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Preface

After 20 editions, the conference of the International Graphonomics Society (IGS) has
become a key research event, and the most important in the graphonomics community.
The travel restrictions imposed during the COVID-19 outbreak caused the IGS 2021
conference to be held in 2022.

The IGS conference has always been an open international event, and this year
received submissions from more than 14 countries. In this edition, the biggest presence
was from Italy, but there was also a strong good presence from Spain, Canada, and the
Czech Republic.

IGS 2021 received 41 submissions. The review process for IGS 2021 was diligent
and required the careful consideration of 67 reviewers who spent significant time and
effort in reviewing the papers, with a minimum of three reviews per paper. In the end, 36
papers were accepted for the conference and 26 for publication in this Springer LNCS
volume, which is an 87% and 63% rate of acceptance, respectively. To form the final
program, 20 papers were selected for oral presentations (48% of all submissions), 17%
for the poster session, and 22% for special sessions.

The program was comprised of six oral sessions on the following topics: historical
documents, forensic handwriting examinations, handwriting learning and development,
and motor control. One additional poster session included papers on all previous topics,
and three special sessions includedpapers onneurodegenerative disorders.All the papers,
including the ones submitted by organizers, went through the same revision procedure.
To avoid any bias in favor of the organizers’ papers, objective rules were followed. The
IGS 2021 program was enhanced by three keynotes by eminent speakers: Miguel Ángel
Ferrer, José Manuel Vilar, and José Juan Quintana.

The graphonomics community iswitnessing a deep transformation, now increasingly
dominated by advances occurring in the industry in machine learning, computer vision,
and related fields around Artificial Intelligence. We hope that these proceedings will
result in a fruitful reference for the graphonomic research community. Finally, we would
like to thank all who made this possible, especially the authors, the reviewers, and the
IGS community at large.

May 2022 Cristina Carmona-Duarte
Moises Diaz

Miguel A. Ferrer
Aythami Morales
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Forensic Handwriting Examination at IGS
Conferences: A Review by Numbers

Angelo Marcelli and Antonio Parziale(B)

DIEM, University of Salerno, 84084 Fisciano, SA, Italy
{amarcelli,anparziale}@unisa.it

Abstract. We review the number of contributions to the advancements in hand-
writing analysis for forensic applications that were presented at the biennial con-
ferences of the International Graphonomics Society through its 20 editions. We
introduce a taxonomy for the systematic analysis of the literature, propose a way
to evaluate the overall interest and relevance of the topic in the context of the
conference editions, as well as the interest and relevance of each category of the
taxonomy. We discuss past and current trends emerging from the quantitative
analysis and outline some future possible developments.

Keywords: Forensic Handwriting Examination · Graphonomics

1 Introduction

The biennial conferences of the International Graphonomics Society have been the most
relevant scientific events organized to fulfill the Society’s mission of promoting the
advancement of research in the field of graphonomics. The term graphonomics was
introduced during the first conference to denote the scientific and technological effort
for unveiling relationships between the planning andgenerationof handwriting anddraw-
ing movements, the resulting spatial traces of writing and drawing instruments (either
conventional or electronic), and the dynamic features of these traces. Thus, it highlights
the multidisciplinary and interdisciplinary nature of the entire research field, which
encompasses motor control, experimental psychology, neuroscience, pattern recogni-
tion and artificial intelligence. The cross-fertilization between such diverse disciplines
aims at understanding how handwriting is learned and executed, to which extent the
handwriting characteristics vary under the influence of the neural, psychological, and
biomechanical conditions of the writer, and to which extent the handwriting behavior
can be explained in terms of patterns appearing in a given set of quantitative features
derived from handwriting statistical and/or computational models.

Forensic handwriting examination (hereinafter referred as FHE) pertains to the anal-
ysis of handwriting for evaluating to which extent the specimen under investigation can
be attributed to a given writer or to a writer among a set of them, by comparing the
questioned samples to the genuine ones. It is therefore not surprising that forensic hand-
writing examination has deeply rooted in graphonomics, its goal being that of finding

© Springer Nature Switzerland AG 2022
C. Carmona-Duarte et al. (Eds.): IGS 2021, LNCS 13424, pp. 3–10, 2022.
https://doi.org/10.1007/978-3-031-19745-1_1
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the characteristics of handwriting to evaluate and defining a measure of the similarity
between two handwritten samples.

In this context, we survey the works that have been presented at the 20 biennial
conferences over 40 years, from 1982 to 2022. The purpose is to identify the dimensions
of forensic handwriting examination that have been addressed, how they have developed
during this time-lapse, and to which extent they reflect the general trends in the field as
observed from a broad perspective.

For sake of space, in this short paper, we will not discuss the major contributions of
each paper, but rather how the number of papers falling in each of the categories varied
over the years, with the aim of detecting their quantitative trends. For the same reason,
the reference section includes only the proceedings and other publications that follow
from the conferences. These goals will be pursued in a future extended version of the
survey.

The remaining of the paper is organized as it follows. In Sect. 2 we will present
the rationale behind the taxonomy we have adopted to present the literature, while in
Sect. 3 we will outline the trends that we have observed, and suggest possible reasons
related to changes in the field due to newmethodological paradigms and/or technological
developments. In Sect. 4 we briefly highlight what could be the future trends and the
concluding section attempts to highlight some open issues and challenges that remain
to be addressed.

2 A Taxonomy of Forensic Handwriting Examination Literature

In order to dissect how the different aspects of handwriting have contributed to the
interest and the relevance of the topic, we have grouped the works on FHE that were
presented at the IGS conferences into six categories:

• Methodologies
• Signature Verification
• Writer verification/identification
• Disguising writer identification
• Tools
• Case report

The Methodologies (MET) category includes papers that present either theories or
experimental works aimed at finding the handwriting characteristics that reflect at the
best the handwriting of a subject or a group of subjects and how they should be compared.
The papers in this category look at handwriting generation and execution by adopting
a motor control perspective to formulate hypotheses about the sources of the variability
exhibited by the samples produced by different subjects or by the same subjects in dif-
ferent occasions, and by designing experiments rooted in the framework of experimental
psychology for supporting the hypotheses or to unveil quantitative relation between the
considered aspects of handwriting. Some of the papers included in this category, more-
over, addressed the more general problem of defining the operative procedure forensic
experts should follow during handwriting examination, from document collection to
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final opinion formulation, in order to make the whole process easy to reproduce by dif-
ferent experts, while leaving the forensic expert to exert their expertise in putting the
data into context and formulating the final answers to the specific questions for whom
the examination has been requested.

Signatures are among the oldest and certainly the longest-lived means of author-
ship identification. Originally produced by ink and paper, the development of digitizing
tablets capable of acquiring the temporal information of the trajectory has been deployed
and used to collect signatures, opening new challenges to forensic experts, due to the
intertwining of the handwriting execution and its digital representation and storage. As
signatures are among the most automated handwriting movements, and because they are
not meant to convey a message to the reader, but rather to link the writer to a graphical
representation of its name, they raise specific issues and offer peculiar characteristics to
be exploited, and then we have introduced the Signature Verification (SV) category.

The papers included in the Writer identification/verification (WI/WV) category
describe the efforts to the general problem of assessing an individual identity through
the analysis of the handwriting production. As such, they include mostly experimental
studies adopting feature sets derived from the findings of investigations on handwriting
learning and execution or exploiting properties of the digital representation of hand-
writing execution, and then processing them by some kind of statistical analysis, often
implemented by a computer model of the probability distribution function, to achieve
the final goal.

Disguisingwriter identification (Disguising) aims at detecting handwriting produced
by a subject that intentionally modifies its handwriting behavior for eventually denying
the authorship of a handwritten sample. It differs from the previous category because
in writer identification/verification forensic experts aim to detect differences and weight
their relevancewith respect to similarity, in the latter they look for similarities andweight
their relevance with respect to differences.

Papers belonging to the Tools category somehow complement those belonging to the
previous ones, as they presented tools that have been developed for evaluating handwrit-
ing characteristics and put the obtained values in a statistical framework to have a quan-
titative profile of the handwriting, and eventually to evaluate the similarities/differences
among samples.

The Case Report (CR) category, eventually, includes paper that describe the forensic
examination of “extra-ordinary” cases, i.e. cases that deviate from the ordinary casework
either for the relevance of the case itself (as it happens when new findings are reported
to clarify previously disputed or questionable conclusion) or because they adventure
in unexplored territories (as in case of the handwritings produced by subject with per-
sonality or motor disorders), so opening new technology-driven avenues or addressing
challenging issues beyond the current state of the art and best practices.

3 FHE by Numbers

A preliminary analysis of the proceedings [1], as well as of the journal special issues
and the books containing extended versions of selected papers presented at the various
editions [2], allowed us to extract 164 papers that explicitly refer to FHE out of 907
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Fig. 1. The interest in FHE at IGS conferences, measured as the number of papers addressing the
general topic of FHE at each edition of the IGS conference.

Fig. 2. The relevance of FHEat IGS conferences,measured as the percentage of papers addressing
the general topic of FHE with respect to the total number of papers presented at each edition of
the IGS conference.
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papers presented at the conferences. Figure 1 shows the interest in the topic, expressed
by the number of FHE papers presented at the different editions of the conference, while
Fig. 2 shows the relevance of the topic within the conferences, defined as the percentage
of FHE papers with respect to the total number of papers presented at each conference.

The histogram in Fig. 1 shows that starting from the 5th edition of the conference,
FHE has been one of the topics addressed in every following conference, with a mean
relevance of 18.1%. It also shows that the conference editions with the higher number
of FHE papers have been the 7th, 11th and 18th editions with 20, 22 and 19 papers,
respectively.

The 7th and 11th editions of the conference were organized in conjunction with the
annual symposium of the Association of the Forensic Document Examiners and that had
the effect of a significant increase of FHE papers with respect to the previous editions.
The interest in forensic handwriting examination at IGS conferences surged again at
the 11th edition and it remains stable until the 17th and 18th editions, when it accounts
for roughly 70% of the total number of papers. The lasting interest in FHE since 2003
may reflect the reaction of forensic experts and scientists to several rulings of the US
Supreme Court that questioned forensic document examination expertise as scientific
expertise: Daubert et al. v. Merrell Dow Pharmaceuticals, U.S. v. Starzecpyzel cases,
General Electric Co., et al. v. Joiner et al., Kumho Tire Co., Ltd., et al. v. Carmichael
et al. and United States v. Paul ruled out in November 1993, April 1995, December 1997,
March 1999 and May 1999, respectively.

The 18th edition of the conference, which was held in Italy, exhibited a renovated
interest in FHE as an effect of the implementation of European directives about the legal
effect of electronic signature and the following diffusion of commercial solutions for
signing over a tablet in public offices.Many paperswere submitted by Italian associations
of forensic experts that in the years just before the conference had started a reconsid-
eration and transformation of the procedures for handwritten document examination
adopted by their affiliates.

In the last two editions, however, the interest decreases again, possibly because of
the rather narrow focus of the 19th edition and the effects of the pandemics on the overall
participation for the 20th edition.

To decide what category reflects to the best the content of the papers we have used
author statements, experimental results evaluation and, as a last resort for a few cases,
our judgement. So, while there maybe papers that could have been ascribed to a different
category, we believe that the trends we have observed, as it will be described next, will
not be affected by our choices.

After including each paper in its category, we have computed the interest and rele-
vance of each category we have adopted. Figures 3 and 4 show the interest and relevance
of each category with respect to the total number of FHE papers.

The histogram in Fig. 3 shows that each of the MET and SV categories accounts for
more than 30% of the total number of FHE papers, and that together with the WI/WV
category they include almost 85% of all the FHE papers presented at the 20 editions of
the IGS conference. This is, at the same time, a piece of good and bad news. On the
good side, the large number of papers addressing the methodological issues show that
IGS conferences have been a primary place for the exchange of ideas between forensic
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experts and scientists coming from the diverse disciplines envisaged by graphonomics to
either get support for (or critics on) the foundations and best practice in FHE, or to offer
other disciplines challenging issues. On the bad side, they show that disguising writer
identification has been only marginally addressed at the conferences. This reflects a
general trend in the field. A search on Scopus for the keyword “disguised handwriting”
in title, abstract and keyword showed 49 documents, while a similar search for the
keyword “writer identification/verification” returned 635 documents.

Fig. 3. The interest in FHEcategories,measured as the number of papers included in each category
presented at all the editions of the IGS conference.

The histogram in Fig. 4 shows that the distribution of the papers included in the
MET category resembles very closely that of Fig. 3: roughly speaking, papers addressing
methodological issues covers between 25% and 35% of the total number of FHE papers
presented at each conference, confirming the observations we made by looking at the
interest in the category. It also shows that the relevance of the SV increased a lot at
the 11th edition and remained almost constant for the following seven editions. The
large increment at the 11th edition was driven by two main factors: the widespread
use of tablets, which raised new issues for FHE, and the availability of public datasets
of genuine and forged signatures, which make it possible a fair comparison between
competing approaches (and forensic experts as well) on a common ground. Eventually,
the relevance of the TOOLS category reached its maximum at the 6th and 7th editions,
but it has almost disappeared afterward. The main reasons for that could have been the
establishment of the International Workshop on Frontiers in Handwriting Recognition,
which was deemed more appropriate for presenting handwriting analysis tools by their
designer since most of them were computer scientists, and the availability of powerful
and versatile tools, such as MovAlyzeR and CEDAR-FOX.
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Fig. 4. The relevance of FHE categories, measured as the number of papers included in each
category presented at each edition of the IGS conference.

4 Future Trends

In the last years, researchers that regularly attend IGS conferences are mainly interested
in investigating how ageing and neurodegenerative disorders affect the planning and
generation of handwriting. It is reasonable to expect that at the next IGS conferences
FHE papers will focus on methods and experimental works aimed at considering the
ageing of the neuromuscular system and the onset of neurodegenerative disorders during
the assessment of authorship of a handwritten document.

Moreover, it is worth noting that the transition from handwriting on paper to hand-
writing on a tablet is still ongoing and both modalities will coexist still for many years.
Therefore, we expect that at the next IGS conferences some papers will be focused on
device interoperability, i.e. comparing online handwriting samples coming from differ-
ent tablet devices, and mixed tool investigations, i.e. comparing handwriting samples
written on a sheet of paper and on a screen.

5 Conclusions

We presented a quantitative review of the papers addressing the topic of forensic hand-
writing examination presented at the 20 editions of IGS conferences. At a glance, they
show that forensic handwriting examination is a topic that has been addressed since the
5th edition and in each of the following ones. We have also discussed the factors that
may have been the main causes of the “waves” of increasing/decreasing interest in the
topic.
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Our analysis at category level has shown that methodological issues have been
addressed at each conference, and that they account for roughly one-third of the total
number of papers related to FHE. It has also shown that signature verification and writer
identification/verification have been the most addressed topics, while disguising writer
identification has been the subject of the smallest number of papers. This seems to reflect
the state of the art in FHE literature and one of the possible reasons for that is a lack of
datasets that could be used to develop and test new proposals to address the subject. We
believe that it is time for the IGS to call for a joint effort from forensic experts, exper-
imental psychologists and computer scientists to collect and made publicly available
such a data set.
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Abstract. In signature verification, spatio-temporal features offer bet-
ter performance than the ones extracted from static images. However,
estimating spatio-temporal or spatial sequences in static images would
be advantageous for recognizers. This paper studies recovered trajecto-
ries from skeleton-based images and their impact in automatic signature
verification. To this aim, we propose to use a publicly available sys-
tem for writing order recovery trajectory in offline signatures. Firstly,
8-connected recovered trajectories are generated from our system. Then,
we evaluate their impact on the performance of baseline signature ver-
ification systems to the original trajectories. Our observations on three
databases suggest that verifiers based on distributions are more suitable
than those that requiring the exact order of the signatures for the off-2-on
challenge.

Keywords: Signature verification · Writing order recovery · Spatial
sequences · Function-based features

1 Introduction

The main difference between on-line and off-line signature recognition is the type
of the templates. While the on-line signatures include the spatio-temporal infor-
mation of the executed specimen, off-line ones are static images, which contain
the result of an inked pen deposited on a paper. This main characteristic can
explain a better performance in automatic systems that use on-line signatures.
To this aim, it would be desirable extracting the spatio-temporal features from
the off-line signatures.

This extraction has been named off-2-on conversion, which consists in devel-
oping an on-line counterpart using the image-based signature as seed. In order
to measure the performance of an off-2-on conversion, the generated signature
should be compared to an original on-line signature as a sort of ground truth.
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Therefore, on-line and off-line signatures acquired simultaneously are necessary
for such comparison purposes. Public signature databases, such as the ones used
during the SigComp2011 competition [17] or BiosecurID [13], among others, may
be helpful for researchers in this task.

The off-2-on idea is not new. There are several contributions and competi-
tions in the field [14]. However, acceptable and competitive results for signature
verification systems remain an open issue. Probably, there are some non-solved
challenges in the stages involved in the off-2-on procedure [7].

One of the critical aspects is the quality of the images. For example, blur and
dust images, low resolution in the sensor, noise in the acquisition, or pattern
background make it harder to initiate the procedure. These initial drawbacks
directly impact the quality of the final estimated signature.

Next, extracting the skeleton from inked traces is another pivotal role in
this procedure. A mistake in this extraction would have a negative impact since
losing or adding unreal pixels in the skeleton would modify the shape of the
original trajectory [19].

Recovering the order of a traced signature from the skeleton is another crucial
stage. This stage will be more demanding when the signature is composed of
long flourishes or other aesthetic characteristics, creating ambiguous zones and
crosses.

In the context of signature verification, an 8-connected ordered sequence of
(x, y) pixels is not considered an on-line signature because of the lack of temporal
aspects. Accordingly, another essential stage is estimating temporal features such
as velocity or acceleration. Success in this estimation implies a correct sampling
of the ordered interpolated trajectory. The kinematic theory of rapid movements
would be helpful in this purpose [11]. In any case, as pointed-out in [15], it is
challenging to estimate dynamic information from static images.

Regarding the intermediate stages of the writing order recovery, in a previous
study of this work, published in [4,8], we designed an automatic system to recover
the (x, y) trajectories in signatures. The input of the system is a black and
white skeleton of signatures, whereas the output is an estimated 8-connected
and ordered (x, y) trajectory. It was evaluated by comparing the real and the
recovery trajectories in terms of Root Mean Square Error (RMSE) or the Signal-
to-Noise-Ratio (SNR).

This paper aims to assess the impact of the recovering specimens on the
verification performances, comparing the performances to real tracings. Note
that the output of our approach was neither static nor dynamic features but
spatial sequences. As such, we work out the performance of on-line verifiers that
use these (x, y) 8-connected sequences. Instead of using original spatio-temporal
features, these verifiers will use the spatial sequences estimated by our writing
recovery system [4,8] as input.

As a baseline, the same experiments will be repeated with the real spatial
sequences drawn by the signer. Our goal is to compare the performances in both
cases. The closeness of the performance is another additional metric to evaluate
the writing order recovered system and its impact on signature recognition.
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Note that we are not interested in beating the state-of-the-art performances
by this work. We notice that our spatial sequences, (x, y), are not as powerful as
real spatio-temporal ones used in on-line verifiers. Instead, we aim to quantify
the impact of the trace errors. To this end, we compute the similarity between the
performance with real and our recovered signatures under the same experimental
conditions.

The rest of the paper is organized as follows: Sect. 2 briefly describes the
used method to recover the order of the signatures. Then, Sect. 3 is devoted
to the experimental setup with verifiers that use spatio-temporal sequences as
features, whereas Sect. 4 shows the study results. Finally, the article is concluded
in Sect. 5.

2 Proposed System to Recover Signature Trajectories

In this section, we briefly review our system to estimate the writing order recov-
ery of signatures [4,8]. Also, we describe the used performance metrics to com-
pute the quality of the recovered spatial sequences.

2.1 Reconstruction Quality Evaluation

To evaluate the reconstruction quality of the writing order, the estimated trace
is compared to the real one in the 8-connected space. The online data of the
specimen is interpolated to generate an 8-connected trajectory with the Bresen-
ham line drawing algorithm [3]. The metrics used are the Root Mean Square
Error (RMSE) and the Signal-to-Noise-Ratio (SNR), defined as follows:
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where (x, y) and (x̂, ŷ) are the points belonging to the real and recovered trajec-
tories, respectively.

2.2 Recover Trajectories Algorithm

The algorithm is composed of three stages. It first scans the image to find the
fundamental signature points, such as isolated ones and agglomeration of pixels,
also known as clusters. This phase is called Point Classification. Subsequently,
the Local Examination stage performs a local analysis to classify the clusters and
understand the direction of tracing. The clusters are generated in correspondence
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of intertwined writing strokes. Therefore, correctly estimating the tracing direc-
tion of the clusters allows to isolate the writing strokes, also called pen-downs
or writing components. Finally, the Global Reconstruction phase combines the
information computed in the previous phase to reconstruct the writing order.
One of the most critical challenges of this step is identifying the order of the
writing components; this requires that the clusters are classified accurately and
the components are isolated correctly.

Algorithm 1 shows how to process an 8-connected thin line representation of
a handwriting image. The algorithm uses two inputs: an image path of the skele-
tonized signature and a binary flag. Such a flag is used to visualize the estimated
8-connected trajectory order over the input signature. The procedure uses some
configuration parameters to perfom heuristic-based geometric evaluations. The
thresholds and parameters are fixed as in [8]. The outputs are the estimated
(x, y) trajectory and additional information such as the location of end points,
among others. This information is contained in the wor results variable. In the
function, M denotes the matrix of pixels, which are labeled through the adjacent
pixels number and C the clusters.

Algorithm 1. Main stages of the writing order recovery algorithm
1: function wor(imagepath, flagv)
2: opt ←configuration() � Thresholds were fixed in [8]
3: data ← loadData(imagepath, opt)
4: [M, C] ←pointClassification(data, opt)
5: [M, C] ← localExamination(M, C, opt)
6: [x, y, wor results] ← globalReconstruction(M, C, data, opt)
7: if flagv then
8: visualization(x, y, data)

9: return [x, y, wor results]

To determine whether the written order is estimated correctly, the estimated
trace is compared to the online one, containing details of how real signers wrote
the trajectory. A visual demonstration is shown in Fig. 1.

It can be seen that the components1 are isolated correctly through the end
points detection. Thus, the reconstructed order follows the real one for the first
two components (a), (b), (e); the clusters and their output branches are correctly
associated (c), (d). The reconstruction metrics, SNR and RMSE, remain good
until the faulty component is chosen (f). From this point, the values start to
drop, and the reconstruction error is propagated to the end of trace (g), (h).

Although the correct association of branches in clusters is the first step, the
choice of the component plays an essential role in the reconstruction. Further-
more, few errors can lead to an overall error in estimating the order of the
trajectory.
1 By component, we mean a piece of a continuous trajectory without lifting the pen.

It is also known as pen-downs or surface trajectories on the literature.
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(a) Start tracing first component (b) End tracing first component

(c) Tracing second component. A complex
cluster is encountered (d) Traversing cluster correctly

(e) End tracing second component (f) Reconstruction error since the choice
of the end point of the third component.

(g) Tracing third component. Reconstruc-
tion Error continues to increase

(h) End tracing signature

Fig. 1. Tracing of a signature, made up of 4 components and different clusters, after
the recovery of the trajectory.
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The three stages of the algorithm are described below.

Point Classification. Each pixel of the binary image is analyzed to identify the
number of neighbors in its 8-connected space and is classified as: (1) end point,
if it has only one neighbor; (2) trace point, if it has two neighbors; (3) branch
point, if it has three or more neighbors. The adjacent branch points are identified
through a connected components searching algorithm and are then aggregated
under a single cluster. Clusters represent intertwined writing strokes. Therefore,
they are the most challenging part of writing to reconstruct and need further
analysis, described in the next step.

Local Examination. This stage plays a fundamental role in writing order
recovery since correct cluster processing implies identifying writing components.
It is composed of two parts: cluster analysis and output branch association.

Cluster Analysis. First, a classification of the points of the cluster must be done.
Different types of points can be identified:

– Cluster points. They are branch points.
– Anchor points. They are branch points of the cluster with at least one trace

point as a neighbor. They represent the terminations of the cluster, that is,
the points from which the output branches arise.

– False trace points. They are trace points that have other cluster points or
false trace points of the same cluster as adjacent points.

Therefore, the clusters can be classified according to the number of out-
put branches or anchor points. This number is defined as the cluster rank and
denoted by r.

The main objective of this classification is to analyze the clusters and asso-
ciate their output branches. Therefore, geometric considerations are made, and
the directions of the branches of the cluster, also called external angles are calcu-
lated. With branch directions, we define the inclination that the output branches
of the cluster form for the x axis. To calculate the vector representing the out-
going branch, a multiscale approach [5] is used through the coordinates of the
first n points of the branch. We perform the atan2d operation to obtain a vec-
tor of angles over the vector of the coordinates obtained through the multiscale
approach. Subsequently, a circular mean is carried out on it to compute the
value of the external angle of a branch. This value indicates where the branch
is facing and is used to make analytical considerations for the branch pairing.
The greater the number of pixels n used and the scale to obtain the vector, the
greater the precision.

Sometimes, however, there are not enough pixels on the output branch. This
can happen in correspondence of terminal branches or when the image does not
have a very high resolution. The internal angles are another good indicator,
which allows overcoming the lack of precision of the external angles. We need to
define the cluster center of gravity to compute internal angles. It is defined as the
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arithmetic mean of the anchor points coordinates. Internal angles are computed
through a circular mean of the difference of the first n points of the branch from
the center of gravity.

Another great indicator is the curvature of the output branches of a cluster,
taken two by two. To calculate the curvature, the circular mean of the coordinates
of the previous s and subsequent t points is calculated for each point of the curve.
The set of values obtained in this way is used to compute the curvature value by
making arithmetic mean. This approach is sufficient to represent the curvature
since the considered curves are composed of few pixels. The curvature is a value
that goes from 0◦, when the curve is straight, to 180, when it is folded back on
itself.

Output Branch Association. To associate the output branches of a cluster, we
rely on rules based on the criteria of good continuity derived from Gestalt theory
and the principle of energy minimization. The Gestalt theory [1] states that all
elements of sensory input are perceived as belonging to a coherent and continuous
whole. The principle of energy minimization is supported by the studies of motor
control theory [18] and is particularly suitable in the case of fluid and rapid
movements, such as writing. From an analytical point of view, the idea is to
associate a pair of (i, j) branches that best satisfy the following conditions: (1)
their external, (αi, αj), and internal, (βi, βj), angles with respect to the x axis
have a difference close to 180◦; (2) their curvature value, ci,j , is close to 0. This
corresponds to affirm that the more the two branches form a straight, continuous
curve, without interruptions or sudden changes of direction, the more suitable
it is to be taken into consideration to associate the two output branches that
form it. Although conceptually, the two conditions are very similar, it is often
necessary to combine the three measures to obviate noise and imperfections
related to image resolution and thus stabilize the result. To this aim, these
conditions are averaged with three weights, (ωext, ωint, ωcur), already defined
in [8]. Thus, we define the weighted angle direction, πi,j , as follows:

πi,j = ωext · |αi − αj | + ωint · |βi − βj | + ωcur · ci,j (3)

It is worth highlighting that we iteratively choose the smallest πi,j for final
paring branches.

However, some considerations must be made on the rank of a cluster: man-
aging clusters of even rank, being the associations made two by two, is not very
complex. Those of odd rank higher than three can be treated in the following
way: the output branches are associated in pairs until there are three remainings.
The remaining branches constitute a new 3-rank cluster. A rank equal to 3 is
the most challenging cluster to manage. It represents different write situations
and therefore deserves additional classification. We have identified 4 cases:

– T-pattern: they are clusters whose shape is very similar to a “T”. The writer
forms this pattern with two separate strokes. The condition for determining
whether a 3-rank cluster is a T-pattern is that one of the internal angles β is
approximately 180◦, and the other two, are approximately 90◦. The branch
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perpendicular to the head of the “T” is isolated and treated as a terminal
stroke, while the other two are associated as a continuous line.

– Retraced: Appears in correspondence to closed handwritten loops. The
writer passes through a branch of the cluster, stops the pen at an output
branch, and then retraces that branch to proceed on the opposite side. There-
fore, the condition for identifying this type of cluster is that there is an end
point as the termination of an output branch of a 3-rank cluster. The retraced
branch is associated with one branch and once with the other.

– Coupled: They are 3-rank clusters that do not satisfy the conditions of the
two classes described above. To be classified as such, two clusters must share
an output branch, and the other branches must respect the criteria of good
continuity. If verified, they are associated as you would for a 4-rank cluster.

– Normal: 3-rank clusters that do not meet any of the conditions discussed
are treated independently, and the following rule is applied: the two branches
that best match according to the association rules described above are paired;
the other branch is isolated and treated as a terminal stroke.

A complete overview of the cluster types and their classification is shown in
Fig. 2. It is worth pointing out that 3-rank clusters must be treated last and
that whenever a branch is “detached” from a cluster, it is necessary to reanalyze
the clusters, since that terminal branch could be a retracing trait for some other
cluster. Therefore, the procedure we implement is the following: first, the clusters
of even rank are analyzed, and their output branches are associated, then the
clusters of odd rank higher than three are treated, associating the branches that
best respect the criteria of good continuity and isolating the remaining 3-rank
clusters. Finally, rank 3 clusters are analyzed and classified until no branches
are detached from a cluster. This allows being more precise in identifying the
components. Indeed, their identification depends significantly on the correct clas-
sification and management of the 3-rank clusters, which hide closed loops and
overlapping traits made by the writer.

Global Reconstruction. Once the clusters have been classified and associated
with their output branches, it is possible to reconstruct the entire trajectory. To
this end, it is first necessary to define how to traverse the cluster given its
output branches. Then, we determine how to choose the starting points of each
component to be traced and their order.

Traversing Clusters. Assuming that a cluster is composed of p pixels, it is pos-
sible to define an adjacency matrix A, of dimensions p× p, which represents the
positions of the pixels in the cluster and the interconnections between them. The
idea is to calculate the minimum path; the adjacency matrix A is processed by
the Dijkstra [10] algorithm. We have given greater weight to the oblique connec-
tions always to prefer, if possible, the more linear ones, even at the local level.
This choice is in line with the principles of energy minimization, the theories of
Gestalt and rapid movements, and thus respect the criteria of good continuity.
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Fig. 2. Clusters of different ranks. Dark Red points are anchor points; gray are cluster
ones. The geometric shapes, squares, circles, and triangles, show how the branches are
paired. Those left without markers are detached branches. In the 5-rank cluster, the
unpaired branches form a new cluster of rank 3, which requires further processing.
(Color figure online)

Choosing First Component. To choose the first component to trace, we collected
all the starting points coordinates of the signatures databases. Then, we used
them to model, in two dimensions, a Gaussian function that would indicate a
more occurrent starting point.

The Gaussian function generates an ellipse of size equal to the mean and the
two standard deviations. It is experimentally located in the upper left part of
the images, particularly at 0.15 w and 0.35 h, with h and w being the height and
the width of the image. If there are no end points inside the ellipse, the leftmost
end point is selected as the starting point. It is typically the most common area
in western handwriting.

Next Component Selection. Once the first component has been recovered, the
following ones are chosen through a proximity criterion: the starting point of the
closest component not yet traced is chosen in terms of Euclidean distance. The
choice reflects the principle of energy minimization.

Our previous work results indicated that adopting the Dijkstra algorithm for
choosing a path inside a cluster is a good approximation. Nevertheless, sometimes
a few pixels remain outside the tracing, and thus there is a slight deviation on
the SNR and RMSE values.

Furthermore, the results indicated that choosing the component looking at
the Euclidean distance from the last plotted point is not the best choice. This can
be explained by assuming that a writer learns and memorizes the execution of a
writing stroke independently of the others. Therefore, there is room to improve
this decision, which was initially based on heuristic observations. Finally, the
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interested reader can find further details of this algorithm in [4,8] and download
the code for researching purposes at www.github.com/gioelecrispo/wor.

3 Signature Verification for the Tracing Trajectories

The recovered 8-connected trajectories (x, y) are used as the unique input feature
in two verifiers. This strategy is followed to evaluate the impact of recovered tra-
jectories. These verifiers have been traditionally applied to dynamic signatures.
However, the output of the recovering writing system does not offer estimated
spatio-temporal signatures. Instead, it provides an 8-connected sequence per
signature, which is expected to be ordered in the same way as the original sig-
natures.

3.1 Databases

Three publicly on-line signature databases are used in this work. They are briefly
described as follows:

– SigComp2009 [2]. It includes 1552 on-line specimens in the Western script. In
average terms, each of 79 users gave 12 genuine signatures. Also, the database
contains 620 skilled forgeries in total, but not available for all users.

– The SUSIG-Visual [16] corpus has 94 users with 20 genuine signatures
acquired in two sessions. They also included 10 fake signatures per writer.

– SVC-Task2 [23]. This database contains signatures produced in Oriental and
Western scripts. There are 40 subjects with 20 genuine and 20 skilled forgeries
per signer.

We generated binary images from these on-line signatures. To this aim, we
used Bresenham’s line drawing algorithm [3], which draws skeletons set up to
600 dpi of resolution. It is worth pointing out that any further processing [20] is
applied to the on-line signatures for our purposes.

The chosen databases contain long and complex signatures. In the context
of this paper, it means that they have many ambiguous zones and crosses [9],
which make harder the writing order estimation. However, our previous research
confirmed that the writing order estimation was satisfactorily measured [4,8].

3.2 Signature Verifiers

We have selected two automatic signature verifiers (ASVs) for our experiments.
To this end, we quantify the extent to which the traced trajectory looks like
the real one in on-line ASVs. Specifically, we compare the performance of real
8-connected signatures and signatures recovered to our system [4,8]. These two
state-of-the-art on-line ASVs consider the (x, y) trajectories as function-based
features. They are described as follows:

www.github.com/gioelecrispo/wor
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– Dynamic Time Warping (DTW): The trajectories of enrolled signatures and
questioned signatures are compared using the DTW algorithm by optimizing
the Euclidean distance of the (x, y) trajectories [12]. The nearest distance
normalized by both the warping path and the average DTW of the enrolled
signature is used as the score.

– Manhattan Distance-Based (MAN): The features of this ASV include his-
tograms of absolute and relative frequencies [21]. The comparison between
an enrolled and a questioned signature is performed in terms of Manhattan
distance. We used our implementation of this system, which was introduced
in [7].

On average, the 8-connected (x, y) sequences, which were generated by our
system, have around 5200 ± 2500 points. As this means the sequences are too
long, we speed up the verification process by a uniform resampling. For this
purpose, we take one out of fifteen points. As the data downsampling was applied
after estimating the trajectories, this stage does not influence the verification
rates. It is worth raising that this resampling does not create on-line specimens
with realistic velocity or acceleration. This goal would require a more complex
resampling of an 8-connected trajectory [11], which is not approached in this
work.

3.3 Evaluation Protocol

We follow a standard benchmark for signature verification proposed in [23], which
has continued to be applied over the years in the latest competitions [6,22]. For
the training, Tr random genuine signatures are used. Next, we use the remaining
genuine signatures to test and compute the False Rejection Rate (FRR) curve.
Then, we carry out two typical experiments in signature verification: random
forgery (RF) and skilled forgeries (SF) [6]. In the case of RF, we use the first
testing signature drawn by all the other users to design the False Acceptation
Rate (FAR) curve. In the case of SF, all skilled forgeries signatures of a signer
are used to build the FAR curve. Then, the performance of the ASV is measured
based on the Equal Error Rate (EER), which represents the operative point
when the FRR and FAR errors coincide. Finally, all experiments are repeated
ten times, and the final performance is averaged.

4 Experimental Results

The objective of this paper was not to highlight the utility of spatio-temporal
information in signature verification. Instead, we study and compare how our
recovered trajectories impact the performance of two common ASVs [6].

Figure 3 shows the results in a 3-by-3 grid. The first column gives the perfor-
mance of the SigComp2009 corpus using three, five, or seven signatures per user
to train. The second and third columns depict the results for the SUSIG-Visual
and SVC-Task2 databases. Each bar plot represents four pairs of performances in
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(a) Tr = 3, SigComp2009 (b) Tr = 3, SUSIG-Visual (c) Tr = 3, SVC-Task2

(d) Tr = 5, SigComp2009 (e) Tr = 5, SUSIG-Visual (f) Tr = 5, SVC-Task2

(g) Tr = 7, SigComp2009 (h) Tr = 7, SUSIG-Visual (i) Tr = 7, SVC-Task2

Fig. 3. Signature verification results with two automatic signature verifiers (MAN) and
(DTW) for random forgeries (RF) and skilled forgeries (SF). Tr denotes the number
of genuine signatures to train per user.

terms of EER regarding the two ASVs and the RF and SF experiments. We see
the performance with real (x, y) order in white color, whereas gray bars show
the performance with estimated order. All bars include the error bars, which
represent the standard deviation of the EER after the ten repetitions in each
case.

We can see in Fig. 3 that although the performances obtained with estimated
trajectories are not equal to those from real ones, in all cases, our system can
mimic the EER tendency. Moreover, we also observe coherent results with all
estimated trajectories since the greater the number of training signatures, the
better the results. Besides, better performances have been achieved in RF, which
is logical since the difficulty of verifying this kind of questioned signature is not
as high as in SF.

For RF, we observe that in the SVC-Task2 dataset, the EER with traced
signatures is quite close to real ones. However, the most significant differences
can be seen in SigComp2009. One reason is that the signatures in the latter
database have more complex and lengthy pen-downs. In SF, the EER of the
MAN system is reduced by three points versus the real one for the SVC-Task2,
by four points for SUSIG-Visual, and by five points for SigComp2009. Generally,
these observations are independent of the values of Tr.
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The DTW system seems to be more sensitive to the estimated trajecto-
ries than the MAN one regarding the ASV used. The main reason is that the
DTW processes the sequence following the sequence point order. Mistakes in
the order are propagated along with the whole data points in the sequences.
Accordingly, while the DTW is an optimal option in signature verification, this
distance measure penalizes the tracing order mistakes more than the differences
usually observed among trajectories executed by the same subject.

One weak point of our system is choosing the next component to recover.
It can be seen in the DTW signature verifier, which penalizes these kinds of
mistakes since it evaluates the sequence of features.

On the other hand, we observed that the MAN system did not perform
well with the real order. This may be expected since this is not the most robust
distance measure to be used for signature verification, despite competitive results
found in the prior literature [21]. However, the MAN system focused more on the
distribution of derivative input sequences. Probably, this property compensates
for the errors produced in the estimated trajectory order. In the words of our
previous work [7], this system tries to mitigate the order selection of components
and the assignation of the start and end points. However, the classifier does not
solve errors in the branches when the trace is recovered.

As a result, we can observe similar performance with real and recovery sig-
natures when the MAN system is used as a verifier. For this reason, the MAN
system seems to be a better option for the recovered trajectories. More investiga-
tion on systems that observe the derivative properties rather than the strict order
to trace the signature is a better option for the off-2-on signature verification
challenge.

5 Conclusions

This paper studies the performance of the writing order recovery process in
signature verification. A recent writing order recovery system is used to get
(x, y) 8-connected sequences, which estimates the order in which a signature
was executed. The generated trajectories are used as spatial function features
in two on-line automatic signature verifiers. Results are compared to original
trajectories under the same conditions. We know that the obtained performances
are not so attractive to use this system in a final application. However, our
purpose is to study the impact of these trajectories on ASV. The impact of our
experiments suggests that ASVs based on histograms of the features are more
suitable, like the Manhattan-based one. However, this kind of system does not
dramatically penalize errors in choosing the starting points of the non-traced
components.

Regarding the off-2-on signature verification challenge, more investigation
in ASVs based on the distribution of the features seems to be more suitable,
according to the observations of this paper.

We plan to resample these trajectories in our future works using the kinematic
theory of rapid movement. It would imply a more realistic scenario regarding this



24 M. Diaz et al.

study. Indeed, new insights would be analyzed for this off-2-on problem. However,
the findings observed here suggest that the MAN-based verifier is more suitable
for the use of estimated trajectories. Furthermore, this ASV reported closer per-
formances comparing our estimated trajectories with real ones. Towards repli-
cability research, we expect that the research community use our algorithm2 for
further benchmarks in the off-2-on challenge.
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Abstract. Automatic signature verification is one of the main modes to verify
the identity of the individuals. Among the strategies to describe the signature in
the verifiers, run-length features have attracted the attention of many researchers.
This work aims to upgrade the classical run-length distribution as an additional
representation for off-line signatures. Specifically, we add a fifth direction to the
four classical directions of run-length features. Such fifth direction runs the sig-
nature in a spiral way providing an outside to inside view of the signature. This
paper evaluates the performance of the new run-length direction combined with
the classical ones. For classification purposes, we used a one-class support vec-
tor machine. Additionally, we study how to combine the new direction with the
previous four original ones at both feature and score levels. Our results validate
the use of this novel direction in run-length features in our own experiments and
external international competition in signature verification.

Keywords: Spiral run-length features · Four-directions run-length features ·
Offline signature verification · OC-SVM · Feature fusion · Score fusion ·
Signature verification competition

1 Introduction

Biometrics has become more and more an important need for automatically verifying
individuals and evenly for the security of enterprises. Nowadays, among the different
modalities of biometrics, the signature remains a very confident, lawfully, and socially
accepted modality for verifying identities [1].

To design an Automatic Signature Verifier (ASV), the literature proposes to use two
approaches: Writer-Dependent and Writer-Independent [1]. In the first approach, the
samples of each individual are trained by a classifier separately from others, whereas
in the Writer-Independent approach, only one classifier is used to train all the writers’
signatures. In both cases, the aim is to verify whether a questioned signature is genuine
or forgery.

Since the texture remains one of the main discriminant characteristics to extract
useful information from the images, many ASV systems are based on textural features
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for the signature image analysis and pattern recognition process. In ourwork, we propose
to use a novel handcrafted feature for off-line signature verification based on both textural
properties and run-length distributions.

The run-length features have been a favored method in several fields of image pro-
cessing. They present one of the used features for image classification [2, 3], writer
identification [4], and in our case, for offline signature verification. In the latter domain,
they give a powerful spatial presentation of pixels, and under the concept of runs [2].
Typically, such spatial distribution is achieved by counting the runs in four directions:
horizontal, vertical, and two diagonal directions.

However, a major problem is the well-known high intra-class variability of a user
signature. It could be mainly due to changes in shape, size, or other visual aspects, which
causes a spatial distribution distortion within the image signature of a user. All this limits
the classic run-length features performance.

The main contribution of this paper is the definition of a new direction in the frame-
work of run-length features. This new direction is named spiral direction, which adds a
new representation of the image. Moreover, we combine this new direction to the clas-
sical four directions to improve the representation of the run-length features. Our work
aims to study the efficiency of run-length features when adding the spiral direction for
off-line ASV.

It is expected that this new direction will expand the run-length limitations due
to its flexibility within the orientation and the size of the scanned lines, which raises
its robustness regarding the intra-class variability, and compensates the static of each
direction of the run-length features, that traverses the image line by line in only one
given direction.

The paper is organized as follows: Sect. 2 includes some related works on run-
length features in off-line signature verification. Section 3 defines the previous run-length
features whereas the proposed spiral run-length feature is given in Sect. 4. Section 5 is
devoted to the experiments and results. We close the paper by the conclusion in Sect. 6.

2 Related Works on Run-Length Features

Many techniques have been used for image texture analysis in signature verification [1,
2]. Run-length features are one of the textural descriptors basing on the lengths of runs.
A run can be explained as a set of consecutive pixels in a given direction having the
same value [3]. The length of the run is the number of pixels composing this run.

As a consequence, we work out the run-length histograms, which are composed of
the numbers of runs of different lengths. This process is generalized for the four principal
directions, Horizontal (0°), Vertical (90°), right-diagonal (45°) and left diagonal (135°).
As a result, it gives four feature vectors comprising the four directions.

In 1975, Galloway [3] applied the run-length features to a set of textures representing
nine terrain types, each one with six samples. He arranged two adjustments on the run-
length technique to obtain numerical texture measures: the first one was based on all
diagonal run lengths should be multiplied by

√
2, while the second one was the short-run

emphasis function. The classification results were quite promising.
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The use of run-length features has been spread frequently in the field of texture
analysis. Further, they have been adopted for purposes related to handwriting, such as
writing or writer identification and verification and, more specifically, the verification
of off-line handwritten signatures.

Djeddi et al. [5] applied the run-length and the 2D autoregressive coefficient fea-
tures in signature verification. They used 521 writers from the GPDS960 dataset and
the Support Vector Machine as the classifier. They performed the run-length on black
pixels which correspond to the ink trace of the signatures and considered only runs of
a maximum of 100 pixels for each direction (0°, 45°, 90°, 135°). A final vector of 400
values was obtained as a feature vector of 100 values per direction.

Serdouk et al. [6] proposed a combination of two data features, the orthogonal combi-
nation of local binary patterns and the Longest Run Features (LRF). The LRF calculated
the connected pixels through the four principal directions: horizontal, vertical, right diag-
onal and left diagonal. For each direction, the longest run of the signature pixels was
selected, the total sum of these numbers (lengths) constituted the LRF value in the given
direction. This procedure was repeated for the remaining directions in order to get four
LRF features. Finally, the four LRF features were combined with the other features to
define each image-based signature. The proposed features were employed on GPDS300
and CEDAR databases, using SVM classifiers for the automatic verification task.

In Bouamra et al. [2], a new off-line ASVwas designed by using run-length features.
They were applied to black and white pixels, which corresponded to the signature and
the background, respectively. The four run-length vectors for each color contained 400
values and the black and white output feature vector had, therefore, 800 values. They
used only genuine signatures for training and employing the 881writers of the GPDS960
(281 users for generating signature models and choosing optimal threshold, and 600 for
the evaluation step). The One-Class Support Vector Machine (OC-SVM) was used for
the classification phase. Some standard metrics were used to quantify the performance
of the system, obtaining competitive performances.

In another work related to the prior one, Bouamra et al. [8] implemented multidirec-
tional run-length features for automatic signature verification. The new features were
based on the standard run-length features [2], with four supplementary angles added to
the four primary directions: horizontal, vertical, left-diagonal, and right-diagonal direc-
tion; each angle is enhanced by its neighborhood to generate a composite one formed
by three adjacent angles. Finally, eight composite angles are obtained as explicit orien-
tations for scanning the signature image. The researchers employed the OC-SVM as a
classifier to apply their features on the GPDS960 database.

The run-length features were also used on off-line ASV by Ghanim and Nabil [7]. In
their study, they used different features including run-length, slant distribution, entropy,
the histogram of gradient features and geometric features. Then, they applied machine
learning techniques on the computed features like bagging trees, rand forest and support
vector machines. The study aimed to calculate the accuracy of different approaches and
to design an accurate system for signature verification and forgery detection. The Persian
Offline SignatureData-set was utilized for evaluating the system, and the obtained results
were satisfactory.
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3 Classical Run-Length Features

Let be assumed a binarized image-based signature, in run-length histograms, RLb(i|θ) is
the (i)th element describing the number of runs with black values and length i, occurring
in the image along an angle θ . Thus, RLw(j|θ) is the (j)th element describing the number
of runs with white value and length j occur in the image along angle θ.

Let’s indicate the following notations:

• RLb is the number of black run lengths in the image.
• RLw is the number of white runs lengths in the image.
• NB is the black run-length histograms for the four directions.
• NW is the white run-length histograms for four directions.
• RL_4D is the Global black and white Run-Length histograms for four directions.

The black and white run-length histograms are defined, respectively, as:

RLb(θ) =
∑RLb

i=1
Nb(i|θ) (1)

RLw(θ) =
∑RLw

j=1
Nw(j|θ) (2)

∀ 1 ≤ i ≤ Nb and 1 ≤ j ≤ Nw.

The black and white run-length histograms for a given direction are concatenated as

RL(θ) = [RLb(θ),RLw(θ)] (3)

According to the pixel color, the black and white run-length histograms for the four
directions are processed as:

RLB = [
RLb

(
0◦),RLb

(
45◦),RLb

(
90◦),RLb

(
135◦)] (4)

RLW = [
RLw

(
0◦),RLw

(
45◦),RLw

(
90◦),RLw

(
135◦)] (5)

where the final feature vector based on run-length histograms are concatenated as [2]:

RL4D = [RLB,RLW ] = [RLb(0◦),RLb(45◦),RLb(90◦),RLb(135◦),RLw(0◦),
RLw(45◦),RLw(90◦),RLw(135◦)] (6)

In our work, we vectorized the 2D image to get a single long line. At this level, the
run-lengths are calculated for both black and white pixels. This procedure is applied
to the other three directions, i.e. vertical, right-diagonal and left-diagonal. In another
meaning, before calculating the lengths of runs, we juxtaposed the lines of the image
in the desired direction, line by line in a way to form a single vector that denotes a
new different presentation of the image. On this vector, we apply the same algorithm
to calculate the Run-Length distributions for this given direction, and so for the other
directions.
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Fig. 1. Run-length distribution for the horizontal direction

In Fig. 1 we illustrated a toy example of this procedure for the horizontal direction.
In the black pixels, we observed that there is no run of length one, two runs of length
two, one run of length three and one run of length four, as indicated in the first row. A
similar observation can be made for white pixels. As such, the final horizontal vector is
about 800 values (400 + 400 for black and white pixels, respectively). The procedure is
repeated for the remaining directions. The resultant run-length feature vector has 3200
values due to the final concatenation of the four directions.

4 Spiral Run-Length Features

In this section, we describe first the proposed spiral run-length feature. Next, we propose
two combinations to fuse the new feature with the previous four directions.

4.1 Spiral Feature Vector

A uniform displacement describes it on a rotating line until reaching a final center point.
This way, the spiral run-length feature traverses the entire image in a spiral counter-
clockwise curve starting from the first pixel at the upper left corner of the image. Then
it moves away more and more towards a last central point. This spiral movement rotates
between the horizontal and the vertical directions. The procedure is shown in Fig. 2.

It could be said that the spiral feature treats four orthogonal directions differently, as
shown in Fig. 2. The movement hither is done permanently, starting with a horizontal
direction with an angle θ1 = 0◦, followed by a descending vertical scan with an angle
θ2 = −90◦. On reaching the end of the vertical column, the direction changes again
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moving towards the horizontal direction but on the contrary direction to the first angle
with an angle of θ3 = 180◦. The last direction to progress is the vertically upward
direction by exploring the entire column from bottom to top on an angle θ4 = 90◦. This
round of four directions is iterated until browsing the entire signature image.

Fig. 2. New run-length direction: spiral based feature.

For counting the length of runs, the same procedure described in Sect. 3 is applied
to the resulting vector of the spiral function. Accordingly, the final spiral vector size
contains 800 values (400 for black pixels + 400 for white ones).

We consider the next notations:

• SPB is the number of black run lengths in the image.
• SPW is the number of white runs lengths in the image.
• Nb is the black run-length histograms in spiral direction.
• Nw is the white run-length histograms in spiral direction.
• SP is the global black and white run-length histograms in spiral direction.
• θk is the browsing spiral angle:

θ1 = 0◦, θ2 = −90◦, θ3 = 180◦, θ4 = 90◦.

The black and white run-length histograms are defined, respectively, as follows:

SPB =
∑SPB

i=1

∑4

k=1
Nb(i|θk) (7)

SPW =
∑SPW

j=1

∑4

k=1
Nw(j|θk) (8)
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∀ 1 ≤ i ≤ SPB and 1 ≤ j ≤ SPW .

The global Spiral Run-Length histograms are then concatenated as

SP = [SPB, SPW ] (9)

Therefore, the spiral transformation of the image is dynamic in direction (two
changes: vertical/horizontal) and in orientation (two changes for every direction:
(→,←) and (↑,↓)). It is also dynamic in size; with every change of direction, we sub-
tract a pixel. This transformation is based on four changes of the directions, and every
current movement is starting from the second pixel (the first of this current movement
is the last of the precedent one, so it is already calculated).

The spiral feature regroups both of two horizontal and vertical directions at the
same time. It helps to add complementary information to the four previous run-length
directions. Thus, the spiral run-length feature can be considered as the fifth direction.

Input
Read_image;
Initialize

While (i < =M) and (j<=N) do
Begin
image=image(i:M,j:N);

If i=M % the current image zone  is composed of  one row (or one pixel)

Else if j=N % the current image zone  is composed of one column (with more than one 
pixel)

Else if i=M-1 % the current image zone is composed of two lignes (with more than 
one column)

-90°), last_row(N-1:j:-1  

Else % General case

first_column(M-
End_If
i++;j++; M--, N --;
End;

End While;

Algorithm 1. Spiral vector extraction
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The steps of the proposed feature are highlighted in the pseudo-code Algorithms
1 and 2. They describe the spiral vector extraction and the spiral run-length features,
respectively.

