
Generation of Synthetic Drawing Samples
to Diagnose Parkinson’s Disease

Gennaro Gemito1 , Angelo Marcelli1,2 , and Antonio Parziale1,2(B)

1 DIEM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
gemito.gen@gmail.com, {amarcelli,anparziale}@unisa.it

2 AI3S Unit, CINI National Laboratory of Artificial Intelligence and Intelligent
Systems, University of Salerno, Fisciano, SA, Italy

Abstract. The state-of-the-art artificial intelligence tools for automatic
diagnosis of Parkinson’s disease from handwriting require a lot of training
samples from both healthy subjects and patients to exhibit impressive
performance. Publicly available datasets include very few samples drawn
by a small number of individuals and that limits the use of deep learning
architectures. In this paper, we evaluate if the performance of a Con-
volutional Neural Network that recognizes the handwriting of Parkin-
son’s disease patients can be improved by adding synthetic samples
to the training set. In the experimentation, we synthetically generated
dynamic signals of spirals and meanders through the use of a Recurrent
Neural Network. The performance of the system was evaluated on the
NewHandPD dataset and the results showed that the use of synthetic
samples increases the recognition accuracy of the convolutional neural
network.

Keywords: Data augmentation · Handwriting synthesis · Parkinson’s
disease · Handwriting analysis · CNN · RNN

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminer-
gic neurons in the Basal Ganglia, whose death causes several motor and cognitive
symptoms. PD patients show impaired ability in controlling movements and dis-
ruption in the execution of everyday skills, due to postural instability, the onset
of tremors, stiffness and bradykinesia [10,14,23,24].

There is no cure for the disease and the decline can only be somehow managed
during its progression. This creates a critical need for improving the procedures
and the tools for diagnosing them as early as possible.

The analysis of handwritten production has brought many insights for uncov-
ering the processes occurring during both physiological and pathological condi-
tions [3,28,29] and providing a non-invasive method for evaluating the stage of
the disease [22].
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The main advantage of diagnostic systems based on handwriting analysis
with respect to other diagnostic procedures is that collecting handwriting sam-
ples is cheap and tests are easy to administer. Therefore, different artificial intel-
ligence based approaches for the automatic identification of Parkinson’s and
Alzheimer’s disease motor symptoms have been proposed, together with a vari-
ety of motor tasks administered to healthy individuals and patients [16,20].

The desire of applying top-performing and most recent deep learning tech-
niques to this application domain has highlighted the lack of a huge collection of
handwriting samples. All the publicly available datasets include samples drawn
by a reduced number of subjects and are, in some cases, unbalanced. Collect-
ing data from patients is, in general, more complex than collecting data from
healthy subjects mainly for two reasons: the need of reaching patients at their
living places and the participation of specialized medical personnel during the
administration of the diagnostic test.

To overcome the difficulty in collecting data from patients, in a very recent
paper we have proposed to adopt machine learning tools based on one-class
classification algorithms, i.e. algorithms capable of solving a two-class classifica-
tion problem by learning the distinctive characteristics of only one class [17]. We
have shown that is possible to reach state-of-the-art performance by training the
Negative Selection Algorithm only with samples drawn by healthy subjects.

To overcome the more general problem of the scarcity of data and, therefore,
to improve the performance of classifiers and to avoid overfitting of models, some
papers investigated the usefulness of data augmentation and transfer learning to
improve the classification performance [11,15,25]. The alterations introduced by
data augmentation methods generate new samples that may not correspond to
credible real samples. So, in this paper, we propose to increase the size of datasets
by exploiting algorithms that are able to generate synthetic handwriting samples.
To the best of our knowledge, that is the first time that these algorithms are
applied to the application domain of diagnosis of neurodegenerative diseases. In
particular, we evaluated the performance of the generator of synthetic samples
based on a Recurrent Neural Network proposed by Alex Graves in [7].

