
On Technical Debt in Software
Testing - Observations from Industry

Sigrid Eldh1,2,3(B)

1 Ericsson AB, Networks Standards and Technology Software Computer Science,
Stockholm, Sweden

sigrid.eldh@ericsson.com
2 Department of Innovation, Design and Evolution, Mälardalen University,

Väster̊as, Sweden
3 Carleton University, Ottawa, Canada

https://www.es.mdh.se/staff/67-Sigrid Eldh,

https://carleton.ca/sce/people/eldh

Abstract. Testing large complex systems in an agile way of working was
a tough transition for systems having large active legacy and honouring
backward compatibility. Transition from manual test to full test exe-
cution automation resulted in increased speed and manifested technical
debt. The agile way of working in continuous build and test, creates a lot
of repetition by execution of the same tests. Overlap between agile teams
producing similar test cases, causes a constant growth of the test suites.
Despite the obvious improvement of automating millions of test cases,
the numbers provide a false sense of security for management on how well
the system is tested. The causes of technical debt should be addressed,
instead of managing the symptoms. Technical debt in software testing
could be addressed by refactoring, supported by known techniques like
cloning, similarity analysis, test suite reduction, optimization and reduc-
ing known test smells. Increasing the system quality can also be improved
by utilizing metrics, e.g. code coverage and mutation score or use one of
the many automated test design technologies. Why this is not addressed
in the industry has many causes. In this paper we describe observations
from several industries, with the focus on large complex systems. The
contribution lies in reflecting on observations made in the last decade,
and providing a vision which identifies improvements in the area of test
automation and technical debt in software test, i.e. test code, test suites,
test organisation, strategy and execution. Our conclusion is that many
test technologies are now mature enough to be brought into regular use.
The main hindrance is skills and incentive to do so for the developer, as
well as a lack of well educated testers.

Keywords: Test automation · Test maintenance · Agile development ·
Technical debt · Industry testing · Test strategies · Quality assurance

Supported by Ericsson AB and Mälardalen University.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13702, pp. 301–323, 2022.
https://doi.org/10.1007/978-3-031-19756-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19756-7_17&domain=pdf
http://orcid.org/0000-0002-5070-9312
https://doi.org/10.1007/978-3-031-19756-7_17


302 S. Eldh

1 Introduction

Agile development brought many benefits [22,44,60] for most industries, mainly
improving speed of delivering new functionality, and a strong uptake of more new
and modern tools. Automating the build and test loop in a continuous integra-
tion has solved integration testing issues seamlessly. In large complex systems,
there are many challenges remaining [24,44]. In an earlier study [71] we could
conclude that “a comparatively high technical debt is accepted in test systems,
and that software design organizations in general forget to apply software design
principles such as systematization, documentation, and testing, when produc-
ing or deploying test automation systems”. If we revisit the same organisation,
change did happen. The major change is that the (test) systems are now looked
upon as a production system in itself, and treated in the same way, and some
attempt to unify the test tool situation has happened. The four observations
claimed in this former paper, are unfortunately still true (for full explanation,
please revisit the original paper): Reuse and sharing of test tools brings issues
that need to be considered i.e.; Test facility infrastructure is not transparent
and may alter the test results if not accounted for; Generalist engineers expect
that their tools are easy to use; Accepted development practices for test code
are potentially less rigorous than for production code. In addition can add new
observations as a result of testing in the agile way of working.

Specifically, we can observe test suites are growing in size to the point that
prioritization, selection and reduction approaches are in strong need, instead of
the initial agile aim to “run all tests” at every change which is a consequence of
larger organisations. Focus then quickly becomes on maintaining test suites to
reduce and minimize suites without loss of executions. The overlap of test case
creation is an unfortunate consequence of many concurrent working agile teams
creating overlapping test cases. The concurrency of teams also cause delays the
CI-flow showing up as merge conflicts. Though, a rich overlap in the test suites
can be helpful when using technologies like Automatic Program Repair [73]. This
is not on people mind, as it is general a reluctance to remove test cases (due
to difficulties to identify actual execution patterns) as well as the testers do not
want to see their hard work being undone.

The overall problem remains, the abundance of test cases - will not only have
a high cost attached to it, but it will create a false sense of security of how well
the testing is made. As the wide adoption of poor metrics like test coverage are
used, this also reinforces the core issue of poor test design, often stemming from
the lack of rigorous specifications, as agile advocates learning by doing and “fail-
fast” schemes. In this paper we will discuss technical debt that still remains in the
software testing context with a focus on test automation, and provide a vision in
the area. This paper is written in the context of a large world-wide organisation,
with many research and development organizations. The observations made, are
also compared with other large world-wide organisation, where the author have
had insight in. Therefore, the observations are made as generic observations, and
no liability to or claim of, that the observation stems from Ericsson should be
made.



On Technical Debt in Software Testing 303

The paper is structured in the following manner. The next chapter is about
the background and context in the telecommunication domain, and the third
chapter is about test automation in industry. Then Sects. 4–12 are structured
lists of observations grouped under common themes, in the attempt to make the
readable. This is then followed by Sect. 13 that aim to describe a vision on testing
in the future followed by a description of Methods used, Threats of Validity and
disclaimers. We then conclude our paper.

2 Background - Telecommunication Domain

The telecommunication domain faces many challenges affecting the software. The
area is strongly regulated with standards, and the ability to communicate every-
where - from condensed areas in cities, to remote locations are now a necessity
for the society build on mobility. Telecommunication systems have moved from
the fixed line 2G to become wireless connections in any device. Most countries
are now transforming to 5G with high-speed secure communication enabling the
internet of things (IoT) as well as specialized networks, e.g. in mines - to allow
for remote automatic and safe mining [2]. As a telecommunication providers,
Ericsson is creating end to end network solutions for its customer, the opera-
tors. The new incentives to move telecommunication to the cloud, and into the
Fog [46] brings not only new competitors, but also new challenges. Issues like the
ever increasing need for speed is resolved by redundancy in hardware. Code size
and variety of offered solutions creates a massive need for concurrency, leading
to timing issues and increased complexity.

Legacy systems partly suffer from monolithic architectures that are costly
to refactor. Attempts to transform, slice, and simplify the software through e.g.
utilizing micro-services is an ongoing transformation. Variations of product offer-
ings in e.g. radio is in itself an issue resulting in costly tests. Software needs to
be secure and perform in high-speed environments. Many historically well made
decisions, are now suffering from lacking advanced tools for different analysis
and modern testing features. As Agile assumed self-organisation, the variety of
solutions, tools and programming languages are strong. Testing these systems
is a constant challenge, but gives a researcher ample sources to juxtapose tech-
nologies and approaches.

The Continuous Delivery and DevOps approach is a bit more tricky [10]
also for the telecommunication sector, as it assumes the operator (the customer)
needs to be prepared for automated delivery. Automatically acceptance test and
automatically provide feedback and data, the latter which is a legal area, as
the delivered solution should be integrated and work in a new environment
alongside competitors solutions. No wonder this is an area of much regulations
and standards to define operations.

The general management view is that testing is already too costly. Much of
the cost comes from simulators and test lab equipment as well as the cost of the
entire development infrastructure with tools.