Input
Read_image;
Initialize

Read(SP); % Spiral vector outcoming from image by spiral transformation.
For current_pixel = 1: Length(Spiral_Vector) do

Begin
Score 
If current_pixel=0

REPEAT
score ++;
Go to next pixel;
UNTIL (current_pixel_value different from next_pixel_value) or (score == 

400)
Spiral_Black_Hist(score)= Spiral_Black_Hist(score)+1;

Else
REPEAT
score ++;
Go to next pixel;
UNTIL (current_pixel_value different from next_pixel_value) or (score == 

400)
Spiral_White_His(score)= Spiral_White_Hist(score)+1;

End_If
End_For
Spiral_Hist=[Spiral_Black_Hist,Spiral_White_Hist];

Algorithm 2. Spiral run-length features extraction

4.2 Combining Spiral with the Previous Directions

Two combinations are proposed to use the new spiral feature along with the previous
run-length features. Specifically, they consist of combining the run-lengths features at
the feature and score level.

On the feature level, the combination consists of concatenating the four run-length
features and the spiral feature. On the one hand, we concatenate all the five black run-
length histograms and, on the other hand, the five white run-length histograms. This
way, the combined histograms contain the five directions. Let RL_5D be the combined
run-length histograms, it is defined as follows:

RL_5D = [RLB, SPB,RLW , SPW ]
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RL5D = [RLb(0◦),RLb(45◦),RLb(90◦),RLb(135◦), SPB,

RLw(0◦),RLw(45◦),RLw(90◦),RLw(135◦), SPW ] (10)

On the score level combination, this fusion is concerned by the scores generated
by classifiers. The global score is a combination of the two scores of the previous four
run-length features and the spiral one. A weight sum of the two scores performs the
combination:

Sc = α.Sc1 + (1 − α).Sc2 (11)

Sc being the final score, Sc1 being the score of four directions run-length features
and Sc2 being the score of the spiral one, we heuristically set α in 0.5. In both cases of
features, we process the black and white pixel distribution.

The experiments are carried out on each of the two levels of combination,with further
details provided in the next passage.

5 Experiments

In this section, we present the used databases, the experimental protocol and the experi-
mentswith the two types of combinations: at both feature and score levelwhen run-length
features are used in ASV.

5.1 Database

We used the following two databases to evaluate our system:

GPDS75 Database. This database was introduced by Ferrer et al. [9]. It contains the
first 75 writers; each one has 24 genuine signatures and 30 skilled forgeries.

CEDAR Database. IT is one of themost frequently used database for off-lineASV[10].
This database comprises a total of 55 signatures of different signers. Each individual
signed 24 genuine signatures and has a total of 24 forged specimens.

5.2 Preprocessing

Our experiments necessitated the preprocessing phase since both GPDS75, and CEDAR
datasets contain greyscale signatures, whereas our system’s application relies mostly on
binary signatures.

The signatures were first extracted from the datasets, then binarized using Otsu’s
method [17, 23], which involved determining a global threshold from the greyscale
signature image. The threshold was accordingly employed to transform the greyscale
signature into a binary signature by reducing the intra-class variance of the thresholded
pixels.
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5.3 One-Class Support Vector Machine

The availability of positive and negative training examples is one of the criteria of a
classic Support Vector Machine (SVM) classifier.

The OC-SVM classifier employs only the genuine signatures for the training. The
target class is discriminated from all other classes using only training data from the target
class. The objective is to achieve a border that separates the target class examples from
the rest of the space, a barrier that takes as many examples as possible targets [2, 11].
This border is defined by a decision function that is positive within a class S but negative
outside of S: (S) as described in Fig. 3.

f (x) =
{+1 if x ∈ S

−1 if x ∈ S

Fig. 3. One-class SVM classification

The parameters to be determined for the OC- SVM include the proportion of outliers
(ϑ ∈ [0 1]) and the radial basis function kernel parameter (γ ∈ [0 1]). The RBF kernel
was chosen after experimenting with several kernel functions [2].

5.4 Experimental Protocol

Our signature verification systemcomprises four steps: selecting a set of signers, building
the signature models, locating the optimal decision threshold, and finally achieving the
classification step.

The set of signers to be selected includes the first five (R5) and ten (R10) genuine
signatures that are kept as reference signatures in the training stage. Then, the testing
stage is conducted by employing the next ten genuine samples (g6…g15 in the case of
R5, and g11…g20 in the case of R10) and the first ten skilled forgeries (f1…f10) for the
experiments in both databases.

The optimal decision threshold is deduced from the false rejection rate (FRR) and
the false acceptance rate (FAR) curves using the equal error rate (EER) [24, 25], as
described in the next figure. The choice of the (EER) metric, which is defined as the
system error rate when FRR = FAR [24], was chosen since it has been used in a variety
of relevant studies (Fig. 4).
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Fig. 4. EER performance measure

5.5 Results

We discuss here the combination at two levels: feature level and score level. The results
of such fusions on GPDS75 and CEDAR databases are shown in Table 1 and Table 2,
respectively.

For the feature level combination applied to theGPDS75 database, we gained EER=
9.24% and EER= 8.26% using 5 and 10 reference samples, respectively.Whereas, using
the same database and number of references for the score level combination generated
EER = 7.98% and as the best outcome we earned EER = 6.86%.

On the other hand, employing the CEDAR database affected the results illustrated in
Table 2. The feature level fusion gained EER = 0.55% and EER = 0.36%, respectively,
with 05 and 10 reference samples, while the results attained are EER = 0.73% and EER
= 0.18% performing the score level fusion. This last outcome (EER = 0.18%) is the
best value obtained operating the score level combination with 10 reference samples.

For both types of fusion, the experimental results in Tables 1 and 2 reveal that fusing
the features raises the rate and improves system performance.

Table 1. Results in EER (%) on GPDS75 by combining at feature and score level.

System GPDS-75

R5 R10

Basic RL (RL) 10.78 9.38

Spiral RL (SP) 12.88 11.62

[4RL, SP]*: Feature level 9.24 8.26

[4RL, SP]*: Score level 7.98 6.86
*[4RL, SP]: Combination of the classical run-length (4RL) features with the spiral one.
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Table 2. Results in EER (%) on CEDAR by combining at feature and score level.

System CEDAR

R5 R10

Basic RL (RL) 0.73 0.55

Spiral RL (SP) 0.91 0.55

[4RL, SP]*: Feature level 0.55 0.36

[4RL, SP]*: Score level 0.73 0.18
*[4RL, SP]: Combination of the classical run-length (4RL) features with the spiral one.

Furthermore, we compare our results with previous works. Table 3 shows different
works that have used the GPDS75 database. We can observe that our performances are
in line with state of the art. For instance, Maergner et al. obtained the best EER= 6.49%,
while in another work they got an EER = 6.84%. When we combine the five run-length
features at the score level, our best performance was 6.86% on GPDS75.

According to Table 4, our results were competitive compared with previous works
in CEDAR database. We observe a gap getting two minimal rates: EER = 0.18% and
EER = 0.36%, followed by Hamadene et al. with AER = 2.10%, then Hafemann et al.
with EER = 4.63% accompanied by Sharif et al. with EER = 4.67%. We conclude that
our system was more performant with CEDAR database than GPDS75 database.

Table 3. Results on GPDS75 – comparison between the state-of-the-art and our system.

Reference Samples/user EER %

Maergner et al. [12] 10 6.84

Maergner et al. [13] 10 9.42

Maergner et al. [14] 10 6.49

Ferrer et al. [15] 10 16.01

This work (score level) 5 7.98

This work (score level) 10 6.86
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Table 4. Results on CEDAR – comparison between the state-of-the-art and our system.

Reference Samples/user EER %

Guerbai et al. [11] 12 5.6

Sharif et al. [16] 12 4.67

Hafemann et al. [17] 12 4.63 (±0.42)

Hamadene et al. [18] 5 2.10

This work (feature level) 10 0.36

This work (score level) 10 0.18

5.6 Spiral Run-Length Features in External Competition

The evaluation of spiral run-length features against other handwritten signature verifica-
tion systems was a critical step. For this reason, we submitted our features to the interna-
tional competition on Short answer Assessment and Thai Student Signature and Name
Components Recognition and Verification (SASIGCOM 2020) [19] which was orga-
nized in conjunction with the 17th International Conference on Frontiers in Handwriting
Recognition (ICFHR 2020).

In the competition, six taskswere prepared for the competitors including the signature
verification task, the thai student signature dataset was employed for this task shown in
Table 5. Three type of forgery were adopted: simple, skilled and random forgeries. The
Equal Error Rate (EER) was employed as the judge the different participating systems
performance.

Table 5. Signature verification dataset (SASIGCOM 2020).

Dataset No. of users Train Test

Gn* Gn* Skld* Smpl*

Thai student signature dataset 100 5 25 12 12
*Gn: Number of genuine samples/user. *Skld: Number of skilled samples/user.
*Smpl: Number of simple samples/user.

Our system based on the spiral run-length feature get EER= 0.1108% for the random
forgeries, EER = 0.2045% for the skilled forgeries and an EER = 0.1459% for simple
forgeries with an average of 0.1537%. The results cited in Table 6 show also that the
classical run-length features get EER= 0.1308%, EER= 0.2145% and EER= 0.1599%
for random, skilled and simple forgeries, while the multidirectional run-length feature
obtained an average of 0.1415%. The first ranking was for a learned system with EER=
0.0019%,EER= 0.0710%andEER= 0.0090% for the same forgeries types respectively
with an average of 0.0273%.
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Table 6. Results of the signature verification task (SASIGCOM 2020).

Rank Algorithm EER %

Random forgeries Skilled forgeries Simple forgeries AVG

1 SCUT-CNN [20] 0.0019 0.0710 0.0090 0.0273

2 LTP + oBIFs [21] 0.0109 0.1091 0.0712 0.0637

3 ERL [2] 0.0302 0.1780 0.0955 0.1012

4 oBIFs [21] 0.0444 0.1876 0.1010 0.1110

5 LTP [21] 0.0511 0.1901 0.1105 0.1172

6 MDRL [8] 0.0986 0.2000 0.1258 0.1415

7 SPIRAL-RL 0.1108 0.2045 0.1459 0.1537

8 RL400 [2] 0.1308 0.2145 0.1599 0.1686

9 RL [4] 0.1308 0.2145 0.1599 0.1686

Benchmark [22] 0.0201 0.1108 0.0031 0.0447

According to Tables 3, 4, and 6, we notice that the different systems’ results obtained
by using the GPDS75 database are more elevated than those acquired by using the
CEDAR and the SASIGCOM databases.

More clearly, our system could reach very lowered EER values using the CEDAR
database; this differentia is due to the system-dataset ratio. How the system scrutinizes
the signature, the characteristic of each database, and how the signatures were pre-
processed before including them in the database. For instance, the GPDS75 dataset is
greyscaled, whereas the SASIGCOM database signatures are already binarized. Also,
the background of the GPDS database is almost similar, whereas we find a difference in
the CEDAR signatures background between the genuine and the forged signatures.

6 Conclusion

In this work, we propose a new direction for run-length features based on the signature’s
spiral path. We observe performance improvements by combining the previous well-
known four directions in run-length features with the proposal spiral direction. Thus, the
spiral run-length feature can be understood as the fifth direction, which is more robust to
intra-class variability and get better results than using only the four run-length features.
In this work, we show results when combining the run-length features at the feature and
score level, obtaining better performances at score level combination.

In our future works, we seek to improve the performance of automatic signature
verification by applying other techniques of fusion and combination. In addition, we
study other methods to process the run-length features and to extend its use in on-line
signatures.
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Abstract. Libraries contain a large number of digital images of hand-
written documents of historical and cultural interest, and digital tran-
scriptions are also available for some of them. The ability to trace back
to the portion of the image that contains the handwritten text starting
from the transcription can be essential for the study of the document by
scholars in humanities, as well as for the development of modern tech-
nologies that greatly facilitate the search, indexing, and transcription of
ancient documents.

We propose a method to perform the transcription alignment auto-
matically. The method analyzes images of handwritten text lines together
with the corresponding transcription and performs alignment by analyz-
ing the line alternatively from left to right and from right to left, making
the method language-independent. Experiments on the Bentham Collec-
tion dataset have shown that the method can correctly align more than
75% of the text. We also show that, by using a GUI we have designed
for the purpose, our method reduces the time for error-free alignment by
more than 47% compared to the time required for manual alignment.

Keywords: Historical document processing · Handwritten text
alignment · Performance evaluation

1 Introduction

In recent years, digital libraries [1] have gained considerably in importance and
are meeting with growing interest, not only from historians and scholars. The
digitisation of libraries allows easy access to the contents of preserved collections,
and makes the knowledge they contain quickly and easily available to the general
public. This new form of library enables the automatic processing of native
digital documents with a variety of built-in tools that facilitate the user’s search,
annotation or any other manipulation of the document or its content [8].

When documents are available as digital images of the original paper form, in
order to fully exploit the potential of digital tools, it is necessary to accompany
c© Springer Nature Switzerland AG 2022
C. Carmona-Duarte et al. (Eds.): IGS 2021, LNCS 13424, pp. 45–60, 2022.
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the images of the handwritten documents with the digital transcription of their
content. For this reason, the transcription of handwritten documents of historical
interest is an ongoing process that attracts the attention of various branches
of research [7]. Progress is constantly being made in the development of tools
for the recognition of handwritten texts, so that today transcriptions exist for
various documents, increasingly produced by automatic tools whose results are
eventually validated by specialised personnel. However, by its very nature, the
digital transcription is not linked to the handwritten image of the document,
making it difficult to locate the parts of a handwritten document image that
correspond to a piece of text of the digital transcription. So the problem arises
of aligning the digital transcription with the parts of the handwritten document
image to which it refers, in such a way that the digital transcription is linked to
the images of the words in the manuscript [2] as shown in Fig. 1.

Fig. 1. Example of a transcription aligned with the original image of a text line
extracted from the Bentham dataset.

The ability to link the page image to the transcription of its contents can
facilitate the work of scholars and historians who often have to work with hand-
written versions of documents. A first advantage of alignment is the improvement
of archiving and indexing capacity. One of the most important features of digital
libraries is the almost instantaneous process of searching and indexing a digital
text. The alignment process makes it possible to transfer this immediacy to the
handwritten version as well, making it possible to search a handwritten docu-
ment in the same way as a digital document and then easily and quickly access
the handwritten version of interest.

Another advantage of the alignment process is that it makes reading the
document easier. This process is particularly interesting when working with old
documents of historical interest, because handwritten documents are often com-
plicated to read, whether because of the difficulty of interpreting the author’s
handwriting, the stylistic rules of the time in which the document was written, or
the precarious state of preservation of some old documents. These factors often
make it difficult to read a handwritten text, especially for an inexperienced and
untrained eye. The availability of digital transcription overcomes all these com-
plications and makes the content of the document easily interpretable without
losing sight of the original handwritten version. Another application of the result
of alignment is the study of dissimilarity between different handwritten versions
of the same document. In the past, the different copies of the same text were
made by hand by scribes copying an entire text page by page. Hand copying is
not a perfect process, and sometimes there can be inconsistencies between the
different copies due to copying errors, omissions or additions of parts of the text,
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or changes in the text that were necessary to adapt the manuscripts to different
language canons. The result of the comparison can help scholars to identify and
analyse the differences between the various copies.

As mentioned earlier, the transcription of handwritten documents is attract-
ing the attention of the scholarly community, and solutions for automatic tran-
scription are now in the interest of researchers. Modern machine learning tech-
niques are widely used in this field, and more and more solutions are being
proposed that use this paradigm to present methods and applications to sim-
plify and speed up the transcription process. Solutions based on machine learning
require a learning process that starts from a large amount of correctly labelled
data. The creation of ground truth data is a time-consuming process that is
often done by hand [9]. In this direction, alignment results can quickly and eas-
ily provide a good amount of labelled data, making the preparation of training
data easier and, more importantly, faster than manual.

We present here an alignment algorithm that, starting from a word-level
segmentation of the line of text, estimates the extent to which the size of a
word image and the intended transcription match, and uses this information
to deal with over- and under-segmentation errors scanning alternately the line
of text along the direction of writing and vice versa. Once detected, the over-
segmentation errors are corrected by merging the word images, while the under-
segmentation errors are corrected by merging the transcripts.

In the remaining of the paper, Sect. 2 is devoted to reviewing the related liter-
ature, Sect. 3 introduces the proposed algorithm, and Sect. 4 presents the setup
and the results of the experiments we have performed. In Sect. 5 we summa-
rize the motivation and rationale for the proposed method, discuss the current
limitations and outline our future investigations on this topic.

2 State of the Art

In the literature, the problem of aligning handwritten text is divided into two
categories: Image-Image Alignment and Image-Text Alignment. The first cate-
gory involves aligning two different copies of the same document to highlight
any differences that may occur. Te second, on the other hand, is about aligning
the digital transcription of the document with the corresponding images of the
handwritten document.

2.1 Image-Image Alignment

In the context of image-image matching, Kassis et al. [4] propose a method based
on convolutional Siamese neural networks to detect whether two images contain
the transcription of the same text. The method involves an initial training phase
in which a certain number of pages must be annotated by hand. The method
achieves alignment accuracy between 96% and 97% on the different test sets.
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2.2 Image-Text Alignment

One of the first examples of image-text alignment is proposed by Tomai et al.
[15]. The proposed method works with documents segmented at the level of text
lines, which are segmented at the word level to obtain different segmentation
hypotheses. A text recognizer is then used to obtain the transcription of each
segmented word, restricting the dictionary of the recognizer to the words present
in the transcription. Finally, a dynamic programming algorithm suggests the best
pairing between images and transcripts, achieving a percentage of 72% correct
alignment. The text recognizer is not trained on the pages of the collection to be
matched, and performance is highly dependent on the recognition module used.

In the method proposed by Kornfield et al. [5], the authors segment the
document at the word level and consider the sequence of segmented words and
the sequence of words in the transcription as temporal sequences, and then
they apply a Dynamic Time Wrapping algorithm to perform the alignment. The
method achieves 75.40% correct alignment when working with lines of text.

Rothfeder et al. [11] tackle the alignment problem as a problem of alignment
between two sequences. Once the document is segmented at the word level, they
use a linear Hidden Markov Model (HMM) solved by applying the Viterbi algo-
rithm to obtain alignment, achieving a percentage of 72.80% correct alignment.

Toselli et al. [16] also use a Viterbi decoded approach to handwriting recog-
nition based on an HMM, in this case, using a forced-recognition approach that
restricts the possible transcriptions to the words present in the text line, and in
their best results, they can reach more than 90% of correct alignment.

Indermuehle et al. [3] propose a procedure for aligning the transcription with
the images using an HMM recognizer and working with individual lines of text.
Feature vectors are calculated for the alignment process using an HMM. There-
fore, the method requires a training phase to enable the calculation of the fea-
tures. The method achieves the best results with a training set of 2500 words,
which is about 65% correctly aligned. Finally, a model trained on the public IAM
dataset is tested. By merging the results with the previous system, a correct
alignment of almost 95.5% is achieved. However, this result requires a training
phase with a dataset of words from the collection to be aligned.

In the method proposed by Zinger et al. [17], the images of the handwritten
documents are segmented into lines that are used for matching with the tran-
scription. The matching is based on a word segmentation of the line achieved
by analyzing the longest spaces between parts of the handwriting. A gap metric
is defined that considers the relative length of the word. This results in a cost
function that must be minimized to obtain correct alignment. The results yield
a percentage of 69% correct alignment.

Stamatopoulos et al., in their works [13,14], propose an alignment technique
that involves segmenting the lines of text based on the Hough transform and
the number of lines obtained from the digital transcription. Each line is then
segmented at the word level using a gap classification technique based on the
number of words in the text line. In [14] A manual correction phase is performed
at the end of the automated process to obtain an error-free alignment. The
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authors show that their method saves 90% of the time compared to manual
labeling and results in a percentage of 97.21% correctly aligned words. In [13] the
authors add an extra step that works at character level to correct segmentation
errors, so the result reaches 99.48% correct alignment.

Leydier et al. [6] propose a segmentation-free and learning-free alignment
method. The method involves extracting signature strings representing a whole
line of text and then aligning them to the digital transcription by calculating
the Levenshtein distance transformation matrix. The rate of correct alignment
of the method is almost 73%.

Romero-Gòmez et al. [10] propose an alignment method that uses dynamic
programming to obtain the best alignment between the image of a line of text
and its entire transcription. The method automatically segments the document
at the text line level and then uses an HMM-based text recognizer to obtain a
transcription estimate. Alignment confidence is then calculated by computing
the Levenshtein distance between the recognition result and the transcript lines,
reaching a correct alignment percentage about of 75.5%.

2.3 Not Handwritten Documents

Ziran et al. [18] propose an image-text alignment method that can be applied to
early printed documents and uses deep models in combination with a dynamic
programming algorithm. The method involves using a recurrent convolutional
neural network to search for words within a line based on the number of words
present in the line. A second model searches for certain landmark words that
serve as a reference to align the transcript using a dynamic programming algo-
rithm.

3 The Proposed Method

However, the proposed method assumes that the images of the text lines are
segmented at the word level. Although there are many algorithms, none of them
is able to provide error-free segmentation, so the performance of the alignment
method depends on the specific segmentation algorithm. To avoid the impact
of the strengths/weaknesses of the segmentation algorithm on the performance
evaluation, we have included a word-level segmentation step in our method, as
is common in this field. To this end, our segmentation algorithm calculates the
vertical histogram, i.e. the number of black pixels in each column of the image,
of the text line image, and then looks for spaces between words, i.e. a sequence
of consecutive 0’s. These sequences are then sorted according to their length,
and only those whose length is greater than a certain threshold ν, whose value
depends on the average length of the sequences estimated for all the text lines of
a page, are finally retained as those corresponding to the actual spaces between
two consecutive words.

After performing a word-level segmentation, the image of a text line is rep-
resented by the ordered list W of word images, starting from the leftmost one,
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extracted from the text line image:

W =< w1, w2, . . . , wm >

where m is the number of word images extracted from the text line. From now
on, we will refer to each word image wj with the term box. Analogously, the
transcription of a line of text T is the sequence of the transcription of the words
of which it is composed:

T =< t1, t2, . . . , tn >

where n is the total number of words that compose the text line, and ti denotes
the transcription of the i-th word in the line of text. So, solving the alignment
problem means linking each wj to its correct transcription ti. If there were no
segmentation errors, i.e. m = n and each box contained a single word, the final
alignment would be easily achieved by linking each box wj to its corresponding
transcriptions ti, where i = j. Since the assumption of error-free segmentation is
unrealistic, we have built a consistency check into the algorithm that performs
the linkage between a transcript and a box, as described below.

3.1 Image and Transcript Linking

After word segmentation, there are m boxes that need to be linked to n tran-
scripts. In the case m = n, the method assumes that the segmentation is error-
free, and therefore the desired alignment is achieved by linking each box wj to
the corresponding transcripts ti, where i = j. In the case m > n, the method
assumes that there were over-segmentation errors. So the method successively
removes the spaces that are in the image of the text line, starting with the short-
est, until m = n. Then the alignment is done as before. In the case of m < n, the
method assumes that there are sub-segmentation errors. Since it is very difficult,
if not impossible, to decide which box to split and how, we circumvent the prob-
lem by allowing the algorithm to associate the transcriptions of multiple words
with one box. For this purpose, we calculate for each line of text the average
character width (ACW ), defined as:

ACW =
∑

W (Word image width (pixels))
∑

T (Number of characters)

and the smallest value mth and the largest value Mth of the ACWs computed
over all the text line images of the page. Then, the method checks the consistency
between the width of the box wj and the number of characters of the transcrip-
tion ti by computing the ACW of the characters of the box, called ACW box

as:
ACW box =

width of wi

character number of tj

and comparing it with mth and Mth. The following cases can be distinguished:

1. ACW box < mth - the size of the box wi is too small to contain the number
of characters of transcription tj ;
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2. ACW box > Mth - the size of the box wi is too large to contain the number
of characters of transcription tj ;

3. mth < ACW box < Mth - the size of the box wi is consistent with the number
of the characters of the transcription tj .

f the consistency test yields case 1., an over-segmentation error has occurred
and therefore the box wj is merged with the nearest contiguous box wk and m is
decreased. In this way, the size of the box increases, which may lead to coherence
between the merged box wik and the transcription ti. If the coherence test gives
case 2., an under-segmentation error has occurred, and then the transcript tj is
merged with a neighboring transcript tk and n is decreased.In this way, the size
of the box wi could become consistent with the merged transcript tjk. Finally, if
the consistency test yields case 3., the box wi is merged with the transcription
tj . Algorithm 1 contains the pseudo-code of the algorithm that performs the
described alignment method for a single box wi to be analyzed.

Algorithm 1: The word alignment algorithm
Data: list of line transcriptions T, list of segmented word images W, index of

Wi, index of Tj, threshold values mth and Mth

Result: aligned images ai, Failure in case no alignment is possible
1 X ← width({wi ∈ W});
2 L ← length({tj ∈ T}) ;
3 ACW box ← X/L
4 if (ACW box <mth) then
5 pre ← distance(wi, wi-1);
6 post ← distance(wi, wi+1);
7 if (pre is None AND post is None) then
8 return Failure
9 wmin ← min(pre, post);

10 wi ← mergeBox(wi, wmin);
11 ai ← newAlignment(wi, tj) ;

12 else if (ACW box >Mth) then
13 while (ACW box >Mth) do
14 if (tnext is None) then
15 return Failure
16 newt ← mergeTranscription(tj , tnext);
17 ACW box ← Xnewt/Lnewt;

18 end
19 ai ← newAlignment(wi, newt) ;

20 else
21 ai ← newAlignment(wi, tj) ;
22 return ai;
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3.2 Text Line Alignment

As for the order in which the sequence of boxes wj and transcriptions tj are
analyzed, it would be most natural to follow the order of writing, i.e. from left
to right or vice versa, depending on the language. However, we have considered
that segmentation errors that are not properly detected and handled during
the consistency check at the beginning of the sequence would spread to the
following boxes/transcriptions along the line, causing errors or even messing up
the whole alignment. To avoid this “avalanche effect”, we have therefore chosen a
strategy called Meet in the Middle (MiM), which looks at the boxes/transcripts
alternately from both sides of the line of text, starting with the one furthest to
the left, then the one furthest to the right, then the one furthest to the left, then
the one furthest to the right, and so on.

Algorithm 2 shows the pseudo-code of the MiM alignment algorithm for
selecting the sequence of boxes wi to be analyzed.

4 Experimental Results

4.1 The Dataset

Experiments were conducted on selected handwritten documents from the Ben-
tham Collection dataset. This dataset consists of images of manuscripts by the
English reformer and philosopher Jeremy Bentham (1748–1832). Currently, the
transcription of the entire collection is being carried out by volunteers as part of
the crowdsourcing initiative “Transcribe Bentham”1, thanks to which it is pos-
sible to access both the images of the documents and the associated transcripts.
433 pages selected from the entire collection represent the dataset used in the
ICFHR-2014 HTRtS competition [12], this subset contains 11,473 lines, nearly
110,000 words, and a vocabulary of more than 9,500 different words. Figure 2
shows an example of a document from the collection.

From the Bentham data used in ICFHR-2014, a set of 20 page images was
selected and used as the data set to perform the experiments. An initial subset
consisting of 5 pages was used during an exploratory phase to compute the
values of ACW , mth and Mth, and for setting up the value of the threshold ν.
For the calculation of the threshold, the lengths of all the white spaces between
words detected in the lines of text were considered according to the number
of words contained in the line of text. The mean value of the length of the
whitespace between words was then used to define the threshold ν. The whole
20 page data set was then used for performance assessment. The 5-pages data set
consists of 77 lines whose transcripts contain 805 words, while the 20-pages test
set consists of 431 lines and 3,698 words. We have performed the experiments
by using two versions of the proposed method, one adopting the left-to-right
(hereinafter denoted as forward) strategy, the other by using the newly proposed
MiM strategy.

1 https://blogs.ucl.ac.uk/transcribe-bentham/.

https://blogs.ucl.ac.uk/transcribe-bentham/
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Algorithm 2: The complete alignment algorithm
Data: list of line transcriptions T, list of segmented word images for each line

W
Result: aligned images

1 x ← AvgCharacterWitdh();
2 mth ← MinimumThreshold(x);
3 M th ← MaximumThreshold(x);
4 allAligns ← [];
5 foreach Wi ∈ W do
6 forwardAlign ← [];
7 backwardsAlign ← [];
8 MiMAlign ← [];
9 Ti ← correspondTranscription(Wi);

10 iw ← 0; jw ← length(Wi) − 1 ; // Wi indices

11 it ← 0; jt ← length(Ti) − 1 ; // Ti indices

12 remainWi ← length(Wi) ; // number of alignments to perform

13 while (remainWi > 0) do
14 align ← alignAlgorithm(Wi, Ti, iw, it,mth,M th);
15 if align Failure then
16 skip to next row Wi+1

17 end
18 forwardAlign[] ← align;
19 remainWi ← remainWi − −;
20 iw ← iw + +;
21 it ← it + +;
22 if (remainWi > 1) then
23 align ← alignAlgorithm(Wi, Ti, jw, jt,mth,M th);
24 if align Failure then
25 skip to next row Wi+1

26 end
27 backwardsAlign[] ← align;
28 remainWi ← remainWi − −;
29 jw ← jw − −;
30 jt ← jt − −;

31 end

32 end
33 MiMAlign[] ← forwardAlign[] + backwardsAlign[];
34 allAligns[] ← MimAlign[]

35 end
36 return allAligns[];
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Fig. 2. Example of a page of the Bentham Collection.

4.2 Validation Tool

To evaluate the performance of the proposed method, a validation phase of the
alignment results is required. The validation phase must be performed manually
by an operator who analyses all images and verifies that the associated tran-
scriptions are correct, discarding or correcting any errors. This can be a delicate
and time-consuming process, so it is important to make this process quick and
easy. We have therefore implemented a validation software tool that allows us
to check the results of the alignment system. The tool allows us to identify
all correct alignments and collects the set of words that consists only of valid
alignments. In addition, the tool provides functions to correct alignment errors.
Figure 3 shows the user interface of the tool. The validation process must be as
fast as possible. For this reason, we have kept the operations that the user has
to perform to a minimum. The user interface shows all the alignments created
with the method and the user only has to select the erroneous ones. The tool
then assumes that all the alignments are correct and it is up to the user to
identify only the wrong ones by marking them with a simple mouse click on the
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misaligned image. The tool also allows for the correction of misalignments. Once
an alignment is marked as wrong, you can insert the correct caption by typ-
ing it with the keyboard, while the tool suggests possible correct alignments by
analysing the characters entered and the transcription of the current line of text.
The user must make the decision whether to validate or correct. It should be
noted that the pure validation process is faster than the correction, but results
in correctly labelled sets consisting of fewer elements.

One of the main problems that led us to define a method for word alignment
is the need for a method to quickly and easily obtain correctly labelled data
sets that can be used to train automatic handwriting recognition systems. In
order for these data sets to be used correctly and profitably, they must be error-
free; in our case, each word image must be correctly labelled with its actual
transcription. The validation tool makes it possible to obtain a correctly labelled
dataset starting from the output of the MiM algorithm, which makes the process
faster and easier than a completely manual labelling.

Fig. 3. The user interface of the validation tool. The figure shows how to select an
incorrect alignment by clicking on the image of the word that contains the error. Once
an incorrect image has been selected, it is possible to enter the correct transcription
by pasting it into the appropriate text box at the bottom of the interface.

4.3 Method Evaluation

The results of the experiments on the 5-pages data set are reported in Table 1,
while Table 2 reports those achieved on the 20-page data set. They show that:
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– the performance exhibit the same trends on both the data sets, thus con-
firming that a few pages are enough to reliably estimate the value of ν, and
that the ACW is a simple yet effective metric for evaluating the consistency
between the box width and the number of character of the transcript;

– the MiM strategy is actually better than the forward one, as it is capable of
processing more lines;

– the consistency check allows to deal properly with segmentation errors, as
independently of the strategy, more than 83% of the boxes are correctly asso-
ciated with their transcripts.

It is essential to highlight that in the tables above an alignment is considered
correct even if it is not at the word level; a box may contain two (or more)
words, and the alignment is correct if the transcripts of all the words in the
box are linked to it. The number of alignments then indicates how good the
word segmentation is; the closer this number to the total number of words in the
dataset, the better the word-level segmentation. In the case of the 20-page data
set, the MiM method succeeds in correctly assigning 2645 word images, of which
2497 contain a single word, 142 contain two words, and 6 contain more than
three words, yielding a total of 2801 correctly assigned words, with a percentage
of correct alignment of 75.93%.

Table 1. Experimental results on the 5-pages data set.

Forward MiM

N. of lines 77

N. of words to align 805

N. of processed lines 65 77

N. of alignments 607 689

N. of correct alignments 501 590

Table 2. Experimental results on the 20-pages data set.

Forward MiM

N. of lines 431

N. of words to align 3689

N. of processed lines 365 428

N. of alignments 2686 3196

N. of correct alignments 2233 2645
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4.4 Time Evaluation

In order to evaluate the time efficiency of the proposed method, after running
the alignment method with the MiM strategy, the validation tool presented in
Sect. 4.2 was used for recording the time spent by the user for validating the
correct alignments and correcting the wrong ones. Validation and correction
were performed by alternating a 20-min working session with a 5-min resting
session, as is common in these cases to avoid fatigue effects. For comparison, we
also recorded the time spent by the user, alternating working and resting session
as in the previous case, to manually segment and align the same data. Table 3
shows the time needed for validating and correcting the processed lines, and thus
the total time to achieve an error-free alignment for the 20-pages data set using
the MiM algorithm, and the total time required for a fully manual alignment.
The data reported in the table show that by using the proposed method, we
recorded a reduction of 47.73% of the time for achieving an error-free alignment.

Table 3. Time spent by the user to achieve an error-free alignment of the processed
text lines for the 20-pages data set using the proposed method and performing a full
manual alignment.

MiM algorithm Manual alignment

Total time (min) 98.97 189.35

Validation time (min) 41.12 N/A

Correction time (min) 57.83 N/A

4.5 Results Comparison

Several methods in the literature have tried to address a similar problem, Table 4
reports a summary view of these works. The methods considered all use different
datasets from the Bentham Collection, however, works [5,11,15] use datasets
somewhat similar to the dataset used for these work. [15] uses as a dataset a
manuscript letter from the American politician and scientist Thomas Jefferson,
while the works [5] and [11] test their method on the George Washington archive.
The documents in these datasets are contemporary to those of the Bentham
collection, and they are all written in cursive English. Furthermore, the works
[15] and [5] admit that the alignment also occurs with an image that contains
more than one word, in the same way as the proposed method. Among all the
works, [6] and [18] use the most different datasets with respect to the dataset
used. [6] tests the method on the dataset ’These of the saint Grail’, a dataset
from the 13th century, while [18] develops a methodology for carrying out an
alignment on early printed documents and tests on the Gutenberg Bible.The
remaining datasets contain documents either written in languages other than
English or with a modern style of handwriting.
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Table 4. Comparison between the methods used in literature and the different datasets
used.

Reference Dataset Dataset
dimension

Results

[15] Thomas Jefferson Letter -
1787

249 words 72% correct alignment

[5] George Washington’s
archive - GW100

100 pages 75.40% correct
alignment

[11] George Washington’s
archive - GW100

100 pages 72.80% correct
alignment

[16] Corpus Cristo Salvador 53 pages
1172 lines

92.80% correct
alignment

[3] The Swiss Literary
Archives Handwritten
poetry by Gerhard Meier

145 pages
1640 lines

94.66% word mapping
rate (require training
for feat extraction)

[17] Kabinet van de Koningin
(KdK) collection

100 lines 69% correct alignment

[13] ICDAR2009 test set 200 documents
29717 words

99.48% detection rate
(extension of [14])

[14] ICDAR2009 test set 200 documents
29717 words

97.04% detection rate
(requires manual
validation)

[10] C5 Hattem Manuscript 303 pages 75.50% Correct
alignment

[6] Queste del saint Graal
(no coursive)

120 double-columned
pages

72.90% correct
alignment

[18] Gutenberg Bible
(incunambula)

37 pages 94.30% correct
alignment

Proposed Bentham Collection 20 pages
431 lines

75.93% correct
alignment

The proposed method can reach a percentage of correct alignment of 75.93%.
Comparing this result with those in Table 3, it is possible to note that the per-
formance is comparable with those of the methods tested on datasets similar to
the one used performing slightly better. However a direct comparison between
all the methods is difficult, since all the methods are tested on different datasets
with very different dimensions and characteristics.

5 Conclusion

We have presented a method for automatically aligning the transcription of
handwritten historical documents with the digital document images. We then
implemented a tool to validate the alignment results, saving all the correct align-
ments or correcting the misleading ones. The tool allowed us to record the time
taken for the process. It was found that using the proposed method to obtain
datasets with correctly labelled handwritten word images compared favourably
with the time required for manual labeling the dataset. The experimental results
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showed that our method was able to correctly match 75.93% of the words in the
dataset. The results reported here cannot be directly compared with the results
of other methods proposed in the literature, as they were obtained with different
data and under different assumptions. Nevertheless, they show that the perfor-
mance of our method is comparable to the state of the art and its complexity is
much lower than that of the best performing competitors. Moreover, the method
reduces the time needed for the user to perform the alignment manually by more
than 47%.

The method allows us to obtain good results, but we believe that it is possible
to improve the performance of the system and we are working in this direction.
To this end, we have discovered some potential weaknesses in the system and
are thinking about solutions to improve performance. Currently, the method
calculates a threshold ν before the alignment step and keeps this value constant
for all analysed lines, but it is possible to estimate a different threshold for each
line of text. The calculation of the ACWbox value is based on purely geometric
and spatial considerations. During the alignment process, it is possible to track
the size of the boxes of the previously aligned words. This information can be
used to improve the estimation of the ACWbox value, assuming that the size of
the same handwritten characters remains constant throughout the document.

The promising results reported here, and the idea of using the results of the
system to simplify the labelling of handwritten records, have led us to believe
that the process of transcription alignment could be of considerable interest and
have prompted us to continue our investigations for future developments.
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Abstract. Automatic handwriting recognition for historical documents
is a key element for making our cultural heritage available to researchers
and the general public. However, current approaches based on machine
learning require a considerable amount of annotated learning samples to
read ancient scripts and languages. Producing such ground truth is a
laborious and time-consuming task that often requires human experts.
In this paper, to cope with a limited amount of learning samples, we
explore the impact of using synthetic text line images to support the
training of handwriting recognition systems. For generating text lines,
we consider lineGen, a recent GAN-based approach, and for handwriting
recognition, we consider HTR-Flor, a state-of-the-art recognition sys-
tem. Different meta-learning strategies are explored that schedule the
addition of synthetic text line images to the existing real samples. In
an experimental evaluation on the well-known Bentham dataset as well
as the newly introduced Bullinger dataset, we demonstrate a significant
improvement of the recognition performance when combining real and
synthetic samples.

Keywords: Handwriting recognition · Synthetic handwriting ·
Meta-learning strategies · Linegen · HTR-Flor

1 Introduction

The state of the art in handwritten text recognition (HTR) for historical doc-
uments has improved greatly in the past decade, leading to relatively robust
systems for automated transcription and keyword spotting [3]. However, the
main limitation of such systems is the need to access thousands of annotated
training samples, which have to be produced by human experts for each script
and handwriting style anew.

A promising approach to alleviate this limitation is to support the training of
the recognition system with synthetic samples. Recent progress include the use
c© Springer Nature Switzerland AG 2022
C. Carmona-Duarte et al. (Eds.): IGS 2021, LNCS 13424, pp. 61–75, 2022.
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of Generative Adversarial Network (GANs) for generating synthetic handwriting
based on examples of existing handwriting styles.

In this paper, we aim to investigate whether or not synthetic handwriting
samples can help to improve the recognition performance for historical docu-
ments when only few real labeled samples are available. To the best of our
knowledge, this question has not been addressed comprehensively so far. We
consider a recent GAN-based approach, lineGen [2], for style transfer and syn-
thesis of text line images, and use the synthetic learning samples for training a
state-of-the-art recognition system, HTR-Flor [14]. Several meta-learning strate-
gies are investigated to schedule the addition of synthetic samples to the real
ones.

Two datasets are considered for experimental evaluation. First, the well-
known Bentham collection [5], which contains a single-writer collection of English
manuscripts from the 18th and early 19th century. Secondly, the newly intro-
duced Bullinger dataset, a work in progress that aims to make the letter cor-
respondence of Heinrich Bullinger, a Swiss reformer, available in an electronic
edition. The letters were written in Latin and German in the 16th century and
encompass a considerable number of writers who are represented with only one
or few letters in the collection. Handwriting synthesis is particularly interesting
in this scenario, as it may allow to adapt a handwriting recognition system to
the particular writing styles of these letters.

In the following, we discuss related work, describe the handwriting datasets,
introduce the synthesis and recognition methods as well as the meta-learning
strategies, and present the experimental results. The paper is concluded with an
outlook to future work.

1.1 Related Work

We found relatively few examples of using synthetic handwriting data to help
with the training of HTR systems. One recent example is TrOCR [9]. It uses
a transformer-based architecture as well as pre-trained image and text trans-
formers to achieve state-of-the-art recognition performance on both printed and
handwritten text datasets. One issue of transformer-based architectures is that
they require huge amount of training data. The solution implemented by TrOCR
is to use synthetic data to augment existing datasets. They did not however use a
handwriting generator, but instead generated training data using publicly avail-
able fonts with both printed and handwritten style.

There have been several attempts at handwritten text generation in recent
years since the introduction of Generative Adversarial Networks [6], but only in
a few cases, the resulting synthetic data has been used to train an HTR system.

To the best of our knowledge, Alonso et al. [1] is the first attempt at generat-
ing handwritten text images by using a Generative Adversarial Networks (GAN)
[6] trained on offline data. While it is able to generate legible French and Arabic
words, it suffers from several limitations. It is only able to generate fixed width
images with consequently a fixed character count. It is also unable to properly
disentangle style from content, making it impossible to control the style of the
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generated images. Despite these limitations, the generated images were used to
augment the IAM dataset with 100k new entries and train a handwritten text
recognition system, but to no noticeable improvements.

ScrabbleGAN [4] improves on Alonso et al. [1] by using a fully convolutional
generator and a filter bank to handle character style. These improvements allow
for variable word length and control over the generated style, but the charac-
ter width is still fixed, making generated cursive text look unrealistic. Gener-
ated data was evaluated by mixing 100k images to existing datasets of modern
handwriting, specifically IAM and RIMES, and retraining the HTR system. A
improvement of around 1% was measured on both datasets. More interestingly,
they highlighted the possibility of using such a generation system in domain
adaptation scenarios.

GANWriting [8] improves on ScrabbleGAN [4] by removing the character
width limitation, and therefore showing huge improvements in generation quality
for cursive and tight handwriting styles. Unfortunately, they did not evaluate
their data for HTR system training.

SmartPatch [10] is the latest improvement of GANWriting [8]. Custom patch
discriminators are used to improve generation quality by removing some common
artifacts produced by GANWriting. In a human evaluation, SmartPatch was
thought to look better than GANWriting 70.5% of the time, and it even seemed
more real than the true real data 54.4% of the time. They did not however
evaluate their results on a HTR model either.

LineGen [2] is based on Alonso et al. [1]. It works directly on entire lines and
is capable of extracting style information from only a few samples. It uses an
additional spacing network to allow much better variation in character output
width. It makes use of an autoencoder-like architecture to introduce perceptual
and pixel-wise reconstruction loss, enabling for high-fidelity results. However, we
find once again no evaluation of the results on a HTR model.

In this paper, we consider lineGen for generating synthetic handwriting
because of convincing visual results and its ability to generate complete text
lines, which are the standard input for current HTR systems. The synthetic
training samples are studied in the context of handwriting recognition with
HTR-Flor [14], a relatively lightweight convolutional recognition system with
state-of-the-art performance.

2 Data

2.1 Bentham

The Bentham collection [5,13] is a set of manuscripts images written by the
English philosopher Jeremy Bentham during the 18th and early 19th centuries.
It is therefore a single writer dataset. It contains 433 pages of scanned letters,
totaling 11,473 lines. The scans are of high quality, with a clearly legible black
ink on grey background handwriting, as can be seen in Fig. 1.

The dataset comes as either directly the pages or the lines, along with a
ground truth indicating what is written on each image. There is no word-level
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Fig. 1. Example of a line from the Bentham dataset.

isolation available. That means that, as can be seen on Fig. 1, the entire lines
are cut from the pages. The skew, i.e. the inclination of the text lines, is not
corrected, so some of the lines are not perfectly horizontal and may have a slight
upward or downward angle.

2.2 Bullinger

The Bullinger dataset is a novel, work-in-progress dataset originating from the
Bullinger Digital project1. This project aims to scan and associate transcriptions
to letters sent by and to the Swiss reformer Heinrich Bullinger (1504–1575),
which leads to the presence of different handwriting styles. While the scans are
of high quality, the dataset itself is a challenge for handwriting recognition. It
features 16th century style handwriting with ink on paper that is often hard to
read even for a human observer. It is also a multi-language dataset, featuring
letters mostly in Latin but also in German. A line example is shown in Fig. 2.

Fig. 2. Example of a line from the Bullinger dataset.

The dataset is composed of a set of scanned letters with the line location
information.

As the dataset is still a work in progress, we did not have access to all the
data at once. We therefore used two distinct releases. The first release, the small
Bullinger dataset, is composed of 1,488 lines after preprocessing. The second
release, the large Bullinger dataset, is composed of 18,925 lines.

There are also some caveats with the provided ground truth and segmenta-
tions. While some of the content and segmentations have been proofread and
are human-verified, most of the data comes from a Transkribus [7] based tran-
scription alignment system. Although transcription alignment has a very high
precision, the resulting ground truth still contains a few errors. In particular,
some abbreviations that are commonly used in handwritten Latin text may be
written out in full. While this makes sense when providing a transcription of a

1 https://www.bullinger-digital.ch/.

https://www.bullinger-digital.ch/
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letter to a human reader, it is not ideal for training an HTR system, because it
leads to a mismatch between the abbreviation character visible in the image and
the word written out in full in the transcription. Nevertheless, an experimental
evaluation of this dataset is still feasible, since we only compare relative HTR
performances measured on the same data.

3 Methods

In this section, we describe our choice of methods for evaluating the impact
of synthetic training data. First, the GAN-based approach to generate synthetic
text lines using lineGen, secondly, the HTR system, and finally the meta-learning
strategies for mixing real and synthetic data.

3.1 Text-Line Image Generation

To generate new text-line images we use lineGen [2]. It works directly on entire
lines and is capable of extracting style information from only a few samples of the
target style. It uses an additional spacing network to allow much better variation
in character output width. It makes use of an autoencoder-like architecture to
introduce perceptual and pixel-wise reconstruction loss, enabling for high-fidelity
results.

The network is composed of six components: a style extractor, a space pre-
dictor, a pre-trained HTR system, a generator, a discriminator and a pre-trained
encoder. The style extractor takes a single image as input and outputs a style
vector. The space predictor takes a line of text and the style vector as input and
outputs spaced text. Both the style vector and the spaced text are then fed to
the generator which outputs a generated image that should have the content of
the given line of text with the style of the given image example.

Three loss functions are considered. First, the generated image is used by the
pre-trained HTR system to compute a Connectionist Temporal Classification
(CTC) loss. Second, the discriminator computes an adversarial loss and, third,
the pre-trained encoder computes a perceptual and pixel-wise reconstruction
loss.

We use this network on two datasets described below, Bentham and Bullinger.
The data is split randomly into independent sets for training, validation, and
testing, respectively. The exact split is indicated in Table 2 in the experiments
Sect. 4.1.

Bentham. To generate synthetic text lines for the English Bentham dataset,
we write lines from The Lord of the Rings in the style of the Bentham dataset.
We successively trained the encoder (25’000 iterations), the internal HTR sys-
tem (15’000 iterations), and the generator (50’000 iterations). Figure 3 shows
the results obtained after this training process. Visually the lines look like the
original database lines. They are legible with relatively few artifacts. Some do
appear, especially with characters that go below the baseline like “y” or “g”.
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We can also see some artifacts appear around punctuation marks like “!” or “,”.
Some of those artifacts are due to the data, in particular the non-frequent char-
acters. For example, we count only 19 occurrences of “!” in the whole Bentham
dataset.

Fig. 3. Example of generated lines using lineGen on the Bentham dataset after 50’000
iterations

The artifacts of letters like “y” and “g” are harder to understand. One possi-
ble explanation is that they are somewhat often cut or overlapped in the dataset,
due to the segmentation of the lines. One other interesting point regarding those
letters is that they seem to share the same defects across sentences. Figure 4
shows a close up of those artifacts from multiple different lines. We can clearly
see that the defaults as well as the general shape are similar for each instance. It
seems that the generator does not produce enough variations. We tried to add
some variations by introducing a normal noise X ∼ N (0, 0.5) to the style vector
centered around the mean. We do not observe any significant difference with
or without additional noise, hinting that adding noise to the style vector is not
enough to fix the variation issues of the generator.

Fig. 4. Example of artefacts in a line generate by lineGen on the Bentham dataset

Bullinger. On the Bullinger dataset, the training was done in two parts. It was
first attempted on the small original dataset containing only 1,190 transcribed
lines. As the results were not satisfactory, training was then continued on the
bigger 17,033 lines dataset.

After training our text-line generator on the small dataset we reach a Char-
acter Error Rate lower than 1% on the training data and 30% on the validation
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data. These results show clearly an overfitting, as should be expected with such
a small dataset. Nevertheless, we went ahead with the training of the generator
to see how it would perform in such bad conditions. It was trained for 50,000
iterations (about 54 h). As visible in Fig. 5a), the generator struggled to output
something coherent, and it took over 40’000 iterations just to start seeing some-
thing that was remotely similar to what we would expect. After another 10,000
iterations, the output stabilized to very blurry but still coherent text, as can
be seen in Fig. 5b). We can however see that the general look of the generated
image matches the expected style of the Bullinger dataset.

After this initial training, we continued on the larger one. The generator was
trained for another 10,000 steps. This resulted in a significant improvement in
generation quality, as can be seen in Fig. 5c). The text is sharper and mostly
legible. We can however observe the same artifacts as on the Bentham dataset,
particularly visible on the “y” letter. This effect is amplified here because we
generated an English sentence, which has vastly more occurrences of “y” than
the original Latin or German languages of the dataset.

As an attempt to further increase the generation quality, both the encoder
and internal HTR were also trained on the larger dataset. The encoder was
trained for an additional 54,000 iterations, bringing the total to 80,000. The
internal HTR was trained for 15,000 more iterations, for a total of 30,000. This
renewed training ended up with a Character Error Rate of 6% on the training
data and 15% on the validation data, i.e., we see much less overfitting than after
the initial training, as it shows on the results obtained on the validation data.
Using those new pre-trained parts, the generator was then trained for another
20,000 iterations, reaching a total of 80,000. An example is shown Fig. 5d).

Fig. 5. Example of generated line images using lineGen on the small Bullinger dataset
after a) 40’000 iterations, b) 50 000 iterations and on the large one with c) 60’000 and
d) 80’000 iterations

While the results may look worse than before at first glance, they are actually
closer to the original dataset. This is explained by the fact that the internal
HTR got significantly better. Before the additional data and training, it was
biased towards “easy to read” characters, and this bias got carried over to the
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generator. By increasing the ability of the internal HTR, the generator is able
to create a wider variety of character styles that are still correctly recognized,
and is therefore not incorrectly penalized by the character loss.

Note, however that the final results are overall worse than on the Bentham
dataset, with more artifacts appearing. This is easily explainable by the nature
of the two datasets. The Bentham dataset being a cleaner, single writer dataset,
it is obviously easier than the Bullinger one and its multiple writers with hard
to read handwriting, even for an human observer. The synthetic Bullinger style
is expected to contain predominant character styles across the whole database
but not to mimic one writer in particular, although it will be biased towards the
style of Bullinger himself who wrote the largest number of letters.

3.2 Recognition System

To choose the recognition system, three networks were compared on the Bentham
and IAM dataset: HTR-Flor [14], TrOCR [9] and PyLaia [12], used in commercial
tools like Transkribus [7]. The results of the papers mentioned above have been
reported in Table 1. TrOCR has the lowest CER rate but is the network with the
largest number of parameters and the longest decoding time. Also, this network
needs more training data than the two other networks.