The paper is organised as it follows. In Sect. 2, we review the previous works
on synthetic handwriting generation and data augmentation and we show that
there are different algorithms to generate synthetic handwriting but, up to now,
they have not yet used to diagnose PD from handwriting. In Sect. 3, we briefly
introduce the real data used in the experimentation, while in Sect. 4 we present
the approach adopted to generate synthetic drawing samples. Section 5 intro-
duces the CNN used as classifier and the approach adopted to convert signals to
2D images. Section 6 discusses the system that combines the synthetic generator
of drawing samples and the classifier in order to select the best synthetic samples
that will be used to train the final system. Sections 7 and 8 discuss the setup
adopted to perform the experiments and the results we obtained. Eventually,
Sect. 9 briefly discusses the results and Sect. 10 concludes the work.
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2 Related Works

Many algorithms have been proposed in the literature for the generation of syn-
thetic handwriting and they can be grouped in two different families: template-
based approaches [4,5,9] and learning-based approaches [7,12,13]. The main
difference between these two methodologies is that template-based approaches
generate synthetic samples by perturbing real samples while learning-based
approaches train neural networks to build a high-dimensional interpolation
between training examples that will be used to generate synthetic samples.

Synthesis of handwriting samples has been applied to improve the perfor-
mance of automatic systems for writer and signature verification [5,21] and for
handwriting recognition [1,9,12].

In the field of handwriting analysis for the diagnosis of neurodegenerative
disorders, as Parkinson’s and Alzheimer’s disease, classical approaches of data
augmentation have been recently implemented to boost the performance of deep
learning networks. Classical approaches of data augmentation are those that
have been applied in the more general field of computer vision and they include
geometrical distortions and noise addition to real samples.

Rotations, flipping and contours were adopted in [15] to increase by a factor of
13 the cardinality of the dataset that was used to train the convolutional neural
network AlexNet. In [11] the authors observed that rotation and thresholding
had a negative impact on performance while illumination showed significantly
better performance in comparison.

Data augmentation methods as jittering, scaling, time-warping, and averag-
ing were applied directly to time series to increase the cardinality of the dataset
used to train a CNN-BLSTM network [25]. The results showed that the combina-
tion of CNN-BLSTM and data augmentation was not effective when a single task
was considered, but it increased the accuracy of 7.15% when the classification
outputs per each task were combined.

3 Dataset of Real Sample

In this study, we used the NewHandPD dataset [19], a public dataset that
includes handwritten data produced by 31 PD patients and 35 healthy sub-
jects. The healthy group includes 18 male and 17 female individuals with ages
ranging from 14 to 79 years old (average age of 44.05 ± 14.88 years), while the
patient group includes 21 male and 10 female individuals with ages ranging from
38 to 78 years old (average age of 57.83 ± 7.85 years).

Each individual drew 12 samples: 4 spirals, 4 meanders, 2 circled movements,
and 2 diadochokinesis. The dynamics of each sample were recorded by means
of a Biometric Smart Pen (BiSP), while an image of the sample was available
only for spirals, meanders and circles. A BiSP records 6 signals from as many
sensors: voice signal m(t), fingergrip gr(t), axial pressure of ink refill p(t), tilt
and acceleration in X direction ax(t), tilt and acceleration in Y direction ay(t),
tilt and acceleration in Z direction az(t).
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In this study only the signals acquired with BiSP were taken into account
while the images were not used. Moreover, we used only signals related to spirals
and meanders, which are the classical motor tasks adopted to diagnose Parkin-
son’s disease [30].

4 Generation of Synthetic Samples

4.1 The Method

The system we realized to generate synthetic drawing samples is based on the
approach proposed by Alex Graves [7], which exploits Long Short-term Memory
recurrent neural networks to generate complex sequences by predicting one data
point at a time. The main idea behind the approach proposed by Graves is
that RNN can be trained on real data sequences one step at a time so that the
network can predict which point follows another one. Predicting the trajectory
one point at a time has the advantage of increasing the diversity among the
samples generated by the network.

It’s worth noting that the network isn’t trained to predict the next location
of the pen, but to generate a probability distribution of what happens at the
next instant of time, including whether the pen gets lifted up. In particular, a
Gaussian mixture distribution is generated to predict the pen offset from the
previous location while a Bernoulli distribution predicts if the pen stays on the
paper or not.

