSON messages.
Once the lambda establishes that the delivery robot arrived at the arm robot’s
desired position, it stops the wheels (by publishing a Twist message). Then, it
notifies the arm robot that the delivery robot is ready to receive the item (that is,
the arm can drop the item), again, by inserting a tuple at the arm locality. The
other tuple inserted in the local tuple space will be retrieved by the DeliverItem
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Fig. 7. Execution of an X-KLAIM robotics application.
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process, not shown here. As usual, the lambda takes care of unsubscribing from
the ROS bridge once done.

The screenshot in Fig. 7 shows our X-KLAIM robotics application in execu-
tion. On the left, the Eclipse IDE with our X-KLAIM code is shown (see the
logged messages on the Console). On the right, the Gazebo simulator is shown,
which visualizes on the center the arm ready to drop the item on top of the
delivery robot’s white plate.

5 Discussion and Related Work

Over the last years, researchers have attempted to define notations closer to the
robotics domain to raise the abstraction level for enabling automated code gener-
ation, behavior analysis and property verification (e.g., safety and performance).
In this section, we review several high-level languages and frameworks for mod-
eling, designing and verifying ROS-based applications and some languages for
coordinating collaborative MRSs. We summarize in Table 1 our considerations
and comparison with the languages more strictly related to ours.

High-Level Languages and Frameworks. Many DSLs for component-based
modeling of robotic systems are based on UML and target mostly the architec-
tural aspect of robotic applications, e.g., RobotML [24], V3CMM [3], BRICS [9],
RoboChart [48], and SafeRobots [53]. Some of them can be used to build ROS-
based systems by either supporting a direct translation, e.g., Hyperflex [8], or
serving as a base for other platforms. For example, in BRIDE [10], which relies
on BRICS, the components are modeled using UML and converted to ROS
meta-models to generate runnable ROS C++ code. Additional meta-models
(i.e., deployment meta-model and experiment meta-model) for rapid prototyping
component-based systems are provided in [43]. UML has also been used to model

Table 1. Features comparison of the related works.

DSL Formal | High- Multi- | Heterogenous | Coordination | Decentralized | Open- Compiler | IDE |ROS

language | level robots | robots coordination | endedness

language

ART2o0o0l [28] v v v
ATLAS [39] v v v v v
BRIDE [10] v v v v
CommonLang [54] v v v
Drona [23] v v v v v v v
FLYAQ [12] v v v
Hyperflex [8] v v v v
ISPL [44] v v v v v v
Koord [34] v v s v v v v v
PROMISE [32] v v v
RobotChart [48] | v/ v v v
ROSBuzz [55] v v v v v v v v v
RSSM [30] v v v
SCEL [21] v v v v v v v v
X-Klaim v v v v v v v v v v
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and design robotic tasks and missions, e.g., Art2oo0l [28] supports the develop-
ment cycle of robotic arm tasks in which atomic tasks are abstracted with UML
class diagrams. Textual languages, e.g., CommonLang [54], are another type of
language used to model robotic systems. For example, in [2], a DSL based on
the Python language is presented that can be used interactively, through the
Python command-line interface, to create brand new ROS nodes and to reshape
existing ROS nodes by wrapping their communication interfaces.

Some other contributions, to some extent, allow for the verification of ROS-
based systems. ROSGen [47] takes a specification of a ROS system architecture
as an input and generates a ROS node as an output. Using the theorem prover
Coq, the generation process is amenable to formal verification. DeROS [1] per-
mits describing a robot’s safety rules (and their related corrective actions) and
automatically generating a ROS safety monitoring node by integrating these
rules with a run-time monitor. Another framework for run-time verification
of ROS-based systems is described in [41], which allows generating C++ code
for a monitoring node from user-defined properties specified in terms of event
sequences. In [56], robot systems are modeled as a network of timed automata
that, after verification in Uppaal, are automatically translated into executable
C++ code satisfying the same temporal logic properties as the model. Finally,
RSSM [30] permits to model the activities of multi-agent robot systems using
Hierarchical Petri Nets and, once deadlock absence has been checked on this
model, to generate C++ code for ROS packages automatically.