For evaluating the impact of synthetic training samples on the recognition
performance, we chose HTR-Flor as our baseline recognition system, because it
offers an excellent trade-off between recognition performance and computational
effort. It is lightweight, relatively fast, and still manages to outperform other
models like PyLaia.

Table 1. Comparison between different recognition models, results from [14] and [9]

Model # of params Decoding time CER (Bentham) CER (IAM)

HTR-Flor 0.8 M 55 ms/line 3.98% 3.72%

PyLaia 9.4 M 81 ms/line 4.65% 4.94%

TrOCR 558 M 600 ms/line – 2.89%

Additionally, having less parameters also means that the network can be
trained with less data, and with less risks of overfitting when data is scarce.
This is also an advantage in our case, since our final use case aims to be able to
train the HTR system on as little as a single page of real text for a particular
writer.

3.3 Meta-learning Strategy

The standard meta-learning strategy for using synthetic data is to add a fixed
number s of synthetic samples to the real samples and then train the system
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until convergence. Because there is no limit in the number of synthetic text lines
that can be produced by the generator, different values for s can be tested. The
expectation is that adding some synthetic data will be helpful because of the
increased data quantity but adding too much synthetic data leads to a reduced
performance because of the decreased data quality when compared with real
samples.

We explore also a more detailed meta-learning strategy by gradually adding
more synthetic data to the system as the number of training epochs increase.
Our intuition is that real data is especially important at the beginning of the
training process, in order to find good initial parameters for the HTR system
with high-quality data, and that adding synthetic data is especially beneficial at
the end of the training process to fine-tune the parameters with high-quantity
data.

The suggested meta-learning strategy applies a sequence L1, . . . , Ln of learn-
ing steps, where each step Li = (ri, si, ei) utilizes ri real samples and si syn-
thetic samples for training the HTR system during ei epochs, with ri ≥ ri+1

and si ≤ si+1 to gradually increase the number of synthetic learning samples.
The following strategies are considered in this paper:

– Real-only. Use only real samples L = (r, 0, e).
– Synthetic-only. Use only synthetic samples L = (0, s, e).
– Fixed. Use a fixed amount of real and synthetic samples L = (r, s, e).
– Increase. Increase synthetic samples L1 = (r, s1, e1), . . . , Ln = (r, sn, en).
– Replace. Also decrease real samples L1 = (r1, s1, e1), . . . , Ln = (rn, sn, en).

4 Experiments

4.1 Setup

To evaluate the impact of synthetic data for HTR training, the Bentham and
Bullinger datasets are first split into independent sets of text lines used for
training, validation, and testing, as indicated in Table 2.

Table 2. Distribution of text lines partitions

Dataset Training Validation Test Total

Bentham 9,198 1,415 960 11,573

Bullinger (large) 17,033 946 946 18,925

After training the lineGen text line generator for the two datasets (see
Sect. 3.1), we consider two scenarios for evaluating the HTR system:

– Medium. A medium amount of 1000 real text lines from the training
set is used to train the HTR-Flor recognition system. Such a situation is
encountered when ground truth is available for several pages of a historical
manuscript.
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– Low. A low amount of 200 real text lines is used. Such a situation is encoun-
tered when ground truth is prepared only for one or few pages of a historical
manuscript.

The HTR system is trained for 75 epochs in total, which is sufficient for
convergence. Depending on the meta-learning strategies employed, the 75 epochs
are subdivided into several learning steps Li = (ri, si, ei) with

∑n
i=1 ei = 75.

For the Medium scenario, the meta-learning strategies are evaluated:

– Real-only: 1000 real samples.
– Synthetic-only: 1000 synthetic samples.
– Fixed: 1000 real and 1000 synthetic samples.
– Increase: (1000, 0, 20), (1000, 500, 10), (1000, 1000, 20), (1000, 2000, 25)
– Replace: (1000, 0, 25), (750, 250, 25), (500, 500, 15), (0, 1000, 10)

For the Low scenario, the following meta-learning strategies are evaluated:

– Real-only: 200 real samples.
– Synthetic-only: 200 synthetic samples.
– Fixed: 200 real and 200 synthetic samples.
– Fixed-4k: 200 real and 4000 synthetic samples.
– Fixed-8k: 200 real and 8000 synthetic samples.
– Increase: (200, 0, 20), (200, 200, 10), (200, 500, 20), (200, 1000, 25)
– Replace: (200, 0, 25), (150, 50, 25), (100, 100, 15), (0, 200, 10)

In both scenarios, to put the results into context, a baseline is provided, which
corresponds to a situation where a large amount of ground truth is created for
a historical document collection.

– Baseline: Use all the available real training samples (see Table 2).

4.2 Medium Scenario

The recognition results of the Medium scenario are summarized in Table 3 in
terms of character error rate (CER). The best results on Bentham are achieved
with the Fixed meta-learning strategy, with a CER of 11.38%, and the best
results on Bullinger are achieved with the Increase strategy, with a CER of
23.55%. In both cases, the results of the Fixed and Increase strategies are very
similar. When compared with the Real-only scenario, significant improvements
of 3.39% (Bentham) and 3.24% (Bullinger) are obtained when using synthetic
text lines during training. When compared with the Baseline, the achieved CER
indicates that HTR remains feasible even when ground truth exists only for 1000
text lines.

When comparing the different meta-learning strategies, we can see that both
datasets follow the same general trends. While the Real-only scenario reaches
a solid performance of 14.77% and 26.79% on Bentham and Bullinger, respec-
tively, the Synthetic-only one seems to quickly get stuck at 67.70% and 83.37%.
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Table 3. Character error rates for the Medium scenario. The best results among the
different meta-learning strategies are highlighted in bold font.

Medium Bentham Bullinger

Baseline 05.01 10.69

Real-only 14.77 26.79

Synthetic-only 67.70 83.37

Fixed 11.38 24.09

Increase 11.99 23.35

Replace 30.63 55.96

This strongly hints that the HTR model is overfitting on the synthetic train-
ing data. The most likely explanation is that the generated images do not have
enough variations. As previously shown in Fig. 4 during the generator training,
the individual characters do not seem to vary in a meaningful way, suggesting
that the HTR model learns the shape of a few particular characters but cannot
generalize to real variations present in the handwriting.

Figures 6 and 7 show the evolution of the CER in more detail during training
with the different meta-learning strategies. Again, we observe consistent results
among the two datasets.
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Fig. 6. Training behavior for the Medium scenario on the Bentham dataset.

Real-Only and Synthetic-Only. In the Medium scenario, training with only real
data achieves a reasonable performance but leaves room for improvements when
compared with the Baseline. Using only synthetic data fails and leads quickly
to overfitting.

Fixed. The Fixed scenario uses the same amount of real and synthetic images
over 75 training epochs. It clearly outperforms the Real-only scenario, both learn-
ing faster and reaching a lower CER. This is a very encouraging result, as it shows
that the additional generated data did indeed help training the HTR model.
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Fig. 7. Training behavior for the Medium scenario on the Bullinger dataset.

Increase. The Increase scenario gradually adds more synthetic data. As
expected, this scenario stays close to the performances of the real-only one until
the 20th epoch. It then starts to outperform it as additional generated data is
included, reaching a final performance similar to the Fixed scenario. These results
seem to indicate that it is not necessary to add the synthetic data progressively
to “guide” the training.

Replace. The Replace scenario both decreases the real data and increases the
synthetic data gradually. This scenario is interesting because the training seems
to follow the Real-only scenario, up to the 65th epoch, where we switch to
generated data only. We can then see the CER climbing back up, presumably as
the model overfits on the generated data, as theorized previously. It shows that
the model overfits very quickly when presented with only synthetic data, even
when previously “warmed up” with real data.

4.3 Low Scenario

The recognition results of the Low scenario are summarized in Table 4. The best
results on Bentham are achieved with Fixed-4k, with a CER of 19.78%, and the
best results on Bullinger are also achieved with Fixed-4k, with a CER of 40.24%.
When compared with the Real-only scenario, drastic improvements of 61.31%
(Bentham) and 47.79% (Bullinger) are observed, highlighting that synthetic data
is especially helpful when only very few labeled samples are available in the
ground truth, i.e. only a few pages or a single letter in a historical document
collection.

Figures 8 and 9 illustrate the evolution of the CER during training. Again,
consistent trends are observed among the two datasets.

Real-Only and Synthetic-Only. We see that the real data is not sufficient to train
the model in the Low scenario. For Synthetic-only, the performance remains
similar to the Medium scenario.

Fixed. The different Fixed meta-learning strategies greatly outperform Real-only
and Synthetic-only, demonstrating that a combination of real and synthetic data
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Table 4. Character error rates for the Low scenario. The best results among the
different meta-learning strategies are highlighted in bold font.

Low Bentham Bullinger

Baseline 05.01 10.69

Real 81.10 88.03

Generated 68.41 80.71

Fixed 27.03 47.68

Fixed-4k 19.78 40.24

Fixed-8k 21.29 43.70

Increase 29.02 47.04

Replace 63.30 77.40
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Fig. 8. Training behavior for the Low scenario on the Bentham dataset.

is of crucial importance when working in the Low scenario. We observe that
adding more synthetic data using Fixed-4k improves the performance reaching
a peak performance. Adding even more synthetic data with Fixed-8k does not
further improve the result.

Increase. As expected, we see the same “slow start” for Increase as with Real-
only. We then see a rapid improvement as we add more data, the CER con-
tinuously decreases until the end of the training. On the Bullinger dataset, the
strategy to gradually increase the synthetic data slightly outperforms the fixed
combination of the Fixed strategies.

Replace. As for the Medium scenario, it is again not beneficial to remove the
real samples. It leads to an overfitting to the synthetic data after the 65th epoch
when all real data is removed. However, unlike the Medium scenario, the error
rate does not increase significantly after this epoch, it just stops improving.



74 M. Spoto et al.

0 25 50 75
0

0.2
0.4
0.6
0.8
1

Epoch

C
E
R

Baseline Real-only Synthetic-only Fixed
Fixed-4k Fixed-8k Increase Replace

Fig. 9. Training behavior for the Low scenario on the Bullinger dataset.

5 Conclusion

In this paper, we have studied the impact of GAN-based handwriting synthe-
sis on the recognition performance, when training HTR systems with only few
labeled data in the context of historical documents. With the right mix of real
and synthetic data, supported by different meta-learning strategies, we were able
to demonstrate a significant decrease in character error rate, ranging from 3%
when using 1000 real text line images for training up to 60% when using only
200 real text lines. These results are especially promising for multi-writer docu-
ment collections, such as the newly introduced Bullinger dataset, which contain
a large number of unique writing styles.

There are several lines of future research. First, the handwriting generation
system itself also depends on training data to perform a successful style transfer.
This might not always be feasible for smaller datasets, as the initial training with
the small Bullinger dataset showed. It would be interesting to further investigate
the behavior of generators when trained using low quantity of data, or to explore
new ways of training the generators, such as transfer learning with fine-tuning.

Secondly, all experiments in this paper have been realized using lineGen. It
would be beneficial to test other generators as well, in particular to verify if the
same drop in performance is observed when using only synthetic data.

Finally, the synthetically generated samples, although matching the target
style well, were lacking some natural variability. Future work should investigate
methods to increase the variability and make it as natural as possible. Using
the kinematic theory of rapid human movements [11] for this purpose seems
especially promising.
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7. Kahle, P., Colutto, S., Hackl, G., Mühlberger, G.: Transkribus - a service platform

for transcription, recognition and retrieval of historical documents. In: 2017 14th
IAPR International Conference on Document Analysis and Recognition (ICDAR),
vol. 04, pp. 19–24 (2017). https://doi.org/10.1109/ICDAR.2017.307
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Abstract. The analysis of digitized historical manuscripts is typically
addressed by paleographic experts. Writer identification refers to the
classification of known writers while writer retrieval seeks to find the
writer by means of image similarity in a dataset of images. While auto-
matic writer identification/retrieval methods already provide promising
results for many historical document types, papyri data is very challeng-
ing due to the fiber structures and severe artifacts. Thus, an important
step for an improved writer identification is the preprocessing and feature
sampling process. We investigate several methods and show that a good
binarization is key to an improved writer identification in papyri writings.
We focus mainly on writer retrieval using unsupervised feature methods
based on traditional or self-supervised-based methods. It is, however,
also comparable to the state of the art supervised deep learning-based
method in the case of writer classification/re-identification.

Keywords: Writer identification · Writer retrieval · Greek papyri

1 Introduction

The mass digitization of handwritten documents not only makes them accessible
to the public, but also accelerates research in the fields of linguistics, history and
especially paleography.

An important task is writer1 identification (scribe attribution), which can
provide clues to life in the past and enable further analysis of networks, sizes of
writing schools, correspondences, etc. The term writer identification is often used
for both writer retrieval and writer classification (or writer re-identification).
Writer retrieval is related to the scenario where a query image with possible
known writer identity is given and a dataset of images is ranked according to
their similarity to the query image. This can help to pre-sort large corpora.
Conversely, writer re-identification has a training set of known identities that

1 “Writer” and “scribe” is used interchangeably throughout the paper.
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can be used to train classifiers that are able to distinguish and classify new
samples in these classes.

Writer identification can be obtained at two levels: based on the content of
the text or on the appearance of the writing. For the first one, the raw text,
i. e., a transcription of the text, is analyzed on the stylistic point of view and the
author is attributed. However, the author does not need to be the writer of the
text, which could for example be written by a secretary. An appearance analysis
can give clues about the person who penned the text, the actual writer. This
appearance analysis can be realized in multiple ways. Sometimes the layout can
give hints about the scribe, e. g., in charters [20, pp. 40]. However, this depends
much on the document type and its tradition quality. Writer identification is tra-
ditionally a completely exemplar-based and manual task often accomplished by
forensic or paleographic experts. Results obtained by paleographers have often
been put in doubt for their subjectivity, the difficulty to produce objective, repro-
ducible arguments. In this paper, we explore an automatic writer identification
based upon the script appearance using signed documents, i. e., internal-based
evidence of the writer’s identity. We enrich our interpretation of the results with
paleographic considerations in order to better apprehend the peculiarities of this
group of writers.

Script-based writer identification in historical documents gained some atten-
tion throughout the last years. A popular group of approaches analyses the tex-
tural components of script, e. g., angles or script width, such as the Hinge feature
[4], which measures at each contour point two different angles. This feature was
also applied [3] to a medieval dataset containing 70 document images written
by ten writers. Another textural feature is the Quill feature [2]. It relates the
ink width to the angle at a specific radius. The authors show promising results
on historical data consisting of 10–18 writers (depending on the language) using
70–248 document images.

Fiel and Sablating [15] suggest a method based on Scale Invariant Feature
Transform (SIFT) and Fisher Vectors [17] to historical Glagolitic documents
(oldest known Slavic alphabet) consisting of 361 images written by eight scribes.
Therefore, they detect the text by local projection profiles and binarize the
document images using the method of Su et al. [33].

Another group of scientists investigate methods for writer identification
in historical Arabic documents [1,13,14]. The rejection strategy proposed by
Fecker et al. [14] is especially interesting, since it gives information whether a
writer is present in the reference dataset or not.

We investigated writer identification for different letter sets of correspon-
dences [9]. We also proposed a deep learning-based approach based on self-
supervised learning. It still achieves close to state-of-the-art results on the dataset
of letters of the ICDAR’17 competition on historical writer identification [16].

Apart from the technical point of view, writer identification methods were
also used in various paleographic analyses. The effort of finding join candidates of
the Cairo Genizah collection, which consists of approximately 350 000 fragments,
could be reduced drastically by an automatic method for finding join candidates
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focusing on similar writing [34]. More recently, Shaus et al. [32] analyzed 18
Arad inscriptions (ca. 600 BCE). By means of a forensic expert and statistical
methods, they show that the analyzed corpus was written by at least 12 different
writers. Popović et al. [28] studied the Bible’s ancient scribal culture by analyzing
the Great Isaiah Scroll (1QIsaa) of the Dead Sea Scrolls and found a switching
point in the column series with a clear phase transition in several columns. This
suggests that two main scribes were writing this scroll, showing that multiple
scribes worked at the same manuscript.

Papyri manuscripts were studied by Pirrone et al. [27] who investigate self-
supervised deep metric learning for ancient papyrus fragments retrieval. Papyri
data was also used as a challenging dataset in a competition for segmenting the
text (binarization) [29]. A baseline for writer identification of papyri manuscripts
was given by Mohammed et al. [23]. It is based on SIFT descriptors evaluated on
FAST keypoints classified using a normalized local naive Bayes Nearest Neighbor
classifier. The authors also provided a first papyri dataset (GRK-Papyri) consist-
ing of 50 image samples of 10 writers. Cilia et al. [12] used an extended version
of this dataset (122 images from 23 writers) and extracted single lines to form
the PapyRow dataset that can be used for further investigation. However note
that results based on lines are not image-independent anymore and thus could
be biased by background artifacts. The GRK-Papyri dataset was also in focus of
two further studies [24,25] that focused on writer (re-)identification, i. e., a part
of the dataset was used for training and the task was to classify the remainder
of the dataset. They showed that a two-step fine-tuning is beneficial for writer
identification. In particular, an ImageNet-pretrained network was fine-tuned first
on the IAM writer identification dataset [22] before it was fine-tuned a second
time on the writers of the papyri training dataset.

In this work, we evaluate two methods for writer identification. Both methods
are completely unsupervised, i. e., they do not need known writer identities. One
method relies on traditional features and the other one trains a deep neural
network in a self-supervised fashion. We evaluate the methods on the GRK-
Papyri dataset [23] where we mainly focus on the retrieval scenario because
there are no other works apart of a baseline given by Mohammed et al. [23]
considering the retrieval case. We show that both methods surpass the baseline
by a large margin. In particular, we investigate the critical sampling procedure
and show that a good binarization increases the retrieval and re-identification
accuracy.

The paper is organized as follows. We first present the methodology used for
writer identification in Sect. 2. In Sect. 3, we first discuss the dataset, then present
two different evaluation protocols: writer retrieval and writer classification/re-
identification, and eventually present and discuss our results before we conclude
the paper in Sect. 4.
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Fig. 1. Writer identification pipeline.

2 Methodology

The writer identification methods we use are based on the work done for the PhD
thesis of V. Christlein [6]. It follows a writer identification pipeline based on local
features, see Fig. 1. First, the image is pre-processed. This typically involves the
binarization of the image. Later, we will see that this is a particular impor-
tant part of the pipeline. We extract local features at specific sampling points
in the image, e. g., from contours of the handwriting or from keypoints. The
local descriptors themselves could be generated by a neural network as depicted
in Fig. 1. For example in a supervised way by training Convolutional Neural
Network (CNN) [8,18]. However, we do not have much training data available.
Therefore, we rely on two unsupervised methods to create local descriptors:

(1) We use descriptors based on SIFT [21]. The SIFT descriptors are Dirichlet-
normalized, decorrelated and dimensionality-reduced to 64 components by
means of PCA-whitening, and eventually �2-normalized, i. e., the representa-
tion is normalized such that its �2 norm is one. More details are given in
[6].

(2) We learn features in a self-supervised fashion [10] using a CNN, i. e., without
the need of labeled training data (here the writer information). At SIFT
keypoints, SIFT descriptors and 32× 32 patches are extracted. This patch
size was experimentally shown to work best. The SIFT descriptors are clus-
tered using k-means. The patches are used as input for a CNN. As targets
for the CNN, we use the cluster ids of the SIFT clusters. Note that we omit
SIFT keypoints and descriptors corresponding to patches that are completely
blank. Furthermore, because the image resolution is mostly very large, we
downsample the images by a factor of two in each dimension.

From these local descriptors, we create global descriptors to enable a simpli-
fied matching. We rely on Vectors of Locally Aggregated Descriptors (VLAD)
[19] for encoding the local descriptors into a high dimensional global representa-
tion using 100 clusters for k-means clustering. Additionally, we employ General-
ized Max Pooling (GMP), which was shown to improve the writer identification
performance [5,11] with a regularization parameter γ = 1000. The global repre-
sentation is eventually power-normalized with a power of 0.5 and �2-normalized.
This process is repeated five times. These five representations are afterwards
jointly PCA-whitened and once more �2-normalized to further decorrelate the
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Fig. 2. Example images of the GRK-Papyri dataset [23]. IDs: Abraamios 3, Andreas 8,
Dioscorus 5, Victor 2

global representations [6]. This final representation is eventually used for simi-
larity comparison using Cosine distance, which is a common metric for writer
retrieval. If a large enough independent training set would be available, then also
Exemplar-SVMs could be used to improve the results further [7].

3 Evaluation

3.1 Data

We use the GRK-papyri dataset [23], see Fig. 2 for some example images. It
consists of 50 document images written in Greek on papyri by ten different
notaries. For each writer, four to seven samples were cropped from securely
attributed texts: sometimes non-overlapping parts of a single long document,
sometimes different documents possibly several years apart from one another.
They all date from the 6th and early 7th century CE, as can be seen in Fig. 3. The
images come from several collections, thus using various digitization parameters.2

The images contain different artifacts, such as holes, low contrast, etc., and are
hence difficult to process.

3.2 Evaluation Protocol

We evaluate our method in two ways:

2 Meta-data on the images are available (reference, date, collection...) at https://d-
scribes.philhist.unibas.ch/en/gkr-papyri/.

https://d-scribes.philhist.unibas.ch/en/gkr-papyri/
https://d-scribes.philhist.unibas.ch/en/gkr-papyri/
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Fig. 3. Period of activity of the ten writers. Squares mark the precisely dated texts
included in the GRK-Papyri dataset. Dashed lines mark the maximum extension known
thanks to other texts outside the dataset. Note that for Andreas, his only text is securely
dated from the period marked with a dotted line.

(1) Leave-one-image-out cross validation. That means, we use each of the 50
images as query image and rank the other 49 images according to their
similarity with the query image. These results already allow a detailed pale-
ographic interpretation. From these ranks, we can compute different metrics:
the Top-1, Top-5, Top-10 identification rate, which denotes the probability
that the correct writer is among the first 1, 5, or 10 retrieved, i. e., most
similar, images (this is also known as soft criterion). Additionally, we give
the mean average precision (mAP) which takes into account all predictions
by taking the mean over all average precisions.

(2) Classification. For this scenario, we train on 20 samples, two from each writer
and test on the remainder.

3.3 Experiments

We evaluate five different methods, where the first four methods only differ in
the sampling/pre-processing. As baseline, we extract the SIFT descriptors at
SIFT keypoints. Keypoints overlaid over one image of the GRK-Papyri dataset
can be seen in Fig. 4. The example shows that many features are lying in the
background of the image.

In general, we have two different ways to deal with such a problem: (1)
Make the writer identification method robust against noise (artifacts, holes, etc.).
This can for example be achieved by using heavy data augmentation during the
feature learning process. (2) Remove the noise by means of binarization, i. e., a
segmentation of the writing.

We follow the second approach and thus try to segment the text in the papyri
data.
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Fig. 4. Example of SIFT keypoints applied on papyri data. Overlay with GRK-Papyri
[23], ID: Andreas 8

Fig. 5. Su binarization vs. AngU-Net. Image source: GRK-Papyri [23], ID:
Abraamios 4.

Binarization. We evaluate two different binarization methods. The first one by
Su et al. [33] works commonly well for such purposes. However, on some images,
the fiber of the papyri data causes sever artifacts, see for example Fig. 5 (left).

The second binarization method, denoted as AngU-Net is based on the pop-
ular U-Net [31]. The model was trained on 512 × 512 patches cropped from
the training set of the 2017 DIBCO Dataset [30]. The model was specifically
trained with augmentations consistent to textual information and designed to
simulate material degradation using TorMentor3 [26]. The effectiveness of this
approach is visualized in Fig. 5 (right). For inference, the AngU-Net is used in a
fully-convolutional manner.

Given the binarized images, we detect keypoints, extract local features by one
of the two presented methods, and compute the global image representations
as done in the baseline. As an alternative strategy, we can restrict the SIFT
keypoints to lie strictly on dark (here: black) pixels [10]. This can be achieved

3 https://github.com/anguelos/tormentor.

https://github.com/anguelos/tormentor
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Fig. 6. Common SIFT keypoints (left) vs. restricted SIFT keypoints (right). Image
source: GRK-Papyri [23], ID: Victor 5.

Table 1. Writer retrieval results, evaluated by a leave-one-image-out cross-validation.

Method Top-1 Top-5 Top-10 mAP

Mohammed et al. [23] 30

SIFT (Baseline) 28 70 84 30.3

Su Binarization + SIFT 40 72 86 30.5

AngU-Net + SIFT 46 84 88 36.5

AngU-Net + R-SIFT 48 84 92 42.8

AngU-Net + Cl-S [10] 52 82 94 42.2

by restricting the SIFT keypoint extraction such that only minima in the scale
space are used. The effect can be seen in Fig. 6.

Retrieval Results. We first focus on the first evaluation protocol, i. e., image
retrieval by applying a leave-one-image-out cross-validation. All results are
shown in Table 1. The reference method of Mohammed et al. [23] and our base-
line approach achieve quite similar results, where our baseline method is slightly
worse, i. e., retrieving one less sample, out of the 50, correctly. However, when
we apply binarization, the picture alters drastically. The binarization with the
method of Su et al. [33] gives already 10 % better results. This can be further
improved by using a better segmentation method, e. g., using the proposed AngU-
Net. Also restricting the keypoints (R-SIFT) to lie on the writing improves the
result slightly. This is interesting since we encountered the contrary in handwrit-
ten Latin text [10]. Finally, the Top-1 accuracy can be further improved by using
our self-supervised approach to learn robust local features [10].

Based on the document-level heatmap, see Fig. 7a, the best score (smallest
number, closest similarity) was achieved between Andreas 5 and 6, i. e., two sam-
ples from the same document. Second best was between Kyros3 1 and Kyros3 2,
two different texts written only one week apart. Among the best scores are
Dioscorus 2 and 3 (recto and versos of the same text) as well as Victor 2 and 3,
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(a) By document (b) By scribe

Fig. 7. Visualization of AngU-Net + R-SIFT method by heatmaps (the darker the
square, the higher the similarity). In (a), the numbers are related to the writer samples
in alphabetic order (from Abraamios 1 to Victor 8, Victor 10 being before Victor 2).
In (b), the similarity between scribes is displayed as the average of each pair of images;
inter-scribe similarity is computed by ignoring comparisons of images with themselves.

which come from the same document but in two different collections, thus two
totally different images.

The scribe-level heatmap, in Fig. 7b, shows the inter-scribe similarity, i. e., the
average distance between all documents of a scribe and all documents of another
one. We can see that texts written by Andreas have the highest similarity among
them, while the ones of Kyros1 have the lowest. The homogeneity of Andreas’
samples is not surprising since on the one hand Andreas’ hand is represented by
four samples of the same document, three coming from the same collection, and
on the other hand he is a chronological outsider (by far the most recent writer,
see Fig. 3). Kyros1 is represented by four different documents, three of which are
precisely dated and span over 18 years, which makes his period of activity the
longest present in the dataset, cf. Fig. 3. Victor is in a similar situation, since
he is represented by 7 samples coming from 6 documents and spanning over 16
years. However, the similarity between his samples is quite high, suggesting that
his handwriting has varied less than Kyros1’s one over a comparable amount of
time.

Classification Results. Finally, we conduct the second evaluation protocol,
i. e., we have a train/test split and use two samples of each writer for training.
We evaluate two different classifiers: a Nearest Neighbor (NN) approach and
a Support Vector Machine (SVM). For the latter approach, we train for each
writer an individual SVM using the two samples as positives and the remaining
18 samples as negatives. The two classes are balanced by weighting them indi-
rectly proportionally to the number of respective samples. The classifiers use the
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Table 2. Classification results.

Method Top-1 Top-5

Mohammed et al. [23] 26

Nasir & Siddiqi [24] 54

Nasir et al. [25] 64

AngU-Net + SIFT + NN 47 83

AngU-Net + SIFT + SVM 57 87

AngU-Net + R-SIFT + NN 53 77

AngU-Net + R-SIFT + SVM 60 80

Table 3. Confusion matrix of the classification result obtained by using AngU-Net +
R-SIFT + SVM. Correct ones highlighted in blue, wrong ones in red.
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Abraamios 1 0 0 0 0 1 0 0 0 0

Andreas 0 1 0 1 0 0 0 0 0 0

Dioscorus 0 0 2 1 0 0 0 0 0 0

Hermauos 0 0 0 1 0 2 0 0 0 0

Isak 0 0 0 1 1 0 0 0 0 1

Kyros1 0 1 0 0 0 1 0 0 0 0

Kyros3 0 0 0 0 0 1 1 0 0 0

Menas 0 0 0 0 0 0 0 3 0 0

Pilatos 0 0 0 0 1 0 0 0 3 0

Victor 0 0 0 0 0 1 0 1 0 3

global representations computed from local descriptors sampled on normal SIFT
keypoints or restricted keypoints (R-SIFT).

The results in Table 2 reflect the same benefit of proper binarization as in the
retrieval case. Comparing SIFT and R-SIFT, the latter is beneficial also for clas-
sification purposes. Classifier-wise, the use of SVMs is preferable in comparison
to a simple nearest neighbor classifier, although the SVMs were only trained with
two positive samples. Since the writer classification is fully supervised, we refrain
from evaluating the unsupervised CL-S method, which would be needed to be
trained on an even smaller training set (30 instead of 50 images) in an unsuper-
vised manner. In future work, it might be worth investigating if an unsupervised
pre-training on a large papyri corpus instead of using an ImageNet-pretrained
network is beneficial for an additional fine-tuning step similar to the methods
proposed by Nasir et al. [24,25]. The full confusion matrix can be seen in Table 3.
Interestingly, the writer who was the least confused with anybody else is the geo-
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graphic outsider Menas. Indeed, while all the others lived and worked in the same
village, Menas’ dossier comes from a big city several hundred kilometers north.
Another interesting result, which requires an in-depth paleographic analysis, is
the confusion between Hermauos and Kyros1 as well as the many false predic-
tions they both have generated. We have already mentioned the variety among
Kyros1’s samples. Hermauos’ results may be due to the important degradation
of some of his samples. Future investigations will aim determining if these two
writers share specific paleographic features.

In comparison with the state of the art [25], the proposed SIFT-based method
does not fully compete to the deep learning based methods that train a CNN
on small image patches and then apply a majority vote. While the state-of-the-
art method [24] is slightly superior, a drawback of it is that it cannot be used
for novel writers, the CNN is tuned towards the writers of the training set and
needs to be fine-tuned for each novel writer. In contrast, our method can easily
be adapted to more writers by computing a new SVM or just by means of nearest
neighbor matching.

4 Conclusion

In this work, we investigated automatic writer identification on the specific histor-
ical documents that are the Greek papyri. In particular, we evaluated different
binarization and sampling procedures in two different scenarios: retrieval and
classification. We show that binarization, especially deep learning-based bina-
rization, improves the writer identification performance by removing the most
noise and artifacts introduced by the papyri. We believe that better binariza-
tion methods can help to reduce the misclassifications further. Additionally, a
sampling that is restricted to the handwriting is beneficial. The obtained results
are already stimulating for further paleographic investigations. Some expected
results have been confirmed: the geographical and chronological outsiders have
distinguished themselves. Some have been refuted: Abraamios was supposed to
have a particularly clumsy hand, easy to recognize, but this has not been the
case in neither of the two scenarios. For future work, we would like to investigate
the possibility of improving writer identification by learning noise-robust descrip-
tors. We would also lead in-depth interpretations of the results in a paleographic
perspective to better apprehend and qualify the similarities or at the opposite
the originality of the various hands, setting the foundations for sounder scribal
attributions on paleographic and computer-assisted grounds.
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Abstract. Tremor is a motor phenomenon that occurs in both neurological disor-
ders and normal people. Enhanced physiological tremor can manifest in healthy
elderly, as a consequence of age-related normal neurodegeneration, along with
an overall decline of motor performance as slowing, decreased coordination, and
balance difficulties. Handwriting is a complex neuromotor skill involving fine
motor control as well as high-level cognitive processes and its analysis represents
a method to investigate motor impairments of the upper limb that occur during the
execution of voluntary movements.

In this exploratory and preliminary study, has the aim of selecting features
and tasks able to characterize handwriting-related kinetic tremor in the elderly by
using a digitizing tablet. 11 healthy elderly (over 70 years old) subjects and 17
healthy younger subjects were enrolled in the trial. Participants were asked to per-
form an accurate drawing task - Archimedes’ Spiral, and three fast drawing tasks
- overlapped continuous circles and diagonal ascending/descending lines). Data
analysis consisted of integrating classical kinematic analysis with spectral analy-
sis. Results of kinematic analysis show the elderly handwriting is overall slower
and more fragmented in spiral and diagonal lines tasks but not in overlapped
circles compared to younger subjects. The spectral analysis of velocity and accel-
eration drawing profiles reveals a significant presence of enhanced physiological
tremor in the elderly but only in the accurate spiral task. We assess that, beside the
Archimedes’ spiral already used in previous research works, fast diagonal lines
tasks can be employed for kinematic characterization of elderly handwriting but
not for tremor identification. The spiral remains the only handwriting exercise able
to reveal the presence of age-related enhanced physiological tremor. We conclude
that the nature of the handwriting task influences the emergence of involuntary
movement and the strength at which motor impairments arise. This aspect must
be considered when performing the feature selection of the variables best suited
for the characterization of the elderly handwriting.
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Normal ageing · Physiological tremor
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1 Introduction

Tremor, defined as a rhythmic, oscillatory, and involuntary movement of a body part,
is a motor phenomenon found in neurological disorders as well as in normal individ-
uals [1]. The first type is referred to as pathological tremor, the latter as physiological
tremor [2]. Given tremor complex phenomenology and still unclear origin, diagnosis
of tremor-presenting disorders is challenging [1, 3, 4], especially in elderly people.
Age-related normal neurodegeneration can manifest as enhanced physiological tremor
(also referred to as senile tremor or age-related tremor) and it is not associated to any
underlying pathological condition [2, 5, 6]. Tremor aside, the elderly show an overall
decline of motor performance manifested as slowing, increased variability, decreased
coordination, and balance difficulties [7]. Such impairments are caused by malfunctions
in the muscle-tendon, central, and peripheral neural systems [7]. The dopaminergic
system appears to have the largest impact: research shows nigrostriatal dopaminergic
denervation in ageing results in a decrease of fine movement control, movement slow-
ing, reduced motivation, and compromised working memory [7, 8]. Due to the overall
decline in dopaminergic transmission, some authors consider the ageing nervous system
as a preclinical continuum of Parkinson’s Disease [9].

Handwriting is a complex neuromotor skill involving fine motor control as well as
high-level cognitive processes [10] and its analysis represents a method to investigate
motor impairments of upper limb that occur during the execution of voluntary move-
ments. Only a few studies focused on this approach, employing a digitizing tablet to
collect the written tracks of healthy elderly, and aiming at unraveling the composite
relation between handwriting and ageing. The experimental designs mainly concerned
sentence writing [11], l-loop writing [12], participant’s signature [13] and spiral drawing
[14, 15] tasks. Analysis of kinematic features revealed an overall reduction of speed,
lower pressure, increased variability, and loss of fluency with ageing. Almeida et al. [14,
15] used frequency analysis to show the presence of kinetic tremor in the elderly. The
authors analyzed the frequency range between 4 and 12 Hz (the band of involuntary
movement) during the execution of an Archimedes’ spiral and introduced a parameter
(LDA-value) to quantify physiological tremor and demonstrate its linear correlationwith
age. To the best of our knowledge, this research group is the only one that addressed
tremor quantification in handwriting by using frequency analysis and it only investigated
the execution of Archimedes’ spiral task.

While assessing if different drawing tasks may be conveniently employed in tremor
evaluation and in the analysis of its relationship with age, our study examines new
tasks by using spectral analysis of velocity and acceleration signals, alongside classical
kinematic parameters, with the aim of identifying features suited to quantify involuntary
movements and performance impairment in the elderly.

In our perspective, delving into this research topic is of twofold importance. On
one side, providing insight into executive control and motor performance deterioration
in normal ageing can be very useful to understand the difference between pathological
and physiological tremor, supporting neurologists in their diagnosis and pointing out
the importance of selecting age-matched controls when designing an experiment that
addresses motor impairments. On the other hand, it allows to better comprehend the
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implication of central, peripheral, and neuromuscular functional losses with ageing and
how those mechanisms are accountable for handwriting-related motor control decline.

2 Materials and Methods

2.1 Subjects and Tasks

This preliminary study encompasses 28 participants, 11 healthy Elderly subjects - hE
(aged 70–84, mean 76.5± 4.9 years), and 17 healthy Young control subjects - hY (aged
31–68,mean 54.3± 11.6 years). Participantswere screened for the absence of neurologi-
cal ormotor abnormalities, history of stroke, epilepsy, serious psychiatric illness, arthritis
and dementia. They all released their written informed consent. The decision to separate
subjects according to the age threshold of 70 is based on previous findings. Caligiuri
et al. [13] report that the relationship between age and handwriting movements is likely
to be non-linear with the greatest decline occurring after age 70 years. Marzinotto et al.
[16] highlight three principal handwriting styles in the elderly where the most common
one, characterized by low dynamics, is present in writers over 67 years old. Finally, the
systematic review byMacleod et al. [17] reports a meta-analysis of several studies about
the incidence of Parkinson’s disease and shows that the mean age of onset or diagnosis
of the pathology is 70 years old. Healthy subjects over 70 are therefore at higher risk
to be misdiagnosed and thus characterizing physiological tremor in this age range may
serve as an important support for geriatricians and neurologists.

The subjects performed four different drawing exercises with visual feedback: an
ingoing, clockwise Archimedes’ Spiral (AS) following a given template, overlapped
continuous Circles (C), Ascending diagonal Lines (AL) and Descending diagonal Lines
(DL). Subjects were required to draw C, AL, and DL as fast as possible for a duration
of 15 s and to execute AS accurately with no time limits. Participants were instructed
to complete the exercises without pen lifts and keeping the arm leaned on the table
otherwise, the response was excluded from the analysis. 28 C samples (11 hE, 17 hY),
28 AL samples (11 hE, 17 hY), 27 DL samples (11 hE, 16 hY) and 25 AS samples (9
hE, 16 hY) were eventually considered.

2.2 Handwriting Acquisition and Analysis

Handwriting was recorded by means of a commercial digitizing tablet (Wacom, Inc.,
Vancouver, WA, Model Intuos 3.0), using an ink pen thus providing visual feedback.
The pen displacement was sampled at 200 Hz and acquired with a spatial resolution
of 0.02 mm. The horizontal and vertical pen positions were filtered separately using a
second-order low-pass Butterworth filter (15 Hz cut-off frequency) and the velocity and
acceleration profileswere derived. For each test, the handwriting featureswere calculated
and analyzed by using an ad hoc custom program written in MATLAB® [18].

The kinematic parameters were calculated both at whole track level and at stroke
level (Table 1). The stroke is defined as the pen track between two successive velocity
minima.
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Table 1. Kinematic parameters extracted at whole track and at stroke level

Whole track parameters Stroke parameters

Total track length (L) Median duration (Ds)

Mean pressure (P) Median and max horizontal velocity (Vxs, maxVxs)

Mean horizontal velocity (Vx) Median and max vertical velocity (Vys, maxVys)

Mean vertical velocity (Vy) Median and max curvilinear velocity (Vcs, maxVcs)

Mean curvilinear velocity (Vc) Stroke number normalized by tot track length (Ns/L)

Execution time (T)1 Normalized jerk (NJ)

Stroke length (Ls)
1Only for the accurate task AS.

NJ and Ns/L represent measures of fluidity; the smaller their values, the less frag-
mented and more fluid a movement is. JN was calculated according to Teulings et al.
[19].

Power Spectral Density (PSD) of both velocity and acceleration signals in their
horizontal, vertical, and curvilinear components was estimated by usingWelch’s method
[20], with a Hamming window on intervals of 5 s and a 50% overlap. To analyze the
power distribution related to different movement-associated phenomena, two frequency
bands were selected: a band concerning voluntary Movement Execution required by the
task (BME), ranging from 0.2 to 4 Hz, and a band associated with involuntary Tremor
(BT), ranging from 4.0 to 12 Hz. The BT frequency range was carefully designed to
capture the whole involuntary component in task-specific tremor [15]. For each subject,
relative spectral powerswere quantified by dividing the absolute power in each frequency
band by their sum.

For each task, median value and interquartile range of parameters were calculated
in the two groups; the difference between them was assessed by the Wilcoxon Rank
sum test, with a significance level of 5%. The statistical analysis did not include any
correction for multiple testing since the study is oriented toward features selection. The
Bonferroni correction would not offer the flexibility required in such exploratory stage
that has the purpose of emphasizing what parameters better characterize the tremor of
the two groups rather than evaluating if the groups are different in all tested parameters
[20].

3 Results

Median and interquartile range values of kinematic and spectral parameters for hE and
hY groups, as well as the p-values of their comparison, are reported in Table 2.
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3.1 Kinematic Analysis

The results show that the participants draw significantly slower (lower velocities at both
stroke and whole track level) and in a more fragmented fashion in AL, DL and AS tasks.
Furthermore, the participants cover a shorter distance in AL and DL tasks, while taking
longer time and exerting a higher pressure to complete the spiral. No significant results
are found at the C task level.

Figure 1 represents the velocity of strokes in hEand in hYgroups during the execution
of the four tasks. The results probe what showed by whole track parameters: strokes of
the elderly are significatively slower compared to younger participants in all tasks except
for C task.

Fig. 1. Boxplots of stroke velocities (Vcs, maxVcs, Vxs, maxVxs, Vys, maxVys) calculated in
the elderly group (black boxes) and in the younger group (gray boxes), for each task. (*= p-value
< 0.05; ** = p-value < 0.01)

3.2 Spectral Analysis

Fast tasks do not allow to differentiate between hE and hY participants in the domain of
spectral analysis. In the accurate AS task, the hE subjects present lower power in BME
and higher power in BT, in horizontal and vertical velocity and in vertical acceleration
components, compared to hY controls (Table 2).

Figures 2 and 3 show the PSDs and the time courses of horizontal, vertical, and
curvilinear components of velocity and acceleration, respectively. The data are obtained
from the execution of AS task by an hE subject and an hY subject (Fig. 4).
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The PSDs exemplify the trend observed in the two groups where the elderly have
higher power in BT and lower power in BME compared to younger controls when
performing accurate AS.

Elderly Subject

Young Subject

Fig. 2. On the left, the PSD of horizontal (red line), vertical (blue line) and curvilinear (black
line) velocity for a 84 years old subject (upper) and a 53 years old subject (bottom). On the right,
the velocity signals (horizontal and vertical are the red and blue lines respectively, curvilinear is
the black line) over the time for the elderly and the young subjects (Color figure online).
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Elderly Subject

Young Subject

Fig. 3. On the left, the PSD of horizontal (red line), vertical (blue line) and curvilinear (black line)
acceleration for a 84 years old subject (upper) and a 53 years old subject (bottom). On the right,
the acceleration signals (horizontal and vertical are the red and blue lines respectively, curvilinear
is the black line) over the time for the elderly and the young subjects (Color figure online).

a b

Fig. 4. The tracks of AS task for an elderly (a) and a young (b) participant. The left drawing is
visibly tremulous
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4 Discussion

The characterization of handwriting in elderly people may provide a useful insight in
movement execution deterioration with ageing. Research focusing on digitizing tablets
can serve as a complementary low-cost, non-invasive diagnostic tool to support geri-
atricians and neurologists dealing with tremor-presenting patients. While handwriting
kinematics of elderly has been already inquired by previous research, very few studies
have focused on the description of physiological tremor associated with the act of writ-
ing. Specifically, the drawing task analyzed in the literature is limited to the accurate
Archimedes’ spiral [13, 14], and to the best of our knowledge, no exercise executed
in the fast condition has ever been utilized. The parameter extracted by Almeida et al.
[13] to assess tremor, the LDA-value, is able to discriminate the age groups analyzed in
the research work and to characterize a linear relationship with age but is complex to
calculate; therefore, we evaluate if a simpler and more straightforward approach is as
much effective.

In our study, kinematic analysis results confirm previous research outcomes, high-
lighting a slower and more fragmented performance in the elderly compared to younger
subjects.Only circles task does not showsignificant results in anyof the analyzed features
(Table 2). We provide two hypotheses to explain this. On one hand, circles execution,
differently from diagonal lines, is a continuous task meaning that velocity never reaches
the zero value; thus, in this task the influence of movement initiation is minimal. On
the contrary, in diagonal lines exercises, the effect of initiating the movement is more
evident. Disfunction in movement initiation, also defined as akinesia [22], is a common
symptom of Parkinson’s disease and is associated with basal ganglia pathophysiology
and dopamine denervation [8]. Embracing the perspective of the ageing nervous system
as a preclinical continuum of Parkinson’s Disease [9], we speculate that akinesia may
be present also in normal elderly. In this regard the absence of significative results in
the circles task but not in the others, may suggest the presence of akinesia in healthy
elderly, especially when executing fast movements. Recalling that dopamine transmis-
sion regulates not only finemotor control but also arousal andmotivation [7], we theorize
that these effects may both be responsible for the impairments here observed in older
adults handwriting. On the other hand, the absence of significant results in the circles
task may be simply explained by the heterogeneity in the elderly handwriting styles that
this exercise is not able to bring out. According to Marzinotto et al. [16], there is not
a unique pattern of handwriting change with age; while handwriting of most elderly is
slower and more fragmented, a small percentage of these subjects presents a style that
is indistinguishable from younger writers.

Concerning other tasks, while stroke duration does not vary between the two groups,
the results show a higher fragmentation and reduced stroke size (Table 2) related to
ageing. This finding leads to hypothesize that ageing affects velocity of strokes as well
asmotor programming.Movement becomes less fluid (higher Ns/L andNJ) in the elderly
allegedly because of the need to reprogram more frequently the voluntary action as a
consequence of dopaminergic loss and its implications on fine motor control and on
arousal and motivation, as stated previously [7].

Results on pressure median values represent an exception in respect to previous
findings: in our research in fact, pressure does not vary significantly with age in fast
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tasks while results higher in the hE subjects during accurate AS task execution (Table 2).
These findings may be explained by low numerosity and high variability of the hE group,
as confirmed by interquartile ranges, as well by heterogeneity of handwriting styles of
the elderly [16].

Spectral analysis reveals significant differences between the groups only in the exe-
cution of accurate AS task, where the elderly show higher power in BT and lower power
in BME compared to younger controls, highlighting the presence of physiological tremor
in the hE group (Table 2, Figs. 2 and 3). Relative spectral power of horizontal and vertical
components of velocity and acceleration, in the 4–12Hz frequency range, appears to be a
simple and straightforward parameter to account for enhanced physiological tremor, but
this is true only for accurate tasks. On the contrary, no clear tremor was found through
frequency analysis of fast tasks. To explain our finding, we postulate that during fast
movement, tremor could be absent or disguised as it superimposes to voluntary move-
ment and the two components of movement may somehow merge into each other. The
circles and diagonal lines tasks were executed as fast as possible, but this indication
can be interpreted subjectively by each participant and is reasonable to assume that each
subject selected a velocity in which the effect of tremor of handwriting could be masked.
Since tremor does emerge in AS execution, the nature of the task plays a key role. The
execution of accurate movements demands a higher level of fine motor control and the
requirement of preferring accuracy over velocity may lead to the occurrence of tremor.
Furthermore, our small and highly variable samples may not be able to significantly
point out the tremor in fast tasks, as it may be present only in some individuals.

5 Conclusion

The outcomes of this study confirm previous findings on the kinematics of elderly hand-
writing but also offer a new insight on the feasibility of employing exercise alternative
to the already established ones, i.e., Archimedes’ Spiral, sentences, and words [11–15].

To the best of our knowledge, this study represents the first attempt to characterize
physiological tremor in the elderly during fast drawing tasks and it is necessary to
approach our results with caution. Whether the absence of physiological tremor in the
elderly during the execution of fast drawings is a solid outcome, not due to the above-
mentioned limitations, is an interesting research topic that deserve to be deepened.
Appropriate experimental designs and increasing the participant pool may help to verify
our findings and to test our suggested interpretation of absence of tremor in fast tasks.

Addressing these topics may also provide a deeper understanding of the mechanisms
underlying physiological tremor in handwriting since the nature of central and peripheral
influence is still debated [4, 7].

The study highlights that relative spectral power of physiological tremor in the fre-
quency range between 4 and 12 Hz, is a simple parameter for tremor identification in
the elderly during the execution of an accurate drawing task. To identify and charac-
terize involuntary movements in the elderly is of crucial importance to support clinical
practice and our results suggest that handwriting analysis may develop into a practical,
non-invasive and low-cost tool for differential diagnosis between physiological tremor
and pathologies exhibitingmotor impairments such as Parkinson’s Disease and Essential
Tremor, that typically present in older adults.
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The principal limitations of this exploratory research are the small sample size, the
high variability among subjects and the non-equally distributed number of participants
in the two analyzed groups. Future work will focus on increasing the sample size of
tested subjects to fill the limitations and on selecting the best features able to reveal
motor impairment in each task. While these answers will shed light on the mechanisms
underlying motor impairments in the elderly, the implementations of this method into
clinical praxis will require a confirmatory study aiming at verifying if the elderly differ
from the young people in all the tested variables. Another goal would be implementing
spectral analysis in order to identify a parameter that, starting from velocity and accel-
eration PSDs, would be able to not only assess tremor presence, but also to quantify it.
Additional topics of interest, well suited to handwriting analysis, would be the charac-
terization of physiological tremor progression with age and the evaluation of risk factors
that affect motor impairments in the elderly.

Acknowledgements. Work partially supported by Master in Clinical Engineering, University of
Trieste, Italy.
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Abstract. In this study, we examine the differences between two Sigma-
Lognormal extractors. ScriptStudio is used to extract the Sigma-Lognormal
parameters based on the velocity, and iDeLog is used for extracting the parameters
based on both the velocity and the trajectory. The iDeLog software is tested with
and without smoothing the data. Handwriting data are used to compare both types
of extractor (algorithm for parameters extraction). The data consist of triangles
drawn on aWacomCintiq 13HDby healthy children aged between six and thirteen
years old. Globally, ScriptStudio Extract the data with the best SNR for the trajec-
tory (SNRt) and the velocity (SNRv). Moreover, it used slightly more lognormals
for the reconstruction than iDeLog with smoothing (iDeLog ws), and nearly half
of the number of lognormals used in iDeLog without smoothing (iDeLog ns).
Finally, iDeLog without smoothing has a better reconstruction of the velocity and
the trajectory than iDeLog with smoothing.

Keywords: Sigma-lognormal model · Kinematic theory of human movements ·
Kinematic analysis · Fine motor control · Children handwriting · ScriptStudio ·
iDeLog

1 Introduction

The study of human movements can be useful to understand the impact of some psy-
chophysical conditions on the human motor control as for example in studies dealing
with children suffering from Attention Deficit Disorder, with or without Hyperactivity
(ADHD) [1, 2]. In that case, different approaches have been proposed in order to model
this neurological problem, among these stands the Kinematic Theory of rapid human
movements [3–7]. This theory describes the generation of human movements as the
results of a synergetic action of a large number of different coupled subsystems orga-
nized into neuromuscular systems. The central nervous system plans the movement to
be executed by the peripheral system. Overall, the impulse response of a neuromuscular
system is described by a lognormal function and the resulting velocity of an activation
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command can be modelled with a vector summation of lognormals. According to the
lognormality principle, the Kinematic Theory describes movements executed under an
adequate motor control. Thus, during the development of children, these will improve
their motor control and will tend to the lognormality while become adult [8].

The Kinematic Theory is the corner stone of the Sigma-Lognormal model that can
shape complex and underdeveloped children movements. This model assumes that the
velocity of a human movement can be modelled using lognormal functions combined
by a time superimposed vector addition. Each lognormal is described by six parameters
[9]. Several software have been developed over the years to perform reverse engineering
and extract these Sigma-Lognormal parameters from various movements. Among them,
there are ScriptStudio [9] and iDeLog [10]. Those two used different approaches to
extract the parameters. The first one is mostly based on the velocity analysis, while the
second one seeks a trade-off between the velocity and the trajectory to recover the best
fitting parameters. In this study, we aim to compare the effectiveness of both software
to extract the Sigma-Lognormal parameters from primary school students handwriting
who were asked to execute complex movements, some triangles, on a tablet. Thereupon,
we will first present two software used in this study in Sect. 2. Afterward, in Sect. 3, the
methodology and the dataset used to compare them will be presented. Then, in Sect. 4,
the statistical analyses that were carried out and their results will be detailed. Finally,
we will examine and discuss those results in Sect. 5, to put the whole work in a more
general perspective.