304 S. Eldh

3 Test Automation in Industry

We can conclude that the number of testers has strongly declined in the agile
context as quality is the task of everyone, the tester role disappeared within the
agile teams.

Automation of test execution in industry has come a long way, thanks to
the agile transformation. Industries developing safety-critical or heavy regulated
software, are more focused on test automation by modelling the requirements
and generating the test than more traditional commercial software. The trend is
clear. As modelling tools constantly improve, and more developers are educated
in formal approaches reaches industry, the likelihood of using modelling as a
natural tool in the requirements phase is obvious. At least for reference models
in systematization. Modelling (through tools) as development still has not really
grabbed the general industrial developer community. But in one sense, all is a
model, and simple state-transition tools have been around for more than three
decades (at least within Ericsson). As we state below, there is still a strong
development by manual coding and “hacking” culture alive in most industries,
as experience of the difficulties with early modelling tools still lingers. Utilizing
modelling for test automation has its clear champions in industry. Unfortunately,
if you do not have a champion in your agile team, it is very unlikely more formal
model approaches spread until tools makes it easy and safe.

Test automation is very much a developers affair in the agile team, where the
tendency is to automate test execution for unit tests or low level functionality.
As systems are large and complex, the knowledge to test of all aspects of e.g.
a telecommunication node and system functionality for a small team update is
much to ask. Most developers lack enough insight in detailed execution patterns
on system level for their part of functionality, e.g. concerning timing and other
system parts executing concurrently. This lack of test environment understand-
ing is a significant source of flakiness in the test suites [55].

When it comes to content and creation of the test cases, little attention is paid
to utilizing test design techniques. We can observe that today the test automa-
tion approach used upon the first automation of test execution has indeed estab-
lished itself as a practice: Test cases were automated based on manual use cases
tests, where there is a lack of separation of execution and data, with many input-
output relations hard-coded in the test case. The lack of common directives of
utilizing any specific test technologies to create test cases is unfortunately a fact.
Quality Assurance is in principle to enforcing statement code coverage in the gat-
ing for CI/CD loops, using secure coding principle, embedded in static analysis
tools. The use of static analysis tools like CodeCompass [59] and CodeChecker
[1] are now becoming mandatory, but there is still lot of work remaining to bring
20+ programming languages used in a product portfolio into a common quality
approach. The quality is (still) much dependent on manual practices like code
reviews and even exploratory tests [50], as some people still advocates man-
ual practices despite goals aiming for “complete” automation. The digitalization
drives automation, and it is common sense to aim to automate as many aspects



On Technical Debt in Software Testing 305

as possible, to gain constant improvements and repeatability. Unfortunately, it
is still hard to transfer the knowledge behind solutions made.

4 Test Design Technologies

The largest gap between academic research and industrial practice in testing is
that many of the test design techniques described by academics are rarely used,
not used systematically or as a regular practice [25,33,36]. This differs between
industries, as more regulated industries, e.g. in safety critical systems, pay more
attention to some of these. Below we list a more detailed discussion on why this
is the case, what techniques we are talking about and an attempt to describe
some context. This lists have arbitrary order and weight, depending on what
software and system in what industry we are talking about.

1. Test Strategies do not contain any information of how things should be
tested. This results in a lack of proper systematic approaches of what test
design technologies used. Instead test strategies, and even e.g. agile testing
strategies, advocates what and when to test as well as e.g. manual testing
(exploratory test) [20].

2. The normal case is well tested at all levels of test, demonstrating the main
functionality [25].

3. Negative test (testing fault handling and anything outside the normal case,
including unspecified behavior), is randomly performed, except for robust-
ness testing at system level. Hardware redundancy acts much as “informa-
tion/bug hiding” of issues in this area [25].

4. The dominating functional test approach is requirement testing. This is
often expressed as use cases. As requirement specifications in agile are “user
stories”, it allows for not being fully specified up front. A consequence is
that the requirements can lack sufficient detail to be used to for sufficient
verification. This is especially clear when changes occur that details are lost
updating specifications [25].

5. As systems today contain functionality that has been transformed and
updated for decades, the historic documentation is not always kept accu-
rate, especially not in regards to tools, versions and patching. This lack of
documented detail, prevents modelling methods and more formal methods
to be used for testing on a regular basis.

6. There is no lack of attempts to model both source and test code, and suc-
cess varies. There are many reasons. Champions are often stuck in a team,
and modelling needs to be used and taught more widely. Modelling must be
a system decision and there is a lack of management back up. The model
must meet the code at some point, and here is the difficulty. Maintain-
ing models are costly, and it is harder to optimize auto-generated code for
performance. Also, it is also harder to check security and static analysis
on generated code - and corrections would be meaningless, hence to fulfill
the harsh requirements, many (not all) modelling tools and languages must



306 S. Eldh

have experts in-house that can change and update the modelling environ-
ment concurrently. Also intermediate languages or the auto-generated code
must be adapted to compilers that sometimes are proprietary, even if most
today aim for commonplace front and back-end approaches like e.g. LLVM
[47]. Therefore currently, for most industries code is king meaning, what is
written in code is what is used and triumphs both documentation, and tools.
In safety-critical systems model is king. Ground truths differs for different
industries. Historically, e.g. UML [30] was successful, but is now partly aban-
doned. ETSI TTCN-3 [3] is also made into an ITU-T standard [6] but does
only cover partial test suites within at least the telecommunication indus-
try. It has not kept up in competition with other (newer) languages, and
developers are not so keen on it, despite the potential.

7. Requirement test means that test cases are aimed to “cover” the requirement
- and manual analysis is performed to check that it is done. A lot relies on
this non-scientific measurement called “test coverage” of the requirement.
A requirement can need one test case or 30 000 test cases. Hence, talking
about 100% test coverage is nonsense. Taking an extreme example, is that if
you only had one test case for a system that is passed, you would have 100%
test coverage. Therefore, test coverage should always mean code coverage.
And as there are so many - you need to be specific of which code coverage.

8. Requirements management quality varies due to the agile transformation.
It is more often better described if the specification describes phenomena
closer to the user (or something used by the developer). Some requirements
in the machine-to-machine communication, layer 1 and layer 2 code in the
OSI model [62]), platforms, embedded code, or code closer to hardware, are
examples that take much longer to teach developers all about the domain
specific aspects. Consequently, there are often a lot to improve, when it
comes to supporting verification and validation [16].

9. As requirements seldom contain “what should not work” i.e. fault handling,
there are few test cases developed or prioritized in this area.

10. For specific protocol’s standards and telecommunication standard aspects,
careful modelling through e.g. Mathlab/Simulink [28,43] is regularly used.
In Hardware (FPGA’s) stricter modelling tools are used, as this can then be
transformed to a layout in hardware. When it comes to hardware/software
co-design, modelling tools are regularly used to asses what is most efficient.
Modelling is often used as reference (reference modelling) for prototypes,
but not in the context of fully generated code and/or test cases except
samples. This could for example be a set of input defined, often referred to
as test vectors, e.g. specific VHDL (Verilog High Definition Language) [52]
or ATPG (Automated Test Pattern Generation) both in common use for
hardware tests.

