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Abstract. Wartegg Test is a drawing completion task designed to reflect
the personal characteristics of the testers. A complete Wartegg Test has
eight 4 cm × 4 cm boxes with a printed hint in each of them. The tester
will be required to use pencil to draw eight pictures in the boxes after they
saw these printed hints. In recent years the trend of utilizing high-speed
hardware and deep learning based model for object detection makes it
possible to recognize hand-drawn objects from images. However, rec-
ognizing them is not an easy task, like other hand-drawn images, the
Wartegg images are abstract and diverse. Also, Wartegg Test images are
multi-object images, the number of objects in one image, their distribu-
tion and size are all unpredictable. These factors make the recognition
task on Wartegg Test images more difficult. In this paper, we present a
complete framework including PCC (Pearson’s Correlation Coefficient)
to extract lines and curves, SLIC for the selection of feature key points,
DBSCAN for object cluster, and finally YoloV3-SPP model for detecting
shapes and objects. Our system produced an accuracy of 87.9% for one
object detection and 75% for multi-object detection which surpass the
previous results by a wide margin.

Keywords: Wartegg test · Image processing · Object detection

1 Introduction

The Wartegg Test, also called Wartegg Zeichen Test, is a classic psychology test
that can reflect personalities of a tester. A Wartegg Zeichen Test form is an A4
paper consisted of eight 4 cm × 4 cm squares in two rows with a simple printed
sign in each square [15]. The tester will be required to draw anything in their
mind in each square using a pencil. Recognizing testers’ drawings inside those
boxes correctly can help graphologists to detect the tester’s thoughts and predict
the tester’s potential psychological problem [9]. In our experiment, we followed
the above description to collect our Wartegg Zeichen Test forms and then scan
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them into digital format, finally split one Wartegg Zeichen Test form into eight
images.

In recent years, the huge amount of deep learning algorithms for object
recognition make it possible to detect those hand-drawn pictures in Wartegg
Test images using a computer. However, many problems become obstacles and
make the detection of Wartegg Test image set very difficult. The challenges of
recognition Wartegg Test images are the same as the other Hand-drawn images
recognition tasks [16]. Firstly, these hand-drawn images are abstract, a complex
object in real world can be present as a simple shape in hand-drawn images.
Second, their colour context is lacking compared with the real images that was
taken by camera. Third, they are diverse because different people have differ-
ent draw style for the same object. However, the challenges of recognition of
Wartegg Test are not just limited on these three aspects, Wartegg Test images
are also unpredictable, not only the number of objects in each square, but also
the size of an object. Usually, for training a detector, we need to input a huge
amount of images to make sure the network is robust enought to achieve a high
performance when testing it. But current open source hand-drawn image sets,
such as QuickDraw [5], Sketchy [13] and Tu-Berlin [3] are all one object images
with the same size and located in the center of the images. So, directly using
these open source images as training images and testing on Wartegg Test images
will not get a satisfactory result.

To make it possible to recognize Wartegg Test images using network, in this
paper, we present a complete Wartegg Test image sets process, combine the
PCC for the extraction of lines and curves, SLIC + DBSCAN for objects split,
these methods solve the problem of different distribution of training image set
and Wartegg Test image set and partly increase the robustness of the neural net-
work. Finally, we used a transfer learning based approach to load the pre-trained
ImageNet parameters into our YoloV3-SPP backbone network DarkNet53 to
increase the converge speed of our network, and then train a YoloV3-SPP for
shape detection.

The paper is structured as follows. Section 2 briefly introduces the previ-
ous work. Section 3 outlines the concepts of our methods, PCC, SLIC algo-
rithm, DBSCAN algorithm and YoloV3-SPP. Section 4 describes the experi-
mented details, and Sect. 5 for the conclusion and future work of our experiment.

