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Abstract. Experimental studies led by Lashley and Raibert in the early
phase of human movement science highlighted the phenomenon of motor
equivalence, according to which complex movements are represented in
the brain abstractly, in a way that is independent of the effector used for
the execution of the movement. This abstract representation is known
as motor program and it defines the temporal sequence of target points
the effector has to move towards to accomplish the desired movement.
We present and compare two algorithms for the extraction of motor
programs from handwriting samples. One algorithm considers that log-
normal velocity profiles are an invariant characteristic of reaching move-
ments and it identifies the position of the target points by analysing the
velocity profile of samples. The other algorithm seeks target points by
identifying the trajectory points corresponding to maximum curvature
variations because experimental studies have shown that the activity of
the primary motor cortex encodes the direction of the movement. We
have compared the performance of the two algorithms in terms of the
number of virtual target points extracted by handwriting samples gener-
ated by 32 subjects with their dominant and non-dominant hands. The
results have shown that the two algorithms show a similar performance
over ∼55% of samples but the extraction of motor programs by analysing
the curvature variations is more robust to noise and unmodeled motor
variability.
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Handwriting representation

1 Introduction

The analysis of movement, as the analysis of gait or handwriting, is the core of
many tools used for biometric [6,7,17,18,24] and diagnostic [2–4,20] purposes.
That is because complex movements are the result of a learning process that
is individual and neurodegenerative disorders, like Parkinson’s and Alzheimer’s
disease, affect motor skill learning, execution and retention.
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Being able to infer the representations of movements acquired by learning and
stored in the brain is of paramount importance because it allows to distinctively
identify a person or to monitor the onset and the progression of neurodegenera-
tive diseases.

The phenomenon named motor equivalence suggests that “actions are
encoded in the central nervous system in terms that are more abstract than com-
mands to specific muscles” [35]. This abstract representation is known as motor
program, which has been also defined as “a central representation of a sequence
of motor actions” [28]. Therefore, a motor program is an effector-independent
representation of the movement that is made up of a sequence of target points
that have to be reached in order to execute the desired movement. To a motor
program may correspond more than one effector-dependent representation of the
movement, each of which encodes the motor commands that will be delivered to
the specific neuromuscular system recruited for the execution of the movement
[14,25].

Different algorithms have been proposed for extracting the motor program
from a trajectory, i.e. to identify within a handwriting movement the elemen-
tary movements, from here on named strokes, it is made up of [8,12,13,16,19].
Because variations in the writing conditions and in the psychophysical state of
a subject influence the execution of a complex movement, we can observe dif-
ferences in the motor programs extracted from different executions of the same
trajectory. Differences can be observed in the number of extracted strokes, in the
parameter values used for representing strokes and in the x-y position of target
points.

We present and compare two algorithms for the extraction of motor programs
from handwriting samples; one defines the position and the number of the target
points from the analysis of the velocity profile, while the other finds the target
points by looking at the variation of curvature along the trajectory. Because, by
definition, a motor program is independent of the variability affecting different
executions of the same drawing or word, we compared the two algorithms in
terms of the number of strokes extracted from each sample. The desired outcome
is the extraction of the same motor program from any repetition of the same
learned movement.

The remaining of the paper is structured as follows: Sect. 2 describes the two
algorithms and the theoretical framework within which they were conceived,
Sect. 3 describes data collection and the experimental procedure, and it reports
the results that are then discussed in Sect. 4. Eventually, Sect. 5 concludes the
work by discussing further investigations of this preliminary work.

2 Method

2.1 Theoretical Overview

The repetition of a complex movement over time has the effect of creating a
compact representation of the movement that, in the final stages of learning,
is stored in the brain as a succession of target points that have to be reached.
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The execution of a learned movement, i.e. the realization of a motor program,
results from the interaction between brain areas, spinal cord networks, muscles
and the proprioceptive receptors [21,27]. In a nutshell, to initiate the movement,
the brain sends commands to recruit the muscles and to set the forces they have
to exert on the bones they are connected to, while, during execution, the spinal
cord modulates such commands depending on the information received by the
proprioceptive receptors in order to keep the execution as close as possible to
the learned one. The effects of those modulations are therefore the source of
the observed variability, and they should not be considered as the results of
commands stored in the motor plan.