This prediction is realized through the use of a mixture density network [2],
which uses the outputs of a neural network to parameterise a mixture distri-
bution. The combination of mixture density and RNN has the effect that the
output distribution is conditioned not only on the current input, but on the
history of previous inputs too.

In the original implementation proposed by Graves, each input vector xt to
the network is made-up of a real-valued pair {x1

t , x
2
t}, which defines the pen

offset from the previous input, and a binary x3
t that has value 1 if the vector

ends a stroke. Each output vector yt consists of the end-of-stroke probability
et, a two-dimensional vector of means μj , a two-dimensional vector of standard
deviation σj , correlations ρj and mixture weights πj , which are scalars, for the
M mixture components. The outputs of the network are transformed so that
they satisfy the bounds related to the quantity they represent (for example, the
real value used as correlation is bound between −1 and 1 with a hyperbolic
tangent). Overall, the total number of outputs is equal to (1 + M ∗ 6).

The probability density Pr(xt+1|yt) of the next input xt+1 given the output
vector yt is defined as follows:

Pr(xt+1|yt) =
M∑

j=1

πj
tN (xt+1|μj

t , σ
j
t , ρ

j
t )

{
et if x3

t+1 = 1
1 − et otherwise

(1)
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The probability given by the network to the input sequence x is

Pr(x) =
T∏

t=1

Pr(xt+1|yt) (2)

and the sequence loss L(x) used to train the network is the negative logarithm
of Pr(x)

L(x) = −
T∑

t=1

log(Pr(xt+1|yt)) (3)

Once trained the RNN network is able to generate synthetic time sequences
of a given length. As initial input, a vector of zeros is passed to the network
and the end-of-stroke signal is turned on, signalling to the network that the next
point it produces will be the start of a new stroke, rather than a continuation of
an existing one. A zero state is also passed into the network for the initialization.
After that, the network outputs the parameters of the probability distributions
from which we randomly sample a set of values that represent a point of the
synthetic sample. Afterwards, we repeat the loop and feed in the sampled point
and network state back in as inputs, to get another probability distribution to
sample from for the next point, and we repeat until we get the desired number
of points.

4.2 The Implementation

The method described before was proposed to generate synthetic handwritten
text, which consists of sequences of characters and then of words, and therefore,
in the original implementation, the term end-of-stroke referred to the end of a
pen-down.

Instead, in this paper, we want to synthesize drawing samples that are usually
executed in a single pen-down. We know by handwriting generation theory that
a pen-down is a superimposition of elementary movements, so, in our implemen-
tation, the end of a stroke corresponds to the end of an elementary movement.

The real samples were segmented in elementary movements by looking at the
zero crossings of the tangential velocity along the y-axis [26]. Because the samples
in NewHandPD include only the acceleration along the three axes, we needed to
integrate these signals to detect the start and the end of elementary movements.
Accelerations were filtered before integration, as suggested in another paper that
used a smartpen similar to the one used for collecting NewHandPD data [27].
We filtered the acceleration signals between 0.5 Hz and 12 Hz with a 4th order
Butterworth filter to remove the DC component related to slow oscillations and
gravity and the frequencies beyond the range of relevant tremor components.

Given the time series available for each real sample, the inputs of the network
were the acceleration along x and y instead of x and y as in Graves’ paper.

As with regards to the architecture of the network, we used a 2-layer stacked
basic-LSTM network (no peephole connections) with 256 nodes in each layer.
The number M of mixture components was set equal to 20, as in the original
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Graves’ paper. Overall, the network outputs 121 real values used to infer the
probability distribution.

In our experiments, we adopted the implementation made available by David
Ha at [8]. This implementation adopts mini-batches to fast the learning process.
Mini-batches require to be the same length to be efficient and therefore time
series were divided in sequences of length SL. Afterward, continuous portions of
SL points were randomly sampled from the training sample and included in the
mini-batches. Eventually, a dropout layer was included for each of the output
layers of the LSTM to regularise training and reduce the overfitting.

