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Introduction

As General and Program Chairs we would like to welcome you to the proceedings of
ISoLA 2022, the 11th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation held in Rhodes (Greece) during October 22–30,
2022, and endorsed by EASST, the European Association of Software Science and
Technology.

Returning to the traditional in-person event, ISoLA 2022 provided a forum for
developers, users, and researchers to discuss issues related to the adoption and use of
rigorous tools and methods for the specification, analysis, verification, certification,
construction, testing, and maintenance of systems from the point of view of their
different application domains. Thus, since 2004 the ISoLA series of events has served
the purpose of bridging the gap between designers and developers of rigorous tools
on one side, and users in engineering and in other disciplines on the other side.
It fosters and exploits synergetic relationships among scientists, engineers, software
developers, decision makers, and other critical thinkers in companies and organizations.
By providing a specific, dialogue-oriented venue for the discussion of common
problems, requirements, algorithms, methodologies, and practices, ISoLA aims in
particular at supporting researchers in their quest to improve the practicality, reliability,
flexibility, and efficiency of tools for building systems, and users in their search for
adequate solutions to their problems.

The program of ISoLA 2022 consisted of a collection of special tracks devoted to
the following hot and emerging topics:

1. Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

2. Programming: What is Next?
(Organizers: Klaus Havelund, Bernhard Steffen)

3. X-by-Construction meets Runtime Verification
(Organizers: Maurice H. ter Beek, Loek Cleophas, Martin Leucker, Ina Schaefer)

4. Automated Software Re-Engineering
(Organizers: Serge Demeyer, Reiner Hähnle, Heiko Mantel)

5. Digital Twin Engineering
(Organizers: John Fitzgerald, Peter Gorm Larsen, Tiziana Margaria, Jim
Woodcock, Claudio Gomes)

6. SpecifyThis - Bridging gaps between program specification paradigms
(Organizers: Wolfgang Ahrendt, Marieke Huisman, Mattias Ulbrich, Paula
Herber)

7. Verification and Validation of Concurrent and Distributed Heterogeneous Systems
(Organizers: Marieke Huisman, Cristina Seceleanu)

8. Formal Methods Meet Machine Learning
(Organizers: Kim Larsen, Axel Legay, Bernhard Steffen, Marielle Stoelinga)

9. Formal methods for DIStributed COmputing in future RAILway systems
(Organizers: Alessandro Fantechi, Stefania Gnesi, Anne Haxthausen)
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10. Automated Verification of Embedded Control Software
(Organizers: Dilian Gurov, Paula Herber, Ina Schaefer)

11. Digital Thread in Smart Manufacturing
(Organizers: Tiziana Margaria, Dirk Pesch, Alan McGibney)

It also included the following the embedded or co-located events:

• Doctoral Symposium and Poster Session (Sven Jörges, Salim Saay, Steven Smyth)
• Industrial Day (Axel Hessenkämper, Falk Howar, Hardi Hungar, Andreas Rausch)
• DIME Days 2022 (Tiziana Margaria, Bernhard Steffen)

Altogether, the proceedings of ISoLA 2022 comprises contributions collected in four
volumes:

• Part 1: Verification Principles
• Part 2: Software Engineering
• Part 3: Adaptation and Learning
• Part 4: Practice

We thank the track organizers, the members of the program committee, and their
reviewers for their effort in selecting the papers to be presented, the local Organization
Chair, Petros Stratis, and the EasyConferences team for their continuous precious
support during the entire period preceding the events, and the Springer for being, as
usual, a very reliable partner for the proceedings production. Finally, we are grateful to
Christos Therapontos for his continuous support for the Web site and the program, and
to Steve Bosselmann for his help with the editorial system EquinOCS.

Special thanks are due to the following organizations for their endorsement: EASST
(European Association of Software Science and Technology) and Lero - The Irish
Software Research Centre, along with our own institutions - TU Dortmund and the
University of Limerick.

We wish you, as an ISoLA participant, lively scientific discussions at this edition,
and also later, when reading the proceedings, valuable new insights that contribute to
your research and its uptake.

October 2022 Bernhard Steffen
Tiziana Margaria
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Rigorous Engineering of Collective
Adaptive Systems Introduction to the 4th

Track Edition

Martin Wirsing1(B), Rocco De Nicola2, and Stefan Jähnichen3

1 Ludwig-Maximilians-Universität München, Munich, Germany
wirsing@lmu.de

2 IMT School for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

3 TU Berlin and FZI Forschungszentrum Informatik Berlin, Berlin, Germany

stefan.jaehnichen@tu-berlin.de

Abstract. A collective adaptive system consists of collaborating enti-
ties that are able to adapt in real-time to dynamically changing and open
environments and changing needs. Rigorous engineering requires appro-
priate methods and tools to help ensure that a collective adaptive system
lives up to its intended purpose. This note provides an introduction to
the 4th edition of the track “Rigorous Engineering of Collective Adaptive
Systems” and briefly introduces the panel discussion and its 22 scientific
contributions, structured into eight thematic sessions: Design and Vali-
dation of Autonomous Systems, Computing with Bio-inspired Commu-
nication, New System Models and Tools for Ensembles, Large Ensembles
and Collective Dynamics, On the Borderline between Collective Stupid-
ity and Collective Intelligence, Machine Learning for Collective Adaptive
Systems, Programming and Analysing Ensembles, and Tools for Formal
Analysis and Design.

Keywords: Adaptive system · Collective system · Ensemble · Software
engineering · Formal method · Rigorous method · Machine learning

1 Collective Adaptive Systems

Modern IT systems are increasingly distributed and consist of collaborating enti-
ties that are able to adapt at runtime to dynamically changing, open-ended envi-
ronments and to new requirements. Such systems are called Collective Adaptive
Systems (CAS) or also ensembles [18,20]. Examples of CAS are cyber-physical
systems, the internet of things, socio-technical systems as well as smart systems
and robot swarms.

Rigorous engineering of CAS requires devising appropriate methods and tools
to guarantee that such systems behave as expected. To achieve this goal, we
need to develop theories for modelling and analysing collective adaptive systems,
techniques for programming and running such systems, and specific methods
for adaptation, validation and verification while ensuring security, trust and
performance.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13703, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-19759-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19759-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-19759-8_1
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2 Track Overview

The track “Rigorous Engineering of Collective Adaptive Systems” is a follow-
up of four other successful tracks [13,19,38,39] at ISOLA 2014 [26], ISOLA
2016 [27], ISOLA 2018 [28], and ISOLA 2020 [29], respectively. The first track [38]
was entitled “Rigorous Engineering of Autonomic Ensembles” and was organ-
ised within the activities of the EU-funded research project ASCENS [40]. The
latter three tracks [13,19,39] addressed the same theme as this year’s edition
and included research results from several research approaches and projects.
Also, a Special Section of the International Journal on Software Tools for Tech-
nology Transfer was devoted to the rigorous engineering of collective adaptive
systems [12].

The present edition of the track comprises 22 research papers; each of which
has undergone a rigorous check by at least two reviewers. During the event,
a panel “On the Borderline between Collective Stupidity and Collective Intel-
ligence” took place to discuss the relationships between human and artificial
intelligence. The papers were grouped according to seven thematic sessions, viz.:
Design and Validation of Autonomous Systems, Computing with Bio-inspired
Communication, New System Models and Tools for Ensembles, Large Ensem-
bles and Collective Dynamics, Machine Learning for Collective Adaptive Sys-
tems, Programming and Analysing Ensembles, Tools for Formal Analysis and
Design.

3 Track Contributions

In this section, the panel discussion and the papers are briefly introduced in the
order of their presentations and grouped according to the thematic sessions.

3.1 Design and Validation of Autonomous Systems

Because of their temporal and spatial dynamism, automotive collective systems
are among the most difficult systems to design and validate. The three papers
in this session provide novel methods for designing, monitoring, and validating
autonomous systems for cars, bikes, and drones.

In their paper “Correct by Design Coordination of Autonomous Driving Sys-
tems” [6], Marius Bozga and Joseph Sifakis propose a method for the correct by
design coordination of autonomous automotive systems. Using assume-guarantee
contracts they show that it is practically possible to determine speed control
policies for vehicles that are safe by design.

Francesca Cairoli, Nicola Paoletti, and Luca Bortolussi do not consider cars
but bikes in their paper “Neural Predictive Monitoring for Collective Adaptive
Systems” [10]. They present a neural-network learning-based approach, called
Neural Predictive Monitoring [5], to preemptively detect violations of require-
ments for bike-sharing systems, e.g. having bike stations left with no bikes.
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Often automotive autonomous systems or more generally distributed cyber-
physical systems are virtually synchronous, i.e. they logically behave as if they
were synchronous in spite of network delays, and changing execution times. In
the paper “An Extension of HybridSynchAADL and Its Application to Collab-
orating Autonomous UAVs” [22], Jaehun Lee, Kyungmin Bae, and Peter Csaba
Ölveczky discuss how to analyze virtually synchronous systems using an exten-
sion of the modelling language HybridSynchAADL [21] with compound data
types and user-defined functions and illustrate the method by considering a sys-
tem of collaborating drones for packet delivery.

3.2 Computing with Bio-inspired Communication

This session focuses on bioinspired computing and presents new approaches for
modelling colonies of ants, flocks of birds, and flocks of drones.

The paper “Discrete models of continuous behaviour of collective adaptive
systems” [14] by Peter Fettke and Wolfgang Reisig considers artificial ant sys-
tems and presents a Petri net approach for modelling the behaviour of the arti-
ficial ants, and the causal dependencies between actions, while accounting for
continuous movements in discrete models.

In the paper “Modelling Flocks of Birds from the Bottom Up” [11] Rocco
De Nicola, Luca Di Stefano, Omar Inverso, and Serenella Valiani propose a
novel compositional specification approach for modelling and reasoning about
collectives in natural systems. As an example, they incrementally build a bottom-
up model of a flock of birds and use a prototype simulator for validating the
model in a controlled experiment, where a flock is attacked by a bird of prey
and reacts by splitting into smaller groups to reunite when the threat is over.

Andreas Brandstätter and co-authors study flocks of drones and in the paper
“Towards Drone Flocking using Relative Distance Measurements” [7] they intro-
duce a method for forming and maintaining a drone flock by considering only
relative distance measurements. The proposed approach is fully distributed and
can work even in GPS-denied environments.

3.3 New System Models and Tools for Ensembles

The papers of this session use modal and spatial logic-based methods to specify
ensembles of knowledge-based agents, in order to formalise the consciousness of
agents and synthesise strategies.

In the paper “Epistemic Ensembles” [15] Rolf Hennicker, Alexander Knapp,
and Martin Wirsing study ensembles of knowledge-based agents that, unlike the
agents considered in their previous work on ensembles [16,17], do not use mes-
sages to communicate. In this case, information exchange is achieved implicitly
through the modification of the knowledge of the agents. Ensemble behaviour is
specified in a dynamic logic with compound ensemble actions while specifications
are implemented by epistemic processes.

The paper “A modal approach to consciousness of agents” [41] by Chen
Yifeng and J. W. Sanders proposes a novel fundamental approach to the notions
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of awareness and consciousness of agents. Awareness is modelled as a modal
operator which satisfies a well-chosen set of basic laws and inequalities. Con-
sciousness is formalised as an iterated form of awareness, more specifically as
awareness of awareness.

Maurice ter Beek, Davide Basile, and Vincenzo Ciancia in the paper “An
Experimental Toolchain for Strategy Synthesis with Spatial Properties” [34]
study the application of strategy synthesis to enforce spatial properties and
present the integration of two tools, (i) Contract Automata Library that sup-
ports the composition and synthesis of strategies of games modeled in a dialect of
finite-state automata, (ii) Voxel-based Logical Analyser, a spatial model checker
that supports the verification of properties of (pixels of) digital images. The
approach is illustrated through a basic example of the synthesis of strategies on
automata that encode the motion of agents in spaces represented by images.

3.4 Large Ensembles and Collective Dynamics

This section considers the issues connected to the huge number of individuals
that a CAS might have.

In the paper “Towards a Kinetic Framework to Model the Collective Dynam-
ics of Large Agent Systems” [30], Stefania Monica, Federico Bergenti, and Franco
Zambonelli instantiate the approach based on the kinetic theory of active par-
ticles [4] to model and analyse large and decentralized multi-agent systems and
use it study cumulative properties of such systems by using statistical techniques
that focus on the long-time asymptotic behaviour. As a case study, they show
how to derive two asymptotic properties of the symmetric gossip algorithm for
multi-agent systems and validate them on a multi-agent implementation of the
symmetric gossip algorithm.

Julia Klein and Tatjana Petrov, in the paper “Understanding Social Feedback
in Biological Collectives with Smoothed Model Checking” [36], consider biologi-
cal groups and show that by experimentally observing the collective response of
a chosen small set of groups it is possible: (i) to predict the collective response
for any given group size and (ii) to infer the desirable group behaviours fitness
function which the group robustly performs under different perturbations. They
use Smoothed Model Checking, an approach based on Gaussian Process Clas-
sification, and specify the fitness function as a template temporal logic formula
with unknown parameters. The framework is validated over a case study of a
collective stinging defence mechanism in honeybee colonies.

Max Tschaikowski has recently proposed to obtain reliable estimates on
global dynamics of agent networks from local agent behavior by replacing depen-
dencies among agents with exogenous parameters, in order to estimate the global
dynamics via agent decoupling [37]. The paper “Efficient Estimation of Agent
Networks” [23], by Alexander Leguizamon-Robayo and Max Tschaikowski, intro-
duces the notion of estimation equivalence, a model reduction technique for sys-
tems of nonlinear differential equations that allows the aforementioned decoupled
model to be replaced with a smaller and easier to analyze one. The approach is
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validated on a multi-class epidemiological SIRS model and is shown to result in
a speed-up factor proportional to the number of population classes.

3.5 Panel: On the Borderline Between Collective Stupidity
and Collective Intelligence

When observing swarms we might see two different kind of behaviours:

1. the behaviour of individuals appears to be very determined and, above all,
the same for all of them. All components follow the same pattern and the
behaviour of the swarm as a whole is also very determined. The reaction of
the swarm to unknown signals or situations is hardly predictable and rather
random and often leads to chaos or even destruction. An example could be
the behaviour of lemmings, which for reasons unknown at least to us, join
the swarm behaviour and plunge into the sea. We would want to call that
collective stupidity, although the word stupidity is perhaps not appropriate
for a natural behaviour.

2. the behaviour of individual objects is not determined - i.e. each or everyone
can do what he or she does “best” - we would call collective intelligence if,
in the process of achieving a given goal, the feature and the behavior of each
individual member of the swarm contribute to the achievement of the goal
with its specific characteristics or abilities.

During the panel, Stefan Jähnichen as moderator and the panelists Tomáš
Bureš, Thomas Gabor, Joseph Sifakis, Tatjana Petrov, and Franco Zambonelli
vividly discussed questions such as “Do we need collective intelligent systems?”,
“How can we avoid “stupid” swarm behaviour?” or “Can we build systems fos-
tering the collective intelligence of humans?”

3.6 Machine Learning for Collective Adaptive Systems

This session, consisting of four papers, one of which, for organizational reasons,
was presented in the panel session. The paper in the session addresses the issues
connected to sub-symbolic artificial intelligence in two complementary ways:
using machine learning techniques for supporting collective adaptation and using
software development process models for building machine learning systems.

In the paper Ensemble-based modeling abstractions for modern self-
optimizing systems” [36], Michal Töpfer and co-authors argue that incorporating
machine-learning and optimization heuristics is a key feature of modern smart
systems which are to learn over time and optimize their behavior at runtime
to deal with uncertainty in their environment. They introduce an extension of
their ensemble-based component model DEECo [9] that enables them to use
machine-learning and optimization heuristics for managing autonomic compo-
nent ensembles. An example of how such a model can be beneficially used for
modeling access control related problems in the Industry 4.0 settings is provided.

The paper “Attuning Adaptation Rules via a Rule-Specific Neural Net-
work” [8] by Tomáš Bureš and co-authors discusses the use of neural networks
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in self-adaptive systems. In order to avoid losing some key domain knowledge
and improve the learning process, a rule-specific neural network method is intro-
duced that makes it possible to transform the guard of an adaptation rule into a
rule for the neural network. The key feature is that rule-specific neural networks
are composable and their architecture is driven by the structure of the logical
predicates in the adaption rule in question.

To deal with unknowns often online learning is used, but the complexity of
online learning increases in the presence of context shifts. In the paper “Measur-
ing Convergence Inertia: Online Learning in Self-Adaptive Systems with Context
Shifts” [1], Elvin Alberts and Ilias Gerostathopoulos propose a new metric to
assess the robustness of reinforcement learning policies against context shifts
and use it to assess the robustness of different policies within a specific class of
reinforcement learning policies (multi-armed bandits - MAB) to context shifts.
Through an experiment with a self-adaptation exemplar of a web server, they
show that their approach is a viable way to inform the selection of online learning
policies for self-adaptive systems.

The paper “Capturing Dependencies within Machine Learning via a Formal
Process Model” [33] by Fabian Ritz and co-authors defines a comprehensive
software development process model for machine learning that encompasses, in
a consistent way, most tasks and artifacts described in the literature. In addition
to the production of the necessary artifacts, they also consider the generation
and validation of fitting descriptions in the form of specifications. They also
advocate designing interaction points between standard software development
processes and machine learning models throughout their entire life-cycle after
initial training and testing.

3.7 Programming and Analysing Ensembles

In this session, new methods are presented for efficiently running collective adap-
tive systems and for analysing their quality.

The paper “On Model-based Performance Analysis of Collective Adaptive
Systems” [31] by Maurizio Murgia, Riccardo Pinciroli, Catia Trubiani, and
Emilio Tuosto is concerned with the analysis of performance properties of CAS.
Two recently proposed approaches are considered: one is based on generalised
stochastic Petri nets derived from the system specification, while the other is
based on queueing networks derived from suitable behavioural abstractions. The
relative merits of the two approaches are assessed also by considering a case
study based on a scenario involving autonomous robots.

The paper “Programming Multi-Robot Systems with X-KLAIM” [35] by
Francesco Tiezzi, Khalid Bourr, Lorenzo Bettini, and Rosario Pugliese also con-
siders software development for robotics applications. It proposes an approach
for programming Multi-Robot Systems at a high abstraction level using the pro-
gramming language X-KLAIM. The computation and communication model of
X-KLAIM, based on multiple distributed tuple spaces, allows programs to be
coordinated by the same abstractions and mechanisms for both intra- and inter-
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robot interactions. The feasibility and effectiveness of the proposal are demon-
strated in a realistic Multi-Robot Systems scenario.

In the paper “Bringing Aggregate Programming towards the Cloud” [2], Gior-
gio Audrito, Ferruccio Damiani, Gianluca Torta address the problem of running
an Aggregate Programming application on a high-performance, centralized com-
puter such as those available in a cloud environment, in order to manipulate large
centralised graph-based data structures across multiple machines, dynamically
joining and leaving the computation and have adaptive CAS whose computa-
tions dynamically move across the IoT/edge/fog/cloud continuum, according to
availability of resources and infrastructures.

3.8 Tools for Formal Analysis and Design

This section deals with tools and examples of formal design and verification of
different kind of collective systems. One considers financial systems, the other
deals with cyber-physical systems, while the third one considers agents with
opportunistic behaviour.

Bartoletti and his co-authors, in the article “Formal Analysis of Lending
Pools in Decentralized Finance” [3] consider decentralized finance applications
implemented on blockchain and advocate their formalization and verification.
The main contribution is a tool for the formal analysis of lending pools, one of
the most popular decentralized finance applications. The tool supports several
analyses, including reachability analysis, LTL model checking, and statistical
model checking. In the paper, the tool is used to search for threshold and reward
parameters that minimize the risk of unrecoverable loans.

In [24] Benjamin Lion, Farhad Arbab, and Carolyn Talcott proposed a com-
positional approach for modelling distributed cyber-physical systems. There,
cyber and physical aspects of a system are described as streams of discrete
observations. In the paper in this volume, titled “A Rewriting Framework for
Cyber-Physical Systems” [25], the same authors present a rewriting logic imple-
mentation of this modelling approach and illustrate it through a case study in
which robots move in a common area.

The paper “Model Checking Reconfigurable Interacting Systems” [32] by Nir
Piterman, Yehia Abd Alrahman and Shaun Azzopardi deals with reconfigurable
multi-agent systems, namely autonomous agents, with integrated interaction
capabilities that feature opportunistic interaction. The authors propose a model
checker, named R-CHECK, to reason about these systems at both the individ-
ual and system levels. The tool supports a high-level input language and allows
reasoning about interaction protocols and joint missions, considering reconfigu-
ration, coalition formation and self-organization.
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Abstract. The paper proposes a method for the correct by design coor-
dination of autonomous driving systems (ADS). It builds on previous
results on collision avoidance policies and the modeling of ADS by com-
bining descriptions of their static environment in the form of maps, and
the dynamic behavior of their vehicles.

An ADS is modeled as a dynamic system involving a set of vehicles
coordinated by a Runtime that based on vehicle positions on a map and
their kinetic attributes, computes free spaces for each vehicle. Vehicles
are bounded to move within the corresponding allocated free spaces. We
provide a correct by design safe control policy for an ADS if its vehi-
cles and the Runtime respect corresponding assume-guarantee contracts.
The result is established by showing that the composition of assume-
guarantee contracts is an inductive invariant that entails ADS safety.

We show that it is practically possible to define speed control policies
for vehicles that comply with their contracts. Furthermore, we show that
traffic rules can be specified in a linear-time temporal logic, as a class
of formulas that constrain vehicle speeds. The main result is that, given
a set of traffic rules, it is possible to derive free space policies of the
Runtime such that the resulting system behavior is safe by design with
respect to the rules.

Keywords: Autonomous driving systems ⋅ Traffic rule specification ⋅
Map specification ⋅ Collision avoidance policy ⋅ Assume-guarantee
contract ⋅ Correctness by design

1 Introduction

Autonomous driving systems (ADS ) are probably the most difficult systems to
design and validate, because the behavior of their agents is subject to temporal
and spatial dynamism. They are real-time distributed systems involving compo-
nents with partial knowledge of their environment, pursuing specific goals while
the collective behavior must meet given global goals.
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Development of trustworthy ADS is an urgent and critical need. It poses
challenges that go well beyond the current state of the art due to their over-
whelming complexity. These challenges include, on the one hand, modeling the
system and specifying its properties, usually expressed as traffic rules; on the
other hand, building the system and verifying its correctness with respect to the
desired system properties.

Modeling involves a variety of issues related to the inherent temporal and
spatial dynamics as well as to the need for an accurate representation of the
physical environment in which vehicles operate. Many studies focus on formaliz-
ing and standardizing a concept of map that is central to semantic awareness and
decision-making. These studies often use ontologies and logics with associated
reasoning mechanisms to check the consistency of descriptions and their accu-
racy with respect to desired properties [2,3]. Other works propose open source
mapping frameworks for highly automated driving [1,16]. Finally, the SOCA
method [7] proposes an abstraction of maps called zone graph, and uses this
abstraction in a morphological behavior analysis.

There is an extensive literature on ADS validation that involves two interre-
lated problems: the specification of system properties and the application of val-
idation techniques. The specification of properties requires first-order temporal
logics because parameterization and genericity are essential for the description
of situations involving a varying number of vehicles and types of traffic patterns.
The work in [17,19] formalizes a set of traffic rules for highway scenarios in
Isabelle/HOL. It shows that traffic rules can be used as requirements to be met
by autonomous vehicles and proposes a verification procedure. A formalization
of traffic rules for uncontrolled intersections is provided in [12], which shows how
the rules can be used by a simulator to safely control traffic at intersections. The
work in [10] proposes a methodology for formalizing traffic rules in linear tem-
poral logic; it shows how the evaluation of formalized rules on recorded human
behaviors provides insight into how well drivers follow the rules.

Many works deal with the formal verification of controllers that perform spe-
cific maneuvers. For example, in [11], a dedicated multi-way spatial logic inspired
by interval temporal logic is used to specify safety and provide proofs for lane
change controllers. The work in [18] presents a formally verified motion plan-
ner in Isabelle/HOL. The planner uses maneuver automata, a variant of hybrid
automata, and linear temporal logic to express properties. In [10], runtime veri-
fication is applied to check that the maneuvers of a high-level planner conform
to traffic rules expressed in linear temporal logic.

Of particular interest for this work are correct by construction techniques
where system construction is guided by a set of properties that the system is
guaranteed to satisfy. They involve either the application of monolithic synthe-
sis techniques or compositional reasoning throughout a component-based system
design process. There is considerable work on controller synthesis from a set of
system properties usually expressed in linear temporal logic, see for example
[13,21,26–28]. These are algorithmic techniques extensively studied in the field
of control. They consist of restricting the controllable behavior of a system inter-
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acting with its environment so that a set of properties are satisfied. Nonetheless,
their application is limited due to their high computational cost, which depends
in particular on the type of properties and the complexity of the system behavior.

An alternative to synthesis is to achieve correctness by design as a result
of composing the properties of the system components. Component proper-
ties are usually “assume-guarantee” contracts characterizing a causal relation-
ship between a component and its environment: if the environment satisfies the
“assume” part of the contract, the state of the component will satisfy the “guar-
antee” part, e.g. [4,8,15]. The use of contracts in system design involves a decom-
position of overall system requirements into contracts that provide a basis for
more efficient analysis and validation. In addition, contract-based design is advo-
cated as a method for achieving correctness by design, provided that satisfactory
implementations of the system can be found [23]. There are a number of the-
oretical frameworks that apply mainly to continuous or synchronous systems,
especially for analysis and verification purposes [14,20,22]. They suffer compu-
tational limitations because, in the general case, they involve the symbolic solu-
tion of fixed-point equations, which restricts the expressiveness of the contracts
[14]. Furthermore, they are only applicable to systems with a static architecture,
which excludes dynamic reconfigurable systems, such as autonomous systems.

The paper builds on previous results [5] on a logical framework for parametric
specification of ADS combining models of the system’s static environment in the
form of maps, and the dynamic properties of its vehicles. Maps are metric graphs
whose vertices represent locations and edges are labeled with segments that can
represent roads at different levels of abstraction, with characteristics such as
length or geometric features characterizing their shape and size.

An ADS model is a dynamic system consisting of a map and a set of vehicles
moving along specific routes. Its state can be conceived as the distribution of
vehicles on a map with their positions, speeds and other kinematic attributes.
For its movement, each vehicle has a safe estimate of the free space in its neigh-
borhood, according to predefined visibility rules. We assume that vehicle coor-
dination is performed by a Runtime that, for given vehicle positions and speeds
on the map, can compute the free spaces on each vehicle’s itinerary in which it
can safely move.

We study a safe control policy for ADS, which is correct by design. It results
from the combination of two types of assume-guarantee contracts: one contract
for each vehicle and another contract for the Runtime taking into account the
positions of the vehicles on the map. The contract for a vehicle states that,
assuming that initially the dynamics of the vehicle allow it to stay in the allo-
cated free space, it will stay in this free space. Note that the details of the
contract implementation are irrelevant; only the I/O relationship between free
space and vehicle speed matters. The Runtime contract asserts that if the free
spaces allocated to vehicles are disjoint, then they can be allocated new disjoint
free spaces provided they have fulfilled their contract.

We build on this general result by specializing its application in two direc-
tions. First, we show that it is possible to define speed policies for vehicles that
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satisfy their assume-guarantee contract. Second, we show that it is possible to
define free space policies for the Runtime enforcing safety constraints of a given
set of traffic rules. We formalize traffic rules as a class of properties of a linear
temporal logic. We provide a method that derives from a given set of traffic
rules, constraints on the free spaces chosen by the Runtime such that the result-
ing system behavior is safe with respect to these rules. This is the main result
of the paper establishing correctness by design of general ADS, provided that
their components comply with their respective contracts.

The paper is structured as follows. In Sect. 2, we establish the general frame-
work by introducing the basic models and concepts for the representation of
maps. In Sect. 3, we introduce the dynamic model of ADS involving a set of
vehicles and a Runtime for their coordination. We show how a correct by design
safe control policy is obtained by combining assume-guarantee contracts for the
vehicles and the Runtime. In Sect. 4, we study the principle of speed policies
respecting the vehicle contract and show its application through an example.
In Sect. 5, we formalize traffic rules as a class of formulas of a linear temporal
logic and show how it is possible to generate from a set of traffic rules free space
policies such that the system is safe by design. Section 6 concludes with a dis-
cussion of the significance of the results, future developments and applications.
The proofs of technical results are available in the long version of the paper [6].

2 Map Representation

Following the idea presented in [5], we build contiguous road segments from a
set S equipped with a partial concatenation operator ⋅ ∶ S × S → S ∪ {⊥},
a length norm ∣∣.∣∣ ∶ S → R≥0 and a partial subsegment extraction operator
.[., .] ∶ S × R≥0 × R≥0 → S ∪ {⊥}. Thus, given a segment s, ∣∣s∣∣ represents its
length and s[a, b] for 0 ≤ a < b ≤ ∣∣s∣∣, represents the sub-segment starting at
length a from its origin and ending at length b. Segments can be used to represent
roads at different levels of abstraction, from intervals to regions. In this paper,
we consider S as the set of curves obtained by concatenation of line segments
and circle arcs, for representing roads of a map as depicted in Fig. 1.

We use metric graphs G
def= (V,S, E) to represent maps, where V is a finite

set of vertices, S is a set of segments and E ⊆ V × S⋆ × V is a finite set of edges
labeled by non-zero length segments (denoted S⋆). For an edge e = (v, s, v

′
) ∈ E

we denote •
e

def= v, e
• def= v

′, e.s
def= s. For a vertex v, we define •

v
def= {e ∣ e

• = v}

and v
• def= {e ∣

•
e = v}. We call a metric graph connected (resp. weakly connected)

if a path (resp. an undirected path) exists between any pair of vertices.

We consider the set PosG
def= V ∪ {(e, a) ∣ e ∈ E, 0 ≤ a ≤ ∣∣e.s∣∣} of positions

defined by a metric graph. Note that positions (e, 0) and (e, ∣∣e.s∣∣) are considered
equal respectively to positions •

e and e
•. We denote by p

s
−→G p

′ the existence of
an s-labelled edge ride between succeeding positions p = (e, a) and p

′ = (e, a
′
)

in the same edge e whenever 0 ≤ a < a
′ ≤ ∣∣e.s∣∣ and s = e.s[a, a

′
]. Moreover, we

denote by p
s
↝G p

′ the existence of an s-labelled ride between arbitrary positions
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p, p
′, that is, ↝G

def= ( −→G )
+ the transitive closure of edge rides. Finally, we

define the distance dG from position p to position p
′ as 0 whenever p = p

′ or the
minimum length among all segments labeling rides from p to p

′ and otherwise
+∞ if no such ride exists. Whenever G is fixed in the context, we will omit the
subscript G for positions PosG, distance dG, and rides −→G or ↝G .

Fig. 1. A map with junctions (blue edges) and a merger vertices (red edges) (Color
figure online)

A connected metric graph G = (V,S, E) can be interpreted as a map, struc-
tured into roads and junctions, subject to additional assumptions:

– we restrict to metric graphs which are 2D-consistent [5], meaning intuitively
they can be drawn in the 2D-plane such that the geometric properties of
the segments are compatible with the topological properties of the graph.
In particular, if two distinct paths starting from the same vertex v, meet at
another vertex v

′, the coordinates of v
′ calculated from each path are identical.

For the sake of simplicity, we further restrict to graphs where distinct vertices
are located at distinct points in the plane, and moreover, where no edge is
self-crossing (meaning actually that distinct positions (e, a) of the same edge
e are located at distinct points).

– the map is equipped with a symmetric junction relationship � on edges E
which abstracts the geometric crossing (or the proximity) between edges at
positions other than the edge end points. This relationship is used to define
the junctions of the map, that is, as any non-trivial equivalence class in the
transitive closure of �. Actually, junctions need additional signalisation to
regulate the traffic on their edges (e.g., traffic lights, stop signs, etc.). In
addition, we assume a partial ordering ≺j on the set of vertices to reflect
their static priorities as junction entries.

– to resolve conflicts at merger vertices, i.e., vertices with two or more incident
segments which do not belong to a junction, we assume that the map is
equipped with a static priority relationship. Specifically, for a vertex v, there
is a total priority order ≺v on the set of edges •

v. This order reflects an
abstraction of the static priority rules associated with each of the merging
edges (e.g., right-of-way, yield-priority, etc.).

– every edge e is associated with a maximal speed limit e.v ∈ R≥0.
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In the remainder of the paper, we consider a fixed metric graph G = (V,S, E)
altogether with the junction relationship �, static priorities ≺v and edge speed
limits as discussed above. Also, we extend the junction and priority relationships

from edges to their associated positions, that is, consider (e1, a1) ∼ (e2, a2)
def=

e1 ∼ e2 for any relation ∼∈ {�, (≺v)v∈V }. Finally, we denote by r1 ⊎ r2 the
property that rides r1, r2 in G are non-crossing, that is, their sets of positions
are disjoint and moreover not belonging to the same junction(s), except for
endpoints.

3 The ADS Dynamic Model

3.1 General ADS Architecture

Given a metric graph G representing a map, the state of an ADS is a tuple
⟨sto⟩o∈O representing the distribution of a finite set of objects O with their
relevant dynamic attributes on the map G. The set of objects O includes a set of
vehicles C and fixed equipment such as lights, road signs, gates, etc. For a vehicle

c, its state stc
def= ⟨c.p, c.δ, c.v , c.wt , c.it . . . ⟩ includes respectively its position on

the map (from Pos ), its displacement traveled since c.p (from R≥0), its speed
(from R≥0), the waiting time (from R≥0) which is the time elapsed since the
speed of c became zero, its itinerary (from the set of segments S) which labels

a ride starting at c.p, etc. For a traffic light lt, its state stlt
def= ⟨lt .p, lt .cl , . . .⟩

includes respectively its position on the map (from Pos ), and its color (with
values red and green), etc.

The general ADS model is illustrated in Fig. 2 and consists of a set of vehicle
models C and a Runtime that interact cyclically with period Δt. The Runtime
calculates free space values for each vehicle c which are lengths c.f of initial
rides on their itineraries c.it whose positions are free of obstacles. In turn, the
vehicles adapt their speed to stay within the allocated free space. Specifically,
the interaction proceeds as follows:

– each vehicle c applies a speed policy for period Δt respecting its free space c.f
received from the Runtime. During Δt, it travels a distance c.δ

′ to some new
position c.p ′, and at the end of the period its speed is c.v ′, its itinerary c.it ′,
etc. The new state is then communicated to the Runtime.

– the Runtime updates the system state on the map taking into account the
new vehicle states and time-dependent object attributes. Then it applies a
free space policy computing the tuple ⟨c.f ′⟩c∈C , the new free space for all
vehicles based on the current system state. The corresponding free spaces are
then communicated to vehicles and the next cycle starts.

Note that the coordination principle described is independent of the type of
segments used in the map, e.g. intervals, curves or regions. For simplicity, we
take the free spaces to measure the length of an initial ride without obstacles on
the vehicle itinerary. This abstraction is sufficient to state the basic results. We
discuss later how they can be generalized for richer interpretations of the map.
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Fig. 2. General ADS architecture

3.2 Assume-Guarantee for Safe Control Policies

We give below the principle of a safe control policy for vehicles, which respects
their allocated free space, applying assume-guarantee reasoning.

We consider the following two hypotheses. For a vehicle c, there exists a
function Bc ∶ R≥0 → R≥0 that gives the minimum braking distance c needs
to stop from speed v, in case of emergency. Furthermore, for a non-negative
distance f , let Aheadc(f) denote the ride consisting of the positions reachable
on the itinerary c.it from the current vehicle position c.p within distance f ,

formally Aheadc(f)
def= {p

′ ∈ Pos ∣ ∃δ ≤ f. c.p
c.it[0,δ]
↝ p

′
}.

The following definition specifies a safe control policy using assume-guarantee
reasoning on the components of the ADS architecture. We consider assume-
guarantee contracts on components defined as pairs of properties A/G specifying
respectively the input-output component behavior for a cycle, i.e., respectively,
what the component guarantees (G) provided its environment conforms to given
assumption (A).

Definition 1 (safe control policy). A control policy is safe if

– each vehicle c ∈ C respects the assume-guarantee contract:

0 ≤ c.v , Bc(c.v) ≤ c.f / 0 ≤ c.v ′
, 0 ≤ c.δ

′
, c.δ

′ + Bc(c.v
′
) ≤ c.f ,

c.p
c.it[0,c.δ

′
]

↝ c.p ′
, c.it ′ = c.it[c.δ′,−]

– the Runtime respects the assume-guarantee contract:

∧c0 ≤ c.δ ≤ c.f , ⊎c Aheadc(c.f − c.δ) / ∧c∈Cc.f
′ ≥ c.f − c.δ, ⊎c∈C Aheadc(c.f

′
)

The policy is the joint enforcement of safe speed policies for vehicles and
safe free space policies for the Runtime. Vehicle safe speed policies require that
if a vehicle can brake safely by moving forward within its allocated free space
at the beginning of a cycle, then it can adapt its speed moving forward within
this space. Runtime safe free space policies require that if the free spaces of the
vehicles are non-crossing at the beginning of a cycle, then it is possible to find
new non-crossing free spaces for the vehicles provided they move forward in their
allocated free space.

Theorem 1. Safe control policies preserve the following invariants:
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– the speed is positive and compliant to the free space, for all vehicles, that is,
⋀c∈C 0 ≤ c.v ∧ B(c.v) ≤ c.f ,

– the free spaces are non-crossing, that is, ⨄c∈C Aheadc(c.f ).

Note that this theorem guarantees the safety of the coordination insofar
as the vehicles respecting their contracts remain in their allocated free spaces
which are non-crossing by construction. Nevertheless, the result leaves a lot of
freedom to vehicles and the Runtime to choose speeds and non-crossing free
spaces. In particular, two questions arise concerning these choices. The first
question is whether the system can reach states where no progress is possible.
One can imagine traffic jam situations, for example when vehicles do not have
enough space to move. The second question is whether free space choices can
be determined by traffic rules that actually enforce fairness in resolving conflicts
between vehicles. This question is discussed in detail in Sect. 5.

4 Speed Policies Abiding by the Vehicle Contract

In this section, we show that it is possible for vehicles to compute speed policies
in accordance with their contract.

The behavior of each vehicle is defined by a controller, which given its current
speed and its free space, computes the displacement for Δt so that it can safely
move in the free space. Such safe speed policies have been studied in [24,25].

We illustrate the principle of safe speed policy with respect to f considering
that each vehicle is equipped with a controller that receives a free space value and
adjusts its speed adequately. For the sake of simplicity, assume the controller can
select among three different constant acceleration values {−bmax, 0, amax} ∈ R

respectively, the negative value −bmax for decreasing, the zero value for main-
taining and the positive value amax for increasing the speed. At every cycle, the
controller will select the highest acceleration value for which the vehicle guar-
antee holds as defined by its contract in Definition 1. Nonetheless, an exception
applies for the very particular case where the vehicle stops within the cycle,
which cannot be actually handled with constant acceleration.

The proposed speed policy defines the new speed v
′ and displacement δ

′ using
a region decomposition of the safe v×f space (that is, where v ≥ 0 and f ≥ B(v))
as follows:

v
′
, δ

′ def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, f if f ≥ B(v), f − vΔt < B(v), v − bmaxΔt < 0
v − bmaxΔt, vΔt − bmaxΔt

2
/2

if f ≥ B(v), f − vΔt < B(v), v − bmaxΔt ≥ 0
v, vΔt if f − vΔt ≥ B(v), f − vΔt − amaxΔt

2
/2 < B(v + amaxΔt)

v + amaxΔt, vΔt + amaxΔt
2
/2

if f − vΔt − amaxΔt
2
/2 ≥ B(v + amaxΔt)

(1)
Intuitively, the regions are defined such that, when the corresponding acceler-
ation is constantly applied for Δt time units, the guarantee on the vehicle is
provable given the assumptions and the region boundary conditions.
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Moreover, the vehicle position and the itinerary are updated according to

the travelled distance by taking c.p ′ such that c.p
c.it[0,c.δ

′
]

↝ c.p ′ and c.it ′ =
c.it[c.δ′,−]. Furthermore, the waiting time c.wt is updated but taking c.wt ′

def=
c.wt + Δt if c.v = c.v ′ = 0 and c.wt ′

def= 0 otherwise.

Proposition 1. The region-based speed policy respects the safety contract for
vehicles if the braking function is B(v) = v

2
/2bmax.

Note that the speed policy works independently of the value of the parameter
Δt, which is subject only to implementation constraints, e.g., it must be large
enough to allow the controlled electromechanical system to realize the desired
effect. A large Δt may imply low responsiveness to changes and jerky motion,
but will never compromise the safety of the system.

The proposed implementation of the speed policy is “greedy” in the sense
that it applies maximum acceleration to move as fast as possible in the available
space. We could have “lazy” policies that do not move as fast as possible, and
simply extend the travel time. We have shown in [24] that the region-based speed
policy approaches the optimal safety policy, i.e., the one that gives the shortest
travel time, when we refine the choice of acceleration and deceleration rates in
the interval [−bmax, amax].

5 Free Space Policies Implied by Traffic Rules

In this section, we study free space safety policies for a given set of global system
properties describing traffic rules. We formalize traffic rules as a class of linear
temporal logic formulas and provide a method for computing free space values
for vehicles that allow them to meet a given set of traffic rules.

5.1 Writing Specifications of Traffic Rules

Given a map G and a set of objects O, we specify traffic rules as formulas of a
linear time logic of the following form, where □ is the always time modality and
N is the next time modality:

□ ∀c1. ∀o2...∀ok. φ(c1, o2, . . . , ok) ⟹ N ψ(c1, o2, . . . , ok) (2)

A rule says that for any run of the system, the satisfaction of the precondi-
tion φ implies that the postcondition ψ holds at the next state. Both φ and ψ
are boolean combinations of state predicates as defined below. Furthermore, we
assume that ψ constrains the speed of a single vehicle c1 for which the property
is applicable, and which we call for convenience the ego vehicle.

The rules involve state predicates φ in the form of first-order assertions built
from variables and object attributes (denoting map positions, segments, reals,
etc.) using available primitives on map positions (e.g., rides ↝ , edge rides
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−→ , distance d, equality =), on segments (e.g., concatenation and subsegment
extraction), in addition to real arithmetic and boolean operators.

Moreover, we define auxiliary non-primitive location and itinerary predicates
proven useful for the expression of traffic rules. For a vehicle c ∈ C and x either
an object o ∈ O, a vertex u or an edge e of the map, we define the predicates
c@x (c is at x), c −→ x (c meets x along the same edge), c ↝ x (c meets x) as in
Table 1. Furthermore, for a vehicle c ∈ C and non-negative δ let c.p ⊕c δ denote
the future position of c after traveling distance δ, that is, either c.p if δ = 0 or the

position p
′ such that c.p

c.it[0,δ]
↝ p

′. We extend ⊕c to arbitrary future positions of

c by taking (c.p ⊕c δ)⊕c δ
′ def= c.p ⊕c (δ + δ

′
) and we consider the total ordering

≤c defined as c.p ⊕c δ ≤c c.p ⊕c δ
′ if and only if δ ≤ δ

′.

Table 1. Location and itinerary predicates.

c@x c −→ x c ↝ x

x = o c.p = o.p ∃δ. c.p
c.it[0,δ]
−−−−−→ o.p ∃δ. c.p

c.it[0,δ]
↝ o.p

x = u c.p = u ∃δ. c.p
c.it[0,δ]
−−−−−→ u ∃δ. c.p

c.it[0,δ]
↝ u

x = e ∃a. c.p = (e, a) ∃δ. ∃a > 0. c.p
c.it[0,δ]
−−−−−→ •

e∧ ∃δ. ∃a > 0. c.p
c.it[0,δ]
↝ •

e∧

c.p
c.it[0,δ+a]

↝ (e, a) c.p
c.it[0,δ+a]

↝ (e, a)

We define the semantics of state predicates φ in the usual way, by providing a
satisfaction relation σ, st ⊢ φ, where σ is an assignment of free variables of φ and
st is a system state. A complete formal definition can be found in [5]. The seman-
tics of rules is defined on pairs σ, [st

(ti)]i≥0 consisting of a function σ assigning
objects instances to object variables of the formulas and a run [st

(ti)]i≥0 for a
finite set of objects O. For initial state st

(t0) we define runs as sequences of con-
secutive states [st

(ti)]i≥0 obtained along the cyclic ADS execution as described

in Sect. 3.1 and parameterized by the sequence of time points ti
def= t0 + i ⋅ Δt,

that is, equal to the time for reaching the i
th system state.

We provide examples of traffic rules in Table 2. We restrict ourselves to safety
rules that characterize boundary conditions that should not be violated by the
driver controlling the vehicle speed. Therefore, the preconditions characterize
potential conflict situations occurring at intersections as well as other constraints
implied by the presence of obstacles or speed rules, e.g., traffic lights or speed
limit signals. The preconditions may involve various itinerary and location pred-
icates and constraints on the speed of the ego vehicle. Moreover, the latter are
limited to constraints maintained by the vehicle and involving braking functions
in the form Bc(c.v) # k where k is a distance with respect to a reference position
on the map and # is a relational symbol # ∈ {<,≤,=,≥,>}. Furthermore, the
postconditions involve two types of constraints on the speed of the ego vehicle:
either speed regulation constraints that limit the distance to full stop, that is
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Table 2. Traffic rules

1 enforcing safety distance between following vehicles c1 and c2:

□ ∀c1. ∀c2. c1 ↝ c2 ⟹ N Bc1(c1.v) ≤ d(c1.p, c2.p)

2 coordination within all-way-stop junctions:

(i) safe braking of vehicle c1 approaching a stop so1

□ ∀c1. ∀so1. c1 −→ so1 ⟹ N Bc1(c1.v) ≤ d(c1.p, so1.p)

(ii) vehicle c1 obeys a stop sign when another vehicle c2 crosses the junction

□ ∀c1. ∀so1. ∀c2. c1so1 ∧ c1.v = 0 ∧ c2.v > 0 ∧ c1.p � c2.p ⟹ N c1.v = 0

(iii) if two vehicles c1, c2 are waiting before the respective stops so1, so2

and c2 waited longer than c1 then c1 has to stay stopped

□ ∀c1. ∀so1. ∀c2. ∀so2. c1so1 ∧ c1.v = 0 ∧ c2so2 ∧ c2.v = 0 ∧

c1.p � c2.p ∧ c1.wt < c2.wt ⟹ N c1.v = 0

(iv) if two vehicles c1, c2 are waiting before the respective stops so1, so2 the same

amount of time and c2 is at an entry with higher priority then c1 has to stay stopped

□ ∀c1. ∀so1. ∀c2. ∀so2. c1so1 ∧ c1.v = 0 ∧ c2so2 ∧ c2.v = 0 ∧

c1.p � c2.p ∧ c1.wt = c2.wt ∧ so1.p ≺j so2.p ⟹ N c1.v = 0

3 coordination using traffic-lights:

if vehicle c1 meets a red traffic light lt1, it will remain in safe distance

□ ∀c1. ∀lt1. c1 −→ lt1 ∧ lt1.color = red ∧Bc1(c1.v) ≤ d(c1.p, lt1.p)

⟹ N Bc1(c1.v) ≤ d(c1.p, lt1.p)

4 priority-based coordination of two vehicles c1 and c2 whose itineraries

meet at merger vertex u:

(i) if c2 cannot stop at u then c1 must give way

□ ∀c1. ∀c2. ∀u. c1 −→ u ∧Bc1(c1.v) ≤ d(c1.p, u) ∧

c2 −→ u ∧Bc2(c2.v) > d(c2.p, u) ⟹ N Bc1(c1.v) ≤ d(c1.p, u)

(ii) if c1, c2 are reaching u and c1 has less priority than c2 then c1 must give way

□ ∀c1. ∀c2. ∀u. c1 −→ u ∧Bc1(c1.v) = d(c1.p, u) ∧ c1.p ≺u c2.p ∧

c2 −→ u ∧Bc2(c2.v) = d(c2.p, u) ⟹ N Bc1(c1.v) ≤ d(c1.p, u)

5 enforcing speed limits for vehicle c1:

(i) if c1 is traveling in an edge e then its speed should be lower than the speed limit

□ ∀c1. ∀e. c1e ⟹ N c1.v ≤ e.v

(ii) if c1 is approaching an edge e then it controls its speed so that it complies

with the speed limit at the entrance of e

□ ∀c1. ∀e. c1 −→ e ⟹ N Bc1(c1.v) ≤ d(c1.p,
•
e) +Bc1(e.v)

Bc1(c1.v), or speed limitation constraints requiring that the speed c1.v does not
exceed a given limit value.

Note the difference with other approaches using unrestricted linear temporal
logic, with “eventually” and “until” operators, to express traffic rules, e.g. [5]. We



24 M. Bozga and J. Sifakis

have adopted the above restrictions because they closely characterize the vehicle
safety obligations in the proposed model. Furthermore, as we show below, traffic
rules of this form can be translated into free space rules that can reinforce the
policy managed by the Runtime.

5.2 Deriving Free Space Rules from Traffic Rules

We show that we can derive from traffic rules limiting the speed of vehicles, rules
on free space variables controlled by the Runtime such that both the traffic rules
and the free space contract hold.

To express constraints on the free space variables c.f , we use, for vehicles c,
auxiliary limit position variables ⟨c.π⟩c∈C such that c.π = c.p ⊕c c.f . In other
words, the limit position c.π defines the position beyond which a vehicle should
not be according to its contract. It is clear that for given c.π and c.p, c.f is
defined as the distance from c.p to c.π.

Using the limit position variables ⟨c.π⟩c∈C we can transform structurally any
state formula φ into a free space formula φπ by replacing constraints on speeds
by induced constraints on limit positions as follows, for # ∈ {<,≤,=,≥,>} and
t a non-negative real constant:

Bc(c.v) # d(c.p, x) + t ↦ c.π #c x ⊕c t
c.v # t ↦ c.π #c c.p ⊕c Bc(t)

The first case concerns speed regulation constraints bounding the limit posi-
tion c.π relatively to the position x of a fixed or moving obstacle ahead of c,
that is, a stop or traffic light sign, a vehicle, etc. The second case concerns speed
limitation constraints bounding c.π relatively to the current vehicle position c.p
and the allowed speed.

Given a state formula φ, let φπ be the derived formula obtained by replac-
ing constraints on speeds by constraints on limit positions. The following theo-
rem guarantees preservation between properties involving speed constraints and
properties involving limit positions, in relation to the vehicle speed contracts.

Theorem 2. The following equivalences hold:

(i) φ ⟺ (∃ c.π)c φπ ∧⋀c Bc(c.v) = d(c.p, c.π)
(ii) ↙φ ⟺ (∃ c.π)c φπ ∧⋀c Bc(c.v) ≤ d(c.p, c.π)

where ↙φ is the speed-lower closure of φ, that is, φ where speed constraints of
the form c.v # t, Bc(c.v) # d(c.p, x)) + t for # ∈ {≥,>} are removed.

Re-calling Theorem 1 in Sect. 3.2, notice that Bc(c.v) ≤ d(c.p, c.π) is enforced
by safe control policies as d(c.p, c.π) = c.f . Therefore, any property φ is preserved
through equivalence only when all the vehicles run with the maximal allowed
speed by the distance to their limit positions. Otherwise, the speed-lower closure
↙φ is preserved through equivalence, that is, only the upper bounds on speeds
as derived from corresponding bounds on limit positions.
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Therefore, all traffic rules of form (2) which, for states satisfying the pre-
condition φ, constrain the speed of vehicle c1 at the next cycle according to
constraint ψ, are transformed into free space rules on limit positions of the form:

□ ∀c1.∀o2...∀ok. φπ(c1, o2, . . . , ok) ⟹ N ψπ(c1, o2, . . . , ok) (3)

Notice that the postcondition ψπ is of the form c1.π ≤c1 bψ(c1, o2, . . . , ok) for a
position term bψ obtained by the transformation of ψ.

For example, the traffic rule 1 is transformed into the free space rule:
□∀c1. ∀c2. c1 ↝ c2 ⟹ N c1.π ≤c1 c2.p. The traffic rule 4(ii) is transformed
into the free space rule: □∀c1. ∀c2. ∀u. c1 −→ u ∧ c2 −→ u ∧ c1.π = u ∧ c2.π =
u ∧ c1.p ≺u c2.p ⟹ N c1.π ≤c1 u.

We are now ready to define the Runtime free space policy based on traffic
rules. Let R denotes the set of traffic rules of interest e.g., the ones defined
in Table 2. For a current ADS state st and current limit positions and free
spaces ⟨c.π, c.f ⟩c∈C the policy computes new limit positions and new free spaces
⟨c.π

′
, c.f ′⟩c∈C as follows:

c.π
′ def= min

≤c
{ σbψ ∣ [∀c1.∀o2...∀ok. φ ⟹ Nψ] ∈ R, σ[c/c1], st ⊢ φπ}

∪ { e
•
∣ ∃a < ∣∣e∣∣, c.π = (e, a), c ↝ e } (4)

c.f ′
def= δ such that c.p ⊕c δ = c.π

′ (5)

Actually, that means computing for every vehicle c the new limit position c.π
′

as the nearest position with respect to ≤c from two sets of bounds. The first
set contains the bounds σbψ computed for all the free space rules derived from
the traffic rules in R and applicable for c at the given state st. The second set
contains the endpoint e

• of the edge e where the current limit position c.π is
located. It is needed to avoid “jumping” over e

•, even though this is allowed by
application of the rules, as e

• may be a merger node and should be considered
for solving potential conflicts. Then, we define the new free space c.f ′ as the
distance δ from the current position c.p to the new limit position c.π

′ measured
along the itinerary of c.

Note that if the free space policy respects the assume-guarantee contract of
the Runtime from Definition 1 then it will moreover guarantees the satisfaction
of all traffic rules from R where both the pre- and the postcondition φ and ψ
are speed-lower closed formulas. First, conformance with respect to the contract
is needed to obtain the invariants Bc(c.v) ≤ c.f = d(c.p, c.π) according to Theo-
rem 1. Second, these invariants ensure preservation through equivalence between
speed-lower closed formula and derived formula on limit positions, according to
Theorem 2. Third, the free space policy ensures the satisfaction of the derived free
space rules, that is, by construction it chooses limit positions ensuring postcon-
ditions ψπ hold whenever preconditions φπ hold. As these formulas are preserved
through equivalence, it leads to the satisfaction of the original traffic rule.
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5.3 Correctness with Respect to the Free Space Contract

We prove correctness, that is, conformance with the assume-guarantee contract
of Definition 1, of the free space policy obtained by the application of the traffic
rules from Table 2 excluding the one concerning traffic lights. For this rule we
need additional assumptions taking into account the light functioning and the
behavior of the crossing vehicles.

First, we assume that the vehicle braking dynamics are compatible with the
speed limits associated with the map segments, that means:

– for any edge e leading to a junction (and henceforth a stop sign) or a merger
vertex holds Bc(e.v) ≤ ∣∣e∣∣, for any vehicle c ∈ C (see Fig. 3(a)),

– for any consecutive edges e1, e2 holds Bc(e1.v) ≤ ∣∣e1∣∣ + Bc(e2.v), for any
vehicle c ∈ C (see Fig. 3(b)) i.e., between two consecutive speed limit changes,
there is sufficient space to adapt the speed.

Fig. 3. Explaining restrictions on speed limits

Second, we call an ADS state ⟨sto⟩o∈O consistent with limit positions ⟨c.π⟩c∈C
iff for every vehicle c ∈ C:

– the limit position is ahead of the current vehicle position, that is, c.p ≤c c.π,
– there is no stop sign located strictly between the current vehicle position and

the limit position, that is, c.p <c so.p <c c.π does not hold for any stop so,
– the limit position conforms to the speed limits of the current edge (e1) and

next edge (e2) on the itinerary of c, that is, d(c.p, c.π) ≤ Bc(e1.v) and
d(c.p, c.π) ≤ d(c.p,

•
e2) + Bc(e2.v).

Proposition 2. The free space policy respects the safety contract for the Run-
time provided the initial ADS state is consistent with initial limit positions.

6 Discussion

The paper studies results for the correct by design coordination of ADS based
on assume-guarantee contacts. The coordination follows a two-step synchronous
interaction protocol between vehicles and a Runtime that, based on the distribu-
tion of vehicles on a map, computes the corresponding free spaces. A first result
characterizes safe control policies as the combination of assume-guarantee con-
tracts for vehicles and the Runtime. This result is then specialized by showing
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how policies consistent with their respective contracts can be defined for vehicles
and the Runtime. In particular, for vehicles, we provide a principle for defining
speed policies and, for the Runtime, we compute free space policies that conform
to a set of traffic rules. The results are general and overcome the limitations of
a posteriori verification. They can be applied to ADS involving a dynamically
changing number of vehicles. In addition, they rely on a general map-based envi-
ronment model, which has been extensively studied in [5]. Control policies for
vehicles and the Runtime can be implemented efficiently. In particular, the speed
policy has been tested in various implementations [24,25] and found to be not
only safe, but also closer to the optimum when refining the space of possible
accelerations.

Note that the results can be extended with slight modifications to maps where
the segments are curves or regions to express traffic rules involving properties of
two-dimensional space, for example for passing maneuvers. For example, if we
consider region maps, their segments will be regions of constant width centered
on curves. Itineraries, free spaces and B(v) will be regions. The relationship
B(v) ≤ f becomes B(v) ⊆ f and the addition of lengths of segments should be
replaced by the disjoint union of the regions they represent. The speed control
policy will remain unchanged in principle but will need a function computing the
distance travelled in a region. Finally, the runtime verification of the disjointness
of free spaces may incur a computational cost depending on the accuracy of the
region representation.

The presented results provide a basis for promising developments in several
directions. One direction is to extend the results to achieve correctness by design
for general properties. We have shown that traffic rules, which are declarative
properties of vehicles, can be abstracted into safety constraints on free spaces.
In this way, we solved a simple synthesis problem by transforming a “static”
constraint on vehicle speed into a “dynamic” constraint on shared resources.

An interesting question that should be further investigated, is whether the
method can be extended to more general properties involving the joint obligation
of many vehicles. For example, we can require that for any pair of vehicles c1 and
c2 that are sufficiently close, the absolute value of the difference between their
speeds is less than a constant k, i.e., ∣c1.v − c2.v∣ ≤ k. This can be achieved by
a free space constraint that gives more free space to the vehicle with the lower
speed, assuming that vehicle speed policies are not “lazy” and use as soon as
possible the available space.

For general properties involving more than one vehicle, it seems realistic
to translate them directly into free space constraints that will enforce the con-
straints processed by the Runtime to ensure the safe control policy. In particular,
in addition to safety properties, we could devise free space policies that optimize
criteria such as road occupancy and uniform separation for a given group of
vehicles e.g. platoon systems studied in [9]. Note that achieving non-blocking
control is such a property that involves the application of occupancy criteria.

Another direction is to move from centralized to distributed coordination
with many runtimes. It seems possible to partition traffic rules according to the
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geometric scope of their application, e.g., a specific runtime could control access
to each junction. Finally, the Runtime can be used as a monitor to verify that
the vehicle speed policies of an ADS are safe and respect the given traffic rules.
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Abstract. Reliable bike-sharing systems can lead to numerous environ-
mental, economic and social benefits and therefore play a central role in
the effective development of smart cities. Bike-sharing models deal with
spatially distributed stations and interact with an unpredictable envi-
ronment, the users. Monitoring the trustworthiness of such a collective
system is of paramount importance to ensure a good quality of the deliv-
ered service, but this task can become computationally demanding due
to the complexity of the model under study. Neural Predictive Monitor-
ing (NPM) [5], a neural-network learning-based approach to predictive
monitoring (PM) with statistical guarantees, can be employed to pre-
emptively detect violations of a specific requirement – e.g. a station has
no more bikes available or a station is full. The computational efficiency
of NPM makes PM applicable at runtime even on embedded devices with
limited computational power. The goal of this paper is to demonstrate
the applicability of NPM on collective adaptive systems such as bike-
sharing systems. In particular, we first analyze the performance of NPM
over a collective system evolving deterministically. Then, following [7],
we tackle a more realistic scenario, where sensors allow only for par-
tial observability and where the system evolves in a stochastic fashion.
We evaluate the approach on multiple bike sharing network topologies,
obtaining highly accurate predictions and effective error detection rules.

1 Introduction

As the urban population grows there is an increasing need for innovative tech-
nologies that will allow cities to reach a good and sustainable quality of life
with an equitable distribution of resources. Given a service and an urban frame-
work, a developer should design a solution that guarantees the quality of the
service delivered. Systems with decentralised and distributed designs, comprised
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of many autonomous and interacting entities, are known as collective adaptive
systems (CAS). In CAS, the user becomes part of the system design. Formal
models provide detailed descriptions of the design choices of the system under
study, whereas formal methods are used to analyse the effects of these choices
on the safety and reliability of such a system. In general, the goal of formal
verification is to check if the system satisfies a certain requirement, e.g. avoid-
ing an undesirable or dangerous region of the state space. It is straightforward
to frame verification as a reachability checking problem. Similarly, predictive
monitoring (PM) focuses on the online analysis of such reachability. PM is pre-
emptive, meaning that it aims at predicting, at runtime, if a future violation of
the requirement can be reached from the current state of the system within a
given time-bound. PM is invoked periodically and typically at high frequencies.
Therefore, reachability needs to be determined rapidly so that the response is
provided before the eventual failure occurs. Any solution to the PM problem
involves a trade-off between the accuracy of the reachability prediction and its
computational efficiency. The analysis must execute within strict real-time con-
straints and typically with limited hardware resources. Exact formal methods
suffer well-known scalability issues. The general goal of this paper is monitoring
the reliability of a CAS to ensure good quality of service. This is an extremely
challenging task as the state space is typically large and spatially distributed.
Moreover, having humans in the loop makes the behavioural analysis even more
complex. In this paper, we present NPM-CAS, an adaptation of Neural Predic-
tive Monitoring (NPM) [5] to CAS. NPM is a machine-learning-based approach
to PM that builds on Conformal Predictions (CP) to provide highly accurate
predictions in a highly efficient manner together with statistical guarantees over
its predictions and a principled method for detecting potential prediction errors,
which significantly enhances the reliability of PM estimates.

In summary, the main contributions of this paper are the following:

– We extend Neural Predictive Monitoring of [5] so that it can be applied to
CAS, where the reliability of multiple agents can be synchronously moni-
tored. The classification problem becomes a multi-output problem instead of
a single-output one as in [5]: each output predicts the reliability of a single
agent.

– We extend the CP framework to work under multiple-output classification
problems so that we can have an agent-specific error detection rule and serve-
specific statistical guarantees.

– We extend NPM to allow for stochastic dynamics. In [5] only determinis-
tic and non-deterministic dynamics where considered. In such a scenario,
the classification problem becomes a multi-class problem as states cannot be
deterministically labelled as safe or unsafe.

– We evaluate the method on three different bike-sharing systems having net-
work geometries with increasing complexities.

The paper is structured as follows. Section 2 describes the details of the
bike-sharing model. Section 3 formally states the problems solved by NPM for a
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generic CAS. Section 4 provides the theoretical background on CP, used to quan-
tify the predictive uncertainty and to have statistical guarantees. The results of
the experimental evaluation are then presented in Sect. 5.

2 Bike Sharing System

Bike-sharing systems (BSSs) are becoming important for urban transportation.
In these systems, users arrive at a station, pick up a bike, use it for a while,
and then return it to another station of their choice. Each station has a finite
capacity and it cannot host more bikes than its capacity. Stochasticity is due to
the randomness of user choices.

2.1 Model of the System

The BSS is modeled as a Markovian system with M stations and a fleet of
N bikes. Each bike can be either locked at a station i, for i ∈ {1, . . . , M},
or in transit between two stations i and j, for i, j ∈ {1, . . . , M} and i �= j.
Station i can host at most Ki bikes. We can frame this system as a population
model where individuals, the bikes, can belong to M2 different species: stationary
bikes S = {S1, . . . , SM} for bikes locked in a station and transitioning bikes
T = {Ti,j | i �= j} for bikes moving between stations. The total number of
species is thus |S ∪ T | = |S| + |T | = M2. The state of the system x(t) ∈ N

M2

counts the number of bikes in each species at time t. At each station, new users
arrive at a rate λi, independently of the number of bikes present in that station.
However, if the station has no bike available, the unhappy user leaves the system.
Instead, if the station is not empty, the user picks up a bike at this station and
joins the pool of riding users and the bikes move from a species in S to a species
in T . We can summarize these events with a transition from Si to Ti,j , given
that the bike is moving from station i towards station j, happening with rate
λi·I(xSi

> 0). The trip time between the two stations is exponentially distributed
with mean 1/dij , where dij is the distance between the two stations. After this
time, the riding user wants to return the bike. If the destination has fewer than
Kj bikes, the user returns the bike to this station and leaves the system. If the
station has already Kj bikes, meaning if it is full, no more bikes can be returned.
In this case, the user waits for a slot of that station to become available. This
transition can be summarized as moving from species Ti,j to species Sj with rate
xTij

· I(xSj
< Kj)/dij . The dynamics of the system is thus fully determined by

2M(M − 1) reactions of the form:

Ri,j
1 : Si −→ Ti,j with rate λiI(xSi

> 0),

Ri,j
2 : Ti,j −→ Sj with rate xSj

· I(xTij
< Ki)/dij

for every i �= j ∈ {1, . . . M}. Let R denote the set of all possible reactions.
The topology of the network of stations strongly influences the dynamics of the
system. Figure 2 shows a very simple topology where all bikes are equidistant
but each station can have a different arrival rate λi, meaning that some stations
can be more popular than others, and a different capacity Ki.
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Fig. 1. BSS network with triangular topology: all bikes are equidistant but each station
can have a different arrival rate λi and a different capacity Ki.

2.2 Dynamics of the System

The time evolution of the population model presented above can be described by
the deterministic evolution of its probability mass. Let Px0 (x(t) = x) denote the
probability of finding the system in state x at time t given that it was in state
x0 at time t0. This probability satisfies a system of ODEs known as Chemical
Master Equation (CME):

∂

∂t
Px0 (x(t) = x) =

|R|∑

j=1

[
fRj (x − νj)Px0 (x(t) = x − νj) − fRj (x)Px0 (x(t) = x)

]
, (1)

where νj is the update vector associated with reaction Rj ∈ R. The equa-
tion above is the Kolmogorov equation for a population process, considering
the inflow and outflow probability at time t for a state x. Since the CME is
a system in general with countably many differential equations, its analytic or
numeric solution is almost always infeasible.

In this regard, approximate solutions become the only viable approach to
analyse the dynamics of a complex stochastic population model. In particular,
we can resort either to stochastic simulation algorithms or to deterministic fluid
approximations.

Gillespie Simulation. The Gillespie stochastic simulation algorithm (SSA) [8]
generates trajectories that are exact realizations of the CME (Eq. (1)). Given
a certain initial state, one can take a large number of samples (trajectories)
that serves as an empirical estimate of the CME that can be used to extract
information about the process via statistical methods. For example, one can
consider an upper and a lower quantile and obtain a credible interval over the
trajectory space (Fig. 2 (right)).

Mean Field Approximation. The deterministic approximation of a stochastic
population model builds on the observation that stochastic fluctuations tend
to average out as the population size grows larger, i.e. when the number of
interacting individuals is very large. In particular, if the state variables are scaled,
so that the state evolution is independent of the population size, the dynamics
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Fig. 2. Deterministic (left) and stochastic (right) trajectory for stationary bikes over
the triangular topology of Fig. 1. In the stochastic version, we show the 95% credible
interval over the trajectory space.

of the stochastic models is very similar to a deterministic one, described by an
ODE, the well-known mean-field (MF) approximation [2,3,6,9]. Thus, in the
BSS, as the number of bikes present in the system increases, the dynamics of
the system tends to the following fluid ODE:

dx̂

dt
=

∑

i�=j

νi,j
1

M
λiI(x̂Si > 0) +

νi,j
2

dij
I(M · x̂Sj < Ki), (2)

where x̂ = x
M is the scaled state and νi,j

1 and νi,j
2 are the original update vectors

respectively for reaction Ri,j
1 and Ri,j

2 . Therefore, MF trajectories have a deter-
ministic evolution (Fig. 2 (left)). The formalism and dynamics of the Markovian
population model, presented here specifically for a BSS, can be easily applied to
a generic CAS.

3 Neural Predictive Monitoring for CAS

In this section, we describe the Neural Predictive Monitoring technique for a
generic CAS evolving with either deterministic or stochastic dynamics.

3.1 Deterministic Dynamics

Consider the model Mdet of a CAS with state space X evolving deterministically
over discrete time with time steps of width Δt. Consider a temporal horizon
H, the dynamics can be described by a function Fdet : X → XH , mapping a
state x(t) to a trajectory Fdet(x(t)) = x(t1) · · · x(tH), where tj := t + jΔt. The
measurement process is instead modeled by a deterministic function μ mapping a
state x into its observable part y, y = μ(x). The CAS is composed of N different
agents and we aim at monitoring the reliability of service for each of these N
agents. For instance, in the BSS the agents are the N bike stations. Reliability
is modeled by considering a region D of the state space that we want to avoid,
referred to as the unsafe or dangerous region. Predictive monitoring of such a



Neural Predictive Monitoring for Collective Adaptive Systems 35

system corresponds to deriving a function that approximates a given reachability
specification for all the N agents, Reach(D,x,H) ∈ {−1, 1}N : given a state x
and a set of unsafe states D, establish whether agent i ∈ {1, . . . , N} admits
a trajectory starting from x that reaches D in a time H. If such a trajectory
exists, Reach(i)(D,x,H) evaluates to 1, −1 otherwise, where Reach(i)(D,x,H)
denotes the i-th component of Reach(D,x,H). The approximation is w.r.t. some
given distribution of states, meaning that we can admit inaccurate reachability
predictions if the state has zero probability.

Full Observability. We now illustrate the PM problem under the ideal assump-
tion of full observability (FO).

Problem 1. (PM under FO). Given a CAS (Mdet, Fdet) with N agents, state
space X, a distribution X over X, a time bound H and set of unsafe states
D ⊂ X, find a function h : X → {−1, 1}N that minimizes the probability

Prx∼X
(
h(x) �= Reach(D,x,H)

)
.

A state x ∈ X is called positive for agent i w.r.t. a predictor h if the i-th
component of h(x) evaluates to 1, h(i)(x) = 1. Otherwise, it is called negative.

As discussed in the next section, finding h, i.e., finding a function approxima-
tion with minimal error probability, can be solved as a supervised multi-output
classification problem, provided that a reachability oracle is available for generat-
ing supervision data. The predictor h is indeed solving N classification problems
at once. In [5] such a classification problem is solved using deep neural networks,
which demonstrated the best performance across several other machine learning
models.

Partial Observability. The problem above relies on the assumption that full
knowledge about the state is available. However, in most practical applications,
state information is only partial. Under partial observability (PO), we only have
access to a sequence of past observations ȳt = (yt−Hp

, . . . , yt) which can be gen-
erated by applying the observation function μ to the unknown state sequence
xt−Hp

, . . . , xt, evolving according to Fdet. In the following, we consider the dis-
tribution Y over Y Hp of the observations sequences ȳt = (yt−Hp

, . . . , yt) induced
by state xt−Hp

∼ X , dynamics given by Fdet and observations given by μ.

Problem 2. (PM under PO). Given the system and reachability specification of
Problem 1, find a function g : Y Hp → {−1, 1}N that minimizes

Prȳt∼Y
(
g
(
ȳt

) �= Reach(D,xt,H)
)
.

In other words, g should predict reachability values given in input only for a
sequence of past observations, instead of x(t), the true state at time t. In partic-
ular, we require a sequence of observations for the sake of identifiability. Indeed,
for general non-linear systems, a single observation does not contain enough
information to infer the state [7].
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Error Detection. The predictors h and g provide approximate solutions and, as
such, they can commit safety-critical prediction errors. Building on [4], we endow
the predictive monitor of Problem1 and 2 with an error detection criterion Rej .
This criterion should be able to preemptively identify – and hence, reject – inputs
where the prediction is likely to be erroneous (in which case Rej evaluates to 1,
0 otherwise). Rej should also be optimal in that it has minimal probability of
errors in detection. The rationale behind Rej is that uncertain predictions are
more likely to lead to prediction errors. Hence, rather than operating directly
over inputs, s ∈ {x, ȳ}, the detector Rej receives in input a measure of predictive
uncertainty of f ∈ {h, g} about s.

Problem 3. (Uncertainty-based error detection). Given an approximate reacha-
bility predictor f ∈ {h, g} for the system (Mdet, Fdet) and reachability specifica-
tion of Problem 1 and 2, and a measure of predictive uncertainty uf : S → UN

over some uncertainty domain U and over a space S ∈ {X,Y Hp} with distribu-
tion S ∈ {X ,Y}, find an optimal error detection rule, Rej f : U → {0, 1}N , that
minimizes the probability

Prst∼S
(
1
(
f (j)(st) �= Reach(j)(D, st,H)

) �= Rej (j)
f (u(j)

f (st)) | j ∈ {1, . . . N}
)
.

In the above problem, we consider all kinds of prediction errors, but the definition
and approach could be easily adapted to focus on the detection of a specific type
of error, e.g. on false negatives (the most problematic errors from a safety-critical
viewpoint).

Statistical Guarantees. The general goal of Problems 1, 2 and 3 is to min-
imize the risk of making mistakes in predicting reachability and in predicting
prediction errors, respectively. We are also interested in establishing probabilistic
guarantees on the expected error rate, in the form of prediction regions guaran-
teed to include the true reachability value with arbitrary probability.

Problem 4. (Probabilistic guarantees). Given the system and reachability spec-
ification of Problem1 and 2 find, for every output j ∈ {1, . . . , N}, a function
Γ ε

f(j) : S → 2{−1,1}, mapping an input st into a prediction region for the corre-
sponding reachability value, i.e., a region that satisfies, for any error probability
level ε ∈ (0, 1), the validity property below

Prst∼S
(
Reach(j)(D, st,H) ∈ Γ ε

f(j)

(
st

)) ≥ 1 − ε.

Among the maps that satisfy validity, we seek the most efficient one, meaning
the one with the smallest, i.e. less conservative, prediction regions.

3.2 Stochastic Dynamics

We now consider a CAS Mstoch evolving stochastically over a state space X
and over discrete time. Function Fstoch : X → X H describes the dynam-
ics, over a temporal horizon H, mapping a state x(t) to a random vari-
able over the trajectory space XH , Fstoch(x(t)) = x(t1) · · ·x(tH). A sample
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ξ ∼ Fstoch(x(t)) is nothing but a trajectory over XH . The distribution of
Fstoch(x(t)) can be empirically approximated by taking a large number, P , of
samples, ξ̄ := (ξ1, . . . , ξP ) ∼ Fstoch(x(t)). We evaluate the safety of state x
through a function StochReach(D,x,H) ∈ {−1, 0, 1}N , which outputs 1 if the
trajectories starting from x eventually reach D with probability higher than
(1 − α) (x safe), −1 if D is reached with probability below α (x unsafe), 0
otherwise. These probabilities can be derived with Monte-Carlo or numerical
probabilistic model checking techniques [13,14]. Predictive monitoring of such
a stochastic system (Mstoch, Fstoch) corresponds to deriving a function that
approximates StochReach(D,x,H) w.r.t. some given distribution for x.

Problem 5. (Stochastic PM). Given an system (Mstoch, Fstoch) with state space
X, a distribution X over X, a time bound H and set of unsafe states D ⊂ X,
find a function hs : X → {−1, 0, 1}N that minimizes the probability

Prx∼X
(
hs(x) �= StochReach(D,x,H)

)

The uncertainty-based error detection rule of Problem3 and the statistical
guarantees of Problem 4 are defined very similarly in the stochastic scenario. The
main differences are that the predictive errors of Problem 3 are now defined as
1
(
h

(i)
s (x) �= StochReach(i)(D,x,H)

)
for i ∈ {1, . . . , N} and the predictive region

Γ ε
hs

of Problem 4 is a function Γ ε
hs

: X → 2{−1,0,1}N

.

3.3 Predictive Monitoring for BSS

Given a BSS modeled as in Sect. 2, we aim at predicting, from the current state
of the system, if a station i is about to get full, xSi

= Ki, or if it is soon going to
be empty, xSi

= 0. The goal of predictive monitoring is to access this information
in advance, so that one can try to prevent undesirable events from happening,
e.g. by using a truck to transport bikes from one station to another.

Different scenarios, with increasing complexity, can be considered. Each sta-
tion constantly monitors the number of bikes available, so that measuring the
number of stationary bikes is straightforward. On the other hand, when a bike
is in transit, we have no exact information about where it is directed to.

We start by considering, a simplified scenario where we assume to have com-
plete knowledge about the state of each bike. We then consider the more realistic
setting in which no information about the state of transitioning bikes is avail-
able, so we must predict the future reliability of the service only from partial
information.

In terms of system dynamics, we start by predicting the service reliability
based on the deterministic evolution of the system, using the MF approximation.
In this scenario, a state x is labelled as unsafe if the deterministic trajectory,
starting from x, violates the requirement. It is labelled as safe otherwise.

We then move to a more complex scenario, where the stochasticity of the
dynamics is preserved. Under these circumstances, a state x can be classified as
safe, unsafe or risky. It is safe if both the lower and upper bound trajectories
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satisfy the requirement, unsafe if they both violate it and risky if only one of
the bounds violates the requirement. Notice that, potentially, one could extend
this approach to an arbitrary number of quantiles by adding a label for each
quantile.

By doing so we can create a synthetic dataset by randomly sampling a pool of
n initial states, x1(t0) . . . , xn(t0), and by letting the system evolve from each of
these states for a time H. We then use the obtained trajectories to label them as
safe, unsafe or risky. As we have N stations, we are going to consider N different
requirements, each state thus is associated with N labels. In other words, we
separately monitor the future reliability of each station from the current state
of the system. The dataset can be summarized as

Z ′ = {(si, 	i)}n
i=1 , (3)

where s = x(t0) in case of full observability (FO) and s = xS(t0) in case of partial
observability (PO), whereas 	i = (	1i , . . . , 	

N
i ). If the dynamics is deterministic

	j
i ∈ {safe, unsafe}. If the dynamics is stochastic 	j

i ∈ {safe, risky, unsafe}.

4 Uncertainty Quantification and Statistical Guarantees

In the following, we provide the necessary background on Conformal Prediction
(CP), the technique used to quantify the uncertainty and to obtain statistical
guarantees over the predictions, the two ingredients needed to solve Problem3
and Problem4 in both the deterministic and the stochastic scenario. In the
following, we provide an intuitive explanation; we refer the interested reader
to [7] for a more detailed description of the procedure. The main difference
is that CP is now addressing a multi-output multi-class classification problem
rather than a simple binary classification problem.

4.1 Conformal Predictions for Multi-output and Multi-class
Classification

Conformal Prediction (CP) [1] is a very general approach that associates mea-
sures of reliability to any traditional supervised learning problem. NPM for
CAS, presented in Sect. 3, deals with multi-output classification problems (Prob-
lem 1, 2 and 5). We thus present the theoretical foundations of CP in relation to
a generic multi-class multi-output classification problem.

Let S be the input space, L = {l1, . . . , lc} be the set of labels (or classes), and
define Z = S × LN , where N is the number of outputs. The classification model
is represented as a function f : S → [0, 1]c×N mapping inputs into N vectors
of class likelihoods. For each output j, the class predicted by f (j) corresponds
to the class with the highest likelihood. In the context of NPM for CAS, the
input space S can be either X, under FO, or Y Hp , under PO, whereas labels L
indicates the possible reachability values (c = 2 in the deterministic version and
c = 3 in the stochastic version), and f ∈ {h, g, hs} is the predictor.
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For a generic input si, we denote with 	i = (	1i , . . . , 	
N
i ) the vector of true

labels for si and with 	̂i the vector of labels predicted by f . Test points, whose
true labels are unknown, are denoted by s∗. The main ingredients of CP are: a
set of labelled examples Z ′ ⊆ Z, a classification model f trained on a subset of
Z ′, a nonconformity function ncmf (j) : S × L → R and a statistical test. The
nonconformity function ncmf (j)(si, 	

j
i ) measures the “strangeness” of an example

(si, 	
j
i ), i.e., the deviation between the label 	j

i and the corresponding prediction
f (j)(si). For ease in the notation, let ncmj denote the nonconformity function
ncmf (j) .

CP Algorithm for Multi-output Classification. Given a set of examples Z ′ ⊆ Z,
a test input s∗ ∈ S, and a significance level ε ∈ [0, 1], CP computes Γε,∗, a set
of N prediction regions.

1. Divide Z ′ into a training set Zt, and calibration set Zc. Let q = |Zc| be the
size of the calibration set.

2. Train a model f using Zt.
3. Define a nonconformity function ncmj (si, 	

j
i )) for every output j ∈

{1, . . . , N}.
4. Apply the nonconformity measure to each example in Zc

Ac =
{{

αij = ncmj (si, 	
j
i ) | j ∈ {1, . . . , c}} | (si, 	i) ∈ Zc

}

and, for each output j ∈ {1, . . . N}, sort the nonconformity scores in descend-
ing order: α1j ≥ · · · ≥ αqj .

5. For a test input s∗, compute the nonconformity scores w.r.t each output and
w.r.t. each possible class:

A∗ =
{{

ncmj (s∗, lk) | k ∈ {1, . . . , c}} | j ∈ {1, . . . , N}
}

.

Then, for j ∈ {1, . . . , N} and k ∈ {1, . . . , c} compute the respective smoothed
p-value

p
(j,k)
∗ =

|{zi ∈ Zc : A
(i,j)
c > A

(j,k)
∗ }|

q + 1
+ θ

|{zi ∈ Zc : A
(i,j)
c = A

(j,k)
∗ }| + 1

q + 1
, (4)

where θ ∈ U [0, 1] is a tie-breaking random variable. Note that p
(j,k)
∗ repre-

sents the portion of calibration examples whose j-th outputs are at least as
nonconforming as the tentatively labelled test example (s∗, lk).

6. Return a set of N prediction regions (one per output)

Γε,∗ =
{{

lk ∈ L : p
(j,k)
∗ > ε

} | j ∈ {1, . . . , N}
}

. (5)

together with the p-values.
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Note that in this approach, called inductive CP [11], steps 1–4 are performed
only once, while Steps 5–6 are performed for every test point s∗.

Statistical Guarantees. The CP algorithm outputs prediction regions, instead
of single point predictions: given a significance level ε ∈ (0, 1) and a test point
s∗, its prediction region with respect to output j, Γ

(j)
ε,∗ ⊆ L, is a set of labels

guaranteed to contain the true label 	j
∗ with probability 1−ε. The rationale is to

use a statistical test, more precisely the Neyman-Pearson theory for hypothesis
testing and confidence intervals [10], to check if (s∗, lk) is particularly noncon-
forming compared to the calibration examples. The unknown distribution of
nonconformity scores, referred to as Q, is estimated by applying ncmj to all
calibration examples, set Ac (step 4). Then the scores A∗ (step 5) are computed
for every possible label and every output in order to test for the null hypothesis
A∗ ∼ Q. The null hypothesis is rejected if the p-values associated with A∗ are
smaller than the significance level ε. If a label lk is rejected for output j, mean-
ing if it appears unlikely that ncmj (s∗, lk) ∼ Q(j), we do not include this label
in Γ

(j)
ε,∗ . Therefore, given ε, the prediction region for each output contains only

those labels for which we could not reject the null hypothesis. In the stochastic
setting, our approach guarantees that there is a probability (w.r.t. sampling)
of 1 − ε that our prediction region includes the correct StochReach value, i.e.,
whether the (stochastic) system will reach D with probability above 1−α, below
α or in-between.

Nonconformity Function. A nonconformity function is well-defined if it assigns
low scores to correct predictions and high scores to wrong predictions. In multi-
output classification problems, a natural choice for ncmj , based on the underlying
model f , is

ncmj (si, l
k) = 1 − Pf(j)(lk|si), (6)

where Pf(j)(lk|si) is the likelihood of class lk for output j when the model f

is applied on si. If f (j) correctly predicts 	j
i for input si, the corresponding

likelihood Pf(j)(	j
i |si) is high (the highest among all classes) and the resulting

nonconformity score is low. The opposite holds when f (j) does not predict 	j
i .

The nonconformity measure chosen for our experiments, Eq. 6, preserves the
ordering of the class likelihoods predicted by f (j) for every output j.

Confidence and Credibility. Observe that, for significance levels ε1 ≥ ε2, the
corresponding prediction regions are such that Γε1 ⊆ Γε2 . It follows that,
given an input s∗ and an output j, if ε is lower than all its p-values, i.e.
ε < mink=1,...,c p

(j,k)
∗ , then the region Γ

(j)
ε,∗ contains all the labels. As ε increases,

fewer and fewer classes will have a p-value higher than ε. That is, the region
shrinks as ε increases. In particular, Γ

(j)
ε,∗ is empty when ε ≥ maxk=1,...,c p

(j,k)
∗ .

The confidence of a point s∗ ∈ S w.r.t. output j, 1−γ
(j)
∗ , measures how likely

our prediction for s∗ is compared to all other possible classifications (according
to the calibration set). It is computed as one minus the smallest value of ε for
which the conformal region is a single label, i.e. the second largest p-value γ∗:
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1 − γ
(j)
∗ = sup{1 − ε : |Γ (j)

ε,∗ | = 1}.

Informally, the confidence of a prediction can be interpreted as the probability
that a prediction corresponds to the true label.

The credibility w.r.t. output j, κ
(j)
∗ , indicates how suitable the training data

are to classify that specific example. In practice, it is the smallest ε for which the
prediction region is empty, i.e. the highest p-value according to the calibration
set, which corresponds to the p-value of the predicted class:

κ
(j)
∗ = inf{ε : |Γ (j)

ε,∗ | = 0}.

Intuitively, credibility quantifies how likely a given state is to belong to the same
distribution of the training data.

Uncertainty Function. The higher 1 − γ
(j)
∗ and κ

(j)
∗ are, the more reliable

the prediction 	̂j
∗ is. Therefore, our uncertainty-based rejection criterion relies

on excluding points with low values of 1−γ
(j)
∗ and κ

(j)
∗ . We stress, in particular,

the following statistical guarantee: the probability that the true prediction for
s∗ is exactly 	̂j

∗ is at most 1 − γ
(j)
∗ .

The uncertainty map uf used to quantify the predictive uncertainty of a
predictor f , introduced in Problem3, is thus defined as

uf (s∗) = {(γ(j)
∗ , κ

(j)
∗ ) | j ∈ {1, . . . , N}}.

4.2 Uncertainty-Based Rejection Rule

Confidence and credibility measure how much a prediction can be trusted. Our
goal is to leverage these two measures of uncertainty to identify a criterion to
detect errors of the reachability predictor. The rationale is that every new input
s is required to have values of confidence, 1 − γ, and credibility, κ, sufficiently
high in order for the classification to be accepted. However, determining optimal
thresholds is a non-trivial task.

In order to automatically identify optimal thresholds, we proceed with an
additional supervised learning approach. For this purpose, we introduce a cross-
validation strategy to compute values of confidence and credibility, using Zc

as validation set. For every output j, the cross-validation strategy consists of
removing the i-th score, A

(i,j)
c , in order to compute γ

(j)
i and κ

(j)
i , i.e. the p-

values at si ∈ Sc w.r.t. output j, where Sc = {s | (s, 	) ∈ Zc}. In this way,
we can compute confidence, 1 − γ(j), and credibility, κ(j), for every point in
the calibration set. For each output j, the points of the calibration set are then
labelled with 1 or 0 depending on whether the classifier f (j) makes a prediction
error over that calibration point or not. We then solve N binary classification
problems by training N separate Support Vector Classifiers (SVCs) over the
calibration set. These SVC optimally solve Problem3.
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Rejection Rule Refinement. As already observed in [4], predictors with very
high accuracy result in over-conservative rejection rules. Intuitively, the reason
is that since the number of non-zero calibration scores is limited, the p-values
are less sensitive to changes in the nonconformity score. We here propose an
output-specific refinement, meaning that, for each output j, we add to A

(j)
c

the points where f (j) predictions where rejected by Rej (j ). By doing so, we
add calibration points with informative non-zero calibration scores. However, in
doing so we modify the data generation distribution of the calibration set. Thus
the statistical guarantees, meaning the prediction regions, are computed w.r.t.
the original calibration set.

Active Learning. The rejection rule defined above can be used as an uncertainty-
based query strategy for an active learning approach, allowing the user to select
the points where the predictor f is performing poorly and then add them to the
training set to improve the performances of f .

5 Experiments

Implementation. The workflow can be divided into steps: (1) define the BSS
models for different architectures, (2) generate the synthetic datasets Z ′ for both
the deterministic (both under FO or PO) and the stochastic version, (3) train
the NPM-CAS, (4) train the CP-based error detection rules and (5) evaluate
NPM-CAS on a test set. The technique is fully implemented in Python1. In
particular, PyTorch [12] is used to craft, train and evaluate the neural networks
used to solve Problem 1, 2 and 5. The source code for all the experiments can be
found at the following link: https://github.com/francescacairoli/CAS NPM.git.

Datasets Generation. We set the number of bikes in the system to M = 100 for
each configuration. The training set consists of 20K points, the calibration set
consists of 10K points and the test set consists of 5K points. In the stochastic
version, the upper and lower bounds are computed over samples of 200 trajec-
tories per point. We define BSS networks with three different topologies with
increasing dimensions, i.e. larger number of bike stations, and thus increasing
complexity.

– Triangular network – Fig. 1: 3 bike stations, departure rates λ1 = 0.25, λ2 =
0.2, λ3 = 0.15, distances are set to 10, station capacity K is set to 35 for each
station.

– Diamond network – Fig. 3 (left): 5 bike stations, departure rates λ = 0.25,
λa = 0.2, λb = 0.15, distances are set to a = 10 and b = 12, station capacity
K is set to 25 for each station.

– Hexagon network – Fig. 3 (right): 7 bike stations, constant departure rates
λ = 0.2, distances d = 10, constant station capacity K = 20.

1 The experiments were performed on a computer with a CPU Intel x86, 24 cores and
a 128 GB RAM and 15 GB of GPU Tesla V100.

https://github.com/francescacairoli/CAS_NPM.git
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Training Details. A grid-search approach has been used to find the best perform-
ing hyper-parameters under each configuration. In FO scenarios (both determin-
istic and stochastic), we use a feed-forward neural network composed of five lay-
ers with 50 neurons each, LeakyReLU activations and drop-out with probability
0.1. The last layer has a ReLU activation so to obtain positive likelihood scores
that are fed into a cross-entropy loss. The training is performed for 1000 epochs
over batches of size 256, using Adam optimizer with a learning rate of 0.0005.

In the PO scenario, we use one-dimensional convolutional neural networks
with N channels, 128 filters of size 5, LeakyReLU activations and drop-out with
probability 0.1. As before, the last layer has a ReLU activation and a cross-
entropy loss. The training is performed for 400 epochs over batches of size 256,
using Adam optimizer with a learning rate of 0.0005.

Fig. 3. Diamond and hexagon geometries.

Computational Costs. NPM-CAS is designed to work at runtime which trans-
lates into the need for high computational efficiency together with high reliabil-
ity. The time needed to generate the dataset and to train both methods does
not affect the runtime efficiency of the NPM-CAS, as it is performed only once
(offline). Once trained, the time needed to analyse the reachability of the cur-
rent sequence of observations is the time needed to evaluate the trained neural
networks, which is almost negligible (in the order of microseconds on GPU). On
the other hand, the time needed to quantify the uncertainty depends on the
size of the calibration set. It is important to notice that the percentage of points
rejected, meaning points with predictions estimated to be unreliable, affects con-
siderably the runtime efficiency of the methods. Therefore, we seek a trade-off
between accuracy and runtime efficiency. The training phase takes from 3 to 10
hours, whereas computing a single prediction takes less than 1 microseconds.
Training each SVC takes from 1 to 10 s, whereas computing values of confidence
and credibility for a single point takes from 0.01 to 0.08 s.

Measures of Performance. The measures used to quantify the overall perfor-
mance of the NPM-CAS are: the accuracy of the reachability predictor, the
error detection rate and the rejection rate. We seek high accuracies and detec-
tion rates without being overly conservative, meaning keeping a rejection rate
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as low as possible. We also check if and when the statistical guarantees are met
empirically, via values of coverage and efficiency. Efficiency is measured as the
percentage of singletons in the prediction regions. We analyse and compare the
performances of NPM-CAS on the three different BSS network configurations –
the triangular, the diamond and the hexagon network. For each configuration,
we compare the results of the deterministic version under the full observability
assumption (Det-FO), the deterministic version under the partial observabil-
ity assumption (Det-PO) and the stochastic version assuming full observability
(Stoch).

5.1 Results

Table 1 summarizes the experimental results over the three different BSS topolo-
gies – triangular, diamond, and hexagon – and under the three different exper-
imental settings – Det-FO, Det-PO and Stoch. The first column (Acc.) shows
how NPM-CAS provides extremely accurate predictions, accuracies are always
greater than 95%. In particular, in Det-FO the accuracy is always greater than
98%, in Det-PO it is always greater than 96% and in Stoch it is always greater
than 95%.

Table 1. Average performances over the N bike stations. Acc. is the accuracy, Rej.
and det. denote respectively the rejection and the error detection rates, whereas Cov.
and Eff. respectively denote coverage and efficiency of the prediction regions (at level
ε = 0.05).

Topology Version Initial results Refinement

Acc. Rej. Det. Cov. Eff. Rej. Det.

Triangular Det-FO 99.20 8.47 88.93 95.17 95.26 6.87 85.14

Det-PO 98.24 11.93 96.87 95.35 95.75 9.40 94.48

Stoch 97.55 13.05 92.02 95.13 96.07 12.03 91.51

Diamond Det-FO 98.85 10.10 85.22 94.90 95.09 9.39 84.87

Det-PO 96.21 19.71 92.07 94.99 97.67 14.27 89.86

Stoch 96.38 18.12 87.05 95.16 97.92 15.93 86.21

Hexagon Det-FO 98.02 13.12 84.09 95.13 95.81 12.28 81.37

Det-PO 96.47 19.67 93.56 94.79 97.13 14.39 97.07

Stoch 95.37 26.35 88.64 95.19 98.14 20.53 81.50

In column Cov. we observe how the CP prediction regions meet the statis-
tical guarantees as the empirical coverage is close to the desired value of 95%.
Moreover, the prediction regions show rather high efficiencies – see Eff. column.
Efficiencies are always greater than 95%, meaning that there is no need for the
CP predictor to be over-conservative in order to meet the guaranteed coverage.
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Table 1 also shows the performances of the CP-based error detection rule
before and after the refinement. We observe how the refinement of the error
detection rule always reduces the rejection rate but it also results in slightly
lower detection rates. In particular, on average over all the case studies, the
rejection rate reduces from 17.41% to 13.70%, whereas the detection rate reduces
from 88.78% to 83.32%. The reduction in the rejection rate is proportional to the
reduction in the detection rate. This is most likely because the number of errors is
rather small, resulting in highly unbalanced datasets, even after the refinement
process, making the error detection phase extremely sensitive. Moreover, the
refinement process changes the data generating distribution of the calibration
set, meaning that the CP statistical guarantees no longer apply. Therefore, the
refined solution is more efficient but less conservative than the original one and
thus, its application has to be chosen wisely knowing the criticalities of the CAS
at hand.

5.2 Discussion

Our results show great promise overall: the method attains very high accuracy
levels (ranging from 95.37% to 99.2%), provides statistical guarantees, and effec-
tively identifies and reject prediction errors. As expected, the performance is
affected by the complexity and the dimensionality of the problem, i.e., determin-
istic scenarios with few agents outperform stochastic ones with a larger number
of agents. As future work, we plan to systematically evaluate the scalability of
our NPM approach with respect to the complexity and the dimensionality of the
CAS at hand.

Moreover, our current approach handles the stochastic setting by partitioning
the range of reachability probabilities into three regions, safe ([0, α]), unsafe
([1 − α, 1]), and “indifference” (α, 1 − α), and predicting one of these segments
(a classification problem). While the method can be easily extended to support
arbitrary probability partitions, a next step will be to develop a quantitative
approach that directly predicts reachability probabilities rather than categorical
values (a regression problem). Another open problem is dealing with partial
observability in stochastic systems where state identifiability remains an issue.

Finally, a natural extension would be to apply NPM-CAS to more realistic
BSS topologies, e.g., the London BSS or any other cities that make such data
available.

6 Conclusions

In this paper, we presented NPM-CAS an extension of the neural predictive
monitoring technique to collective adaptive systems with variable complexity. In
particular, NPM-CAS works both on CAS with deterministic dynamics, under
either full or partial observability, and on CAS with stochastic dynamics. The
technique is experimentally tested on a bike-sharing system with network topolo-
gies with increasing complexity. Results are promising, predictions are extremely



46 F. Cairoli et al.

accurate and computationally efficient, thereby enabling the deployment of pre-
dictive monitoring at runtime on embedded devices with limited computational
power.
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Abstract. Many collective adaptive systems consist of distributed
nodes that communicate with each other and with their physical environ-
ments, but that logically should operate in a synchronous way. Hybrid-
SynchAADL is a recent modeling language and formal analysis tool
for such virtually synchronous cyber-physical systems (CPSs). Hybrid-
SynchAADL uses the Hybrid PALS equivalence to reduce the hard
problem of designing and verifying virtually synchronous CPSs—with
network delays, asynchronous communication, imprecise local clocks,
continuous dynamics, etc.—to the much easier tasks of designing and ver-
ifying their underlying synchronous designs. Up to now HybridSynch-
AADL has lacked important programming language features, such as
compound data types and user-defined functions, which made it dif-
ficult to model advanced control logics of collective adaptive systems.
In this paper, we extend the HybridSynchAADL language, its formal
semantics, and its analysis tool to support these programming language
features. We apply our extension of HybridSynchAADL to design and
analyze a collection of collaborating autonomous drones that adapt to
their environments.

1 Introduction

Many distributed cyber-physical systems (CPSs)—including avionics [4,30] and
automotive systems [27,34], and networked medical devices [3,21]—are virtually
synchronous: They should logically behave as if they were synchronous—in each
iteration of the system, all components, in lockstep, read inputs and perform
transitions which generate outputs for the next iteration—but have to be real-
ized in a distributed setting where the infrastructure guarantees bounds Γ on the
clock skews, networks delays, and execution times. The design and model check-
ing of such virtually synchronous CPSs is hard, due to communication delays,
race conditions, execution times, and imprecise local clocks, and due to the state
space explosion caused by interleavings.
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The PALS (“physically asynchronous, logically synchronous”) design and
analysis pattern [2,30] greatly simplifies the design and verification of virtu-
ally synchronous distributed real-time system without continuous behaviors: It
is sufficient to design and verify the much simpler synchronous design SD—
without asynchrony, network delays, clock skews, etc.—since the corresponding
distributed real-time system PALS (SD , Γ ) satisfies the same properties as SD .
Many virtually synchronous CPSs are distributed hybrid systems where local
controllers have continuous environments. Hybrid PALS [8] extends PALS to
such distributed hybrid systems. However, in such systems we can no longer
abstract from the time when a continuous value is sampled or when a control
command is sent, both of which depend on the local controller’s imprecise clock.

To make the Hybrid PALS design and verification methodology available to
CPS designers, we have developed the HybridSynchAADL modeling language
and analysis tool [25,26]. Its modeling language (for modeling the synchronous
designs) is an annotated sublanguage of AADL [18], an industrial modeling stan-
dard used in avionics, aerospace, automotive systems, and robotics. We have also
integrated the modeling and formal model checking analysis of HybridSynch-
AADL models into the OSATE modeling environment for AADL.

In HybridSynchAADL, controller behaviors are defined using a subset
of AADL’s Behavior Annex [19], with behaviors defined by transitions with
Boolean guards, variable assignments, conditionals, loops, and so on. Mode-
dependent continuous behaviors are specified using differential equations. In [25]
we use the rewriting logic language Maude [16] to formalize complex control pro-
grams, and use Maude combined with SMT solving [11,32] to symbolically encode
continuous behaviors—with all possible sampling and actuating times depending
on imprecise local clocks—and provide a Maude-with-SMT semantics, as well as
symbolic reachability analysis, randomized simulation, and multithreaded port-
folio analysis, for HybridSynchAADL. In [25,26] we use HybridSynchAADL
to model and analyze a collection of autonomous drones, and show that our tool
in most cases outperforms the state-of-the-art hybrid systems tools HyComp [15],
SpaceEx [20], Flow* [14], and dReach [22].

Up to now HybridSynchAADL has lacked some language features that
would make it much more convenient and less error-prone to model sophisticated
CPSs. Since an adaptive system often consist of a large number of communicating
nodes, we extend HybridSynchAADL with arrays to conveniently specify and
store information about multiple nodes. We also extend HybridSynchAADL
with user-definable data types and with the possibility of specifying user-defined
functions as AADL subprograms. We extend the HybridSynchAADL property
specification language accordingly (Sect. 6). In this paper, we introduce these
new features of HybridSynchAADL (Sect. 4), and explain how its Maude-
with-SMT semantics has been extended to include these features (Sect. 5).

We demonstrate the modeling and analysis convenience of this new version
of our tool with a system of collaborating drones for packet delivery, where each
drone adapts to the motions of the other drones for collision avoidance (Sect. 6).
This case study involves multiple drone/packet components with a nontrivial
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connection topology, and includes complex control programs that use several
subroutines and composite data types. It is therefore very difficult to specify our
case study without the new programming language features of HybridSynch-
AADL. Our tool and the model of the case study are available at https://
hybridsynchaadl.github.io/artifact/isola2022.

2 Preliminaries

PALS. The PALS pattern [2,30] reduces the problem of designing and verifying
a distributed real-time system to the much easier problems of designing and
verifying its synchronous design, provided that the underlying infrastructure
guarantees bounds Γ on execution times, clock skews, and network delays. For a
synchronous design SD , bounds Γ , and a period p, PALS provides the distributed
real-time system PALS (SD , Γ, p), which is stuttering bisimilar to SD .

The synchronous design SD is formalized as the synchronous composition
of an ensemble of communicating state machines [30]. At the beginning of each
iteration, each state machine performs a transition based on its current state
and its inputs, proceeds to the next state, and generates outputs. All machines
perform their transitions at the same time, and the outputs to other machines
become inputs at the next iteration.

Hybrid PALS. Hybrid PALS [8] extends PALS to virtually synchronous CPSs
with environments that exhibit continuous behaviors. The physical environment
EM of a machine M has real-valued parameters x = (x1, . . . , xl). The continuous
behaviors of x are modeled by ordinary differential equations (ODEs) that spec-
ify different trajectories on x. EM also defines which trajectory the environment
follows, as a function of the last control command received by EM .

The local clock of a machine M can be seen as a function cM : R≥0 → R≥0,
where cM (t) is the value of the local clock at time t, satisfying |cM (t)− t| < ε for
the maximal clock skew ε > 0 [30]. In its ith iteration, a controller M samples
the values of its environment at time cM (i ·p)+ts, where ts is the sampling time,
and then executes a transition. As a result, the new control command is received
by the environment at time cM (i · p) + ta, where ta is the actuating time.

AADL. The Architecture Analysis & Design Language (AADL) is an industrial
modeling standard used in avionics, automotive, medical devices, and robotics
to describe an embedded real-time system [18]. AADL models describe a system
of hardware and software components. Software components include: threads
modeling the application software; data representing data types; subprograms
representing subroutines; and systems defining top-level components.

In AADL, a component type specifies the component’s interface (e.g., ports)
and properties (e.g., periods), and a component implementation specifies its
internal structure as subcomponents and connections linking their ports. AADL
constructs may have properties describing their parameters, declared in property

https://hybridsynchaadl.github.io/artifact/isola2022
https://hybridsynchaadl.github.io/artifact/isola2022
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sets. Thread and subprogram behavior is modeled as a guarded transition sys-
tem with local variables using AADL’s Behavior Annex [19]. When a thread is
activated, enabled transitions are applied until a complete state is reached.

Maude with SMT. Maude [16] is a language and tool for formally specifying and
analyzing distributed systems in rewriting logic. A rewrite theory [29] is a triple
R = (Σ,E,R), where (Σ,E) is an equational theory—specifying system states
as an algebraic data type—with Σ a signature (declaring sorts, subsorts, and
function symbols) and E a set of equations; and R is a set of rewrite rules—
specifying system transitions—of the form l : t −→ t′ if cond , where l is a label,
t and t′ are terms, and cond is a conjunction of equations and rewrites.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C
with attributes att1, . . . , attn of sorts s1, . . . , sn. An object o of class C is rep-
resented as a term < o : C | att1 : v1, . . . , attn : vn > of sort Object, where
vi is the value of att i. A subclass inherits the attributes and rewrite rules of its
superclasses. A configuration is a multiset of objects and messages, and has sort
Configuration, with multiset union denoted by juxtaposition.

In addition to its explicit-state analysis methods for concrete states (ground
terms), Maude also provides SMT solving and symbolic reachability analysis for
constrained terms, using connections to Yices2 [17] and CVC4 [13]. A constrained
term is a pair φ ‖ t that symbolically represents all instances of the term t
satisfying the SMT constraint φ. A symbolic rewrite on constrained terms can
symbolically represent a (possibly infinite) set of system transitions [11,32].

3 Overview of HybridSynchAADL

This section gives a brief overview of the original HybridSynchAADL language
and its Maude-with-SMT semantics as defined in [25,26]; see [25] for details.

3.1 The HybridSynchAADL Modeling Language

The HybridSynchAADL language is a subset of AADL extended with
the property set Hybrid SynchAADL. HybridSynchAADL can specify syn-
chronous designs of distributed controller components, (local) environment com-
ponents with continuous dynamics, and interactions between controllers and
environments based on imprecise local clocks and sampling and actuation times.

Discrete controllers are standard software components in the Synchronous
AADL subset of AADL [7,9]. This subset includes system, process, and thread
components; data components for base types; ports and connections; and thread
behaviors defined in the Behavior Annex [19]. The subset in [25,26] did not
include composite data types, subprograms, and arrays of components and ports.

Environments specify real-valued state variables that change continuously
over time. The continuous dynamics of state variables can be declared using
either ODEs or continuous real functions. An environment can have multiple
modes for different continuous dynamics. A controller command may change the
mode of the environment or the value of a state variable.
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3.2 Symbolic Semantics of HybridSynchAADL

Representing HybridSynchAADL Models. Each component is represented as
an object instance of a subclass of the base class Component. The attribute
features denotes a set of Port objects, subcomponents denotes a set of
Component objects. connections denotes its connections, and properties
denotes its properties.

class Component | features : Configuration, properties : PropertyAssociation,
subcomponents : Configuration, connections : Set{Connection} .

The type of each AADL component corresponds to a subclass of Component.
The class Thread has attributes for thread behaviors, such as transitions, states,
and local variables. The class Env for environments has attributes for continuous
dynamics, sampling and actuating times, and mode transitions.

Ports and data components are also modeled as objects. Data components
are represented as instances of the class Data, where value denotes the current
value. A data content is represented as a pair e # b of an expression e and a
Boolean condition b. If b is false, then there is no content (i.e., some “don’t care”
value ⊥) in the data/port; otherwise, the value of the content is e.

class Data | value : DataContent . subclass Data < Component .
op _#_ : Exp BoolExp -> DataContent [ctor] .

We use a constrained object of the form φ || obj to symbolically represent a
(possibly infinite) set of object instances of obj , where φ(x1, . . . , xn) is an SMT
constraint and obj (x1, . . . , xn) is a “pattern” over SMT variables x1, . . . , xn.
Figure 1 shows an example of a thread component and its representation.

Fig. 1. A thread component and a constrained term representation.
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Specifying the Behavior. We define various semantic operations on constrained
terms to specify the behavior of components, threads, environments, etc. In
particular, the operation executeStep defines a symbolic rewrite relation for
a “big-step” synchronous iteration of a single AADL component.

A symbolic synchronous step of the entire system is then formalized by the
following rule step. A symbolic rewrite from {φ || obj} to {φ′ || obj ′}
holds if there is a symbolic rewrite from executeStep(φ || obj) to φ′ ||
obj ′, provided that obj has no ports and the constraint φ′ is satisfiable.

crl [step]: {PHI || < C : System | features : none >} => {PHI’ || OBJ’}
if executeStep(PHI || < C : System | >) => PHI’ || OBJ’ /\ check-sat(PHI’) .

Figure 2 shows the definition of executeStep and auxiliary operations for
threads. In the first rule, readPort returns a map from each input port to
its content; readData returns a map from each data subcomponent to its
value; execTrans executes the transition system, given a behavior configura-
tion BCF of local variables, port contents, data component values, and proper-
ties; writePort updates the output ports; and writeData updates the data
subcomponents. In the second rule, a transition L -[GC]-> L’ ACT from the
current state L is chosen nondeterministically, and execAction executes the
actions ACT with the guard condition GC; if the next state L’ is a complete state
(L’ in LS), the operation ends; otherwise, execTrans is applied again. The
operation execAction computes a behavior action; e.g., the third rule defines
the semantics of an assignment action id := exp, where eval evaluates the data
content D of an expression.

