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Abstract. Automatic signature verification is one of the main modes to verify
the identity of the individuals. Among the strategies to describe the signature in
the verifiers, run-length features have attracted the attention of many researchers.
This work aims to upgrade the classical run-length distribution as an additional
representation for off-line signatures. Specifically, we add a fifth direction to the
four classical directions of run-length features. Such fifth direction runs the sig-
nature in a spiral way providing an outside to inside view of the signature. This
paper evaluates the performance of the new run-length direction combined with
the classical ones. For classification purposes, we used a one-class support vec-
tor machine. Additionally, we study how to combine the new direction with the
previous four original ones at both feature and score levels. Our results validate
the use of this novel direction in run-length features in our own experiments and
external international competition in signature verification.

Keywords: Spiral run-length features · Four-directions run-length features ·
Offline signature verification · OC-SVM · Feature fusion · Score fusion ·
Signature verification competition

1 Introduction

Biometrics has become more and more an important need for automatically verifying
individuals and evenly for the security of enterprises. Nowadays, among the different
modalities of biometrics, the signature remains a very confident, lawfully, and socially
accepted modality for verifying identities [1].

To design an Automatic Signature Verifier (ASV), the literature proposes to use two
approaches: Writer-Dependent and Writer-Independent [1]. In the first approach, the
samples of each individual are trained by a classifier separately from others, whereas
in the Writer-Independent approach, only one classifier is used to train all the writers’
signatures. In both cases, the aim is to verify whether a questioned signature is genuine
or forgery.

Since the texture remains one of the main discriminant characteristics to extract
useful information from the images, many ASV systems are based on textural features
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for the signature image analysis and pattern recognition process. In ourwork, we propose
to use a novel handcrafted feature for off-line signature verification based on both textural
properties and run-length distributions.

The run-length features have been a favored method in several fields of image pro-
cessing. They present one of the used features for image classification [2, 3], writer
identification [4], and in our case, for offline signature verification. In the latter domain,
they give a powerful spatial presentation of pixels, and under the concept of runs [2].
Typically, such spatial distribution is achieved by counting the runs in four directions:
horizontal, vertical, and two diagonal directions.

However, a major problem is the well-known high intra-class variability of a user
signature. It could be mainly due to changes in shape, size, or other visual aspects, which
causes a spatial distribution distortion within the image signature of a user. All this limits
the classic run-length features performance.

The main contribution of this paper is the definition of a new direction in the frame-
work of run-length features. This new direction is named spiral direction, which adds a
new representation of the image. Moreover, we combine this new direction to the clas-
sical four directions to improve the representation of the run-length features. Our work
aims to study the efficiency of run-length features when adding the spiral direction for
off-line ASV.

It is expected that this new direction will expand the run-length limitations due
to its flexibility within the orientation and the size of the scanned lines, which raises
its robustness regarding the intra-class variability, and compensates the static of each
direction of the run-length features, that traverses the image line by line in only one
given direction.

The paper is organized as follows: Sect. 2 includes some related works on run-
length features in off-line signature verification. Section 3 defines the previous run-length
features whereas the proposed spiral run-length feature is given in Sect. 4. Section 5 is
devoted to the experiments and results. We close the paper by the conclusion in Sect. 6.

2 Related Works on Run-Length Features

Many techniques have been used for image texture analysis in signature verification [1,
2]. Run-length features are one of the textural descriptors basing on the lengths of runs.
A run can be explained as a set of consecutive pixels in a given direction having the
same value [3]. The length of the run is the number of pixels composing this run.

As a consequence, we work out the run-length histograms, which are composed of
the numbers of runs of different lengths. This process is generalized for the four principal
directions, Horizontal (0°), Vertical (90°), right-diagonal (45°) and left diagonal (135°).
As a result, it gives four feature vectors comprising the four directions.

In 1975, Galloway [3] applied the run-length features to a set of textures representing
nine terrain types, each one with six samples. He arranged two adjustments on the run-
length technique to obtain numerical texture measures: the first one was based on all
diagonal run lengths should be multiplied by

√
2, while the second one was the short-run

emphasis function. The classification results were quite promising.
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The use of run-length features has been spread frequently in the field of texture
analysis. Further, they have been adopted for purposes related to handwriting, such as
writing or writer identification and verification and, more specifically, the verification
of off-line handwritten signatures.