2 The Extractors

2.1 ScriptStudio Algorithm

ScriptStudio [9] is a Sigma-Lognormal reconstruction software based on the velocity
that incorporates the Robust XZERO algorithm [11]. This software extracts the Sigma-
Lognormal parameters while maximizing the velocity Signal-to-Noise Ratio (SNRv).
This performance criterion is calculated between the original and reconstructed velocity.
Specifically, this extractor will use a vector combination of lognormals to reconstruct
the original velocity. Thus, in a first step, for each velocity maximum peak in the original
velocity profile, the software plugs a lognormal. Afterward, in the next steps, smaller
lognormals are added to the reconstructed signal in order to increase the SNRv up to
a minimum required SNRv specified by the experimenter. The resulting trajectory is
reconstructed by integrating the velocity with no further optimization. This software has
proven its value as it has been used in a multitude of studies as detection tool for ADHD
[12, 13], brain injury [14, 15], Parkinson [16] and more. Furthermore, it was used to
monitor the children evolution towards lognormality [8, 17].

2.2 iDeLog Algorithm

iDeLog [10] reconstructs the trajectory and the velocity of a movement at the same
time, calculating the angles and lognormal parameters of each stroke. This algorithm is
based on motor equivalence theory and the hypothesis of a visual feedback compatible
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with open-loop motor control. To this end, firstly, the virtual target points and angles
are calculated by finding the velocity minimum and using the 8-connected trajectory of
a given long and complex movement. In this way the velocity is decomposed as a sum
of weighted lognormals, where the spatial and kinematic parameters are extracted sep-
arately. Secondly, with this first segmentation procedure, a first velocity reconstruction
is obtained. Then, the reconstructed movement is iteratively optimized by moving the
virtual target points with the ensuing changes of the angles and lognormal parameters.
Finally, a fine optimization of the virtual target point is carried out for each segment by
improving the SNRv and SNRt simultaneously.

2.3 Differences Between Both Extractor

Those two ways of extracting the Sigma-Lognormal model parameters present some
differences that can impact the results of this study. First of all, ScriptStudio reconstructs
the pen tip velocity by overlapping the lognormals composing the reconstructed signal.
As a result, errors in the velocity estimation are propagated over the entire movement,
resulting in an increased spatial deviation [18]. To avoid this problem and improve the
trajectory reconstruction, iDeLog relies on adjusting the trajectory and speed jointly.
So, rather than adding new lognormals to improve the reconstruction, iDeLog iteratively
moves the target points to improve the adjustment between an original trajectory and
its reconstructed counterpart. However, iDeLog may present lower SNRv compared to
ScriptStudio but better SNRt.

As ScriptStudio preprocess the raw signal to break down the speed profile into
lognormals, the iDeLog includes an option for preprocessing the original signal or not.
This option allows to smooth the input signal in the same way that ScriptStudio does.
As a difference in the preprocessing, the sampling frequency is not changed in iDeLog.

3 Methodology

The present study is part of a larger project aiming to standardize the data acquisition
system developed within the Scribens Lab. This system, called the lognometer [19],
could be used as a diagnostic tool in ADHD detection for example [13].

3.1 Participants

Participants were recruited from three different primary schools. In total, 780 children
aged from six years to thirteen years old participated in the research, and from 1st grade
to the 6th. For each grade, there are at least 120 participants while the maximum is
135 participants. 48% (375) of the children are female. Moreover, 24% (185) of the
participants were neuroatypical. For the present comparative study, the neuroatypical
participants were excluded. That left 594 participants remaining with at least 90 children
per grade.
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3.2 Procedures

Participants were asked to rapidly draw, one at a time, 30 triangles on a digitizing tablet
(Wacom Cintiq HD13) using a stylus [19]. The instructions for writing a triangle were
composed of three points, one starting and ending dot (1), and two crossing points (2
and 3) to be reached in the corresponding sequence: 1,2,3,1. The guide sheet displayed
is presented in Fig. 1. An audio cue signal was used to indicate the start of the drawing.
The handwritten data were recorded at 200 Hz.

Fig. 1. The guide sheet displayed on the screen of the tablet.

3.3 Sigma-Lognormal Extraction

Before extracting the Sigma-Lognormal parameters, the dataset was cleaned. Thus, the
strokes that started before the sound cue or weren’t properly executed were removed.
Afterward, the three extractors (iDeLog ws, iDeLog ns and ScripStudio) was used to
extract the Sigma-Lognormal parameters for each trial. Thismodel allows to extract three
global parameters: the number of lognormals (NbLog) and the Signal-to-Noise Ratio for
trajectory (SNRt) and for velocity (SNRv). Those parameters are unique for each trial
and describe the general state of the neuromotor system. Moreover, we calculated the
SNRt/NbLog and SNRv/NbLog. Based on those parameters, we rejected the trials that
had a SNRt or SNRv lower than 10 dB, or that required more than 40 lognormals for
reconstruction. In those cases, we assumed that the extractorswere not able to reconstruct
the signal correctly.

4 Results

To compare the three extractors, we analyzed the basic statistics of the above-mentioned
global parameters. Table 1 presents the mean and the standard deviation of each param-
eter for the three extractors. Moreover, the repartition of the parameters is presented
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in the following boxplots (Fig. 2). We can see that ScriptStudio reconstruct the data
with a higher SNRt, SNRv, SNRv\NbLog. iDeLog with smoothing presents the lowest
NbLog, SNRt and SNRv. On the other hand, iDeLog with smoothing has the highest
SNRt\NbLog. Finally, iDeLog without smoothing has the highest NbLog, and conse-
quently the lowest SNRt\NbLog and SNRv\NbLog. The bold values with upper script
“a” and “b” are respectively the highest and lowest value for each parameter.

Table 1. Statistical measures for each extractor.

Script
studio

iDeLog
ws

iDeLog
ns

NbLog Mean 8.95 7.28b 16.41a

Std 1.69 1.45 4.09

SNRt Mean 30.27a 24.30b 25.67

Std 2.52 1.01 1.18

SNRv Mean 25.40a 16.94b 17.87

Std 0.98 0.98 0.69

SNRt\NbLog Mean 3.59 3.65a 1.80b

Std 0.55 0.65 0.41

SNRv\NbLog Mean 3.05a 2.56 1.26b

Std 0.57 0.51 0.32

Table 2. P-value for the statistical tests. First row: the results of the comparison of the 3 algorithms
with the non-parametric Kruskal-Wallis test. The following rows: the results of the non-parametric
pair comparison with the Mann-Whitney U-test.

NbLog SNRt SNRv SNRt/
NbLog

SNRv/
NbLog

ScriptStudio iDeLog ws iDeLog ns 2E−267 6E−249 1E−279 2E−245 9E−264

ScriptStudio iDeLog ws 2E−66 2E−173 5E−191 7E−02 8E−44

ScriptStudio iDeLog ns 2E−172 1E−148 5E−191 6E−187 8E−190

iDeLog ws iDeLog ns 5E−187 2E−77 1E−64 5E−185 1E−180

For the statistical tests, the Bonferroni correction was used to counteract the multiple
comparison. In that case, the α (0.05) was divided by the number of extracted parameters
(3) which brought the corrected α to 0.017. After that, we used a Jarque-Bera test [20]
to determine if the extracted parameters are normally distributed. In that case, only the
SNRt/NbLog and SNRv/NbLog for ScriptStudio and IDeLog with smoothing has a p-
value over 0.05, so those parameters are normally distributed. All the other parameters
were not normally distributed. According to this observation, we used theKruskal-Wallis
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Fig. 2. The boxplot representing the extracted parameters for the three extractors. From top to
bottom and left to right: NbLog, SNRt, SNRt\NbLog, SNRv and SNRv\NbLog. In each figure,
from left to right: ScriptStudio, iDeLog with smoothing and iDeLog without smoothing.

non-parametric test [21] to evaluate if the three extractors are statistically similar. The
extractors are not statistically similar because their p-value lower than the corrected
α. When comparing the extractor to each other, we used the non-parametric Mann-
Whitney U-test [22]. Thus, there are significant differences between the extractors for



Comparison Between Two Sigma-Lognormal Extractors 111

all the parameters, except for the SNRt/NbLog between ScriptStudio and iDeLog with
smoothing. The p-values and the statistical value of each test are presented in Table 2
and 3. The first row presents the results of the non-parametric Kruskal-Wallis test. The
following rows are the results of the non-parametric Mann Whitney U-test. All the bold
values in Table 2 represent a p-value lower than the α corrected with Bonferroni (0.017).
The statistical value for the Kruskal-Wallis test corresponds to the chi-squared value.
The statistical value for the Mann Whitney U-test corresponds to the sum of ranks one
samples. For both, the higher the value, the better is the results.

Table 3. The statistical tests value for the non-parametric Kruskal-Wallis test in the first row
results of the comparison of the 3 algorithms. The following rows: the results of the non-parametric
Mann-Whitney U-test.

NbLog SNRt SNRv SNRt/
NbLog

SNRv/
NbLog

ScriptStudio iDeLog ws iDeLog ns 1228 1143 1285 1127 1211

ScriptStudio iDeLog ws 69933 8035 0 159181 88901

ScriptStudio iDeLog ns 8457 20056 2 1810 526

iDeLog ws iDeLog ns 1791 61813 71269 2680 4683

5 Discussion

After those results, it seems that ScriptStudio is more suited to extract the global sigma-
lognormal parameters of triangles because it gives back a higher SNR than IDeLog for
the velocity and the trajectory, while using a lower number of lognormals. Moreover, the
SNR/NbLog for the trajectory and the velocity are better for ScriptStudio since that they
needed less NbLog than iDeLog without smoothing and having a higher SNR than the
iDeLogwith smoothing. Itmust be kept inmind, that this dataset is composed of triangles
executed by children that did not reach their full potential yet. In that case, those children
are heading towards the lognormality. Concerning the triangles, those movements can be
classified as complex but not as long movement. Moreover, the movements executed by
those childrenmay be jerkier and not continuous. In that case, it makes sense that iDeLog
have poorer results than ScriptStudio since it adds one lognormal per velocity peak. This
founding fits with what was reported in [10] where it was mentioned that iDeLog should
have better results for continuous, long and complex movement like signatures.

6 Future Works

In conclusion, this preliminary study shows that that both iDeLog and ScriptStudio
could be used as a platform to analyze children movements, but that ScriptStudio is
might be more appropriate to do it, when the best reconstruction is a requirement. It
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would be interesting to examine the results of triangles executed by adult to see if
the performance of iDeLog improves when the movements are less jerky but this is
beyond the scope of this paper. In future works, we will extend our statistical analyses
and investigate the classification performance of the three algorithms. We will add the
other Sigma-Lognormal parameters to the analyses: t0, D, Theta start, theta end, μ and
σ. Moreover, we will use those results to explore the possibility of discriminating for
example between age groups and gender. Although the performances in terms of signal
reconstruction might differ, this does not guarantee that their performances in term of
classification and prediction will follow a similar ranking Moreover, in the context of
the No Free Lunch Theorem [23], it is expected that fine tuning will be required to adapt
and optimize any of these algorithms to any specific studies.
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Abstract. One of the most discussed issues in handwriting is the question of
when young children are (or not) ready to begin handwriting instruction. Several
studies highlight the importance of early detection of graphomotor difficulties
to better assist and remediate them in the first years of formal school. Also, it
is necessary to understand how children control handwriting movements and its
learning strategies.

Using the Sigma Lognormal approach, in this study we aim to study the
effects of a graphomotor intervention program, in the Graphic Skills according to
lognormal parameters.

Fifty-five children attending the last year of pre-school (25 experimental
group; 30 control group) performed the first nine figures of Beery-Buktenica
Developmental Test of Visual-Motor Integration (6th edition) (Beery VMI) on
a digitizing tablet.

To address the issue related with handwriting, forty-one second graders (20
experimental group; 21 control group) performed. The Concise Evaluation Scale
for Children’s Handwriting (BHK), also on a digitizing tablet. A follow-up assess-
ment has been performed six months after the end of graphomotor intervention
program.

Participants from control group benefited from 16 sessions (twice a week) of a
graphomotor intervention program, divided in small groups (6–8 children/group).
Each session lasted for 30 min.

In general children who benefited from a graphomotor intervention showed
better finemovement quality improvedwith bettermotor control quality and higher
movement fluidity. The maintenance of results after six months was more con-
sistent in preschoolers, because the second-year students are still in a process of
handwriting automation.
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1 Introduction

1.1 Preschool

Preschool time is a key period for the development of graphomotor skills (Graphic Skills)
[1] in which children spend about 42% of the day performing paper and pencil tasks [2]
developing handwriting readiness skills [3, 4].

Handwriting readiness refers to a stage of development at which a child has the
necessary characteristics to satisfactorily benefit from formal handwriting teaching [2,
3, 5].

The ability to copy geometric forms is considered an indicator of handwriting readi-
ness. Children are not ready to learn handwriting without first correctly copying the first
nine pictures of the Beery–Buktenica Developmental Test of Visual-Motor Integration
(Beery VMI) [6]. Several studies show that preschool children who copy these forms
correctly will copy more letters and present better handwriting quality in the first grade
[7–9]. Beery VMI is an internationally recognized test useful for assessing handwriting
readiness in 5- and 6-year olds children [10].

Although graphomotor skills are considered a predictor of future school success
[3, 10, 11] not all children can develop proficient handwriting [5, 12]. 12% to 30% of
children have handwriting difficulties [13], which can bring future problems throughout
their academic path [14, 15].

Early identification of handwriting difficulties, should help to developmore effective
interventions and may prevent future handwriting difficulties [4, 16, 17].

1.2 2nd Graders

Handwriting skills are crucial for success in school [18, 19] considering that children
spend, on average, 33% of their time on fine motor activities (approximately 85% on
handwriting) [20]. A significant proportion (12 to 30%) of children have handwriting
difficulties [13]. The handwriting difficulties are one of the most common reasons that
children receive psychomotor therapy in school age [21], reason why it is important to
understand the factors that affect handwriting performance for the early identification
of handwriting difficulties and to develop more effective interventions [14, 19, 22].

Formal handwriting instruction is typically introduced at 6–7 years old [23]. Quality
of handwriting improves significantly and reaches a plateau at 7–8 years [14, 24, 25] and
at 8–9 years there are again improvements in the quality of handwriting, and it becomes
more automatic [14, 24, 25]. In addition, the speedof handwriting progressively increases
during elementary school [14, 24, 25].
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1.3 Intervention in Graphomotor Skills

Although the literature on handwriting readiness skills is limited [11], several skills
have been identified that must be mastered before a child can succeed with handwriting
[26]. Learning to handwriting can be a real challenge for children who do not master
handwriting readiness skills [11], so it is essential to develop and implement interventions
at an early age to ensure the proper development of these skills and thus prevent possible
handwriting difficulties at a later age [3, 4, 10, 11, 17, 26–30].

At elementary-school children who are identified has having handwriting difficulties
(in terms of handwriting legibility and speed) are referred for assessment and intervention
[2, 13]. Intervention programs should include handwriting practice [31], sensoriomotor
practice and strategies [13].

1.4 Graphic Skill Assessment

The Graphic-motor Skill assessment has evolved towards two complementary
approaches: product and process [32–38]. The first one refers to the evaluation of the
legibility and speed of the trace left on the paper and is performed using pencil-paper
tasks [33, 34, 36, 38]. The second one, concerns the real-time movement evaluation
with the aid of a digitizing tablet, a pen and specific software [such as ScriptStudio, 39]
and allows collecting of spatial, temporal and kinematic data from the Graphic Skills
[32, 33, 35–38]. In the present study, we focus on the process, through the analysis of
Sigma-Lognormal parameters, while the complementarity of the two approaches will
be discussed in another article. The Sigma-Lognormal parameters come from the recon-
struction of a movement captured by pen strokes and based on the Kinematic Theory of
rapid human movements [40, 41] and allow us to assess the state of motor control, here
specifically on the fluidity of the movement [41] of fine motor skills. The parameters we
used in this study are obtained through the segmentation of the movement performed
by the children, having been used in other similar studies [42]: i) number of lognor-
mal functions required to reconstruct the signal (nbLog), which is supposed to decrease
with fine motor movement improvement [42]; ii) the signal-to-noise ratio between the
original speed profile and the reconstructed speed profile of the reconstruction process
(SNR), which increases with fine motor movement improvement [42] meaning a better
reconstruction [40, 41]; and iii) the ratio between these two variables (SNR/nbLog).
The higher SNR/nbLog, the closer the movement is to the ideal lognormal behavior
predicted the by the Lognormality Principle [43]. This last parameter can be seen as a
global indicator of handwriter performance [41].

The relevance of these parameters in child Graphic Skills assessment is recognized,
due to their complementary information [42] not only with typical development children
but also with neurodevelopmental population [44]. Therefore, present study focuses on
the effects of children’s Graphic Skills characterization using process, i.e., analysis
through log-normal parameters extracted from the above-mentioned tasks performed on
a digitizing tablet.
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2 Method

2.1 Participants

Two groups of children were recruited from local kindergartens and primary schools.
The first group, 55 preschoolers (24 boys and 31 girls) ranging from 4 to 6 years old,
were subdivided in two other groups: control group (CG, 30 children) and experimental
group (EG, 25 children). With the second group, 41 second graders (14 boys and 27
girls) ranging 8–9 years old, the same procedure was taken, and two subgroups created:
control group (CG, 21 children) and experimental group (EG, 20 children). All children
gave their verbal agreement to participate in the study.

2.2 Intervention Program

Intervention programwas developed during 16 sessions, twice a week. Each session was
developed in group of 6–8 children and lasted 30 min. In the beginning of each session,
some reinforcement activities were carried out, so that the children could remember the
contents they had experienced in the previous session.

Participants were assessed in three moments: pre, pos intervention and six months
after finishing the program (follow-up).

2.3 Tasks

One of the most discussed issues in handwriting is the question of when young chil-
dren are (or not) ready to begin handwriting instruction. Beyond perceptual readiness,
linguistic readiness, and maturity of pencil control, [6] argued that young children are
not ready to learn handwriting until they correctly copy the first nine forms of the VMI
(Fig. 1), revealing an adequate visuomotor integration. The highest the score, the better
visuomotor integration ability.

Fig. 1. First nine VMI figures (Numbers refer to the figures number in the test)
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The BHK (Portuguese version) was used tomeasure the legibility (quality) and speed
(quantity) of handwriting. It consists of handwriting task that involves a copy of a text
in 5 min. Only the first five lines are scored in what legibility is concerned. The higher
the total score, the lower the handwriting quality [45].

2.4 Procedures

Preschoolers’ participants were asked to perform the Beery VMI while second graders
performed BHK copy, on a quiet room. Movements were recorded using a x-y digitizing
tablet (WACOM) with an inking pen (WACOM Grip Pen). The tablet had an active
surface area of 32.51 cm × 20.32 cm, a device resolution of .0005 cm and a sampling
frequency of 100 Hz. Participants were seated in front of the tablet that was centred
on the participant’s midline in front of the chest. The height of the chair and table was
adjusted, and the laptop computer was set aside so that the real-time visual feedback of
the child’s pen movements was only available to the experimenter.

2.5 Statistical Analysis

After preliminary inspections for distribution and assumptions, data were processed to
fit analysis of covariance (ANCOVA, group effect: control and experimental group),
with post-test values as the dependent variable and pre-test values as the covariate and
after follow-up as dependent variable and post-test values as the covariate. Pairwise
differences were assessed with Bonferroni post-hoc. Statistical significance was set at p
< 0.05 and calculations were completed using the Jamovi Project [46].

An estimation techniques approach was carried to overcome the shortcomings asso-
ciated with traditional Neyman-Pearson null hypothesis significance testing [47, 48].
According to the control and experimental group, estimation plots for SNR, nbLog and
SNR/nbLog variables were used as descriptive statistics. This graphical representation
shows the individual and mean group values for pre-test, post-test and follow-up mea-
sures and the difference ofmeanwith 95%of confidence intervals [47, 48].Also, Cohen’s
dunbiased (dunb) with 95% confidence intervals (CI) as effect size (ES) (an unbiased
estimate has a sampling distribution whose mean equals the population parameter being
estimated) was applied to identify pairwise differences [47]. Thresholds for effect size
statistics were: 0.2, 0.5, and 0.8 for small, medium, and large [49]. In the preschool-
ers’ group, the averages of the nine figures of the VMI were considered in each of the
lognormal variables.

3 Results

3.1 Changes in Lognormal Parameters After Intervention and in Follow-Up
Moment

Preeschoolers
The summary of findings from the ANCOVA for group factor is presented in Table 1.
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Table 1. Analysis of covariance (ANCOVA) results considering the group factor.

Variables Control group
(CG, n = 30)

Experimental group
(EG, n = 25)

Group factor ANCOVA
CG
vs
EG

Pre Post Fol Pre Post Fol F p η2p

SNR 25.5 ± 0.91 25.3 ± 1.23 25.6 ± 0.77 25.3 ± 0.91 25.3 ± 1.05 25.6 ± 0.95 0.09 0.77 .00 a.

0.03 0.87 .05 b.

nbLog 15.7 ± 5.77 16.4 ± 5.98 13.0 ± 3.72 15.3 ± 4.92 15.2 ± 5.36 13.7 ± 4.43 1.11 0.30 .03 a.

0.12 0.74 .00 b.

SNR/nbLog 1.9 ± 0.66 1.8 ± 0.66 2.1 ± 0.59 1.8 ± 0.56 1.8 ± 0.58 2.1 ± 0.59 0.67 0.42 .01 a.

0.15 0.71 .00 b.

Values in bold represent significant differences at p < 0.05.
a. Pre vs. Post-test; b. Post vs. follow-up-test.

Individual and differences of mean values from pre-test to post-test performance
measures are shown in Figs. 1, 2, and 3. The estimation plots present the differences
of means as a bootstrap 95% confidence interval on separate but aligned axes. This
representation can be observed for each variable and for each group. Complementary,
the dunb with 95% confidence intervals are presented in Fig. 5.

Fig. 2. The paired Cohen’s d for SNR (preschoolers) between Pre vs. Post and Post vs. Follow-up
for both CG (upper panel, a, b) and EG (lower panel, c, d) are shown in the above Gardner-
Altman estimation plots. The groups are plotted on the left axes as a slopegraph: each paired set
of observations is connected by a line. The paired Cohen’s d is plotted on a floating axis on the
right as a bootstrap sampling distribution. The Cohen’s d is depicted as a dot; the 95% confidence
interval is indicated by the ends of the vertical error bar.
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The SNR test did not show significant effects of group factor for the post-test (F
= 0.09, p = .77, η2p = .00) or for the follow-up test (F = 0.03, p = .87, η2p = .05)
(Table 1). For these results, in each group type, post-hoc differences were identified for
pairwise comparisons pre-test vs. post-test and post-test vs. follow-up group. For the CG,
there was a decrease from pre- to post-test (Cohen’s d [95% confidence intervals]:−0.19
[−0.57, 0.22]; with small ES) (Fig. 2a) like what happened in EG (0.30 [−0.512, 0.594];
with small ES) (Fig. 2c).When considering post- to follow-up test, SNR values increased
in both CG (0.28 [0.158, 0.695]; with small ES) (Fig. 2b) and EG (0.30 [−0.235, 0.754];
with small ES) (Fig. 2d).

The nbLog test did not show significant effects of group factor for the post-test (F
= 1.11, p = .30, η2p = .03) or for the follow-up test (F = 1.12, p = .74, η2p = .00)
(Table 1). For these results, in each group type, post-hoc differences were identified
for pairwise comparisons pre-test vs. post-test and post-test vs. follow-up group. For
the CG, there was an increase in nbLog values from pre- to post-test (0.117 [−0.212,
0.452]; with small ES) (Fig. 3a) and the opposite happened in EG (−0.0195 [−0.459,
0.337]; with trivial ES) (Fig. 3c). Although, when observing post- to follow-up test,
nbLog values decreased in both groups, CG (−0.678 [−1.03, −0.314]; with medium
ES) (Fig. 3b) and EG (0.311 [−0.726, 0.154]; with small ES) (Fig. 3d).

Fig. 3. The paired Cohen’s d for nbLog (preschoolers) between Pre vs. Post and Post vs. Follow-
up for both CG (upper panel, a, b) and EG (lower panel, c, d) are shown in the above Gardner-
Altman estimation plots. The groups are plotted on the left axes as a slopegraph: each paired set
of observations is connected by a line. The paired Cohen’s d is plotted on a floating axis on the
right as a bootstrap sampling distribution. The Cohen’s d is depicted as a dot; the 95% confidence
interval is indicated by the ends of the vertical error bar.
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The SNR/nbLog outcomes promoted similar results. Non-significant effects of group
factor (F = 0.67, p = .42, η2p = .01) for the post-test neither for follow-up (F = 0.15,
p = .71, η2p = .00). A decrease was identified from Pre- to Post-test in CG (−0.147
[−0.471, 0.172]; with small ES) (Fig. 4a) and an increase in EG (0.0491 [−0.347, 0.496];
with small ES) (Fig. 4c). An increased was observed from post-to follow-up test in both
groups, with a biggermagnitude in CG (0.594 [0.235, 0.975]) (Fig. 4b) than in EG (0.362
[−0.113, 0.771] (Fig. 4d).

Fig. 4. The paired Cohen’s d for SNR/nbLog (preschoolers) between Pre vs. Post and Post vs.
Follow-up for both CG (upper panel, a, b) and EG (lower panel, c, d) are shown in the above
Gardner-Altman estimation plots. The groups are plotted on the left axes as a slopegraph: each
paired set of observations is connected by a line. The paired Cohen’s d is plotted on a floating
axis on the right as a bootstrap sampling distribution. The Cohen’s d is depicted as a dot; the 95%
confidence interval is indicated by the ends of the vertical error bar.

Second Graders
Results for 41 children in three moments showed the SNR trend. It was not found
significant effects of group factor for SNR in pre- to post-test (F = 6.03e−4, p = .98,
η2p = .00) or in post- to follow-up test (F = 0.28, p = .60, η2p = .00), with post-hoc
differences in Pre- vs. Post-test and Post- vs. Follow-up (Table 2).



122 A. R. Matias et al.

Table 2. Analysis of covariance (ANCOVA) results considering the group factor.

Variables Control group
(CG, n = 20)

Experimental group
(EG, n = 21)

Group factor ANCOVA
CG
vs
EG

Pre Post Fol Pre Post Fol F p η2p

SNR 11.0 ± 3.70 11.0 ± 3.72 10.3 ± 2.93 11.1 ± 3.64 11.0 ± 3.78 9.73 ± 3.38 6.03e−4 0.98 .00 a.

0.28 0.60 .00 b.

nbLog 287 ± 212 288 ± 228 289 ± 231 298 ± 235 232 ± 162 265 ± 219 1.11 0.30 .03 a.

0.11 0.74 .00 b.

SNR/nbLog 0.09 ± 0.12 0.18 ± 0.30 0.13 ± 0.21 0.09 ± 0.13 0.13 ± 0.23 0.14 ± 0.25 0.38 0.54 .01 a.

0.10 0.76 .00 b.

Values in bold represent significant differences at p < 0.05.
a. Pre vs. Post-test; b. Post vs. follow-up-test.

In CG, from Pre- to Post-test, SNR values were the same (0.0873 [−1.3, 1.95]; with
trivial ES) (Fig. 5a) as with the EG (−0.0183 [−0.847, 0.752]; with trivial ES) (Fig. 5c),
denoting no changes with intervention. Again, both groups showed similar decrease
trend from post- to follow-up test, with a higher ES in EG (−0.359 [−0.942, 0.203])
(Fig. 5d) than CG (−0.236 [−0.841, 0.327]) (Fig. 5b).

Fig. 5. The paired Cohen’s d for SNR (second graders) between Pre vs. Post and Post vs. Follow-
up for both CG (upper panel, a, b) and EG (lower panel, c, d) are shown in the above Gardner-
Altman estimation plots. The groups are plotted on the left axes as a slopegraph: each paired set
of observations is connected by a line. The paired Cohen’s d is plotted on a floating axis on the
right as a bootstrap sampling distribution. The Cohen’s d is depicted as a dot; the 95% confidence
interval is indicated by the ends of the vertical error bar.
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Again, in nbLog parameter it was not found significant effects of group factor for
SNR in pre- to post-test (F= 1.11, p= .30, η2p= .03) or in post- to follow-up test (F=
0.11, p= .74, η2p= .00). Children fromCG did not show any changes from pre- to post-
test (0.00476 [−0.292, 0.355]) (Fig. 6a) neither from post- to follow-up test (0.00187
[−0.642, 0.659]) (Fig. 6b). In contrast, EG had a decreased from pre- to post-test (0.328
[−0.992, 0.237]; with small ES) (Fig. 6c) and an increase post- to follow-up test (0.172
[−0.499, 0.787]; with small ES) (Fig. 6d).

Fig. 6. The paired Cohen’s d for nbLog (second graders) between Pre vs. Post and Post vs.
Follow-up for both CG (upper panel, a, b) and EG (lower panel, c, d) are shown in the above
Gardner-Altman estimation plots. The groups are plotted on the left axes as a slopegraph: each
paired set of observations is connected by a line. The paired Cohen’s d is plotted on a floating
axis on the right as a bootstrap sampling distribution. The Cohen’s d is depicted as a dot; the 95%
confidence interval is indicated by the ends of the vertical error bar.

As expected, the SNR/nbLog outcomes promoted similar results to the ones observed
in SNR. Non-significant effects of group factor (F = 0.38, p = .54, η2p = .01) for the
post-test neither for follow-up (F = 0.10, p= .76, η2p= .00). An increase was identified
from Pre- to Post-test in CG (0.371 [−0.163, 0.747]; with small ES) (Fig. 7a) and in EG
(0.192 [−0.523, 0.7]; with small ES) (Fig. 7c). A decrease was observed from post-to
follow-up test in both groups, with a bigger magnitude in CG (−0.212 [−0.704, 0.45])
(Fig. 6b) than in EG (−0.212 [−0.704, 0.45] (Fig. 7d).
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Fig. 7. The paired Cohen’s d for SNR/nbLog (second graders) between Pre vs. Post and Post vs.
Follow-up for both CG (upper panel, a, b) and EG (lower panel, c, d) are shown in the above
Gardner-Altman estimation plots. The groups are plotted on the left axes as a slopegraph: each
paired set of observations is connected by a line. The paired Cohen’s d is plotted on a floating
axis on the right as a bootstrap sampling distribution. The Cohen’s d is depicted as a dot; the 95%
confidence interval is indicated by the ends of the vertical error bar.

4 Discussion

4.1 Preschoolers

SNR values from pre- to post-test increased in CG but had a small increase in EG.
When considering post- to follow-up test, both groups have the growing trend with
similar effect sizes. We can conclude that the fine movement quality improved [42] with
intervention, meaning a better quality of speed signal reconstruction [40, 42]. When
considering nbLog values it was observed an increase in CG and a decrease in EG
from pre- to post-test which means that EG needed less lognormals to reconstruct the
pen stroke signal and movements were more fluid, after intervention. From post- to
follow-up test there was a decrease in this parameter values, with more expression in
EG, meaning that this group kept fluidity improvements in fine motor movement along
six months [42, 43]. Finally, SNR/nbLog can be seen as a global indicator of handwriter
performance [41]. Considering that EG had better results from pre- to post-test, it can
be concluded that intervention improved handwriting performance, i.e., better quality
of motor control. From post- to follow-up test, although CG had a bigger increase than
EG, it can be considered more consistent in this last one considering the smaller CI.
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4.2 Second Graders

Both groups showed similar trends in all assessment moments in SNR parameter: no
changes values from pre- to post- test, and a decrease from post- to follow-up test, with
a higher magnitude in EG. This indicates that intervention did not have any effect in
fine motor quality assessed through children’s copies and, after six months, got worse.
In nbLog parameter, CG did not show any changes, in any assessment moment. EG
improved their fine motor movement but did not keep this improvement after the end of
intervention program. Again, in SNR/nbLog both groups were observed same trend with
better handwriter performance after intervention and less retention of these gains after
6 months. The lack of maintenance of the improvements gained with the intervention
or even worsening of the results, can be due to the handwriting automatization process
that children with this age are passing through [14, 24, 25].

5 Conclusion

This study started from the hypothesis that children receiving intervention would show
substantial improvement in handwriting performance revealed by SNR, nbLog and
SNR/nbLog. In general, graphomotor intervention had positive effects in fine motor
control and, consequently in Graphic Skills performance. This exploratory study was
limited by its sample sizes and by the fact that there were no participants with handwrit-
ing difficulties. Considering the relevance of the analysis done in the present study, it
is recommended that in the future, child Graphic Skills assessment use complementary
information with traditional features [42] using process and product approaches [35].
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Abstract. Recent works highlight that a graphomotor analysis of the pupil’s
movements throughout his schooling for a maximum of writing and production
situations could contribute to improving the support of the learning of handwrit-
ing well beyond the first years of school. However, to our knowledge, there is no
tool to date that could constitute a shared and mobilizable help for all teachers
from kindergarten to high school for such process. The Web-platform Copilo-
trace tries to answer this problem. After a review and a discussion of the uses of
digital technology to assist teacher’s practices of evaluation andmonitoring of stu-
dents’ graphomotor skills, we present the architecture, and main functionalities of
Copilotrace. These functionalities are centered on the contextualized acquisition,
storage, and analysis of graphomotor tasks. Then, we illustrate the main contri-
butions of the use of Copilotrace thanks to three research-actions of the EMagMa
project.

Keywords: Graphomotor tasks · Web-platform · Online acquisition ·
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1 Introduction

Many works [1, 2] have highlighted that, in addition to the appreciation of the legibility,
the visual conformity and the linguistical quality of the handwritten productions made
by pupils, graphomotor analysis of their movements should produce meta-knowledge
that should help teachers to improve their assistance to handwriting learning process
from kindergarten up to high school (Fig. 1).

Therefore, even when teachers propose pedagogical activities that have as primary or
exclusive goal the appreciation ofmeta-knowledge ormeta-skills in areas such as knowl-
edge of letters, handwriting, spelling, written production, space management, geometry,
arithmetic calculation, etc.; the instructions they give to their students very frequently
induce the production of what we have chosen to call graphomotor tasks.

A graphomotor task is the execution of a sequence of voluntary and controlledmove-
ments with the aim of producing traces by means of a writing implement (pen, pencil,
finger…). School graphomotor tasks all have in common that they generate at least one
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Fig. 1. Examples of scholar handwritten productions. (a) a 4-year-old pupil’s free-hand scribble
and (b) a free-hand square produced at kindergarten by a 5-year-old pupil; (c) a word and (d)
isolated cursive letters freely written by a pupil at elementary school; (e) a narrative text produced
at middle school by a 11-year-old pupil.

visually persistent or non-persistent trajectory of either a pointing action, a dragging
action, or a handwritten tracing action in a finite and oriented 2D space. The trajec-
tory generated by a graphomotor task may, depending on the nature of the pedagogical
activity, fall into at least one or more of the categories meaningful at school. Exam-
ples include line, straight line, curve, geometric shape, scribble, curvilinear scribble,
figurative sketch, letter, alphanumeric symbol, cursive word…

Meetings with teachers from kindergarten to primary school within the Guadeloupe
Academy led us to note two facts that are consistent with the observations made in
France and Quebec [3]. First, very often, the teaching team can perceive and assess
only the final visual rendering of the graphic objects pointed, dragged, or traced. Next,
teachers rarely consider the other components of graphomotricity, although significant
in all the schoolwork done by the pupil from nursery school onwards and throughout
his schooling [4], as fundamental components that must be trained throughout school
career. Thus, they assess these other components of pupils’ graphomotor skills, as the
motor dimension, and work on them only during the first schooling years. For example,
in Guadeloupe, teachers try to work on these components only from kindergarten up to
the beginning of the third year of primary school [5].

We argue that teachers should benefit of adequate tool for continuously assess, in
the light of simple criteria and academic standards, the qualitative progression of their
students’ graphomotor abilities by analyzing their graphomotor tasks all along primary
school period. However, to our knowledge there is currently no solution to help a teacher,
within his usual practice, to conduct such analysis of students’ graphomotor tasks.

In addition, although we have been able to note that researchers need data on the
graphomotor behaviors of all-coming students during their learning, there is to our
knowledge no solution that allows both: a non-intrusive and secure acquisition in real
situations, i.e., in ordinary school environments as a reliable/controllable, fast and easy
preparation of such data for research.

We have developed Copilotrace, a web-platform, which deals with such purposes.
This paper aims to provide details about Copilotrace, and its previous uses as follows.

First, after a review of the literature dealingwith the digital tools dedicated to grapho-
motor learning, we explain the choices we have made to design Copilotrace. Then, we
describe the principles that underlie its architecture and functionalities. Next, we discuss
three real uses of Copilotrace and conclude with perspectives.
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2 Review of Uses of Digital Tools for Graphomotor Learning

Since the first developments of digital tools dedicated to graphomotor learning, the
acquisition and processing apparatus have made enormous progress. The digitizer with
its pen [6] used by software such as Scriptot [7], ComPET [8], MovAlyzeR [9] or
MEDDRAW [10] at the start gradually gave way to embedded systems like Trazo with
its tablet PC [11] or the Hello Kitty Digital Pen embedding Toutaki [12] in the early
2000s. Since then, moremobile, and elaborate devices like touch tablets have established
themselves, due to the dazzling growth in their penetration of the consumer equipment
market and their usage.

Although they have retained their shortcomings in terms ofmeasurement uncertainty
[13, 14], the models of touch tablet favored since 2010 by tools dedicated to grapho-
motor learning of handwriting have gained in lightness, autonomy and consequently in
mobility compared to Tablet-PCs or to digitizers that cannot operate without computer.
Though it is noticeably light and easy to manage, touch tablet, if its screen embeds
electromagnetic technology rather than resistive or capacitive one, can also provide a
qualitative experience of pen-oriented interaction thanks to electromagnetic resonance
autonomous active styli.

Moreover, by natively embedding in their ownOS powerful means of real-time com-
putation, memorization, and network communication in addition to online visualization
and recording solutions of the tracing or pointing movements used with the finger or
the stylus on their surface, touch tablets have opened new application perspectives [15].
Thus, as far as the design of digital solutions for helping the learning of handwriting
and graphomotor gestures is concerned, the Intuidoc team in partnership with the com-
pany Learn & GO have recently enriched existing solutions by developing Kaligo tool
[16–18]. Kaligo is compatible with a wide range of touch tablets on different operating
systems (Android, Apple, Chromebook). It is a software solution that stands out from
its predecessors by the philosophy that underlies it. The principles that prevailed in its
conception and that conditions its functioning and its uses at school [19] are, according
to its designers:

• To provide a digital solution for the teacher and the children dedicated to the learning
of the graphomotor gesture and the handwriting of the pupils,

• To enrich, using digital tools, the teaching of writing in accordance with the objectives
set by the school programs,

• Adapt to the teacher’s pedagogy while allowing for individualized learning paths and
better monitoring of student progress,

• Formalize the solution of autonomous training for each student through a personal
digital notebook accessible on a preconfigured tablet thanks to the School or Home
QR codes created by the teacher for each of his students,

• Formalize the solution of pedagogical programming and monitoring of the effects of
training via a web space Teacher,

• Encourage self-assessment with an automatic expertise of the writing based on a
multifactorial analysis of the shape, themeaning, the order of the drawing, the pressure
on pen and the respect of proportions from artificial intelligence engines,
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• Systematize feedback on production via the display of an easy-to-understand indicator
gauge that helps maintain the student’s commitment to the task,

• Integrate remediation as a learning tool, i.e., offer the child the opportunity to redo
the unsuccessful production as many times as necessary.

Several points limit the use of the pre-existing solutions we have studied. They
are linked to their designers’ conceptual and functional choices. Thus, some of these
tools can exclusively work locally, others require a permanent connection with a remote
server, while others require a specific type of hardware or a specific writing implement.
Moreover, some tools impose the activities. This last choice constitutes a factor that
limits the teacher in the design of his pedagogical sequences.

Finally, the constrained budgetary context in many scholar systems seems to also
be a significant obstacle to the use of some of these solutions; for example, if a specific
model of unsupported device already equip schools.

Lastly, the choice of equipment models is often heterogeneous from one school to
another, and even within the same school. So, those who have chosen tablets without a
pen, unless they have the necessary budget to buy pens compatible with the tablet models
they own, cannot in this case exploit solutions that natively require a specific model of
writing tool.

We think that a technologically open solution, i.e.: detached from the hardware, with-
out limitation on the choice of models, writing tools, operating systems and exploitable
pedagogical contents could: be more accessible to users who do not have access to
pre-existing solutions for the reasons stated above; constitute a foundation for solutions
that should offer a wider range of applications in terms of assistance to education and
research. It is on this basis that we have designed Copilotrace platform.

3 Introduction of Copilotrace

Copilotrace is a digital platform that can offer pedagogical activities which induce
graphomotor tasks specifically dedicated to the learning of efficient handwriting gestures
and can assess pupils’ levels of proficiency. Copilotrace can also assist other fields of
learning or experimental studies concerned with the production of graphomotor tasks.
Indeed, its conception principle is based on the constant and primordial concern to
simultaneously make possible, at a lower cost and for the greatest number of users:

• the acquisition of relevant raw data on the graphomotor tasks,
• the contextualization and adaptative analysis of these data,
• the autonomous, transparent retrieval, aggregation, and storage of these data.

First, we have conceived Copilotrace as a progressive WEB application powered
by web browsers, available on all operating systems (Windows, Android, macOS, IOS,
chrome OS). This choice allows a quick installation on the equipment from an Inter-
net address entered in the browser: https://copilotrace.univ-antilles.fr. Copilotrace also
allows a use in white zone or, by small children from 3 to 5 years old, in accordance with
the regulation recommendation relative to the limitation of continuous exposure to the

https://copilotrace.univ-antilles.fr
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waves generated by the wireless Internet. Copilotrace is based on five modules written
in web technologies:

• A module to manage groups of users and users’ graphomotor tasks (MUG),
• A module to collect raw data on trajectories (MCT),
• A module to design contextualized activities (MDC),
• A module to extract and export contextualized graphomotor data by query (MEQ),
• A module to store contextualized pedagogical activities (MSA).

The teacher, as an accompanist, can use the MUG to create user accounts with a
writer profile and allocate an identification code or avatar for each pupil. The MUG help
teacher to create group class, groups of need and to assign pupils to these groups. Before,
the teacher must first create his own account with an accompanist profile.

The MCT is responsible for the online acquisition by various devices like tablets,
smartphones, computers, iPad,.) and the analysis of raw data on the dragging, pointing
and handwriting trajectories. The MCT collects at least the digital context and the raw
data for each graphomotor task. The raw data acquired by theMCT consist in a sequence
of dated position (t, X, Y) of the tip on the surface. Optionally, the MCT also acquires
the pressure exerted on the tip of the writing tool. The digital context encapsulates meta-
knowledge on the web-browser executing the MCT, the model of the material and the
type of writing tool. Thanks to the MCT, Copilotrace can process trajectories made with
finger or pen online for the adaptative analysis of graphomotor tasks.

The MDC allows the design of pedagogical activities (PA). This design process is
based on the specification of a set of contextual elements like activity duration, number
of repetitions, pedagogical supports, writing tools used, expected graphomotor states
or procedures for problem solving, expression of consistency score… These contextual
elements tune the PA complexity, the sequence of graphomotor tasks to perform and
interaction with writer for their control.

The MCT uses meta-knowledge which encapsulate other contextual data, like
expected graphomotor states and solving procedure, to parametrize the set of features
estimated from the raw data recorded during a graphomotor task. If there are specifica-
tions of such contextual elements and of a consistency score, Copilotrace process the
raw data online to compute the degree of spatio-graphical [20], procedural [21], tem-
poral [22], or structural [23] consistency of the graphomotor task trajectory. Next, if a
feedback flag is set on, Copilotrace can display this consistency score after the writer’s
graphomotor task. In such case, Copilotrace also suggests the next activity depending
on the consistency score.

Lastly, for each graphomotor task done, the Copilotrace client aggregates the digital
context and raw data collected by the MCT, the set of contextual elements previously
specified with the MDC and the MUG. The client pushes those data on the Copilotrace
data server when it detects an Internet access. Figure 2 synthesizes the profiles of users
and several types of interactions with Copilotrace. Each bold use case shows a service
according to the user profile: writer or accompanist. The italic use cases underline crucial
internal automated functions of Copilotrace.
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Fig. 2. A use case diagram that shows the two profiles for the users of Copilotrace and the goals
of the interactions with the system for each of these two profiles.

Fig. 3. Example of the word puzzle activity (left) with a writer’s answer (middle); Copilotrace
displays feedback, consistency score and a blue suggestion of next activity to perform (right).
(Color figure online)

Figure 3 illustrates an example of use of Copilotrace by a writer to execute a stopgap
pedagogical activity that induces pointing and dragging graphomotor tasks with the
finger. It also illustrates feedback as suggestion of next pedagogical activity.

4 Examples of Use of Copilotrace

This is the Academic Region of Guadeloupe (ARG; http://www.ac-guadeloupe.fr/) that
manages the French education system inGuadeloupe: an archipelagic territory composed
of six islands. From 2010 until 2016, its evaluations revealed that:

1 The language and handwriting levels of ability are still below the levels targeted by
School. This is true both at the end of kindergarten, during the transition to secondary
school, and among the high rates of adolescents and young adults leaving the school
system early.

http://www.ac-guadeloupe.fr/
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2 The significant increase of Guadeloupe network coverage, of schools and family’s
equipment with tablets, smartphones and other tactile or pen-devices, did not suffi-
ciently benefit either pupils’ learnings or to question the effectiveness pedagogical
practices.

At the same time, our team had highlighted that no existing project put the processing
power of digital at the service of both development of students’ handwriting proficiency
and the evaluation of the effects of digital processing power on teachers’ practices [24].

4.1 The EMagMa Project

Based on these observations, LAMIA and ARG designed EMagMa project. Its first
objective was to determine if Copilotrace could be a suitable digital solution for tooling
and assisting teachers on research-actions related to educational problems.

The first operational phase of experimentation of Copilotrace in real context of use
started at the beginning of the school year 2017/2018 and involved one college, four
elementary schools, and seven kindergartens into six research-actions. The longest one
lasted two years. These research-actions involved a total of sixty-six teachers, four edu-
cational advisors in charge of digital education, four district inspectors and seventeen
young assistants in civic serviceswho have participated in the implementation of training
or evaluation educational sequences on school time. Their protocols proposed various
production contexts, materials, and conditions for the collection of the students’ grapho-
motor tasks. 1582 students aged three up to fourteen, from twelve scholar grades, have
participated to this first operational phase of EMagMa project.

Each following subsection will detail some benefits of the use of Copilotrace already
denoted thanks to three of these research actions.

4.2 Copilotrace as a Data Collector for Graphonomics Research Purposes

At first, Copilotrace can constitute a new appreciable way to collect graphomotor data
in unbiased realistic scholar situations for research-action purposes.

To illustrate this, let us take the case of the EMagMa research action on scribbling.
This research has three objectives. The first is pedagogical. It is a question of determining
how scribbling, this graphomotor activity which is non-linguistic and accessible to all
children at an early age [25], can help to teach abilities that are useful in efficient scholar
handwriting. The second objective is to determine if the sigma-lognormal analysis of
scribbling activities [26] done on a touch tablet could help to evaluate a pupil’s level of
motor control. The last purpose is to assess if the criterion analysis [27] of the oldest
student’s scribbling sequences could reveal their capacity to simultaneously mobilize all
the useful abilities to produce an efficient/proficient writing [28]. For the purposes of this
research action, we have collected sequences of eight scribbles produced with a finger
and a pen by more than nine hundred students, aged 3 to 11 years old, enrolled in classes
at 12 school levels ranging from kindergarten to sixth grade, was conducted on a touch
tablet thanks to Copilotrace during the two school years. For the study, students from
sixth grade, aged 10 to 11 realized a set of scribbles on Wacom Intuos graphics tablets
during the first school year, 2017/2018. Two researchers of the laboratory had to be
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continuously present all along 2 days to install the apparatus and to drive the acquisition
of the scribbles on three digitizers.

The scribble collection had several interests. First, it helps to verify that the use
of Copilotrace, because of its handiness both by the supervisors and the pupils from
3 years old, is adapted to the realization of important campaigns of secure collections of
graphomotor productions useful for research purposeswithout the exclusive intervention
of the researchers who are unknown from the pupils. Indeed, educational actors of the
schools conducted several collections in an autonomouswayduring school time.Because
the collection of data over two school years, some pupils produced the same types of
graphomotor tasks four times, even though they had changed class or school. More than
thirty pupils had moved from kindergarten to first grade in primary schools and others
from fifth grade in primary school to sixth grade in middle schools that were also taking
part in EMagMa project. Thanks to our conceptual choices on the MUG design: the
module ofmanagement and follow-up of the cohort ofwriters, these school changes at the
beginning of the school year were completely transparent and did not affect the analysis
process of the data collected and aggregated with Copilotrace. Such a situation has no
impact except that it shows that Copilotrace use offers the possibility of a longitudinal
acquisition of graphomotor data without questioning the principle of anonymity of the
research participants. Moreover, it allows easier access to the aggregated data that are
related to all the productions of the students who changed school level. That is suitable
in the context of longitudinal studies concerned by the study of the evolution of pupils’
graphomotor performances [18]. Lastly, the collections made with Copilotrace produced
a significant volumeof contextualized data in amuch shorter time than that required using
digitizers. Finally, the comparative analysis of the traces collected on touch tablets thanks
to Copilotrace and those acquired on digitizers allowed us to implement and to verify the
interest, in terms of time saving for the researchers, of the functionality of aggregation of
data resulting from heterogeneous material sources and of the functionality of extraction
of data starting from requests. We present the first results of this action research in [29].

4.3 Copilotrace as a Testing Workbench for Criteria Issued from Graphonomics
Research

Previously,we had seen that the deltaPenlift criterion, as a filter prior to Sigma-lognormal
modeling, can help to measure the efficiency and procedural quality of pupils’ cursive
writing gestures [30]. As detailed by Eq. (1), the deltaPenlift criterion is equal to the
difference between the number of pen-lifts done while writing a given word and the
minimal number of pen-lifts expected according to the set of cursive rules taught at
school.

deltaPenlift = (number_of_penlifts_done − number_of_expected_penlifts) (1)

As part of EMagMa project, we conceived an experimentation with teachers to study
sets of samples of various words handwritten on a touchpad. Our aim was to determine
if the previous conclusions made on the deltaPenlift criterion in the case of the pupils’
first name and the pseudo-word tintin, handwritten on aWacom digitizer, remained valid
in the case of handwriting of common words operated at school on a touch pad. Regular
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pupils of three types of schools from PS, which is the first kindergarten classrooms, up
to sixth, which is the first class at the beginning of middle school, were volunteering to
copy isolated cursive words on a touch pad driven by Copilotrace. We can notice that
teachers had already labeled all the participants from sixth as poorest writers of their
promotion while teachers of all the lowest scholar levels had not previously labeled their
pupils according to their handwriting or graphomotor skills.

For this study,we explored the behavior ofDeltaPenlift along all the four pedagogical
periods when handwriting learning start in the French and Guadeloupean education
system [31]. Table 1 synthesizes the definitions, duration, and of each of these four
periods. The more advanced a pedagogical period is, which corresponds to the duration
of exposure of students to work and a school use of the writing gesture more importantly,
the greater is its number.

Table 1. Code, definition, and duration of each pedagogical period according to school.

School Kindergarten Primary school Middle school

Period 1 2 3 4

Definition Preparation for
handwriting
learning

Explicit teaching
and intensive
training to
handwriting rules

Consolidation and
automation of
handwriting

First intensive uses
of handwriting

Duration 3 years 1 year 3 years 1 year

We have chosen to consider only the legible samples for the usual and simple
words lunes (i.e., moons) and lundi (i.e., Monday) produced by volunteer pupils from
kindergarten up to the beginning of middle school. Table 2 gives the number of legible
handwritten samples collected per period.

Table 2. Number of legible handwritten samples of lunes and lundi collected per period.

Period 1 2 3 4 All

lunes 34 74 25 35 168

lundi 18 69 20 36 143

According to the rules taught at school, the cursive movements necessary to write
word lunes induce no pen lift while handwriting of the word lundi requires a minimum
of two pen lifts. Whatever the word, the proportions in the compiled histograms (see
Fig. 4) denote that: the higher the code of the pedagogical period, themore the proportion
of legible samples handwritten by minimizing the number of pen lifts to better follow
the rules of efficient cursive handwriting tends to increase. The performances seen for
period 4, although they show greater variability, also confirm this trend, albeit to a lesser
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extent about the word lunes. The fact that the group of pupils for period 4 includes only
poor writers may explain that.
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Fig. 4. Proportion of each category of deltaPenlift value observed on legible words for each
pedagogical period for lunes (left histogram) and lundi (right histogram).