Fig. 2. Some semantic operations for thread components.
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4 An Extension of HybridSynchAADL

In this section we extend the HybridSynchAADL modeling language in [25,26]
with the following AADL constructs: struct and array data types, arrays of
components and ports, and subprograms.

Composite Data Types. We now support (nested) struct and array types
defined in the Data Modeling Annex [33] of AADL. They are declared
as user-defined data components annotated with Data_Model properties
representing the details of the data types. In particular, the property
Data_Model::Data_Representation denotes the representation of a data
type, such as Struct and Array.

Fig. 3. Examples of composite data types in AADL.

Figure 3 shows examples of struct and array data types. Vector is
a struct type with two floating-point elements x and y, declared using
Data_Model properties. VectorArray is a one-dimensional array of Vector,
and TwoDimIntArray is a two-dimensional array of integers, where the sizes
of array dimensions are declared using Data_Model::Dimension. In AADL,
array indices begin with 1.

Arrays of Components and Ports. In AADL, multiple instances of the same
component type can be declared as an array of the component type. For example,
the system component Top.impl in Fig. 4, contains an array of Agent (of size
3) and an array of Tower (of size 2), where both components Agent and Tower
have an array ip of input ports (of size 3).

The connections between arrays of components/ports are declared with the
properties Connection_Set and Connection_Pattern. A connection set
specifies a list of individual connections using array indices. A connection pattern
uses a predefined list of frequently used connection sets. For example, the connec-
tion C1 in Fig. 4 uses a connection set: each pair [src=>(i, j); dst=>(k, l);]
specifies a connection from output port ot[i] of subcomponent agent[j] to
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input port ip[k] of subcomponent tower[l]. The connection C2 uses a con-
nection pattern: output port sd of agent[i] connects to input port ip[j]
of agent[k], where i = j (One_To_One) and each j is related to all k’s
(One_To_All).

Fig. 4. Arrays of subcomponents and features.

Subprograms. In AADL, subprograms represent sequentially executable code.
Subprogram components can have data parameters to pass and return values.
Parameters can be input, output, or both input and output, where input param-
eters are readable and output parameters are writable. Subprogram components
can also have data subcomponents to indicate local temporary variables.

In HybridSynchAADL, subprogram behavior is modeled using guarded
transitions written in the Behavior Annex in a way similar to thread behavior.
The execution of a subprogram starts in its initial state and ends in a final state.
A subprogram has one initial state and one or more final states. Subprograms
can be called within threads and subprograms (including recursively).

Fig. 5. A subprogram getDist.

Figure 5 shows a subprogram getDist which computes the distance between
two vectors, given by the input parameters p and q, and returns the value
to the caller using the output parameter d. The implementation getDist.l1
returns the rectilinear distance between input parameters p and q using a single
transition from the initial state s0 to the final state s1.
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5 Extending the Semantics of HYBRIDSYNCHAADL

This section presents the Maude-with-SMT semantics for the new features intro-
duced in Sect. 4 by extending the original semantics of HybridSynchAADL. As
those features extend the discrete subset of HybridSynchAADL, we have only
changed the part for discrete controllers in the original semantics. In particular,
the definition of execAction is significantly changed to support subprograms
and assignment actions with nested struct/array targets.

5.1 Representation of the Additional Features

An array content is represented as a term array(1 �⇒ d1; 2 �⇒ d2; . . . ;n �⇒ dn)
of sort ArrayContent, where the i-th element is data content di. Likewise,
a struct content is represented as struct(c1 �⇒ d1; c2 �⇒ d2; . . . ; cn �⇒ dn) of
sort StructContent, where the element ci is di. Array and struct contents
can be nested, since ArrayContent and StructContent are subsorts of
DataContent.

Arrays and array connections of components and ports are fully instantiated
in our representation. Figure 6 shows an example of a Maude representation of
Top.impl in Fig. 4. Component arrays agent and tower, and port array ip
are instantiated as concrete objects. Array connections, declared using a connec-
tion set and a connection pattern, are also instantiated as concrete connections.

Fig. 6. Maude representation of the System component Top in Fig. 4.

Subprograms are represented as instances of the class Subprogram,
similar to Thread. The attribute args denotes the list of parameters;
transitions denotes the set of transitions; currState denotes the current
state; finalStates denotes the final states; and variables denotes the local
variables and their types.

class Subprogram | args : List{FeatureId}, transitions : Set{Transition},
currState : Location, finalStates : Set{Location},
variables : Map{VarId,DataType},

subclass Subprogram < Component .
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A parameter of a subprogram is represented as an instance of a subclass of
the class Param. The features attribute of the class Subprogram includes a
set of Param objects instead of Port objects. Notice that features includes
an unordered set of parameters, and args defines the argument order of them.

class Param | type : DataType, properties : PropertyAssociation .
class InParam . class OutParam . class InOutParam .
subclass InOutParam < InParam OutParam < Param .

We define the function subprogram that returns a subprogram instance
from its fully qualified name (automatically synthesized by code generation).

5.2 Semantic of Composite Data Types

We extend the definitions of the two operations eval—evaluating expressions—
and executeAction—executing actions—for struct and array data types. For
eval, we define the cases for struct expressions exp.id and array expressions
exp′[exp]. For executeAction, we define the case of an assignment action
that includes (nested) struct and array expressions on the left-hand side.

The following rule defines the case of struct expressions exp.id for eval.
Given a constrained behavior configuration PHI || BCF (including local vari-
ables, port contents, data component values, and properties), we first evaluate
the struct data content of exp and then choose the element id from the content:

crl eval(EXP . CI, PHI || BCF) => PHI’ || D
if eval(EXP, PHI || BCF) => PHI’ || struct(CI |==> D ; STR) .

Similarly, for array expressions exp′[exp], we first evaluate the index data
content e # b of exp and the array data content of exp′. Because e may be a
symbolic expression (not an integer constant), we nondeterministically choose
the i-th element from the array data content with the constraint i = e.

crl eval(EXP’[EXP], PHI || BCF) => (PHI’’ and B and I === E) || D
if eval(EXP, PHI || BCF) => PHI’ || E # B
/\ eval(EXP’, PHI’ || BCF) => PHI’’ || array(I |==> D ; ARR) .

Consider an assignment action a.x[1].y := e with a nested struct/array target.
The intuitive behavior is as follows. We first evaluate the “top” data content of a,
e.g., td = struct(x �⇒ array(1 �⇒ struct(y �⇒ . . . ; . . .); . . .); . . .). We then update
the sub-content of td at the “position” indicated by “.x[1].y” with e.

The following rules specify the above behavior. The function evalPos
returns the top identifier and a position; e.g., evalPos(a.x[1].y,nil) returns the
pair {a, (.x)[1](.y)}. The substitution operation td [pos ← d](φ ‖ bcf ) computes
a new data content obtained by replacing the content of position pos with d.

crl execAction(TARGET := EXP, PHI || BCF) => assign(TARGET, D, PHI’ || BCF)
if eval(EXP, PHI || BCF) => PHI’ || D .

crl assign(TARGET, D, PHI || BCF) => PHI’ || update(ID, TD’, BCF)
if {ID, POS} := evalPos(TARGET, nil) /\ eval(ID, PHI || BCF) => PHI’’ || TD
/\ TD [POS <- D] (PHI’’ || BCF) => PHI’ || TD’ .
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5.3 Semantics of Subprogram Calls

We define executeAction for subprogram calls f !(exp1, . . . , expn) as follows.
We first obtain the subprogram instance for f , and evaluate the parameters based
on the caller’s behavior configuration. We then use execTrans to execute the
subprogram’s transition system with a new behavior configuration. Finally, we
update the caller’s behavior configuration based on the output parameters.

crl executeAction(F!(EXPS), PHI || BCF) => retOutParams(OM, FM’, PHI’ || BCF)
if < O : Subprogram | features : PARAMS, properties : PRS, args : PIS,

transitions : TRS, finalStates : LS,
variables : VIS, currState : L > := subprogram(F)

/\ {OM, FM} := outParams(EXPS, PIS, PARAMS, none, empty)
/\ {FM’’, PHI’’} := inParams(EXPS, PIS, PARAMS, BCF, {FM, PHI})
/\ execTrans(PHI’’ || {emptyVal(VIS), FM’’, empty, PRS}, TRS, L, LS)

=> L’ | FM’ | empty | PHI’ .

The operation outParams returns the output targets OM in the argument
list. After the call ends, these targets are updated with the values assigned to
the output parameters during subprogram execution. The operation outParams
also returns initial contents FM (with no value bot) for the output parameters.

eq outParams((EXP,EXPS), PI PIS, < PI : OutParam | type : TY > PARAMS, OM, FM)
= outParams(EXPS, PIS, PARAMS, insert(PI,EXP,OM), insert(PI,bot(TY),FM)) .

eq outParams((EXP,EXPS), PI PIS, < PI : Param | > PARAMS, OM, FM)
= outParams(EXPS, PIS, PARAMS, OM, FM) [owise] .

eq outParams(nil, nil, none, OM, FM) = {OM, FM} .

The operation inParams evaluates the values of the input expressions in
the argument list using eval. Notice that the initial contents generated by
outParams are updated with the evaluated values for input-output parameters.

eq inParams((EXP,EXPS), PI PIS, < PI : InParam | > PARAMS, BCF, {FM, PHI})
= inParams(EXPS, PIS, PARAMS, BCF, evalInParam(EXP, BCF, {FM, PHI})) .

eq inParams((EXP,EXPS), PI PIS, < PI : Param | > PARAMS, BCF, {FM, PHI})
= inParams(EXPS, PIS, PARAMS, BCF, {FM, PHI}) [owise] .

eq inParams(nil, nil, none, BCF, {FM, PHI}) = {FM, PHI} .

crl evalInParam(EXP, BCF, {FM, PHI}) => {insert(PI,D,FM), PHI’}
if eval(EXP, PHI || BCF) => PHI’ || D .

Finally, the operation retOutParams updates the output parameter targets
(generated by outParams) with the values assigned to the output parameters.
If no value is assigned to an output parameter, the target is not updated.

ceq retOutParams((PI |-> TARGET, OM), FM, PHI || BCF) = retOutParams(OM, FM,
assign(TARGET, D, PHI || BCF)) if D := data(FM[PI]) /\ hasValue(D) .

eq retOutParams(empty, FM, PHI || BCF) = PHI || BCF .

6 Case Study: A Packet Delivery System

This section shows how HybridSynchAADL can be used to design and analyze
a collection of collaborating autonomous drones, taking into account network
delays, clock skews, execution times, continuous dynamics, etc. The new features
supported by HybridSynchAADL make it easy to specify and analyze multiple
instances of components with complex control programs.
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6.1 System Description

We consider a packet delivery system adapted from [36]. As illustrated in Fig. 7,
there are drones, packets, and charging stations. A drone picks up a packet and
transports it to its destination. Drones use energy when moving and can recharge
at charging stations. Each drone exchanges its position with other drones to
adapt its movement to the motions of the other drones.

Fig. 7. Packet delivery system. Fig. 8. Control logic of drones.

The continuous dynamics of the i-th drone is specified by the ODEs ẋi = vi

and ėi = −h · |vi|, where xi, vi, and ei denote its position, velocity, and energy,
respectively, and h denotes the energy consumption rate. The controller samples
the drone’s position, velocity, and energy at its sampling time, and gives a new
velocity value to the environment at its actuating time.

Figure 8 shows the control logic of drones, where double circles indicate com-
plete states (see Sect. 2), and init denotes the initial state. The controller uses
a state variable goal to indicate the drone’s target, such as a packet location, a
packet destination, or a charging station location. The drone’s behavior is deter-
mined in state choose_action, based on the current values of state variables
(including goal) and the sampled position and energy from the environment.

A new velocity is calculated in state plan to move towards the current
goal while adapting to the motions of the other drones. In this paper, we use
this adaptation framework to implement a simple collision avoidance technique:
each drone has a priority, and when a potential collision is detected (e.g., the
distance between two drones is below a certain threshold), a drone with lower
priority must yield to a drone with higher priority.

6.2 The HYBRIDSYNCHAADL Model

Figure 9 shows the top-level system component that contains Drone and
Packet component arrays. We model the locations of charging stations as a
constant array. The period, maximal clock skew, and sampling and actuating
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times are declared using Hybrid_SynchAADL properties. A drone can send a
request to a packet (connection C1) and its position to the other drones (con-
nection C3), and a packet can reply its destination to a drone (connection C2).
In this section, we consider a packet delivery system with three drones and two
packets.

Fig. 9. A top level component in HybridSynchAADL.

A Packet component chooses one of the drones that have sent the request,
and sends its destination to the selected drone. A Drone contains a controller
and an environment connected to each other using ports. The environment
declares the continuous dynamics of the drone’s position, velocity, and energy
mentioned above. We assume that a drone moves in a two-dimensional space.
The controller also communicates with the outside components using Drone’s
ports.

Figure 10 shows part of the HybridSynchAADL specification for a con-
troller thread that implements the control logic of Fig. 8. It contains several
state variables, such as goal for the current target and chargeStation for the
charging station locations. It also uses several subprograms, such as chkClose
to check whether the drone is too close to other drones with higher priority. The
entire HybridSynchAADL specification of our model is given in the report [24]
and is available at https://hybridsynchaadl.github.io/artifact/isola2022.

6.3 Formal Analysis

We are interested in analyzing whether all drones complete their tasks (i.e., going
to state done) within a certain time, e.g., 10 seconds. This can be expressed as
the following invariant property using HybridSynchAADL’s property specifi-
cation language. We analyze this property up to bound 10,100 ms.

https://hybridsynchaadl.github.io/artifact/isola2022
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Fig. 10. A controller thread in HybridSynchAADL (‘...’ indicates omitted parts).

invariant [complete] :
?initial ==> (not clock.time >= 10000) or ?allDone in time 10100 ms;

The above propositions allDone and initial are declared as follows. The
keyword const is used to introduce a VectorArray constant p. The declara-
tion of allDone includes universal quantification over array index i, which is
a new feature of HybridSynchAADL proposed in this work. Notice that there
are infinitely many initial states satisfying initial.

const p:VectorArray = [{x:2.7, y:0.9}, {x:1.0, y:2.3}, {x:12.0, y:12.0}];

proposition [allDone]: forall i in {1,2,3}. drone[i].ctrl.proc.thrd @ done;
proposition [initial]: forall i in {1,2,3}.
abs(drone[i].env.x - p[i].x) < 0.3 and abs(drone[i].env.y - p[i].y) < 0.3;

We find a counterexample by randomized simulation in one minute: a collision
occurs after five iterations (500 ms), since the subprogram chkClose in Fig. 10
does not consider clock skews and sampling/actuating times. As mentioned, each
drone’s position is sampled from the environment at some time in the sampling
time interval, also perturbed by a clock skew. The calculation of chkClose is
not precise enough without considering these values.

We therefore modify the implementation DroneThread.impl to mitigate
this problem as follows. When invoking chkClose, we use an extra padding
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value depending on the maximal clock skew and sampling/actuating time inter-
vals given in the corresponding Hybrid_SynchAADL properties. With this
change, no counterexample of allDone is found in three hours using randomized
simulation.

Furthermore, we verify that no such counterexample exists up to bound 500
ms using symbolic reachability analysis for the invariant property safety, which
takes about 95 minutes. The proposition failure states that some drone has
gone into the failed state, and the invariant property safety states that no
such failure is possible within bound 500 ms.

invariant [safety]: ?initial ==> not ?failure in time 500 ms;
proposition [failure]: exists i in {1,2,3}. drone[i].ctrl.proc.thrd @ failed;

7 Related Work

PALS is a synchronizer for CPSs without continuous behaviors, and is there-
fore related to time-triggered architectures (TTA) [23], but typically allows
shorter periods, etc. See [6,35] for comparisons between PALS and TTA.
MSYNC [6] generalizes both TTA and PALS (and its multirate extension Multi-
rate PALS [5]). Unlike Hybrid PALS, neither of these take continuous behaviors
into account.

Synchronous AADL [7,10] and Multirate Synchronous AADL [9] also use
AADL to define synchronous PALS designs, but do not consider continuous
behaviors. As mentioned above, this work extends HybridSynchAADL in [25,
26] with features making it easy to specify complex systems, and demonstrate
the extended version of the language and analysis tool on a new case study.

Unlike other hybrid extensions of AADL, e.g., [1,12,28,31], HybridSynch-
AADL supports the specification of complex controllers using (a subset of)
AADL’s expressive Behavior Annex, and we also consider (virtually syn-
chronous) CPSs—with clock skews, network delays, etc. (using the Hybrid PALS
equivalence). See [25, Sect. 10] for a more detailed discussion of related work.

Our case study is based on the simple packet delivery system example in [36].
Unlike the original model where drones discretely move on a grid, our model
considers the continuous movements of drones and imprecise local clocks.

8 Concluding Remarks

HybridSynchAADL is an AADL-based modeling language and formal analy-
sis tool for sophisticated virtually synchronous (distributed) CPSs—with com-
plex controllers, imprecise local clocks, and continuous behaviors—that is fully
integrated into the OSATE tool environment for AADL. Control programs are
defined using (a significant subset of) AADL’s intuitive and expressive Behavior
Annex, and continuous behaviors are given by differential equations. Further-
more, the performance of our tool compares favorably with (less expressive)
state-of-the-art hybrid systems analysis tools.
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In this paper we have extended HybridSynchAADL with (AADL) features
for data types, arrays, and user-defined functions/subprograms. This should
make the modeling of complex CPSs—including adaptive CPSs—significantly
more convenient and less error-prone. We have introduced the language exten-
sions (including to the property specification language), have extended the
Maude-with-SMT formal semantics of HybridSynchAADL with the new fea-
tures, and have illustrated the convenience of the extended language by modeling
and analyzing a complex collection of packet-delivery drones that adapt to the
movements of other drones to avoid collision.
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Abstract. Artificial ants are “small” units, moving autonomously on a
shared, dynamically changing “space”, directly or indirectly exchanging
some kind of information. Artificial ants are frequently conceived as a
paradigm for collective adaptive systems. In this paper, we discuss means
to represent continuous moves of “ants” in discrete models. More gener-
ally, we challenge the role of the notion of “time” in artificial ant systems
and models. We suggest a modeling framework that structures behavior
along causal dependencies, and not along temporal relations. We present
all arguments by help of a simple example. As a modeling framework we
employ Heraklit; an emerging framework that already has proven its
worth in many contexts.

Keywords: Systems composition · Data modeling · Behavior
modeling · Composition calculus · Algebraic specification · Petri nets

1 Introduction

Some branches of informatics take processes in nature as a model for unconven-
tional classes of algorithms. In particular, numerous variants of “swarm intelli-
gence” have been and are being studied to a large scale, with specialized confer-
ence series, journals, etc., e.g. International Conference on Swarm Intelligence
(ICSI), and International Journal of Swarm Intelligence Research (IJSIR). What
many of these approaches have in common, is the assumption of a number of
artificial ants, i.e. “small” units, moving autonomously around on a shared,
dynamically changing “space”, directly or indirectly exchanging some kind of
information.

This kind of behavior needs an adequate representation, i.e. it must be mod-
eled in a formal framework, as a basis for implementation, for proving correct-
ness, for studies of complexity, and many other tasks.
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In the following, we discuss fundamental assumptions and questions of model-
ing such systems. In particular, we discuss means to represent continuous moves
of “ants” in discrete models. More generally, we challenge the role of the notion
of “time” in artificial ant systems and models. We show that time-based models
do not adequately represent the causal dependencies in such systems. Instead,
we suggest a modeling framework that structures behavior along causal depen-
dencies, and not along temporal relations.

We present all arguments by help of a simple example, i.e., ants moving up
and down a bar. This example already exhibits numerous fundamental problems
of the area. As a modeling framework we employ Heraklit [2,3]; an emerging
modeling framework that already has proven its worth in many contexts, and
shows its utility also in the context of artificial ants.

2 Running Example: Ants on a Bar

Here we start out with an informal description of ants on a bar. We identify
three kinds of events.

2.1 The Behavior of Ants on a Bar

Assume a bar and some ants, moving up and down the bar, as in Fig. 1. An ant,
moving towards the right end of the bar, and its right neighbor moving left, will
eventually meet at some point on the bar. In this case, both ants swap direction
of movement. A right moving ant without right neighbor will eventually drop
down from the bar, and so will drop down a left moving ant without a left
neighbor. Ants cannot get ahead of each other.

Fig. 1. Ants on a bar

An initial state is a set of ants on the bar, where each ant is directed left or
right. For every given initial state, the ants’ behavior is clear and unambiguous,
generating a run. The ants system is the set of all potential initial states and
their runs. As the above description of the ants system is intuitively clear, it
should not be too difficult to model it formally. However, there is much to say
about this seemingly simple endeavor.
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2.2 Events of the Ants’ System

We start with the quest of modeling single runs. Starting in a given initial state,
three types of events may occur:

1. Two ants i and j meet. As a shorthand we write “a i j” for this event.
2. An ant i drops down on the left edge of the bar. As a shorthand we write “b

i” for this event.
3. An ant i drops down on the right edge of the bar. As a shorthand we write

“c i” for this event.

Occurrence of an event causes a fresh state.

Fig. 2. The continuous model of behavior

3 Conventional Models of the Ants’ Behavior

There are several more or less different ways to represent the behavior of ants,
embedding events into a temporal framework, and structuring the behavior along
the flow of time. We consider four such representations and show what they have
in common.

3.1 The Continuous Model of a Run of the Ants System

Figure 2 models a behavior of the ants in the style of classical mechanical engi-
neering: a Cartesian plain is spanned, with real numbers for time and for space
in its x- and y-axis, respectively. An initial state S0, reached at time t = 0, is
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outlined as follows: For each ant i, an ellipse, inscribed A i l or A i r, describes
the initial position on the bar of ant i, as well as its orientation, left or right.
For example, ant 1 is the leftmost ant, oriented rightwards.

Figure 2 shows a typical behavior of the events of the ants system. Any real
number of the x-axis of Fig. 2 denotes a point in time, and any real number of
the y-axis denotes a point in space on the bar, where an event may occur. For
example, the “c 6” inscribed box indicates the event of ant number 6 dropping
down the right edge of the bar. The “a 3 4” inscribed box indicates that ants 3
and 4 meet.

The model in Fig. 2 encompasses infinitely many, in fact more than countably
many potential states apt to cope with “real time”. However, for the understand-
ing of the functionality of a system, the aspect of “real time” is often irrelevant
and makes little sense. An example would be the claim that ants number 3 and
number 4 meet at location 50 + π (= 50 + 3.14 . . . ) cm on the bar, and 20 × √

2
(= 20×1.47 . . . ) seconds after the initial state. Neither can anybody empirically
measure such a claim, nor is this claim relevant for a proper understanding of a
single run of the ants system, or the ants system as a whole.

Starting at state S0 as in Fig. 2, the events as described in Sect. 2.2 may occur
at any point of time and any location on the bar. Hence, S0 yields infinitely many
different runs, where events occur at different times at different places on the
bar. Nevertheless, each run exhibits some kind of structure: some events are
definitely ordered. For instance, ant 4 turns first right to meet ant 5, and then
left to meet ant 3. Hence, event a 4 5 is a prerequisite for a 3 4. This observation
gives rise to the causality requirement :

If event e is a prerequisite for event f, then e occurs before f. (1)

It is the concept of causality, that structures the behavior, and captures its
decisive properties.

Avoiding unnecessarily detailed aspects, informatics does mostly deals with
discrete models. A discrete model of behavior describes behavior by help of
finitely many or countably many states and events, where an event updates a
given state. This is aspired in different ways, most prominently the following
three ones.

3.2 The Grid Model

The grid model spans a grid in the plane, e.g. the integer grid as in Fig. 3. This
grid cuts time and space into intervals. In each state of the system, each ant
occupies a square of the grid. Upon an event, each ant is assumed to move right
to the next time interval, and coincidently moving up or down to a neighbored
space interval, or to remain at its position. Consequently, ants meet or drop
down from the bar at the grid’s crossings. This is what cellular automata and
most implementations of ant algorithms do. Resnick suggests a programming
language, based on the grid model [10].

For a fixed initial state, the grid model does not define a unique run: depend-
ing on the choice of the grid, two events may be mapped to the same or to
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Fig. 3. The grid model of behavior

different points of the grid, i.e. two pairs of ants are considered as meeting in
time coincidently (at different points of space on the bar), or in a sequence. Any
such mapping of events onto grid points is acceptable, provided the causality
requirement (1) holds in a slightly revised form:

If e is a prerequisite for f, then the time component of e
must be smaller than the time component of f. (2)

This is in fact the case in Fig. 3. As a further example, the event c 6 indicates
that ant number 6 just drops down at the right edge of the bar, without meeting
any other ant. Consequently, c 6 may be mapped to any of the seven grid points
of time.

3.3 The Numbering Model

As a second possibility, one just numbers the ants’ meetings, such that the
causality requirement holds in the varied formulation:

If e is a prerequisite for f,

then the number of e must be smaller than the number of f.
(3)

For the above initial state S0, Fig. 4 shows an example for this model of
behavior. There are various different acceptable numberings. For example, the
numberings 2 and 4 of the events a 4 5 and b 1 may be swapped.
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Fig. 4. The numbering model

3.4 The Lockstep Model

Behavior can also be modeled as to proceed in lockstep, i.e. in a sequence of
steps, where each step is a set of events. Figure 5 shows the ants’ behavior as
a sequence of four steps, for the above initial state S0. Again, the causality
requirement must hold is a varied form:

If e is a prerequisite for f, then the step including e

must occur in the lockstep sequence before the step including f.
(4)

Again, the running example generates not a unique lockstep sequence.

3.5 The Uniqueness Problem

For the given initial state S0, the continuous model of Sect. 3.1 as well as each of
the above three discrete models cause various different runs. The runs all differ
w.r.t. the time at which events occur. The assumption of time is the structuring
principle of these runs. However, “time” come from outside the ant system.
In forthcoming Sect. 4, we strive at a discrete, yet unique model of the ants’
run, without outside structuring principles. But first we shed light onto the
causality requirement (1) that occurs in some way in all models ((2), (3), (4)).
This requirement induces an order on the events of a run.

3.6 Weak Orderings of Events

All above models of single runs (i.e. the continuous, the grid- the numbering-
and the lockstep-model) order the evens of a run along the x-axis, representing
the intuitive notion of time in various forms: as real numbers, discrete number
intervals, integers, or just discrete, finite order. In all these models, events are
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either ordered in time, or they occur at the same time. This ordering is a weak
ordering on the events: for three events e, f , and g always holds:

If e and f are not ordered, and fand g are not ordered,
then also e and g are not ordered.

(5)

For example, a 1 2, a 4 5 and c 6 occur at time 10 in the grid, as well as in
the first step of the lockstep run. Generally, a partial order, namely a transitive
and irreflexive relation, is a weak ordering, if the complement of its symmetric
closure is transitive. Consequently, any version of order that is motivated by the
intuitive notion of “time” is a weak order, because in a temporally motivated
order, unorder means “occurring at the same time”. And “occurring at the same
time” is intuitively definitely transitive.

4 The Causal Model of the Ants’ Runs

Here we suggest a behavioral model that contrasts the above time-based model:
A run is no longer structured along time, but along causality. It turns out, that
the induced order is no weak order anymore.

4.1 The Order of Events

As an alternative to ordering events by temporal aspects, we start out with
a closer look at the causality requirement, as stated in (1): “If event e is a
prerequisite for event f , then e occurs before f”. Here, “to be a prerequisite of
...” is a certainly a transitive relation:

If e is a prerequisite for f, and if f is a prerequisite for g,

then e is a prerequisite for g.
(6)

This implies that “to be a prerequisite of ...” is a partial order. In the sequel,
we denote it as an event order. Figure 7 shows the event order for the run of
the ants system, starting in state S0. Graphically, each arrow begins at a direct
prerequisite of the event at the arrow’s end. Order on events induced by transi-
tivity is not depicted. In Fig. 7, c 5 is unordered with a 3 4, as well as with a 2 3.
But a 3 4 is ordered with (i.e. smaller than) a 2 3. Formulated more generally, if
e no prerequisite for f , and if f is no prerequisite for g, then e may very well be
a prerequisite for g. In technical terms, this means:

In general, causal order is no weak ordering. (7)

This contrasts the temporally motivated orders of (1) to (4).
We intend to employ event orders as a model of runs. This rises the problem

of identifying states in a run. There is no way to insert global states into a partial
order that is not weakly ordered. Nevertheless, wishing to embed single runs into
behavioral system models, some aspects of states are inevitable.
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Fig. 5. The lockstep model

4.2 Local States and Steps

To include aspects of states into an event order, we pursue the idea of local
states. For example, the initial state S0 of the ants system, as in Figs. 2, 3, 4,
and 5 consists of local states, one for each ant.

We construct local states as suggested in the framework of the Heraklit
[2]: a local state is a proposition, usually a predicate p together with an item
or a tuple t, where p applies to t. For example, let A be the predicate “directed
ants on the bar”. This predicate applies to the tuple (1, r) in the initial state
S0 of the ants system. This kind of propositions is usually written A(1, r). In
graphical representations we skip the brackets. Hence, the initial state S0 of
the ants system is a set of local states, each of which is shaped “A i j”, with
i = 1, . . . , 6, and j ∈ {l, r}.

A local step is an occurrence of an event, together with the event’s effect on
local states. Each step updates some of the local states. For example, Fig. 6(a)
shows the local step of meeting of ants 1 and 2, and their swapping of direction.
This figure shows the cause and effect of event a 4 5 to the local states A 4 r and
A 5 l: they both are updated to A 4 l and A 5 r, respectively. Any kind of global
state is not necessary to specify event a 4 5. Correspondingly, Fig. 6(b) shows the
meeting of ants 3 and 4.

According to Fig. 7, the event a 4 5 is a prerequisite for a 3 4, because ant 4

1. starts to the right (local state A 4 r),
2. then swaps to A 4 l (jointly with ant 5),
3. then returns back to A 4 r, (jointly with ant 3).

Figure 6(c) shows the combined behavior of a 4 5 occurring before a 3 4.



Discrete Models of Continuous Behavior 73

Fig. 6. Events and their composition

Fig. 7. Event order

4.3 The Run Starting at State S0

Figure 8 shows the run U of the ants system, starting in the initial state S0.
Besides the predicate “A”, the run U employs further predicates, used to describe
causes and effects of ants to drop down left and right: Local states B i state that
ant i is the leftmost ant, hence i is the next ant expected to drop down to the
left; L i states that ant i has dropped down left. Accordingly, C i stated that ant
ant i is the rightmost ant, hence next ant expected to drop down to the right;
R i states that ant i has dropped down right. The gray background displays a
Heraklit module, with interfaces on its left and right margin.

4.4 Composing the Run U from the Ants’ Behavior

As each single ant contributes to the run U , one may ask for the contribution
of each single ant to U . Figure 9 shows the contribution of ants 1, . . . , 6, as
Heraklit modules, “ant i” (i = 1, . . . , 6). For each ant i, the module of i starts
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Fig. 8. Run U of the ants system

with zero, one or two events shaped a i i + 1 or a i − 1 i, followed by b i or
c i. This means intuitively, that ant i meets up to two neighbored ants, and
then drops down the bar to the left (event b i) or to the right (event c i). Before
dropping down, ant i informs its right neighbor ant i + 1 or its left neighbor ant
i − 1 that it is now the leftmost ant (local state B i) or the rightmost ant (local
state C i). Heraklit comes with a composition operator “•”, such that we can
write:

U = ant 1 • · · · • ant 6. (8)

5 Modeling the Bar with Ants

In the definition of runs, replacing temporal order by event order is a fundamental
step. It raises the question of how to cope with the new version of runs, how
such runs are generated by a kind of system model, etc. In the rest of this paper,
we model the ants system itself, we discuss the composition of system models
and runs, and we discuss a schematic representation for ant systems.

5.1 The Model of the Ants System

Figure 10 shows the ant system as a module in the Heraklit framework [2]. The
places on its left and right margin are the left and right interface of the module,
collecting the dropped down ants. Essentially, this figure shows a high-level Petri
net. Its initial marking represents the local state components of the initial state
S0. As usual for such Petri nets, in a given marking, a transition is enabled with
respect to a valuation of the involved variable, i. For example, in marking S0,
transition “a” is enabled with i = 1 (representing the event a 1 2), but not with
i = 2. This way, each transition of Fig. 10 causes a set of steps. A run (such as
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Fig. 9. Each ant’s behavior

in Fig. 8) is a run of the system, if each step of the run can be conceived as a
step of the system, and if the initial state of the run fits the initial system state.
For Fig. 10, this applies to the run U of Fig. 8. Formal details of the notion of a
run of a system are presented in [2].

5.2 Composing Two Bars

As an exercise showing the elegance and technical simplicity of the Heraklit
approach, we consider the case of two bars, a left and a right one, linked together.
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Fig. 10. The ants system

A right moving ant on the left bar no longer drops down to the right of the bar,
but moves onto the right bar. Correspondingly, a left moving ant on the right
bar no longer drops down to the left of the bar, but moves onto the left bar. We
model this system with two copies of the above ants system, slightly extending
the right interface of the left system, and the left interface of the right system,
as shown in Fig. 11. Each dotted line links two places that are merged in the
composed system.

The left system of Fig. 11 extends the ant system of Fig. 10 by place L and
transition e. Left-moving ants move from the right to the left bar via the place L
and the transition e, thus reaching the place A of the left bar. Place C protocols
the actually rightmost ant on the bar. In a symmetrical way, the right system of
Fig. 11 introduces the place R and the transition d. The synchronizing place S
prevents the rightmost ant of the left bar and the leftmost ant of the right bar
to slide past each other. In technical terms, c is followed by d, before b occurs.
Or b is followed by e before c occurs.

Fig. 11. Composing two bars
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Ignoring the dotted lines, the composed system can be written in Heraklit
as

left bar • right bar. (9)

It is interesting to study the composition of runs of the composed system. As
initial state, for the left system we assume the state as in Fig. 8. The right system
contains initially only one ant, oriented to the left. In the run of Fig. 12, ant 6
moves from the left to the right bar, meeting ant 7 on the right bar. Both ants
swap direction: ant 6 returns to the left bar, and ant 7 eventually drops down to
the right of the right bar. Ant 6 meets ant 5 on the left bar, swaps direction, etc.
Eventually, ants 3, . . . , 7 are dropped down to the right of the right bar. Ants 1
and 2 take no notice at all from the newly attached bar, and drop down to the
left of the left bar. In Fig. 12, the transitions of the right module are shaded.

Fig. 12. Composed run

5.3 Composing Many Bars

The case of composing two bars can systematically be extended to any number of
bars. To this end we employ a middle bar, as in Fig. 13. For example, composition
of five bars can be written in Heraklit as

left bar • middle bar • middle bar • middle bar • right bar. (10)
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Fig. 13. Middle bar

Fig. 14. The ant schema

6 A Schematic Representation of Ants Systems

Figure 10 shows an ant system with a fixed initial state, consisting of six ants,
each of which is oriented either to the left or to the right. Now we strive at a
representation that covers any number of ants, and any orientation of each ant.
We achieve this by help of well-established concepts of general algebra [11], as
used in algebraic specifications such as CASL, VDM, Z, etc. The inscriptions of
Fig. 10 represent elements of a set of ants and a set of directions.
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Figure 14 includes a signature, Σ, some typed symbols for sets, constants and
functions, and four properties. As usual in algebraic specifications, an instanti-
ation of Σ assigns each symbol a corresponding set, constant, or function, such
that the required properties are respected. Thus, an instantiation of Σ is struc-
ture, denoted as a Σ-structure. For example, Fig. 10 includes an instantiation of
the signature Σ of Fig. 14: The symbols A and D are instantiated by the sets
{1, . . . , 6} and {l, r}. The constant symbol n is instantiated by the integer 6.
The symbols l and r are instantiated by themselves. The instantiation of the
function symbol d is a function that is implicitly given by the initial marking of
the place A. Summing up, each instantiations of Σ specifies an ant system.

The initial marking of the place A deserves particular attention. One may
be tempted to use the symbol “init” as symbolic initial marking. According
to the signature Σ, an instantiation would instantiate “init” as a set ants of
directed ants, as one initial token. This is, however, not what we want. Instead,
we want each element of the set ants to be a token. In logical terms, with the
place A denoting the predicate “directed ants on the bar”, we want not to state
“A(ants)”, but

∀a ∈ ants : A(a). (11)

Using the Heraklit framework, we denote this by the inscription “elm(init)”
in the place A.

7 Related Work

On the background of classical automata theory and transition systems, a run
(i.e. a single behavior) of a discrete system is a set of activities, totally ordered
along the evolution of time. Each activity updates a (global) state, with a state
containing all what is the case at a distinguished point in time. C.A. Petri
challenged this “interleaving semantics” since the 1960ies, and suggested non-
sequential processes as a model for single runs of any kind of discrete systems
[8]. In this view, a run is a set of activities, partially ordered by causal depen-
dencies. Such partial orders have been suggested for many models, in particular
for interacting sequential systems. Typical such contributions include [1,4,5,7,9]
and may others. But partial order semantics never prevailed. Its technical costs
were considered to outperform the gained insight.

The Heraklit framework with its composition operators used above, how-
ever reduces the technical burden drastically and reveals further insight. In par-
ticular, composition of systems yields exponentially many interleaving runs, but
only quadratically many partially ordered runs. The number of runs of a com-
posed system A•B is in general exponentially bigger than the number of runs of
A and B. The corresponding number of partially ordered runs is only quadrati-
cally bigger.

Our discussion of weak orderings in Sect. 3.6 reflects the discussion of mea-
surement in several scientific fields as discussed by e.g. [6]: typically it is argued
that measurement means that attributes of objects, substances, and events can
reasonably be represented numerically such that the observed order of objects
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etc. is preserved in the numerical representation. In other words, any reasonable
kind of measurement yields totally ordered results if different objects has to be
represented by different numbers; and weakly ordered results if different objects
can be represented by the same number. So, it comes without surprise that the
behavioral models of Sect. 3.1, 3.2, 3.3 and 3.4 define weak orderings.

8 Conclusion

With this paper, we intend to raise a number of questions, without claiming
full-fledged answers:

– The fundamental question: Is it possible for each system with timing aspects,
to separate time and functionality? If yes, does this separation always yield
better insight into the system, or better methods to prove aspects of correct-
ness? If no, can properties of systems be identified, that would characterize
this distinction?

– To which extent does our chosen modeling technique, Heraklit, limit or
bias the representation of functionality?

– How is the notion of time in real world systems related to the treatment of
time in models, and in implementations: In informatics we frequently tend
to assume continuous or discrete time to “exist” and to be “measurable”
without much of effort. Sects. 3.2, 3.3 and 3.4 show that this assumption is
not justified, and the above question is far from trivial. Before discussing e.g.
meeting points of ants with different velocities, it must be clarified how those
notions will be fixed in the model.

We suggest to base this kind of questions on the notion of causality. This
offers a larger degree of mathematical expressiveness, because causality orders
the events of a run not necessarily by a weak ordering (as time based models
usually do), but by a more general partial order. We suggest this as a beginning
of a theoretical framework for any kind of modeling of collective adaptive sys-
tems. This implies new development processes, property preserving verification,
refinement, composition etc.
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Abstract. We argue that compositional specification based on formal
languages can facilitate the modelling of, and reasoning about, sophisti-
cated collective behaviour in many natural systems. One defines a sys-
tem in terms of individual components and local rules, so that collective
behaviours emerge naturally from the combined effect of the different
actions of the individual components. With appropriate linguistic con-
structs, this can yield compact and intuitive models that are easy to
refine and extend in small incremental steps. In addition, automated
workflows implemented on top of this methodology can provide quick
feedback, thereby allowing rapid design iterations. To support our argu-
ment, we consider flocking, a well-known example of emergent behaviour
in collective adaptive systems. We build a minimalistic bottom-up model
of a flock of birds incrementally, discussing specific language constructs
as we go along. We then describe a prototype simulator, and use it to
validate our model in a controlled experiment, where a flock is attacked
by a bird of prey. The flock effectively reacts to the attack by splitting
into smaller groups and regathering once the threat subsides, consistently
with both natural observations and previous models from the literature.

1 Introduction

The organization of complex systems in nature, such as flocks of birds, colonies
of ants, schools of fish, swarms of insects, and many more, has long since been
attracting considerable interest. Researchers with different background have
been resorting to different mathematical frameworks in order to study these
phenomena. For instance, flocking, where a group of birds exhibits coherent pat-
terns of collective motion, has been modelled using graph theory [24], distributed
control laws [32], and statistical mechanics [3].

This way of modelling is not always practical because it relies on general-
purpose formalisms that may not be very intuitive to use, in addition to the fact
that the system needs to be modelled as a whole, regardless from its natural
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structure and often by artificially introducing some kind of central control. In
contrast, in different disciplines, including epidemiology, ecology, economics, and
social sciences [5,14,19,33], there seems to be a growing interest towards com-
positional approaches where the model focusses on the individual components
rather than on the whole system.

Along these lines, in this paper we advocate a bottom-up approach based on
formal specification languages. One defines the system of interest in terms of
individual components and local rules. The collective behaviour of the system
as a whole is not specified explicitly, but can be observed to emerge from the
combined effect of the different actions of the components. This can be of signif-
icant help to reproduce sophisticated collective dynamics intuitively, and, when
combined with appropriate linguistic constructs, can yield compact and intuitive
specifications that are easy to refine. The adoption of a formal language allows
implementing automated workflows for simulation or formal analysis that can
provide feedback quickly, thereby allowing rapid design iterations.

To illustrate our point, we develop a model of a flock by gradually defining
the individual behaviour and features of a bird. As we progressively refine it,
we aim at keeping the behaviour of individual birds as decentralized as possible.
We write our increasingly complex models in an existing language [7], which we
gradually extend with new constructs that keep the specifications compact and
intuitive. Once the model is fully refined, we simulate the evolution of a flock
obtained by composing a number of birds together, and show that it displays
interesting collective features. Namely, when birds are attacked by an external
bird of prey, they are able to first escape from it, and then reassemble into a
coherent flock when they are no longer under threat. This kind of collective
behaviour reflects the one emerging from other models in the literature, but
relies on a rather simple model.

The rest of this paper is structured as follows. We define our model of flocking
behaviour and discuss tailored linguistic constructs for the specification language
in Sect. 2. We describe our experimental setup for simulation and our controlled
experiment in Sect. 3. We discuss related work in Sect. 4. Lastly, in Sect. 5 we
report some final remarks and discuss potential directions for future work.

2 Specification

In this section, we develop a simplified model that resembles the dynamics of a
flock. We start from describing a set of very simple birds, and then show how
this description can be extended to implement our desired dynamics. As we do
so, we also extend the modelling language itself with new constructs, aiming to
keep the specifications succinct and intuitive.

Description of a Bird. Each bird in the flock can be described by two prop-
erties, namely its position and its orientation of movement. We model the for-
mer through a pair of coordinates (x, y) and the latter as a pair of integers
(dirx,diry) representing a heading vector. This description allows to represent
both the direction of the bird’s displacement, i.e., the angle subtended by the
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Listing 1: Baseline agent modelling.
1 agent Bird {
2 Interface =
3 x: 0..G;
4 y: 0..G;
5 dirx: −D..D + 1;
6 diry: −D..D + 1
7

8 Behaviour = Move; Behaviour
9 Move = {

10 x ← x + dirx;
11 y ← y + diry
12 }
13 }

(0,1) (1,1)(-1,1)

(0,-1) (1,-1)(-1,-1)

(1,0)(-1,0)

(a) D = 1.

(0,2) (1,2)

(2,1)

(-1,2)

(-2,1)

(0,-2) (1,-2)

(2,-1)

(-1,-2)

(-2,-1)

(1,0) (2,0)(-1,0)(-2,0)

(2,2)

(2,-2)

(-2,2)

(-2,-2)

(b) D = 2 (some labels omitted for readability).

Fig. 1. Possible heading vectors that a bird can assume for different values of D

heading vector, and the bird’s velocity, represented by the length of the heading
vector.

Listing 1 shows how we can model the above description.1 In the first sub-
section (lines 2–6) we define the interface of the agent, where we define and
initialize its observable features, or attributes. Attributes x and y are initial-
ized non-deterministically and can assume any value corresponding to a valid
coordinate on a grid that represents the arena where the flock is located. The
grid is a square with edges of length G, thus the possible values vary from 0
to G − 1 included (lines 3–4). The initial values of dirx and diry range over
[−D,D] (lines 5–6). We use D to denote the maximum displacement along each
coordinate of the grid: note that, as D increases, so does the number of possible
heading vectors, as shown in Fig. 1. The actual initial value of each attribute is
chosen non-deterministically.

1 In this paper, we present condensed, human-readable versions of the full, machine-
readable specifications. These are available at https://github.com/labs-lang/labs-
examples/tree/isola2022/isola2022.

https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022
https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022
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Listing 2: Alignment.
1 agent Bird
2 Interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7 dirx ← dirxp;
8 diry ← diryp;

9 x ← x + dirx;
10 y ← y + diry
11 }
12 }

Behaviour of a Bird. As for the behaviour of birds, let us initially model a
system in which each bird simply moves along its heading vector set in the initial
state, without ever changing it.

Listing 1 shows how to model such a behaviour. It is expressed through
the recursive definition at line 8 that states that each agent repeatedly carries
out the actions described in the Move process. More in detail, the statement
x ← x + dirx at line 10 updates the attribute x, which represent a component
of the position of the agent, with the evaluation of the expression x + dirx, i.e.,
the new position that the agent reaches by moving along its heading vector.
Attribute y is updated similarly (line 11). Currently, we assume that agents
never reach the edge. Please note that each assignment is executed atomically,
but sequences of assignments may be subject to interleaving. To prevent inter-
leaving between the assignments of the different agents, i.e. to execute multiple
assignments atomically, these must be enclosed in curly brackets, as shown in
lines 9–12.

Alignment. The specification introduced above does not lead to any kind of
collective behaviour, as birds simply ignore each other and keep moving in their
own, fixed directions. Therefore, we now have to specify birds that are some-
how influenced by other flockmates. Indeed, it is commonly held that flocking
behaviour is a result of a combination of local interaction mechanisms [13,29].
We start by considering alignment, i.e., the property whereby each bird adjusts
its own direction according to that of its neighbours. A trivial method for achiev-
ing this is to let each bird imitate the heading of another bird in the flock. To
model this behaviour, each bird must then be able to “watch” other birds and
observe their heading.

Listing 2, lines 6–8 show the changes needed to implement the behaviour
described above. We omit the interface for clarity, as it is the same as that of
Listing 1. Before proceeding, we must stress that, although agents are anonymous
to each other, they do have a concept of identity. This is provided internally by an
identifier (id) that is unique to every agent in the system, performing a function
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Listing 3: Cohesion.
1 agent Bird {
2 Interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7

8 a x := xp + ω · dirxp;
9 a y := yp + ω · diryp;

10 sgn x := 0 if x = a x else (−1 if x > a x else 1);
11 diff x := d((x, 0), (a x, 0);
12 . . . (Same for sgn y, diff y)
13 a dirx := sgn x · (D :2 if diff y > diff x else D);
14 a diry := sgn y · (D :2 if diff y < diff x else D);
15

16 dirx ← (dirx + a dirx) : 2;
17 x ← x + dirx
18 . . . (Same for diry, y)
19 }
20 }

similar to that of the keywords this or self in many general-purpose programming
languages. The fact that agents have identifiers allows us to introduce a new
operator, by which an agent can non-deterministically select other agents in the
system: namely, at line 6, the instruction p := pick 1 selects the id of another
agent and stores it into a local variable p. In general, pick k returns k distinct
identifiers that are guaranteed to be different from that of the agent doing the
selection. We use the operator := to denote assignments to local variables; these
are implicitly declared upon their first assignment.

Now that the bird has the identifier of an agent stored in p, it can read its
heading vector by using the syntax dirxp,diryp. In this specification, the bird
simply replaces its own heading vector by that of p (lines 7–8), and then moves
by updating its own position (lines 9–10).

Cohesion. It is evident that birds in a real flock do not simply tend to move
along the same direction, but also get close to each other and try to remain
cohesive. However, the model of birds seen so far is not refined enough to display
this kind of behaviour. In fact, two birds in distant positions will at best assume a
coherent direction of movement, but this will not bring them closer to each other.
Therefore, we now modify the behaviour described above in order to obtain both
alignment and cohesion of the flock. Each bird first selects another bird of the
flock; then, observing its direction, estimates the position where the selected bird
will be in the future, and steers towards that position.

Listing 3 shows how to model this behaviour. Notice that, from now on,
we use a if c else b to denote the ternary operator that evaluates to a when
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Listing 4: Flock dispersion and birds collision.
1 agent Bird {
2 Interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {
6 p := pick 1;
7 pIsIsolated := forall Bird b, (b = p) or d((xp, yp), (xb, yb)) > δ;

8 appId := id if pIsIsolated else p;
9

10 a x := xappId + ω · dirxappId;
11 sgn x := 0 if x = a x else (−1 if x > a x, else 1);
12 diff x := d((x, 0), (a x, 0);
13 . . . (Same for a y, sgn y, diff y)
14 a dirx := sgn x · (D :2 if diff y > diff x else D);
15 a diry := sgn y · (D :2 if diff y < diff x else D);
16

17 dirx ← (dirx + a dirx) : 2;
18 diry ← (diry + a diry) : 2;
19 posFree := forall Bird b, (xb �= x + dirx) or (yb �= y + diry);
20 x ← x + dirx if posFree else x
21 y ← y + diry if posFree else y
22 }
23 }

condition c holds and to b otherwise; the syntax a : b denotes integer division
with rounding; and d((x1, y1), (x2, y2)) denotes the Manhattan distance between
two points, i.e., |x1 − x2| + |y1 − y2|. After picking the bird p to be approached
(line 6), we estimate its position after ω steps (lines 8–9). Then, we determine
an approach vector (a dirx, a diry) pointing towards that position. We compute
this vector component-wise at lines 10–14: we omit the instructions for the y-
component for sake of brevity. Lastly, we compute the bird’s new heading vector
as the average of its current one and the approach vector (line 16). This gives
the bird a bit of inertia for a more realistic movement.

Avoiding Flock Dispersion and Collisions. The specifications outlined so
far may still cause undesired outcomes. For instance, the flock may disperse
instead of compacting: this may occur when birds decide to approach other
birds that are separated from the rest of the flock. Additionally, we may end up
with collisions, i.e., two or more birds sharing the same grid location. To avoid
the former, we need to provide birds with the capability of checking whether
a bird is isolated. Similarly, to avoid collision, the bird has to check whether a
location is free before moving.

In Listing 4, we refine our specifications as described above. At line 7, we
check whether bird p is isolated, i.e., its distance from all other birds is greater
than a parameter δ. To perform this check, quantified predicates are introduced,
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Listing 5: Fleeing from a predator.
1 agent Predator { ... }
2

3 agent Bird {
4 Interface = . . .
5

6 Behaviour = Move; Behaviour
7 Move = {
8 p := pick 1 Bird;
9 . . .

10 a diry := sgn y · (D :2 if diff y < diff x else D);
11

12 e := pick 1 Predator;
13 e x := xe + ν · dirxe;
14 esgn x := 1 if x ≥ e x else − 1;
15 ediff x := d((x, 0), (e x, 0));
16 . . . (Same for e y, esgn y, ediff y)
17 e dirx := esgn x · (D :2 if ediff y > ediff x else D);
18 e diry := esgn y · (D :2 if ediff y < ediff x else D);
19

20 e dist := d((x, y), (e x, e y));
21 f dirx := e dirx if e dist < λ else a dirx;
22 dirx ← (dirx + f dirx) : 2;
23 . . . (Same for f diry, diry)
24 posFree := forall Bird b, (xb �= x + dirx) or (yb �= y + diry);
25 x ← x + dirx if posFree else x
26 }
27 }

allowing to predicate over the attributes of all agents, or some agent, of given
types. The bird will only approach p if it is not isolated; otherwise, it will continue
along its current direction (line 8). Similarly, at lines 19–21, the bird only moves
to the position pointed at by its heading vector if that position is free, i.e., if no
other bird is currently there; otherwise, it stays in its current location.

Fleeing from a Predator. Until now, we have considered a flock that is unper-
turbed by external threats. We now want to consider one that may be threatened,
for instance, by a bird of prey. This means that birds should be able to recognize
a predator and flee from it when it gets too close. At the same time, the flocking
dynamics that we have gradually introduced so far should be preserved.

Listing 5 shows the implementation of this new kind of flock. Please notice
that we refine the pick operator introduced in Listing 2 by making it typed. For
instance, at line 8 the bird selects another member of the flock, and then performs
the same operations seen in Listing 4. We omit some of the instructions for sake
of brevity. Similarly, at line 12 the bird selects a Predator, and then evaluates
its distance from itself. If this distance is too small, the bird will not perform its
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Listing 6: Constraints.
1 assume {
2 GridCentre = forall Bird b,
3 xb > 490 and xb ≤ 510 and yb > 490 and yb ≤ 510
4 DifferentPositions = forall Bird b1, forall Bird b2,
5 b1 = b2 or xb1 �= xb2 or yb1 �= yb2

6 DirectionNotNull = forall Bird b, dirxb �= 0 or diryb �= 0
7 }

usual approach to its flockmate; instead, it will flee from the predator. We model
this fleeing behaviour by computing a repulsive heading vector (e dirx, e diry)
and letting the bird follow it if the predator is closer than a given parameter λ.

3 Simulation Results

The aim of this section is to understand whether the specifications provided so far
allow the flock to remain compact. We set up an experimental scenario in which
all birds start from non-deterministically chosen positions in a small area, and a
single bird of prey flies through the centre of this area, threatening the flock. We
aim at showing that the attack of the predator perturbs the flock, which becomes
scattered, and that the flock manages to regroup once the predator leaves.

Let us first assume that all agents are placed within an arena, modelled as a
1024 × 1024 square. If the birds could initially assume any position within the
arena, they could be very scattered. Instead, we want the birds to start close
to each other, as an unperturbed flock would be. Similarly, we want birds not
to start from the same position as others, nor to be stationary (i.e., with a null
heading vector).

Listing 6 shows how to model these initial constraints, by listing them into
a new section of the specifications titled assume. Each constraint is expressed
through a quantified predicate, like those seen in Sect. 2. Lines 2–3 establish
that birds can only be placed in a 20 × 20 sub-grid at the centre of the arena.
Please note that, due to this initial configuration and the limited number of steps
we will analyse, it never occurs that the flock reaches the edges of the arena.
Lines 4–5 state that two agents cannot assume the same initial position. Finally,
line 6 prescribes non-null heading vectors for every bird.

Listing 7 specifies the predator agent. Our predator has the same attributes
as the birds in the flock: a position (x, y) and a heading vector (dirx,diry). We
give it a very simple behaviour, such that it moves in a straight line along its
initial heading vector. To ensure that a predator intersects the flock, the initial
position and the heading vector are given determined values (lines 3–6). We give
the predator a longer heading vector than those of flock birds, modelling the
fact that it moves faster. The predator’s behaviour is shown at lines 8–12 and is
exactly like the one seen in Listing 1, modelling movement in a straight line.

As mentioned earlier, our aim is to check whether the flock preserves cohesion
after an attack. Specifically, as the predator closes in on the flock, birds will flee
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Listing 7: Predator specifications.
1 agent Predator {
2 Interface =
3 x: 480;
4 y: 480;
5 dirx: 3;
6 diry: 3
7

8 Behaviour = Move; Behaviour
9 Move = {

10 x ← x + dirx;
11 y ← y + diry
12 }
13 }

Listing 8: Specifying a cohesion requirement.
1 check {
2 Cohesion = after B forall Bird b1, forall Bird b2,
3 idb1 = idb2 or d((xb1, yb1), (xb2, yb2)) ≤ k
4 }

from it and thus the distance between any two of them will increase. We want to
study whether this distance manages to decrease again after the predator leaves.
Listing 8 shows the formalization of this property within another section of the
specifications, titled check. The property described above is shown at line 3.
Here, after B denotes that the predicate, which asserts that any two birds are
not farther apart than a parameter k, should hold B steps after the initial state.
In LTL [27], this construct would be expressed as XB , i.e., a sequence of B
applications of the “next” operator X.

To quickly assess whether our flock is capable of displaying this kind of
behaviour, we implemented a simulation workflow (Fig. 2) that produces ran-
dom traces of our specification. Intuitively, we perform a structural encoding
of our specifications into a sequential imperative program [10], and then feed
the program into a reachability analysis tool to produce one or more random
traces of a desired length. These traces are then automatically translated into
the specification syntax and shown to the user. The simulation traces that we
generate this way also contain information about the satisfaction of properties
included in the specification.

To improve the performance of this workflow, we introduce a concretization
step before feeding the program to the back end. This step is a source-to-source
transformation in which we replace nondeterministic assignments in the program
with deterministic assignments to concrete values, randomly-chosen among the
feasible ones. Specifically, we concretize the initial values of the agents’ attributes
(based on their initial values and on the contents of the assume section), the
agents’ scheduling, and the identifiers returned by pick statements. This way, we
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program

Fig. 2. Workflow to simulate our specifications

Table 1. Parameters in our model and their values used in the simulation process

Name Description Value

B Bound for the cohesion property 600

D Maximal absolute value of heading vector components for birds 2

G Size of the arena 1024

k Maximal distance to satisfy the cohesion property 40

δ Isolation distance 32

λ Safe distance from predator 32

ν Used to estimate the future position of the predator 2

ω Used to estimate the future position of the bird to approach 14

Number of Bird agents 29

Number of Predator agents 1

partially resolve nondeterminism upfront, alleviating the workload of the back
end and leading to faster generation of traces. To implement this workflow, we
extended SLiVER,2 a tool originally aimed at formal verification of collective
systems [10,11]. Namely, we added support for the new constructs described in
Sect. 2, adapted its program generator to the simulation use case, and imple-
mented the concretization step.

Table 1 sums up the parameters in our models and their values in our sim-
ulations, as well as the composition of the system. Notice that we use B both
as the bound of the cohesion property and as the desired length of our simu-
lations. We assume round-robin scheduling: thus, every trace is a sequence of
epochs in which each agent performs exactly one action. It is worth recalling
that, in this context, an atomic block is regarded as a single action. In our
view, this assumption, though demanding, is reasonable when modelling a real-
world system. Furthermore, it is significantly weaker than the implicit synchrony
assumptions of other models [2,29], in which all agents are required to evolve
in lockstep. In fact, this requirement implies that the future state of individual
agents depends on the current state of the whole system, and that state changes
happen simultaneously for all agents.

Figure 3 shows the visual representation of a trace generated through this sim-
ulation process. Each bird is represented by a triangle pointing in the direction

2 https://github.com/labs-lang/sliver/.

https://github.com/labs-lang/sliver/
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Fig. 3. A trace generated through simulation. The predator is the red triangle with
black outline (Color figure online)

of its heading vector; the predator is the larger, red triangle with black outline.
Notice that, in this trace, birds are never in the same position, and overlapping
triangles are merely an artefact of the visualization. As we expected, the trace
shows that the predator attack does introduce a certain amount of dispersion in
the flock as birds move to avoid the threat; however, birds are eventually able
to regroup and reorient themselves coherently, satisfying the property that we
specified in Listing 8. As a final remark, we should stress that our simulation
workflow helped us throughout the specification process: for instance, they made
us realize the potential for flock dispersion in Listing 3, guiding us to develop
the more refined Listing 4.

4 Related Work

Models of flocking behaviour in the literature rely either on equational mod-
elling, using for instance differential equations [34], discrete-time dynamics [2,29]
or statistical mechanics [3]; on decentralized control laws, either developed ad-
hoc [35] or synthesized from a centralized controller [23]; or on language-based
specifications, such as the ones presented in this work.

An advantage of language-based approaches is that models can be gradually
refined, or compared against each other, with little effort. For instance, the
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framework of [20] has been used to model different predator tactics (such as
attacking the centroid of the flock, the nearest prey, or the most isolated one)
and different versions of flocking behaviour: simulations show that preys with a
more individualistic behaviour are more likely to get caught, while more social
flocks provide better chances of survival [8].

Formal specification languages also enable exhaustive exploration of the state
space, which can provide strong guarantees about the behaviour of a system, or
find subtle bugs that are hard to detect through simulations alone. As an exam-
ple, the alpha algorithm [36], which was supposed to make a flock of scattered
agents aggregate in a small region of space, has been found to be incorrect [1,18]
by verifying models of the algorithm written in ISPL [22] or NuSMV [6]. Emula-
tion programs may similarly enable formal analysis of high-level specification by
means of structural encodings towards lower-level languages, allowing to reuse
different existing verification technologies [10,12].

Bottom-up and simulation-aided design is also common in the engineering
of robot swarms and related classes of robotic systems [4]. In this context,
robots are typically programmed at the individual level, using either general-
purpose languages such as C++ or Python, or higher-level, domain-specific for-
malisms [9,25], possibly relying on existing robotic middleware such as ROS [28].
The resulting programs are evaluated by simulating the robots under one of sev-
eral available simulation platforms [17,26,30] to empirically check whether the
swarm exhibits an adequate collective behaviour. These platforms also support
physical simulations, allowing to check how real-world phenomena (like gravity,
collisions, etc.) may interfere with the agents. These kinds of interactions with
the environment are out of the scope of this work, but it might be worthwhile
to integrate these platforms into our simulation workflow.

5 Conclusion

In this work, we have considered the natural collective behaviour known as flock-
ing, and we have shown how compositional models can help reasoning about the
individual dynamics that lead to its emergence. To this end, we gradually refined
an extremely simple individual behaviour into a more elaborate, but still rather
compact and intuitive, final specification. This specification allows a flock of
birds to display some interesting collective features. By feeding it to an auto-
mated simulation workflow, we indeed showed that the birds are able to counter
the threat of a predator by splitting into smaller groups that reassemble once
the danger subsides. This successfully reproduces the behaviour observed both
in real-life flocks and in other models [2].

We are considering several interesting directions for future work on this sub-
ject. Our simulation workflow is still experimental and, while it does simulate the
model of Sect. 2 well, we do not expect it to work in every scenario. For instance,
specifications that contain guarded statements may be hard to simulate, since
some concretizations may fail to satisfy some guards and thus make it impossible
to produce a trace of the desired length. To work around these issues, we plan
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to customize the back end so that we can modify the concretization constraints
until a valid trace is obtained.

We intend to complement the simulation-based approach shown in this work
with exhaustive state space exploration techniques that may formally prove the
emergence of desired collective features, regardless of the initial state or the sys-
tem or the specific interactions between agents. We may achieve this by adapting
existing techniques based on verification of emulation programs [10], possibly
extending them to support expressive temporal logics such as LTL [27]. This
goal may also benefit from a more rigorous formalization of the linguistic con-
structs introduced in Sect. 2, which is also reserved for future work. Since the
cost of exhaustive analysis may be prohibitive for very large system, we plan to
further extend our simulation workflow to enable lightweight formal methods,
such as statistical model checking [31], allowing us to at least obtain statisti-
cal evidence on the correctness of these systems. Our framework’s capability to
check for property satisfaction during simulation can be seen as a rudimental
form of runtime verification [21]. Extending this capability to larger classes of
monitorable properties [15] is also planned as future work.

We can trivially parallelize our simulation workflow by running it on mul-
tiple machines at once; moreover, we might further improve performances by
implementing distributed techniques in the back end [16]. Working in these two
directions may allow us to generate large numbers of traces for massive systems.
Generating effective visualizations from a textual trace is also essential to sup-
port the design process. So far, our automated visualization tool (which we used,
for instance, to generate Fig. 3) is tailored to the flocking case study: building
a more generic framework, or integrating our workflow into existing simulation
platforms, would be interesting contributions.
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Abstract. We introduce a method to form and maintain a flock of
drones only based on relative distance measurements. This means our
approach is able to work in GPS-denied environments. It is fully dis-
tributed and therefore does not need any information exchange between
the individual drones. Relative distance measurements to other drones
and information about its own relative movement are used to estimate
the current state of the environment. This makes it possible to perform
lookahead and estimate the next state for any potential next movement.
A distributed cost function is then used to determine the best next action
in every time step. Using a high-fidelity simulation environment, we show
that our approach is able to form and maintain a flock for a set of drones.

Keywords: Drones · Quadcopters · Flock · Swarm · Distributed
controller

1 Introduction

Flocking is a fundamental flight-formation problem. Birds flock for a variety
of reasons, including foraging for food, protection from predators, communal
warmth, and for mating purposes. Starling flocks can also perform high-speed
pinpoint maneuvers, such as a 180◦ turn [1]. Some types of flocks in nature
have distinct leaders, such as queen bees, and queen ants. Other swarms are
formed by animals that do not have a permanently defined leadership, such as
starlings or herrings. Although flocking is a well-studied problem mathematically
[6,7,14,18], its realization using actual drones is not nearly as mature (but see
[22,25]).

Drone swarms, a quintessential example of a multi-agent system, can carry
out tasks that cannot be accomplished by individual drones alone [5]. They can,
for example, collectively carry a heavy load while still being much more agile
than a single larger drone [12,15]. In search-and-rescue applications, a swarm
can explore unknown terrain by covering individual paths that jointly cover
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the entire area [3,8,16]. While flocking provides a number of advantages over
individual flight, it also poses a significant challenge: the need for a distributed
control mechanism that can maintain flock formation and its stability [17]. These
collective maneuvers can be expressed as the problem of minimizing a positional
cost function, i.e., a cost function that depends on the positions of the drones
(and possibly information about their environment). In our formulation, every
agent is identical, which means there is no designated leader.

Fig. 1. Our distributed controller forms and maintains a flock based on relative dis-
tance measurements to other agents of the flock. The target location is shown in blue.
Distance measurements for drone i to other drones and to the target location are shown
in orange. (Color figure online)

To work with such a positional cost function, an absolute localization system
is needed. This can be an optical or radio-based system for indoor applications
or GPS-based localization for outdoor scenarios. In this work, we study the
problem for scenarios that lack an absolute localization system (GPS-denied
environments). We only have the ability to measure the distance to other drones
and to measure the acceleration and rotational velocity of the own drone using
an onboard Inertial Measurement Unit (IMU). For flock formation, we observe
that the positional cost function can be replaced by a function based solely on
relative distances. This obviates the need for absolute localization. We propose
a method to simultaneously learn properties of the environment (inter-agent
distance changes), while at the same time maintaining the flock formation solely
on relative distance information.

In this paper, we address the following Challenge Problem: Design a dis-
tributed controller that forms and maintains a flock based solely on inter-agent
distance measurements.

To solve this problem, we introduce a method to estimate changes of the
environment based on the observed changes for previous movements and there-
after use this information to minimize the cost-function over a set of candidate
positions. We build upon our previous work that introduced Spatial Predictive
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Control (SPC) [4] to select the best next action from the set of candidate posi-
tions. However we have a substantially different problem here, since we have
limited observation capability: in the previous work [4], absolute positions of all
the drones were available; whereas in this work we can only measure relative
distances. This also changes our possibilities how to apply SPC: whereas in the
previous work it was possible to optimize the direction based on the cost func-
tion’s gradient, we need to do a search on possible candidate positions in all
directions in this work.

Our agent’s observations consist of its own acceleration in three-dimensional
space, rotational velocity along three axes, and the relative distance to other
agents, as well as the distance to a fixed target location (as shown in Fig. 1).
(The target location is currently only used to counteract drifting tendencies
of the whole flock.) There is no communication or central coordination, which
makes our approach fully distributed. Our flocking objective is formulated as
a cost function (see Sect. 2.2) which is based on these distance measurements.
The corresponding action of each agent is a relative spatial vector, to which the
drone should move, to minimize its cost function’s value.

Paper Outline: Section 2 describes our cost function for flocking with tar-
get seeking and related performance metrics. Section 3 introduces our method
to represent environmental knowledge and thereafter describes our distributed
flocking controller. Section 4 presents the results of our experimental evaluation.
Section 5 considers related work. Section 6 offers our concluding remarks.

2 Drone Flocking

This section starts with background on flocking, introduces our cost function for
flocking with target seeking, and then presents metrics to assess the quality of
a flocking controller.

2.1 What Is a Flock?

A set of agents, D, is in a flock formation if the distance between every pair
of agents is range bounded; that is, the drones are neither too close to each
other nor too far apart. Our approach to flock formation is based on defining a
cost function such that the agents form a flock when the cost is minimized. The
requirement that the inter-agent distance is range bounded is encoded as the
first two terms of our cost function, namely the cohesion and separation terms
shown in the next section. Note that the Reynolds rules for forming a flock [18]
also include a term for aligning the drone’s velocities, apart from the cohesion
and separation terms. By not including velocity alignment term, we potentially
allow a few more behaviors, such as circling drones, but some of those behaviors
are eliminated by our third term, namely the target seeking term. The effects of
these terms are illustrated in Fig. 2.



100 A. Brandstätter et al.

)b)a

)d)c

Fig. 2. Directional movements (indicated by arrows) induced by cost-function terms:
a: Cohesion, b: separation, c: target seeking, and d: obstacle avoidance (not imple-
mented in our method yet).

2.2 Cost Function

Consider drones i and j, where i, j ∈ D. Let dij , when it appears in the local
cost function of drone i, denote the distance between drone i and drone j as
it appears to drone i; this may differ from the actual distance due to sensing
error. Similarly li denotes the distance between drone i and the fixed target
location ptar. In all cases, distances are measured from the drone’s center of
the mass. Let rdrone denote the radius of each drone (specifically the radius of
the circumscribed sphere including propellers). In our formulation for the cost
function, drone i has access to distances of only a subset Hi ⊆ D of drones,
namely its local neighbors. Hence, we define a local cost function, parameterized
by i, which uses only the distances to drones in Hi. However for now we only
consider the case for global neighborhood, which is Hi = D. We plan to extend
our experiments also to local neighborhood as future work (see Sect. 6). Let dHi

denote the tuple of distances from drone i to drones in Hi. The cost function c
we use in this paper is defined for every drone i ∈ D as in Eq. (1).

c(dHi
, li) = ccoh(dHi

) + csep(dHi
) + ctar(li) (1)

The value of the cohesion term increases as drones drift apart, and the separa-
tion term increases as drones get closer. Each term has a weight, denoted by a
subscripted ω.

Cohesion Term:
ccoh(dHi

) = ωcoh · 1
|Hi| ·

∑

j∈Hi

dij
2 (2)
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Separation Term:

csep(dHi
) = ωsep · 1

|Hi| ·
∑

j∈Hi

1

max(dij − 2rdrone , 0̂)
2 (3)

Here 0̂ denotes a very small positive value. The function max(., 0̂) ensures the
denominator remains nonzero, especially because sensor noise can cause distance
measurements to have errors.

To prevent the flock from moving in random directions, we currently use a
target seeking term with a fixed target location, denoted by ptar, for the entire
flock. Here li denotes the distance between the center of drone i and the fixed
target location ptar.

Target Seeking Term:
ctar(li) = ωtar · li

2 (4)

With only cohesion and separation, the whole flock would form and move in
random directions and random locations in absolute world coordinates. This
would make it of limited use in any real-world scenario. Our target seeking term
avoids this behaviour. All drones use the same target location; thus, this last
term assumes shared global knowledge of the target. The control algorithm will
still be fully distributed. A way to avoid having a fixed target location would be
to designate one of the drones as the leader of the flock. This leader could be
equipped with additional sensors to get information about its absolute position,
allowing it to employ a different control scheme. We leave that investigation for
future work.

2.3 Flock-Formation Quality Metrics

We define two quality metrics to assess the quality of the flock formation achieved
by a flocking controller. To compute these quality metrics, we assume to have
access to full ground truth information about the absolute positions of the
drones. The position (center of mass) of drone i is denoted by pi.

Collision Avoidance: To avoid collisions, the distance between all pairs of drones
distance(D) must remain above a specified threshold distancethr. We define
the metric for the minimum distance between any pair of drones as follows:

distance(D) = min
i,j∈D;i�=j

‖pi − pj‖ (5)

distance(D) ≥ distancethr (6)

We set distancethr = 2 · rdrone + rsafety , where rsafety is a safety margin.

Compactness: Compactness of the flock is determined by the flock radius. Radius
is defined as the maximum distance of any drone from the centroid of the flock:

radius(D) = max
i∈D

∥∥∥∥

∑
j∈D pj

|D| − pi

∥∥∥∥ (7)
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The drones are said to be in a compact flock formation if radius(D) stays below
some threshold radiusthr; otherwise the drones are too far apart, not forming
a flock.

radius(D) ≤ radiusthr (8)

The value for radiusthr is picked based on the drone model and other parameters
governing the flock formation problem. We set it to radiusthr = F ·rdrone

3
√

|D| , where

we use the drone radius rdrone to incorporate the physical size and multiply by
a factor F .

3 Distributed Flocking Controller Using Relative
Distances

In our distributed approach to flock formation, each drone picks the best action
at every time step. The action here is a target displacement vector. Each drone
picks the optimal displacement vector for itself by looking ahead in different spa-
tial directions and finding a location that would minimize the cost if this drone
moved there. To perform this search, each drone needs capability to estimate
the relative distances to other drones when it moves to different potential tar-
get locations. To perform this estimation, each drone stores some measurements
from past time steps, which is described in Sect. 3.1. Thereafter, Sect. 3.2 shows
how this stored knowledge is used by each drone to estimate relative distances
of other drones for different possible displacements of itself.

3.1 Environmental Knowledge Representation

We describe the procedure from the perspective of Drone i. The “environment”
for Drone i consists of the current distances to the neighboring drones (and the
fixed target), as this is all the information Drone i needs to evaluate the cost
function. To represent the knowledge of the environment, Drone i keeps two
matrices, a (k ×3)-matrix N and a (k × (|D|+1))-matrix P for some k ≥ 3. The
j-th row of N is a displacement vector for Drone i. The j-th row of P is a vector
of change in distances of every other drone and the target to Drone i (as seen by
Drone i when it moved by displacement vector in j-th row of N). In particular,
Plj is the change in distance of Drone j (or target if j = |D| + 1) as seen by
Drone i when it moved by the vector Nl∗. The notation Nl∗ denotes the l-th row
vector of matrix N . Let us see how the matrices N and P are generated.

Each drone is capable of measuring its own acceleration vector in three dimen-
sions �ai. By integration, the velocity vector �vi can be derived. Drone i constructs
the matrices N and P as follows:

1. Save the observations of time instant t. Let dij,t denote the distances to Drone
j, and let li,t denote the distance to the fixed target, at this time instant t
(as obtained from the sensors).

dij,t = dij | j ∈ Hi, t (9)

li,t = li | t (10)
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2. Integrate velocity vector to keep track of its own position changes, which gives
the displacement vector �ui:

�ui =
∫ t

t−Δt

�vi dt (11)

3. If the norm of the change in position is larger than a threshold ||�ui|| > sthr,
calculate the changes in distances as follows:

d̄ij = dij,t − dij,t−Δt (12)

l̄i = di,t − di,t−Δt (13)

Here dij,t−Δt denotes the observed distance of Drone j at the previous time
instant t − Δt. If the length of the displacement vector is smaller than the
threshold, we go back to Step (1).

4. Add the displacement vector �ui of Drone i as a row vector in matrix N and
add the vector 〈d̄i1, . . . , d̄i|D|, l̄i〉 as a row vector in matrix P . Note that we
have assumed here that the neighborhood Hi of Drone i is the full set D, but
the details can be easily adapted to the case when Hi ⊂ D.

5. The process starts again at (1) and we thus keep adding rows to the matrices
N and P .

In this way, the matrix P reflects the available knowledge of how the distances to
other drones and to the target change when Drone i moves along vector �ui. Note
that this data gets stale as time progresses, and the newly added rows clearly
have more relevant and current information compared to the rows added earlier.
Furthermore note that �ui is obtained by double integration and therefore it is
prone to acceleration sensing errors, and also numerical errors. This influence is
however limited, since integration times Δt are also small.

When the procedure above is followed, the matrices N and P keep getting
bigger. Let Nl∗ denote the l-th row vector of matrix N . Let Na∗, Nb∗, Nc∗ denote
three displacement (row) vectors taken from the (most recent rows in) matrix
N such that they are linearly independent – that is, they are all different from
each other (Na∗ �= Nb∗ �= Nc∗), nonzero (Na∗ �= �0, Nb∗ �= �0, Nc∗ �= �0), and not
in a common plane ((Na∗ × Nb∗) · Nc∗ �= �0). These three vectors form a basis in
the three-dimensional space. Using a basis transform it is therefore possible to
estimate the change for distances for any movement vector �u. Specifically, if

�u = λa · Na∗ + λb · Nb∗ + λc · Nc∗ (14)

then we can compute the estimated change in distances of each of the other
drones, d̄(�u), and the target, l̄(�u) for this displacement �u as follows:

〈d̄(�u), l̄(�u)〉 = λa · Pa + λb · Pb + λc · Pc (15)

(addition and multiplication in Eq. (15) are applied element-wise on the vectors).
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We have shown how the three vectors Na∗, Nb∗, Nc∗ can be used to infer the
expected change for any displacement vector �u for Drone i. To ensure that three
different vectors with meaningful data are present, our controller employs some
optimizations in addition to the procedure described above. A special startup
procedure with random movements is used to collect initial data. The three vec-
tors (Na∗, Nb∗, Nc∗) and their associated data in P are continuously updated to
avoid outdated information. However, a vector is only considered if the threshold
sthr is exceeded within a certain time limit. This avoids updates when the drone
is moving very slowly over longer time-periods. To get the best quality of the
prediction for any displacement �u, it is desirable to have the vectors (Na∗, Nb∗,
Nc∗) ideally, but not necessarily, orthogonal to each other. This also influences
which row (vector) gets replaced in the matrices N and P . As soon as one of the
vectors gets outdated, a random movement in an orthogonal direction might be
triggered to enhance the knowledge representation.

3.2 Distributed Flocking Controller

We now describe our control approach based on the cost function introduced
in Sect. 2.2 and on the environmental knowledge representation described in
Sect. 3.1.

The set of candidate positions Q is defined as follows:

Q =

⎧
⎨

⎩

⎛

⎝
x
y
z

⎞

⎠ |x ∈ {−εQ, 0, εQ}, y ∈ {−εQ, 0, εQ}, z ∈ {−εQ, 0, εQ}
⎫
⎬

⎭ (16)

This gives a set of 27 points on a equally spaced three dimensional grid. The
spacing distance of this grid is εQ. Over this set Q the best action qnext is
searched by minimizing the cost function c:

qnext = argmin
q∈Q

{c(d̂i(q), l̂i(q))} (17)

If two candidate positions q1 and q2 both have the same minimum value for the
cost function c, our implementation of argmin takes the last one based on the
implementation of the enumeration. The function d̂i(q) estimates the distances
to drones, where l̂i(q) estimates the distance to the target, if the action q is
applied. For each q ∈ Q, the vector d̂i(q) (and the value l̂i(q)) is calculated by
first computing the estimates of the change vector d̄i(q), and the change l̄i(q)
using Eq. 15. Now the distances can be estimated by just adding the estimated
change to the currently measured distances di∗ and li:

d̂i(q) = di∗ + d̄i(q) (18)

l̂i(q) = li + l̄i(q) (19)

Each drone minimizes its local cost function (Eq. 17) in order to recompute the
desired set-point at every time step. As we similarly did in [4], this set-point is
then handed off to a low-level controller that controls the thrust of the drone’s
motors so that it steers towards this set-point.
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4 Experiments

We evaluated our method using simulation experiments. The goal of the exper-
iments was to investigate and demonstrate the ability to form and maintain a
stable flock while holding position at a target location.

Fig. 3. The ROS-node of the SPC controller for drone i receives distance measurements
to neighboring drones and control messages (e.g. swarm target location, start/stop
command). It outputs the set-point for the internal low level controller.

4.1 Simulation Experiments

As a simulation framework, we use crazys [20], which is based on the Gazebo [11]
physics and visualization engine and the Robotic Operating System (ROS) [23].
Our algorithm is implemented in C++ as a separate ROS node. As shown in
Fig. 3, it receives the measured distances to neighboring drones, and control mes-
sages, such as the target location or a stop command, from the human operator.
It calculates the best next action according to Eqs. (16)–(19). The parameter εQ

is determined empirically and fixed throughout the whole simulation. Auxiliary
functions, like hovering at the starting position, and landing after the experi-
ments are finished, are also implemented in this node.

In order to evaluate the control mechanism and its implementation, we fixed
the target location, as described above. This avoids drifting behaviour of the
whole flock, which could not be detected by relative distance measurements in
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any way. Simulations were done with flocks of size |D|= 5, 9, and 15. Figure 4
shows a screenshot of a simulation with 5 drones. All simulations use global
neighborhood (Hi = D) for now.

Fig. 4. Screenshot of the end of the simulation with 5 drones. Shown from four different
camera views after the flock reached its target. The green dot indicates the target
location. The blue dots visualize the next action which is supplied to the lower level
controller. (Color figure online)

4.2 Results

Early results show that our approach is able to properly form and maintain
a flock with only relative position measurements. Figure 5 shows performance
metrics over time for a simulation with 5 drones. The analysis of the quality
metrics for collision avoidance, and compactness show that our control approach
successfully maintains a stable flock (threshold distancethr is only violated
for very short moments). Note that these results are already obtained before
extensive controller tuning. Using carefully adjusted values for ωcoh and ωsep

should lead to even better results and maintain the threshold throughout the
whole simulation.
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Fig. 5. Quality metrics for simulation with 5 drones. Threshold distancethr for colli-
sion avoidance is satisfied most of the time. After settling in, the swarm radius remains
below the threshold radiusthr, thus showing the ability to form a compact flock in the
simulation. (Quality metric recordings start at t = 19 s after initialization procedure).

5 Related Work

Reynolds [18] was the first to propose a flocking model, using cohesion, sep-
aration, and velocity alignment force terms to compute agent accelerations.
Reynolds’ model was extensively studied [9] and adapted for different appli-
cation areas [5]. Alternative flocking models are considered in [13,14,17,21,24],
and [19]. In all these approaches, absolute position measurements and/or inter-
agent communication were available. In our work, we only work with relative
distance measurements and a fully distributed formulation.

In addition to these largely theoretical approaches, in [25] and [22], flocking
controllers are implemented and tested on real hardware. However, the app-
roach of [22] involves the use of nonlinear model-predictive control (NMPC). In
contrast to our work, [25] also requires the velocity of neighboring drones.

6 Conclusions

We introduced a method to control a flock only based on relative position mea-
surements to neighboring drones, and demonstrated its utility on the drone flock-
ing problem. We performed simulation experiments using a physics engine with a
detailed drone model. Our results demonstrated the ability to form and maintain
a flock, and hold its position on a target location.

Future Work

As we currently have only intermediate results of the experiments with limited
number of agents, we plan to do more extensive testing with a wide set of different
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scenarios, including larger number of drones, and local neighborhood (Hi ⊂
D). Neighborhood might be defined by euclidean distance, or alternatively by
topological distance, as introduced in [2]. As further directions of future work,
we plan to extend our approach with obstacle avoidance capabilities. We also
plan to test it for moving target locations and various path tracking scenarios. To
prepare for the transfer to real hardware we plan to introduce sensor noise in the
simulation and test the robustness of our method to cope with such disturbances.
As next goal it should then be implemented on real drones, specifically, Crazyflie
2.1 - quadcopters [10].
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Abstract. An ensemble consists of a set of computing entities which collabo-
rate to reach common goals. We introduce epistemic ensembles that use shared
knowledge for collaboration between agents. Collaboration is achieved by dif-
ferent kinds of knowledge announcements. For specifying epistemic ensemble
behaviours we use formulas of dynamic logic with compound ensemble actions.
Our semantics relies on an epistemic notion of ensemble transition systems as
behavioural models. These transition systems describe control flow over epis-
temic states for expressing knowledge-based collaboration of agents. Specifi-
cations are implemented by epistemic processes that are composed in parallel
to form ensemble realisations. We give a formal operational semantics of these
processes that generates an epistemic ensemble transition system. A realisation
is correct w. r. t. an ensemble specification if its semantics is a model of the
specification.

1 Introduction

An ensemble [13] is formed by a collection of agents which run concurrently to accom-
plish (together) a certain task. For that purpose agents must collaborate in some way,
for instance by explicit interaction via message passing [8,9]. In the context of the epis-
temic approach considered here collaboration is based on the knowledge that agents
have about themselves, about other agents and about their environment. Any change
of knowledge caused by an action of one agent may influence the behaviour of other
agents. Hence interaction is implicit. This is related to the ideas of autonomic com-
ponent ensembles where coordination is achieved via knowledge repositories in which
information is stored and from which information is retrieved; see, e.g., [5].

We propose a dynamic logic for specifying properties of epistemic ensembles.
Our semantic models are labelled transition systems with atomic ensemble actions as
labels. Labelled transitions model two aspects, (i) the control flow of an ensemble and
(ii) changes of epistemic information caused by the epistemic effect of an agent action.
To model the latter we introduce an epistemic state operator which assigns to each
ensemble state s of the system an epistemic state Ω(s) modelling the current epis-
temic information available in the ensemble. Note that different ensemble states can
carry the same epistemic information, in particular if a non-epistemic agent action is
performed. Then a transition between the two has a pure control flow effect. The set of
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ensemble states is restricted to states which are reachable by system transitions from the
initial ones. This reflects our intuition that we want to consider ensembles as dynamic
processes.

The restriction to reachable states and the ability to model control flow in the seman-
tics is a crucial difference to public announcement logic (PAL) and dynamic epistemic
logic (DEL); see, e.g., [6]. Instead of stating requirements for ensemble behaviours
these logics are more appropriate for the verification of pre- and postconditions of
given epistemic programs. [12] was one of the motivations for our work; it proposes
to describe structural properties of ensembles with epistemic logic. An approach which
deals with control flow as well are the knowledge-based programs in [7]. The seman-
tic basis are system runs and the interpretation of knowledge tests inside the programs
needs a circular procedure by relying on possible system runs at the same time.

After recapitulating basic notions of epistemic logic and epistemic actions in Sect. 2,
we present our proposal to specifications of epistemic ensembles in Sect. 3 and provide
a (formal) semantics for them in Sect. 4. In Sect. 5 we present an approach to realise
epistemic ensemble specifications by a set of concurrently running epistemic processes
and we define a correctness notion for such realisations. We finish in Sect. 6 with some
concluding remarks.

2 Epistemic Logic and Epistemic Actions

We provide the basis for the epistemic treatment of ensembles considered later on. First,
we summarise basic notions of epistemic logic. Then, we provide a summary of epis-
temic actions and adjust the definitions for their use in epistemic ensemble development.
More details can be found in the literature, for instance [3,6].

2.1 Epistemic Logic

An epistemic signature (P,A) consists of a set P of propositions and a finite set A of
agents. The set ΦP,A of epistemic formulæ ϕ over (P,A) is defined by the following
grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | Ka ϕ

where p ∈ P and a ∈ A. The epistemic formulaKa ϕ is to be read as “agent a knows ϕ”.
As usual, we write false for¬true,ϕ1→ϕ2 for¬ϕ1∨ϕ2, andϕ1∧ϕ2 for¬(¬ϕ1∨¬ϕ2).

For each a ∈ A, Φa
P,A denotes the set of all purely propositional connections

(including true and hence false) of epistemic formulæ starting with the modality Ka.
These formulæ focus on the knowledge of agent a. The set Φa

P,A is defined by the fol-
lowing grammar:

ϕa ::= true | ¬ϕa | ϕa ∨ ϕa | Ka ϕ

with ϕ ∈ ΦP,A. An epistemic structure K = (W,R,L) over (P,A) consists of a set W
of worlds, an A-indexed family R = (Ra ⊆ W × W )a∈A of epistemic accessibility
relations, and a labelling L : W → ℘P which determines for each world w ∈ W
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the set of propositions valid in w. The accessibility relations of epistemic structures are
assumed to be equivalence relations. For any a ∈ A, (w,w′) ∈ Ra models that agent a
cannot distinguish the two worlds w and w′.

An epistemic state over (P,A) is a pointed epistemic structure K = (K,w) over
(P,A) where w ∈ W determines an actual world. The class of all epistemic states over
(P,A) is denoted by EpiSt(P ,A).

For any epistemic signature (P,A) and epistemic structure K = (W,R,L) over
(P,A) the satisfaction of an epistemic formula ϕ ∈ ΦP,A by K at a point w ∈ W ,
written K,w |= ϕ, is inductively defined as follows:

K,w |= true
K,w |= p ⇐⇒ p ∈ L(w)
K,w |= ¬ϕ ⇐⇒ notK,w |= ϕ

K,w |= ϕ1 ∨ ϕ2 ⇐⇒ K,w |= ϕ1 orK,w |= ϕ2

K,w |= Ka ϕ ⇐⇒ K,w′ |= ϕ for allw′ ∈ W with (w,w′) ∈ Ra

Hence, an agent a knows ϕ at point w if ϕ holds in all worlds w′ which a cannot
distinguish from w. For an epistemic state K = (K,w) and for ϕ ∈ ΦP,A, K |= ϕ
means K,w |= ϕ.

Example 1. We consider a (strongly simplified) victim rescue ensemble from a case
study [11] of the ASCENS-project [14,15]. In the ensemble an agent, called V, is a
victim who is to be supposed to be rescued by an agent R. There is one atomic propo-
sition h indicating that the victim needs help and this is true in the actual world. The
victim knows this but the rescuer does not. This situation is represented in the following
diagram by the epistemic state (K0, w0), where, indeed, R cannot distinguish between
the actual world w0 and the possible world w1:

{h}
w0

∅
w1

V,R
R

V,R

The self-loops represent reflexivity of the accessibility relations. Note that (K0, w0) |=
KV h but (K0, w0) |= ¬KR h and (K0, w0) |= ¬KR KV h. 	


Let K1 = (W1, R1, L1), K2 = (W2, R2, L2) be two epistemic structures over
(P,A). A bisimulation between K1 and K2 is a relation B ⊆ W1 × W2 such that for
all (w1, w2) ∈ B and all a ∈ A the following holds:

1. L1(w1) = L2(w2),
2. for each w′

1 ∈ W1, if (w1, w
′
1) ∈ R1,a then there is a w′

2 ∈ W2 such that (w2, w
′
2) ∈

R2,a and (w′
1, w

′
2) ∈ B, and

3. for each w′
2 ∈ W2, if(w2, w

′
2) ∈ R2,a then there is a w′

1 ∈ W1 such that (w1, w
′
1) ∈

R1,a and (w′
1, w

′
2) ∈ B.

Two epistemic states K1 = (K1, w1) and K2 = (K2, w2) over (P,A) are bisimi-
lar, written K1 ≈ K2, if there exists a bisimulation B between K1 and K2 such that
(w1, w2) ∈ B.

The following lemma is a well-known result from epistemic logic; see, e.g., [3,6].
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Lemma 1 (Invariance of epistemic formulæ). Let K1 and K2 be epistemic states over
(P,A) such that K1 ≈ K2. Then, for any ϕ ∈ ΦP,A, K1 |= ϕ if, and only if, K2 |= ϕ. 	


The converse is also valid for image-finite epistemic structures K = (W,R,L),
i.e., if for each world w ∈ W and agent a ∈ A there exist only finitely many pairs
(w,w′) ∈ Ra. Note that finiteness of A does not imply image finiteness of epistemic
structures over (P,A); a counterexample is given in [6, p. 227].

2.2 Epistemic Actions

Epistemic logic deals with static aspects of knowledge captured by epistemic formulæ
and their interpretation in epistemic states. A fundamental concept to support dynamic
changes of knowledge is public announcement logic (PAL [3]) where knowledge about
an epistemic state (formalised by a formula) can be announced to all agents. This may
affect the knowledge of the agents leading to a new epistemic situation. More elaborated
epistemic actions, like completely private and semi-private announcements, were also
considered and a general proposal to model epistemic actions in terms of so-called
action models was set up in [2]. In our approach action models will be called action
structures in order to avoid confusion with the models of ensemble specifications later
on.

An epistemic action structure U = (Q,F, pre) over (P,A) consists of a set of
action points Q, an A-indexed family F = (Fa ⊆ Q × Q)a∈A of epistemic action
accessibility relations, and a precondition function pre : Q → ΦP,A. We assume again
that the accessibility relations are equivalences. In the literature, action points are also
called “events”. For any agent a, (q, q′) ∈ Fa models that agent a cannot distinguish
between occurrences of q and q′. For q ∈ Q, the epistemic formula pre(q) determines
a condition under which q can happen.

An epistemic action over (P,A) is a pointed epistemic action structure u = (U, q)
over (P,A) where q ∈ Q determines an actual action point. The set AP,A of epistemic
actions with (non-deterministic) choice over (P,A) is defined by

α ::= u | α + α

where u = (U, q) is an epistemic action over (P,A). The precondition of an epistemic
action with choice is given by pre(u) = pre(q), pre(α1 + α2) = pre(α1) ∨ pre(α2).

Example 2. (a) Public announcement of an epistemic formula ϕ ∈ ΦP,A to all agents
in A is modelled by the epistemic action (Upub,ϕ, k) where

Upub,ϕ = (Qpub , Fpub , prepub,ϕ)

with Qpub = {k}, Fpub,a = {(k, k)} for all a ∈ A, and prepub,ϕ = {k �→
ϕ}. There is only one action point k and hence any agent in A considers only the
occurrence of k possible. According to the precondition of k the action can only
be executed in an epistemic state K where the announced formula ϕ holds. The
epistemic action (Upub,ϕ, k) is graphically represented by the following diagram.
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ϕ kA

(b) Private announcement of an epistemic formula ϕ ∈ ΦP,A to a group G ⊆ A of
agents is modelled by the epistemic action (Upriv ,G,ϕ, k) graphically represented
by the following diagram:

ϕ

k

true

n

A
A\G

A

The action structure Upriv ,G,ϕ has two action points k and n. Point k represents
that the announcement of ϕ happens which should only be the case if ϕ holds in
the current epistemic state and therefore pre(k) = ϕ. Only agents in the group G
can recognise this event. All other agents consider it possible that nothing happened
which is represented by n. This should not have a proper precondition and therefore
pre(n) = true.1 	

The effect of an epistemic action on an epistemic state is defined by the product

update as constructed in [1]. First, we define the product update of an epistemic structure
by an epistemic action structure and then we use this for the product update of their
pointed versions. The product update of an epistemic structure K = (W,R,L) over
(P,A) and an epistemic action structure U = (Q,F, pre) over (P,A) is the epistemic
structure K � U = (W ′, R′, L′) over (P,A) with

W ′ = {(w, q) ∈ W × Q | K,w |= pre(q)} ,

R′
a = {((w, q), (w′, q′)) ∈ W ′ × W ′ | (w,w′) ∈ Ra, (q, q′) ∈ Fa} for all a ∈ A,

L′(w, q) = L(w) for all (w, q) ∈ W ′.

According to the definition of the relations R′
a the uncertainty of an agent a in a world

(w, q) is determined by the uncertainty of a about world w and its uncertainty about the
occurrence of q. Note that the relations R′

a are again equivalence relations and therefore
the product update for epistemic structures is well-defined.

Let K = (K,w) ∈ EpiSt(P ,A) be an epistemic state and u = (U, q) be an epis-
temic action over (P,A). If K |= pre(u) then the product update of K and u is defined
and given by the epistemic state K � u = (K � U, (w, q)) ∈ EpiSt(P ,A).

The semantics of each epistemic action with choice α ∈ AP,A is given by a set
of relations �α� ⊆ EpiSt(P ,A) × EpiSt(P ,A) between epistemic states inductively
defined by:

�u� = {(K,K � u) |K |= pre(u)},

�α1 + α2� = �α1� ∪ �α2�, i.e. union of relations.

Note that for each α ∈ AP,A and K ∈ EpiSt(P ,A) it holds: There exists a K′ ∈
EpiSt(P ,A) such that (K,K′) ∈ �α� if, and only if, K |= pre(α).
1 We do not consider here completely private announcements where the agents not in G would
not consider it possible that the announcement happened. To model this case one would need
non-symmetric accessibility relations.
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Example 3. We consider the victim rescue example from Example 1 and instantiate pri-
vate announcement of Example 2(b) to the case in which it is privately announced to
R that V knows that h holds. Thus we consider the epistemic action (Upriv ,{R},KV h, k)
represented by the following diagram where V does not know whether R got an
announcement:

KV h

k

true

n

V,R
V

V,R

We apply this action to the epistemic state (K0, w0) in Example 1. The product update
yields the epistemic state (K1, (w0, k)) shown, without reflexive accessibility edges,
below. The world (w1, k) does not appear since (K0, w1) �|= KV h which is the precon-
dition of k.

{h}(w0, n) ∅ (w1, n)

{h}(w0, k)

R
V

Note that (K1, (w0, k)) |= KR KV h but (K1, (w0, k)) |= ¬KV KR KV h, i.e. R knows
that V knows that h holds, but V does not know that R knows this.

If we apply the epistemic action (Upriv ,{R},KV h, n) to (K0, w0) we obtain the epis-
temic state (K1, (w0, n)). Note that (K1, (w0, n)) |= ¬KR KV h. 	


The next lemma shows that bisimulation is preserved by application of epistemic
actions; see, e.g., [6].

Lemma 2. Let K1 and K2 be epistemic states over (P,A) such that K1 ≈ K2 and let
u be an epistemic action over (P,A). Then K1 � u is defined, if and only if, K2 � u is
defined and then it holds K1 � u ≈ K2 � u. 	


We generalise Lemma 2 to epistemic actions with choice. The proof is straightfor-
ward by induction on the form of α.

Lemma 3. Let K1 and K2 be as in Lemma 2 such that K1 ≈ K2 and let α be an
epistemic action with choice. Then, for any K′

1 with (K1,K
′
1) ∈ �α�, there exists K′

2 with
(K2,K

′
2) ∈ �α� such that K′

1 ≈ K′
2; the converse holds for any K′

2 with (K2,K
′
2) ∈ �α�.

	


3 Epistemic Ensemble Specifications

An ensemble is formed by a collection of agents which run concurrently to accomplish
(together) a certain task. For that purpose agents must collaborate in some way, for
instance by explicit interaction via message passing [8,9]. In the context of the epis-
temic approach considered here collaboration is based on the knowledge that agents
have about themselves, about other agents and about their environment. Any change
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of knowledge caused by an action of one agent may influence the behaviour of other
agents. Hence interaction is implicit.

Formally, an agent action is given by an action name e to which an agent o(e) is
associated, the “owner” of e, who is able to execute that action. An epistemic ensemble
signature Σ = (P,A,E ) consists of an epistemic signature (P,A) and a set E of agent
actions such that for each e ∈ E , o(e) ∈ A. The set E is split into a set eE of epistemic
agent actions and a set nE of non-epistemic agent actions. The idea is that any agent
action may have an effect on the control flow of an ensemble. The non-epistemic agent
actions, however, do not change the epistemic state of an ensemble while epistemic
agent actions in general do.

The epistemic effect of an agent action e ∈ E is formalised by a relation eeff (e) ⊆
EpiSt(P ,A) × EpiSt(P ,A) between epistemic states over (P,A). For non-epistemic
agent actions e ∈ nE we define eeff (e) = {(K,K) | K ∈ EpiSt(P ,A)}. The non-
epistemic agent actions are specific actions depending on the application at hand. For
epistemic agent actions e ∈ eE their epistemic effect must be explicitly defined. For
this purpose we associate to e an epistemic action expression with choice α ∈ AP,A,
whose semantics is clear from Sect. 2.2, and thus define eeff (e) = �α�. Moreover, we
set pre(e) = pre(α) and require that pre(e) ∈ Φ

o(e)
P,A . This constraint expresses that

an epistemic agent action with owner a should have a precondition which concerns,
and hence can be tested, by a; similarly to the knowledge tests of knowledge-based
programs in [7]. Thus the epistemic action expressions in Sect. 2.2. will be used as
primitives to define the epistemic effect of higher level epistemic actions for agents.

In this paper we assume given, for each epistemic signature (P,A), the following
set of epistemic agent actions from which particular instantiations can be chosen for a
concrete ensemble signature.

Public Announcement By an Agent: This action is a special case of public announce-
ment such that the announcement is performed by an agent a “inside” the system.
As a consequence, agent a does not simply announce a formula ϕ but it must indeed
know ϕ and must announce that, i.e. Ka ϕ. Formally, for each a ∈ A and ϕ ∈ ΦP,A,
public announcement by a is denoted by the epistemic agent action puba(Ka ϕ) over
(P,A) with owner o(puba(Ka ϕ)) = a. The epistemic effect of this action is defined
by eeff (puba(Ka ϕ)) =def �(Upub,Ka ϕ, k)� where the latter is the epistemic public
announcement action in Example 2(a) with semantics defined by product update as
described in Sect. 2.2. Note that pre(puba(Ka ϕ)) = pre(Upub,Ka ϕ, k) = Ka ϕ ∈
Φa

P,A.

Reliable Private Sending: In this case there is an agent a who knows the validity of a
formula ϕ and sends the information that it knows ϕ, i.e. Ka ϕ, to another agent b. The
sending is reliable, i.e. the information will be received by b and agent a knows that.
Formally, for each a, b ∈ A and ϕ ∈ ΦP,A, reliable private sending is denoted by the
epistemic agent action snda→b

rel (Ka ϕ) over (P,A) with owner o(snda→b
rel (Ka ϕ)) = a.

The epistemic effect of this action can be modelled as a special case of private
announcement to a group of agents where the group is {a, b} and the announcement is
Ka ϕ. Hence, we define eeff (snda→b

rel (Ka ϕ)) =def �(Upriv ,{a,b},Ka ϕ, k)�; see Example
2(b). Obviously, pre(snda→b

rel (Ka ϕ)) = Ka ϕ ∈ Φa
P,A where a = o(snda→b

rel (Ka ϕ)).
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Lossy Private Sending: In this case there is again an agent a who knows the validity
of a formula ϕ and sends the information Ka ϕ to another agent b. But this time the
sending is unreliable and the information may get lost. Formally, for each a, b ∈ A and
ϕ ∈ ΦP,A, lossy private sending is denoted by the epistemic agent action snda→b

los (Ka ϕ)
over (P,A) with owner o(snda→b

los (Ka ϕ)) = a.
For defining the epistemic effect of snda→b

los (Ka ϕ) we proceed as follows: Let
Upriv ,{b},Ka ϕ be the epistemic action structure of Example 2(b) instantiated by {b} and
Ka ϕ. Let (Upriv ,{b},Ka ϕ, k) and (Upriv ,{b},Ka ϕ), n) be the corresponding epistemic
actions. The first action expresses that after a has sent the information Ka ϕ, agent b
has received it, but a (and all other agents) do not know this; they consider it possible
that the information did not arrive. The second action expresses that after the sending
of Ka ϕ by agent a, agent b has not received anything and b knows that. Hence, the
information is lost, and a (and all other agents besides b) do not know whether the
information has arrived or not. The effect of lossy private sending must capture both
possibilities. Therefore, it is modelled by a non-deterministic choice of the two actions,
either the information is received or not. The sender does not know what happened and
the receiver knows the sent information if, and only if, it has received it. Formally, we
define

eeff (snda→b
los (Ka ϕ)) =def �(Upriv ,{b},Ka ϕ, k) + (Upriv ,{b},Ka ϕ, n)� .

Then, pre(snda→b
los (Ka ϕ)) = pre((Upriv ,{b},Ka ϕ, k) + (Upriv ,{b},Ka ϕ, n)) =

pre(Upriv ,{b},Ka ϕ, k) ∨ pre(Upriv ,{b},Ka ϕ, n) = (Ka ϕ ∨ true) ∈ Φa
P,A.

In the following we assume that Σ = (P,A,E ) is an epistemic ensemble signa-
ture. To specify global behaviours of ensembles performed by concurrently running
agents we must consider ensemble actions which are formed by various combinations
of agent actions. Therefore, the agent actions in E are considered as atomic ensemble
actions while complex ensemble actions are formed by using the standard operators of
dynamic logic which are test (ϕ?), non-deterministic choice (+), sequential composi-
tion (;) and iteration (∗). The set EΣ of compound ensemble actions over Σ is defined
by the following grammar:

π ::= e | ϕ? | π + π | π;π | π∗

where e ∈ E is an agent action and ϕ ∈ ΦP,A. If E is finite, we write “some” for the
compound action obtained by combing with “+ ” all elements of E and, for e ∈ E ,
we write −e for the compound ensemble action obtained by combing with “+ ” all
elements of E\{e}.

Ensemble formulæ are used to specify properties of ensembles. They extend the for-
mulæ of epistemic logic in Sect. 2.1 by including modalities with (compound) ensemble
actions which allow us to specify the dynamic aspects of global ensemble behaviours.
The set ΨΣ of epistemic ensemble formulæ over Σ = (P,A,E ) is defined by the fol-
lowing grammar:

ψ ::= ϕ | ¬ψ | ψ ∨ ψ | 〈π〉ψ
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where ϕ ∈ ΦP,A and π ∈ EΣ . The formula 〈π〉ψ is to be read as “in the current ensem-
ble state it is possible to execute π leading to an ensemble state where formula ψ holds”.
The abbreviations from epistemic logic are extended to epistemic ensemble logic. Fur-
thermore, we abbreviate ¬〈π〉¬ψ by [π]ψ which is to be read as “each execution of π
in the current ensemble state leads to an ensemble state where the formula ψ holds”.

Using the shorthand notations for compound actions for finite E , we can specify
safety properties with [some∗]ψ; deadlock freeness is expressed by [some∗]〈some〉true.
Liveness properties like “whenever an action e has happened, an action f can
eventually occur”, can be expressed by [some∗; e]〈some∗; f〉true. We can also
express that an action f must never occur when action e has happened before by
[some∗; e; some∗; f ]false.

Definition 1 (Ensemble specification). An ensemble specification Sp = (Σ ,Ax ) con-
sists of an ensemble signature Σ and a set Ax ⊆ ΨΣ of ensemble formulæ, called
axioms of Sp. 	

Example 4. We provide a requirements specification Spvr = (Σvr ,Ax vr ) for
victim rescue ensembles. The epistemic ensemble signature Σvr consists of
the proposition h, of the two agents V and R, of the two epistemic agent
actions sndV→R

los (KV h), sndR→V
rel (KR h) with owners o(sndV→R

los (KV h)) = V and
o(sndR→V

rel (KR h)) = R, and two non-epistemic agent actions stop, rescue with own-
ers o(stop) = V and o(rescue) = R. We use a lossy information transfer from V to R
since the idea is that the rescuer is moving around in an exploration area and cannot get
information when it is outside the victim’s range. The information transfer from R to V
is reliable, since we assume that once the rescuer is informed it will be close enough to
the victim. For a victim rescue ensemble we require the following properties expressed
by the two axioms (1) and (2) of Ax vr :

– “Whenever the victim performs a lossy sending to the rescuer that it knows that h
is valid, i.e. the victim needs help, it is eventually possible that the rescuer knows
this.”

(1) [some∗; sndV→R
los (KV h)]〈some∗〉KR h

– “Whenever the rescuer has not yet rescued the victim but knows that the victim
needs help, it is eventually possible that the rescuer rescues the victim.”

(2) [(−rescue)∗]KR h → 〈some∗; rescue〉true

This specification can be generalised in many ways, for instance to more rescuers
taking into account that it is sufficient that only one rescuer goes for rescuing. 	


4 Semantics of Epistemic Ensemble Specifications

We will now turn to the semantics of epistemic ensemble logic and ensemble speci-
fications. Our semantic models are labelled transition systems with atomic ensemble
actions (i.e. agent actions) as labels. Labelled transitions model two aspects, (i) the
control flow of an ensemble and (ii) changes of epistemic information caused by the
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epistemic effect of an agent action. To model the latter we introduce an epistemic state
operator which assigns to each ensemble state s of the system an epistemic state Ω(s).
Ensemble states could be modelled by pairs s = (ctrl ,K) where ctrl is an explicit con-
trol state and K is an epistemic state; then the state operator would be the projection to
the second component, i.e. Ω(s) = K. Our definition leaving control states implicit is,
however, more general.

Of course, ensemble transitions must respect (up to bisimilarity) the epistemic effect
of actions, which is expressed by condition 1a below. Conversely, if an epistemic ensem-
ble action is enabled in an ensemble state, then all epistemic effects of the action must
be present (up to bisimilarity) in the transition system, which is expressed by 1b. This
reflects that the choice of the effect of a (non-deterministic) epistemic action is made
by the system environment, not by the agents of the ensemble.

Note that different ensemble states can carry the same epistemic information, in
particular if a non-epistemic agent action is performed. Then a transition between the
two has a pure control flow effect. The set of ensemble states is restricted to states
which are reachable by system transitions from the initial ones which is expressed by
condition (2) below. This reflects our intuition that we want to consider ensembles as
processes with significant dynamic behaviour. The restriction to reachable states and
the ability to model control flow in the semantics is a crucial difference to dynamic
epistemic logic; see, e.g., [6].

Definition 2 (Epistemic ensemble transition system). Let Σ = (P,A,E ) be an epis-
temic ensemble signature. An epistemic ensemble transition system (EETS) over Σ is
a tuple M = (S, S0, T,Ω) such that

– S is a set of ensemble states and S0 ⊆ S is the set of initial ensemble states,
– T = (Te ⊆ S × S)e∈E is an E -indexed family of transition relations Te, and
– Ω : S → EpiSt(P ,A) is an epistemic state operator

such that the following two conditions are satisfied:

1. For all s ∈ S and e ∈ E , if there exists s′ ∈ S with (s, s′) ∈ Te , then
(a) there exist K,K′ ∈ EpiSt(P ,A) such that Ω(s) ≈ K, Ω(s′) ≈ K′, and

(K,K′) ∈ eeff (e),
(b) for any (K,K′′) ∈ eeff (e) there exists (s, s′′) ∈ Te with Ω(s) ≈ K

and Ω(s′′) ≈ K′′.
2. For all s ∈ S there are s0 ∈ S0, e1, . . . , en ∈ E (n ≥ 0) and (si, si+1) ∈ Tei

for
0 ≤ i < n such that sn = s.