11. As data is often in abundance for large complex systems, another road taken
is to use constraint technologies, e.g. MiniZinc [53] that can aid in a lot of
human complex tasks - keeping track of endless rules of what data can be
combined with what. This area shows a lot of promise for the future. It is



On Technical Debt in Software Testing 307

easy to hope that one define, they work, but also constraint solvers also have
to be tested - making sure rules are created and used correctly.

12. Many test cases became “frozen” in its development, during the agile trans-
formation when automating these (functional) tests, much due to lack of
time to refactor test cases but also due to poor test automation and test
design know-how. The effort to automate them was challenging (costly)
enough. The result is that a lot of manual test cases were not transformed
to good automation, utilizing libraries, avoiding repetition etc., and did hard
code input and output/verdicts. They were translates as is. This makes many
test cases very inflexible. Very few test design techniques were used then, at
its best, you find three clones with hard coded boundary values, as an input.
As a result, test selection will remove two of these for being too similar, and
the boundary check is lost. This is just one simple example. Documenta-
tion of why a test case exists are totally lost. At best the test case can be
linked to a requirement specification, or deduced in time to “what project”
that created it. This is not very helpful. Therefore good and instant search
and test case tagging must exists in the tools to identify similarities and
understand context of test better. It would also be helpful to have trace
information of what the test case actually address. We are far from these
features in test tools today. No-one wants to update the information in the
tools to make it work either.

13. This lack of systematic testing and use of test design still remains, as each
agile team mainly “copy-paste” earlier test patterns. Exceptions do exists.
This results in a lot of clones and duplications of test code [39].

14. The more recent prioritization of security has made many testers transfer
to security. Checking for vulnerabilities implicitly improves testing, as some
limited fuzzing through the available fuzzing tools is now becoming standard
practice. Most fuzzing tools does basically perform input variation testing.
Books like Zeller et al. [75] also make standard testing practices and design
techniques useful by exploiting the security context.

15. Testing for code coverage is often set to 80% statement coverage as a gating
for legacy code, if used at all in industry. There is no control mechanism
that checks that this coverage is done properly, whereas “creative” avoidance
code to pass the gating is occasionally used. Some claim that code coverage
is a poor metric to drive quality. The reason is that e.g. statement code
coverage can be easily misused (see Marick’s comment on this [49]). You
can also do poor testing with good coverage (i.e. selecting input that does
not invoke faults). This historic view have made many developers reluctant
to use it. Some agile teams also test statement code coverage on integrated
code modules instead of the unit, which makes it very difficult to reach
higher coverage values as paths then exponentially grows. Enforcing strict
100% statement code coverage could be a waste too, as some code are not
cost efficient to cover. The simple approach to use coverage as a self-check
if the tests created was good is often lost in this debate of code coverage,
test coverage or any other creative invention of coverage.



308 S. Eldh

16. There are many agile teams that have abandoned proper unit test, and
mainly work to test functional tests, as the test harness and unit test suites
are costly to keep up to date with many code changes. It is true that for
some functionality it is difficult to test in isolation at lower levels and is
easier to test through its context. This leads of course to more difficulties
to achieve code coverage targets, but also brings a hidden bug count, as
new bugs come into play at code changes. In addition, it is easier to test
an item in its real context, instead of creating (and maintaining) stubs,
which at first glance seems costly, can be difficult to keep up and time
consuming. Using controlled stubs alleviates a lot of unit test issues, makes
units easier to understand, test and control. There are tools that allows real
code context to “act” as stubs which aid better control. This area should
be better explored both by unit test tool vendors and academic research.

5 CI/CD - Build, Test and Regression Testing

The CI pipeline, where the true sense of the agile approach to submit frequent
small changes can easily in a large organization become a big-bang integration.
Examples range from between 100 to 2000 commits in one hour, making it clear
that several pipelines was a solution. As the CI pipelines were conducted as a
part of the agile self-organisation, there are a variety of solutions and also on
what tools were used [65].

1. The CI framework is used to check that new code integrates, which is the
most common fault issue with committing a change.

2. Fixing build faults are currently a manual process, from debugging (fault
localization) to patching. The new patch is code reviewed by others in the
team and submitted. No extensive test framework exists for most pipelines
doing build changes, which can cause delays in the framework.

3. Current attention in one of the organizations tracking and remedy top 10
most unstable (nondeterministic) test cases (also known as flaky tests) are
often root caused to poor test case writing, lack of insight in test environment
and simulators that also execute with timing discrepancies. Identifying and
remedy issues that prevent flow (i.e. flaky tests) is a key industrial practice
following agile test automation in the CI flow [11,14,23].

4. Test suites have too long turn around time for some test tools, the test cases
should be better sliced and grouped and intermediate feedback should be
allowed, to save overall time.

5. The CI pipeline can have too long turn around time, often depending on the
vast number of test cases (and not sufficiently equipped test environment,
as these are costly)

6. Regression Test Selection (RTS) could be improved in some of the pipelines
to speed up order of execution.

7. Test suite can easily be in a wait state - (appearing to be hanging) as it is
waiting for input (from e.g. test environment) - as the test resources takes
time to set up and use, etc. This causes unnecessary flakiness issues [48].



On Technical Debt in Software Testing 309

8. When testing against real hardware - there are many issues of test equipment
failures and timing - causing the pipeline to be hand, stop, or be in wait
state [48].

9. If testing is using simulators - the simulators are often “too good” in the
sense that they do not simulate hardware issues or bugs, but definitely not
concurrency and timing sufficiently. A good simulator should be possible to
put in “faulty” mode. And controlled faulty is much easier to debug than
when it happens in the field.

10. The cost to update simulators to more accurately test fault hardware behav-
ior and timing issues (concurrency) is steep, and difficult to make happen if
commercial simulators are used.

11. Therefore software solutions, e.g. mutation testing tools, are so success-
ful to induce bugs [45,56]. The issue is that mutation test generate “too
many” faults at “too low level” - and many claim that many of these gener-
ated faults are “too simple” and therefore not representative. It is definitely
worth investigating what typical faults are, for a specific aspects of the sys-
tem. Especially to aid fault localization and support fail handling. To make
it worth embarking on mutation testing, tools must improve speed, accu-
racy, and usability as well as users should start with sufficiently high code
coverage.

6 System and Non-functional Testing

Most advanced and intense testing happens in non-functional testing (or at sys-
tem test level), such as performance test and load test, stability test, availability
test, robustness and resilience test, to mention a few. There exists dedicated
specialized testers in this area.

1. KPI’s (Key Process Indicators i.e. Key metrics) are essential for the products
commercial value.

2. These areas of system test are instead of being a “one off” in the end,
now with agile constantly measuring and performing automatic evaluation,
running the latest versions of the software and deploying intelligent machine
learning tools to support fault and issue localization [37].

3. The automation also contains automatic transitions between simulators and
the real hardware, which enables applications to run seamlessly. A conse-
quence can be that not all measures are on “real” hardware, and this can
cause a false sense of quality, but has the advantage of removing specific
test lab equipment issues.

4. As the system test is constantly measuring, it has strong similarities with
monitoring - and making the DevOps model fulfillment in this regard, a
much easier transition between internal testing and operations [57].

5. As non-functional level is fully automated relying on functional tests, there
are still many possibilities to improve e.g. visualization.