Finally, we can highlight two more general observations. They concern in the first
place the area of relevance of the deltaPenlift criterion which extends over all peda-
gogical periods from the beginning of the preparation for the learning of writing from
kindergarten until at least the entry into sixth grade. Secondly, these results confirm that
there is still room for improvement in student performance. It is therefore appropriate to
define how practices at school could involve pedagogical situations of adjustment and
monitoring of the behavior of the deltaPenlift criterion.

This experimentation with usual words tends to show that deltaPenlift remains rele-
vant, in more open contexts than in [30]. Moreover, deltaPenlift as computed by Copi-
lotrace could help to resume and describe pupil’s proficiency and procedural quality of
cursive handwriting gestures. From these trends, we have designed an exercise dedi-
cated to the handwriting of cursive words and random pseudo-words (see Fig. 5.a). It is
based on a categorization of letters according to the cumulative cursive rules [30] that
writers must activate when they do their cursive trajectories. For each word randomly
proposed, Copilotrace automatically estimates the minimum number of expected pen
lifts before computing the value of deltaPenlift thanks to Eq. 1. This process is based
on a co-occurrence matrix that codes whether the cursive links of two following letters
require a pen lift or not. Next, Copilotrace displays a consistency score computed with
Eq. 2 and feedback which consists in a simple colored emotion icon (Fig. 5.b). Feed-
back that can be associated with the value of the consistency score (Fig. 5.c), indicates
the degree of success of the procedure of realization of the expected graphomotor task.
Copilotrace also provides proposals of activities to do. They appear in blue highlights
like on Fig. 5b and 5c. In case illustrated by Fig. 5, Copilotrace estimates consistency
score thanks to Eq. 2, where α is −1. The greater the difference between the number of
pen lifts made during the writing of the word and the number of lifts in accordance with
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cursive rules, the closer the consistency score is to zero while a zero gap will result in a
consistency score equal to 1.

Consistency_score = e(∝∗|deltaPenlift|) (2)

Fig. 5. (a) Example of an activity of cursive handwriting proposed in the Copilotrace platform
with a scripter’s answer into the dedicated zone. (b) Feedback provided by the system to the writer.
(c) Feedback provided by the system with the addition of a score for more precision. (Color figure
online)

4.4 Copilotrace: An Assistant to Experiment Pedagogical Approaches and Study
Their Effects

The last example of research-action to illustrate the uses of Copilotrace is in progress.
Its aims to evaluate the effects of Dorville’s early learning method of scholar cursive
handwriting (SCH) [32]. This method is based on a modular conception of SCH, the
principle of complexity dissociation and techniques for a progressive construction of
each component of this complex skill [27]. It proposes one independent sequence of
exercises by component. The sequences consist in graphomotor activities of graduated
complexity. Each sequence is supposed to help young writer to learn and automate, at his
own pace, one component usually mobilized in conjunction with the other components
of SCH. Dorville had conceived this method for a playful implementation from the age
of three in a classical context with tangible manipulations of paper, pencil, and other
objects. He had already presented this classical version of his method to teachers through
many private and academic training plans. However, although this method was favorably
appreciated by an increasing number of teachers who used it, its effects on handwriting
performances had never been rigorously evaluated in scholar environment.

Therefore, we have initiated an EMagMa research-action with teachers of kinder-
garten and primary school for such purpose. This research-action is concerned with two
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contexts of use of Dorville’s method: the classical one without digital assistance vs. a
new context with digital assistance. We consider two usual pedagogical practices. The
first one aims to do diagnostic assessments of the pupils’ abilities for four components
entitled: Gym de la main, Puzzle, Espace and Parcours [32]. The second pedagogical
practice aims to train pupils from the beginning of kindergarten with various activities
according to their initial diagnostic assessment. For this research-action Copilotrace
intervenes as a tool that transposes pedagogical training and positioning situations in
digital context and as a device that help to collect and aggregate the scoring of the
diagnostic assessments done by teachers.

The transposition in digital context of the evaluation and training situations of this
method thought initially in paper-pencil context was easy and fast thanks to the function-
ality of contextualized conception of activities that Copilotrace integrates. The exercises
added to Copilotrace for this research action solicit productions on touch pads of scrib-
bles, sequences of lines, isolated cursive letters, cursive words, actions of pointing,
dragging, and placing virtual objects. As so Copilotrace can propose similar scenario of
positioning and training than the ones in classical context to the pupils for an execution
with their finger or with a pen.

Another important advantage of the digital context lies in the capacity for Copilo-
trace to manage totally or partially the guidance of the sequence of activities proposed
to the student. This guarantees that all the evaluations proposed to all students in digital
context take place according to the same scenario, which is not the case in paper-pencil
context. Although Copilotrace can control it, the diagnostic assessment must, however,
remain under the continuous attention of the teacher. This, so that the teacher can better
devote himself to his roles of pedagogical guidance and mediator of the engagement in
the digital context by basing his interactions with the pupils on the complementary infor-
mation immediately computed and displayed by Copilotrace. In the classical context,
the teacher’s scoring task represents a time-consuming activity. Moreover, it represents
a cognitive charge for the teacher whomust drive it at least partly in competition with the
mediation task with the student. As an illustration, it is interesting to note that only eigh-
teen of the thirty-eight volunteer teachers had done the initial diagnostic assessments.
This, while they were all trained beforehand in the use of assessment tools in a classic
paper-context for each of the four components and they all stated that an initial assess-
ment would be useful to help them better guide their actions to support the strengthening
of their students’ graphomotor skills. Teachers had systematically put forward lack of
time to explain the non-realization of this initial assessment.

5 Conclusion

In this paper, first, we have introduced the concept of graphomotor task. Then,we showed
how the exercise done by the student mobilize his graphomotor skills by soliciting the
realization of graphomotor tasks. Next, from a review of the literature, we have under-
line that there was a broad consensus about the lack of tools to analyze and evaluate
the quality of the student’s graphomotor skill throughout his school curriculum in a
maximum of handwriting situations. However, none of the existing solutions to support
handwriting learning seemed suitable for this purpose for all the teaching community,
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from kindergarten up to middle school. To answer this problem, we have developed
a new Progressive Web Application: Copilotrace. We explained the architecture and
the functionalities of Copilotrace. These functionalities concern on-line acquisition of
graphomotor tasks and their multifactorial analysis in context. Possibilities to aggregate
and consider data coming from various contexts and models of touch and pen devices
enrich Copilotrace. As so, Copilotrace is an open and flexible solution which can easily
adapt to various contexts of use. To illustrate this point as well as the principal contribu-
tions of the use of Copilotrace, we provide details on three of the first research-actions
initiated in real school environment within the framework of the project EMagMa.

The first research action, devoted to scribbling, allowed us to show that on the condi-
tion of registering the graphomotor analysis, whose benefit of a systematized practice is
not any more to demonstrate, in a context of inter-cycle collaboration, when it is, more-
over, multifactorial as the open character of Copilotrace authorizes it; then, the lessons
on the evolution of the graphomotor behavior of the pupil produced by the graphomotor
analysis can contribute much more than to enlighten and enrich the pedagogical practice
of each teacher, cycle team or establishment. Indeed, beyond that, it can also help to
develop a cooperative approach for the monitoring of the progression of graphomotor
skills throughout all the student’s school career.

Beyond the fact that the second and third research actions presented illustrate the
simultaneous implementation of all the functionalities offered by Copilotrace, it is inter-
esting to highlight that Copilotrace is not only a tool useful to enlighten and help teachers
and students in their respective daily practices of teaching and learning. Copilotrace can
also be useful for the researcher, either:

• the teacher who wishes, thanks to the practice of graphonomics, to question his
practices, the effects of teaching methods and the causes of his students’ progress,

• the researcher, teacher or not, who wishes to manage, capture, analyze and export
multi-source and multimodal data aggregated on graphomotor tasks in context.

On this last part, in terms of perspectives, we will finish by indicating that we still
have work to do within the EMagMa project to study the thousands of data collected and
saved in a structuredway thanks to Copilotrace. These data concern various graphomotor
tasks acquired online and offline in quite different contexts.

The functions and flexible architecture of Copilotrace, a priori open it to teachers
and researchers beyond Guadeloupe. With Copilotrace they can create collaborations to
collect, constitute and share standardized large data banks useful to study contextualized
graphomotor tasks, writers’ behaviors, or handwriting teaching methods.
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Abstract. Age detection from handwritten documents is a crucial
research area in many disciplines such as forensic analysis and medical
diagnosis. Furthermore, this task is challenging due to the high similarity
and overlap between individuals’ handwriting. The performance of the
document recognition and analysis systems, depends on the extracted
features from handwritten documents, which can be a challenging task
as this depends on extracting the most relevant information from row
text. In this paper, a set of age-related features suggested by a grapholo-
gist, to detect the age of the writers, have been proposed. These features
include irregularity in slant, irregularity in pen pressure, irregularity in
textlines, and the percentage of black and white pixels. Support Vector
Machines (SVM) classifier has been used to train, validate and test the
proposed approach on two different datasets: the FSHS and the Khatt
dataset. The proposed method has achieved a classification rate of 71%
when applied to FSHS dataset. Meanwhile, our method outperformed
state-of-arts methods when applied to the Khatt dataset with a classifi-
cation rate of 65.2%. Currently, these are the best rates in this field.

Keywords: Age detection · Machine learning · Image processing ·
Handwriting analysis

1 Introduction

Automated applications identifying personal information without involving the
subject is becoming a crucial research area. Therefore, automatic age estimation
or detection from handwritten documents is becoming an important research
topic.

Age detection from handwriting is very essential in many applications, such
as forensic studies and health diagnosis. In forensic studies, it helps limit inves-
tigation to a more targeted age group or category, which leads to improved
results in writer identification and verification applications. Similarly, in health
diagnosis, age estimation or detection helps determine whether the development
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in handwriting is commensurate with age development. For example, detecting
significant handwriting degradation in a child’s handwriting indicates an early
pathological and neurodegenerative state. In addition, distinguishing the normal
evolution of handwriting with age from abnormal change is potentially related
to cognitive decline [1,2].

Age detection based on handwriting is a challenging and complex task for
several reasons, for example the motor skills are not mastered before the age
of 14. Moreover, the high similarity between people’s writings made it harder
to determine the right features to detect the writer’s age, either manually or
automatically.

These difficulties made the age detection systems an active research topic.
Research in age detection can be done by visually inspecting a set of relevant
features such as slant, spacing and letter size. Meanwhile, it can be performed
automatically by extracting features from offline or online handwriting. Hence,
the manual way of detecting age from handwriting suffers from many difficulties,
such as being time-consuming, especially if there are many documents to be
analysed. In addition, the process, is expensive, tedious and exhausting [3].

In this paper, we propose an age detection system based on extracting a set
of new features to automatically detect the writer’s age. These features are, the
speed of writing which can be determined by extracting the irregularity in pen
pressure and the irregularity in slant. The ratio of white to black pixels of the
written document. In addition, the irregularity in text lines which have a good
role in revealing the writer’s age.

The rest of the paper is organized as follows: Sect. 2 is a literature review of
some recent automatic handwriting age detection systems. Section 3 describes
the proposed approach. Section 4 shows the experimental results obtained after
applying the proposed method. Section 5 concludes the paper and suggests a
future direction.

2 Literature Review

Few researchers in the literature have studied the problem of automatic age
detection from handwriting. These studies vary in age groups to be detected
and the extracted features proposed to detect age.

Basavaraja et al. [4] proposed a new method to estimate age from handwriting
based on extracting disconnectedness features using Hu invariant. First, they
explored the intersection points in the cany edge images. Then, they used K-
means clustering to classify the handwritten documents of their dataset into four
classes. Class–1 with ages ranging from 11–12 years, class–2 with ages ranging
from 13–16 years, class–3 with ages ranging from 17–20 years and class–4 with
ages ranging from 21–24 years. Each class has 100 images. However, for the
two public datasets, IAM [5] and Khatt [6]. The images were divided into two
classes. As a result, an accuracy rates of 66.25% has been achieved using the
IAM dataset and 64.44% using the Khatt dataset.

Marzinotta et al. [2] provided a method to classify age and gender from
online handwriting features available in the IRONOFF [7] dataset in French and
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English languages. Their work is a two-layer schema. They used global features of
handwritten words for a writer independent clustering in the first layer. However,
the second layer was used to determine the stability across words for each writer
by clustering the style variation at the previous level.

Bouadjenek et al. [3] introduced two gradient features to classify the writer’s
age, gender and handedness: the histogram of oriented gradients and gradient
local binary patterns. They used the Support Vector Machine (SVM) [8] method
to classify the documents. IAM and Khatt datasets were used to evaluate the
system. IAM dataset was divided into two age classes based on age ranges: 25–34
years and 35–56 years. On the other hand, the khatt dataset was divided into
three ranges that can be defined as “under 15 years”, “16–25 years”, and “26–50
years”. They got a 70% accuracy rate when using the IAM dataset and a 55%
accuracy rate when using Khatt dataset.

Almaadeed and Hassaine [9] developed a handwriting analysis system for
age, gender, and nationality classification. They extracted a set of geometrical
features combined using random forests and kernel discriminant analysis. They
applied their system OUWI [10] dataset, and they got accuracies rates of 55.7%
and 60.62% were achieved for age detection when all writers produced the same
handwritten text and when each writer produced different handwritten text,
respectively.

Marzinottto et al. [1] proposed an online age classification system based on a
two-level clustering scheme. At the first level, writer independent word clusters
are generated. On the other hand, the second level generates a bag of prototype
words from each writer’s words. Supervised learning then is used to categorise
the handwritten documents in terms of age. A dataset sample acquired from
Broca Hospital in Paris was used to conduct the experiments. The writer ages
range between 60 and 85 years old. Their approach came out with the following
findings: first, people above 65 years old present three handwritten patterns
regarding the dynamic features, pen pressure and time on air. Second, people
aged above 80 years have almost the same unique style with lower speed.

3 Methodologies

In this paper, we propose a machine learning-based age detection system, by
automatically extracting a set of features recommended by a graphologist. The
automatic handwriting analysis process consists of the following stages; image
acquisition, preprocessing, feature extraction and classification. This section
describes the proposed methodologies concerning the four mentioned stages.
Figure 1 shows a diagram of our proposed age detection system.

3.1 Collecting Data and Image Acquisition

In the literature of handwriting analysis and recognition, several databases have
been used to conduct research. These databases differ in terms of the language
used, number of writers and the number of documents. We created our Arabic
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Fig. 1. Structure of the proposed system

handwritten dataset to train and evaluate the age detection proposed approach.
The dataset was collected in Amman the capital city of Jordan. We called it free-
style handwritten samples (FSHS) [11]. Each of the 2200 volunteers was asked
to write a letter to someone the person love; this resulted in a large dataset that
covers different handwritten styles. We also asked a portion of the volunteers to
copy some paragraphs for future research purposes. The total number of samples
is equal to 2700, written by 2200 writers. The writer’s ages range from 15 to 75
years old, while 45% of the samples were written by males and 55% were written
by females. Most of the writers are right-handed. To ensure the convenience of
the writers, we did not put any conditions on the type of tool used for writing.
However, we provided them with a white sheet of paper to write their letter
on it. Volunteers were asked to fill up an information questionnaire, about their
gender, age, handedness, and work position.

What is significant about our dataset is its size and the number of writers.
The variety in age and the large number of writers accounted for the great
diversity in the handwriting styles. The dataset was mainly written in Arabic,
although some writers used the English language, the number did not exceed 15
samples. We digitized the handwritten samples with a resolution of 600 dpi. In
total, the dataset contains 2700 digitized pages. Each page contains a minimum
of five lines. Each line contains approximately ten words. The FSHS dataset can
be used in many research areas related to human interaction, such as handwriting
recognition if appropriately labelled, gender, and age detection.

3.2 Preprocessing

The preprocessing step is required to improve the quality of images before the
feature extraction phase. In handwriting analysis systems, many preprocessing
techniques can be applied to improve the quality of handwriting documents,
such as binarization, noise removal, skew angle correction, thinning and skele-
tonization. In our research, it is necessary to preserve the main features of the
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handwriting because it helps to differentiate the age ranges. Therefore, simple
preprocessing techniques were applied, which is limited to noise removal using a
3 × 3 median filter and binarization using OTSU thresholding [12]. Some of the
extracted features in our work are sensitive to noise, so we applied noise removal
then we used dilation [13]. Where, text document T is dilated using structure
element S to produce a dilated document D as follows:

D = T ⊕ S = { z | [ (B̂z) ∩ T ] ⊆ T } (1)

where B̂ = {c | c= −a, a∈ S}, and D, T , S are sets in Z2.

3.3 Feature Extraction

A set of features were extracted from Arabic handwritten documents based on
the recommendations given by a psychologist and a graphologist. These features
are Irregularity in pen pressure (IPP) with a vector of 200 features, Irregularity
in slant (IS) with a feature vector of 100 features, Irregularity in text line (ITL)
with a vector of 700 features, and the percentage of white and black pixels
(PWB) with 4 features. We examined these features separately and combined by
concatenating them. For example, one of the combinations is IPP (200 features)
+ IS (100 features). A full description of the proposed features is in the following
section.

The proposed method explored a new age-related feature, the handwriting
irregularity with its three factors slant, pen pressure, and text lines, indicating
writing speed, where the youth writers have a slower writing style than the adult
writers.

Slant Irregularity: Arabic writing is a horizontal cursive script whose words
consist of sub-words or Pieces of Arabic Words, each consisting of one or more
letters; this can be shown in Fig. 2, where each color corresponds to a single
separated CC. Consequently, a connected component (CC) [14] Sub-word can
be used to find the Irregularity in slant.

Fig. 2. Arabic text line

To find the irregularity in slant, we calculated the CCs of the binary images.
Then, we applied the method of least square [15] to find the slant by locating the
best fit line of each CC. Given a set of n points, the best fit can be found using
Eq. 2 and to find the coefficients a and b, Eq. 3 and 4 were applied, respectively.
While Eq. 5 was used to find the skew angle (α). The number of CCs used to
find this feature was empirically set to 100 for FSHS dataset and 200 for Khatt
dataset, with size(CC) > 10 pixels.

y = a + bx (2)
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α = tan−1(b) (5)

Pen pressure irregularity: to find the irregularity in pen pressure, the grey-
scale image was divided into uniform squares of size 100× 100 pixels. The stan-
dard deviation (SD) and mean X ′ were calculated for each square separately,
using Eqs. 6 and 7, respectively. The number of the segmented squares was empir-
ically set to 200.

SD =

√
√
√
√ 1

N − 1
×

n∑

i=1

m∑

j=1

(X(i,j) − X ′)2 (6)

X ′ =

∑n
i=1

∑m
j=1(X(i,j))
N

(7)

where, X ′ is the mean value of the pixel intensities of the square, N is the number
of pixels in a square (n × m), and X(i,j) is the intensity value of each pixel.

Text-line irregularity was measured by applying the horizontal projection
profile after dilating the text in a given document. The horizontal projection
profile f(y, p(y)) of the document is found for the first n rows of the document,
which was experimentally chosen to be the first 850 pixels. The horizontal pro-
jection profile reflects the nature of the document and the distribution of the text
lines. From f(y, p(y)) the algorithm considers the significant peaks and valleys.

Figure 3 shows the horizontal projection profile of two different documents.
The horizontal projection profile in Fig. 3(a) shows that the lines are irregular
and not well separated. In addition, there are no deep valleys in many parts of
the profile, which indicates that the lines are skewed and close to each other.
The profile of Fig. 3(b) shows that the lines in the documents are more regular
and are nicely separated, since it has deep valleys and separated peaks.

Fig. 3. Horizontal projection profile of two different documents
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Percentage of black andwhite pixels in a handwritten document, this feature
is an indication of the width of the handwriting. This process starts by cropping the
image to a square with a width of m pixels. The size of the square was empirically
chosen to be of size 250 × 250 pixels for the FSHS dataset, and 100 × 100 pixels
for the khatt dataset. The ratio of the black pixels was calculated as follows: the
number of black pixels in the cropped square was first calculated. Then the ratio
between the number of black pixels and the size of the square was measured.

This feature consists of a vector of four values: the number of black pixels (BP),
the number of white pixels (WP = mxm − BP), the percentage of black pix-
els (PBP = BP/(mxm)) and white pixels (PWP = WP/(mxm)) of the cropped
square.

4 Experiments and Results

This section presents the experiments and the results obtained by the proposed
system. The experimental setup is described in Sect. 4.1. Section 4.2 presents
the Support Vector Machines (SVM) classifier to which the extracted features
were fed so that the age group is predicted. Finally, the results are analyzed and
discussed in Sect. 4.3.

4.1 Experimental Setup

FSHS dataset (Sect. 3.1) consists of 2700 handwritten samples. We used a subset
of the FSHS dataset consisting of 2000 samples in our experiments. The images
were divided into two main classes: youth adult class with ages ranging between
16 and 24 years old, and Mature adult class with ages ranging from 26 to 70.
Where each class has 1000 samples. Figure 4(a) shows a document written by an
adult youth writer with slant and text lines irregularity. While Fig. 4(b) shows
mostly regular writing of a mature adult writer. To run the experiments and
evaluate the proposed method, 70% of the documents were used for training,
15% for testing and 15% for validation. The SVM classifier was then used to
train and test the proposed system.

Fig. 4. Samples of handwritten documents from FSHS dataset
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To benchmark the performance of the proposed method with other age detec-
tion methods, we applied our system to the public Khatt [6] dataset. That
dataset contains Arabic handwritten documents with ground truth of gender,
age, and handedness. It has three age ranges that can be defined as: “under 15
years old”, “16 to 25 years old”, and “26 to 50 years old”. Each class contains 135
Samples. To evaluate our experiments, two classes were used, “16 to 25” and “26
to 50”. Again, 70% of the dataset was used for training, 15% for testing and 15%
for validation.

4.2 Classification

The proposed method was trained and tested using Support Vector Machines
(SVM) [8]. We trained the classifier using all the features extracted from the
training dataset. Meanwhile, we used a validation set to empirically deter-
mine the hyper-parameters. In our experiments, SVM was trained by a set
of samples labelled with −1 and 1. Given a set of labeled training patterns
(v1, y1), (v2, y2) . . . . . . (vn, yn), where yi ∈ {−1, 1}, vi ∈ V , v is p-dimensional
training vector and V is the feature vector space, SVM tends to solve the fol-
lowing optimization problem:

min
w,b,ξ

1
2
wTw+ C

l∑

i=1

ξi

subject to yi(wT φ(vi) + b) ≥ 1 − ξi, ξ ≥ 0

(8)

The function φ maps the training vectors vi to a higher dimensional space, and
C is a penalty strength of the error term. ξ are slack variables which help the
model to avoid overfitting on the training data. The idea of constructing support
vector machines comes from considering the general form of the dot-products:

φ(u).φ(v) = K(u, v) (9)

where K(u, v) is called the kernel function. In our experiments, we used Gaussian
kernel function with a kernel scale of 59.5 and a box constraint level of 4.0557:

K(vi, vj) = exp(−‖vi − vj‖2
2σ2

) (10)

where vi, vj are the support vectors and testing data point respectively and
σ > 0 is the kernel parameter. These parameters were empirically chosen by
using the validation set, which helps to find the optimal hyper-parameters. For all
the experiments, we used a Bayesian optimization algorithm with the expected
improvement per second plus an acquisition function and the maximum number
of iteration was set to 30. For example, the training of the combinations of all
features (SI + PPI + TLI + PWB) on the FSHS dataset was stopped after 30
iterations, but the best point of hyper-parameters occurred in iteration 27; thus,
the minimum error was equal to 0.3004.
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Fig. 5. Roc curves of the result of the proposed methods on FSHS dataset over the
combinations of (a) all features, (b) SI + PPI + TLI feature, (c) SI + TLI + PWB
features and (d) PPI + TLI + PWB features

4.3 Evaluation

Our experiment is a two-class classification problem where the outcomes are
either youth adult writer or mature adult writer. The proposed method was
evaluated using the evaluation metrics, accuracy, precision, and recall, which
can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

where, TP is true positives, TN is true negatives, FP is false positives and FN
is false negatives.

The results of the proposed method on the FSHS dataset and the Khatt
dataset are reported in Table 1 and Table 2, respectively. Table 1 shows the results
of applying the proposed method on the FSHS dataset in terms of precision,
recall and accuracy. It can be noticed that among the individual features, the
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best one is the TLI, with accuracy rates equaling 66.2%. On the other hand,
when concatenating two features together. We found that the best performance
is for two combinations, the first being SI + TLI and the second is TLI +
PWB, where both groups have an accuracy rate of 64.3%. For the three features
combination, (SI + PPI + TLI) has the highest accuracy of 70.7%. Finally, the
all features combination gave the highest accuracy of 71%. The common feature
among all the combinations with high performance is TLI, as this indicates the
importance of this feature in detecting the writer’s age from handwriting.

Table 1. The results of applying the proposed method on FSHS dataset

Extracted features SVM
SI PPI TLI PWB Accuracy 100% Recall (100%) Precision (100%)

Youth (adult) Mature (adult) Youth (adult) Mature (adult)

� × × × 56.3 56.1 56.6 58 54.7
× � × × 53.8 54.4 53.4 49.2 58.5
× × � × 66.2 64.7 68.2 71.8 66.7
× × × � 55.7 63.4 53.5 27.5 83.9
� � × × 55.3 55.3 55.3 55.3 55.3
� × � × 64.3 62.4 67.2 73.5 55
� × × � 56.7 56.8 56.5 55.3 58
� � � × 70.7 69.1 72.6 75.5 65.8
� � × � 60.7 60.8 60.5 61.6 59.7
� × � � 67.3 66.7 68.1 70.2 64.4
× � � × 60.3 59.9 60.9 64.2 56.4
× × � � 64.3 62.4 66.6 72 56.7
× � � � 69.7 68.8 70.6 72 67.3
� � � � 71 68.9 73.7 76.7 65.3

Figure 5 Shows the roc curves of the feature combinations applied on the
FSHS dataset and have the highest accuracy rates. The curves show the area
under curves (AUC) for each combination which are: 0.77, 0.77, 0.74 and 0.72
for (a), (b), (c) and (d), respectively.

To compare the results of our work with other methods we applied our pro-
posed method on the public Khatt dataset. Table 2 shows the accuracy rates
of applying the proposed method on khatt dataset. The results show that the
text lines irregularity (TLI) has the highest accuracy among the other individual
features with an accuracy rate of 63.8%. While the combination of all features
outperformed the state-of-the-art methods with an accuracy rate of 65.2%. This
can be seen in Table 3.



154 N. AL-Qawasmeh et al.

Fig. 6. The performance of the full combination on khatt dataset with respect to (a)
the minimum classification error, (b) ROC curve

Table 2. The results of applying the proposed method on Khatt dataset

Extracted features Accuracy 100%

Slant irregularity (SI) 62.3
Pen pressure irregularity (PPI) 53.6
Text-lines irregularity (TLI) 63.8
Percentage of black and white pixels (PWB) 59.4
SI + PPI + TLI + PWB 65.2

Figure 6(a) shows the performance of applying the proposed method with
entire features combination on Khatt dataset and the minimum classification
errors where the best point were obtained on iteration 3 with a minimum error
of 0.34. While (b) shows the corresponding ROC curve with AUC equal 0.71.

Table 3. A comparison between the results of the proposed method and others.

Method Extracted features Classifier Accuracy (100%)

Basavaraja et al. Disconnectedness K-means 64.44

Bouadjerek et al. 1. Histogram of oriented gradient SVM 60.3

2. Gradient local binary patterns

Proposed method 1. Slant irregularity (SI) SVM 65.2

2. Pen pressure irregularity (PPI)

3. Text-lines irregularity (TLI)

4. Percentage of black and white pixels (PWB)

Table 3 shows a comparison between the proposed method with other avail-
able methods. Accuracy, extracted features and the used classifier are presented
in the table for better comparison. Similar to the available works on the khatt
dataset, we adapted two age ranges, “16–25” and “26 and above”. The proposed
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method outperformed the state-of-the-art an accuracy rate of 65.2 using a super-
vised classification method SVM similarly to work in [3]. On the other hand, the
unsupervised classification method was used in [4] has achieved an accuracy rate
of 64.44%.

In addition to performing the proposed method on the FSHS dataset and the
Khatt dataset, we examined the ability of the proposed features to classify the
age groups of handwritings written by only female writers and male writers. So
the FSHS dataset was divided into two main subsets: female and male. Then the
two age ranges were determined for each sub-set individually. To illustrate, the
number of youth handwritten samples in the female subgroup were 465, and the
number of mature adult handwritten samples were 435. At the same time, there
were 435 samples of youth male writers and 465 for mature adult male writers.

Table 4 Shows the results obtained from applying the proposed system on
female and male subsets separately. It can be noticed that the pen pressure
irregularity can classify the age of the female writers better than male writers,
where it gave an accuracy rate of only 54.5% for male writers compared to
63.6% accuracy rate for female writers. In contrast with the text line irregularity
feature, which provided a classification rate of 69.5% in male handwriting while
it gave an accuracy rate of 61.5% in female handwriting.

Table 4. The results of applying the proposed method on the female and male subsets
of FSHS dataset

Extracted features Accuracy (100%)
Female (subset) Male (subset)

Slant irregularity (SI) 56.5 62.9
Pen pressure irregularity (PPI) 63.6 54.5
Text-lines irregularity (TLI) 66.7 64.7
Percentage of black and white pixels (PWB) 53.6 54.1
SI + PP1 + TLI + PWB 71.9 68

Figure 7(a) shows the ROC curve of all features combination SVM model
applied on the male subset of the FSHS dataset where AUC equals 0.72. On
the other hand, (b) shows all features combination SVM model performance
concerning the minimum classification error. As the training was stopped on 30
iterations, the minimum classification error was 0.3 on iteration 26, where the
performance becomes almost plateauing.

Figure 8(a) shows the ROC curve of all features combination SVM model
applied on the female subset of the FSHS dataset where AUC equals 0.74. On
the other hand, (b) shows the minimum classification error, which is equal to
0.253 on iteration 8.
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Fig. 7. The performance of all features SVM model on male subset of the FSHS dataset
with respect to (a) ROC curve (b) the minimum classification error

Fig. 8. The performance of all features SVM model on female subset of the FSHS
dataset with respect to (a) ROC curve (b) the minimum classification error

5 Conclusion and Future Works

In this paper, we have shown that the automatic detection of age from hand-
written documents using the computer without human intervention is a viable
possibility. We implemented a set of highly discriminative age-related features
recommended by a graphologist as well as a psychologist such as pen pressure
irregularity, slant irregularity, text lines irregularity and the percentage of black
and white pixels of a written document. We have also proposed powerful algo-
rithms to extract them.

The experiments of the proposed method were divided into two steps. In
the first step, the proposed method were applied on the FSHS dataset using
different combinations of features, and we got an accuracy rate of 68.3% using
the all feature combination. in the second step, and To compare the results of
our proposed method with other available methods, we applied it to the public
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dataset Khatt. The full features’ combination outperformed state-of-art works
with an accuracy rate of 65.2.

Finally, The FSHS dataset was divided into male and female subsets. Then
the proposed method was applied on both subsets individually. As a result, we
got an accuracy rate of 71.9% using the female subset and 68% using the male
subset.

For future work, we aim to explore more age-related features and apply deep
learning to detect age from handwritten documents. Moreover, more languages
can be explored for age detection.
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Abstract. The Big Five Factors Model (BFFM) is the most widely
accepted personality theory used by psychologists today. The theory
states that personality can be described with five core factors which
are Conscientiousness, Agreeableness, Emotional Stability, Openness to
Experience, and Extraversion. In this work, we measure the five factors
using handwriting analysis instead of answering a long questionnaire of
personality test. Handwriting analysis is a study that merely needs a
writing sample to assess personality traits of the writer. It started man-
ually by interpreting the extracted features such as size of writing, slant,
and space between words into personality traits based on graphologi-
cal rules. In this work, we proposed an automated BFFM system called
Averaging of SMOTE multi-label SVM-CNN (AvgMlSC). AvgMlSC con-
structs synthetic samples to handle imbalanced data using Synthetic
Minority Oversampling Technique (SMOTE). It averages two learning-
based classifiers i.e. Multi-label Support Vector Machine and Multi-label
Convolutional Neural Network based on offline handwriting recognition
to produce one optimal predictive model. The model was trained using
1066 handwriting samples written in English, French, Chinese, Arabic,
and Spanish. The results reveal that our proposed model outperformed
the overall performance of five traditional models i.e. Logistic Regression
(LR), Näıve Bayes (NB), K-Neighbors (KN), Support Vector Machine
(SVM), and Convolutional Neural Network (CNN) with 93% predictive
accuracy, 0.94 AUC, and 90% F-Score.

Keywords: Big five factor model · Handwriting analysis ·
Computerized · Off-line handwriting · Learning model · Multi-label ·
Ensemble · SMOTE · SVM · CNN

1 Introduction

In the 1980s the BFFM began to receive wider scholarly attention. Today, it is
a ubiquitous part of psychology research, and psychologists largely agree that
personality can be grouped into the five basic traits of the BFFM.
c© Springer Nature Switzerland AG 2022
C. Carmona-Duarte et al. (Eds.): IGS 2021, LNCS 13424, pp. 159–173, 2022.
https://doi.org/10.1007/978-3-031-19745-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19745-1_12&domain=pdf
http://orcid.org/0000-0003-2714-658X
http://orcid.org/0000-0003-1209-7631
https://doi.org/10.1007/978-3-031-19745-1_12


160 A. Garoot and C. Y. Suen

There are different versions of psychological tests with different number of
scalable items, ranging between 10 and 300 items, used to measure the BFF.
However, in this work, we will measure the BFF using a simple, thorough, and
quick test named handwriting analysis which is also known as graphology. Hand-
writing analysis is a study that reveals personality traits such as emotional sta-
tus, fears, honesty, and defenses from handwriting. It only requires a sample
of handwriting to evaluate the character of the writer. Handwriting analysis
has been applied widely in personality prediction, forensic evidence and disease
analysis. Basically, it is done manually by: (1) extracting specific handwriting
features from the sample such as slant, size of writing, and space between words,
and then (2) interpreting the extracted features into personality traits based on
graphological rules.

Manual handwriting analysis has a number of issues. It is a subjective, error
prone task, and sometimes the same features of the same handwriting sample are
extracted differently by different graphologists. Therefore, computerized hand-
writing analysis systems have been developed in order to help graphologists to
extract and analyze handwriting features faster and more precisely using com-
puters.

Early automated systems have deployed methods such as SVM, Artificial
Neural Networks (ANN), and rule-based system separately. However, these
methods are not tolerant to translation and distortion in the input image. In
addition, they would have a large amount of input parameters which could
add more noise during the training process. The current trend of computer-
ized graphology shows that applying a combination of analysis methods and
using big quantity of training data result in remarkable accuracy and have an
impact on achieving better results [2,8]. Therefore, applying ensemble methods
that deploy deep learning for designing an automated graphology system with a
high accuracy rate is considered in this study.

2 Literature Review

2.1 The Big Five Factors Model (BFFM)

Each factor of the BFFM has a definition mentioned in [7]. Extraversion is
characterized by excitability, sociability, talkativeness, assertiveness, and high
amounts of emotional expressiveness. Agreeableness includes attributes such
as trust, altruism, kindness, affection, and other prosocial behaviors. Consci-
entiousness includes high levels of thoughtfulness, good impulse control, and
goal-directed behaviors. Emotional Stability refers to a person’s ability to remain
stable and balanced. Open to Experience features characteristics such as imagi-
nation and insight.

For measuring the BFFM, The IPIP-BFFM tests which are self-report tests
used for measuring each factor using the international personality item pool-big
five factor markers. They are questionnaires that contain sets of big five factor
markers that vary in their length. The scale of each test composed of a number
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of items on a 5-point scale ranging from complete disagreement (1: Very false
for me) to complete agreement (5: Very true for me).

2.2 Handwriting Analysis/Graphology

Graphology is considered as a modern form of psychology that reveals personal-
ity traits, including emotional outlay, fears, honesty, defences and others, from
individual’s handwriting but not identifying the writer’s age, race, religion, or
nationality. In other words, it is a technique used to evaluate and interpret
the character of the writer from handwriting [6]. As it is mentioned in [11],
there are two major schools of handwriting analysis which are Graphoanalysis
and Gestalt graphology. Graphoanalysis is the most widely used in the United
States. This is in which the graphoanalyst looks at the page as a collection
of symbols where each symbol is evaluated independently from the whole [9].
However, Gestalt graphology is the school of handwriting study in Europe, par-
ticularly in Germany. It was developed alongside psychiatry and psychoanalysis.
Gestalt graphology is always a combination of features related to form, move-
ment and space that are used to establish a personality trait. In this work, we
applied Gestalt graphology concept for analysing and labelling our handwriting
samples used for training our computerized graphology system.

2.3 Related Works on Computerized Prediction of BFF

In 2017, Majumder et al. presented a method to extract personality traits from
stream-of-consciousness essays using CNN [5]. They trained five different net-
works, all with the same architecture, for the five personality traits. Each net-
work was a binary classifier that predicted the corresponding trait to be pos-
itive or negative. They used James Pennebaker and Laura King’s stream-of-
consciousness essay dataset. It contains 2,468 anonymous essays tagged with the
authors’ personality traits based on the Big Five factors. They evaluated the
model performance by measuring the accuracy obtained with different configu-
rations. The accuracy ranged between 50% to 62% across the five factors.

In 2018, Gavrilescu and Vizireanu proposed the non-invasive three-layer
architecture based on neural networks that aims to determine the Big Five per-
sonality traits of an individual by analyzing off-line handwriting [3]. They used
their own database that links the Big Five personality type with the handwrit-
ing features collected from 128 subjects containing both predefined and random
texts. The main handwriting features used are the following: baseline, word
slant, writing pressure, connecting strokes, space between lines, lowercase letter
‘t’, and lowercase letter ‘f’. They obtained the highest prediction accuracy for
Openness to Experience, Extraversion, and Emotional Stability at 84%, while
for Conscientiousness and Agreeableness, the prediction accuracy is around 77%.

In 2019, Akrami et al. created a model to extract Big Five personality traits
from a text using machine learning techniques [1]. They created an extensive
dataset by having experts annotate personality traits in a large number of texts
from multiple on-line sources. From these annotated texts, they selected a sample
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and made further annotations ending up in a large low-reliability dataset and
a small high-reliability dataset. The results show that the models based on the
small high-reliability dataset performed better than models based on large low-
reliability dataset.

In 2020, Salminen et al. combined automatic personality detection (APD)
and data-driven personas (DDPs) to design personas with personality traits
that could be automatically generated using numerical and textual social media
data [10]. They developed a neural network with two major sub-architectures: a
single dimensional convolutional neural network since there is a spatial structure
in the input text, and a long short-term memory network since there is also a
temporal correlation between the words in the input text. They used the F1
macro score for evaluating the model, F1 scores obtained for each BF trait using
a dataset of 2,467 essays are as follows: (0.541, 0.529, 0.538, 0.553, and 0.484)
for Extraversion, Openness to Experience, Conscientiousness, Agreeableness, and
Emotional Stability, respectively.

3 Data Collection

3.1 Participants

The handwriting data used for our study is a private dataset were collected
from two sources. The first is the paper-based survey that was approved by Uni-
versity Human Research Ethics Committee at Concordia University in Canada.
The second is one graphologist who is a well-known professional and author of
various publications. 192 handwriting samples were collected from the survey
that has been responded by the participant in one laboratory room of Centre
for Pattern Recognition and Machine Intelligence (CENPARMI) at Concordia
university. However, the other 874 samples were collected by the graphologist
for her business purposes. We ensured that these samples are collected under
the same condition and environment followed in our survey. So, our handwrit-
ing dataset, named Handwriting for the Big Five Factors (HWBFF), consists
of 1066 samples. 58.19% of the subjects are male while 18.71% are female and
23% are not informed. Their ages start from 18 years old in which 39.7% ranged
between 18–35 and 48% ranged between 36 and 55 years old, see Fig. 1. An item
of the survey asking about the country of origin of the respondents revealed
that 61.86% of the participants were originally from Canada. The handwriting
samples were written in different languages including English, French, Chinese,
Arabic, and Spanish.

3.2 Labelling Dataset

The samples of HWBFF dataset were labelled by our graphologist. Each sam-
ple was annotated with the BFF measurement. For this, the handwriting fea-
tures that reveal each BFF factor were specified firstly based on definitions and
graphology rules. Table 1 shows the handwriting features corresponding to each
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Fig. 1. Age distribution of the participants for handwriting samples

BFF factor. Then, each sample was evaluated by scaling manually each hand-
writing feature of each factor. The scale of Extraversion, Emotional Stability,
Agreeableness, and Open to Experience composed of 5 features on a 5-point
scale where 1 = None or very low, 2 = Low, 3 = Average, 4 = High, and 5 =
Very high. However, the scale of Conscientiousness factor composed of 4 features
with the same 5-point scale. Once values are assigned for all the features in the
scale for each factor, she averaged the feature values to obtain a total scale score
of measuring where (1 to 2) is low, 3 is average, (4 to 5) is high.

4 Data Distribution Analysis

In order to understand our dataset better and receive expected results, we need
to do some analysis for data distribution in order to see whether our data is
balanced or not. Having imbalanced data causes the machine learning classifier
to be more biased towards the majority class and resulting in bad classification
of the minority class. So, we aim to avoid the imbalanced data in order to get
a high performance evaluation for our classifier. 1066 handwriting samples are
included in our experiments. Figure 2 shows the distribution of the single-labels
in the HWBFF dataset. It demonstrates that distribution of the single-labels
for the big five factors is highly skewed, 85.55% of the dataset is occupied by
medium agreeableness and while low emotional stability only holds 0.85% of the
dataset.
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Table 1. Handwriting features corresponding to each of the BFFM

Factor Handwriting features

Extraversion - Middle zone more than 2,5 mm
- Narrow ending margin
- Dominance of garlands
- Progressive movement
- Slanted in the direction of the writing

Conscientiousness - Regularity
- Legibility
- Controlled movement
- Precision of placement of free strokes

Emotional stability - Regularity without rigidity
- Baseline horizontal and flexible
- Slightly slanted
- Good balance between white space and ink space
- Good pressure and quality of the stroke

Agreeableness - Dominance of curves versus angles
- Good space between letters, words, and lines
- Letter width>5 mm
- Round letters without loops and slightly open
- Nourished stroke

Open to experience - Good openness in loops
- Good speed and movement
- Slight angles in letters
- Slanted in the direction of handwriting
- Narrow ending margin

5 Data Digitization

Electronic conversion of handwriting samples were carried out using a process
wherein a document is scanned in a color scale at the resolution of 600 dpi using
HP Color LaserJet Enterprise M553 series scanner with feature of automatic
document feeder.

6 Data Preprocessing

6.1 Data Augmentation

Our model included data augmentation in order to enlarge the training dataset.
The augmented data are generated before training the classifier. We augmented
our data using techniques that do not change or alter the handwriting features
that the five factors are revealed from. Four augmentation techniques were used
which are rescaling, height shifting wherein the image is shifted vertically, vertical
flip, and brightness.
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Fig. 2. Single-label distribution for the five factors jointly in HWBFF dataset

7 Model Architecture

The Big Five Factors test in psychology is formulated into a multi-label classifica-
tion in computer science, since it predicts the measurement level (low, medium,
or high) of the five factors simultaneously. Based on the analysis of data dis-
tribution, our HWBFF dataset is considered as an imbalanced dataset. Class
imbalance fails to properly represent the distributive characteristics of the data
and provide unsatisfying accuracy. Therefore, there is a need to handle our imbal-
anced dataset properly in order to get favorable results.

In this work, we proposed an ensemble method called Averaging of SMOTE
Multi-label SVM-CNN (AvgMlSC). AvgMlSC constructs synthetic samples
using Synthetic Minority Over-sampling Technique (SMOTE) to incorporate
the borderline information and averaging the two classifiers i.e. Multi-label Sup-
port Vector Machine (MLSVM) and Multi-label Convolutional Neural Network
(MLCNN) to produce one optimal predictive model. The following sections
describe the proposed framework in detail.

7.1 Materials and Methods

Our multi-label classification problem is transformed firstly into five indepen-
dent multi-class classification problems, one associated with each big five factor
(Extraversion, Conscientiousness, Emotional Stability, Agreeableness, and Open
to Experience). Then, each multi-class classification is transformed into three
independent binary classification problems by fitting one binary classifier for
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each single class which is the measurement level (low, medium, and high) follow-
ing (one-vs-all) scheme. So, at the end we have 15 binary classifiers, 3 classifiers
for each big five factor, see Fig. 3.

Fig. 3. Transforming multi-label BFF classification problem into five multi-class clas-
sification problems following (one-vs-all) scheme

The two classifiers (MLSVM and MLCNN) of the ensemble learning are
trained and evaluated individually and sequentially. In each binary classifier
inside each multi-class SVM and CNN, SMOTE which is an oversampling strat-
egy is applied within 10-fold cross validation on each original single-label training
set to construct synthetic samples from the minority classes. That means, before
starting the oversampling process, Original Single-label Training Set is split into
10 folds. After that, the SMOTE is applied on each fold, then the resampled fold
used for the training. After training, the model is evaluated using the validation
set generated in the cross validation. The process of training and evaluation are
repeated 10 times. At the end, the outputs of the five multi-class classifiers are
joined together. Each model tested using unseen data and the predicted results
of each classifier are averaged to produce one optimal output. The following sub-
sections illustrate some basic knowledge and architecture of MLSVM, MLCNN,
and the algorithm of SMOTE.



Measuring the BFF from Handwriting Using AvgMlSC 167

Synthetic Minority Over-Sampling Technique (SMOTE). SMOTE is
an oversampling strategy that helps to overcome overfitting by focusing on the
feature space rather than data space and interpolating synthetic samples along
the line segments connecting seed samples and forcing the decision region of the
minority class to become more general. Thus, in SMOTE, synthetic samples are
not exact copies of the original ones. It oversamples the minority class by taking
each minority class sample and introducing synthetic examples in the following
way: Take the difference between the feature vector (sample) under consideration
and its nearest neighbour. Multiply this difference by a random number between
0 and 1, and add it to the feature vector under consideration. Depending upon
the amount of oversampling required, neighbours from the k nearest neighbours
are randomly chosen and joined to the synthetic examples.

Multi-label Support Vector Machine (MLSVM). Support vector machine
(SVM) is one of the popular classifiers in binary classification. In this work,
we transformed our multi-label classification problem at the end into a set of
independent binary classification problems by fitting one classifier per class.
This mechanism named (one-vs-all) scheme which is a conceptually simple and
computationally efficient solution for multi-label classification. Therefore, as a
first classifier in our ensemble method, multi-label learning using support vector
machine (MLSVM) for the binary classification problem associated with each
class is conducted in this study.

Multi-label Convolutional Neural Network (MLCNN). The second clas-
sifier in our ensemble method is Multi-label Convolutional Neural Network
(MLCNN). For this, we conduct multi-label learning under (one-vs-all) scheme
by using Convolutional Neural Networks (CNNs) in order to transform our multi-
label classification problem into a set of independent binary classification prob-
lems.

Figure 4 shows the architecture implemented in each binary CNN classifier for
each single label. As we can see, the input of our MLCNN combines two types
of data which are structured and unstructured data. Therefore, our MLCNN
consists of two neural networks for inputs. The first one named ImageCNN
which is a convolutional neural network used for unstructured data i.e. images of
handwriting samples. The second network called FeatureFCNN which is a fully
connected neural network used for structured data i.e. the values of handwriting
features. Then, the outputs from the two networks are concatenated and passed
to ClassifierFCNN which is a fully connected neural network that classifies the
handwriting samples into one class.

Image Convolutional Neural Network (ImageCNN). To input the images of
handwriting samples into MLCNN, we create a convolutional neural network
that consists of one input layer which accepts a three dimensional color image
of a fixed-size (512 × 512). Then, the input image is passed through 8 con-
volutional blocks. Each block consists of one convolution layer with filters of
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Fig. 4. The architecture of the binary CNN

(3 × 3) pixel window, one rectified linear unit (ReLU) activation function layer
for reducing the effect of gradient vanishing during backpropagation, and one
batch normalization layer, then the layers are followed by Max-pooling layer
which is performed over a (2 × 2) pixel window. The number of filters in each
block is: 16, 32, 64, 64, 64, 128, 256, and 512, respectively. Once the filtration
process is applied on the input image, it is passed through a layer to be flat-
tened out to two fully connected hidden layers. The first layer contains 16 nodes
followed by (ReLU) activation function layer, batch normalization layer, and
finally dropout with a rate of 0.5. The second hidden layer contains 4 nodes
followed by (ReLU) activation function layer, the number of nodes in this layer
should match the number of nodes coming out from FeatureFCNN. Max Pool-
ing, Dropout and Batch Normalization layers are added to prevent overfitting
and control the number of parameters in the network.

FeatureFCNN. In order to input the structured data into MLCNN, a sequential
model named FeatureFCNN is created for accepting the values of 24 handwriting
features selected by the graphologist based on graphological rules. FeatureFCNN
is a fully connected neural network that consists of three layers. The first is the
input layer which consists of the input shape as (None, 24). Then, the input
features are passed through two fully connected hidden Layers. The first hidden
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layer contains 2 input vectors and 8 output vectors followed by rectified linear
unit (ReLU) activation function and the second one contains 8 input vectors and
4 output vectors followed by rectified linear unit (ReLU) activation function.

ClassifierFCNN. The outputs of ImageCNN and FeatureFCNN are passed
through Keras concatenation function to be concatenated and passed to the
ClassifierFCNN which is a fully connected neural network that outputs multiple
values. The ClassifierFCNN consists of two fully connected dense layers. The
first one contains 4 nodes with (ReLU) activation function and the second layer
contains one output class with sigmoid activation function.

Ensemble Method. Since our HWBFF dataset is imbalanced, an ensemble
method is used to improve the performance of the overall system. Model aver-
aging is used for this work. In averaging approach each ensemble member con-
tributes an equal amount to the final prediction. In the case of predicting a
class probability, the prediction can be calculated as the argmax of the summed
probabilities for each class label. Argmax is an operation that finds the argu-
ment that gives the maximum value from a target function. Figure 5 shows the
ensemble method for AvgMlSC.

Fig. 5. Ensemble method for AvgMlSC

8 Experiments and Results

The training set was generated using approximately 90% of 1066 handwriting
samples while the other 10% was used for testing.

8.1 A Comparative Analysis with the Baseline Classifiers

To establish the effectiveness of the proposed model, a comparative analysis with
five popular baseline classifiers, i.e. Logistic Regression (LR), Näıve Bayes (NB),
K-Neighbors (KN) Support Vector Machine (SVM), and Convolutional Neural
Network (CNN) is presented in this section. For this, all classifiers have employed
the same resampled HWBFF dataset for training and multi-label learning under
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“one-vs-all” scheme with the same experimental protocol (10-fold cross valida-
tion) was considered. Tables 2, 3, and 4 present the overall average of predictive
accuracy, AUC, and F-Score, respectively, for the big five factors. For the pre-
dictive accuracy, the proposed model achieved the highest value for Extraver-
sion, Conscientiousness, and Agreeableness. While for Emotional Stability LR
obtained the highest value. However, for Open to Experience, LR and AvgMLSC
were the best classifiers. For AUC, AvgMlSC obtained the highest numbers
for Extraversion, Conscientiousness, Agreeableness, and Open to Experience.
Whilst LR achieved the highest value for Emotional Stability. For the last mea-
sure which is F-Score, AvgMlSC produced the best result for Conscientiousness,
Agreeableness, and Open to Experience. However, KN was the best classifier for
Extraversion while LR was the best for Emotional Stability. Table 5 compares
the overall performance for the six classifiers in terms of the three measures. The
table and the figure reveal that the overall performance of AvgMlSC which is
our proposed ensemble learning is better than the individual learners with 93%
predictive accuracy, 0.94 AUC, and 90% F-Score.