The class of epistemic ensemble transition systems over Σ is denoted by Str(Σ ). 	


We write s
e−→M s′ for (s, s′) ∈ Te . This relation is extended to compound epis-

temic ensemble actions π ∈ EΣ by the following inductive definition:
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s
ϕ?−→M s′ ⇐⇒ Ω(s) |= ϕ and s = s′

s
π1+π2−−−−→M s′ ⇐⇒ s

π1−→M s′ or s
π2−→M s′

s
π1;π2−−−→M s′ ⇐⇒ there exists s1 with s

π1−→M s1 and s1
π2−→M s′

s
π∗
−→M s′ ⇐⇒ there exist n ≥ 0, s = s0, s1, . . . , sn−1, sn = s′ with

si
π−→M si+1 for all 0 ≤ i < n

For any epistemic ensemble signature Σ , the satisfaction of an epistemic ensemble
formula ψ ∈ ΨΣ by an EETS M = (S, S0, T,Ω) over Σ at a state s ∈ S, written
M, s |=Σ ψ, is inductively defined as follows:

M, s |=Σ ϕ ⇐⇒ Ω(s) |= ϕ

M, s |=Σ ¬ψ ⇐⇒ notM, s |=Σ ψ

M, s |=Σ ψ1 ∨ ψ2 ⇐⇒ M, s |=Σ ψ1 orM, s |=Σ ψ2

M, s |=Σ 〈π〉ψ ⇐⇒ there exists s′ ∈ S with s
π−→M s′ such thatM, s′ |=Σ ψ

M satisfies an epistemic ensemble formula ψ ∈ ΨΣ , written M |=Σ ψ, if
M, s0 |=Σ ψ for all initial states s0 ∈ S0.

For the box, M, s |=Σ [π]ψ means that whenever π is executed by the ensemble a
state s′ is reached in which ψ holds. Note that, if π = e is an atomic ensemble action
such that the precondition pre(e) does not hold inΩ(s), then M, s |=Σ [e]ψ holds since
there is no execution of e in state s.

Example 5. A connection to public announcement logic [3] can be drawn as follows:
Consider the ensemble signature Σ = (P,A,E ) with an arbitrary epistemic signa-
ture (P,A) and E consisting of all public announcements of the form puba(Ka ϕ)
with a ∈ A. As semantic model we take the special EETS MPAL = (EpiSt(P ,A),
EpiSt(P ,A), T,Ω) where the ensemble states are just the epistemic states over (P,A),
all states are initial, T = (Tpuba(Ka ϕ) ⊆ EpiSt(P ,A) × EpiSt(P ,A))puba(Ka ϕ)∈E

with Tpuba(Ka ϕ) = eeff (puba(Ka ϕ)) are the semantic transitions for public announce-
ments, and Ω is the identity. Then, for any ensemble state s of MPAL, i.e. epistemic
state (K,w) ∈ EpiSt(P ,A), and any epistemic ensemble formula ψ ∈ ΨΣ we have
MPAL, (K,w) |= ψ if, and only if, (K,w) satisfies ψ in the sense of public announce-
ment logic. 	


More generally, dynamic epistemic logic with arbitrary epistemic actions (U, q)
such that pre(q) has the form Ka ϕ and o(U, q) = a ∈ A can be similarly interpreted
by an EETS. Note, however, that in these cases no control information can be captured
since ensemble states are just epistemic states. Therefore instead of stating require-
ments for ensemble behaviours these logics are more appropriate for the verification of
pre- and postconditions of programs represented by compound ensemble actions where
ensemble formulas have the shape pre → [π]post.
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Definition 3 (Semantics of epistemic ensemble specifications and refinement). Let
Sp = (Σ ,Ax ) be an epistemic ensemble specification. A model of Sp is an EETS over
Σ which satisfies all axioms of Ax . The semantics of Sp is given by its model class

Mod(Sp) = {M ∈ Str(Σ ) | M |= ψ for all ψ ∈ Ax} .

An epistemic ensemble specification Sp′ = (Σ ,Ax ′) is a refinement of Sp if
Mod(Sp′) ⊆ Mod(Sp). 	


As an equivalence for epistemic ensemble transition systems we use EETS-
bisimulation which is defined as expected.

Definition 4 (Epistemic ensemble bisimulation). Let Σ = (P,A,E ) be an epistemic
ensemble signature and M1 = (S1, S1,0, T1, Ω1) and M2 = (S2, S2,0, T2, Ω2) be two
EETSs over Σ . An EETS-bisimulation between M1 and M2 is a relation EB ⊆ S1×S2

such that for all (s1, s2) ∈ EB and all e ∈ E the following holds:

1. Ω1(s1) ≈ Ω2(s2),
2. for each s′

1 ∈ S1, if s1
e−→M1 s′

1 then there is an s′
2 ∈ S2 such that s2

e−→M2 s′
2 and

(s′
1, s

′
2) ∈ EB , and

3. for each s′
2 ∈ S2, if s2

e−→M2 s′
2 then there is an s′

1 ∈ S1 such that s1
e−→M1 s′

1 and
(s′

1, s
′
2) ∈ EB .

M1 and M2 are EETS-bisimilar, written M1 ∼ M2, if there exists an EETS-
bisimulation EB between M1 and M2 such that for each s1 ∈ S1,0 there exists an
s2 ∈ S2,0 with (s1, s2) ∈ EB and, conversely, for each s2 ∈ S2,0 there exists an
s1 ∈ S1,0 with (s1, s2) ∈ EB . 	


It is easy to prove, by induction on the form of compound ensemble actions, that
conditions (2) and (3) above can be propagated to compound ensemble actions π ∈ EΣ .
As a consequence, it is straightforward to prove, by induction on the form of epistemic
ensemble formulæ, that satisfaction is invariant under EETS-bisimulation. The base
case follows from Lemma 1. The converse of the theorem is also valid for image-finite
EETS.

Theorem 1 (Invariance of epistemic ensemble formulæ). Let M1 and M2 be EETS
over the same epistemic ensemble signature Σ such that M1 ∼ M2. Then, for any
ψ ∈ ΨΣ , M1 |= ψ if, and only if, M2 |= ψ.

5 Epistemic Ensemble Realisations

Ensemble specifications describe requirements for systems of collaborating entities
from a global point of view. For the realisation of ensembles we must take a local view
and define a single behaviour for each agent. For this purpose, we introduce an epis-
temic process language over an epistemic ensemble signature Σ = (P,A,E ) which
allows us to describe the local behaviour of each agent a ∈ A as a sequential process
Pa in accordance with the following grammar:
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Pa ::= 0 | ea.Pa | ϕa ⊃ Pa | Pa,1 + Pa,2 | μX .Pa | X

where 0 represents the inactive process, ea.Pa prefixes Pa with an agent action ea ∈ E ,
ϕa ⊃ Pa is a guarded process, Pa,1+Pa,2 denotes the non-deterministic choice between
processes, μX .Pa models recursion, and X is a process variable.

The following constraints apply to the syntax of processes: First, in a prefix ea.Pa

the owner of ea must be a, i.e. o(ea) = a. Secondly, each agent a, or, more precisely, its
process, shall only use guards concerning the agent’s own knowledge. We thus require
ϕa ∈ Φa

P,A; see Sect. 2.1. A similar constraint is applied to epistemic programs in [7].

Definition 5 (Epistemic ensemble realisation). For an epistemic ensemble signature
Σ = (P,A,E ), an epistemic ensemble realisation over Σ is a pair Real = ({P0,a |
a ∈ A},K0) where {P0,a | a ∈ A} is a set of sequential processes over Σ , one for each
agent a ∈ A, and K0 ∈ EpiSt(P ,A) is an initial epistemic state of the ensemble. 	


The semantics of an epistemic ensemble realisation is given in terms of en epistemic
ensemble transition system. In this case the ensemble states are pairs s = (ctrl ,K) con-
sisting of a global control state ctrl and an epistemic state K ∈ EpiSt(P ,A) capturing
the current epistemic information of the ensemble. The control state ctrl holds the cur-
rent (local) execution state of each agent represented by a process expression. Thus ctrl
is a mapping that attaches to each a ∈ A a sequential process ctrl(a) = Pa. When
an agent a moves from one state Pa to another state P ′

a the control state ctrl must be
updated accordingly which is denoted by ctrl [a �→ P ′

a].
In contrast to the loose semantics of ensemble specifications, an ensemble realisa-

tion Real = ({P0,a | a ∈ A},K0) determines a unique epistemic ensemble transition
system. It has a single initial ensemble state s0 = (ctrl0,K0) where the control state
ctrl0 assigns to each agent a its process definition P0,a, i.e. ctrl0(a) = P0,a for all
a ∈ A. Then, starting in s0, an epistemic ensemble transition system is generated by the
structural operational semantics rules in Fig. 1. For each ensemble state s = (ctrl ,K)
of the system the epistemic state operator is defined by Ω(ctrl ,K) = K.

The first five rules, from (action prefix) to (recursion), describe how single processes
evolve in the context of an epistemic state which (i) may change when the process per-
forms an agent action and (ii) is used for the evaluation of guards. We use the symbol
“↪−→” for transitions on the process level. Transitions on the ensemble level are denoted
by “−→”. Rule (ensemble) says that whenever a single agent process moves from a local
process state Pa to state P ′

a changing the epistemic state from K to K′ the whole ensem-
ble evolves accordingly.

Definition 6 (Semantics of an epistemic ensemble realisation). The semantics of
an epistemic ensemble realisation Real = ({P0,a | a ∈ A},K0) over an ensemble
signature Σ is the epistemic ensemble transition system

[[Real ]] = (S, {s0}, T,Ω)

over Σ where the initial ensemble state s0 and the state operator Ω are explained above
and the states in S and transitions in T are inductively generated from s0 by applying
the rules in Fig. 1. Note that [[Real ]] satisfies the conditions of an EETS in Definition 2.
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Fig. 1. SOS rules for epistemic processes and ensemble realisations

Our semantic concepts lead to an obvious correctness notion concerning the reali-
sation of epistemic ensemble specifications:

Definition 7 (Correct ensemble realisation). Let Sp be an epistemic ensemble spec-
ification and let Real be a realisation over the same epistemic signature. Real is a
correct realisation of Sp if [[Real ]] ∈ Mod(Sp). 	

Example 6. We provide a realisation for our simple robot rescue ensemble with two
agents V (victim) and R (rescuer). The realisation consists of the two processes

P0,V = μX .
(
(KV h ∧ ¬KV KR h ⊃ sndV→R

los (KV h).X)

+ (KV KR h ⊃ stop.0)
)

P0,R = KR h ⊃ sndR→V
rel (KR h).rescue.0

For the initial epistemic state of the realisation we take K0 = (K0, w0) as depicted
in Example 1. Thus the initial ensemble state is s0 = (ctrl0,K0)with ctrl0(V) = P0,V,
ctrl0(R) = P0,R and Ω(s0) = K0. As long as the victim does not know that the rescuer
knows that the victim needs help, the victim continues sending the information KV h
to the rescuer. Notice again that this sending is lossy and hence either successful or
unsuccessful. Only when the rescuer became aware of the emergency it can send, in a
reliable way, its knowledge to the victim who can then stop its activity.

The EETS generated from the ensemble realisation has infinitely many ensemble
states since it is possible that an unsuccessful sending from V to R happens infinitely
often and hence each time an update of the previous epistemic state is performed. One
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can show, however, that if an unsuccessful sending happens after an unsuccessful or
successful sending then the resulting epistemic state is bisimilar to the previous one.
Therefore, there exists a minimal finite EETS, shown in Fig. 2, which is EETS-bisimilar
to the one generated by the ensemble realisation. The epistemic effect of lossy sending
is non-deterministic. The transitions from ensemble state s0 to s1 and the loops on
s1 and s2 represent unsuccessful transmissions and the transitions from s0 and from
s1 to s2 represent successful ones. The associated epistemic states (K1, (w0, k)) and
(K1, (w0, n)) are shown in Example 3. The epistemic state (K2, ((w0, k), k)) associ-
ated with the ensemble states s3 to s6 is computed by updating (K1, (w0, k)) with the
(deterministic) epistemic effect of the reliable sending from R to V.

Fig. 2. EETS for the victim rescue ensemble realisation

Obviously, the EETS in Fig. 2 satisfies the axioms of the specification Spvr

in Example 4. Therefore, according to Theorem 1, the bisimilar EETS generated from
the epistemic ensemble realisation is a model of Spvr and thus the realisation is correct
w.r.t. Spvr . 	


Two epistemic ensemble realisations Real1 and Real2 over the same signature are
called equivalent if �Real1� ∼ �Real2�. The following theorem says that for checking
equivalence of epistemic ensemble realisations it is sufficient to show that their initial
epistemic states are bisimilar and that the process definitions for each agent are pair-
wise bisimilar in the usual sense of process algebra; see e.g. [10]. We denote process
bisimilarity by ∼p.

Theorem 2. Let Real1 = ({P 1
0,a | a ∈ A},K1

0) and Real2 = ({P 2
0,a | a ∈ A},K2

0) be
two epistemic ensemble realisations over signature Σ . If K1

0 ≈ K2
0 and P 1

0,a ∼p P 2
0,a

for all a ∈ A, then �Real1� ∼ �Real2�.

Proof sketch. Let Si be the ensemble states of Real i for i = 1, 2. We use the relation
EB ⊆ S1 × S2 such that ((ctrl1,K1), (ctrl2,K2)) ∈ EB iff ctrl1(a) ∼p ctrl2(a) for
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all a ∈ A and K1 ≈ K2. By assumption, the initial ensemble states are related by EB .
We have to show that EB is an EETS-bisimulation.

Condition (1) of Definition 4 is satisfied by definition of EB . For condition (2), let
((ctrl1,K1), (ctrl2,K2)) ∈ EB and (ctrl1,K1)

e−→�Real1� (ctrl
′
1,K

′
1). By rule (ensem-

ble) in Fig. 1, there is (P 1
a ,K1)

e
↪−→ (P 1′

a ,K′
1)where P 1

a = ctrl1(a) and P 1′
a = ctrl ′1(a).

A case analysis on the form of P 1
a yields that P 1

a

e
↪−→p P 1′

a and (K1,K
′
1) ∈ eeff (e)

where
e

↪−→p denotes process transition. Since K1 ≈ K2, it follows from Lemma 3 that
there is a K′

2 such that (K2,K
′
2) ∈ eeff (e) and K′

1 ≈ K′
2. Let P 2

a = ctrl2(a). Then
P 1

a ∼p P 2
a and therefore there exists P 2

a

e
↪−→p P 2′

a with P 1′
a ∼p P 2′

a . A case analysis on

the form of P 2
a yields that (P 2

a ,K2)
e

↪−→ (P 2′
a ,K′

2) and hence, by rule (ensemble), that
(ctrl2,K2)

e−→�Real2� (ctrl
′
2,K

′
2). Moreover, ((ctrl ′1,K

′
1), (ctrl

′
2,K

′
2)) ∈ EB . 	


6 Conclusion

We have developed a formalism for rigorous specification and realisation of ensembles
based on principles of epistemic logic and epistemic actions. A crucial difference to [5,
8,9] is that agents in epistemic ensembles do not communicate by message passing, but
information exchange is achieved implicitly by changing knowledge. Another approach
with implicit interaction is provided by the DEECo component and ensemble model [4].
In this case a coordinator is responsible for triggering exchange of factual knowledge
which is, however, not grounded in epistemic logic.

For specifications of bigger case-studies we would need to extend our logic to allow
agent types, variables and quantification over agents. For ensemble realisations we want
to go a step further and represent the epistemic information, that is currently used
by agent processes by accessing a global epistemic state, by local knowledge bases
attached to each agent process.
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Abstract. An agent’s awareness is modelled as a modal operator in
such a way that awareness can be iterated and consciousness formalised
as awareness of awareness. Agents are not necessarily human and may a
priori be animals, organisations or software, in which setting awareness
is expected to exist in degrees and so is modelled with nonnegative reals
rather than just Booleans. The formalism thus expresses the degree to
which an agent exhibits awareness (and so consciousness).

The context is an adaptive multi-agent system in which agents control
actions, individually or in groups, and adapt ecorithmically (in the sense
of Valiant) by adjusting behaviour in the short term and evolving in the
very much longer term. Laws and inequalities are given and shown to be
sound, but the intuition is that awareness ‘enables’ actions to form the
agent’s next behavioural step whilst consciousness provides the agent
with an opportunity to adapt that behaviour.

1 Introduction

Consciousness has for long been considered beyond scientific explanation (i.e.
not to be explicable by reduction) and instead to be an emergent property of
that complex system the human brain. The fraught problem of understanding
consciousness has been made no simpler by that concept cutting across neuro-
physiology, philosophy of the mind, physics, computer science, data science and
more recently mathematics. But recent decades have heralded a fresh approach:
the proposal of architectural models to account for consciousness.1 Together with
the success of machine learning (providing a candidate for artificial free will?),
that has led to renewed interest in both the popular press and academic journals
in the contentious question of whether or not an artificial agent can be sentient or
conscious. Without a definition or even agreed properties of consciousness, how
can that be answered? This work addresses that deficiency, in a modal setting.

A treatment of consciousness which does not a priori rule out the possibility
of its application to non-humans must be general enough to embrace organisms
1 A dozen such models are cited at the Oxford Mathematics of Consciousness and
Applications Network site [19].
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(like cells, plants and animals), organisations and artificial agents yet not be
too weak when restricted to humans. For such entities we use the generic term
‘agent’. We propose a Boolean notion (an agent is conscious of a feature or not),
and a numerical notion (the strength of that consciousness).

We follow the usual approach when confronted with a complex concept and
resort to identifying properties, or laws if possible, in place of a definition. Of
course a model is still needed to show consistency of the laws, and we use as
simple a model as possible. The aim of that approach is eventually to identify
sufficiently many laws to characterise the concept. In the case of consciousness,
where no definition seems forthcoming, it offers an enticing avenue for progress.

Our choice of laws is guided by the following intuition. An agent is aware
of something that ‘enables’ or ‘makes executable’ actions under its control for
use in its next step in behaviour. For instance a bird flying to its nest is aware
of winds if they cause it to adjust its flight. On the other hand a person whose
senses are not augmented by an appropriate receiver is unaware of radio waves
since their presence ‘enables’ no actions within its control.

If an agent is aware of something then in some cases, identified here as those
in which the agent is conscious of the thing, it uses that awareness to adapt its
actions. Thus consciousness requires awareness but provides more: an oppor-
tunity for adapting the way in which the next step in behaviour is chosen.
Unfortunately a definition of consciousness in those terms directly would not
be observable without insight into the agent’s ‘mind’. So we resort to defining
it in terms of iterated awareness. Thus: an agent is conscious if it is aware of its
awareness (The Stanford Encyclopedia, [24]: Sect. 9.2, Reflexive Theories).

For instance a bird is conscious of fledgelings in the nest because it does not
return directly to the nest, as usual, but adapts by landing first on a nearby
branch. It is conscious of the flock, because it adapts its trajectory by averaging
the velocities of its neighbours in the flock [5]. Thus it is not merely aware but
conscious in both cases.

That intuition extends to agents many popular treatments of human con-
sciousness. We refer to just one, by Dehaene [6], which takes human conscious-
ness of something to mean ‘the ability to report on it’. In our terms, reporting
requires awareness of the thing to enable the ability to report on it, but moreover
in choosing what to report the person demonstrates consciousness of it.

In this approach consciousness is necessary for adaptation, for which we follow
the ecorithm approach of Valiant who makes a convincing case that ecorithms
embody:

. . . mechanisms . . . of two kinds, those that operate in individuals inter-
acting with their environment, and those that operate via genetic changes
over many generations. . . . ecorithms are also construed broadly enough
to encompass any process of interaction with an environment.

Valiant [26], page 27.

In our context short-term adaptivity can be seen as adjustment by the agent
to its environment, and long-term as evolution. As the system evolves, changes
occur to the set of agents, the actions and their control by agents.
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Laws of consciousness for agents must be decided without recourse to the
concept of ‘an agent’s state of mind’, and more generally eschewing anthropo-
morphism. Our solution is to resort, as much as possible (though not entirely),
to externally observable behaviour. For instance we acknowledge that a pet dog
is aware of its lead being taken from the peg in preparation for its daily walk
because we observe that it wags its tail and rushes to the door. Naturally we
refrain from postulating ‘the dog is happy’ (its state of mind).

The paper begins with our context of agents, actions, features and adaptive
multi-agent systems. It motivates properties of awareness and expresses them in
both Boolean and numerical forms. Then it formalises awareness and conscious-
ness and proves soundness of the laws. After analysing properties of our adaptive
mulit-agent systems, it discusses related work and draws conclusions.

2 Conscious Agents

This section provides the background to our general view of agents, the actions
they perform and the features of which they may be aware. It then discusses the
adaptive multi-agent systems they inhabit.

2.1 Agents

The agents we consider range from humans, other animals, plants, cells and
organisations to software. They are considered not in isolation but as part of
some habitat2 which may be inhabited by various agents, but has an external
environment. For instance in the local gardens we may consider birds and the
things which affect them (like trees and worms). Birds exhibit a strong circadian
rhythm which they exploit when deciding how to behave, but the sun and its
movement which affect bird behaviour are external to the garden system. The
external environment is treated as a default agent.

System actions are typically controlled by agents, individually or in groups.
Care of fledgelings lies under the control of their parents whilst flocking is con-
trolled by a group. Sunrise is controlled by the default environmental agent.

An agent is an entity in such a system having control over at least one action.
The agent may be a sunflower which when growing exhibits heliotropic behaviour
by tracking the sun during the day and then reorienting overnight to face east.
Its movement is the combined effect of internal and external actions which result
in the head tilting due to cells growing faster on the side of the stem facing the
sun. Actions under the sunflower’s control include the hormonal and circadian
actions controlled by the plant but not solar movement; see Atamian et al. [1].

A rock in the garden erodes at a rate which depends on its location and
composition, but as a result of action by the elements. Erosion is thus the result
of environmental actions, and none under control of the rock, which is therefore
not an agent.
2 The term ‘environment’ is more commonly used to mean something external to an

agent, but we are about to give ‘external environment’ another meaning.
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Due to the generality of an agent, we cannot assume that it displays the
kind of rationality assumed in logic and in particular dynamic epistemic logic.
We cannot justify for instance the law that if an agent is aware of p which
is stronger than q then it is also aware of q. However something of that kind
holds, but with correlation instead. The pet dog is evidently conscious, from its
behaviour already considered, that when its lead is taken from the peg then it
is daily-walk time. We capture properties of consciousness with laws, but they
are far weaker than the familiar logical laws.

2.2 Actions

The actions performed by agents either terminate or on-going and typically
reactive. The former are described by postcondition with state-before, input,
state-after and output. Then the precondition is defined to hold at a state-
before and input if there is a state-after and output satisfying the postcondition.
The latter types of action are described by safety and liveness. We try not to
distinguish the two styles, thinking of an ongoing action as the iteration of a
terminating action, perhaps forever.

Our descriptions of actions are not necessarily algorithmic nor even com-
putable, but they are all state based. That allows inclusion of the view by Pen-
rose & Hameroff (see the review by Hameroff [12]) that quantum reduction is
primitive in any appropriate ecorithmic language for humans.

We use the following notation concerning an agent’s control of actions. Left
informal here, it has been formalised for software [21]. Suppose as given the sets
Agents and Actions.

Notation 1 (Ambit). The ambit of an action act : Actions is the set of agents
involved in its activation:

ambit(act) := {a : Agents | a has some control in act}.

The set of actions in which a : Agents has control is denoted

Aa := {act : Actions | a ∈ ambit(act)}.

For instance the ambit of a bird’s return flight to its nest contains itself, and
weather conditions. The ambit of its flight when flocking contains its nearest
neighbours in the flock.

2.3 Features

The things in an agent’s habitat which may affect its behaviour we call features.
For instance features in a human’s habitat may include memory of birthdays

past, a vision of a unicorn, a (remembered) dream, social conventions, radio
waves, climate change and interactions with its pets and other humans.

In general, the definition of feature relies on domain-specific knowledge. For
instance the visual range of birds extends to much higher frequencies than our
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own, as does the audio range of dogs. Features allow us to express concepts
in terms of observable behaviour (rather than state of mind). The features of a
human system may include ‘the pet dog’, ‘its lead being taken from the peg’, and
‘daily walk’. A bird’s features may include the state of the weather, its partner,
number of fledgelings in its nest, the local flock and dawn chorus.

Notation 2 (Feature). A feature is something which can affect system
behaviour. Features are of diverse type and depend on domain knowledge, as
the examples above show. As an example, the space F of all features for a system
of humans may be defined syntactically:

Basic :: = Habitat | Remembered | Imagined | Dreamt
F :: = Basic | ∼F | F&F | F�F | F�+ F | AaF

The proposition ‘feature f occurs at time t’ is written f↓t. Then the Boolean
operations above are defined:

(∼f)↓t : = ¬(f↓t) f doesn’t occur at t
(f&g)↓t : = (f↓t) ∧ (g↓t) f, g both occur at t

(f �g)↓t : = (f↓t) ⇒ (g↓t) g occurs at t if f does
(f �+ g)↓t : = (f↓t) ⇒ (∃u≥t · g↓u) g occurs with or after f at t.

Of course the implications � and �+ hold if their antecedents fail.
The absence of the absence of f is the same as the occurrence of f : ∼ is

an involution. However an agent may be aware of neither f ↓t nor (∼f)↓t. &
is commutative, associative and idempotent. � and �+ are transitive. As usual
duality (de Morgan’s Law) may be used to define the analogue of disjunction as
∼((∼f) & (∼g)), representing occurrence of at least one of f and g.

Not all features are relevant to an agent at a particular time and those which
are have different levels of relevance. For instance you react immediately if your
peripheral vision registers an approaching lion. For us features sensed from the
habitat seem dominant, usually justified in terms of survival. But we, and many
other animals, are also strongly aware of social conventions and experience, which
we classify under ‘Remembered’. Evidently different animals have quite different
strengths of social sense.

A feature is said to ‘enable’ any action whose precondition it establishes. Our
systems also require a more general version, eventual enabledness, in which the
precondition is established eventually. For example, having fledgelings in the nest
enables the parental action of feeding them and eventually enables the various
parental actions of mentoring/overseeing their leaving the nest and flight.

Definition 1 (Enables). Assume act is an action. We say that a feature f : F
enables act if it establishes the precondition of act. Pointwise by time,

f En act := f � pre(act).

More generally f eventually enables an action which is enabled some time in
future:

f En+act := f �+ pre(act).
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2.4 Multiagent Systems

The systems of agents we consider are adaptable multi-agent transition systems
but with the notion of control and ambit of an action as basic. Agents are
distinguished in our systems, as we have observed, by belonging to the ambit
of at least one action. Recall that the habitat’s environment is expressed as a
default agent.

Definition 2 (System). A system S := (Agents,Actions) is composed of a
set Agents of agents, one representing the environment, and a set Actions of
actions, each having an ambit. Agents have disjoint state spaces and interact by
actions. So the state of S is the disjoint union of the states of the agents and
each act ∈ Actions has locus of control ambit(act) ⊆ Agents and type, on each
interaction in general,

act : (States × Input) ↔ (States × Output) .

An agent responds to features in its habitat by behaving in some way. We
take agent behaviour to be observable, although its causes may not be. Indeed
human behaviour results from survival, pleasure, social pressure and ‘free will’.
Cell behaviour supports homeostasis. Government behaviour concerns running
the country in response to its electorate, whilst dictatorship does not take into
account the electorate! All have observable steps in behaviour.

A feature may enable many of an agent’s actions. But at any time the agent
may perform only some of them. Typically the choice is routine or even, we’d
say, subconscious. For instance one can drive under normal conditions on ‘auto
pilot’ and be aware of changing gear only if something untoward occurs in which
case one needs to react spontaneously.

Thus an agent chooses actions routinely if aware of the features which enable
them. But in special conditions, of ‘deep awareness’ which we identify with con-
sciousness, the agent is aware that it is aware of certain features and must adapt
its choice of action. Thus we identify consciousness of a feature with awareness
of awareness of it, and consider that to result in the agent’s adapting its choice
of action.

Our systems adapt at two levels. At the system level that results from ‘long
term’ changes; for example of a bird to climate change in its habitat. At the
agent level that is due not only to incremental response to long-term changes
but also to inter-agent, social, interactions. We return to this in Sect. 5.

3 Appreciating Awareness

We consider Boolean laws and numerical inequalities for the awareness, (Aaf)↓t,
by agent a of feature f at time t. Throughout we consider just a single agent
and seek laws reducing awareness of a compound feature to awareness of simpler
features, taking into account the consequences, under correspondence theory of
modal logic, for the semantics.
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For example in the Boolean model, awareness of f at t should imply that the
proposition f↓t holds:

(Aaf)↓t =⇒ f↓t . (1)

Naturally the converse fails: an agent is aware of only certain features from its
habitat.

Law (1), modal logic’s Law T, implies by correspondence theory that the
accessibility relation in the Kripke semantics is reflexive. It also implies that no
time lag is required for a to become aware of f↓t.

Numerically, if a is aware of f↓t then the strength of that awareness should
equal the strength of f↓t (at the same time). We write that:

|(Aaf)↓t| = |f↓t| . (2)

Concurrency. Recall that (f&g)↓t = (f↓t) ∧ (g↓t). So is awareness of (f&g)↓t
equivalent to awareness of f↓t and g↓t independently?

The former holds if (f&g)↓ t enables some action. But the latter holds if
individually each feature enables an action, which is not necessarily the same
due to the usual difference between pointwise and uniform behaviour gained by
interchanging quantifiers. So we expect only implication to hold:

(Aaf)↓t ∧ (Aag)↓t ⇒ (Aa(f&g))↓t . (3)

A slightly contrived counterexample to the converse is provided by an agent
which requires two-factor authentication from users before giving them access to
some information. It enables user access if presented with the feature consisting
of an ID plus two passwords. But if presented with an ID and a single password
it does nothing. So the converse of (3) fails.

By comparison if only single-factor authentication were required then of
course (3) would hold. But in neither case would the agent necessarily be con-
scious; it responds, so is aware, but with a strict strategy. A firewall, which
requires two-factor authentication and which ‘attacks’ users submitting single
passwords, would be conscious if its attack were developed ad hom, indicating
flexibility of response.

Intuitively, the strength of awareness of a concurrent combination should be
bounded above by the stronger of the strengths of f and g, and below by the
weaker. Using � and � for min and max of numbers rerspectively:

|(Aaf)↓t| � |(Aag)↓t| ≤ |(Aa(f&g))↓t| ≤ |(Aaf)↓t| � |(Aag)↓t|. (4)

Consequence. The fundamental Law K of Modal Logic is

�f ∧ �(f =⇒ g) =⇒ �g.

In terms of Aa that relies on an agent to appreciate when one feature is stronger
than another which, as already discussed, is unrealistic for agents in general. But
replacing the first occurrence of =⇒ by � leads to a plausible Boolean law:

(Aaf)↓t ∧ (Aa(f�g))↓t =⇒ (Aag)↓t. (5)
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By comparison with Law (3), we expect awareness of f↓t and g↓t to imply
awareness of (f�g)↓t:

(Aaf)↓t ∧ (Aag)↓t =⇒ (Aa(f�g))↓t . (6)

For strength, reasoning as for concurrency,

|(Aa∼f)↓t| � |(Aa∼g)↓t| ≤ |(Aa(f�g))↓t| ≤ |(Aaf)↓t| � |(Aag)↓t|. (7)

Absence and Dual. Features f and ∼f cannot occur simultaneously, by the
meaning of ∼. So in the Boolean model an agent can not be aware of both f↓t
and (∼f)↓t:

(Aaf)↓t =⇒ ¬((Aa∼f)↓t). (8)

The modal dual of Aa we write ∇a.

Definition 3 (Dual). If at time t agent a is not aware of the absence of a
feature, then the feature is considered to be feasible from a’s point of view:

(∇af)↓t := (∼(Aa∼f)↓t)↓t .

Our Boolean version of modal logic’s Law D follows from Law (8):

(Aaf)↓t =⇒ (∇af)↓t. (9)

By correspondence theory accessibility in a Kripke semantics is serial.
Numerically, from that we expect:

|(Aaf)↓t| ≤ |(∇af)↓t|. (10)

Consciousness. Consciousness implies awareness by definition, confirmed by
Law (1):

(Aa(Aaf)↓t)↓t =⇒ (Aaf)↓t. (11)

But not conversely, as for (1), since then there would be no difference between
awareness and consciousness. By correspondence theory accessibility in a Kripke
semantics is not transitive.

Numerically, from that we expect:

|(Aa(Aaf)↓t)↓t| ≤ |(Aaf)↓t|. (12)

Time. Awareness of a feature f↓t fades with time after t unless it is refreshed
in some way. For instance driving home I am careful to select reverse gear to
leave the parking lot and may be aware of the first couple of gear changes. But
by the time I reach home I am unaware of having changed gear en route unless
something untoward required me to pay particular attention.

Thus the strength of awareness of f in the future is at most its strength now,
unless the awareness is refreshed. We expect the inequality: provided ¬(Aaf)↓u,

∀u > t · |(Aaf)↓u| ≤ |(Aaf)↓t|. (13)

If (Aaf)↓u then the law holds only if (Aaf)↓t too, in which case equality holds.
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4 Soundness

In this section we continue with a single agent’s perspective and define a simple
model, define awareness with respect to it and show the foregoing laws to be
sound. We write T for the time domain which we now assume is N.

Recall that an agent is not aware of all features in its habitat, but for those of
which it is aware, it is aware with a certain strength. For instance in Definition
2 the default strengths of the basic features for humans might be ranked

|Habitat| > |Remembered| > |Imagined| > |Dreamt|. (14)

Indeed our survival depends on quick responses to threatening features in our
habitat, but we are guided by memory in particular of social mores. For now we
simplify and consider features to have the same strength, using feature strength
to define strength of awareness.

The strength of a feature at time t is 1 if occurs at t and otherwise is inversely
proportional to the length of time before t since it occurred.

Definition 4 (Strength). The length of time before or at t when feature f last
occurred is a minimum of lengths of time:

τ(f, t) := �{t−n | t ≥ n, f↓n, ∀m : (n, t] · ¬(f↓m)}.

Thus it is zero if f↓t. We adopt the convention that it is ∞ if f has not occurred
up till t.

The strength |f↓t| of feature f at time t is defined to be inversely proportional
to the length of time τ(f, t):

|f↓t| := (1 + τ(f, t))−1,

where as usual 1 + ∞ = ∞ and ∞−1 = 0. Thus it is 1 if the feature occurs at t.
We also adopt a convention for successor and predecessor strengths, for use

below. Suppose strength d = (1 + e)−1 where e : N
∞. Then the successor is

d+ := e−1 if e > 0 and undefined for e = 0. The predecessor is d− := (2 + e)−1

for any e : N.

The strength of a combined feature is not readily expressed in terms of the
individual strengths so the only bounds are simple:

Lemma 1 (Feature strength). The strength of a feature lies in [0, 1] and satisfies

1. (∼) |(∼f, t)| < 1 iff |(f, t)| = 1.
2. (&) |(∼f, t)|+ � |(∼g, t)|+ ≤ |(f&g, t)| ≤ |(f, t)| � |(g, t)|.
3. (�) |(∼g, t)|+ ≤ |(f �g, t)| ≤ |(g, t)|.

Next awareness is formalised as follows. First we define when an agent is
aware of a feature at a given time, and then in that case the strength of awareness.
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Definition 5 (Awareness). Agent a is aware of feature f : F at time t : T if at
that time f enables some action at least partially within a’s control:

(Aaf)↓t := ∃act : Aa · (f En act)↓t. (15)

Using instead En+ gives the notion of eventual awareness. The set of features
of which a is aware at time t is denoted Aa(t).

The strength of awareness of feature f : Aa(t) is defined to be the strength of
f at time t (without delay):

|(Aaf)↓t| := |f↓t|. (16)

Definition 6 (Consciousness). Agent a is conscious of feature f at time t : T if
it aware of f at t and moreover immediately aware that it is aware:

(Caf)↓t := (Aa((Aaf)↓t))↓t. (17)

The strength at time u of consciousness is simply the strength of that awareness
of ‘awareness at time t’:

|(Caf)↓t| := |(Aa((Aaf)↓t))↓t|. (18)

The Boolean laws rely on the following result.

Lemma 2 (Closure). The space Aa(t) of features of which a is aware at t is
closed under &, � and �+ but not ∼.

Proof. For the typical case of & we reason:

f, g ∈ Aa(t)
≡ definition of Aa(t)
Aa(f, t) ∧ Aa(g, t)
≡ Definition 5 of awareness
∃F,G : Aa · (f EnF )↓t ∧ (gEnG)↓t
� f&g ∈ F, and H discussed below
∃H : Aa · (f&gEnH)↓t
� Definition 5 again
Aa(f&g, t)
≡ definition of Aa(t) again
f&g ∈ Aa(t).

Since both f, g occur at t they are consistent so f&g ∈ F. The action H may
be taken to be any nondeterministic choice of the two actions which results in
being either F or G, the choice being resolved at a lower level of detail.3 Any
such choice H satisfies

pre(H) = pre(F ) ∨ pre(G)
3 For instance a choice of probability p may be attributed to the environment and F

chosen with probability p (and G with probability 1−p).
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so f&g enables H as required. Furthermore H ∈ Aa because

ambit(H) = ambit(F ) ∪ ambit(G)

and a ∈ ambit(F ) ∩ ambit(G).
For ∼ we observe that if f ∈ Aa(t) then by Definition 1 f(s)↓t. By definition

of ∼ and the assumption that at most one of f and ∼f occur at any time, (∼f)↓t
cannot hold, so again the definition ensures ∼f /∈ Aa(t). �

The next result establishes soundness of both Boolean and numerical laws.

Theorem 1 (Correctness). The laws (1) to (13) from Sect. 3 hold.

Proof. The Boolean laws in Sect. 3 not already established, (1), (3), (5) and (6)
follow from simple arguments using the Closure Lemma.

For the numerical laws, the proof of Law (4) is typical. We reason:

|(Aa(f&g))↓t|
= Definition 4
|(f&g)↓t|
= Definition 5 with appropriated : N
1/(1 + d) .

Now (f&g)↓t iff both f↓t and g↓t by Definition 2. So d, the time to the most
recent occurrence of both f and g, is bounded above by the time to the more
recent of f and g which is:

|(f&g)↓t| ≤ |f↓t| � |g↓t|
= |(Aaf)↓t| � |(Aag)↓t|.

It is bounded below by the first occurrence of either f or g which is one more
than the most recent occurrence of either ∼f or ∼g:

|(f&g)↓t| ≥ |(∼f)↓t|+ � |(∼g)↓t|+
= |(Aa∼f)↓t|+ � |(Aa∼g)↓t|+.

We infer Law (4). �

5 Adaptivity

In this section we reflect on the kinds of system agents inhabit.
Our agents adapt both in the short term and very much longer term and

so fit, as already observed, squarely with Valiant’s ecorithms [26]. Short-term,
day-to-day, adaptations we regard as adjustments and long-term adaptations as
evolutionary. But our approach supports both, without any need for an inverse
limit which would imply some limit to evolution, which seems implausible.

In terms of multi-agent systems, adjustments can be incorporated in the
description of the system because they are predictable and so state can be
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expanded to include changes. That is analogous to an aware agent not needing
to change its manner of choosing the next step in behaviour. However evolution
is not predictable and so state must be expanded and actions updated. In ret-
rospect at any time the current system can be seen as a more comprehensive
but non-adaptive system using the Myhill-Nerode construction [18] to construct
states as equivalence classes of sequences of actions.

Considering that representation of an adaptive system retrospectively as a
(non-adaptive) system, the changes satisfy a ‘causality’ (or non-magic) invariant.
In the space-time of Physics, an event x can affect only those events in its future
light cone C+(x). Events in the past cone C−(x) require ‘retro causality’ and
those in its future but outside C+(x) require ‘superluminal’ communication.

For adaptive systems, a realistic causality condition is more complicated
because connectivity is not homogeneous and some communications are syn-
chronous whilst others are asynchronous. Because the relation En+, of eventual
enabledness, is transitive it can be used to define an analogue of light cones.

Definition 7 (Cones). If act : Actions then the future and past cones of act
consist respectively of all actions which it eventually enables, and which eventu-
ally enable it:

C+(act) := {act′ : Actions | pre(act)En+ act′}
C−(act) := {act′ : Actions | pre(act′)En+ act}.

An agent is stable at some point in the evolution of an adaptive system if further
interactions do not change it: subsequently its state space and the actions entirely
under its control remain unchanged.

Our adaptive systems satisfy the invariant that changes occur only as
restricted by future cones.

6 Related Work and Progress

Boolean laws for awareness, and hence for consciousness (seen as awareness of
awareness), have been proposed as have inequalities for its strength. They have
been shown to be sound, in spite of the reflexivity required for consciousness, in
a very simple model.

The driving intuition has been that awareness ‘enables’ actions to form an
agent’s next behavioural step whilst consciousness provides an opportunity for an
agent to adapt its way of deciding that behaviour. It seems difficult to formulate
those ideas in observable (i.e. falsifiable) terms which is why we have resorted
to laws and inequalities.

We know of no similar work, either law-based or in terms of choice of next
behavioural step. Recent work seems to concentrate on architectural models
which exhibit consciousness, and mostly for humans [19]. Influential examples
are the Global Workspace Theory, GWT, of Baars [2] and the related Conscious
Turing Machine, CTM, [4] of the Blooms. Those base the selection from many
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alternatives of one for consciousness by ranking whilst our approach is less spe-
cific: an agent is conscious if it needs or is offered the chance to adapt the protocol
for its behaviour. An interesting alternative based entirely on network density is
the work of Grindrod, [10,11].

Early computational-based work stems from Johnson-Laird’s general analogy
between mind and computer [16]. In those terms remembered and subconscious
features may be thought of as being like random-access memory. When a feature
is ‘downloaded’ afresh from memory, it enters ‘local store’, and so the agent’s
awareness. That provides a computational analogy with caching which has been
made explicit in different ways by GWT and CTM.

The origins of the computational approach to system evolution go back to
Barricelli’s experiments [3] and Ray’s Tierra [20], extremely early and restricted
precursors of Valiant’s ecorithms [26]. Of importance in the evolutionary setting
will be Hoffman’s work on Computational Evolutionary Perception, CEP, [13]
which overturns the naive interpretation of ‘what we see is what’s out there’, by
considering its use to the observer. Similar ideas will apply to an arbitrary agent
and all features, and be essential in quantifying our approach further.

Tononi’s Information Integration Theory, IIT, [25], provides a measure of
consciousness but in view of the computational complexity of its evaluation,
current interest appears to be in its simulation. To be a model of what the brain
does, it must be feasible computationally.

There is much work on awareness in adaptive system theory, from which the
reader may like to compare [14,15].

The generality of our agents means that they are not necessarily rational,
so we are unable to exploit work on dynamic epistemic logic. Relaxed notions
of modal awareness, necessary for reasoning by logical agents who lack logical
omniscience and have only bounded computational ability, have been introduced
by Fagin & Halpern [7]. They refine Levesque’s idea [17] of ‘explicit’ and ‘implicit’
belief (the latter being the logical closure of the former), and show how to achieve
the result within a Kripke semantics adapted to include time.

Our approach can be thought of as formalising and extending to agents that
of Dehaene [6]. There are many more recent popular books by experts on con-
sciousness than we can refer to, as well as several fine youtube videos. The topic
seems recently to have captured popular interest.

This work suffers several deficiencies. Features have been assumed to have
the same strength, though it is simple to assign them weights when defining
feature strength, depending on their basic constituents, subject to say (14). The
definition of awareness of features has made no attempt to relate features, which
seems likely in reality but would require currently unknown structure on F.

A single agent has been considered. Realistically different agents have differ-
ent strengths which could be incorporated in the definition of strength of aware-
ness by a. That agent weight would vary with evolution during which species
‘search’ anti-entropically for a niche with lower potential energy, but expend-
ing both energy and time in the process. Consciousness acts to break a barrier
and initiate an entropy-increasing run of awareness. The connection of this with
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‘free energy’ [22,23] is an enticing topic of further work which would incorpo-
rate recent advances in understanding the evolution of awareness (for instance
Graziano [9]) and consciousness (for instance Ginsburg & Jablonka [8]).

We have not considered higher-order awareness beyond the degree 2 to define
consciousness. One of the benefits of our approach is the possibility of doing so
to explain subconscious and anomalous behaviour like blindsight (The Stanford
Encyclopedia, [24]: Higher-order Theories of Consciousness).

The incorporation of more general, nonlinear, time would make the theory
more realistic, as would the inclusion of probability of actions and the observation
that consciousness does not seem to be independent for each feature, but to be
bunched by kind of feature. Finally, the theorem implied in Sect. 5 of an adaptive
system represented as a system could be formalised and simulation criteria used
to establish agent consciousness.

Acknowledgments. The authors thank colleagues Professors Ronnie Becker and
Hans Georg Zimmermann for wise council in early presentations of this material, and
the referees for identifying obscurities and encouraging us to extend related work.
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Abstract. We investigate the application of strategy synthesis to
enforce spatial properties. The Contract Automata Library (CATLib)
performs both composition and strategy synthesis of games modelled
in a dialect of finite state automata. The Voxel-based Logical Analyser
(VoxLogicA) is a spatial model checker that allows the verification of
properties expressed using the Spatial Logic of Closure Spaces on pix-
els of digital images. In this paper, we explore the integration of these
two tools. We provide a basic example of strategy synthesis on automata
encoding motion of agents in spaces represented by images. The strategy
is synthesised with CATLib, whilst the properties to enforce are defined
by means of spatial model checking of the images with VoxLogicA.

1 Introduction

Research on strategy synthesis in games is currently a hot topic, with established
relations with supervisory control [3,60], reactive systems synthesis [41], parity
games [57] (with recent complexity breakthroughs [27]), automated behaviour
composition [44], automated planning [28] and service coordination [13]. Sev-
eral academic tools have been developed [7,31–33,39,50,52,59] and applied to
disparate domains, including land transport [12], maritime transport [62], med-
ical systems [53], autonomous agents path planning [46], in which problems are
modelled as games and solved using tailored strategy synthesis algorithms.

In an automata-based setting, a strategy is a prescription of the behaviour
(transitions) of a particular player for all possible situations (states) that leads
that player to a specific goal (final state). Typically, there are other players
or an environment with different, often competing goals to account for, and
the set of transitions may be partitioned into controllable (by the particular
player) and uncontrollable transitions. Strategy synthesis is concerned with the
automatic computation of a (safe, optimal) strategy (controller) in such a game-
based automata setting.

Another hot topic concerns recent advancements in spatial model checking,
which have led to relevant results such as the fully automated segmentation
of regions of interest in medical images by brief, unambiguous specifications in
spatial logic. The topological approach to spatial model checking of [34] is based
on the Spatial Logic of Closure Spaces (SLCS) and provides a fully automated
method to verify properties of points in graphs, digital images, and more recently
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3D meshes and geometric structures [25,56]. Spatial properties of points are
related to topological aspects such as being near to points satisfying a given
property, or being able to reach a point satisfying a certain property, passing
only through points obeying to specific constraints.

The tool VoxLogicA [24,36] (of which the third author is the lead developer)
has been designed from scratch for image analysis. Logical operators can be freely
mixed with a few imaging operators, related to colour thresholds, texture analy-
sis, or normalisation. The tool is quite fast, due to various factors: most primitives
are implemented using the state-of-the-art imaging library SimpleITK1; expres-
sions are never recomputed (reduction of the syntax tree to a directed acyclic
graph is used as a form of memoisation); operations are implicitly parallelised
on multi-core CPUs. Ongoing work (cf., e.g., [26]) is devoted to a GPU-based
implementation which enables a speedup of 1-2 orders of magnitude.

Returning to the topic of strategy synthesis, the tool CATLib [6,7,16] is a
library (developed by the first author) for performing compositions of contract
automata [15] (a dialect of finite-state automata) and synthesising either their
supervisory control, their orchestration, or their choreography [13], using novel
notions of controllability [9]. Scalability features offered by CATLib include a
bounded on-the-fly state-space generation optimised with pruning of redundant
transitions and parallel streams computations. The software is open source [7],
it has been developed using principles of model-based software engineering [6]
and it has been extensively validated using various testing and analysis tools to
increase the confidence on the reliability of the library.

Contribution. In this paper, we propose a new approach to combine strategy
synthesis and spatial model checking. We proceed in a bottom-up fashion by
presenting a toolchain based on established off-the-shelf tool-supported theories.
We explore the combination of CATLib and VoxLogicA, to pair the composition
and synthesis functionalities of CATLib with the spatial model checking function-
ality of VoxLogicA. We provide a proof-of-concept example of strategy synthesis
on automata encoding motion of agents in spaces represented by images2. The
main insight is to encode an image as an automaton, whose states are the pixels
of the image. These states are then interpreted as positions of an agent, and
transitions to adjacent pixels represent motions of the agent. A composition of
automata is thus a multi-agent system, in which each state of the composition
is a snapshot of the current position of the agents in the map. A game can thus
be played by a set of agents against other opponent agents, where successful
states and failure states can be identified using spatial model checking of the
images. The strategy is synthesised with CATLib, while the properties to enforce
are defined by means of spatial model checking of the images with VoxLogicA.

1 Cf. https://simpleitk.org/.
2 In the VoxLogicA approach, images are seen as a special kind of graphs, where

vertices are pixels, and edges represent proximity. Actually, the VoxLogicA family of
tools can also operate on arbitrary directed graphs. Adapting the present work to
the more general setting is left for future work.

https://simpleitk.org/
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The developed example is open-source and reproducible at [14]. The benefits
include showing the practical applicability of these two tools, providing an origi-
nal approach to strategy synthesis and spatial model checking, bridging theories
and tools developed in different research areas and openings to future research
goals.

Related Work. Practical application of spatial logics, including model checking,
has been ongoing during the last decade. For instance, the research line origi-
nating in [48] merges spatial model checking with signal analysis. In the domain
of cyber-physical systems, the approach of [65] demonstrates applications of
SLCS in a spatio-temporal domain with linear time, using biographical models.
An abstract categorical definition of SLCS has been given in [30]. The spatial
model checking approach of SLCS and VoxLogicA has been demonstrated in
case studies ranging from smart transportation [37] and bike sharing [35,38], to
brain tumour segmentation [4,24], labelling of white and grey matter [23], and
contouring of nevi [22].

Synthesising strategies (or plans/control) for the motion of agents is a widely
researched problem [2,42,46,47,55,63]. Spatial logics have been applied to this
problem to investigate the synthesis of strategies from properties of spatially
distributed systems specified with spatial logics [1,49,54]. Recently, the applica-
tion domain of smart cities has been explored in [58], and the aforementioned
signal-based approach has been enhanced for a hybrid approach to multi-agent
control synthesis, by exploiting neural network and spatial-logical specifications
in the Spatio-Temporal Reach and Escape Logic (STREL) formalism.

Differently from the above literature, we set out to integrate previously devel-
oped off-the-shelf algorithms and tools, with the aim of showing their applicabil-
ity. Contract automata and their toolkit were introduced to synthesise ochestra-
tions and choreographies of compositions of service contracts exchanging offers
and requests [7,9,13,15]. The interpretation of an image as an (agent) contract
automaton enables to connect contract automata and CATLib with spatial model
checking and VoxLogicA, showing the flexibility of both approaches.

Structure of the Paper. We start with the background on CATLib and VoxLogicA
in Sect. 2. The toolchain is described in Sect. 3, whilst the experiments are
reported in Sect. 4. Conclusions and future work are mentioned in Sect. 5.

2 Background

We provide some background on the formalisms and tools used in this paper.

2.1 CATLib, Automata Composition, and Strategy Synthesis

We first formally introduce contract automata and their synthesis operation. A
Contract Automaton (CA) represents either a single service (in which case it is
called a principal) or a multi-party composition of services performing actions.
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The number of principals of a CA is called its rank. A CA’s states are vectors of
states of principals; its transitions are labelled with vectors of actions that are
either requests (prefixed by ?), offers (prefixed by !), or idle actions (denoted with
a distinguished symbol ●). Requests and offers belong to the (pairwise disjoint)
sets R and O, respectively. Figures 2 and 3 depict example CA. In a vector of
actions there is either a single offer, or a single request, or a single pair of request
and offer that match, i.e., the ith element of �a, denoted by �a(i), is ?a, its jth ele-
ment �a(j)= !a, and all other elements are ●; such vector of action is called request ,
offer , or match, respectively. Thus, for brevity, we may call action also a vector
of actions. A transition is also called a request, offer, or match according to its
action label. The goal of each principal is to reach an accepting (final) state such
that all its requests (and possibly offers) are matched. In [20], CA were equipped
with modalities, i.e., necessary (◻) and permitted (◇) transitions, respectively.
Permitted transitions are controllable, whilst necessary transitions can be uncon-
trollable or semi-controllable. Here we ignore semi-controllable transitions and
consider necessary transitions to be uncontrollable. The resulting formalism is
called Modal Service Contract Automata (MSCA).

Definition 1 (MSCA). Given a finite set of states Q = {q1, q2, . . .}, an MSCA
A of rank n is a tuple 〈Q, �q0, A

r, Ao, T, F 〉, with set of states Q = Q1 × . . . ×
Qn ⊆ Qn, initial state �q0 ∈Q, set of requests Ar

⊆ R, set of offers Ao
⊆ O, set of

final states F ⊆Q, set of transitions T ⊆Q ×A ×Q, where A ⊆ (Ar
∪Ao

∪ {●})n,
partitioned into permitted transitions T◇ and necessary transitions T◻, such
that: (i) given t= (�q,�a, �q ′) ∈T , �a is either a request, or an offer, or a match; and
(ii) ∀i ∈ 1 . . . n, �a(i) = ● implies �q(i) = �q ′

(i).

Composition of services is rendered through the composition of their MSCA
models by means of the composition operator ⊗, which is a variant of a syn-
chronous product. This operator basically interleaves or matches the transitions
of the component MSCA, but, whenever two component MSCA are enabled to
execute their respective request/offer action, then the match is forced to happen.
Moreover, a match involving a necessary transition of an operand is itself neces-
sary. The rank of the composed MSCA is the sum of the ranks of its operands.
The vectors of states and actions of the composed MSCA are built from the
vectors of states and actions of the component MSCA, respectively.

In a composition of MSCA, typically various properties are analysed. We are
especially interested in agreement . The property of agreement requires to match
all requests, whilst offers can go unmatched.

CA support the synthesis of the most permissive controller from the theory
of supervisory control of discrete event systems [29,60], where a finite state
automaton model of a supervisory controller (called a strategy in this paper) is
synthesised from given (component) finite state automata that are composed.
Supervisory control theory has been applied in a variety of domains [13,21,43,45,
61,64], including healthcare. In this paper, we use the synthesis in the framework
of games, whose relation with supervisory control is well known [3].

The synthesised automaton, if successfully generated, is such that it is non-
blocking, controllable, and maximally permissive. An automaton is said to be
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non-blocking if from each state at least one of the final states (distinguished
stable states representing completed ‘tasks’ [60]) can be reached without pass-
ing through so-called forbidden states, meaning that the system always has
the possibility to return to an accepted stable state (e.g., a final state). The
algorithm assumes that final states and forbidden states are indicated for each
component. The synthesised automaton is said to be controllable when only
controllable actions are disabled. Indeed, the supervisory controller is not per-
mitted to directly block uncontrollable actions from occurring; the controller is
only allowed to disable them by preventing controllable actions from occurring.
Finally, the fact that the resulting supervisory controller is said to be max-
imally permissive (or least restrictive) means that as much behaviour of the
uncontrolled system as possible is still present in the controlled system with-
out violating neither the requirements, nor controllability, nor the non-blocking
condition.

Finally, we recall the specification of the abstract synthesis algorithm of CA
from [13]. This algorithm will be used to synthesise a strategy for the spatial
game in the next sections. The synthesis of a controller, an orchestration, and
a choreography of CA are all different special cases of this abstract synthesis
algorithm, formalised in [13] and implemented in CATLib [6] using map reduce
style parallel operations of Java Streams. This algorithm is a fix-point compu-
tation where at each iteration the set of transitions of the automaton is refined
(pruning predicate φp) and a set of forbidden states R is computed (forbidden
predicate φf ). The synthesis is parametric on these two predicates, which pro-
vide information on when a transition has to be pruned from the synthesised
automaton or a state has to be deemed forbidden. We refer to MSCA as the set
of (MS)CA, where the set of states is denoted by Q and the set of transitions
by T (with T◻ denoting the set of necessary transitions). For an automaton A,
the predicate Dangling(A) contains those states that are not reachable from the
initial state or that cannot reach any final state.

Definition 2 (abstract synthesis [13]). Let A be an MSCA, K0 = A, and
R0 = Dangling(K0). Given two predicates φp, φf : T × MSCA × Q → B, let the
abstract synthesis function f(φp,φf ) : MSCA × 2Q

→MSCA × 2Q be defined as:

f(φp,φf )(Ki−1, Ri−1) = (Ki, Ri), with

TKi
= TKi−1 − { t ∈ TKi−1 | φp(t,Ki−1, Ri−1) = true }

Ri =Ri−1 ∪ { �q | (�q −→) = t ∈ T◻A , φf (t,Ki−1, Ri−1) = true } ∪Dangling(Ki)

The abstract controller is defined in Eq. 1 below as the least fixed point (cf. [13,
Theorem 5.2]) where, if the initial state belongs to R

(φp,φf )
s , then the controller

is empty; otherwise, it is the automaton with the set of transitions TK(φp,φf )
s

and

without states in R
(φp,φf )
s .

(K(φp,φf )
s , R

(φp,φf )
s ) = sup({ fn

(φp,φf )(K0, R0) | n ∈ N }) (1)

CATLib. CA and their functionalities are implemented in a software arte-
fact, called Contract Automata Library (CATLib), which is under continuous
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development [7]. This software artefact is a by-product of scientific research on
behavioural contracts and implements results that have previously been formally
specified in several publications (cf., e.g., [9–11,13,15–20]). CATLib has been
designed to be easily extendable to support similar automata-based formalisms.
Currently, it also supports synchronous communicating machines [40,51]. CATLib
and the other CA tools [8] allow programmers to use CA for developing more
reliable applications. In this paper, we further showcase the flexibility of CATLib
by using it to synthesise strategies for mobile agents in spatial games. CATLib
has been implemented using modern established technologies for building, test-
ing, documenting, and delivering high quality source code. CATLib is tested up
to 100% coverage of all lines, branches, and the strength of the tests is measured
with mutation testing with top score.

2.2 VoxLogicA, Spatial Model Checking, and Image Analysis

The Spatial Logic of Closure Spaces (SLCS) is a modal logical language equipped
with a unary ‘nearness’ modality and two binary operators: ‘reaches’ and ‘is
reached’. The language is interpreted on points of a spatial structure, which is,
generally speaking, a Closure Space (cf. [34] for details). Graphs, digital images,
topological spaces, and simplicial complexes are all instances of closure spaces.

Here we concentrate on the interpretation of SLCS on images. In this case,
the two reachability modalities collapse and the nearness modality is a derived
operator based on the reachability operator, causing a particularly simple syntax.

Definition 3. Fix a set AP of atomic propositions. The syntax of SLCS is
defined by the following grammar (where p ∈AP ):

φ ::= p | ⊺ | ¬φ | φ ∧ φ | ρ φ[φ]

Models of SLCS formulae, for the purpose of this paper, are the pixels of
digital images; i.e., each SLCS formula induces a truth value for each point of a
given digital image. In order to define the interpretation of formulae, a notion of
path needs to be established, based on a notion of neighbourhood or connectivity
of pixels. Among infinitely many possible choices, VoxLogicA normally uses the
so-called ‘8-neighbourhood’, i.e., each pixel is adjacent to 8 other pixels, namely
those that share an edge or a vertex with it. Connectivity transforms the set
of pixels of an image in a (symmetric) graph. Graph-theoretical paths are then
well defined, and used below.

The interpretation of formulae depends upon a valuation of atomic proposi-
tions, assigning to each atomic proposition the set of points on which it holds,
and assigning a direct interpretation to the symbols p ∈AP . The meaning of the
truth value ⊺ (true), negation (¬), and conjunction (∧) is the usual one. A pixel x
satisfies ρφ1[φ2] if there is a path rooted in x, reaching a pixel satisfying φ1, such
that all intermediate points, except eventually the extremes, must satisfy φ2. We
make use of the derived operator φ1 ↝ φ2 which is similar to ρφ2[φ1], but the
extremes are also required to satisfy φ1. The near derived operator Nφ � ρφ[¬⊺]
is true at point x if and only if there is a pixel adjacent to x where φ holds.
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From now on we use the tool’s syntax, which uses tt, &, |, !, ~>, and N for
true, conjunction, disjunction, negation, ↝, and N , respectively, permits macro
abbreviations of the form let identifier = expression, function definition
of the form let identifier(argument1,...,argumentN) = expression, and
other constructs not needed for the scope of this paper. On images, atomic
propositions can be expressions predicating over the colour components of the
pixels. For instance, in our example specification (cf. Fig. 5), to characterise the
pixels composing a door as the blue pixels (note that 255 is the maximum value
since we are using 8-bit images), given that img denotes an image, we use:

let r = red(img)
let g = green(img)
let b = blue(img)
...
let door = (r =. 0) & (b =. 255) & (g =. 0)

Also, the tool permits global formulae that assign a truth value to models,
not just pixels in isolation. These can be based on the volume(phi) primitive,
that computes the number of pixels satisfying the formula phi. For instance,
existential and universal quantification are defined as follows:

let exists(p) = volume(p) .>. 0
let forall(p) = volume(p) .=. volume(tt)

The type system of VoxLogicA is very simple, and comprises numbers, Boolean
values, images of numbers (single-channel images, sometimes called grayscale),
images of Boolean values, very often called binary images or masks, and ordinary
multi-channel images. Operators are strongly typed with no type overloading.
Therefore, for instance, the pixel-by-pixel and of two Boolean-valued images is
a different operator with respect to the conjunction of two Boolean values, and
it also differs from the conjunction of the Boolean value of each pixel of an image
with a Boolean (scalar) constant. With some exceptions, the naming convention of
operators reflects their type, having a dot on the side of the ‘scalar’ value (Boolean
or number) and no dot on the side of the image, so for instance .&. is Boolean
and, whereas & is pixel-by-pixel and of two images. With respect to Fig. 5, for
instance, we have that base and img are multi-channel images, with the operators
red, green, blue, extracting number-valued images from them. The definition of
mrRed (a red area) contains the =. operator taking a number-valued image on the
left, and a number on the right (hence the dot on the right side). In the definition
of the property forbidden1, one can find an example of the use of the operator
.|. which takes as arguments two Boolean values.

3 Tool Methodology

In this section, we discuss the tool methodology used to chain CATLib and
VoxLogicA in order to perform strategy synthesis of spatial properties. Later,
in Sect. 5, we will detail scalable techniques that can be adopted to improve
the presented methodology. The diagram in Fig. 1 depicts the workflow and the
various activities in which the whole process is decomposed.
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Fig. 1. The workflow showing the integration of the two tools
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Fig. 2. A zoom-in on a fragment of the agent automaton

Fig. 3. The driver automaton on the left, the door automaton on the right

The process starts with a PNG image, depicting a map or planimetry, for
agents to move in. Note that this implies that the state space is discrete, finite,
and can be provided by a user with no training on the underlying theories used.
Further input concerns the spatial properties that one wants to enforce with
the synthesised strategy, modelling the forbidden configurations to avoid and
the final configurations to reach, as well as the number of agents in the exper-
iments with their starting position, and an indication of which agents are the
controllable players and which are the uncontrollable opponents. The aim of the
process is to produce the maximally permissive strategy for moving the players
against all possible moves of the opponents, such that no forbidden configura-
tion is ever reached and it is always possible to reach a final configuration. In
game-theoretical jargon, this is both a safety game and a reachability game [5].
The strategy is maximal, in the sense that it includes all possible behaviour that
satisfies the above properties. If the strategy is empty, then there exists no strat-
egy for the players satisfying the given properties. CATLib only considers finite
traces: infinite looping behaviour where an agent is stalled and is prevented from
reaching a reachable final configuration is ruled out.

CATLib Activities. In this paper, CATLib has been extended to allow the import
of PNG images, which are internally converted into automata. These automata
have pixels as states and transitions connecting adjacent pixels. We interpret
these automata as agents, whose position is represented by the current state and
transitions are requests to move up, down, left, or right to adjacent pixels/states.
If a border is reached, then there will be no request transition in the automaton
to move beyond that border. Each state is labelled with both a position, rendered
in three coordinates (the third coordinate is currently not used), and the colour
of the pixel. Figure 2 depicts a small portion of an agent automaton.
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Fig. 4. The state [(10; 10; 0) #FFFFFF, (5; 7; 0) #FFFFFF, Driver, Close] of
the composition of two agents, a driver, and a door. The door is in position (2; 7) and
is closed. The first agent is depicted red, the second is green, and the door is blue. The
attributes of the position of the two agents are both #FFFFFF, which is the hexadecimal
value for the colour white, i.e., both agents are placed on a white cell of the map.
(Color figure online)

A driver automaton is used to command an agent to move in a specific direc-
tion. It is depicted in Fig. 3 (left). The driver can impose some constraints (e.g.,
never go down). Currently, the driver offers to move in each possible direction.
The last automaton that is used models a door, which is initially closed, and
which can be opened and closed repeatedly. It is depicted in Fig. 3 (right).

The first activity of CATLib thus consists of importing and creating the above
automata. There can be several instances of agents and doors or different maps
according to the parameters of the experiments to perform.

The second activity consists of composing these automata to generate all
possible reachable configurations. As stated in Sect. 2, the composition has uni-
cast synchronisations between offers and requests of agents (called matches), and
labels that are only single moves of an agent performing an offer. Agents who
perform requests can move only when paired with a corresponding offer. This
type of synchronised behaviour is called agreement: all requests must be matched.

In such composition, no restriction is imposed on the agents: they are free to
move over walls and doors, and even over other agents. Depending on the initial
conditions, some of these configurations could result to be not useful. However,
this allows to call the spatial model checker once on all possible configurations.
By changing starting conditions in different experiments it is not necessary to
invoke again the spatial model checker, since all possible configurations that can
be generated have already been analysed offline by the spatial model checker. In
the composed automaton, each state is a tuple of states of all agents (included
the door and the driver). Each state can be represented as an image, a snapshot
of the current configuration. For example, Fig. 4 depicts a state rendered as an
image. The image is generated by colouring the starting PNG image with a red,
green, and blue pixel to indicate where, respectively, the first agent, the second
agent and the door are located. The door is only coloured when it is closed.

The third activity consists of generating all images for all states of the com-
position. These images are then passed to VoxLogicA (whose activities will be
described below) to evaluate for all properties whether or not they are satisfied.

The fourth activity of CATLib consists of generating a composition with only
legal behaviour. Indeed, to reduce the size of the state space, the composition of
CATLib allows to avoid generating portions of the state space that are known to
violate some property. In case of controllable ‘bad’ transitions, these will not be
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generated since they will be pruned by the synthesis. In case of uncontrollable
‘bad’ transitions, these will be generated (since they cannot be pruned) but
their target state will not be visited (the synthesis will try to make these ‘bad’
states unreachable). Thus, once some agent is rendered as uncontrollable (by
changing its transitions to uncontrollable), it cannot be stopped from reaching
an illegal configuration. It follows that illegal configurations must be removed
before deciding which agents are uncontrollable and which are controllable. In
the experiments described in Sect. 4, the illegal moves are those where an agent
is placed on top of a wall (i.e., its state has colour #000000), on top of another
agent (i.e., in a state of the composition, two agents have the same coordinates),
or on top of a closed door (i.e., in a state of the composition, one agent has
the same coordinates as the door and the door is closed). Since these are simple
invariant properties (it only suffices to check the labels of states), they can be
directly checked in CATLib. VoxLogicA is used to evaluate more complex spatial
properties (cf. Fig. 5). The aforementioned illegal moves are also specified in
VoxLogicA under the property wrong in Fig. 5 below.

In this step it is also decided what are the initial positions of the agents,
i.e., the initial state where the state-space generation starts. Depending on the
given initial conditions, it is possible that some legal configuration previously
generated and passed to VoxLogicA will not be generated.

Once the state space for the chosen initial conditions and legal moves is
generated, it must be marked with the states that are forbidden and those that
are final. This is the fifth activity of CATLib. Also, it must be decided which
agents are controllable and which are not. This information is provided in part
as input parameters of the experiments and in part with a JSon file computed
with VoxLogicA, where each state has as set of Boolean attributes, one for each
evaluated spatial property.

After all states and transitions have been marked with the required informa-
tion, the strategy synthesis is performed as the final, sixth activity of CATLib.
The algorithm computes the maximal behaviour of the composition (in agree-
ment) such that it is always possible to reach a final configuration and forbidden
configurations are never traversed. If the strategy is non-empty, this will provide
information on the behaviour to be followed by the controllable agents to ensure
that a final configuration is always reached without passing through forbidden
configurations, against all possible moves of uncontrollable components.

VoxLogicA Activities. The first activity of VoxLogicA is the evaluation of the
formulae representing final and forbidden states. This is done via an auxiliary
python script, that takes as input the logical specification, described by a python
function, whose body is constituted by an “f-string”, that is a string, where
python expressions enclosed in curly braces are evaluated in place, the base image
(i.e., the map or planimetry where agents move), and the directory containing all
the reachable configurations, encoded as images. The python script then iterates
the specification, evaluating expressions where appropriate. The parameters of
the python function describing the specification are the base image filename
and the currently evaluated configuration, such that the specification can only
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Table 1. Summary of the two experiments

First experiment Second experiment

Controllable Red and green agents Door

Uncontrollable Door Red and green agents

Initial state Green agent in front of red agent Green agent in front of red agent

Final states Both the red and the green agent
reached the exit

The door separates the green
agent on the right from the red
agent on the left

Forbidden states The door separates the green agent
on the right from the red agent
on the left, or the red and green
agents are not near each other

Both the red and the green
agent reached the exit

Strategy The red and green agents switch
position before traversing the door

Empty

evaluate properties of a single configuration, using the base image to identify
relevant regions (like walls).

The second activity of VoxLogicA collects all the properties that have been
computed in the first activity, locally for each state, and turns them into a
single source of information, in the form of a JSon file that contains a record
for each state, reporting on all the properties that have been described in the
specification. In order to do so, a special output mode of VoxLogicA is used,
where the tool outputs a single JSon record of all the user-specified properties
that have been printed or saved in the specification.

The presented methodology is a first step towards connecting CATLib and
VoxLogicA. While correct, its efficiency could be improved, especially the
input/output overhead. We provide details on future enhancements in Sect. 5.

4 Experiments

In this section, we describe the experiments that have been performed following
the process described in the previous section. We performed two experiments,
starting from the same initial conditions but with opposite controllable/uncon-
trollable agents and forbidden/final states. The setup and outcome of the exper-
iments are reported in Table 1. The repository containing all data, sources, and
information on how to reproduce the experiments is publicly available [14].

The PNG map image used as planimetry is a 10× 10 pixels image that weighs
188 bytes. It is depicted in Figs. 1 and 4 (without coloured pixels). Since this
is a preliminary exploratory study, we focus on a simple image, leaving more
complex scenarios for future work.

The setup for the experiments is of two duplicate mobile agents, one door
agent and one driver agent. The door agent is placed in position (2; 7) (cf.
Fig. 4). Initially, the red agent is in the top left corner of the white corridor
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(position (1; 1)), whereas the green agent is just below the red agent (position
(2; 1)) and the door is closed. The initial state is depicted in Fig. 6 (left).

The illegal moves were described in the previous section. We recall that in a
legal composition, no agent moves over a wall, a closed door, or another agent.

The invocation of the composition function of CATLib is reported below. The
composition is instantiated with the list of operands, namely the two agents,
the driver, and the door. The second argument is the pruning predicate: if a
generated transition satisfies the pruning predicate it will be pruned and not
further explored. When applying the composition it is possible to specify a bound
on the maximum depth of the generated automaton. In this case, the bound is
set to the maximum Integer value. The two agents are instantiated with maze tr
and maze2 tr being their set of transitions, which only differ in the initial state.
The property of agreement is passed as a lambda expression: transitions with a
request label will be pruned. Similarly, this condition is put in disjunction with
a condition checking whether the target state of the generated transition is ‘bad’
(i.e., an illegal transition), in which case the transition is pruned.

MSCACompositionFunction<String> cf = new MSCACompositionFunction<>
(List.of(new Automaton<>(maze_tr),new Automaton<>(maze2_tr),driver,door),

t->t.getLabel().isRequest() || badState.test(t.getTarget()));
Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>

comp = cf.apply(Integer.MAX_VALUE);

In the first experiment, the final and forbidden states are set according to the
following definitions. Consider the specification given in Fig. 5 (cf. Sect. 2 for an
introduction on the operators used therein). The final states are set to be those
on the right hand side of the image passing through the corridor where the door
is located (property final), and are depicted in Fig. 6 (middle). Concerning the
forbidden states, we experiment with two different spatial properties to identify
them. The first property (property forbidden1) is a disjunction of two sub-
properties. It identifies as forbidden those states that are either illegal (property
wrong) or in which the two agents are in two areas separated by the closed door,
and the green agent is on the right side of the door, i.e., it can reach an escape
(a final state), whereas the red agent cannot because it is blocked by the door
(property greenFlees). In fact, Fig. 4 represents one of these forbidden states.
The second property (property forbidden2) identifies as forbidden those states
that are forbidden according to forbidden1 or in which the two agents are not
close to each other, i.e., they are distant more than two pixels (negation of the
property nearBy).

Finally, in this first experiment we interpret the door as uncontrollable,
whereas the red and green agents are controllable. Basically, this is a scenario in
which the two players are playing against an uncontrollable door. Below we list
the code used to invoke the synthesis operation of CATLib. The instantiation of
the operation takes as argument the property to enforce, agreement in this case,
and the automaton where the synthesis is applied, called marked in this case.

Automaton<String, Action, State<String>, ModalTransition<String,Action,State<String>,CALabel>>
strategy = new MpcSynthesisOperator<String>(new Agreement()).apply(marked);
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Fig. 5. VoxLogicA specification of the properties used in the experiments

The most permissive synthesised strategy consists of 684 states and
2635 transitions (recall that in each transition, only one of the agents is moving).
The length of a shortest path from the initial state to a final state is composed of
33 transitions to be executed. In the initial state (Fig. 6 (left)), the green agent
is in front of the red agent on the path to the exit. However, in the strategy the
green agent cannot traverse the open door before the red agent. Indeed, in this
case, since the door is uncontrollable, it is not possible to prevent the door from
closing and separating the red agent (blocked by the door) from the green agent
(who can reach the exit). This is indeed a forbidden state that the strategy must
avoid. In the strategy, to overcome this problem, the two agents switch position
before crossing the door. Figure 6 (right) depicts the moment where the red agent
is crossing the door right after exchanging position with the green agent who is
still in the corridor. Indeed, in the shortest path they switch position near the
door. Note that no forbidden state occurs if the door closes after only the red



156 D. Basile et al.

Fig. 6. On the left the initial configuration of both experiments. In the middle the final
states of the first experiment (marked in violet). On the right a configuration traversed
by one of the shortest paths of the first experiment’s strategy, in which the red agent is
crossing the door before the green agent does, thus avoiding forbidden configurations.
(Color figure online)

agent has traversed it. Indeed, in this scenario the green agent is prevented from
reaching an exit because it is blocked by the door. Hence, after the red agent
has traversed the door, the strategy guides the green agent to safely cross the
door such that they can both reach a final state.

To confirm the first experiment, we performed a second experiment by invert-
ing the setup of the first experiment. In this second experiment, the door is con-
trollable, whereas the green and red agents are both uncontrollable. The final
states are those in which the door separates the green agent (on the right side of
the door) from the red agent (on the left side of the door). These are basically
the forbidden states of the first experiment. Similarly, the forbidden states in the
second experiment are those states in which both the green and the red agent
have reached the exit, i.e., the final states of the first experiment. The initial
configuration is the same as in the first experiment. As expected, in this dual
case the returned strategy is empty. Indeed, if this were not the case, then we
would have a contradiction because the green and red agents have a strategy to
reach the exit without being separated by the door with the red agent blocked,
for every possible finite behaviour of the door.

There is no strategy for the door to reach a final configuration mainly because
the door cannot ensure that the uncontrollable green agent traverses the door
first. Moreover, the door cannot prevent the agents from reaching the exit by
always remaining closed since (unless only the green agent has traversed the
door) a final state would not be reachable.

Performance of Experiments. We conclude this section by reporting the time
needed for computing various phases of the experiments and measures of the
computed automata. The experiments were performed on a machine with
Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz equipped with 32 GB of RAM.
The time performance is reported in Table 2. We note that the synthesis is more
expensive (computationally) than the composition. Indeed, as showed in Sect. 2,
each iteration of the synthesis requires to compute the set of dangling states,
which requires a forward and backward visit of the automaton. The marking is
the most computationally expensive phase of CATLib because each marking of
either a final or a forbidden state requires to search whether that state has a
final or forbidden attribute in the JSon file provide by VoxLogicA.
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Table 2. Time needed to perform the experiments’ phases

Phase Both experiments

Computing the unconstrained composition 26643 ms

Generating images 7910 ms

Running VoxLogicA 6140 s

Computing the legal composition 2487 ms

First experiment Second experiment

Marking the composition with VoxLogicA

properties and controllability
108058 ms 118291 ms

Synthesis 2942 ms 33472 ms

Table 3. Number of states, transitions and size of the automata used in the experiments

Automaton #States #Transitions Size (bytes)

Agent 100 360 18723

Unconstrained composition 20000 164800 21858146

Legal composition 3200 15176 2004736

Marked composition (first experiment) 3202 17665 2339874

Marked composition (second experiment) 3202 15552 2066368

Strategy (first experiment) 684 2635 347652

Table 3 reports the number of states, the number of transitions, and the
size (in bytes) of the various automata. As expected, the number of states of
the agent automaton is exactly the number of pixels of the image. The largest
automaton is the one with the unconstrained composition, whose number of
states is the product of the states of the two agent automata and the door
automaton (100 × 100 × 2). We note that the agent automaton (encoding an
image as automaton) requires more space than the PNG image (188 bytes of the
image against 18723 bytes of the corresponding automaton). Moreover, the legal
states given the initial conditions are only a small fraction (16%) of the total
number of states passed to VoxLogicA. Finally, the marked compositions for the
two experiments have two additional states with respect to the legal composition,
which are the added initial and final states. The number of transitions of these
two automata differs according to the number of states marked as final, to which
a transition to the newly added final state is added, and the number of forbidden
states, to which a bad transition is added as a self-loop.

The evaluation of the given VoxLogicA specification (also reported in Table 2)
takes about 530 ms per image, of which only 45 ms are spent on the actual com-
putation; the rest is spent in file input/output, parsing the specification, and
recovering the results from python. Since all the images are processed sequen-
tially, the total analysis time for the 11562 images that are generated is therefore
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a bit less than two hours, which dominates the total computation time for the
experiment. As discussed in Sect. 3, much of the overhead could be eliminated
(cf. the Conclusion for more information).

5 Conclusion

We have discussed an integration of the tools CATLib and VoxLogicA to perform
strategy synthesis on images processed with spatial model checking. Our con-
tribution constitutes the first application of CATLib and VoxLogicA to build a
framework for modelling and solving multi-agents mobile problems. The result
clearly demonstrates the feasibility of a full-fledged tool chain built from CATLib
and VoxLogicA and shows an original approach to combine strategy synthesis
with spatial model checking. The experiments performed in this paper are still
preliminary and not much thought has been given to the efficiency of the encod-
ings, the computations, and the tool integration. Hence, this paper offers a lot
of interesting opportunities for future work.

Future Work. The proof-of-concept example in this paper uses a 10 × 10 pixels
map. Efficiency and scalability are two key issues to address in the future. Several
possible scalable solutions are viable and some ideas are provided next.

In the current approach, many states are used to move agents up and down
the ends of corridors (each agent has a state for each pixel of the image). However,
fewer states could actually be sufficient. Relaxing the representation of an image
to one where each state is a zone of the image (e.g., a corridor) rather than a
pixel would drastically reduce the state space.

Another scalable solution could be to decompose a large image into smaller
images. For example, the final states of the first experiment in Sect. 4 could be
entering points to a new portion of the map. Several small maps could be linked
together by ports for entering and exiting.

Yet another scalable solution could be to drop the requirement of a strategy
to be most permissive in favour of some objective function to optimise. A near-
optimal solution could be synthesised as a trace using statistics over runs, in the
style of [46].

Currently, each new parameter setup requires to be implemented manually.
Similarly, the various CATLib and VoxLogicA activities depicted in Fig. 1 need
to be invoked manually. Future research is needed to completely automatise
our proposal, providing a tool that takes as input the setup of an experiment,
including the map, and outputs the synthesised strategy, if any, in a push-button
way. This could result in an optimisation of the methodology presented in Sect. 3.
Indeed, as shown in Sect. 4 and Table 2, currently a bottleneck is present in the
processing of the images and JSon logs, mainly due to the offline processing of
all images by VoxLogicA, for all possible initial conditions of the experiments.
For example, the actual time spent on computing the evaluation of properties
using VoxLogicA is a small fraction of its total evaluation time. The rest is spent
in parsing, loading, and saving, which is repeated for each image and could
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mostly be eliminated. The number of images and total size of the logs could be
reduced drastically by making CATLib and VoxLogicA interact online at each
new experiment. In this way, there would be no need for CATLib to initially
generate all possible states. Only those states that are actually reachable given
the setup of the experiment at hand could be generated. This would result in
far fewer images to be processed by VoxLogicA and a smaller JSon log to be
parsed by CATLib in return. Concerning VoxLogicA, the input/output overhead
could also be eliminated by loading several files at once in parallel, parsing the
specification only once, and exploiting the recent GPU implementation [26].
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e Reggio Emilia, 42122 Reggio Emilia, Italy

{stefania.monica,franco.zambonelli}@unimore.it
2 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli
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Abstract. The investigation of the collective dynamics of multi-agent
systems in terms of the study of the properties of single agents is not
feasible when the number of interacting agents is large. In this case,
the collective dynamics can be better examined by adopting a statistical
approach that studies the long-time asymptotic properties of the system
as a whole. The kinetic framework discussed in this paper can be used
to study collective and emergent properties of large and decentralized
multi-agent systems once single interactions among agents are properly
described. Moreover, the discussed framework can be used to design how
agents should interact to ensure that the resulting multi-agent system
would exhibit the required collective and emergent characteristics. The
discussed framework restricts the interactions among agents to message
exchanges, and it assumes that the investigated properties emerge from
interactions. As an example of the use of the framework, and to outline
a concrete application of it, the properties of a system in which agents
implement the symmetric gossip algorithm are analyzed. Analytic results
obtained using the discussed framework are compared with independent
simulations, showing the effectiveness of the approach.

Keywords: Collective adaptive systems · Symmetric gossip
algorithm · Mathematical kinetic theories

1 Introduction

The study of the dynamics of large and decentralized multi-agent systems is an
important research topic that is the basis of the studies on collective adaptive
systems (e.g., [16]) and that finds relevant applications in various aspects of
distributed artificial intelligence (e.g., [20]). Usually, the study of the dynamics
of these systems assumes that each agent is associated with a state that changes
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dynamically to reflect, for example, observations and deliberations. The states
of the agents change because of multiple causes and, in particular, because of
interactions, which occur when an agent gets in touch with another agent.

Accordingly, the descriptions of how interactions change the states of the
agents is central to the study of dynamics of multi-agent systems. These descrip-
tions take into account all phenomena that describe how agents change their
states, and they vary significantly according to the studied phenomena and
to the peculiarities of the multi-agent system under investigation. However,
when the number of agents in the considered system is large (e.g., large fleets
of autonomous connected vehicles in an urban area [13,27]), the study of the
dynamics of the state of each agent might not be feasible. In this case, the anal-
ysis of the collective behavior [22,39] of the multi-agent system as a whole is pre-
ferred, which implies focussing only on the features of the individual states that
contribute to form interesting collective properties. Under the assumption that
the relevant features of the states can be represented in terms of real numbers,
the collective properties of multi-agent systems can be investigated using statisti-
cal approaches. Although the aggregate values that statistical approaches target
are not sufficient to obtain detailed descriptions of the states of single agents,
they are indeed sufficient to describe the collective and emergent dynamics of
the multi-agent system as a whole.

This paper discusses the possibility of studying the asymptotic collective
dynamics of large and decentralized multi-agent systems by introducing a spe-
cific instantiation of the general approach of mathematical kinetic theories
(e.g., [4,5]), which we call Kinetic Theory of Multi-Agent Systems (KTMAS ).
Mathematical kinetic theories are not necessarily restricted to the study of phys-
ical phenomena, and they are generally intended to investigate the collective
properties of groups of interacting peers under the assumption that the relevant
characteristics of a group emerge from local interactions among peers and from
environmental forces. Actually, mathematical kinetic theories provide interest-
ing results every time the characteristics of studied systems justify a statistical
approach and when the interactions among peers are the main causes of the
dynamics of studied systems (e.g., [30,31]). In this context, KTMAS is instead
specifically designed to study the long-time asymptotic properties of large and
decentralized multi-agent systems in which agents affect each other’s state via
message passing [6].

The major contribution of this paper is to discuss the basis of an analytic
framework designed to characterize a KTMAS. The discussed framework sup-
ports descriptive and prescriptive reasoning on the long-time asymptotic prop-
erties of large multi-agent systems. As a descriptive tool, the framework can
be used as an alternative to simulations that benefits from solid mathematical
foundations. As a prescriptive tool, the framework supports the design of sys-
tems with desired long-time asymptotic properties. In the last part of this paper,
the framework is concretely applied to the study of the collective dynamics of
a system in which all agents implement the symmetric gossip algorithm [11].
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This system is also analyzed using independent simulations, and the outcome of
simulations is in tight agreement with the results obtained using the framework.

This paper is organized as follows. Section 2 presents the ideas behind the
proposal of a KTMAS, and it reviews the discussed framework. Section 3 applies
the framework to study the dynamics of a system in which all agents implement
the symmetric gossip algorithm. Section 4 compares the analytic results obtained
using the framework with independent simulations, showing the effectiveness of
the framework. Section 5 briefly discusses related work. Finally, Sect. 6 concludes
the paper and outlines future research directions.

2 The Basis of the KTMAS Framework

Mathematical kinetic theories share a common general framework designed to
study the collective dynamics of groups of interacting peers (e.g., [5]). The gen-
eral framework is completed with the details needed to study specific phenom-
ena in specific contexts, and the resulting models are used to derive analytic
descriptions of the collective dynamics of the studied group of peers. The general
framework assumes that the properties that characterize peers change primarily
because of interactions, and that groups are so large that collective and emergent
properties can be adequately studied using a statistical approach. The KTMAS
framework, as outlined in this section, is a specific instantiation of the general
framework of mathematical kinetic theories to study large and decentralized
multi-agent systems composed of agents that autonomously exchange messages.
In particular, the KTMAS framework studies multi-agent systems composed of
a static and large number n ∈ N+ of interacting agents, where each agent is
uniquely identified by a natural number between 1 and n. Each agent has a
state and, without loss of generality, it is assumed that each state can be asso-
ciated with a real number q ∈ Q, where Q ⊆ R is an arbitrary interval that
represents the different states an agent can assume.

Agents interact autonomously with each other in the multi-agent system.
Interactions are assumed to take the form of message exchanges, and each inter-
action involves only two agents, so that the only considered form of interaction
regards an agent r (the receiver) receiving a message from an agent s (the
sender). Other forms of interaction (e.g., multicast or stigmergic [14]) can be
easily mapped to message exchanges. Interactions are assumed to be mutually
independent, and the semantics of an interaction depends only on the states of
involved agents. Each agent can interact with any other agent in the multi-agent
system, and the frequency of interactions is (roughly) constant. Since interac-
tions are the only interesting events in the KTMAS framework, time is modeled
as a sequence of discrete steps, which may not have the same duration, and each
step corresponds to a single interaction that involves two agents.

The state of an agent can change only because of interactions, and inter-
actions are modeled on the basis of how they change the states of the agents
that send and receive messages. In detail, the KTMAS framework assumes that
interactions are described in terms of proper interaction rules that link the pre-
interaction states of involved agents with the respective post-interaction states.
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Interaction rules are peculiar to the system under investigation, and the KTMAS
framework let them unspecified until a complete model of the system is needed
to actually study interesting collective and emergent properties.

In accordance with the general approach of mathematical kinetic theories,
f : Q × [0,+∞) → R is a function such that f(q, t) dq represents the number of
agents whose states are in (q, q+dq) at time t ∈ [0,+∞). Note that f is assumed
to be sufficiently regular to support the analytic developments discussed in the
remaining of this paper. The number of agents in the system is

n =
∫

Q

f(q, t) dq, (1)

where the dependence of n on t is dropped because the number of agents in the
system is assumed to be static.

The average state of the agents at time t ∈ [0,+∞), denoted as q̄(t), is

q̄(t) =
1
n

∫
Q

q f(q, t) dq, (2)

and the variance of the states at time t ∈ [0,+∞) is

σ2(t) =
1
n

∫
Q

(q − q̄(t))2f(q, t) dq. (3)

In order to study the evolution of f , and therefore, to study the dynamics of
the average state and of the variance of the states, let

W (qs, qr, q̂s, q̂r) dq̂s dq̂r (4)

be the probability per unit time that, given an agent s in state qs and an agent
r in state qr, agent s and agent r interact and their states after the interaction
fall in (q̂s, q̂s + dq̂s) and (q̂r, q̂r + dq̂r), respectively. Therefore, the probability
per unit time that agent s and agent r interact can be computed as

β =
∫

Q2
W (qs, qr, q̂s, q̂r) dq̂s dq̂r, (5)

where the dependence of β on qs and qr is dropped because agents are supposed
to interact at a (roughly) constant rate.

Note that previous definitions can be used to compute the loss per unit time
of the agents with states in (qr, qr + dqr) at time t as Q−[f ] dqr, where

Q−[f ] =
∫

Q3
W (qs, qr, q̂s, q̂r)f(qs, t)f(qr, t) dqs dq̂s dq̂r. (6)

Similarly, the gain per unit time of the agents with states in (qr, qr + dqr) at
time t can be computed as Q+[f ] dqr, where

Q+[f ] =
∫

Q3
W (q̌s, q̌r, qs, qr)f(q̌s, t)f(q̌r, t) dqs dq̌s dq̌r. (7)
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Finally, the gain per unit time of the agents with states in (qr, qr + dqr) at time
t, as computed by (7), and the relative loss, as computed by (6), can be used to
define the collision operator Q[f ] as

Q[f ] = Q+[f ] − Q−[f ]. (8)

The collision operator Q[f ] expresses a balance per unit time of the agents whose
states enter and exit the region of states (q, q + dq). Therefore, the collision
operator is sufficient to express a balance equation that describes the dynamics
of how states are distributed among agents

∂f

∂t
(q, t) = Q[f ]. (9)

Note that (9) is normally called Boltzmann equation because it is a generaliza-
tion of the classic equation devised for the kinetic theory of gases by Ludwig
Boltzmann in 1872. The Boltzmann equation for a group of peers is the core of
all mathematical kinetic theories because it expresses the dynamics of the group
once W in (4) is expressed in terms of the characteristics of the considered inter-
actions. The explicit expression of W requires to select which phenomena to
include in the description of the interactions among peers, and it is normally left
unspecified in the general framework of mathematical kinetic theories. Section 3
provides an expression of W that describes how agents interact to implement the
symmetric gossip algorithm. This expression is sufficient to prove the correctness
of the algorithm under the assumptions of the KTMAS framework and to study
the expected long-time asymptotic dynamics of the studied multi-agent system.

The Boltzmann equation provides a fine-grained characterization of the
dynamics of the states of the agents, which is usually too fine-grained to be
feasible for large multi-agent systems. Therefore, the study of the dynamics of
the collective properties of the multi-agent system as a whole is often preferred.
In order to study these collective properties, the weak form of the Boltzmann
equation for a sufficiently regular test function φ : Q → R is considered

∫
Q

∂f

∂t
(q, t)φ(q) dq =

∫
Q

Q[f ]φ(q) dq. (10)

The relevance of the weak form of the Boltzmann equation to study the collec-
tive properties of multi-agent systems can be clarified as follows. If the details
of the interactions that occur in the multi-agent system are made explicit, by
stating an explicit expression of W in (4), the right-hand side of (10) can be also
made explicit. Therefore, for an explicit W and a fixed φ, the weak form of the
Boltzmann equation becomes an ordinary differential equation that describes
the dynamics of the collective property entailed by the chosen φ. For example,
if φ(q) = q is chosen, (10) can be written as

n
dq̄

dt
(t) =

∫
Q

Q[f ] q dq, (11)
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which is the equation used in Sect. 3 to study the average state of the agents.
Similarly, if φ(q) = (q−q̄(t))2 is chosen, the weak form of the Boltzmann equation
can be written as

n
dσ2

dt
(t) =

∫
Q

Q[f ] (q − q̄(t))2 dq, (12)

and this equation can be used to study the dynamics of the variance of the states
of the agents. This choice of φ is used in Sect. 3 to prove that the variance of
the states of the agents that implement the symmetric gossip algorithm tends
to zero as time tends to infinity, which ensures that all agents would eventually
share the same state.

3 The Case of the Symmetric Gossip Algorithm

The distributed averaging problem (e.g., [11]) is a well-known problem related
to multi-agent systems that finds important applications, for example, in sensor
networks and social networks. The motivating application in sensor networks is
related to sensors that jointly measure the characteristics of physical phenom-
ena. For example, a toy scenario to motivate the distributed averaging problem
regards the sensing of the temperature of a small region of space using a net-
work of sensors [11]. Sensors are deployed to measure the temperature of the
region and, to combat minor fluctuations in ambient temperature and noise in
sensor readings, sensors need to average their readings. The application in social
networks is similar, and it is about compromise (e.g., [30]), which is one of the
fundamental phenomena that govern opinion formation, and which is considered
as the major force that enables decentralized consensus in multi-agent systems.
In the assortment of algorithms proposed to solve the distributed averaging
problem, the algorithm first proposed in [11], and called symmetric gossip algo-
rithm with the nomenclature proposed in [18], can be used to describe a concrete
application of the discussed KTMAS framework. The remaining of this section
is devoted to apply the KTMAS framework to study the long-time asymptotic
properties of systems that implement this algorithm.

3.1 Model

In the studied multi-agent systems, each agent is characterized by a state q ∈ Q,
where Q ⊂ R is a known bounded interval that is assumed to be [−1, 1] without
loss of generality. Each agent is requested to exchange messages with other agents
at a (roughly) constant rate to reach consensus on the average value of initial
states. Each agent s repeatedly chooses another agent r at random and sends
a message to agent r. A message from agent s to agent r contains the current
state of agent s, and it is used by agent r to update its state. Given that agents
update their states only upon receiving messages, the updates are based on their
current states and on the states contained in the received messages.

The symmetric gossip algorithm fixes the function that an agent r uses to
update its state upon receiving a message from another agent s. The adopted
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function is a linear combination of the current state of agent r and of the state
contained in the received message. The algorithm assumes that immediately
before updating its state, agent r replies with a message containing its current
state, which is then used by agent s to update its state. Note that the algorithm
assumes some form of synchronization because messages and related replies are
supposed to contain the actual states of interacting agents. This assumption is
commonly taken in the symmetric gossip algorithm, and it is considered appro-
priate for intended applications of the algorithm.

If agent r, in state qr, interacts with agent s, in state qs, the symmetric
gossip algorithm requires agents to mutually exchange their current states and
to update their states using the following interaction rules (adapted from [11])

q̂s = ts(qs, qr) = qs − γ(qs − qr)
q̂r = tr(qs, qr) = qr − γ(qr − qs),

(13)

where q̂s and q̂r are the updated states of agent s and of agent r, respectively,
and γ ∈ (0, 1) is a parameter of the symmetric gossip algorithm. Following the
nomenclature of mathematical kinetic theories, qs and qr are the pre-interaction
states of agent s and of agent r, respectively, while q̂s and q̂r are the correspond-
ing post-interaction states. Note that the chosen interaction rules are such that,
for all qs ∈ Q and qr ∈ Q, ts(qs, qr) = tr(qr, qs).

Before using the KTMAS framework to study the long-time asymptotic prop-
erties of the multi-agent systems that implement the symmetric gossip algo-
rithm, some considerations on adopted interaction rules are needed. First, note
that post-interaction states belong to interval Q = [−1, 1] because the following
inequalities hold

|q̂s| ≤ (1 − γ)|qs| + γ|qr| ≤ max{|qr|, |qs|} ≤ 1
|q̂r| ≤ (1 − γ)|qr| + γ|qs| ≤ max{|qr|, |qs|} ≤ 1.

(14)

Then, note that, from the adopted interaction rules, the following equality can
be easily derived

q̂s + q̂r = qs + qr, (15)

which implies that interactions do not modify the average state of the agents.
Finally, note that each interaction reduces the distance of the states of interacting
agents because γ ∈ (0, 1) and the following inequality holds

|q̂s − q̂r| = |1 − 2γ||qs − qr| ≤ |qs − qr|. (16)

It is therefore reasonable to expect that, after a sufficiently large number of inter-
actions, all agents would eventually tend to the same state, which is necessarily
the average of the initial states. The understanding of how quickly the states of
the agents tend to the average of the initial states requires further discussions,
as shown in the remaining of this section.
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3.2 Analytic Results

The interest now is on using the KTMAS framework to study the dynamics
of the states of the agents. The following propositions accurately describe the
dynamics of the states of the agents using the KTMAS framework.

Proposition 1. The symmetric gossip algorithm described by (13) ensures that
the average state of the agents in the multi-agent system is constant over time.

Proof. The following expression is obtained by setting φ(q) = q in the weak form
of the Boltzmann equation

n
dq̄

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)(tr(qs, qr) − qr) dqs dqr (17)

after some ordinary manipulations and using the fact that, for all qs ∈ Q and
qr ∈ Q, ts(qs, qr) = tr(qr, qs). Then, using the adopted interaction rules to
expand tr(qs, qr), the previous formulation of the weak form of the Boltzmann
equation becomes

n
dq̄

dt
(t) = βγ

∫
Q2

f(qs, t)f(qr, t)(qs − qr) dqr dqs. (18)

Note that the right-hand side of the previous equation can be rewritten as

βγ

(∫
Q

f(qr, t) dqr

∫
Q

f(qs, t)qs dqs −
∫

Q

f(qs, t) dqs

∫
Q

f(qr, t)qr dqr

)
. (19)

Therefore, the weak form of the Boltzmann equation for φ(q) = q becomes

dq̄

dt
(t) = 0, (20)

which ensures that the average state of the agents in the multi-agent system is
constantly equal to the initial average. �	
Proposition 2. The symmetric gossip algorithm described by (13) ensures that
the states of all the agents tend to the same value exponentially fast as time
tends to infinity.

Proof. The variance of the states can be studied by setting φ(q) = (q − q̄)2 in
the weak form of the Boltzmann equation, where the dependence of q̄ on t is
dropped because of Proposition 1. Therefore,

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)[(tr(qs, qr) − q̄)2 − (qr − q̄)2] dqs dqr. (21)

The previous equation can be simplified as follows

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)[t2r(qs, qr)−q2
r −2q̄(tr(qs, qr)−qr)] dqs dqr. (22)
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Now, note that the term that contains (tr(qs, qr)−qr) in the previous equation is
proportional to the right-hand side of (17), which Proposition 1 proves to equal
zero. Therefore, the previous formulation of the weak form of the Boltzmann
equation can be written as

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)(t2r(qs, qr) − q2
r) dqs dqr. (23)

The adopted interaction rules can be used to make tr(qs, qr) explicit in the
previous equation to obtain

n
dσ2

dt
(t) = β

∫
Q2

f(qs, t)f(qr, t)[γ2(qr − qs)2 − 2γqr(qr − qs)] dqs dqr. (24)

Simple algebraic manipulations allow obtaining the following formulation of the
weak form of the Boltzmann equation for φ(q) = (q − q̄)2

n
dσ2

dt
(t) = 2βγ(γ − 1)n

(∫
Q

f(qr, t)q2
r dqr − nq̄2

)
. (25)

Note that the last factor of the previous equation is nothing but nσ2(t), and
therefore, the following ordinary differential equation that describes the dynam-
ics of the variance of the states is obtained

dσ2

dt
(t) = 2βγ(γ − 1)nσ2(t). (26)

The previous equation can be easily solved to obtain a closed-form expression of
the variance of the states

σ2(t) = σ2
0e−2βγ(1−γ)nt, (27)

where σ2
0 = σ2(0) is the initial variance of the states. Note that γ ∈ (0, 1), and

therefore, the previous exponential function is decreasing and tends to zero as
time tends to infinity. �	

4 Theory Vs. Simulations

Proposition 1 ensures that the average state of a multi-agent system in which
agent implement the symmetric gossip algorithm is constant over time. Proposi-
tion 2 ensures that all agents would eventually reach the same state, which equals
the initial average state for Proposition 1. The following illustrative simulations
are meant to compare the analytic results derived from previous propositions
with the actual behavior of a multi-agent system in which agents implement
the symmetric gossip algorithm. Note that an in-depth comparison between the
analytic results derived from previous propositions with a simulated multi-agent
system is out of the scope of this paper.
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The simulated multi-agent system comprises n = 100 agents that implement
the symmetric gossip algorithm. For each simulation, the states of the agents
are initially set to random values uniformly distributed in Q = [−1, 1], so that
the initial variance of the states is σ2

0 = 1
3 . Each simulation comprises τ = 103

steps, and at every step, which corresponds to one unit of time, two agents are
randomly chosen and their states are updated using (13).

Figure 1(a) shows the variance of the states for four simulations obtained
using γ in {0.1, 0.2, 0.3, 0.5}. As expected, the shown variances exponentially
decrease toward zero as time increases. Figure 1(b) shows the corresponding
variances computed using (27) with β = 2 · 10−4. A quick comparison between
the plots confirm that the variances obtained using simulations adequately fit
the variances obtained using (27). Moreover, the plots confirm that the rate of
convergence increases as γ increases. This is not surprising because the adopted
interaction rules are such that the distance between the post-interaction states of
two interacting agents decreases as γ increases in (0, 1

2 ]. Note that this property
of adopted interaction rules is confirmed by (27).

Figure 2 splits the plots of Fig. 1 to better compare the variances obtained
using simulations with the corresponding variances computed using (27). In par-
ticular, the four plots in Fig. 2 show the variances for γ = 0.1, γ = 0.2, γ = 0.3,
and γ = 0.5. The figure shows tight agreement between the variances obtained
using simulations and the variances computed using (27). Actually, for a given
γ ∈ {0.1, 0.2, 0.3, 0.5}, the largest distance between the variance obtained using
simulations and the corresponding variance obtained using (27) are: 0.02 for
γ = 0.1, 0.029 for γ = 0.2, 0.045 for γ = 0.3, and 0.038 for γ = 0.5.

5 Related Work

Besides the importance of multi-agent systems for artificial intelligence, as wit-
nessed by the significant body of literature that originated, for example, from
[23], large multi-agent systems have been recently attracting a considerable
attention for their direct link with relevant applications like social networks
and sensor networks. It is common opinion that large multi-agent systems have
specific peculiarities, and that common methods and tools are not immediately
applicable to study them (e.g., [24]). In addition, large multi-agent systems are
particularly important in applications that are characterized by decentralized
control (e.g., [21]). This is not surprising since decentralized control is assumed
to scale for the number of agents better than centralized control, and therefore it
is the most obvious choice when the number of agents is large (e.g., [40]). When
studied multi-agent systems are large and decentralized, the ordinary techniques
commonly used to study the dynamics of multi-agent systems (e.g., [33]) tend
to become unfeasible, and the alternative approaches of collective adaptive sys-
tems [16] are needed. In such cases, statistical approaches seem to provide better
ways to study the dynamics of multi-agent systems because they move the focus
from the dynamics of single agents to the dynamics of the multi-agent system
as a whole (e.g., [1,12]).
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Fig. 1. Plot of (a) the variance σ̃2(t) obtained using simulations and (b) the variance
σ2(t) computed using (27) for β = 2 · 10−4 and γ ∈ {0.1, 0.2, 0.3, 0.5}, when n = 100
agents whose initial states are uniformly distributed in Q = [−1, 1] are considered.
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Fig. 2. Plot of the variance σ̃2(t) obtained using simulations (solid lines) and the
variance σ2(t) computed using (27) with β = 2 · 10−4 (dashed line) for (a) γ = 0.1,
(b) γ = 0.2, (c) γ = 0.3 and (d) γ = 0.5, when n = 100 agents whose initial states are
uniformly distributed in Q = [−1, 1] are considered.
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The KTMAS framework outlined in this paper is based on a statistical app-
roach, and it explicitly takes into account that studied multi-agent systems are
assumed to be large and possibly decentralized. In addition, the analytic nature
of the discussed framework ensures that it can be used as a prescriptive tool to
answer to the major question regarding collective intelligence [39]: “How, without
any detailed modeling of the overall system, can one set utility functions for the
individual agents [...] so that the overall dynamics reliably and robustly achieves
large values of the provided world utility?”

Mathematical kinetic theories share some similarities with fluid approxima-
tion (e.g., [9]), which has been recently introduced to analyze the collective
behavior of stochastic process algebra models of large populations. Stochastic
process algebras are modeling languages designed to describe systems of interact-
ing agents that have continuous-time Markov chains as their semantic domain.
Fluid approximation can be applied if a model contains many instances of few
agent types. It works by treating as continuous the variables that count how
many agents of each type are in each state, and by treating the rates of the
stochastic transitions as flows, thus obtaining ordinary differential equations
that describe the dynamics of the system. Similarly, mean-field approximation
(e.g., [10]) starts from a stochastic model expressed in terms of a discrete-time
Markov chain, and it studies systems consisting of a large number of interacting
agents, each of which can be in one of few states. Then, the count of how many
agents are in a given state is studied, thus obtaining a limit theorem similar
to the one for fluid approximation. Notably, mean-field approximation was used
to study multi-agent systems in which all agents implement a variant of the
symmetric gossip algorithm discussed in Sect. 3, obtaining analogous results [3].
In-depth comparisons of the discussed KTMAS framework with fluid approxi-
mation and with mean-field approximation are reserved for future work.

In recent years, models based on the general approach of mathematical kinetic
theories (e.g., [32]) have been applied to diverse research domains to describe
groups of peers that interact within a shared environment under the influence
of external forces. The prototypical example of a mathematical kinetic theory
is the classic kinetic theory of gases (e.g., [25]), which studies the collective
properties of gases, like temperature and pressure, starting from the details of
the interactions among molecules (or atoms, for noble gases). A rather obvious
parallelism between the molecules of a gas and the agents of a multi-agent system
can be drawn to adopt generalizations of the kinetic theory of gases to study
emergent and collective properties of multi-agent systems. For example, [35]
studies the similarity between the distribution of wealth in a simple economy and
the density of molecules in a gas, and [8] studies the dynamics of wealth taking a
similar approach. Similarly, [31,36,38] study models of opinion dynamics using
a formalism based on the kinetic theory of gases, while [30] extends previous
studies on opinion dynamics using the kinetic theory of gas mixtures (e.g., [7]).
Note that besides the general framework of mathematical kinetic theories, few
results from the kinetic theory of gases can be used in the discussed KTMAS
framework because the details of the collisions among molecules in gases are
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significantly different from those of the interactions among agents in multi-agent
systems. Actually, the discussed KTMAS framework drops the assumption that
agents are immersed in the physical world and that they must be characterized
in terms of mechanical properties, like positions and velocities. The framework
abstracts away such an assumption, and it does not treat mechanical properties
specifically, thus substantially changing the developments of the framework.

Besides the multiple applications of the general approach of mathematical
kinetic theories, the literature proposes several papers that document how mod-
els inspired by physics are used to study the collective properties of multi-agent
systems. In the early 1990s, the term econophysics [15,26] was proposed to des-
ignate an interdisciplinary research field that applies methods originally devel-
oped by physicists to study economic phenomena. Similarly, the term socio-
physics [15,19] was introduced to describe an interdisciplinary research field
that uses mathematical tools inspired by physics to understand the behaviors of
groups of individuals. Similar points of view have been proposed several times
(e.g., [32,34]), and all proposals recognize that the long-time asymptotic proper-
ties of multi-agent systems can be studied by regarding such systems as complex
systems [28,37]. The discussed KTMAS framework takes a similar approach, but
the framework is not described in terms of an adaptation of existing formalisms.
Rather, the framework outlined in this paper is constructed starting from the
basic characteristics of the considered agents and multi-agent systems.