5 Classification Stage

5.1 From Signal to Image

Let K be the total number of time series available for each handwriting sample
and k the time series selected for the generation of the 2D image. Let n be the
number of points of each time series.

The selected k time series of a handwriting sample are rearranged into a
(
√

n × k,
√

n × k) square matrix Im that, in turn, is resized into a 64×64 image
using the Lanczos resampling method. When n×k is not a square number, time
series are truncated just enough to guarantee that Im has two natural numbers
as dimensions.

Im is built by concatenating n arrays of k elements. In particular, the i-th
array is made up of the value at time ti of each time series. The arrays are
horizontally concatenated so that the rows of Im are filled one by one. It is
worth noting that the values of the time series are scaled in the range [0, 255] so
that each value can be represented by a grayscale pixel.

This approach for the generation of a 2D image from the time series of a
sample is similar to the ones proposed in [19,25] but differs in the way Im is
filled. In particular, the approaches in the literature concatenate the arrays so
that the columns of the matrix, instead of rows, are filled one by one. Figure 1
shows an example of an image generated by following the approach described in
this subsection.

5.2 Convolutional Neural Network

The 2D images representing the time series of handwriting samples are classified
by a Convolutional Neural Network (CNN) whose architecture is taken from
the neural network CIFAR-10 presented in [18]. The network has been fully
implemented from scratch using the Python TensorFlow2.0 library. Figure 2
shows a top-level view of the entire architecture and the hyper-parameters related
to each layer.
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Fig. 1. An example of a grayscale 2D image obtained by k = K = 6 time series

6 Validation of Synthetic Data

The solution adopted in this work to assess the output of the RNN draws inspi-
ration from the operation of Generative Adversarial Networks, or GANs [6].
GANs learn how to generate new data by adopting an architecture with two
agents: a Generator Model, which generates a new example, and a Discrimina-
tor Model, which decides if the generated example is real or synthetic. Both the
Generator and the Discriminator are Neural Networks: the Generator output is
connected directly to the Discriminator input so, through backpropagation, the
Discriminator’s classification provides signals that the Generator uses to update
its weights.

The main difference between standard GAN models and the approach pro-
posed here is that the Generator doesn’t learn from Discriminator’s feedback
since the two models are independent of each other. In fact, while in the GANs
the two agents are connected through backpropagation so that the output of
the Discriminator updates the weights of the Generator, in this work Generator
and Discriminator are two separate subsystems: the RNN described in Sect. 4
generates synthetic data and, in a separate moment, these data are validated
by the classifier described in Sect. 5 and trained on real data. So, the synthetic
samples correctly classified by the CNN will be used to increase the dimension
of the training set while the others will be discarded. Figure 3 shows the system
implemented to validate synthetic samples.

It is worth noting that in our system the Discriminator consists of 5 CNNs
and it classifies samples by a majority vote algorithm. The dataset of real samples
is shuffled 5 times and each time a CNN is trained with 35% of the data.
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– Input Layer;
– Convolution Layer (1):

• Features: 32
• Kernel size: 5× 5
• Stride: 1× 1
• Activation Function: ReLU

– MaxPooling Layer:
• Pool size: 3× 3
• Stride: 2× 2

– Convolution Layer (2):
• Features: 32
• Kernel size: 5× 5
• Stride: 1× 1
• Activation Function: ReLU

– AveragePooling Layer (1):
• Pool size: 3× 3
• Stride: 2× 2

– Convolution Layer (3):
• Features: 64
• Kernel size: 5× 5
• Stride: 1× 1
• Activation Function: ReLU

– AveragePooling Layer (3):
• Pool size: 3× 3
• Stride: 2× 2

– Flatten;
– Dense Layer (1):

• Features: 64
• Activation Function: Sigmoid

– Dense Layer (2):
• Features: 10
• Activation Function: Sigmoid

– Dense Layer (3) - Output:
• Features: 1
• Activation Function: Sigmoid

Fig. 2. Top-level view of the CNN used as classifier and hyper-parameters of each layer.
The image was realized with Plotneuralnet.