2 Background

The begining of applying classification and recognition deep learning model to
hand-drawn images can be retrospect from 2012. In this year, Tu-Berlin [3] pre-
sented their hand-drawn image set. After this, in 2016 Sketchy images have
been presented [13] with 125 categories. In 2017, Google presented one of the
largest sketch image set QuickDraw [5]. And in 2018, image sets SPG [8] and
SketchSeg [14] were publised. Finally, in 2019, our Warteg Test image set [9] has
been collected which contains 30 categories and more than 900 images. Accom-
panied with this image sets, some famous deep learning models also have been
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mentioned in the past ten years, such as Sketch-net [18], Deep visual sequen-
tial fusion net [6], SketchRNN [5] and Sketchmate [17]. Although these models
achieve high performance, they are tested on Tu-Berlin and QuickDraw, some
single object image sets. However, free hand-drawn images should be diverse,
like our Wartegg Test image set which contains many images that have multiple
objects in one image. So it is important to explore how to detect multiple objects
using current open source image set.

3 Method

Some previous image processing methods are effective for specific image sets, but
can not deal with a Wartegg Test image set, since many uncontrollable factors
will influence the quality of the collected Wartegg Test image set as mentioned
in Sect. 1. The motivation of our experiment is to unify the data distribution
between training and testing image sets to increase the accuracy of the object
detection task.

3.1 Image Processing

Image processing includes two parts. Firstly, using PCC (Pearson’s Correla-
tion Coefficient) [2] to extract lines and curves and remove slated noises caused
by image format transformation. Secondly, utilizing the SLIC superpixel and
DBSCAN cluster algorithm to extract every object in the image and delete
meaningless parts.

PCC for Feature Selection. Donati [2] used PCC to extract the features
of sketch images based on the relevance of the pixels in this image. Using this
method, those pixels neither belong to lines nor curves can be deleted.

Firstly, define

kernel = Gaussian kernel(next odd(7 ∗ σi, σi)) (1)

where, σi = C ∗ σi−1 = Ci ∗ (wmin/b), i ∈ [1, logc(wmax/wmin) − 1], and wmin is
the minimum line width, wmax is the maximum, C and b are constant, usually
we will use 2 and 3 separately.

After generating the ith Gaussian kernels Using Eq. 1 we will use

PCCxy =

∑
j,k(Ixy(j, k) − Avg(Ixy))(ki(j, k) − Avg(ki))

√∑
j,k(Ixy(j, k) − Avg(Ixy)2

∑
j,k(ki(j, k) − Avg(ki))2

(2)

to calculate several PCC images, finally, we will use

MPCC =
{

maxPCCxy, | maxPCCxy |>| minPCCxy |
minPCCxy, otherwise

(3)
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SLIC Algorithm for Superpixel Split. SLIC was mentioned by
R.Achanta [1], which splits one image into many small sub patches (also called
superpixels) based on their values and locations.

The algorithm of SLIC is presented in Algorithm 1:

Algorithm 1. SLIC algorithm
Input: k: number of superpixels ; m; iterations; image width; image height
Initialization:

S =
√

(image width ∗ image height)/k; centerset = Ck = (lk, xk, yk)k=1...k;
update each ck.xk, ck.yk to the lowest gradient in [ck.xk − 1 : ck.xk + 1, ck.yk − 1 :
ck.yk + 1]
Set each pixel pi.cluster = None, p + i.distance = +∞, i = 1

1: if i ≤ iteration then
2: for each cluster ck in clusterset do
3: for each point pi in [ck.x − s : ck.x + s ; ck.y − s : ck.y + s] do

4: D =
√

(
√

(pi.l − ck.l)2/m)2 + (
√

(pi.x − ck.x)2 + (pi.y − ck.y)2/s)2

5: if D < pi.distance then
6: pi.distance = D
7: pi.cluster = ck
8: i = i + 1;

DBSCAN for Object Segmentation. DBSCAN was mentioned by
M.Ester [4], which has been designed to discover clusters with arbitrary shape
based on the density of dataset. The main idea of DBSCAN comes from the
fact that the density inside a cluster is usually higher than the density outside
a cluster, and different clusters may have different density. This idea is similar
to our Wartegg Test image set, the density of lines and curves is usually higher
in an object, e.g. Fig. 1.