6 Conclusion

This paper discusses the possibility of working toward a complete and coherent
KTMAS by outlining the basis of a KTMAS framework, which is introduced as
an analytic framework to study the long-time asymptotic properties of large and
decentralized multi-agent systems. In the first part of this paper, the discussed
framework is motivated and described. The adopted assumptions are discussed,
and an equation that describes the dynamics of the studied multi-agent systems
is obtained from very general considerations regarding the effects of interactions
on the states of the agents. In the second part of this paper, the framework
is applied to study an illustrative distributed averaging algorithm in order to
present a concrete example of the use of the framework. Note that asymmetric
variants of the studied algorithm have already been proposed in the literature
(e.g., [2,17]), and their study using the discussed KTMAS framework represents
an interesting application of the framework reserved for future work. Also, note
that a preliminary variant of the discussed KTMAS framework has already been
used to study multi-agent systems in which interaction rules are nonlinear [31]
or include an external random input [29].

Methodologically, the major advantages that are expected from the adop-
tion of the discussed KTMAS framework to the study of the dynamics of large
and decentralized multi-agent systems derive from the analytic nature of the
framework. The analytic nature of the framework ensures that obtained results
can be used both as descriptive tools to explain observations and as prescrip-
tive tools to design the dynamics of multi-agent systems. As a descriptive tool,
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the framework can be used as an alternative to simulations. The validity of the
results of simulations depends on how much simulations are representative of
the studied multi-agent systems. On the contrary, the validity of analytic results
is clearly identified by the assumptions adopted to derive them. As a prescrip-
tive tool, the framework supports the design of multi-agent systems with desired
emergent and collective properties. In fact, analytic results can be used to iden-
tify the values of parameters that ensure that the designed multi-agent system
behaves as intended. With this respect, the KTMAS framework addresses the
major goal of the research on collective intelligence, which regards the possibility
of designing interactions to obtain desired emergent and collective properties.

Planned developments in the direction of devising a complete and coher-
ent KTMAS involve three generalizations of the discussed framework. First,
the interaction rules that govern how agents react to messages are assumed to
be deterministic, while stochastic interaction rules are important when stud-
ied agents can behave erratically or experience faults. Second, the framework
assumes that every agent can interact with every other agent, which is a too
strong assumption in several interesting contexts. Therefore, the framework
could be extended to include a, possibly dynamic and stochastic, network topol-
ogy. Third, agents are often created and destroyed to serve the needs of inter-
actions in practical multi-agent systems. However, this possibility is not yet
considered in the current form of the KTMAS framework, even if mathematical
kinetic theories already provide hints on allowing the studied group of peers to
change dynamically.
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Abstract. Biological groups exhibit fascinating collective dynamics
without centralised control, through only local interactions between indi-
viduals. Desirable group behaviours are typically linked to a certain fit-
ness function, which the group robustly performs under different pertur-
bations in, for instance, group structure, group size, noise, or environmen-
tal factors. Deriving this fitness function is an important step towards
understanding the collective response, yet it easily becomes non-trivial
in the context of complex collective dynamics. In particular, understand-
ing the social feedback - how the collective behaviour adapts to changes
in the group size - requires dealing with complex models and limited
experimental data. In this work, we assume that the collective response
is experimentally observed for a chosen, finite set of group sizes. Based
on such data, we propose a framework which allows to: (i) predict the
collective response for any given group size, and (ii) automatically pro-
pose a fitness function. We use Smoothed Model Checking, an approach
based on Gaussian Process Classification, to develop a methodology that
is scalable, flexible, and data-efficient; We specify the fitness function as
a template temporal logic formula with unknown parameters, and we
automatically infer the missing quantities from data. We evaluate the
framework over a case study of a collective stinging defence mechanism
in honeybee colonies.

Keywords: Social feedback · Gaussian processes · Biological
collectives · Smoothed model checking

1 Introduction

Biological groups exhibit fascinating collective dynamics without centralised con-
trol, through only local interactions between individuals. Quantitative models
of the mechanisms underlying biological grouping can directly serve important
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societal concerns (for example, prediction of seismic activity [22]), inspire the
design of distributed algorithms (for example, ant colony algorithm [9]), or aid
robust design and engineering of collective, adaptive systems under given func-
tionality and resources, which is increasingly gaining attention in vision of smart
cities [17,21]. Quantitative prediction of the behaviour of a population of agents
over time and space, each having several behavioural modes, results in a high-
dimensional, non-linear, and stochastic system [12]. Computational modelling
with population models is therefore challenging, especially since model parame-
ters are often unknown and repeated experiments are costly and time-consuming.

In this paper, we focus on the phenomenon of collective social feedback in
biological groups, that is, how the collective behaviour adapts to changes in the
group size. Examples of social adaptation include the emergence of sensing abil-
ities through interactions and only exist at the group level [3], or, colony defence
[19] or thermoregulation [8] in social insects (as altruistic behaviours that do
not occur in isolated individuals), to name but a few. Understanding such social
adaptation cannot be done by extrapolating from observing individuals in isola-
tion. Computationally, the challenge of understanding how social context shapes
group behaviours emerges at two levels. First, models of group-behaviours enu-
merating each possible social context of an individual suffer from the combinato-
rial explosion of states, but also from a prohibitive number of model parameters.
With no simplifying assumptions, an individual within a group of size n adapts
to at least n different social contexts that need to be parametrized [14,27]. While
simplifying assumptions are justified for some experimental systems, they gener-
ally need to be validated for each experimental system at hand. For instance, in
modelling molecular dynamics with chemical reaction networks, mass-action law
assumes a linear influence of reactants’ counts to reaction propensities, but this
is not justified in case of animal collectives, due to a richer cognitive aspect of
individuals. Second, while experimentally measuring the overall group response
is significantly simpler than measuring the response of each individual within a
group via continuous tracking, it still remains impossible to measure the group
response for each group size; Instead, one must choose a set of representative
group sizes. In other words, in order to find a general pattern of behaviours, it
is necessary to analyse groups of many different sizes, both of small and large
scale.

For the above reasons, it becomes important to develop methods that are
scalable with respect to growing group size, flexible in terms of model size and
parameters, and data-efficient - producing reliable results for scarce data sets.
Our methodology relies on Gaussian Processes, a powerful Bayesian approach in
Machine Learning, to learn unknown functions from data. Gaussian Processes,
considered a “desired meta-model in various applications” [7], fulfil our require-
ments of scalability, flexibility, and data-efficiency. In addition, in contrast to
other Machine Learning models, Gaussian Processes deal not only with uncer-
tainty in the training data, but also provide guarantees of the predictions in form
of credible intervals.
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The contributions of this work are as follows. We assume that the collec-
tive response is experimentally observed for a chosen, finite set of group sizes.
Based on such data, we propose a framework which allows to: (i) predict the
collective response for any given group size, and (ii) automatically propose a
fitness function that is robustly preserved under perturbations in group size. We
use Gaussian Process Regression for task (i), allowing to overcome the need of
conducting new experiments and analysing many large models, but still having
an informed estimate of the group response. Second, we apply Smoothed Model
Checking [5], a novel technique based on Gaussian Process Classification, for
task (ii) to derive the fitness function a collective robustly performs by setting
up a template formula and inferring the missing quantity from data to under-
stand the social feedback mechanism of the collective. An illustrative example
of the developed methods in context of elucidating social feedback in collectives
is provided in Sect. 1.1. Finally, we test and evaluate the proposed methods over
a real-world case study with social honeybees.

Related Work. The framework we present here is specifically inspired by the
application of collective defence in honeybee colonies. Honeybees protect their
colonies against vertebrates by releasing an alarm pheromone to recruit a large
number of defenders into a massive stinging response [25]. However, these work-
ers will then die from abdominal damage caused by the sting tearing loose [30].
In order to achieve a balanced trade-off towards efficient defence, yet no critical
worker loss, each bee’s response to the same amount of pheromone may vary
greatly, depending on its social context. Our own related works [14,27] focus
on extracting individual behaviours from group-level data, by hypothesising a
mechanistic behavioural model and developing suitable methods for parameter
inference. Here, instead, we also assume that group-level data is available, but
we provide a model-free methodology with different aims - predicting the group
response, and inferring the group-level fitness function. To the best of our knowl-
edge, our method is the first application of Smoothed Model Checking towards
understanding collective animal behaviour.

Methodologically, our work is inspired by the general technique of Smoothed
Model Checking [5] (SMMC), implemented in the software tool U-Check [4].
SMMC was used for several applications in systems and synthetic biology. Bar-
tocci et al. [1] propose a notion of robustness degree for stochastic biochemical
circuits; They furthermore show how such robustness measure can be used for
designing a biochemical circuit robustly exhibiting a certain temporal property;
Specifically, the design goal is that a specific behaviour of a biological process
is maintained despite uncertainties from noise or uncertain model parameters.
Instead of computing the robustness degree of each sample trajectory of a system,
in this work we focus on measuring the satisfaction only on steady state data and
evaluate the robustness over the satisfaction distribution across different group
sizes. In [2], the proposed notion of robustness is used so to optimise certain
control parameters of a stochastic model to maximise the robustness of desired
specifications. In [6], the authors show how to learn and design continuous-time
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Markov chains (CTMCs) from observations formulated in terms of temporal
logic formulae; They maximise the likelihood of parameters with the Gaussian
Process Upper Confidence Bound (GP-UCB) algorithm. In contrast to the pre-
viously mentioned works, we consider a model-free approach and aim to infer a
general description of the collective response based only on experimental data.
Hence, we do not analyse varying model parameters, but different group sizes.
In reference to inferring the fitness function, [18] propose how to infer parame-
ters given a requirement template expressed in signal temporal logic (STL) and
simulation traces of the model; The approach is based on finding the tightest val-
uation function to prevent getting overly conservative parameters. Our method
of finding the parameter of a given template differs in selecting the value not
according to the tightest valuation function, but according to a measure of vari-
ation.

1.1 Illustrative Example

We next illustrate how the methodology we develop can be used to study social
influence in groups, i.e., how the group size affects the behaviour of individuals.
Assume a group of n identical agents in which each individual is confronted
with a task and either solves it successfully or fails, with certain probability. We
further assume that, each time an agent in a group succeeds, other individuals
in the group are more likely to succeed. Specifically, if the baseline probability of
success is p0, assume that the probability of succeeding with i already successful
agents in the system grows with the number of successful agents according to a
function pi = f(p0, α, i) (simple examples could be pi = p0+α·(i > 0), where the
probability increases by α if at least one other agent in the group succeeded, or
pi = p0 +α · i, where the probability increases linearly with the number of other
successful agents). Now, if measurements are available for groups of size 1, 2, and
10 (n ∈ {1, 2, 10}), inferring parameters p0 and α clearly becomes possible from
only measurements over isolated individuals (groups of size n = 1), and pairs
of interacting individuals (groups of size n = 2). These two parameters, coupled
with an underlying mechanistic model of interaction, would allow to predict the
outcome for n = 10. Finally, if model-based predictions for n = 10 significantly
differ from the experimental data for n = 10 – the increment parameter α differs
significantly for groups of size 2 and 10 – we can conclude that the agent is
aware of its social context and there is a feedback mechanism from the group
that influences the individual’s behaviour. Otherwise, if there is no significant
difference, one may conclude that there is no influence of group size to the
problem solving efficiency.

The methodology we develop here allows to predict group outcomes for any
group size, with uncertainty quantification, when group measurements are avail-
able for only certain group sizes. In the context of our illustrating example, this
means that one could predict measurements for groups of e.g. size n = 3, from
measurements for n ∈ {1, 2, 10}. Then, the hypothesis of social feedback can be
accessed by only making predictions for the model for group with n = 3 agents,
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that is dramatically smaller than the model for n = 10 agents (due to combina-
torial explosion of the state space, models for n agents would be described by
O(2n) states).

Furthermore, assume that the group aims to satisfy a certain group outcome,
independently of its size. In the above example, such function may be that
‘eventually, between 40% and 60% of group members succeed at solving the
task’. Inferring such fitness function - a high-level behavioural outcome that
tends to be robustly preserved under environmental perturbations - is of high
importance for a biological understanding of grouping. While the qualitative
form of the fitness function is often assumed by experts, quantitative parameters
(e.g. the range from 40% to 60%) are typically not explored in an automated
way. To this end, our second methodological contribution is automatising the
search for such a fitness function from only available data measurements and a
template logical formula.

2 Methods

In this section, we present the methodology based on Gaussian Processes
to understand social feedback mechanisms in biological collectives. First, we
describe the theoretical and mathematical background of the methods and subse-
quently we demonstrate how to apply these existing techniques in our framework
to address the previously stated research problems. All definitions of Gaussian
Processes and the corresponding regression and classification follow closely the
description by Rasmussen and Williams [29].

2.1 Gaussian Process

A Gaussian Process (GP) is a generalisation of a multivariate Gaussian distri-
bution to infinite dimension. As a non-parametric distribution over a space of
functions, a GP is designed to solve regression and classification problems by
approximating unknown functions. Since a GP model is data-driven, applicable
without specifying the underlying distribution beforehand, and powerful even
for little data, it surpasses many of the traditional regression and classification
methods. The predictions of a GP are probabilistic, such that the results provide
not only an estimate, but additionally a quantification of uncertainty in form of
credible intervals.

Mathematically, we define a prior probability distribution directly over func-
tions, from which the posterior distribution can be inferred when data is
observed. A kernel-based probabilistic model is set up to learn relationships
between observed data and make predictions about new data points. In general,
a GP’s characteristics are completely specified by a mean function m(x) and a
positive definite kernel function k(x, x′) for input values x, x′ ∈ R. Kernels are
used as a similarity measure between data points and generate the covariance
matrix Σ by evaluating the kernel function at all pairs of input points.

We denote matrices by capitalised letters and vectors in bold type. A sub-
script asterisk refers to a test set quantity.
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2.2 Gaussian Process Regression

We define a GP prior f(x) ∼ GP(m(x), k(x, x′)) independent of any training data
that specifies some properties of the unknown functions through the choice of
the kernel function. Three of the most common kernel functions are implemented
in our framework:

– Linear kernel : klin(x, x′) = σ2
b +σ2(x−c)(x′−c) with variance σb, scale factor

σ2 and offset c,
– Radial Basis Function (RBF): krbf (x, x′) = σ2 exp(− ||x−x′||2

2�2 ) with scale fac-
tor σ2 and lengthscale �, and

– Periodic kernel : kper(x, x′) = σ2 exp(− 2 sin2(π||x−x′||/p)
�2 ) with scale factor σ2,

periodicity parameter p and lengthscale �.

Beyond that, all kernels are pairwise combined by addition and multiplication
to achieve higher-level structures [13].

Let X be the training data set with observed function values f, and X∗ the
test data set for which we want to predict the corresponding function outputs
f∗. The joint distribution of training and test outputs is given by

[
f
f∗

]
∼ N

([
μ
μ∗

]
,

[
Σ Σ∗
ΣT

∗ Σ∗∗

])
, (1)

where μ = m(xi), i = 1, ..., n, denotes the training mean values and analo-
gously μ∗ the test mean values. The covariance matrix Σ is evaluated at all
pairs of training points, Σ∗ at training and test points, and Σ∗∗ at test points.
The posterior distribution is obtained by conditioning the joint Gaussian prior
distributions on the observations:

f∗|X∗,X, f ∼ N (ΣT
∗ Σ−1f, Σ∗∗ − ΣT

∗ Σ−1Σ∗). (2)

By evaluating the mean and covariance we derive the function values f∗ from
the posterior distribution. Computing two times the standard deviation of each
test point around the mean generates 95% credible regions.

Normally distributed observational noise can be considered in the training
data, y = f(x) + ε with f ∼ GP(0, Σ) and ε ∼ N (0, σ2

fI). The noise variance σ2
f

is independently added to each observation, p(y|f) = N (y|f, σ2
fI), what changes

the joint distribution of training and test values to
[
y
f∗

]
∼ N

(
0,

[
Σy Σ∗
ΣT

∗ Σ∗∗

])
(3)

with Σy := Σ + σ2
fI. Deriving the posterior distribution results in:

f∗|X∗,X, y ∼ N (ΣT
∗ Σ−1

y y, Σ∗∗ − ΣT
∗ Σ−1

y Σ∗). (4)

Each kernel has a number of hyperparameters that specify the precise shape of
the covariance function. Optimising the kernels’ hyperparameters increases the
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accuracy of predictions. As standard practice, we follow an empirical Bayesian
approach to maximise the log marginal likelihood

log p(y|X) = log N (y|0, Σy) = −1
2
yΣ−1

y y − 1
2
log |Σy| − 1

2
N log (2π), (5)

where the first term is a data fit term, the second term a model complexity term,
and the third term a constant. Minimising the negative log marginal likelihood
with respect to the hyperparameters of a kernel gives us an optimised posterior
distribution [24].

2.3 Gaussian Process Classification

Gaussian Process Classification (GPC) is applied to binary classification prob-
lems, where class labels y ∈ [0, 1] are observed for input values X. After defining
a GP Prior over a suitable function space, the functional form of the likelihood is
determined to approximate the posterior distribution. The goal is to get an esti-
mate of a class probability for unknown data points from Boolean observations.
The probability of belonging to a certain class at an input value x is related
to the value of some latent function f(x) at this location. In the first step, a
GP prior is placed over the latent function f(x). As we apply GPC only for
multi-dimensional input, we implement the RBF-ARD kernel for all data sets:
krbf−ard(x,x′) = σ2 exp(− 1

2

∑D
d=1

||xd−x′
d||2

�2d
) for d dimensions with scale factor

σ2 and d different lengthscales �i.
The prior is squashed with the inverse probit transformation to transform

real values into probabilities,

Φ(z) =
∫ z

−∞
N (x|0, 1)dx =

1
2

+
1
2

· erf

(
z√
2

)
, (6)

where erf is the Gauss error function, defined as erf(z) = 2√
π

∫ z

0
e−t2 dt [26].

Therefore, we obtain a prior on class probabilities π(x) � p(y = 1|x) = Φ(f(x)).
Then, the distribution of the latent variable corresponding to a test case is
computed with

p(f∗|X,y, x∗) =
∫

p(f∗|X,x∗, f)p(f|X,y)df. (7)

This distribution contains the posterior over the latent variables as the product
of a normalisation term containing the marginal likelihood, the prior and the
likelihood,

p(f|X,y) =
1

p(y|X)
p(f|X)

n∏
i=1

p(yi|fi). (8)

To increase the accuracy of the approach, the kernel’s hyperparameters are opti-
mised by minimising the negative log marginal likelihood. For predictions for a
class probability we have

π∗ � p(y∗ = 1|X,y, x∗) =
∫

Φ(f∗)p(f∗|X,y, x∗)df∗. (9)
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As the observations are Boolean and the probit function is used, the correspond-
ing likelihood is non-Gaussian and consequently the integral of the posterior dis-
tribution in Eq. 7 is intractable. Therefore, we approximate the joint posterior by
a Gaussian distribution using the popular analytic approximation Expectation
Propagation [20].

2.4 Smoothed Model Checking

When modelling biological collectives, it is often necessary to analyse uncertain
stochastic systems and infer missing parameters. A novel approach based on
GPC is called Smoothed Model Checking [5] (SMMC) and aims to estimate
the satisfaction function of an uncertain CTMC for a specific temporal logic
property. Given is an uncertain CTMC Mθ with unknown parameters θ and
a temporal logic property ϕ. For a few fixed values of θ, several trajectories of
Mθ are simulated and the satisfactions of ϕ (i.e. Mθ |= ϕ) collected. These
observations follow a Binomial distribution and are the input to GPC. However,
the algorithm of GPC is changed in such a way that it can deal with multiple
observations per data point and make use of the exact statistical model. As
a result, we get an accurate estimation of the satisfaction function fϕ(θ) =
P (Mθ |= ϕ) over varying parameters θ.

In contrast to the original work, we use SMMC to estimate the satisfaction
of a property not over varying model parameters, but over varying group sizes.
Our application of SMMC aims to find the most plausible value of the missing
quantity in a template formula to derive the fitness function. We explain the
detailed workflow in Sect. 2.6.

2.5 Model Selection

Gaussian Process models are essentially defined by the chosen kernel function
that determines the shape of the function to be estimated. Without prior knowl-
edge about the shape, it is recommended to test different kernels and afterwards
select the best fit. Because of only few data available, we apply Leave-One-
Out Cross-Validation (LOOCV) to estimate the expected prediction error and
decide for the best model. LOOCV provides reliable and unbiased estimates of
the model’s performance, even for small data sets [24]. In particular, the training
data is split into K = n folds, where n is the size of the data set. Then, for each
fold k ∈ {1, ...,K}, the model is trained on all folds but the k-th one, and tested
on the remaining ones [16].

The summary statistics of the test set gives an overall evaluation of the
goodness of the model. Here, we compute the amount of error for each kernel
with the Mean Squared Error (MSE),

MSE =
∑n

i (yi − f∗i
)2

n
(10)

with yi being the observations, f∗i
the predictions, and n the size of the

test set [24].
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For GPR, we consider multiple kernel functions and use LOOCV to auto-
matically select the best kernel. However, for GPC we always use the RBF-ARD
kernel and thus only compute the MSE to evaluate the quality of the model and
perform no model selection.

2.6 Problem Statement

Predict the Collective Response with GPR. In our two-folded approach,
we first use GPR to predict the collective response for varying group sizes to
obtain more information about the social influence within the collective. We
assume to have only data about the collective response of a few group sizes
available that consist of the final states of the agents. That means we can present
the data as histograms counting the frequencies of different outcomes for each
available group size. We extract the mean and variance of the histogram and use
it as a measure of collective response, e.g. how many agents have successfully
solved the task on average. Then, we apply GPR on mean values and variances
with different kernels for which we optimise the hyperparameters. We select the
best kernel using LOOCV, where we compare the MSE of each model. As a result,
we get a prediction of the mean collective response (and variance) within a 95%
credible interval for different group sizes and thus gain a better understanding
of the general collective behaviour without making any previous assumptions.

Inferring the Fitness Function with SMMC. After the first part helps to
understand the trend of the collective response over varying group sizes, we aim
to find out how the social context influences the individual response in the second
part. More precisely, we propose a general fitness function that is likely to explain
the collective behaviour but contains an unknown parameter t ∈ R that specifies
the exact mechanism. The fitness function is defined as a template temporal
logic formula ϕt in the language Probabilistic Computation Tree Logic [15] for
discrete systems, and in Signal Temporal Logic [23] for continuous systems. We
expect the fitness function to describe a behaviour that is robustly performed
across all group sizes n, which relates to ϕt being robustly satisfied over all
n. Specifically, we set up the template formula as an atomic proposition with
one unknown parameter t. To finally infer the value of t that best describes the
behaviour, we choose a few equally-spaced values of t and for each of these collect
the number of satisfactions of ϕt for given group sizes. Then, we run SMMC for
each t individually to obtain a smooth satisfaction function of ϕt over all varying
group sizes.

The resulting posterior distributions are then compared with respect to their
shapes. A high mean value indicates a high satisfaction probability of the prop-
erty, while a low standard deviation implies small variation across different group
sizes, and therefore a robust behaviour. For our specific scenario, we compute
the coefficient of variation for the posterior distribution of each t as the frac-
tion of mean and standard deviation, cv(t) = μ

sd . According to the literature
(e.g., [10,28]), a cv < 0.1 is considered low and indicates a distribution with our
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desired properties, specific to the previously defined fitness function template.
Finally, we select the largest value of t with cv(t) < 0.1 to get the most plausible
quantity of the formula and a valid fitness function the collective robustly per-
forms. This fitness function helps to describe how the social context influences
the individual’s response.

3 Results

In this section we present the results of our framework on a case study discussing
a social feedback mechanism found in honeybees. Biological collectives of hon-
eybees protect their colonies against a threat by releasing an alarm pheromone
that warns the other bees and leads to a recruitment of a large number of further
defenders. More specifically, to successfully defend their territory, some of the
bees become aggressive, decide to sting, and consequently die. During stinging,
the alarm pheromone P is released and increases the aggressiveness of other bees
in the colony. However, if the aggressiveness increased endlessly, eventually all
bees of the population would die, which is an unreasonable assumption. There-
fore, there needs to be some regulatory mechanism that prevents the colony from
becoming extinct, while still being able to effectively defend against the threat.
From this follows the hypothesis that the bee is socially influenced by its colony
and aware of its social context, i.e., the group size. See [14] for a more detailed
description of the case study and the assumptions for the associated stochastic
model. To better understand the exact underlying mechanism of social feedback,
we apply our methods on experimental data of this phenomenon for a few group
sizes. We use Gaussian Process Regression to predict the collective response
over all intermediate group sizes and learn about the trend of how the context
regulates the bees’ behaviour. We then aim to derive the non-trivial fitness func-
tion by setting up a plausible template formula and applying Smoothed Model
Checking to automatically infer the missing quantity that explains the collective
dynamics.

3.1 Data

To test our framework on real-world observations, we make use of experimental
data collected at the University of Konstanz (Germany) [27]. In three experi-
ments, groups of 1, 2, 5, 7, 10, or 15 bees were put into an arena and exposed to
a threat. After a certain time, the number of stinging bees was counted which
provides a measure of the collective response. This procedure was repeated sev-
eral times for each population size within each experiment. Hence, we get three
histograms with the frequencies of stinging bees of each population size. See
Fig. 1 for the result distributions of all data sets.

3.2 Predict the Collective Response

Our data contains information about the collective response of a few selected
group sizes. However, to get predictions for all other intermediate group sizes,
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Fig. 1. Overview of experimental data from three data sets showing the frequencies
of the number of stinging bees. Experiments were repeated with sample sizes NA =
[60, 60, 60, 60], NB = [40, 40, 40, 40] and NC = [68, 68, 60, 56, 52, 48].

we apply GPR on the three data sets. As mentioned above, we consider the
number of stinging bees as the collective response to defend the territory. We
compute the mean and variance of each histogram, corresponding to the mean
and variance of stinging bees for each population size, and use these values as
input to the algorithm. Noise, computed as the 95% credible interval, is added to
each data point to account for observation errors and limited sample sizes [31].
Then, we run GPR for each implemented kernel and combination of two kernels
with optimised hyperparameters. As a result, we get the posterior predictive
distribution of the collective response for different population sizes. The best
model is selected with the lowest MSE according to LOOCV and shown in
Fig. 2.

We observe that the uncertainty increases for larger group sizes due to the
small sample size. For a group size of one bee, there are only two outcomes of
the experiment: either no bees sting, or one bee stings. In contrast, for a group
size of ten bees, there are eleven possible outcomes of the experiment. Since the
sample size remains the same, the uncertainty increases.

The results show that we can model different trends of collective response
with the same algorithm and without specifying any previous assumptions



192 J. Klein and T. Petrov

Fig. 2. Posterior distributions for mean and variance of histograms for experimental
data. Points are training data points, dashed lines are predictive means and shaded
areas are 95% credible regions. Best kernel according to LOOCV is written in the left
upper corner with following MSEs: Experiment A - Mean: linear kernel, MSE = 0.8882
- Variance: multiplication of RBF and linear kernel, MSE = 4.4019. Experiment B
- Mean: RBF, MSE = 0.5536 - Variance: linear kernel, MSE = 0.1219. Experiment
C - Mean: linear kernel, MSE = 0.2157 - Variance: multiplication of RBF and linear
kernel, MSE = 7.3824.

beforehand. The linear trend of the number of stinging bees in Experiment A
and C is well captured, as well as the non-trivial trend in Experiment B. From
these distributions we can easily infer the collective response of all other group
sizes. In the case of having social feedback in a colony, we are therefore still
able to get reliable estimates of the behaviour of the colony without the need
of conducting new experiments. Note that predictions for group sizes outside
the range of available data points are also possible, but introduce even larger
uncertainties.
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3.3 Inferring the Fitness Function

In the second step, we aim to get a better understanding of social feedback
and how the collective behaviour adapts to changes in the group sizes. For this
case study, we want to investigate if there is always a certain proportion of
the population defending the whole collective. Therefore, we want to derive the
most plausible quantity for the fitness function ’at least (100 · t)% of the colony
survives’ and set up the corresponding template temporal logic formula ϕ :
F(X ≥ t) with X being the number of surviving bees and t ∈ [0, 1] the unknown
threshold.

We select 21 equally-spaced thresholds t and analyse the satisfaction function
of ϕ for different group sizes with SMMC with optimised hyperparameters. For
each t, the inputs to SMMC are the number of observations for which the prop-
erty is satisfied in each group size, read from the respective histogram. Again, we
get a posterior distribution with 95% credible regions for different group sizes.
Computing the coefficient of variation of the posterior distribution for all values
of t gives us an estimate about the most plausible distribution with respect to
the previously defined fitness function. We select the largest t with a low cv < 0.1
to obtain a distribution with high mean values and little variation. This gives us
the property that defines a behaviour that is robustly satisfied by the collective
over all group sizes. In Fig. 3, we show on the left side the coefficients of variation
cv for different thresholds t together with the mean and standard deviation of
the posterior distributions for each experiment. On the right side, we visualise
the SMMC posterior of the selected value of t.

The obtained results indicate the most plausible values to be t = 0.5 for
experiment A and B, and t = 0.65 for experiment C. The biological inter-
pretation of the analysis is that, on average, 50 − 65% of a honeybee colony
survives when being exposed to a threat. Put differently, at least 50 − 65% of
a colony needs to perform a stinging response to successfully defend the terri-
tory. With this method we were able to automatically quantify the high level
behavioural outcome of the collective that is robustly performed under perturba-
tions. Furthermore, we observe that all posterior distributions capture the data
well according to the low MSEs.

4 Conclusion

In this paper, we presented a framework based on Gaussian Processes to better
understand the phenomenon of social feedback in biological collectives. Our con-
tribution is two-fold: first, we predict the collective response for any given group
size from only limited experimental data; Second, we derive a fitness function
that is robustly preserved under perturbations in group size. On the one hand,
the application of our methods helps to test the hypothesis of social feedback
in a collective, when only measurements of few group sizes are available. The
resulting predictions of collective response eliminate the need of conducting new
experiments and analysing combinatorialy large stochastic models. Still, we get
reliable results for any group size, together with a quantification of uncertainty.
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Fig. 3. SMMC results of experimental data for the property ϕ : at least (100 · t)%
of the colony survives. Left: mean (blue), standard deviation (orange), and coefficient
of variation (green) of posterior distributions over varying t are shown. Black dotted
line shows the threshold cv = 0.1. Black rectangle shows the values for the largest t
with cv(t) < 0.1. Right: SMMC posterior for selected t, points are training data points,
dashed lines are predictive posterior means and shaded areas are 95% credible regions.
Experiment A - t = 0.5 with cv(t) = 0.052, MSE = 0.0038. Experiment B - t = 0.5
with cv(t) = 0.0731, MSE = 0.0136. Experiment C - t = 0.65 with cv(t) = 0.093,
MSE = 0.0072. (Color figure online)

On the other hand, our framework can be used to assess the trend of social feed-
back in the sense of how social context influences the collective response. The
missing quantities in a template logical formula (usually proposed by experts),
is automatically inferred to derive a fitness function that describes the collective
behaviour under group-size perturbations.

Both applications are based on Gaussian Processes, which has several key
advantages compared to traditional methods. Usually, the analysis of models
for larger group sizes becomes computationally infeasible due to state explo-
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sion. Gaussian Processes, as a non-parametric and model-agnostic approach, are
instead scalable for any given group size and therefore particularly useful to mea-
sure the collective response with respect to growing group size. Beyond that, the
analyses of our proposed methods are data-efficient and produce reliable results
with uncertainty quantification even for scarce data sets. Especially when work-
ing with real-world experimental data, there are often not enough resources
available to collect large amounts of data. Therefore, we decided to use Gaus-
sian Processes that are able to find the underlying relationships between only
few available data points and also provide statistical guarantees. Last, we want
to emphasise the flexibility of this framework, where we not only discard any
previous assumptions on the underlying model and its parameters, but further
are able to use it on any related application. While we focus on understanding
social feedback in honeybees in this work, other use cases of analysing collec-
tive behaviour are possible. Instead of predicting the steady state for any group
size, the method could also be applied to any quantitative measurement of the
collective. Accordingly, the template fitness function can be exchanged by any
temporal logic formula for which we can assess the satisfaction probability, and
the coefficient of variation by a different measure of robustness to suit the par-
ticular case study and research question.

Despite highlighting the power of the proposed methods, we also want to
point out possible limitations. One major drawback of Gaussian Processes is
the computational complexity of O(N3) [24]. In our work, we implemented all
functions by hand, in order to have full control over the computations. How-
ever, using available libraries like GPyTorch [11], could speed up the calcula-
tions. Another limitation of Gaussian Processes is the extrapolation needed for
larger or smaller group sizes than those available in the data set. In this case,
the uncertainty quickly becomes large and the predictions imprecise. In prac-
tice, one would encourage to conduct a new experiment for much smaller/larger
group sizes to counteract these high uncertainties and focus on interpolation of
intermediate group sizes.

Future work will focus on exploring the full potential of the presented tech-
niques in terms of automatically learning unknown parameters of a model or
even the entire mechanisms. In general, the approach could be automatised and
integrated into a probabilistic reasoning framework.
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Abstract. Collective adaptive systems (CAS) are characterized by the
presence of many agents and an environment which interact with each
other. As a consequence, they give rise to global dynamics which can-
not be analyzed by considering agents in isolation. While the model-
ing of CAS via agent (reaction) networks gained momentum, obtain-
ing reliable forecasts is computationally difficult because parameters are
often subject to uncertainty. It has been therefore recently proposed to
obtain reliable estimates on global dynamics of agent networks from local
agent behavior. To this end, dependencies among agents were replaced by
exogenous parameters, allowing one thus to estimate the global dynam-
ics via agent decoupling. The present work introduces the notion of esti-
mation equivalence, a model reduction technique for systems of nonlin-
ear differential equations that allows one to replace the aforementioned
decoupled model by a smaller one which is easier to analyze. We demon-
strate the framework on a multi-class SIRS model from epidemiology and
obtain a speed-up factor that is proportional to the number of population
classes.

Keywords: Agent networks · Formal estimation · Model reduction

1 Introduction

The world is full of interacting entities such as IoT devices in households, users on
facebook or viruses in human bodies. By interacting with each other, agents give
rise to emergent behavior, that is, global dynamics which cannot be captured
by studying agents in isolation. Such systems are often referred to as collective
adaptive systems (CAS). Models of CAS are attractive because they allow to
make forecasts and do not hinge on the availability of a physical model. In that
respect, chemical reaction networks can be seen as one of the first modeling
formalisms for CAS and have been used to describe and model (bio)chemical
processes by means of molecule interaction rules. In the last decades, researchers
succeeded to tie the global macro dynamics, given by the famous law of mass
action, to microscopic molecule interactions. Specifically, it was shown that pop-
ulations of interacting agents can be modeled by a Markov chain whose average
behavior coincides with the global dynamics, formally given by a set of ordinary

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13703, pp. 199–214, 2022.
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differential equation (ODEs) [16]. This connection paved the way to so-called
fluid approximations which allowed one to use compact ODE systems instead of
large-scale agent based Markov chain models given in terms of agent networks,
see [3,4,15,22] and references therein.

Models of realistic CAS depend on parameters which are often subject to
finite-precision measurements or are unknown, with a possible example being
the uncertain parameters in the modeling of covid-19 [13]. Reliable forecasts of
nonlinear CAS models require therefore to formally estimate the nonlinear global
dynamics under all possible parameterizations [1,9,14]. Unfortunately, this com-
putationally challenging in case of nonlinear dynamics and limited to small mod-
els in general. Indeed, common nonlinear benchmarks models have usually not
more than 12 ODEs, see for instance [8]. The recent work [23] proposes an esti-
mation technique for nonlinear CAS models that exploits how agents interact
with each other. By replacing dependencies among agents with uncertain exter-
nal parameters, the behavior of each agent can be decoupled from that of the
others and therefore analyzed efficiently. Moreover, if the external parameters
have sufficiently large uncertainty ranges, local agent estimates are guaranteed
to provide global agent estimates, i.e., estimates on the global dynamics.

The present work proposes to combine the estimation approach from [23]
with a model reduction technique from [5,7]. More specifically, after decou-
pling the agents from each other using [23], the intuitive idea is to solve
the decoupled system more efficiently by means of the model reduction tech-
nique [5,7]. We formalize this by introducing estimation equivalence (EE), a
notion that yields estimation-preserving reductions. The EE yielding the small-
est estimation-preserving reduction can be computed by means of a partition
refinement algorithm which enjoys a polynomial time complexity, similarly to
the partition refinement algorithms for probabilistic bisimulation [17] of Markov
chains [2,11,24]. We demonstrate the applicability of the approach by reducing
the estimation task of a multi-class SIRS model from epidemiology.
Further Work. To the best of our knowledge, estimation-preserving reduction
techniques for nonlinear dynamical systems have been studied so far only in
control engineering via bisimulation/abstraction [19,20,25]. These are comple-
mentary to EE because EE relies on backward differential equivalence which, in
turn, is complementary to abstraction [21]. Another difference is that EE can
be computed, under mild assumptions, in polynomial time, while computational
bounds for obtaining abstractions of nonlinear systems have not been reported.
Outline. After setting the scene in Sect. 2, Sect. 3 introduces estimation equiv-
alence. Section 4 instead demonstrates estimation equivalence on a multi-class
SIRS model from epidemiology, while Sect. 5 concludes the paper.
Notation. For a nonempty set I, we denote by AI the set of all functions from I
to A. We write x ≤ x′ for x, x′ ∈ R

I whenever xi ≤ x′
i for all i ∈ I. The equality

of two functions f and g, instead, is denoted by f ≡ g. By S we refer to the finite
set of (agent) states. Instead, V ∈ R

S refers to elements of the reachable set of
differential equations and can be interpreted as concentrations or percentages.
We write Vα to denote the projection of V ∈ R

S onto the coordinate α ∈ S. The
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derivative with respect to time of a function V ∈ [0;T ] → R
S is denoted by V̇ .

At last, H,G denote partitions of S and we say that H refines G whenever every
block of G can be written as a union of blocks from H.

2 Preliminaries

In this section we review the estimation of agent networks [23] and backward
differential equivalence [5].

2.1 Estimation of Agent Networks

Agent networks can be used to efficiently approximate large-scale Markov chain
models of agent populations such like, for instance, epidemics or molecule inter-
actions.

Definition 1. An agent network (AN) is a triple (S,K,F) of a finite set of
states S = {A1, . . . , A|S|}, a set of parameters K and a set of reaction rate
functions F . Each reaction rate function Θj : RS∪K

≥0 → R≥0

– describes the rate at which reaction j occurs;
– takes concentration and parameter vectors V ∈ R

S
>0 and κ ∈ R

K
>0, respec-

tively;
– is accompanied by a multiset Rj of atomic transitions Al → Al′ , where Al →

Al′ states that an agent in state Al interacts and changes state to Al′ .

From a multiset Rj , we can extract two integer valued |S|-vectors dj and
cj , counting how many agents in each state are transformed during a reaction
(respectively produced and consumed). Specifically, for each 1 ≤ j ≤ |F|, let
cjl, djl ∈ N0 be such that

cj,l =
∑

Al→Al′ ∈Rj

1 and dj,l′ =
∑

Al→Al′∈Rj

1.

With these vectors, we can express the j-th reaction in the chemical reaction
style [16] as follows:

cj,1A1 + . . . + cj,|S|A|S|
Θj−−→ dj,1A1 + . . . + dj,|S|A|S| (1)

We next introduce the ODE semantics of an AN.

Definition 2. For a given AN (S,K,F), a continuous parameter function κ̂ :
[0;T ] → R

K
>0 and a piecewise continuous function δ : [0;T ] → R

K
>0 such that

δα(·) < κ̂α(·) with α ∈ K, let

Uδ
K := {u : [0;T ] → R

K
>0 | |uα(·)| ≤ δα(·) ∀α ∈ K and u is measurable}
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denote the set of admissible uncertainties. Then, the reachable set of (S,K,F)
with respect to Uδ

K is given by the solution set {V u | u ∈ Uδ
K}, where V u solves

V̇ u
B (t) = FB(V u(t), κ̂(t) + u(t))

:=
∑

1≤j≤|F|
(dj,B − cj,B)Θj

(
V u(t), κ̂(t) + u(t)

)
(2)

for all B ∈ S. The reachable set at time t is given by R(t) = {V u(t) | u ∈ Uδ
K}.

The following example demonstrates Definition 1 and 2 in the context of an
SIRS model. Recall that SIRS models are used to study the spread of infec-
tious diseases. The population is split into different compartments: Susceptible,
Infected and Recovered. This model assumes that the total population is con-
stant. A susceptible individual can become infected. An infected individual can
then recover from the infection and after its recovery become susceptible again.

Example 1. Consider the agent network ({S, I,R}, {β}, {Θ1, Θ2, Θ3}) given by

R1 ={S → I, I → I}, R2 ={I → R}, R3 ={R → S},

Θ1(V, κ)=VSVI , Θ2(V, κ)=κβVI , Θ3(V, κ)=VR,

where V = (VS , VI , VR) and κ = (κβ). Let the time-varying uncertain recovery
rate parameter be given by κβ ≡ κ̂β + uβ , where κ̂β denotes the nominal trajec-
tory and u = (uβ) ∈ Uδ

{β} is the uncertainty function for some positive δ = (δβ)
such that δβ < κ̂β . The AN induces the reactions

S + I
VSVI−−−→ I + I, I

(κ̂β+uβ)VI−−−−−−−→ R, R
VR−−→ S, (3)

while the ODE system (2) is given by

V̇
uβ

S = −V
uβ

S V
uβ

I + V
uβ

R (4)

V̇
uβ

I = −(κ̂β + uβ)V uβ

I + V
uβ

S V
uβ

I

V̇
uβ

R = −V
uβ

R + (κ̂β + uβ)V uβ

I

In the following, we assume that an AN (S,K,F) is accompanied by a finite
time horizon T > 0, a positive initial condition V (0) ∈ R

S
>0 and a Lipschitz

continuous parameter function κ̂ ∈ [0;T ] → R
K
>0. Moreover, we require that

each function Θj is analytic in (V, κ), linear in κ and such that Θj(V ) = 0
whenever VAl

= 0 and cj,l > 0, where cj,l is as in (1). Since atomic transitions
enforce conservation of mass, the creation and destruction of agents is ruled out.
This can be however alleviated by the introduction of artificial agent states,
see [3].
Kolmogorov Equations. Thanks to the fact that the dynamics of an AN arise
from atomic transitions, it is possible to define a continuous time Markov chain
(CTMC) whose Kolmogorov equations, are closely connected to system (2).
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Definition 3. For a given AN (S,K,F), define

rB,C(V, κ) =
∑

1≤j≤|F| | B→C ∈ Rj

Θj(V, κ)/VB

for all B,C ∈ S with B �= C, V ∈ R
S
>0 and κ ∈ R

K
>0. Then, the coupled CTMC

(Xu(t))t≥0 underlying (S,K,F) and u ∈ Uδ
K has state space S and its transition

rate from state B into state C at time t is rB,C(V u(t), κ̂(t) + u(t)). The coupled
Kolmogorov equations of (Xu(t))t≥0 are

π̇u
B(t) = fB

(
πu(t), V u(t), κ̂(t) + u(t)

)
(5)

:= −
∑

C:C 	=B

(
rB,C(V u(t), κ̂(t) + u(t))πu

B(t) + rC,B(V u(t), κ̂(t) + u(t))πu
C(t)

)

It can be shown that any trajectory V u of (2) coincides with the trajectory πu

of (5) if πu(0) = V (0). In the context of the SIRS example, Definition 3 gives
rise to the transition rates

rS,I(V u(t), κ̂(t) + u(t)) = Θ1(V u(t), κ̂(t) + u(t))/V u
S (t)

rI,R(V u(t), κ̂(t) + u(t)) = Θ2(V u(t), κ̂(t) + u(t))/V u
I (t)

rR,S(V u(t), κ̂(t) + u(t)) = Θ3(V u(t), κ̂(t) + u(t))/V u
R (t),

where Θ1, Θ2 and Θ3 are as in Example 1. Thus, the Kolmogorov equations are

π̇
uβ

S = −V
uβ

I π
uβ

S + π
uβ

R

π̇
uβ

I = −(κ̂β + uβ)πuβ

I + V
uβ

I π
uβ

S (6)

π̇
uβ

R = −π
uβ

R + (κ̂β + uβ)πuβ

I .

In case when π(0) is a probability measure, the Kolmogorov equations
describe the transient probabilities of a Markov chain, i.e., πA(t) gives the prob-
ability of being in state A at time t. We will not exploit this relation here but
point out that (2) can be interpreted as an ODE approximation of a Markov
chain in which the number of agents is large [3,4,10]. In the case of the SIRS
example, for instance, system (6) describes the stochastic behavior of a single
individual in a population of many individuals whose overall behavior is given
by system (4).
Decoupling. We next estimate the reachable set of an AN with respect to an
uncertainty set Uδ

K, i.e., we bound R(t) = {V u(t) | u ∈ Uδ
K} for each 0 ≤ t ≤ T .

To this end, we study the maximal deviation from the nominal trajectory V 0

attainable across Uδ
K.

Definition 4. For a given AN (S,K,F) with uncertainty set Uδ
K, let V 0 be the

solution to (2) when u = 0. The maximal deviation at time t of (2) from V 0 is

EB(t) = sup
u∈Uδ

K

|V u
B (t) − V 0

B(t)| (7)
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with B ∈ S and E = (EB)B∈S . With this, it holds that

R(t) ⊆
∏

B∈S

[
V 0

B(t) − EB(t);V 0
B(t) + EB(t)

]

While the above relates the reachable set of a nonlinear system to that of a
linear one, the transition rates of the coupled CTMC (Xu(t))t≥0 depend on V u.
We address this by decoupling the transition rates from V u.

Definition 5 (Decoupling). For ε < V 0 and u = (uK, uS) ∈ Uδ
K × Uε

S ,
let (Du(t))t≥0 be the decoupled CTMC with rates

(
rB,C(V 0(t) + uS(t), κ̂(t) +

uK(t))
)
B,C

and the decoupled Kolmogorov equations

π̇u(t) = f
(
πu(t), V 0(t) + uS(t), κ̂(t) + uK(t)

)
, (8)

where f is as in Definition 3 and Uε
S is defined similarly to Uδ

K from Definition 2.

Example 2. For the AN from Example 1, the decoupled Kolmogorov equa-
tions (8) are given by

π̇u
S = −(V 0

I + uI)πu
S + πu

R (9)

π̇u
I = −(κ̂β + uβ)πu

I + (V 0
I + uI)πu

S

π̇u
R = −πu

R + (κ̂β + uβ)πu
I

with u ≡ (uK, uS) ≡ ((uβ), (uI)) ∈ Uδ
K × Uε

S = Uδ
{β} × Uε

{S,I,R}. This is because
the transition rates of the decoupled CTMC are

rS,I(V 0(t) + uS(t), κ̂(t) + uK(t)) = V 0
I (t) + uI(t) (10)

rI,R(V 0(t) + uS(t), κ̂(t) + uK(t)) = κ̂β(t) + uβ(t)

rR,S(V 0(t) + uS(t), κ̂(t) + uK(t)) = 1

To provide an estimation of E using the Kolmogorov equations (8), we next
define Φ(ε) as the maximal deviation from the nominal trajectory π0 that can
be attained across the uncertainties uK ∈ Uδ

K and uS ∈ Uε
S .

Definition 6 (Deviation). For a piecewise continuous function ε < V 0, let
Φ(ε) = (ΦB(ε))B∈S be given by

(ΦB(ε))(t) = sup
uK∈Uδ

K

sup
uS∈Uε

S
|πu

B(t) − π0
B(t)|

(ΦB(ε))(t) denotes the maximal deviation of πu
B(t) from π0

B(t), where π0 arises
from πu in (8) if u = 0.

The idea is to find a positive function ε such that Φ(ε) ≤ ε. This ensures
that |πu − π0| ≤ ε for any u = (uK, uS) ∈ Uδ

K × Uε
S and implies that E ≤ ε.

Theorem 1. If Φ(ε) ≤ ε, then E ≤ ε. Moreover, if ε(k+1) := Φ(ε(k)) for some
ε(0) > 0 and ε(k) < V 0 for all k ≥ 0, then limk→∞ ε(k) = ε exists and Φ(ε) = ε.
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A direct consequence of Theorem 1 is that any fixed point ε∗ of ε 
→ Φ(ε)
estimates E from above. Moreover, since limk→∞ ε(k) is finite only if ε(k) < V 0

for all k ≥ 0, the computation of the sequence (ε(k))k can be terminated as soon
as ε(k) < V 0 is violated.
Computing the Deviation. In each step of the fixed point iteration from
Theorem 1, a new value of Φ has to be computed. To this end, we have to
obtain the minimal (maximal) value of each πA(t̂), where A ∈ S and π̇(t) =
h
(
t, π(t), (uK(t), uS(t))

)
such that (uK, uS) ∈ Uδ

K × Uε
S . To increase readability,

we write in that what follows u ∈ Ub
K∪S instead of (uK, uS) ∈ Uδ

K × Uε
S , where

bα = δα and bA = εA for all α ∈ K and A ∈ S, respectively. Moreover, we shall
write π and V instead of πu and V u, respectively, when the dependence on u is
clear from the context.

The following mild conditions on the decoupled CTMC will be needed for
the efficient computation of the minimal (maximal) value of each πA(t̂).

(A1) For any B,C ∈ S and 0 ≤ t ≤ T , there exist Lipschitz continuous functions
kB→C , kB→C

i ∈ [0;T ] → R≥0 such that the transition rate function rB,C from
Definition 3 satisfies

rB,C

(
V 0(t) + uS , κ̂(t) + uK

)
= kB→C(t) +

∑

i∈K∪S
kB→C

i (t)ui

for all uK ∈ R
K and uS ∈ R

S .
(A2) For each i ∈ K ∪ S, there exist unique Bi, Ci ∈ S such that kB→C

i �≡ 0
implies B = Bi, C = Ci and kB→C

i > 0.

Assumption (A1) requires, essentially, the transition rate functions to be linear
in the uncertainties, while (A2) forbids the same uncertainty to affect more
than one transition. The next example demonstrates that our running example
satisfies condition (A1) and (A2).

Example 3. Recall that the transition rates of the decoupled CTMC of Exam-
ple 1 are given by (10). Hence, kS→I ≡ V 0

I , kI→R ≡ κ̂β and kR→S ≡ 1 and (A1)
holds true. Condition (A2), instead, follows with BI = S, CI = I, kS→I

I ≡ 1
and Bβ = I, Cβ = R, kI→R

β ≡ 1.

Under the assumptions above, the following theorem can be shown by invok-
ing Pontryagin’s principle (aka adjoint system) [12].

Theorem 2 (Adjoint System). Assume that (A1)− (A2) hold true and fix
some A ∈ S. Then, the adjoint ODE system is given by

π̇B(t) = gB(π(t), p(t), t) (11)

:= fB

(
π(t), V 0(t) + u∗

S(t), κ̂(t) + u∗
K(t)

)

ṗB(t) = hB(p(t), t) (12)

:=
∑

C∈S
(pB(t) − pC(t))kB→C(t) −

∑

i∈K∪S:
Bi=B

|pB(t) − pCi
(t)|kB→Ci

i (t)bi(t),
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where B ∈ S and u∗
i (t, p(t)) = − sgn(pBi

(t)−pCi
(t))bi(t) for the signum function

sgn. If p solves (12) for the boundary condition pB(t̂) = −1{A=B}, then the
solution π̇(t) = g(π(t), p(t), t) of (11) subject to π(0) = V (0) minimizes the value
πA(t̂). Similarly, the maximal value of πA(t̂) is obtained for pB(t̂) = 1{A=B}.

Theorem 2 allows us to compute the minimal and maximal value of πA(t̂).
The next example demonstrates the result in the context of the SIRS model from
Example 1.

Example 4. We have seen in Example 3 that our running example satisfies the
requirements of Theorem 2. In particular, if κ̂ ≡ 1, then (12) rewrites to

ṗS(t) =
(
VI(t) + u∗

I(t, p(t))
)
(pS(t) − pI(t)) (13)

ṗI(t) =
(
κ̂(t) + u∗

β(t, p(t))
)
(pI(t) − pR(t))

ṗR(t) = pR(t) − pS(t)

for u∗
I(t, p(t)) = −sgn(pS(t) − pI(t))εI(t) and u∗

β(t, p(t)) = −sgn(pI(t) −
pR(t))δβ(t). The minimal value of, say, πu

I (t̂) can be obtained as follows. First,
solve the ODE system (13) where the boundary condition is given by pI(t̂) = −1
and pS(t̂) = pR(t̂) = 0. Afterwards, using the obtained solution p, solve the ODE
system (9) using the controls u∗

I(·, p(·)) and u∗
β(·, p(·)). Note also that we could

have written bI(t) and bβ(t) instead of εI(t) and δβ(t), respectively.

2.2 Backward Differential Equivalence

We next review backward differential equivalence (BDE) from [5,7].

Definition 7 (BDE). Fix an ODE system V̇ (t) = F (V (t), t) with a Lipschitz
continuous vector field F : RS ×R≥0 → R

S over the set of variables S. Moreover,
for a partition H of S, let UH denote the subspace of vectors which have common
values across the blocks of H, i.e., UH = {V ∈ R

S | VA = VB,H ∈ H, A,B ∈ H}.
Then, H is called BDE whenever F (UH, t) ⊆ UH for all t ≥ 0.

We shall discuss BDE on the following system

π̇A = −2πA + πB + πC , π̇B = −πB + πA, π̇C = −πC + πA. (14)

Intuitively, the above equations describe a CTMC with three states S =
{A,B,C} such that the transition rates between A and B coincide with the
rates between A and C. This symmetry of rates allows us to show that
H = {{A}, {B,C}} is a BDE. Indeed, with UH = {π ∈ R

S | πB = πC}, it
follows that F (π, t) ⊆ UH for any π ∈ UH, where FA(π, t) = −2πA + πB + πC ,
FB(π, t) = −πB + πA and FC(π, t) = −πC + πA.

BDE allows one to relate the original system to a reduced system.

Definition 8 (BDE Quotient). Let V̇ (t) = F (V (t), t) be a Lipschitz continu-
ous ODE system over the set of variables S and assume that H is a BDE. For
each block H ∈ H, pick a representative SH ∈ H and define the reduced system
V̇ H(t) = FH(V H(t), t) by setting FH

SH
(V|H, t) = FSH

(V, t) for all H ∈ H and
V ∈ UH, where V|H is the restriction of V to H.
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In the case of the BDE H = {{A}, {B,C}} of (14), we could pick as represen-
tatives A and B, meaning that A represents A, while B represents B and C. With
this, FH

A (πH, t) = −2πH
A + 2πH

B and FH
B (πH, t) = −πH

B + πH
A and πH ∈ R

{A,B}.
Overall, the BDE quotient has two, while the original system three ODEs.

Remark 1. Note that for all V ∈ UH and H ∈ H, the value FH
SH

(V|H, t) =
FSH

(V, t) does not depend on the choice of the representatives {SH | H ∈ H}
when H is a BDE.

The next result relates the original to the reduced system.

Theorem 3 (BDE Reduction). Let V̇ (t) = F (V (t), t) be a Lipschitz contin-
uous ODE system over the set of variables S, let H be a partition over S and
pick for each block H ∈ H a representative SH ∈ H. Then, H is a BDE if and
only if for any solution V of V̇ (t) = F (V (t), t) with V (0) ∈ UH, it holds that
V|H is the solution of V̇ H(t) = FH(V H(t), t) with V H(0) = V (0)|H.

When applied to (14), Theorem 3 ensures that πA(t) = πH
A (t), πB(t) = πH

B (t)
and πC(t) = πH

B (t) for all t ≥ 0, provided that πB(0) = πC(0). Put different,
whenever πB(0) = πC(0), the solution of the original system can be recovered
from the solution of the reduced system.

We end the review of BDE by pointing out that the smallest BDE quotient,
i.e. the BDE that leads to a minimal number of blocks, exists and that it can be
computed in polynomial time [7].

Theorem 4 ((BDE Computation). Given an agent network (S,K,F) and a
partition H′ of S. If the dynamics of the agent network are described by multivari-
ate polynomials, the coarsest BDE that refines H′ can be computed in polynomial
many steps in the size of |S| and |F|.

We end the section by pointing out that the case of general dynamics enjoys
a BDE reduction algorithm too and that it relies on SMT-solvers [5].

3 Efficient Estimation of Agent Networks

We next combine the estimation technique for agent networks with backward
differential equivalence from Sect. 2.

Definition 9 (EE). For a given agent network (S,K,F), any partition H of S
induces a partition Ha of the set of adjoint variables defined in Theorem 2. The
induced partition is given by Ha = {Ha | H ∈ H}, where Ha = {Ba | B ∈ H}
and Ba denotes the adjoint variable associated to B ∈ S as defined in (12).
With this, (H,Ha) is called estimation equivalence (EE) for A ∈ S when {A} ∈
H and when (H,Ha) is a BDE of the adjoint system from Theorem 2, i.e.,(
π̇B(t), ṗBa(t)

)
=

(
gB(π(t), p(t), t), hBa(p(t), t)

)
with B ∈ S.

The estimation equivalence yields the following result.
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Algorithm 1. Computing the coarsest estimation equivalence (EE) of A ∈ S.
Input: Agent network (S, K, F) and an arbitrary state A ∈ S

set (H, Ha) =
({{A}, S \ {A}}

,
{{Aa}, Sa \ {Aa}})

repeat
compute (G, I), the coarsest BDE partition that refines (H, Ha)
compute the coarsest partition H that refines G and for which Ha refines I

until H �= G
return (H, Ha)

Theorem 5 (EE Reduction). Given an agent network (S,K,F) and A ∈ S,
assume that (H,Ha) is an EE for A ∈ S. Let further

(
π̇H(t), ṗHa

(t)
)

=
(
g(πH(t), pHa

(t), t), h(pHa

(t), t)
)

be the BDE reduction of the adjoint system. Then, the minimal and maximal
value of πA(t̂) can be computed by solving first ṗHa

(t) = h(pHa

(t), t) backwards
in time and, thereafter, by solving π̇H(t) = g(πH(t), pHa

(t), t) forwards in time.

Next result ensures that the coarsest EE of A can be computed in polynomial
time. Here, coarsest refers to the fact the number of blocks in the EE is minimal.

Theorem 6 (EE Computation). Fix an agent network (S,K,F) and an
arbitrary A ∈ S. If the dynamics of the agent network are described by multi-
variate polynomials, the coarsest EE of A ∈ S is computed in polynomial many
steps in the size of |S| and |F| by Algorithm 1.

We demonstrate EE on a multi-class generalization of the SIRS model
with N ≥ 2 population classes. The underlying agent network is given by
K = {β1, . . . , βN} and

Rν,μ
1 = {Sν → Iν , Iμ → Iμ}, Θν,μ

1 (V, κ) = καν,μ
VSν

VIμ
,

Rν
2 = {Iν → Rν}, Θν

2 (V, κ) = κβν
VIν

,

Rν
3 = {Rν → Sν}, Θν

3 (V, κ) = κγν
VRν

.

The time-varying uncertain recovery rate parameters are given by κβν
≡

κ̂β + uβν
, where κ̂β denotes the nominal recovery rate and |uβν

| ≤ bβν
is the

uncertainty satisfying 0 ≤ bβν
< κ̂β . With this, the decoupled Kolmogorov

equations (11) are

π̇Sν
= −

∑

μ

κ̂α(V 0
Iμ

+ u∗
Iμ

)πSν
+ κ̂γπRν

π̇Iν
= −(κ̂β + u∗

βν
)πIν

+
∑

μ

κ̂α(V 0
Iμ

+ u∗
Iμ

)πSν
(15)

π̇Rν
= −κ̂γπRν

+ (κ̂β + u∗
βν

)πIν



Efficient Estimation of Agent Networks 209

Instead, the adjoint system (12) is given by

ṗSa
ν

= (pSa
ν

− pIa
ν
)
∑

μ

κ̂αV 0
Iμ

− |pSa
ν

− pIa
ν
|
∑

μ

κ̂αbIμ

ṗIa
ν

= (pIa
ν

− pRa
ν
)κ̂β − |pIa

ν
− pRa

ν
|bβν

(16)
ṗRa

ν
= (pRa

ν
− pSa

ν
)κ̂γ

Theorem 2 ensures that picking u∗
Iμ

(t, p(t)) = −sgn(pSa
μ
(t) − pIa

μ
(t))bIμ

(t) and
u∗

βν
(t, p(t)) = − sgn(pIa

ν
(t) − pRa

ν
(t))bβν

(t) induces the minimum of πA(t̂)
when (16) is subject to pA(t̂) = −1 and pB(t̂) = 0 for all B �= A (to obtain
the maximum of πA(t̂), one replaces −1 with 1 instead).

A direct application of Theorem 2 requires us to solve a system of 6N when-
ever we wish to compute the minimum or maximum value of some πA(t̂) which,
in turn, is needed to compute the value Φ(ε) for some given ε. In light of this,
it is worth noting that the system (16-15) enjoys for any 1 ≤ ν0 ≤ N the BDE

H =
{
{Sν0}, {Sν | ν �= ν0}, {Iν0}, {Iν | ν �= ν0}, {Rν0}, {Rν | ν �= ν0},

{Sa
ν0

}, {Sa
ν | ν �= ν0}, {Ia

ν0
}, {Ia

ν | ν �= ν0}, {Ra
ν0

}, {Ra
ν | ν �= ν0}

}
, (17)

whenever VSν
(0) = VSμ

(0), VIν
(0) = VIμ

(0), VRν
(0) = VRμ

(0) and bβν
≡ bβμ

for all ν, μ ∈ {1, . . . , N}. This shows that (17) is an EE for Sν0 , Iν0 and Rν0 .
Moreover, picking as representative of {1, . . . , N} \ {ν0} some arbitrary ν1 �= ν0,
we can see that the BDE reduction from Theorem 5 consists of 12 variables and
is given for i ∈ {0, 1} by

ṗSa
νi

= (pSa
νi

− pIa
νi

)κ̂α

(
V 0

Iν0
+ (N − 1)V 0

Iν1

)
− |pSa

νi
− pIa

νi
|κ̂α

(
bIν0

+ (N − 1)bIν1

)

ṗIa
νi

= (pIa
νi

− pRa
νi

)κ̂β − |pIa
νi

− pRa
νi

|bβνi

ṗRa
νi

= (pRa
νi

− pSa
νi

)κ̂γ (18)

π̇Sνi
= −κ̂α

(
V 0

Iν0
+ u∗

Iν0
+ (N − 1)(V 0

Iν1
+ u∗

Iν1
)
)
πSνi

+ κ̂γπRνi

π̇Iνi
= −(κ̂β + u∗

βνi
)πIνi

+ κ̂α

(
V 0

Iν0
+ u∗

Iν0
+ (N − 1)(V 0

Iν1
+ u∗

Iν1
)
)

π̇Rνi
= −κ̂γπRνi

+ (κ̂β + u∗
βνi

)πIνi

with uncertainty functions u∗
Iνi

(t, p(t)) = − sgn(pSa
νi

(t) − pIa
νi

(t))bIνi
(t) and

u∗
βν

(t, p(t)) = − sgn(pIa
νi

(t) − pRa
νi

(t))bβνi
(t).

Overall, the notion of EE allows us to solve the system (16-15) of size 6N
by solving a system of constant size 12. Hence, the computation of Φ(ε) can be
speed-up by a factor of 6N/12 = N/2.
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Relaxation of Symmetry Constraints. In order to apply EE, certain
assumptions on uncertain parameters and initial conditions must be met. Specif-
ically, while the requirement of common parameter intervals is mild (e.g.,
bβν

≡ bβμ
for all ν, μ), the requirement on common initial conditions may be

restrictive (e.g., VSν
(0) = VSμ

(0) for all ν, μ). We next present an approach
that essentially drops the second requirement. The intuition is to introduce an
artificial state variable that can distribute its mass across state variables with
common initial conditions. As an example, let us assume that we wish to relax
the constraint VSν

(0) = VSμ
(0) from above, where ν, μ. To this end, we intro-

duce the additional agent states S0 and SN+1 and the additional parameters

η1, . . . , ηN , ηN+1, thus giving rise to the additional reactions S0

(κ̂η+uην )VS0−−−−−−−−−→ Sν .
Assuming that bηN+1 ≡ 0 and bην

≡ bημ
for all 1 ≤ ν, μ ≤ N , one can show

that the uncertainty functions uη1 , . . . , uηN
determine how the mass VS0(0) is

distributed among VS1 , . . . , VSN
. Additionally, if bην

≡ bημ
for all 1 ≤ ν, μ ≤ N ,

one can show that
(
H ∪ {{S0}, {SN+1}},Ha ∪ {{Sa

0}, {Sa
N+1}}

)

is still a BDE, where H is as in (17). Thus, the extended agent network allows
one to incorporate an uncertainty in the initial conditions of VS0(0), . . . , VSN

(0)
while preserving the original blocks of the EE.

The overall discussion generalizes as follows.

Theorem 7 (Constraint Relaxation). Fix an agent network (S,K,F) and
assume that (H,Ha) is an EE for some A ∈ S. Then, for any {S1, . . . , SN} ∈ H,
extend, respectively, S and K to S ∪ {S0, SN+1} and K ∪ {η1, . . . , ηN+1}. With
this and bηN+1 ≡ 0 and bην

≡ κ̂η for all ν, this then yields, respectively, the
additional reactions and the EE of A:

S0

(κ̂η+uην )VS0−−−−−−−−−→ Sν and
(
H ∪ {{S0}, {SN+1}},Ha ∪ {{Sa

0}, {Sa
N+1}}

)
.

Moreover, for any small τ, ε > 0 there is a time-constant κ̂η such that for
any time-constant uη1 , . . . , uηN

, one has that VS0(τ) ≤ ε and any VSν
, where

ν = 1, . . . , N , receives during [0; τ ]

VS0(0)

[
κ̂η + uην∑N

μ=1(κ̂η + uημ
) + κ̂η

± ε

]
.

As anticipated, the formula from Theorem 7 ensures that VS0(0) can be dis-
tributed among VS1 , . . . , VSN

during arbitrarily short time intervals. We conclude
the section by pointing out that an iterative application of Theorem 7 allows one
to relax symmetry constraints across several blocks.
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4 Evaluation

To compute the deviation Φ(ε) for a given time horizon T , the time interval
[0;T ] was discretized to the grid T (Δt) = {0,Δt, 2Δt, . . . , T} following [23], for
some step size Δt. In this way, Φ(ε) is approximated at each t̂ ∈ T (Δt). As was
shown in [23], finer grids lead to a better approximations. For our experiments,
we picked the same values as in [23], that is, we chose as nominal parameters
κ̂αν,μ

≡ 1.00, κ̂βν
≡ 2.00, κ̂γν

≡ 3.00, and set uncertainties to bβν
≡ 0.03 for

all 1 ≤ ν ≤ μ ≤ N . Instead, for the sake of simplicity, the initial conditions
were set to VSν

(0) = 4.00, and VIν
(0) = VRν

(0) = 1.00, for all 1 ≤ ν ≤ μ ≤ N .
Heterogenous initial conditions could be considered by invoking Theorem 7.

All experiments were carried out on a 4.7 GHz Intel Core i7 computer with
32GB of RAM. To solve the differential equations, MATLAB’s ode45 solver
was used with its default settings. The time horizon for the experiments was
T = 3.00, in order to ensure that the simulations always reached a steady state.
We chose to plot the first 10 values of N , starting from N = 3, to visualize the
polynomial time dependence with respect to N .

The results of the experiments are summarized on Table 1 and Fig. 1. With
E(t) denoting the maximal deviation from (4), the envelopes were computed
by finding the value of E(t̂) for all t̂ ∈ T (Δt). Specifically, the upper envelope
was computed by adding E(t) to the nominal dynamics V 0(t), while the lower
envelope was found by subtracting E(t) from the nominal trajectory. Figure 1

Table 1. Computation of estimation E(·) of the multi-class SIRS agent networks in
case of the original adjoint systems (15)-(16) and its EE-reduction (18)-(19) over grid
T (Δt). It can be seen that the original estimations coincide with those obtained from
the EE-reductions. Moreover, the computation times (reported in seconds) of the latter
do not depend on the number of population classes N but only on the steepness, see
Table 2.

Discretization grid T (0.03) Discretization grid T (0.04)

Original Reduced Original Reduced

N supt‖E(t)‖ Time supt‖E(t)‖ Time supt‖E(t)‖ Time supt‖E(t)‖ Time

3 0.040 69.4 0.040 44.0 0.040 49.4 0.040 31.9

4 0.063 100.8 0.066 42.5 0.064 75.2 0.066 32.6

5 0.103 133.0 0.103 42.8 0.103 99.5 0.103 32.8

6 0.109 173.5 0.109 43.2 0.109 131.4 0.109 33.2

7 0.114 219.2 0.114 44.9 0.113 163.2 0.113 32.8

8 0.118 276.0 0.118 45.1 0.117 200.0 0.117 33.7

9 0.120 333.5 0.120 45.6 0.120 241.5 0.120 34.2

10 0.123 383.2 0.123 46.1 0.122 282.8 0.122 34.5

11 0.125 447.4 0.125 47.1 0.124 337.2 0.124 34.9

12 0.126 521.9 0.126 48.0 0.125 389.2 0.125 35.3



212 A. Leguizamon-Robayo and M. Tschaikowski

shows the computed envelopes for the reduced model, where the aforementioned
nominal trajectory is determined, for i ∈ {0, 1}, by the differential equations:

V̇ 0
Sνi

= −κ̂α

(
V 0

Iν0
+ (N − 1)(V 0

Iν1
)
)
V 0

Sνi
+ κ̂γV 0

Rνi

V̇ 0
Iνi

= −κ̂βV 0
Iνi

+ κ̂α

(
V 0

Iν0
+ (N − 1)(V 0

Iν1
)
)

(19)

V̇ 0
Rνi

= −κ̂γV 0
Rνi

+ κ̂βV 0
Iνi

Table 1 reports the bounds for both the original and the reduced model. As
expected, the bounds of the original and the reduced models coincide. Addi-
tionally, the bounds for grids T (0.03) and T (0.04) are reasonably close, thus
justifying the choice of the discretization step ΔT = 0.03. Crucially, for the orig-
inal models, the run times are polynomial in the number of species classes N .
As the number of classes increases, the reductions lead to a higher speed-ups,
yielding in particular a speed-up factor of 10 for N = 12. However, there is also
an increase in the run time for the reduced system with the number of species
involved. We explain this by the fact that systems become steeper with larger
values of N , as can be seen in Fig. 1. Indeed, a closer inspection of (18) reveals
that the right-hand sides increase with N , forcing thus the numerical ODE solver
to take smaller step sizes. This is also confirmed in Table 2 where the norms of
the aforementioned right-hand sides are reported for increasing N .

Table 2. Steepness of the nominal trajectory |V̇ 0(t)| with respect to the number of
population classes N .

N 3 4 5 6 7 8 9 10 11 12

supt|V̇ (t)| 10.0 14.0 18.0 22.0 26.0 30.0 34.0 38.0 42.0 46.0

Fig. 1. Reachable set estimation of the reduced multi-class SIRS model (18)-(19) for
different number of species over grid T (0.04).
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5 Conclusion

We introduced estimation equivalence (EE), a technique for the efficient estima-
tion of nonlinear models of collective adaptive systems. EE speeds-up the solution
of the nonlinear estimation problem from [23] by relying on the model reduction
technique from [5,7]. For a concrete model, the best EE can be computed by
means of a partition refinement algorithm in the style of Paige and Tarjan [18]
that enjoys polynomial time complexity when the dynamics are described by
multivariate polynomials, as is often the case in biochemistry and ecology. By
applying EE to a multi-class SIRS model from epidemiology, the estimation times
could decreased proportionally to the number of population classes. Future work
will integrate EE into the software tool ERODE [6] and conduct a large-scale
evaluation of EE on published nonlinear models.

Acknowledgments. The work was partially supported by the Poul Due Jensen Grant
883901 and the Villum Investigator Grant S4OS.
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Abstract. There have been a number of approaches to employing neu-
ral networks (NNs) in self-adaptive systems; in many cases, generic
NNs/deep learning are utilized for this purpose. When this approach
is to be applied to improve an adaptation process initially driven by
logical adaptation rules, the problem is that (1) these rules represent a
significant and tested body of domain knowledge, which may be lost if
they are replaced by an NN, and (2) the learning process is inherently
demanding given the black-box nature and the number of weights in
generic NNs to be trained. In this paper, we introduce the rule-specific
Neural Network (rsNN) method that makes it possible to transform the
guard of an adaptation rule into an rsNN, the composition of which is
driven by the structure of the logical predicates in the guard. Our exper-
iments confirmed that the black box effect is eliminated, the number
of weights is significantly reduced, and much faster learning is achieved
while the accuracy is preserved.

Keywords: Self-adaptive systems · Adaptation rules · Machine
learning · Neural networks

1 Introduction

The recent advances in neural networks and machine learning [8] led to their
proliferation in various disciplines, and the field of self-adaptive systems is no
exception [13]. In particular, they have found usage in approaches to control how
systems of cooperating agents are formed and reconfigured at runtime [4,12].

These approaches employ neural networks to implement the self-adaptation
loop, also known as the MAPE-K loop, which controls the runtime decisions in
the system (e.g., to which service to route a particular request) and the runtime
architectural changes (e.g., which services to deploy/un-deploy or reconfigure).
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In typical cases, a neural network is used for the analysis and planning stages
of the MAPE-K loop, replacing the traditional means of analyzing the system
state and deciding on adaptation actions. These traditional adaptation mecha-
nisms are often specified in some form of logical rules (e.g., if-then rules or a
state machine with guards and actions) [6,12,16].

Using a neural network for making decisions on adaptation actions natu-
rally means training the network for the situations the self-adaptive system is
supposed to handle. Such training typically requires a large number of system
behavior examples—training data in the form of observed inputs and expected
adaptation actions. This approach is significantly different from the logical rules
that have been traditionally used to describe adaptation actions. Due to this
substantial conceptual gap between the two approaches, it is difficult to evolve
an existing self-adaptive system based on some form of logical rules into a new
system that uses a neural network to make adaptation decisions. Seemingly,
the typical design choice is to recreate the analysis and planning stages of the
MAPE-K loop from scratch.

The existing logical rules represent a significant body of domain knowledge,
especially if the system has been well-functioning and tuned to its task. Thus,
when replacing the logical rules with a neural network, this body of domain
knowledge is often lost, which leads to severe regress. On the other hand, apply-
ing neural networks may be advantageous as they can dynamically learn com-
pletely unanticipated relationships of stochastic character. Thus, it makes the
self-adaption refined to take advantage of the specific features otherwise hidden
in the system and not captured in the inherently static logical rules.

Nevertheless, if logical rules are used for determining the expected actions in
training data, it is not easy to train the neural network to reliably yield actions
corresponding to the existing rule-based self-adaptive system in question. The
main culprit is that the neural network is often built as a black box composed
of generic layers (such as a combination of recurrent and dense layers). Thus,
the structure of such a generic neural network does not reflect the relationships
characteristic of the domain in which the self-adaptive system resides. In other
words, the neural network is built as a generic one, not exploiting the existing
domain knowledge about the self-adaptive system whose adaptation actions it
controls.

While this genericity is inherently advantageous in empowering the neural
network to “discover” ultimately unanticipated relationships, it may also hinder
the ability to adequately learn because it makes the neural network relatively
complex, thus potentially increasing adaptation uncertainty.

Therefore, replacing a rule-based adaptation entirely with a generic neu-
ral network-based one might be an overly drastic change that may potentially
degrade the reliability of the system (at least in the short-term perspective).
Moreover, it may raise legitimate concerns since generic neural networks are
much less comprehensible and predictable given their black-box nature and the
typically large number of weights to be trained—there is always a danger of
overfitting.
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In this paper, we aim to answer the following research questions: (1) how to
endow an existing rule-based self-adaptation system with the ability to learn via
neural networks while still benefiting from the domain knowledge encoded in the
logical rules; and (2) how to scale the learning ability in a way that would allow
the transition from logical rules to a neural network to be done on a step-by-step
basis.

We address these research questions by introducing a rule-specific Neural
Network (rsNN) method, which allows the transformation of an adaption rule
to the corresponding rsNN to be done systematically. The key feature is that an
rsNN is composable - its architecture is driven by the structure of the logical
predicates in the adaption rule in question. Moreover, prior to the composition
process, the predicates can be refined by predefined atomic”attunable” predi-
cates, each having a direct equivalent in a primitive element of rsNN (”seed” of
rsNN).

The rest of the paper is organized as follows. Section 2 presents an example
that is used for motivating and illustrating rsNN. Section 3 is devoted to the key
contribution of the paper—it describes the concepts and ideas of rsNN, while
Sect. 4 discusses the methodology, results, and limitations of experimental evalua-
tion. Section 5 discusses other approaches focused on employing neural networks
in self-adaptation, and the concluding Sect. 6 summarizes the contribution.

2 Motivating Example

As a motivating example, we utilize a realistic yet straightforward use-case from
our former project focused on security in Industry 4.0 settings1. The example
employs the MAPE-K loop principle to dynamically reconfigure the software
architecture of agents—workers (represented by components) operating jointly
on a common task. In the architecture, groups of workers are determined by
the access policies that allow the member workers to perform their tasks. Since
these tasks are subject to changes, the access control is intertwined with dynamic,
runtime modification of the software architecture.

Implementation-wise, the MAPE-K controller dynamically re-establishes the
groups of workers to deal with situations in the environment—e.g., when a
machine breaks down, the MAPE-K controller establishes a group of workers
that communicate and collaborate to fix the machine (so that the software archi-
tecture is dynamically reconfigured). It also gives these workers the necessary
access rights, e.g., to access the machine’s logs and physically enter the room
(workplace) where the machine is located.

In the example, we pick up a particular adaptation rule from the larger use-
case in the project mentioned above, and later in Sect. 3, we will employ it to
demonstrate a step-by-step transition from this static adaptation rule to the
corresponding rsNN neural network.

Let us consider a factory with several workplaces where production is orga-
nized in shifts, each determined by its start and end time, during which worker
1 http://trust40.ipd.kit.edu/home/.

http://trust40.ipd.kit.edu/home/
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groups, each with an assigned (the only) workplace, perform their tasks. The
workers are allowed to enter the factory only at a time close to a particular
shift’s start and must leave soon after the shift ends. After entering, they have
to pick up headgear (protective equipment) from a dispenser as a necessary con-
dition for being permitted to enter the assigned workplace. Similarly, they are
allowed to enter only the assigned workplace and only close to the shift start
time (and have to leave as soon as the shift ends).

As expected in the Industry 4.0 domain, the assignment of workers to par-
ticular shifts is not static but can frequently change, and the roles of individual
workers within the shift can also alternate rapidly. This leads to changes in
the runtime software architecture. Consequently, the access control system of
the factory cannot assign access rights statically only, thus supporting dynamic,
situation-based access control.

To perform access right adaptation, the MAPE-k controller uses adaptation
rules in the form of guard-actions, where the action is adding/revoking or allow-
ing access.

Listing 1 shows an example of an adaptation rule which dynamically deter-
mines a group of workers formed for the duration of a shift, having access rights
to the assigned workplace. In particular, the adaptation rule specifies whether a
specific worker belongs to the group and if so, it gives the worker access to the
workplace assigned for the shift.

The structure of the adaptation rule has three parts. First, there are declared
data fields (in this particular case, only a single field initialized to the shift of the
given worker—line 2). Second, there is a guard, which defines the condition when
the rule is applied. This particular guard reads: To allow a worker to enter the
assigned workplace, the worker needs to be already at the appropriate workplace
gate (line 5), needs to have a headgear ready (line 6), and needs to be there at the
right time (i.e., during the shift or close to its start or end—line 4). Finally, there
is an action determining what has to be executed—in this case, the assignment
of the allow access rights to the assigned workplace to the worker (line 8).

1 rule AccessToWorkplace(worker) {
2 shift = shifts.filter(worker in shift.workers)
3 guard {
4 duringShift(shift) &&
5 atWorkplaceGate(worker, shift.workplace) &&
6 hasHeadgear(worker)
7 }
8 action { allow(worker, ENTER, shift.workplace) }
9 }

Listing 1. Access to workplace rule

The predicates atWorkplaceGate, hasHeadgear, and duringShift are declared in
Listing 2.

The predicate duringShift tests whether the current time is between 20 min
(i.e., 1200 s) before the start of the shift and 20 min after the end of the shift.
The global variable NOW contains the current time.
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The atWorkplaceGate predicate mandates that the position of the worker has
to be close (in terms of Euclidean distance) to the gate of the workplace assigned
to the worker.

The predicate hasHeadgear checks whether the worker retrieved a headgear
from the dispenser. To check this, we assume that each worker is associated with
a list of related events (the events data field of the worker—line 11 in Listing 2).
For instance, retrieving and returning the headgear are the events registered in
the list of events upon performing the respective actions. Thus, the check of
whether a worker has a headgear available is performed by verifying that after
filtering the two specific event types from the list (line 12), the latest event is
TAKE HGEAR (the filtered events are sorted in descending order—line 13 and
line 14).

1 pred duringShift(shift) {
2 shift.startTime − 1200 < NOW && shift.endTime + 1200 > NOW
3 }
4

5 pred atWorkplaceGate(worker, workplace) {
6 sqrt((workplace.gate.posX − worker.posX) ˆ 2 +
7 (workplace.gate.posY − worker.posY) ˆ 2) < 10
8 }
9

10 pred hasHeadgear(worker) {
11 worker.events
12 .filter(event −> event.type == (TAKE HGEAR || RET HGER))
13 .sortDesc(event −> event.time)
14 .first().type == TAKE HGEAR
15 }

Listing 2. Predicates from Listing 1

3 Refining Adaptation Rules

The problem with the adaptation rules we presented in Sect. 1 is that their
guards are too static, and thus they do not capture the domain-specific stochastic
character of the data they act upon. As already mentioned in Sect. 1, we aim to
employ a dedicated rule-specific neural network (rsNN) to benefit from its ability
to learn from the domain characteristic data being handled. To this end, in this
section, we outline the method that allows us to refine an original adaption rule
to make its guard predicates “attunable” and convert the guard into an rsNN .
In a sense, our method of employing a dedicated rsNN for this purpose can
be viewed as paving a middle ground between the adaptation rules with static
guards and the adaptation rules driven by (typically complex) generic neural
networks such as in [12,17].

The main idea of our method unfolds in three stages:

1. An adaptation rule is refined by manually rewriting (transforming) its selected
guard predicates into their attunable form—they become attunable predi-
cates. This is done by applying predefined atomic attunable predicates (aa-
predicates) listed in Sect. 3.1. These aa-predicates serve as rsNN seeds in
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the second stage. Nevertheless, not all the guard predicates have to be trans-
formed this way—those remain static predicates (their selection is application-
specific).

2. We apply an automated step that generates an rsNN that reflects the guard of
the refined adaptation rule, containing, in particular, the trainable parameters
of aa-predicates as trainable weights.

3. We employ traditional neural network training using stochastic gradient
descent to pre-train the trainable weights.

The result is an rsNN being a custom neural network, the composition of
which is driven by the structure of the guard formula with aa-predicates. This
neural network is pre-trained to match outputs of the original guard formula
of the adaptation rule. Nevertheless, being a neural network, it can be further
trained by running additional examples.

As to pre-training data, we assume there are sample traces of input data to
the system, obtained either from historical data, simulation, or random sampling.
We use the logical formulas of the original guard predicates over the input data
to provide the ground truth (i.e., expected inputs) employed in the supervised
learning of the rsNN .

Further, the developer has the ability to specify the learning capacity in
many aa-predicates, which in turn determines how many neurons are used for
its implementation in the rsNN .

3.1 Atomic Attunable Predicates as rsNN Seeds

This section provides an overview of the aa-predicates defined in the rsNN meth-
ods. The key idea is that these predicates serve as elementary building blocks
for attunable predicates forming an adaptation rule, and at the same time, each
of them is easily transformable into a building block of rsNN—it serves as an
rsNN seed as defined in Sect. 3.3.

Each aa-predicate operates on a single n-dimensional input value (i.e., a fixed-
sized vector). Since each aa-predicate yields a true/false value, its corresponding
rsNN seed solves a classification task, yielding likewise true/false.

Following the type of input value domain, we distinguish between aa-
predicates that operate on domains with a metric (i.e., with the ability to mea-
sure the distance between quantities) and categorical quantities where no such
metric exists:

1. Metric Quantity: There are two types of aa-predicates defined over a metric:
(a) Quantity lies in a one-sided interval

isAboveThreshold nD(x,min,max)
isBelowThreshold nD(x,min,max)

Here x is a value in an n-dimensional space that is compared to a learned
threshold (above or below) by the corresponding rsNN seed. In order to con-
trol the uncertainty that is potentially induced by learning, the min and max
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parameters impose the limits for the learned threshold.
(b) Quantity lies in a two-sided interval

hasRightValue nD(x,min,max , c)

Here it is verified whether the parameter x lies inside the learned interval of an
n-dimensional space. The parameters min and max have the same meaning
as in the case of the aa-predicates for a one-sided interval, while the parame-
ter c states the learning capacity of the corresponding rsNN seed; technically,
this is, e.g., the highest number of the neurons in a hidden layer of the rsNN
seed.

2. Categorical Quantity: For this type of input domain, we define an aa-
predicate that decides whether a categorical quantity has the right value:

hasRightCategories nD(x,m, c)

Here x is an n-dimensional vector of categorical values from the same domain
of the size m (the number of categories). The corresponding rsNN learns
which combinations of categorical values in the input vector satisfy this aa-
predicate. The learning capacity is determined by c.

3.2 Making Guard Predicates Attunable

In this section, we demonstrate the first stage of the rsNN method (i.e., the
manual rewriting of guard predicates) on the example presented in Sect. 2. We
show two alternatives to such rewriting to demonstrate that a designer may
choose several ways to make a predicate attunable depending on what quantities
are to be the subject of future learning.

We start with the guard predicates shown in Listing 2. At first, we assume
that the designer would like to rewrite duringShift to make it attunable, with
the goal to learn the permitted time interval in which the access is allowed. For
example, security reasons may require learning the typical behavior patterns
of workers induced by the public transportation schedule. (On the contrary, in
Listing 2, the interval is firmly set from 20 minutes before the shift starts to 20
minutes after the shift is over.)

We rewrite the duringShift guard predicate as shown in Listing 3: The com-
parison of NOW with a particular threshold is replaced by the aa-predicates
isAboveThreshold and isBelowThreshold, respectively. Each of them represents a
comparison against a learned threshold.

The aa-predicates isAboveThreshold and isBelowThreshold have three parame-
ters: (1) the value to test against the learned threshold, (2) the minimum value
of the threshold, (3) the maximum value of the threshold.

Since this threshold should not depend on the actual time of the shift, the
times are given relative to its start and end. By assuming a worker cannot arrive
earlier than one hour before the shift starts (+3600 seconds in line 2), the relative
time 0 corresponds to that point in time (as computed by NOW + 3600 - shift.end).
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Similarly, by assuming a worker cannot leave later than one hour after the shift
ends (-3600 seconds in line 4), the relative time 0 corresponds to that point in
time (as computed by NOW - 3600 - shift.end ). The minimum and maximum
values of the threshold correspond to the interval of 10 h (i.e., 36000 s).

1 pred duringShift(shift) {
2 isAboveThreshold 1D(NOW + 3600 − shift.start,min=0, max=36000)
3 &&
4 isBelowThreshold 1D(NOW − 3600− shift.end, min=−36000, max=0)
5 }
6

7 pred atWorkplaceGate(worker, workplace) {
8 sqrt((workplace.gate.posX − worker.posX) ˆ 2 + (workplace.gate.posY

− worker.posY) ˆ 2) < 10
9 }

10

11 pred hasHeadgear(worker) {
12 worker.events.filter(event −> event.type == TAKE HGEAR ||

RET HGER))
13 .sortDesc(event −> event.time).first().type ==

TAKE HGEAR
14 }

Listing 3. Guard predicates with refined duringShift by aa-predicates—one-sided
intervals

The other predicates atWorkplaceGate and hasHeadgear) stay the same, as does
their conjunction in the AccessToWorkplace rule.

Note that we combined static predicates with an attunable predicate. This
shows that only a part of a rule can be endowed with the ability to learn while
the rest can stay unchanged. At the same time, we put strict limits on how far the
learning can go. In the example, these limits are expressed by the interval of 10 h
which spans from one hour before the shift to one hour after the shift (assuming
the shift takes 8 h). In other words, the value in the attunable predicate gained
in the process of learning cannot exceed these bounds. This is useful if learning
is to be combined with strict assurances with respect to uncertainty control.

As another alternative of the rule refinement, we assume the time of entry,
place of entry, and the relation to the last event concerning the headgear is to
be learned. Also, contrary to the variant of duringShiftin Listing 3, we assume
the time of entry is not just a single interval but can be multiple intervals (e.g.,
to reflect the fact that workers usually access the gate only at some time before
and after the shift due to the public transportation opportunities).

To capture this, we rewrite the predicates duringShift, atWorkplaceGate, and
hasHeadGear as shown in Listing 4.

The guard predicate duringShift is realized using the aa-predicate hasRight-

Value1D, which represents a learnable set of intervals. It has four parameters. In
addition to the first three, which have the same meaning as before (i.e., value
to be tested on whether it belongs to any of the learned intervals, the minimum,
and the maximum value for the intervals), there is the fourth parameter capacity

which expresses learning capacity. The higher it is, the finer intervals the pred-
icate is able to learn. Since it works relative to the min/max parameters, it is
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unitless. Technically, the learning capacity determines the number of neurons
used for training. The exact meaning of the capacity parameter is given further
in Sect. 3.3.

The guard predicate atWorkplaceGate is rewritten similarly. However, as the
position is a two-dimensional vector, a 2D version of the hasRightValue aa-
predicate is used. The meaning of its argument is the same as in the 1D version
applied for the duringShift. A special feature of atWorkplaceGate is that it is specific
to the workplace assigned to the worker. (There are several workplaces where the
work is conducted during a shift. Each worker is assigned to a particular work-
place, and their access permission is thus limited only to that workplace.) Thus,
the hasRightValue2D aa-predicate has to be trained separately for each workplace.
The square brackets express this after the hasRightValue2D aa-predicate, which
signifies that its training is qualified by workplace ID. Since the running example
assumes that there are three workplaces in a shift, there are three aa-predicates
to be trained.

The hasHeadGear guard predicate is rewritten using the hasRightCategories 1D

aa-predicate which assumes 1-dimensional vector of categorical values (i.e., a
single value in this case) from the domain of size 2. In this simple case, the
learning capacity is set to 1.

1 pred duringShift(shift) {
2 hasRightValue 1D(NOW − shift.start, min=0, max=36000,

capacity=20)
3 }
4

5 pred atWorkplaceGate(worker) {
6 hasRightValue 2D[worker.workplace.id](worker.pos,
7 min=(0,0), max=(316.43506,177.88289), capacity=20)
8 }
9

10 pred hasHeadGear(worker) {
11 hasRightCategories 1D(
12 worker.events.filter(event −> event.type == (TAKE HGEAR ||

RET HGER))
13 .sortDesc(event −> event.time).take(1), categories=2,

capacity=1
14 )
15 }

Listing 4. Guard predicates expressed by a two-sided interval and categorical quantity
aa-predicates

3.3 Construction of rsNN

In this section, we formalize the second stage of the rsNN method, i.e., the auto-
mated construction of an rsNN that reflects the guard of a refined adaptation
rule. First, we show how to transform a logical formula into an elementary rsNN
(rsNN seed) in general, and how to combine rsNN seeds into larger units (and
how to combine these larger units as well) via transformed logical connectives.
Then, we describe how the elementary logical formulas in the guard (i.e., static
predicates and aa-predicates) are transformed into rsNN seeds.
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Transforming a Logical Formula and Connectives
A logical formula L(x1, . . . , xm) is transformed to a continuous function
N(x1, . . . , xm, w1, . . . , wn) → [0, 1] (i.e., a neural network), where x1, . . . , xm

are the inputs to the logical formula (e.g., the current time, position of the
worker in an aa-predicate), and w1, . . . , wn are trainable weights. The goal
is to construct the function N and to train its weights in such a way that
L(x1, . . . , xm) ⇔ N(x1, . . . , xm, w1, . . . , wn) > 0.5 for as many inputs x1, . . . , xm

as possible. By convention, we interpret N(. . . ) > 0.5 as true, while if this rela-
tion does not hold it is interpreted as false. Also, we use the symbol T to denote
the transformation from the logical formula L to the continuous function N—i.e.,
N(. . . ) = T (L(. . . )).

As to logical connectives, we deviate from the traditional notion in which
conjunction is defined as a product and disjunction is derived using De Morgan’s
laws. This is because our experiments showed that the conjunctions of multiple
operands are close to impossible to train (very likely due to the vanishing gradient
problem [9]). Therefore we transform conjunction and disjunction as follows
(similarly to in [11]):

T (L1& . . . &Lk) = S ((T (L1) + · · · + T (Lk) − k + 0.5) ∗ p)

T (L1 ∨ · · · ∨ Lk) = S ((T (L1) + · · · + T (Lk) − 0.5) ∗ p)

T (¬L) = 1 − T (L)

where S(x) is the sigmoid activation function defined as S(x) = 1
1+e−x , and p > 1

is an adjustable strength of the conjunction/disjunction operator. The bigger it
is, the stricter the results are. However, too high values have the potential to
harm training due to the vanishing gradient problem.

Transformation of a Static Predicate. A static predicate is transformed
simply into a function that returns 0 or 1 depending on the result of the static
predicate. Formally, we transform a static predicate LS(x1, . . . , xm) to the func-
tion NS(x1, . . . , xm) as follows:

T (LS) =

{
0 if not LS(x1, . . . , xm)
1 if LS(x1, . . . , xm)

Transformation of One-Sided Interval aa-Predicates. We transform an
aa-predicate isAboveThreshold(x,min,max) to the function N>(x,wt) and an
aa-predicate isBelowThreshold(x,min,max) to the function N<(x,wt) as fol-
lows.

T (isAboveThreshold) = S

((
x − min

max − min
− wt

)
∗ p

)

T (isBelowThreshold) = S

((
wt − x − min

max − min

)
∗ p

)
where wt is a trainable weight.
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Transformation of Two-Sided Interval aa-Predicates. We base these aa-
predicates on radial basis function (RBF) networks [14]. We apply one hidden
layer of Gaussian functions and then construct a linear combination of their out-
puts. The weights in the linear combination are trainable. The training capacity
c in the aa-predicate determines the number of neurons (i.e., points for which
the Gaussian function is to be evaluated) in the hidden layer.

We set the means μi of the Gaussian function to a set of points over the
area delimited by min and max parameters of the aa-predicate (e.g., forming
a grid or being randomly sampled from a uniform distribution). We choose the
σ parameter of the Gaussian function to be of the scale of the mean distance
between neighbor points. The exact choice of σ seems not to be very important.
Our experiments have shown that it has no significant effect and what matters
is only its scale, not the exact value. The trainable linear combination after the
RBF layer automatically adjusts to the chosen values of μi and σ.

For the sake of clarity, we show the transformation of

hasRightValue nD(x,min,max , c)

for n = 1 and for arbitrary n. In the 1-D case, we transform an aa-predicate
hasRightValue 1D(x,min,max , c) to the function N1

�(x,wa1 , . . . , wac
, wb) as fol-

lows:

T (hasRightValue 1D) = S

(
wb +

c∑
i=1

wai
e− (μi−x)2

2σ2

)

where c is the capacity parameter of the predicate, μi ∈ [min,max ] and σ are
set as explained above, and wa1 , . . . , wac

, wb are trainable weights.
This is generalized to the n-D case as follows:

T (hasRightValue nD) = S

(
wb +

c∑
i1=1

· · ·
c∑

in=1

wai1,...,in
e− |μi1,...,in

−x|2
2σ2

)

where μi,j ∈ [min1 ,max1 ]×· · ·× [minn ,maxn ] and σ are set as explained above,
x is an n-D vector, | · | stands for vector norm, and wa1,...,1 , . . . , wac,...,c

, wb are
trainable weights.

Transformation of a Categorical Quantity aa-Predicate. We base this
aa-predicate on a multi-layer perceptron with one hidden layer, which has the
number of units equal to the capacity parameter c of the aa-predicate and is
activated by the ReLU activation function.

The transformation of an aa-predicate

hasRightCategories nD(x,m, c)
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to the function N .
=(x,wh

a1,1
, . . . , wh

ac,m
, wh

b1
, . . . , wh

bc
, wo

a1
, . . . , wo

ac
, wo

b ) is defined
as follows:

T (hasRightCategories nD) =

S (wo
b+

c∑
i=1

wo
ai

ReLU

⎛
⎝wh

bi
+

n∑
j=1

m∑
k=1

wh
ai,j,k

δxj ,k

⎞
⎠

⎞
⎠

where x ∈ {1, . . . , m}n is the n-dimensional input vector of categorical values
from the same domain of size m, c is the capacity, wh

i,j,k, w
h
b are trainable weights

of the hidden layer, wo
ai

, wo
b are trainable weights of the output layer, δi,j is the

Kronecker delta—i.e., δi,j = 1 if i = j and δi,j = 0 otherwise. The ReLU function
is defined as ReLU(x) = max(0, x). Note that the Kronecker delta in the formula
stands for one-hot encoding of the categorical input values.

3.4 Training an rsNN

The N function we defined as the result of the transformations in Sect. 3.3 con-
tains trainable weights. We train these weights using supervised learning and
employing the traditional stochastic gradient descent optimization.

The samples for training are taken from existing logs obtained from the
system runtime or a simulation. In the case of the motivation example, each
sample contains the current time, the worker id, its position, and the history
of events associated with the worker. To obtain accurate outputs for supervised
learning, we exploit the fact that we have the original logical formula of the
guard with static predicates available. Thus we use it as an oracle for generating
the ground truth for training inputs. The exact training procedure is described
in [1].

After this training step, the function N can be used as a drop-in replacement
for the corresponding adaptation rule. Moreover, being a neural network, it is
able to digest additional samples generated at runtime—e.g., to learn from situa-
tions when the outputs of the system have been manually corrected/overridden.

4 Evaluation

We evaluated our approach by comparing the training results of rsNNs created by
the method proposed in Sect. 3 with generic NNs comprising one and two dense
layers. The complete set of necessary code and data for replicating the evaluation,
as well as the experiments, detailed evaluation of results, graphs, and discussion
that did not fit this paper, is available in the replication package [1].

For our motivating example, we created two datasets: (a) random sampled
dataset, which was obtained by randomly generating inputs and using the origi-
nal logical formula of the guard as an oracle; (b) combined dataset, which com-
bines data from a simulation and the random dataset.

Both datasets have about 500, 000 data points.
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The datasets were balanced in such a manner that half of the samples corre-
spond to true and a half to the false evaluation of the guard of AccessToWorkplace.
Additionally, to obtain more representative results for evaluation, the false cases
were balanced so that each combination of the top-level conjunctions outcomes
(i.e., duringShift & atWorkplaceGate & hasHeadGear) has the same probability.

The combined dataset combines false cases from random sampling and true
cases from a simulation. The simulation was performed by a simulator we devel-
oped in the frame of an applied research project (Trust4.02). The reason for
combining these two sources is to get better coverage for all possible cases when
the guard of the adaptation rule evaluates to false.

As the baseline generic NNs, we selected dense neural networks. Given our
experiments and consultation with an expert outside our team (a researcher from
another department who specializes in practical applications of neural networks),
this architecture suits the problem at hand the best. Our setup comprises net-
works with one and two dense layers of 128 to 1024 nodes (in the case of two
layers, both of them have the same amount of nodes). The dense layers use ReLU
activation, and the final layer uses sigmoid. The greatest accuracy was observed
when two 256-node dense layers were used; thus, this configuration was selected
as the baseline.

Three versions of rsNNs representing our approach were built corresponding
to different levels of refinement. The first two models refined only the time condi-
tion: one used the isAboveThreshold and isBelowThreshold variant (as in Listing 3)—
denoted as “time (A&B)”, the other used hasRightValue aa-predicate (similar to
Listing 3 but with hasRightValue instead of the combination of isAboveThresh-

old and isBelowThreshold)—denoted as “time (right)”. The last model refined all
involved inputs (time, place, and headgear events) as outlined in Listing 4—
denoted as “all”. To verify the properness of logical connectives redefinition
(Sect. 3.3), we built a TensorFlow3 model with no trainable weights (i.e., just
rewriting the static predicates using their transformation described in Sect. 3.3).
By setting p = 10, we achieved 100% accuracy (this value of p was then used in
all other experiments).

Table 1. Comparison of accuracies of individual methods

Baseline Time (A&B) Time (right) All

Accuracy (random) 99.159% 98.878% 99.999% 99.978%

Accuracy (combined) 99.393% 92.867% 99.993% 99.575%

Number of weights 68, 353 2 21 1, 227

2 https://github.com/smartarch/trust4.0-demo.
3 https://www.tensorflow.org/ (version 2.4).

https://github.com/smartarch/trust4.0-demo
https://www.tensorflow.org/
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Table 1 presents the measured accuracies on the testing set4 of both datasets
(random and combined) after 100 training epochs, comparing rsNNs resulting
from different refinements with the baseline. The last two models outperform the
baseline in terms of accuracy. The number of Weights line refers to the number
of trainable weights in each model. While the baseline has multiple weights (as it
features two dense layers), our rsNNs have significantly fewer weights since their
composition benefits from the domain knowledge ingrained in the adaptation
rules.

The lower number of trainable parameters positively impacts the performance
as it makes the models train and evaluates significantly faster whilst achieving
comparable accuracy levels. We did not perform a thorough performance analysis
since it heavily depends on many configuration parameters (e.g., batch size) and
the actual hardware (especially whether CPU or GPU is used for the training).
However, in our configurations, the proposed model was trained roughly several
times (up to an order of magnitude) faster than the baseline.

5 Related Work

In the domain of adaptive systems, NNs and machine learning are used in several
areas. Closely related approaches use NNs in the adaptation cycle analysis phase.
Namely, in [16], neural networks are applied during the analysis and planning
phase to reduce a large adaptation space. We apply rsNN during the same phases
to refine adaptation rules, thus allowing for more flexible adaptation. Similarly,
in [6], NNs are applied during the restriction of the adaptation space to achieve
a meaningful system after adaptation.

In [12], NNs are used to forecast values of QoS parameters, thus allowing
for the progressive selection of adaptation. A similar approach is used in [2] to
predict values in sensor networks and proactively perform adaptation. Multiple
machine learning algorithms, including NNs, are employed in [5] to predict QoS
values again.

The approaches above target either reducing the adaptation space or adapt-
ing a system proactively. They differ from our approach as we use neural networks
to relax strict conditions in an adaptive system and thus to learn new unfore-
seen conditions. A conceptually similar approach is [7], where machine learning
approaches are utilized for training a model for rule-based adaptation. Instead
of NNs, approaches like the random forest, gradient boosting regression models,
and extreme boosting trees are used. Similarly, paper [3] proposes a proactive
learner; however, the infrastructure is mainly discussed, and details about the
used machine learning techniques are omitted. In [15], the authors propose an
approach to dynamic learning of knowledge in self-adaptive and self-improving
systems using supervised and reinforcement learning techniques. In [10], machine
learning is used to deal with uncertainty in an adaptive system (namely in a
4 We divide the data only to the training and testing set (testing set holds 10% of

data). We do not need a validation set since we do not perform any hyper-parameter
training.
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cloud controller). Here, the proposed approach allows users to specify poten-
tially imprecise control rules expressed with the help of fuzzy logic, and machine
learning techniques are used to learn precise rules. The approach is the complete
opposite of ours, where we start with precise rules and, via machine learning, we
reach attunable ones. A similar approach is in [18], where reinforcement learning
is also employed for generating and evolving the adaptation rules.

6 Conclusion

In this paper, we introduced the rule-specific Neural Network (rsNN) method
that allows for transforming the guard of an adaptation rule into a custom
neural network, the composition of which is driven by the structure of the logical
predicates in the guard. An essential aspect of rsNN is that by having the ability
to combine the original static predicates with attunable ones (and, in addition,
to set the training capacity of the corresponding part of rsNN network), one
can step-by-step proceed from a static non-trainable adaptation rule to fully
trainable one. This aspect allows for a gradual transition from the original self-
adaptive system to its trainable counterpart while still controlling the inherent
uncertainty of introducing machine learning into the system.

The aspect of being able to control the uncertainty inherent to machine
learning is a distinguishing factor of the rsNN method. This stems primarily
from two facts: (1) The structure of the rsNN generated from an adaption rule
directly relates to the composition of its predicates, and the static predicates can
be combined with attunable ones. (2) An rsNNs is a neural network with almost
two orders of magnitude fewer neurons than a generic neural network (e.g., a
multi-layer perceptron network with several hidden dense layers) solving the
same task. This makes the rsNN less prone to overfitting, which, in general, may
lead to unexpected results in real environments. Moreover, given the significant
difference in the number of neurons and thus trainable weights, rsNN networks
train much faster, as showcased in the results of the experiments. In future
work, we aim to extend the set of the predefined aa-predicates to provide a
tool for applications also featuring other than metric and categorical quantities.
Furthermore, we are looking into ways of supporting the process of gradual
transformation of static predicates into attunable ones with the aim to make
this process semi-automatic.
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Abstract. To deal with situations not specifically designed for
(unknown-unknowns), self-adaptive systems need to learn the best – or at
least good enough – action to perform in each context faced during oper-
ation. An established solution for doing so is through the use of online
learning. The complexity of online learning however increases in the pres-
ence of context shifts – which are typical in self-adaptive systems. In this
paper, we (i) propose a new metric, convergence inertia, to assess the
robustness of reinforcement learning policies against context shifts, and
(ii) use it to assess the robustness of different policies within the family of
multi-armed bandits (MAB) to context shifts. Through an experiment
with a self-adaptation exemplar of a web server, we demonstrate that
inertia and the accompanying interpretation of the unknown-unknowns
problem is a viable way to inform the selection of online learning policies
for self-adaptive systems, since it brings the influence of context shifts
to the forefront. In our experiment, we found that non-stationary MAB
policies are better suited to handling context shifts in terms of inertia,
although stationary policies tend to perform well in terms of overall con-
vergence.

Keywords: Online learning · Self-adaptive systems · Non-stationary ·
Convergence inertia

1 Introduction

Self-adaptive systems (SAS) are able to react to changes in their environment and
internal state to ensure a number of adaptation goals related to e.g. application
performance, resource consumption, and failure avoidance [12]. While adaptation
is mostly used to address known-unknowns, i.e. situations that one anticipates
and designs a specific action/policy for, a highly challenging yet realistic class
of SAS has to deal with unknown-unknowns, i.e. situations that are not entirely
anticipated by the system designers [14]. Such situations can lead to a suboptimal
system state where adaptation goals are no longer met. To deal with unknown-
unknowns, SAS can apply online learning, i.e. learn the appropriate adaptation
action at runtime out of a set of available actions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13703, pp. 231–248, 2022.
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Online learning in SAS typically takes the form of a reinforcement learning
(RL) policy that continuously applies an action and monitors its reward (in terms
of overall utility of the system after the action is performed). For instance, an
action may be to add or remove servers of a web application; the reward could
be measured as the number of requests that can be timely served. After applying
a number of actions, the RL policy gradually builds up the knowledge of which
action to apply to maximize system utility.

A problem that arises when using RL for online learning in a SAS is that
the SAS may undergo several context shifts during the learning phase. Follow-
ing the web application example, the number of user requests may increase or
decrease. Context shifts affect the reward distributions, which can interfere with
the learning process as this is based on associating actions with reward val-
ues. Interference may have a positive effect if it reinforces prior knowledge and
speeds up the convergence of the policy or a negative effect if it contradicts
learned knowledge and slows down convergence. An example of the latter is a
context shift that causes a previously optimal action to become suboptimal. In
that case, the convergence to the new optimal action will be hampered because
of the prior knowledge accumulated suggesting the previous optimal. We refer
to this difference in the speed of convergence as inertia, as there is a resistance
towards realizing the optimal relative to a clean start, specific to each policy.

In this paper, we focus on inertia and its effects on online learning in self-
adaptive systems. In particular, we formulate the inertia metric and propose a
way to measure it general to any (even non-RL) policy. To investigate its effects,
we perform an experimental study using a number of RL policies belonging to
the multi-armed bandits (MAB) family [13], which is a simplified category of RL
algorithms. Our experiment uses SWIM [18], a SAS exemplar provided by the
self-adaptive systems community that simulates an elastic web application. We
compare several MAB policies that can deal with context shifts and the related
inertia they incur in different ways: by just ignoring the change, by greedily
exploring or assuming stationarity, by considering only a limited window of time
in the past when evaluating actions, or by maintaining separate knowledge bases
for a set of learned contexts through side information.

Our results show that stochastic policies that operate under the assumption
of stationarity, such as UCB Tuned [2], can deceivingly converge well despite
context shifts. However, when inertia is measured it is clear that non-stationary
policies are better suited to handling context shifts. By quantifying the inertia
an educated decision can be made when choosing RL policies for SAS systems
which deal with non-stationary environments.

2 Background and Running Example

2.1 Online Learning in Self-adaptive Systems

Online learning has been proposed to remedy design uncertainty in self-adaptive
systems (SAS) [9,17]: instead of trying to enumerate all the possible situations
– triggers for adaptation – and the corresponding actions, the idea is to let the
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system try out different actions in different situations and learn at runtime which
action is the most appropriate in each situation.