7 Experimental Setup

7.1 Time Series Selection

We performed a preliminary experiment to verify if representing each sample
with two time series instead of six could affect the performance of the classifier.
In particular, we compared the performance of the network when the following
two sets of time series were considered:
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Fig. 3. The approach adopted to validate synthetic samples

– {m(ti), gr(ti), p(ti), ax(ti), ay(ti), az(ti)};
– {ax(ti), ay(ti)}

Table 1 resumes all the choices we did to configure the experiment and the
learning process of the convolutional neural network. Those values were selected
after a fine-tuning process aimed at avoiding overfitting and maximizing the
performance of the network on the validation set. The partition of the data in
training, validation and test sets was made by guaranteeing that all the samples
drawn by an individual were included in only one of the sets. We trained two
different CNNs, one devoted to discriminating between PD and healthy subjects
by looking at spirals and the other by looking at meanders.

Table 2 shows the results obtained by the two CNNs when images are gener-
ated by one of the two sets of time series. For each drawing task, we evaluated
if the difference between the classification accuracies was statistically significant
or not by performing a Wilcoxon test, with a level of significance α = 0.05. As
shown in the table, differences are not statistically significant, both for spirals
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and meanders, but the p-value obtained in the case of spirals is close to the level
of significance and the evidence for the null hypothesis that using two time series
instead of six has no effect on the accuracy is weaker.

We chose to represent samples only with two time series, tilt and acceleration
in X direction ax(t) and tilt and acceleration in Y direction ay(t).

Table 1. Experimental setup to classify 2D images with the CNN

Parameter Value

Kernel initializer Glorot normal

Bias initializer 0

Pseudorandom number generators Fixed seeds

Training/validation/test size 35%/15%/50%

k-fold cross validation 5-fold

Batch size 5

Optimization algorithm SGD

Learning rate 2 × 10−5

Momentum 0.9

Nesterov momentum True

Loss Binary cross entropy

Early stopping Min validation loss

Epochs 10000

Table 2. Performance of the CNN when two different sets of time series are considered.
The last column reports the p-value of the Wilcoxon statistical test. 2 time series:
{ax(ti), ay(ti)}, 6 time series: {m(ti), gr(ti), p(ti), ax(ti), ay(ti), az(ti)}.

Task Accuracy (%) p-value

2 time series 6 time series

Spirals 70.75 ± 3.22 77.01 ± 3.25 0.07961

Meanders 74.42 ± 7.81 74.72 ± 2.62 0.89274

7.2 Generation and Validation of Synthetic Samples

We trained 4 different RNNs, which were implemented according to the architec-
ture described in Sect. 4: the first synthesized spiral drawn by healthy subjects,
the second synthesized spiral drawn by PD patients, the third and the fourth
synthesized meanders drawn by healthy and PD patients, respectively.
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Table 3 reports the hyper-parameter values used for these networks, which
were fine-tuned with the aim of minimizing the loss on the validation set.

Once the 4 networks were trained, each of them generated SS valid samples.
The validity of a sample was verified with the system that combines the synthetic
generator and the classifier, as described in Sect. 6. We evaluated seven conditions
with SS = [100, 300, 500, 600, 800, 1000, 1500].

The length of each sample (the number of its points) generated by one of the
RNNs was chosen so that the distribution of synthetic samples per number of
points was similar to the distribution of real samples per number of points.

Table 3. RNN hyper-parameters to generate synthetic samples

Parameter Value

RNN hidden state 256

Number of stacked cells (layers) 2

Cell type LSTM

Sequence length SL 512

Number of epochs 300

Learning rate 0.005

Number of mixture M 20

Dropout keep probability 0.8

Training/validation set 70%/30% of total samples

Loss function Log likelihood loss

7.3 Data Augmentation and Classification

Two CNNs were trained with both real and synthetic samples to diagnose Parkin-
son’s disease: one processed spirals, the other one meanders. The two CNNs were
trained using the hyper-parameters reported in Table 1, the same ones we used
to train the network with only real samples.