The active role of the spinal cord in the control of movements became clear
with studies on spinal cord plasticity and spinal stretch reflexes. Studies have
shown that spinal cord plasticity contributes to the acquisition of motor skills,
and to compensation for the peripheral and central changes caused by ageing,
disease, and trauma [36]. More recently, it has been proved that spinal feed-
back pathway is able to integrate proprioceptive inputs from multiple muscles
to produce efficient corrective responses that take advantage of musculoskeletal
redundancy [34].

Thus, after a movement has been learned, i.e. when the subject executing the
movement is no longer conscious of the elementary movements it is composed
of, the variability observed in repeated executions may be ascribed to the neu-
romuscular system executing the movement. Extracting the motor program by
observing the execution of a complex movement requires to be able to identify
those corrective movements introduced on the fly by spinal cord networks.

In the next subsection, we introduce two algorithms for the extraction of
motor programs, MPE and CMMPE. Both the algorithms adopt the lognormal
representation of handwriting movements derived from the kinematic theory of
rapid human movement [22]. Therefore, each elementary movement is charac-
terized by a lognormal velocity profile and it is described in terms of command
generation time, magnitude and direction of motion, response time and time
delay of the neuromuscular system [23]. The two algorithms were designed start-
ing from different but complementary findings in the field of motor control and,
therefore, they differ in the way they seek movements embedded in the motor
program.

MPE seeks for strokes by looking at the velocity profile of a sample. This
choice follows from the experimental evidence that reaching movements show
some stereotypical properties like a roughly straight path and, more importantly,
a velocity profile with a dominant slightly asymmetric peak [15,23]. Therefore,
MPE identifies strokes in a sample by positioning lognormal functions at the
more significant peaks of the velocity profile.

CMMPE seeks for strokes by looking at the curvature variation along the
trajectory of samples. Experimental studies have shown that neural activity in
the primary motor cortex is related to movement direction that is uniquely
predicted by the action of a population of motor cortical neurons [9]. Therefore,
CMMPE seeks for strokes by detecting the points of the trajectory where there
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is the maximum variation of curvature because at those points the change of
direction in the movement is evident and significant and, therefore, it is more
plausible that it is the effect of a central command than of a corrective movement.

2.2 Motor Program Extraction

MPE. The Motor Program Extractor algorithm, hereinafter MPE, analyzes
velocity profiles to recover the sequence of virtual target points the motor com-
mands issued by the brain intended to reach. The fundamental idea behind this
algorithm is that both the brain and spinal cord contribute to the final movement
by generating elementary movements with a lognormal velocity profile. Move-
ments commanded by brain areas are those encoded in the motor program, while
the spinal cord contributes with fast corrective movements by integrating com-
mands from brain areas and proprioceptive signals. Movements introduced by
the spinal cord are generated when the ongoing movement is going far from the
intended/planned movement. MPE extracts the motor program from one hand-
writing sample by detecting and discarding the corrective movements introduced
by the spinal cord.

MPE adopts the same iterative procedure proposed by the RX0 algorithm
[16] to extract elementary movements by the analysis of the velocity profile and
models each elementary movement with the Sigma-Lognormal model [23]. At
each iteration, the velocity profile of a handwriting sample is analyzed search-
ing for peaks. A movement generated by the spinal cord should correspond to
either a velocity peak whose amplitude is much smaller than the amplitudes of
the velocity peaks related to movements encoded in the motor plan, or whose
duration is shorter than the duration of the movements defined by the motor
plan. Therefore, the amplitude and the duration of each peak are compared with
two thresholds, denoted by Vth and Tth, respectively, and peaks whose ampli-
tude or duration are lower than the respective threshold are ignored. A detailed
description of the algorithm and its validation on a data set different by the one
adopted in this paper is available at [19].

CMMPE. The Curvature Multiscale Motor Program Extractor, hereinafter
CMMPE, analyzes curvature profiles to estimate the position of the virtual tar-
get points the motor commands issued by the brain intended to reach. The
fundamental idea behind this algorithm is that the amount of time superimposi-
tion between two consecutive elementary movements regulates the smoothness,
and therefore the curvature, of the trajectory. If the second elementary move-
ment starts when the first one is ended, the virtual target is visible in the actual
trajectory, while it disappears when the second movement starts before the end
of the previous movement. The region of the trajectory where the maximum
curvature variation is measurable defines the region external to the trajectory
where the virtual target point may be located, as shown in Fig. 1.