Djeddi et al. [5] applied the run-length and the 2D autoregressive coefficient fea-
tures in signature verification. They used 521 writers from the GPDS960 dataset and
the Support Vector Machine as the classifier. They performed the run-length on black
pixels which correspond to the ink trace of the signatures and considered only runs of
a maximum of 100 pixels for each direction (0°, 45°, 90°, 135°). A final vector of 400
values was obtained as a feature vector of 100 values per direction.

Serdouk et al. [6] proposed a combination of two data features, the orthogonal combi-
nation of local binary patterns and the Longest Run Features (LRF). The LRF calculated
the connected pixels through the four principal directions: horizontal, vertical, right diag-
onal and left diagonal. For each direction, the longest run of the signature pixels was
selected, the total sum of these numbers (lengths) constituted the LRF value in the given
direction. This procedure was repeated for the remaining directions in order to get four
LRF features. Finally, the four LRF features were combined with the other features to
define each image-based signature. The proposed features were employed on GPDS300
and CEDAR databases, using SVM classifiers for the automatic verification task.

In Bouamra et al. [2], a new off-line ASVwas designed by using run-length features.
They were applied to black and white pixels, which corresponded to the signature and
the background, respectively. The four run-length vectors for each color contained 400
values and the black and white output feature vector had, therefore, 800 values. They
used only genuine signatures for training and employing the 881writers of the GPDS960
(281 users for generating signature models and choosing optimal threshold, and 600 for
the evaluation step). The One-Class Support Vector Machine (OC-SVM) was used for
the classification phase. Some standard metrics were used to quantify the performance
of the system, obtaining competitive performances.

In another work related to the prior one, Bouamra et al. [8] implemented multidirec-
tional run-length features for automatic signature verification. The new features were
based on the standard run-length features [2], with four supplementary angles added to
the four primary directions: horizontal, vertical, left-diagonal, and right-diagonal direc-
tion; each angle is enhanced by its neighborhood to generate a composite one formed
by three adjacent angles. Finally, eight composite angles are obtained as explicit orien-
tations for scanning the signature image. The researchers employed the OC-SVM as a
classifier to apply their features on the GPDS960 database.

The run-length features were also used on off-line ASV by Ghanim and Nabil [7]. In
their study, they used different features including run-length, slant distribution, entropy,
the histogram of gradient features and geometric features. Then, they applied machine
learning techniques on the computed features like bagging trees, rand forest and support
vector machines. The study aimed to calculate the accuracy of different approaches and
to design an accurate system for signature verification and forgery detection. The Persian
Offline SignatureData-set was utilized for evaluating the system, and the obtained results
were satisfactory.
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3 Classical Run-Length Features

Let be assumed a binarized image-based signature, in run-length histograms, RLb(i|θ) is
the (i)th element describing the number of runs with black values and length i, occurring
in the image along an angle θ . Thus, RLw(j|θ) is the (j)th element describing the number
of runs with white value and length j occur in the image along angle θ.

Let’s indicate the following notations:

• RLb is the number of black run lengths in the image.
• RLw is the number of white runs lengths in the image.
• NB is the black run-length histograms for the four directions.
• NW is the white run-length histograms for four directions.
• RL_4D is the Global black and white Run-Length histograms for four directions.

The black and white run-length histograms are defined, respectively, as:

RLb(θ) =
∑RLb

i=1
Nb(i|θ) (1)

RLw(θ) =
∑RLw

j=1
Nw(j|θ) (2)

∀ 1 ≤ i ≤ Nb and 1 ≤ j ≤ Nw.