With respect to the Monitor-Analyse-Plan-Execute over Knowledge (MAPE-
K) loop typically used for structuring the self-adaptation logic [8] of a SAS, online
learning can be employed within the Plan phase. In this setup, there exists
a MAPE-K loop that monitors the managed system, analyzes the monitored
data to determine whether a change is needed, plans the change and executes
it (Fig. 1). This is done by using system models and/or rules shared via the
common Knowledge base. If the planner has no available plans for a situation,
it invokes online learning with a certain time budget (horizon) to generate such
plan. Online learning then uses the Monitor and Execute phases of the outer
loop and, instead of reacting to conditions by changing the system at runtime,
it proactively performs actions to assess and rank them at runtime.

Fig. 1. Online learning invoked by the Plan phase of a self-adaptive system.

In this work, we focus specifically on the multi-armed bandits family of RL
algorithms to perform online learning and compare their capability to learn
optimal actions while the system undergoes context shifts. MAB policies are
not considered ‘full’ RL [21], in that they only consider a single state. This
entails that every action only affects its immediate reward (and not that of
other actions), as there is no transition in states due to the action. Where the
assumption of a single state can be placed on the system MAB policies provide
sufficient solutions. These solutions are importantly also more accessible, and
less complex and thus lightweight.

2.2 Overview of Multi-armed Bandits

Multi-armed bandit (MAB) algorithms or policies (used henceforth) are a class
of RL algorithms that deals with choosing between a set of k options called
arms [13]. Formally, this setting corresponds to a Markov Decision Process with
a single state and k actions. Compared to general RL, actions in MAB are
assumed to not influence future states of the environment. As in general RL,



234 E. Alberts and I. Gerostathopoulos

an MAB policy balances exploration with exploitation: it tries to explore arms
to gain knowledge about them while at the same time use the best-known arm
regularly enough to exploit the knowledge it has already gained. Each arm has
an associated reward whose value at a time t is not known prior to selecting it.
Arms are selected sequentially and their rewards are gradually revealed; an MAB
policy prescribes which arm should be selected at each round. MAB policies try
to minimize the regret they incur, i.e. the reward lost relative to that of the best
arm at each round. Equivalently, they try to maximize the cumulative reward
over all rounds. Formally, given k arms and sequences of rewards Xi,1,Xi,2,...
associated with each arm i, the regret Rn of a policy after n plays I1, ..., In is [4]

Rn = max
i=1,...,k

n∑

t=1

Xi,t −
n∑

t=1

XIt,t

Different MAB policies address the exploration-exploitation tradeoff in differ-
ent ways. For instance, naive policies such as ε-greedy and explore-then-commit
rely on prior knowledge to control the amount of necessary exploration, while
stochastic policies such as Upper Confidence Bound (UCB) and its variations
assume that rewards follow certain statistical distributions.

As an example, Fig. 2 depicts the main logic of UCB Tuned, which selects the
arm with the maximum score calculated as the sum of the estimated mean (line
7) and a confidence value calculated based on the number of rounds the arm
is played and the total number of rounds (line 10). To update its knowledge,
UCB Tuned simply keeps a running sum per arm of the rewards received and the
times chosen (lines 14–16). We can see that this policy prioritizes the selection
of arms that have high rewards and have not used many times in the past.

Fig. 2. Python snippet of the UCB Tuned policy.
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Certain MAB policies are specifically developed to deal with non-stationary
environments and also consider the influence of context shifts on reward values.
Representatives of the former are the Sliding Window and Discounted UCB
policies [11], which perform UCB over a window of the last τ specified rounds
or discount rewards by a factor γ as they age, respectively. A representative of
contextual MAB is EXP4 [3], a policy that uses a number of experts (instances
of MAB policies), each able to deal with a certain context. When a context shift
occurs, the policy eventually learns which expert to listen for that context to
choose the next arm.

2.3 Running Example: SWIM

SWIM [18] is a ‘Simulator for Web Infrastructure and Management’ represent-
ing at a high level the management of server infrastructure for a fictitious web
location. The simulator allows real web traces to be replayed in simulated time,
making it possible to adapt to hours of web traffic in a span of minutes. The
behavior of SWIM is determined by two variables, its dimmer value and the
number of servers deployed. The latter’s maximum can also be configured by
the user, while the dimmer is on a scale of [0,1] with the increments being user
configured as well. The dimmer value determines the rate at which advertise-
ments are included in the responses to requests, here we opt to always include ads
in every response. In our experiment reported in Sect. 4 we use SWIM mostly as-
is having added the ability to embed Python code to take advantage of simulated
time rather than interacting with it in an external real-time fashion [1].

Strictly speaking, in SWIM the assumption of having an action influence only
its immediate reward does not hold: some actions trigger a temporary secondary
state where the servers have a backlog of requests to process. We have engineered
as a part of our solution a means to detect this state and ‘clean’ the backlog to
return to the original state the learners interact with. Where relevant we will
refer to this change as the ‘cleaning trick’.

3 Dealing with Context Switches in Online Learning

Unknown unknowns are a recognized challenge in self-adaptive systems research
[14]. This entails the existence of environmental changes that are unanticipated
due to a failure of imagination. These unanticipated events matter most when
they interfere with achieving explicit (quantifiable in the degree to which they
have been achieved) adaptation goals. For the purposes of MAB/RL policies such
a goal can be interpreted as a ‘reward’ which evaluates choices made. Changes
in the environment naturally influence the reward, even within anticipated sce-
narios e.g. circumstances dictate whether adaptation A or B is best. This closed
feedback loop enables policies to learn which choices are suited to the environ-
ment. However, naive policies expect some stationarity, that over infinite time
there is a singular optimal choice of which can be learned. To learn about these
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choices there is some degree of exploration which is traded off with exploiting
the best learned choice.

A problem arises when learned knowledge is abruptly invalidated. Learned
choices will continue to be made by a policy based on false pretenses. This is
different from a stochastic setting which may cause noise in the evaluation of
choices. In the stochastic setting it is held that each choice has an unchanging
true mean which in infinite time can be discovered by the policy. In a non-
stationary environment these true means shift i.e. the reward-generating func-
tions per arm change. The abrupt invalidation is what we refer to as a shift to
a new context. This is one way in which the unknown-unknowns problem man-
ifests itself in online learning. The response of a learner to this abrupt change
is to (slowly) learn the new reward functions. The speed of this learning will
depend on the accrued knowledge from the previous context and the policy-
specific interaction with it. Combining these two factors is what we propose to
measure and refer to as a policy’s inertia.

We will now formalize the necessary concepts to determine the inertia. An
RL learner or policy has a (potentially finite) horizon H of interactions (rounds)
with which to interact with the environment. We consider the horizon to be
divisible into a set R of time ranges indicated in square braces: R = {[s, e]|s, e ∈
Z ∧ s < e ∧ e ≤ H}, where s is the starting point of the time range and e
the ending point. To evaluate the RL policy’s performance within a time range
[s, e] a typical measure is convergence i.e. the frequency of choosing the optimal
action – we denote this as conv([s, e]). Given that, we calculate inertia as the
difference in convergence between two time ranges that have starting points s1
and s2 (with s1 < s2) and the same duration d:

inertia(s1, s2, d) = conv([s2, s2 + d]) − conv([s1, s1 + d])

The main idea is that if the two time ranges belong to the same context
c1 ⊂ R (blue context in Fig. 3), inertia provides a measure of how much the
convergence of a policy in a context c1 is affected by other contexts occurring
before it, compared to the “cold start” convergence obtained by setting s1 to 0
in the above formula.

Fig. 3. Graphical representation of re-occuring context in inertia calculation.

For instance, if the convergence of a policy in the first occurrence of a context
c1 is 60% and its convergence in the re-occurrence of c1 is 20%, the policy’s inertia
w.r.t. c1 is equal to -40%. Negative inertia values indicate a negative effect of
context shifts; the larger negative values, the more negatively a policy is affected
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by context shifts. Clearly, inertia values depend both on the policy used and on
the particular setting – number and magnitude of context shifts.

In this paper, we focus on the way MAB policies deal with the negative
effects of context shifts and measure and compare their inertia. For MABs, at
each sequential round, one of the k arms available to the learner is chosen. The
policy π maps previously chosen arms and their rewards to a new arm choice.
Formally, it is a tuple π = (H, I,X) where the horizon H is the number of total
interactions with the environment, and the sequences I and X are the arms it
learns to choose and the rewards received for each arm, respectively. The length
or number of rounds of a time range is given by len([s, e])) = e − s. Given the
above, convergence in MABs is measured as [21]:

conv([s, e]) =
Ti∗([s, e])
len([s, e])

where i∗ = argmax Xi,t for a given [s, e] ∈ R.

with Ti referring to the number of times a particular arm i is chosen within a
time range.

We will now closely examine and compare potential solutions to the problem
of dealing with accrued inertia within the realm of MAB policies. In particular,
we cover the following potential solutions to the problem:

Stationary/Naive Policies: Stationary and naive MAB policies operate under
the assumption of a singular true mean to be learned per arm. Therefore, they
do not anticipate context shifts as we describe them. The ability to realize a new
optimal choice due to a shift is dictated by that exploration rate of the policy.
Policies which are ‘stochastic bandits’ tend to have more higher exploration
rates as they expect noise to obfuscate the means. When the context shifts, this
is interpreted as noise, the previous context’s reading were all noise deviating
from the ‘true’ choice of the new context. This holds until the last context it
faces. The crux is that the contexts need to last long enough to overcome the
‘deviations’ from the previous context to realize the true choice. If contexts
change often then the policy is left chasing different true choices without ever
converging to any of them. Policies also tend to reduce the exploration rate over
time i.e. there is an assumption that the policy becomes more certain about
each choice the more it has sampled it. This assumption does not hold for a
context shift as the distribution being sampled from has essentially changed; it
stands to reason then that as time progresses stationary policies become worse at
handling context shifts. The stationary policies used in this paper are ε-greedy
and UCB Tuned [2]. ε-greedy has a hyperparameter ε which dictates its rate of
exploration. UCB Tuned uses the ‘confidence’ in the true means per arm to decide
its exploration rate.

Non-stationary Policies: These policies are designed with context shifts in mind.
They achieve this by operating with knowledge which has an expiry date. There
is a continuous disregard for older knowledge with the aim of operating based
on the most recent findings. This is in the hope that when a context shift does
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happen, the readings from the new context start to outweigh that of the previous.
If the new context is short-lived and there is a return to the previous then
some knowledge of that context is still held. The prevalent issue is how quickly
older knowledge should be discarded. This depends on some estimation of the
frequency of changes to take place. When improperly tuned, one risks not being
able to converge and exploit a context as adequately as a stationary policy or
approximate a stationary policy by not recognizing context shifts in a timely
manner. Discounted UCB [11] is used to represent a non-stationary policy for
the experiment to follow. Its hyperparameter is a discount factor which lessens
the weight of older knowledge in decision-making.

Contextual Policies: Contextual learners use ‘side information’ to recognize con-
texts. Stationary and strictly non-stationary policies, as covered in the previous
two paragraphs, have the side effect of overwriting previous knowledge. This is
due to the fact that they are nonassociative. Contextual policies instead asso-
ciate side-information with learned knowledge to maintain distinct behavior per
context. In essence, they learn a policy rather than an action. This eliminates
the need to estimate prior the frequency of context shifts as with non-stationary
policies. However, the stipulation of available side information is not a light
one and restricts application to SAS systems. Depending on the policy this side
information is expected in different forms. Two important contextual policies
are LinUCB [15] and EXP4 [3]. For LinUCB side information are ‘features’ which
may characterize contexts. For this paper EXP4 is used. Side information is used
at design time to inform the selection and potential training of experts. In this
paper side information is used to determine the number of expected contexts,
with there then being one expert pre-trained per context. It is also an option to
have these experts be untrained should no prior access to the expected contexts
be available. The policy learns to associate each expert with its corresponding
context at runtime.

4 Experiments

We have conducted an experiment aiming to answer the following research ques-
tions: RQ1: To what extent do different context lengths affect the convergence
rate after a shift? Following from this, RQ2: How does convergence inertia com-
pare as an indicator of a policy’s ability to handle non-stationary environments?

In the experiment, two shifts take place between two distinct contexts A and
B, with the pattern ABA. Each context has a different optimal arm choice with
stationary but noisy reward distributions supporting each arm. We specifically
focus on three scenarios which differ in the number of rounds each context in
the sequence is active. Within each scenario, the policies are exposed to the
same environment. Based on these policy-specific behavior these environments
influence the knowledge accumulated which influences the inertia measured.
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4.1 Setup

In our experiment, we use the SWIM exemplar and focus on arms that corre-
spond to different numbers of servers: 3, 8, 13. These values are chosen to both
cover the level of traffic that will be experienced in different contexts as well as
provide a wider range of reward values. Without spreading out the reward values
the suboptimality gaps between the options hinder the ability of the learner to
distinguish options. To be able to better interpret the effect of each policy, all
configurations have a dimmer value of 1.0 (i.e., always serving ads). The reward
function used to evaluate each arm is based on the utility function originally
included with SWIM [18] and is adapted to (i) always have the server cost mani-
fested in the reward, (ii) introduce weights among the objectives, and (iii) intro-
duce an upper response time threshold to have the minimum potential reward
reflect the maximum, as described in our earlier work [1]. All three of these serve
to increase the accuracy of reward values in evaluating the adaptations.

In terms of policies, we use the Random policy to serve as a baseline, ε-greedy
as an extended baseline as it has fixed exploration rates as well as as a repre-
sentative of stationary policies alongside UCB Tuned [2]. Further, Discounted
UCB [11] represents a non-stationary policy and EXP4 [3] a contextual policy
(solving non-stationarity through association).

For the purposes of the experiment we vary the length of time that the
contexts A and B are active within the pattern ABA. We use two lengths, X =
6600 s and Y = 1200 s which correspond to 110 and 20 rounds respectively as
each round is after a 60 s evaluation period. The two lengths represent a number
of rounds in which each policy should converge towards the optimal are and
should not respectively. Convergence is calculated as defined in Sect. 3. A policy
has converged when the convergence is ≥ �k/2�

k of sequential time ranges of fixed
chosen length. In our case of 3 arms, it is then when the optimal arm has a
convergence of ≥ 0.66. We refer to the first A in the sequence as first context, B
as second context, and the second A as the third context.

Every scenario ends with a sequence of Y rounds, this is as we measure the
effect of inertia which is relevant directly after the shift. We now elaborate on
each chosen scenario:

– XXY: By having two longer contexts of X, the policies have sufficient time to
converge to the optimal arms of the first two contexts. This should demon-
strate the effect of an equal amount of rounds in influencing behavior learned
in the first context.

– XYY: By having a longer context first context followed by a shorter experience
of the second non-repeating context, we expect to see the learner be biased
towards learning the third context (which is the same as the first). It is then
interesting to see whether this holds for the policies we choose.

– YXY: By giving little time with the first context which returns after the
second we expect an opposite effect of XYY. Policies may be able to still use
the short first context experience to their advantage in the third context, but
this may be at the cost of converging in the second context (which is ≥ 70%
of the scenario).
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Context A and B both have uniformly distributed (noisy) traffic levels cen-
tered around 60 and 80 request/s respectively, fluctuating within a range of 10%
both ways. We know empirically that the former can be handled with at least 3
servers, while the latter can be handled with 5 servers or more. Each policy is run
30 times per scenario, with the results shown being the average over those 30.
This is to account for slight variation which is generated in the service capacity
of the servers in SWIM, as well as those policies (like ε-greedy) which use a ran-
dom factor in their decision logic. As covered in Sect. 3, inertia plays a role when
context shifts happen. As defined, inertia is the difference in convergence over
the same number of rounds between learning from scratch and learning after one
or more context shifts. For example, if 20 rounds of context A from a clean start
results in a convergence factor of 0.70 and after some arbitrary number of rounds
of another context the same 20 rounds of context A have a convergence factor of
0.40 then the inertia is −0.30. Thus, negative values indicate a relatively poorer
convergence than starting from scratch and vice versa.

4.2 Results

For Table 1 we are specifically interested in how the policies fare as a result of
the shift in context. By experiencing these rounds inertia in realizing the optimal
arm accumulates. The amount of inertia created depends directly on the policy
as we control for environmental factors. We consider an ideal policy one which
can finely balance the interests of converging to potentially long contexts (X)
yet use knowledge from even short-lived contexts (Y) in case they reoccur.The
policy would have low inertia yet high convergence.

The reward distributions of the previous context(s) influence the knowledge
each policy builds. The actual knowledge is dictated by the arms the policy’s
behavior as it chooses arms at each round. Besides the arms chosen, the total
number of elapsed rounds can also have an influence. It is clear from the results
in both Tables 1 and 2 that the hyperparameters play a significant role. For each
policy, the hyperparameter can be translated into greediness. Most straight-
forward is ε-greedy, which is more greedy the lower its ε value is as it explores
less. UCB Tuned is a stationary policy meaning it assumes the optimal arm will
not change, and therefore progressively more greedily converges towards the
optimal arm with the rate depending on collected knowledge. As the γ value
of Discounted UCB increases, it approximates UCB Tuned, thus for lower values
of γ it is less greedy. For EXP4 the learning rate η dictates how greedily new
knowledge is used to decide which expert it should listen to.

The greediness across policies is a double-edged sword. As Table 2 indicates,
UCB Tuned makes use of its greediness to achieve a high weighted average of
convergence. However, as results in the appendix1 clarify, this is mostly due to
its high convergence in the first two contexts. The convergence rates suggest
that the policy can easily eliminate the third choice (optimal in no contexts)
and begin achieving 2

3 convergence, as good as random between two choices. As

1 https://github.com/EGAlberts/ISOLABandits/blob/main/ISOLA/ appendix.pdf.

https://github.com/EGAlberts/ISOLABandits/blob/main/ISOLA/_appendix.pdf
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Table 1. Inertia based on difference in convergence.

Policy Hyper-

parameter

Convergence

first 20 (Y)

Inertia XXY Inertia

XYY

Inertia

YXY

AVG inertia

Random ε-greedy

(stationary)

n/a 0.34 0.01 –0.04 0.00 –0.01

ε = 0.30 0.60 –0.50 0.21 –0.40 –0.23

ε = 0.40 0.52 –0.38 0.20 –0.30 –0.16

ε = 0.50 0.51 –0.36 0.17 –0.29 –0.16

ε = 0.60 0.48 –0.27 0.09 –0.24 –0.14

ε = 0.70 0.47 –0.20 0.06 –0.22 –0.12

ε = 0.80 0.46 –0.22 0.00 –0.19 –0.14

UCB Tuned

(stationary)

n/a 0.50 –0.50 –0.19 –0.25 –0.31

Discounted UCB

(non-stationary)

γ = 0.89 0.40 0.00 0.01 0.00 0.00

γ = 0.92 0.40 0.02 0.02 0.03 0.02

γ = 0.97 0.45 0.04 0.03 0.07 0.05

γ = 0.99 0.49 0.06 –0.18 0.06 –0.02

γ = 0.995 0.50 –0.17 –0.25 –0.07 –0.16

γ = 0.997 0.50 –0.47 –0.21 –0.15 –0.28

EXP4 (contextual) η = 0.04 0.41 –0.22 0.09 –0.29 –0.14

η = 0.10 0.44 –0.36 0.16 –0.42 –0.21

η = 0.20 0.40 –0.33 0.26 –0.38 –0.15

η = 0.40 0.44 –0.37 0.19 –0.41 –0.20

η = 0.60 0.46 –0.40 0.27 –0.45 –0.19

η = 0.80 0.50 –0.45 0.17 –0.47 –0.25

time progresses it attempts to converge towards the best of these two. A policy
like ε-greedy does so immediately based on whichever comes out higher, this is
also clear from the tables in the appendix. However, UCB Tuned is a stochastic
policy and thus expects some noise which at times may suggest one choice being
better than another despite their true means. It therefore needs to have enough
confidence in a choice before it chooses to converge to it. The first shift from A to
B aids in this by enlarging the gap between the two arms across scenarios. This
leads to a minimum convergence of 0.80 in the second context, being highest
(0.97) when the most time is afforded in XXY as can be seen in the appendix.

Discounted UCB anticipates that there may be shifts in the optimal arm.
However it clearly does so at a cost, its robustness towards shifts directly influ-
ences its convergence towards an arm within the context. The Discounted UCB
hyperparameter values which are not too close to UCB Tuned perform best when
it comes to inertia, yet poorly when it comes to actually converging. This is a
clearcut indicator of inertia corresponding to the ability to handle non-stationary
environments. What is key to choosing between a non-stationary and station-
ary policy expectation a user has of the system and what is can afford. With a
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Table 2. Weighted averages of convergence per scenario.

Policy Hyperparameter XXY XYY YXY Average

Random n/a 0.34 0.32 0.33 0.33

ε-greedy (stationary) ε = 0.30 0.59 0.70 0.44 0.58

ε = 0.40 0.56 0.67 0.42 0.55

ε = 0.50 0.54 0.60 0.39 0.51

ε = 0.60 0.48 0.54 0.37 0.46

ε = 0.70 0.44 0.50 0.36 0.43

ε = 0.80 0.41 0.43 0.35 0.40

UCB Tuned (stationary) n/a 0.72 0.64 0.67 0.68

Discounted UCB (non-stationary) γ = 0.89 0.40 0.39 0.42 0.40

γ = 0.92 0.43 0.42 0.44 0.43

γ = 0.97 0.50 0.50 0.53 0.51

γ = 0.99 0.64 0.56 0.63 0.61

γ = 0.995 0.67 0.60 0.65 0.64

γ = 0.997 0.68 0.62 0.65 0.65

EXP4 (contextual) η = 0.04 0.48 0.47 0.54 0.50

η = 0.10 0.51 0.53 0.59 0.54

η = 0.20 0.54 0.60 0.61 0.58

η = 0.40 0.56 0.61 0.62 0.60

η = 0.60 0.57 0.64 0.62 0.61

η = 0.80 0.57 0.65 0.65 0.62

significant consistent frequency of shifts, averaging a convergence rate of ∼ 0.50
becomes more attractive when compared to stationary policies. One needs to
look no further than high effect of inertia on UCB Tuned, also reflected in its
average convergence in the third context of only 0.18 (in the appendix) which
is worse than even random selection. The challenge with using Discounted UCB
is the necessity to tune it, the success of which depends on possibly unrealistic
assumption one knows how many shifts will take place.

Contextual Bandits such as EXP4 seek to remedy this by accounting directly
for the existence of multiple contexts. In theory, if no switches take place, EXP4
would at little cost behave as well as a stationary policy, while when facing
changes pivoting to another expert with which to handle the new context. There
remains a hyperparameter to tune however which is how eagerly it listens to a
specific expert. Here we see the same trade-off as with other hyperparameters:
switching experts too greedily (higher η) yields higher convergence, but also more
inertia. This underlines that a more associative policy e.g. LinUCB may fare
better as it removes the need for greed through classification. Yet, the assumption
on side information accompanying such a policy would outgrow a fair comparison
to the other policies we consider.
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Figure 4 shows the convergence factor of three selected policies over time, and
the random policy as a baseline. The moments of context shifts are represented
by the dashed lines, effectively dividing the plot into segments. The inertia per
policy can be derived by focusing on the change in line trends after each shift.
Figure 4a clearly shows the commitment of UCB Tuned to the optimal arm of
the second context, and the consequence of this as the third context begins. In
Fig. 4b, the second context is short-lived seeing a reduced effect on the third con-
text’s convergence, and so too the positive reinforcement in UCB Tuned’s choice
to converge allowing to better adapt to the third context. Lastly, Fig. 4c shows
Discounted UCB’s behavior clearly as it closely approximates the stationary UCB
Tuned yet can handle the switch to the third context more gracefully. Through-
out the plots it is clear that EXP4 varies between being twice as indecisive as a
stationary policy as in Fig. 4b (due to its internal two stationary policies in the
form of experts), and committing too heavily to one expert which is mimicking
UCB Tuned as in Figure 4c.

Fig. 4. Convergence calculated over phases. The number of rounds in cases XYY and
YXY slightly deviates due to the cleaning trick.
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Coming back to the research questions, we can answer RQ1 as follows: It is
clear that the longer a policy is exposed to a given context, the better it con-
verges when that context reappears. For UCB Tuned, specifically, a greater factor
than the length of individual contexts is the overall number of elapsed rounds.
Over all policies, measuring performance through convergence rewards greed.
Greedier policies converge heavily in their presumed contexts and outweigh their
poor performance in other contexts when compared to non-stationary policies.
This suggests at face-value that greedy, stationary, policies perform best despite
context shifts. RQ2’s answer shows that this is not actually the case when con-
sidering the big picture. Low inertia values are an indicator of average high
convergence. Therefore the metric exposes undesirable behavior which otherwise
is awarded by the traditional measure of convergence. When we take both iner-
tia and convergence into account then a policy such as Discounted UCB with
γ = .99 is shown to be a policy with more desirable long-term performance
than e.g. UCB Tuned when dealing with frequent context shifts. A direct study
of such a long-term scenario elucidating the consequences of poor inertia would
concretize this in future work.

5 Discussion

Finding the Right Measure to Compare Policies: One of the struggles in our
study was to determine a fair way to assess the performance of a policy under
shifting contexts. Our initial idea was to use the degree of convergence to the
optimal arm to compare policies and the way they progress in their learning.
This serves well enough when considering stationary environments. However,
once non-stationarity is introduced and realistic conditions are approximated
more closely, the evolution of convergence is disrupted since the optimal arms
may change. To measure the convergence taking into account such disruptions,
one could refer e.g. to the average convergence after a context shift leading to a
disruption. Alternatively, we chose to explore calculating the difference between
the degree of convergence after a disruption relative to the convergence in that
same environment with no prior knowledge (what we call inertia). This brings
the influence of context shifts to the forefront in the metric. Where convergence
is agnostic to context shifts besides it being disrupted by their presence, inertia
is specific to their occurrence.

Performance of Different Policies in Context Shifts: Through our experiment,
we confirm that the use of non-stationary policies is not a ‘one size fits all’ solu-
tion: depending on the magnitude (which we leave unexamined) and frequency
of change, the policies need to be separately tuned. When exploring different
hyperparameters in tuning the policies, inertia can serve as a useful metric for
the success of policies specifically in handling context shifts. We did observe
that the inertia of non-stationary policies is quite sensitive to the hyperparam-
eter value chosen. Non-stationary policies such as UCB Tuned did not perform
well in terms of accrued inertia (although they could reap the benefits of early
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convergence in longer contexts and overall have good performance when looking
at the weighted average of their convergence).

How to Select a Policy: Our study shows that non-stationary environments do
not necessarily call for non-stationary policies. In the end, it really depends on
the effects of inertia (large or small) and on how much large inertia effects can be
tolerated in a system. Some systems may be robust to policies which respond to
context shifts by making continuous sequences of poor decisions as a stationary
policy like UCB Tuned does. For these systems, stationary policies may be a more
informed choice since they converge more greedily than non-stationary ones (as
also our results confirm). However, if a system cannot tolerate periods when the
policy performs very poorly (suffering from large negative inertia effects) then
non-stationary policies are a more reasonable choice since they better balance
convergence speed with inertia effects.

Convergence Inertia Beyond MAB: Inertia is a metric that is not specific to
MAB policies, but can be applied to any online planning strategy. Online plan-
ning requires knowledge which will inform policy behavior. This behavior is made
time-sensitive due to the potential of context shifts. Inertia can be used to then
also compare policies across paradigms and serve as a unifying metric to dis-
tinguish them. For example, a solution may recognize context shifts and choose
to restart the learning process after every shift. This would result in an inertia
of zero. This can be compared to an MAB policy which already has knowledge
of the new context through seeing it before and therefore has a positive inertia,
performing better than starting from nothing.

6 Related Work

According to a recent survey on the application of machine learning approaches
for self-adaptive systems [7], reinforcement learning is a popular choice when it
comes to online (or interactive) learning. Within reinforcement learning, most
approaches have used temporal difference solutions such as Q-learning [9,17],
while recently value-based reinforcement learning has also been employed [16,19].
In contrast, the application of MAB policies is less investigated.

Uses of MAB in SAS: In one of the first approaches that mapped a self-
adaptation problem to MAB, Cabri et al. focused on endowing a multi-agent
system with self-expression [5]. In particular, each collaboration pattern to
expressed becomes an arm to be explored/exploited. In their work, they used
three collaboration patterns, namely client/server, peer-to-peer, and swarm-
based; measured reward in terms of observed application performance; and pro-
posed and compared two custom strategies for maximizing the reward. While
interesting, their approach neither considers out-of-the-box MAB policies with
proven theoretical guarantees nor the specific problem of unknown-unknowns
and associated convergence inertia.
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Porter et al. employed MAB-based online learning to build distributed emer-
gent software [20]. In their approach, an arm is a composition configuration that
specifies which components will run and where. Their online learning approach
uses UCB1 to evaluate different configurations at runtime. Distinct environment
classes are identified at runtime each with its own instance of UCB1. We believe
that our work is complementary: Rather than externally imposing stationarity
through environment classes, we evaluate policies that can inherently deal with
environment switches, even if such switches are only indirectly considered (via
their effect on rewards).

Dealing with Unknown-Unknowns in SAS: Kinneer et al. also tackle the issue of
unknown-unknowns with applied to a system closely related to SWIM. Rather
than using RL, the authors use genetic algorithms with ‘plan reuse’, reusing
previous knowledge for newer generations [10]. Compared to our work, their
end-result is more applied, while the MAB policies we use are in principle gen-
eralizable to any architecture-based SAS.

Cardozo and Dusparic extend context-oriented programming to automati-
cally codify contexts and associate strategies to handle them at runtime [6].
They do so by using RL options, a form of reinforcement learning which uses
sequences rather than individual basic actions as the options to explore/exploit.
These options are gathered by processing the execution trace at runtime. Key
to their work is that system metrics are combined to explicitly define contexts,
this is comparable to the solution by Porter et al. mentioned above. Our work
differs in that we directly use RL to choose all actions, and do not require the
overhead associated with COP to handle non-stationary environments.

7 Conclusion

In this paper, we focused on online reinforcement learning (RL) in self-adaptive
systems as a technique to deal with unknown-unknowns – situations that the
systems are not specifically designed for. We zoomed in on the problem of dealing
with context shifts that interfere with the learning process by slowing down the
convergence of RL policies. We proposed a new metric, convergence inertia, to
capture such negative effect in the comparison of RL policies and performed
an experimental study comparing RL policies belonging to the family of multi-
armed bandits (MAB) in online learning of actions of a self-adaptive web server.
We found that non-stationary policies are better suited to handling context shifts
in terms of inertia, although stationary policies tend to perform well in terms of
overall convergence. In the future, we would like to experiment with non-MAB
RL policies (such as Q-learning) to better understand and assess the way they
incur inertia. We would also like to use different self-adaptive systems to be able
to better generalize our results.
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Abstract. The development of Machine Learning (ML) models is more
than just a special case of software development (SD): ML models acquire
properties and fulfill requirements even without direct human interac-
tion in a seemingly uncontrollable manner. Nonetheless, the underlying
processes can be described in a formal way. We define a comprehen-
sive SD process model for ML that encompasses most tasks and arti-
facts described in the literature in a consistent way. In addition to the
production of the necessary artifacts, we also focus on generating and
validating fitting descriptions in the form of specifications. We stress
the importance of further evolving the ML model throughout its life-
cycle even after initial training and testing. Thus, we provide various
interaction points with standard SD processes in which ML often is an
encapsulated task. Further, our SD process model allows to formulate
ML as a (meta-) optimization problem. If automated rigorously, it can
be used to realize self-adaptive autonomous systems. Finally, our SD pro-
cess model features a description of time that allows to reason about the
progress within ML development processes. This might lead to further
applications of formal methods within the field of ML.

Keywords: Machine learning · Process model · Self-adaptation ·
Software engineering

1 Introduction

In recent software systems, functionality is often provided by Machine Learn-
ing (ML) components, e.g. for pattern recognition, video game play, robotics,
protein folding, or weather forecasting. ML infers a statistical model from data,
instead of being programmed explicitly. In this work, we focus on the usage of
Deep Learning (DL) techniques, which presently are the most commonly used
approaches. Figure 1 (based on [11]) gives a high-level overview how traditional
software systems and ML systems are typically developed. Software Engineering
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(SE) for ML systems is an emerging research area with an increasing number
of published studies since 2018 [11,21]. In practice, software companies face a
plethora of challenges related to data quality, design methods and processes, per-
formance of ML models as well as deployment and compliance [5,11,21]. Thus,
there is a need for tools, techniques, and structured engineering approaches to
construct and evolve these systems.

Fig. 1. Comparison of traditional software development (upper left) and ML software
development (upper right). More specifically, DL systems (lower right) are a special
type of ML systems (lower left): DL systems automatically learn the relevant input
features and how to map these features to outputs. While this reduces the effort pre-
viously required to define features and mapping logic, it makes it more difficult to
understand the rules by which DL systems make decisions. Illustration based on [11].

Software Development (SD) for ML systems typically starts with the man-
agement of data, e.g. collection and labeling. Then, repeated train-test cycles of
the ML model are performed, e.g. for hyper-parameter tuning, until the expected
results are obtained. After that, the ML model is deployed and monitored during
operation. Feedback from operation is typically used to re-train (patch) an exist-
ing ML model or to extend the data-sets. This process is called ML workflow
and is visualized in Fig. 2 (based on [19]). So far, a number of ML workflows
and life-cycle models have been constructed in an ad-hoc manner based on early
experiences of large software companies, e.g. reported by IBM [2], Microsoft [3],
or SAP [27]. The respective case studies focus strongly on the ML workflow but
little on the integration with existing SE processes and tools, thus not covering
the entire SD process.

Then, MLOps [15,19] emerged as an end-to-end ML development paradigm
(see Fig. 3). MLOps combines the DevOps process, i.e. fast development itera-
tions and continuous delivery of software changes, with the ML workflow. Fur-
ther collaboration between industry and academia resulted in the development
of the CRISP-ML(Q) life-cycle model [33], which additionally contains technical
tasks for quality assurance. Yet, we found existing MLOps process models and
CRISP-ML(Q) lacking a clear view on the dependencies between activities and
the involved artifacts.
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Fig. 2. Typical ML development workflow stages with activites and feedback flow.
Illustration based on [19].

Another key aspect is automation. Presently, software updates (or patches)
are still often performed manually by human developers or engineers. To mini-
mize the impact of dynamic changes, agile SD paradigms such as MLOps per-
form smaller, faster updates through cross-functional collaboration and high
automation. Ultimately, however, we might want to minimize the amount of
human effort spent during SD. ML systems are able to adapt to changes via
generalization and can be re-trained with little human effort. One step further,
Auto-ML [12] is a popular tool to automate single steps of the ML workflow: the
search for a suitable ML model architecture and the adjustment of the according
hyper-parameters. The next advancement would be to enable automated opti-
mization spanning over multiple steps of SD processes. One example would be to
autonomously decide when to re-train an ML model that is already in produc-
tion using newly collected data. Conceptually similar approaches already exist
in the field of (collective) autonomic systems [36]. In practice, this would require
a tight integration of quality assurance activities. Engineering trustworthy ML
systems is an ongoing challenge since it is notoriously difficult to understand the
rules by which these systems make decisions [18]. Adding self-optimization on
SD process level will most likely increase the complexity.

To tackle these challenges, we propose a formal process model for ML that
can be mapped to existing SD processes. Our process model is based on practical
findings from various cooperations with industry partners on Multi-Agent Rein-
forcement Learning [26,29]1 and Anomaly Detection problems [23]2. It encom-
passes the majority of ML-specific tasks and artifacts described in the literature
in a consistent way. Further, it allows for automation spanning over multiple
steps of SD processes. It is not restricted to certain feedback loops and supports
self-optimization. If automated rigorously, it can be used realize self-adaptive,
autonomous systems.

The remainder of the paper is structured as follows: In Sect. 2, we provide
an overview of related work regarding SE for (self-) adaptive systems (Sect. 2.1),
SE for ML systems (Sect. 2.2) and fundamental challenges of ML that could be
alleviated through SE (Sect. 2.3). In the following Sect. 3, we visualize (Sect. 3.1)
and describe (Sect. 3.2) our process model. We then present a proof of concept

1 https://www.siemens.com.
2 https://www.swm.de.

https://www.siemens.com
https://www.swm.de
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(Sect. 3.3) and provide a brief formalization of our process model (Sect. 3.4).
Finally, in Sect. 4, we conclude with a summary of strengths and limitations and
provide an outlook for future work.

2 Background and Related Work

Designing systems that autonomously adapt to dynamic problems is no new
trend. What has changed with the emergence of modern DL techniques is the
ability to handle greater state and action spaces. Still, it is often impossible to
design explicit control systems that directly adapt the exactly right parameters
to changed conditions (parameter adaptation) because there are too many and
potentially unknown relevant parameters. However, it is possible to design sys-
tems which cause change on a higher level to meet the new conditions. In the
literature, this concept is referred to as compositional [22] or architecture-based
adaptation [9]. Following this concept, we classify a system as self-adaptative if it
autonomously changes to meet (at least) one of the following three aspects [10]:

1. The implementation of one component is replaced by another.
2. The structure of the system changes, i.e. the relations between components

change, components are added or removed.
3. The distribution of the system components changes without modification of

the logical system structure, e.g. components can migrate.

Through generalization, ML systems are capable of parameter adaptation out-of-
the-box and they can further be used to realize self-adaptive systems. It is already
common to re-train ML models once new data is gathered during operation and
then replace the deployed model with the re-trained one. Once such work-flows
are fully automated, such systems are self-adaptive as per the above definition.

One key to engineer such systems will be Verification & Validation (V&V)
activities, which shall build quality into a product during the life-cycle [1]. Verifi-
cation shall ensure that the system is built correctly in the sense that the results
of an activity meet the specifications imposed on them in previous activities [6].
Validation shall ensure that the right product is built. That is, the product
fulfills its specific intended purpose [6]. Related to this, Gabor et al. analyzed
the impact of self-adapting ML systems on SE, focusing on quality assurance
[8]. They provide a general SD process description related to ML and embed
it into a formal framework for the analysis of adaptivity. The central insight is
that testing must also adapt to keep up with the capabilities of the ML system
under test. In this paper, we build a process model around the ML life-cycle and
provide insights about the interplay of SD activities and artifacts.

2.1 SE for (Self-)adaptive Systems

Researchers and practitioners have begun tackling the SE challenges of self-
adaptation prior to the latest advances in DL. Influencing many later following
approaches, Sinreich [32] proposed a high-level architectural blueprint to assist
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in delivering autonomous computing in phases. Autonomous computing aims to
de-couple (industrial) IT system management activities and software products
through the SD cycle. The proposed architecture reinforces the usage of intel-
ligent control loop implementations to Monitor, Analyze, Plan and Execute,
leveraging Knowledge (MAPE-K) of the environment. The blueprint provides
instructions on how to architect and implement the knowledge bases, the sen-
sors, the actuators and the phases. It also outlines how to compose autonomous
elements to orchestrate self-management of the involved systems. As of today, the
paradigms of autonomous computing have spread from IT system management
towards a broad field of problems, the most prominent one being autonomous
driving. Our process model is built to specifically assist the development of sys-
tems that are based on DL techniques.

To augment development processes to account for even more complex sys-
tems, Bernon et al. later proposed ADELFE [4]. Built upon RUP [17], ADELFE
provides tools for various tasks of software design. From a scientific view, ADEL-
FE is based on the theory of adaptive Multi-Agent systems: they are used to
derive a set of stereotypes for components to ease modeling. Our process model
also supports this architectural basis (among others), but does not require it.

In the subsequent ASCENS project [36], a life-cycle model formalizes the
interplay between human developers and autonomous adaptation. It features sep-
arate states for the development progress of each respective feedback cycle. Tradi-
tional SD tasks, self-adaptation, self-monitoring and self-awareness are regarded
as equally powerful contributing mechanisms. This yields a flexible and general
model of an engineering process but does not define a clear order of tasks. The
underlying Ensemble Development Life Cyle (EDLC) [14] covers the complete
software life cycle and provides mechanisms for enabling system changes at run-
time. Yet, interaction points between traditional SD and self-adaptation are only
loosely defined. Recently, AIDL [35] specialized the EDLC to the construction
of autonomous policies using Planning and Reinforcement Learning techniques.
Overall, the ASCENS approach emphasizes formal verification. Correct behav-
ior shall be proven even for adapted parts of the system. Analogous to SCoE
[8], we agree a strong effort for testing is necessary when adaptation comes into
play. Our process model was built with self-adaptation in mind and allows for
a seamless integration of V&V activities and respective feedback loops at any
point in time.

2.2 SE for ML Systems

Regarding SE for ML systems during the latest advances in DL, literature has
been systematically reviewed several times [11,21]. A common conclusion is that
all SE aspects of engineering ML systems are affected the non-deterministic
nature of ML (even slight changes in the setup can have a drastic impact) but
none of the SE aspects have a mature set of tools and techniques yet to tackle
this. According to the authors, the reported challenges are difficult to classify
using the established SWEBOK Knowledge Areas [6] since they are strongly tied
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to the problem domain. Our process model explicitly considers V&V to ensure
quality of ML software independent of the problem domain.

Fig. 3. Illustration of an MLOPs process model based on [19]. The ML workflow is
integrated into DevOps by adding Data Management and ML Modeling to the existing
Development and Operations processes and (feedback) transitions.

To identify the main SE challenges in developing ML components, Lwakatare
et al. [20] evaluated a number of empirical case studies. They report a high-
level taxonomy of the usage of ML components in industrial settings and map
identified challenges to one of four ML life-cycle phases (assemble data set, create
model, train and evaluate model, deploy model). These life-cycle phases can be
mapped to our process model. Building upon the taxonomy of Lwakatare et al.,
Bosch et al. [5] propose a research agenda including autonomously improving
systems. Besides data management related topics, the elements of the research
agenda can be mapped to our process model.

During the recent emergence of MLOps (an overview is given in [15]), Lwaka-
tare et al. [19] proposed a precise and clear variant that integrates the ML
workflow into DevOps by adding the Data Management and ML Modeling to
Development and Operations, effectively expanding the ML workflow to an end-
to-end SD process (see Fig. 3). The resulting process model aims for automation
at all stages and enables iterative development through fast feedback flow. Build-
ing on MLOps, CRISP-ML(Q) [33] describes six phases ranging from defining
the scope to maintaining the deployed ML application. Challenges in the ML
development are identified in the form of risks. Special attention is drawn to the
last phase, as they state that a model running in changing real-time environ-
ments would require close monitoring and maintenance to reduce performance
degradation over time. Compared to MLOps, CRISP-ML(Q) additionally con-
siders business understanding and ties it closely to data management. However,
we found MLOps and CRISP-ML(Q) lacking a precise view on the dependencies
between activities and artifacts, which our process model tries to accomplish.

Finally, Watanabe et al. [34] provide a preliminary systematic literature
review of general ML system development processes. It summarizes typical
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phases in the ML system development and provides a list of frequently described
practices and a list of adopted traditional SD practices. The phases in our pro-
cess model share common ground with the granular phases described in this
literature review. Generally, we provide various interaction points with standard
SD processes (in which ML often is an encapsulated task) by evolving the ML
model throughout its life-cycle after initial training and testing.

2.3 Fundamental ML Challenges

So far, we considered emerging issues of SE when incorporating ML compo-
nents. Vice versa, ML faces some fundamental challenges (besides the current
technical difficulties already mentioned) that might not be solved through tech-
nical improvements alone but might require to be addressed through SE. One
fundamental challenge of ML is explainability, i.e. methods and techniques in
the application of AI such that the decisions leading to the solutions can be
understood (at least) by human experts [18]. Although some approaches address
explainability, e.g. by gaining post-hoc insights about the predictions [28], and
proposals were made to use techniques that are explainable per default [30], most
current ML models remain black boxes in the sense that even ML engineers can-
not always explain why the ML models produce a certain output. Though each
individual parameter within an ML model can be analyzed technically, this does
not answer the relevant questions about causal relationships. This can cause
legal problems in areas such as healthcare or criminal justice. More importantly,
it is notoriously difficult to validate and verify these ML models, both from an
engineering and an SD process point of view. Systematic guidance through the
ML life-cycle to enable trustworthiness of the ML models would help.

Another fundamental challenge of ML is efficiency. In general, modern ML
relies on DL techniques. The predictive performance of these models scales with
their size, which requires the available of more training data and more computa-
tional power to optimize the risen amount of parameters. ML model complexity
and the computational effort required to train these models grew exponentially
during the last years [31]. Developing such ML models was only possible due
to advances in hardware and algorithmic design [13]. Whether further improve-
ments with ML can be achieved this way is uncertain. Nonetheless, re-training
of state-of-the-art ML models requires significant amounts of computational
resources and time. Because ML suffers from the “changing one thing changes
everything” principle, it may be costly to fix issues in ML models afterwards
regardless of what caused the issue in the first place. Consequently, support from
SE to ensure high quality ML models upfront, e.g. through precise requirements
and feedback loops, is crucial to effectively use ML in production.

3 A Process Model to Capture Dependencies Within ML

SE has given rise to a series of notions to capture the dynamic process of devel-
oping software. Opinions on which notion is the best differ between different
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groups of people and different periods of time. As a common ground, we assume
that SD can be split into various phases with each phase focusing on different
sets of activities. We acknowledge that in agile approaches to SE these phases are
no longer to be executed in strict sequential order, so that phases may overlap
during development. But we still regard planning, development, deployment, and
operations to be useful categories to group activities in SD phases.

First of all, we model human tasks and automated procedures through activ-
ities. They may require different skill sets, rely on different (computational or
human) resources, and are driven by different key factors. E.g., the use case
analysis should be performed by business analysts and result in some form of
(requirements) specification. Based on that, data scientists can select or gather
suitable data for ML training. Naturally, business analysts and data scientists
should collaborate closely.

Second, we model activities to result in artifacts, which may then be required
for other activities. In the above example, the choice of data naturally depends on
the problem domain, thus relies on a requirements specification. Consequently,
the use case analysis resulting in the requirements specification should be finished
first. Artifacts can have different types such as data, functional descriptions
(e.g. the ML-Model), or logical statements (e.g. a specification, a set of hyper-
parameters, or a test result indicating that a specific requirement is fulfilled by
an ML model with a specific set of hyper-parameters on specific data).

Third, we capture feedback and (self-) optimization through loops that go
back to earlier stages of the ML development process. This way, we take the
iterative nature of ML SD into account, which consists of repeated stochastic
optimization and empirical validation of the ML model at different development
stages. Thus, the process model is flexible regarding the employed ML devel-
opment method and considers V&V aspects. It supports manually performed
hyper-parameter optimization as well as fully automated patch deployment of a
model that was re-trained with data gathered during earlier live operation. Due
to the vast number of possibilities, we leave the actual definition of the feedback
loops open for the respective use case.

All in all, the purpose of our process model is to capture dependencies
between activities and artifacts during the ML life-cycle and to close the gaps
between existing SD process models and specialized ML training procedures.

3.1 Visualization

This section provides a visual representation of the proposed process model and
explains concept and semantics. As to be seen in Fig. 4, the elements are arranged
within a temporal dimension (x-axis) and an organizational dimension (y-axis).
Within the temporal dimension, the elements are grouped by four SD phases,
which allows a straightforward mapping to existing SD process models. Further
right on the x-axis means later within the development process, i.e. its progress
towards completion is higher. The categories within the organizational dimension
are a mixture of business and technical areas. We refrain from exhaustively
defining role names or responsibilities. Instead, we want to sketch the different
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Fig. 4. Visualization of the proposed process model for the development of ML soft-
ware.

key factors that drive the process forward (or limit it). As mentioned before, the
overall categorization of elements within these dimensions is by no means strict
and should be adapted to the respective circumstances.

We distinguish between activities, artifacts and associations. Activities
include human tasks and automated procedures. Artifacts can be data, logi-
cal statements or functional descriptions. Activities always produce at least one
artifact and can require other artifacts. Associations between artifacts and activ-
ities are represented by arrows. If an activity requires an artifact, a white circle
connects that artifact to an arrow whose head ends on the activity. If an activity
produces an artifact, a white circle connects the activity to an arrow whose head
ends on that artifact.

For any progress of the development process, there exists (at least) one activ-
ity. For any activity, all activities left to it are considered completed. Vice versa,
all activities right to it are not. An activity starts if all required artifacts exist. If
this is the case, the respective activities are considered active by default. Activ-
ities are neither connected to other activities, nor require a dedicated trigger.

Please note that we made some trade-offs to ease readability of the visual-
ization. First, we kept some spacing between elements on the x-axis. Thus, there
are spots without activities (however, there still are associations from or towards
activities). Next, there are no multiplicities on the associations. Syntactically, it
does not matter if multiple artifacts are connected with an activity through one
shared or multiple individual arrows. Most importantly, the size of the elements
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is determined by the length of their descriptions and the layout, but does not
state anything about their duration in real time.

Finally, there is a number of dashed, annotated arrows in the feedback cate-
gory of the organizational dimension. They start once some V&V artifacts exist
and lead back to earlier points in time. These are examples for different feed-
back or (self-) optimization loops that define whether an iterative, a monolithic,
or a mixture approach is used. In practice, we expect quality gates to decide,
based on the V&V artifacts, how the SD process continues at certain points.
However, this depends strongly on organizational and legal requirements as well
as technical conditions.

3.2 Description of Activities

Our SD process model is built around activities, which we briefly describe in the
following (grouped by their respective phase).

Planing Phase: We begin with a use case analysis activity, which we expect to
be driven mainly by business. The resulting development (requirements) speci-
fication defines the goals in natural language. We acknowledge that this specifi-
cation may change to some extent during the ML life-cycle, e.g. when the ML
model is deployed at the customer’s site or system later in the process. In any
case, it is crucial to consider the probabilistic nature of ML when formulating
the specification [11,21].

Development Phase: The first activity here is the selection (or assembly) of
the data set based on the development specification. We assume that the result-
ing data set will usually be split into a training, a testing and validation part,
which is indicated by dashed lines. The bottleneck and driving force here is
data management. We omit activities related to data management and instead
assume that suitable data is accessible in some form. How to construct data
sets such that they correspond to the requirements is a challenging problem on
its own [25]. In parallel, the definition of the training target for the ML model
takes place, resulting in development performance indicators that reflect the
development specification in a more technical form. E.g., a requirement may
be to correctly recognize specific entities on images with a probability of more
than 0.99. A suitable performance indicator could be prediction recall, where
higher values are better. We consider it important to clearly distinguish between
the development specification and the training target (with the respective per-
formance indicators) for two reasons. The first one is to avoid misconceptions
between business analysts and ML experts. The second one is to enable an SD
process controlled curriculum, e.g. to begin training with a subset of the overall
specification and once this training target is reached, it is expanded gradually
until the overall requirements are met.
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The following activity is the ML model definition. Here, the architecture of
the ML model is chosen based on the data and the performance indicators.
Then, the hyper-parameter selection activity follows, based on the initial ML
model. The hyper-parameters can be algorithm-specific and also include the
mathematical optimization target such as the loss in case of Supervised Learning
(SL) and the reward in case of Reinforcement Learning (RL). Again, decou-
pling the low-level optimization target from the higher-level training target and
the top-level development specification is important: deriving a suitable loss- or
reward-function for a specific training target is a challenging problem on its own
[29]. Also, separating reward and training target measurements allows to detect
reward hacking, a known challenge of RL. Through decoupling, SD process con-
trolled (self-) optimization can be realized here.

Then, the training of the ML model takes place. The current learning progress
can be assessed through the history of the mathematical optimization target (loss
or reward) of the ML model on the training data (or training domain in case
of RL). Optionally, the training target can additionally be used to determine
the learning progress during training. However, from a V&V point of view, the
training target should be optimized implicitly through the mathematical opti-
mization target. In any way, the training target will be assessed during the next,
usually periodical activity: testing the trained ML model with the development
performance indicators on the test data set (or test domain in case of RL). In
practice, we expect different feedback loops from the respective test verdict to
different prior activities, especially model definition and hyper-parameter selec-
tion, due to the iterative nature of ML training. This is where Auto-ML [12]
comes into action. The final activity of the development phase is the validation
(or evaluation) of the trained ML model against the development specification
on the validation data set (or domain in case of RL) resulting in a “factory
quality seal”.

Deployment Phase: Once the validation activity is passed, we move on by
leaving the controlled (maybe simulated) development environment. The trained
ML model faces less controlled conditions, i.e. the individual customer’s system
or a physical environment. Thus, the top-level specification may now differ from
the one used during development and is referred to as on-site contract. Most
likely, this on-site contract is a subset of the development specification, but it
may also contain some additional requirements. As the requirements and the data
(or the domain) are provided by the customer, the first activity here is to define
on-site targets and performance indicators to take the specialized on-site contract
into account. Then, we expect some on-site adaptation of the trained ML model
to take place, most likely in the form of additional re-training, followed by a
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on-boarding (validation) of the adapted ML model which should now fulfill the
on-site contract. If significant specialization is required, on-site adaptation could
be extended to a cycle similar to the train-test-cycle during the development
phase. However, we consider it more likely that this is a fast, slim process step
(given a thorough initial requirements engineering and training). The onboarding
(test) of the adapted ML is the final activity during the deployment phase.
Its result, the “on-site quality seal”, states whether the ML model fulfills the
provided on-site contract based on the provided data (or domain in case of RL).

Operations Phase: After a successful onboarding, the adapted ML model can
be used in production. We expect the top-level specification to differ from the
preceding on-site contract (e.g., to reflect use-case specifics recognized during
onboarding), thus referring to it as SLA. We address this through a definition
of production targets and the respective performance indicators. These are the
key to meaningful monitoring of the ML model on production data, e.g. to
detect distributional drift, which can lead to a slow degradation of performance
over time. If no appropriate monitoring is present, such changes may remain
undetected and can cause silent failure [33]. Also, identifying situations in which
the ML model underperforms is the key for precise feedback used to train future
ML models, e.g. through updated data or domain simulations.

3.3 Proof of Concept

In this section, we present a short proof of concept (POC) for our process model
that was published with a different focus in [29]. This POC used a specialized
RL training method that embeds functional and non-functional requirements in
step-wise fashion into the reward function of a cooperative Multi-Agent system.
Thus, the RL agents were able to learn to fulfill all aspects of a given specifi-
cation. This POC was then compared to naive approaches, which by contrast
were only able to fulfill either the functional or the non-functional requirements.
Figure 5 visualizes the core of the approach with two feedback loops adjusting the
training target and the reward. The third feedback loop takes into account that
the environment simulation could also be adjusted. Consider that, for example,
the desired collaborative task might initially be too difficult and prohibits any
learning progress. In this case, training could start with a small number of simul-
taneously trained agents and the third feedback loop could gradually increase it,
thus creating a curriculum of increasing difficulty. Although hand-crafted adap-
tation schedules were used in the POC, this could be realized autonomously in
future applications. The physical counterpart of the environment simulation has
not yet been realized, thus there is no deployment or production phase (yet).
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Fig. 5. Visualization of the proof of concept (POC) for our process model that was
published with a different focus in [29]. Functional and non-functional requirements
were embedded step-wise into the reward function of a cooperative Multi-Agent system.
This enabled the RL agents to align with the provided specification.

3.4 Formalization

In the following, we briefly formalize our process model and sketch the potential
we see in the application of formal methods like Linear Time Logic (LTL) [16].

The development process D is given by a set of elements E, which can be
either activities or artifacts. In both cases, an element e ∈ E features two types
of associations, i.e., to its prerequisites pre(e) and the elements post(e), for which
it is a prerequisite. The elements and their associations we propose for our ML
development process D can be seen in Fig. 4.

When D is executed, each of its elements can assume a single state s(t) ∈
{inactive, active, done} = S for each given point in time t. We thus define an
instance D of the development process D as a set of states S alongside a time line,
i.e., a sequence of time points t ∈ [tstart, tend] ⊆ N: At each point in time t the
process in its current state D(t) : E → S maps each element to one of the states
mentioned before. At time point tstart that mapping is initialized to Dtstart(e) =
inactive for all e. Then, for every element e so that ∀e′ ∈ pre(e) : D(t) = active
we can assign D(t+1)(e) = active. After an element has been active for at least
one time step, it might switch to done. Note that when activities are active, we
imagine them being executed by developers or automated procedures, and when
artifacts are active, we imagine them being used in some sort of activity. Further
note that we only need prerequisites to be active and not done as we assume
required artifacts to further change alongside the procedures that use them,
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which is a deviation from what classic waterfall processes might define. Still, an
artifact might be done immediately after starting all succeeding elements.

One of the main advantages of our formal process model is that it allows
arbitrary feedback loops, which means that at any given point in time me may
decide to redo any amount of elements in the process as long as we do that in
sync. Formally, an element e with D(t)(e) ∈ {active, done} may switch to active
or inactive as long as all elements e′ ∈ post(e) switch to active or inactive. Note
that at no point in time may an element e be active without all its prerequisites
pre(e) being active or done. Feedback loops allow us to capture a more dynamic
development process while still maintaining a hierarchy of dependencies.

For any instance D given as a sequence of per-element states, we can now
check if D adheres to the process D, i.e., D |= D. Furthermore, we can reason
about the progress of the development using common logics such as LTL [16].
We can also use LTL to postulate further constraints on development instances,
e.g. the property that the process will eventually produce the desired ML model:
♦D(“Adapted ML Model”) = done. Yet, we want to emphasize that other ele-
ments e with post(e) = ∅ like the quality seals should be considered equally
important results of a development instance.

The immediate expected benefit of reasoning about instances of development
processes might be the verification of tools and workflows (“Team A always
adheres to the defined process.”), the formulation of clearer process goals (“An
instance of a done Factory Quality Seal shall occur before t = 100.”), or the
extraction of a better understanding of dependencies and correlations (“Any time
the Target Definition started after Data Selection, development was successful.”).
But we also see further opportunities in the connection of reasoning about the
process and reasoning about the product. To this end, we pay special attention to
artifacts regarded as Logical Statements. Ideally, we could define requirements
on the development process that reflect in certain guarantees on the software
product. Using a more potent logic, e.g., we might be able to formulate a Factory
Quality Seal that reads “The Basic ML Model has been trained successfully at
least 3 times in a row with unchanged parameters.”. If we incorporate roles into
the model, which is left for future work at the moment, we might even be able
to state that “Data Selection was performed by at least 2 developers with at
least 10 years experience between them.”, which naturally might also be part
of the specification. Such quality assurance is common in engineering disciplines
that are used to never being able to rely on formal proofs or extensive testing.
Developing ML software is often more akin to these disciplines, which is why we
regard reasoning about the process in addition to the product as so important.

4 Summary and Outlook

So far, we provided an overview of related work and challenges regarding SE for
(self-) adaptive and ML systems. To tackle the challenges, we defined a process
model, provided a proof of concept and a formalization. Now, we conclude by
summarizing its strengths and limitations and point to future work.
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Through our process model, we hope to close the gaps between existing SD
process models and specialized ML training procedures. It is not restricted to
certain ML techniques, i.e. it can be used for Supervised (SL), Unsupervised
(UL) and Reinforcement Learning (RL). Simulated domains or environments for
RL can be used analogously to data-sets for SL and UL. However, we focus on
the life-cycle of the ML model, thus detailed data management activities upfront
are omitted. How to construct data sets such that they correspond to certain
requirements is a challenging problem on its own [25] and not (yet) covered by
our approach. Yet, we believe that data management activities can be integrated
straight forward. Feedback loops and V&V activities ensuring data quality can
be added similarly to how we used them to ensure quality of the ML model.

Practically, our process model allows to formulate ML SD as a (meta-) opti-
mization problem. Having human experts tailor the SD processes to the problem
domain and algorithm at hand neither scales indefinitely, nor may be optimal for
less well understood problem scenarios. There is a clear trend towards automa-
tion in SD with a parallel emergence of powerful optimization techniques in
form of ML. Applying these methods not only on the problem level, but also
on SD processes level through sequential decision making algorithms, e.g. RL
or Genetic Algorithms, could enable significant progress. Further cosidering the
conceptual overlap of Ensembles [14] and Cooperative Multi-Agent RL [26,29],
automated ML seems suitable to realize self-adaptive, autonomous systems. Vice
versa, ML should consider best practices from autonomous computing [36] on
how to handle existing knowledge and how to control automated feedback loops.

Our integration of V&V acts as a quality gate when transitioning to deploy-
ment and to operation. Depending on the situation, we suggest to use evo-
lutionary or learning methods [8,26] or Monte Carlo Based Statistical Model
Checking [24] for testing. Numerical valuations [7] can distinguish systems that
“barely” satisfy a specification from those that satisfy it in a robust manner.
Still, we rely on a top-level specification, provided in human language, which
we assume to change as the SD process progresses. The open question here
is whether we can systematically define the initial specification in a way that
ensures that the on-site contract and the SLA will be met.

Next, it should be possible to formulate a consistent mathematical repre-
sentation of our process model, e.g. through LTL [16]. We plan to tackle this
next since it would allow a validation of ML process instances that were created
through meta-optimization. And finally, a key assumption is that a validation
of ML processes leads to better ML software. As we also could not yet engineer
an ML component’s full life-cycle with the methodology proposed in this paper,
both could be combined in future work.
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ing software engineering in practice: an ind. case study. arXiv:1906.07154 (2019)

28. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD, KDD
2016, pp. 1135–1144. ACM (2016)

29. Ritz, F., et al.: Specification aware multi-agent reinforcement learning. In: Agents
and Artificial Intelligence, pp. 3–21. Springer, Heidelberg (2022). https://doi.org/
10.1007/978-3-031-10161-8 1

30. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

31. Sevilla, J., Villalobos, P.: Parameter counts in machine learning. AI Alignment
Forum (2021). https://www.alignmentforum.org/posts/GzoWcYibWYwJva8aL

32. Sinreich, D.: An architectural blueprint for autonomic computing (2006). https://
www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.
pdf

33. Studer, S., et al.: Towards CRISP-ML(Q): a machine learning process model with
quality assurance methodology. Mach. Learn. Knowl. Extract. 3(2), 392–413 (2021)

34. Watanabe, Y., et al.: Preliminary systematic literature review of machine learning
system development process. arxiv:1910.05528 (2019)

35. Wirsing, M., Belzner, L.: Towards systematically engineering autonomous systems
using reinforcement learning and planning. In: Proceedings of Analysis, Verifi-
cation and Transformation for Declarative Programming and Intelligent Systems
(AVERTIS) (2022). https://doi.org/10.13140/RG.2.2.10618.16328

36. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9

http://arxiv.org/abs/2105.01984
https://doi.org/10.5220/0010295403060313
http://arxiv.org/abs/1906.07154
https://doi.org/10.1007/978-3-031-10161-8_1
https://doi.org/10.1007/978-3-031-10161-8_1
https://www.alignmentforum.org/posts/GzoWcYibWYwJva8aL
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://arxiv.org/abs/1910.05528
https://doi.org/10.13140/RG.2.2.10618.16328
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9


On Model-Based Performance Analysis
of Collective Adaptive Systems

Maurizio Murgia, Riccardo Pinciroli, Catia Trubiani, and Emilio Tuosto(B)

Gran Sasso Science Institute, L’Aquila, Italy
{maurizio.murgia,riccardo.pinciroli,catia.trubiani,emilio.tuosto}@gssi.it

Abstract. This paper fosters the analysis of performance properties of
collective adaptive systems (CAS) since such properties are of paramount
relevance practically in any application. We compare two recently pro-
posed approaches: the first is based on generalised stochastic petri nets
derived from the system specification; the second is based on queue-
ing networks derived from suitable behavioural abstractions. We use a
case study based on a scenario involving autonomous robots to discuss
the relative merit of the approaches. Our experimental results assess a
mean absolute percentage error lower than 4% when comparing model-
based performance analysis results derived from two different quantita-
tive abstractions for CAS.

1 Introduction

Increasingly collective adaptive systems (CAS) crop up in many application
domains, spanning critical systems, smart cities, systems assisting humans dur-
ing their working or daily live activities, etc. A paradigmatic example is the use
of artificial autonomous agents in rescue contexts that may put operators lives at
stake [3]. The components of these systems execute in a cyber-physical context
and are supposed to exhibit an adaptive behaviour. This adaptation should be
driven by the changes occurring in the components’ operational environments
as well as the changes in the local computational state of each component, “col-
lectively taken”. Also, the global behaviour of CAS should emerge from the local
behaviour of its components. Let us explain this considering the coordination of
a number of robots patrolling some premises to make sure that aid is promptly
given to human operators in case of accidents.

A plausible local behaviour of each robot can be:

(1) to identify accidents,
(2) to assess the level of gravity of the situation (so to choose an appropriate

course of action),
(3) to alert the rescue centre and nearby robots (so to e.g., divert traffic to let

rescue vehicles reach the location of the accident more quickly), and
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(4) to ascertain how to respond to alerts from other robots (e.g., if already
involved in one accident or on a low battery, a robot may simply forward
the alert to other nearby robots).

Note that robots’ behaviour depends on the physical environment (tasks (1) to
(3)) as well as their local computational state (task (4)).

A possible expected global behaviour is that robots try to maximise the
patrolled area while trying to avoid remaining isolated and to minimise the bat-
tery consumption. It is worth remarking that the global behaviour is not typically
formalised explicitly ; it should rather emerge from combining the behaviour of
the single components. For instance, when designing the algorithm for the roam-
ing of robots one could assume that a robot does not move towards an area where
there are already a certain number of robots.

This paper applies behavioural specifications to the quantitative analysis
of CAS. Using a simple, yet representative, robots scenario inspired by the
example above, we show how to use behavioural specifications to study non-
functional properties of CAS (emergent) behaviour. This exercise is instrumen-
tal for our contribution, which is a study of the relation between two com-
plementary approaches to the performance analysis of CAS recently proposed.
More precisely, we compare the approach based on generalised stochastic petri
nets proposed in [28] with the one based on behavioural specifications proposed
in [16]. These approaches support two rather different methodologies for the
quantitative modelling and analysis of CAS.

The main difference between these two approaches is the following. The for-
mer is based on the analysis proposed in [28] where the designer must directly
come up with a performance model using generalised stochastic petri nets. In this
sense this is a model-based methodology. Instead, for the latter approach [16], the
designer does not have to directly develop a model for the quantitative analysis;
such model —a queueing network— is indeed “compiled” from the behavioural
specification of the CAS. Hence, this is a language-based methodology.

This paper aims to compare such methodologies and to study their relative
merits. More precisely we address the following two research questions:

RQ1. To what extent the approaches in [16] and in [28] support performance-
aware design of CAS?

RQ2. How do the features of the approaches in [16] and in [28] compare?

For this comparison we will use a robot scenario that will allow us to highlight
the respective strengths and weaknesses of the methodologies. As we will see,
our analysis suggests an hybrid combination hinging on both approaches.

Outline. Section 2 describes the scenario used in the rest of the paper. We will
consider two different architectures (i.e., independent and collaborative) for this
scenario. Section 3 provides the models based on the specification language in [16]
for both the architectures. Section 4 shows the performance analysis based on
the proposed models of Sect. 3. The comparison between the approach in [28]
and the one illustrated in Sect. 3 is discussed in Sect. 5. Final comments, related,
and future work are in Sect. 6.
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2 A Robot Scenario

Our analysis is conducted on a scenario where robots have the task to transport
some equipment necessary in an emergency from an initial zone to a target
location. In order to reach the target location, robots need to pass through two
doors, or take an alternative longer route. Robots take the alternative route only
if they find a door closed. When this happens on the second door, it will take
more time for robots to reach the destination than if the alternative route had
been taken at the start of the journey. After the delivery, robots return to the
initial zone trying to follow the reverse path and the same constraints apply.

It is commonly accepted that the performance of a cyber-physical system
varies with changes in the physical environment. Moreover, as experimentally
confirmed in [28], it is possible to measure the impact of architectural patterns
and dynamic space changes on the performance of cyber-physical systems. This
type of analysis suggests that in this domain it is useful to factor performance
at design time. Following [28], we will consider two architectural scenarios:

Independent. Robots do not cooperate with each other. In this architecture,
robots simply detect the state of doors and behave as described above.

Collaborative. Robots behave exactly as above on open doors; instead, on
closed doors, they send a message to nearby robots before taking the alter-
native route. In this way, every robot that receives such message can directly
follow the alternative route.

The approach proposed in [28] is new and it hinges on Generalised Stochastic
Petri Nets (GSPN) [4] as suitable models of cyber-physical systems. In this
paper we apply such approach by adopting (i) a different modelling language,
hinging on behavioural specifications and (ii) relying on queueing networks [18]
for performance analysis. The modelling language used here has been advocated
in [16] for specifying global behaviour of CAS. As shown in [16], this modelling
language has a natural connection with queueing networks, therefore enabling
performance analysis of CAS.

3 A Behavioural Specification Model

The behavioural specifications in [16] are inspired by AbC, a calculus of attribute-
based communication [1]. The key feature of AbC is an abstract mechanism of
addressing partners of communications by letting the specification of many-
to-many communication between dynamically formed groups of senders and
receivers. Informally, components expose domain-specific attributes used to
address senders and receivers of communications according to predicate on such
attributes. For instance, the robots in the scenarios in Sects. 1 and 2, may expose
an attribute recording their physical position. This attribute can be used to spec-
ify communications among “nearby” robots through a suitable predicate so to
determine the communication group as the set of robots satisfying such predi-
cate. This mechanism is abstracted in [16] by interactions defined, in their most
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general form, as

A�ρ
e e′
−−−→ B�ρ′ (1)

where A and B are role names, ρ and ρ′ are logical formulae, e is a tuple of
expressions, and e′ is a tuple of patterns, that is expressions possibly including
variables. The intuitive meaning of the interaction in (1) is

“any agent, say A, satisfying ρ generates an expression e for any agents
satisfying ρ′, dubbed B, provided that expression e′ matches e.” [16]

The conditions ρ and ρ′ predicate over components’ attributes. The payload of
an output is a tuple of values e to be matched by receivers with the (tuple of)
patterns e′; when e and e′ match, the effect of the communication is that the
variables in e′ are instantiated with the corresponding values in e.

As said, a send operation targets components satisfying a given predicate on
such attributes. For instance, if pos is the position attribute exposed by robots,
the predicate

ρ ≡ abs(self.pos − pos) < 5mt

is satisfied by a receiving robot which is less than five meters away from the
sending robot (i.e., the difference between the position self.pos of the receiver
and the one pos of the sender is below five meters). Messages are disregarded if
they do not satisfy ρ.

Role names A and B in (1) are pleonastic: they are used just for succinctness

and may be omitted for instance writing ρ
e e′
−−−→ B�ρ′ or ρ

e e′
−−−→ ρ′. Also, we

abbreviate A�ρ with A when ρ is a tautology.
Interactions are the basic elements of an algebra of protocols [29] featuring

iteration as well as non-deterministic and parallel composition. This algebra has
an intuitive graphical presentation which we use here to avoid technicalities. In
fact, we use gates to identify control points1 of protocols:

– entry and exit points of loops are represented by � -gates,
– branching and merging points of a non-deterministic choice are represented

by + -gates.

We remark that our behavioural model does not require fix in advance to the
number of instances of agents. In fact, in our model:

– several agents can embody the same role at the same time; for instance, in
our case study, an unspecified number of devices impersonate the robot role;

– instead of addressing senders and receivers by name, attribute-based commu-
nication by definition uses constraints to identify communication partners.

Therefore our model allows us to specify complex multiparty scenarios regardless
the number of agents’ instances.

The next sections give the architectures of our scenario in terms of the graph-
ical notation sketched above.
1 We do not consider forking and joining points of parallel composition (represented

by | -gates) since this feature is not used in our case study.
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Fig. 1. A model for the independent architecture

3.1 Independent Architecture

Figure 1 gives a possible model capturing the independent architecture described
in Sect. 2 in the graphical notation of our specification language. The model
consists of a loop whose body is made by the sequential composition of the
behaviour for the forward and the backward journey of robots. Robots try to go
through the first door and then through the second one on their forward journey
and try the opposite on their backward journey.

The model in Fig. 1 is rather simplistic and we will refine it soon; we use
it to introduce our graphical notation. Interactions among doors and robots do
not involve value passing; for instance, robots detect the status of the first door
when they pattern match on the tuples �st1, o� and �st1, c� for open and closed
doors respectively (an likewise for the second door). Robots detect the status
of a door according to the format of the messages they intercept. For instance,
on its forward journey a robot either pattern matches the tuple �st1, o� or the
tuple �st1, c� from the first door. This choice is represented in Fig. 1 by + -gate
immediately below the topmost � -gate. If the robot receives a �st1, c� tuple
from the first door, it continues its journey on the alternative route after which
it starts the backward journey. Otherwise, the robot approaches the second door
and again goes through if �st2, o� is received otherwise takes the alternative
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route. The behaviour on the return journey is similar modulo the order in which
robots approach doors.

As said, this model is simplistic. Let us refine it. In Fig. 1, we used role names
D1, D2, and R for simplicity. However, this is not very precise. In fact, we would
like to express that robots detect the status of a door only when they are “close
enough” to it. To capture this behaviour let us assume that robots and doors
expose the attribute ID yielding their identity. Then, we can define the conditions

ρd(x) ≡ abs(self.pos − pos(x)) < d

where pos(x) is the position of the component with identifier x. Then we can

replace in Fig. 1 the interactions D1
�st1,o� �st1,o�−−−−−−−−−−→ R with

ID = d1
�self.ID,o� �x,o�−−−−−−−−−−−→ ρd(x) (2)

and similarly for the interactions D1
�st1,c� �st1,c�−−−−−−−−−−→ R and those involving D2.

Interaction (2) and the one for the closed status state that the door2 with ID
set to d1 emits a tuple with their identity and the status. These tuples are
intercepted by components whose state satisfy ρd(x) where x is the variable
instantiated with the identity of the sender. Other components would simply
disregard those messages.

3.2 Collaborative Architecture

The collaborative architecture can be obtained by simply extending the inde-
pendent one with the interactions among robots. A possible solution is given
in Fig. 2 where for readability we only show the body of the loop and shorten
�self.ID, o� and �self.ID, c� with oID and cID respectively, and �x, o� and �x, c�
with xo and co respectively.

As in the independent architecture, there are a forward and a backward
phase. The only difference is that each time a robot detects a closed door, it
will inform nearby robots that the door is closed. Once this communication is
performed, the robot continues its journey on the alternative root. The fact that
the adaptation is quite straightforward is due to the features offered by our
modelling language. The attributes of components are indeed allowing us to just
reuse the condition ρd also for coordinating inter-robots interactions.

There is however a crucial remark to be made. The behaviour of robots is
to wait for three possible messages: the two sent by the door and one possibly
coming from a robot which detected that the door was closed. In fact, there
might be robots satisfying condition ρ′(y, x) in Fig. 2, that is they are not close
enough to the door but have a nearby robot, say r, aware that the door is closed.
These robots should therefore be ready to receive the communication from robot
r. Our model accounts for this type of robots but the graphical notion “hides”
this since there are only two possibilities on branching + -gates. As we will see
in Sect. 4, this is a key observation for our performance analysis.
2 The fact that identifiers are unique is not built-in in our model; in principle there

could be more doors with the same identifier.
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Fig. 2. A model for the collaborative architecture

4 Quantitative Analysis

In [16] we relate our modelling language to Queueing Networks (QNs) [19], a
widely used mathematical model to study waiting lines of systems represented as
a network of queues [11,14]. Two main elements of QNs are customers (i.e., jobs,
requests, or transactions) that need to be served by service centres (i.e., system
resources). When a service centre is busy serving a customer, other jobs to be
processed by the same resource wait in a queue for their turn. Also, QNs feature
routers to dispatch customers to different centres and delay stations in order
to model e.g., lags in the processing or “internal” computations not requiring
further system resources. In [16], we provided some rules to automatically get
QN performance models from a behavioural specification. The basic idea is to
transform (i) an interaction into a service centre and (ii) a non-deterministic
choice into a router. We will apply this construction to our robot scenario and
its architectures.
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Fig. 3. QN of the independent architecture

We build on our recent experience [28] on using GSPN [4] performance mod-
els. A GSPN consists of places (represented as circles), tokens (represented as
dots), transitions (represented as rectangles), and arcs that connect places to
transitions and vice-versa. A token is removed from a place (and possibly added
to another one) every time a transition fires. A transition is enabled when all the
input places contain a number of tokens larger or equal to a pre-defined multi-
plicity (if not expressed it is equal to 1). There are two types of transitions in
GSPN: immediate transitions and timed transitions. The former are graphically
represented as thin black rectangles and fire when enabled, no timing is asso-
ciated to the transition. The latter are graphically represented as thick white
rectangles and fire following a randomly distributed time (in this paper we use
exponential distributions), meaning that the transition implies some timing.

The analysis conducted in [28] shows that it is possible to measure the impact
of architectural patterns and dynamic space changes on the performance of
cyber-physical systems.

In the following we are interested in studying the applicability of GSPN in
CAS and compare this approach to the one based on QNs. Both GSPN and
QNs are analysed using JSIMgraph, i.e., the simulator of Java Modelling Tools
(JMT) [7]. JSIMgraph discards the initial transient system behaviour and auto-
matically stops when the desired confidence interval (i.e., the probability that
the sample data lie within it, set to 99% for our experiments) is observed for all
performance indices under analysis.

4.1 Independent Architecture

To address RQ1, we start by describing the approaches defined in [16] and in [28]
to support performance-aware design of CAS. Let us focus on the independent
architecture first.

The application of the rules introduced in [16] to the behavioural specification
of Fig. 1 yields the QN depicted in Fig. 3. Specifically, the first and second non-
deterministic choices in the forward box of Fig. 1 become respectively the D1
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Fig. 4. GSPN of the independent architecture

status and D2 status router in the FORWARD box of Fig. 3. Interactions on
the left (resp.right) branch of each choice in the forward box of Fig. 1 become the
D1 open and D2 open (resp. D1 closed and D2 closed) service centres in the
FORWARD box of Fig. 3. Similarly, the BACKWARD box in Fig. 3 is derived
from the backward box in Fig. 1. A delay centre (i.e., Robots Fig. 3) represents
the number of robots in the system and their think time is also added to the QN
model as suggested in [16].

We assess the usefulness of the QN derived from the behavioural specification
and rules defined in [16] by comparing it with the GSPN introduced in [28], and
depicted in Fig. 4. Initially, there are N robots waiting for task assignment. When
transition wait fires after an exponentially distributed time (i.e., when a task
is assigned to a robot), a token is moved to the next place. This represents the
fact that the robot starts moving towards the first door D1 reach. After some
time, the robot reaches the door. If the door is closed (D1 fail) the robot has
to take the alternative (and longer) route (D1 alt.); otherwise the robot goes
through the first door (D1 succ.) and continues its journey towards the second
door (D1 straight). After some time the robot approaches the second door (D2
reach). The status of each door is controlled by two places (e.g., D1 open and
D1 closed for the first door) and two transitions. The door is initially closed
(i.e., a token is in the D1 closed place). When the enabled transition fires, the
token is removed from the D1 closed place and added to the D1 open place.
Hence, the door stays open until the new enabled transition fires and the door
status changes again.
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Table 1. Numerical values used for GSPN and QN models of independent and col-
laborative architectures. Direction indicates Forward (F) or Backward (B), the param-
eter and its value are used. SD∗ open (QN) is obtained by summing SD∗ reach and
SD∗ straight (GSPN). All timing parameters are in second.

GSPN QN

Parameter Direction Value Parameter Direction Value

N 100 N 100

Swait 10 Z 10

SD∗ closing + SD∗ opening 60 – – –

SD∗ reach F / B 5

SD∗ straight F / B 5
SD∗ open F / B 10

SD1 alt. F 45 SD1 closed F 45

SD2 alt. F 60 SD2 closed F 60

SD1 alt. B 60 SD1 closed B 60

SD2 alt. B 45 SD2 closed B 45

SD∗ follow F / B 46 SD∗ msg. F / B 46

SD∗ send F / B 1 SD∗ send F / B 1

The two models are parameterized with values from the literature [32] as
shown in Table 1. In our model the system response time is the time spent by
each robot to complete a task and go back to the initial room.

To answer RQ2, we estimate the response time using both models against the
probability that each door is open. The results of this analysis are given in the left
histogram of Fig. 5 together with the confidence interval. Notice that extreme
cases of 0.01 and 0.99 probabilities are reported instead of 0 and 1 since the
latter ones are not probabilistic by definition, these values would imply doors
are always either closed or open. We point out that our experimental results
show high agreement in the performance predictions. The QN derived from the
behavioural specification predicts the system response time with values similar
to those predicted by the GSPN. As expected, the shortest response time of the
system is observed when there is a high probability that both doors are open and

Fig. 5. Independent architecture – System response time (left) and MAPE (right) vs.
Probability door is open
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Fig. 6. QN of the collaborative architecture

robots can almost always take the fastest route. The longest system response
time is observed for 0.2 ≤ Pr(Door is Open) ≤ 0.3, when the probability of
finding the first door open and the second one closed (or the second door open
and the first on the backward journey) is higher. In this case, robots spend a
longer time taking the alternative route, see Table 1. The QN predictions are
further assessed in the right histogram of Fig. 5 via mean absolute percentage
error (MAPE) calculated as

MAPE[%] =
|RGSPN − RQN |

RGSPN
· 100

where RGSPN and RQN are the system response time estimated using GSPN and
QN, respectively. The value of MAPE is always smaller than 4%, an excellent
result when estimating the system response time [27].

4.2 Collaborative Architecture

We now repeat the previous exercise focusing on the collaborative architecture.
The application of the rules defined in [16] yields the QN from the behavioural

specification of the collaborative scenario depicted in Fig. 6. In this case, routers
have three branches. As discussed in Sect. 3.2, besides finding an open or a closed
door, robots can also receive a message from their peers when a door is closed.
This is modelled by D1 msg. and D2 msg. service centres. Now, robots can
take the alternative route without spending extra time checking the door status.
Moreover, the robot finding the closed door has to communicate its finding to
other robots (D1 send and D2 send).

We now compare the performance measures on the QN in Fig. 6 with the
ones obtained using the GSPN presented in [28] and depicted in Fig. 7. The two
models are parameterized with numerical values reported in Table 1 except for
probabilities used in the QN routers (i.e., D1 status and D2 status). Since the
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Fig. 7. GSPN of the collaborative architecture

probability of receiving a message from a peer depends on other characteristics of
the system (e.g., the probability that doors are open, robots’ position, and their
speed), there is not an easy way to set router probabilities. To fairly compare
QN results to GSPN ones, it is necessary to first analyse the GSPN model of
the collaborative architecture given in Fig. 7. From this analysis we infer the
probability values (i.e., for receiving a message from a peer under certain system
circumstances) that are needed to properly parametrise the QN model.

Fig. 8. Collaborative architecture – System response time (left) and MAPE (right) vs.
Probability door is open

We now reconsider RQ2 for the collaborative architecture. Similarly to the
independent architecture, we estimate the system response time using both mod-
els against the probability of doors being open. The response times of the sys-
tem obtained with GSPN and QN are shown in Fig. 8. Also for the collaborative
architecture, the QN parameterized as previously described allows us to obtain
results that are close to those obtained with the GSPN. The response time of
collaborative systems is generally shorter than the one observed for independent
architectures since robots share knowledge about the state of the environment.
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The only exception to this observation is for Pr(Door is Open) ≥ 0.9; in this
case, a robot finding a closed door affects negatively the performance of its
peers. Indeed, other robots take the alternative route after receiving the mes-
sage. However, there is a high probability that the door will be open again when
they will approach it. In this case, the value of MAPE is even smaller (i.e.,
less than 1%, see the right histogram of Fig. 8) than the one observed for the
independent architecture. This is due to the router probabilities being directly
derived from the GSPN used for comparison.

5 Discussion

Answering to our research questions, we can state that both QNs and GSPN
are suitable for the performance analysis of CAS. Our experience shows that
there is a trade-off between simplicity and expressiveness in the use of these
models (RQ1). An interesting outcome of our simulations is that the two different
model-based performance predictions match, the error is never larger than 4%
denoting high agreement between the proposed performance abstractions (RQ2).
Our experimental results confirm the expectation on the analysed scenarios. For
instance, the system response time is minimised in case of doors open with a high
probability. Collaboration among robots pays off, the collaborative architecture
shows shorter response times since robots are informed before reaching doors
and gain from promptly taking alternative paths.

The two modelling approaches offer different advantages which we discuss
herafter. A main advantage of QNs is that they are conceptually simple: perfor-
mance analysis is based on the probabilities assigned to observable events (e.g.,
door open). Moreover, QNs can be automatically derived from our behavioural
specification of the system. A key observation is that our behavioural specifica-
tion models introduce a clear separation of concerns: the modelling of the system
is orthogonal to its performance analysis that is done by using the derived QNs;
hence one just needs to fix the probabilities for the observable events. However,
this comes with a cost: it is not usually easy to determine such probabilities.

Instead, the modelling with GSPN does not require to directly specify prob-
abilities, a clear advantage over QNs. Indeed, with GSPN one has to simply
select a suitable time distribution: this is therefore a more reliable approach
compared to QNs. Besides, GSPN allow for controlling events with a same pro-
cess; for instance, if a door is open in a direction, it must also be open in the
other direction; this cannot be modelled using probabilities only. Overall, GSPN
requires more expertise on building the performance model, but its parameteri-
sation includes timing values only, hence they may also be used for monitoring
(see e.g., [25]).

However, GSPN are more “rigid” than QNs because certain characteristics
of the system are hardwired in the model itself. For instance, changing the num-
ber of doors robots have to traverse would require a more complex performance
model. Moreover, this kind of generalisation will make the size of the model
much larger, which can severely affect the performance of the analysis as the
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state space grows exponentially [4]. This is not the case for QNs derived from
our behavioural specification because they permit to easily abstract away from
the number of system components. On the other hand, GSPN allow to easily
model other types of sophisticate coordination policies. For instance, in the col-
laborative architecture it is easy to let the robot first noticing the closed door
wait for all nearby robots to take the alternative route before continuing its
journey. This is not simple to model with our behavioural specification language
or with QNs.

6 Conclusions, Related and Future Work

We proposed two approaches for the performance analysis of CAS. Our exper-
imental observations are conducted on a simple case study of autonomous
robots for which we consider two architectures. Our first approach is based on
behavioural abstraction and QNs while the second is based on GSPN. Finally,
we compare the two approaches by exploiting the models of the two architectures
and observe a high level of agreement on model-based performance predictions.

Behavioural Abstractions. Coreographic models have been applied to Cyber-
Phisical Systems [21,22], IoT [20] and robotics [24]. These papers focus on ver-
ification of correctness properties (e.g., deadlock freedom and session fidelity)
and are not concerned with quantitative aspects or performance analysis. Some
works in the literature exploits behavioural abstraction for cost analysis of mes-
sage passing systems. Cost-aware session types [10] are multiparty session types
annotated with size types and local cost, and can estimate upper-bounds of the
execution time of participants of a protocol. Temporal session types [12] extend
session types with temporal primitives that can be exploited to reason about
quantitative properties like the response time. A parallel line of research studies
timed session types [5,8,9], that is session types annotated with timed constraint
in the style of timed automata [2]. They have been used for verification of timed
distributed programs by means of static type checking [8,9] and runtime mon-
itoring [6,25]. Despite the presence of timed constraints, which makes timed
session types appealing for performance analysis, they have never been applied
in such setting. Session types have been extended with probabilities [15] for ver-
ification of concurrent probabilistic programs, which is potentially useful for the
CAS analysis. A common limitation of these approaches is that they do not eas-
ily permit to define the number of agents’ instances embodying a specific role in
the system specification. Our behavioural model instead allows it, as explained
in the final remark of Sect. 3, hence it is suitable for performance analysis that
indeed requires such a system workload information.

Quantitative Abstractions. Rigorous engineering of collective adaptive systems
calls for quantitative approaches that drive the design and management of coor-
dination actions, as recently advocated in [13]. Verification tools for CAS forma-
tion are surveyed in [17] and analysis techniques are considered still immature
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to deal with possible changes in decision-making, hence quantitative approaches
that keep track of behavioural alternatives and their impact on system per-
formance are of high relevance for CAS. Ordinary differential equations (ODEs)
have been proposed in [30] as quantitative abstractions for CAS. The use of ODEs
allows one to express large-scale systems that are analyzed through reaction net-
work bisimulations. A limitation of the approach is that results are not reliable
when the population of agents is small. A quantitative analysis of CAS is also
pursued in [23] where the focus is on investigating the probabilistic behaviour of
agents, and a specific language (i.e., CARMA) is introduced along with a simu-
lation environment that provides quantitative information on CAS, however the
scalability is limited and alternative (quantitative) semantics are claimed to be
desirable to speed up the analysis. Performance characteristics of CAS are tack-
led in [31] where the goal is to select optimal (from a performance perspective)
implementations of collective behaviour while preserving system functionalities
and resiliency properties, however various implementations are required and the
switch of identified alternatives cannot be executed at runtime. More recently,
in [26] a design pattern, i.e., self-organising coordination regions, is proposed to
partition system devices into regions and enable internal coordination activities.
This supports our investigation of independent and collaborative architectures
since their optimality relies on the physical space, as emerged by our quantita-
tive analysis on the probability of doors being open/closed. As opposed to these
approaches, we aim to automatically derive quantitative abstractions from the
behavioural specification of CAS, thus simplifying the process to get performance
indicators of interest.

Future Work. We plan to consider more complex application scenarios and inves-
tigate generalisations of our model-based performance analysis. In particular, we
are interested to explore the possibility to automatically derive the structure of
GSPN from our behavioural specifications. We conjecture that this could allow
us to overcome some of the drawbacks of GSPN while avoiding the need to
determine probabilities.

An interesting research direction to explore is the performance analysis of
CAS in presence of dependencies among input parameters. For instance, in our
scenario one could think of a synchronised behaviour of doors so that they change
state in a coordinated way. This implies that the probability for a robot to find
the second door open (after it crossed the first one) depends on its speed and
the time when the robot went through the first door.
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Abstract. Software development for robotics applications is still a
major challenge that becomes even more complex when considering a
Multi-Robot System (MRS). Such a distributed software has to perform
multiple cooperating tasks in a well-coordinated manner to avoid unsatis-
factory emerging behavior. This paper provides an approach for program-
ming MRSs at a high abstraction level using the programming language
X-Klaim. The computation and communication model of X-Klaim,
based on multiple distributed tuple spaces, permits to coordinate with
the same abstractions and mechanisms both intra- and inter-robot inter-
actions of an MRS. This allows developers to focus on MRS behavior,
achieving readable and maintainable code. The proposed approach can
be used in practice through the integration of X-Klaim and the pop-
ular robotics framework ROS. We show the proposal’s feasibility and
effectiveness by implementing an MRS scenario.

Keywords: Multi-robot systems · Multiple tuple spaces · X-Klaim ·
ROS

1 Introduction

Autonomous robots are software-intensive systems increasingly used in many
different fields. Their software components interact in real-time with a highly
dynamic and uncertain environment through sensors and actuators. To com-
plete tasks that are beyond the capabilities of an individual autonomous robot,
multiple robots are teamed together to form a Multi-Robot System (MRS). An
MRS can take advantage of distributed sensing and action, and greater reliabil-
ity. On the other hand, an MRS requires robots to cooperate and coordinate to
achieve common goals.
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The development of the software controlling a single autonomous robot is still
a challenge [24,31,49]. This becomes even more arduous in the case of MRSs [14,
25], as it requires dealing with multiple cooperating tasks to drive the robots
to work as a well-coordinated team. To meet this challenge, various software
libraries, tools and middlewares have been proposed to assist and simplify the
rapid prototyping of robotics applications. Among them, nowadays, a prominent
solution is ROS (Robot Operating System [52]), a popular framework largely
used in both industry and academia for writing robot software. On the one
hand, ROS provides a layer to interact with a multitude of sensors and actuators,
for a large variety of robots, while abstracting from the underlying hardware.
On the other hand, programming with ROS still requires dealing with low-level
implementation details; hence, robotics software development remains a complex
and demanding activity for practitioners from the robotic domain. To face this
issue, many researchers have proposed using higher-level abstractions to drive
the software development process and then resorting to tools for the automated
generation of executable code and system configuration files. Many proposals in
the literature are surveyed in [11,13,49,50].

Along this line of research, we introduced in [5] an approach for programming
a single-robot system. Specifically, we propose using the language X-Klaim [7]
to program the components of a robot’s software. This choice is motivated by the
fact that X-Klaim provides mechanisms, based on distributed tuple spaces, for
coordinating the interactions between these software components at a high level
of abstraction. The integration of X-Klaim with ROS permits the application
of the approach in practice.

In this paper, we take a step forward in this direction by extending the app-
roach in [5] to program MRSs. In fact, the X-Klaim’s computation and commu-
nication model is particularly suitable for dealing both with (i) the distributed
nature of the architecture of each robot belonging to an MRS, where the soft-
ware components dealing with actuators and sensors execute concurrently, and
(ii) the inherent distribution of the MRS, which is formed by multiple interact-
ing robots. Notably, the same tuple-based mechanisms are used both for intra-
and inter-robot communication. This simplifies the design and implementation
of MRS’s software in terms of an X-Klaim application distributed across both
multiple threads of execution and multiple hardware platforms, resulting in a
better readable, maintainable, and reusable code.

Our framework can be thought of as a proof-of-concept implementation for
experimenting with the applicability of the tuple space-based paradigm to MRS
software development. To show the execution of the generated code, we use a
simulator of robot behaviors in complex environments. To illustrate the proposed
approach, we consider a warehouse scenario, where an MRS involving an arm
robot and two delivery robots manages the movement of items.

The rest of the paper is organized as follows. In Sect. 2, we provide some back-
ground notions concerning the X-Klaim language, while in Sect. 3 we present
our approach. In Sect. 4 we (partially) illustrate the implementation of a simple
robotics scenario according to the proposed approach. In Sect. 5 we present a
systematic analysis of the strictly related work, while in Sect. 6 we conclude and
touch upon directions for future work.
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2 The X-KLAIM Language

This section briefly describes the key ingredient of the approach we propose: the
programming language X-Klaim.1 We refer the interested reader to the cited
sources in the following for a complete account.

X-Klaim is based on Klaim (Kernel Language for Agents Interaction and
Mobility, [15]), a formal language devised to design distributed applications con-
sisting of (possibly mobile) software components deployed over the nodes of a
network infrastructure. Klaim generalizes the notion of generative communica-
tion, introduced by the coordination language Linda [33], to multiple distributed
tuple spaces. A tuple space is a shared data repository consisting of a multiset
of tuples. Tuples are anonymous sequences of data items that are associatively
retrieved from tuple spaces using a pattern-matching mechanism. Tuple spaces
are identified through localities, which are symbolic addresses of network nodes
where processes and tuples can be allocated.

Processes can run concurrently, either at the same node or at different
nodes, by executing actions to exchange tuples and to move processes. Action
out(tuple)@nodeLocality adds the specified tuple to the tuple space of the tar-
get node identified by nodeLocality. A tuple is a sequence of actual fields,
i.e., expressions, localities, or processes. Action in(template)@nodeLocality (resp.,
read(template)@nodeLocality) withdraws (resp., reads) tuples from the tuple space
hosted at nodeLocality. The process is blocked until a matching tuple is found.
Templates are sequences of actual and formal fields, where the latter are used
to bind variables to values, localities, or processes. A template matches a tuple
if both have the same number of fields and corresponding fields do match; two val-
ues/localities match only if they are identical, while formal fields match any value
of the same type. Upon a successful matching, the template variables are replaced
with the values of the corresponding actual fields of the accessed tuple. Action
eval(Process)@nodeLocality sends Process for execution to nodeLocality. A process
can use the reserved locality self to refer to its current hosting node.

The implementation of Klaim consists of the Java package Klava (Klaim
in Java [4]), which provides the Klaim concepts in terms of Java classes and
methods, and X-Klaim (eXtended Klaim [7]), a Java-like programming lan-
guage providing Klaim constructs besides the typical high-level programming
constructs. X-Klaim is translated into Java code that uses the Java package
Klava. An X-Klaim program can smoothly access any Java type and Java
library available in the project’s classpath. X-Klaim comes with a complete
IDE support based on Eclipse. The syntax of X-Klaim is similar to Java, thus
it should be easily understood by Java programmers, but it removes much “syn-
tactic noise” from Java.

3 The X-KLAIM Approach to Multi-robot Programming

In this section, we provide an overview of our approach, and the resulting soft-
ware framework, for programming MRS applications using ROS and X-Klaim.
1 https://github.com/LorenzoBettini/xklaim.

https://github.com/LorenzoBettini/xklaim
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A single autonomous robot has a distributed architecture, consisting of
cooperating components, in particular sensors and actuators. Such cooperation
is enabled and controlled by the ROS framework,2 which provides tools and
libraries for simplifying the development of complex controllers while abstract-
ing from the underlying hardware. The core element of the ROS framework is
the message-passing middleware, which enables hardware abstraction for a wide
variety of robotic platforms. Although ROS supports different communication
mechanisms, in this paper we only use the most common one: the anonymous
and asynchronous publish/subscribe mechanism. For sending a message, a pro-
cess has to publish it in a topic, which is a named and typed bus. A process
that is interested in such message has to subscribe to the topic. Whenever a
new message is published in the topic, the subscriber will be notified. Multiple
publishers and subscribers for the same topic are allowed.

Fig. 1. Software architecture of an MRS in X-Klaim.

When passing from a single-robot system to an MRS, the distributed and
heterogeneous nature of the overall system becomes even more evident. The
software architecture for controlling an MRS reflects such a distribution: each
robot is equipped with ROS, on top of which the controller software runs. This
allows the robot to act independently and, when needed, to coordinate with the
other robots of the system to work together coherently.

In X-Klaim the distributed architecture of the MRS’s software is naturally
rendered as a network where the different parts are deployed. As shown in Fig. 1,
we associate an X-Klaim node to each robot of the MRS. In its turn, the internal
distribution of the software controller of each robot is managed by concurrent
processes that synchronize their activities using local data, i.e., tuples stored in
the robot’s tuple space. Inter-robot interactions rely on the same communica-
tion mechanism by specifying remote tuple spaces as targets of communication
actions.

In practice, to program the behaviors of the robots forming an MRS, we
enabled X-Klaim programs to interact with robots’ physical components by
2 https://www.ros.org/.

https://www.ros.org/
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integrating the X-Klaim language with the ROS middleware. The communica-
tion infrastructure of the integrated framework is based on ROS Bridge. This
is a server included in the ROS framework that provides a JSON API to ROS
functionalities for external programs. This way, the ROS framework installed
in a robot receives and executes commands on the physical components of the
robot, and gives feedback and sensor data. The use of JSON enables the inter-
operability of ROS with most programming languages, including Java. As an
example, we report in Fig. 2 a message pose in the JSON format published on
the ROS topic /goal, providing information for navigating a delivery robot to a
given goal position. In our example, the goal is the position (−0.21, 0.31), which
is close to the position of the arm robot.

Fig. 2. Example of a JSON message for the /goal topic.

X-Klaim programs can indirectly interact with the ROS Bridge server, pub-
lishing and subscribing over ROS topics, via objects provided by the Java library
java rosbridge.3 In its own turn, java rosbridge communicates with the ROS
Bridge server, via the WebSocket protocol, by means of the Jetty web server.4

ROS permits to check the execution of the code generated from an X-Klaim
program by means of the Gazebo5 simulator. Gazebo [42] is an open-source sim-
ulator of robot behaviors in complex environments that is based on a robust
physics engine and provides a high-quality 3D visualization of simulations.
Gazebo is fully integrated in ROS; in fact, ROS can interact with the simulator
via the publish-subscribe communication mechanism of the framework. The use
of the simulator is not mandatory when ROS is deployed in real robots. However,
even in such a case, the design activity of the MRS software may benefit from
the use of a simulator, to save time and reduce the development cost.

Since the X-Klaim compiler generates plain Java code, which depends only
on Klava and a few small libraries, deploying an X-Klaim application can be
done by using standard Java tools and mechanisms. In the context of this paper,
it is enough to create a jar with the generated Java code and its dependen-
cies (Klava and java rosbridge), that is, a so-called “fat-jar” or “uber-jar”,
and deploy it to a physical robot where a Java virtual machine is already
installed. Under that respect, X-Klaim provides standard Maven artifacts and
a plugin to generate Java code outside Eclipse, e.g., in a Continuous Integra-
tion server. Moreover, the dependencies of an X-Klaim application, including
java rosbridge, are only a few megabytes, which makes X-Klaim applications
suitable also for embedded devices like robots.
3 https://github.com/h2r/java rosbridge.
4 Jetty 9: https://www.eclipse.org/jetty/.
5 https://gazebosim.org/.

https://github.com/h2r/java_rosbridge
https://www.eclipse.org/jetty/
https://gazebosim.org/
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4 The X-KLAIM Approach at Work on an MRS Scenario

To illustrate the proposed approach, in this section, we show and briefly comment
on a few interesting parts of implementing awarehouse scenario6 involving an MRS
that manages the movement of items. As shown in Fig. 3, the MRS is composed
of an arm robot and two delivery robots, and the warehouse is divided into two
sectors, each one served by a delivery robot.The arm robot, positioned in the center
of the warehouse, picks up one item at a time from the ground, calls the delivery
robot assigned to the item’s sector, and releases the item on top of the delivery
robot. The latter delivers the item to the appropriate delivery area, which depends
on the item’s color, and then becomes available for a new delivery.

Fig. 3. Warehouse scenario.

In Fig. 4 we show a part of the network for our implementation of the sce-
nario. Each robot is rendered as an X-Klaim node, whose name represents its
locality (see Sect. 2). We have one or several processes for each node implement-
ing the robot’s main tasks. Each node creates processes locally and executes
them concurrently using the X-Klaim operation eval. Processes are paramet-
ric concerning the URI of the ROS bridge WebSocket. As already discussed
in Sect. 3, the execution of an X-Klaim robotics application requires the ROS
Bridge server to run, providing a WebSocket connection at a given URI. In the
code of our example application, we consider the ROS Bridge server running
on the local machine (0.0.0.0) at port 9090. Similarly, to execute the code in
a simulated environment and obtain a 3D visualization of the execution, the
Gazebo simulator has to be launched with the corresponding robot description.
At this point, our application can be executed by running the Java class Main,
which the X-Klaim compiler has generated. A few processes require additional
parameters like the robot and sector id and the locality of other nodes (e.g., the
arm’s node locality in MoveToArm).
6 The complete source code of the scenario implementation, and a screencast showing

its execution on Gazebo, can be found at https://github.com/LorenzoBettini/xklaim-
ros-multi-robot-warehouse-example.

https://github.com/LorenzoBettini/xklaim-ros-multi-robot-warehouse-example
https://github.com/LorenzoBettini/xklaim-ros-multi-robot-warehouse-example
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The code should be easily readable by a Java programmer. We mention a few
additional X-Klaim syntax features to make the code more understandable.
Such types as String and Double are Java types, since, as mentioned above,
X-Klaim programs can refer directly to Java types. In the code snippets, we
omitted the Java-like import statements. Variable declarations start with val or
var, for final and non-final variables, respectively. The types of variables can be
omitted if they can be inferred from the initialization expression. Here we also see
the typical Klaim operations, read, in and out, acting on possibly distributed
tuple spaces. Formal fields in a tuple are specified as variable declarations, since
formal fields implicitly declare variables that are available in the code occurring
after in and read operations (just like in Klaim).

In Fig. 4, the main processes of the nodes wait for specific matching tuples
before starting a new loop. To make things simpler, the loop is infinite, but
we could easily rely on a termination condition to stop the whole example’s
net. The main idea behind the implementation of our example is that processes
coordinate themselves through the X-Klaim tuple space-based communication.
On the other hand, the processes still rely on the ROS bridge to coordinate the

Fig. 4. The X-Klaim net of the warehouse scenario.



290 L. Bettini et al.

physical parts of the robots themselves. This approach can be seen in the code
of two of the processes we comment on in this section.

In Fig. 5 we show the code of the process Rotate, executed in the node Arm.
All the processes of this example start by waiting for a specific tuple before
executing the main body. This way, the processes that execute in parallel (see
the eval in Fig. 4) can coordinate themselves: a process will effectively begin its
task only after the previous process terminated its task. Then, the process creates
the ROS bridge and initializes a publisher for the topic related to the control of
the arm movements. After creating the joint positions for the arm movement,
the process publishes the trajectory to rotate the arm. The process also inserts
a tuple, consisting of an identifier string and the sector, in its local tuple space.
The presence of this tuple triggers the call for a delivery robot. In fact, as shown
later in Fig. 6, such a tuple is consumed by the MoveToArm process, which is
executed by the delivery robots. This form of tuple-based interaction between
the two kinds of robots allows the arm’s code not to depend on the number, the
status, and the identities of the delivery robots. This way, the introduction of
new delivery robots in the scenario would not affect the code of the arm robot.

Fig. 5. The X-Klaim Rotate process.
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The process then uses the Java API provided by java rosbridge for subscribing
to a specific topic (we refer to java rosbridge documentation for the used API). The
last argument is a lambda expression (i.e., an anonymous function). In X-Klaim,
lambda expressions have the shape [ param1, param2, ... | body ], where the
types of the parameters can be omitted if they can be inferred from the context.
The lambda will be executed when an event for the subscribed topic is received.
In particular, the lambda reads some data from the event (in JSON format) con-
cerning the “positions”. ROS dictates the JSON message format. To access the
contents, we use the standard Java API (data is of type JsonNode, from the
jackson-databind library). The lambda calculates the delta between the actual
joint positions and the destination positions to measure the arm movement’s com-
pleteness. The if determines when the arm has completed the rotation movement,
according to a specific tolerance. When that happens, the lambda activates the
process responsible for raising the object (GetUp in our example, see Fig. 4). This
is achieved, once again, by inserting a specific tuple in the local tuple space. Finally,
we can unsubscribe from the topic so that this process will receive no further noti-
fications from the ROS bridge.

Fig. 6. The X-Klaim MoveToArm process.
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In Fig. 6 we show the code of the process MoveToArm, executed in the node
DeliveryRobot1. This process is responsible for moving the delivery robot to the
arm to get the item deposited on the robot by the arm. The structure of this process
is similar to the previous one. Since the arm robot has a fixed position in our sce-
nario, the coordinates x and y are defined as constants. As anticipated above, this
process first waits for a tuple deposited by the Rotate process (Fig. 5). Recall that
the Rotate process deposits such a tuple at its locality, so the process MoveToArm
retrieves a matching tuple at the locality of the node of the arm (passed as a param-
eter to the process). The process then publishes the destination position on the
ROS bridge and waits until the destination is reached by subscribing to a specific
topic. As before, we specify a lambda that decides when the destination has been
reached. Also in this case, we use the published information as JSON messages.
Once the lambda establishes that the delivery robot arrived at the arm robot’s
desired position, it stops the wheels (by publishing a Twist message). Then, it
notifies the arm robot that the delivery robot is ready to receive the item (that is,
the arm can drop the item), again, by inserting a tuple at the arm locality. The
other tuple inserted in the local tuple space will be retrieved by the DeliverItem

Fig. 7. Execution of an X-Klaim robotics application.
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process, not shown here. As usual, the lambda takes care of unsubscribing from
the ROS bridge once done.

The screenshot in Fig. 7 shows our X-Klaim robotics application in execu-
tion. On the left, the Eclipse IDE with our X-Klaim code is shown (see the
logged messages on the Console). On the right, the Gazebo simulator is shown,
which visualizes on the center the arm ready to drop the item on top of the
delivery robot’s white plate.

5 Discussion and Related Work

Over the last years, researchers have attempted to define notations closer to the
robotics domain to raise the abstraction level for enabling automated code gener-
ation, behavior analysis and property verification (e.g., safety and performance).
In this section, we review several high-level languages and frameworks for mod-
eling, designing and verifying ROS-based applications and some languages for
coordinating collaborative MRSs. We summarize in Table 1 our considerations
and comparison with the languages more strictly related to ours.

High-Level Languages and Frameworks. Many DSLs for component-based
modeling of robotic systems are based on UML and target mostly the architec-
tural aspect of robotic applications, e.g., RobotML [24], V3CMM [3], BRICS [9],
RoboChart [48], and SafeRobots [53]. Some of them can be used to build ROS-
based systems by either supporting a direct translation, e.g., Hyperflex [8], or
serving as a base for other platforms. For example, in BRIDE [10], which relies
on BRICS, the components are modeled using UML and converted to ROS
meta-models to generate runnable ROS C++ code. Additional meta-models
(i.e., deployment meta-model and experiment meta-model) for rapid prototyping
component-based systems are provided in [43]. UML has also been used to model

Table 1. Features comparison of the related works.

DSL Formal
language

High-
level
language

Multi-
robots

Heterogenous
robots

Coordination Decentralized
coordination

Open-
endedness

Compiler IDE ROS

ART2ool [28] � � �
ATLAS [39] � � � � �
BRIDE [10] � � � �
CommonLang [54] � � �
Drona [23] � � � � � � �
FLYAQ [12] � � �
Hyperflex [8] � � � �
ISPL [44] � � � � � �
Koord [34] � � � � � � � �
PROMISE [32] � � �
RobotChart [48] � � � �
ROSBuzz [55] � � � � � � � � �
RSSM [30] � � �
SCEL [21] � � � � � � � �
X-Klaim � � � � � � � � � �
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and design robotic tasks and missions, e.g., Art2ool [28] supports the develop-
ment cycle of robotic arm tasks in which atomic tasks are abstracted with UML
class diagrams. Textual languages, e.g., CommonLang [54], are another type of
language used to model robotic systems. For example, in [2], a DSL based on
the Python language is presented that can be used interactively, through the
Python command-line interface, to create brand new ROS nodes and to reshape
existing ROS nodes by wrapping their communication interfaces.