CMMPE detects the points corresponding to the maximum curvature varia-
tion, from here on segmentation points, by exploiting an algorithm based on the
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Fig. 1. Example of segmentation point (red dot) in a trace composed of two time-
superimposed strokes (grey line). The dashed black line represents the strokes if no
superimposition was applied, and the black dots are the virtual targets. (Color figure
online)

concept of saliency introduced for modelling visual attention shift [5]. Following
this approach, the trajectory represents the scene the system is looking at, and its
curvature represents the feature whose saliency is estimated. Curvature is com-
puted at different resolutions and then values at each scale are combined in order
to estimate a saliency map SMAP . Thus, the algorithm carries out a saliency-
based multiscale analysis of the curvature profile and the values of the saliency
map higher than a threshold Sth correspond to the segmentation points. The
detection of segmentation points is much more invariant with respect to locally
prominent but globally non-significant changes of curvature, which means it is
able to filter the local variation of curvature introduced by corrective movements.
The threshold Sth depends on the parameters w and α as defined by Eq. 1:

Sth = average(moving mean(SMAP , w)) ∗ α (1)

where w defines the length of the moving mean, while α modulates the mean
saliency.

CMMPE assumes that a virtual target point is located along the line per-
pendicular to the tangent to the trajectory at the segmentation point. Even this
algorithm models each elementary movement with the Sigma-Lognormal model
but, differently from MPE and other algorithms proposed in the literature, it
first analyses the trajectory to locate the position of a target point and then
it computes the lognormal velocity profile related to the elementary movement
that reaches the target point.
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Fig. 2. Trajectory reproduced by each subject involved in the experimentation.

3 Experimentation

3.1 Data Collection

We collected data from 32 subjects, 18 males and 14 females, whose age ranges
in the interval 13–63 years with a mean value of 34.40 and a standard deviation
of 15.58. Participants volunteered to take part in the experiment and expressed
their written informed consent to participate. We administered a questionnaire
to each subject in order to define their level of education, health conditions and
whether they use routinely drugs or other substances that are known to affect
motor control.

Each subject wrote the handwriting pattern “llll”, whose template is shown
in Fig. 2, 10 times with his/her dominant hand and then 10 times with his/her
non-dominant hand. This pattern has been adopted in many experiments on
handwriting generation modelling [29,30,32] because it is reasonable to assume
that its motor program has been already learned by the subjects involved in
the experiments and it is complex enough to evaluate how motor variability and
motor noise affect the execution of a planned motor program.

We collected samples drawn with both hands to verify our hypothesis that
the number and the position of target points are less stable among different
repetitions when movements are executed with non-dominant hands. That is
because each subject will try to execute the trajectory by the non-dominant hand
by reaching the sequence of target points encoded in the learned motor program
even though the sequence of motor commands to control the new effector is not
yet learned. As a consequence, a stronger intervention of spinal and supraspinal
neural networks will be triggered and a greater variability among the samples,
as well as among the extracted motor programs, will be evident.

Overall, we collected 320 handwriting samples drawn with dominant hands
and as many samples drawn with the non-dominant hands. The handwriting
samples were collected by using an ink-and-paper WACOM Bamboo Folio digi-
tizing tablet with 200 Hz sampling rate. We developed a custom application to
acquire and store each sample.

We adopted an ink-and-paper digitizing tablet to avoid unexpected proprio-
ceptive feedback and the following corrective movements that may arise by using
a stylus-and-screen digitizing tablet. In fact, it has been shown that handwriting
is influenced by the lower friction of tablet surfaces in a way that subjects are
required to additionally control handwriting movements [10].



Should We Look at Curvature or Velocity to Extract a Motor Program? 209

3.2 Experimental Procedure

The experimentation aims at comparing the two algorithms in terms of the
number of strokes, i.e. the number of virtual target points, extracted from the
handwriting samples. This is because the handwriting samples produced by each
subject should be the execution of the same motor program and, therefore, they
should be made up of the same number of strokes.