The black and white run-length histograms for a given direction are concatenated as

RL(θ) = [RLb(θ),RLw(θ)] (3)

According to the pixel color, the black and white run-length histograms for the four
directions are processed as:

RLB = [
RLb

(
0◦),RLb

(
45◦),RLb

(
90◦),RLb

(
135◦)] (4)

RLW = [
RLw

(
0◦),RLw

(
45◦),RLw

(
90◦),RLw

(
135◦)] (5)

where the final feature vector based on run-length histograms are concatenated as [2]:

RL4D = [RLB,RLW ] = [RLb(0◦),RLb(45◦),RLb(90◦),RLb(135◦),RLw(0◦),
RLw(45◦),RLw(90◦),RLw(135◦)] (6)

In our work, we vectorized the 2D image to get a single long line. At this level, the
run-lengths are calculated for both black and white pixels. This procedure is applied
to the other three directions, i.e. vertical, right-diagonal and left-diagonal. In another
meaning, before calculating the lengths of runs, we juxtaposed the lines of the image
in the desired direction, line by line in a way to form a single vector that denotes a
new different presentation of the image. On this vector, we apply the same algorithm
to calculate the Run-Length distributions for this given direction, and so for the other
directions.
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Fig. 1. Run-length distribution for the horizontal direction

In Fig. 1 we illustrated a toy example of this procedure for the horizontal direction.
In the black pixels, we observed that there is no run of length one, two runs of length
two, one run of length three and one run of length four, as indicated in the first row. A
similar observation can be made for white pixels. As such, the final horizontal vector is
about 800 values (400 + 400 for black and white pixels, respectively). The procedure is
repeated for the remaining directions. The resultant run-length feature vector has 3200
values due to the final concatenation of the four directions.

4 Spiral Run-Length Features

In this section, we describe first the proposed spiral run-length feature. Next, we propose
two combinations to fuse the new feature with the previous four directions.

4.1 Spiral Feature Vector

A uniform displacement describes it on a rotating line until reaching a final center point.
This way, the spiral run-length feature traverses the entire image in a spiral counter-
clockwise curve starting from the first pixel at the upper left corner of the image. Then
it moves away more and more towards a last central point. This spiral movement rotates
between the horizontal and the vertical directions. The procedure is shown in Fig. 2.

It could be said that the spiral feature treats four orthogonal directions differently, as
shown in Fig. 2. The movement hither is done permanently, starting with a horizontal
direction with an angle θ1 = 0◦, followed by a descending vertical scan with an angle
θ2 = −90◦. On reaching the end of the vertical column, the direction changes again
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moving towards the horizontal direction but on the contrary direction to the first angle
with an angle of θ3 = 180◦. The last direction to progress is the vertically upward
direction by exploring the entire column from bottom to top on an angle θ4 = 90◦. This
round of four directions is iterated until browsing the entire signature image.

Fig. 2. New run-length direction: spiral based feature.

For counting the length of runs, the same procedure described in Sect. 3 is applied
to the resulting vector of the spiral function. Accordingly, the final spiral vector size
contains 800 values (400 for black pixels + 400 for white ones).

We consider the next notations:

• SPB is the number of black run lengths in the image.
• SPW is the number of white runs lengths in the image.
• Nb is the black run-length histograms in spiral direction.
• Nw is the white run-length histograms in spiral direction.
• SP is the global black and white run-length histograms in spiral direction.
• θk is the browsing spiral angle:

θ1 = 0◦, θ2 = −90◦, θ3 = 180◦, θ4 = 90◦.

The black and white run-length histograms are defined, respectively, as follows:

SPB =
∑SPB

i=1

∑4

k=1
Nb(i|θk) (7)

SPW =
∑SPW

j=1

∑4

k=1
Nw(j|θk) (8)
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∀ 1 ≤ i ≤ SPB and 1 ≤ j ≤ SPW .

The global Spiral Run-Length histograms are then concatenated as

SP = [SPB, SPW ] (9)

Therefore, the spiral transformation of the image is dynamic in direction (two
changes: vertical/horizontal) and in orientation (two changes for every direction:
(→,←) and (↑,↓)). It is also dynamic in size; with every change of direction, we sub-
tract a pixel. This transformation is based on four changes of the directions, and every
current movement is starting from the second pixel (the first of this current movement
is the last of the precedent one, so it is already calculated).

The spiral feature regroups both of two horizontal and vertical directions at the
same time. It helps to add complementary information to the four previous run-length
directions. Thus, the spiral run-length feature can be considered as the fifth direction.