(a) Umbrella (b) Rabbit (c) Car

Fig. 1. Examples of Density distribution of Wartegg Test images

We will calculate the ratio of the number of pixels that have a value in a 5
* 5 window, and generate these density distribution images. The color in Fig. 1
which is close to white means the density score is high, on the other hand, when
the color is black, it means the density score is approximately zero. These images
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agree with our conjecture, so we can utilize DBCANS to cluster objects in the
same image.

After using Superpixel to split an image into numerous small sub-patches,
for each patch, we keep those pixels at the center of the sub-patch located on
the lines or curves. Based on previous tests, the remaining key points belong
to the same object should be much closer, and for those points from different
objects, they should have a different distribution. Also, points belonging to the
noisy part should have a very low density.

The algorithm of DBSCAN is shown below:

Algorithm 2. DBSCAN algorithm
Input: Eps, Minpts, Dataset
Initialization: clusterid = 0 ; ∀ point pi, pi ∈ dataset, pi.cluster = None
1: for each point pi in dataset do
2: if pi.cluster is None then
3: clusterset = [ ∃ pj , if dist(pi, pj) ≤ Eps]
4: if clusterset.length < Minpts then
5: pi.cluster is Noise
6: else
7: for each point pc in clusterset do
8: pc.cluster = clusterid ; Remove pi from clusterset
9: while cluster is not Empty do

10: pnew = clusterset[0];new cluster = [ ∃ P
′
, if dist(pnew, p

′
) ≤ Eps]

11: if new clusterset.length ≥ Minpts then
12: for each point p

′
new in new clisterset do

13: if p
′
new.cluster is None then

14: clusterset.append(p
′
new); p

′
new.cluster = clusterid

15: if p
′
new.cluster is Noise then

16: p
′
new.cluster = clusterid

17: clusterid += 1

3.2 YoloV3-SPP

The model we choose for the object detection task is YoloV3-SPP [19] which is
the third version of the Yolo model with an SPP structure [7] that can improve
the precision of the original YoloV3. Figure 2 presents the overall structure of
YoloV3-SPP. It contains a backbone DarkNet53 [12] which is composed of many
Residual blocks and a SPP structure, finally the output will be generated through
three different feature maps for predicting different scales of an object. Compared
with the first output directly follows the SPP structure and the Convolutional
set (the first branch in Fig. 2), the second output and the last output comes from
the concatenated (the green ball) result of a Residual × 8 block and a Upsample
layer (the red box) accompany with a Convolutional set block.
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Fig. 2. The structure of YoloV3-SPP (Color figure online)

4 Experiment

Our experiment will follow the previous methods introduced in Sect. 3.1 to pro-
cess our Wartegg Test image set. We will firstly introduce our training and test
image sets in Sect. 4.1, and then discuss the pixel value augment in Sect. 4.2,
describe the details of image processing result in Sect. 4.3, and finally analyze
the object detection result in Sect. 4.4.

4.1 Introduction of Dataset

During our experiment, we used QuickDraw [5] as the training image set and our
collected Wartegg Test image set as the testing input to validate the performance
of the YoloV3-SPP model.

Testing Image Set. Our Wartegg Zeichen Test form are collected by Liu [9]
in 2019. Firstly, we labeled all objects in each image, and then, merged together
those categories that share the same pattern. For example, face, circle, cookie
and tire, apple are circular patterns, they can be treated as the shape circle.
Also, Parachute, hot air balloon and Umbrella all have a curved ceiling at the
top and converging tail at the bottom.

Figure 3a shows the ratio between the area of an object and its image. For
those images that have only one object, the area ratio is close to a normal
distribution, the median value is around 0.4. On the other hand, for those images
that have two, and multiple objects, there are more tiny objects in each image.