Both MPE and CMMPE require to set a couple of parameters, (Vth, Tth) and
(w,α), respectively. Vth and Tth define the amplitude and duration of a corrective
movement generated by the spinal cord networks. w and α regulate the minimum
variation of curvature that is considered as the effect of a new motor command
issued by the brain instead of a corrective movement introduced by the spinal
cord. In both cases, the parameters define the boundary between corrective and
planned movements.

Studies in literature have shown that activity-dependent plasticity occurs in
the spinal cord as well as in the brain [31,36] and that spinal cord plasticity
is important in the acquisition of motor behaviours throughout life [37]. For
example, it has been shown that athletic training, such as that undertaken by
ballet dancers, gradually alters spinal reflexes [37,38]. Therefore, it is plausible
to assume that the extent of corrective movements introduced by the spinal cord
varies subject by subject.

Therefore, both for MPE and CMMPE, we tuned the parameters per each
subject to characterize their personal spinal cord activity. In particular, starting
from the assumption that executions of the pattern “llll” with the dominant
hand are the actuation of the same motor program, we set the parameters at
values that produced the minimal variation in terms of the number of extracted
strokes from the ten repetitions. For both algorithms, we adopted a grid search
approach to set the parameter values. For MPE, Vth was varied between 10%
to 60% of the maximum velocity peak measured in the sample under analysis,
Tth was varied between 20 ms and 90 ms because voluntary movements toward
a target are usually executed in a time range that varies between ∼350 ms and
∼1200 ms, depending on the subject [33]. For CMMPE, w was varied between 1
and 5 and α between 0.6 and 1 with a step of 0.2. These two ranges were defined
by a preliminary analysis carried out on another data set [18,19].

Given a subject, the parameter values tuned on the samples drawn with the
dominant hand are used to extract strokes from the ten samples executed with
the non-dominant hand.

3.3 Results

Table 1 reports the mean number of strokes extracted by the two algorithms on
the samples drawn with the dominant or non-dominant hand by the 32 subjects.

Figure 3 shows the distributions of the handwriting samples drawn with the
dominant hand per number of strokes. We applied a two-sided Wilcoxon signed
rank test to verify the null hypothesis that the difference between the distribution
obtained with MPE and the one obtained with CMMPE has zero median. The
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Table 1. Mean number of strokes (±standard deviation) per algorithm and per end-
effector

MPE CMMPE

Dominant Hand 8.38 ± 0.62 8.03 ± 0.90

Non-dominant Hand 9.53 ± 1.75 9.10 ± 1.60

null hypothesis was rejected (p-value = 2.43∗10−10) and a right-tailed Wilcoxon
signed rank test rejected the null hypothesis (p-value = 1.23∗10−10) in favour of
the alternative hypothesis that the difference distribution has a median greater
than 0, i.e. MPE extracts more strokes than CMMPE. Figure 4 shows that when
the same sample is elaborated by the two algorithms the same number of strokes
were extracted 221 times out of 320 (∼69%). For 58 out of 320 samples (∼18%)
the motor programs extracted by MPE and CMMPE differ for one stroke.

Figure 5 shows the distributions of the handwriting samples drawn with non-
dominant hands per number of strokes. We applied a two-sided Wilcoxon signed
rank test to verify the null hypothesis that the difference between the distribution
obtained with MPE and the one obtained with CMMPE has zero median. The
null hypothesis was rejected (p-value = 1.85∗10−07) and a right-tailed Wilcoxon
signed rank test rejected the null hypothesis (p-value = 9.31∗10−08) in favour of
the alternative hypothesis that the difference distribution has a median greater
than 0, i.e. MPE extracts more strokes than CMMPE also in this case. Figure 6
shows that when the same sample is elaborated by the two algorithms the same
number of strokes were extracted 130 out of 320 times (∼41%). For 110 out of
320 samples (∼34%) the motor programs extracted by MPE and CMMPE differ
for one stroke.

Eventually, we compared the distributions of strokes extracted by MPE and
CMMPE subject by subject. Each distribution was computed over all the sam-
ples drawn by each subject, therefore including the samples drawn by the two
end-effectors. We performed 32 two-sided Wilcoxon signed rank test at the 5%
significance level and for 12 subjects the null hypothesis that the difference
between the distribution obtained with MPE and the one obtained with CMMPE
had zero median was rejected.