310 S. Eldh

6. Here, AI/ML supported test can aid in finding faults, producing more intel-
ligent metrics trends, swapping between simulation tools and real networks
and find strange anomalies among millions of metrics. Network resilience,
robustness, stability and reliability is measured, as well as performance test-
ing.

7. In general, telecommunication sector is well equipped to test at network
level, with a combination of real utility equipment (UE’s) and simulations
tools, making systems well tested.

8. Performance, load, overload and similar aspects are key metrics, and is well
evaluated on all levels of testing also regulated e.g. in the telecommunication
standards through ITU-T.

9. Security testing (incl. Penetration testing, fuzzing etc.) is a non-functional
test approach, but can be done at all levels of testing, and is not typical
system test matter, rather associated with level code, static analysis tool
and so on [12].

10. Not all non-functional tests described in e.g. ISO/IEC std. 25010 Series
[5,29] are done at system level, and that is maintainability. This is not
considered well a well measured or clear metric as is. as some aspects are
disregarded - and that is maintainability of the test suites. It is not partic-
ularly measured, or any specific attempts made to improve this aspect of
neither source code nor test code.

11. The testers at this level are well acquainted with the system, and have
expertise in both measuring and troubleshooting the system. As most KPI’s
have high commercial value, this area has management attention, and the
existing expertise make sure that the technical debt in the area remains
relative low.

12. The area suffers from normal test design issues and a lot of of faults show
up that should have been take care of in earlier stages.

13. Concurrency and redundancy at system level can hide bugs at this level,
making fault-finding difficult and time-consuming.

7 Test Maintenance

1. Test suites are seldom refactored and improved in general. For maintained
code, fault test cases are sometimes made passive (silent) instead of root
caused and fixed. This means over time test suites are becoming less powerful.

2. As a result of not keeping test suites improved and updated, test cases grow
old [32]. Some test cases that do not find any faults are down-prioritized to
execute seldom or simply removed. As there is a lack of tool support to safely
remove test cases - as sometimes there are hidden dependencies in the order of
execution, few testers do anything about this problem - as time is too scarce
anyway to just write sufficiently new amount of test cases. Agile team’s that
do most of the functionality test automation, are not measured at all on any
test quality, but on functionality delivered.



On Technical Debt in Software Testing 311

3. If any refactoring is done on test code, it is basically done during the con-
struction of the test case e.g. look at how test lags the source code writing
[74]. Many (non software based) industries do not do obvious code fixes, like
refactoring of e.g. test smells [68]. These smells should be easy fixes. Instead
time is spent on bug fixing (after the fact) or if a test fails. It would be so
easy to focus on the top worst code pieces and make them fault free. See
e.g. Software Quality Rank Model [25] that uses simple targeting of worst
culprits, and then uses basic quality approaches to refactor to at least have
these fault free.

4. Test design is mainly created through copying earlier test cases and chang-
ing them. As a result we have concluded that 15–20% identical duplication
(measured by SonarCube [9] (i.e. Type I cloning) exists in the test suites.
On average 30–50% code cloning overlap (measured by NiCad [21]) (Type
I–Type IV) exist in the test suites. These duplication’s and different types of
overlap exists at all levels - even if it is easiest to identify them at unit level,
as the tool has language restrictions. Note that some test suites had as much
as 80% code cloning duplication when Type III clones were used.

5. Hasanain et al. [39] did a thorough clone analysis with NiCad on large part of
Ericsson’s Test code, from specific sub-systems functional test code, to unit
test code packages in a large variety of software. Despite the high cloning
results, that could, with some effort be removed, no investment or action was
taken. Even if the results of such investment would not only reduce test code
footprint by large, and also speed up the test suites in the pipelines which
implicitly would lower energy costs, this was met with cold shoulders, as the
understanding of testing and test suite impact and gain is low. Another factor
that makes this hinders to perform this refactoring is the lack of skill to write
“good” test cases among test managers, test guardians and test architects,
and developers per se. This is because most testers were good because of
their domain skills and manual testing skills, follow suit of test managers,
test guardians and test architects, with a few exceptions. Developers who
implicitly would have sufficient coding and refactoring skills, are simply bad
in test design techniques.

6. Even if clones exists (Type I–Type IV) [61] only some of Type I code is
removed. This is rather daunting as e.g. Van Bladel et al. [17] showed that
there is much value pursuing also Clones of type IV. In general test cases are
made of copy-paste, therefore there is no incentive to remove or refactor test
code [39].

7. Too simplistic tools are used like SonarCube, [9], and at best [21], NiCad has
been used, even if Van Bladel et al. insist on combining several clone coding
tools and shows that they can target different types of clones [18]. The cost
to integrate a set of tools in production is still to steep and the incentive to
improve on this typical test smell is surprisingly low.



312 S. Eldh

8 Fault-Fixing Loops

1. The majority of bugs are found in the first early commit code in the CI flow.
This indicates that testing at the lowest unit level is not very robust (as unit
tests should be performed before the check-in, if specifications were correct
or existed), as many bugs are found after commit. An observation is that
many developers trust that the integration and functional tests will find all
important bugs instead of the more time-consuming unit tests. Meaning how
a small changed piece of code works in its real context will always reveal
bugs. Instead the contrary is true - many code changes passes through the
test flow completely untested (other than at the unit level), as no particular
test targeting the change as been made.

2. External faults (Anomaly Reports, AR) found are given a high priority, as
well as faults from system test are since the 2012 in automatic routing (e.g.
triaging) to the right organisation/team, and through various machine learn-
ing and Bayesian approaches, now more perfected [40–42]. Unfortunately, the
fault localization has not reached exactly the lines of code but is at best
remaining on file level - but work to improve this algorithm is constant.

9 Test Tools and Test Environments

Historically, most test tools were proprietary, as there was a need to work with
specific protocols, but TTCN-3 [35] and efforts in ETSI [3] has brought through
tools like TITAN [66] and testing approaches like UML modelling [30] very much
in use. As development of software has progressed (with Agile methods) the
change to other types of software development methods, embracing open source
software, new tools like GitHub [4], Jenkins [7] and Maven [8] have been exam-
ples of concepts that is embraced and sometimes used alongside proprietary
adaptations of legacy test tools.

1. As many unit tests are dependent on adequate test tools for the language
at questions it is often the case that unit test code is written in something
completely different than the source language. The debate what is best here
is still not straight forward.

2. There is a lack of good tool support, e.g. test tools, static analyzers and
fuzzer’s for new languages. Such a simple thing as creating CFG’s (Control
Flow Graphs) does not exists out of the box for all procedural languages.

3. Low-level code close to hardware, e.g. embedded and/or proprietary code, will
be unique as it needs tools to be developed in-house. This is often a hidden
cost and a hindrance for unified test approaches.

4. Test systems are generally not aligned and integrated in their way of working,
and a large diversity of tools, approaches and concepts are still existing with
a high technical debt to merge [58].

5. Tests written in old tools are very reluctantly changed to new tools. Therefore
many old tools still linger in the system. In addition, as self-organization
allows for some aspect of low-level decisions, the temptation to use new and



On Technical Debt in Software Testing 313

more modern tools is high, resulting in an abundance of tools from the last
decades.

6. There is an interest to consolidate tools to lower licensing costs, and treat-
ing them as a production system in itself. Despite this, tool changes always
come second, as the first goal is always to deliver new functionality, giving
organisations reluctant to change, a way to avoid tool change.