Table 2. The average of predictive accuracy for each factor using the five baseline
classifiers and AvgMlSC

Classifier EXTRA CONS EMOS AGREE OPEN

SMOTE-MLLR 0.79 0.86 0.98 0.97 0.96

SMOTE-MLNB 0.69 0.79 0.89 0.93 0.88

SMOTE-MLKN 0.82 0.88 0.95 0.97 0.95

SMOTE-MLSVM 0.76 0.84 0.97 0.96 0.94

SMOTE-MLCNN 0.66 0.68 0.77 0.96 0.85

AvgMLSC 0.84 0.92 0.96 0.99 0.96

Table 3. The average of AUC for each factor using the five baseline classifiers and
AvgMlSC

Classifier EXTRA CONS EMOS AGREE OPEN

SMOTE-MLLR 0.74 0.82 0.98 0.83 0.91

SMOTE-MLNB 0.70 0.79 0.87 0.82 0.83

SMOTE-MLKN 0.80 0.80 0.79 0.64 0.82

SMOTE-MLSVM 0.71 0.79 0.97 0.54 0.86

SMOTE-MLCNN 0.73 0.74 0.78 0.87 0.75

AvgMLSC 0.86 0.92 0.97 0.98 0.95
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Table 4. The average of F-Score for each factor using the five baseline classifiers and
AvgMlSC

Classifier EXTRA CONS EMOS AGREE OPEN

SMOTE-MLLR 0.63 0.79 0.98 0.98 0.98

SMOTE-MLNB 0.61 0.69 0.66 0.69 0.75

SMOTE-MLKN 0.73 0.75 0.62 0.55 0.77

SMOTE-MLSVM 0.56 0.73 0.97 0.45 0.9

SMOTE-MLCNN 0.42 0.27 0.39 0.54 0.38

AvgMLSC 0.68 0.9 0.97 0.99 0.97

Table 5. The overall performance for the five baseline classifiers and AvgMlSC

Classifier Predictive accuracy AUC F-Score

SMOTE-MLLR 0.91 0.86 0.88

SMOTE-MLNB 0.84 0.80 0.68

SMOTE-MLKN 0.91 0.77 0.68

SMOTE-MLSVM 0.89 0.77 0.72

SMOTE-MLCNN 0.79 0.78 0.40

AvgMLSC 0.93 0.94 0.90

8.2 A Comparative Analysis with the State-of-the-Art

The results of two early computerized BFF model from the state-of-the-art have
been chosen to be compared with the results of our proposed model. They have
used the same form of data used in our model and the same performance mea-
sures to evaluate their proposed models.

The first work presented a method to extract personality traits from stream
of-consciousness essays using a convolutional neural network (CNN) [5]. They
trained five different networks, all with the same architecture, for the five per-
sonality traits. Each network was a binary classifier that predicted the corre-
sponding trait to be positive or negative. They used James Pennebaker and
Laura King’s stream-of-consciousness essay dataset. It contains 2,468 anonymous
essays tagged with the authors’ personality traits based on the Big Five factors.
They evaluated the model performance by measuring the predictive accuracy,
see Table 6.

The second work combined automatic personality detection (APD) and data-
driven personas (DDPs) to design personas with personality traits that could
be automatically generated using numerical and textual social media data [10].
They developed a neural network with two major sub-architectures: a single
dimensional convolutional neural network since there is a spatial structure in
the input text, and a long short-term memory network since there is also a
temporal correlation between the words in the input text. They used the F-score
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Table 6. A comparison between AvgMlSC and Majumder et al. (2017)

Predictive accuracy

Automated BFF model EXTRA CONS EMOS AGREE OPEN

Majumder et al. (2017) 58.09 57.30 59.38 56.71 62.68

AvgMlSC 84.00 92.00 96.00 99.00 96.00

for evaluating their model, F-score obtained for each BF trait using the same
dataset used in the first work, see Table 7.

Table 7. A comparison between AvgMlSC and Salminen et al. (2020)

F-Score

Automated BFF model EXTRA CONS EMOS AGREE OPEN

Salminen et al. (2020) 0.54 0.53 0.48 0.55 0.52

AvgMLSC 0.68 0.90 0.97 0.99 0.97

As can be observed from the two tables above, our proposed model achieved
a remarkable improvement in accuracy and F-Score than the other two models.

9 Conclusion

This work introduced a robust yet simple framework named AvgMlSC to address
imbalance problem in the big five factors classification. To the best of our knowl-
edge, this is the first study to systematically investigate data imbalance issue
in handwriting analysis in general and the big five factor classification in par-
ticular. AvgMlSC is based on ensemble learning that was employed along with
SMOTE resample technique in order to handle the issue of imbalanced dataset.
The prediction results of AvgMlSC were compared to five baseline classifiers and
outperformed their results with 93% predictive accuracy, 0.94 AUC, and 90%
F-Score. Moreover, it achieved higher values of accuracy and F-Score than the
considered early computerized BFF models. So, the results show the potential
of ensembling and SMOTE oversampling for predicting the measurement level
of BFF using an imbalance handwriting analysis dataset. Moreover, it shows
the potential of machine learning methods for predicting the measurement level
of BFF using graphology data. Two assumptions can be considered as future
work for researchers. First, adding features of signature and drawing to develop
an automated graphology system for measuring the BFF. Second, developing an
automated handwriting analysis system for measuring the BFF for a specific age
group such as children or teenager.



Measuring the BFF from Handwriting Using AvgMlSC 173

References

1. Akrami, N., Fernquist, J., Isbister, T., Kaati, L., Pelzer, B.: Automatic extraction
of personality from text: challenges and opportunities. In: Proceedings of the 2019
IEEE International Conference on Big Data (Big Data), pp. 3156–3164. IEEE
(2019)

2. Djamal, E.C., Darmawati, R.: Recognition of human personality trait based on
features of handwriting analysis using multi structural algorithm and artificial
neural networks. In: Proceedings of the 2013 IEEE Conference on Control, Systems
& Industrial Informatics (ICCSII), pp. 22–24 (2013)

3. Gavrilescu, M., Vizireanu, N.: Predicting the big five personality traits from hand-
writing. EURASIP J. Image Video Process. 2018(1), 1–17 (2018). https://doi.org/
10.1186/s13640-018-0297-3

4. Giraldo-Forero, A.F., Jaramillo-Garzón, J.A., Ruiz-Muñoz, J.F., Castellanos-
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Abstract. Wartegg Test is a drawing completion task designed to reflect
the personal characteristics of the testers. A complete Wartegg Test has
eight 4 cm × 4 cm boxes with a printed hint in each of them. The tester
will be required to use pencil to draw eight pictures in the boxes after they
saw these printed hints. In recent years the trend of utilizing high-speed
hardware and deep learning based model for object detection makes it
possible to recognize hand-drawn objects from images. However, rec-
ognizing them is not an easy task, like other hand-drawn images, the
Wartegg images are abstract and diverse. Also, Wartegg Test images are
multi-object images, the number of objects in one image, their distribu-
tion and size are all unpredictable. These factors make the recognition
task on Wartegg Test images more difficult. In this paper, we present a
complete framework including PCC (Pearson’s Correlation Coefficient)
to extract lines and curves, SLIC for the selection of feature key points,
DBSCAN for object cluster, and finally YoloV3-SPP model for detecting
shapes and objects. Our system produced an accuracy of 87.9% for one
object detection and 75% for multi-object detection which surpass the
previous results by a wide margin.

Keywords: Wartegg test · Image processing · Object detection

1 Introduction

The Wartegg Test, also called Wartegg Zeichen Test, is a classic psychology test
that can reflect personalities of a tester. A Wartegg Zeichen Test form is an A4
paper consisted of eight 4 cm × 4 cm squares in two rows with a simple printed
sign in each square [15]. The tester will be required to draw anything in their
mind in each square using a pencil. Recognizing testers’ drawings inside those
boxes correctly can help graphologists to detect the tester’s thoughts and predict
the tester’s potential psychological problem [9]. In our experiment, we followed
the above description to collect our Wartegg Zeichen Test forms and then scan
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them into digital format, finally split one Wartegg Zeichen Test form into eight
images.

In recent years, the huge amount of deep learning algorithms for object
recognition make it possible to detect those hand-drawn pictures in Wartegg
Test images using a computer. However, many problems become obstacles and
make the detection of Wartegg Test image set very difficult. The challenges of
recognition Wartegg Test images are the same as the other Hand-drawn images
recognition tasks [16]. Firstly, these hand-drawn images are abstract, a complex
object in real world can be present as a simple shape in hand-drawn images.
Second, their colour context is lacking compared with the real images that was
taken by camera. Third, they are diverse because different people have differ-
ent draw style for the same object. However, the challenges of recognition of
Wartegg Test are not just limited on these three aspects, Wartegg Test images
are also unpredictable, not only the number of objects in each square, but also
the size of an object. Usually, for training a detector, we need to input a huge
amount of images to make sure the network is robust enought to achieve a high
performance when testing it. But current open source hand-drawn image sets,
such as QuickDraw [5], Sketchy [13] and Tu-Berlin [3] are all one object images
with the same size and located in the center of the images. So, directly using
these open source images as training images and testing on Wartegg Test images
will not get a satisfactory result.

To make it possible to recognize Wartegg Test images using network, in this
paper, we present a complete Wartegg Test image sets process, combine the
PCC for the extraction of lines and curves, SLIC + DBSCAN for objects split,
these methods solve the problem of different distribution of training image set
and Wartegg Test image set and partly increase the robustness of the neural net-
work. Finally, we used a transfer learning based approach to load the pre-trained
ImageNet parameters into our YoloV3-SPP backbone network DarkNet53 to
increase the converge speed of our network, and then train a YoloV3-SPP for
shape detection.

The paper is structured as follows. Section 2 briefly introduces the previ-
ous work. Section 3 outlines the concepts of our methods, PCC, SLIC algo-
rithm, DBSCAN algorithm and YoloV3-SPP. Section 4 describes the experi-
mented details, and Sect. 5 for the conclusion and future work of our experiment.

2 Background

The begining of applying classification and recognition deep learning model to
hand-drawn images can be retrospect from 2012. In this year, Tu-Berlin [3] pre-
sented their hand-drawn image set. After this, in 2016 Sketchy images have
been presented [13] with 125 categories. In 2017, Google presented one of the
largest sketch image set QuickDraw [5]. And in 2018, image sets SPG [8] and
SketchSeg [14] were publised. Finally, in 2019, our Warteg Test image set [9] has
been collected which contains 30 categories and more than 900 images. Accom-
panied with this image sets, some famous deep learning models also have been
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mentioned in the past ten years, such as Sketch-net [18], Deep visual sequen-
tial fusion net [6], SketchRNN [5] and Sketchmate [17]. Although these models
achieve high performance, they are tested on Tu-Berlin and QuickDraw, some
single object image sets. However, free hand-drawn images should be diverse,
like our Wartegg Test image set which contains many images that have multiple
objects in one image. So it is important to explore how to detect multiple objects
using current open source image set.

3 Method

Some previous image processing methods are effective for specific image sets, but
can not deal with a Wartegg Test image set, since many uncontrollable factors
will influence the quality of the collected Wartegg Test image set as mentioned
in Sect. 1. The motivation of our experiment is to unify the data distribution
between training and testing image sets to increase the accuracy of the object
detection task.

3.1 Image Processing

Image processing includes two parts. Firstly, using PCC (Pearson’s Correla-
tion Coefficient) [2] to extract lines and curves and remove slated noises caused
by image format transformation. Secondly, utilizing the SLIC superpixel and
DBSCAN cluster algorithm to extract every object in the image and delete
meaningless parts.

PCC for Feature Selection. Donati [2] used PCC to extract the features
of sketch images based on the relevance of the pixels in this image. Using this
method, those pixels neither belong to lines nor curves can be deleted.

Firstly, define

kernel = Gaussian kernel(next odd(7 ∗ σi, σi)) (1)

where, σi = C ∗ σi−1 = Ci ∗ (wmin/b), i ∈ [1, logc(wmax/wmin) − 1], and wmin is
the minimum line width, wmax is the maximum, C and b are constant, usually
we will use 2 and 3 separately.

After generating the ith Gaussian kernels Using Eq. 1 we will use

PCCxy =

∑
j,k(Ixy(j, k) − Avg(Ixy))(ki(j, k) − Avg(ki))

√∑
j,k(Ixy(j, k) − Avg(Ixy)2

∑
j,k(ki(j, k) − Avg(ki))2

(2)

to calculate several PCC images, finally, we will use

MPCC =
{

maxPCCxy, | maxPCCxy |>| minPCCxy |
minPCCxy, otherwise

(3)
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SLIC Algorithm for Superpixel Split. SLIC was mentioned by
R.Achanta [1], which splits one image into many small sub patches (also called
superpixels) based on their values and locations.

The algorithm of SLIC is presented in Algorithm 1:

Algorithm 1. SLIC algorithm
Input: k: number of superpixels ; m; iterations; image width; image height
Initialization:

S =
√

(image width ∗ image height)/k; centerset = Ck = (lk, xk, yk)k=1...k;
update each ck.xk, ck.yk to the lowest gradient in [ck.xk − 1 : ck.xk + 1, ck.yk − 1 :
ck.yk + 1]
Set each pixel pi.cluster = None, p + i.distance = +∞, i = 1

1: if i ≤ iteration then
2: for each cluster ck in clusterset do
3: for each point pi in [ck.x − s : ck.x + s ; ck.y − s : ck.y + s] do

4: D =
√

(
√

(pi.l − ck.l)2/m)2 + (
√

(pi.x − ck.x)2 + (pi.y − ck.y)2/s)2

5: if D < pi.distance then
6: pi.distance = D
7: pi.cluster = ck
8: i = i + 1;

DBSCAN for Object Segmentation. DBSCAN was mentioned by
M.Ester [4], which has been designed to discover clusters with arbitrary shape
based on the density of dataset. The main idea of DBSCAN comes from the
fact that the density inside a cluster is usually higher than the density outside
a cluster, and different clusters may have different density. This idea is similar
to our Wartegg Test image set, the density of lines and curves is usually higher
in an object, e.g. Fig. 1.

(a) Umbrella (b) Rabbit (c) Car

Fig. 1. Examples of Density distribution of Wartegg Test images

We will calculate the ratio of the number of pixels that have a value in a 5
* 5 window, and generate these density distribution images. The color in Fig. 1
which is close to white means the density score is high, on the other hand, when
the color is black, it means the density score is approximately zero. These images
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agree with our conjecture, so we can utilize DBCANS to cluster objects in the
same image.

After using Superpixel to split an image into numerous small sub-patches,
for each patch, we keep those pixels at the center of the sub-patch located on
the lines or curves. Based on previous tests, the remaining key points belong
to the same object should be much closer, and for those points from different
objects, they should have a different distribution. Also, points belonging to the
noisy part should have a very low density.

The algorithm of DBSCAN is shown below:

Algorithm 2. DBSCAN algorithm
Input: Eps, Minpts, Dataset
Initialization: clusterid = 0 ; ∀ point pi, pi ∈ dataset, pi.cluster = None
1: for each point pi in dataset do
2: if pi.cluster is None then
3: clusterset = [ ∃ pj , if dist(pi, pj) ≤ Eps]
4: if clusterset.length < Minpts then
5: pi.cluster is Noise
6: else
7: for each point pc in clusterset do
8: pc.cluster = clusterid ; Remove pi from clusterset
9: while cluster is not Empty do

10: pnew = clusterset[0];new cluster = [ ∃ P
′
, if dist(pnew, p

′
) ≤ Eps]

11: if new clusterset.length ≥ Minpts then
12: for each point p

′
new in new clisterset do

13: if p
′
new.cluster is None then

14: clusterset.append(p
′
new); p

′
new.cluster = clusterid

15: if p
′
new.cluster is Noise then

16: p
′
new.cluster = clusterid

17: clusterid += 1

3.2 YoloV3-SPP

The model we choose for the object detection task is YoloV3-SPP [19] which is
the third version of the Yolo model with an SPP structure [7] that can improve
the precision of the original YoloV3. Figure 2 presents the overall structure of
YoloV3-SPP. It contains a backbone DarkNet53 [12] which is composed of many
Residual blocks and a SPP structure, finally the output will be generated through
three different feature maps for predicting different scales of an object. Compared
with the first output directly follows the SPP structure and the Convolutional
set (the first branch in Fig. 2), the second output and the last output comes from
the concatenated (the green ball) result of a Residual × 8 block and a Upsample
layer (the red box) accompany with a Convolutional set block.
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Fig. 2. The structure of YoloV3-SPP (Color figure online)

4 Experiment

Our experiment will follow the previous methods introduced in Sect. 3.1 to pro-
cess our Wartegg Test image set. We will firstly introduce our training and test
image sets in Sect. 4.1, and then discuss the pixel value augment in Sect. 4.2,
describe the details of image processing result in Sect. 4.3, and finally analyze
the object detection result in Sect. 4.4.

4.1 Introduction of Dataset

During our experiment, we used QuickDraw [5] as the training image set and our
collected Wartegg Test image set as the testing input to validate the performance
of the YoloV3-SPP model.

Testing Image Set. Our Wartegg Zeichen Test form are collected by Liu [9]
in 2019. Firstly, we labeled all objects in each image, and then, merged together
those categories that share the same pattern. For example, face, circle, cookie
and tire, apple are circular patterns, they can be treated as the shape circle.
Also, Parachute, hot air balloon and Umbrella all have a curved ceiling at the
top and converging tail at the bottom.

Figure 3a shows the ratio between the area of an object and its image. For
those images that have only one object, the area ratio is close to a normal
distribution, the median value is around 0.4. On the other hand, for those images
that have two, and multiple objects, there are more tiny objects in each image.
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(a) Area Ratio (b) Frequency of Categaries

Fig. 3. Examples of Density distribution of Wartegg Test images

After labeling and merging, we counted the frequency of each category as
shown in Fig. 3b. Finally, we will select the top 11 classes frequently appeared
in those images that contain only one object. The 11 classes are: circle, planet,
car, umbrella, building, animal hammer, eye, rectangle, cold weapon and sun.
Also, We have 439 images with a single object, 55 images have two objects and
93 images contain multiple objects.

QuickDraw Image Set. The QuickDraw image set [5] has been collected
through the game “QuickDraw” developed by Google, which has very similar
rules as “Drawize”, instead drawing something and guessed by friend, Quick-
Draw lets the tester draw an object based on a word hint, and the machine will
guess what the tester has drawn. The QuickDraw image set contains more than
300 categories which is suitable for us to select the useful categories.

We generate the training image set based on the area distribution of Wartegg
Test image set. There are 12000 images in our training image set, each image
contains one object and we keep the area ratio of objects with the area of the
image from 0.02 to 0.9 to cover most cases in the Wartegg Test image set. Also,
the object can be randomly located in the image. Since QuickDraw was drawn
by computer mouse or touch pad, electronic pencil, the width of its lines and
curves is only one pixel, but the lines and curves of Wartegg Test image set are
drawn by pencil, so their width varies from 4 to 8 pixels. Then, we will enlarge
the width of lines and curves in QuickDraw to 6 pixels. Figure 4 shows how we
generate training images with different scales and bold lines and curves of the
training image set that make them suitable for the testing image set.
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(a) Testing(car) (b) Training(car) (c) Training(car) (d) Training(car)

(e) Testing(Sun) (f) Training(Sun) (g) Training(Sun) (h) Training(Sun)

Fig. 4. Examples of testing and training images

4.2 Pixel Value Augment

The main purpose of Pixel Value Augment is to enlarge useful information and
pretend such information has been deleted by applying PCC and following SLIC
+ DBSCAN algorithms.

As Fig. 5 shows, although the original Fig. 5a looks good, there are lots of
noises in the image surrounding the lines and curves.

(a) original image (b) Actual (c) after augment

Fig. 5. Actual image with noise

By analyzing the Wartegg Test image set, the distribution of a line usually
obeys the normal distribution. So for each line, if its width is greater than a
width threshold, we will enlarge its value, by normalization based on its smallest
and highest values, in our experiment, the width threshold is 4.

4.3 Image Processing Result

Before starting the processing steps, we will normalize the value of pixels between
(0, 1), and then follow the steps described in Sect. 3.1 to extract lines and curves.

Figure 6a presents each filter step in the PCC process during our experi-
ment. Figure 6b shows the result after PCC algorithm. Finally, Fig. 6c shows the
denoised result. Compared with Fig. 5, those noises surrounding the lines and
curves with unpredictable values are deleted.
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(a) Pcc 3 (b) Final result of pcc (c) denoised result

Fig. 6. PCC result

However, not only the salt and pepper noise pixels are noises, during our
detection process, those pixels with useless information also need to be treated
as noise since this will impact our final inference result. So, we will split one whole
image into many small superpixels (Fig. 7). Then, we kept those center points
of a small pitches that located on strokes as our key points and use DBSCAN
mentioned in Sect. 3.1 to classify these key points into multiple clusters.

(a) one object (b) one object (c) two objects (d) three objects (e) multi objects

Fig. 7. SLIC result

(a) one object (b) one object (c) two objects (d) three objects (e) multi objects

Fig. 8. DBSCAN cluster result

Figure 8 shows the cluster result. Finally, based on the cluster result, we split
each image into multiple images with only one object. Figure 9 shows the result.
So, for an image which contains N objects, we will get N new images and one
object per image in the end. For example, in Fig. 8d, we have three objects in the
image: a house, a tree and a sun, after splitting, we will get Fig. 9e, Fig. 9f and
Fig. 9g. By doing so, the Wartegg Test image set will have the same distribution
as the training image set.
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(a) hammer (b) umbrella (c) parachute (d) sun

(e) house (f) sun (g) tree (h) fish

(i) fish (j) fish (k) fish (l) fish

Fig. 9. Split result

4.4 YoloV3-SPP Object Detection

Note that the contour distributions of natural images and hand-drawn images are
similar. In the training process, we use the transfer learning based approach that
firstly loads the parameters of pre-trained DarkNet53 on ImageNet and fine-tune
the last layer using the original QuickDraw images to make the backbone network
learn the features of sketch images. The transfer learning can help us solve the
problem of insufficient number of training images and increase the converging
speed. In our experiment, loading the pre-trained parameters from well-trained
DarkNet53 on the ImageNet, then fine-tune the last layer will spend less time,
usually 5 epoches to converage, compared with directly training a DarkNet53 on
QuickDraw images, which need around 15 epoches to let the network converage,
and around 20 epoches to let the result of the network to be stable. Once the
training process of DarkNet53 is completed, we load these parameters without
the last fully Connected Layer of DarkNet53 into the YoloV3-SPP Network.
Using our generated QuickDraw image set we train the YoloV3-SPP for the
detection task.

During the testing process, We have three image sets, Image set 1 contains
those images that the original images have only one object, Image set 2 contains
those images which the original images have one or two object, and Image set 3
contains those images that the original images have one, two or multiple objects.
We input each split Wartegg Test image into the trained YoloV3-SPP model to
get the inference result. We will get the inference results for each image, then, we
will merge those split images which belong to individual images together with
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their predicted bounding boxes. So, finally, we can calculate the performance of
the YoloV3-SPP model. We will use the COCO image criterion to evaluate our
result. The testing result is shown in Table 1.

Table 1. The result of YoloV3-SPP on Wartegg Test image set

Method Image set AP50 AP75 mAP

Ours 1 87.9% 76.3% 67.7%

2 78.9% 66.8% 56.7%

3 75.0% 57.1% 51.8%

Without ours (Original) 1 81.2% 73.8% 62.5%

(Original) 2 57.8% 56.2% 51.4%

(Original) 3 52.6% 46.4% 43.9%

Table 1 shows that we got a much better result compared with previous result,
which got 68.72% (IoU = 0.5) for one object detection [10], and we increase this
score to 87.9% (IoU = 0.5) with an mAP of 67.7%. However, the result drops
when testing on one and two objects, 78.9% for Iou = 0.5 and the mAP is
56.7%. The performance drops continuously for the detection task of one, two
and multiple objects, i.e. 75.0% when IoU = 0.5 and 51.8% for mAP Score. By
analyzing this phenomenon, the main reason is because with an increase in the
object number, the area ratio of each object with its image size will decrease. On
the other hand, for multiple object detection, there are more tiny objects in the
testing image set compared with one object image set. As Fig. 3a shows, these
tiny objects will lower the performance of the network. On the other hand, as a
comparision, we also use the original images as the testing image set to verify
the performance of the trained detector on original Wartegg Test image set. The
result has decreased significantly, especially for image sets 2 and 3. These may be
because in the training image set, each image has one object, but in our Wartegg
test image set, an image contains an indeterminate number of objects, also if an
image contains more than one object, the distance between two objects is short,
the target area inside a bounding box may contain two objects, and one object
could be treated as the interference part when another object is detected.

5 Conclusion and Future Work

In this paper, we present a complete framework of the Wartegg Test image set
in object detection. Our method becomes a bridge between one object hand-
drawn image set and multiple object detection task. Our method does not only
simplify the multi-object detection task of Wartegg Test image set, but also
improves the result of the performance of Wartegg Test image set in object
detection. However, there still are some limitations of our approach, firstly, the
DBSCAN cluster is not suitable for those objects tightly connected or overlapped
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together, the DBSCAN will treat them as one object which will not be recognized
by YoloV3-SPP. Secondly, the parameters of DBSCAN are manually modified,
although we have already classified images based on their object area and batch
processing the images, we still need to modify the parameters several times.
Finally, YoloV3-SPP may not be very suitable for tiny object detection [11], the
next step may need to design part of the network which is suitable for both large
and tiny objects to improve the performance.
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Abstract. This paper proposes a 3D representation of human kinematics with
the Kinematic Theory of Rapid Human Movements and its associated Sigma-
Lognormal model. Based on the lognormality principle, a human movement is
decomposed as a vector sum of temporally overlapped simple movements called
strokes, described as two virtual target points linked by an arc of circumference
and with the movement velocity having a lognormal shape. The paper extends the
former 2D theory to the third dimension by linking the 3D virtual target points
with planar circumferences covered with lognormal velocity profiles and recon-
structing the 3D kinematics of the whole movement with temporally overlapping
consecutive planes. Parameter optimization is accomplished jointly in the tempo-
ral and spatial domains.Moreover, the lognormal parameters used are numerically
estimated, potentially providing a set of possible solutions that gain insights into
the physical and biological meanings of the Sigma-Lognormal model parame-
ters. We show that the 3D model, called iDeLog3D, achieves competitive results
in analyzing the kinematics of multiple human movements recorded by various
sensors at different sampling rates. The iDeLog3D is available to the scientific
community following license agreements.

Keywords: Biometrics · Kinematic theory of rapid human movements ·
Analysis of human 3D movements · Modeling 3D human actions

1 Introduction

Many human-related computer vision problems can be approached by analyzing the
kinematics of human movements [1]. Kinematics variables include linear and angular
displacements, velocities, and accelerations. In addition, these data typically register
the kinematics of anatomical landmarks such as the center of gravity of body seg-
ments, the centers of joint rotations, the end effectors of limb segments, key anatomical
prominences, among others.
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Exploring human kinematics provides fundamental insight to understand the mech-
anisms that characterize natural human motion, the higher-level strategies of realizing
complex tasks, and the interactions with the external environment. It might be helpful to
develop tools for characterizing human motion changes due to disease, aging, or injury
recovery. This can help understand how fine motor control is learned by elementary
school children and provide quantitative and objective learning indexes. In addition, it
can facilitate rehabilitation applications, including the design of prostheses and exoskele-
tons, workplace ergonomics, sports medicine, orthopedics, and physical therapy, which
are of paramount importance for human welfare.

Lately, several acquisition devices and software development kits (SDKs) for cap-
turing 3D kinematics have emerged in the market. On the one hand, some of them are
based on an external device such as leap motion, Microsoft Kinect, Optitrack MOCAP,
etc. On the other hand, wearable sensors such as neuronmocap suits and gloves or some
smartwatches include inertial measurement units (IMU), which also allow to recover the
trajectory.

Many theories have tried to approach the kinematics of human movement in general
[2]. Among them, the Kinematic Theory of Rapid Human Movements [2–5] and its
associatedDelta-Lognormal [6] and Sigma-Lognormal [7]models have been extensively
used to explain most of the fundamental phenomena covered by classical studies on
human motor control and to study several factors involved in fine motricity.

Two different methods have been proposed to calculate the Sigma-Lognormal
parameters: ScriptStudio [7], which optimizes the velocity, and iDeLog (iterative
Decomposition in Lognormals) [8], which optimizes the velocity and the trajectory
jointly.

These methods transform kinematic data into a sequence of circumference arcs
between two virtual target points. Each arc is defined by starting and ending angles.
An ending virtual target point is the starting virtual target point of the next circumfer-
ence, and so on, up to the end of the movement. Similarly, each arc can be considered
as having a starting and ending time, but the finishing time of an arc is not the same as
the starting time of the next arc. Thus, the arcs are temporally overlapped. Each arc is
covered with a lognormal velocity profile, and all the lognormal samples corresponding
to the same time are summed to generate the trajectory.

Consequently, the space-time trajectory is transformed into a sequence of virtual
target points, starting and ending angles, and lognormal parameters.

To the best of author knowledge, the Delta-Lognormal and Sigma-Lognormal
models have been applied to the 2D spatiotemporal sequence for several applica-
tions. Even though a few attempts have been made to extract the Delta-Lognormal or
Sigma-Lognormal parameters from 3D sequences, there is still room for improvements.

1.1 Related Works

ScriptStudio and iDeLog are two operational frameworks that computerize the kinematic
theory of rapid movements. Some approaches have been developed to extend the Delta-
Lognormal and Sigma-Lognormal models to 3D in the ScriptStudio framework.
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The first attempts to mathematically extend the Delta-Lognormal and Sigma-
Lognormal model to 3D movements were proposed in [9] and [10], respectively. Sub-
sequently, an efficient and fully automatic 3D extension of the Delta-Lognormal model
was proposed in [11, 12]. The authors assumed that a 3D short and fast hand stroke is
a planar movement on a 3D coordinate plane. They, therefore, proposed to rotate the
plane of the movement to the xy plane, after which they performed a 2D analysis, and
finally, the result was rotated to the original plane of the movement.

A Sigma-Lognormal extension to 3D following the ScriptStudio framework was
presented in [13, 14]. The authors assumed that each stroke acts similarly to a rotation
around a pivot and the stroke can be described in spherical coordinates with the distance
to the origin ρ, the azimuth ϕ and polar ϑ angles. The circular link between each pair of
virtual target points is built by rotating the azimuth and polar angles along their pivot in
a lognormal fashion. This procedure was evaluated with three datasets, and Signal-to-
Noise Rate (SNR) between velocities of around 20 dBs were obtained. The quality of
this procedure is also measured by comparing the recognition ratio of the original and
reconstructed databases with similar performances (Table 1).

Table 1. Related works on kinematic theory of rapid movements in 3D.

Papers Model Method* Main characteristic Evaluation

Leduc et al. 2001 [9],
Djioua et al. 2007 [10]

DL Seven delta-lognormal
parameters plus two 2D
curvatures and two
angular plane
orientations

Velocity

Chidami et al. 2018
[11], 2020 [12]

DL SS Parameter extraction in
a bidimensional plane
and 3D rotation

Velocity

Schindler et al. 2018
[13], Fischer et al. 2020
[14]

SL SS A natural extension to
3D by adding a third
coordinate and polar
angle

Velocity and
classification

This work, 2022 SL iDeLog Linking 3D virtual
target points through
planar circumferences
with 3D synthesis

Velocity, trajectory and
recognition

*DL stands for Delta-Lognormal. SL stands for Sigma-Lognormal. SS stands for ScriptStudio

1.2 Our Contribution

This paper adds the third dimension to the equations of iDeLog [8] by establishing a
new mathematical basis for analyzing 3D human-like kinematics called iDeLog3D. The
mathematical analysis lead to solve a set of equations to calculate the Sigma-Lognormal
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parameters. We highlight that it does not have a single solution. From a neuromotor
perspective, choosing which possible solutions to the equations are the most appropriate
remains a challenge. In this context, iDeLog3D produces not only a new solution to the
Sigma-Lognormal equations, but also, a new set of viable solutions. All in all, the main
contributions of the present paper can be summarized as follows:

• A new and robust framework to develop the Kinematic Theory of Rapid Human
Movement into 3Dbased on planar links,whilemaintaining the biological background
of the Kinematic Theory of Rapid Human Movements.

• A pool of solutions to the Sigma-Lognormal equations. With similar mathematical
performances, all these practical solutions might allow new biological analyses.

These contributions are expected to provide new insights into understanding complex
and lengthy human kinematics. Finally, we publicly make available the iDeLog3D to
facilitate the repeatability of the experiments following free license agreements ay www.
gpds.ulpgc.es.

The remainder of the paper is organized as follows: Sect. 2 briefly reviews the Sigma-
Lognormal model. Section 3 establishes the mathematical framework for analyzing
3D human movement kinematics. Experimental validation of the proposed analysis is
reported in Sect. 4. Section 5 concludes the article by summarizing its key contributions.

2 3D Sigma-Lognormal Equations

The Kinematic Theory of Rapid Human Movements [4] and its associated Sigma-
Lognormal model provide a velocity −→vo (t) modeling regardless of the dimension of
the movement. It was formulated in [7] in 2D and in [13, 14] in 3D in the ScriptStu-
dio framework. For the tridimensional case, namely, ScriptStudio3D in this work, let[
xo(t), yo(t), zo(t)

]T be the trajectory of a 3D humanmovement whose vectorial velocity
and module are defined by:

−→vo (t) =
⎡

⎣
vox(t)
voy(t)
voz(t)

⎤

⎦ =
⎡

⎣
dxo(t)/dt
dyo(t)/dt
dzo(t)/dt

⎤

⎦ (1)

vo(t) = ∣∣−→vo (t)
∣∣ =

√
v2ox(t) + v2oy(t) + v2oz(t) (2)

The velocity −→vo (t) is decomposed as a sum of temporally overlapped strokes. Each
stroke is a spatiotemporal trajectory between two virtual target points with a lognormal
velocity profile [14]. Thus, the velocity is modeled as a sum of N lognormals as:

−→vr (t) =
N∑

j=1

Dj

⎡

⎣
sin(ϕj(t))cos(ϑj(t))
sin(ϕj(t))sin(ϑj(t))

cos(ϕj(t))

⎤

⎦vj(t) (3)

where

vj(t) = 1

σj
√
2π(t − t0)

exp

{

−
[
ln(t − t0) − μj

]2

2σ 2
j

}

(4)

http://www.gpds.ulpgc.es
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is the lognormal velocity at the jth stroke, t is the basis of time, t0 is the time of stroke
occurrence, Dj is the amplitude of the input commands, μj is the stroke time delay on a
logarithmic time scale and σj is the stroke response time.

The similarity between the original velocity vo(t) and the reconstructed velocity vr(t)
is calculated through the Signal-to-Noise Ratio SNRv [8].

Regarding the trajectory, ϕj(t) and ϑj(t) are the azimuth and polar angular sweep of
the arc between the two virtual target points corresponding to the jth stroke. They are
defined as [14]:

ϕj(t) = ϕsj +
(
ϕej − ϕsj

) ∫ t

0
vj(τ )dτ

ϑj(t) = ϑsj +
(
ϑej − ϑsj

) ∫ t

0
vj(τ )dτ

(5)

Once the Sigma-Lognormal parameters,
{
Dj, t0j, μj, σ

2
j , ϑsj, ϑej, ϕsj, ϕej

}N

j=1
are

obtained, the velocity−→vo (t) can be reconstructed as−→vr (t) following (3), and the trajectory
recovered as:

−→sr (t) =
⎡

⎣
xr(t)
yr(t)
zr(t)

⎤

⎦ =
∫ t

0

−→vr (τ )dτ (6)

The reconstruction quality of the trajectory is determined through theSignal-to-Noise
Ratio SNRt between the 8-connected original and reconstructed trajectories [8].

3 iDeLog3D

The above procedure determines the Sigma-Lognormal parameters from the velocity,
which produces a first-order error resulting from the trajectory obtained by the integra-
tion of the velocity (6). Indeed, this is a shortcoming for lengthy and complex spatio-
temporal trajectories. This paper addresses this challenge by developing the iDeLog3D,
which jointly optimizes the spatial and temporal Sigma-Lognormal parameters. Thus,
the trajectory and velocity errors are balanced. Furthermore, as an additional conceptual
difference with the ScriptStudio3D, the iDeLog3D links the 3D virtual target points
through planar circumferences instead of sweeping the azimuth and polar angles. More-
over, because the iDeLog3D determines the Sigma-Lognormal parameters numerically
instead of analytically, as in the ScripStudio3D, it is possible to work out alternative
solutions.

In short, the iDeLog3D works as follows: Firstly, it segments a spatiotemporal tra-
jectory into strokes; secondly, for each stroke j = 1, . . . ,N it estimates the spatial
parameters (the starting and ending virtual target points, azimuth and polar angles of the
curve: tpj−1, tpj, ϑsj, ϑej, ϕsj and ϕej, respectively); thirdly, it calculates the temporal
parameters, i.e., the lognormal parameters Dj, t0j, μj and σ 2

j . After this first solution,
the computational method iteratively optimizes the target point location and the velocity
function parameters to improve the 3D spatiotemporal trajectory representation.
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3.1 Stroke Segmentation

The ScriptStudio3D [14] segments the strokes by adjusting a lognormal to the highest
velocity peak. Next, such lognormal is subtracted from the velocity. The procedure is
repeated on the remaining velocity iteratively until a defined quality is reached in the
adjustment. As a result, a single peak is defined by as many lognormal functions as
needed to improve the SNR performance.

A completely different strategy is used in iDeLog3D for the joint spatiotemporal
segmentation. We segment the strokes by estimating the piece of the trajectory between
velocity minima. A proficiency velocity minima detection helps us find only a single
lognormal per peak, which is supposed to have a closer biological meaning [8]. Let the
time of the velocity minima be tminj = 0, . . . ,N , where N is the number of strokes,
tmin0 = 0, and tminN = T is the temporal length of the 3D human movement. In this
case, the velocity peak, which corresponds to stroke j, was defined as:

voj(t) =
{∣∣−→vo (t)

∣∣ tminj−1 ≤ t ≤ tminj
0 otherwise

, 1 < j < N (7)

where vo(t) is the velocity of the humanmovement. In the trajectory, the velocityminima
are expected to correspond to salient points spj, j = 0, . . . ,N , with sp0 being the first
sample, and spN , the last. Note that tmin j · fm is the index of the sample spj, with fm being
the sampling frequency.

3.2 Temporal Parameters for Stroke

The temporal parameters are those related to the velocity, i.e., the lognormal parame-
ters t0j, Dj, μj and σ 2

j for each stroke voj(t). In the case of ScriptStudio3D [14], these
parameters are obtained analytically by solving the system of equations that best fit the
lognormal to three selected points of voj(t). In iDeLog3D, following [8], t0j is defined
in advance and Dj, μj and σ 2

j are later obtained numerically.

Lognormal Timing. First, t0j is defined as t0j = tmin,j−1 − �tj. This procedure leaves
the work of approaching the shape of voj(t) to the lognormal parameters μj and σ 2

j .
It could thus be stated that �t simulates the time between the neuron firing and the
muscle reaction, while μj and σ 2

j describe the muscle response to the firing [15]. Note

that different values of �tj will provide a different solution for μj and σ 2
j , and with

all of them having a similar SNRv. It should be mentioned that Dj is also necessary
to approach voj(t), but Dj barely depends on �t. Therefore, this procedure can provide
different solutions for further biological analysis.Bydefault,weuse�tj = 0.5s∀j,which
is a human averaged reaction time [16]. In practice, a constant �tj produces similar
values of μj and σ 2

j for most of the strokes, which is reasonable, since the μj and σ 2
j

responses approximate the impulsive response of the end effector that carries out the
whole movement. This is another difference between iDeLog3D and ScriptStudio3D.
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Lognormal Shape. Regarding the estimation of the Dj, μj and σ 2
j lognormal parame-

ters, to approach the velocity peak voj(t), iDeLog3Dcalculates themnumerically through
a nonlinear least-squares minimization of the function:

∫ tmin,j

t=tmin,j−1

∣∣∣Djvj
(
t; t0j, μj, σ

2
j

)
− voj(t)

∣∣∣
2
dt (8)

The minimization is performed using a Levenberg-Marquardt algorithm (LMA),
which is chosen to solve a generic curve-fitting problem in many software applications.

This procedure has several limitations as the peak is cropped between tmin,j−1 and
tmin,j (8). It causes narrow and sharp peaks. To alleviate this drawback, the integration
interval of (8) is empirically widened (tmin,j − tmin,j−1)/3 on each side to improve the
adjustment of the velocity peak voj(t).

3.3 Spatial Parameters for Stroke

The Kinematic Theory of Rapid Human Movements represents the trajectory, which
relies on the virtual target points and the curves between them. The ScriptStudio3D
defines such curves through the integration of the vectorial velocity. In iDeLog3D, the
initial virtual target points and the curves between them are estimated geometrically.

Virtual Target Points. Each stroke aims to reach the virtual target points. These are
not reached since the next simple movement starts before the previous one ends. Con-
sequently, a virtual target point tpj, j = 1, ..N is assigned to each salient point spj and is
estimated through the triangle defined by the vertices spj−1, spj and spj+1. Specifically,
tpj is located on the median of the vertex spj at a distance dtpj outwards from the vertex
spj defined as dtpj = Dtpjsin

(
χj/2

)
, where Dtpj the distance between the vertex spj and

the midpoint of the opposite side and χj is the angle of the vertex spj. In this way, the
closer the angle of the vertex spj, the further tpj from spj.

Trajectory Between Virtual Target Points. Two approaches were identified for defin-
ing the trajectory of a simple movement between two virtual target points. The first one
assumes that the simple movements are planar, i.e., executed in a 2D plane [11]. Con-
sequently, the ensuing temporal overlapping of curves in different 2D planes builds up
a full 3D trajectory. The second one, used by the ScripStudio3D in [13], sweeps the
azimuth and polar angle from the starting to the end values independently, as defined in
(5). Both propositions are valid from a mathematical perspective.

Alternatively, the iDeLog3D opts for modeling each simple movement with a planar
curve. It mainly shows that it is possible to approach free 3D human-like movements
linking overlapped planar curves [9].

To estimate the 2D plane of the jth stroke or simple movement, three points are
required, namely, tpj−1, tpj and the middle point mpj of the trajectory between the
salient points spj−1 and spj. From these three points, an orthonormal base of the plane
�rj and �sj is calculated from the vectors mpj − tpj−1 and mpj − tpj, through the Gram-
Schmidt process. Thus, the parametric equation of the plane of stroke j is defined as
Pj ≡ tpj−1 + λrj + μ�sj.
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Once we define the plane Pj, the points mpj, spj−1 and spj are projected onto Pj,
employing basic geometrical operations giving as results pmpj, pspj−1 and pspj. The
circumference traversing these three projected points is obtained. The slopes of this
circumference in the points pspj−1 and pspj represent the start θsj and end θej angles,
respectively. Finally, the link between tpj−1 and tpj is the circumference

(
rcj(t), scj(t)

)

on the plane Pj that traverses tpj−1 with angle θsj and tpj with angle θej. This procedure
is illustrated in Fig. 1. The coordinates

(
rcj(t), scj(t)

)
of this circumference traveled at a

speed Djvj(t; t0j, μj, σ
2
j ) are converted to 3D to get the recovery trajectory as follows:

(xr(t), yr(t), zr(t)) =
∑N

j=1

(
xj(t), yj(t), zj(t)

)
(9)

Fig. 1. Trajectory between virtual target points

3.4 Fine-Tuning Refinement

As a result of the above procedure, an initial estimate of the parameters of the 3D Sigma-
Lognormal model, t0j,Dj, μj, σj, tpj, ϑsj, ϑej, ϕsj and ϕej, j = 1, . . . ,N , are obtained.
Then, the iDeLog3Dmethod initiates a fine-tuning algorithm to optimize the position of
the virtual target points tpj. Furthermore, it improves both the reconstructed trajectory
and velocity profiles jointly. Similarly to [8], the improvement is carried out using an
iterative Least Mean Square (LMS) algorithm applied stroke by stroke in the same order
as the original movement.

Examples of the reconstruction of different real human movements are shown in
Fig. 2.
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4 Experiments

Experiments assess the similarity of original and reconstructed spatio-temporal
sequences with iDeLog3D. They were conducted to validate the applicability of spatio-
temporal sequences in different computer vision applications in 3D. To this aim, we
analyze, the accuracy of the human kinematics modeling in terms of SNRv and SNRt as
the performance in gesture recognition and signature verification benchmarks.

Fig. 2. Example of original and reconstructed specimens by iDeLog3D

4.1 Databases

Five publicly available databases were used in the experiments: three corpora of gestures
for classification and two corpora of signatures for verification experiments. The three
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gesture databases were chosen to compare our results with the previous works [13, 14].
The databases selected comprise different sensors and gestures for studying the ability
of the iDeLog3D algorithm to tackle different scenarios. Sensors included are motion
capture suits based on a video, gloves based on inertial measure units (IMUs), Kinect,
and leap motion devices. The sampling frequency also varies from 30 Hz up to 125 Hz.
Furthermore, the databases include short movements such as grab something to more
complex ones such as 3D handwriting in the air.

Specifically, five databases used were:

1. HDM05 database. It contains motion samples of 11 actions such as grabbing some-
thing aloft, hop both legs, kicking forward, lying down, sneaking, squat or throwing
a basketball, etc. performed by 10 actors. Each actor repeated every motion from 2
to 7 times with 250 samples, in total. The movements were recorded with an optical
marker-based motion capture suit from Vicon with a sampling rate of 120 Hz [17].

Four 3D trajectories are considered for our experiments, namely the wrists relative
to the shoulders and the ankles related to the hips.

2. Airwriting database. The dataset includes 100 short words written with uppercase
letters with the index finger into the air by 5 subjects. The writing is recorded without
markers or gloves using a Leap motion with a sampling rate of 60 Hz. Each word is
written once by each writer [18].

3. UTKinect database. It is composed of samples of 10 actions such as walking, sitting
down, standing up, picking up, etc. performedby10 subjects. Each subject performed
each action twice, resulting in 200 valid action sequences. The 3D locations of 20
joints are provided with the dataset. A Kinect camera recorded the movements with
a sampling rate of 30 Hz. Similar to the HDM05 dataset, we consider four 3D
trajectories of normalized wrist and ankle movements with a total of 796 sequences
[19].

4. 3DIIT Signatures database. It consists of 1600 air-written signatures performed by
80 individuals and recorded using a Leap motion at 60 Hz. Each individual repeated
their signature at least 20 times [20].

5. Deep3DSigAir database. It contains signatures from 40 users. For each user, include
10 signatures for training, 10 signatures for the test, and 25 skilled forgeries with
a total of 1800 3D signatures. The signatures were acquired with Intel’s creative
senz3D depth camera at a sampling rate of 60 Hz [21].

Figure 2 shows a specimen per dataset with different number of lognormals.

4.2 Accuracy of Human Kinematics Analysis

We aim to measure the similarity between original and reconstructed specimens. We
propose three analyses for this purpose: the accuracy of the human kinematics modeling
measured in terms of SNRv and SNRt ; the recognition accuracy in gesture classifica-
tion experiment and the Equal Error Rate (EER) for signature verification. It is worth
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highlighting that iDeLog3D takes around three seconds for parameter extraction and
recosntruction on an i7 2.90 GHz microprocessor computer from a one-second signal.

Analysis in Terms of SNR. For SNR, a real movement was analyzed and reconstructed
by iDeLog3D. In this case, the SNRv and SNRt quantify the ability of iDeLog3D to
reconstruct 3D kinematics in different environments accurately.

Table 2 shows such averaged values next to their standard deviations for HDM05,
Airwriting, UTKinect, 3D signature IIT, and Deep3DAirSig. It also contains the SNRs
reported in [14] as a baseline for similar experiments with Scripstudio3D.

The results show SNRt and SNRv reconstruction accuracy over 15 dB. According
to [7], this threshold is acceptable to consider a movement human-like for recognition
purposes. These results are consistent for both gesture and airwriting, thanks to the
joint trajectory and velocity optimization used. It highlights the ability of the iDeLog3D
to handle spatiotemporal sequences of different lengths and complexity obtained from
multiple sensors and sampling frequencies.

Table 2. Reconstruction accuracy of the 3DKTT with HDM05, Airwriting, UTKinect, AirWrit-
ing, 3D signatures IIT, and Deep3DAirSig databases.

Database SNRt SNRv SNRv [15]

HDM05 25.735.73 dB 19.602.69 dB 18.524.09 dB

Airwriting 22.994.89 dB 17.971.49 dB 12.522.02 dB

UTKinect 21.976.46 dB 18.623.72 dB 20.214.40 dB

Signatures3DIIT 23.455.69 dB 19.233.01 dB

Deep3DAirSig 23.364.43 dB 15.032.46 dB

Analysis in Terms of Recognition and Verification Performances. This
section measures the accuracy of the iDeLog3D analysis from the perspective of move-
ment recognition and verification. Thus, classification and verification experiments for
gestures and signatures were respectively conducted. If the reconstruction is accurate,
similar performances should be achieved for the original and iDeLog3D reconstructed
databases.

To allow a comparison, the classifier used for gesture recognition was the dynamic
timewarping (DTW), as in [13, 14]. The performance is given in accuracy and cumulative
matching curves (CMC).

Similarly, the signature verification experiments were carried out with a DTW [8].
We consider the two typical scenarios of randomand skilled forgeries to estimatewhether
a signature is genuine or a forgery [22]. Moreover, the performance is given in terms of
EER and DET plots.

Remarkable similarities between the real and reconstructed data were found.
For example, the reconstructed Signature3DIIT and the reconstructed Deep3DAirSig
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databases, in the case of random and skilled forgeries, show a very close perfor-
mance with their original counterpart, as it is shown in Fig. 3. The performance of the
Deep3DAirSig database is significantly better than that of the Signature3DIIT database.
It is worth pointing out that our purpose is to achieve similar performances regard-
ing the original specimens rather than improving the recognition or verification results.
For this reason, sometimes the EER of the reconstructed signatures may be lower than
the real one, as the case of the Signature3DIIT database, or viceversa, as the case of
the Deep3DAirSig database. The results of similar experiments conducted in [14] with
ScriptStudio3D are provided as a baseline in the caption of Fig. 3.

Fig. 3. Results of classification and verification experiments. Left, classification results from
the experiment with real and reconstructed by iDeLog3D of HDM05, Airwriting, and UTKinect
databases for gesture recognition*. Center: Results of the verification experiments in the ran-
don forgeries scenario carried out with Signature3DIIT and Deep3DAirSig real and iDeLog3D
reconstructed databases. Right: Results of the verification experiments in the skilled forgeries sce-
nario carried out with Deep3DAirSig real and iDeLog3D reconstructed databases. *As baseline,
the classification accuracies reported in [18] were HDM05 Real: Acc = 96.4%, HDM05 recon-
structed: Acc = 96.1%, Airwriting Real: Acc = 99.0%, Airwriting reconstructed: Acc = 98.2%,
UTkinect Real: Acc = 94.0% and UTkinect reconstructed: Acc = 92.0%.

5 Conclusions

This paper proposes a new algorithm called iDeLog3D to analyze 3D human kinematics.
Following the Kinematic Theory of Rapid Human Movements principles and its associ-
ated Sigma-Lognormal model, iDeLog3D decomposes 3D spatiotemporal sequences as
a sum of temporally overlapping planar circumferences traveled with a lognormal speed
profile.

Experiments show that the iDeLog3D can represent real 3D human kinematics
obtained with different sensors and sampling frequencies with an SNR over 15 dB
in velocity and trajectory. Furthermore, databases reconstructed with the iDeLog3D
parameters perform similarly to the original databases.

The iDeLog3D is made publicly available for interested readers as supplementary
material at www.gpds.ulpgc.es. Furthermore, this computational model may be helpful
in many applications such as human-computer interfaces, medicine, education, games,

http://www.gpds.ulpgc.es
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etc. We thus hope that this paper’s models and tools will help the research community
develop 3D human-like kinematics.
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Abstract. Experimental studies led by Lashley and Raibert in the early
phase of human movement science highlighted the phenomenon of motor
equivalence, according to which complex movements are represented in
the brain abstractly, in a way that is independent of the effector used for
the execution of the movement. This abstract representation is known
as motor program and it defines the temporal sequence of target points
the effector has to move towards to accomplish the desired movement.
We present and compare two algorithms for the extraction of motor
programs from handwriting samples. One algorithm considers that log-
normal velocity profiles are an invariant characteristic of reaching move-
ments and it identifies the position of the target points by analysing the
velocity profile of samples. The other algorithm seeks target points by
identifying the trajectory points corresponding to maximum curvature
variations because experimental studies have shown that the activity of
the primary motor cortex encodes the direction of the movement. We
have compared the performance of the two algorithms in terms of the
number of virtual target points extracted by handwriting samples gener-
ated by 32 subjects with their dominant and non-dominant hands. The
results have shown that the two algorithms show a similar performance
over ∼55% of samples but the extraction of motor programs by analysing
the curvature variations is more robust to noise and unmodeled motor
variability.