4 Discussions

Table 1, Fig. 3 and Fig. 5 show that motor programs extracted from samples
drawn with non-dominant hands are made up of a greater number of strokes
with respect to the motor programs extracted by the sample drawn by dominant
hands. Moreover, there is a greater variability in the number of strokes extracted
from the samples written with the non-dominant effector. Even though motor
equivalence suggests that samples generated by both the effectors are the exe-
cutions of the same motor program, we postulate that the greater variability we
observed in the motor program extracted by samples written with non-dominant
hands is an effect of motor learning.
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Fig. 3. Distribution of samples written with dominant hands per number of strokes.

Fig. 4. Distribution of samples written with dominant hands per difference of strokes
between MPE and CMMPE. The difference is computed with respect to the strokes
extracted by CMMPE.

Subjects were not familiar with writing with their non-dominant effector
and we hypothesize a motor learning process was triggered when they drew the
desired trajectory with the new group of muscles. By limiting the maximum
number of repetitions of the motor task with the non-dominant hand, we set
the learning time equal to all the subjects even though different subjects may
need a different time to learn a new motor task. In fact, it is known that the
rate of motor learning is an individual feature and part of motor variability is
an expression of the individual way each subject explores the motor command
space [11]. It follows that, in the case of samples drawn by non-dominant hands,
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Fig. 5. Distribution of samples written with non-dominant hands per number of
strokes.

Fig. 6. Distribution of samples written with non-dominant hands per difference of
strokes between MPE and CMMPE. The difference is computed with respect to the
strokes extracted by CMMPE.

the correction of the ongoing movements was introduced only in part by the
spinal cord but more significantly by supraspinal areas like the cerebellum, whose
corrective actions differ from the ones executed by the spinal cord for latency,
intensity and duration [1,26].

In order to take into account the individuality of learning and execution
processes, both the algorithms were adjusted to each subject in a way that the
variability in the number of strokes extracted from the samples drawn by the
dominant hand was minimized. We analysed the selected parameters in order to
verify if some values were more frequent than others.
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For MPE, the most frequent couple of parameters, which was assigned to
14 out of 32 subjects, was (Vth = 10% ∗ vpeak, Tth = 20ms). The threshold
Tth = 20 ms was selected for 30 out of 32 subjects while Tth = 70 ms and
Tth = 80 ms were selected for the remaining 2 subjects. Values equal to or lower
than 30% ∗ vpeak were assigned to Vth for 18 subjects. Overall, this analysis
confirms that corrective movements are characterized by a short duration and a
small amplitude for the majority of the subjects.

For CMMPE, the most frequent couple of parameters, which was assigned to
12 out of 32 subjects, was (w = 3, α = 0.6). The parameter value α = 0.6 was
selected for 31 out of 32 subjects while α = 0.8 was selected for the remaining
subject. When α = 0.6, a value equal to or lower than 4 was assigned to the
parameter w for 22 subjects. Overall, this analysis suggests that the parameter
α is roughly independent of the subject’s motor skills.

Eventually, the statistical analysis presented in the previous section shows
that CMMPE extracts fewer strokes than MPE, independently of the end-
effector used to draw the samples. Nevertheless, the two algorithms extracted
the same number of strokes from ∼55% of samples (221 drawn with dominant
hands and 130 with non-dominant ones) and they had a similar behaviour over
the samples produced by 20 subjects. Overall, these results suggest that both
the algorithms are modelling the same phenomena, i.e. the introduction of cor-
rective movements to keep the ongoing movement close to the desired one, from
a different perspective, and that CMMPE is more robust than MPE to noise
or non-modelled motor variability that is an expression of the intervention of
supraspinal centres.

These findings are in line with the results obtained by the algorithm IDeLog
[8], which is used for the detection of the strokes that allow a high-fidelity repro-
duction of handwriting samples in terms of velocity and trajectory profiles. So,
differently from MPE and CMMPE, it captures also small variations in velocity
and trajectory because the aim is to perfectly reproduce a single sample rather
than to find the general model behind many repetitions of the same movement.
IDeLog was able to improve the reconstruction of a sample by analysing the
velocity profile in search of target points and then exploiting the information
about the curvature and the location of segmentation points in order to move
the target points and improve the trajectory reconstruction.