7. With an abundance of tools, it is hard to please all, as functionality is different
in different tools. Consolidating them is inherently hard.

8. As tools are now the new security threat in themselves, the future will proba-
bly look a lot different when it comes to using tools from outside the company
firewall- this will also be a hindrance to explore new researcher tools.

10 Quality Assurance

There is a lack of control and checking mechanisms that testing is done prop-
erly, e.g. measurements for coverage or test criteria are seldom used. I.e. quality
assurance control is diminished in the agile context to attempting a set of test
cases being passed. As the software product is constantly in flux, being updated,
corrected and changed, most (larger) industry software needs to have code freeze
on a branch before a delivery - instead of being able to deliver the entire soft-
ware at “any moment”, as the original intent of agile was. Sometimes tolerance
to submitting code with failed test cases are allowed to circumvent this issue.
Hence, there is seldom a state where “all test cases are passed” in a large system.
This obfuscation creates a blunted view on quality in the form of test cases as
control, and a lot of management effort is put on justification of being “good
enough” quality for submission. Sometimes even test cases are removed that are
difficult to pass, but mostly - measurements that indicates these issues (of poor
quality) have instead been removed.

1. Developers are only fulfilling mandatory gating requirements. If they are set
low (e.g. 80% statement code coverage) this is where testing stops. Test ade-
quacy criteria an coverage is important, see Zhu et al. [76].

2. As Agile team’s goal is to deliver functionality, and no quality measurements
or checking of the test quality is made (other than code review- that mainly
focus on the source code), the quality of testing is in principle poor.

3. Mutation testing [54], could be a way to check the quality of the test. Unfor-
tunately - mutation test operates mainly on the code level and in the context
of unit tests, and as such - it misses all functional and non-functional (as well
as integrated) executions of the software.

4. Testing is considered a cost to be reduced as its value is poorly understood,
i.e.testing is “a necessary evil”.

5. Most industry delivery plans do not take refactoring into account, especially
not for testing.

6. The need for speed to deliver new functionality often compromises quality up
front.



314 S. Eldh

7. Test maintenance is considered a “non-issue” as maintenance is often exported
to “low cost” sites. This does not teach developers to have a “quality mind”
- and learn from their own mistakes, and is probably (with lack of incentive
for developers) the main reason for poor quality.

8. Test Coverage is measured, but this is not a clearly defined metric that pro-
vides any scientifically or statistical value of how well a system is tested,
hence progress and accomplishments sounds better than reality is (see earlier
discussion on this).

9. Bug reports (anomaly reports) are one of the few tools to evaluate the final
quality of the product, based on the customer. As it is costly for customers
(time, effort) to also report bugs, only a few are reported. Another confound-
ing factor hiding quality issues is as mention the redundancy in the product.
This makes many software bugs go undetected. Concurrency (parallelism) in
the product also make many bugs difficult to reproduce.

11 Knowledge and Skills in Testing

There is a lack of proper education on testing for developers and engineers (from
university, and within the company)

1. Developers in agile teams are rarely trained in testing [34].
2. As 7 of 8 test managers cannot or do not read code, hence, checking how

e.g. coverage is fulfilled, and test cases are constructed, is not managed and
supervised sufficiently.

3. Some internal courses and leaders are also advocating manual test or
“exploratory test”, despite the company’s goal to automate as much as pos-
sible and automate testing approaches. Manual testing is good for learning,
but should not be advocated, as the regression test cost advantage is lost,
as well as the possibility to improve the testing in both accuracy, speed and
quality.

4. Most commercially available courses are too simple, and not geared to teach
advanced automated testing that is needed (but a few exceptions).

5. There is no incentive of becoming a good tester, as they are rarely valued, do
not have a clear carrier staging, and have lower status and salary compared
to being a good developer that delivers functionality fast.

6. As a good tester finds more bugs, they are instead viewed as hindrance (to
delivery) instead of helpers, which limits the incentive to learn new techniques,
become better and add quality to the system [34].

7. Preventive techniques, such as modelling and constraints fall under “system
work” and is therefore a better quality approach. These systems must also be
tested.

12 Management

The main caveat with observations from management in industry, is that there
is a lack of research in the area and from industry. Most information around it
can only be found i grey literature.



On Technical Debt in Software Testing 315

1. Testing in general is seen as a cost that do not contribute to the product.
Most of the cost is due to expensive test equipment and usage of commercial
simulators.

2. As the organisation moves software to low-cost for maintenance, there is little
incentive to improve your code from the start.

3. The reward system for developers is not geared towards rewarding good test-
ing. It is geared towards a) saving the day (when difficult bugs exists) b)
to deliver functionality and changes fast (and pass the CI loop). As fewer
detected bugs let the code pass the CI loops faster, the current way of work-
ing actually rewards less testing.

4. Management prefer system approaches rather than proper test, which means
that modelling could be a way forward. Against this, is our large experience
of how modelling can be very costly, as at some point the model must meet
reality, e.g. translate into hardware instructions. Many development managers
still keeps the memory of this costly issue that historically has locked them
into specific vendors and tools.

5. The abundance of test cases (in the millions) creates a false sense of security
that the system is well tested. Especially when considering the high cloning
percentages.

6. There is a belief that a tools can fix all problems, which implicitly makes
it easier to invest in e.g. a tool than to actually test properly. The belief
is that AI and Machine Learning will solve everything, which of course is
not true (yet). The main caveat is that one must at some point - both for
any learning system or modelling to generate code or whatever approach or
technique you use - actually know what is correct behavior - or expected
behavior. Until we can express this fine-grained enough we will not produce
trustworthy solutions.

7. The promise of APR (Automatic Program Repair) has been strong with man-
agement since Ericsson’s first trial 2011–2012 in cooperation with Weimer and
DiLorenzo [63,70]. It became clear that this technique relies on a lot of unit
tests but primarily identifies single fault issues. As half of the true software
faults being of single fault nature, shown on typical telecommunications mid-
dleware code [27], singe fault failures can be prevented by mutation testing.
There are still a lot to be exploited in this area.

8. As much work is a result of proprietary and self-organized way of working,
the lack of unified set of tools, approaches, languages used, etc. causes a very
diverse environment (due to historic decisions). This makes transformation
difficult to newer methods, and changes in behavior - as tools and way of
working, as well as attitudes remain the same. Testers and testing is consid-
ered “old-fashioned”.

13 Visions on Test in the Future

Despite a somewhat gloomy set of observations above of test debt in industrial
systems, the future is very promising on many accounts.



316 S. Eldh

First and foremost, formal tools are improving on performance, usability and
can better scale to larger applications. These factors together with more educated
computer scientist coming to the job market, provides a base to use more formal,
modelling and model-checking tools in industries that are not used to do so (i.e.
industries that have not are not working with safety-critical aspects). Not being
a safety-critical company, has also been used as an excuse for many commercial
software companies to avoid investing in any of these “costly” technologies. Here
is the incentive - improved requirement, need for automated support, and more
easy to use and powerful tools, minimizing the transition to the code. This gap
needs to be reduced to make “normal” commercial software use these technolo-
gies.