Input
Read_image;
Initialize

While (i < =M) and (j<=N) do
Begin
image=image(i:M,j:N);

If i=M % the current image zone  is composed of  one row (or one pixel)

Else if j=N % the current image zone  is composed of one column (with more than one 
pixel)

Else if i=M-1 % the current image zone is composed of two lignes (with more than 
one column)

-90°), last_row(N-1:j:-1  

Else % General case

first_column(M-
End_If
i++;j++; M--, N --;
End;

End While;

Algorithm 1. Spiral vector extraction
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The steps of the proposed feature are highlighted in the pseudo-code Algorithms
1 and 2. They describe the spiral vector extraction and the spiral run-length features,
respectively.

Input
Read_image;
Initialize

Read(SP); % Spiral vector outcoming from image by spiral transformation.
For current_pixel = 1: Length(Spiral_Vector) do

Begin
Score 
If current_pixel=0

REPEAT
score ++;
Go to next pixel;
UNTIL (current_pixel_value different from next_pixel_value) or (score == 

400)
Spiral_Black_Hist(score)= Spiral_Black_Hist(score)+1;

Else
REPEAT
score ++;
Go to next pixel;
UNTIL (current_pixel_value different from next_pixel_value) or (score == 

400)
Spiral_White_His(score)= Spiral_White_Hist(score)+1;

End_If
End_For
Spiral_Hist=[Spiral_Black_Hist,Spiral_White_Hist];

Algorithm 2. Spiral run-length features extraction

4.2 Combining Spiral with the Previous Directions

Two combinations are proposed to use the new spiral feature along with the previous
run-length features. Specifically, they consist of combining the run-lengths features at
the feature and score level.

On the feature level, the combination consists of concatenating the four run-length
features and the spiral feature. On the one hand, we concatenate all the five black run-
length histograms and, on the other hand, the five white run-length histograms. This
way, the combined histograms contain the five directions. Let RL_5D be the combined
run-length histograms, it is defined as follows:

RL_5D = [RLB, SPB,RLW , SPW ]
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RL5D = [RLb(0◦),RLb(45◦),RLb(90◦),RLb(135◦), SPB,

RLw(0◦),RLw(45◦),RLw(90◦),RLw(135◦), SPW ] (10)

On the score level combination, this fusion is concerned by the scores generated
by classifiers. The global score is a combination of the two scores of the previous four
run-length features and the spiral one. A weight sum of the two scores performs the
combination:

Sc = α.Sc1 + (1 − α).Sc2 (11)

Sc being the final score, Sc1 being the score of four directions run-length features
and Sc2 being the score of the spiral one, we heuristically set α in 0.5. In both cases of
features, we process the black and white pixel distribution.

The experiments are carried out on each of the two levels of combination,with further
details provided in the next passage.

5 Experiments

In this section, we present the used databases, the experimental protocol and the experi-
mentswith the two types of combinations: at both feature and score levelwhen run-length
features are used in ASV.

5.1 Database

We used the following two databases to evaluate our system:

GPDS75 Database. This database was introduced by Ferrer et al. [9]. It contains the
first 75 writers; each one has 24 genuine signatures and 30 skilled forgeries.

CEDAR Database. IT is one of themost frequently used database for off-lineASV[10].
This database comprises a total of 55 signatures of different signers. Each individual
signed 24 genuine signatures and has a total of 24 forged specimens.

5.2 Preprocessing

Our experiments necessitated the preprocessing phase since both GPDS75, and CEDAR
datasets contain greyscale signatures, whereas our system’s application relies mostly on
binary signatures.

The signatures were first extracted from the datasets, then binarized using Otsu’s
method [17, 23], which involved determining a global threshold from the greyscale
signature image. The threshold was accordingly employed to transform the greyscale
signature into a binary signature by reducing the intra-class variance of the thresholded
pixels.
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5.3 One-Class Support Vector Machine

The availability of positive and negative training examples is one of the criteria of a
classic Support Vector Machine (SVM) classifier.