5 Conclusions

We have proposed and compared two algorithms, MPE and CMMPE, that
extract the motor program from the analysis of handwriting samples. Both the
algorithms discriminate between movements that are embedded in the motor
program stored in the brain and other movements that are generated in reac-
tion to proprioceptive feedback. MPE discriminates between the two classes of
movements by analysing the velocity profile of a sample and looking for peaks
that correspond to corrective movements introduced by the spinal cord, while
CMMPE detects the movements encoded in the motor program by observing
the curvature profile with a multiscale approach.
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By keeping in mind the experimental studies of Lashley and Raibert that
led to the discovery of the motor equivalence phenomenon, we asked the partic-
ipants to draw a trajectory with their dominant and non-dominant hands. Both
the algorithms showed a greater variability in the number of extracted strokes
when they analysed the samples written with non-dominant hands. This greater
variability could be explained by taking into account that subjects were writing
with their non-dominant hand for the first time and therefore our experiment
triggered the cerebellar mechanisms devoted to learning a new motor skill. These
considerations suggest organising data collection in different sessions so that in
the last session the learning mechanism is off.

The experimental results have shown that both the approaches are able to
extract the same number of strokes from different executions of the same drawing
performed by a subject. Moreover, the number of strokes extracted by MPE is
equal to the number of strokes extracted by CMMPE for ∼55% of the handwrit-
ing samples. CMMPE is resulted to be more robust to noise or non-modelled
motor variability caused by the motor learning process triggered during the
experimental session with non-dominant hands.

Our future investigations will be aimed at evaluating as the performance of
each algorithm varies as the learning process progresses. We will set up a new
data collection campaign organized in different sessions spanned over a longer
period of time so that we will be able to capture the acquisition in the long
term memory of the motor commands used to execute a motor plan with the
non-dominant hand. Eventually, we plan to combine in a new algorithm the two
approaches adopted by MPE and CMMPE so that the curvature will be analyzed
to detect the position of the target points and the velocity will be analyzed to
infer the parameters of the velocity profile of each elementary movement between
two target points.

References

1. Alstermark, B., Isa, T.: Circuits for skilled reaching and grasping. Annu. Rev.
Neurosci. 35, 559–578 (2012)

2. Chen, S., Lach, J., Lo, B., Yang, G.Z.: Toward pervasive gait analysis with wearable
sensors: a systematic review. IEEE J. Biomed. Health Inform. 20(6), 1521–1537
(2016)

3. Cilia, N.D., De Gregorio, G., De Stefano, C., Fontanella, F., Marcelli, A., Parziale,
A.: Diagnosing alzheimer’s disease from on-line handwriting: a novel dataset and
performance benchmarking. Eng. Appl. Artif. Intell. 111, 104822 (2022). https://
doi.org/10.1016/j.engappai.2022.104822

4. De Stefano, C., Fontanella, F., Impedovo, D., Pirlo, G., di Freca, A.S.: Handwriting
analysis to support neurodegenerative diseases diagnosis: a review. Pattern Recogn.
Lett. 121, 37–45 (2019)

5. De Stefano, C., Guadagno, G., Marcelli, A.: A saliency-based segmentation method
for online cursive handwriting. Int. J. Pattern Recognit. Artif. Intell. 18(07), 1139–
1156 (2004)

https://doi.org/10.1016/j.engappai.2022.104822
https://doi.org/10.1016/j.engappai.2022.104822


Should We Look at Curvature or Velocity to Extract a Motor Program? 215

6. Diaz, M., Ferrer, M.A., Parziale, A., Marcelli, A.: Recovering western on-line signa-
tures from image-based specimens. In: 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1204–1209. IEEE
(2017)

7. Faundez-Zanuy, M., Fierrez, J., Ferrer, M.A., Diaz, M., Tolosana, R., Plamondon,
R.: Handwriting biometrics: applications and future trends in e-security and e-
health. Cogn. Comput. 12(5), 940–953 (2020). https://doi.org/10.1007/s12559-
020-09755-z

8. Ferrer, M.A., Diaz, M., Carmona-Duarte, C., Plamondon, R.: iDeLog: iterative
dual spatial and kinematic extraction of sigma-lognormal parameters. IEEE Trans.
Pattern Anal. Mach. Intell. 42(1), 114–125 (2018)

9. Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of
movement direction. Science 233(4771), 1416–1419 (1986)