Secondly, AI (ML)- support will inevitably drive improved software, as code
auto-completion is now supporting some aspects of source code creation (sug-
gesting e.g. next character or line of code), there is no reason why we cannot
train ML models to write better test code and test patterns, to guide develop-
ers in describing better testing. As with any technology - it will not be better
than the people training the models. The key is, again, to know what is cor-
rect - the source code or the test, and know what is a “better” test approach.
This also leads back to better tools and models used. Positive news also comes
mainly from the webscalers and the occasional leap happening for the larger
more mature industries, often with researchers driving it. Webscalers put seri-
ous money in their testing frameworks, as the business loss of poor quality poses
a security risk. This creates more advancements for industry and new collabo-
rative research on testing. A recent comprehensive literature study in the use of
AI and ML in software testing can be found in Battina et al. [15].

Security concerns being strongly related to software testing are pushing qual-
ity higher on the agenda. Examples are e.g. Zeller et al. with the interactive
Fuzzing book [75] and the survey by Felderer et al. [31]. Many technologies well
known for academics, but new for industry use, are being matured and adapted
for use. Examples are metamorphic testing [19,64], mutation testing [54,56], evo-
lutionary approaches [13,38,51,69] and many new analysis tools combined with
learning technologies. As Industry has the data, context and commercial incen-
tive, collaboration with academics to perfect tools and technology will be the
way forward. It is probable that the intelligence in the tools will be hidden com-
pletely from the user in tools, much as learning tools behave. Novel approaches
even attempt to make testing into a game, where the user gets awarded to create
tests, clear is that it should be pleasurable [67,72].

The issue is of course for many companies to tackle old fashioned organisa-
tional structures that do not promote software engineering. Most management
are not educated in a software driven world nor understands where quality comes
from in software. If companies cannot provide quality at a high level and low
cost, they will have an issue to survive in the long run, as quality is expected.
Every developer must know testing basics, and new ways of working, e.g. utiliz-
ing improved modelling and increasing the abstraction levels. Testing must be
taken into account, as even a constraint model needs to be tested.



On Technical Debt in Software Testing 317

Automation of test will also become a strong drive, as still surprisingly many
aspects of software development are still manual. The approach of automation
everywhere in the entire R&D process is currently scrutinized, as is the aim to
simplify. What can be done to create reliable, robust and well suited systems,
that handle faults “automatically” so they magically disappear? The digital-
ization will also drive more automation, integration of tools, frameworks and
systems will lead to changed focus. Monitoring and testing will be more aligned.
We are already letting the customer test more, through targeted pilots, A/B test
approaches and canary testing. Decision support will be increasingly deployed by
different AI and machine learning bots as trustworthiness in the system increases.

The TAIM model - Test Automation Improvement Model [26], describes how
automation growth, also implies that robustness, trustworthy data handling and
fault localization leading to automatic program repair are issues to be solved,
all suffering from the same issues, what is correct. In the future we can imagine
that systems also take examples and probes to learn (with some guidance) what
solutions are. The drivers are definitely based on how to monetize on quality,
which is not currently clear. Maybe a future is very much assuming that you pay
for quality solutions, and other “free” solutions are inherently relying on you as a
user to debug them (implicitly) by claiming faults and sharing your preferences.
Clearly the TAIM 2.0 model is a vision, where only some aspects of test man-
agement seems to have gained ground, where e.g. the need to progress report
testing is very much historical, as a dashboard can keep continuous updates on
the progress - as well as provide fault history and give quality assurance overviews
with a simple drill down visualisation of issues. Most are working on avoiding to
look at this data at all, and have machine learning only highlight what is impor-
tant. Driving this machinery are assumed to be an abundance of “good” tests.
This is the main caveat. Just because the number of tests are many they have
high overlap (cloning) and are is not necessarily exercising other than variants of
the normal case. Here new technologies like metamorphic test, great simulation
tools for the test environment, that can also mimic faulty hardware, can make
strong contributions. The security issues, which forms one sub-category of faults
and issues will also drive much stronger technologies e.g. block-chains. Because
of changing difficulties in these technologies, the aim to make sure they are solid
in themselves also drives more formal modelling approaches. Unfortunately, the
need for these technologies to be established, and the secrecy surrounding best
practices, are not fruitful for exchanging best practices.

What drives automation is not only the goal to save cost, increase speed
and reliability, but also to remove tedious repetitive ways of working where the
interaction with the software is key. There is still much to be learned about bots,
how they interact between them, and with humans, and what the best way to
drive things. It is easy to hand over the responsibility of “what is right” to the
computer (bot, AI decision system), and humans need to stay active and tell
what is correct. So supporting in the right way might be the trick to success.



318 S. Eldh

14 Method Used, Threats of Validity and Disclaimers

The method used to gather this data, is through observations, documentation
existing, presentations and interviews in an action research setting. The sam-
ple of observations is a convenience sample. Therefore no statistics have been
exposed or tables made. Despite being observations, there is undoubtedly a
researcher bias in the selection of the observations and how the data is described.
Effort has been made to make observations as factual and general as possible,
seeking support in academic publications where available. Due to page limit, not
an exhaustive reference list have been made for all items, as this paper aim to
provide a research agenda and vision to inspire future systematic studies. As
with all large world-wide development organisations, what is true for a major-
ity (within one company), is not true for all, and there are exceptions to these
observations. Examples comes from geographical diverse set of R&D centers in
Asia, North America and Europe, and have been compared with industries in
a large variety of domains, within mainly Europe, but also to some extent in
Asia and North America. Disclaimer: As this paper is based on an invited talk,
there should be put no blame or liability to Ericsson AB, as all observations and
analysis expressed, are the made by the researcher. We also thank Ericsson AB
and Mälardalen University for the support in writing this paper.

In addition, the lists presented have no weight in the order intended, and
are to be viewed as an arbitrary enumeration, solely to create aid reading. It
could be suggested as an easy exercise for any industry to walk them trough
and create a priority order suitable for their specific environment to remedy, or
for an academic to attempt to establish solutions, provide metrics and establish
such an order.

15 Conclusions

In this paper we discussed a series of observations on technical debt of soft-
ware testing and test automation in industry. As most software development
has transformed to Agile and DevOps processes, the testing is still surprisingly
manual even if automation is happening. Test automation means in industry
automating the CI pipeline, and particularly test execution, not automatic test
generation. The focus is often on the lower level tests, as this functionality is
well understood by the agile teams (developers) as there is a loss of professional
testers following the agile transformation. Non-functional tests require expertise,
and here testers remain active, resulting in lower test debt and better acceptance
for the cost of testing, as these testers produce metrics (KPI’s) used in sales.

The focus should be on alleviating overlap of test clones and duplications
through test code refactoring with the aim to reduce the cost of constant testing
in the CI-flow. This is not happening, as test code refactoring is “too costly”.
Instead prioritization and reduction through e.g. similarity analysis removes
poorly created test cases, at a loss of data (input) variation that can remove
the original important test case intent, e.g. boundary value checks. The drive to



On Technical Debt in Software Testing 319

remove technical debt is low and pushed to the future. Refactoring test smells,
reducing test code clones and utilizing e.g. mutation test approaches seems to
be obvious steps to improve, but has a harsh reality to face, as code coverage are
not considered mandatory (or only at statement level), and is often obfuscated
by poor so called “test coverage” measurements.