Keywords: Motor equivalence · Motor program extraction ·
Handwriting representation

1 Introduction

The analysis of movement, as the analysis of gait or handwriting, is the core of
many tools used for biometric [6,7,17,18,24] and diagnostic [2–4,20] purposes.
That is because complex movements are the result of a learning process that
is individual and neurodegenerative disorders, like Parkinson’s and Alzheimer’s
disease, affect motor skill learning, execution and retention.
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Being able to infer the representations of movements acquired by learning and
stored in the brain is of paramount importance because it allows to distinctively
identify a person or to monitor the onset and the progression of neurodegenera-
tive diseases.

The phenomenon named motor equivalence suggests that “actions are
encoded in the central nervous system in terms that are more abstract than com-
mands to specific muscles” [35]. This abstract representation is known as motor
program, which has been also defined as “a central representation of a sequence
of motor actions” [28]. Therefore, a motor program is an effector-independent
representation of the movement that is made up of a sequence of target points
that have to be reached in order to execute the desired movement. To a motor
program may correspond more than one effector-dependent representation of the
movement, each of which encodes the motor commands that will be delivered to
the specific neuromuscular system recruited for the execution of the movement
[14,25].

Different algorithms have been proposed for extracting the motor program
from a trajectory, i.e. to identify within a handwriting movement the elemen-
tary movements, from here on named strokes, it is made up of [8,12,13,16,19].
Because variations in the writing conditions and in the psychophysical state of
a subject influence the execution of a complex movement, we can observe dif-
ferences in the motor programs extracted from different executions of the same
trajectory. Differences can be observed in the number of extracted strokes, in the
parameter values used for representing strokes and in the x-y position of target
points.

We present and compare two algorithms for the extraction of motor programs
from handwriting samples; one defines the position and the number of the target
points from the analysis of the velocity profile, while the other finds the target
points by looking at the variation of curvature along the trajectory. Because, by
definition, a motor program is independent of the variability affecting different
executions of the same drawing or word, we compared the two algorithms in
terms of the number of strokes extracted from each sample. The desired outcome
is the extraction of the same motor program from any repetition of the same
learned movement.

The remaining of the paper is structured as follows: Sect. 2 describes the two
algorithms and the theoretical framework within which they were conceived,
Sect. 3 describes data collection and the experimental procedure, and it reports
the results that are then discussed in Sect. 4. Eventually, Sect. 5 concludes the
work by discussing further investigations of this preliminary work.

2 Method

2.1 Theoretical Overview

The repetition of a complex movement over time has the effect of creating a
compact representation of the movement that, in the final stages of learning,
is stored in the brain as a succession of target points that have to be reached.
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The execution of a learned movement, i.e. the realization of a motor program,
results from the interaction between brain areas, spinal cord networks, muscles
and the proprioceptive receptors [21,27]. In a nutshell, to initiate the movement,
the brain sends commands to recruit the muscles and to set the forces they have
to exert on the bones they are connected to, while, during execution, the spinal
cord modulates such commands depending on the information received by the
proprioceptive receptors in order to keep the execution as close as possible to
the learned one. The effects of those modulations are therefore the source of
the observed variability, and they should not be considered as the results of
commands stored in the motor plan.

The active role of the spinal cord in the control of movements became clear
with studies on spinal cord plasticity and spinal stretch reflexes. Studies have
shown that spinal cord plasticity contributes to the acquisition of motor skills,
and to compensation for the peripheral and central changes caused by ageing,
disease, and trauma [36]. More recently, it has been proved that spinal feed-
back pathway is able to integrate proprioceptive inputs from multiple muscles
to produce efficient corrective responses that take advantage of musculoskeletal
redundancy [34].

Thus, after a movement has been learned, i.e. when the subject executing the
movement is no longer conscious of the elementary movements it is composed
of, the variability observed in repeated executions may be ascribed to the neu-
romuscular system executing the movement. Extracting the motor program by
observing the execution of a complex movement requires to be able to identify
those corrective movements introduced on the fly by spinal cord networks.

In the next subsection, we introduce two algorithms for the extraction of
motor programs, MPE and CMMPE. Both the algorithms adopt the lognormal
representation of handwriting movements derived from the kinematic theory of
rapid human movement [22]. Therefore, each elementary movement is charac-
terized by a lognormal velocity profile and it is described in terms of command
generation time, magnitude and direction of motion, response time and time
delay of the neuromuscular system [23]. The two algorithms were designed start-
ing from different but complementary findings in the field of motor control and,
therefore, they differ in the way they seek movements embedded in the motor
program.

MPE seeks for strokes by looking at the velocity profile of a sample. This
choice follows from the experimental evidence that reaching movements show
some stereotypical properties like a roughly straight path and, more importantly,
a velocity profile with a dominant slightly asymmetric peak [15,23]. Therefore,
MPE identifies strokes in a sample by positioning lognormal functions at the
more significant peaks of the velocity profile.

CMMPE seeks for strokes by looking at the curvature variation along the
trajectory of samples. Experimental studies have shown that neural activity in
the primary motor cortex is related to movement direction that is uniquely
predicted by the action of a population of motor cortical neurons [9]. Therefore,
CMMPE seeks for strokes by detecting the points of the trajectory where there
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is the maximum variation of curvature because at those points the change of
direction in the movement is evident and significant and, therefore, it is more
plausible that it is the effect of a central command than of a corrective movement.

2.2 Motor Program Extraction

MPE. The Motor Program Extractor algorithm, hereinafter MPE, analyzes
velocity profiles to recover the sequence of virtual target points the motor com-
mands issued by the brain intended to reach. The fundamental idea behind this
algorithm is that both the brain and spinal cord contribute to the final movement
by generating elementary movements with a lognormal velocity profile. Move-
ments commanded by brain areas are those encoded in the motor program, while
the spinal cord contributes with fast corrective movements by integrating com-
mands from brain areas and proprioceptive signals. Movements introduced by
the spinal cord are generated when the ongoing movement is going far from the
intended/planned movement. MPE extracts the motor program from one hand-
writing sample by detecting and discarding the corrective movements introduced
by the spinal cord.

MPE adopts the same iterative procedure proposed by the RX0 algorithm
[16] to extract elementary movements by the analysis of the velocity profile and
models each elementary movement with the Sigma-Lognormal model [23]. At
each iteration, the velocity profile of a handwriting sample is analyzed search-
ing for peaks. A movement generated by the spinal cord should correspond to
either a velocity peak whose amplitude is much smaller than the amplitudes of
the velocity peaks related to movements encoded in the motor plan, or whose
duration is shorter than the duration of the movements defined by the motor
plan. Therefore, the amplitude and the duration of each peak are compared with
two thresholds, denoted by Vth and Tth, respectively, and peaks whose ampli-
tude or duration are lower than the respective threshold are ignored. A detailed
description of the algorithm and its validation on a data set different by the one
adopted in this paper is available at [19].

CMMPE. The Curvature Multiscale Motor Program Extractor, hereinafter
CMMPE, analyzes curvature profiles to estimate the position of the virtual tar-
get points the motor commands issued by the brain intended to reach. The
fundamental idea behind this algorithm is that the amount of time superimposi-
tion between two consecutive elementary movements regulates the smoothness,
and therefore the curvature, of the trajectory. If the second elementary move-
ment starts when the first one is ended, the virtual target is visible in the actual
trajectory, while it disappears when the second movement starts before the end
of the previous movement. The region of the trajectory where the maximum
curvature variation is measurable defines the region external to the trajectory
where the virtual target point may be located, as shown in Fig. 1.

CMMPE detects the points corresponding to the maximum curvature varia-
tion, from here on segmentation points, by exploiting an algorithm based on the
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Fig. 1. Example of segmentation point (red dot) in a trace composed of two time-
superimposed strokes (grey line). The dashed black line represents the strokes if no
superimposition was applied, and the black dots are the virtual targets. (Color figure
online)

concept of saliency introduced for modelling visual attention shift [5]. Following
this approach, the trajectory represents the scene the system is looking at, and its
curvature represents the feature whose saliency is estimated. Curvature is com-
puted at different resolutions and then values at each scale are combined in order
to estimate a saliency map SMAP . Thus, the algorithm carries out a saliency-
based multiscale analysis of the curvature profile and the values of the saliency
map higher than a threshold Sth correspond to the segmentation points. The
detection of segmentation points is much more invariant with respect to locally
prominent but globally non-significant changes of curvature, which means it is
able to filter the local variation of curvature introduced by corrective movements.
The threshold Sth depends on the parameters w and α as defined by Eq. 1:

Sth = average(moving mean(SMAP , w)) ∗ α (1)

where w defines the length of the moving mean, while α modulates the mean
saliency.

CMMPE assumes that a virtual target point is located along the line per-
pendicular to the tangent to the trajectory at the segmentation point. Even this
algorithm models each elementary movement with the Sigma-Lognormal model
but, differently from MPE and other algorithms proposed in the literature, it
first analyses the trajectory to locate the position of a target point and then
it computes the lognormal velocity profile related to the elementary movement
that reaches the target point.
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Fig. 2. Trajectory reproduced by each subject involved in the experimentation.

3 Experimentation

3.1 Data Collection

We collected data from 32 subjects, 18 males and 14 females, whose age ranges
in the interval 13–63 years with a mean value of 34.40 and a standard deviation
of 15.58. Participants volunteered to take part in the experiment and expressed
their written informed consent to participate. We administered a questionnaire
to each subject in order to define their level of education, health conditions and
whether they use routinely drugs or other substances that are known to affect
motor control.

Each subject wrote the handwriting pattern “llll”, whose template is shown
in Fig. 2, 10 times with his/her dominant hand and then 10 times with his/her
non-dominant hand. This pattern has been adopted in many experiments on
handwriting generation modelling [29,30,32] because it is reasonable to assume
that its motor program has been already learned by the subjects involved in
the experiments and it is complex enough to evaluate how motor variability and
motor noise affect the execution of a planned motor program.

We collected samples drawn with both hands to verify our hypothesis that
the number and the position of target points are less stable among different
repetitions when movements are executed with non-dominant hands. That is
because each subject will try to execute the trajectory by the non-dominant hand
by reaching the sequence of target points encoded in the learned motor program
even though the sequence of motor commands to control the new effector is not
yet learned. As a consequence, a stronger intervention of spinal and supraspinal
neural networks will be triggered and a greater variability among the samples,
as well as among the extracted motor programs, will be evident.

Overall, we collected 320 handwriting samples drawn with dominant hands
and as many samples drawn with the non-dominant hands. The handwriting
samples were collected by using an ink-and-paper WACOM Bamboo Folio digi-
tizing tablet with 200 Hz sampling rate. We developed a custom application to
acquire and store each sample.

We adopted an ink-and-paper digitizing tablet to avoid unexpected proprio-
ceptive feedback and the following corrective movements that may arise by using
a stylus-and-screen digitizing tablet. In fact, it has been shown that handwriting
is influenced by the lower friction of tablet surfaces in a way that subjects are
required to additionally control handwriting movements [10].
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3.2 Experimental Procedure

The experimentation aims at comparing the two algorithms in terms of the
number of strokes, i.e. the number of virtual target points, extracted from the
handwriting samples. This is because the handwriting samples produced by each
subject should be the execution of the same motor program and, therefore, they
should be made up of the same number of strokes.

Both MPE and CMMPE require to set a couple of parameters, (Vth, Tth) and
(w,α), respectively. Vth and Tth define the amplitude and duration of a corrective
movement generated by the spinal cord networks. w and α regulate the minimum
variation of curvature that is considered as the effect of a new motor command
issued by the brain instead of a corrective movement introduced by the spinal
cord. In both cases, the parameters define the boundary between corrective and
planned movements.

Studies in literature have shown that activity-dependent plasticity occurs in
the spinal cord as well as in the brain [31,36] and that spinal cord plasticity
is important in the acquisition of motor behaviours throughout life [37]. For
example, it has been shown that athletic training, such as that undertaken by
ballet dancers, gradually alters spinal reflexes [37,38]. Therefore, it is plausible
to assume that the extent of corrective movements introduced by the spinal cord
varies subject by subject.

Therefore, both for MPE and CMMPE, we tuned the parameters per each
subject to characterize their personal spinal cord activity. In particular, starting
from the assumption that executions of the pattern “llll” with the dominant
hand are the actuation of the same motor program, we set the parameters at
values that produced the minimal variation in terms of the number of extracted
strokes from the ten repetitions. For both algorithms, we adopted a grid search
approach to set the parameter values. For MPE, Vth was varied between 10%
to 60% of the maximum velocity peak measured in the sample under analysis,
Tth was varied between 20 ms and 90 ms because voluntary movements toward
a target are usually executed in a time range that varies between ∼350 ms and
∼1200 ms, depending on the subject [33]. For CMMPE, w was varied between 1
and 5 and α between 0.6 and 1 with a step of 0.2. These two ranges were defined
by a preliminary analysis carried out on another data set [18,19].

Given a subject, the parameter values tuned on the samples drawn with the
dominant hand are used to extract strokes from the ten samples executed with
the non-dominant hand.

3.3 Results

Table 1 reports the mean number of strokes extracted by the two algorithms on
the samples drawn with the dominant or non-dominant hand by the 32 subjects.

Figure 3 shows the distributions of the handwriting samples drawn with the
dominant hand per number of strokes. We applied a two-sided Wilcoxon signed
rank test to verify the null hypothesis that the difference between the distribution
obtained with MPE and the one obtained with CMMPE has zero median. The
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Table 1. Mean number of strokes (±standard deviation) per algorithm and per end-
effector

MPE CMMPE

Dominant Hand 8.38 ± 0.62 8.03 ± 0.90

Non-dominant Hand 9.53 ± 1.75 9.10 ± 1.60

null hypothesis was rejected (p-value = 2.43∗10−10) and a right-tailed Wilcoxon
signed rank test rejected the null hypothesis (p-value = 1.23∗10−10) in favour of
the alternative hypothesis that the difference distribution has a median greater
than 0, i.e. MPE extracts more strokes than CMMPE. Figure 4 shows that when
the same sample is elaborated by the two algorithms the same number of strokes
were extracted 221 times out of 320 (∼69%). For 58 out of 320 samples (∼18%)
the motor programs extracted by MPE and CMMPE differ for one stroke.

Figure 5 shows the distributions of the handwriting samples drawn with non-
dominant hands per number of strokes. We applied a two-sided Wilcoxon signed
rank test to verify the null hypothesis that the difference between the distribution
obtained with MPE and the one obtained with CMMPE has zero median. The
null hypothesis was rejected (p-value = 1.85∗10−07) and a right-tailed Wilcoxon
signed rank test rejected the null hypothesis (p-value = 9.31∗10−08) in favour of
the alternative hypothesis that the difference distribution has a median greater
than 0, i.e. MPE extracts more strokes than CMMPE also in this case. Figure 6
shows that when the same sample is elaborated by the two algorithms the same
number of strokes were extracted 130 out of 320 times (∼41%). For 110 out of
320 samples (∼34%) the motor programs extracted by MPE and CMMPE differ
for one stroke.

Eventually, we compared the distributions of strokes extracted by MPE and
CMMPE subject by subject. Each distribution was computed over all the sam-
ples drawn by each subject, therefore including the samples drawn by the two
end-effectors. We performed 32 two-sided Wilcoxon signed rank test at the 5%
significance level and for 12 subjects the null hypothesis that the difference
between the distribution obtained with MPE and the one obtained with CMMPE
had zero median was rejected.

4 Discussions

Table 1, Fig. 3 and Fig. 5 show that motor programs extracted from samples
drawn with non-dominant hands are made up of a greater number of strokes
with respect to the motor programs extracted by the sample drawn by dominant
hands. Moreover, there is a greater variability in the number of strokes extracted
from the samples written with the non-dominant effector. Even though motor
equivalence suggests that samples generated by both the effectors are the exe-
cutions of the same motor program, we postulate that the greater variability we
observed in the motor program extracted by samples written with non-dominant
hands is an effect of motor learning.
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Fig. 3. Distribution of samples written with dominant hands per number of strokes.

Fig. 4. Distribution of samples written with dominant hands per difference of strokes
between MPE and CMMPE. The difference is computed with respect to the strokes
extracted by CMMPE.

Subjects were not familiar with writing with their non-dominant effector
and we hypothesize a motor learning process was triggered when they drew the
desired trajectory with the new group of muscles. By limiting the maximum
number of repetitions of the motor task with the non-dominant hand, we set
the learning time equal to all the subjects even though different subjects may
need a different time to learn a new motor task. In fact, it is known that the
rate of motor learning is an individual feature and part of motor variability is
an expression of the individual way each subject explores the motor command
space [11]. It follows that, in the case of samples drawn by non-dominant hands,
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Fig. 5. Distribution of samples written with non-dominant hands per number of
strokes.

Fig. 6. Distribution of samples written with non-dominant hands per difference of
strokes between MPE and CMMPE. The difference is computed with respect to the
strokes extracted by CMMPE.

the correction of the ongoing movements was introduced only in part by the
spinal cord but more significantly by supraspinal areas like the cerebellum, whose
corrective actions differ from the ones executed by the spinal cord for latency,
intensity and duration [1,26].

In order to take into account the individuality of learning and execution
processes, both the algorithms were adjusted to each subject in a way that the
variability in the number of strokes extracted from the samples drawn by the
dominant hand was minimized. We analysed the selected parameters in order to
verify if some values were more frequent than others.
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For MPE, the most frequent couple of parameters, which was assigned to
14 out of 32 subjects, was (Vth = 10% ∗ vpeak, Tth = 20ms). The threshold
Tth = 20 ms was selected for 30 out of 32 subjects while Tth = 70 ms and
Tth = 80 ms were selected for the remaining 2 subjects. Values equal to or lower
than 30% ∗ vpeak were assigned to Vth for 18 subjects. Overall, this analysis
confirms that corrective movements are characterized by a short duration and a
small amplitude for the majority of the subjects.

For CMMPE, the most frequent couple of parameters, which was assigned to
12 out of 32 subjects, was (w = 3, α = 0.6). The parameter value α = 0.6 was
selected for 31 out of 32 subjects while α = 0.8 was selected for the remaining
subject. When α = 0.6, a value equal to or lower than 4 was assigned to the
parameter w for 22 subjects. Overall, this analysis suggests that the parameter
α is roughly independent of the subject’s motor skills.

Eventually, the statistical analysis presented in the previous section shows
that CMMPE extracts fewer strokes than MPE, independently of the end-
effector used to draw the samples. Nevertheless, the two algorithms extracted
the same number of strokes from ∼55% of samples (221 drawn with dominant
hands and 130 with non-dominant ones) and they had a similar behaviour over
the samples produced by 20 subjects. Overall, these results suggest that both
the algorithms are modelling the same phenomena, i.e. the introduction of cor-
rective movements to keep the ongoing movement close to the desired one, from
a different perspective, and that CMMPE is more robust than MPE to noise
or non-modelled motor variability that is an expression of the intervention of
supraspinal centres.

These findings are in line with the results obtained by the algorithm IDeLog
[8], which is used for the detection of the strokes that allow a high-fidelity repro-
duction of handwriting samples in terms of velocity and trajectory profiles. So,
differently from MPE and CMMPE, it captures also small variations in velocity
and trajectory because the aim is to perfectly reproduce a single sample rather
than to find the general model behind many repetitions of the same movement.
IDeLog was able to improve the reconstruction of a sample by analysing the
velocity profile in search of target points and then exploiting the information
about the curvature and the location of segmentation points in order to move
the target points and improve the trajectory reconstruction.

5 Conclusions

We have proposed and compared two algorithms, MPE and CMMPE, that
extract the motor program from the analysis of handwriting samples. Both the
algorithms discriminate between movements that are embedded in the motor
program stored in the brain and other movements that are generated in reac-
tion to proprioceptive feedback. MPE discriminates between the two classes of
movements by analysing the velocity profile of a sample and looking for peaks
that correspond to corrective movements introduced by the spinal cord, while
CMMPE detects the movements encoded in the motor program by observing
the curvature profile with a multiscale approach.
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By keeping in mind the experimental studies of Lashley and Raibert that
led to the discovery of the motor equivalence phenomenon, we asked the partic-
ipants to draw a trajectory with their dominant and non-dominant hands. Both
the algorithms showed a greater variability in the number of extracted strokes
when they analysed the samples written with non-dominant hands. This greater
variability could be explained by taking into account that subjects were writing
with their non-dominant hand for the first time and therefore our experiment
triggered the cerebellar mechanisms devoted to learning a new motor skill. These
considerations suggest organising data collection in different sessions so that in
the last session the learning mechanism is off.

The experimental results have shown that both the approaches are able to
extract the same number of strokes from different executions of the same drawing
performed by a subject. Moreover, the number of strokes extracted by MPE is
equal to the number of strokes extracted by CMMPE for ∼55% of the handwrit-
ing samples. CMMPE is resulted to be more robust to noise or non-modelled
motor variability caused by the motor learning process triggered during the
experimental session with non-dominant hands.

Our future investigations will be aimed at evaluating as the performance of
each algorithm varies as the learning process progresses. We will set up a new
data collection campaign organized in different sessions spanned over a longer
period of time so that we will be able to capture the acquisition in the long
term memory of the motor commands used to execute a motor plan with the
non-dominant hand. Eventually, we plan to combine in a new algorithm the two
approaches adopted by MPE and CMMPE so that the curvature will be analyzed
to detect the position of the target points and the velocity will be analyzed to
infer the parameters of the velocity profile of each elementary movement between
two target points.
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1 Introduction

Stroke, defined as the lack of blood flow or bleeding in the brain [1], is the second
leading cause of death in Europe. Moreover, experts estimate that strokes will
rise dramatically in the next 20 years due to an ageing population1. Moreover,
60% of the survivors have different degrees of disability, with a socio-economic
impact of the first magnitude for the patient [2,3], their environment, the health
system and the society in general [4,5]. Therefore, in addition to stroke pre-
vention, it is crucial to find personalized and suitable treatments during stroke
rehabilitation, the most important phase of stroke survivors.

The Kinematic Theory of Rapid Human Movement [6–8] provides a math-
ematical description of the movements made by individuals, reflecting the
behaviour of their neuromuscular system. It has demonstrated a great poten-
tial for analysing fingers, hand, eye, head, trunk and arm movements as well as
speech. According to the lognormal principle, the motor learning process and
its deterioration with aging can be followed, allowing to monitor neuromuscu-
lar diseases in terms of the alteration of the ideal parameters. O’Reilly et al.
[9] showed that brain stroke risk factors can be associated with the deteriora-
tion of many cognitive and psychomotor characteristics. The psychomotor tests
demonstrated that the features extracted from the kinematic motion analysis of
handwriting were successfully correlated with risk factors (e.g. obesity, diabetes,
hypertension, etc.).

However, the use of the Kinematic Theory in monitoring rehabilitation pro-
cesses is a challenge: it requires to collect and to analyse the movement data
using robust, efficient and task oriented lognormal parameter extraction algo-
rithms. These constraints must be removed to develop a universal tool for brain
stroke treatments and rehabilitation. Stroke patients, especially in early stages
of the recovery treatment, cannot write using a stylus on a tablet device, so most
of the analysis of their motor skills improvement is based on simple hands or
arms movements.

Recently, inertial and magnetic sensors, including accelerometers, gyroscopes
and magnetometers, have been incorporated into wearables, such as smartbands,
to assess, among others, the biomechanics of sports performance. These devices
are increasingly popular, which make us propose the hand/arm movements as a
source to extract the lognormal patterns. Moreover, these devices are not intru-
sive, so they could be used for continuous remote patient monitoring (RPM) in
the rehabilitation stages and during the routine daily life of patients, improving
the medical efficiency and reducing the healthcare costs.

For the above mentioned reasons, we aim to explore the use of the Kinematic
Theory of Rapid Human Movements for analysing continuous 3D movements
captured with smartwatches (a worldwide affordable and non-intrusive technol-
ogy), and thus, to provide an objective estimator of the improvement of the
patients’ motor abilities in stroke rehabilitation.

1 The Burden of Stroke in Europe: http://www.strokeeurope.eu/.

http://www.strokeeurope.eu/
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This paper describes the RPM3D project2 [10], which aims to make a step
forward towards the removal of such constraints to develop a universal tool for
monitoring rehabilitation processes. Indeed, such a tool can have a great impact
in remote health care tasks in general. The integration of an analytic tool in a
consumer and affordable technology such as smartwatches (instead of high-end
clinical devices) could be used for continuous remote patient monitoring in the
rehabilitation stages of different neuromuscular diseases, improving the medical
efficiency and reducing the healthcare costs.

The overview of our approach is shown in Fig. 1. The main project results
are the following:

– We have developed a smartwatch application to record data from the inertial
sensors of smartwatches (concretely, the Apple Watch).

– We have proposed a model to segment and classify the relevant gestures in
continuous 3D movements for their posterior analysis.

– We have adapted the parameter extraction algorithms of the kinematic model
to these relevant 3D movements captured with the smartwatch.

– We have defined the experimental protocol and validated our research in a
real case scenario for stroke rehabilitation at the Guttmann Institute (neu-
rorehabilitation hospital).

The innovation potential of this project is the provision of a new tool to obtain
significant measures of the human movement of patients of brain strokes in the
rehabilitation phase using wearable devices such as smartwatches. Conveniently
calibrated, this tool can be seen as a thermometer of the human neuromotor
system, and with the appropriate interpretation (according to the correlation
with the clinical indicators), medical doctors will be able to make decisions on
the rehabilitation prescription and treatment of patients.

The rest of the paper is organized as follows. In Sect. 2, we overview the
state of the art. Next, in Sect. 3, we describe the application protocol and the
capturing of data from the smartwatches. Section 4 is devoted to the recogni-
tion of movements, whereas Sect. 5 describes the kinematic analysis performed.
Section 6 is devoted to the conclusions and future work.

2 State of the Art

Assessing the physical condition in rehabilitation scenarios is challenging because
it involves Human Activity Recognition (HAR) [11] and kinematic analysis.

HAR methods must deal with intraclass variability and interclass similari-
ties [12,13]. Also, the detection of target (relevant) movements is difficult due
to the diversity of non-target movements. In continuous time series data, the
challenge is to detect and segment those subsequences (target movements) so
that they can be properly analysed by the kinematic model. This is especially
difficult when the movements are non-repetitive and that is why a major part of

2 http://dag.cvc.uab.es/patientmonitoring/.

http://dag.cvc.uab.es/patientmonitoring/
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Fig. 1. Overview of the pipeline.

activity recognition works deal only with repetitive(periodic) movements such
as: walking [14], stair ascent or descent [15], running, sport exercises [16].

HAR is about seeking high-level knowledge that describes human activities,
ergo HAR benefited broadly from deep learning since this latter one can provide
automatic feature extraction [17–19].

At the same time, traditional machine learning like Support Vector Machines
(SVMs) [20,21], K-Nearest-Neighbours (KNNs) [22,23] still provide an efficient
accurate solution for HAR tasks due to the fact that they perform better in few
data problems which is the case of most HAR tasks that suffer from data scarce.

As mentioned in the introduction, the Kinematic Theory of Rapid Human
Movement [24] has demonstrated a great potential for monitoring neuromuscu-
lar diseases, but it requires robust algorithms to estimate the model parameters
with an excellent precision for a meaningful neuromuscular analysis. So far, most
algorithms (Idelog [25] and Robust XZERO [26,27]) have mainly focused on 1D
and 2D movements in a controlled scenario, e.g. pen movements on a tablet com-
puter. This constraint makes the approach unrealistic for stroke rehabilitation.
Stroke patients have severe mobility limitations, especially in early stages, so
the analysis of their motor skills improvement is based on simple hands or arms
movements. Thus, the recently proposed 3D algorithm [28] must be adapted
to continuous movements in unconstrained scenarios (closer to real use cases).
Finally, the hardware is an extra difficulty, because the smartwatch could be less
accurate than clinical devices.
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Fig. 2. Target movements. a) Movement 1; b) Movement 2; c) Movement 3; d) Move-
ment 4.

In summary, the challenges are the following:

– The use of sensors from consumer devices instead of clinical devices, which can
decrease the quality of the data for the application of the kinematic model.

– The extraction of the model parameters from the continuous 3D movement
sequences for their posterior analysis.

– The accurate detection, segmentation and analysis of the target movements
in uncontrolled scenarios.

3 Application Protocol and Data Capturing

Next, we describe the application protocol and the recorded movements.

3.1 Application Protocol

We have designed an upper-limb assessment pipeline inspired by the Fugl-Meyer
Assessment scale, an index to assess the sensorimotor impairment in stroke
patients. Concretely, we have defined four target (non-repetitive) movements
(see Fig. 2), based on the following joint movements:

1. Shoulder extension/flexion
2. Shoulder adduction/abduction
3. External/internal shoulder rotation
4. Elbow flexion/extension

We have recorded these movements in two scenarios:

– L1 is a constrained scenario which consists in performing the same target
movement in a sequence, but alternating the arm (left, right or both).

– L2 is an unconstrained scenario, where target movements appear inside longer
sequences that include non-target movements (e.g. common daily life activ-
ities like eating, pouring water into a glass, brushing your teeth, scratching
the ear, etc.).
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As a proof of concept, we have recorded data from 25 healthy individuals and
4 patients from Guttmann Institute. Out of the 25 healthy individuals, 48% are
women and 52% are men. While for the patient population, there is one woman
and 3 men. Healthy and patient individuals’ age range between 20 and 60 years.

The users wear two watches, one in each wrist. Patients data was recorded
along four sessions with an interval of one to two weeks, while healthy individuals’
data was recorded in one session.

3.2 Data Capturing

We have developed an application for the Apple Watch 4 to record the sequences
of movements, as shown in Fig. 1. The user-generated acceleration (without grav-
ity) for all three axes of the device, unbiased gyroscope (rotation rate), mag-
netometer, altitude (Euler angles) and temporal information data have been
recorded in the watch’s internal memory 100 Hz sampling rate.

The two watches are synchronised thanks to an audio signal. Afterwards, the
data is transmitted to the mobile phone and the cloud service. Finally, the signal
is preprocessed to minimize the sensor drift, which often leads to inaccurate
measures and larger accumulated error.

4 Human Activity Recognition

We have used the Euler angles and the linear acceleration. To detect the target
movements in the unconstrained scenario L2, we explored two segmentation
options:

1. Segmenting the complete sequence using non-overlapping sliding windows
(namely action recognition).

2. Picking the positive peaks in the signal as candidates to be relevant move-
ments (namely gesture spotting).

We have also explored two classification methods. First, SVMs, a machine learn-
ing approach typically used in HAR, together with the following feature vector
set: the mean, the minimum, the maximum and the standard variation of the
window. Second, Convolutional Neural Networks (CNN), a deep learning model
in which the input is the linear acceleration signal instead of a feature vector
set. More details can be found at [29].

As shown in Table 1, action recognition is preferable. In healthy individuals,
the SVM classifier obtains better results (84% in L1 and 61% in L2) than the
CNN one (65% in L1 and 59% in L2) because the CNN is a data hungry method.
Concerning gesture classification, the results by the two classifiers are similar.
In patients, the accuracy in the unhealthy body part decreases (56% in L1 and
41% in L2) in comparison with their healthy side (84,5% in L1 and 61% in L2),
because these movements are less accurate due to their loss of motor function.
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Table 1. HAR classification and spotting results

Scenario Healthy individuals Patients

Action recognition Gesture spotting Action recognition Gesture spotting

SVM CNN SVM CNN SVM SVM

L1 84% 65% 55% 60% 56% 41%

L2 61% 59% 51% 53% 41% 35%

5 Kinematic Analysis

The Kinematic Theory of Rapid Human Movements describes the resulting speed
of a neuromuscular system action as a lognormal function [6–8]. To analyse
the 3D movements captured by smartwatches, we utilize a recently proposed
3D extension of the Sigma-Lognormal model [28] to decompose observed 3D
movements into sequences of elementary movements with lognormal speed. There
are several model parameters that can be analysed with a view to the patients’
motor abilities.

Here, we focus on the signal-to-noise-ratio (SNR) between the observed tra-
jectory of the smartwatch and the reconstructed trajectory using the analytical
model. A high SNR indicates a high model quality, i.e. a good representation of
the 3D movement. Furthermore, healthy subjects tend to achieve a higher SNR
than patients with motor control problems [24].

Table 2. Kinematic analysis mean standard deviation

Healthy individuals Patients

Samples 649 126

Duration [s] 4.1 ± 1.0 4.9 ± 0.8

Number of lognormals 17.3 ± 4.7 17.6 ± 4.5

SNR [dB] 22.2 ± 2.8 21.3 ± 2.1

Table 2 and Fig. 3 present the first results of our kinematic analysis, com-
paring 649 movements from 25 healthy individuals with 126 movements from
4 patients. In both cases an excellent SNR is achieved, indicating that the 3D
Sigma-Lognormal model is suitable for analysing the smartwatch movements.
Furthermore, we observe that the patients needed more time to execute the
movements, more lognormals were needed to model the patients’ movements,
and a lower SNR was achieved. The difference in SNR is statistically significant
(Mann-Whitney U test, p< 0.0001). These observations are consistent with the
lognormality principle [28] and encourage a more detailed kinematic analysis of
the patients’ motor abilities based on the Kinematic Theory.
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Fig. 3. Kinematic analysis results.

6 Conclusion and Future Steps

In this paper, we have presented the RPM3D project, which aims to ease the
monitoring of patients during the neurorehabilitation stages.

In the future, we plan to focus on the continuous and remote monitoring of
the patients’ neuromotor status. Concretely:

– We will to perform more clinical validation through an exhaustive analysis of
the correspondence between the kinematic analysis and the clinicians’ estima-
tions. We will also continue the comparative analysis between healthy users
and patients.

– We will explore the use of other lower-cost wearables (e.g. smarbands) and
also, the possibility to combine the sensor data with video images or speech.
Also, we would like to recognize functional (purposeful) movements to deter-
mine the degree of integration of the affected side of the body in the patients’
daily life actions.

– We will explore the adaptation of our approach for monitoring patients suffer-
ing from Multiple Sclerosis or Parkinson diseases, the ageing effects in elderly
people, the effects of medication in clinical trials, etc.
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24. Plamondon, R., O’Reilly, C., Rémi, C., Duval, T.: The lognormal handwriter: learn-
ing, performing, and declining. Front. Psychol. 4, 945 (2013)

25. Ferrer, M.A., Diaz, M., Carmona-Duarte, C., Plamondon, R.: iDeLog: iterative
dual spatial and kinematic extraction of sigma-lognormal parameters. IEEE Trans.
Pattern Anal. Mach. Intell. 42(1), 114–125 (2020)

26. O’Reilly, C., Plamondon, R.: Development of a sigma-lognormal representation for
on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009). New Frontiers in
Handwriting Recognition

27. Djioua, M., Plamondon, R.: A new algorithm and system for the extraction of
delta-lognormal parameters (2008)

28. Fischer, A., Schindler, R., Bouillon, M., Plamondon, R.: Modeling 3D movements
with the kinematic theory of rapid human movements, pp. 327–342 (2021)

29. Bensalah, A., Chen, J., Fornés, A., Carmona-Duarte, C., Lladós, J., Ferrer, M.Á.:
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Abstract. The purpose of the present study was to compare motor asymmetry
between older and younger adults performing a graphic task. Thirty-four right-
handedolder and38younger adults drewcontinuous cursive “l” loops on adigitizer
tablet using their right and left hand, respectively, aimed to assess age-related hand
asymmetry differences in the performance ofmovements. Primary dependent vari-
ables were mean velocity, peak velocity, stroke size, and the ratio of the duration
to decelerate to the duration of the overall movement time (RDP). A 2-waymixed-
design ANOVA with age-group as the between factor (young and old) and hand
(left and right) as the within factor was conducted. The results showed a signifi-
cant age-by-hand interaction for mean velocity (p= .012) and peak velocity (p<
.001), supporting decreased asymmetry when aging after young adulthood. Fur-
ther analysis revealed a greater decline in the dominant (right) hand compared to
the non-dominant (left) hand which seems to be the origin of observed reductions
in motor asymmetry across the lifespan.

Keywords: Aging ·Motor asymmetry · Graphics task

1 Introduction

The National Institutes of Health [15] reports the world’s population of persons aged
80 and above is anticipated to triple in the years 2015 through 2050. With an increasing
“oldest old” population, it is of imminent importance to assist this population aging
healthy. Evidence has pointed to decreased physical and cognitive abilities associated
with natural aging. Milanović et al. [12] reported a 1–2% loss of muscle strength in the
upper extremities of the elderly population. Physical declines, such as loss of muscle
mass, have a connection with deficits in function and loss of independence for older
adults [20]. The declines of some functions become steeper when growing older (e.g.,
walking, see [7]). Functional deficits due to physical deterioration are further exacerbated
by cognitive decline underpinning additional reductions of function. Some cognitive
processes that decline with age include decision-making, problem-solving, planning
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and sequencing of responses, and multitasking [13]. Learning and memory retrieval has
also been shown to decline with age [10].

Changes in motor control when an individual ages can be influenced by changes in
the cortex. Cortical Structures and functions change due to aging, thus it impacts motor
control and ultimately motor performance [21]. Seidler et al. [21] reported that areas
of the prefrontal cortex and basal ganglia, which areas are important for motor control,
are substantially affected by the aging process. Older adults need to recruit more neu-
ronal resources to perform even simple motor tasks [11]. Mattay et al. [11] revealed
through button press tasks that some areas of the cortex were more active in older adults
than younger adults, in particular the contralateral sensorimotor cortex, lateral premotor
area, supplementary motor area, and ipsilateral cerebellum, showed higher activation
levels. The study also discovered active brain areas in older adults that did not show
similar activation levels in younger adults during the motor task; more specifically the
contralateral cerebellum, ipsilateral sensorimotor cortex, and putamen (left greater than
right) showed higher activation levels in older adults. This study also reported addi-
tional neuronal resources were utilized by older adults in the contralateral hemisphere
as well as the ipsilateral hemisphere. The significant neuroimaging findings comparing
younger and older adults provided evidence that hemispheric activation patterns required
to perform a motor task differ between older and younger adults.

Research exploring age related changes in motor performance uncovered patterns
that can help explain the different movement control mechanisms in younger and older
adults. Francis and Spirduso [8] found that older adults performed slower in tasks such
as the Minnesota Rate of Manipulation, Purdue Pegboard, Steadiness Tester, triangle
tracing, and a tapping test using a stylus. Rosenblum et al. [19] investigated execu-
tive function and handwriting, and found differences in handwriting performance with
increased age, such as increased letter size. Walton [23] also observed a reduction in
handwriting quality with aging, and an inequality of movement execution as evidenced
by a combination of slower movements and inconsistent pressure. Several reasons for
these observed differences exist because handwriting is a combination of motor and
cognitive processes while it requires feedback from visual and proprioceptive systems
[5]. Given the requirements for handwriting do include cognitive, motor, and perceptual
components, this task and other graphic tasks, such as drawing, tracing, and pointing,
are useful motor skills for investigating the effects of aging on movement control.

Patterns that might explain motor function differences between young and older
adults have been identified, such as right-hand advantage. Right hand advantage (it
is assumed that the dominant hand is the right hand which is more common within
the general population) is a theory describing the superiority of right (dominant) hand
performance compared to the left (non-dominant) hand performance. This is primarily
evident in younger adults’ proficiency inmotor taskswith the right hand and the relatively
inferior ability to performmotor taskswith the left hand. Themotor performance between
younger adults’ left and right upper extremities is more asymmetrical than the more
symmetricalmotor performanceof older adults. For example, the observable handwriting
difference in younger adults’ reveals the dominant hand performs more clear, smooth
and refined movement compared to their nondominant hand, indicating asymmetric
motor behavior. Participants in a study by Raw et al. [18] performed a tracing task with
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both hands and found the younger group clearly exhibited asymmetries between the
hands, while the older group did not exhibit those differences between hands. Francis
and Spirduso [8] found differences between younger and older adults’ performance in
tapping and Purdue Pegboard tasks with their right hand due to the peak performance
level of this practiced hand. In relation to younger adults, older adults exhibit slower
movement execution. This study reports that younger adults outperformed older adults
in some tasks because the right hand of the younger adult is at a greater performance
level compared to the older adult’s right hand.

Teixeira [22] also provided support for the explanation that aging is accompanied
with increases in symmetry of motor behavior patterns. Younger adults’ right hand out-
performs their own left hand. Conversely, the older adult’s performance between hands
(left hand versus right hand) is more symmetrical. There is a performance difference
between the older adult’s left hand and the younger adults’ left hand. Similarly, there is
a difference in performance between the younger adults’ right hand and the older adults’
right hand. When comparing the difference in the left-hand performance of older and
younger adults, to the difference in right-hand performance between older and younger
adults, the performance of the right hand appears to have been reduced to a greater extent
in older adults than performance of the left hand.

As mentioned left and right-hand performance differs in both older and younger
populations. The difference between left and right hands is notably greater in younger
adults than in older adults. Although some changes due to aging may be task-specific
[8], it has not yet been thoroughly investigated as to which components of each task
contribute to observed age-related declines in motor asymmetry. For example, the study
of Francis and Spirduso [8] recognized significant age-by-hand interactions in 2 out of
the 5 motor tasks performed by participants, suggesting task complexity contributed to
the age-related pattern of findings. Moreover, the Purdue Pegboard task showed changes
in asymmetry between older and younger adults, possibly due to the complex nature
of this task, requiring speed and preciseness. The tracing task, requiring speed and
precision, also indicated age-related differences in performance asymmetry. In contrast,
the Tapping task, Steadiness Tester, andMinnesota Rate of Manipulation did not display
age-related differences. Thus, the increased complexity of the task may play a role in
revealing significant asymmetries.

Research on cognitive changes with age has utilized neuroimaging techniques to
develop theories to explain some of the changes in activation patterns during cognitive
tasks [6, 16] and motor tasks [4, 25]. Cabeza [2] investigated changes in cognitive acti-
vation patterns for older adults and introduced a model to describe cognitive activity
during cognitive tasks associated with aging called Hemispheric Asymmetry Reduction
in Older Adults (HAROLD). Davis et al. [6] proposed another cortical activation pat-
tern theory to describe other notable age-related cortical changes associated with aging.
Age-related reduction in occipital activity coupled with increased frontal activity is the
foundation for a posterior-anterior shift in aging (PASA). Although PASA andHAROLD
are theories more commonly used, other theories have been proposed in the literature
to understand age-related cortical changes. Hill et al. [9] conducted a review of exist-
ing literature utilizing neuroimaging techniques to explore both motor and hemispheric
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asymmetries related to aging. Older individuals were found to activate additional neu-
ronal resources in order to perform at higher performance levels during cognitive tasks
[3]. The overactivation phenomena may be caused by one of two contrasting models;
compensation or dedifferentiation. The compensation model suggests that the overac-
tivation, which may occur in areas such as the premotor cortex, primary motor cortex,
or prefrontal cortex, would result in increased motor performance of the non-dominant
hand [14], whereas overactivation from dedifferentiation may result in reduced perfor-
mance of the dominant hand[1]; i.e., both resulting in a reduction of hand performance
asymmetry.

Exploration of cognitive changes associated with the aging brain has uncovered pat-
terns supporting greater cortical hemispheric asymmetry in younger adults compared
to older adults (i.e., older adults exhibit more symmetrical brain activation patterns).
HAROLD model was proposed to explain this age-related change of cortical activation
patterns in cognitive processing and it offers an insight into the potential of compensatory
neural activity being responsible for similar motor performance of older and younger
adults performing the same motor task. In a study conducted by Pryzbyla et al. [17], par-
ticipants engaged in an aiming task, using both the dominant (right) and non-dominant
(left) hand. Results indicated significant motor asymmetries in younger adults, whereas
older adults did not exhibit asymmetry. This endeavor broadened the applicability of the
HAROLD construct to observed motor behavior. Wang et al. [24] also found evidence
of motor asymmetry reductions in older adults exploring the transfer between the limbs
of a motor task requiring adaptation to distorted feedback. The findings of latter study
provides additional support for the notion of reduced cortical lateralization for motor
control. These motor studies utilized the HAROLD model to explain the reduced asym-
metry signifying the plausibility of applicability of the HAROLD model to the motor
behavior domain.

In the present study, a graphic test was conducted to investigate several kinematic
variables: mean velocity, peak velocity, stroke size, and the ratio of deceleration phase.
The goal of this research was to increase our understanding of age-related changes
of asymmetries in motor performance. An added secondary aim of this study was to
determine whether age-related motor asymmetry changes fit the hemispheric activation
models predicting hemispheric activation asymmetry changes developed using cognitive
tasks.

2 Method

2.1 Participants

Participants in this study included 34 right-hand dominant older adults (77.8± 2.7 years,
24 female) and 38 right-hand dominant younger adults (21.3± 3.2, 24 female). All par-
ticipants self-reported normal or corrected-to-normal vision via questionnaire. Inclusion
criteria for the older participants included: age 60 years or over, right-hand dominant,
a score of >21(Average above 25) on the Mini-Mental State Examination (MMSE), no
recent surgeries, and no limiting cardiovascular or respiratory conditions. Inclusion crite-
ria for younger adults included healthy adults absent of neurological pathology, hearing,
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and vision difficulties. Participants signed informed consent forms and the project was
approved by the Institutional Review Board of Mississippi State University.

2.2 Instruments and Procedure

Edinburgh Handedness Inventory (Oldfield 1971) was used at the start of the study
to determine participants’ handedness before performing the graphics test. Participants
were allowed practice trials to familiarize themselves with all conditions. To investigate
the kinematics of hand movements similar to handwriting, participants completed a
graphic test utilizing aWACOMIntuos3 12× 19 digitizer tablet (see Fig. 1). The digitizer
tablet recorded the x- and y-positions of the tip of the pen with a sampling frequency
of 200 Hz and a spatial resolution of 0.001 cm. In the graphic test, participants drew
cursive “l” loops in three sizes [small (1 cm), medium (3 cm), and large (5 cm)] and
at two speeds requirement [comfortable or maximum speed (max)]. For each loop size,
two lines were provided for participants to visualize loop requirements. These lines were
available during the drawing (see Fig. 1). Instruction for speed was provided visually
and verbally before each trial. Each of these six conditions was performed 4 times with
each hand, totaling 24 trials (4 trials × 6 conditions) per hand.

Fig. 1. Cursive l loops

Four kinematic measures assessed from this test included one movement outcome
measure (stroke size) and three-movement production measures [mean velocity, peak
velocity, and the ratio of the duration of the deceleration phase to the total movement
time (RDP)]. Mean values for each participant’s different conditions were found by
taking the average from all trials for that specific condition. The mean velocity measure
was used to describe the average velocity per stroke whereas peak velocity was used to
describe the maximum velocity for each stroke. RDP is a function of the total movement
time in relation to the duration from the point where peak velocity was reached to the
ending point (deceleration phase). For each stroke, there is a duration of time spent in
acceleration and a duration of time spent in deceleration. If the time spent in acceleration
and deceleration phases were equal, then the resultant RDP would be .50. An RDP of
50% is likely to be the most efficient profile for this variable. However, if the RDP is
greater than 50% then a larger proportion of the movement time was spent decelerating
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the tip of the pen, indicating decreased efficiency in motor control. By reducing speed
of the movement, efficiency is sacrificed for increased task accuracy.

RDP = time of deceleration phase

movement time
× 100%

3 Statistical Analysis

Analysis was conducted utilizing IBM SPSS 24 software. A two-way mixed-design
ANOVA was conducted to examine the effects of aging and used the hand on motor
performance. Age (young and old) was the between-group factor, and hand (left and
right) was the within-group factor. The dependent variables were mean velocity, peak
velocity, RDP, and stroke size. Results with P values below 0.05 were identified as
statistical significance.

4 Results

4.1 Pooled Effects

The overall effects combine the six conditions of size and speed requirements. Mean
velocity was identified to show a significant main effect of age (p < .001) and showed
an interaction effect of age by hand (p = .012), but the main effect of hand was not
significant (p= .165). Peak velocity showed a significant main effect of age (p< .001),
hand (p < .001) and the interaction of age and hand (p < .001). For stroke size, the
overall effect showed a significant effect of hand (p < .001) but not for age (p = .99).
The interaction of age and hand was also not significant (p = .891). RDP overall effect
indicated a significant main effect of hand (p = .016), but the main effect of age (p =
.264) and the interaction effect of age by hand (p = .221) were not significant.

4.2 Mean Velocity

Mean velocity indicated that the drawing of older adults is slower than younger adults.
Specifically, average velocities of older adults left (13.78 cm/s) and right (13.03 cm/s)
hands were significantly slower (p < .001) than younger adults’ average velocities (left

Fig. 2. Overall velocity
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= 30.50 cm/s, right = 33.06 cm/s). The significant interaction between age and hand
for mean velocity (p = .012) indicated a change in performance difference between the
hands in older adults compared to this difference in younger adults. This interaction
effect, illustrated in Fig. 2, is evidence of a reduction of motor asymmetry as people
age from young adulthood to older ages. The significant results from mean velocity
provide evidence of reduced asymmetry in older adults caused predominantly by a
greater reduction of movement speed in the right hand.

When investigating the size and speed conditions (i.e., 3 size×2 speed requirements),
the dependent variable,mean velocity, revealed significant effects whenmaximum speed
was required. In this condition the small size requirement [age (p < .001), hand (p =
.025), age by hand (p = .044)] and large size requirement [age (p < .001), hand (p
= .309), age by hand (p = .023)] showed significant effects on mean velocity. Mean
velocities of these small and large size conditions in the maximum speed condition are
represented in the figures below (Fig. 3A and Fig. 3B).

Fig. 3. (A) Specific condition; max speed, small size (B) specific condition; max speed, large size

4.3 Peak Velocity

Peak velocity also indicated slower handwriting/drawing of older adults compared to
younger adults (p < .001). Older adults’ left (21.13 cm/s) and right (23.47 cm/s) hands
were slower than younger adults’ (left= 33.06 cm/s, right= 45.62 cm/s). The significant
interaction between age and hand (p < .001) revealed a change in hand difference in
older adults compared to the hand difference in younger adults. This interaction effect,

Fig. 4. Peak velocity
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illustrated in Fig. 4, is evidence of a reduction of motor asymmetry as people age from
younger to older adulthood. The significant results from peak velocity provide evidence
that reduced asymmetry in older adults is predominantly caused by a greater reduction
of movement speed in the right hand.

When investigating size and speed conditions, the dependent variable, peak velocity,
revealed significant findings in the specific condition of max speed with medium size
[age (p= .001), hand (p= .001), age by hand (p< .001)], and some significant findings
in max speed with large size [age (p= .004), hand (p = .612), age by hand (p< .001)].
Significant results were also discovered in the conditions comfortable speed combined
with small size [age (p= .001), hand (p= .026), age by hand (p= .003)] and large size
[age (p = .006), hand (p = .001), age by hand (p = .021)]. Peak velocities of these four
specific conditions are represented in the figures below (Fig. 5A through Fig. 5D).

Fig. 5. (A) Specific condition; max speed, large size. (B) specific condition; max speed, medium
size. (C) specific condition; comfortable speed, small size. (D) specific condition; comfortable
speed, large size

4.4 Stroke Size

Results for stroke size indicated the age-by-hand interaction was not significant (p =
.891). The main effect of hand was significant (p < .001), but the main effect of age
was not significant (p = .99). As indicated in Fig. 6, the right hand could fulfill the size
requirement with an average stroke size around the size requirement of 3 cm, while the
left hand tended to draw larger than required (over 3 cm). However, the hand difference
was comparable between younger and older adults. Similar stroke sizes between younger
and older adults were foundwhen comparing younger adults’ left hand (3.33 cm) to older
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adults’ left hand (3.34 cm), and similar stroke sizes between younger adults’ right hands
(2.94 cm) and older adults’ right hands (2.92 cm).

Fig. 6. Stroke size

Interestingly, the investigation into specific conditions of stroke size indicated sig-
nificant age by hand interaction inmax speed with small size (p= .034), even though the
main effects were non-significant, age (p= .861), hand (p= .054). Upon closer inspec-
tion of the specific conditions, in the stroke size variable of max speed and small size
(1 cm), both young and older adults drew larger than required when the task required
drawing at maximum speed. However, young adults reveal a difference between left
(2.48 cm) and right (1.82 cm) hands, whereas older adults show similar performance
between the left (2.075 cm) and right (2.11 cm) hands (Fig. 7). When attempting to draw
the small size parameter (1 cm) at max speeds, both older and younger adults’ left and
right hands drew larger than the provided criterion. This could result from the difficult
nature of attempting to control movement at high velocities; Both age groups exhibited
poor movement control with high speeds.

Young adults drew the closest to the size required when using their right hand
(1.82 cm). Interestingly, young adults drew the largest loops with their left hand
(2.48 cm), even when comparing stroke sizes to older adults’ left (2.075 cm) and right
(2.11 cm) hands. Results indicate, that when drawing small sizes with max speed, young
adults exhibited good motor control with the right hand, but poorer motor control with
the left hand. As for older adults, left and right hands exhibited more similar stroke
sizes, displaying a more symmetrical performance than younger adults. A significant
interaction was not found in other specific conditions of stroke size.