180 Y. Xu and C. Y. Suen

(a) Area Ratio (b) Frequency of Categaries

Fig. 3. Examples of Density distribution of Wartegg Test images

After labeling and merging, we counted the frequency of each category as
shown in Fig. 3b. Finally, we will select the top 11 classes frequently appeared
in those images that contain only one object. The 11 classes are: circle, planet,
car, umbrella, building, animal hammer, eye, rectangle, cold weapon and sun.
Also, We have 439 images with a single object, 55 images have two objects and
93 images contain multiple objects.

QuickDraw Image Set. The QuickDraw image set [5] has been collected
through the game “QuickDraw” developed by Google, which has very similar
rules as “Drawize”, instead drawing something and guessed by friend, Quick-
Draw lets the tester draw an object based on a word hint, and the machine will
guess what the tester has drawn. The QuickDraw image set contains more than
300 categories which is suitable for us to select the useful categories.

We generate the training image set based on the area distribution of Wartegg
Test image set. There are 12000 images in our training image set, each image
contains one object and we keep the area ratio of objects with the area of the
image from 0.02 to 0.9 to cover most cases in the Wartegg Test image set. Also,
the object can be randomly located in the image. Since QuickDraw was drawn
by computer mouse or touch pad, electronic pencil, the width of its lines and
curves is only one pixel, but the lines and curves of Wartegg Test image set are
drawn by pencil, so their width varies from 4 to 8 pixels. Then, we will enlarge
the width of lines and curves in QuickDraw to 6 pixels. Figure 4 shows how we
generate training images with different scales and bold lines and curves of the
training image set that make them suitable for the testing image set.
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(a) Testing(car) (b) Training(car) (c) Training(car) (d) Training(car)

(e) Testing(Sun) (f) Training(Sun) (g) Training(Sun) (h) Training(Sun)

Fig. 4. Examples of testing and training images

4.2 Pixel Value Augment

The main purpose of Pixel Value Augment is to enlarge useful information and
pretend such information has been deleted by applying PCC and following SLIC
+ DBSCAN algorithms.

As Fig. 5 shows, although the original Fig. 5a looks good, there are lots of
noises in the image surrounding the lines and curves.

(a) original image (b) Actual (c) after augment

Fig. 5. Actual image with noise

By analyzing the Wartegg Test image set, the distribution of a line usually
obeys the normal distribution. So for each line, if its width is greater than a
width threshold, we will enlarge its value, by normalization based on its smallest
and highest values, in our experiment, the width threshold is 4.

4.3 Image Processing Result

Before starting the processing steps, we will normalize the value of pixels between
(0, 1), and then follow the steps described in Sect. 3.1 to extract lines and curves.

Figure 6a presents each filter step in the PCC process during our experi-
ment. Figure 6b shows the result after PCC algorithm. Finally, Fig. 6c shows the
denoised result. Compared with Fig. 5, those noises surrounding the lines and
curves with unpredictable values are deleted.
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(a) Pcc 3 (b) Final result of pcc (c) denoised result

Fig. 6. PCC result

However, not only the salt and pepper noise pixels are noises, during our
detection process, those pixels with useless information also need to be treated
as noise since this will impact our final inference result. So, we will split one whole
image into many small superpixels (Fig. 7). Then, we kept those center points
of a small pitches that located on strokes as our key points and use DBSCAN
mentioned in Sect. 3.1 to classify these key points into multiple clusters.

(a) one object (b) one object (c) two objects (d) three objects (e) multi objects

Fig. 7. SLIC result

(a) one object (b) one object (c) two objects (d) three objects (e) multi objects

Fig. 8. DBSCAN cluster result

Figure 8 shows the cluster result. Finally, based on the cluster result, we split
each image into multiple images with only one object. Figure 9 shows the result.
So, for an image which contains N objects, we will get N new images and one
object per image in the end. For example, in Fig. 8d, we have three objects in the
image: a house, a tree and a sun, after splitting, we will get Fig. 9e, Fig. 9f and
Fig. 9g. By doing so, the Wartegg Test image set will have the same distribution
as the training image set.
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(a) hammer (b) umbrella (c) parachute (d) sun