Security is a strong driver for improved quality. There is an unwillingness
to pay for what might be the real cause of test ignorance, e.g. lack of skills
and poor test management awareness. Skills in software testing (and test design
techniques) are still remaining low, with low status in industries, especially if
software is not the main product. There is though a new hope that by introduc-
ing more gaming qualities into testing tools and more “intelligence” hidden in
the tools fueled by AI/ML approaches, will diminish some of the of costly man-
ual debugging and need for thorough testing. The drive to achieve automatic
program repair will push the industry to be more aware of the new methodolo-
gies and utilize technologies that can change us enough to want to change how
we solve software quality issues.

References

1. CodeChecker at github. https://github.com/Ericsson/codechecker. Accessed 05
May 2022

2. Ericsson Smart Mining web-page and report. https://www.ericsson.com/en/
enterprise/reports/connected-mining. Accessed 08 Aug 2022

3. ETSI, European Standard. https://www.etsi.org. Accessed 05 May 2022
4. Github tool. https://github.com. Accessed 05 May 2022
5. ISO: ISO/IEC 25000: 2014, Systems and software engineering - Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) - Guide to SQuaRE web-
page. https://www.iso.org/standard/35733.html. Accessed 08 Aug 2022

6. ITU-T TTCN-3 Z-series Z.161-Z.169. https://www.itu.int/rec/T-REC-Z/en.
Accessed 08 Aug 2022

7. Jenkins tool. https://www.jenkins.io/. Accessed 05 May 2022
8. Maven tool. https://maven.apache.org. Accessed 05 June 2022
9. SonarCube tool. Accessed 08 May 2022

10. Agarwal, A., Gupta, S., Choudhury, T.: Continuous and integrated software devel-
opment using DevOps. In: 2018 International Conference on Advances in Comput-
ing and Communication Engineering (ICACCE), pp. 290–293. IEEE (2018)

11. Ahmad, A., Leifler, O., Sandahl, K.: Empirical analysis of factors and their effect
on test flakiness-practitioners’ perceptions. arXiv preprint arXiv:1906.00673 (2019)

12. Al-Ahmad, A.S., Kahtan, H., Hujainah, F., Jalab, H.A.: Systematic literature
review on penetration testing for mobile cloud computing applications. IEEE
Access 7, 173524–173540 (2019)

13. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Trans. Software Eng. 36(6), 742–762 (2009)

14. Barboni, M., Bertolino, A., De Angelis, G.: What we talk about when we talk
about software test flakiness. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins,
P., Pérez-Castillo, R. (eds.) QUATIC 2021. CCIS, vol. 1439, pp. 29–39. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85347-1 3

https://github.com/Ericsson/codechecker
https://www.ericsson.com/en/enterprise/reports/connected-mining
https://www.ericsson.com/en/enterprise/reports/connected-mining
https://www.etsi.org
https://github.com
https://www.iso.org/standard/35733.html
https://www.itu.int/rec/T-REC-Z/en
https://www.jenkins.io/
https://maven.apache.org
http://arxiv.org/abs/1906.00673
https://doi.org/10.1007/978-3-030-85347-1_3


320 S. Eldh

15. Battina, D.S.: Artificial intelligence in software test automation: a systematic lit-
erature review. Int. J. Emerging Technol. Innov. Res. (2019). https://www.jetir.
org. UGC and ISSN Approved. ISSN 2349-5162

16. Bjarnason, E., et al.: Challenges and practices in aligning requirements with veri-
fication and validation: a case study of six companies. Empir. Softw. Eng. 19(6),
1809–1855 (2014)

17. van Bladel, B., Demeyer, S.: A novel approach for detecting type-IV clones in test
code. In: 2019 IEEE 13th International Workshop on Software Clones (IWSC), pp.
8–12. IEEE (2019)

18. van Bladel, B., Demeyer, S.: Clone detection in test code: an empirical evaluation.
In: 2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 492–500. IEEE (2020)

19. Chen, T.Y., et al.: Metamorphic testing: a review of challenges and opportunities.
ACM Comput. Surv. (CSUR) 51(1), 1–27 (2018)

20. Collins, E., Dias-Neto, A., de Lucena, V.F., Jr.: Strategies for agile software test-
ing automation: an industrial experience. In: 2012 IEEE 36th Annual Computer
Software and Applications Conference Workshops, pp. 440–445. IEEE (2012)

21. Cordy, J.R., Roy, C.K.: The NiCad clone detector. In: 2011 IEEE 19th International
Conference on Program Comprehension, pp. 219–220. IEEE (2011)

22. Diebold, P., Mayer, U.: On the usage and benefits of agile methods & practices.
In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 16

23. Dietrich, J., Rasheed, S., Tahir, A.: Flaky test sanitisation via on-the-fly assump-
tion inference for tests with network dependencies. arXiv preprint arXiv:2208.01106
(2022)

24. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

25. Eldh, S.: On test design. Ph.D. thesis, Mälardalen University (2011)
26. Eldh, S.: Test automation improvement model-TAIM 2.0. In: 2020 IEEE Inter-

national Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 334–337. IEEE (2020)

27. Eldh, S., Punnekkat, S., Hansson, H., Jönsson, P.: Component testing is not enough
- a study of software faults in telecom middleware. In: Petrenko, A., Veanes, M.,
Tretmans, J., Grieskamp, W. (eds.) FATES/TestCom -2007. LNCS, vol. 4581, pp.
74–89. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73066-8 6

28. Engelman, C.: MATHLAB: a program for on-line machine assistance in symbolic
computations. In: Proceedings of the November 30–December 1, 1965, Fall Joint
Computer Conference, Part II: Computers: Their Impact on Society, pp. 117–126
(1965)

29. Estdale, J., Georgiadou, E.: Applying the ISO/IEC 25010 quality models to soft-
ware product. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.)
EuroSPI 2018. CCIS, vol. 896, pp. 492–503. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-97925-0 42

30. ETSI: Methods for Testing and Specification (MTS); UML 2.0 action syntax fea-
sibility study TR 102 205 v1.1.1 (2003–2005)

31. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Security testing: a survey. Adv. Comput. 101, 1–51 (2016)

32. Feldt, R.: Do system test cases grow old? In: 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation, pp. 343–352. IEEE
(2014)

https://www.jetir.org
https://www.jetir.org
https://doi.org/10.1007/978-3-319-57633-6_16
http://arxiv.org/abs/2208.01106
https://doi.org/10.1007/978-3-540-73066-8_6
https://doi.org/10.1007/978-3-319-97925-0_42
https://doi.org/10.1007/978-3-319-97925-0_42


On Technical Debt in Software Testing 321

33. Florea, R., Stray, V.: A global view on the hard skills and testing tools in software
testing. In: 2019 ACM/IEEE 14th International Conference on Global Software
Engineering (ICGSE), pp. 143–151. IEEE (2019)

34. Garousi, V., Zhi, J.: A survey of software testing practices in Canada. J. Syst.
Softw. 86(5), 1354–1376 (2013)

35. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An introduction to the testing and test control notation (TTCN-3). Comput. Netw.
42(3), 375–403 (2003)