The approaches mentioned above have not been applied to such complex sys-
tems as MRSs, and some of them are not even suitable for such systems. Very few
high-level languages for MRSs have been proposed. For example, FLYAQ [12] is
a set of DSLs based on UML to specify the civilian missions for unmanned aerial
vehicles. This work is extended in [26] for enabling the use of a declarative speci-
fication style, but it only supports homogeneous robots. ATLAS [39], which also
provides a simulator-based analysis, takes a step further towards coordination
of MRSs, but it only supports centralized coordination. PROMISE [32] allows
specifying the missions of MRSs using Linear Temporal Logic operators for com-
posing robotic mission patterns. Finally, RMoM [40] allows first using a high-
level language for specifying various constraints and properties of ROS-based
robot swarms with temporal and timed requirements and then automatically
generating distributed monitors for their run-time verification.

Languages for Coordination. Coordination for MRSs has been investigated
from several diverse perspectives, and nowadays there is a wide range of tech-
niques that can be used to orchestrate the actions and movements of robots
operating in the same environment [25,57]. Designing fully-automated and
robust MRSs requires strong coordination of the involved robots for autonomous
decision-making and mission continuity in the presence of communication fail-
ures [29]. Several studies recommend using indirect communication to cut imple-
mentation and design costs usually caused by direct communication. Indirect
communication occurs through a shared communication structure that each
robot can access in a distributed concurrent fashion. Some languages provid-
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ing communication and coordination primitives suitable for designing robust
MRSs are reviewed in [14]. In ISPL [44], communication is obtained as an indi-
rect result of synchronization of multiple labeled transition systems on a spe-
cific action. In SCEL [21], a formal language for the description and verifica-
tion of collective adaptive systems, communication is related to the concept of
knowledge repositories, represented by tuple spaces. In Buzz [51], a language for
programming heterogeneous robot swarms, communication is implemented as a
distributed key-value store. For this latter language, integration with the stan-
dard environment of ROS has also been developed, which is named Rosbuzz [55].
Differently from X-KLAIM, however, Rosbuzz does not provide high-level coor-
dination primitives, robots’ distribution is not explicit, and permits less hetero-
geneity. Drona [23] is a framework for distributed drones where communication
is somehow similar to the one used in ISPL. Koord [34] is a language for pro-
gramming and verifying distributed robotic applications where communication
occurs through a distributed shared memory. Differently from X-KLAIM, how-
ever, robots distribution is not explicit, and open-endedness is not supported.
Finally, in [46] a programming model and a typing discipline for complex multi-
robot coordination are presented. The programming model uses choreographies
to compositionally specify and statically verify both message-based communica-
tions and jointly executed motion between robotics components in the physical
space. Well-typed programs, which are terms of a process calculus, are then
compiled into programs in the ROS framework.

6 Concluding Remarks and Future Work

In this paper, we have presented an approach for programming robotics appli-
cations based on the language X-KLAIM and the ROS framework. We have
extended the approach introduced in [5] from single robot scenarios to MRS ones.
X-KLAIM has proved expressive enough to smoothly implement MRSs’ behav-
iors, and its integration with Java allowed us to seamlessly use the java_rosbridge
API directly in the X-KLAIM code to access the publish/subscribe communica-
tion infrastructure of ROS.

We believe that the X-KLAIM computation and communication model is par-
ticularly suitable for programming MRSs’ behavior. On the one hand, X-KLAIM
natively supports concurrent programming, which is required by the distributed
nature of robots’ software. On the other hand, the organization of an X-KLAIM
application in terms of a network of nodes interacting via multiple distributed
tuple spaces, where communicating processes are decoupled both in space
and time, naturally reflects the distributed structure of an MRS. In addition,
X-KLAIM tuples permit to model both raw data produced by sensors and aggre-
gated information obtained from such data; this allows programmers to specify
the robot’s behavior at different levels of granularity. Moreover, the form of com-
munication offered by tuple spaces, supported by X-KLAIM, benefits the scala-
bility of MRSs in terms of the number of components and robots that can be
dynamically added. This would also permit to meet the open-endedness require-
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ment (i.e., robots can dynamically enter or leave the system), which is crucial in
MRSs.