Some other contributions, to some extent, allow for the verification of ROS-
based systems. ROSGen [47] takes a specification of a ROS system architecture
as an input and generates a ROS node as an output. Using the theorem prover
Coq, the generation process is amenable to formal verification. DeROS [1] per-
mits describing a robot’s safety rules (and their related corrective actions) and
automatically generating a ROS safety monitoring node by integrating these
rules with a run-time monitor. Another framework for run-time verification
of ROS-based systems is described in [41], which allows generating C++ code
for a monitoring node from user-defined properties specified in terms of event
sequences. In [56], robot systems are modeled as a network of timed automata
that, after verification in Uppaal, are automatically translated into executable
C++ code satisfying the same temporal logic properties as the model. Finally,
RSSM [30] permits to model the activities of multi-agent robot systems using
Hierarchical Petri Nets and, once deadlock absence has been checked on this
model, to generate C++ code for ROS packages automatically.

The approaches mentioned above have not been applied to such complex sys-
tems as MRSs, and some of them are not even suitable for such systems. Very few
high-level languages for MRSs have been proposed. For example, FLYAQ [12] is
a set of DSLs based on UML to specify the civilian missions for unmanned aerial
vehicles. This work is extended in [26] for enabling the use of a declarative speci-
fication style, but it only supports homogeneous robots. ATLAS [39], which also
provides a simulator-based analysis, takes a step further towards coordination
of MRSs, but it only supports centralized coordination. PROMISE [32] allows
specifying the missions of MRSs using Linear Temporal Logic operators for com-
posing robotic mission patterns. Finally, RMoM [40] allows first using a high-
level language for specifying various constraints and properties of ROS-based
robot swarms with temporal and timed requirements and then automatically
generating distributed monitors for their run-time verification.

Languages for Coordination. Coordination for MRSs has been investigated
from several diverse perspectives, and nowadays there is a wide range of tech-
niques that can be used to orchestrate the actions and movements of robots
operating in the same environment [25,57]. Designing fully-automated and
robust MRSs requires strong coordination of the involved robots for autonomous
decision-making and mission continuity in the presence of communication fail-
ures [29]. Several studies recommend using indirect communication to cut imple-
mentation and design costs usually caused by direct communication. Indirect
communication occurs through a shared communication structure that each
robot can access in a distributed concurrent fashion. Some languages provid-
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ing communication and coordination primitives suitable for designing robust
MRSs are reviewed in [14]. In ISPL [44], communication is obtained as an indi-
rect result of synchronization of multiple labeled transition systems on a spe-
cific action. In SCEL [21], a formal language for the description and verifica-
tion of collective adaptive systems, communication is related to the concept of
knowledge repositories, represented by tuple spaces. In Buzz [51], a language for
programming heterogeneous robot swarms, communication is implemented as a
distributed key-value store. For this latter language, integration with the stan-
dard environment of ROS has also been developed, which is named Rosbuzz [55].
Differently from X-Klaim, however, Rosbuzz does not provide high-level coor-
dination primitives, robots’ distribution is not explicit, and permits less hetero-
geneity. Drona [23] is a framework for distributed drones where communication
is somehow similar to the one used in ISPL. Koord [34] is a language for pro-
gramming and verifying distributed robotic applications where communication
occurs through a distributed shared memory. Differently from X-Klaim, how-
ever, robots distribution is not explicit, and open-endedness is not supported.
Finally, in [46] a programming model and a typing discipline for complex multi-
robot coordination are presented. The programming model uses choreographies
to compositionally specify and statically verify both message-based communica-
tions and jointly executed motion between robotics components in the physical
space. Well-typed programs, which are terms of a process calculus, are then
compiled into programs in the ROS framework.

6 Concluding Remarks and Future Work

In this paper, we have presented an approach for programming robotics appli-
cations based on the language X-Klaim and the ROS framework. We have
extended the approach introduced in [5] from single robot scenarios to MRS ones.
X-Klaim has proved expressive enough to smoothly implement MRSs’ behav-
iors, and its integration with Java allowed us to seamlessly use the java rosbridge
API directly in the X-Klaim code to access the publish/subscribe communica-
tion infrastructure of ROS.

We believe that the X-Klaim computation and communication model is par-
ticularly suitable for programming MRSs’ behavior. On the one hand, X-Klaim
natively supports concurrent programming, which is required by the distributed
nature of robots’ software. On the other hand, the organization of an X-Klaim
application in terms of a network of nodes interacting via multiple distributed
tuple spaces, where communicating processes are decoupled both in space
and time, naturally reflects the distributed structure of an MRS. In addition,
X-Klaim tuples permit to model both raw data produced by sensors and aggre-
gated information obtained from such data; this allows programmers to specify
the robot’s behavior at different levels of granularity. Moreover, the form of com-
munication offered by tuple spaces, supported by X-Klaim, benefits the scala-
bility of MRSs in terms of the number of components and robots that can be
dynamically added. This would also permit to meet the open-endedness require-
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ment (i.e., robots can dynamically enter or leave the system), which is crucial in
MRSs.

Our long-term goal is to design a domain-specific language for the robotics
domain that, besides being used for automatically generating executable code,
is integrated with tools supporting formal verification and analysis techniques.
These tools are indeed highly desirable for such complex and often safety-critical
systems as autonomous robots [45]. The tools already developed for Klaim,
e.g., type systems [16,17,37,38], behavioral equivalences [18], flow logic [22], and
model checking [19,20,27], could be a valuable starting point. A first attempt to
define a formal verification approach for the design of MRSs using the Klaim
stochastic extension StoKlaim and the relative stochastic logic MoSL [19] has
been presented in [36].

Runtime adaptation is another important capability of MRSs. In [35], we have
shown that adaptive behaviors can be smoothly rendered in Klaim by exploiting
tuple-based higher-order communication to exchange code and possibly execute
it. We plan to investigate to what extent we can benefit from this mechanism to
achieve adaptive behaviors in robotics applications. For example, an X-Klaim
process (a controller or an actuator) could dynamically receive code from other
possibly distributed processes containing the logic to continue the execution.

X-Klaim has several other features that we did not use in this work. We
list here the most interesting ones, which could be useful for future work in the
field of MRSs. Non-blocking versions of in and read are available: in nb and
read nb, respectively. These are useful to check the presence of a matching tuple
without being blocked indefinitely. Under that respect, X-Klaim also provides
“timed” versions of these operations: as an additional argument, they take a
timeout, which specifies how long the process executing such action is willing to
wait for a matching tuple. If a matching tuple is not found within the specified
timeout these operations return false, and the programmer can adopt counter-
measures. In the example of this paper, we used the simplest way of specifying
a flat and closed network in X-Klaim. However, X-Klaim also implements the
hierarchical version of the Klaim model as presented in [6], which allows nodes
and processes to be dynamically added to existing networks so that modular
programming can be achieved and open-ended scenarios can be implemented.

It is worth noticing that in this work we exploit both the tuple-based commu-
nication model, which X-Klaim inherits from Klaim, and the publish/subscribe
one, supported by ROS and enabled in X-Klaim by the java rosbridge library.
The former communication model is used to coordinate both the execution of
concurrent processes running in a robot and the inter-robot interactions. The
latter model, instead, is used to send/receive messages for given topics to/from
the ROS framework installed in a single robot. In principle, the former model
can be used to express the latter. However, this would require introducing inter-
mediary processes that consume tuples and publish their data on the related
topics and, vice-versa, generate a tuple each time an event for a subscribed
topic is received. This would introduce significant overhead in the communica-
tion with the ROS framework, especially for what concerns the handling of the
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subscriptions (as topics related to sensors usually produce message streams).
Nevertheless, we plan to investigate the definition of a programming framework
to make transparent the use of the publish/subscribe mechanism as mentioned
above, overcoming the performance issue by elevating the level of abstraction.
The idea is not only to replace topics with tuples, but to provide ready-to-use
processes acting as building blocks for creating robotics applications. The API
for interacting with these processes will be tuples with given structures. These
processes will hide the interactions with the ROS framework to the programmer,
and produce tuples only when events relevant to the coordination of the MRS
behavior occur (e.g., a robot reached a given position or a requested movement
has been completed).

Finally, in this work we have used the version 1 of ROS as a reference mid-
dleware for the proposed approach, because currently this seems to be most
adopted in practice. We plan anyway to investigate the possibility of extend-
ing our approach to the version 2 of ROS, which features a more sophisticated
publish/subscribe system based on the OMG DDS standard.
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Abstract. Aggregate Programming (AP) is a paradigm for develop-
ing applications that execute on a fully distributed network of com-
municating, resource-constrained, spatially-situated nodes (e.g., drones,
wireless sensors, etc.). In this paper, we address running an AP appli-
cation on a high-performance, centralized computer such as the ones
available in a cloud environment. As a proof of concept, we present pre-
liminary results on the computation of graph statistics for centralised
data sets, by extending FCPP, a C++ library implementing AP. This:
(i) opens the way to the application of the AP paradigm to problems
on large centralised graph-based data structures, enabling massive par-
allelisation across multiple machines, dynamically joining and leaving
the computation; and (ii) represents a first step towards developing col-
lective adaptive systems where computations dynamically move across
the IoT/edge/fog/cloud continuum, based on mutable conditions such
as availability of resources and network infrastructures.

Keywords: Distributed computing · Collective adaptive systems ·
Cloud computing · Graph algorithms

1 Introduction

In recent years, Aggregate Programming (AP) [14] has attracted significant
attention as an innovative approach for the development of fully distributed sys-
tems [32]. The typical applications for which AP is particularly suited involve
resource-constrained, spatially-situated nodes that coordinate through point-to-
point, proximity-based communications. For example, AP has been adopted
in simulations of domains such as swarm-based exploration [21], crowd safety
management and monitoring [7,8,11], data collection from sensor networks [4],
dynamic multi-agent plan repair [5,6].

The main implementations of AP can be understood as being combinations
of two components: the first component provides full support for the constructs
of the foundational language of AP, namely the Field Calculus (FC) [12]; the
second component connects the FC program with the environment where the
distributed system is deployed and executed. In particular, FC is currently sup-
ported by the following open-source implementations: the FCPP [3,10] library,
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as a C++ internal Domain-Specific Language (DSL); ScaFi (Scala Fields) [20],
as a Scala internal DSL; and Protelis [29], as a Java external DSL. The main
execution environment provided by existing implementations consists of simula-
tions that run on a single computer, simulating sets of nodes situated in a 2D
or 3D space, their dynamics, and the point-to-point communications between
neighbouring nodes. The FCPP library has an internal simulator, while ScaFi
and Protelis exploit the Alchemist simulator [28]. Recently, the FCPP library
has been adapted to deployment on physical Micro Controller Unit (MCU)-based
boards in a simplified Industrial Internet of Things (IIoT) scenario [31], target-
ing Contiki on DecaWave boards. A further porting to Miosix [2] on WandStem
boards is also currently in progress.

In this paper we start exploring a new direction for the application of AP,
namely, the implementation and execution of distributed algorithms on high-
performance, centralized computers such as the ones typically available in a
cloud environment. Instead of a single CPU-based system, that can run multiple
threads sharing the same memory, it can be interesting to consider clusters of
such systems, communicating through high-speed links for sharing data. While
we will discuss this possibility, the main purpose of the present work will be
handling the execution on a single CPU, as a first preliminary step.

In particular, as a proof of concept, we will describe an extension of the
FCPP library that allows it to ingest a centralized, large-scale graph structure,
and compute some network statistics of its input graph. Preliminary results of
experiments with the extended library will be presented. The ability of execut-
ing algorithms on large static graphs is per-se an important application [13],
that could be further boosted by distribution over several CPU-based systems.
Note that this contribution is different from the one described in [9], where AP
was adopted to compute centrality statistics of dynamic networks, whose struc-
ture was induced by (simulated) spatial-based connectivity, using Alchemist and
Protelis. In this paper, instead, we compute similar statistics for a general static
graph (provided as a single file on disk) which does not arise from any spatial
arrangement: in fact, as sample input data, we will use a (restricted) web graph.

In the long run, the possibility of a centralized (or locally distributed) exe-
cution of FC programs on graphs may allow the implementation of collective
adaptive systems that exploit the IoT/edge/fog/cloud continuum. In fact, the
same AP paradigm could be exploited for programming the far edge, constrained
devices as well as the intermediate and most powerful nodes in the architecture,
and this would simplify the dynamic migration of computations between dif-
ferent layers based on mutable conditions such as availability of resources and
network infrastructures. In this paper, we devise a roadmap towards this aim,
identifying the current paper’s contribution as a first preliminary step.

The remainder of this paper is structured as follows. Section 2 presents
the necessary background on aggregate programming, FCPP and the graph
statistic application. Section 3 delineates a roadmap towards a IoT/edge/fog/-
cloud continuum through AP. Section 4 presents the implementation of the first
step, allowing graph-based data processing in FCPP. Section 5 experimentally
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evaluates the approach on graph statistic computation, and Sect. 6 concludes
with final comments and remarks.

2 Background

2.1 Aggregate Programming and the FCPP DSL

AP [14,32] is an approach for programming networks of devices by abstracting
away from individual devices behaviour and focusing on the global, aggregate
behaviour of the collection of all devices. It assumes only local communication
between neighbour devices, and it is robust with respect to devices joining/leav-
ing the network, or failing; thus supporting an open dynamic topology. Beside
communicating with neighbours, the devices are capable to perform computa-
tions. In particular, every device performs periodically the same sequence of
operations, with an usually steady rate, asynchronously from other devices:

1. retrieval of received messages,
2. computation of the program;
3. transmission of resulting messages.

In case devices are equipped with sensors/actuators, they may use sensor data
and provide instructions to actuators during the program execution. In AP, we
assume that all device execute the same program. Note that this assumption
does not restrict the realisable behaviour, as every device may follow different
branches of the same program, resulting in a radically different behaviour.

AP is formally backed by FC [12], a small functional language for expressing
aggregate programs. Few concrete implementations of FC exist to date: Proto,
Protelis [29], Scafi [20], FCPP [3]. In this paper, we will focus on the latter and
most recent, which is structured as a C++ internal DSL (i.e., library). The syn-
tax of aggregate functions in FCPP is given in Fig. 1. It should be noted that,
since FCPP is a C++ library providing an internal DSL, an FCPP program is
a C++ program (so all the features of C++ are available). For compactness of
presentation, we restrict here to a subset of the language with sufficient expres-
siveness for later examples. In the formal syntax, we use ∗ to indicate an element
that may be repeated multiple times (possibly zero).

An aggregate function declaration consists of keyword FUN, followed by the
return type t and the function name d, followed by a parenthesized sequence
of comma-separated arguments t x (prepended by the keyword ARGS), followed
by aggregate instructions i (within brackets and after keyword CODE), followed
by the export description, which lists the types that are used by the function in
message-exchanging constructs.

Aggregate instructions always end with a return statement, reporting the
function result. Before it, there may be a number of local variable declarations
(assigning the result of an expression e to a variable x of type t), and for loops,
which repeat an instruction i while increasing an integer index x until a condition
e is met. The main types of aggregate expressions are:
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Fig. 1. Syntax of FCPP aggregate functions.

– a variable identifier x, or a C++ literal value � (e.g. an integer or floating-
point number);

– an unary operator u (e.g. −, ∼, !, etc.) applied to e, or a binary operator e o e
(e.g. +, ∗, etc.);

– a pure function call p(e∗), where p is a basic C++ function which does not
depend on node information nor message exchanges;

– an aggregate function call f(CALL, e∗), where f can be either a defined aggre-
gate function name d or an aggregate built-in function b (see below);

– a conditional branching expression eguard ? e� : e⊥, such that e� is evaluated
and returned if eguard evaluates to true, while e⊥ is evaluated and returned
if eguard evaluates to false.

Finally, several aggregate built-in functions are provided, which allow implicit
message exchange and state preservation across rounds. In this paper, we will
mention the following ones:

– old(CALL,i,v), which returns the value passed for v to the function in the
previous round, defaulting to i on the first call of this function;

– nbr(CALL,i,v), which returns the field (i.e., collection of) values passed for
v to the function in the previous rounds of neighbour devices (including the
current device, defaulting to i for it on the first call of this function);

– self(CALL, v) given a field v returns the value in v for the current device;
– fold_hood(CALL, f, v, i) given a field v and a function f, reduces the field

to a single value by starting from i and repeatedly applying function f to
each element of the collection and to the current partial result.

It is worth observing that the FCPP syntax uses a number of macros (e.g.,
CALL, CODE, etc.). These macros ensure that the aggregate context (i.e., the node
object) is carried over throughout the program, also updating an internal rep-
resentation of the stack trace for alignment. Thanks to alignment, the messages
(implicitly) originating from a old or nbr construct are matched in future rounds
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Fig. 2. The three main layers of the software architecture of FCPP: data structures
for both other layers, and components which provide node and network abstractions to
aggregate functions. Components that have been modified in this work are highlighted
in magenta. Dependencies between components can be either hard (solid), for which
the pointed component is always required as an ancestor of the other; or soft (dotted),
for which the pointed component is required only in some settings.

(on the same or different devices) only to the same construct, that is, a construct
called in the same position in the program syntax and in the stack trace. This
mechanism allows to freely compose functions, and use recursion, without risking
interferences of messages between different parts of the program.

2.2 FCPP Library Architecture

FCPP is based on an extensible software architecture, at the core of which are
components, that define abstractions for single devices (node) and overall network
orchestration (net), the latter one being crucial in simulations and cloud-oriented
applications. In an FCPP application, the two types node and net are obtained by
combining a chosen sequence of components, providing the needed functionalities
in a mixin-like fashion.

The FCPP library architecture is divided in three main conceptual layers
represented in Fig. 2: (i) C++ data structures of general use; (ii) components;
(iii) aggregate functions. The first layer comprises data structures needed by the
second layer either for their internal implementation or for the external speci-
fication of their options, but also data structures designed for the third layer.
Some components are sufficiently general purpose to be used across different
domains, including simulations and deployments (calculus, randomizer, storage
and timer). Others may be useful only in certain domains (displayer, navigator,
persister and spawner), or come with variations for different domains, sharing
a common interface (connector, identifier, logger and positioner). For exam-
ple, for simulations the connector component is given as a simulated_connector,
which exchanges messages as pointers between objects in memory, determin-
ing if connection is possible based on simulated positions. For deployments, a
hardware_connector is given, which instead exchanges physical messages through
some provided networking interface. In order to handle processing of graph-based
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data, the timer and spawner components have been extended and a new variation
of the connector component has been provided (cf. Sect. 4).

The basic structure of each component is as follows:

template <class... Ts>

struct my_functionality {

template <class F, class P>

struct component : public P {

class node : public P::node { ... };

class net : public P::net { ... };

};

};

Thus, each component is a templated class with a variable number of type
arguments, which are used to provide compile-time options to be used by the
components to tune their behaviour. This options are empty templated types,
wrapping the data of interest, such as parallel<true> to enable parallelism, or
connector<fixed<100>> to specify that devices are to be connected within a fixed
radius of 100 units. The outer class has a component template subclass with two
type parameters: P, which represents the parent component composition, and F,
the final outcome of the whole component composition, which is retrieved by
the C++ template system thanks to the Curiously Recursive Template Pattern
(CRTP, first introduced in [19]). Both the node and net classes are defined inside
the component subclass to inherit from the corresponding classes in the parent
composition P. The final outcome of the composition F may be used by those
classes to mimic virtual-style calls that are resolved at compile-time.

The scenario originally supported by the first versions of FCPP is the sim-
ulation of distributed systems. Compared to the alternative implementations of
FC (Protelis [29] and Scafi [33] with their simulator Alchemist [28]), it features
additional simulation capabilities (3D environments, basic physics, probabilistic
wireless connection models, fine-grained parallelism), while granting a significant
reduction of the simulation cost in CPU time and memory usage, which comes
with a corresponding speed-up of the development and test of new distributed
algorithms.

2.3 Graph Statistics

Several techniques for collecting statistics from graph-based data have been
investigated in the data mining community. In this section, we recall the statis-
tics measuring centralities of the nodes of the graph considered in [9]. These are
quite common and can be naturally implemented in FC. We will use them as a
benchmark for the application of AP on graph algorithms.

Degree centrality is the historically first and conceptually simplest cen-
trality measure. It is defined as the number of links incident upon a node (i.e. its
degree): nodes with an higher number of links should be less prone to encounter
network disconnections, so electing these nodes as communication hubs should
be more effective than electing nodes with a lower degree. Degree centrality is
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simple and efficient to calculate. However, compared with other centrality mea-
sures, degree centrality is usually the least effective. In fact, in approximately
homogeneous situated networks – where nodes at the edge of the network have
lower degrees and all other nodes have similar degrees – selecting the node with
the highest degree would correspond to select a random node which is not at the
network edge.

PageRank [26] is an instance of the broader class of eigenvector centrality
measures. This centrality measure has been first introduced for the Google search
engine and it is quite popular in the data mining community. According to
PageRank, the centrality score ri of a node i is defined as the fixed point of the
system of equations:

ri = (1 − α) + α
∑

j∈neigh(i)

rj
deg(j)

where α is a parameter (usually set at 0.85 [18]), deg(j) is the degree of node j
and neigh(i) is the set of neighbour nodes j connected to i. PageRank has been
proved effective on logical graphs as the web graph. It can be efficiently calculated
by re-iterating the equations above for each node, starting from r0

i = 1.
Closeness Centrality and Harmonic Centrality are the most effective

centrality measures that we consider [16]. They are both derivable from (varia-
tions of) the neighbourhood function of a graph, which is defined as follows.

Definition 1 (Neighbourhood Function). Let G = <V,E> be a graph with
n vertices and m edges. The generalized individual neighbourhood function
NG(v, h, C), given v ∈ V , h ≥ 0 and C ⊆ V , counts the number of ver-
tices u ∈ C which lie within distance h from v. In formulas, NG(v, h, C) =
|{u ∈ C : dist(v, u) ≤ h}|.

Many different questions – like graph similarity, vertex ranking, robustness
monitoring, and network classification – can been answered by exploiting elabo-
rations of the NG values [16,27]. Unfortunately, exact computation of NG is
impractical: it requires O(nm) time in linear memory and O(n2.38) time in
quadratic memory.

Fast algorithms approximating NG up to a desired precision have been
developed. In particular Vigna et al. [16] improved the original algorithm by:
(i) exploiting HyperLogLog counters (a more effective class of estimators) [23];
(ii) expressing the “counter unions” through a minimal number of broadword
operations; and (iii) engineering refined parallelisation strategies. HyperLogLog
counters maintain size estimates with asymptotic relative standard deviation
σ/μ ≤ 1.06/

√
k, where k is a parameter, in (1 + o(1)) · k · log log(n/k) bits of

space. Moreover, updates are carried out through k independent “max” opera-
tions on log log(n/k)-sized words. As a result, given a fixed precision, NG can
be computed in O(nh) time and O(n log log n) memory. This enables to apply it
on very large graphs like, e.g., the Facebook graph [13].

We are now ready to present closeness centrality and harmonic centrality.
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Closeness centrality of a node i, denoted by ci, is defined as the recip-
rocal of the total distance to other nodes. It can be computed in terms of the
neighbourhood function by the following equation:

1
ci

=
∑

j �=i

dist(i, j) =
D∑

h=1

h (NG(i, h, V ) − NG(i, h − 1, V ))

where D is the graph diameter (maximum distance between nodes in G).
Harmonic centrality of a node i, denoted by hi, is defined as the sum of

the reciprocals of distances to other nodes. It can be computed in terms of the
neighbourhood function by the following equation:

hi =
∑

j �=i

1
dist(i, j)

=
D∑

h=1

NG(i, h, V ) − NG(i, h − 1, V )
h

where D is the graph diameter (maximum distance between nodes in G).
Nodes with high closeness/harmonic centrality are connected to many other

vertices through a small number of hops. So, they are best-suited to be elected
as leaders for coordination mechanisms.

3 Roadmap

In this section, we describe a roadmap to make the AP paradigm applicable
beyond the level of a network of constrained devices. The first step has already
been taken, and will be described in more detail in the rest of this paper. The
other three steps, up to a hybrid deployment where computations can be dynam-
ically moved between the devices (far edge) and a central infrastructure (cloud),
will require further research and development efforts. However, we can at least
sketch some concrete lines of work that shall be followed for their realization.

Step 1: Data Processing Support. In order to exploit cloud-based resources and
integrate the AP paradigm with them, it is first of all necessary to provide
a centralized, abstract view of the network in terms of a graph of nodes and
their connections, allowing AP to centrally process this graph-based data. In
this context, the notion of neighbourhood, which is fundamental for AP, can be
derived from the graph structure, instead of being implicitly determined by the
physical vicinity of devices. Note that AP simulators such as Alchemist and the
simulator embedded in FCPP also have the necessity to represent the network
of devices in a centralized structure. However, they assume that (i) the nodes
are deployed in a 2D or 3D euclidean space; that (ii) possible connections are
computed from the physical positions; that (iii) round scheduling is constrained
by energy saving needs; and that (ii) the simulator can take full control of the
nodes (position, velocity, etc.).

In a centralized AP computation, however, some or all of that assumptions
may fail. Nodes may not be deployed in a physical space, or their position may be
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inaccessible due to lack of dedicated sensors. Connections between nodes should
not be computed by the central application, but instead either read from a con-
figuration file or induced by mirroring a physical deployment. Round scheduling
should not be connected with energy saving needs, but instead tuned to get the
best performance out of the available cloud resources. Finally, the amount of
node control available in the central application may be limited.

In order to achieve this goals, we extended FCPP to be able to read and
process locally available graph-based data, while allowing the schedule of rounds
to be determined reactively in order to maximise performance. More details on
this initial step and its implementation in FCPP are given in Sects. 4 and 5.

Step 2: Multi-CPU Distribution. The centralized AP computations can of course
benefit of multi-core architectures by associating the nodes of the graph (and
thus their computations) to multiple threads. This is already possible in the
current implementation, and was relatively easy to implement by simply pro-
tecting with locks the (short) critical sections where nodes exchange messages
with neighbours.

However, high-performance centralized infrastructures are often based on
NUMA (Non-Uniform Memory Access) architectures, where multiple CPUs have
(preferred) access to local memories. In such scenarios, the shared-memory model
needed by multi-thread applications is not applicable, and a message-passing
model must be adopted to connect computations carried by different CPUs. A
promising approach consists in the adoption of MPI (Message-Passing Interface),
the de-facto standard for message-passing on high-performance parallel architec-
tures, which defines the syntax and semantics of a rich set of library routines.
Several open-source implementations of MPI are available, in particular for the
C++ language used by the FCPP implementation of the AP paradigm.

The main challenges we envision for integrating MPI with FCPP are: the
automatic partition of the set of graph nodes on different CPUs so as to reduce
as much as possible the cost of message-passing between different memories (we
shall evaluate the applicability of graph partitioning algorithms such as [25]);
and a software architecture that makes as transparent as possible the difference
between shared memory communications (that should continue to be exploited
by nodes assigned to the same CPU) and message-passing communications.

Step 3: Dynamic Multi-CPU Distribution. Up to now, we have assumed that the
graph representing the AP network is static, but in general this is not the case:
nodes and their connections can be added and removed dynamically, to reflect
changes in the structure of the underlying distributed computation. In fact,
dynamism in graph structure is already supported by the single-CPU imple-
mentation, as links can be inserted or removed through dedicated methods, as
will be discussed in Sect. 4.

In multi-CPU scenarios, it is therefore of great importance to implement on-
line mechanisms in charge of deciding if and which nodes should migrate from
one CPU to another, in order to accommodate the changes in graph structure,
while keeping the load balanced among CPUs for better performance. In order to
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implement this point, we predict that mainly two ingredients would be needed:
a node migration mechanism, together with heuristic strategies guiding it.

Step 4: Hybrid and Mirror Systems. Until this point, the centralised AP-based
system we proposed is described as fully logic, directly operating on graph-based
data somehow available on the cloud. This data may have a purely logical origin
as well, being for instance collected by a web crawler. However, it would also be
crucial to consider data obtained by mirroring a physical network of IoT devices.
In particular, we envision scenarios where virtual devices associated with physical
IoT devices [22,30] perform their computations directly on the cloud, possibly
inter-operating with physical IoT devices directly running the same AP system
without mirroring.

For instance, a group of physical devices deployed at location L1 may directly
execute a FC program by communicating point to point with one another, while
indirectly interacting with physical devices deployed at another location L2.
Those may delegate their executions of the FC program to the cloud, since
too many rounds of computation and communication would be needed to reach
convergence of their results, which is too resource demanding to be handled
locally. Further virtual nodes may also be present in the mirrored network in
the cloud, that are derived fully logically without any physical mirror device,
to perform further heavy assistive tasks (e.g. federated learning computations
[24]).

In order to allow the integration of such a system within FCPP, given the
infrastructure available from the previous steps, it would be necessary to add
a component ensuring proper mirroring of a virtual device in the cloud with a
physical IoT device. That may also require some routing mechanism in place,
in case the IoT device to be mirrored does not have direct internet connection.
After such a connection can be established, mirroring may be ensured by an
external daemon process synchronizing the graph-based data on the cloud used
by the centralised AP system with the data obtained from sensors on the mirror
IoT device (possibly including messages listened from its neighbourhood), with
a given frequency depending on energy requirements.

Step 5: Dynamic Hybrid Systems. Similarly to the dynamic distribution of nodes
to different CPUs, it may be useful to enhance hybrid edge-cloud AP systems
with the possibility of dynamically migrating some computations from the edge
to the cloud and vice-versa, depending on the weight of the required computa-
tion, as well as on the current availability of resources. Given that the previous
steps are all met, this could be implemented by proper heuristics guiding a
migration mechanism, as for step 3.

4 A First Step: Extending FCPP to work with Graphs

In this section, we outline the extensions made to the FCPP library in order to
allow FC programs to process centralized graphs. This new feature effectively
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constitutes a first step towards the goal of a self-organising edge-cloud appli-
cation, as outlined in Sect. 3. Overall, these extensions will culminate into the
definition of two new component compositions.

As mentioned in Sect. 2.2, an FCPP application is first specified through such
a composition of components from the hierarchy shown in Fig. 2, which are then
customised further with suitable parameters. For example, FCPP defines a batch
simulation application as:

DECLARE_COMBINE(batch_simulator,

simulated_connector, navigator, simulated_positioner, timer,

logger, storage, spawner, identifier, randomizer, calculus);

exploiting the DECLARE_COMBINE macro to combine into the batch_simulator type
all the components listed as the remaining parameters. The order of the speci-
fied components induces their parent relations, and must comply with compile-
time restrictions enforced by the components themselves (depicted in Fig. 2).
For example, in the batch_simulator combination, the spawner component has
identifier as direct parent, and randomizer and calculus as further ancestors.

The new compositions we introduced are called batch_data_processor and
interactive_data_processor, which differ from the existing batch_simulator in:

1. While the nodes of a simulation are situated in a 3D space, and thus have
3D position, velocity and acceleration vectors, the nodes of a graph do not
have such attributes. This can be simply accommodated by omitting the
simulated_positioner and navigator components from the mix.

2. In simulation, rounds are scheduled according to a programmatic policy. In
data processing, we need rounds to be reactively scheduled when neighbours’
values are updated. Since this feature may be relevant for classical simulated
and deployed systems as well, we implemented it by extending the timer

component in order to trigger reactive rounds after a message is received.
3. While in a simulation nodes are usually algorithmically generated across the

simulated space, we need to generate them based on data read from a file.
Since this feature could also be useful in 3D simulations, provided that posi-
tion information is stored in the given file, we implemented it by extending
the spawner component with options for file-based generation.

4. Finally, as the main structural difference, the neighbourhood of each node is
not determined by the physical locations of nodes, but is given by the edges
of the graph (also read from a separate file). This requires to introduce a new
variant of the connector component, which we called graph_connector.

Based on this considerations, the mentioned combinations are defined as:

DECLARE_COMBINE(batch_data_processor,

graph_connector, timer, scheduler, logger, storage,

spawner, identifier, randomizer, calculus);

Note that this definition is remarkably similar to that of a batch simulation,
i.e., we have been able to exploit several existing components. We also defined
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a interactive_data_processor combination providing a graphical user interface
through which the network situation can be inspected (based on the existing
similar interactive_simulator composition):

DECLARE_COMBINE(interactive_data_processor,

displayer, graph_connector, simulated_positioner, timer, scheduler,

logger, storage, spawner, identifier, randomizer, calculus);

The main responsibility of the spawner component is that of creating nodes
with unique identifiers exploiting the identifier component (which is its par-
ent). Formerly, that had to happen by algorithmic generation of node param-
eters. We extended the component to provide exactly the same function when
the underlying system is a graph read from the disk. In particular: (i) the net

constructor of the component handles the option nodesinput which specifies the
name of the file where the nodes of the graph are stored; and (ii) each row of the
nodes file is parsed according to a list node_attributes of expected attributes,
which need to contain every mandatory argument needed for node construction
(such as the uid attribute). All file-generated nodes are created at the execution
start, but their first round can be scheduled arbitrarily later exploiting the start

construction argument given by the timer component.
The connector component is in charge of handling the exchange of messages

between neighbours. The graph_connector replaces the simulated_connector used
in simulations by providing exactly the same function when the underlying sys-
tem is a graph read from the disk. In particular:

1. it provides connect and disconnect methods to the node, so that nodes of
the graph can be connected at start and disconnected at end by the compo-
nent, while allowing dynamic connections to be also established through the
program logic;

2. connections can be considered as directed or undirected by simply setting the
Boolean option symmetric;

3. the net constructor of the component handles the option arcsinput which
specifies the name of the file where the initial arcs of the graph are stored;

4. each row of the arcs file is parsed expecting a pair of node identifiers; and an
arc between the two nodes is created by calling the connect method on the
first node with the second node as a parameter;

5. it provides functionality to send messages to the outgoing neighbours of a
node, i.e., the nodes reachable with an outgoing arc in the graph.

The timer component is in charge of scheduling rounds both a-priori and in the
program logic. We extended it by: (i) adding a parameter reactive_time, that
for every node sets a delay for triggering a round after a message is received;
and (ii) through the function node.disable_send() provided by the connector
component, messages can be blocked avoiding triggering rounds in neighbours
whenever the results of the algorithm at hand are stable. By setting a reactive
time that is much shorter than the non-reactive scheduling of rounds, we can
ensure that nodes are reactively processed until convergence before any non-
reactive rounds are scheduled.
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In performing the extensions just described, we had to overcome some notable
issues: (i) in data processing, fine-grained parallelism is necessary, and thus the
implementation had to be designed so to avoid both data races and deadlocks,
which is not trivial for graph-like structures; and (ii) by allowing reactive rounds,
we broke an assumption of FCPP that the next event on a node is scheduled
right after an event is executed. The identifier component keeps a queue of node
events, executing them (in parallel) as necessary. Formerly, this queue could be
updated by adding the next events right after each event is executed. In order to
handle reactive rounds, we had to add an alternative way of updating the event
queue: the identifier checks at each message received whether the next event
changes, updating the queue accordingly. In particular, this introduced a new
component dependency, requiring the timer to appear as parent of the identifier
in order for this interaction to be captured.

5 Experimental Evaluation

5.1 Implementation

We evaluated our approach by implementing a case study on the computation of
graph statistics, focusing on the centrality measures presented in Sect. 2.3. These
statistics have been implemented as FC programs expressed in the FCPP DSL
described in Sect. 2.1, similarly as previously done in the Protelis DSL in [9].
Differently than there, we enhanced the HyperANF algorithm to not require an
upper bound of the diameter in input, computing the neighbourhood function
up to a variable depth, stopping whenever no further nodes are found in the last
level. The resulting code is shown with explanatory comments in Fig. 3.

The HyperANF algorithm is based on HyperLogLog counters, which we
implemented in C++ with a hyperloglog_counter template class by mimick-
ing the extremely efficient Java implementation described in [16]. The template
parameters allow the specification of:

1. number of registers per HLL counter;
2. number of bits per register (defaulting to 4);
3. type of the counted data (defaulting to size_t, i.e., unsigned long integer);
4. hash function used to convert the counted data before HLL operations.

In particular, the implementation exploits broadword programming techniques to
parallelize the union operations on all the registers contained in a word (e.g., 16
registers at a time, if the word is 64 bit and the register is 4 bits), thus signifi-
cantly speeding-up the fundamental operations performed during the computa-
tion of NG. In Fig. 3, type hll_t is used for those counters, which is defined as
a specific instantiation of the hyperloglog_counter template.

5.2 Results

In order to evaluate the effectiveness of FCPP on centralised graph-based data
processing, we compared our approach with the state-of-the-art WebGraph-
based implementation [15,17] of the HyperANF algorithm computing harmonic
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Fig. 3. Implementation of the HyperANF algorithm in FCPP.

and closeness centrality [16]. As reference graph, we used the cnr-2000 test set
[1] of moderate size, and run 10 executions for both implementations, in order
to account for variability in execution times.

On a MacBook Pro with 2,4 GHz Intel Core i9 8 core CPU and 32 GB 2667
MHz RAM, the WebGraph implementation took from 28.263 s to 36.919 s to
complete, with an average of 34.348 s. On the other hand, the FCPP implemen-
tation took from 111.230 s to 123.950 s to complete, with an average of 115.066 s.
Even though the FCPP implementation was noticeably slower, requiring about
3× time to complete, it has other advantages that compensate for this difference:
most notably, the generality of the approach, which translates into much lower
software development costs. In fact, the WebGraph implementation is highly
specific to the problem at hand, and low-level optimised for it, so that it cannot
be easily modified to accommodate any other task: the codebase needed to imple-
ment HyperANF is very large and complex, requiring high development costs.
The FCPP codebase is also large and complex, however, it is sufficiently generic
so that any other graph-based problem could be easily formulated in order to be
executed with it, without direct intervention on that codebase. The development
costs are thus limited to the AP formulation of the problem at hand, and are
thus much lower as can be seen through the code snippet in Fig. 3.
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We also remark that optimisations reducing execution times are planned for
future releases of the FCPP implementation. These are likely to reduce the per-
formance gap, although we do not expect this gap to be fully compensated. As
the FCPP implementation is subject to the constraint of being able to run any
aggregate program, in a way that is inter-operable with deployed self-organising
systems running the same software, problem-specific optimisations are not pos-
sible, restricting leeway for improvements.

6 Discussion and Conclusions

In the present paper we have extended the FCPP implementation of FC in order
to support a new execution environment, namely high-performance, centralized
computers. In particular, FCPP can now ingest large-scale graph structures and
execute FC programs as if the nodes of the graph were distributed devices,
and the graph arcs represented the proximity-based communication links. The
centrality statistics, chosen as a benchmark to test the extension, have been
coded naturally with the FCPP DSL, and have shown more than decent perfor-
mances compared with a state-of-the-art, carefully crafted Java implementation
[16]. This extension has been carried out as a first step towards an AP-based
IoT/edge/fog/cloud continuum, while also delineating a roadmap of 5 milestones
to reach it, together with the main associated challenges to be overcome.

The evaluation of the extension presents some notable limitations that may
be addressed in future work. First, the single problem of graph statistics com-
putation was considered: the evaluation may be enhanced by considering more
graph-related problems, such as routing, maximum flow or minimum spanning
tree estimation. Furthermore, we carried the evaluation on a relatively small
graph on a laptop computer: more accurate benchmarks could be obtained by
performing a similar computation on larger graphs on an high-performance com-
puter. In fact, such systems are sometimes equipped with Graphics Processing
Unit (GPU)s beside multi-core CPUs: in the present paper we supported only
CPU-based systems, since the Single Instruction, Multiple Data (SIMD) model
of GPUs imposes restrictions on the computations that deserve a separate, in-
depth analysis in future works.
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and Martin Krulǐs
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Abstract. In this paper, we extend our ensemble-based component
model DEECo with the capability to use machine-learning and optimiza-
tion heuristics in establishing and reconfiguration of autonomic compo-
nent ensembles. We show how to capture these concepts on the model
level and give an example of how such a model can be beneficially used
for modeling access-control related problem in the Industry 4.0 settings.
We argue that incorporating machine-learning and optimization heuris-
tics is a key feature for modern smart systems which are to learn over
the time and optimize their behavior at runtime to deal with uncertainty
in their environment.
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1 Introduction

Modern smart systems increasingly aim at providing highly optimized behavior
that copes with the high uncertainty and variability of their surrounding envi-
ronment. This classifies them as representatives of self-adaptive systems, which
are systems that monitor their performance and their ability to meet their goals
and adapt their behavior to cope with changes in themselves and in their envi-
ronment.

Modern smart systems are often composed of multiple components, which are
required to coordinate their operation. This means that the system adaptation
and optimization have to be done in a coordinated manner too.

Traditionally these systems have been designed by providing a set of adap-
tation rules that were supposed to identify principal states and changes in the
environment and reconfigure the system. However, with more and more empha-
sis on data and with the increasing amounts of data the modern systems collect
and are able to exploit in their operation, the specification using a fixed set of
adaptation rules becomes increasingly more complex and hard to do (mainly due
to the fact that the model behind the data is unknown and potentially changing).

A recent trend in modern smart systems is to use machine learning to help
the system make adaptation and optimization decisions. However, machine learn-
ing is still used in a rather ad-hoc manner without having been systematically
embedded in the architecture of the systems.
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The main problem is that there is a lack of architectural models for the
specification of system components that would provide abstractions for machine
learning and other kinds of optimizations based on data observed by the system.
As a result, every smart system that employs machine learning or some kind
of optimization has to create its own architectural abstractions. This not only
means duplicating the work but also requiring an expert in machine learning to
be able to implement the abstractions correctly.

In this paper, we address this problem by providing a novel component model
(called ML-DEECo) that features dedicated abstractions for machine learning
(currently only supervised learning) and optimization heuristics (used mainly
for coordination problems).

The ML-DEECo model is an extension of our previous DEECo component
model [8]. Similar to DEECo, it is based on the concept of autonomic component
ensembles, which are situation-based coordination groups of components that
cooperate (within a given situation) to achieve a common goal.

In this paper, we demonstrate the main concepts of ML-DEECo on a use-case
in the Industry 4.0 settings that stems from our previous project with industry.

We support the concepts of ML-DEECo by an implementation in Python,
which can process the ML-DEECo abstractions and use them to automatically
realize the complete learning loop (consisting of data collection, model training,
and inference at runtime). By this, we show the usefulness of ML-DEECo as it
saves not only the time needed to develop the learning loop but also the expertise
needed to do that. The implementation is part of the replication package that
comes along with the paper [2].

The structure of the text is as follows. Section 2 describes the running exam-
ple and, based on the example, introduces ensemble-based component systems.
Section 3 presents the machine-learning concepts of ML-DEECo while Sect. 4 dis-
cusses the application of heuristics. Section 5 evaluates the presented approach
and Sect. 6 compares it with related work. Section 7 concludes the paper.

2 Running Example and Background

In this paper, we build on the running example from recent work on dynamic
security rules by Al-Ali et al. [3]. The example is a simplified version of a real-
life scenario concerning access to a smart factory and it is taken from our recent
project with industrial partners.

The factory consists of several working places, each with an assigned shift
of workers. The workers come to the factory in the morning. They have to go
through the main gate to enter the factory. Then, they have to grab a protective
headgear at a headgear dispenser inside the factory and they can continue to
their workplace. The workers are not allowed to enter the workplaces of the other
shifts in the factory.

To ensure security and safety in the factory, several rules are defined. For
example, the workers are allowed to enter the factory at the earliest 30 min
before their shift starts. The rule is enforced by a smart lock at the main gate.
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Another rule defines that the worker can only enter his workplace if they are
wearing the protective headgear. We can see that the security rules are dynamic
as their effect depends on time (we allow workers to the factory at most 30 min
before their shift) and on of workers (whether they wear the headgear or not).

The scenario further deals with replacing the workers who are late for their
shift with standbys. For each shift in the factory, we have a defined set of standby
workers. If a worker does not arrive at the factory sufficiently (16 min) before
their shift starts, they are canceled for the day and a standby is called to replace
them. As the actual time of arrival of the workers to the factory varies, it brings
uncertainty to the system, which is an opportunity to use a machine-learning-
based estimate to deal with it. Furthermore, the assignment of the standbys can
be a hard optimization problem if the sets of standbys for the shifts overlap, so
it can be dealt with using a heuristic approach.

2.1 Modeling Dynamic Security Rules with Components
and Ensembles

We build our approach on the concept of autonomic component ensembles; in
particular, we are using the abstractions of the DEECo ensemble-based compo-
nent model [9]. In this section, we describe the concepts of ensembles that are
necessary for understanding the paper.

Components represent the entities in our system (factory, rooms, dispenser,
workers) and they are described by the component type. There are multiple
instances (simply referred to as “components” in the paper) of each of the com-
ponent types (i.e., multiple workers, rooms, etc.). Each of the components has
a state represented as a set of data fields. Components that we cannot control
directly (workers in our case) are referred to as “beyond control components”.
The state of these components is only observed or inferred.

Ensembles represent dynamically formed groups of components that cor-
respond to a coordinated activity. As for the components, the ensembles are
described by their ensemble type, which can be instantiated multiple times. A
single component can be selected in multiple ensemble instances at the same
time—we call this that the component is a “member” of the respective ensemble
instance. The ensemble prescribes possible data interchange among the com-
ponents in the ensemble and also the group-wise behavior (e.g., a coordinated
movement).

Technically, an ensemble type specifies the (1) roles, (2) situation, and (3)
actions.

The roles determine which components are to be included in the ensemble
(i.e., components that should be members of the ensemble). Roles are either
static or dynamic. The static ones are specified when the ensemble is instantiated
and cannot change. They provide the identity to the ensemble instance (e.g., a
shift for which the ensemble is instantiated). There cannot exist two ensemble
instances of the same type that are equal in the assignment of their static roles.
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The static roles are specified as a tuple: (i) type of component instances in
the role, (ii) cardinality of the role.

The cardinality of the role is simply an interval determining the minimum
and maximum number of component instances referred to by the role.

On the other hand, the dynamic roles are populated dynamically based on
the situation in the system. The dynamic roles are specified as a triple: (i) type
of component instances in the role, (ii) cardinality of the role, and (iii) condition
over components in the role.

While the type and cardinality are the same as in the case of static roles,
the condition further determines if a component may be selected for the role.
The condition is parameterized by the component being selected for the dynamic
roles and by the static roles (i.e. attributes of components in the static roles).

The situation is a condition over static roles that determines whether the
ensemble should be instantiated.

The actions are activities to be executed when the ensemble is instantiated.
They differ based on the target domain and have no influence on how ensembles
are instantiated. In the case of our running example, we use two actions: allow
and notify. The allow action assign some permission to a component. The notify
action send a notification to a component (e.g. to let a standby worker know
that they have been assigned to a shift).

Ensembles can be hierarchically nested, i.e., an ensemble can be defined as an
inner one within another ensemble. This allows for the decomposition of complex
conditions into simpler ones and thus makes the whole specification more easily
manageable. Instances of an inner ensemble can be created only if there is an
instance of the outer ensemble.

The ensembles are instantiated and dissolved dynamically and continuously
as the state of the system changes. This instantiation of the ensembles and their
dissolution is performed automatically by the ML-DEECo runtime framework.

An ensemble is instantiated for each possible assignment of static roles such
that the situation condition is true and there exist components that can be
assigned to the dynamic roles to satisfy the cardinality bounds and the dynamic
role condition.

The instantiation is attempted periodically. In case of our running example,
since this is run as a simulation, we perform the instantiation (and dissolution)
of ensembles in every simulation step.

For our example, ensembles are used to express the security rules in the
system. They dynamically grant/revoke access permissions to individual com-
ponents.

Listing 1 shows a part of the specification of the running example. It repre-
sents the components and ensembles as illustrated in Fig. 1 There are 6 types of
components: Door, Dispenser (of protective headgear), Factory, WorkPlace, Shift
and Worker. Each of them is described by a set of their fields.

1 component type Door:
2 field position: Position
3

4 component type Dispenser:
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5 field position: Position
6

7 component type WorkPlace
8 field position: Position
9

10 component type Factory
11 field entryDoor: Door
12 field dispenser: Dispenser
13 field workplaces[∗]: Workplace
14

15 component type Worker
16 field position: Position
17 field hasHeadgear: boolean
18

19 component Shift
20 field workPlace: WorkPlace
21 field startTime: Time
22 field endTime: Time
23 field assigned[∗]: Worker # an original list of assigned workers
24 field workers[∗]: Worker # a list of actually working workers
25 field standBys[∗]: Worker
26

27 ensemble type AccessToFactory
28 static role shift: Shift
29 situation shift.startTime − 30 <= now <= shift.endTime + 30
30 dynamic role workers[∗]: Worker
31 each worker in workers:
32 (worker in shift.assigned and not worker.canceled)
33 or worker in shift.calledStandbys
34 action allow workers enter factory
35

36 ensemble type CancelLateWorkers
37 static role shift: Shift
38 situation shift.startTime − 16 <= now <= shift.endTime
39 dynamic role lateWorkers[∗]: Worker
40 each worker in lateWorkers:
41 worker in shift.assigned and not worker.isAtFactory
42 action notify lateWorkers with canceled
43 inner ensemble type ReplaceLateWithStandbys
44 dynamic role standBys[lateWorkers.size]: Worker
45 each worker in standBys:
46 worker in shift.standBys
47 action notify standBys with calledIn

Listing 1. An excerpt of the example specification

Further, ensemble types are specified. Due to the paper space limits, we show
here only a few of them. In Fig. 1, sample instances of ensembles are represented
as the hand-drawn oval shapes.

The AccessToFactory assigns to the workers the access-to-factory permission.
The static role shift (line 28) determines the identity of the ensemble instance,
i.e., the ensemble is instantiated for a selected shift and there is only one ensemble
instance of AccessToFactory for a particular shift.

The situation (line 29) is a predicate determining under which conditions
the ensemble has to be instantiated. In this particular case, the ensemble is
instantiated from 30 min before the shift starts till 30 min after the shift ends.
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Fig. 1. Factory example

The dynamic role workers (line 30) selects all the workers which are assigned
to the shift. These are workers that have been assigned to the shift and that
have not been canceled due to being late, plus the standbys called to fill in for
the late workers. This is stated on lines 32–33. The definition of the role specifies
the cardinality, the type of components assigned to the role, and the condition
that has to hold for each component in the role.

The workers selected in the dynamic role are assigned with permission to
enter the factory (line 34).

Similar to the AccessToFactory, our specification contains ensembles
AccessToDispenser and AccessToWorkplace, which differ only in what they reg-
ulate the access to. Since they are very similar, we omitted them in the paper.

The next ensemble—CancelLateWorker (line 36) serves for canceling workers
that are late. The static role pins the ensemble instance to a shift. The dynamic
role selects workers that are late (i.e., they are not in the factory 16 min before
the shift start). Those workers are then canceled from the shift (line 42). This is
done by notifying them and the system about being canceled.

To replace the canceled workers, there is a subensemble
(ReplaceLateWithStandbys in line 43) of the CancelLateWorker ensemble. It selects
the necessary number of standbys to fill in for the canceled workers. The cardinal-
ity of the standBys role is equal to the number of canceled workers. The standbys
are notified by the ensemble about being called in.

All the described ensembles are illustrated in Fig. 1. The figure also shows
other two ensembles (omitted from the listing due to the space constraints
but defined in the complete example in the replication package). They are
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AccessToWorkspace assigning permissions to access the particular workplace and
AccessToDispenser assigning permission to obtain the headgear.

3 Estimates

In this section, we present the extension of the DEECo component model which
brings in machine-learning-based estimates. We call the extended component
model ML-DEECo. Though we demonstrate the concepts on the running exam-
ple, our approach is general and can be used in other use cases as well. The
ML-DEECo framework allows the architect of the system to include the esti-
mates inside both components and ensembles and to use the estimated values
for adaptation decisions. The Python implementation, together with a more
detailed description of all the provided abstractions, is available in the replica-
tion package [2].

3.1 Estimates

In our recent projects, we have identified several use-cases, where machine learn-
ing would be beneficial to a proactive self-adaptation of the system. Several of
these use cases exhibited the same patterns—we needed to predict a future state
of a component or ensemble. The machine learning algorithms can easily be
used in such situations as the future state will be known at some point in time
in the future so we can formulate the problem as supervised learning and use
the observed value for the training of the machine-learning-based estimate.

Based on our previous experience with designing ensemble-based systems and
an analysis, we have identified the following three kinds of estimates based on
where they can be applied in an architecture, i.e., on (i) a component, (ii) an
ensemble, and (iiii) a component-ensemble pair.

In the first case, the estimate serves as a special field of the component and is
parameterized by values of the regular fields. For instance, the Worker component
can have an estimate predicting whether the particular worker would be willing
to be activated as a “standby” (in the case the selection as a called-in standby
is voluntary). The estimate would be parameterized by the current day-of-week
and would be trained on the history of the particular worker’s willingness to be
activated as the standby.

In the second case, i.e., applying on an ensemble, an estimate is employed as
the ensemble property and can be used in the ensemble conditions (in the situ-
ation and the dynamic role selectors). The estimate is parameterized by values
obtained from global variables and static roles of the ensemble. For instance,
if we extend the example by the automated planning of shifts (i.e., allocating
workers to shifts), we can have an ensemble with the estimate that predicts the
right number of workers in order to reach expected productivity goals. This pre-
diction would be based on the day-of-week and start time of the shift (morning,
afternoon, evening).
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The last option—applying an estimate to the component-ensemble pair—is
the most complex one. In this case, we associate the estimate with a component
that has been dynamically selected in an ensemble. Since this is the most complex
case, we will use it to showcase the ML-DEECo in the rest of the section.

As an example, we use machine learning for the adaptation of the replacement
of late workers. A traditional rigid solution is to set a threshold for when the
workers have to be inside the factory. In our case, the baseline approach is to
cancel the workers if they are not present in the factory 16 min before the start of
their shift. This, however, does not deal well with the uncertainty of the arrival of
the workers. To replace the rigid approach, we suggest using a machine-learning-
based estimate to predict whether a worker will come on time or not. This can
be expressed as an estimate assigned to a dynamic role of an ensemble type as
shown in Listing 2.

1 ensemble type CancelLateWorkers
2 static role shift: Shift
3 situation shift.startTime − 30 <= now <= shift.endTime + 30
4 dynamic role lateWorkers[∗]: Worker
5 with value estimate willArrive:
6 output worker.isAtFactory @ T+<1,30>
7 input dayOfWeek
8 guard worker.shift == shift
9 each worker in lateWorkers

10 not worker.isAtFactory and not (willArrive @ shift.startTime)
11 action notify lateWorkers with cancelled

Listing 2. Machine-learning-enabled ensemble specification – Cancel late workers.

The dynamic role for finding late workers is specified on line 4. We assign an
estimate to this role on line 5 to predict whether the worker will come to the
factory or not. We use the prediction to determine whether we should cancel the
worker or not. That is done on line 10 in the membership condition of the role –
we use the estimate to predict whether the worker will be at the factory at the
time the shift starts.

To be able to use the estimate, we need to specify its inputs and outputs.
The output of the estimate is the future value of the worker.isAtFactory attribute
(line 6). By T+<1,30>, we indicate that we want to construct a model which is
able to predict this value in a range of 1 to 30 min into the future. The input
of the model is the day of the week which the shift takes place on (line 7).
Furthermore, we define a guard on line 8 which indicates the validity of the
training data – here, as we have an instance of the ensemble for each shift, we
only want to collect data about the workers from the one shift and not the other
shifts.

3.2 Training of the Estimates

The specification of the estimate in the ensemble definition is enough to be able
to automatically collect data and train the machine learning model, which is done
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by the ML-DEECo framework runtime. The semantics of the value estimate is
as follows.

The estimate predicts an attribute from the future state of the system. In
our example, the willArrive estimate predicts a future value of the isAtFactory
attribute of the Worker component. We use the values of the attributes available
at the time of prediction as inputs to the machine learning model—dayOfWeek
in the example. Furthermore, we need to specify how far into the future we want
to be able to predict—this is set by the T+<min t,max t> expression. This will
influence what data we collect for training—we allow the time difference between
inputs and outputs to be in the range 〈min t,max t〉.

To train the machine learning model, we need to collect training data. Our
focus is on predictions of values, which can be observed at some point in the
future. In the example, we predict whether the worker will come or not, and
after some time, we can observe whether they really came or not. We thus need
to observe these values and use them for the training of the model.

To collect the training data, we use the following procedure. In every time
step of the simulation (every minute in the example), we check the guard and if
it marks the data as valid, we collect the values of input attributes and tag them
with the current time. After that, we collect the values of the output attributes
for the current time step and link them with past inputs. Specifically, we go
through all the allowed time differences t ∈ 〈min t,max t〉 and save the training
example (t, inputs at now-t, outputs now). The inputs are collected throughout
the whole run of the simulation and the training is performed after the simulation
finishes.

4 Heuristics

As mentioned in Sect. 2, after canceling late workers, it is necessary to select
replacements from the standby workers. As this is not a prediction problem,
we do not use machine learning (which we presented in the previous section).
Rather we look for abstractions that allow us to specify component partitioning.

The problem here is that the assignment of standby worker is mutually exclu-
sive – a standby worker cannot be assigned in place of two different late workers.
This leads to an optimization problem, which has known inputs (i.e. components
and their attributes, including the predicted ones) and known constraints.

An optimal selection of the standbys, considering for instance shared stand-
bys among shifts, is an NP-complete problem. We faced this issue extensively in
our previous work [9], where we were transforming ensembles to the constraint
optimization problem. Even for small problem instances, the constraint opti-
mization problem would soon become too computationally expensive to solve.

However, in this particular case, the optimal solution is not necessary (i.e.,
the correctness of the system here does not depend on whether the standbys are
selected optimally but only that selections do not overlap—note that this is in
strict contrast with the access permission assignment, where strict correctness is
necessary). Fortunately, there are a number of heuristic algorithms that target
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such problems (i.e., NP-hard or complete problems). For example, a well-known
and widely used heuristic algorithm is a k-means clustering method [22], which
partitions n elements into k clusters in which each element belongs to the cluster
with the nearest mean. By itself, the problem is NP-complete, but the k-means
clustering method quickly converges to a local optimum.

In the case of the standbys selection, the exclusive choice method (e.g., [19])
can be used. Listing 3 shows the updated version of the ReplaceLateWithStandbys
ensemble. Now, the selection of standbys is performed with the help of a special
operation (line 5), where the exclusive choice heuristic method is implemented.

1 ensemble type CancelLateWorkers
2 # ... shortened here
3 inner ensemble type ReplaceLateWithStandbys
4 dynamic role standBys[lateWorkers.size]: Worker
5 exclusiveSelect worker from globalStandBys
6 action notify standBys with calledIn

Listing 3. Ensemble specification with heuristic operation

The above-mentioned k-means clustering method could be employed in our
example, e.g., for clustering workers for optimized delivery of sensor data (i.e.,
workers are equipped with sensors, and to reduce the amount of communication,
the measurements are not delivered directly, but they are aggregated by a worker
that is “in-the-middle” of each cluster).

The downside of the use of heuristics is that they target individual problems.
Therefore it is complicated to create a common “heuristics extension” for ML-
DEECo, and particular heuristics need to be offered as specialized operations.
However, our experience shows that there is only a limited number of problems in
ensemble-based systems related to the assignment of components to ensembles:
selection (exclusively select a fixed number of components for each ensemble
instance), partitioning (split all components in a set among a set of known
ensemble instances), clustering (split all components to an optimal unknown
number of ensembles). For these, abstractions like the exclusiveSelect above can
be created.

As a future work, we plan to create a detailed classification of problems
related to ensemble-based systems and based on it, to design a set of common—
at least to some extent—heuristics for ML-DEECo.

5 Evaluation

We center the evaluation around two arguments: (1) it saves on implementation
effort to have machine learning abstractions part of the component model, (2)
for certain situations allows the systems to perform better than just with fixed
adaptation rules.

To this end, we have implemented a simulation of the running example using
the ML-DEECo Python framework.

From the perspective of implementation effort, when using the abstractions of
ML-DEECo realized by our Python implementation, the introduction of machine
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learning consist essentially only in declaring the predictor and providing anno-
tations to component fields and ensemble roles. The exact code can be found in
the replication package [2]. All this amounts to approx. 25 lines of code. On the
other hand, custom implementation using TensorFlow or PyTorch frameworks
would amount to at least a hundred lines of code (taking into account the data
collection, pre-processing, training, retraining, and inference—all taken care of
by ML-DEECo).

In addition to the Industry 4.0 example presented in this paper, we have
used ML-DEECo to model also scenarios from smart farming. In all cases, the
abstractions featured by ML-DEECo proved to be expressive enough to cover
various supervised learning situations—including predictions of future states of
sensors (i.e., continuous data), prediction of the future state of a component (i.e.,
discrete data), predictions about the existence of an ensemble, and predictions
about which components will be members of an ensemble.

To illustrate that machine learning has the potential to outperform fixed
adaptation rules, we simulated the Industry 4.0 example described in the paper.
The configuration of the simulation is as follows. We assume that the workers
arrive by a bus which stops a few minutes from the main gate of the factory.
During business days, the bus arrives 24 min before the shift starts, and during
weekends, the bus arrives 30 min before the shift. Furthermore, we assume that
10% of the workers are late each day and they arrive by a later bus—18 min
before the start of the shift on business days and 15 min before the shift dur-
ing weekends. To have more uncertainty in the environment, we add a random
delay (with exponential distribution) to each worker. If a worker is canceled and
replaced by a standby, we assume that it will take 30 min before the standby
arrives. We chose these values after careful deliberation to have something that
both illustrate the system and are close to what the reality would look like.

We ran the simulation with three shifts starting at the same time, each
with 100 workers, for three iterations. In the first iteration, we use the rigid
rule of canceling workers 16 min before their shift starts. In the following two
iterations, we use the machine-learning-based estimate described in Sect. 3 to
decide whether to cancel the worker. The results are shown in Fig. 2. The blue
points are the number of necessary standbys (averaged over the shifts) with a
blue line showing the average over the business days and weekends. The lateness
(shown in orange) is computed as the square of the delay of workers who arrive
late at their workplace. The ML-based estimate is trained after each iteration
(week)—first, we train it on the data collected while using the rigid rule (denoted
Training 1 in the figure), then, we update it using data collected in the second
week (Training 2). It is clear that for this configuration, the learned rules perform
significantly better than the rigid rule.

We have further inspected the outputs of the machine learning model to
see what the learned threshold for cancellation is. The outputs are shown in
Fig. 3. We observe that the learned threshold is different for business days and
for weekends (as we want it to be). The model is more forgiving to the workers
than the rigid rule—it allows them to enter the factory at latest 12 min before
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Fig. 2. Results of the simulation with 100 workers.

the shift starts on business days, and 7 min before the shift starts on weekends.
It seems that it is beneficial to wait for the workers arriving by the later bus
instead of calling the standbys which will take longer to arrive.

Furthermore, we have tried running the simulation with 20% and 30% of late
workers to see the impact on the learning process. The results were very similar
and the learned rule performed significantly better than the rigid one. For 30%
of late workers, the difference in the cancellation time for business days and for
weekends was not that big, but it is still clear that the network was capable of
learning the pattern. The plots with results for 20% and 30% of late workers are
available in the replication package [2].

In the example, we focused on a single source of uncertainty—the arrival
of the workers. Other type of uncertainty in the example could be predicting
whether a worker actually grabs the headgear. This is essentially an identical
problem to the uncertainty of the workers arrival, only the predicted values are
not continuous but discrete (and thus the underlaying neural network would
differ only in the last layer that would use softmax, and in the loss function that
would use categorical cross-entropy). For the sake of conciseness, we focused on
a single example only.

Limitations and Threats to Validity: The evaluation we presented serves as an
indication of an illustration of the potential of our approach. Due to the limited
size of the use case, we refrain from claiming the generality of the approach.
However, at least our indicative experiments show its potential.

We aimed at giving generality to the abstractions by constructing them
independently of a particular use case. We based the abstractions on a taxon-
omy prediction (briefly discussed in Sect. 3)—i.e., associating predictions with a
component, ensemble, or component-ensemble pair and classifying types of
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Fig. 3. Outputs of the neural network for predicting whether a worker will arrive to
the factory before their shift starts (green) or not (red). (Color figure online)

predictions. This is independent of our use case and has been built as a combi-
nation of generally accepted abstractions.

Our work is limited to supervised learning only. We are currently in the
process of extending ML-DEECO of reinforcement learning.

6 Related Work

In the paper, we have presented a component model targeting the development of
adaptive systems and employing machine learning techniques directly at the level
of a system architecture specification. Thus, the related areas are approaches
defining explicit component models for adaptive systems and approaches com-
bining adaptive systems with machine learning techniques—ideally, approaches
combining both.

Using machine-learning techniques in adaptive systems is not a new app-
roach. In [26], a systematic literature review (SLR) analyzes the employment
of machine learning techniques in adaptive systems for the past 20 years. From
the analysis, an apparent increasing trend in their usage can be seen, and the
machine learning techniques are mainly employed in the adaptation phase. Also
from the same area is the SLR in [16] which also confirms the increasing usage of
machine learning techniques in adaptive systems—again mainly in the adapta-
tion phase to optimize it and/or predict future actions. Nevertheless, most of the
analyzed approaches use machine learning techniques “under-the-hood” in their
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implementation. This is in strict contrast with our approach, where we explic-
itly use and expose them for the architecture specification. In the text below, we
discuss selected related approaches in more detail.

There are different uses for machine learning in self-adaptive systems ranging
from predicting sensor values to reducing the space of adaptations. E.g., in [28]
neural networks are employed for such a reduction. A similar approach [27] (by
a similar group of authors) combines machine-learning techniques with a cost-
based analysis to reduce the space and choose an adaptation with the best cost.
In [17], a theorem defining a theoretical bound on the impact of applying a
machine-learning method during adaptation was defined, and an approach for
reducing an adaptation space was proposed. The paper [15] proposes a frame-
work for the coevolution of an adaptive system together with its tests. Machine-
learning is used for restrictions of an adaptation space in order to achieve a
meaningful system as a result of an adaption step. An approach of a combination
of machine-learning techniques and probabilistic model checking is described in
the paper [11] and used for choosing the best adaptation and refusing unfeasible
ones. The approach thus allows for fast convergence towards optimal decisions.
Online reinforcement learning is used in [25] to deal with design-time uncer-
tainty and automation of the development of the self-adaptation logic. Thanks
to automation, there is thus no need for manual activities during the applica-
tion of reinforcement learning. In the SARDE framework [18], machine learning
is used for the selection of the best estimation approach and for optimization
of the selected approaches. The whole framework then allows for self-adaptive
resource demand estimation. In [23], machine-learning is utilized for forecasting
values of QoS parameters and, therefore, for advanced and proactive selection of
possible adaptation strategies.

As mentioned, the approaches in the paragraph above use machine-learning
techniques internally for a particular functionality of a system/framework. This
is in contrast with our approach, where we are targeting the creation of architec-
tural abstractions allowing for the usage of machine-learning during the design
of a self-adaptive system and direct use of machine-learning results at the archi-
tectural level.

This leads to the second area of related works—component models for adap-
tive systems and especially those that offer implementation in a common pro-
gramming language. The Service Component Ensemble Language (SCEL) [24]
laid the mathematical foundations and semantics for ensemble-based systems.
Later, the concepts of SCEL were implemented in a Java-based runtime frame-
work called jRESP [1]. Another implementation of the ensemble-based con-
cepts can be found in Helena, which is a complete framework for developing
ensemble-based systems [20]. An approach similar to ensembles can be found
in the AbC calculus [5] that defines systems via attribute-based communication
between components. The calculus has been formalized in [4]. Implementation
of AbC is available as the AbaCuS framework [6]. Similar to our implementation
of ML-DEECo, components in AbaCuS are modeled as classes, and processes
(performing communication via component attributes similarly to ensembles)
are also classes. Another implementation of AbC is ABEL [12] that is a DSL
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developed in the Erlang language. Dynamic logic for describing ensemble-based
communication between components is defined in [21], and it is implemented in
a variant of the AbC calculus. The DReAM framework [13] allows for specifi-
cations of dynamically reconfigurable architectures. Its architecture description
language is based on an interaction logic and describes dynamic coordination
among components. Static parts of the architecture are described using a propo-
sitional interaction logic, while DReAM describes dynamic coordination. The
Java implementation of DReAM, similarly to our approach, maps components
and coordination to classes. The BIP component model [7] is used as a basis for
the propositional interaction logic employed in DReAM. BIP primarily focuses
on the formal description of component behavior. A combination of UML compo-
nents and BIP is proposed in [10], and it focuses on the description and verifica-
tion of component behavior and inter-component communication. An extension
of BIP is DR-BIP [14] that adds support for dynamic reconfigurations.

The approaches for modeling and implementing ensemble-based (and similar)
architecture primarily focus on semantics but they do not introduce any machine-
learning on the architectural (or even any other) level. This contrasts with our
approach, where we enrich the ensemble-based systems with machine-learning
techniques.

7 Conclusion

In this paper, we have presented ML-DEECo, a novel ensemble-based compo-
nent model that features abstractions for machine learning (namely the super-
vised learning) and heuristics related to the assignment of tasks to components
(realized by component membership in an ensemble). We illustrated the key
abstractions on an example from our past project in Industry 4.0 domain.

In the future, we aim at featuring abstractions related to unsupervised and
reinforcement learning, as they would cover situations when the ground trues
cannot be observed at all (note that in this paper we assume that the ground
trues cannot be observed at the time the prediction is performed but will be
observable at a later point of time). Another direction for future work is to
design a set of common heuristics for ML-DEECo.
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Abstract. Decentralised Finance (DeFi) applications constitute an
entire financial ecosystem deployed on blockchains. Such applications
are based on complex protocols and incentive mechanisms whose finan-
cial safety is hard to determine. Besides, their adoption is rapidly grow-
ing, hence imperilling an increasingly higher amount of assets. Therefore,
accurate formalisation and verification of DeFi applications is essential
to assess their safety. We have developed a tool for the formal analysis
of one of the most widespread DeFi applications: Lending Pools (LP).
This was achieved by leveraging an existing formal model for LPs, the
Maude verification environment and the MultiVeStA statistical analyser.
The tool supports several analyses including reachability analysis, LTL
model checking and statistical model checking. In this paper we show
how the tool can be used to analyse several parameters of LPs that are
fundamental to assess and predict their behaviour. In particular, we use
statistical analysis to search for threshold and reward parameters that
minimize the risk of unrecoverable loans.

1 Introduction

Financial trading has recently shifted to virtual markets, platforms entirely regu-
lated and controlled by novel protocols. Decentralised Finance (DeFi) [34] appli-
cations are deployed on blockchains like Ethereum [12,34], which offer distributed
infrastructures to execute smart contracts [18] without intermediaries. DeFi has
recently been employed by a growing community of users. As of April 2022,
the growth of the capital locked by DeFi applications has increased almost 10
times in the last two years: from approximately $9.78bn, on 1 April 2020, to
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over $83.51bn, on 1 April 2022 [29]. Even assuming the security guarantees
ensured by the underlying blockchain, DeFi smart contracts have several vulner-
abilities latent in their design [30,36]. Given the considerable amount of funds
daily exchanged on DeFi platforms [1,16], even minor design flaws could deter-
mine massive and intolerable losses [21]. Notwithstanding the increasing interest
of several research groups in this area [2,4,5,9,19,32], the complexity of DeFi
protocols yields new interesting research problems. Formal verification of these
systems is crucial, in order to ensure their correctness and security.

The verification tool proposed in this paper simulates and analyses Lending
Pools (LPs), one of the most popular DeFi applications, whose two main features
are lending and borrowing assets, to support various financial practices, includ-
ing margin trading. Our verification tool is based on the formal model of LPs
proposed in [6]. Such model encompasses the behaviour of the most widespread
LPs, namely Aave [10] and Compound [24].

We craft an operational specification of the LP model of [6] in Maude [15],
a specification language which is particularly suitable for highly concurrent sys-
tems such as LPs. Additionally, Maude provides a very extensive environment
for both simulating and verifying the properties of the specified models. Given
the complexity of the modelled systems, the analyses techniques offered by the
Maude environment are not sufficient. Specifically, since the system may evolve
by following an infinite number of execution paths, the traditional model check-
ing methods result in being either ineffective or unviable. Therefore, the Maude-
based LP simulator has been extended to support statistical analyses. This has
been achieved by integrating the simulator with the MultiVeStA statistical anal-
yser proposed in [31] and recently redesigned to focus on analyses of interest for
of economical agent-based models [33]. The tool offers analysis techniques from
the family of statistical model checking [3]. These statistical analyses, despite
producing less accurate results, allow to observe the quantitative behaviour of
large instances of the model, offering statistically-reliable results. In the case of
lending pools, this approach allows to estimate parameters of the model so to
increase its safety. Specifically, an essential safety property of the model is that
the value of non-repayable loans is low.

This paper is based on the work done in [25] and proposes a Maude-based
LP simulator (Sect. 3) capable of conducting several analyses of lending pools
including LTL model checking and statistical analysis. The tool is open source
and available at [26]. Additionally, the study showcases the usage of the tool by
answering a still non-investigated research question, aiming at an enhancement
of the analysed platforms’ safety. In particular, the statistical analysis presented
in Sect. 4 shows that a choice of the parameters used to instantiate the LP model
reduces the amount of non-repayable loans.

2 Lending Pools and Price Models

Lending Pools. Lending Pools [35] are a class of DeFi applications which
allow users to lend and borrow cryptoassets. At the time of writing, LPs are
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the most used DeFi applications, with the majority of them being deployed
on Ethereum [29]. Deposited funds are pooled and lent on-demand to borrow-
ers, only if they possess enough collateral (i.e. only if their account is over-
collaterized). As blockchains typically do not provide strong identities, but
pseudonyms [12], users’ actions are difficult to be regulated under a jurisdiction,
which makes collateralization the main protection mechanism against adversar-
ial behaviours [27]: an agent can only borrow a quantity of tokens worth less
than the amount of collateral they deposited. This mechanism and others (e.g.
interest rates) is in place in order to incentivize borrowers to repay their loans.

We now recall details of the lending pools model in [6]. The basic components
of the model are agents and cryptoassets. LP agents are the rational entities
taking part in the protocol. Contrarily, LP cryptoassets are token types, each
representing a different virtual currency. The model distinguishes two classes
of token types: free tokens and minted tokens, denoted respectively by the sets
Tf = {τi}i∈[1..k] and Tm = {τ ′

i}i∈[1..k], where k is the number of cryptocurrencies
available on the pool. The difference between these classes of token types is that
free tokens have a value established by external markets, whereas minted tokens
are assets coined by the protocol, hence holding value only in a specific LP
environment. In other words, minted tokens are loyalty credits held by the agents
actively joining the protocol. In fact, minted tokens are granted by the protocol
to the agents in return for free tokens, hence each minted token τ ′ corresponds
to a free token τ , also called its underlying token. We denote by T the set of all
token types, i.e. T = Tf ∪ Tm.

Given agents and assets, the LP model yields as a transition system where
each state Γ is of the form Γ = σ | π | p:

1. The wallets function σ : A → (T → R
+
0 ) stores each agent’s balance of tokens.

For instance, the wallet of an agent A is expressed by the partial function σA,
and the balance of its τ -typed tokens by σA(τ).

2. The pool component π is a triple (πf , πl, πm). It is composed by three partial
functions: πf : Tf → R

+
0 storing the amount of free tokens deposited in the

pool, πl : A → (Tf → R
+
0 ) memorising the loans each agent owes to the pool

and πm : Tf → (Tm ×R
+
0 ) keeping track of the minted tokens (also called the

collateral or credits) purchased from the pool.
3. The price function p : dom(πf ) → R

+
0 stores the price of each free token

available in the pool.

Given a partial map f , we denote by f{v/x} the point-wise update of f at
the point x to the value v. In order to add and remove tokens in the functions
defined above, a partial binary operation ◦ : R+

0 × R
+
0 → R

+
0 , such as addition,

is extended to them. Given a partial map f : T → R
+
0 , a token type τ ∈ T and

a value v ∈ R
+
0 , the partial map f ◦ v : τ is defined as

f ◦ v : τ =

{
f{f(τ) ◦ v/τ} if τ ∈ dom(f) and f(τ) ◦ v is defined
f{v/τ} if τ /∈ dom(f)

In order to describe the model evolution, some additional definitions shall be
given. The following LP components may rely on the whole state Γ , or some of
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its components. This dependency is indicated by the means of subscripts. For
instance, writing FX means that F depends on the X component of the state.

The functions V l
Γ and V m

Γ define, respectively, value of tokens lent to a given
agent, and the value of minted tokens owned by a given agent:

V l
Γ (A) =

∑
τ∈Tf

(πl(A))(τ) · p(τ) V m
Γ (A) =

∑
τ ′∈Tm

σA(τ ′) · ERπ(τ ′, τ) · p(τ)

where ERπ(τ ′, τ) is the exchange rate of minted tokens (see Sect. 3.1 of [6]).
The collateralization of an agent A is defined as CΓ (A) = V m

Γ (A)/V l
Γ (A). This

is an essential indicator of agents’ lending safety: in fact, a collateralization below
a given threshold (Cmin) entails an agent to be liquidated and hence to incur in
a financial loss, as detailed later.

The behaviour of agents interacting with a lending pool is formalized as a set
of rewriting rules, which define transitions between states. Such transitions are

written as Γ
rA(zn)−−−−→ Γ ′, where Γ is the starting state, Γ ′ is the target state, and

rA(zn) is the action (fired by A) which triggers the state transition. Actions have
the form rA(zn), where r is the action name, and zn is an n-tuple of parameters.

Table 1. Summary of some of the lending pools actions from [6].

DepA(v : τ) A deposits v free-tokens of type τ from its wallet to the pool.
Subsequently, the pool coins v′ units of τ ′, with v′ computed so
to incentivize deposits only if the LP is lacking free tokens

RdmA(v : τ ′) A redeems v units of the minted token τ ′, as long as A’s
collateralization is greater than a threshold (Cmin) and LP
holds enough tokens of type τ ′

BorA(v : τ) A borrows v units of a free token τ , assuming it has enough
collateral

RepA(v : τ) A repays v units of its loan in the free token τ to the LP

LiqA(B, v : τ̂ , τ ′) A (liquidator) liquidates a variable amount of B’s (borrower’s)
minted tokens τ ′, by paying v units of free tokens τ̂ . Notably,
τ̂ ∈ Tf is in general different from τ , the underlying token of
τ ′ ∈ Tm. This action can be executed only if the B’s
collateralization is below Cmin, meaning B is undercollaterized

Int The LP contract accrues interest on the existing loans. This
disincentivizes borrowers from postponing their loans repayment

Price Token prices are updated according to a given price evolution
model

The main actions of lending pools are informally summarised in Table 1.
Since the focus in this paper is on liquidations as one of the key incentive mech-
anisms, we will provide the details for such action only. Figure 1 provides a formal
description of the rule. The essential preconditions to understand the rule are
4 , 8 , 9 , 10 and 11 .
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3 The amount of repayable loan is limited by a percentage factor Maxliq,
as done in Aave [11] and Compound [28].
4 computes the reward for the liquidating agent. This is based on the liq-

uidated amount v and the reward factor rliq. The idea is that A, by repaying
part of B’s loan, is reducing the likelihood of the protocol to become illiquid.
This behaviour is incentivized by the platform by setting the aforementioned
reward to a value strictly higher than 1. A common value for rliq is 1.1.
8 , 9 update the involved agents’ wallets, A repays v units of B’s loan in

τ̂ and is compensated with v′ units of τ ′

10 ensures that the rule is executable only if B’s collateralization is less than
Cmin, which is often set to 1.5. This rule is the reason why agents’ collater-
alization should be at least Cmin, so to avert the risk of being liquidated and
incurring in the loss of the liquidation reward rliq.
11 prevents A from seizing a higher collateral amount than the one required
for B to be considered safe (i.e. CΓ (B) ≥ Cmin).

Fig. 1. The rule for liquidation.

Figure 2 illustrates the transition system for a simple running example, where
three liquidate actions are executed. The figure shows six possible traces all orig-
inating from Γ0 and having Γ3,1 as final state. Each state in the figure is defined
by a row in Table 2. Additionally, transitions, namely Liq actions performed by
D, are indicated by different colours depending on the liquidated borrower in
both the transition system and the table. Notably, assuming Cmin = 1.5 and
rliq = 1.1, all borrowers in Γ0, A,B andC, are undercollaterized. Specifically, A
is marginally undercollaterized since CΓ0(A) = 1.25 > 1.1 = rliq, while B and C
are strongly undercollaterized, being both CΓ0(B) and CΓ0(C) below 1.1. This
allows D to seize the entire B and C′s collateral, as evident from Γ3,1 in Table 2.
Contrarily A’s collateralization is restored to Cmin.

As an example, consider transition Γ0
LiqD(B,91:τ1,τ ′

0)−−−−−−−−−−→ Γ1,2. Agent D repays
91 units of τ1, seizing 91 · rliq ≈ 100 units of τ ′

0 from agent B. This also affects
π, in a way that the funds in τ1 are incremented by 91 units, as illustrated
by πf (τ1), while B’s loan is decremented by 91 units, as shown by πl(B)(τ1).
Contrarily, πm is not modified by the transaction, as the 100 units of minted
tokens τ ′

0 are simply transferred from B’s wallet to D’s one.
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Fig. 2. Example transition system.

Fig. 3. GBM components.

Stock Market Price Modelling.
We use the geometric Brownian
motion (GBM) to define a predictive
model for price evolution based on
past stock market trends. A GBM is
a continuous-time stochastic process
Pt = P0 ·exp

[(
μ − σ2

2

)
t + σWt

]
. The

two constants μ and σ are respectively
called drift and volatility, whereas
Wt is a random variable following a
Weiner process, i.e. a process Wt =
ε
√

dt satisfying the following proper-
ties: (i) ε ∼ N(0, 1) and (ii) for any
given pair (t0, t′0), Wt0 and Wt′

0
are independent. In other words, a Wt is the

component yielding the stochastic behaviour of a GBM. The geometric Brown-
ian motion as a whole can be viewed as the harmonic result of its two compo-
nents [20]: (i) the drift

(
μ − σ2

2

)
t and (ii) the volatility σWt. The effects of the

two components on the resulting process is shown in Fig. 3. The drift component
defines the trend of the resulting process, whereas the volatility component is a
measure of the randomly sampled shocks. Intuitively, this signifies that negative
values for μ yield to a downward prediction trend, whereas positive ones to a
growth. Oppositely, the higher the σ is, the more significantly the prices predic-
tions change. Ususall, μ and σ are estimated based on the daily log returns of
the targeted stock market [17,20]. Given the closing prices of two consecutive
trading days C1 and C2, the log return w.r.t. the second trading day is defined
as ln(C2) − ln(C1).
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Table 2. States of the transition system in Fig. 2. For simplicity, the price function p
is assumed to be constant such that p(τ0) = p(τ1) = 1 in every state. The values of the
LP parameters are Cmin = 1.5, rliq = 1.1 and Maxliq = 1.

Γ πf
πl

σA σB σC σD CΓ
A B C

τ1 τ1 τ1 τ1 τ1 τ ′
0 τ1 τ ′

0 τ1 τ ′
0 τ1 τ ′

0 τ ′
1 A B C

Γ i
0 195 80 100 125 80 100 100 100 125 100 500 0 500 1.25 1 0.8

Γ1,1 245 30 100 125 80 45 100 100 125 100 450 55 500 1.5 1 0.8

Γ1,2 286 80 9 125 80 100 100 0 125 100 410 100 500 1.25 0 0.8

Γ1,3 286 80 100 34 80 100 100 100 125 0 410 100 500 1.25 1 0

Γ2,1 336 30 9 125 80 45 100 0 125 100 359 155 500 1.5 0 0.8

Γ2,2 336 30 100 34 80 45 100 100 125 0 359 155 500 1.5 1 0

Γ2,3 377 80 9 34 80 100 100 0 125 0 318 200 500 1.25 0 0

Γ3,1 427 30 9 34 80 45 100 0 125 0 268 255 500 1.5 0 0

3 An LP Simulator for Liquidating Agents

We now lay the foundations for tackling a significant research problem for LPs:
finding optimal Cmin and rliq parameters. This is achieved by instantiating
the LP simulator to conduct statistical analyses of the model. The simulator
comprises: the Maude specification of LPs [26]; a strategy for automating the
behaviour of rational liquidators (Sect. 3.1); and a price evolution model for the
three most widely employed cryptocurrencies (Sect. 3.2).

3.1 A Fully-Automated Liquidating Strategy

This section introduces a liquidating strategy causing the LP protocol to possibly
reach unsafe states, where loans are not guaranteed to be repaid. We first give an
intuitive understanding of aggressive liquidating behaviours, and then describe
the proposed liquidating strategy.

The Impact of Liquidations On collateralization. Liquidate actions
involve two agents: a liquidator, i.e. as an agent with enough tokens to fire
liquidate actions, and a borrower with a collateralization below the threshold
Cmin.

Liquidators have a fundamental role in the financial safety of LPs, as they
supply free tokens whenever the pool is lacking them. On the other hand, exces-
sively zealous liquidators could be harmful to the system, since they could dis-
incentivize undercollaterized borrowers to repay their loans. This is exemplified
in Fig. 4, where all the liquidating scenarios are outlined. The figure illustrates
the agents’ collateralization, detailing the outcomes of liquidate actions in every
possible (non-trivial) state. The scenarios are also captured by the running exam-
ple in Fig. 2.
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Fig. 4. Liquidation scenarios

Firstly, the three dashed lines in
the figure correspond to the liquidation
parameters specific to the instantiated
pool. Their labels represent the respec-
tive line slopes. The line labelled 1 depicts
the scenarios where the collateral value
equals the loan value. Consequently, it
can be intended as the loan repayment
incentivizing threshold, i.e. the collater-
alization value below which borrowing
agents should be considered to be disin-
centivized in repaying their loans as their
outstanding loan debt exceeds their col-
lateral in value. These residual loans are
also called non-recoverable.

Additionally, the three points indicate the initial collateralization of three
liquidated borrowers. Each liquidation action is illustrated by a solid line drawn
from CΓ (I) to CΓ ′(I) for I ∈ {A,B,C}. Liquidations entail a decrease in the
liquidated user’s collateralization by a linear factor proportional to rliq and ulti-
mately determined by the liquidator. Note that the liquidation actions described
in the figure follow the semantics of the liquidate action, as the resulting loan
value must be greater than zero and the final collateralization must be at most
Cmin.

It is worth observing that the liquidations in the figure can be achieved by
applying only one action if and only if two conditions hold. Firstly, the liquida-
tor invests enough liquidity to seize the entire seizable collateral. Secondly, the
liquidated borrower does not diversify the type of the loan. If either the first
condition or the second does not hold, then the liquidations illustrated in the
figure can be achieved uniquely by performing several liquidate actions on the
borrower. This is frequently the case in the major LP implementations (Com-
pound and Aave). In fact, these prevent the whole seizable collateral amount to
be atomically liquidated, by setting Maxliq which is variable in Compound [28]
and constant (equals to 0.5) in Aave [11]. Our model includes the parameter
Maxliq as a constant following Aave, but it could be extended to a variable one.

The Proposed Liquidating Strategy. As shown in Fig. 4, the collateraliza-
tion of A is re-established, whereas liquidations cause B and C to lose their entire
collateral, disincentivizing them from repaying the loans. In light of this fact, a
relevant research question is whether there exists an optimal pair (Cmin, rliq)
such that the number of non-recoverable loans is minimal.

It is worth to observe that, ideally, the closer rliq is to 1, the more the col-
lateralization of a loan can drop and still be recoverable by liquidation. Thus
a rliq marginally greater than 1 is optimal in our model, since it would lead
to the strongest recovery of user collateralization during liquidation. However,
actual platforms deviate from such ideally optimal rliq as the costs incurred by
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liquidators to execute actions have to be compensated by a suitable discount
rliq on the purchase of minted tokens from the liquidated borrowers. In order to
investigate the effects of choices rliq and Cmin, we propose a strategy attempting
to reproduce a rational behaviour for liquidators. The employed strategy sim-
ulates a rational behaviour where liquidators repay the entire borrowers’ loan.
The rationality of the behaviour we are going to study is based on the following
key observations:

1. Fast liquidations have the advantage of restoring liquidity whenever the bor-
rowers have collateralization slightly above rliq (see agent A in Fig. 4).

2. On the other hand, fast liquidations may generate non-recoverable loans
whenever the borrowers have collateralization slightly below rliq (as for agents
B and C in Fig. 4).

3. Price fluctuations can change the scenario between (1) and (2). For example,
it could raise the collateralization of borrowers to rliq allowing the liquidators
to effectively restore the agents’ collateralization to Cmin, so that it would be
convenient to delay liquidations.

The strategy used to implement the liquidator behaviour selects the liquidate
input parameters, so to maximise the value of seized collateral. Specifically, given
a liquidator L, the strategy computes the remaining four parameters of Liq: the
borrower’s agent identifier (Br), the amount of loan to be repaid (vr), the type
of the asset to be repaid (τ̂r) and the one of the asset to be seized (τ ′

r). Because
of space constraints, we refer to [25] for a detailed account of the strategy.

3.2 Price Modelling

This section describes the price model employed to predict cryptocurrencies
prices, based on historical data. We start with an overview of the price model
to motivate its adoption. Afterwards, we present the three model instantiation
scenarios used in the subsequent statistical analysis.

Predicting Cryptocurrency Prices. The cryptoassets prices are derived
from a statistical model representative of the past price behaviour based on the
GBM. A GBM is instantiated by two parameters drift and volatility which can
be estimated from the currency historical data. This makes the GBM the ideal
stochastic process for modelling stock prices based on their past evolution [17].

Aiming at stress-testing the LP protocol and inspired by [19], we have
designed three different scenarios, each comprising a pair of price trends. In
practice, each scenario simulates the evolution of prices of a given collateral
and loan assets, in a way that respectively when the former declines, the latter
increases. In fact, assuming that each borrower B0 owes a loan in only one asset
type τl and similarly holds collateral of only one asset type τm, such a model for
prices necessarily causes some borrowers to become undercollaterized, as shown
in (1).

CΓ (B0) =
V m

Γ (B0)
V l

Γ (B0)
p(τm)→0 p(τl)→V−−−−−−−−−−−−→ 0,with V 
 0 (1)
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More precisely, prices modelling is achieved by opportunely gathering the
data used to estimate the parameters (drift and volatility) for generating a
growing, decreasing or relatively constant GBM process. In the literature, daily
closing prices of stock markets are used since their samples generally tend to
be normal, which allows to employ the GBM generic formula. Ultimately, since
prices’ predictions pairs should variate in a way that they simultaneously display
an opposite behaviour, it is necessary to correlate them, as shown in [20].

Prices Model Instantiation. Given a collateral asset τm and a loan asset τl,
the three prices evolution pairs are shown in Table 3.

Table 3. The three implemented prices evolution scenarios.

Scenario τm τl p (τm) p (τl)

ETH-WBTC ETH WBTC Declining Increasing

ETH-USDC ETH USDC Declining Constant

USDC-WBTC USDC WBTC Constant Increasing

The choice of the cryptocurrencies in the table is motivated by their closing
price historical evolution in three different trimesters (shown in the Appendix,
Fig. 9). By using those samples, it is possible to simulate the desired trends
indicated in the columns named p(τm) and p(τl). This is achieved by estimating
the expected price returns (μ) and the price volatility (σ), which are utilised
as the drift and volatility instantiating the resulting GBM. The two parameters
are estimated according to [20]. The drift μ is simply obtained by computing
the mean over the closing prices. Contrarily, σ is calculated as σ = s√

T
, where

T = 91
365 , s indicates the standard deviation of the log returns and

√
T is the

annualisation constant.
The selected sampling time span (91 d, i.e. a trimester) is motivated by the

fact that cryptoassets are subject to sudden fluctuations and, even though short
samples might not be representative of the entire population, this is a consoli-
dated practice [20]. Besides, the resulting price predictions span over the same
time frames, as each price model instantiation produces 91 prices predictions, as
illustrated in Sect. 3.2. Notably, the selected cryptocurrencies (ETH, USDC and
WBTC) were among the four-most-utilised assets on the Compound market [16]
at the moment of writing. Lastly, the selected closing price samples are suitable,
since the derived log returns distributions tend to be normal.

Fig. 5. GBM parameters

Figure 5 shows an estimation of the
GBM parameters (obtained from the close
prices in the Appendix, Fig. 9), by the
previously discussed methodology. The
parameters are then utilised to instanti-
ate the six GBM processes (each for price



Formal Analysis of Lending Pools in Decentralized Finance 345

evolution), simulating the scenarios in Table 3. Finally, the asset initial price P0

is a constant set to the actual price in USD of each asset on May 5th, 2021.

Expected Price predictions. We have used the MultiVeStA statistical ana-
lyzer to examine the prices predictions generated by the GBM in each of the sce-
narios explained in Sect. 3.2. The details are provided in the appendix ( Fig. 10),
and show the normalised trend of the price scenarios, discussed in Sect. 3.2. The
figures in the appendix show that the expected behaviour, expressed in Table 3
is obtained in all the considered scenarios. Additionally, in Figs. 10a and 10b
prices predictions are strongly correlated as it is expected. In fact, the GBMs
pairs were instantiated as negatively correlated processes accordingly to [20],
Sect. 14.5. Contrarily, Fig. 10b shows less correlated prices predictions. This is
probably due to the fact that the computation was bounded to execute maxi-
mum 5, 010 simulations. In fact, from experimental evidence, the approximation
seem to converge at a very slow speed.

4 Statistical Analysis of Liquidation Scenarios

We have experimented with the LP model simulator described in Sect. 3 in order
to answer the question: given a specific scenario, what is the impact of the pair
of LP parameters Cmin and rliq?

We have considered scenarios generated by four factors. First, the liquidator
logic defined in Sect. 3.1, determines immediate and quick liquidations, causing
a significant financial loss to the liquidated party. Secondly, the agent to be liqui-
dated is selected so to maximise the value of seized collateral, which is the most
beneficial and rational option for liquidators. Thirdly, liquidators are assumed
to hold an unbounded amount of resources, which allows them to repeat liqui-
dations as long as there exists an undercollaterized agent. Finally, cryptoasset
prices evolve following a trend aimed at causing borrowers to suddenly become
undercollaterized.

Fig. 6. Distribution of collateralization in
initial configurations.

We recall that the effect of the
pair Cmin and rliq we are looking for
is one that minimises the number of
undercollaterized borrowers. We have
explored the space of choices for the
pair by executing MultiVeStA experi-
ments for all Cmin ranging, with step
0.1, from 1.2 to 1.5 and rliq ranging
from 1.1 to Cmin − 0.1. These ranges
were selected based on the values typi-
cally assigned to these parameters in
the actual implementations: Cmin =
1.5 and rliq = 1.1 [6].

On these premises, we first illus-
trate the LP model initial configura-
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tions used for the subsequent experimentation. Next, we present the results of
the performed experiments.

Initial Configurations. The initial configurations were designed to test the
resistance of different borrowers’ collateralization to becoming unrecoverable,
when subject to repeated liquidations. Since the intention is to observe the model
behaviour under three price models (Sect. 3.2), three different initial configura-
tions are produced, each having a different price for collateral and loan assets.
All the configurations share the same amount and types of agents. Specifically,
a generic initial configuration comprises ten borrowers having collateralization
ranging from 1.0 to 2.0, with step 0.1. This is depicted in Fig. 6, where bi rep-
resents the generic borrower Bi’s collateralization (CΓ i(Bi)), for Γ i initial con-
figuration. Additionally, an arbitrary number of liquidators (three) are added to
each configuration.

Experimental Results. The results discussed here were obtained by perform-
ing MultiVeStA experiments of the LP simulator. Specifically, the inputs to
the tool are: the LP simulator discussed in Sect. 3, a MultiQuaTEx property to
express the desired measure to be estimated (the expected collateralization value
at each liquidation round for each borrower), and a pair of statistical parame-
ters defining the confidence interval (CI) of interest: the maximum confidence
interval width δ and the confidence level α = 0.05 which provides 95% statis-
tical confidence that the estimated value is in the confidence interval. For each
property, MultiVeStA will generate enough simulation to meet the required CI.

Figure 7 shows the per-borrower collateralization for varying liquidation
rounds and choices of Cmin and rliq in the eth-wbtc prices scenario, with a fixed
rliq = 1.1. In this scenario, one can see that undercollaterized agents have a very
different behaviour than overcollaterized ones. Specifically, the undercollaterized
agents undergo very serious liquidations, which often lead them to unrecover-
ability, as their collateralization converges to a constant below Cmin. Contrarily,
overcollaterized agents do not incur in severe financial losses.

Additionally, our experiments (presented in detail in the Appendix,
Figs. 11a to 11c) show that the Cmin and rliq having the least negative effects on
undercollaterized balances is Cmin = 1.5, rliq = 1.1. This is also quantitatively
confirmed by the numbers in Fig. 8. Intuitively, this is a consequence of the fact
that when Cmin = 1.5 and rliq = 1.1 the collateralization of each agent b1 to
b5 is higher on average than for any other Cmin and rliq pairs. As a result, the
number of unrecoverable loans, the ones held by agents whose collateralization
is below 1, is minimised.
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Fig. 7. Per-borrower collateralization (b1 to b10) in the ETH-WBTC prices scenario,
for varying liquidation rounds and CMin-Rliq choices.

Fig. 8. Minimum average CΓ (B1)

Finally, our experiments (pre-
sented in detail in the Appendix,
Figs. 12a to 12c) show that over-
collaterized borrowers could still
incur in liquidations, in case the
prices abruptly change as in the
prices scenario ETH-WBTC. Dif-
ferently, in the other scenarios, employing the stable coin USDC, overcollaterized
agents are, on average, rarely liquidated.

5 Related Works

Verification of DeFi applications is a fairly recent research area where several
techniques have been applied. We focus our discussion on works devoted to
formal modelling and reasoning of DeFi applications, which typically follow two
parallel directions: verification of the model properties [2,5,9,32], and statistical
analysis of the model variables [4,13,14,19,22].
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The work in [9] is one of the first addressing formal verification of smart con-
tract properties. Their study combines a game-theoretic approach with proba-
bilistic model checking, ultimately validating their results with the model checker
PRISM [23]. Another example of research in this direction is Tolmach et al.
[32] which developed the first multi-pools model and verified invariant proper-
ties initially formulated by [8]. Finally, [2] proposed a very relevant study on
smart contracts, by modelling not only the contracts and the agents’ behaviour
but also the underlying blockchain using the BIP framework [7] and statisti-
cal model checking (as we do). The work in [2] employs statistical methods
too. However, in their case, statistics is useful to estimate unknown variables of
the analysed model, hence deriving desirable properties. The quantitative vari-
ables estimation is also achieved by performing Monte-Carlo simulations, with
a more closely look at the behaviours displayed by agents [14]. In fact, most of
this research in this line [4,13,22] bases its results on Agent-Based Simulations,
which is employed to stress test the actual smart contracts implementations
being executed on a “custom-built Ethereum virtual machine that is written in
C++” [22]. This research direction, although suggesting promising results, is not
ultimately supported by strong statistical guarantees, since the number of Monte
Carlo simulations performed to run their analyses is arbitrarily chosen and not
backed by a formal justification [19,22]. Nonetheless, a work relevant to ours is
the analysis conducted in [22] on the Compound protocol scalability in face of
high stock market prices volatility. Similarly to our work, their analysis models
the prices by the use of the GBM. However, their data collection and analysis
methodologies are very different. In fact, they do not sample entire historical
periods as illustrated in Sect. 3.2 for estimating prices volatility. Contrarily, they
simply evaluate the minimum and maximum volatility values ever observed and
instantiate the GBM for different prices volatilities so to simulate several mar-
ket environments. Finally, the prices model in Sect. 3.2 has been mostly inspired
by [19]. Similarly to [22], they stress-test an LP model, not a specific imple-
mentation, by using the same price model explained in Sect. 3.2. Nonetheless,
a remarkable difference is that they instantiate the predictions of the collateral
and loan assets pairs with three different correlation parameters. We assume
instead predictions of prices pairs to be strongly negatively correlated (ρ = −1),
in order to simulate the worst-case scenario. Additionally, we reproduced [19]’s
environment by using historical data of three different real cryptoassets on the
market.
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6 Conclusions

We have presented a tool for the analysis of lending pools, an archetypal DeFi
application. Overall the tool consists of (i) an accurate LP simulator based on
the model of [6] which can support both the study of vulnerabilities and attacks
of LPs; (ii) a model checker capable of doing simple reachability analysis and
verifying whether LTL properties hold of specific configurations; and (iii) a tool
for statistical analysis backed by the statistical model checker MultiVeStA. In
this paper, we have focused on (iii) and we have shown how to use it to optimize
the LP parameters under specific scenarios. Details on (i) and (ii) as well as fur-
ther examples, including reproduction of price oracle attacks using reachability
analysis and LTL model checking are available in [25].

Future research supported by the developed tool could include the formal-
ization of further attacks and properties of the model. Specifically, one could
study resistance to illiquidity, as suggested by [22], or the behaviour of multi-
pools configurations, each offering different market opportunities to agents, as
proposed by [35] and partially developed in [32].
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A Figures

Fig. 9. Trimester closing prices, collected from CoinGecko APIs

https://www.coingecko.com/api/documentations/v3
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Fig. 10. Prices predictions produced, for each scenario in Table 3, by GBMs instanti-
ated with the parameters in Fig. 5.
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Fig. 11. Per-borrower collateralization (b1 to b5) in the three prices scenarios, for
varying CMin-rliq choices.
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Fig. 12. Per-borrower collateralization (b3 to b7) in the three prices scenarios, for
varying CMin-rliq choices.
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Abstract. The analysis of cyber-physical systems (CPS) is challenging
due to the large state space and the continuous changes occurring in
their constituent parts. Design practices favor modularity to help reduc-
ing this complexity. In a previous work, we proposed a discrete semantic
model for CPS that captures both cyber and physical aspects as streams
of discrete observations, which ultimately form the behavior of a com-
ponent. This semantic model is denotational and compositional, where
each composition operator algebraically models an interaction between
a pair of components.

In this paper, we propose a specification of components as rewrite sys-
tems. The specification is operational and executable, and we study con-
ditions for its semantics as components to be compositional. We demon-
strate our framework by modeling a coordination of robots moving on a
shared field. We show that our system of robots can be coordinated by
a protocol in order to exhibit a desired emerging behavior. We use an
implementation of our framework in Maude to give practical results.

1 Introduction

Cyber-physical systems are inherently concurrent. From a cyber point of view,
the timing of a decision to sense or act on its physical environment impacts the
resulting outcome. Moreover, several cyber entities may share the same physi-
cal environment, leading to race conditions. From a physical point of view, the
ordering of events is not always possible, as some events may be independent.
Moreover, two observers of the same physical phenomenon may order events dif-
ferently. A concurrency protocol encapsulates the orderings of events acceptable
to an application, and expressing protocols as separate, concrete modules (as
in exogenous coordination [1]) helps to reduce the complexity in the design of
cyber-physical systems.
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More specifically, in this context, each part of a cyber-physical system (e.g., a
car, a road, a battery, etc.) is represented as a module, and the system captures
the concurrent and interactive execution of each module. We list the follow-
ing benefits of such approach. First, it makes concurrency explicit at the level
of modules, amenable to exogenous coordination, which provides the opportu-
nity to reason about concurrency protocols directly as first-class objects (e.g.,
how much a move of a robot consumes energy, can two robots move ‘simulta-
neously’, etc.). Then, the representation of a system remains small. Often, a
modular design allows composing constituent components statically to analyze
the resulting system, or dynamically at runtime to keep the state space small
for, e.g., simulating some runs. Finally, a component comes with a notion of an
interface, that specifies what is visible and what is hidden from other compo-
nents. This way, both discrete and continuous aspects of components have the
same type of interface, containing the set of observations over time.

In [12] we present a model of components that captures timed-event sequences
(TESs) as instances of their behavior. An observation is a set of events with a
unique time stamp. A component has an interface that defines which events are
observable, and a behavior that denotes all possible sequences of its observations
(i.e., a set of TESs). Our component model is equipped with a family of oper-
ators parametrized with an interaction signature. Thus, cyber-physical systems
are defined modularly, where each product of two components models the inter-
action occurring between the two components. The strength, as well as practical
limitation, of our semantic model is its abstraction: there is no fixed machine
specification that generates the behavior of a component. We give in this paper
an operational description of components as rewrite systems.

Rewriting logic is a powerful framework to model concurrent systems [14,
15]. Moreover, implementations, such as Maude [3], make system specifications
both executable and analyzable. Rewriting logic is suitable for specifying cyber-
physical systems, as the underlying equational theory can represent both discrete
and continuous changes. We give an operational specification for components as
rewriting systems, and show its compositionality under some assumptions.

Finally, we apply our work to an example that considers two energy sensitive
robots moving on a shared field. Each of the two robots aims at reaching the other
robot’s initial position which, by symmetry, may eventually lead to a crossing
situation. The crossing of the two robots is the source of a livelock behavior
which can lead to failure (i.e., no energy left in the battery). We show how, an
exogenous coordination imposed by a protocol can coordinate the moves of the
two robots to avoid the livelock situation. We demonstrate the result using our
implementation of our framework in Maude.

We present the following contributions:

– an operational specification of components as rewrite systems;
– some conditions for the rewrite system’s semantics to be compositional;
– an incremental, runtime implementation of composition;
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– illustration of how a composed Maude specification can be used to incremen-
tally analyze a system design using a case study involving the behavior of two
coordinated robot agents roaming on a field.

The remainder of the paper is organized as follows. In Sect. 2, we recall some
results on the algebra of components defined in [12], and give as examples the
component version of a robot, a battery, and their product. In Sect. 3, we give
an operational specification, using rewriting logic, of a product of components
as a system of agents. We show compositionality: the component of a system of
agents is equal to the product of each agent component. In Sect. 4, we detail the
implementation in Maude of the operational specification given in Sect. 3 and
analyse a system consisting of two robots, two private batteries, and a shared
field.

2 Semantic Model: Algebra of Components

The design of complex systems becomes simpler if such systems can be decom-
posed into smaller sub-systems that interact with each other. In order to simplify
the design of cyber-physical systems, we introduced in [12] a semantic model that
abstracts from the internal details of both cyber and physical processes. As first
class entities in this model, a component encapsulates a behavior (set of TESs)
and an interface (set of events). We recall basic definitions and properties in this
section. See [10] for additional examples.

2.1 Components

Preliminaries. A timed-event stream, TES, σ over a set of events E is an infinite
sequence of observations, where its ith observation σ(i) = (O, t), i ∈ N, consists
of a pair of a subset of events in O ⊆ E, called the observable, and a positive real
number t ∈ R+ as time stamp. A timed-event stream (TES) has the additional
properties that its consecutive time stamps are monotonically increasing and
non-Zeno, i.e., if σ(i) = (Oi, ti) is the ith element of TES σ, then (1) ti < ti+1,
and (2) for any time t ∈ R+, there exists an element σ(i) = (Oi, ti) in σ such
that t < ti. We use σ(k) to denote the k-th derivative of the stream σ, such
that σ(k)(i) = σ(i + k) for all i ∈ N. We refer to the stream of observables of
σ as its first projection pr1(σ) ∈ P(E)ω, and the stream of time stamps as its
second projection pr2(σ) ∈ R

ω
+. We write (O, t) ∈ σ if there exists i ∈ N such

that σ(i) = (O, t).
We write σ(t) = O if there exists i ∈ N such that σ(i) = (O, t), and σ(t) = ∅

otherwise. We use dom(σ) to refer to the set of observable time stamps, i.e., the
set dom(σ) = {t ∈ R+ | ∃i .pr2 (σ)(i) = t}. Moreover, we use σ ∪ τ to denote
the stream such that, for all t ∈ R+, (σ ∪ τ)(t) = σ(t) ∪ τ(t) and dom(σ ∪ τ) =
dom(σ) ∪ dom(τ)

A component denotes what observables are possible, over time, given a fixed
set of events. We give three examples of components, which capture some cyber-
physical aspects of concurrent systems.
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Definition 1 (Component). A component C = (E,L) is a pair of a set of events
E, called its interface, and a behavior L ⊆ TES(E).

Given component A = (EA, LA), we write σ : A for a TES σ ∈ LA.