36. Grindal, M., Offutt, J., Mellin, J.: On the testing maturity of software produc-
ing organizations. In: Testing: Academic & Industrial Conference-Practice and
Research Techniques (TAIC PART 2006), pp. 171–180. IEEE (2006)

37. Haindl, P., Plösch, R.: Towards continuous quality: measuring and evaluating
feature-dependent non-functional requirements in DevOps. In: 2019 IEEE Inter-
national Conference on Software Architecture Companion (ICSA-C), pp. 91–94.
IEEE (2019)

38. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008-2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

39. Hasanain, W., Labiche, Y., Eldh, S.: An analysis of complex industrial test code
using clone analysis. In: 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pp. 482–489. IEEE (2018)

40. Jonsson, L.: Machine Learning-Based Bug Handling in Large-Scale Software Devel-
opment, vol. 1936. Linköping University Electronic Press (2018)

41. Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S., Runeson, P.: Automated
bug assignment: ensemble-based machine learning in large scale industrial contexts.
Empir. Softw. Eng. 21(4), 1533–1578 (2016)

42. Jonsson, L., Broman, D., Sandahl, K., Eldh, S.: Towards automated anomaly report
assignment in large complex systems using stacked generalization. In: 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation,
pp. 437–446. IEEE (2012)

43. Karris, S.T.: Introduction to Simulink with Engineering Applications. Orchard
Publications (2006)

44. Kaur, K., Jajoo, A., et al.: Applying agile methodologies in industry projects:
benefits and challenges. In: 2015 International Conference on Computing Commu-
nication Control and Automation, pp. 832–836. IEEE (2015)

45. Kintis, M., Papadakis, M., Malevris, N.: Evaluating mutation testing alternatives:
a collateral experiment. In: 2010 Asia Pacific Software Engineering Conference, pp.
300–309. IEEE (2010)

46. Kitanov, S., Monteiro, E., Janevski, T.: 5G and the fog-survey of related technolo-
gies and research directions. In: 2016 18th Mediterranean Electrotechnical Confer-
ence (MELECON), pp. 1–6. IEEE (2016)

47. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, CGO 2004, pp. 75–86. IEEE (2004)

48. Malm, J., Causevic, A., Lisper, B., Eldh, S.: Automated analysis of flakiness-
mitigating delays. In: Proceedings of the IEEE/ACM 1st International Conference
on Automation of Software Test, pp. 81–84 (2020)

49. Marick, B.: How to misuse code coverage. https://www.exampler.com/testing-
com/writings/coverage.pdf. Accessed 05 May 2022

https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1
https://www.exampler.com/testing-com/writings/coverage.pdf
https://www.exampler.com/testing-com/writings/coverage.pdf


322 S. Eldh

50. Mårtensson, T., St̊ahl, D., Bosch, J.: Exploratory testing of large-scale systems –
testing in the continuous integration and delivery pipeline. In: Felderer, M., Méndez
Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES
2017. LNCS, vol. 10611, pp. 368–384. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69926-4 26

51. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

52. Navabi, Z.: VHDL: Analysis and Modeling of Digital Systems, vol. 2. McGraw-Hill,
New York (1993)

53. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

54. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M.: Mutation
testing advances: an analysis and survey. Adv. Comput. 112, 275–378 (2019)

55. Parry, O., Kapfhammer, G.M., Hilton, M., McMinn, P.: A survey of flaky tests.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 31(1), 1–74 (2021)

56. Petrović, G., Ivanković, M., Fraser, G., Just, R.: Does mutation testing improve
testing practices? In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 910–921. IEEE (2021)

57. Pietrantuono, R., Bertolino, A., De Angelis, G., Miranda, B., Russo, S.: Towards
continuous software reliability testing in DevOps. In: 2019 IEEE/ACM 14th Inter-
national Workshop on Automation of Software Test (AST), pp. 21–27. IEEE (2019)

58. Planning, S.: The economic impacts of inadequate infrastructure for software test-
ing. National Institute of Standards and Technology, p. 1 (2002)

59. Porkoláb, Z., Brunner, T.: The codecompass comprehension framework. In: Pro-
ceedings of the 26th Conference on Program Comprehension, pp. 393–396 (2018)

60. Rodŕıguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in Finnish software industry. In: Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, pp. 139–148.
IEEE (2012)

61. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
Sch. Comput. TR 541(115), 64–68 (2007)

62. Saxena, P.: OSI reference model - a seven layered architecture of OSI model. Int.
J. Res. 1(10), 1145–1156 (2014)

63. Schulte, E., DiLorenzo, J., Weimer, W., Forrest, S.: Automated repair of binary and
assembly programs for cooperating embedded devices. ACM SIGARCH Comput.
Archit. News 41(1), 317–328 (2013)

64. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Trans. Software Eng. 42(9), 805–824 (2016)

65. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
Access 5, 3909–3943 (2017)

66. Szabó, J.Z., Csöndes, T.: Titan, TTCN-3 test execution environment. Infocommun.
J. 62(1), 27–31 (2007)

67. Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., Bishop, J.: Teaching and learn-
ing programming and software engineering via interactive gaming. In: 2013 35th
International Conference on Software Engineering (ICSE), pp. 1117–1126. IEEE
(2013)

https://doi.org/10.1007/978-3-319-69926-4_26
https://doi.org/10.1007/978-3-319-69926-4_26
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38


On Technical Debt in Software Testing 323

68. Van Deursen, A., Moonen, L., Van Den Bergh, A., Kok, G.: Refactoring test code.
In: Proceedings of the 2nd International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2001), pp. 92–95. Citeseer (2001)

69. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)

70. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with
evolutionary computation. Commun. ACM 53(5), 109–116 (2010)

71. Wiklund, K., Eldh, S., Sundmark, D., Lundqvist, K.: Technical debt in test
automation. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 887–892. IEEE (2012)

72. Xie, T., Tillmann, N., De Halleux, J.: Educational software engineering: where soft-
ware engineering, education, and gaming meet. In: 2013 3rd International Work-
shop on Games and Software Engineering: Engineering Computer Games to Enable
Positive, Progressive Change (GAS), pp. 36–39. IEEE (2013)

73. Yang, J., Zhikhartsev, A., Liu, Y., Tan, L.: Better test cases for better automated
program repair. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pp. 831–841 (2017)

74. Zaidman, A., Van Rompaey, B., Demeyer, S., Van Deursen, A.: Mining software
repositories to study co-evolution of production & test code. In: 2008 1st Interna-
tional Conference on Software Testing, Verification, and Validation, pp. 220–229.
IEEE (2008)

75. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: The fuzzing book
(2019)

76. Zhu, H., Hall, P.A., May, J.H.: Software unit test coverage and adequacy. ACM
Comput. Surv. (CSUR) 29(4), 366–427 (1997)


	On Technical Debt in Software Testing - Observations from Industry
	1 Introduction
	2 Background - Telecommunication Domain
	3 Test Automation in Industry
	4 Test Design Technologies
	5 CI/CD - Build, Test and Regression Testing
	6 System and Non-functional Testing
	7 Test Maintenance
	8 Fault-Fixing Loops
	9 Test Tools and Test Environments
	10 Quality Assurance
	11 Knowledge and Skills in Testing
	12 Management
	13 Visions on Test in the Future
	14 Method Used, Threats of Validity and Disclaimers
	15 Conclusions
	References