10. Gerth, S., et al.: Is handwriting performance affected by the writing surface? com-
paring preschoolers’, second graders’, and adults’ writing performance on a tablet
vs. paper. Front. Psychol. 7, 1308 (2016)

11. Herzfeld, D.J., Shadmehr, R.: Motor variability is not noise, but grist for the learn-
ing mill. Nat. Neurosci. 17(2), 149–150 (2014)

12. Huang, J., Zhang, Z.: A novel sigma-lognormal parameter extractor for online
signatures. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol.
12823, pp. 459–473. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86334-0 30

13. Liu, M., Guo, X., Wang, G.: Stroke parameters identification algorithm in hand-
writing movements analysis by synthesis. IEEE J. Biomed. Health Inform. 19(1),
317–324 (2014)

14. Marcelli, A., Parziale, A., Senatore, R.: Some observations on handwriting from a
motor learning perspective. In: AFHA, vol. 1022, pp. 6–10. Citeseer (2013)

15. Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42(2), 223–227
(1981). https://doi.org/10.1007/BF00236911

16. O’Reilly, C., Plamondon, R.: Development of a sigma-lognormal representation for
on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009)

17. Parziale, A., Carmona-Duarte, C., Ferrer, M.A., Marcelli, A.: 2D vs 3D online
writer identification: a comparative study. In: Lladós, J., Lopresti, D., Uchida,
S. (eds.) ICDAR 2021. LNCS, vol. 12823, pp. 307–321. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-86334-0 20

18. Parziale, A., Diaz, M., Ferrer, M.A., Marcelli, A.: SM-DTW: stability modulated
dynamic time warping for signature verification. Pattern Recogn. Lett. 121, 113–
122 (2019)

19. Parziale, A., Parisi, R., Marcelli, A.: Extracting the motor program of handwriting
from its lognormal representation. In: The Lognormality Principle and its Applica-
tions in E-security, E-learning And E-health, pp. 289–308. World Scientific (2021)

20. Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic pro-
gramming for diagnosis of Parkinson disease through handwriting analysis: perfor-
mance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)

21. Parziale, A., Senatore, R., Marcelli, A.: Exploring speed-accuracy tradeoff in
reaching movements: a neurocomputational model. Neural Comput. Appl. 32(17),
13377–13403 (2020). https://doi.org/10.1007/s00521-019-04690-z

22. Plamondon, R.: A kinematic theory of rapid human movements: part i. movement
representation and generation. Biol. Cybern. 72(4), 295–307 (1995)

23. Plamondon, R., Djioua, M.: A multi-level representation paradigm for handwriting
stroke generation. Hum. Mov. Sci. 25(4–5), 586–607 (2006)

https://doi.org/10.1007/s12559-020-09755-z
https://doi.org/10.1007/s12559-020-09755-z
https://doi.org/10.1007/978-3-030-86334-0_30
https://doi.org/10.1007/978-3-030-86334-0_30
https://doi.org/10.1007/BF00236911
https://doi.org/10.1007/978-3-030-86334-0_20
https://doi.org/10.1007/s00521-019-04690-z


216 A. Parziale and A. Marcelli

24. Prakash, C., Kumar, R., Mittal, N.: Recent developments in human gait research:
parameters, approaches, applications, machine learning techniques, datasets and
challenges. Artif. Intell. Rev. 49(1), 1–40 (2018). https://doi.org/10.1007/s10462-
016-9514-6

25. Raibert, M.H.: Motor control and learning by the state space model. Ph.D. thesis,
Massachusetts Institute of Technology (1977)

26. Reschechtko, S., Pruszynski, J.A.: Stretch reflexes. Curr. Biol. 30(18), R1025–
R1030 (2020)

27. Senatore, R., Marcelli, A.: A neural scheme for procedural motor learning of hand-
writing. In: 2012 International Conference on Frontiers in Handwriting Recogni-
tion, pp. 659–664. IEEE (2012)

28. Summers, J.J., Anson, J.G.: Current status of the motor program: revisited. Hum.
Mov. Sci. 28(5), 566–577 (2009)

29. Tucha, O., et al.: Kinematic analysis of dopaminergic effects on skilled handwrit-
ing movements in Parkinson’s disease. J. Neural Transm. 113(5), 609–623 (2006).
https://doi.org/10.1007/s00702-005-0346-9
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