(e) house (f) sun (g) tree (h) fish

(i) fish (j) fish (k) fish (l) fish

Fig. 9. Split result

4.4 YoloV3-SPP Object Detection

Note that the contour distributions of natural images and hand-drawn images are
similar. In the training process, we use the transfer learning based approach that
firstly loads the parameters of pre-trained DarkNet53 on ImageNet and fine-tune
the last layer using the original QuickDraw images to make the backbone network
learn the features of sketch images. The transfer learning can help us solve the
problem of insufficient number of training images and increase the converging
speed. In our experiment, loading the pre-trained parameters from well-trained
DarkNet53 on the ImageNet, then fine-tune the last layer will spend less time,
usually 5 epoches to converage, compared with directly training a DarkNet53 on
QuickDraw images, which need around 15 epoches to let the network converage,
and around 20 epoches to let the result of the network to be stable. Once the
training process of DarkNet53 is completed, we load these parameters without
the last fully Connected Layer of DarkNet53 into the YoloV3-SPP Network.
Using our generated QuickDraw image set we train the YoloV3-SPP for the
detection task.

During the testing process, We have three image sets, Image set 1 contains
those images that the original images have only one object, Image set 2 contains
those images which the original images have one or two object, and Image set 3
contains those images that the original images have one, two or multiple objects.
We input each split Wartegg Test image into the trained YoloV3-SPP model to
get the inference result. We will get the inference results for each image, then, we
will merge those split images which belong to individual images together with
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their predicted bounding boxes. So, finally, we can calculate the performance of
the YoloV3-SPP model. We will use the COCO image criterion to evaluate our
result. The testing result is shown in Table 1.

Table 1. The result of YoloV3-SPP on Wartegg Test image set

Method Image set AP50 AP75 mAP

Ours 1 87.9% 76.3% 67.7%

2 78.9% 66.8% 56.7%

3 75.0% 57.1% 51.8%

Without ours (Original) 1 81.2% 73.8% 62.5%

(Original) 2 57.8% 56.2% 51.4%

(Original) 3 52.6% 46.4% 43.9%

Table 1 shows that we got a much better result compared with previous result,
which got 68.72% (IoU = 0.5) for one object detection [10], and we increase this
score to 87.9% (IoU = 0.5) with an mAP of 67.7%. However, the result drops
when testing on one and two objects, 78.9% for Iou = 0.5 and the mAP is
56.7%. The performance drops continuously for the detection task of one, two
and multiple objects, i.e. 75.0% when IoU = 0.5 and 51.8% for mAP Score. By
analyzing this phenomenon, the main reason is because with an increase in the
object number, the area ratio of each object with its image size will decrease. On
the other hand, for multiple object detection, there are more tiny objects in the
testing image set compared with one object image set. As Fig. 3a shows, these
tiny objects will lower the performance of the network. On the other hand, as a
comparision, we also use the original images as the testing image set to verify
the performance of the trained detector on original Wartegg Test image set. The
result has decreased significantly, especially for image sets 2 and 3. These may be
because in the training image set, each image has one object, but in our Wartegg
test image set, an image contains an indeterminate number of objects, also if an
image contains more than one object, the distance between two objects is short,
the target area inside a bounding box may contain two objects, and one object
could be treated as the interference part when another object is detected.

5 Conclusion and Future Work

In this paper, we present a complete framework of the Wartegg Test image set
in object detection. Our method becomes a bridge between one object hand-
drawn image set and multiple object detection task. Our method does not only
simplify the multi-object detection task of Wartegg Test image set, but also
improves the result of the performance of Wartegg Test image set in object
detection. However, there still are some limitations of our approach, firstly, the
DBSCAN cluster is not suitable for those objects tightly connected or overlapped
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together, the DBSCAN will treat them as one object which will not be recognized
by YoloV3-SPP. Secondly, the parameters of DBSCAN are manually modified,
although we have already classified images based on their object area and batch
processing the images, we still need to modify the parameters several times.
Finally, YoloV3-SPP may not be very suitable for tiny object detection [11], the
next step may need to design part of the network which is suitable for both large
and tiny objects to improve the performance.
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