The OC-SVM classifier employs only the genuine signatures for the training. The
target class is discriminated from all other classes using only training data from the target
class. The objective is to achieve a border that separates the target class examples from
the rest of the space, a barrier that takes as many examples as possible targets [2, 11].
This border is defined by a decision function that is positive within a class S but negative
outside of S: (S) as described in Fig. 3.

f (x) =
{+1 if x ∈ S

−1 if x ∈ S

Fig. 3. One-class SVM classification

The parameters to be determined for the OC- SVM include the proportion of outliers
(ϑ ∈ [0 1]) and the radial basis function kernel parameter (γ ∈ [0 1]). The RBF kernel
was chosen after experimenting with several kernel functions [2].

5.4 Experimental Protocol

Our signature verification systemcomprises four steps: selecting a set of signers, building
the signature models, locating the optimal decision threshold, and finally achieving the
classification step.

The set of signers to be selected includes the first five (R5) and ten (R10) genuine
signatures that are kept as reference signatures in the training stage. Then, the testing
stage is conducted by employing the next ten genuine samples (g6…g15 in the case of
R5, and g11…g20 in the case of R10) and the first ten skilled forgeries (f1…f10) for the
experiments in both databases.

The optimal decision threshold is deduced from the false rejection rate (FRR) and
the false acceptance rate (FAR) curves using the equal error rate (EER) [24, 25], as
described in the next figure. The choice of the (EER) metric, which is defined as the
system error rate when FRR = FAR [24], was chosen since it has been used in a variety
of relevant studies (Fig. 4).
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Fig. 4. EER performance measure

5.5 Results

We discuss here the combination at two levels: feature level and score level. The results
of such fusions on GPDS75 and CEDAR databases are shown in Table 1 and Table 2,
respectively.

For the feature level combination applied to theGPDS75 database, we gained EER=
9.24% and EER= 8.26% using 5 and 10 reference samples, respectively.Whereas, using
the same database and number of references for the score level combination generated
EER = 7.98% and as the best outcome we earned EER = 6.86%.

On the other hand, employing the CEDAR database affected the results illustrated in
Table 2. The feature level fusion gained EER = 0.55% and EER = 0.36%, respectively,
with 05 and 10 reference samples, while the results attained are EER = 0.73% and EER
= 0.18% performing the score level fusion. This last outcome (EER = 0.18%) is the
best value obtained operating the score level combination with 10 reference samples.

For both types of fusion, the experimental results in Tables 1 and 2 reveal that fusing
the features raises the rate and improves system performance.

Table 1. Results in EER (%) on GPDS75 by combining at feature and score level.

System GPDS-75

R5 R10

Basic RL (RL) 10.78 9.38

Spiral RL (SP) 12.88 11.62

[4RL, SP]*: Feature level 9.24 8.26

[4RL, SP]*: Score level 7.98 6.86
*[4RL, SP]: Combination of the classical run-length (4RL) features with the spiral one.
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Table 2. Results in EER (%) on CEDAR by combining at feature and score level.

System CEDAR

R5 R10

Basic RL (RL) 0.73 0.55

Spiral RL (SP) 0.91 0.55

[4RL, SP]*: Feature level 0.55 0.36

[4RL, SP]*: Score level 0.73 0.18
*[4RL, SP]: Combination of the classical run-length (4RL) features with the spiral one.

Furthermore, we compare our results with previous works. Table 3 shows different
works that have used the GPDS75 database. We can observe that our performances are
in line with state of the art. For instance, Maergner et al. obtained the best EER= 6.49%,
while in another work they got an EER = 6.84%. When we combine the five run-length
features at the score level, our best performance was 6.86% on GPDS75.

According to Table 4, our results were competitive compared with previous works
in CEDAR database. We observe a gap getting two minimal rates: EER = 0.18% and
EER = 0.36%, followed by Hamadene et al. with AER = 2.10%, then Hafemann et al.
with EER = 4.63% accompanied by Sharif et al. with EER = 4.67%. We conclude that
our system was more performant with CEDAR database than GPDS75 database.

Table 3. Results on GPDS75 – comparison between the state-of-the-art and our system.

Reference Samples/user EER %

Maergner et al. [12] 10 6.84

Maergner et al. [13] 10 9.42

Maergner et al. [14] 10 6.49

Ferrer et al. [15] 10 16.01

This work (score level) 5 7.98

This work (score level) 10 6.86
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Table 4. Results on CEDAR – comparison between the state-of-the-art and our system.