Example 1 (Battery). A battery component is a pair (EB(C), LB(C)) with
events read(l) ∈ EB for 0% ≤ l ≤ 100%, charge(μ) ∈ EB , and discharge(μ) ∈ EB

with μ a (dis)charging coefficient in % per seconds, and C a constant capacity in
mAH. The battery displays its capacity with the event capacity(C). The behav-
ior LB is a set of sequences σ ∈ LB such that there exists a piecewise linear
function f : R+ → P(EB) with, for σ(i) = (Oi, ti),

– for σ(0) = (O0, t0), f([0; t0]) = 100%, i.e., the battery is initially fully charged;
– if Oi = {read(l)}, then f(ti) = l and the derivation f ′

[ti−1,ti+1]
of f is constant

in [ti−1, ti+1], i.e., the observation does not change the slope of f at time ti;
– if Oi = {discharge(μ)}, then f[ti,ti+1](t) = max(f(ti) − (t − ti)μ, 0);
– if Oi = {charge(μ)}, then f[ti,ti+1](t) = min(f(ti) + (t − ti)μ, 100);

where f[t1;t2] is the restriction of function f on the interval [t1; t2]. There is a
priori no restrictions on the time interval between two observations, as long as
the sequence of timestamps is increasing and non-Zeno. �

Example 2 (Robot). A robot with identifier i is a component R(i, T ) =
(ER, LR(T )) with events read(i, l) ∈ ER for 0% ≤ l ≤ 100%, d(i, p) ∈ ER

with p the power requested by the robot for the move and d the direction, and
T a period in seconds. For instance, the event N(i, p) represents robot i moving
North with power p. The robot reads the capacity of its battery with the event
getCapacity(i,C) ∈ ER, with C in mAH. Once the robot knows the capacity of
the battery, the values read in percent can be converted to remaining power.

The behavior LR(T ) contains any sequence of observations at fix period T ,
such that σ ∈ LR(T ) if and only if σ(i) = (Oi, ti) implies ti = kT with k ∈ N

and Oi ⊆ ER with |Oi| = 1. We assume that the robot does one action at a
time: either a read of its sensors, or a move in some direction. �

2.2 Product and Division

Components describe which observations occur over time. When run concur-
rently, observable events from a component may relate to observable events
of another component. This relation defines what kind of interaction occurs
between the two components, as it may enforce two events to occur within the
same observable at the same time (e.g., actuation of a wheel and changes of loca-
tion of the robot), or it may prevent two events to occur simultaneously (e.g.,
two robots moving to the same physical location). Interaction constraints are
therefore captured by an algebraic operator that acts on components. The result
of forming the product of two components is a new component, whose behavior
contains the composition of every pair of TESs, one from each product operand,
that satisfies the underlying constraints imposed by that specific operator.
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Let A = (EA, LA) and B = (EB , LB) be two components. We use the relation
R(EA, EB) ⊆ TES(EA) × TES(EB) and the function ⊕ : TES(E) × TES(E) →
TES(E), with E = EA ∪EB , to range over composability relations and composi-
tion functions, respectively. We use Σ to range over interaction signatures, i.e.,
pairs of a composability relation and a composition function.

Definition 2 (Product). The product of components A and B under interaction
signature Σ = (R,⊕) is the component C = A ×Σ B = (EA ∪ EB , L) where

L = {σ ⊕ τ | σ ∈ LA, τ ∈ LB , (σ, τ) ∈ R(EA, EB)}

For simplicity, we write × as a general product when the specific Σ is irrel-
evant.

Example 3. We define ΣRB = ([κRB ],∪) where ∪ unions two TESs as defined
in the preliminaries, and [κRB ] specifies co-inductively (see [12] for details of the
construction), from a relation on observations κRB, how event occurrences relate
in the robot and the battery components of capacity C. More specifically, κRB is
the smallest symmetric relation over observations such that ((O1, t1), (O2, t2)) ∈
κRB implies that t1 = t2 and

– the discharge event in the battery coincides with a move of the robot, i.e.,
d(i, p) ∈ O1 if and only if discharge(μ) ∈ O2. Moreover, the interaction signa-
ture imposes a relation between the discharge coefficient μ and the required
power p, i.e., μ = p/C;

– the read value of the robot sensor coincides with a value from the battery
component, i.e., read(i, l) ∈ O1 if and only if read(l) ∈ O2;

– the robot reads the capacity value that corresponds to the battery capacity,
i.e., getCapacity(i,c) ∈ O1 if and only if capacity(c) ∈ O2.

The product B ×ΣRB
R(T, i) of a robot and a battery component, under the

interaction signature ΣRB , restricts the behavior of the battery to match the
periodic behavior of the robot, and restricts the behavior of the robot to match
the sensor values delivered by the battery.

As a result, the behavior of the product component B ×ΣRB
R(T, i) contains

all observations that the robot performs in interaction with its battery. Note
that trace properties, such as all energy sensor values observed by the robot are
within a safety interval, does not necessarily entail safety of the system: some
unobserved energy values may fall outside of the safety interval. Moreover, the
frequency by which the robot samples may reveal some new observations, and
such robot can safely sample at period T if, for any period T ′ ≤ T , the product
B ×ΣRB

R(T ′, i) satisfies the safety property. �

3 System of Agents and Compositional Semantics

Components in Sect. 2 are declarative. Their behavior consists of all the TESs
that satisfy some internal constraints. The abstraction of internal states in com-
ponents makes the specification of observables and their interaction easier. The
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downside of such declarative specification lies in the difficulty of generating an
element from the behavior, and ultimately verifying properties on a product
expression.

An operational specification of a component provides a mechanism to con-
struct elements in its behavior. An agent is the operational specification that
produces finite sequences of observations that, in the limit, determine the behav-
ior of a component. An agent is stateful, and has transitions between states, each
labeled by an observation, i.e., a set of events with a time-stamp. We consider
a finite specification of an agent as a rewrite theory, where finite applications of
the agent’s rewrite rules generate a sequence of observables that form a prefix of
some elements in the behavior of its corresponding component. We restrict the
current work to integer time labeled observations. While in the cyber-physical
world, time is a real quantity, we consider in our fragment a countable infinite
domain for time, i.e., natural numbers. The time interval between two tics is
therefore the same for all agents, and may be interpreted as, e.g., seconds, mil-
liseconds, femtoseconds, etc. We show how an agent may synchronize with a local
clock that forbids actions at some time values, thus modeling different execution
speeds.

An operational specification of a composite component provides a mecha-
nism to construct elements in the behavior of a product expression. The prod-
uct on components is parametrized by an interaction signature that tells which
TESs can compose, and how they compose to a new TES. We consider, in the
operational fragment of this section, interaction signatures each of whose com-
posability relation is co-inductively defined from a relation on observations κ.
Intuitively, such restriction enables a step-by-step operation to check that the
head of each sequence is valid, i.e., extends the sequence to be a prefix of some
elements in the composite component. Moreover, we require κ to be such that
the product on component ×([κ],∪) is commutative and associative (see [12]). By
system we mean a set of agents that compose under some interaction signature
Σ = ([κ],∪). A system is stateful, where each state is formed from the states
of its component agents, and has transitions between states, each labeled by
an observation, formed from the component agent observations. We consider a
finite specification of a system as the composition of a set of rewriting theories
(one for each agent), and a system rewrite rule that produces a composite obser-
vation complying with the relation κ. We prove compositionality: the system
component is equal to the product under the interaction signature Σ = ([κ],∪)
of every one of its constituent agent components.

In order to give to the agent a semantics as components, we recall some
results and notations about TES transition systems T = (Q,E,→) (see [11] for
more results on TES transition systems) where Q is a set of states, E a set of
events, and →⊆ Q × (P(E) × R+) × Q a set of transitions.

We write q
u−→ p for the sequence of transitions q

u(0)−−−→ q1
u(1)−−−→ q2...

u(n−1)−−−−−→ p,
where u = 〈u(0), ..., u(n − 1)〉 ∈ (P(E) × R+)n. We write |u| for the size of the
sequence u.
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We use Lfin(T, q) to denote the set of finite sequences of observables labeling
a finite path in T starting from state q, such that

Lfin(T, q) = {u | ∃q′.q u−→ q′,∀i < |u| − 1.u(i) = (Oi, ti) ∧ ti < ti+1}

Additionally, the set Lfin∗(T, q) is the set of sequences from Lfin(T, q) postfixed
with empty observations, i.e., the set

Lfin∗(T, q) = {uτ ∈ TES(E) | u ∈ Lfin(T, q) and τ ∈ TES(∅)}

We use Linf(T, q) to denote the set of TESs labeling infinite paths in T starting
from state q, such that

Linf(T, q) = {σ ∈ TES(E) | ∀n.σ[n] ∈ Lfin(T, q)}

where, as introduced in Sect. 2, σ[n] is the prefix of size n of σ.
Let X ⊆ TES(E), we use cl(X) to denote the set that contains the con-

tinuation with empty observations of any prefix of an element in X, i.e.,
cl(X) = {uτ ∈ TES(E) | τ ∈ TES(∅) and ∃σ.∃i .σ ∈ X ∧ σ[i ] = u}. Given a
component C = (E,L), we write cl(C) for the new component (E, cl(L)).

3.1 Action, Agent, and System

We give the operational counterparts of an observation, a component, and a
product of components as, respectively, an action, an agent, and a system of
agents. See [10] for proof sketches.

Action. Actions are terms of sort Action. An action has a name of sort AName
and some parameters. We distinguish two typical actions, the idle action � and
the ending action end. A term of sort Action corresponds to an observable, i.e., a
set of events. The idle action � and the ending action end both map to the empty
set of events. An example of an action is move(R1,d) or read(R1, position,
l) that, respectively, moves agent R1 in direction d or reads the value l from
the position sensor of R1. The semantics of action move(R1, d) consists of all
singleton event of the form {move(R1, d)} with d a constant direction value.
We use the operation · : Action Action → Action to construct a composite
action a1 · a2 out of two actions a1 and a2.

Agent. An agent operationally specifies a component in rewriting logic. We give
the specification of an agent as a rewrite theory, and provide the semantics of
an agent as a component. An agent is a four tuple (Λ,Ω, E ,⇒), each of whose
elements we introduce as follow.

The set of sorts Λ contains the State sort and the Action sort, respectively
for state and action terms. A pair of a state and a set of actions is called a
configuration. The set of function symbols Ω contains φ : State × Action →
State, that takes a pair of a state and an action term to produce a new state. The
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(Λ,Ω)-equational theory E specifies the update function φ. The set of equations
that specify the function φ can make φ both a continuous or discrete function.

The rule pattern in (1) updates a configuration with an empty set to a new
configuration, i.e.,

(s, ∅) ⇒ (s′, acts) (1)

with acts a non-empty set of action terms, and s′ a new state. We call an agent
productive if, for any state s : State, there exists a state s′ with (s, ∅) ⇒ (s′, acts)
and acts non empty set. Such agent may eventually do the idling action �.

We give a semantics of an agent as a component by considering the limit
application of the agent rewrite rules. We construct a TES transition system
TA = (Q,E,→) as an intermediate representation for agent A = (Λ,Ω, E ,⇒).
The set of states Q = State × N is the set of pairs of a state of A and a time-
stamp natural number. We use the notation [s, t] for states in Q where t ∈ N.
The set of events E is the union of all observables labeling the transition relation
→⊆ Q × (P(E) × N) × Q, defined as the smallest set such that, for t ∈ N:

(s, ∅) ⇒ (s′, acts) a ∈ acts φ(s′, a) =E s′′

[s, t]
(a,t+1)−−−−−→ [s′′, t + 1]

(2)

An agent that performs a rewrite moves the global time from one unit for-
ward. All agents share the same time semantically, and we show some mecha-
nisms at the system level to artificially run some agents faster than others.

Let A = (Λ,Ω, E ,⇒) be an agent initially in state s0 ∈ S at time
t0 ∈ N. The finite, respectively infinite, component semantics of A is the
component �A([s0, t0])�∗ = (E,Lfin∗(TA, [s0, t0])), respectively the component
�A([s0, t0])� = (E,Linf(TA, [s0, t0])), with E =

⋃
a∈Action a.

Lemma 1 (Closure). Let A be a productive agent initially in state [s0, t0]. Then
�A([s0, t0])�∗ = cl(�A([s0, t0])�).

Lemma 1 gives a condition under which a step by step execution of the agent
is sound with respect to generating prefixes of elements in the component seman-
tics. More precisely, if an agent A is productive, Lemma 1 ensures that finite
sequences of rewrite rule applications generate finite sequences of observations
each of which is a prefix of an element in the behavior of the component cor-
responding to A. Alternatively, if A is not productive, a finite sequence of rule
application may lead to a state for which no rule applies anymore. In such a
case, there may not be any corresponding element in the agent component for
which such finite sequence is a prefix.

System. A system gives an operational specification of a product of a set of
components under Σ = ([κ],∪). The composability relation κ is fixed to be
symmetric, so that the product ×Σ is commutative. We define [κ] co-inductively,
as in [11,12]. Formally, a system consists of a set of agents with additional sorts,
operations, and rewrite rules. A system is a tuple (A, Λ,Ω, E ,⇒S) where A is a
set of agents. We use (Λi, Ωi, Ei,⇒i) to refer to agent Ai ∈ A.
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The set of sorts Λ contains a sort Action ∈ Λ which is a super sort
of each sort Actioni for Ai ∈ A. The set Ω contains the function symbol
comp : Action × Action → Bool, which relates pairs of action terms. Given
two actions a1,a2:Action, comp(a1, a2) = True when the two actions a1 and
a2 are composable. The set of equations E specifies the composability relation
comp. First, we impose comp to be symmetric, i.e., for all actions a1,a2:Action,
comp(a1, a2) = comp(a2, a1). Second, we assume that comp(a1 · a2, a3) and
comp(a1, a2) hold if and only if comp(a2, a3) and comp(a1, a2 · a3) hold, for
any actions a1, a2, a3 from disjoint agents. Given a set actions of actions,
we use the notation comp(actions) for the predicate that is True if all pairs of
actions in actions are composable, i.e., for all a1, a2 in actions, comp(a1, a2)
is True and for all agent Ai such that there is no a3 : Actioni ∈ actions, then
comp(a1, �i) is True. We call a set actions of actions for which comp(actions)
holds, a clique. The conditions for a set of actions to form a clique models the
fact that each action in the clique is independent from agent Ai with no action
in that clique (see Sect. 4.1 for an instance of comp), and therefore composable
with the silent action �i. The relation comp can be graphically modelled as an
undirected graph relating actions, where a clique is a connected component.

The rewrite rule pattern in (3) selects a set of actions, at most one from each
agent, checks that the set of actions forms a clique with respect to comp, and
applies the update accordingly. For {k1, ..., kj} ⊆ {1, ..., n}:

{(sk1 , actsk1), ..., (skj
, actskj

)} ⇒S {(φk1(sk1 , ak1), ∅), ..., (φkj
(skj

, akj
), ∅)} (3)

if comp(
⋃

i∈[1,j]{aki
})). As we show later, a system does not necessarily update

all agents in lock steps, and an agent not doing an action may stay in the config-
uration (s, ∅). As multiple cliques may be possible, there is non-determinism at
the system level. Different strategies may therefore choose different cliques as,
for instance, taking the largest clique.

We define the transition system for S = (A, Λ,Ω, E ,⇒S) as the TES tran-
sition system TS = (Q,E,→) with Q = StateSet × N the set of states, E the
union of all observables labeling the transition relation →⊆ Q× (P(E)×N)×Q,
which is the smallest transition relation such that, for {k1, ..., kj} ⊆ {1, ..., n}:

{(ski
, actski

)}i∈[1,j] ⇒S {(φki
(ski

, aki
), ∅)}i∈[1,j]

∧
i∈[1,j] φki

(ski
, aki

) =Ei
s′′

ki

[{si}i∈[1,n], t]
(
⋃

i∈[1,j] aki
,t+1)

−−−−−−−−−−−→ [{s1, ..., s′′
k1

, ..., s′′
kj

, ..., sn}, t + 1]
(4)

for t ∈ N and where we use the notation {xi}i∈[1,n] for the set {x1, ..., xn}.

Remark 1. The top left part of the rule is a rewrite transition at the system
level. As defined earlier, the condition for such rewrite to apply is the formation
of a clique by all of the actions in the update. The states and labels of the TES
transition system (bottom of the rule) are sets of states and sets of labels from
the TES transition system of every agent in the system.

Let A = {A1, ...,An} be a set of agents, and let S = (A, Λ,Ω, E ,⇒S)
be a system initially in state {(s0i, ∅)}i∈[1,n] at time t0 such that, for all
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i ∈ [1, n], Ai is initially in state s0i at time t0. The finite, respectively infi-
nite, semantics of initialized system S([s0, t0]), is the component �S([s0, t0])�∗ =
(E,Lfin∗(TS , [s0, t0])), respectively �S([s0, t0])� = (E,Linf(TS , [s0, t0])), where
E =

⋃
i∈[1,n] Ei with Ei the set of events for the agent component �A([s0i, t0])�.

Given a composability relation comp, we define the interaction signature Σ =
([κcomp],∪), with κcomp(E1, E2) ⊆ (P(E1)×N)× (P(E2)×N) to be such that, for
ai : Actioni and aj : Actionj:

– if comp(ai, aj), then ((ai, n), (aj , n)) ∈ κcomp(Ei, Ej) for all n ∈ N, i.e., two
composable actions occur at the same time;

– if comp(ai, �j), then ((ai, n), (a, k)) ∈ κcomp(Ei, Ej) for all (a, k) ∈ P(Ej) ×N

with k ≥ n, i.e., Aj may have an action at arbitrary future time.

with Ei the set of events of agent Ai.

Lemma 2 (Composability). If Actioni ∩ Actionj = ∅ for all disjoint agents i
and j, then the product ×([κcomp],∪) is commutative and associative.

Theorem 1 (Compositional semantics). Let S = (A, Λ,Ω, E ,⇒S) be a system
of n agents with disjoint actions and [{s01, ..., s0n}, t0] as initial state. We fix Σ =
([κcomp],∪). Then, �S([s0, t0])� = ×Σ{�Ai([s0i, t0])�}i∈[1,n] and �S([s0, t0])�∗ =
×Σ{�Ai([s0i, t0])�∗}i∈[1,n].

4 Application

We present the Maude implementation of the rewrite theories described in
Sect. 3. We first describe our general framework as currently implemented in
Maude, separating the agent modules, from the system module, and the com-
posability relation. The framework is instantiated for a system consisting of
two robot agents, each interacting with a (shared) field and a (private) battery
agent (more details can be found in [10]). Finally, we run some analysis on the
system using the Maude reachability search engine. The implementation of the
framework in Maude can be found in [9].

4.1 General Framework

Actions. An action is a pair that contains the name of the action, and the set
of agent identifiers on which the action applies. An agent action is identified by
the source agent identifier, and is a triple (id, (a; ids)) where id is the agent
doing the action with name a onto the set of agents ids, that we call resources
of agent id for action named a.

fmod ACTION is

inc STRING . inc BOOL . inc SET{Id} . ...

sort AName Action AgentAction .

op (_;_) : AName Set{Id} -> Action [ctor] .

op (_,_) : Id Action -> AgentAction [ctor] .

op mta : -> AgentAction .

endfm
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Agent. The AGENT module in Listing 1.1 defines the theories on which an agent
relies, the Agent sort, and operations that an agent instance must implement.
The module is parametrized with a CSEMIRING theory, that is used to rank
actions of an agent. Additionally, the AGENT includes modules that define state
and action terms. A term of sort IdStates is a pair of an identifier and a map
of sort MapKD.

A term of sort Agent is a tuple [id: C| state; ready?; softaction]. The iden-
tifier id is unique for each agent of the same class C. The state state of an agent
is a map from keys to values. For instance, the state of a robot has three keys,
position, energy, and lastAction, with values in Location, Status, and Bool.
The flag ready? is of sort Bool and is True when the agent has submitted a possi-
bly empty list of actions, and False otherwise. The pending actions softaction
is a set of actions valued in the parametrized CSEMIRING. The use of a constraint
semiring as a structure for action valuations enables various kinds of reasoning
about preferences at the agent and system levels. We use the two operations of
the csemiring, sum + and product ×, as respectively modeling the choice and the
compromise of two alternatives. See [6,20,21] for more details.

An agent instance implements four operations: computeActions, getOutput,
getPostState, and internalUpdate. The operation computeActions, given
a state:MapKD of agent id of class C, returns a set of valued actions in the
parametrized CSEMIRING. The operation internalUpdate, given a state:MapKD
of agent id of class C, returns a new state state’:MapKD. For instance, an agent
may record in its state, as an internal update, the outcome of computeActions
and change the value that the key lastAction maps to. The getOutput oper-
ation, given an action name a:Name from agent identified by id2 applied to an
agent id of class C in a state state, returns a collection of outputs outputs
= getOutput(id, C, id2, an, state). The outputs generated by getOutput
are of sort MapKD and therefore structured as a mapping from keys to values.
For instance, the output of the action named read applied on a field agent
has a key position that maps to the position value of the agent doing the read
action. The operation getPostState, given an action name a:AName with inputs
input:IdStates from agent identified by id2 applied on an agent id1 of class C
in a state state, returns a new state state’ = getPostState(id1, C, id2,
an, input, state). The input input:IdStates is a collection of key to value
mappings that results from collecting the outputs, i.e., with getOutput, of an
action (id, an, ids) on all its resources in ids.

Listing 1.1. Extract from the AGENT Maude module.

fmod AGENT{X :: CSEMIRING} is

inc IDSTATE . inc ACTION .

sort Agent .

op [_:_|_;_;_] : Id Class MapKD Bool X$Elt -> Agent [ctor].

op computeActions : Id Class MapKD -> X$Elt .

op internalUpdate : Id Class MapKD -> MapKD .

op getPostState : Id Class Id AName IdStates MapKD -> MapKD

op getOutput : Id Class Id AName MapKD -> MapKD .

endfm
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The agent’s dynamics are given by the rewrite rule in Listing 1.2, that updates
the pending action to select one atomic action from the set of valued actions:

Listing 1.2. Conditional rewrite rule applying on agent terms.

crl[agent] : [sys [id : ac | state ; false ; null]] =>

[sys [id : ac | state ’ ; true ; softaction ]]

if softaction + sactions := computeActions(id , ac, state)

/\ state ’ := internalUpdate(id, ac, state) .

The rewrite rule in Listing 1.2 implements the abstract rule of Eq. 2. After appli-
cation of the rewrite rule, the ready? flag of the agent is set to True. The
agent may, as well, perform an internal update independent of the success of the
selected action.

System. The SYSTEM module in Listing 1.3 defines the sorts and operations
that apply on a set of agents. The sort Sys contains set of Agent terms, and
the term Global designates top level terms on which the system rewrite rule
applies (as shown in Listing 1.4). The SYSTEM module includes the Agent theory
parametrized with a fixed semiring ASemiring. The theory ASemiring defines
valued actions as pairs of an action and a semiring value. While we assume
that all agents share the same valuation structure, we can also define systems in
which such a preference structure differs for each agent. The SYSTEM module
defines three operations: outputFromAction, updateSystemFromAction, and
updateSystem. The operation outputFromAction returns, given an agent action
(id, (an, ids)) applied on a system sys, a collection of identified outputs
idOutputs = outputFromAction((id, (an, ids)), sys) given by the union
of getOutput from all agents in ids. The operation updatedSystemFromAction
returns, given an agent action (id, (an, ids)) applied on a system sys, an
updated system sys’ = updatedSystemFromAction((id, (an, ids)), sys).
The updated system may raise an error if the action is not allowed by some
of the resource agents in ids (see the battery-field-robot example in [10]). The
updated system, otherwise, updates synchronously all agents with identifiers in
ids by using the getPostState operation. The operation updateSystem returns,
given a list of agent actions agentActions and a system term sys, a new sys-
tem updateSystem(sys, agentActions) that performs a sequential update of
sys with every action in agentActions using updatedSystemFromAction. The
list agentActions ends with a delimiter action end performed on every agent,
which may trigger an error if some expected action does not occur (see PROTOCOL
in [10]).

Listing 1.3. Extract from the SYSTEM Maude module.

fmod SYS is

inc AGENT{ASemiring} . sort Sys Global .

subsort Agent < Sys . op [_] : Sys -> Global [ctor] .

op __ : Sys Sys -> Sys [ctor assoc comm id: mt] . ...

op outputFromAction : AgentAction Sys -> IdStates .

op updatedSystemFromAction : AgentAction Sys -> Sys .
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op updateSystem : Sys List{AgentAction} -> Sys .

endfm

The rewrite rule in Listing 1.4 applies on terms of sort Global and updates each
agent of the system synchronously, given that their actions are composable. The
rewrite rule in Listing 1.4 implements the abstract rule of Eq. 4. The rewrite rule
is conditional on essentially two predicates: agentsReady? and kbestActions.
The predicate agentsReady? is True if every agent has its ready? flag set
to True, i.e., the agent rewrite rule has already been applied. The operation
kbestActions returns a ranked set of cliques (i.e., composable lists of actions),
each paired with the updated system. The element of the ranked set are lists of
actions containing at most one action for each agent, and paired with the sys-
tem resulting from the application of updateSystem. If the updated system has
reached a notAllowed state, then the list of actions is not composable and is dis-
carded. The operations getSysSoftActions and buildComposite form the set
of lists of composite actions, from the agent’s set of ranked actions, by composing
actions and joining their preferences.

Listing 1.4. Conditional rewrite rule applying on system terms.

crl[transition] : [sys] => [sys ’]

if agentsReady ?(sys) /\ saAtom := getSysSoftActions(sys) /\

saComp := buildComposite(saAtom , sizeOfSum(saAtom)) /\

p(actseq , sys ’) ; actseqs := kbestActions(saComp , k, sys) .

Composability Relation. The term saComp defines a set of valued lists of actions.
Each element of saComp possibly defines a clique. The operation kbestActions
specifies which, from the set saComp, are cliques. We describe below the imple-
mentation of kbestActions, given the structure of action terms.
An action is a triple (id, (an, ids)), where id is the identifier of the agent
performing the action an on resource agents ids. Each resource agent in ids
reacts to the action (id, (an, ids)) by producing an output (id’, an, O)
(i.e., the result of getOutput). Therefore, comp((id, (an, ids)), ai) holds, with
ai : Actioni and i ∈ ids, only if ai is a list that contains an output (i, an,
O), i.e., an output to the action. If one of the resources outputs the value
(i,notAllowed(an)), the set is discarded as the actions are not pairwise com-
posable. Conceptually, there are as many action names an as possible outputs
from the resources, and the system rule (2) selects the clique for which the action
name and the outputs have the same value. In practice, the list of outputs from
the resources get passed to the agent performing the action.

4.2 Analysis in Maude

We analyze in Maude two scenarios. In one, each robot has as strategy to take
the shortest path to reach its goal. As a consequence, a robot reads its position,
computes the shortest path, and submits a set of optimal actions. A robot can
sense an obstacle on its direct next location, which then allows for sub-optimal
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lateral moves (e.g., if the obstacle is in the direct next position in the West
direction, the robot may go either North or South). In the other scenario, we
add a protocol that swaps the two robots if robot id(0) is on the direct next
location on the west of robot id(1). The swapping is a sequence of moves that
ends in an exchange of positions of the two robots. See [10] for details on the
TROLL, FIELD, BATTERY, and PROTOCOL agents specified in Maude, and for the
specification of the init term for both scenarios.

In the two scenarios, we analyze the behavior of the resulting system with
two queries. The first query asks if the system can reach a state in which the
energy level of the two batteries is 0, which means that its robot can no longer
move:

search [1] init =>* [sys::Sys

[ bat (1) : Battery | k(level) |-> 0 ; true ; null],

[ bat (2) : Battery | k(level) |-> 0 ; true ; null]] .

The second query asks if the system can reach a state in which the two robots
successfully reached their goals, and end in the expected locations:

search [1] init =>* [sys::Sys [ field : Field | k(( 5 ; 5 ))

|-> d(id(0)), k(( 0 ; 5 )) |-> d(id(1)) ; true ; null]] .

As a result, when the protocol is absent, the two robots can enter in a livelock
behavior and eventually fail with an empty battery:

Solution 1 (state 80)

states: 81 rw: 223566 in 73ms cpu (74ms real) (3053554 rw/s)

Alternatively, when the protocol is used, the livelock is removed using exoge-
nous coordination. The two robots therefore successfully reach their end loca-
tions, and stop before running out of battery:

No solution. states: 102

rewrites: 720235 in 146ms cpu (145ms real) (4920041 rw/s)

In both cases, the second query succeeds, as there exists a path for both
scenarios where the two robots reach their end goal locations. The results can
be reproduced by downloading the archive at [9].

5 Related Work

Real-time Maude. Real-Time Maude is implemented in Maude as an extension
of Full Maude [18], and is used in applications such as in [8]. There are two ways
to interpret a real-time rewrite theory, called the pointwise semantics and the
continuous semantics. Our approach to model time is similar to the pointwise
semantics for real-time Maude, as we fix a global time stamp interval before
execution. The addition of a composability relation, that may discard actions to
occur within the same rewrite step, differs from the real-time Maude framework.
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Models Based on Rewriting Logic. In [21], the modeling of cyber-physical systems
from an actor perspective is discussed. The notion of event comes as a central
concept to model interaction between agents. Softagents [20] is a framework
for specifying and analyzing adaptive cyber-physical systems implemented in
Maude. It has been used to analyze systems such as vehicle platooning [4] and
drone surveillance [13]. In Softagents agents interact by sharing knowledge and
resources implemented as part of the system timestep rule.

Softagents only considers compatibility in the sense of reachability of desired
or undesired states. Our approach provides more structure enabling static analy-
sis. Our framework allows, for instance, to consider compatibility of a robot with
a battery (i.e., changing the battery specification without altering other agents
in the system), and coordination of two robots with an exogenous protocol, itself
specified as an agent.

Algebra, Co-algebra. The algebra of components described in this paper is an
extension of [12]. Algebra of communicating processes [5] (ACP) achieves sim-
ilar objectives as decoupling processes from their interaction. For instance, the
encapsulation operator in process algebra is a unary operator that restricts which
actions may occur, i.e., δH(t ‖ s) prevents t and s to perform actions in H.
Moreover, composition of actions is expressed using communication functions,
i.e., γ(a, b) = c means that actions a and b, if performed together, form the
new action c. Different types of coordination over communicating processes are
studied in [2].

Discrete Event Systems. Our work represents both cyber and physical aspects of
systems in a unified model of discrete event systems [1,17]. In [7], the author lists
the current challenges in modelling cyber-physical systems in such a way. The
author points to the problem of modular control, where even though two modules
run without problems in isolation, the same two modules may block when they
are used in conjunction. In [19], the authors present procedures to synthesize
supervisors that control a set of interacting processes and, in the case of failure,
report a diagnosis. An application for large scale controller synthesis is given
in [16]. Our framework allows for experiments on modular control, by adding an
agent controller among the set of agents to be controlled. The implementation
in Maude enables the search of, for instance, blocking configurations.

6 Conclusion

We give an operational specification of the algebra of components defined in [12].
An agent specifies a component as a rewrite theory, and a system specifies a
product of components as a set of rewrite theories extended with a composability
relation. We show compositionality, i.e., that the system specifies a component
that equals to the product, under a suitable interaction signature, of components
specified by each agent.

We present an implementation of our framework in Maude, and instantiate a
set of components to model two energy sensitive robots roaming on a shared field.
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We analyze the behavior of the resulting system before and after coordination
with a protocol, and show how the protocol can prevent livelock behavior.

The modularity of our operational framework and the interpretation of agents
as components in interaction add structure to the design of cyber-physical sys-
tems. The structure can therefore be exploited to reason about more general
properties of CPSs, such as compatibility, sample period synthesis, etc.
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Abstract. Reconfigurable multi-agent systems consist of a set of
autonomous agents, with integrated interaction capabilities that feature
opportunistic interaction. Agents seemingly reconfigure their interactions
interfaces by forming collectives, and interact based on mutual interests.
Finding ways to design and analyse the behaviour of these systems is a
vigorously pursued research goal. We propose a model checker, named
R-CHECK (Find the associated toolkit repository here: https://github.
com/dsynma/recipe.), to allow reasoning about these systems both from
an individual- and a system- level. R-CHECK also permits reasoning
about interaction protocols and joint missions. R-CHECK supports a
high-level input language with symbolic semantics, and provides a mod-
elling convenience for interaction features such as reconfiguration, coali-
tion formation, and self-organisation.

1 Introduction

Reconfigurable Multi-agent systems [17,20], or Reconfigurable MAS for short,
have emerged as new computational systems, consisting of a set of autonomous
agents that interact based on mutual interest, and thus creating a sort of oppor-
tunistic interaction. That is, agents seemingly reconfigure their interaction inter-
face and dynamically form groups/collectives based on run-time changes in their
execution context. Designing these systems and reasoning about their behaviour
is very challenging, due to the high-level of dynamism that Reconfigurable MAS
exhibit.

Traditionally, model checking [11,22] is considered as a mainstream verifi-
cation tool for reactive systems [5] in the community. A system is usually rep-
resented by a low-level language such as NuSMV [9], reactive modules [7,16],
concurrent game structures [8], or interpreted systems [14]. The modelling prim-
itives of these languages are very close to their underlying semantics, e.g., pred-
icate representation, transition systems, etc. Thus, it makes it hard to model
and reason about high-level features of Reconfigurable MAS such as reconfigu-
ration, group formation, self-organisation, etc. Indeed, encoding these features
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in existing formalisms would not only make it hard to reason about them, but
will also create exponentially large and detailed models that are not amenable
to verification. The latter is a classical challenge for model checking and is often
termed as state-space explosion.

Existing techniques that attempt to tame the state-space explosion problem
(such as BDDs, abstraction, bounded model checking, etc.) can only act as a
mitigation strategy, right-level of abstraction to compactly model and reason
about high-level features of Reconfigurable MAS.

MAS are often programmed using high-level languages that support domain-
specific features of MAS like emergent behaviour [2,6,23], interactions [3], inten-
tions [12], knowledge [14], etc. These descriptions are very involved to be directly
encoded in plain transition systems. Thus, we often want programming abstrac-
tions that focus on the domain concepts, abstract away from low-level details,
and consequently reduce the size of the model under consideration. The rationale
is that reasoning about a system requires having the right level of abstraction
to represent its behaviour. Thus, there is a pressing demand to extend tradi-
tional model checking tools with support for reasoning about high-level features
of Reconfigurable MAS. This suggests supporting an intuitive description of pro-
grams, actions, protocols, reconfiguration, self-organisation, etc.

ReCiPe [3,4] is a promising framework to support modelling and verification
of reconfigurable multi-agent system. It is supported with a symbolic semantics
and model representation that permits the use of symbolic representation to
enable efficient analysis. However, writing models in ReCiPe is very hard and
error prone. This is because ReCiPe models are encoded in a predicate-based
representation that is far from how we usually program. In fact, the predicate
representation of ReCiPe supports no programming primitives to control the
structure of programs, and thus everything is encoded using state variables.

In this paper, we present R-CHECK, a model checking toolkit for verify-
ing and simulating reconfigurable multi-agent systems. R-CHECK supports a
minimalistic high-level programming language with symbolic semantics based on
the ReCiPe framework. The syntax of the language was first presented briefly,
along with a short case study, in [1]. Here we formally present the syntax and
semantics of R-CHECK language and use it to model and reason about a non-
trivial case study from the realm of reconfigurable and self-organising MAS.
We provide two types of semantics: structural semantics in terms of automata
to recover information about interaction actions and message exchange, and an
execution semantics based on ReCiPe. The interaction information recovered in
the structural semantics is recorded succinctly in the execution semantics, and
thus permits reasoning about interaction protocols and message exchange.

We integrate R-CHECK with nuXmv and enable ltl symbolic and bounded
model checking. This specialised integration provides a powerful tool that per-
mits verifying high-level features of Reconfigurable MAS. Indeed, we can reason
about systems both from an individual and a system level. We show how to
reason about synchronisations, interaction protocols, joint missions, and how to
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express high-level features such as channel mobility, reconfiguration, coalition
formation, self-organisation, etc.

The structure of this paper: In Sect. 2, give a background on ReCiPe [3,
4], the underlying theory of R-CHECK. In Sect. 3, we present the language
of R-CHECK and its symbolic semantics. In Sect. 4, we provide a nontrivial
case study to model autonomous resource allocation. In Sect. 5 we discuss the
integration of R-CHECK with nuXmv and we demonstrate our development
using high-level properties. Finally, we report concluding remarks in Sect. 6.

2 RECIPE: A Model of Computation

We present the underlying theory of R-CHECK. Indeed, R-CHECK accepts a
high-level language that is based on the symbolic ReCiPe formalism [3,4]. We
briefly present ReCiPe agents and their composition to generate a system-level
behaviour. Formally, agents rely on a set of common variables cv, a set of data
variables d, and a set of channels ch containing the broadcast one �. Common
variables cv are used by agents to send messages that indirectly specify con-
straints on receivers. Each agent relates common variables to their local variables
through a re-labelling function. Thus, agents specify constraints anonymously on
common variables which are later translated to the corresponding receiver’s local
variables. That is, when messages are delivered, a receiver checks the satisfaction
of the constraints re-labeled with cv; d are the actual communicated values in
the message; ch define the set of channels that agents use to communicate.

Definition 1 (Agent). An agent is Ai = 〈Vi, fi, gs
i , gr

i , T s
i , T r

i , θi〉,

• Vi is a finite set of typed local variables, each ranging over a finite domain.
A state si is an interpretation of Vi, i.e., if Dom(v) is the domain of v, then
si is an element in

∏
v∈Vi

Dom(v). The set V ′ denotes the primed copy of V
and Idi to denote the assertion

∧
v∈Vi

v = v′.
• fi : cv → Vi is a function, associating common variables to local variables.

The notation fi is used for the assertion
∧

cv∈cv cv = fi(cv).
• gs

i (Vi,ch,d,cv) is a send guard specifying a condition on receivers. That is,
the predicate, obtained from gs

i after assigning si, ch, and d (an assignment
to d), which is checked against every receiver j after applying fj.

• gr
i (Vi,ch) is a receive guard describing the connectedness of an agent to a

channel ch. We let gr
i (Vi, �) = true, i.e., every agent is always connected to

the broadcast channel. Note, however, not all messages are received by all
agents, and that receiving a broadcast message could have no effect on an
agent.

• T s
i (Vi, V

′
i ,d,ch) and T r

i (Vi, V
′
i ,d,ch) are assertions describing, respectively,

the send and receive transition relations. We assume that an agent is broadcast
input-enabled, i.e., ∀v,d ∃v′ s.t. T r

i (v, v′,d, �).
• θi is an assertion on Vi describing the initial states, i.e., a state is initial if

it satisfies θi.
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Agents exchange messages of the form m = (ch,d, i, π). A message is defined
by the channel it is sent on ch, the data it carries d, the sender identity i, and
the assertion describing the possible local assignments to common variables of
receivers π. The predicate π is obtained from grounding the sender’s send guard
on the sender’s current state (si ∈

∏
v∈Vi

Dom(v)), ch and d.
A set of agents agreeing on common variables cv, data variables d, and

channels ch define a system, defined as follows. We use
⊎

for disjoint union.

Definition 2 (Discrete System). Given a set {Ai}i of agents, a system is
S = 〈V , ρ, θ〉, where V =

⊎

i

Vi, a state of the system s is in
∏

i

∏
v∈Vi

Dom(v)

and the initial assertion θ =
∧

i

θi. The transition relation ρ of S is as follows:

ρ = ∃ch ∃d
∨

k

T s
k (Vk, V ′

k,d, ch)∧

∧

j �=k

⎛

⎜
⎝∃cv.fj ∧

⎛

⎜
⎝

gr
j (Vj , ch) ∧ gs

k(Vk, ch,d,cv) ∧ T r
j (Vj , V

′
j ,d, ch)

∨ ¬gr
j (Vj , ch) ∧ Idj

∨ ¬gs
k(Vk, ch,d,cv) ∧ ch = � ∧ Idj

⎞

⎟
⎠

⎞

⎟
⎠ .

The transition relation ρ describes two modes of interactions: blocking mul-
ticast and non-blocking broadcast. Formally, ρ relates a system state s to its
successors s′ given a message m = (ch,d, k, π). Namely, there exists an agent
k that sends a message with data d (an assignment to d) with assertion π (an
assignment to gs

k) on channel ch and all other agents are either (a) connected to
channel ch, satisfy the send predicate π, and participate in the interaction (i.e.,
has a corresponding receive transition for the message), (b) not connected and
idle, or (c) do not satisfy the send predicate of a broadcast and idle. That is, the
agents satisfying π (translated to their local state by the conjunct ∃cv.fj) and
connected to channel ch (i.e., gr

j (s
j , ch)) get the message and perform a receive

transition. As a result of interaction, the state variables of the sender and these
receivers might be updated. The agents that are not connected to the channel
(i.e., ¬gr

j (s
j , ch)) do not participate in the interaction and stay still. In case of

broadcast, namely when sending on �, agents are always connected and the set of
receivers not satisfying π (translated again as above) stay still. Thus, a blocking
multicast arises when a sender is blocked until all connected agents satisfy π∧fj .
The relation ensures that, when sending on a channel different from �, the set
of receivers is the full set of connected agents. On the broadcast channel agents
not satisfying the send predicate do not block the sender.

R-CHECK adopts a symbolic model checking approach that directly works
on the predicate representation of ReCiPe systems. Technically speaking, the
behaviour of each agent is represented by a first-order predicate that is defined
as a disjunction over the send and the receive transition relations of that agent.
Moreover, both send and receive transition relations can be represented by a dis-
junctive normal form predicate of the form

∨
(
∧

j assertionj). That is, a disjunct
of all possible send/receive transitions enabled in each step of a computation.
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In the following, we will define a high-level language that can be used to write
user-friendly programs with symbolic computation steps. We will also show how
to translate these programs to ReCiPe predicate representation.

Fig. 1. Agent type.

3 The R-CHECK Language

We formally present the syntax of R-CHECK language and show how to trans-
late it to the ReCiPe predicate representation. We start by introducing the type
agent, its structure, and how to instantiate it; we introduce the syntax of the
agent behaviour and how to create a system of agents.

The type agent is reported in Fig. 1. Intuitively, each agent type has a name
that identifies a specific type of behaviour. That is, we permit creating multiple
instances/copies with the same type of behaviour. Each agent has a local state
local represented by a set of local variables VT , each of which can be of a type
boolean, integer or enum. The initial state of an agent init: θT is a predicate
characterising the initial assignments to the agent local variables. The section
relabel is used to implement the relabelling function of common variables in
a ReCiPe agent. Here, we allow the relabelling to include a boolean expres-
sion Exp over local variables VT to accommodate a more expressive relabelling
mechanism, e.g., cv1 ← (length ≥ 20). The section receive-guard specifies the
connectedness of the agent to channels given a current assignment to its local
variables. The non-terminating behaviour of an agent is represented by repeat:
P, which executes the process P indefinitely.

Before we introduce the syntax of agent behaviour, we show how to instan-
tiate an agent and how to compose the different agents to create a system. An
agent type of name A can be instantiated as follows A(id, θ). That is, we create
an instance of A with identity id and an additional initial restriction θ. Here, we
take the conjunction of θ with the predicate in the init section of the type A as
the initial condition of this instance. We use the parallel composition operator
‖ to inductively define a system as in the following production rule.

(System) S ::= A(id, θ) | S1‖S2

That is, a system is either an instance of agent type or a parallel composi-
tion of set of instances of (possibly) different types. The semantics of ‖ is fully
captured by ρ in Definition 2.

The syntax of an R-CHECK process is inductively defined as follows.
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(Process) P ::= P ;P | P + P | rep P | C
(Command) C::= l : C | 〈Φ〉 ch ! π d U | 〈Φ〉 ch ? U

A process P is either a sequential composition of two processes P ;P , a non-
deterministic choice between two processes P+P , a loop rep P , or a command C.
There are three types of commands corresponding to either a labelled command,
a message-send or a message-receive. A command of the form l : C is a syntactic
labelling and is used to allow the model checker to reason about syntactic ele-
ments as we will see later. A command of the form 〈Φ〉 ch ! π d U corresponds
to a message-send. Intuitively, the predicate Φ is an assertion over the current
assignments to local variables, i.e., is a pre-condition that must hold before the
transition can be taken. As the names suggest, ch, π and (respectively) d are
the communication channel, the sender predicate, and the assignment to data
variables (i.e., the actual content of the message). Lastly, U is the next assign-
ment to local variables after taking the transition. We use ! to distinguish send
transitions. A command of the form 〈Φ〉 ch ? U corresponds to a message-receive.
Differently from message-send, Φ can also predicate on the incoming message,
i.e., the assignment d. We use ? to distinguish receive transitions.

Despite the minimalistic syntax of R-CHECK, we can express every control
flow structure in a high-level programming language. For instance, by combining
non-determinism and pre-conditions of commands, we can encode every structure
of IF-statement. Similarly, we can encode finite loops by combining rep P and
commands C, e.g., (rep C1 + C2) means: repeat C1 or block until C2 happens.

3.1 The Semantics of R-CHECK

We initially give a structural semantics to R-CHECK process using a finite
automaton such that each transition in the automaton corresponds to a sym-
bolic transition. Intuitively, the automaton represents the control structure of
an R-CHECK process. We will further use this automaton alongside the agent
definition to give an R-CHECK agent an execution semantics based on the
symbolic ReCiPe framework. This two-step semantics will help us in verifying
structural properties about R-CHECK agents.

Definition 3 (Structure automaton). A structure automaton is of the form
G = 〈S, Σ, si, E, sf 〉, where

– S is a finite set of states;
– si, sf ∈ S: are two states that, respectively, represent the initial state and the

final state in G (though the automaton does not terminate);
– Σ is the alphabet of G;
– E ⊆ S × Σ × S: is the set of edges of G.

We use (s1, σ, s2) to denote an edge e ∈ E such that s1 is the source state of
e, s2 is the target state of e and the letter σ is the label of e.
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Now, everything is in place to define the structure semantics of R-CHECK
processes. We define a function � � �[si,sf ] : P → 2E which takes an R-CHECK
process P as input and produces the set of edges of the corresponding structure
automaton. The function � � �[si,sf ] assumes that each process has unique initial
state si and final state sf in the structure automaton. Please note that the states
of the structure automaton only represent the control structure of the process,
and an agent can have multiple initial states depending on θT while starting
from si. The definition of the translation function � � �[si,sf ] is reported below.

�repeat : P �[si,sf ] � �P �[si,si]

�P1;P2�
[si,sf ] � �P1�

[si,s1]
⋃

�P2�
[s1,sf ] for a fresh s1

�P1 + P2�
[si,sf ] � �P1�

[si,sf ]
⋃

�P2�
[si,sf ]

�rep P �[si,sf ] � �P �[si,si]

�C�[si,sf ] � {(si, C, sf )}

Intuitively, the structure semantics of �repeat : P �[si,sf ] corresponds to a self-
loop in the structure automaton (with si as both the source and the target state)
and where P is repeated indefinitely. Moreover, the semantics �P1;P2�

[si,sf ] is
the union of the transitions created by P1 and P2 while creating a fresh state
in the graph s1 to allow sequentiality, where P1 starts in si and ends in s1 and
later P2 continues from s1 and ends in sf . That is, the structure of the process is
encoded using an extra memory. Differently, the non-deterministic choice �P1 +
P2�

[si,sf ] does not require extra memory because the execution of P1 and P2

is independent. The semantics of �rep P �[si,sf ] is similar to �repeat : P �[si,sf ]

and is introduced to allow self-looping inside a non-terminating process. Finally,
the semantics of a command C in corresponds to an edge {(si, C, sf )} in the
structure automaton. This means that the alphabet Σ of the automaton ranges
over R-CHECK commands. Note how the translation is completely syntactic
and does not enumerate variable values, resulting in a symbolic automaton.

To translate an R-CHECK agent into a ReCiPe agent, we first introduce
the following functions: typeOf, varsOf, predOf and guardOf on a command C.
That is, typeOf(C) returns the type of a command C as either ! or ?. For exam-
ple, typeOf(〈Φ〉 ch ! π d U) = !. varsOf(C) returns the set of local variables that
are updated in C, while the predOf(C) returns the predicate characterising C in
terms of local variables VT , the primed copy V ′

T , the channel ch and the data vari-
ables d (excluding π). For instance, predOf(〈Link = c〉�!π(MSG :=m)[Link := b])
is (Link = c) ∧ (ch = �) ∧ (MSG = m) ∧ (Link′ = b). Finally guardOf(C) returns
the send predicate π in a send command and false otherwise.

Moreover, we use keep(X) to denote that the set of local variables X is
not changed by a transition (either send or receive). More precisely, keep(X) is
equivalent to the assertion

∧
x∈X x = x′, where x′ is the primed copy of x.

Next we define how to construct a ReCiPe agent from an R-CHECK agent
with structure semantics interpreted as a structure automaton.



380 Y. Abd Alrahman et al.

Definition 4 (from R-CHECK to ReCiPe). Given an instance of agent
type T as defined in Fig. 1 with a structure semantics interpreted as a structure
automaton G = 〈S, Σ, si, E, sf 〉, we can construct a ReCiPe agent A =
〈V, f, gs, gr, T s, T r, θ〉 that implements its behaviour.

We construct A as follows:

– V = VT ∪ {st}: that is, the union of the set of declared variables VT in the
local section of T in Fig. 1 and a new state variable st ranging over the
states S in G of the structure automaton, representing the control structure
of the process of T . Namely, the control structure of the behaviour of T is
now encoded as an additional variable in A;

– the initial condition θ = θT ∧ (st = si): that is the conjunction of the initial
condition θT in the init section of T in Fig. 1 and the predicate st = si,
specifying the initial state of G.

– f and gr have one-to-one correspondence in section relabel and section
receive-guard respectively of T in Fig. 1.

– gs =
∨

σ∈Σ: typeOf(σ)= !

guardOf(σ)

– T s =
∨

(s1,σ,s2)∈E: typeOf(σ)= !

(
predOf(σ) ∧ (st = s1) ∧ (st′ = s2)∧

keep(VT \varsOf(σ))

)

– T r =
∨

(s1,σ,s2)∈E: typeOf(σ)= ?

(
predOf(σ) ∧ (st = s1) ∧ (st′ = s2)∧

keep(VT \varsOf(σ))

)

.

4 Case Study: Autonomous Resource Allocation

We model a scenario where a group of clients are requested to jointly solve a
problem. Each client will buy a computing virtual machine (VM) from a resource
manager and use it to solve its task. Initially, clients know the communication
link of the manager, but they need to self-organise and coordinate the use of
the link anonymously. The manager will help establishing connections between
clients and available machines, and later clients proceed interacting indepen-
dently with machines on private links learnt when the connection is established.

There are two types of machines: high performance machines and standard
ones. The resource manager commits to provide high performance VMs to clients,
but when all of these machines are reserved, the clients are assigned to standard
ones. The protocol proceeds until each client buys a machine, and then all clients
have to collaborate to solve the problem and complete the task.

A client uses the local variables cLink, mLink, tLink, role to control its
behaviour,where cLink is a link to interactwith themanager,mLink is a placeholder
for a mobile link that can be learnt at run-time, tLink is a link to synchronise with
other clients to complete the task, and role is the role of the client. A client’s initial
condition θc is: cLink = c ∧ mLink = empty ∧ tLink = t ∧ role = client, specifying
that the resource manager is reachable on c, the mobile link is empty, the task link
is t and the role is client.
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Note that the interfaces of agents are parameterised to their local states and
state changes may create dynamic and opportunistic interactions. For instance,
when cLink is set to empty, the client does not connect to channel c; also when a
channel is assigned to mLink, the client starts receiving messages on that channel.

Clients may use broadcast or multicast; in a broadcast, receivers (if exist)
may anonymously receive the message when they are interested in its values (and
when they satisfy the send predicate). Otherwise, an agent may not participate
in the interaction. In multicast, all agents listening on the multicast channel
must participate to enable the interaction.

Broadcast is used when agents are unaware of the existence of each other
while (possibly) sharing some resources while multicast is used to capture a
more structured interaction where agents have dedicated links to interact. In
our example, clients are not aware of the existence of each other while they
share the resource manager channel c. Thus they may coordinate to use the
channel anonymously by means of broadcast. A client reserves the channel c by
means of a broadcast message with a predicate targeting other clients. All other
clients self-organise and disconnect from c and wait for a release message.

A message in R-CHECK carries an assignment to a set of data variables
d. In our scenario, d = {lnk,msg} where lnk is used to exchange a link with
other agents, and msg denotes the label of the message and takes values from
{reserve, request, release, buy, connect, full, complete}.

Agents in this scenario use one common variable cv ranging over roles to
specify potential receivers. Remember that every agent i has a relabelling func-
tion fi : cv → Vi that is applied to the send guard once a message is delivered to
check whether it is eligible to receive. For a client, fc(cv) = role. The send guard
of a client appears in the messages that the client sends, and we will explain
later. In general, broadcasts are destined to agents assigning to the common
variable cv a value matching the role of the sender, i.e., client; messages on cLink
are destined to agents assigning mgr to cv; and other messages are destined to
everyone listening on the right channel.

The receive guard gr
c is (ch = �) ∨ (ch = cLink) ∨ (ch = tLink). That is, recep-

tion is always enabled on broadcast and on a channel that matches the value of
cLink or tLink. Note that these guards are parameterised to local variables and
thus may change at run-time, creating a dynamic communication structure.

Fig. 2. Client behaviour.
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The behaviour of the client is reported in Fig. 2. In this example, we label
each command with a name identifying the message and its type (i.e., s for send
and r for receive). For instance, the send transition at Line 1 is labelled with
sReserve while the receive transition at Line 2 is labelled with rReserve. We use
these later to reason about agent interactions syntactically.

Initially in Lines 1–2, every client may either broadcast a reserve message to
all other clients (i.e., (cv = role)) or receive a reserve message from one of them.
This is to allow clients to self-organise and coordinate to use the common link.
That is, a client may initially reserve an interaction session with the resource
manager by broadcasting a reserve message to all other clients, asking them to
disconnect the common link c (stored in their local variable cLink); or receive a
reserve message, i.e., gets asked by another client to disconnect from channel c.
In either case, the client progress to Line 3. Depending on what happened in the
previous step, the client may proceed to establish a session with the resource
manager (i.e., (cv = mgr)) and a machine (Lines 3–8) or gets stuck waiting for
a release message from the client, currently holding the session (Line 9). In the
latter case, the client gets back in the loop to (Line 1) after receiving a release
message and attempts again to establish the session.

In the former case, the client uses the blocking multicast channel c to send a
request to the resource manager (Line 3) and waits to receive a private connection
link with a virtual machine agent on cLink (Line 4). When the client receives the
connect message on cLink, the client assigns its mLink variable the value of lnk in
the message. That is, the client is now ready to communicate on mLink. On Line
5, the agent releases the common link c by broadcasting a release message to all
other clients (with (cv = role)) and proceeds to Line 6 and starts communicating
privately with the assigned VM agent. The client buys a service from the VM
agent on a dedicated link stored in mLink by sending a buy to the VM agent
to complete the transaction. The client proceeds to line 7 and wait for other
clients to collaborate and finish the task. Thus, the client either initiates the last
step and sends a complete message when the rest of clients are ready (Line 7) or
receives a complete message from another client that is ready (Line 8).

We now specify the manager and the virtual machine, and show how recon-
figurable multicast can be used to cleanly model a point-to-point interaction.

The resource manager’s local variables are hLink, sLink, cLink, role, where
hLink and sLink store channel names to communicate with high- and standard-
performance VMs respectively and the rest are as defined before.

The initial condition θm is: hLink = g1 ∧ sLink = g2 ∧ cLink = c ∧ role = mgr.
Note that the link g1 is used to communicate with the group of high performance
machines while g2 is used for standard ones.

The send guard for a manager is always satisfied, (i.e., gs
m is true) while the

receive guard specifies that a manager only receives broadcasts or on channels
that match with cLink or hLink, i.e., gr

m is (ch = �) ∨ (ch = cLink) ∨ (ch = hLink).
The behaviour of the agent manager is reported in Fig. 3. In summary, the

manager initially forwards requests received on channel c (Line 1) to the high
performance VMs first as in (Line 2). The negotiation protocol with machines is
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Fig. 3. Manager behaviour.

reported in Lines 3–5. The manager can receive a connect message and directly
enable the client to connect with the virtual machine as in (Line 3) or receive a full
message, informing that all high performance machines are fully occupied (Line
4). In the latter case, the requests are forwarded to the standard performance
machines on sLink as in (Lines 4–5). The process repeats until a connect message
is received (Line 4) and the manager gets back to (Line 1) to handle other
requests. Clearly, the specifications of the manager assumes that there are plenty
of standard VMs but not a lot of high performance ones. Thus it only expects
a full message to be received on channel hLink. Note also that the manager gets
ready to handle the next request once a connect message is received on channel
c and leaves the client and the selected VM to interact independently.

The virtual machine’s local variables are: gLink, pLink, cLink, asgn, where
asgn indicates if the VM is assigned, gLink is a group link, pLink is a private link
and gLink is as before; the initial condition θvm is ¬asgn ∧ cLink = empty (note
gLink and pLink will be machine specific), where initially virtual machines are not
listening on the common link cLink. Depending on the group that the machine
belong to, the gLink will either be assigned to high performance machine group
g1 or the standard one g2. Moreover, each machine has a unique private link
pLink. A VM’s send guard is always satisfied, (i.e., gs

mv is true) while its receive
guard specifies that it always receives on broadcast, pLink, gLink and cLink, i.e.,
gr
vm is ch = � ∨ ch = gLink ∨ ch = pLink ∨ ch = cLink.

Fig. 4. Machine behaviour.

The behaviour of the virtual machine agent is reported in Fig. 4. Intuitively,
a VM either receives the forwarded request on the group channel gLink (Line 1)
and thus activating the common link and also a nondeterministic choice between
connect and full messages (Lines 2–5) or receives a buy message from a client on
the private link pLink (Line 6). In the latter case, the VM agent agrees to sell the
service and stays idle. In the former case, a VM sends connect, with its private
link pLink carried on the data variable lnk, on cLink if it is not assigned (Line
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2), or sends full on gLink otherwise (Line 3). Note that a full message can only
go through if all VMs in group gLink are assigned. Note that reception on gLink
is always enabled by the receive guard gr

vm and the receive transition at Line 3
specifies that a machine enables a send on a full message only when it is assigned.
For example, if gLink = g1 then only when all machines in group g1 are assigned,
a full message can be enabled.

Furthermore, a connect message will also be received by other VMs in the
group cLink (Line 4). As a result, all other available VMs (i.e., ¬asgn) in the
same group do not reply to the request. Thus, one VM is non-deterministically
selected to provide a service and a point-to-point like interaction is achieved.
Note that this easy encoding is possible because agents change communication
interfaces dynamically by enabling and disabling channels.

Now, we can easily create an R-CHECK system as follows.

system = Client(client1,TRUE) ‖ Client(client2,TRUE)
‖ Client(client3,TRUE) ‖ Manager(manager,TRUE)
‖ Machine(machine1, gLink = g1 ∧ pLink = vmm1)
‖ Machine(machine2, gLink = g1 ∧ pLink = vmm2)
‖ Machine(machine3, gLink = g2 ∧ pLink = vmm3)

(1)

This system is the parallel composition (according to Definition 2) of three copies
of a client {client1, . . . , client3}; a copy of a manager {manager}; and finally three
copies of a machine {machine1, . . . , machine3}, each belongs to a specific group
and a private link. For instance, machine1 belongs to group g1 (the high perfor-
mance machines) and has a private link named vmm1.

5 Model-Checking Through NUXMV

We describe the integration of R-CHECK with the nuXmv model checker [10]
to enable an enhanced symbolic ltl model-checking. We also demonstrate our
developments using examples, and show how the combined features of R-
CHECK, the symbolic ltl model-checking, and nuXmv provides a powerful
tool to verify high-level features of reconfigurable and interactive systems.

From R-CHECK to nuXmv. We give individual R-CHECK agents a sym-
bolic semantics based on the ReCiPe framework as shown in Sect. 3.1 and Def-
inition 4. Notably, we preserve the labels of commands (i.e., l : σ) and use them
as subpredicate definitions. For instance, given a labeled edge (s1, l : σ, s2) in the
structure automaton G in Definition 3, we translate it into the following predi-
cate in ReCiPe as explained in Definition 4: l := predOf(σ) ∧ (st = s1) ∧ (st′ =
s2) ∧ keep(VT \varsOf(σ)).

The only difference here is that the label l is now a predicate definition and its
truth value defines if the transition (s1, l : σ, s2) is feasible. Since every command
is translated to either message-send or message-receive, we can use these labels
now to refer to message exchange syntactically inside ltl formulas.

Moreover, we rename all local variables of agents to consider the identity of
the agent as follows: for example, given the cLink variable of a client, we generate
the variable client − cLink. This is important when different agents use the same
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identifier for local variables. We also treat all data variables d and channel names
ch as constants and we construct a ReCiPe system S = 〈V , ρ, θ〉 as defined in
Definition 2 while considering subpredicate definitions and agent variables after
renaming. Technically, a ReCiPe system S has a one-to-one correspondence to
a nuXmv module M . That is, both S and M agrees on local variables V and the
initial condition θ, but are slightly different with respect to transition relations.
Indeed, the transition relation ρ of S as defined in Definition 2 is translated to
an equivalent transition relation ρ̂ of M as follows: ρ̂ = ρ ∨ (¬ρ ∧ keep(V )).
That is, nuXmv translates deadlock states in S into stuttering (sink) states in
M where system variables do not change.

R-CHECK provides an interactive simulator that allows the user to simu-
late the system either randomly or based on predicates that the user supplies.
For instance, starting from some state in the simulation, the user may supply
the constraint next(client1−cLink) = c to ask the simulator to select the transi-
tion that leads to a state where the next value of client1−cLink equals c. If such
constraint is feasible (i.e., there exists a transition satisfying the constraint),
the simulator selects such transition, and otherwise it returns an error message.
Users can also refer to message -send and -receive using command labels in the
same way. A constraint on a send transition like client1−sReserve, to denote the
sending of the message reserve in Fig. 2, Line 2, means that this transition is
feasible in the current state of simulation. However, a constraint on a receive
transition client−rReserve, like on the message in Fig. 2, Line 4, means that this
transition is already taken from the previous state of simulation. This slight
difference between send and receive transitions is due to the fact that receive
transitions cannot happen independently and only happen due to a joint send
transition. Finally, R-CHECK is supported with an editor, syntax highlighting
and visualising tool. For instance, once the model of the scenario in Sect. 4 is
compiled, R-CHECK produces the corresponding labelled and symbolic struc-
ture automata in Fig. 5, which the user may use to reason about interactions.

Fig. 5. Symbolic structure automata.

Symbolic Model Checking. R-CHECK supports both symbolic ltl model
checking and bounded ltl model checking. We illustrate the capabilities of R-
CHECK by several examples. In this section, we will use Eq. 1, Sect. 4 and the
corresponding structure automata in Fig. 5 as the system under consideration.
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We show how to verify properties about agents both from individual and
interaction protocols level by predicating on message exchange rather than on
atomic propositions. It should be noted that the transition labels in Fig. 5 are
not mere labels, but rather predicates with truth values changing dynamically
at run-time, introducing opportunistic interaction. For instance, we can reason
about a client and its connection to the system as follows.

G (client1−sReserve −→ F client1−sRequest) (1)
G (client1−sReserve −→ F client1−sRelease) (2)
G (client1−sRequest −→ F client1−rConnect) (3)

The liveness condition (1) specifies that the client can send a request to the
manager after it has already reserved the common link c; the liveness condition
(2) specifies that the client does not hold a live lock on the common link c.
Namely, the client releases the common link eventually. The liveness condition
(3) specifies that the system is responsive, i.e., after the client’s request, other
agents collaborate to eventually supply a connection.

We can also reason about synchronisation and reconfiguration in relation to
local state as in the following.

G (manager−sForward −→ X machine1−rForward) (4)
F (client1−sRelease & G(!client1−rConnect)) (5)
G ((!machine1−asgn & machine1−rForward) −→ machine1−sConnect) (6)

In (4), we refer to synchronisation, i.e., the manager has to forward the
request before the machine can receive it. Note that this formula does not hold
for machine3 because sForward is destined for group g1; we can refer to recon-
figuration in (5), i.e., eventually the client disconnects from the common link c,
and it can never be able to receive connection on that link; moreover, in (6) the
machine sends a connection predicated on its local state, i.e., if it is not assigned.
Note that (6) does not hold because machine1 might lose the race for machine2
in group g1 to execute connect message.

We can also specify channel mobility and joint missions from a declarative
and centralised point of view, as follows.

F(client1−mLink �= empty) & F (client2−mLink �= empty) & F (client3−mLink �= empty)
−−→ F (client1−sSolve | client2−sSolve | client3−sSolve)

That is, each client eventually receiving a mobile link (i.e., mLink �= empty),
which is used to buy a VM, means eventually one client will initiate the mission’s
termination by synchronising with the others to solve the joint problem.

We are unaware of a model-checker that enables reasoning at such a high-
level.

6 Concluding Remarks

We introduced the R-CHECK model checking toolkit for verifying and simu-
lating reconfigurable multi-agent system. We formally presented the syntax and
semantics of R-CHECK language in relation to the ReCiPe framework [3,4],
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and we used it to model and reason about a nontrivial case study from the
realm of reconfigurable and self-organising MAS. Our semantics approach con-
sisted of two types of semantics: structural semantics in terms of automata to
recover information about interaction features, and execution semantics based
on ReCiPe. The interaction information recovered in the structural semantics
is recorded succinctly in the execution one, and thus permits reasoning about
interaction protocols and message exchange. R-CHECK is supported with a
command line tool, a web editor with syntax highlighting and visualisation.

We integrated R-CHECK with nuXmv to enable ltl verification through
symbolic, bounded, and IC3 model checking. We showed that this specialised
integration provides a powerful tool that permits verifying high-level features
such as synchronisations, interaction protocols, joint missions, channel mobility,
reconfiguration, self-organisation, etc.

Our work is focused on multi-agent systems, which is a special case of collec-
tive adaptive systems. The difference here is that the number of agents is usually
smaller, and thus the issue of scalability is not our main concern. Indeed, if we
consider a large number of agents then qualitative reasoning with LTL would
not be sufficient and probabilistic techniques, like statistical model checking [21],
would be more appropriate.

Related Works. We report on closely related model-checking toolkits.
MCMAS is a successful model checker that is used to reason about multi-

agent systems and supports a range of temporal and epistemic logic operators. It
also supports ISPL, a high-level input language with semantics based on Inter-
preted Systems [14]. The key differences with respect to R-CHECK are: (1)
MCMAS models are enumerative and are exponentially larger than R-CHECK
ones; (2) actions in MCMAS are merely synchronisation labels while command
labels in R-CHECK are predicates with truth values changing dynamically at
run-time, introducing opportunistic interaction; (3) lastly and most importantly
R-CHECK can model and reason about dynamic communication structure with
message exchange and channel mobility while in MCMAS the structure is fixed.

MTSA toolkit [13] is used to reason about labelled transition systems (LTS)
and their composition as in the simple multiway synchronisation of Hoare’s CSP
calculus [18]. MTSA uses Fluent Linear Temporal logic (FLTL) [15] to reason
about actions, where a fluent is a predicate indicating the beginning and the end
of an action. As the case of MCMAS, the communication structure is fixed and
there is no way to reason about reconfiguration or even message exchange.

SPIN [19] is originally designed to reason about concurrent systems and pro-
tocol design. Although SPIN is successful in reasoning about static coordination
protocols, it did not expand its coverage to multi-agent system features. Indeed,
the kind of protocols that SPIN can be used to reason about are mainly related
to static structured systems like hardware and electronic circuits.

Finally, nuXmv [10] is designed at the semantic level of transition systems.
nuXmv implements a large number of efficient algorithms for verification. This
makes nuXmv an excellent candidate to serve as a backbone for special-purpose
model checking tools. For this reason, we integrate R-CHECK with nuXmv.
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Future Works. We plan to integrate ltol, from [4], to R-CHECK. Indeed, the
authors in [4] provide a pspace algorithm for ltol model checking (improved
from expspace in [3]). This way, we would not only be able to refer to mes-
sage exchange in logical formulas, but also to identify the intentions of agents
in the interaction and characterise potential interacting partners. Moreover, we
would like to equip R-CHECK with a richer specification language that allows
reasoning about the knowledge of agents and the dissemination of knowledge in
distributed settings. For this purpose, we will investigate the possible integra-
tion of R-CHECK with MCMAS [22] to make use of the specialised symbolic
algorithms that are introduced for knowledge reasoning.

References

1. Abd Alrahman, Y., Azzopardi, S., Piterman, N.: R-CHECK: a model checker for
verifying reconfigurable MAS. In: Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2022, pp. 1518–1520.
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land, SC (2022). https://doi.org/10.5555/3535850.3536020

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268, 104457 (2019). https://doi.
org/10.1016/j.ic.2019.104457

3. Abd Alrahman, Y., Perelli, G., Piterman, N.: Reconfigurable interaction for MAS
modelling. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-Smith, N. (eds.)
Proceedings of the 19th International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2020, Auckland, New Zealand, 9–13 May 2020, pp. 7–15.
International Foundation for Autonomous Agents and Multiagent Systems (2020).
https://doi.org/10.5555/3398761.3398768

4. Abd Alrahman, Y., Piterman, N.: Modelling and verification of reconfigurable
multi-agent systems. Auton. Agents Multi Agent Syst. 35(2), 47 (2021). https://
doi.org/10.1007/s10458-021-09521-x

5. Aceto, L., Ingólfsd’ottir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007).
https://doi.org/10.1017/CBO9780511814105

6. Alrahman, Y.A., Nicola, R.D., Loreti, M.: Programming interactions in collective
adaptive systems by relying on attribute-based communication. Sci. Comput. Pro-
gram. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428

7. Alur, R., Henzinger, T.: Reactive modules. Formal Methods Syst. Des. 15(1), 7–48
(1999)

8. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

9. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

10. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_23

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

https://doi.org/10.5555/3535850.3536020
https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.5555/3398761.3398768
https://doi.org/10.1007/s10458-021-09521-x
https://doi.org/10.1007/s10458-021-09521-x
https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-31424-7_23


Model Checking Reconfigurable Interacting Systems 389

12. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell.
42(2–3), 213–261 (1990). https://doi.org/10.1016/0004-3702(90)90055-5

13. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: the modal transi-
tion system analyser. In: 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), L’Aquila, Italy, 15–19 September 2008, pp. 475–
476. IEEE Computer Society (2008). https://doi.org/10.1109/ASE.2008.78

14. Fagin, R., Halpern, J., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

15. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems. In:
Proceedings of the 9th European Software Engineering and 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 257–266.
ACM (2003)

16. Gutierrez, J., Harrenstein, P., Wooldridge, M.: From model checking to equilib-
rium checking: reactive modules for rational verification. Artif. Intell. 248, 123–157
(2017). https://doi.org/10.1016/j.artint.2017.04.003

17. Hannebauer, M. (ed.): Autonomous Dynamic Reconfiguration in Multi-Agent Sys-
tems. LNCS (LNAI), vol. 2427. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45834-4

18. Hoare, C.A.R.: Communicating sequential processes. In: Jones, C.B., Misra, J.
(eds.) Theories of Programming: The Life and Works of Tony Hoare, pp. 157–186.
ACM/Morgan & Claypool (2021). https://doi.org/10.1145/3477355.3477364

19. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

20. Huang, X., Chen, Q., Meng, J., Su, K.: Reconfigurability in reactive multiagent
systems. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9–15 July 2016, pp. 315–321. IJCAI/AAAI Press (2016). http://www.ijcai.org/
Abstract/16/052

21. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9_23

22. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. STTT 19(1), 9–30 (2017)

23. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, New
York (2009)

https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1109/ASE.2008.78
https://doi.org/10.1016/j.artint.2017.04.003
https://doi.org/10.1007/3-540-45834-4
https://doi.org/10.1007/3-540-45834-4
https://doi.org/10.1145/3477355.3477364
http://www.ijcai.org/Abstract/16/052
http://www.ijcai.org/Abstract/16/052
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23


Formal Methods Meet Machine
Learning



Formal Methods Meet Machine Learning
(F3ML)

Kim Larsen1, Axel Legay2, Gerrit Nolte3, Maximilian Schlüter3(B),
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Abstract. The field of machine learning focuses on computationally effi-
cient, yet approximate algorithms. On the contrary, the field of formal
methods focuses on mathematical rigor and provable correctness. Despite
their superficial differences, both fields offer mutual benefit. Formal meth-
ods offer methods to verify and explain machine learning systems, aiding
their adoption in safety critical domains. Machine learning offers approxi-
mate, computationally efficient approaches that let formal methods scale
to larger problems. This paper gives an introduction to the track “Formal
Methods Meets Machine Learning” (F3ML) and shortly presents its sci-
entific contributions, structured into two thematic subthemes: One, con-
cerning formal methods based approaches for the explanation and verifi-
cation of machine learning systems, and one concerning the employment
of machine learning approaches to scale formal methods.

1 Preface

During recent decades, machine learning has risen to an immense level of promi-
nence in the realm of computer science. From language processing [6] and com-
puter vision [12,40] to playing complex games [39] and self driving cars [36],
machine learning has found success in domains where it is almost impossible
to succeed with traditional, handwritten programs. At its core, the promise of
machine learning is an attractive one: Given enough data and enough computa-
tional resources, complex problems can be trivially solved by an autonomously
learning machine without requiring human work.

On the flipside of this utopian vision of machine learning stands the reality
of its opaqueness and its common lack of reliability. The solutions that machine
learning offers, while powerful, are sometimes heavily flawed, often unreliable and
almost always incomprehensible. As machine learning solutions are trained from
necessarily incomplete data, their behavior is largely uncontrolled in situations
that are unlike those they encountered during training.
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Fig. 1. Popular adversarial example of Goodfellow et al. [14]. Adding a small fine-tuned
noise to a correctly classified image can change the classification at-will of the attacker.

Fig. 2. Popular example of an adversarial object from Athalye et al. [2]. The 3D printed
turtle is incorrectly classified as a riffle throughout multiple images with different back-
grounds and object rotations.

This situation is further complicated by the fact that machine learning solu-
tions do not usually adhere to human intuition. Unlike code written by a human,
that usually obeys reason and logic, machine learning systems are entirely unre-
strained. Phenomena such as adversarial attacks [42], where machine learning
systems can be fooled by an almost imperceptible change in their input, showcase
just how big the gap between human reasoning and machine learning systems can
be. Popular examples include the panda-gibbon adversarial example by Good-
fellow et al. [14] (cf. Fig. 1) and the turtle-rifle adversarial object by Athalye et
al. [2] (cf. Fig. 2). This erratic and unintuitive nature of machine learning deci-
sion making makes it especially hard to achieve machine learning systems that
are trustworthy enough to be deployed in real world scenarios.

Disturbing issues with regards to both social fairness [31] and safety critical
applications [26] are direct consequences of these properties and have repeatedly
halted the adoption of machine learning systems in practical applications beyond
the minimal-risk domains where they can currently be employed.
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As machine learning transforms the world, formal methods play a
key role in ensuring that learned systems are well-understood, fair

and safe.

This landscape, while challenging, represents a fruitful soil for the application of
formal methods. From model checking [8,32] of large reactive systems to verifying
large code bases [44], the formal methods community has in the past routinely
provided reliable, mathematically sound approaches to analyze and verify large,
complex systems. Conceptually, this is precisely what is needed to enable the
widespread adoption of machine learning systems in practical domains where
safety and security become imperative.

However, there is still a noticeable gap between machine learning and for-
mal methods. The challenging nature of machine learning systems requires
approaches that are specifically tailored to the system at hand to achieve scalabil-
ity, comprehensibility and reliability. Symmetrically, the field of formal methods
also stands to benefit from novel approaches in machine learning.

Formal methods, at present, offer mathematically precise and rigorous anal-
yses of complex systems. As a consequence, formal methods play a significant
role in the adoption of computer systems into safety critical industries, from
healthcare to aerospace applications and finance [45]. However, when applying
formal methods to large scale systems in practice, issues with scalability arise fre-
quently. Even relatively fundamental techniques of formal methods such as SMT
solving [4] and model checking [32] are challenging to scale to large problems.

In this respect, the profiles of formal methods and machine learning are
diametrically opposed: Formal methods are mathematically rigorous and well
founded while often incurring scaling issues. Machine learning approaches lack
mathematical rigor in favor of approximate, statistical solutions that, in turn,
are easy to scale to large problems. This motivates the introduction of machine
learning approaches to the field of formal methods. By leveraging probabilistic
methods from the field of machine learning, the scalability of formal methods
can be improved.

The challenge is to integrate machine learning approaches which are
inherently imprecise into the field of formal methods without losing

their mathematical rigor.

The track “Formal Methods Meet Machine Learning” (F3ML) aims to bridge
the gap between the communities of formal methods and machine learning. By
nature of its theme, F3ML can be split into two distinct subthemes, one regarding
the application of formal methods in the context of machine learning and one,
conversely, regarding the application of machine learning techniques in the realm
of formal methods.

The first subtheme contains multiple interesting approaches covering a wide
spectrum of machine learning systems that, broadly speaking, make machine
learning systems trustworthy using formal methods. This includes:
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• Approaches that leverage formal methods to verify, explain and/or analyze
machine learning systems in a mathematically rigorous manner.

• Approaches that construct machine learning systems in a manner that is by
construction more trustworthy, either by enforcing safety standards during
construction or constructing systems that are more easily explained or veri-
fied.

• Approaches that leverage statistical methods or methods from traditional test
suite design to yield test suites that can either be used to give probabilistic
bounds on error probabilities of a given system or which ensure that a certain
degree of the systems behavior is properly covered.

The approaches presented here concern a wide variety of machine learning sys-
tems that are relevant in practical use.

The second subtheme addresses the application of machine learning tech-
niques in formal methods. This includes work that, in any way, incorporates sta-
tistical, probabilistic or approximate methods from machine learning to formal
methods to achieve scalability under the constraint that the resulting method
is mathematically rigorous or at least such that its probabilistic error can be
tightly controlled.

In the following, we will briefly introduce each paper belonging to either
subtheme and sketch their respective contributions.

2 Formal Methods for Machine Learning

The presentation of the nine contributions of the track can be structured in
the following three sections that roughly focus on explanation, verification, and
testing, respectively:

2.1 Explanations of Machine Learning Systems

Explaining a machine learning system entails giving conceptual reasoning as to
how the system works and how it makes its decisions in a way that is comprehen-
sible to humans [10]. The following three contributions represent different fla-
vors of explainability: The first paper presents an “explainable-by-construction”
approach, aiming to construct a machine learning system that is by virtue of
its structure comprehensible to humans. The second paper presents an approach
that changes the representation of a machine learning system, transforming a pre-
viously black-box system into a comprehensible, white-box system that serves as
an explanation. The third contribution combines formal methods and machine
learning to increase the dependability of AI and increase their robustness. Cen-
tral to their approach is the modeling of uncertainty—that is inherent to almost
all machine learning systems—using formal methods.

Learning Explainable Controllers. In their paper “Algebraically Explainable
Controllers: Decision Trees and Support Vector Machines Join Forces” [22]
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Jüngermann, Křet́ınský, and Weininger use two machine learning models—
Support Vector Machines (SVMs) [35] and Decision Trees [33]—to encode a previ-
ously constructed controller in a new model that is easier to comprehend, analyse,
and verify, and that also has a smaller memory footprint for usage in e.g. embedded
systems. Their approach highlights the benefits of Decision Trees:

• They are human comprehensible and are therefore widely regarded as explain-
able structures in XAI research [17,46].

• They encode shared predicates efficiently reducing memory footprint.

Generally, a drawback of using Decision Trees as a machine learning (ML)
model is that they are either greatly limited in their expressiveness in comparison
to other ML models or that their training is very inefficient (several aspects
of optimal decision tree construction are NP complete [33, Chapter 6.1]). The
inefficiency is a result of the learning algorithm of Decision Trees: At each node
all possible splits are ranked using one of many established measures. Thus, the
training time is mostly influenced by the class of predicates used. While the
space of simpler (axis-aligned) predicates is finite and can easily be explored
completely, more expressive predicates (like linear, polynomial, and algebraic
predicates) cannot be ranked efficiently.

The authors instead propose the usage of SVMs to find proper predicates.
An SVM works by finding the best separating hyperplane between two classes
of points and is therefore a natural candidate for finding linear predicates. Addi-
tionally, the so-called kernel trick is almost always applied to SVMs. A kernel is
a non-linear projection of the original data into a higher dimensional space that
can be efficiently computed. As a result, linear predicates found by the SVM in
the higher dimensional space correspond to algebraic predicates when observed
in the original space. Combining this trick with domain knowledge, the authors
derive a problem specific higher-dimensional space that yields polynomial pred-
icates of second degree (quadratic equations) as found frequently in physical
applications.

Further, the authors present a series of post-processing steps that can be
applied to predicates to improve their comprehensibility making the model an
even better explanation. With their running example “cruise control” the authors
show how their approach can capture the behavior of a controller using a Deci-
sion Tree with just 13 predicates (the same number of predicates another team
reached with a handcrafted solution).

Explaining Neural Networks via Decision Structures. It is a well-known fact
that, despite their widely renowned success in practice, neural networks are
regarded as opaque models (so-called black-box models), whose behavior still
evades human intuition [11]. The paper “Towards Rigorous Understanding of
Neural Networks via Semantics-preserving Transformation” [38] by Schlüter,
Nolte, and Steffen presents a conceptual approach that opens the metaphori-
cal black-box by transforming a (piece-wise linear) neural network into a fully
semantically equivalent white-box model in the form of a Typed Affine Decision
Structure (TADS). TADS are also structurally similar to Decision Trees, utilizing
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again the explainable nature of Decision Trees [17,46] as in the previous paper.
Therefore TADS constitute a suitable model for correct, sound, and complete
explanations of neural network behavior.

Conceptually, TADS are obtained from a given piece-wise linear neural net-
work using symbolic execution [5,25] yielding complete explanations for neural
network behavior. The authors transform the resulting structure into a deci-
sion tree specialized to the profile of neural networks: For example, the pred-
icates derived from neural networks are usually unique, rendering aggregation
and variable ordering unnecessary (techniques used extensively in Decision Dia-
grams and Random Forests). On the other hand, new techniques are applied like
infeasible path elimination [15,34] that greatly reduce the size of TADS while
preserving semantics. Moreover, much like in the case of Algebraic Decision Dia-
grams [3], the authors show that TADS also inherit the algebraic properties of
the underlying algebra of the terminal nodes (which is for TADS a real-valued
vector space). This can be used to elegantly decide a wide array of questions
regarding neural networks, most notably whether two neural networks represent
the same function or whether they represent functions that differ by only a small
amount. The paper contains a running example that illustrates how TADS can
be used to precisely explain, verify and compare smaller-sized neural networks.

Robust and Dependable Artificial Intelligence. In his talk “Robust and Depend-
able Artificial Intelligence” Nils Jansen presents his vision of foundational and
application-driven research in artificial intelligence (AI). He takes a broad stance
on AI that brings together machine learning, control theory, and formal methods,
in particular formal verification. As part of his research line, he studies prob-
lems inspired by autonomous systems, planning in robotics, and direct industrial
applications. A shared key aspect in these problems is a thorough understanding
of the uncertainty that may occur when machine learning agents operate in the
real world. He details the following goals and the inherent real-world challenges
that are central to his efforts:

• Increase the dependability of AI in safety-critical environments.
• Render AI models robust against uncertain knowledge about their environ-

ment.
• Enhance the capabilities of verification to handle real-world problems using

learning techniques.

As a concrete research highlight, Nils Jansen presents a method that directly
integrates techniques from machine learning with formal verification. He uses
partially observable Markov decision processes (POMDPs) as formal model for
planning under uncertainty, and recurrent neural networks (RNNs) as policy rep-
resentations for these POMDPs. He trains RNN-based policies and then auto-
matically extracts a so-called finite-state controller (FSC) from the RNN. Such
FSCs offer a convenient way to verify temporal logic constraints. His method
exploits so-called counterexamples as diagnostic information to either adjust the
complexity of the extracted FSC, or to improve the policy by performing focused
retraining of the RNN. The method synthesizes policies that satisfy temporal
logic specifications for POMDPs with up to millions of states.
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2.2 Verification of Machine Learning Systems

The following three contributions are each concerned with different flavors
of machine learning verification. Broadly speaking, the considered verification
approaches entail any approach that can either prove or disprove properties of
machine learning systems in a mathematically rigorous manner, ensuring their
safe deployment in safety critical domains.

Formal Verification for Neural Networks. The current renaissance in artificial
intelligence (AI) has led to the advent of data-driven machine learning (ML)
methods deployed within components for sensing, actuation, and control in
safety-critical cyber-physical systems (CPS). While such learning-enabled com-
ponents (LECs) are enabling autonomy in systems like autonomous vehicles
and robots, ensuring that such components operate reliably in all scenarios is
extraordinarily challenging, as demonstrated in part through recent accidents in
semi-autonomous/autonomous CPS and by adversarial ML attacks.

In his talk “Formal Verification for Neural Networks in Autonomous Cyber-
Physical Systems” Taylor Johnson discusses formal methods for assuring
specifications—mostly robustness and safety—in autonomous CPS and subcom-
ponents thereof using the software tools NNV and Veritex, developed as part of
an ongoing DARPA Assured Autonomy project. These tools have been evaluated
in CPS development with multiple industry partners in automotive, aerospace,
and robotics domains, and allow for analyzing neural networks and their usage in
closed-loop systems. Further, Taylor Johnson discusses his ongoing community
activities that are relevant in this context, such as the Verification of Neural
Networks Competition (VNN-COMP) held with the International Conference
on Computer-Aided Verification (CAV) the past few years, as well as the AI
and Neural Network Control Systems (AINNCS) category of the hybrid systems
verification competition (ARCH-COMP) also held the past few years. The talk
concludes with a discussion of future directions in the broader safe and trust-
worthy AI domain, such as in new projects verifying neural networks used in
medical imaging analysis.

Property Directed Verification of Recurrent Neural Networks. In their paper
“Analysis of Recurrent Neural Networks via Property-Directed Verification of
Surrogate Models” [24], Leucker et al. present a novel approach to the prop-
erty directed verification of Recurrent Neural Network (RNN) classifiers such
as Gated Recurrent Units (GRUs) and Long Short-Term Memory networks
(LSTMs) [7,19]. RNNs operate on input sequences of variable length making
them a suitable model for e.g. speech recognition tasks. Assigning a label to any
given input allows one to model the behaviour of a binary classifier in terms of
a deterministic automaton. As end-to-end verification of RNNs would require
unrolling the network multiple times, standard neural network verification tech-
niques would be overly expensive. This motivates the need for a different app-
roach tailored specifically to their profile by building on active automata learn-
ing.
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The authors use L*, a well understood and rigorous algorithm that can learn
an unknown automaton by actively probing it [1], to iteratively learn an automa-
ton that acts as a surrogate model of the RNN at hand. This yields an elegant
and effective verification loop that repeatedly refines the surrogate model until
it mirrors the neural network closely to reveal potential erroneous behavior. An
especially important facet of this approach is the targeted refinement of the surro-
gate model, actively inspecting it for property violations and checking whether
these violations transfer from the surrogate model to the actual system. The
paper also presents experimental results underlining the scalability and utility
of this approach, showing that it compares favorably to existing approaches at
the task of verifying LSTMs.

Connecting Reinforcement Learning and Model Checking. In the setting of rein-
forcement learning, a machine learning agent is tasked with learning how to oper-
ate in some environment, formalized as a Markov Decision Process, to maximize
some form of reward [23,41]. This setting is of huge practical interest as it mod-
els the learning process of humans that learn through experience how to operate
in the real world. As a consequence, there exist many different approaches to
solving these problems, some from the realm of machine learning and some being
based upon formal methods and mathematical rigor.

The differences, similarities and synergies between these approaches are high-
lighted in the paper “The Modest State of Learning, Sampling, and Verifying
Strategies” [18] by Hartmanns, and Klauck. The paper connects probabilistic
model checking and statistical model checking with scheduler sampling, as well
as traditional Q-learning with value iteration methods and deep Q-learning.
Further, the authors present theoretical and empirical comparisons between
these methods. An especially interesting observation is made regarding sym-
metry between the formal methods approaches and the reinforcement learning
approaches. Q-learning and probabilistic model checking work relatively simi-
lar, both converging to the optimal strategy via a fixed-point based iteration
scheme. Both methods incur huge memory costs as the problem becomes more
complex. Deep Q-learning and statistical model checking with scheduler sam-
pling are both used to remedy this issue, providing easier scalability at the cost
of precision. The authors also discuss corresponding tool support for statistical
model checking [29] and how it can be applied to machine learning in the form
of deep statistical model checking [16].

2.3 Test-Based Validation of Machine Learning Systems

In many cases, verification of neural networks is computationally too expensive
to be feasible. In such cases, it is natural to test the neural network at hand.
While not as rigorous as formal verification, software testing is a cornerstone of
ensuring trustworthiness of software [13], but its extension to machine learning
systems is challenging. The following paper is concerned with the transfer of
traditional testing strategies to neural networks.
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Neural Network Testing. As neural networks do not generally adhere to human
intuition, it is much more difficult to evaluate whether a given test suite ade-
quately covers enough of the neural networks behavior to give confidence in its
reliability. In their paper “An Overview of Structural Coverage Metrics for Test-
ing Neural Networks” [43] Pasareanu et al. discuss various coverage metrics for
testing neural networks.

The authors present multiple different coverage metrics from existing litera-
ture, some adapted from traditional testing, some specifically designed for neural
networks. Especially for the coverage metrics that are adapted from traditional
testing, it is not obvious whether they adapt well to neural networks. Therefore,
the authors conduct an experimental study where they examine the link between
coverage metrics and the quality of the corresponding test suite. In particular,
they show that some existing coverage metrics are inadequate as an indicator
for a good coverage of the neural networks behavior, revealing a potential gap
in existing research.

The authors also present DNNCov, a tool that automatically generates cov-
erage reports for a given test suite and a given neural network, indicating the
coverage achieved by said test suite on said network. The same tool can also be
used for other purposes such as the reduction of test suites and the pruning of
unused neurons.

3 Machine Learning for Formal Methods

In the previous section, we already discussed the paper “The Modest State of
Learning, Sampling, and Verifying Strategies” [18] which discusses, among other
topics, the applicability of statistical model checking to the task of verifying neu-
ral network based reinforcement learning systems. Thus, it interprets statistical
model checking as a formal method that is applied to machine learning systems.

However, it is important to note that statistical model checking plays a
twofold role in this context. While statistical model checking has its roots in for-
mal methods, it relies on probabilistic methods and is thus technologically closely
aligned with the field of machine learning. In that way, statistical machine learn-
ing can be considered as an approach that leverages tools from machine learning
to achieve scalability of formal methods.

The following papers present improvements in the realm of statistical model
checking, incorporating tools from probability theory and statistics to improve
reliability and accuracy of statistical model checking.

Importance Splitting in Statistical Model Checking. Statistical model checking
consists of learning the probability that the execution of a system will satisfy a
given property [29,30]. The approach elegantly combines (1) a simulation-based
algorithm for learning the probability distribution of satisfying the property by
observing a fixed number of its executions with (2) runtime verification algo-
rithms applied on these executions.

The efficiency of the SMC depends on the number of executions needed to
obtain an estimate while minimizing the error rate. The most common SMC



402 K. Larsen et al.

learning algorithm is that of Monte Carlo. When it comes to validating a prop-
erty that has a high chance of being satisfied, Monte Carlo is considered efficient.
In this case, the algorithm minimizes the number of simulations and guarantees a
low error rate. The situation changes when one must estimate probability distri-
butions of rarer events such as the probability that an execution contains a bug.
This situation comes from the uniform character of the Monte Carlo simulation
which does not aim to find the bug. It therefore takes too many simulations
to influence the variance of the distribution. To overcome this problem, several
authors have proposed learning algorithms that guide the simulations. These
techniques, called “importance splitting” [21], orient the execution simulation
according to the intermediate results of the runtime verification algorithm. This
helps to isolate simulations and identify the bug. These techniques have been
deployed in many contexts ranging from automotive to computational biology.
Most of the existing work is limited to prototypes and pure probabilistic systems.
Except for very restricted situations [20], real-time is not considered. This limits
the applicability of the approaches to concrete problems. The paper “Importance
Splitting in UPPAAL” [27] proposes a new importance splitting approach for
systems that combine both probabilistic and timed aspects. This work extends
existing work on the topic by (1) adding real-time aspects into the sampling
process, and (2) providing a professional implementation within the UPPAAL
toolset. The efficiency of the approach is illustrated on two concrete problems,
one of them being an estimate of the spread of the contagion of the COVID-19
epidemic.

Statistical Model Checking for Variability-Intensive Stochastic Systems. Software
product lines are sets of computer systems that share many common behaviors
and that differ in identified functionalities. For a set of n functionalities one
can generally create 2n different systems. Checking each system individually
would introduce an explosion of time. To overcome these problems, researchers
have proposed compact product line representations [9]. These representations
make it possible to check all the products in one pass. For nearly 10 years, these
approaches were limited to purely Boolean systems. Recently, this approach
has been extended to stochastic systems. In this case, one must calculate the
probability that a product satisfies the property. This calculation is generally
done by extending classical exhaustive algorithms such as those implemented in
PRISM (see [37] for an example). The contribution of the article “Verification of
Variability-Intensive Stochastic Systems with Statistical Model Checking” [28]
is to extend SMC to learn the probability distribution of each product by sim-
ulating the structure which gathers the behaviors of the set of products. This
approach has a double advantage:

1. The SMC simulation is more efficient than the exhaustive model checking
algorithm.

2. The simulations are done at once on all the products by exploiting the effi-
ciency.
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The authors implemented their approach in a prototype and proved its effective-
ness on concrete case studies.
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22. Jüngermann, F., Kret́ınský, J., Weininger, M.: Algebraically explainable con-
trollers: decision trees and support vector machines join forces. Int. J. Softw. Tools
Technol. Transf. (2022, to appear)

23. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

24. Khmelnitsky, I., et al.: Analysis of recurrent neural networks via property-directed
verification of surrogate models. Int. J. Softw. Tools Technol. Transf. (2022, to
appear)

25. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

26. Kohli, P., Chadha, A.: Enabling pedestrian safety using computer vision tech-
niques: a case study of the 2018 Uber Inc. self-driving car crash. In: Arai, K.,
Bhatia, R. (eds.) FICC 2019. LNNS, vol. 69, pp. 261–279. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-12388-8 19
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Abstract. Optimal decision-making under stochastic uncertainty is a
core problem tackled in artificial intelligence/machine learning (AI),
planning, and verification. Planning and AI methods aim to find good
or optimal strategies to maximise rewards or the probability of reaching
a goal. Verification approaches focus on calculating the probability or
reward, obtaining the strategy as a side effect. In this paper, we con-
nect three strands of work on obtaining strategies implemented in the
context of the Modest Toolset: statistical model checking with either
lightweight scheduler sampling or deep learning, and probabilistic model
checking. We compare their different goals and abilities, and show newly
extended experiments on Racetrack benchmarks that highlight the trade-
offs between the methods. We conclude with an outlook on improving
the existing approaches and on generalisations to continuous models, and
emphasise the need for further tool development to integrate methods
that find, evaluate, compare, and explain strategies.

1 Introduction

In many everyday interactions, but also in almost every system where software
interfaces with and controls physical processes, decisions must be made in the
presence of uncertainty about the possible actions’ outcomes and the environ-
ment they interact with. In most cases, the uncertainty can be captured by
randomisation: In casino card games, human players would like to maximise
their chances of winning, or the expected return, against a randomly shuffled
deck of cards. In travel planning, we have to choose between transport options
that are often unreliable, and would like to maximise the probability of arriving
on time. Our travel plans often include fallback options: the choices to make to
recover when one step has gone wrong. Software controlling industrial processes
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must keep the process safe while optimising for, e.g., product completion time or
throughput. Network routing over unreliable links must find routes that achieve
a reasonable compromise between message delivery probability and expected
delivery time. In autonomous driving, the car must react safely to unpredictable
outside actors, imprecise measurements, and imperfect actuators without exces-
sively inflating travel time. To appropriately deal with these kinds of situations,
we need to find optimal, safe, or sufficiently performant strategies1 describing
the action to choose for every possible state of the system and/or environment.

The fundamental mathematical model for such scenarios are Markov decision
processes (MDP). In MDP, the system jumps in discrete time steps from one dis-
crete state to another. In every state, a nondeterministic choice (controllable or
adversarial) over the available actions is followed by a probabilistic (i.e., random)
choice of the next state. Various extensions cover continuous-time [16,36,79] and
continuous-state [40,42,99] scenarios. The core problem, however, is always the
same: Find a strategy satisfying the stated objectives. We focus on maximising
the probability to eventually reach a set of goal states: probabilistic reachability.

Over the past decades, two broad types of solutions have been developed
and implemented in tools. The verification approaches build on probabilis-
tic and statistical model checking (PMC and SMC, respectively). PMC [8,77]
runs an iterative numeric algorithm on a representation of the full MDP to
ε-approximate the maximal reachability probability. While the corresponding
strategy can be extracted from the algorithm’s data structures upon termina-
tion, doing so has traditionally not been the focus of PMC. The strategy itself is
typically represented as a list mapping (all reachable) states to chosen actions.
SMC [1,66,80,105] applies Monte Carlo simulation to a concise executable speci-
fication of an MDP—typically given in a higher-level modelling language such as
Modest [16,54] or JANI [22]—to estimate the probability under a given strategy.
While highly effective in evaluating (the quality of) a strategy, it needs to be
combined with a method to find an (optimal or good-enough) strategy in the
first place. In contrast to PMC, SMC does not suffer from state space explosion:
its memory usage is constant in the size of the MDP, as it only needs to store
the current and next states obtained via the executable specification. It is thus a
good partner for strategy-finding methods with similarly constant or moderate
memory usage.

The first such method that we use in this paper is lightweight scheduler sam-
pling (LSS) [81]: It randomly picks m strategies, applies an SMC-based heuristic
to find the best one, and returns an SMC estimate under this strategy as an
underapproximation of the maximum reachability probability. The key idea and
advantage of LSS is its use of a constant-memory representation of a strategy as
a fixed-size integer. It thus finds and evaluates a strategy in constant memory.

Finding good strategies is the focus of methods developed in (probabilistic)
planning [26,72,104] and artificial intelligence/machine learning. A prominent
success is reinforcement learning (RL) [100], in particular Q-learning [84,85].
Here, again a concise specification of the MDP is executed in an initially random

1 Depending on context, strategies are also called adversaries, policies, or schedulers.
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manner, storing and over time improving a measure of the quality of every state-
action pair that is executed. Similar to PMC, the strategy obtained by RL is a
list mapping each visited state to the (best-quality) chosen action.

Deep neural networks (NNs) are responsible for astounding advances across
applications as diverse as image classification [76], natural language process-
ing [67], and playing games [98]. Deep reinforcement learning (deep RL) algo-
rithms that use deep NNs to store the quality measure have exhibited unprece-
dented performance in various tasks [85]. At the cost of losing the eventual
convergence to the optimum, deep RL reduces the memory usage of RL, possi-
bly to constant (if we use a fixed-size NN independent of the size of the MDP or
its executable specification). The combination of deep RL for finding strategies
with SMC for their evaluation is deep statistical model checking (DSMC) [44].

So far, these methods have been presented, implemented, and benchmarked
mostly in isolation. A wide range of PMC variants is available to users in tools
such as Prism [78], Storm [64], and the Modest Toolset [57]. The lat-
ter, which is the focus of this paper, also includes the statistical model checker
modes [21] with support for LSS. The quantitative verification benchmark set
(QVBS) [60] provides the standard set of models for benchmarking and compar-
isons of PMC and SMC tools. RL and in particular deep RL approaches, on the
other hand, are often evaluated on training environments specified implicitly in
the form of simulation code. In the academic context, the Arcade Learning Envi-
ronment is widely used, which provides game simulators for different ATARI 2006
benchmarks [12]. For reinforcement learning, these training environments are
then often interfaced with the learning algorithm via the OpenAI Gym API [19].
It is used by algorithms interacting with the interface [35,47,68,89,97], as well as
benchmarks that implement (and sometimes extend) it [10,27,37,102,103,106].
We use the OpenAI Gym API via MoGym [45] to train NN and then evaluate
their quality with DSMC.

This paper contributes a uniform presentation of PMC, SMC with LSS, and
deep RL with DSMC, spanning the range from verification approaches deliver-
ing optimal strategies at the cost of state space explosion to AI-based methods
using deep NN approximations for limiting memory usage at the cost of losing
optimality guarantees. We spell out the consequences that the differing goals of
these methods have for obtaining and ultimately explaining strategies. Our new
experimental comparison in Sect. 4 confirms the expected differences, but also
highlights the particularities and similarities of the approaches. For example, the
effectiveness of LSS appears to be an indicator for the (startup) difficulty of RL
on our models. We use different variants of Racetrack benchmarks embodying
a simplistic autonomous driving scenario. They are easy to visualise and under-
stand, yet can flexibly be configured to provide various kinds of difficulties for
the methods we study. Their action space is also very regular, which is currently
a prerequisite for deep RL to be effective.
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2 Preliminaries

For any nonempty set S we let D(S) denote the set of discrete probability
distributions over S, i.e., of functions μ : S → [0, 1] such that the support
spt(μ) = { s ∈ S | μ(s) > 0 } is countable and

∑
s∈spt(μ) μ(s) = 1.

Definition 1. A finite Markov decision process (MDP) [13,69,92] is a tuple

M = 〈S,A, T ,R, s0,S∗〉

consisting of a finite set of states S, a finite set of actions A, the partial transi-
tion probability function T : S ×A ⇀ D(S), a reward function R : S ×A×S →
R≥0 assigning a reward to each triple of state, action, and target state, an initial
state s0 ∈ S, and a set of goal states S∗ ⊆ S. For every state s ∈ S, there is at
least one action a ∈ A such that T (s, a) is defined.

An action a ∈ A is applicable in a state s ∈ S if T (s, a) is defined. In this case,
we also write T (s, a, t) for the probability μ(t) of going to state t according to
T (s, a) = μ. A(s) ⊆ A is the set of all actions that are applicable in state s.
An infinite sequence of states connected via transitions with applicable actions,
ζ = (si)i∈N, is a path.

The reward function assigns to every transition from one state to another
a reward depending on the start and destination state as well as the action.
This enables us, e.g., to reason about the sum of the rewards obtained when
taking multiple transitions in a row. Rewards, while not influencing reachability
probabilities, are an important concept in RL that we come back to in Sect. 3.3.

Definition 2. Given an MDP M as above, a function

σ : S → A

satisfying σ(s) ∈ A(s) for all states s is a (deterministic) memoryless strategy.

A strategy determines the action to take for every state. Restricting MDP M to
the choices made by strategy σ results in an induced discrete-time Markov chain
(DTMC) M |σ: an MDP where ∀s ∈ S : |A(s)| = 1. Intuitively, the probability
that a certain path (or prefix of it) is taken in a DTMC can be calculated as
the product over the transition probabilities of the path (prefix). Formally, since
the set of paths is uncountable, the cylinder set construction [77] can be used to
obtain a probability measure P over paths such that in particular the set ΠS∗ of
paths that contain a state in S∗ is measurable. Then P (ΠS∗) is the reachability
probability pS∗ in the DTMC. In an MDP, each strategy σ induces a DTMC
M |σ and consequently a reachability probability pσ

S∗ . Then pmax
def= supσ pσ

S∗ is
the maximum reachability probability that we are looking for; and an optimal
strategy σmax such that pmax = pσmax

S∗ in fact exists [14].
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3 Finding Strategies

To find strategies that satisfy stated criteria, e.g., (near-)optimality or suitability
for a certain purpose, various approaches have been developed in the fields of
probabilistic verification and artificial intelligence (AI). In this section, we con-
trast (i) the traditional verification approach of probabilistic model checking,
(ii) the more recent lightweight scheduler sampling method that lifts statistical
model checking from DTMC to MDP, (iii) the core AI technique of reinforce-
ment learning, and (iv) its variant using deep neural networks to approximate
the Q-function combined with statistical model checking.

All approaches start with a succinct executable specification of an MDP.
This is either a model specified in a (textual or graphical) modelling language,
for which execution support is provided by some tool’s state space exploration
engine, or a computer program directly implementing the model. For simplicity,
we only assume that we have an interface with the following functions:

– initial() to obtain s0,
– actions(s) to obtain A(s),
– sample(s, a) to (pseudo-)randomly select a next state s′ according to T (s, a),
– distr(s, a) to obtain the distribution μ = T (s, a), e.g., as a list of pairs of

probabilities p and next states s′ such that p = μ(s′), and
– goal(s) that returns true if s ∈ S∗ and false otherwise.

Not all functions will be needed by all approaches; e.g., probabilistic model check-
ing uses distr but not sample whereas reinforcement learning does the opposite.

3.1 Probabilistic Model Checking

Traditional exhaustive probabilistic model checking (PMC) starts by construct-
ing a complete in-memory representation of the MDP: from a call to initial,
it performs a graph search by iteratively following all transitions via calls to
actions and distr until no new states are discovered. The resulting MDP as in
Definition 1 can be stored as an explicit-state graph-like data structure or sparse
matrix, or symbolically using multi-terminal binary decision diagrams [88].

The next step in PMC is to calculate pmax . One approach is to convert the
MDP into a linear program, with one variable per state, which in turn is solved
using any linear programming solver. The value of the variable corresponding to
the initial state will then be pmax . Although this approach can in principle deliver
exact results (though usually up to some floating-point precision), it needs to
store the MDP in memory twice (as in Definition 1 and in suitably-encoded form
for the LP solver), and most LP solvers so far do not scale well to large MDP.
Therefore, most PMC tools default to using iterative numeric algorithms based
on value iteration. Value iteration computes a sequence of values vi(s) for every
state s ∈ S that converges to the maximum reachability probability from each
state (i.e. as if that state was the initial state). It does so by, starting from the
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trivial underapproximation where ∀ i : vi(s) = 1 if s ∈ S∗ and v0(s) = 0 if s /∈ S∗,
applying the Bellman equation

vi+1(s) = maxa∈A(s)

∑
s′∈spt(T (s,a)) T (s, a, s′) · vi(s)

for all states s /∈ S∗. Then limi→∞ vi(s0) = pmax . Value iteration lacks a stopping
criterion to determine the i where vi(s0) is close enough to the true value (e.g.,
within a user-specified relative error ε) [48]. Thus sound PMC tools today use
variants of value iteration that provide such a stopping criterion, e.g., interval
iteration [18,49], sound value iteration [93], or optimistic value iteration [59].

Strategy Representation. Once iterations stop at some i, a (near-)optimal strat-
egy has implicitly been obtained, too: it is, assuming no end components here,

σmax = { s �→ arg maxa∈A(s)

∑
s′∈spt(T (s,a)) T (s, a, s′) · vi(s) }.

The PMC tools Prism, Storm, and mcsta of the Modest Toolset all offer
an option to not only report pmax , but also write σmax to file as a list of state-
action pairs, with as many entries as there are states in the MDP. With typical
ε-correct relative-error implementations of sound value iteration variants, PMC
tools guarantee that, when stopped,

|vi(s0) − pmax |/pmax ≤ ε

(assuming non-zero pmax ; probability-zero states can be determined by graph-
based precomputations [38]). The value of ε is specified by the user, and typically
10−3 or 10−6 by default.

Modest Tools. In the Modest Toolset, the mcsta tool implements PMC.
It is an explicit-state model checker that can use secondary storage (i.e., hard
disks and SSDs) to mitigate state space explosion to some degree at the cost of
runtime [58]. Its focus is on providing correct results; for this purpose, it imple-
ments interval iteration, sound value iteration, and optimistic value iteration,
and recently gained the ability to obtain results that are guaranteed to be free
of errors due to imprecisions and rounding in floating-point calculations [56]. It
was the first tool to implement practically efficient methods for reward-bounded
properties [50], includes a novel symblicit engine to handle very large structured
models [51], and provides methods that work with only a partial exploration of
the state space [4,18]. Beyond MDP, it has state-of-the-art support for Markov
automata [24] and stochastic timed automata [53]. The QComp 2020 and 2021
competitions [23,52] showed that mcsta performs well.

Related Methods. Other alternatives to linear programming and value iteration
are policy iteration [70] and variants such as topological value iteration [28] that
may deliver significant speedups for MDPs with appropriately-sized strongly
connected components. To mitigate state space explosion, we can attempt to
only explore a part of the state space that is likely to be reached [18]; then we
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obtain an upper bound on the reachability probability by assuming all unex-
plored “border states” to be goal states, and a lower bound by assuming them
to be non-goal states. Often referred to as (being based on) BRTDP [83], an app-
roach from probabilistic planning, implementations nowadays—such as the one
in mcsta—are rather different from the original BRTDP technique and better
described as partial exploration-based PMC [4]. A similar approach also known
from probabilistic planning called LRTDP [17] in combination with FRET [75]
has recently been extended to be applicable to all established property types,
except long-run averages and nested properties, on MDP structures with posi-
tive and zero-valued rewards [73]. With this technique, often only a fraction of
the state space—the part sufficient to calculate the property at hand—has to be
visited. The technique is implemented in modysh in the Modest Toolset.

3.2 Statistical Model Checking with Scheduler Sampling

Given our interface to an MDP and a function schedule(s) implementing a
strategy σ to return σ(s), statistical model checking (SMC) estimates the reach-
ability probability on the DTMC induced by σ up to a statistical error. It does
so by sampling the indicator function on paths

1ΠS∗
def= {π �→ 1 if π contains a state in S∗ else 0 }

n times as follows:

1. Initialise s := init().
2. If goal(s), return 1; if the probability to reach a goal state from s is 0,

return 0.
3. Select an action a := schedule(s) and sample the next state: s := sample

(s, a).
4. Go to step 2.