The 2∗SS synthetic spirals (SS per class) and the 2∗SS synthetic meanders
were added to the 50% of real samples used in the training phase, which were
split between training and validation sets. Synthetic samples were not included
in the test set.

The performance was measured by averaging on 5 training of the CNNs.
Every time, the real dataset was shuffled and 50% of subjects were kept apart
as test set. So, the samples drawn by an individual were included in the training
or in the test set but never in both of them.

8 Results

Figure 4 shows how the accuracy of the system varies as the number of synthetic
samples varies from 0 to 1500, both for spirals and meanders. Figure 4a shows
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(a) meanders

(b) spirals

Fig. 4. Accuracy vs number of synthetic samples for meanders and spirals
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Table 4. Accuracy (Acc.), Sensitivity (Sens.) and Specificity (Spec.) of the CNN when
it is trained without or with synthetic samples.

No synthetic samples 1500 synthetic samples

Acc. (%) Sens. (%) Spec. (%) Acc. (%) Sens. (%) Spec. (%)

Spirals 70.75 ± 3.22 68.69 ± 5.19 72.62 ± 3.17 74.93 ± 3.58 74.08 ± 5.54 76.09 ± 3.26

Meanders 74.42 ± 7.81 75.60 ± 6.22 73.54 ± 8.10 79.63 ± 3.09 78.77 ± 4.28 80.32 ± 6.78

an evident increasing linear trend of the average accuracy as the number of
synthetic meanders in the training set increases. Moreover, the increase in the
number of synthetic meanders reduces the differences in the performance of the
system when it is trained with a different set of data. Figure 4b shows that these
comments are still valid for spirals even though less evident.

Table 4 reports the results obtained when the CNN described in Sect. 5 was
trained only with real samples or with the addition of 1500 synthetic samples
(15% of which were used as validation).

The use of synthetic spirals had the effect of increasing accuracy, sensitivity
and specificity of 4.18%, 5.39% and 3.47%, respectively. The use of synthetic
meanders had the effect of increasing accuracy, sensitivity and specificity of
5.21%, 3.17% and 6.78%, respectively. Moreover, the standard deviation of the
system trained with real and synthetic samples is lower than the variability of
the system trained with real data only. In particular, the standard deviation of
the accuracy is more than halved when synthetic samples are used.

9 Discussion

The RNN used to generate synthetic samples does not directly output the next
location of the pentip but the parameters of mixture distributions that are sam-
pled to predict the next point of the trajectory. Sampling one point at a time
from probability distributions favours the diversity between real and synthetic
samples. A preliminary analysis confirmed that the synthetic samples differ from
the ones in the test set although the entire real dataset was used to train and
validate the RNN. Nevertheless, this aspect will be further investigated in future
works by keeping the test set apart from the data used to train the generator
network.

The difference in performance when the system is trained with meanders
instead of spirals could be ascribed to the selection of time series. In fact, as
we can see in Table 2, the use of two time series instead of six has no effect on
meanders but lower the accuracy when spirals are evaluated, even though it is
not statistically significant. This aspect needs to be investigated in the future
by increasing the number of experiments.
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10 Conclusions

Publicly available datasets are made-up of samples handwritten by small num-
bers of subjects. This aspect limits the use of top-performing deep learning algo-
rithms that need a huge amount of data to correctly classify samples. To solve
this problem, we have proposed to use algorithms for handwriting synthesis to
increase the size of the training set.

Preliminary results have confirmed that the addition of synthetic samples to
the training set increases the performance of a basic convolution neural network
and reduce the variability of performance as the training set varies.

In our future investigations, we will aim at performing a systematic investi-
gation that will take into account different neural network architectures as well
as samples corresponding to other motor tasks, as for example words and sen-
tences. Moreover, we plan to combine template-based and learning-based meth-
ods to increase the diversity of synthetic samples. Eventually, we will exploit a
correlation analysis between basic handwriting features and the clinical state of
participants in order to evaluate if it is possible to generate synthetic samples
that denote different stages of PD, from early to severe stages.
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