Our long-term goal is to design a domain-specific language for the robotics
domain that, besides being used for automatically generating executable code,
is integrated with tools supporting formal verification and analysis techniques.
These tools are indeed highly desirable for such complex and often safety-critical
systems as autonomous robots [45]. The tools already developed for KLAIM,
e.g., type systems [16,17,37,38], behavioral equivalences [18], flow logic [22], and
model checking [19,20,27], could be a valuable starting point. A first attempt to
define a formal verification approach for the design of MRSs using the KLAIM
stochastic extension StoKlaim and the relative stochastic logic MoSL [19] has
been presented in [36].

Runtime adaptation is another important capability of MRSs. In [35], we have
shown that adaptive behaviors can be smoothly rendered in KLAIM by exploiting
tuple-based higher-order communication to exchange code and possibly execute
it. We plan to investigate to what extent we can benefit from this mechanism to
achieve adaptive behaviors in robotics applications. For example, an X-KLAIM
process (a controller or an actuator) could dynamically receive code from other
possibly distributed processes containing the logic to continue the execution.

X-KrAM has several other features that we did not use in this work. We
list here the most interesting ones, which could be useful for future work in the
field of MRSs. Non-blocking versions of in and read are available: in_nb and
read_nb, respectively. These are useful to check the presence of a matching tuple
without being blocked indefinitely. Under that respect, X-KLAIM also provides
“timed” versions of these operations: as an additional argument, they take a
timeout, which specifies how long the process executing such action is willing to
wait for a matching tuple. If a matching tuple is not found within the specified
timeout these operations return false, and the programmer can adopt counter-
measures. In the example of this paper, we used the simplest way of specifying
a flat and closed network in X-KLAIM. However, X-KLAIM also implements the
hierarchical version of the KLAIM model as presented in [6], which allows nodes
and processes to be dynamically added to existing networks so that modular
programming can be achieved and open-ended scenarios can be implemented.

It is worth noticing that in this work we exploit both the tuple-based commu-
nication model, which X-KLAIM inherits from KrLAIM, and the publish/subscribe
one, supported by ROS and enabled in X-KLAIM by the java_rosbridge library.
The former communication model is used to coordinate both the execution of
concurrent processes running in a robot and the inter-robot interactions. The
latter model, instead, is used to send/receive messages for given topics to/from
the ROS framework installed in a single robot. In principle, the former model
can be used to express the latter. However, this would require introducing inter-
mediary processes that consume tuples and publish their data on the related
topics and, vice-versa, generate a tuple each time an event for a subscribed
topic is received. This would introduce significant overhead in the communica-
tion with the ROS framework, especially for what concerns the handling of the
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subscriptions (as topics related to sensors usually produce message streams).
Nevertheless, we plan to investigate the definition of a programming framework
to make transparent the use of the publish/subscribe mechanism as mentioned
above, overcoming the performance issue by elevating the level of abstraction.
The idea is not only to replace topics with tuples, but to provide ready-to-use
processes acting as building blocks for creating robotics applications. The API
for interacting with these processes will be tuples with given structures. These
processes will hide the interactions with the ROS framework to the programmer,
and produce tuples only when events relevant to the coordination of the MRS
behavior occur (e.g., a robot reached a given position or a requested movement
has been completed).

Finally, in this work we have used the version 1 of ROS as a reference mid-
dleware for the proposed approach, because currently this seems to be most
adopted in practice. We plan anyway to investigate the possibility of extend-
ing our approach to the version 2 of ROS, which features a more sophisticated
publish/subscribe system based on the OMG DDS standard.
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