That is, SMC generates n simulation runs. Let k be the number of runs where
1 is returned; then the sample mean p̂S∗

def= k/n is an unbiased estimator for
pσ

S∗ . This basic approach can be modified in various ways to incorporate different
statistical methods that quantify the error to be expected from an SMC analysis.
Popular methods are to compute confidence intervals given n and either a desired
interval width or confidence level; to perform sequential testing using Wald’s
sequential probability ratio test [101], thereby dynamically determining n as the
samples come in; or to use the Okamoto bound [87] that provides a formula
relating n, the confidence level δ, and the error ε a priori such that

P(|p̂S∗ − pS∗ | > ε) < 1 − δ

with typical default values of δ being 0.95 or 0.99. For a more extensive overview
of statistical methods for SMC, we refer the interested reader to the survey by
Reijsbergen et al. on hypothesis testing and its references [94]. The development
of efficient methods to determine whether a state has probability 0 of reaching
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a goal state in step 2 is a topic of ongoing research [5]. When pS∗ is small, ε
must also be small for the result to be useful. Then the n required to achieve
the same confidence grows quickly, leading to a runtime explosion. This is the
rare events problem faced by SMC, for which various rare event simulation [95]
methods exist as mitigation.

As specified above, SMC requires a strategy to be given in order to be appli-
cable to MDP. Many SMC tools do not provide support for user-specified strate-
gies, but instead implicitly use the uniform random strategy that, every time
schedule(s) is called, uniformly at (pseudo-)random samples a new action from
A(s). The result consequently is some probability somewhere between maxi-
mum and minimum. UPPAAL SMC [34] notably defines a “stochastic seman-
tics” for probabilistic timed automata that makes continuously uniformly- or
exponentially-distributed choices over time delays followed by discretely uniform
choices over actions. The resulting non-nondeterministic model is sometimes
referred to as stochastic timed automata, not to be confused with the earlier
formalism of the same name of [16] that is a proper extension of probabilistic
timed automata preserving their nondeterminism.

Lightweight scheduler sampling identifies a strategy by a fixed-size (typically
32-bit) integer value. It

1. (pseudo-)randomly selects m such strategy identifiers, then
2. applies a heuristic involving SMC runs as described above under the sampled

strategy to try to find the one that induces the highest probability, and finally
3. performs another SMC analysis for the selected strategy (statistically inde-

pendent from step 2) to obtain an estimate of the probability it induces.

The result is an underapproximation of pmax , up to statistical errors. LSS may
or may not find a strategy better than the uniform random one, but often does
so. Its ability to find a near-optimal strategy depends only on the probability
mass of near-optimal strategies in the space of strategies sampled from.

The key idea that makes LSS work, in constant memory in the size of the
MDP, lies in its implementation of schedule. It uses a hash function H that
takes an arbitrary-length bitstring and returns a 32-bit integer such that, ideally,
(i) small changes in the input result in unpredictable and significant changes in
the output, and (ii) for uniformly random inputs (e.g., of a fixed length), the
outputs appear uniformly distributed over the output space. Then it implements
schedule(s) for strategy identifier s ∈ Z32 by selecting the (H(s.s)mod|A(s)|)-th
element of a fixed ordering of A(s), where s.s is the concatenation of the bitstring
representations of s and s. In this way, schedule implements a memoryless
strategy as required and sufficient for unbounded probabilistic reachability, but
also other types of strategies—such as history-dependent or partial-information
strategies [29]—are easy to implement by appropriately changing the input of H.

We use LSS with a simplified variant of the smart sampling [32] heuristics
for step 2. In addition to m, it is parametrised by nr ≥ m, the simulation budget
per round. In the first round, we perform �nr/m� runs for each of the m strategy
identifiers. Usually, nr is not much larger than m, so this first round produces a
very coarse estimation of the quality of each sampled strategy. We then drop the
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worst-performing half of the strategies before proceeding with the second round,
where �nr/2m� runs are performed per strategy, providing a somewhat better
estimation. This process, dropping the worst half of the remaining strategies
in every round, continues until only one strategy remains. In this way, we can
evaluate a large number of strategies with moderate simulation effort.

Strategy Representation. SMC with LSS returns the estimate of the reachability
probability under the best strategy, and the 32-bit integer identifying that strat-
egy. By itself, this integer is useless: it does not describe the strategy’s decisions
directly. However, given a state of the MDP and the known implementation of
schedule used during the LSS process, we can recompute the strategy’s decision
at any time. We thus get a memory-efficient strategy representation that is not
explanatory in any way.

Modest Tools. In theModestToolset, themodes statistical model checker [21]
implements SMC with LSS as described above. It has dedicated simulation algo-
rithms for MDP, Markov automata, singular stochastic hybrid automata, and gen-
eral stochastic hybrid automata: as the modelling formalism becomes more expres-
sive, simulation becomes computationally more involved, with more and more
complex computations needed for every transition (up to numeric integration to
approximate the non-linear dynamics in general stochastic hybrid automata). To
mitigate the rare events problem, modes implements rare event simulation by
means of importance splitting in a highly automated fashion [20].

Related Methods. Prior to implementing LSS, modes used partial order [15]
and confluence reduction [61] checks to identify whether the nondeterministic
choices in an MDP it simulates are non-spurious, i.e., whether they influence the
probability being estimated. If not, these choices would be resolved randomly;
otherwise, simulation would abort with an error indicating the presence of pos-
sibly non-spurious nondeterminism. Where UPPAAL SMC implicitly applies a
specific strategy—its stochastic semantics—the more recent UPPAAL Stratego
tool [33] combines SMC with the computation of (most permissive) strategies.

3.3 Reinforcement Learning

Reinforcement learning is an AI approach to train agents to take actions max-
imising a reward in uncertain environments. Mathematically, the agent in its
environment can be described as an MDP: the agent chooses actions; the envi-
ronment determines the states and is responsible for the probabilistic outcomes
of the actions. In this paper, we follow the Q-learning approach: We maintain
a Q-function Q : S × A → [0, 1] initialised arbitrarily, or to 0 everywhere. Using
a learning rate parameter α, a discounting factor γ ∈ (0, 1], and a probability ε
that is initially 1, n learning episodes are performed as follows:

1. Set s := init().
2. Perform option a) with probability ε and b) with probability 1 − ε:

a) Select a from actions(s) uniformly at random (exploration).
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b) Select a := arg maxa′∈actions(s) Q(s, a′) (exploitation).
3. Sample s′ := sample(s, a) and set r := 1 if goal(s′) and 0 otherwise.
4. Update Q(s, a) := Q(s, a) + α · (r + γ · maxa′∈actions(s′) Q(s′, a′) − Q(s, a)).
5. Set s := s′; if goal(s) or s has probability 0 of reaching a goal state, end the

episode; else go to step 2.

An episode is very similar to a simulation run, except that we update the Q-
function to estimate the “quality” of taking action a from state s as Q(s, a) and
follow an “ε-greedy” strategy: initially, when ε = 1, we explore randomly; over
time, we make it more and more likely to follow what looks like the best action
to improve our estimate of its quality. RL traditionally optimises for expected
discounted rewards, thus the discounting factor γ; for unbounded reachability
probabilities, we set γ to 1 and only obtain a reward upon reaching a goal state
(as above). As long as we are guaranteed to visit every state infinitely often,
maxa∈A(s0) Q(s0, a) converges towards pmax . Like in value iteration, there is no
stopping criterion that would ensure a specified error.

Strategy Representation. The (near-)optimal strategy obtained when we end the
learning process is directly given by the Q-function: It is

σmax = { s �→ arg maxa∈A(s) Q(s, a) }.

Like in PMC, if we have an explicit in-memory representation of the Q-function,
we can write this strategy to file as a list of state-action pairs.

Modest Tools. RL with an explicit representation of the Q-function is imple-
mented in the Modest Toolset’s modes tool to find strategies in non-linear
stochastic hybrid automata, where classic PMC techniques cannot be applied
due to the continuous nature of the state space [86].

Related Methods. The first use of RL for formal models known to us is in the
work of Henriques et al. [63], which however neglects the statistical error incurred
by performing repeated tests. The first sound formal use of RL is in [18]. For
probabilistic reachability, the rewards are very sparse: only when we hit a goal
state we do receive a reward. This tends to make RL inefficient; for linear-time
properties, denser reward structures can automatically be created, see, e.g., [55].

3.4 Deep Statistical Model Checking

Deep Reinforcement Learning. In RL as described above, we need to store the
Q-function in memory; as we visit more states in large MDP, this will lead to
state space explosion as in PMC. To avoid this scalability limitation, the use
of function approximators to store an inexact representation of the Q-function
has become popular in recent years. In particular, when we use deep neural
networks as a function approximator with RL, we perform deep reinforcement
learning resp. deep Q-learning [39,85]. This use of artificial neural networks
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(NN) to learn strategies in large systems has seen dramatic successes, exhibited
by the abilities of today’s AI systems to play, win, and solve games such as Atari
games [85], Go and Chess [98], and Rubic’s cubes [2].

NN consist of neurons: atomic computational units that apply a (non-linear)
activation function to a weighted sum of their inputs [96]. We consider feed-
forward NN, where neurons are arranged in a sequence of layers. Inputs are
provided to the first (input) layer, and the computation results are propagated
through the layers in sequence until reaching the final (output) layer. In every
layer, every neuron receives as inputs the outputs of all neurons in the previous
layer. For a given set of possible inputs I and (final layer) outputs O, a neural
network can be considered as an efficient-to-query total function π : I → O.
For the problems discussed in this paper, one can assume that this function
constitutes the strategy σ: the inputs are the states S and the outputs are
actions from A. Deep neural networks consist of many layers.

Strategy Representation. A NN represents a Q-function, and thus a strategy.
The NN used in deep RL are typically initialised with random weights, repre-
senting a random initial Q-function. As we learn more and more episodes, the
decisions determined as optimal by the NN tend to converge towards a good,
often optimal, strategy. However, in contrast to the exact Q-learning of Sect. 3.3,
deep RL does not need to converge in this way, and in practice rarely behaves
monotonically. That is, more episodes can (temporarily) make the NN repre-
sent a worse strategy. To preserve the memory advantage of NN over explicit
representations, at the end of the learning process, we store the NN itself (i.e.,
its structure and weights) as the strategy instead of turning it into a list of
state-action pairs (which would require a full state space exploration). The dis-
advantage of this representation is that, similar to the scheduler identifiers of
LSS, the NN definition itself neither makes the strategy’s decisions explicit nor
explains them.

Deep Statistical Model Checking. In contrast to Q-learning with an exact rep-
resentation of the Q-function, we cannot rely on the value returned by the NN
for the initial state being in any formal way related to pmax [44]. One approach
to assess the quality of strategies given by NN is deep statistical model checking
(DSMC) [44], which bridges machine learning and verification: first, deep RL
delivers a strategy σ in the form of an NN trained to act and achieve a certain
goal in an environment described by a formal model. Second, SMC, as a verifi-
cation technique, assesses the quality of the strategy defined by the NN. This is
done by implementing the schedule function in SMC as described in Sect. 3.2
by querying the NN as a black-box oracle: The NN receives the state descriptor
s as input, and it returns as output a decision σ(s) determining the next step.
Hence, at the core of DSMC is a straightforward variation of SMC, applied to an
MDP, together with an NN that has to take the decisions. The DSMC approach
furthermore allows assessing the progress of the NN during learning. As shown
in works on DSMC [44,46], the quality assessment of an agent during training
is not trivial and cannot always be derived from the observed training returns.
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Modest Tools. The DSMC functionality of using a previously trained NN
to resolve the nondeterminism during SMC is implemented in a branch of
modes [44] that will be integrated into the official version of the Mod-
est Toolset soon. In addition, this DSMC extension of modes is used in
MoGym [45]. MoGym is a toolbox that bridges the gap between formal meth-
ods and RL by enabling (a) formally specified training environments to be used
with machine-learned decision-making agents, and (b) the rigorous assessment
of the quality of learned agents. For (a), it implements and extends the OpenAI
Gym API [19]. MoGym is based on Momba [74], a Python toolbox for dealing
with quantitative models from construction to analysis centred around JANI.
MoGym can process JANI models for the description of a training environment
and, based on the induced formal MDP semantics, makes it possible to train
agents using popular RL algorithms. For (b), the environment format itself is
accessible to state-of-the-art model checkers. This enables to perform DSMC by
using modes directly in MoGym. The DSMC extension of modes is also inte-
grated in DSMC evaluation stages [46], where DSMC is applied during deep RL
to determine state space regions with weak performance to concentrate on dur-
ing the learning process. To visualise the SMC results of modes when executing
DSMC on Racetrack benchmarks, the tool TraceVis has been implemented [43].
It takes the traces generated by modes as input, visualises and clusters them,
and provides information on the goal probability when starting on a predefined
position.

Related Methods. Other works combining formal methods with NN, for example,
study strategy synthesis for partially observable MDPs (POMDPs) using recur-
rent neural networks (RNN). The RNN is then used to construct a Markov chain
for which the temporal property can be checked using PMC [25]. Furthermore,
an iterative learning procedure consisting of SMT-solving and learning phases
has been used to construct controllers for stochastic and partially unknown envi-
ronments [71]. In addition, a reinforcement learning algorithm has been invented
to synthesize policies which fulfil a given linear-time property on an MDP [62].
By expressing the property as a limit deterministic Büchi Automaton, a reward
function over the state-action pairs of the MDP can be defined such that the
policy is only constructed by considering the part of the MDP which fulfils the
property. This is of special interest when working on sparse reward models. To
be able to add features to NN acting as a controller without retraining and losing
too much performance, quantitative run-time shields have been devised [7]. This
method can easily be implemented as an extension of DSMC. The shields may
alter the command given by the controller before passing it to the system under
control. To generate these shields, reactive synthesis is used.

3.5 Summary

The four approaches we presented provide distinct characteristics and advan-
tages as well as drawbacks: PMC delivers precise results up to a user-specified
error ε, and RL eventually converges to the true result as well with statistical
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guarantees [18], whereas SMC with LSS and deep RL in DSMC cannot be guar-
anteed to eventually obtain a near-optimal strategy. In all but PMC (using sound
algorithms such as interval iteration), there is no unconditional stopping crite-
rion to determine when ε is reached. PMC is thus the only technique that can
guarantee optimality. This comes at the cost of memory usage: the state space
explosion problem. RL faces the same issue, where it however can be avoided by
using NN trained with deep RL in DSMC—at the cost of the eventual conver-
gence guarantee. Where PMC needs the distr method of our MDP interface,
sample suffices for the others. That is, PMC requires a white-box model, whereas
the other methods only need sampling access—a much simpler requirement for
practical applications. Rare events are no issue for PMC, but lead to a run-
time explosion in SMC, and similarly hinder RL and DSMC, where the learning
process will be very unlikely to ever explore a path leading to one of the rare
goal states. Finally, in terms of the representation of the strategy, PMC and RL
deliver explicit and complete strategies, which however may be unmanageably
large, whereas LSS and DSMC provide compact yet opaque representations.

4 Experiments

We compare the approaches presented above on a set of six Racetrack bench-
marks differing in the track shape. Originally Racetrack is a pen and paper
game [41]: A track is drawn with a start line and a goal line on a sheet of
squared paper. A vehicle starts with velocity 0 from some position on the start
line, with the objective to reach the goal as fast as possible without crashing into
a wall. Nine possible actions modify the current velocity vector by one unit (up,
down, left, right, four diagonals, keep current velocity). This simple game lends
itself naturally as a benchmark for sequential decision making. Like Barto et al.
[11], we consider a noisy version of Racetrack that emulates slippery road con-
ditions: actions may fail with a given probability, in which case the action does
not change the velocity and the vehicle instead continues driving with unchanged
velocity vector. In particular, when extending the problem with noise, we obtain
MDP that do not necessarily allow the vehicle to reach the goal with certainty.
In a variety of such noisy forms, Racetrack was adopted as a benchmark for
MDP algorithms in the AI community [11,17,82,90,91]. Because of its analogy
to autonomous driving, Racetrack has recently also been used in multiple veri-
fication and model checking contexts [9]. Due to the velocity vector only taking
integer values, Racetrack benchmarks are discrete-state models; by definition,
they are discrete-time.

Experimental Setup. We performed our experiments on Racetrack benchmarks
with a noise probability of 10%. For each Racetrack instance, given as a JANI
model, we use PMC, SMC with LSS, and deep RL with DSMC to find a good
or optimal strategy for reaching the goal line from a certain start position and
compute its induced probability. For PMC, we used mcsta on an Intel Core
i7-6600U system (2 cores, 4 threads) with 16 GB of RAM running 64-bit Win-
dows 10. For SMC with LSS, we used modes on an Intel Core i7-4790 system
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(4 cores, 8 threads) with 8 GB of RAM running 64-bit Ubuntu Linux 18.04. For
deep RL and DSMC, we used MoGym, internally calling the DSMC function-
ality of modes, on an AMD Ryzen 9 5950X system (16 cores, 32 threads) with
124 GB of RAM running 64-bit Ubuntu Linux 22.04. All runtimes we report in
our tables are in seconds.

SMC-LSS Specifics. Since modes does not implement sophisticated methods
for detecting probability-zero states, we used step-bounded properties for SMC
with LSS: we asked for the probability to reach the goal line via at most 100,
200, 400, and 800 transitions. We also computed the true probabilities for these
modified properties via PMC with mcsta for comparison, and used SMC without
LSS but with the uniform random strategy (“SMC/unif.” in our tables). To
obtain reproducible results, we fixed the seeds for the pseudo-random number
generators in LSS and SMC, and disabled multi-threading. That is, we used one
simulation thread only. SMC and LSS are easy to speed up by parallelisation,
so this puts them at an unnatural disadvantage. We compare three different
“families” of strategies (indicated by “fam.” in our tables): one sampled with seed
1, one with seed 2, and one with seed 3. For each family, we run LSS sampling
m = 10,000, 100,000, and 1,000,000 strategies. Due to the fixed seeds, the first
10,000 strategies sampled when m = 100,000 are the same as for m = 10,000 in
the same family, etc. The same applies over the different step bounds.

Deep RL with DSMC Specifics. Usually, learning NN is done on GPUs [43–
46], but for a reasonable runtime comparison, we used a CPU infrastructure
here. In addition, the random start setup [44]—during learning, the agent starts
randomly from one of the free road cells instead of always from the same start
cell—leads to significantly better learning performance. This is because the agent
then has the chance to start closer to the goal and learn earlier where the goal
is and how to reach it. But since the other methods we compare to can only
start from a fixed cell, we used the normal start setup during learning for this
paper, where the agent also starts its exploration runs from a single start position
always. The NN we trained have an input layer of 15 neurons, two hidden layers
of 64 neurons each and an output layer of 9 neurons encoding the nine possible
acceleration values, as done in other case studies on Racetrack [43,44,46].

4.1 The barto-small Track

Fig. 1. The barto-small track.

We start with the barto-small track shown in
Fig. 1. The start position is on the far left,
highlighted in green; the goal line is shown in
red on the top right. On this track, the vehicle
must make a 90-degree left turn at the right
point. We show our experimental results in
Tables 1 and 3. First, in Table 1, we show the
results for PMC and DSMC, which use the
original unbounded probabilistic reachability
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Table 1. barto-small results,
unbounded.

Method p Time Episodes

PMC 1.000 362 –

DSMC 0.000 600 4,000

0.981 5,280 44,000

Table 2. Results for maze.

Method p Time Episodes

PMC 0.968 1,305 –

DSMC 0.000 600 14,000

0.000 55,800 981,000

SMC-LSS 0.000 684 –

property. This model has only 44,231,073 states, which mcsta easily handles in
16 GB of memory, and thus finds the optimal result (and strategy) with a prob-
ability close to 1 in 6 min. In deep RL with DSMC, on the other hand, the NN
has not learnt any useful strategy at this point, after 4,000 learning episodes.
After 88 min, however, it has found action choices that result in a near-optimal
probability of 0.981. In Table 3, we see how the uninformed sampling employed
by LSS performs in comparison. We underline the best results found for each
value of m. Using a population of m = 100,000 strategies, LSS already finds
some that lead the vehicle to the goal, albeit with a probability of at most 0.281.
Once we extend the population to 1,000,000 strategies, the success probability
increases to about 0.35. We observe limited returns in sampling larger numbers
of strategies: with m = 10,000,000 for family 3, we get a probability of approx.
0.426 after 192 min—another increase of around 0.07 for a tenfold increase of m
(and 20× of runtime). So in runtime comparable to PMC, LSS finds non-trivial
strategies, but unlike for deep RL with DSMC, additional time does not lead
to significant further improvements. Our use of different step bounds highlights
a peculiar effect here: although strategies exist that reach the goal with a high
probability in 100 steps (as found by PMC), LSS fails to find these; the reason-
able strategies it finds need at least 200 steps, but do not improve when given
more steps to reach the goal. As a baseline, the uniform random strategy is
clearly useless, essentially never allowing the vehicle to reach the goal.

Table 3. Results for barto-small, step-bounded analysis.

Method m fam. 100 steps 200 steps 400 steps 800 steps

p Time p Time p Time p Time

PMC 0.913 172 1.000 231 1.000 335 1.000 335

SMC-LSS 10,000 1 0.000 2 0.004 3 0.004 4 0.004 5

2 0.000 2 0.000 3 0.000 3 0.000 5

3 0.000 3 0.028 3 0.027 4 0.032 5

100,000 1 0.000 24 0.041 35 0.044 43 0.043 58

2 0.000 23 0.281 39 0.281 48 0.281 62

3 0.000 26 0.225 39 0.225 47 0.225 58

1,000,000 1 0.286 264 0.343 396 0.343 476 0.343 630

2 0.318 250 0.317 398 0.317 481 0.317 620

3 0.351 258 0.351 394 0.350 470 0.349 601

10,000,000 3 0.426 11,513

SMC/unif. 0.000 0 0.000 0 0.000 0 0.000 0
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4.2 The barto-medium and barto-big Tracks

We next consider the three variants of an R-shaped track shown in Fig. 2: the
original barto-big track on the right, and two versions of reduced size. We use
these variants of presumably increasing difficulty to find the point where our
three methods stop being able to find non-trivial strategies. The MDP for track
barto-medium-small has 35,149,687 states, barto-medium-large has 69,918,581,
and barto-big has 330,872,263. The experimental results are shown in Table 4.
For PMC, mcsta manages to check the two barto-medium benchmarks without
running out of memory, but on barto-big, 16 GB of memory do not suffice. In
its “hybrid” disk-based mode, where the MDP and all value vectors are kept in
memory-mapped files, mcsta manages even this largest model, at a significant
runtime cost. Deep RL for DSMC again does not manage to learn a useful NN in
up to 30 min for all sizes of the barto tracks but is able to deliver a near-optimal
strategy after 741,000 episodes for barto-medium-small. The slightly increased
difficulty of barto-medium-large is already enough such that the NN has still a
poor performance with a goal probability of 0.002 after 641,000 episodes which
took 18 h and 40 min. barto-big is then too difficult to learn a strategy reaching
the goal even after 29 h with 665,000 training episodes when using the normal
start setting. From other works we know finding a good strategy is no issue for
deep RL in the random start setting [44,46]. For LSS, we only show the best
result achieved among the three families with m = 1,000,000 and a bound of 800
steps. The barto-medium-small track is the last one where LSS manages to find
non-trivial strategies, however these strategies already perform very poorly. Our

Fig. 2. The barto-medium-small, barto-medium-large, and barto-big tracks.

Table 4. Results for the two barto-medium tracks and the barto-big track.

Method barto-medium-small barto-medium-large barto-big

p Time Episodes p Time Episodes p Time Episodes

PMC 0.999 156 – 1.000 402 – 1.000 17,413 –

DSMC 0.000 600 8,000 0.000 600 8,000 0.000 600 5,000

0.000 1,800 21,000 0.000 1,800 18,000 0.000 1,800 11,000

0.946 50,400 741,000 0.002 67,200 641,000 0.000 104,400 665,000

SMC-LSS 0.023 670 – 0.000 742 – 0.000 1,048 –
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explanation for this result, despite the barto-medium models having a similar
number of states as barto-small, is that the tracks require much more specific
behaviour to navigate the R shape, i.e., fewer strategies are successful and thus
the probability mass of successful strategies becomes too low for LSS. In essence,
LSS hits a “rare strategy problem”. We do not show the uniform random strat-
egy, which again does not manage to hit the goal; in fact, it does not manage to
do so for any of our examples in this section.

4.3 The maze Track

Fig. 3. The maze track.

The maze track is depicted in Fig. 3. The MDP for
this track consists of 156,967,073 states. The results
of the experiments are summarized in Table 2.
mcsta implementing PMC solves the benchmark
in around 22 min. While we do not need to use its
hybrid disk-based mode, it still needs more than
16 GB of memory at certain points and is thus
slowed down by the operating system swapping
memory contents to disk. Because of the very nar-
row streets on the track, LSS has no chance: any use-
ful strategy needs to pick a long sequence of exactly
the right actions to not crash into a wall, which is
very unlikely to be sampled. Consequently, we only see probability-zero strate-
gies in our experiments. The same issue makes it infeasible to learn an NN of
reaching the goal with deep RL in the normal start setting: the random explo-
ration phase most likely never manages to hit any goal state and thus obtain
a positive reward. Even after 15.5 h and 981,000 training episodes, we found

Table 5. Results for river-deadend-narrow.

Method m fam. p Time Episodes

PMC – – 1.000 1,563 –

DSMC – – 0.000 1,800 18,000

– – 0.984 36,600 981,000

SMC-LSS 10,000 1 0.483 11 –

2 0.111 12 –

3 0.007 16 –

100,000 1 0.547 139 –

2 0.427 145 –

3 0.590 159 –

1,000,000 1 0.590 1,476 –

2 0.587 1,446 –

3 0.609 1,490 –
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no strategy reaching the goal. We remark that deep RL has no issues with this
track in the random start setting [46].

4.4 The river-deadend-narrow Track

Fig. 4. The river-deadend-narrow track.

Finally, we consider the river-deadend-
narrow track (Fig. 4) in the shape of
a river delta. The experimental results
are shown in Table 5. The MDP of this
model has 175,783,293 states. mcsta
can find a policy with a goal probabil-
ity of 0.984 in 26 min (again slightly
slowed down by swapping). As before,
deep RL is not able to find a useful
strategy in up to 30 min but delivers a
nearly optimal strategy in around 10 h
after 981,000 training episodes. SMC with LSS, for which we show the results
for time bound 800 in Table 5 (since the time bound does not lead to a difference
in results here), finds strategies that are successful up to 60% of the time. While
still far from the optimum, these are the best results that LSS achieves across
the tracks we experiment with. We hypothesise that this is because no “complex
navigation” is required to reach the goal; strategies that are mild variants of
moving straight ahead are reasonably successful here. Of these, enough appear
to exist for LSS to do reasonably well.

4.5 Summary

We observe that the Racetrack benchmarks are non-trivial in terms of decision-
making, with the uniform random strategy being completely useless. mcsta
manages to analyse all of them with PMC, at the cost of white-box model
access—and we intentionally selected tracks that are not too large to be able
to make useful comparisons. LSS only works when the decisions need not be
too specific. It appears to be an indicator of where learning, including deep RL
with normal start, has difficulties starting up. Compared to deep RL, LSS is fast.
Deep RL learned near-optimal strategies for all but the maze and the larger barto
tracks, at a massive computational effort. In practice, the burden of this effort
is on the GPU, making runtimes more acceptable. For the Racetrack cases, we
could have significantly sped up deep RL (and made it work for all tracks) with
the random start approach. Random start is clearly crucial for efficient deep RL;
however it is only so easy to apply to intuitively structured models like Racetrack
maps. For arbitrary verification models as, e.g., in the quantitative verification
benchmark set [60], suitable random start procedures (e.g., by sensibly assigning
non-initial values to the model’s variables) still need to be developed.
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5 Outlook

Our survey of verification- and AI-based approaches for finding strategies high-
lights their very different characteristics in terms of the required model interface,
memory usage, and runtime, which in turn depend on the structure of the MDP.
We have seen that all three methods can be effective in finding reasonable, good,
or even (near-)optimal strategies in suitable cases. All three methods also have
tool support in the Modest Toolset to apply them to verification models such
as those from the quantitative verification benchmark set [60]. However, various
challenges remain to make these approaches work better, interconnect them, and
make the strategies they find useful and accessible to domain expert users.

Informed Exploration. We saw how crucial the random start process is to boot-
strap the exploration phase in learning. For LSS, the uninformedness of the
search is inherent: it simply picks many random strategies (in the sense of ran-
domly chosen fixed decisions, not randomised decisions resampled every time as
in the uniform random strategy). We speculate that, given a suitable heuristic
indicating, e.g., the distance to the goal, the currently monolithic LSS strategies
could be split into segments that could be individually sampled and combined,
going backwards from the goal. A random start-like process for LSS may lead
to robust strategies that work well not only for a single starting point.

Interconnecting Tools Through Strategies. Currently, specific connections exist
between strategy-finding methods like LSS or deep RL and strategy-evaluation
methods like SMC or PMC: the final phase of LSS is an SMC evaluation, and
DSMC brings NN into modes. Other works connect deep RL with PMC [25].
All of these are specific to a pair of strategy-finding and strategy-evaluation
implementations. This is because today’s verification tools do not treat strategies
as first-class objects. At the least, we should be able to apply a strategy found
with any method to the model (determinising it) in the evaluation using any
other method (such as PMC or SMC). This will require standardised formats
or interfaces to represent or dynamically query strategies (similar to JANI),
and further implementation work in tools to take strategies as input wherever
possible.

Explaining Strategies. Each of the strategy-finding methods delivers its result
in a specific format: lists of state-action pairs for PMC, an integer strategy
identifier for LSS, and a NN definition for deep RL. None of them helps the user
to understand and implement the strategy. Without understanding, especially
in safety-critical situations, it is hard for users to trust the verification or AI
tool’s result. A promising way out is to convert the strategy into an (often small
and human-readable) decision tree, using as input an NN from deep RL [3] or a
state-action pair list from PMC [6]. Ideally, we would integrate such a method
directly into our verification and learning tool ecosystem around the Modest
Toolset, which poses technical but also conceptual challenges to, e.g., obtain
a decision tree from an LSS scheduler identifier without having to exhaustively
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enumerate all of the MDP’s states and thus negating the memory advantage of
the SMC-LSS approach. And in the end, while such approaches may make the
strategy understandable, they still do not explain why the strategy at hand is
(near-)optimal and should be the one to be implemented. A different approach
is visualisation, which works well for illustrative benchmarks like Racetrack or
other cyber-physical systems. A first such tool is TraceVis [43], visualising the
DSMC results and traces. An extension of the tool towards visualisation of the
NN internals and the learning process is currently under development.

Beyond Discrete Markov Models. Models with general probability distributions,
such as stochastic automata [31], are desirable to more realistically represent
phenomena such as time-to-failure distributions or combinations of failures,
inspections, repairs, and attacks. Continuous dynamics specified by differential
equations, as in hybrid automata [65], allow the inclusion of models of physical
processes and thus the analysis of cyber-physical systems. SMC also effectively
works for non-Markovian and hybrid formalisms, as evidenced by modes’ sup-
port for stochastic hybrid automata, however LSS does not [30]. We have recently
combined SMC for such models with RL, but used explicitly stored Q-functions
and discretisation for learning [86]. PMC approaches for such models are the
subject of active research, with simple approaches based on interval abstrac-
tions provided by the Modest Toolset today [53,54]. NN, on the other hand,
can in principle handle continuous inputs and outputs just as well as discrete
ones. In light of these various advances of learning and verification into non-
Markovian continuous-time and continuous-state models, a coherent toolchain
that supports verification models with a focus on strategies is still lacking today.

Future Racetracks. We are working on a continuous version of the Racetrack
benchmark where the car does not move in a discrete grid. We also continuously
extend the benchmark with features like tanks to restrict fuel consumption,
different engine types, and other variants [9]. The current developments of Race-
track can always be found online at racetrack.perspicuous-computing.science.

Data Availability. A dataset with models, tools, and scripts from our exper-
imental evaluation is archived and available at DOI https://doi.org/10.4121/
20669646.
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decisions based on partial exploration. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 317–334. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 19
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Abstract. Statistical Model Checking is a simulations-based verifica-
tion technique that has gathered increased focus in the past ten years, due
to its applicability to handle much larger models compared to exhaus-
tive verification techniques used in model checking. Statistical Model
Checking is also applicable to a larger class of systems than exhaustive
methods—in particular its ability to handle hybrid systems is important.
To apply statistical model checking we must however accept that veri-
fication results are probabilistic, and simulations exercise only the most
likely behaviour of models. Unfortunately the events we are often inter-
ested in finding/estimate the probability of are rare. In its core form,
Statistical Model Checking cannot reliably estimate such events.

In this work we investigate how to incorporate the rare event simu-
lating technique importance splitting into Uppaal SMC.

1 Introduction

Stochastic Timed Automata refines Timed Automata [1] by assigning prob-
abilities to the non-deterministic choices of the timed automata: delays are
drawn from a probability density distribution (exponential or uniform) while
non-deterministic actions are selected using probabilistic choice. The stochastic
behaviour of a composed system is given by races between components, result-
ing in nested integrals over uniform and exponential distributions for to step-
bounded reachability probabilities. In principal, it could be possible to calculate
the probability of reaching a given set of goal states by symbolically exploring
the state space to find all paths leading to the set and subsequently solve the
integral of all those paths. In practice, however, solving the integrals are non-
trivial. Therefore the probabilities are usually estimated using Statistical Model
Checking (SMC) [5,13].

Statistical Model Checking consists of learning the probability that the exe-
cution of a system will satisfy a given property. The approach elegantly combines
(1) a simulation-based algorithm for learning the probability distribution of satis-
fying the property by observing a fixed number of its executions with (2) runtime
verification algorithms applied on these executions. Those runtime verification
algorithms naturally depend on the nature of the property to be validated.
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The efficiency of SMC depends on the number of executions needed to obtain
an estimate while minimising the error rate. The most common SMC learning
algorithm is that of Monte Carlo. When it comes to validating a property that has
a high chance of being satisfied, Monte Carlo is considered efficient. In this case,
the algorithm minimises the number of simulations and guarantees a low error
rate. The situation changes when one must estimate probability distributions of
rarer events such as the probability that an execution contains a bug.

This situation comes from the uniform character of the Monte Carlo simulation
which does not aim to find the bug. It therefore takes too many simulations to influ-
ence the variance of the distribution. To overcome this problem, several authors
have proposed learning algorithms that guide the simulations. These techniques,
called importance splitting [12], orient the execution simulation according to the
intermediate results of the runtime verification algorithm. This helps to isolate
simulations and identify the bug. These techniques have been deployed in many
contexts ranging from automotive to computational biology.

In the paper we explore importance splitting techniques for stochastic timed
automata via an implementation in state-of-the-art tool Uppaal [5] The effi-
ciency of the approach is illustrated on two concrete problems, one of them
being an estimate of the spread of the contagion of the COVID-19 epidemic.

2 Stochastic Timed Transition Systems

In the following we present the semantical foundation of stochastic timed
automaton, in a step-wise fashion. First we present classic timed transition sys-
tems, and afterwards see how to refine a timed transition system by assigning
probabilities to the transitions. Although our works major contribution is about
incorporating importance splitting into Uppaal, we will not be presenting how
stochastic timed automata are given stochastic semantics using stochastic timed
transition systems. For this we refer to [5].

Let L be a finite set of symbols called channels. Channels are the commu-
nication pathways of two transition systems. From these labels we construct
the set of output actions Σ!(L) = {a0! | a0 ∈ L} and the set of input
actions Σ?(L) = {a0? | a0 ∈ L}. For the set of all actions over L we let
Σ!∪?(L) = Σ!(L) ∪ Σ?(L). Given a set of actions Σ!∪? we use the notation
to Σ!∪?↓ to get the set of synchronisation labels.

Definition 1. A timed transition system (tts) is a tuple 〈S, �, Σ!, Σ?,→, P,P〉
where

– S is a set of states,
– � ∈ S is the initial state,
– Σ! is a set of output actions,
– Σ? is a set of input actions,
– →⊆ S × (Σ! ∪ Σ? ∪ R≥0) × S is a transition relation,
– P is a finite set of propositions,
– P : S → 2P assign propositions to individual states.
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To simplify notation we adopt a convention of writing s
a−→ s′ whenever

(s, a, s′) ∈→, s 	 a−→ if there exists no s′ ∈ S such that (s, a, s′) ∈→, and s →
if for some s′ ∈ S and action a ∈ Σ? ∪ Σ! ∪R we have s

a−→ s′. As a slight abuse
of notation we also write s ∈ P as a short hand for P(s) ⊆ P. We will generally
assume that all transition systems are

– input-enabled meaning that for all states s ∈ S and all input-actions a0? ∈ Σ?

it should be the case that s
a0?−−→.

– input-deterministic meaning that if s
a0?−−→ s′ and s

a0?−−→ s′′ then s′ = s′′,

For a tts T = 〈S, �,→, P,P〉 we call a sequence of states and delays ω =
s0(d0, a0!)s1(d1, a1!) . . . , sn, where for all i, si ∈ S and si

di−→ a0!−−→ si+1, a run of T
from s0. To simplify notation we let |ω| = n, let ω[i] index into the states of a run
i.e. ω[i] = si and let ω[i]δ index into the delay i.e. ω[i]δ = di . We denote all runs
of T from s0 by Ω(T , s0). Since we are interested in time-bounded reachability
we need the set of timed runs with a duration less than some upper bound τ .
Thus in the following we let Ω≤τ (T , s) = {ω ∈ Ω(T , s) |

∑|ω|
i=0 ω[i]δ ≤ τ}.

For all runs starting from the initial state we omit the state signifier and let
Ω(T ) = Ω(T , �).

Definition 2 (Stochastic Timed Transition System). A stochastic Timed
Transition System is a tuple 〈T , μ〉 where T = 〈S, �, Σ!, Σ?,→, P,P〉 is a tran-
sition system and μ : S → R × Σ!(→)R assigns a density to delay-action pairs
such that for all states s ∈ S

– μ(s) is a probability density function i.e. (
∫

≥0

∑
a∈Σ! μ(s)(d, a))dt = 1 and

– μ(s) only assign densities to possible actions i.e. μ(s)(d, a) 	= 0 =⇒ s
d−→ a−→.

For a stochastic timed transitions system K = 〈〈S, �,→, P,P〉, μ〉 we
define a cylinder of traces to be a structure π = P0I0P1I1 . . . Pn where
for all i, Ii is an interval with rational end points. A timed run ω =
s0(d0, a0!)s1(d1, a1!) . . . , sn . . . belongs to the cylinder π if for all i, P(si) = Pi
and di ∈ Ii. Using the probability-density μ we can now define the probability
measure of π from state s recursively as

μ[s](π) =

({
1 if P0 = P(si)
0 otherwise

)

·
∫

t∈I0

∑

a1!∈!

(μ(t, a1!)) μ[s]t,a1!(π1)

where π1 = P1I1, P2I2, . . . Pn and [s]t,a1! is the unique state such that s
t−→ a1!−−→

[s]t,a1!.

Reachability Probability. The problem we consider is from a starting state s to
find the probability of reaching a state where a set of propositions � are true
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state s— denoted Ps(♦≤t�). The set of simulations for which s reaches � we
define as

Reach(�, t) = {s0(d0, a0!)s1(d1, a1!) . . . , sn ∈ Ω≤τ (T , s) | sn ∈ �}

and can define the probability Ps(♦≤t�) as the Lebesque-integral:

Ps(♦≤t�) =
∫

Ω≤τ (T ,s)

({
1 if ω ∈ Reach(�, t)
0 otherwise

)

· μsd(ω)

Composition. The semantics for a composition of stochastic timed transition
system is usually given in terms of repeated races between the individual sys-
tems. The definition used for STTSs in this paper, however, allows composing
transition systems by defining a new stochastic transition system that captures
these races. Let K1,K2, . . . Kn be a stochastic transition systems where for all
i, Ki = 〈Ti, μi〉, Ti = 〈Si, �i, Σ

!
i, Σ

?
i ,→i, Pi,Pi〉 and Σ?

i = ∪j �=iΣ
?(Σ!

j↓).1 Then
we define the their composition K1‖K2| . . . Kn to be the stochastic transition
system

KJ = 〈S1 × S2 × Sn, (�1, . . . �n),i=1...nΣ!
i, ∅,→J , PJ ,PJ 〈〉, μJ 〉

with

– (s1, s2, . . . sn) a0!−−→ (s′
1, s

′
2, . . . , s

′
n〉 if si

a0!−−→ s′
i and for all j 	= i sj

a0?−−→ s′
j ,

– (s1, s2, . . . sn) d−→ (s′
1, s

′
2, . . . , s

′
n〉, d ∈ R if for all i si

d−→ s′
i,

– PJ = i=1...nPi

– PJ ((s1, s2, . . . sn)) = i=1...nPi(si) and

μJ ((s1, s2, . . . sn))(d, a0!) = μi(si)(d, a0!)
∏

j �=i

∫

τ>d

∑

a1!∈Σ!
j

μj(sj)(τ, a1!),

for a0! ∈ Σ!
i. The construction is for the most part the standard composition

of timed transition systems, and only the definition of the probability density
may require some further explanation: it essentially says that the density of
performing an action a0! after a delay of time d is found by first taking the
density of the component ith component owning that action multiplied by the
probability all other components choose a delay longer than d. It thus embeds
the race semantics of David et al. [4] into the definition of the density functions.

1 The latter requirement captures that all components of the compositions uses the
other components outputs as input.
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3 Importance Splitting

The overarching idea of importance splitting is to split a (rare) reachability goal
into sub-goals that must be reached on the way to the overall goal. That is,
we define a series of intermediate goals (called levels) �1,�2, . . . ,�n where
�n = �. For each run ω ∈ Reach(�, t) it should be the case that for all i there
exists a j such that ω[j] ∈ �i, Given such a series of goals importance splitting
proceeds by n successive conditional probability estimations (see Algorithm 2).
First, a number of states (m1) is sampled uniformly from the set of initial states.
For each of these states a simulation is generated. At the moment a simulations
reaches �1 it is stopped, and the resulting state added to a set NStates1. An
estimate of reaching the first level is thus |NStates1|

m1
. The probability of reaching

�2 is now estimated by starting m2 new simulations from a state s ∈ NStates1 as
starting point. Simulations are terminated when they reach �2 and the resulting
states added to a set NStates2. The probability of reaching �2 is estimated by
|NStates2|

m2
Repeating this process for all n finally yields an estimate of

P(�) =
n∏

i=1

|NStatesi|
mi

One thing to be aware of is that we in addition to sub-goals also need a
stopping criterion for when to stop simulations i.e. some way of telling the simu-
lations that there is no chance of reaching the next level. One (trivial) stopping
criterion is exceeding the time bound of the reachability query. For simplicity
we characterise these as a set of states �i.

Until now we have left it open how we sample states for estimating a level.
There are at least two strategies for this sampling:

Fixed Effort. In a fixed effort scheme each level is estimated using a fixed
amount of simulations (the effort) n. The starting state of the n simulations
for level i is selected uniformly from NStatesi−1.

Fixed Splitting. In a fixed splitting each simulation reaching a level i is given
a pre-determined fixed amount offspring simulations k. That means level i is
estimated using mi = |NStatesi−1| · k simulations.

Remark 1. The fixed effort approach has the major advantage of having predica-
ble behaviour in regards to computing powers. No matter the level, it will always
use the same number of traces n thus if there are m levels then m ·n simulations
will be used. On the other hand, fixed effort needs to store n states in memory
for each level estimation. The Fixed Splitting approach is less predictable, and if
we select our levels unwisely we might face an exponential growth of traces per
level. It does, however, have the huge advantage that it may be implemented in
a recursive fashion and only keep one state per level at a time.

Example 1. Consider the simple automaton in Fig. 1 and consider the probability
of reaching A with x >= 100. Obviously this is possible by the automaton taking
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Algorithm 1. Generate Trace
1: procedure Generate(s0,�,�) � start state, set of goal states, states to avoid
2: i ← 0
3: sc = s0
4: while sc �∈ �i do
5: if sr ∈ � then return sa

6: end if
7: (di, ai) ∼ μ(sc)

8: Let sr be such that sc
di−→ ai−→ sr

9: sc ← sr

10: end while
11: return 〈⊥, 〉
12: end procedure

Algorithm 2. Importance Splitting
1: procedure Importance Split(s0,�1 . . .�n�,) � start state, sub-goals, states to

avoid
2: NStates = {(s0)}
3: for i ← 1 . . . n do
4: States ← Resample(NStates)
5: NStates = {}
6: for all sc ∈ States do
7: sn ← GenerateTrace(sc,�i,�, d)
8: if sn �= ⊥ then
9: NStates ← NStates ∪ {(sn, δ)}

10: end if
11: end for
12: pi ← |NStates|

|States|
13: end for

return
∏n

i=1 pi

14: end procedure

the looping transition at least 100 times before going to B. Since the choice of
the transitions is independent at each step the probability is obviously 0.5100 =
7.88×1031. A statistical model checker like Uppaal SMC is however unlikely to
properly assess this probability since it needs to generate too many samples. It
would need an expected number of 2100 = 1.26 × 1030 samples just to find one
satisfying case.

The realisation with importance splitting is that although reaching
〈A, x >= 100〉 from 〈A, x == 0〉 is very unlikely, it is actually quite likely from
〈A, x >= 99〉. Likewise reaching 〈A, x >= 99〉 from 〈A, x = 0〉 is very unlikely, but
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Fig. 1. Timed Automaton with a rare event

from 〈A, x >= 98〉 it is very likely. Using basic probability theory it is easy to
realise that

P(♦〈A, x >= 100〉) =P(♦〈A, x >= 100〉|♦〈A, x >= 99〉)·
P(♦〈A, x >= 99〉|♦〈A, x >= 98〉)

·
...

P(♦〈A, x >= 1〉|♦〈A, x = 0〉),

and thus we have reduced our estimation problem to evaluate these (more likely)
conditional probabilities. In the grey column in Table 1 we show some of these
conditional probabilities.

X Success Effort Probability

1 509 1000 0.509
2 517 1000 0.517
3 499 1000 0.499
4 499 1000 0.499
5 481 1000 0.481
6 510 1000 0.51
7 478 1000 0.478

Table 1. Estimates of
P(♦〈A, x >= X〉|♦〈A, x >= X − 1〉)

Score Function. A natural way of defin-
ing the intermediate goal-states required
by importance splitting is defining a score
function. A score function is a map-
ping from the state space to the reals
i.e. it is a function Δ : S → R. It
should assign a higher score to states more
likely to reach the final goal, and should
attain its highest value for the set of goal
states. Formally, for a sequence of lev-
els �1,�2, . . . ,�n a score function (Δ)
should ensure that if si ∈ �i, sj ∈ �j

and i < j then Δ(si) < Δ(sj). In the
remainder of this paper we will define the levels needed by importance splitting
in terms of a score function and threshold values τ1, τ2 . . . τn for crossing into
a new level i.e. we let �i = {s ∈ S | τ i ≤ Δ(s) < τ i+1}. For easening notation
later, we lift the score function to finite traces by letting Δ(ω) for a trace ω be
the maximal score attained at any point i.e.

Δ(ω) = max{Δ(ω[0],Δ(ω[1] . . . ,Δ(ω[|ω|]}.

The practical applicability of importance splitting highly depends on the
definition of the score function, and on the thresholds for transitioning from one
level to the next. Defining the score function is oftentimes the easiest part of
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Algorithm 3. Adaptive Algorithm
1: procedure Importance Split(s0, Δ, τ, Nk) � start state, score function, final

level score, simulations to Keep
2: NStates = {(s0, 0)}
3: τc = Δ(s0)
4: while τc < τ do
5: States ← Resample(NStates)
6: NStates = ∅
7: Simus ← {GenerateFullTrace(sc)|sc ∈ States}
8: Let τc be the maximal value such that |{Δ(ω) ≥ τc})|ω ∈ Simus})| ≥ Nk

9: Selected = {ω ∈ Simus|Δ(ω) ≥ τc}
10: NStates ← ∪ω∈Selected{ω[i] | i = min{0 ≤ j < |ω| | Δ(ω[j]) ≥ Δ(ω)}}
11: pi ← |NStates|

|States|
12: end while

return
∏n

i=1 pi

13: end procedure

applying importance splitting: many models have an inherent progress measure
that can be used as the level—in Example 1 a natural progress measure is the
value of X thus the value of X can be used as the score function. The thresholds
are more difficult to define. According to Rubino and Tuffin [12] we should strive
towards thresholds that ensure the conditional probability of going from one level
to the next is the same for all levels i.e. that P(�1) = P(�2|�1) = P(�3|�2) =
. . . . In order to take advantage of this principle of defining good thresholds, we
would need to know the probabilities in advance, but then there would be no
point in doing importance splitting. It is however still advantageous to know this
principle as we with proper model knowledge we might be able to use it to define
levels that adhere to the principle. Also, the principle is used by algorithms for
finding the level thresholds automatically.

3.1 Adaptive Levels Algorithm

Our discussion of importance splitting has so far required users to define the
score function, and define the level thresholds. The latter is a time-consuming
part of using importance splitting as it involves lots of trial and errors from a
human user. Jégourel et al. [7] tried to overcome this problem by developing an
algorithm that automatically finds the thresholds during simulation. Intuitively
this adaptive algorithm (Algorithm3) works by iteratively generating a number,
say N , of full traces2. The N simulations are scored by their highest score at
any point during the simulation. The algorithm then finds the Nk best states
and retains those for the next iterations. It terminates when the Nk best states
has a score higher than the final levels value.

2 Traces that reaches on overall timebound.
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4 Importance Splitting in Uppaal

A major contribution of the current paper is integrating the three importance
splitting methods into the mainstream verification tool Uppaal. The imple-
mented techniques are the fixed effort and fixed splitting algorithms and the
adaptive level algorithm by Jégourel et al. [7]. Uppaal [5] is established as a
key player in regards to verification timed automata models, and has since ten
years also established itself as a major player in Monte-Carlo based verification
techniques (for timed automata systems). The SMC engine has, however, since
its inception missed an easy to use rare-event simulation technique. In the past,
Jégourel et al. [8] integrated importance sampling into the engine. It required
extensive modifications to the trace sampling method of the engine. Another
nuisance with the importance sampling method was its dependence on a sym-
bolic reachability analysis—drastically limiting the systems for which rare event
simulation could be applied. Importance splitting is less invasive to the sampling
engine as it only requires the ability to copy states and restart sampling from
those copied states.

The overarching design philosophy of integrating importance splitting into
Uppaal has been to make minimal changes to the user experience. Users should
be able to model systems exactly as they are used to, and use all features of
Uppaal. The only thing a modeller should learn is two new queries

Interaction with External Libraries. Uppaal has the ability to interact with
external libraries which allows modellers to keep parts of the simulation state
external to Uppaal. This has been previously used to analyse worst case execu-
tion time of binaries [3] and integrating an LLVM simulator into Uppaal [10].
Having the actual simulation engine residing in an external library means
Uppaal can no longer easily copy states as needed for the importance splitting
algorithms. Therefore external libraries wishing to use the importance splitting
algorithms must implement three C-functions an for storing and recalling states:

– int32 t uppaal store state (); save the current state and return an iden-
tifier for the state. Called by Uppaal when it has reached a level.

– int32 t uppaal recall state (int32 t i) ; restore the state identified
by i .Called by Uppaal when it restarts simulations from a state.

– void uppaal delete state (int32 t i) ; delete the state identified by i.
This is called by Uppaal when it has finished estimating the probability of
one level.

4.1 Queries

Fixed Effort and Fixed Splitting. The fixed effort and fixed splitting algorithms
are integrated as a single query inside Uppaal. The exact algorithms is selected
as a configuration option. Likewise the effort and offspring parameters are
defined as an option. The structure of the query is

Pr[<=T] (<>)levels levelExpr {T1,T2,T3...TN}
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$ v e r i f y t a - - s p l i t t i n g . a lgor i thm 1 - - s p l i t t i n g . o f f s p r i n g 40 -q
running . xml

Ver i f y ing formula 1 at /nta/ que r i e s /query [ 1 ] / formula
- - Formula i s s a t i s f i e d .

Pr(<> . . . ) in 6 .48834 e - 3 1 .
Leve l 0 (1 ) 52 / 100
Level 1 (5 ) 120 / 2080
Level 2 (10) 143 / 4800
Level 3 (15) 173 / 5720
Level 4 (20) 225 / 6920
Level 5 (25) 283 / 9000
Level 6 (30) 348 / 11320
Level 7 (35) 405 / 13920
Level 8 (40) 489 / 16200
Level 9 (45) 613 / 19560
Level 10 (50) 740 / 24520
Level 11 (55) 948 / 29600
Level 12 (60) 1209 / 37920
Level 13 (65) 1452 / 48360
Level 14 (70) 1754 / 58080
Level 15 (75) 2250 / 70160
Level 16 (80) 2770 / 90000
Level 17 (85) 3535 / 110800
Level 18 (90) 4482 / 141400
Level 19 (95) 5701 / 179280
Level 20 (100) 7134 / 228040

Values in [ 3 9 . 0 3 16 , 6 0 . 6 6 99 ] mean=49.9625 s t ep s =0.0404454: 80 0 0 0 0
40

Listing 1.1. Running importance splitting in the terminal

where levelExpr is an arithmetic Uppaal expression defining the current level
, T1,...,TN are constant arithmetic expression defining the level thresholds and
T is an integer defining the bound within which levelExpr >= TN should be
reached.

Example 2. Let us briefly return to Fig. 1. In this model it is quite natural to
express the score in terms of the value of x. Thus we can estimate the probability
of P(♦〈A, x >= 100〉) by posing the query

Pr[<=100] (<>) levels x {1,5,10,15,20,25,30,35,40,45,50,55,
60,65,70,75,80,85,90,95,100}

Listing 1.1 shows an example of running this query using the fixed splitting
approach, and using 40 offsprings per level.

In the result, we are first and foremost shown what the estimated probabil-
ity is (6.48834 × 10−31). Uppaal also tells us how many simulations reached
each level and how many simulations were used to estimate each level—a line
Level 4 (20) 225/6920 tells us that 225 runs reached level 4, the threshold of
level 4 was 20 and we used 6920 simulations for this estimation. Table 1 is in fact
created by parsing the output from Uppaalverification.
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Adaptive Levels. The adaptive algorithm in Uppaal is triggered by simply pos-
ing a query: Pr[<=T] (<>) adaptive levelExpr -> Thres. Here T is a time
limit, levelExpr is an arithmetic expression defining the level function and
Thres is an arithmetic expression defining the final level.

5 Experiments

We have been experimenting with our implementation in Uppaalfor two cases.
The models and results reported on in the following sections is available at
https://github.com/dannybpoulsen/splitting rep.git.

5.1 JobShop

Fig. 2. JobShop worker

In this first example (Fig. 2) we apply our importance splitting implementation
to a simple instance of the JobShop problem: we have two Workers each with n
jobs they need to finish. The workers need a shared resource to complete their
jobs, so before processing a job they first need to acquire the resource. There is
no scheduler in this setup, so the two processes are racing to acquire the resource.
After finishing a task, the worker release the resource and enters a new race to
acquire the resource before processing the next task. The two workers are very
similar in their behaviour except that Worker(0) is quicker than Worker(1) to
acquire the resource. The property we are interested in about this is whether
Worker(1) can finish all of its jobs before Worker(0) has finished it’s first task.
Obviously this is possible, but it is—as we will see—a very rare event. In Uppaal
we have defined a level function level which returns zero if Worker(0) has
finished and otherwise returns what job number Worker(1) has finished last.
That is, we use the number of finished jobs as our level.

https://github.com/dannybpoulsen/splitting_rep.git


444 K. G. Larsen et al.

Table 2. Probability estimates for the JobShop scheduling example for increasing
number of jobs.

Jobs Fixed effort Fixed splitting Adaptive

1 2.8700 × 10−1 2.8700 × 10−1 3.2000 × 10−1

6 5.0355 × 10−3 4.9783 × 10−3 1.8517 × 10−2

11 3.4196 × 10−5 3.6162 × 10−5 1.1466 × 10−3

16 1.9653 × 10−7 1.9709 × 10−7 2.9288 × 10−5

21 9.7140 × 10−10 1.0437 × 10−9 1.1031 × 10−6

26 4.4231 × 10−12 5.2293 × 10−12 2.9549 × 10−8

31 2.3099 × 10−14 2.4707 × 10−14 1.4558 × 10−9

36 1.6732 × 10−16 1.4214 × 10−16 1.2020 × 10−10

41 3.2620 × 10−19 6.4069 × 10−19 1.2734 × 10−12

46 5.2512 × 10−21 2.5757 × 10−21 4.1715 × 10−14

Fig. 3. Covid health template

In Uppaal we verify the property with both adaptive levels algorithm and
the classic importance splitting algorithms for varying amount of jobs (1 through
46). The results are shown in Table 2.

5.2 Epidemic Simulation

The emergence of Covid19 lead researchers in communities not normally working
with epidemic modelling to apply their methods to this new use case [2,6,9,11].
In the current work we integrate a pandemic SEIRH-model inside Uppaal. An
SEIRH-model divides a population into five different stage of disease progression:

– Susceptible (S) are individuals that have not yet contracted the disease,
– Exposed (E) are individuals that have contracted the disease but have not

developed symptoms and cannot infect other,
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Table 3. Levels for the pandemic model

Level Threshold Satisfied Effort Probability

0 1796 102 1000 0.102

1 1857 120 1000 0.12

2 1887 111 1000 0.111

3 1918 113 1000 0.113

4 1939 101 1000 0.101

5 1949 122 1000 0.122

6 1961 119 1000 0.119

7 1969 209 1000 0.209

8 1977 116 1000 0.116

9 1980 595 1000 0.595

10 1982 108 1000 0.108

11 1991 142 1000 0.142

12 1996 102 1000 0.102

13 2003 112 1000 0.112

– Infectious (I) are individuals that may infect a susceptible person,
– Recovered (R) are individuals that have recovered from the disease,
– Hospitalised (H) are individuals that are so seriously ill that they have to be

hospiltalised.

Figure 3 shows one Uppaal template modelling the health of one agent in a
world.

Fig. 4. Simulations of the pandemic
model. Top: S,E,E,R,H-trajectories for
one simulation. Bottom: H trajectories
from ten simulations.

There would be such template a per
agent and another template for control-
ling where an agent is. A person tran-
sits from S to E via interactions with an
infected individual on their present loca-
tion. Assuming a well-stirred environment
this happens with a exponential rate of
Inf() ∗ beta/N(). Here Inf() is the num-
ber of infectious at the agents current
environment while N() is the total num-
ber of agents in the environment. After-
wards an agent transit from E to I, I to R
or H and H to R. The time at which these
transitions happen are governed by expo-
nential distributions in Fig. 3. In practice
we do not use these exact parameters: SEIRH-models are very general and can
be instantiated to model any epidemic by proper adjustment of the transition
time between individual health states. Also we have actually “out-sourced” the
SEIRH modelling to an external library as this allows us to easily scale the
model to thousands or millions of agents. Thus Uppaal mainly functions as an
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orhestrator of verification queries. In Fig. 4 we show trajectories from a simula-
tion with 10.000 agents. It was obtained using the Uppaal query

simulate [<=100] {S (),E (),I(),R (),H()}

The function calls are calls to the external solver for information about the
counts of different health states. Looking at several plots of this kind shows that
we often experience a peek at around 1700 exposed individuals. It should, how-
ever, be possible to get more than 2000 exposed individuals—it is just highly
unlikely. To estimate exactly how unlikely it is we use our adaptive levels imple-
mentation and run the query

Pr[<=200] (<>) adaptive E() -> 2000

Uppaal estimates the probability to be 2.9918 × 10−11 and found the levels
in Table 3.

6 Conclusion

In this work we have presented our work to integrate rate event simulation into
Uppaal. We use three different algorithms fixed splitting, 1. fixed effort, and 2.
an adaptive level algorithm. We have applied these techniques to two cases: a
variation on the JobShop problem and an epidemic model. Since the epidemic
model is quite large the simulation itself is offloaded to an external library which
Uppaal interacts with.
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S.: Importance sampling for stochastic timed automata. In: Fränzle, M., Kapur,
D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 163–178. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47677-3 11

9. Jensen, P.G., Jørgensen, K.Y., Larsen, K.G., Mikučionis, M., Muñiz, M., Poulsen,
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Abstract. We propose a simulation-based approach to verify
Variability-Intensive Systems (VISs) with stochastic behaviour. Given
an LTL formula and a model of the VIS behaviour, our method esti-
mates the probability for each variant to satisfy the formula. This allows
us to learn the products of the VIS for which the probability stands above
a certain threshold. To achieve this, our method samples VIS executions
from all variants at once and keeps track of the occurrence probability
of these executions in any given variant. The efficiency of this algorithm
relies on Algebraic Decision Diagram (ADD), a dedicated data structure
that enables orthogonal treatment of variability, stochasticity and prop-
erty satisfaction. We implemented our approach as an extension of the
ProVeLines model checker. Our experiments validate that our method
can produce accurate estimations of the probability for the variants to
satisfy the given properties.

Keywords: Software product lines · Variability · Statistical Model
Checking · Markov chains · Stochastic systems

1 Introduction

When deployed in the field, the correct behaviour of software systems is often
put at risk because of unpredictability in the environment (e.g., users or natural
phenomena) these systems interact with. That is, the state evolution of the
environment is stochastic and this, in turn, entails random non-determinism
in the system behaviour. In face of this stochasticity, engineers must provide
confidence that the system they build will behave correctly in various situations
they cannot control. The difficulty of this task vastly increases when the same
engineers develop not a standalone system, but a Variability-Intensive System
(VIS).

VISs, such as software product lines [11] and configurable systems [26,28],
are systems that one can derive into multiple variants (or configurations). The
term variability refers to all the ways in which the variants can differ. In software
c© The Author(s) 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13703, pp. 448–471, 2022.
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product lines, such variation points are usually named features. Therefore, system
variants are uniquely identified by their set of features. Variability makes devel-
opment activities inherently harder for VISs than for single system development.
This is due to the necessity of handling features and their effects throughout all
development steps, including verification and validation. Therefore, quality assur-
ance techniques must ensure that all system variants that will run in the fieldwork
correctly.

VIS variants share many common behaviors and that differ in identified func-
tionalities. For a set of n functionalities one can at worst create 2n different sys-
tems. Checking each system individually would introduce an explosion of time.
To overcome these problems, researchers have proposed compact product line
representations. These representations make it possible to check all the products
in one pass. For nearly 10 years, these approaches were limited to purely Boolean
systems. Recently, we have extended the approach to stochastic systems. In this
case, we must calculate the probability that a product satisfies the property.
This calculation is generally done by extending classical exhaustive algorithms
such as those implemented in PRISM.

The variability of VISs and their stochasticity call for dedicated techniques to
estimate the probability that any VIS variant satisfies intended requirements over
its behaviour. Engineers should be able to quickly answer questions like “what is
the probability that all variants satisfy a given requirement”, “which variants sat-
isfy a given requirement with a desired degree of confidence”, or “which variants
are the most likely to satisfy a given set of requirements”. One straightforward
way to answer such questions is to apply classical quality assurance techniques
to each variant separately to derive an accurate ranking of the variants’ likeliness
to comply with a requirement. However, getting an accurate answer for all vari-
ants may prove difficult, time-consuming and, in turn, even falsify the ranking
of these variants with respect to their probability to satisfy the requirements.

In this paper, we propose a method to learn the probability that VIS variants
satisfy a given property. Compared to state-of-the-art methods, our approach (a)
allows engineers to explicitly model the stochastic distribution of environment
events and (b) can effectively assess probabilistic properties across multiple vari-
ants. As a side effect, our approach is able to learn the variants of the VIS for
which the probability to satisfy the property stays above a given threshold. To
achieve this, we lean on Statistical Model Checking (SMC) – a type of verifica-
tion algorithms that relies on execution sampling and statistical tests to assess
model properties [21,22,34]. Statistical model checking consists of learning the
probability that the execution of a system will satisfy a given property. The
approach elegantly combines (1) a simulation-based algorithm for learning the
probability distribution of satisfying the property by observing a fixed number
of its executions with (2) runtime verification algorithms applied on these execu-
tions. Those runtime verification algorithms naturally depend on the nature of
the property to be validated. We develop a novel SMC algorithm that is family-
based, i.e. it can sample executions from all variants at once and keep track of the
occurrence probability of these executions in any given variant. The effectiveness
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of this algorithm relies on Algebraic Decision Diagram (ADD) [2], a dedicated
data structure that enables an orthogonal treatment of variability, stochasticity
and property satisfaction.

We conduct a preliminary validation of our approach based on case studies
from the literature. Our results confirm that our family-based approach produces
reliable estimations of the probability for the variants to satisfy given proper-
ties. We discuss the factors that influence the effectiveness of our method – i.e.,
its capability to compute estimations that preserve the differences between the
variants – compared to alternatives that analyze each variant separately.

2 Background

2.1 Markov Chains and Variability

We model stochastic system behaviours into Discrete-Time Markov Chains
(DTMCs). In such models, (1) the state space S of the system is countable, (2)
time elapses at discrete steps and (3) the transitions between states T ⊆ S × S
are stochastic. Hence, one can see DTMCs as a Kripke structure where each
transition between two states has a probability to occur at each discrete time
step. These probabilities are defined such that they satisfy the usual probabil-
ity axioms. By Markov’s property, the probability of occurrence of a transition
depends only on the current state and not on the previously executed transitions.
Therefore, the probability for the DTMC to follow a k-length path ρ = s0 . . . sk−1

is equal to the product of the state transition probabilities.
Rodrigues et al. [27] have extended DTMC with variability. The resulting

formalism – named Featured DTMC (FDTMC) – associates each transition
t ∈ S × S of the Markov chain with a probability profile Πt that encodes the
probability for each variant v to execute t. Such profiles list the set of variants
that are following the transitions as well as the probability to take such a tran-
sition for a given variant. Precisely, given a set V of variants, Πt is a function
from V to [0, 1]. For any t = (s, s′) and v ∈ V , Πt(v) = 0 means that the variant
v cannot execute t, whereas Πt(v) = 1 means that, when in state s, v surely exe-
cutes t at the next discrete time step. For an FDTMC to be consistent, for any
state s ∈ S the probability profile associated to the transitions leaving s must
satisfy the probability axioms for all variants. That is, for any v ∈ V , s ∈ S,
we have

∑
t∈{(s,s′)∈T} Πt(v) = 1. A variant v is typically represented as a set of

features (aka variation points) such as v ∈ B
F .

The product of two probability profiles Πt and Πt′ is defined as (Πt ⊗
Πt)(v) = Πt(v)Πt′(v). The sum ⊕ and the division / of two probability profiles
are defined similarly. We denote by 0 (resp 1) the fixed profile that associates a
value i to every variant (∀v ∈ V,Π(v) = i). Then for 0 (resp. 1) a complement
of Πt is defined as (−Πt), with (−Π)(v) = 1 − Π(v), and we also note it 1− Π.

Based on probability profiles, we define an FDTMC as a tuple (S, ν, V,Π)
where S is a countable, non-empty set of states; ν is a vector of size |S| that
records the initial probability distribution of every state; V is the set of variants;
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Π : (S × S) → (V → [0, 1]) is the transition probability function, which assigns
a probability profile to each transition. The fact that variant v cannot execute a
transition from s to s′ is encoded as Π(s, s′)(v) = 0. Note that the probability
that any variant executes a k-length path ρ = s0, s1, . . . , sk in the FDTMC is
given by Π(s0,s1) ⊗ · · · ⊗ Π(sk−1,sk).

An FDTMC is a concise representation for a set of DTMCs, that is, one
per valid variant (or product). The DTMC modelling a particular variant v is
obtained by projecting the probability profile of each transition onto v. The
transition probability function of the resulting DTMC is defined as P : S ×S →
[0, 1] : P (s, s′) = Π(s, s′)(v).

We provide an example of FDTMC in Fig. 1 and a projection of this FDTMC
in Fig. 2. This model considers two exclusive features I and J and an optional
feature K. The 4 resulting variants can then be expressed in the following feature
combinations {{I}, {I,K}, {J}, {J,K}}.

Each transition has either a fixed probability value (e.g. the Markov chain
transits from s0 to s1 with a fixed probability profile of 0.5) or a profile that
depends on the variant features. For example, from state s0, all variants can
transit to s1 (or s2) with probability 0.5. All variants can also transit from s1 to
state s0 but with different probabilities (i.e., 0.5 for variants with feature I, 0.2
for ones with J).

Furthermore, only some variant can execute some transitions. For example,
only variants with feature J can loop over s2 while only variants with feature I
can loop over s1. Having a variant that cannot execute a transition t is similar
to Πt(v) = 0. Similarly, a variant with a probability of 1 to execute a transition
is equivalent to a non-stochastic transition (e.g., s4 to s3 for variants without K
feature).

Fig. 1. An illustrative example of
stochastic VIS represented as a
FDTMC.

Fig. 2. DTMC resulting from the
FDTMC|{J∧¬I∧¬K} projection.
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2.2 Probabilistic Linear Temporal Logic

We formulate requirements over stochastic systems in the Linear-Time Logic
(LTL) [25]. We form LTL formulae according to the following grammar:

φ ::= � | a | φ ∧ φ | ¬φ | ©φ | φ U φ

where a is an atomic state property; © is the next operator; and U is the until
operator. From the until operator, one can derive ♦φ, which means that the
system must eventually reach a state that satisfies φ; and �φ, which means that
the φ should always hold.

In this work, given that we employ simulation-based approaches that return
finite traces, it may happen that we cannot conclude the satisfaction or the
violation of an LTL formula (that involves the until operator) from finite traces.
This happens, e.g., for a U b, when the finite system execution always satisfies
a without ever satisfying b. In such a case, we conclude that the trace does not
satisfy the property. We discuss ideas to improve our method in such cases in
Sect. 8.

2.3 Statistical Model Checking

Statistical Model Checking (SMC) is a family of algorithms to estimate the
probability that a stochastic system satisfies an LTL property φ [34]. The idea
is to sample a set E of bounded executions of the system and to associate each
execution e ∈ E with a Bernoulli variable be (1 if the execution satisfies the
property, 0 otherwise). Then, one can estimate the overall probability that the
system satisfies φ as

∑
e∈E

be
|E| . SMC also applies to non-stochastic systems by

assuming an implicit uniform probability distribution on each state successor.
Recently, Delahaye et al. [3,15] proposed an SMC approach to verify para-

metric Markov chains, that is, DTMCs whose transition probabilities depend on
numeric parameters function such as Pr : S × S → Poly(X) where X is the set
of parameters p0, ..., pn. Then the – parametric – function f ∈ Poly(X) of a k-
length path ρ = s0, s1, . . . , sk in the pMC is given by Pr(s0,s1) ⊗· · ·⊗Pr(sk−1,sk).
The probability to execute this path can be derived for any DMTCs by valu-
ate the parameters of this function. Given a parameter valuation ν ∈ R

X and
a parametric function f ∈ Poly(R), f(ν) is the probability that the variant ν
executes the path.

This approach is interesting because it samples paths in the DTMC uni-
formly and accumulates a parametric function that encodes the – parametric
– probability of this path to be executed for any valuation (aka variants). The
approach also associates every sampled execution with a reward (e.g., 1 if the
execution satisfies the checked property; 0 otherwise). Then, the probability that
a given parameter valuation satisfies the property is estimated as the average
of all rewards weighted with the value of the associated parametric function
corresponding to the parameter valuation. Delahaye et al. [15] demonstrate the
soundness of their method theoretically and experimentally on three examples.
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There are three fundamental differences between these parametric Markov
chains and FDTMCs that impede the direct application of Delahaye et al.’s app-
roach. First, FDTMCs include Boolean parameters, whereas parametric Markov
chains include real parameters. Second, these Boolean parameters represent VIS
features and determine the existence of transitions within the different variants,
whereas Delahaye et al. assume that all transitions are available regardless of
any particular parameter values. Third and last, VIS features are interdependent
and it is necessary to filter out feature combinations that do not correspond to
any existing (valid) variants. However, these two approaches can be both used
to verify every variants (or valuations) of a stochastic VIS because:

FDTMC|v∈BF = pMC|ν∈RX ⇐⇒ ∀t ∈ T,Πt(v) = Prt(ν).

Therefore, our work takes inspiration from the principles of Delahaye et al.
[3,15] but develops a novel SMC approach to verify FDTMCs. The implementa-
tion of our algorithms relies on a dedicated data structure – based on Algebraic
Decision Diagrams (ADDs) [2] – to account for the binary nature and relation-
ships of FDTMCs parameters. Indeed, the advantage of our data structure over
Delahaye’s parametric approach is that ADDs can record (1) which variants
can (or cannot) execute a given FDTMC path and (2) with which probability
– and it can do so while keeping its structure concise as it accumulates more
probability profiles. The other advantage of our approach is that we can directly
embed constraints between the features within the decision diagram that can
also act as constraints between transition probabilities. [8,12]. By doing so, we
discard invalid combinations of features by constructions – whereas parametric
approaches would invoke a solver to determine the set of valid combinations.
Overall, our solution fits specifically well to the problem of verifying stochastic
VISs, whereas Delahaye’s method is more appropriate for classical parametric
models.

3 Statistical Model Checking for Featured DTMC

We consider the problem of checking an LTL formula on a featured discrete-
time Markov chain. The traditional SMC method of Younes et al. [34] can work
only on a single variant. One straightforward way to address our problem is,
therefore, to compute the projections of the FDTMC onto each variant ∀v ∈
V, FTMC|v and apply traditional SMC to each resulting DTMC. For example,
the projection in Fig. 2 results in 6 states with two states (5 and 6) that accept
the LTL formula φ. The traditional SMC method will sample n paths of k
steps (arbitrary values). In this example, some possible paths of 3 steps are:
ρ1 = (0, 1, 3, 2), ρ2 = (0, 2, 2, 4), ρ3 = (0, 2, 4, 3), ρ4 = (0, 1, 0, 1), ρ5 = (0, 1, 3, 5)
and ρ6 = (0, 1, 3, 6). The two last paths ρ5 and ρ6 reach an accepting state. This
mean that they violate the safety property (i.e., ρi∈{5,6} |= φ). The probability
that the system will produce these behavior is P [ρ5] = .5 × .8 × .1 = .04 and .12
for ρ6. More probable paths are for example ρ1 where P [ρ1] = .24 or ρ3 (.35).
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Given 6 samples P of 3 steps, lets say the one described ρ1, ..., ρ6, the probability
E that the system violates the property is

E =

∑
ρ∈P,ρ �|=φ P [ρ]
∑

ρ∈P P [ρ]
=

.04 + .12
.24 + .105 + .35 + .05 + .04 + .12

= 0.176

Although this procedure is simple, it suffers from the exponential blow-up inher-
ent to variability [9], that is, the number of variants tends to increase exponen-
tially in the number of features.

Instead, we propose a new SMC method that can sample executions from
all variants at once (i.e., directly in the FDTMC) regardless of the probabilistic
differences across the variants. We rely on the theoretical results of Delahaye et
al. [3,15] and adapt their principles to FDTMC verification. Hence, our algorithm
performs a uniform random walk to sample a path in the FDTMC. That is, at
each step, the next transition to execute is selected uniformly regardless of the
number of variants that can execute it and with which probability.

For each sample path ρ, we record three pieces of information:

– The probability profile Πρ associated to ρ, which records the probability
that each variant executes it. In our implementation, we encode a probability
profile into an ADD. We also record the set of variants Vρ that can execute ρ.
We can compute this set from Πρ a posteriori, such that v ∈ Vρ ⇔ Πρ(v) > 0.

– A Boolean value bρ that indicates whether ρ satisfies or not the checked
formula, that is, the reward of ρ according to Delahaye et al.’s terminology.

– The probability pρ that the uniform random walk samples ρ.

A number n of repeated applications of Algorithm 1 produce a set of tuples
{(ρ1,Π1, b1, p1) . . . (ρn,Πn, bn, pn)}. Then, leaning on Delahaye et al.’s theory
[15] for parametric DTMC estimation, we can compute an estimator of the
probability that any system variant satisfies the property. For a given vari-
ant v, this estimator is the average reward of the paths ρi sampled from the
FTDMC projection onto v, weighted by the probability that v executes ρi, that
is, Ebv = 1

nv
× ∑

i(bi × Πi(v)) where nv is the number of paths sampled in the
projection onto v such as ∀v ∈ V, nv =

∑n
i=1 Πi(v) > 0. The idea is that for

a large number n of samples, this expected reward converges towards the real
probability that v satisfies the property. Our uniform random walk approach,
however, cannot directly produce such an estimator because it samples paths
uniformly, irrespective of the real probabilities that the variants can execute
these paths. We, therefore, follow Delahaye et al.’s parametric approach and
normalize the weighted average reward Ebv with the probability with which the
random walk sampled each path ρi. Hence, we compute the estimator as

Π̃ =
1
n

⊗ (
b1

p1
⊗ Π1 ⊕ ... ⊕ bn

pn
⊗ Πn) (1)

where 1
n is the probability profile that associates 1

nv
to each variant v. Then,

for sufficient numbers {nv}, Π̃(v) is the estimated probability that the variant
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v satisfies φ. We can reduce the demonstration of this result to Delahaye et
al.’s proofs for parametric DTMC [3,15], by transforming our FDTMC into
a parametric DTMC (c.f. Fig. 3), such that each parameter corresponds to a
feature and takes either the value 1 (the feature is enabled) or 0 (the feature is
disabled). Then, in probability profile a positive literal over a feature f is simply
encoded as f (e.g., f ×0.4 corresponds to Π(f) = 0.4) and a negative literal over
f is encoded as (1 − f) (e.g., (1 − f) × 0.4 corresponds to Π(¬f) = 0.2). In the
end, the only difference in our working assumptions – which has no incidence on
the proof – is that the number of paths that each variant can execute can differ.
This is taken into account with the profile 1

n and is equivalent to having paths
that some variants executes with a zero probability. For the sake of conciseness,
we do not replicate the proof of Delahaye et al. here.

Fig. 3. Parametric DTCM resulting from the FDTMC illustrative example.

Algorithm 1 implements our random walk method for properties of the form
♦a with a ∈ AP . The reasons we present the algorithm for these simple prop-
erties are the clarity of the presentation and because the key principle of our
method is how we accumulate probability information during the random walk.

The algorithm selects an initial state of the FDTMC according to the initial
state distribution ν (Line 1). Then, it enters an iterative process to select the
successive states that the FDTMC goes through (Lines 7–17)). If the current
state s satisfies the atomic property a then the current path ρ satisfies ♦a –
in this case, the algorithm stops and returns ρ and the associated probability
profile Πρ that describes the probability for each variant to execute ρ (Line
19). Otherwise, the algorithm picks the next state s′ from the reachable set of
successors with a uniform probability (Line 12–13). In order to sample a relevant
path, we consider only states s′ that at least one variant can reach from s with a
non-zero probability. The algorithm also updates the probability profile of ρ by
multiplying it with the probability profile of the transition from s to s′ (noted
Π(s,s′) – see Line 15). The algorithm iterates until it executes k steps or finds a
state satisfying a.
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The generalization to any LTL property is straightforward. It consists of
executing the trace into the Büchi automaton equivalent to φ. Then the trace
satisfies the property if and only if the execution loops over an accepting state
of the automaton. Concretely, this generalization is obtained by removing Lines
9–11 and add after Line 18 the execution of the trace into the automaton. The
implementation of this execution is a standard model checking procedure and is
omitted here for conciseness.

The most important design decision for our algorithm is the representation
we use for probability profiles and their accumulation. We propose to encode
probability profiles using Algebraic Decision Diagram (ADD) data structure.
ADD are a generalization of Binary Decision Diagram (BDD). BDDs are tra-
ditionally used for non-stochastic VISs and encode efficiently [9] which variants
can or cannot execute the transitions. We propose ADD to also encode vari-
ants probability to execute transitions and thus to capture VISs with stochas-
tic nature. More formally, an ADD represents B

n → R function. Such func-
tion can capture the probability to execute a transition for every variant.
ADDs1,s3(I,¬J,K) = .3 while ADDs1,s3(¬I, J,¬K) = .8, etc. Operations
such as sum, product, modulo, etc. can be applied to ADDs. In our case, the
product of two ADDs will multiply the probability values for every variants
∀v ∈ V, (ADD1 ⊗ADD2)(v) = ADD1(v)⊗ADD2(v). Scalar value i can also be
considered as an ADD such as ∀v ∈ V,ADD(v) = i.

Fig. 4. Probability profiles of some transitions and paths encoded as ADDs.
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Figures 4a, 4b and 4c illustrate probability profiles of some featured stochastic
transitions as ADDs. While the (s2, s2) transition is only possible for variants
with {¬I ∧ J}. Such variants have .3 probability to fire this transitions (.7 to
fire another one). Other variants cannot fire this transition. The (s2, s4) is a
XOR ADD over I and J . I ∧ ¬J variants can and will fire this transition as the
probability is 1. Similarly, (s4, s3) transition is mandatory for K variants while
¬K variants have .9 probability to not fire it. Figure 4d and 4e are two examples
of probability profile of path (s2, s2, s4, s3) and (s0, s2, s4, s6). The first one is
the product of the probability profiles of transitions illustrated in Fig. 4.

Figure 5 Illustrates our method with two sampled paths using Algorithm 1.
The first path is: ρ1 = (s0, s1, s3, s2). The second is ρ7 = (s0, s2, s4, s6). As
explained, Algorithm 1 returns a triplet containing the path probability pro-
file (i.e., encoding the probability to execute the path given each variant. The
Boolean value that indicates if the path violates or not the given formula ρ1 = 0
while ρ7 = 1, and the uniform probability to sample the path (.055 for ρ1 and
.125 for ρ7). Then for each samples path, the average reward to violate the
formula is:

1
n

⊗ (
0

.055
⊗ Π1 ⊕ 1

.125
⊗ Π7).

The profile n is the number of executable sampled paths for each variant. For
instance, while {¬I ∧ J ∧ K} or {I ∧ ¬J ∧ K} variants or can executes the two
sampled paths, {¬I ∧ J ∧ ¬K} or {I ∧ ¬J ∧ ¬K} can only execute ρ1.

Note that in this example, the final (rightmost) ADD does not represent a
probability (the terminal values are greater than one). This is because the num-
ber of samples is insufficient for these values to converge to the real probability
values. Here, the terminal values are greater than one because the correspond-
ing variants have a real probability to sample the paths that is greater than the
probability of sampling these paths uniformly. Through additional repetitions
of our algorithm, we would likely obtain other paths that the variants are less
likely to execute and, ultimately, the final ADD will converge. Nevertheless, this
example already illustrates the capability of our family-based approach to exploit
common behaviour shared across multiple variants: by sampling only two paths
in the FDTMC, we manage to get information about four different variants.

Fig. 5. Illustration of the Eq. 1, Π̃ = 1
n

⊗ ( b1
p1

⊗ Π1 ⊕ ... ⊕ bn
pn

⊗ Πn) with two sampled
paths.
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Input: An FDTMC m = (S, ν, V, Π);
An LTL formula φ = ♦ka.
Output: a random path ρ with maximum length k;
a binary variable b, equal to 1 if and only if ρ |= φ;
Π, the probability profile of ρ;
pρ is the probability that uniform sampling returns ρ

1 s ← pick from S with probability νs;
2 depth ← 0;
3 b ← 0;
4 ρ ← s;
5 Πρ ← 1;
6 pρ ← 1;
7 while b = 0 ∧ depth < k do
8 depth ← depth + 1;
9 if s |= a then

10 b ← 1;
11 end
12 Succ ← {s′ ∈ S|∃v ∈ V : Π(s,s′)(v) > 0};
13 s′ ← pick from Succ with probability 1

|Succ| ;

14 ρ ← ρs′;
15 Πρ ← Πρ ⊗ Π(s,s′);
16 pρ ← pρ × 1

|Succ| ;

17 s ← s′;
18 end
19 return (ρ, b, Πρ, pρ)

Algorithm 1: Uniform Random Walk in FDTMC

4 Evaluation

4.1 Objectives and Methodology

We conduct experiments that assess the effectiveness of our method in estimating
correctly the probability of each variant to satisfy given properties. Our exper-
iments consider a scenario where engineers have a limited simulation budget,
that is, a number of SMC runs (in our case, a run is a uniform random walk).
When we apply SMC to each variant, we equally share the budget between all
variants. We decompose our evaluation in three research questions.

Our first research question evaluates the soundness of our approach. It aims
to validate that our approach is consistent with (1) classical SMC applied to each
variant’s DTMC separately and (2) the parametric SMC approach of Delahaye
et al. [3,15].

RQ1: Is our approach consistent with other probability estimation methods?

To demonstrate this consistency, we reuse a toy example, called “Parametric
Toy”, that comes from Delahaye et al.’s paper [15]. It is a simple parametric
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model that we transformed into an equivalent FDTMC where each variant cor-
responds to a parameters valuation. We consider 26 such different variants. The
reason we use this example is that its small size gives us confidence that our
translation has preserved the original semantics of the model. We set the simu-
lation bound k to 15, which is sufficient to for this small model. The setting of
k depends on various factors such as the ones mentioned in Sect. 4.2.

To compare the approaches, we compute the correlation between (1) our
ground truth containing the probability of each variant to satisfy the given prop-
erty and (2) the same probabilities estimated by the method. We computed this
ground truth from a very large number of simulations run for each separate vari-
ant to precisely estimate the probabilities (106 simulations per variant). We use
the Kendall coefficient to measure the correlation because, as an ordinal associ-
ation metric, it focuses on how well each method ranks the variants according to
their probability (irrespective of the actual probability values). A high Kendall
correlation means that the method preserves the ranking of the variants accord-
ing to their probability to satisfy the property. To complement our analysis, we
also use the Pearson’s correlation coefficient, which captures linear relationships
between two variables (here, the ground truth versus the probability values esti-
mated by each method). Thus, a high Pearson correlation would indicate that
the method can also preserve the difference in probability between the variants.

Our second research question evaluates the benefits of factorizing the analysis
over all variants at once:

RQ2: Does family-based analysis improve effectiveness?

To answer this question, we compare the effectiveness of (1) our family-based
approach with (2) our uniform random walk applied to each variant separately.
Since both approaches use the same sampling strategy (uniform sampling), any
observable difference would show the benefit of factorizing the sampling across
all variants.

We measure effectiveness as the capability of each method to estimate prop-
erly the satisfaction probability of these variants. As mentioned before, we get
an aggregated view of effectiveness by computing the Kendall and Pearson cor-
relations. That is, we measure the capability of SMC methods to rank variants
properly (using Kendall) and to preserve the relative difference between the
estimated probability of the variants (using Pearson).

To conduct these experiments, we use two models that are bigger than Para-
metric Toy. The first is the Body Sensor Network from [24] and the second is
a minepump VIS [9,20]. We check both models against the property originally
described in their respective papers. As for the simulation bound k, we set it to
30 for the Body Sensor Network and to 50 for the Minepump. Those values are
sufficient to find violations of the properties.

Finally, we check how our uniform sampling approach compares to a product-
by-product sampling that considers the transition probability values to guide the
random walk (i.e., the standard way to apply SMC to probabilistic systems). The
difference between this “guided” random walk and uniform random walk is that
the former asymptotically produces better estimates since it directly samples
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from the DTMC transition function. However, this guided approach may miss
rare property violations in case of insufficient sampling budget, which may affect
the conclusions of SMC. Hence, our research question is:

RQ3: Is guided random walk more effective than uniform random walk?

To answer this question, we repeat our RQ2 experiments (same protocol and
settings) using SMC with guided random walk applied to each variant individ-
ually.

4.2 Datasets and Parameters

To conduct our experiments, we use two models from the literature. The first
is the Body Sensor Network from [24]. This system consists of a set of medical
sensors that monitor a person’s vital signs. Sensors and other elements exhibit
variation points from which 10 variants can be derived. This system has only
one property to satisfy, which is that it should never reach a failure state.

The second model is a minepump VIS [9,20] with 448 variants. The under-
lying FTS comprises 250,561 states1. We have modified this model to introduce
probability over non-deterministic transitions (e.g. those that modify the level
of water and the presence of methane), such that the probability mass is dis-
tributed uniformly over alternative transitions. For this model, we consider the
four properties described in Table 1.

We set respectively, the simulation bound to 30 for BSN and 50 for
minepump. The setting of the simulation bound k often depends on the case
study. It requires knowledge about the case study but also about external fac-
tors such as system requirements, system execution context, etc. This expertise
usually came from the system engineers. For example, k may depend on the
property to check, such as what is the probability of having a system failure by
some given time t. That is, it requires knowledge about how long the system
should run before it can be considered safe.

Higher simulation bound allows finding more (but usually less probable) vio-
lations of the properties. The simulation bound may also depend on the system
itself and its future usage. A more complex system will likely require a higher
simulation bound because a bigger state space must be checked. If interested in
rare events or if the system will run during a long time period before mainte-
nance, the simulation bound can be increased as well. Similarly, the number of
samples (or simulation runs) also depends on the case study. Basically, a com-
plex system with a lot and/or longer paths will likely require a more significant
number of samples to have a precise enough idea of the probability to satisfy the
property.

1 The state space of all variants taken individually reaches 889,124 states.
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Table 1. Minepump properties that we use in our experiments.

Property number Property formula

minepump #16 ¬((�♦methane) ∧ (�♦¬methane))

minepump #18 �(methane ⇒ (♦stateMethanestop))

minepump #26 �((highWater ∧ ¬methane) ⇒ ♦pumpOn)

minepump #30 ¬♦�(¬pumpOn ∧ highWater)

4.3 Implementation

We implemented our family-based SMC algorithm and the classical product-by-
product SMC algorithm into ProVeLines2 [12], a state-of-the-art model checker
for VIS. The tool takes as input (a) an FDTMC – modelled in an extension of
the Promela language [19] where transitions are associated with a probability
distribution and can be guarded with features, (b) an LTL formula, and (c) a s
sample budget of k steps. Then it runs simulations (using the available budget)
and returns the probability of variants that satisfied the property. Therefore, we
compare our algorithm and classical SMC on common technical ground.

To efficiently encode the probability profiles Πρ that our algorithm manipu-
lates and returns, we extended the Algebraic Decision Diagrams [2] data struc-
ture. ADDs are like binary decision diagrams [5] except that leaf nodes can
receive a real value. In our case, branches represent features of the VIS. There-
fore, an ADD path represents a set of variants, and the value of the leaf is
the probability associated to this set. Equation 1 is implemented by using two
extended ADDs. ADDp that iteratively capture the output of each path sam-
pled by Algorithm 1 (i.e., b

p ⊗ Πρ) and ADD∼ that accumulate them such
ADD∼ =

∑n
p=0 ADDp. We implemented our ADD extension into the efficient

CuDD library [29]. The extension allows to store multiple real values as leaves
in order to optimize the implementation.

As for the parametric approach, we reuse the prototype Python implemen-
tation of Delahaye et al.3 [15]. Unfortunately, this prototype does not support
concurrent systems (i.e., multiple processes/modules) and a very limited subset
of the Prism language. Consequently, it cannot verify Body Sensor Network nor
Minepump case studies.

We run all our experiments on a Dell Latitude i7 16 GB 1.8 GHz. To account
for random variations, we execute 10 runs of each experiment and report the aver-
age accuracy. Body Sensor Network and Minepump ground truth computations
took, respectively, 6 min and 50 min approximately. The different case studies
took a few seconds for Body Sensor Network and few minutes for Minepump.
The memory consumption of ProVeLines was around a dozen of MB. We do not
notice differences in performance between the methods implemented in ProVe-
Lines.

2 https://bitbucket.org/SamiLazregSuidi/provelines-stc/src/master/.
3 https://github.com/paulinfournier/MCpMC.

https://bitbucket.org/SamiLazregSuidi/provelines-stc/src/master/
https://github.com/paulinfournier/MCpMC
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5 Results

We present our experimental results for the three research questions hereafter.

5.1 RQ1: Soundness

We show in Table 2 the correlation analysis for the Parametric Toy exemplar,
the only model we could model equivalently in Delahaye et al.’s tool [15] and
in ours. We show the correlations for Delahaye et al.’s approach (Parametric),
our family-based algorithm, and the product-by-product uniform random walk.
For each method, we show the correlation between the probability values that
the method estimated and the ground truth. As a reminder, the ground truth
was computed from a very large number of simulations run for each variant to
precisely estimate the probabilities (106 simulations per variant). Interestingly,
we observe that each method achieves extremely strong correlations (above 0.89).
This indicates that both the approach of Delahaye et al. [15] and our novel SMC
algorithm can produce suitable estimates to compare and rank the variants of
the Parametric Toy.

We can observe that the variation of the number of simulations does not
drastically influence the correlation of any of the methods. This indicates that
even the smallest simulation budget we considered (103) is enough to cover rare
behaviors specific to few variants of the Toy exemplar. This also suggests that
our uniform normalisation function is adequate for this system [15].

These positive results indicate that our approach can produce suitable
estimations. This allows us to have confidence in its correctness and capa-
bilities.

This successful preliminary validation encourages us to pursue our endeavour
on larger models and more complex properties, which we investigate in the next
research questions.

5.2 RQ2: Benefits of Family-Based

We study the correlations achieved by our approach (“Family-based”) compared
to the product-by-product random walk (“PbyP: Classical”), on larger models
than the parametric toy exemplar. Table 3 shows the results for Body Sensor
Network (BSN) and for Minepump. It has to be noted that the two models
have significantly different characteristics. The state-space of Minepump is larger
than BSN and requires, therefore, longer explorations (in terms of simulation
bound k) to sample relevant path prefixes. BSN, however, presents an extreme
factor of complexity: all its stochastic transitions are featured, i.e., the transition
probabilities change with the system features. This means that the stochastic
behaviour of two variants can differ significantly and do so early during the
simulation.
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In the BSN case (Table 3), we observe that, for all sampling budgets, both
approaches achieve very strong Pearson correlation (>0.93) and strong Kendall
correlation (>0.77). This means that they are both effective in estimating the
ranking of variants (wrt. their property violation probability) and even more
in estimating the relative differences (in violation probability) between these
variants.

In both cases, increasing the budget improves the correlation values. This
indicates that, in spite of its reasonable state space size, BSN remains challeng-
ing to simulate due to the divergence in the variants’ stochastic behaviour. We
actually observe that, though our family-based approach strongly correlate with
the ground truth, the product-based alternative is better in this case.

In the Minepump case (Table 3), we observe again that the two approaches
are overall effective: they both achieve very strong Pearson correlation (>0.90)
and strong Kendall correlation (>0.64) for all properties and sampling budget.
There are, however, observable differences between the two techniques.

First, the family-based approach achieves better Kendall correlations than
the product-by-product method (up to 0.13 difference), but worse Pearson cor-
relation (up to 0.07). This means that the product-by-product estimates the
relative difference between variants slightly better. However, it has more fail-
ures when it comes to ranking these variants. This can be explained by the fact
that, in Minepump, multiple variants can have very close violation probabilities.
In this case, the product-by-product method can fail to rank them due to the
inherent estimation error. By contrast, the family-based approach estimates the
probability of these variants at once; therefore, it applies the same estimation
error to all variants, which does not impact the rankings.

Second, increasing the sampling budget increases the correlation values for
the product-by-product method, but has no significant effect on the family-based
approach. This indicates that our method can provide its maximal benefits even
with a small sampling budget. We explain these results by the fact that the
minepump variants differ more by their unique transitions than in their proba-
bilities to execute common transitions. In such a case, the factorization capabil-
ity of our family-based method is optimally used and enables the production of
accurate estimation even with a low number of sampled paths.

The main benefit of our approach is to effectively estimate the rank-
ing of the different variants according to the probability to violate the
property. Our method is more effective at ranking variants than product-
by-product approaches, especially at low sampling budgets.

5.3 RQ3: Guided Sampling

Our last research question investigates whether a product-by-product sampling
approach that is guided by transition probabilities brings benefits over uniform
sampling. Results for this approach are again shown in Table 3 (column “PbyP:
Guided”).
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In the BSN case, we observe that this new approach achieves very strong
Pearson correlation (>0.96) – it is as effective as the product-by-product uniform
sampling approach – and strong Kendall correlations (>0.73) – though, overall,
less strong than the two uniform approaches. Interestingly, we observe that these
Kendall correlations can significantly increase or decrease with the sampling
budget, whereas one would expect the correlation to improve monotonically with
the sampling budget. Because it is guided, this sampling approach inherently
favours common execution paths over rare paths. In case these rare paths are
violating, this biased sampling introduces random factors in the ranking of the
variants.

In the Minepump case, the guided approach achieves lower Pearson and
Kendall correlations compared to the two uniform approaches, though these
correlations remain strong (>0.73). As we previously observed on the uniform
product-by-product method, the guided approach improves its estimations with
an increasing the sampling budget, though it never manages to perform better
than our family-based method.

Our uniform sampling method performs better at low sampling budgets.
This indicates that guided sampling methods tend to be more sensitive
to path rarity, which can deteriorate the estimations.

These results demonstrate the importance of path rarity in accurately esti-
mating all variants’ violation probability. This importance, in turn, motivates
the use of uniform sampling and normalization methods that we have proposed
in this paper.

Table 2. Correlation between each method and the ground truth (106 simulations run
for each variant). In each cell, left number is Pearson’s correlation; right number is
Kendall’s. In the table, “Parametric” refers to Delahaye et al.’s approach. “Family-
based” is our novel SMC algorithm. “PbyP: Classical” means uniform random walk
SMC applied to each variant separately.

Sample budget Family-based PbyP: Classical Parametric

Param. Toy 103 0.9655 0.9294 0.9964 0.8928 0.9570 0.9983

Param. Toy 104 0.9630 0.9230 0.9972 0.9733 0.9539 0.9984

Param. Toy 105 0.9627 0.9231 0.9998 0.9733 0.9539 0.9984

6 Threats to Validity

The first threat to validity is the models we use. We used only two VIS mod-
els from the literature that we could easily adapt to become stochastic VIS.
These models do not exhibit a real-world level of complexity (i.e., hundreds
of variants and hundreds of thousands of states). But even if the case studies
are relatively simple compared to real-world VISs, the preliminary results of
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Table 3. Correlation between each method and the ground truth (106 simulations run
for each variant). In each cell, left number is Pearson’s correlation; right number is
Kendall’s. In the table, “Family-based” is our novel SMC algorithm. “PbyP: Classical”
means uniform random walk SMC applied to each variant separately. “PbyP: Guided”
means guided SMC applied to each variant separately.

Sample budget Family-based PbyP: Classical PbyP: Guided

BodySensorNet. 102 0.9386 0.7778 0.9675 0.809 0.9673 0.7333

BodySensorNet. 103 0.9594 0.7778 0.9984 0.8667 0.9976 0.9556

BodySensorNet. 104 0.9672 0.9111 0.9999 0.9111 0.9982 0.9111

BodySensorNet. 105 0.966 0.9556 1.0 0.9556 0.9994 0.8222

minepump#16 250 0.9586 0.778 0.9762 0.6412 0.8284 0.756

minepump#16 500 0.9617 0.7791 0.9873 0.6753 0.8274 0.7601

minepump#16 1000 0.9602 0.7697 0.9922 0.6852 0.8292 0.7606

minepump#16 2000 0.9603 0.7766 0.9953 0.7152 0.8292 0.761

minepump#18 250 0.9574 0.7651 0.9856 0.7171 0.837 0.7424

minepump#18 500 0.9576 0.7775 0.991 0.737 0.8366 0.7544

minepump#18 1000 0.958 0.7699 0.995 0.7752 0.8381 0.7518

minepump#18 2000 0.9578 0.7823 0.9969 0.781 0.837 0.7563

minepump#26 250 0.909 0.8434 0.9509 0.7841 0.8445 0.733

minepump#26 500 0.9085 0.8453 0.9677 0.7912 0.8493 0.7579

minepump#26 1000 0.909 0.8445 0.9751 0.7958 0.8526 0.7804

minepump#26 2000 0.9085 0.8469 0.9809 0.811 0.8552 0.7832

minepump#30 250 0.9027 0.8583 0.9591 0.7859 0.7799 0.7498

minepump#30 500 0.9028 0.8719 0.9745 0.8277 0.7847 0.8074

minepump#30 1000 0.9014 0.8788 0.9773 0.833 0.7856 0.8064

minepump#30 2000 0.9038 0.8765 0.9832 0.8365 0.7859 0.8323

our evaluation show that our method is a promising direction for verification of
VISs. As future work, we plan to collect several real-world stochastic systems
from different industries such as space, automotive and biomedical to further
develop our method.

Our second threat to validity is that the effectiveness of our method may
depend on the system to verify. Indeed, a basic assumption is that systems with
many common behaviors across the variants will provide better results. This
is what we can observe with our models. The effectiveness of our method also
depends on the property to check. For example, our method provides worst
Pearson but better Kendall correlations for the last two minepump properties
#26 and #30. The other case studies share similar results. However, further
research and investigations will be required to characterize how different systems
and properties will impact our method.
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Similarly, the choice of the normalization function and the simulation bound
k may highly impact the results of our method. We show that the uniform
normalization function outperforms the traditional guided sampling in giving
accurate estimations. However, as the convergence speed can be affected by the
choice of the normalization function [15], this choice may also depend on the
case study. For the simulation bound, our k settings find violations for every
variant with reasonable probability of happening (higher than 0.0001). Indeed,
in our models, a lower k produces fewer behaviors (but more probable) that
violate the property, while higher k will find more violations (but with a lower
probability of happening). Nevertheless, setting precisely the simulation bound
(similar to simulation run length) requires knowledge about the case study and
external factors such as system requirements, system execution context, etc. This
expertise usually came from the system engineers.

Another threat concerns the way we computed out ground truth that is used
as real probabilities that each variant has to violate the property. We propose to
compute this ground truth using a very high number of samples compared to the
one used for the experiment. For example, for minepump, 106 samples were used
to compute the ground truth. In comparison, 202 samples is the budget to assess a
method. We also repeated the computation of ground truth multiple times to see
if this high number is sufficient to avoid random variations. We observed slight
probability variations from 10−6 to 10−9 (depending on the case study). These
variations are too small to impact product ranking. Another way to compute
the ground truth is to apply exhaustive bounded probabilistic model checking
on each variant. This computation method differs from the one we propose in
this paper and might not be a relevant comparison.

Finally, a construct validity comes from the metrics we use to measure effec-
tiveness. Kendall and Pearson coefficients are established statistical methods to
measure the correlation between two variables (here, the ground truth and the
estimations). We reused standard libraries to compute them and are therefore
confident that our computation is correct. Still, these coefficients assess to what
extent the estimations preserve the real differences between variants (be it of
raking or of value) and do not precisely reflect the estimation errors. Overall,
these coefficients are meaningful if the goal is to compare products rather than
get extremely accurate probability estimations.

7 Related Work

7.1 VIS Verification

There are numerous models proposed for VIS verification. For instance, Classen
et al. proposed Featured Transition System [9] (FTS) formalism which is an
automata-based model that relies on transitions labelled by a features expression.
Consequently, this formalism determines which variants can exercise the transi-
tion. Using this information, the fact that variants have behaviour in common
could be exploited, leading to significant speedup in terms of verification time.
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Accordingly, Classen et al. proposed variability-aware exhaustive algorithms to
model-check FTS.

In addition to FTS, other models have been extended to capture the
behaviour of multiple variants such as modal transition system [30], product-
line-CCS [18], featured Petri-nets [23]. Each formalism has a different syntax
and semantics. Modal transition systems or modal I/O automata use optional
“may” transitions to model variability. Similarly, product-line-CSS is a process
algebra with alternative choice operators between two processes to model the
behavior of a set of variants. All these approaches are reasonable solutions for
VIS verification. However, most of them are isolated efforts that do not come
with mature companion tools. Our work is, therefore, based on FTS. Ter Beek et
al.’s [30] solution based on modal transition systems is another mature approach.
However, it requires the use of a separate logic to link variants to their behaviour
in the model, which we found to be less practical than the explicit variability
information contained in FTS. This information makes it easy and efficient to
determine the variants that can execute a given buggy behaviour [10].

There also exist VIS models that include probabilistic information, such as
FDTMCs [27] and Markov decision processes [7]. These models come with dedi-
cated generalization of exact probabilistic model checking algorithms to compute
precise probability values to satisfy given properties. By contrast to all the above
methods, our approach is non-exhaustive and samples paths from the model to
estimate the probabilities of the stochastic VIS while reducing the verification
effort. Our work, therefore, trades off the exactness of the verification results
for an increased efficiency. This compromise is essential to verify VIS with large
state space.

A related line of work concerns the selection of a DTMC from a family of
candidate DTMCs. Ceska et al. [6] approach this problem from three angles: fea-
sibility (does there exist a family member that satisfies the property), threshold
(which family members satisfy the property within a given probability thresh-
old, and which ones do not), and optimality (which family member optimizes
the probability to satisfy the property). They propose a solution to answer these
three questions based on an abstraction-refinement scheme over Markov decision
processes. Our objectives differ in that we aim to estimate the violation probabil-
ity of each family member, a more precise information that is not necessary (but
is sufficient) to answer the above questions. The exploration of using SMC and
combine it with Ceska et al.’s abstraction approach is an interesting direction
for future work.

7.2 SMC for VIS

Recent work has applied SMC in the context of VIS. Vandin et al. [31,32],
proposed an algebraic language to formally model behaviour with dynamic vari-
ability (i.e. where the system can adapt its configuration during its execution).
Vandin et al. also proposed a product-based SMC approach to check proper-
ties on the reconfigurable system. Contrary to this work, our approach assumes
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static variability (the variants are distinct systems) and relies on family-based
algorithms to reason more efficiently on the whole set of variants.

Dubslaff et al. [17] and Nunes et al. [27] have studied VIS subject to stochas-
tic behaviour and proposed exhaustive model-checking algorithms to check the
probabilistic properties of such systems. These algorithms suffer from scalability
limitations because of their exhaustive nature and the inherent computational
cost of stochastic model checking approaches. To overcome this scalability issue,
Delahaye et al. applied SMC to stochastic parametric systems [16]. Their app-
roach opens the possibility to verify stochastic VIS, where each variant is a valu-
ation of the parameters. More precisely, Delahaye et al. target the verification of
quantitative reachability properties. By contrast, we support non-quantitative
but more general properties (expressed in a fragment of LTL).

In a series of recent works [31], ter Beek et al. proposed a simulation-based
approach for software product lines with stochastic behaviours. The approach
relies on an algebra to describe sets of variants and on SMC [21,22,34] to compute
the probability of each variant to satisfy a given bounded LTL property.

In this paper, we reconciled the approaches of [31] and of [15] by propos-
ing a family-based extension of SMC for FDTMC. We sketched the theory and
proposed an implementation in the ProVeLines model checker [12]. We then
show that our approach is more effective than the traditional, guided, product-
by-product SMC method. It is, furthermore, sample-efficient as its factorization
capability enables the production of suitable estimations with a low sample bud-
get.

8 Conclusion

There are two majors difficulties with the verification of VISs. The first is to
find a compact representation for a set of variants that share a common basis of
behaviours, but also differ by their unique behaviours. The second is to exploit
this representation to evaluate each variant efficiently.

In this paper, we consider VISs whose behaviours depend on stochastic infor-
mation. As seen in [27], such systems can be represented with FDTMC. That is
to say with transition systems whose transitions are extended with probability
profiles. Such profiles list the set of variants that are following the transitions as
well as the probability to take such a transition for a given variant.

Interestingly, we got some promising results that our family-based approach
produces consistent results and could precisely estimate the rank of the different
variants, especially at very low simulation budgets. Product-based approaches
seem to suffer from a fundamental limitation. The amount of estimations errors
sums up between the different variants reducing thus ranking capabilities. Con-
sequently, they may require more significant simulation budgets to outperform
our method.

Over the last years, verifying FDTMC has been the subject of intense stud-
ies (see e.g., [17,27]). Some of the verification techniques that have been pro-
posed are family-based; that is, exploiting the compact structure of FDTMC to
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avoid redundant work. Other approaches enumerate and perform verification on
each variant represented by the FDTMC. All those studies rely on extensions
of probabilistic model checking algorithms. While such algorithms are precise,
they eventually suffer from the state-space explosion problem.

This paper is the beginning of a new thread of results on applying SMC to
VISs. There are various directions for future research. The first direction is to
consider variants with both stochastic and non-deterministic aspects. This could
be done by combining the result of the present paper with the smart sampling
approach for non-deterministic behaviours proposed in [14]. Another extension
concerns the properties that we can verify. The present paper is restricted to
bounded executions. The problem is that verifying full LTL over infinite exe-
cutions is incompatible with a simulation-based approach. Indeed, the main
hypothesis of such an approach is that the property can be decided on each
simulation after a finite number of steps. This is a contradiction with the live-
ness fragment of LTL that requires monitoring unbounded executions. Several
authors have proposed solutions to this problem. These solutions either require
to have computed to the full state space of the model, or they drastically increase
the number of simulations [13,33]. We plan to investigate a novel approach based
on three-valued LTL. The idea would be to use the work in [4] that offers a finite-
word automata-based representation to monitor LTL properties. Given a finite
execution, the approach can either decide if it satisfies the property by compar-
ing the outcomes of two finite automata, or return an undefined value in case
the comparison is inconclusive. Such a three-valued approach cannot be handled
by classical Monte Carlo algorithms, but promising extensions exist [1] and can
inspire our work.
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