Reference Samples/user EER %

Guerbai et al. [11] 12 5.6

Sharif et al. [16] 12 4.67

Hafemann et al. [17] 12 4.63 (±0.42)

Hamadene et al. [18] 5 2.10

This work (feature level) 10 0.36

This work (score level) 10 0.18

5.6 Spiral Run-Length Features in External Competition

The evaluation of spiral run-length features against other handwritten signature verifica-
tion systems was a critical step. For this reason, we submitted our features to the interna-
tional competition on Short answer Assessment and Thai Student Signature and Name
Components Recognition and Verification (SASIGCOM 2020) [19] which was orga-
nized in conjunction with the 17th International Conference on Frontiers in Handwriting
Recognition (ICFHR 2020).

In the competition, six taskswere prepared for the competitors including the signature
verification task, the thai student signature dataset was employed for this task shown in
Table 5. Three type of forgery were adopted: simple, skilled and random forgeries. The
Equal Error Rate (EER) was employed as the judge the different participating systems
performance.

Table 5. Signature verification dataset (SASIGCOM 2020).

Dataset No. of users Train Test

Gn* Gn* Skld* Smpl*

Thai student signature dataset 100 5 25 12 12
*Gn: Number of genuine samples/user. *Skld: Number of skilled samples/user.
*Smpl: Number of simple samples/user.

Our system based on the spiral run-length feature get EER= 0.1108% for the random
forgeries, EER = 0.2045% for the skilled forgeries and an EER = 0.1459% for simple
forgeries with an average of 0.1537%. The results cited in Table 6 show also that the
classical run-length features get EER= 0.1308%, EER= 0.2145% and EER= 0.1599%
for random, skilled and simple forgeries, while the multidirectional run-length feature
obtained an average of 0.1415%. The first ranking was for a learned system with EER=
0.0019%,EER= 0.0710%andEER= 0.0090% for the same forgeries types respectively
with an average of 0.0273%.
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Table 6. Results of the signature verification task (SASIGCOM 2020).

Rank Algorithm EER %

Random forgeries Skilled forgeries Simple forgeries AVG

1 SCUT-CNN [20] 0.0019 0.0710 0.0090 0.0273

2 LTP + oBIFs [21] 0.0109 0.1091 0.0712 0.0637

3 ERL [2] 0.0302 0.1780 0.0955 0.1012

4 oBIFs [21] 0.0444 0.1876 0.1010 0.1110

5 LTP [21] 0.0511 0.1901 0.1105 0.1172

6 MDRL [8] 0.0986 0.2000 0.1258 0.1415

7 SPIRAL-RL 0.1108 0.2045 0.1459 0.1537

8 RL400 [2] 0.1308 0.2145 0.1599 0.1686

9 RL [4] 0.1308 0.2145 0.1599 0.1686

Benchmark [22] 0.0201 0.1108 0.0031 0.0447

According to Tables 3, 4, and 6, we notice that the different systems’ results obtained
by using the GPDS75 database are more elevated than those acquired by using the
CEDAR and the SASIGCOM databases.

More clearly, our system could reach very lowered EER values using the CEDAR
database; this differentia is due to the system-dataset ratio. How the system scrutinizes
the signature, the characteristic of each database, and how the signatures were pre-
processed before including them in the database. For instance, the GPDS75 dataset is
greyscaled, whereas the SASIGCOM database signatures are already binarized. Also,
the background of the GPDS database is almost similar, whereas we find a difference in
the CEDAR signatures background between the genuine and the forged signatures.

6 Conclusion

In this work, we propose a new direction for run-length features based on the signature’s
spiral path. We observe performance improvements by combining the previous well-
known four directions in run-length features with the proposal spiral direction. Thus, the
spiral run-length feature can be understood as the fifth direction, which is more robust to
intra-class variability and get better results than using only the four run-length features.
In this work, we show results when combining the run-length features at the feature and
score level, obtaining better performances at score level combination.

In our future works, we seek to improve the performance of automatic signature
verification by applying other techniques of fusion and combination. In addition, we
study other methods to process the run-length features and to extend its use in on-line
signatures.
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