4.5 Ratio of Deceleration Phase

Finally, results for RDP, as visually depicted in Fig. 8, did not reveal a statistically
significant age-by-hand interaction effect (p = .221). The main effect of hand yielded
statistically significant results (p = .016), however, the main effect of age (p = .264)
and all specific conditions yielded no significant results.

An RDP of 50% indicates maximum efficiency for this variable. The results for
young adults’ RDP with the right hand (.50) revealed maximum efficiency, exhibiting
proportionately equal acceleration and deceleration phases. Left hands of younger adults
(.54) and older adults (.52) yielded results greater than 50% RDP, indicating more time
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Fig. 7. Specific condition; max speed, small size

was spent in the deceleration phase than the acceleration phase while drawing loops.
Younger and older adults drawingwith their left hand exhibited reduced efficiency (above
50%) and relied on feedback systems for controlling motor movement. Thus, increased
movement times during the deceleration phasewere required for improvedmotor control.
Conversely, older adults’ RDP for the right hand (.47) was below 50% RDP, indicating
more time was spent in the acceleration phase. A score below 50% indicated older adults
reliedmore on feedforwardmechanisms ofmovement control, such as pre-programming,
and less on feedback to modify actions and produce appropriate movements.

Fig. 8. Ratio of deceleration phase

5 Discussion

The primary aim of this study was to investigate the changes in motor asymmetry as
people age. The movement parameters, stroke size, mean velocity, peak velocity, and
RDP were examined as participants drew a series of continuous loops (i.e., cursive
connected l’s). The present study has three major findings. First, age-related reduction
of motor asymmetry was identified in average velocity and peak velocity. These results
indicate a relationship betweenmotor symmetry and age exists which supports the notion
of an age-related motor asymmetry reduction. Secondly, reduced asymmetry in older
adults seems predominantly caused by a greater performance reduction in the right
(dominant) hand, indicating the role of age-related elimination of the dominant-hand
advantage in motor performance. Lastly, since the age-related reduction of asymmetry
in stroke size was primarily observed in the condition requiring the smallest size while
writing at maximum speed, it is reasonable to hypothesize that increased task difficulty
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is an important component of age-related reductions of asymmetric execution of motor
tasks performed using the dominant and non-dominant hand.

As proposed with the HAROLD, and other cognitive models, age-related changes in
brain structure and function necessitate the system to utilize compensation or dedifferen-
tiation by employing more symmetrical brain activation patterns, and/or the recruitment
of more neuronal resources to perform the same task as younger adults [2, 3, 6, 9].
The possibility exists for the motor control system to similarly require a compensation
pattern, utilizing more symmetrical cortical activation, in order for the motor system to
compensate for age-related changes that occur on the physiological and neural levels.
The suggestion of cognitive changes such as reduced lateralization of brain activation
may be an underlying cause of reduced motor asymmetry when aging [17], and find-
ings in this study support the extension of HAROLD to the area of motor behavior.
As the contralateral hemisphere reduces activation and its related assistance with motor
performance, the ipsilateral hemisphere increases in activation to help accomplish the
motor task. The result of the increased bilateral cortical activation is more symmetrical
performance of unimanual motor tasks when performance of either hand is compared.
In the same vein, Wang et al. [24] predicted an increase in motor performance symmetry
in older adults when a motor task requiring visuomotor adaptation was being transferred
from the left to the right hand or vice versa. The symmetrical transfer of task perfor-
mance between the hands adds to evidence suggesting that reductions of hemispheric
lateralization of cortical areas controllingmotor function are the origin of these observed
age-related reductions in asymmetry of performance levels between the hands. More-
over, these findings support the notion of increased symmetrical cortical activation of
bilateral hemispheres causing more symmetry in motor behavior when we age.

A separate question still is unanswered; are age-related changes in motor asymmetry
and asymmetric changes in the cognitive domain related. Park and Reuter-Lorenz [16]
suggested reduced hemispherical asymmetry as a sign of compensation and a way for
the cortex to adapt to structural and functional declines naturally occurring with aging.
Similarly, motor behavior patterns of reduced motor asymmetry with aging are perhaps
a compensatory technique implemented by the human body to help adjust for declines
of structures and functions required to perform motor skills. More research is required
to explore the specific association between components of cognitive and motor behav-
ior changes. The continued study of brain activation patterns during a combination of
cognitive and motor tasks is imperative to add knowledge to this area of age-related
changes and compensatory strategies counteracting motor skill decline. Neuroimaging
techniques combined with (dual) motor tasks would be needed to concretely extend
our models of cognitive compensation patterns from the cognitive domain to the area
of motor behavior. Research may reveal patterns that resemble the already uncovered
cognitive activation patterns or uncover new cortical activation patterns. Perhaps further
undiscovered cognitive-motor patterns will be uncovered propelling theories of motor
changes associated with aging forward. Combining neuroimaging components to this
area of study is crucial to discover whether younger and older adults show similarities
and/or differences in cortical activation patterns when performing motor and cognitive
tasks and whether age-related activation pattern changes are associated with age-related
asymmetry changes of task performance.
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The investigation of compensatory activation patterns related to motor behavior
changes with age should aim to prevent motor skill decline and more broadly, functional
decline. Thorough discovery of motor performance patterns, cognition, brain activa-
tion patterns, and compensatory techniques, will provide insights into the decline of
functional motor performance associated with aging. This knowledge will provide the
potential to build new interventions, and/or adding treatment options to existing ones,
in order to maintain and/or prevent loss of motor function in older adults.
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Abstract. Our study’s aim is two-fold. Firstly, to assess the technical
capabilities of digital tablets with digital pen inputs to establish their
suitability as data collection equipment for use in screening for Mild Cog-
nitive Impairment (MCI). Secondly, to test such equipments’ usability in
clinical settings by test subjects who are over 65 years of age and would
be the typical participants in such screening tests. Before we started to
analyze the fine motor movement of older people in order to diagnose
the motor movement-based symptoms of Alzheimer’s disease and MCI,
we had to gain experience in data collection in this age group. Our goal
was to check the quality of the data collected with different devices from
older people. First, data was collected using our standard measurement
protocol and also we collected real-life handwritten signatures. The col-
lected “in vitro” and “in vivo” data were analyzed. In the second part of
the research, we asked older people to solve different writing and draw-
ing tasks on certain digital devices that are able to collect data about
their hand motor movement. We found that every device had pros and
cons. Overall, the data we collected with them were good quality and
provided a good basis for further research. We have also established that
the use of such tablet devices to collect data did not pose any usability
challenges for participants.

Keywords: Data quality · Tablets · Handwritten signature ·
Drawing · Handwriting · MCI · Alzheimer’s disease ·
Neurodegenerative diseases · Dementia

1 Introduction

Recent studies [4,5,10] suggest that identification of impairment of visuomotor
(VM) abilities in the earliest stages of MCI could open the door for wide-scale
early detection of dementia. Our aim is to confirm that equipment readily avail-
able today provides the means to collect data of the highest quality and sampling
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rate as possible, especially while collecting and quantifying hand motor move-
ment data. Furthermore, we worked with the hypothesis that these equipment,
used in everyday clinical settings, would pose no discernable problem for partic-
ipants over the age of 65.

Unfortunately, data quality of the different tablets and how to test them is
a rarely studied area; only some articles and studies can be found about it [3,7,
9,12]. We may also note here that pressure is considered an important feature
when we analyze fine motor movement, for example in signatures [2,6,8,11].

To establish the validity of using digital tablet devices for MCI and
Alzheimer’s disease screening, we tested the quality of our devices’ data col-
lection capabilities by using a standardized measurement protocol developed by
our team. This protocol consists of sampling rate estimations; linear and circu-
lar accuracy tests; pressure level checks and pressure homogeneity tests; and tilt
level (azimuth and altitude) tests. The most important findings from the device
data quality testing are summarized below.

The other key question was how these tablets perform in real life when older
people use them to complete specific cognitive tests. We chose two main different
types of devices. One of them included a paper, a pen, and a tablet which was
placed under the paper and collected the data. The other type included a digital
pen and a tablet as closely resembling writing on paper as technologically pos-
sible. The most important outcomes of the pilot data collection are summarized
after the standardized measurement protocol section results.

2 Standardized Measurement Protocol

We developed a unique software to collect data from tablet devices in order
to gain insight into the granularity and sensitivity of the hand movement data
captured by the devices.

The software displays a background image with a filled gray circle indicat-
ing the corner of the origin; unfilled circles help during drawing lines and also
assist pressure measurement acquisition. Figure 1 shows this background image.
The software also displays on the devices’ screen the last reported values of
each property that the device can capture. Our software collects the following
properties:

– timestamp (in milliseconds);
– x and y-coordinate (in pixel);
– pressure for each device (p);
– altitude (α) and azimuth (θ) angles for Wacom MobileStudio Pro
– tiltX and tiltY for reMarkable tablets.

The following subsections describe the measurement process in detail.
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2.1 Lines

Lines were drawn with a regular ruler at a slow pace holding the pen tilted at
roughly 60◦. To minimize sliding around the edges, the lines’ start- and endpoints
were away from the screen’s edge. The lines took up around 80 to 90% of the
width or height of the screen’s surface. Horizontal, vertical, main diagonal and
subdiagonal lines were drawn. Two diagonals were drawn from one corner to
the opposite: subdiagonal from the bottom-left corner to top-right, the main
diagonal from the top-left corner to bottom-right. See Fig. 2 for an illustration
of line placements.

2.2 [HV]MinAndMax Lines

MinAndMax lines were drawn to cover the full range of the x and y coordinates.
Two MinAndMax lines were recorded: a HMinAndMax and a VMinAndMAX
where H and V abbreviate horizontal and vertical.

Each measurement consists of 4 half-lines drawn slowly using a ruler. The
starting and ending points of the lines were drawn as illustrated on the left image
of Fig. 3. For HMinAndMax: starting from the red rectangle with number 1 and
moving towards the right along the ruler until the edge of the active area. The
second half-line started at the green rectangle with 2 and moved towards the left
side until the edge of the active area. The 3rd and 4th lines were similar to the
1st and 2nd. The only difference is they were closer to the bottom of the screen.
VMinAndMax was drawn similarly in vertical directions, see illustration on the
right image in Fig. 3.

2.3 Increasing Pressure

The pen tip was held on the instrument with as little pressure as possible at the
start of the measurement. The pen was pressed slowly harder and harder until
the maximum pressure value p was reached. The actual p value was continuously
checked during the measurement as the data collector software continuously
showed the actual p value on the screen. The path of the pen was not strictly
defined. However, a spiral drawing was recommended. To estimate what is the
minimum and maximum gram the device can distinguish, a digital scale was
placed under the device.

2.4 PressurePoints

Different weights were applied using the turntable settings given in detail in our
previous research [2], and the pen tip was placed perpendicular to the surface.
The platter of the turntable was manually pushed to the left, then to the right,
and released until it stopped. This was repeated at several different points on
the surface.
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Fig. 1. Background pattern image of the data collector software

Fig. 2. Illustration of horizontal, vertical, main diagonal and subdiagonal linear mea-
surements

Fig. 3. Illustration of HMinAndMax (left) and VMinAndMax (right) measurements

3 Standardized Measurement Protocol Results

The protocol was used to test three different devices. The first one was the
Wacom MobileStudio Pro 13 with an inking pen. To use this device, a sheet of



244 G. Hanczár et al.

writing paper was fixed to the tablet’s screen using a non-permanent adhesive
spray. The other two devices were the reMarkable and reMarkable2, both were
used with a digital pen. All the devices were chosen based on their ability to
closely mimic the experience of writing with standard pen and paper.

3.1 Ranges, Levels, Resolutions and Pixel Size

The ranges of the different properties were determined using the data extracted
by our software during the different measurement tasks.

The resolution is expressed in LPI (in coordinates/inch) and was calculated
using the maximal coordinate value detected and divided with the real width
(max(x)) and height (max(y)) of the active area of the device’s screen (in inches).
The sampling rate was estimated using the number of data points within a
whole circle and the speed of the turntable. The details of the findings can be
found in Table 1. Sensor pixel size was determined using the actual size of the
device in mm and the minimum and maximum values using particularly the two
[HV]MinAndMax measurements. Minimum values for x and y were both 0. The
estimation of the sensor pixel size shows that the devices have a square pixel
with width and height of 0.005 mm2 or 0.01 mm2. The pressure level changed
from 256 to 8192 and showed different sensitivity, see Table 2.

Azimuth and altitude (tilt) angles were available for all devices. The ranges
and also the number of unique values (level of tilt) vary among the devices, see
Table 3.

3.2 Linear Accuracy and Angle Correction

Using the least square method and linear regression, linear accuracy and angle
correction were examined. Linear accuracy was measured using the six lines and
expressed as the average absolute difference of the data from the fitted line.
Nearly horizontal and nearly vertical lines were recorded to compare them with
horizontal and vertical lines respectively to check whether correction of angles
is present towards perfectly horizontal or perfectly vertical lines. The angles of
the regression lines were determined and compared.

Table 4 shows the average absolute errors of the linear lines in pixels and
the angles in degrees of the different lines for each device. The last column of
this table summarizes the overall linear error in millimeters. None of the devices
have been shown to have angle correction. However, the linear accuracy varies
between the different devices.

3.3 Force (Pressure) Properties

Homogeneity and gram-p relationship were examined. The pressure homogeneity
was analyzed using the PressurePoints measurements. A constant line was fitted
to the data and the error was measured as the average distance from this line.
The gram-p relationship was examined using the constant value determined as
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Table 1. The estimated sampling rate, coordinate range, resolution and pixel size.

Device Sampling rate
(Hz)

max(x) max(y) LPI (x/y) Pixel size
(mm2)

reMarkable 200 20968 15726 2560/2578 0.01 × 0.01

reMarkable2 540 20966 15725 2557/2559 0.01 × 0.01

Wacom MS Pro 194 59552 33848 5134/5207 0.005 × 0.005

Table 2. Pressure p and mass ranges; uv means the number of unique values.

Device p range uv. p (level) Gram range

reMarkable 0–4095 3900 (4096) 9–180

reMarkable2 0–4095 3949 (4096) N/A–150

Wacom MS Pro 0–836 835 (1024?) 15–620

Table 3. Tilt ranges; tilt difference and number of unique levels. α denotes azimuth
or tiltX, θ denotes altitude or tiltY. diff means the difference between consecutive
property values, uv means unique values.

Device α range α diff α uv θ range θ diff θ uv

reMarkable −6300–6300 100 95 −5800–5800 100 87

reMarkable2 −6300–6300 100 89 −6300–6300 100 89

Wacom MS Pro 250–900 10 66 0–3580 10 336

Table 4. Linear accuracy in pixels and angle of the regression line in degrees. H means
horizontal line, NH = nearly horizontal, V = vertical, NV = nearly vertical, MD =
main diagonal, SD = sub diagonal. The last column shows linear accuracy in mm.

Device LineH LineNH LineV LineNV LineMD LineSD Result (mm)

reMarkable error 3.15 4.66 3.08 1.39 7.32 7.47 0.01–0.08

reMarkable angle −0.05 0.57 89.99 91.21 36.78 −36.72

reMarkable2 error 14.40 14.26 12.11 8.35 21.39 8.93 0.08–0.21

reMarkable2 angle 0.16 1.80 90.13 91.49 37.08 −36.76

W MS Pro error 5.88 6.22 8.55 10.95 9.11 18.36 0.02–0.09

W MS Pro angle 0.07 0.39 89.99 91.10 29.50 −29.47



246 G. Hanczár et al.

the best fit of the PressurePoints measurement. The result of such a relationship
is a graph with mass in grams on the x-axis and the pressure on the y-axis. The
PressurePoints measurement was repeated with 3–5 different masses in the gram
range the device could distinguish. These relationship graphs usually showed
linear and logarithmic relationships.

4 Data Collection Pilot

In the second part of our study we tested the collected data quality not only in
our laboratory but also in real life collecting signatures and data while people
from all age group and especially older people were using the devices. In this
section, we have divided our research into two parts.

4.1 Signature

Our database has information about more than 500 individuals’ motor movement
data because earlier we made several kinds of research in this field. In one of our
pilots, we also collected signatures with the Wacom MobileStudio Pro 13 and
the reMarkable tablet. 24 different people gave their handwritten signature 20
times and all of their hand motor movement data were collected. We used these
data in this research as well.

4.2 Drawing and Writing

The whole dataset was collected using a reMarkable2 and a Wacom MobileStudio
Pro 13 with an inking pen from 16 people from age 36 to 82. See Table 5 about
the distribution of age (in years) and biological gender. Before we started the
data collection, we tested the data collection procedure on 3 different people.

Table 5. Distribution of age and biological gender of drawing and writing tasks

Age group Gender Total

Female Male

<45 1 3 4

45–64 1 4 5

65–74 2 2 4

≥75 3 0 3

Total 7 9 16

Every participant had to perform seven different tasks with dominant on one
of the devices. In Task 1 the patient was asked to write the letter “l” altogether
ten times in cursive. In Task 2 the participant wrote a sentence in cursive made
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up of seven words. Task 3 had two different parts. In Part A the participant drew
a spiral along a visible line. In Part B the participant drew a spiral between two
printed lines. Task 4 also has two different parts. In Part A the participant drew
a square along a visible line. In Part B the participant drew a square with his or
her free hand. Finally, in Task 5, the participant had to perform Trail Making
test B [1] to connect letters and numbers in alphabetical and growing order (A-1,
B-2, C-3, . . . ). See Fig. 4 which describes each task in Hungarian.

5 Data Collection Pilot Outcomes

Pressure distributions in Fig. 5 visualize the data from a pilot when 24 signers
contributed signatures and these two devices were among the used devices in the
data collection.

The reMarkable tablet clearly does not have the full range to distinguish the
pressure properly for signature data. The Wacom MobileStudio Pro has a large
frequency value at the end of its sensitivity range, which means for stronger
pressure some data is lost. The distribution seems much more reliable for the
Wacom device.

Pressure distributions in Fig. 6 shows the data from the research when we
collected the data from the older people while they were writing and drawing

Fig. 4. Drawing, writing and Trail Making test B tasks (in Hungarian)
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Fig. 5. Pressure histograms for different devices using the signature data of a pilot:
Wacom MobileStudio Pro 13 with inking pen (top) and reMarkable (bottom). The x
coordinate indicates the pressure (p), and the y coordinate indicates the frequency.
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Fig. 6. Pressure histograms for different devices using the data collected from study
subjects in all age range. Devices: Wacom MobileStudio Pro 13 with inking pen (top)
and reMarkable2 (middle). The bottom plot shows a distribution from reMarkable2
pressure frequencies excluding the largest p value (4095). The x coordinate indicates
the pressure (p), and the y coordinate indicates the frequency.



250 G. Hanczár et al.

using Wacom MobileStudio Pro 13 with an inking pen and reMarkable2 tablets.
The results were very similar to the signature data’s results. When the pressure
increases, some of Wacom’s pressure data is lost and the reMarkable2 tablet still
does not have the entire range to distinguish the pressure properly for writing
and drawing data.

6 Conclusion

All of the devices provide quality and well-detailed data from the movement. We
can clearly see the stoppages of the person’s movement and the hesitation phases.
The temporal and spatial resolutions are good as well as the speed, acceleration,
and jerk data.

The reMarkable devices were more comfortable because we didn’t have to
use paper and set it properly on the screen. The tasks are simply separable and
the person can retry them easier. On the other hand, the reMarkable can only
distinguish low-pressure values from each other and the data on the x and y
coordinates are noisy.

The Wacom device’s x and y coordinates are less accurate, and the tilt angle
greatly influences the result. Although both devices have pros and cons, overall,
the data we collected with them are quality and provide a good basis for further
research.
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Abstract. To this date, studies focusing on the prodromal diagnosis of
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subjects diagnosed with possible or probable mild cognitive impairment
with Lewy bodies (MCI-LB), 7 subjects having more than 50% prob-
ability of developing Parkinson’s disease (PD), 21 subjects with both
possible/probable MCI-LB and probability of PD > 50%, and 37 age-
and gender-matched healthy controls (HC). Each participant performed
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culties), sentence writing task (to quantify handwriting difficulties), and
pentagon copying test (to quantify cognitive decline). Next, we parame-
terized the acquired data by various temporal, kinematic, dynamic, spa-
tial, and task-specific features. And finally, we trained classification mod-
els for each task separately as well as a model for their combination to
estimate the predictive power of the features for the identification of
LBDs. Using this approach we were able to identify prodromal LBDs
with 74% accuracy and showed the promising potential of computerized
objective and non-invasive diagnosis of LBDs based on the assessment
of graphomotor and handwriting difficulties.
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1 Introduction

Lewy body diseases (LBDs) is a term describing a group of neurodegenerative
disorders characterized by a pathophysiological process of α-synuclein accumu-
lation in specific brain regions leading to the formation of Lewy bodies and
Lewy neurites resulting in cell death. LBDs consists of two major clinical enti-
ties: Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) [29,38].
Although the phenotypes and temporal evolution of motor and cognitive symp-
toms of these two diseases vary, they share many clinical and pathophysiolog-
ical features and are therefore referred to as LBDs spectrum. Together with
Alzheimer’s disease (AD), LBDs comprise the major part of all cases of neu-
rodegenerative disorders.

It is known that LBDs do not start suddenly. At the time the clinical symp-
toms occur, the neurodegenerative process has reached a severe degree in which
most of the targeted neurons have already been damaged. Before the clinical
diagnosis based on the presence of typical clinical symptoms becomes possible,
there is a long period of the underlying neurodegenerative process with subtle or
nonspecific symptoms [18,29] such as sleep disturbances, mood changes, smell
loss, constipation, etc. This period of LBDs is called the prodromal stage.

One of the early markers of PD is PD dysgraphia (micrographia and other
alterations in handwriting, e.g. kinematic and dynamic) [21,32,33]. Similarly,
some manifestations of dysgraphia have been observed in the prodromal DLB
as well [23]. Although modern approaches to the analysis of graphomotor and
handwriting difficulties (utilising digitising tablets) were proved to work well
during e.g. diagnosis of the clinical stage of PD [9,11,35], assessment of cogni-
tion in PD patients [4], or discrimination of AD and mild cognitive impairment
(MCI) [15], to the best of our knowledge, no studies employed this technology
(with high potential) in the prodromal diagnosis of LBDs in a larger scale.

Identification of the early stages of LBDs is crucial for the development
of disease-modifying treatment since the neurodegeneration may be possibly
stopped or treated before the pathological cascades start. Therefore, the goal
of this study is to explore whether the computerised assessment of graphomo-
tor and handwriting difficulties could support the prodromal diagnosis of LBDs,
more specifically, we aim to:

1. identify which task significantly discriminates LBD patients and age- and
gender-matched healthy controls (HC),

2. identify what conventional online handwriting features have good discrimina-
tion power.
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2 Materials and Methods

2.1 Dataset

We enrolled 39 subjects (19 females, 20 males, age = 69.53 ± 6.61) diagnosed
with possible or probable MCI (based on the scores of the MoCA – Montreal
Cognitive Assessment [25] and based on the CCB – Complex Cognitive Battery,
see the explanation below) who were simultaneously diagnosed with possible or
probable MCI-LB (i.e. mild cognitive impairment with Lewy bodies) based on
the criteria published by McKeith et al. [22]. In this group, 21 subjects also
had more than 50% probability of developing PD (calculated following the MDS
criteria published in [18]). In addition, we enrolled 7 subjects (2 females, 5 males,
age = 66.41±4.32) without possible/probable MCI-LB, but still with more than
50% probability of developing PD. Finally, we enrolled 37 HC (26 females, 11
males, age = 67.60 ± 5.61). In the experiments, we stratified the subjects into
two groups, HC vs. LBD (i.e. people with a high risk of developing PD or DLB).

CCB was used to evaluate four cognitive domains: 1) memory (The Brief
Visuospatial memory test–revised [2], Philadelphia Verbal Learning Test [3]);
2) attention (Wechsler Adult Intelligence Scale-III: Letter-Number Sequencing,
Digit Symbol Substitution [37]); 3) executive functions (Semantic and phonemic
verbal fluency [30], Picture arrangement test [37]); and 4) visuospatial functions
(Judgment of Line Orientation [36]). The cognitive domain z-scores were com-
puted as the average z-scores of the tests included in the particular domain.

The participants were asked to perform a set of three tasks:

1. Archimedean spiral (spiral) – we consider this task as a graphomotor one, i.e.
it is a building block of some letter shapes; in addition, it is a golden standard
in PD dysgraphia diagnosis [35]

2. sentence “Tramvaj dnes už nepojede” (translation: “A tram will not go
today.”) writing (sentence) – this handwriting task was used e.g. in the
PaHaW database [11]

3. pentagon copying test (pentagons) – it is a task frequently used for quantifi-
cation of cognitive decline [4]

All participants were right-handed and had Czech as their native language.
They all signed an informed consent form that was approved by the local ethics
committee.

2.2 Feature Extraction

The participants were asked to perform the tasks (using the Wacom Ink pen)
on an A4 paper that was laid down and fixed to a digitizing tablet Wacom
Intuos 4 M (sampling frequency fs = 130Hz). Before the acquisition, they had
some time to get familiar with the hardware. The recorded time series (x and
y position; timestamp; a binary variable, being 0 for in-air movement and 1 for
on-surface movement, respectively; pressure exert on the tablet’s surface during
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writing; pen tilt; azimuth) were consequently parameterised utilising the follow-
ing set of features (we selected the set based on available reviews and based on
our experience [9,11,35]):

1. temporal – duration of writing, ratio of the on-surface/in-air duration, dura-
tion of strokes, and ratio of the on-surface/in-air stroke duration

2. kinematic – velocity, and acceleration
3. dynamic – pressure, tilt, and azimuth
4. spatial – width, height, and length of the whole product, as well as its partic-

ular strokes, i.e. stroke width, height, and length
5. spiral-specific – degree of spiral drawing severity [31], mean drawing speed of

spiral [31], second-order smoothness of spiral [31], spiral precision index [5],
spiral tightness [31], variability of spiral width [31], and first-order zero-
crossing rate of spiral [31]

6. other – number of interruptions (pen elevations), number of pen stops [27],
tempo (number of strokes normalised by duration), number of on-surface
intra-stroke intersections, relative number of on-surface intra-stroke intersec-
tions, number of on-surface inter-stroke intersections, and relative number of
on-surface inter-stroke intersections, Shannon entropy [4], number of changes
in the velocity profile, relative number of changes in the velocity profile

Most of the features were extracted using the recently released Python library
handwriting-features (v 1.0.1) [14], the rest of them were coded in Matlab. Some
features (mainly spatial, temporal and kinematic) were extracted from both on-
surface and in-air movements. In addition, kinematic features were also analysed
in horizontal and vertical projection. Features represented by vectors were con-
sequently transformed to a scalar value using median, non-parametric coefficient
of variation (nCV; interquartile range of feature divided by its median), slope
and 95th percentile (95p).

2.3 Statistical Analysis and Machine Learning

To compare the distribution of features between the HC and LBD subjects, we
conducted Mann-Whitney U-test with the significance level of 0.05. Moreover,
to assess the strength of a relationship between the features and the subject’s
clinical status (HC/LBD), we computed Spearman’s correlation coefficient (ρ)
with the significance level of 0.05. Finally, during this exploratory step, we calcu-
lated Spearman’s correlation with the domains of CCB and the overall score of
MDS–Unified Parkinson’s Disease Rating Scale (MDS–UPDRS), part III (motor
part) [16].

To identify the presence of graphomotor or handwriting difficulties, we built
binary classification models using an ensemble extreme gradient boosting algo-
rithm known as XGBoost [6] (with 100 estimators). This algorithm was chosen
due to its robustness to outliers, ability to find complex interactions among fea-
tures as well as the possibility of ranking their importance. To build models with
an optimal set of hyperparameters, we conducted 1000 iteration of randomized
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search strategy via stratified 5-fold cross-validation with 10 repetitions aiming
to optimize balanced accuracy score (BACC; described in more detail along with
other evaluation scores below). The following set of hyperparameters were opti-
mized: the learning rate [0.001, 0.01, 0.1, 0.2, 0.3], γ [0, 0.05, 0.10, 0.15, 0.20,
0.25, 0.5], the maximum tree depth [6, 8, 10, 12, 15], the fraction of observations
to be randomly sampled for each tree (subsample ratio) [0.5, 0.6, 0.7, 0.8, 0.9,
1.0], the subsample ratio for the columns at each level [0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0], the subsample ratio for the columns when constructing each tree [0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0], the minimum sum of the weights of all observations
required in a child node [0.5, 1.0, 3.0, 5.0, 7.0, 10.0], and the balance between
positive and negative weights [1, 2, 3, 4].

The classification test performance was determined using the following clas-
sification metrics: Matthew’s correlation coefficient (MCC), balanced accuracy
(BACC), sensitivity (SEN) also known as recall (REC), specificity (SPE), pre-
cision (PRE) and F1 score (F1). These metrics are defined as follows:

MCC =
TP × TN + FP × FN√

N
, (1)

BACC =
1
2

(
TP

TP + FN

TN

TN + FP

)
, (2)

SPE =
TN

TN + FP
, (3)

PRE =
TP

TP + FP
, (4)

REC =
TP

TP + FN
, (5)

F1 = 2
PRE × REC

PRE + REC
(6)

where N = (TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN), TP (true
positive) and FP (false positive) represent the number of correctly identified
LBD subjects and the number of subjects incorrectly identified as having LBDs,
respectively. Similarly, TN (true negative) and FN (false negative) represent
the number of correctly identified HC and the number of subjects with LBDs
incorrectly identified as being healthy.

To further optimize the trained classification models, we fine-tuned the mod-
els’ decision thresholds via the receiver operating characteristics (ROC) curve.
Using the fine-tuned decision thresholds, we evaluated the classification perfor-
mance of the models using the leave-one-out cross-validation. The ROC curves
were plotted using the probabilities of the predicted labels obtained via the
cross-validation procedure that was employed during the final evaluation of the
fine-tuned models.

And finally, to evaluate the statistical significance of the prediction perfor-
mance obtained by the built classification models, a non-parametric statisti-
cal method named permutation test was employed [7,28]. For this purpose, we
applied 1 000 permutations with the significance level of 0.05. To estimate the
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performance of the models on the permuted data, we used the same classification
setup as employed during the training phase [26].

3 Results

The results of the exploratory data analysis are summarized in Table 1 (sorted
based on the p-value for the Mann-Whitney U-test). The following features were
found as the most distinguishing ones in terms of the differentiation between HC
and subjects with LBD (the top 4 features are listed; *, **, and *** denote the p-
values for both the Mann-Whitney U-test and Spearman’s correlation coefficient
being bellow the significance level of 0.05, 0.01, and 0.001, respectively; if both p-
values are bellow a different significance level, the weaker statistical significance
is selected): a) spiral – nCV of acceleration (on-surface) ρ = −0.2438∗, variability
of spiral width ρ = 0.2439∗, median of azimuth ρ = 0.2378∗, and spiral precision
index ρ = 0.2367∗; b) sentence – number of pen stops ρ = 0.3460∗∗, slope of
duration of stroke (in-air) ρ = 0.2823∗∗, median of vertical velocity (on-surface)
ρ = −0.2438∗, and median of vertical acceleration (on-surface) ρ = 0.2317∗; and
c) pentagons – width of writing (on-surface) ρ = −0.3045∗∗, median of length
of stroke (on-surface) ρ = −0.2894∗∗, nCV of length of stroke (on-surface) ρ =
0.2489∗, and median of duration of stroke (on-surface) ρ = −0.2327∗.

Table 1. Results of the exploratory analysis.

Feature p(U) ρ p(ρ)

Spiral

nCV of acceleration (s) 0.0138 −0.2438 0.0263

Variability of spiral width 0.0138 0.2439 0.0263

Median of azimuth 0.0158 0.2378 0.0304

Spiral precision index 0.0162 0.2367 0.0312

nCV of duration of stroke (s) 0.0438 −0.1892 0.0867

Sentence

Number of pen stops 0.0009 0.3460 0.0014

Slope of duration of stroke (a) 0.0054 0.2823 0.0097

Median of vertical velocity (s) 0.0138 −0.2438 0.0263

Median of vertical acceleration (s) 0.0182 0.2317 0.0351

Rel. total number of intra-stroke intersections 0.0232 −0.2206 0.0451

Pentagons

Width of writing (s) 0.0030 −0.3045 0.0051

Median of length of stroke (s) 0.0045 −0.2894 0.0080

nCV of length of stroke (s) 0.0123 0.2489 0.0233

Median of duration of stroke (s) 0.0178 −0.2327 0.0343

Median of horizontal acceleration (s) 0.0182 0.2317 0.0351

p(U) – p-value of Mann-Whitney U-test; ρ – Spearman’s correlation coeffi-
cient; p(ρ) – p-value of ρ; (s) – on-surface movement; (a) – in-air movement.
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Next, Table 2 presents the results of the correlation analysis (*, and ** denote
the p-values for Spearman’s correlation coefficient being below the significance
level of 0.05 and 0.01, respectively) between the features summarized in Table 1
and the following clinical information: a) MDS–UPDRS, and b) CCB domains.

Table 2. Results of the correlation analysis.

Feature ρ (UPDRS) ρ (V) ρ (A) ρ (E)

Spiral

nCV of acceleration (s) −0.3411∗ −0.0013 0.1130 0.1899

Variability of spiral width 0.1653 −0.3973∗∗ −0.2981∗ −0.1666

Median of azimuth 0.0442 −0.3656∗ −0.1029 −0.0490

Spiral precision index 0.0606 −0.0942 −0.3987∗∗ −0.2126

nCV of duration of stroke (s) −0.1089 −0.1344 −0.1618 −0.0469

Sentence

Num. of pen stops −0.1018 −0.1181 0.1012 −0.1956

Slope of duration of stroke (a) 0.2620 −0.1928 −0.0513 −0.1025

Median of vertical velocity (s) 0.0314 0.1106 0.0025 0.1794

Median of vertical acceleration (s) −0.2641 −0.0301 0.3246∗ 0.0193

Rel. total num. of intra-stroke intersections 0.0477 0.1647 0.1143 0.0962

Pentagons

Width of writing (s) −0.3448∗ 0.2947∗ 0.1351 0.1362

Median of length of stroke (s) −0.1545 0.1607 0.0501 0.1511

nCV of length of stroke (s) 0.3065∗ −0.2435 −0.1126 −0.1155

Median of duration of stroke (s) −0.0348 0.0080 −0.0085 −0.0269

Median of horizontal acceleration (s) 0.3215∗ −0.0226 −0.1632 −0.2060

ρ – Spearman’s correlation coefficient (∗ denotes p-value < 0.05 and ∗∗ denotes p-value
< 0.01); UPDRS– MDS–Unified Parkinson’s Disease Rating Scale, part III (motor
part) [16]; V – visuospatial domain of CCB; A – attention domain of CCB; E – executive
functions domain of CCB; (s) – on-surface movement; (a) – in-air movement.

To visualize the difference in the distribution of the top 4 features summarized
above for HC and subjects with LBD, the box-violin plots are presented in
Figs. 1, 2 and 3. The Fig. 1 shows the distribution of the features for the spiral
drawing, the Fig. 2 shows the distribution of the features for the sentence writing,
and the Fig. 3 is dedicated to the distribution of the features for the pentagon
copying test.

The results of the classification analysis are summarized in Table 3. We
trained 4 models in total: 3 models dedicated to each task separately and
a model combining all of the tasks. The following results were achieved (where
∗ and ∗∗ denote p-value of the permutation test bellow < 0.05 and < 0.01,
respectively): a) spiral – BACC = 0.6848∗∗, SEN = 0.8696, SPE = 0.5000; b)
sentence – BACC = 0.7283∗∗, SEN = 0.9783, SPE = 0.4783 c) pentagons –
BACC = 0.6848∗∗, SEN = 0.9348, SPE = 0.4348; and d) all tasks combined –
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Fig. 1. Distribution of the top 4 most discriminating features (spiral drawing).

Fig. 2. Distribution of the top 4 most discriminating features (sentence writing).

BACC = 0.7391∗∗, SEN = 0.8043, SPE = 0.6739. The ROC curves of the trained
models are shown in Fig. 4.

4 Discussion

As mentioned in the methodology, the Archimedean spiral is considered as a
gold standard, especially in the assessment of graphomotor difficulties in PD
patients [5,8,31], nevertheless, it has been utilised during the quantitative anal-
ysis of Huntington’s disease, essential tremor, or brachial dystonia as well [13].
Concerning the spiral features with the highest discrimination power (as identi-
fied by the Mann-Whitney U-test), we observed that the LBD group was asso-
ciated with a lower range in on-surface acceleration, which we suppose is caused
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Fig. 3. Distribution of the top 4 most discriminating features (pentagons copying test).

Table 3. Results of the classification analysis.

Task MCC BACC SEN SPE PRE F1 threshold p

Spiral 0.3977 0.6848 0.8696 0.5000 0.6349 0.7339 0.26 ∗∗
Sentence 0.5271 0.7283 0.9783 0.4783 0.6522 0.7826 0.36 ∗∗
Pentagons 0.4267 0.6848 0.9348 0.4348 0.6232 0.7478 0.13 ∗∗
All tasks combined 0.4824 0.7391 0.8043 0.6739 0.7115 0.7551 0.48 ∗∗
MCC– Matthew’s correlation coefficient; BACC–balanced accuracy; SEN –
sensitivity; SPE– specificity; PRE–precision; F1 – F1 score; p – p-values computed by
the permutation test (1 000 permutations, ∗ denotes p-value < 0.05 and ∗∗ denotes
p-value < 0.01); threshold – fine-tuned decision threshold.

by rigidity. This assumption is supported by the fact that the measure signifi-
cantly correlates (ρ = −0.3, p < 0.05) with the overall score of MDS–UPDRS III.
Next, the LBD group was not able to keep small variability of loop-to-loop spi-
ral width index, which is in line with findings reported in [31]. We also observed
a significant correlation between this feature and the visuospatial (ρ = −0.4,
p < 0.01) and the attention (ρ = −0.3, p < 0.05) domain of CCB. On the other
hand, the LBD group had generally higher values of the spiral precision index
than the HC one, which is against our initial assumptions (also the correlation
with the attention domain of CCB is surprisingly negative; ρ = −0.4, p < 0.01).
Finally, the last significant correlation with the clinical status was identified in
the median of azimuth, which was higher in the LBD group (in addition we
observed a negative correlation with the visuospatial domain of CCB; ρ = −0.4,
p < 0.05).

Regarding the classification analysis, based on the spiral features, we were
able to discriminate the LBD and HC groups with 68% balanced accuracy (area
under the curve (AUC) = 71%), which is the worst result when compared to other
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Fig. 4. Receiver operating characteristic curves for the trained models.

tasks and which supports our previous findings that even though the spiral is
considered as a gold standard the sentence copy task accents the manifestations
of dysgraphia much better [11].

Regarding the sentence, the most discriminative feature extracted from this
task is the number of pen stops (i.e. a pen is in contact with the paper and
does not vary its position for at least 30 ms [8]), which was higher in the LBD
group. This parameter has been mainly employed in the diagnosis of develop-
mental dysgraphia in children population [27], however, in one study, Danna et
al. observed that this measure (but extracted from the spiral) was significantly
different between PD patients in the OFF state and HC [8]. Initially, we assumed
that the feature could be theoretically linked with cognitive deficits, but we did
not observe any significant correlation with the visuospatial, attention, or execu-
tive functions domain of CCB. The second most significant feature was the slope
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of the duration of in-air strokes. The positive correlation coefficient suggests that
the LBD subjects were associated with progressing fatigue [1,12,17]. Next, in
the LBD group, we observed lower on-surface vertical velocity (this is in line
with e.g. [21,35]), but increased on-surface vertical acceleration. This could be
probably explained by the slow and less smooth handwriting. In terms of pro-
jection, the reason why these deficits dominate in the vertical movement could
be explained by the fact that the finger system (which is mainly involved in the
vertical movement) is more affected by muscular fatigue than the wrist system
(which controls horizontal movement) [20]. The vertical movement requires coor-
dinated movement and finer flexions/extensions of more joints (interphalangeal
and metacarpophalangeal), thus it is more complex than ulnar abductions of the
wrist [10,34] and could more accent the rigidity and bradykinesia. In addition,
this manifestation could be associated with the progressive/consistent vertical
micrographia, i.e., progressive/consistent reduction in letter amplitude [33].

In terms of classification, by modelling features extracted from the sentence,
we were able to differentiate both groups with 73% balanced accuracy (AUC
= 80%). In comparison with the state of the art in supportive LBD or PD
diagnosis [9,19,35], it is not a competitive result, but on the other hand, we
would like to highlight that we deal with results evaluating diagnosis of LBDs
in the prodromal state that has not been targeted by other research teams yet.

Concerning the last (cognitive) task, all the top 5 discriminative features were
extracted from the on-surface movement. In our recent article [4] we proved that
in-air entropy-based parameters could be used to identify early cognitive deficits
in PD without major cognitive impairment and that they correlate with the
level of attention. In the current study, these in-air measures were not signifi-
cant, but on the other hand, their on-surface variants (i.e. median of Shannon
entropy calculated from the global/vertical movement) had the p-values of the
Mann-Whitney U-test < 0.05, moreover, they significantly correlated with the
visuospatial domain of CCB (e.g. ρ = −0.3, p < 0.05). The top 5 parameters
consist of the width of the product, which was smaller in the LBD group. It
slightly correlates with the lower median of the length of strokes (ρ = 0.3) and
lower median of the duration of strokes (ρ = 0.2) and probably means that the
subjects in the LBD group made the overlapped pentagons smaller. In addition,
since the non-parametric coefficient of variation of the length of strokes was
higher, we assume that the LBD subjects were not able to keep a stable length
of strokes (nevertheless, based on the scoring published in [24], this is assumed
as a very small deviation). Regarding the width, we also observed a negative
correlation (ρ = −0.3, p < 0.05) with the overall score of MDS–UPDRS III.

The classification based on the pentagon copying test provided 68% balanced
accuracy (AUC = 0.73%), which is slightly better than in the case of the spiral,
but not as high as in the case of the sentence.

And finally, a machine learning model based on the whole set of features
(tasks) enabled us to improve the accuracy to 74% (AUC = 76%). This shows
that the combination of the graphomotor, handwriting and cognitive deficits can
be used to achieve reasonable performance in the prodromal diagnosis of LBDs.
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5 Conclusion

This study has several limitations. Our dataset has a small sample size and the
HC and LBD groups are imbalanced, therefore to get better results in terms
of their generalisation, a bigger database must be analysed. Next, due to the
small sample size, we fused subjects with a high risk of developing PD or MCI-
LB into one LBD group. Nevertheless, subjects with MCI-LB in its prodromal
stage are associated mainly with cognitive (executive or visuospatial) decline,
while subjects with prodromal PD experience mainly motor deficits. In other
words, we suppose that further stratification of these participants into two groups
could increase the classification accuracy (we hypothesise that MCI-LB would
be more pronounced in the pentagon copying task and PD in the handwriting
one). Finally, although we tried a correction of multiple comparisons during the
statistical analysis, almost no significant features appeared after this adjustment.
To sum up, concerning the limitations mentioned above, the study should be
considered as a pilot one.

In conclusion, despite the limitations, to the best of our knowledge, it is
the first work exploring the impact of computerised analysis of a graphomotor,
cognitive, and handwriting task on the prodromal diagnosis of these neurodegen-
erative disorders. It bridges the knowledge gap in the field of LBDs, and provides
baseline results for future studies focusing on the prodromal diagnosis of LBDs
via a computerized and objective analysis of graphomotor and handwriting dif-
ficulties.
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Abstract. The state-of-the-art artificial intelligence tools for automatic
diagnosis of Parkinson’s disease from handwriting require a lot of training
samples from both healthy subjects and patients to exhibit impressive
performance. Publicly available datasets include very few samples drawn
by a small number of individuals and that limits the use of deep learning
architectures. In this paper, we evaluate if the performance of a Con-
volutional Neural Network that recognizes the handwriting of Parkin-
son’s disease patients can be improved by adding synthetic samples
to the training set. In the experimentation, we synthetically generated
dynamic signals of spirals and meanders through the use of a Recurrent
Neural Network. The performance of the system was evaluated on the
NewHandPD dataset and the results showed that the use of synthetic
samples increases the recognition accuracy of the convolutional neural
network.

Keywords: Data augmentation · Handwriting synthesis · Parkinson’s
disease · Handwriting analysis · CNN · RNN

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects dopaminer-
gic neurons in the Basal Ganglia, whose death causes several motor and cognitive
symptoms. PD patients show impaired ability in controlling movements and dis-
ruption in the execution of everyday skills, due to postural instability, the onset
of tremors, stiffness and bradykinesia [10,14,23,24].

There is no cure for the disease and the decline can only be somehow managed
during its progression. This creates a critical need for improving the procedures
and the tools for diagnosing them as early as possible.

The analysis of handwritten production has brought many insights for uncov-
ering the processes occurring during both physiological and pathological condi-
tions [3,28,29] and providing a non-invasive method for evaluating the stage of
the disease [22].
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The main advantage of diagnostic systems based on handwriting analysis
with respect to other diagnostic procedures is that collecting handwriting sam-
ples is cheap and tests are easy to administer. Therefore, different artificial intel-
ligence based approaches for the automatic identification of Parkinson’s and
Alzheimer’s disease motor symptoms have been proposed, together with a vari-
ety of motor tasks administered to healthy individuals and patients [16,20].

The desire of applying top-performing and most recent deep learning tech-
niques to this application domain has highlighted the lack of a huge collection of
handwriting samples. All the publicly available datasets include samples drawn
by a reduced number of subjects and are, in some cases, unbalanced. Collect-
ing data from patients is, in general, more complex than collecting data from
healthy subjects mainly for two reasons: the need of reaching patients at their
living places and the participation of specialized medical personnel during the
administration of the diagnostic test.

To overcome the difficulty in collecting data from patients, in a very recent
paper we have proposed to adopt machine learning tools based on one-class
classification algorithms, i.e. algorithms capable of solving a two-class classifica-
tion problem by learning the distinctive characteristics of only one class [17]. We
have shown that is possible to reach state-of-the-art performance by training the
Negative Selection Algorithm only with samples drawn by healthy subjects.

To overcome the more general problem of the scarcity of data and, therefore,
to improve the performance of classifiers and to avoid overfitting of models, some
papers investigated the usefulness of data augmentation and transfer learning to
improve the classification performance [11,15,25]. The alterations introduced by
data augmentation methods generate new samples that may not correspond to
credible real samples. So, in this paper, we propose to increase the size of datasets
by exploiting algorithms that are able to generate synthetic handwriting samples.
To the best of our knowledge, that is the first time that these algorithms are
applied to the application domain of diagnosis of neurodegenerative diseases. In
particular, we evaluated the performance of the generator of synthetic samples
based on a Recurrent Neural Network proposed by Alex Graves in [7].

The paper is organised as it follows. In Sect. 2, we review the previous works
on synthetic handwriting generation and data augmentation and we show that
there are different algorithms to generate synthetic handwriting but, up to now,
they have not yet used to diagnose PD from handwriting. In Sect. 3, we briefly
introduce the real data used in the experimentation, while in Sect. 4 we present
the approach adopted to generate synthetic drawing samples. Section 5 intro-
duces the CNN used as classifier and the approach adopted to convert signals to
2D images. Section 6 discusses the system that combines the synthetic generator
of drawing samples and the classifier in order to select the best synthetic samples
that will be used to train the final system. Sections 7 and 8 discuss the setup
adopted to perform the experiments and the results we obtained. Eventually,
Sect. 9 briefly discusses the results and Sect. 10 concludes the work.
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2 Related Works

Many algorithms have been proposed in the literature for the generation of syn-
thetic handwriting and they can be grouped in two different families: template-
based approaches [4,5,9] and learning-based approaches [7,12,13]. The main
difference between these two methodologies is that template-based approaches
generate synthetic samples by perturbing real samples while learning-based
approaches train neural networks to build a high-dimensional interpolation
between training examples that will be used to generate synthetic samples.

Synthesis of handwriting samples has been applied to improve the perfor-
mance of automatic systems for writer and signature verification [5,21] and for
handwriting recognition [1,9,12].

In the field of handwriting analysis for the diagnosis of neurodegenerative
disorders, as Parkinson’s and Alzheimer’s disease, classical approaches of data
augmentation have been recently implemented to boost the performance of deep
learning networks. Classical approaches of data augmentation are those that
have been applied in the more general field of computer vision and they include
geometrical distortions and noise addition to real samples.

Rotations, flipping and contours were adopted in [15] to increase by a factor of
13 the cardinality of the dataset that was used to train the convolutional neural
network AlexNet. In [11] the authors observed that rotation and thresholding
had a negative impact on performance while illumination showed significantly
better performance in comparison.

Data augmentation methods as jittering, scaling, time-warping, and averag-
ing were applied directly to time series to increase the cardinality of the dataset
used to train a CNN-BLSTM network [25]. The results showed that the combina-
tion of CNN-BLSTM and data augmentation was not effective when a single task
was considered, but it increased the accuracy of 7.15% when the classification
outputs per each task were combined.

3 Dataset of Real Sample

In this study, we used the NewHandPD dataset [19], a public dataset that
includes handwritten data produced by 31 PD patients and 35 healthy sub-
jects. The healthy group includes 18 male and 17 female individuals with ages
ranging from 14 to 79 years old (average age of 44.05 ± 14.88 years), while the
patient group includes 21 male and 10 female individuals with ages ranging from
38 to 78 years old (average age of 57.83 ± 7.85 years).

Each individual drew 12 samples: 4 spirals, 4 meanders, 2 circled movements,
and 2 diadochokinesis. The dynamics of each sample were recorded by means
of a Biometric Smart Pen (BiSP), while an image of the sample was available
only for spirals, meanders and circles. A BiSP records 6 signals from as many
sensors: voice signal m(t), fingergrip gr(t), axial pressure of ink refill p(t), tilt
and acceleration in X direction ax(t), tilt and acceleration in Y direction ay(t),
tilt and acceleration in Z direction az(t).
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In this study only the signals acquired with BiSP were taken into account
while the images were not used. Moreover, we used only signals related to spirals
and meanders, which are the classical motor tasks adopted to diagnose Parkin-
son’s disease [30].

4 Generation of Synthetic Samples

4.1 The Method

The system we realized to generate synthetic drawing samples is based on the
approach proposed by Alex Graves [7], which exploits Long Short-term Memory
recurrent neural networks to generate complex sequences by predicting one data
point at a time. The main idea behind the approach proposed by Graves is
that RNN can be trained on real data sequences one step at a time so that the
network can predict which point follows another one. Predicting the trajectory
one point at a time has the advantage of increasing the diversity among the
samples generated by the network.

It’s worth noting that the network isn’t trained to predict the next location
of the pen, but to generate a probability distribution of what happens at the
next instant of time, including whether the pen gets lifted up. In particular, a
Gaussian mixture distribution is generated to predict the pen offset from the
previous location while a Bernoulli distribution predicts if the pen stays on the
paper or not.

This prediction is realized through the use of a mixture density network [2],
which uses the outputs of a neural network to parameterise a mixture distri-
bution. The combination of mixture density and RNN has the effect that the
output distribution is conditioned not only on the current input, but on the
history of previous inputs too.

In the original implementation proposed by Graves, each input vector xt to
the network is made-up of a real-valued pair {x1

t , x
2
t}, which defines the pen

offset from the previous input, and a binary x3
t that has value 1 if the vector

ends a stroke. Each output vector yt consists of the end-of-stroke probability
et, a two-dimensional vector of means μj , a two-dimensional vector of standard
deviation σj , correlations ρj and mixture weights πj , which are scalars, for the
M mixture components. The outputs of the network are transformed so that
they satisfy the bounds related to the quantity they represent (for example, the
real value used as correlation is bound between −1 and 1 with a hyperbolic
tangent). Overall, the total number of outputs is equal to (1 + M ∗ 6).

The probability density Pr(xt+1|yt) of the next input xt+1 given the output
vector yt is defined as follows:

Pr(xt+1|yt) =
M∑

j=1

πj
tN (xt+1|μj

t , σ
j
t , ρ

j
t )

{
et if x3

t+1 = 1
1 − et otherwise

(1)
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The probability given by the network to the input sequence x is

Pr(x) =
T∏

t=1

Pr(xt+1|yt) (2)

and the sequence loss L(x) used to train the network is the negative logarithm
of Pr(x)

L(x) = −
T∑

t=1

log(Pr(xt+1|yt)) (3)

Once trained the RNN network is able to generate synthetic time sequences
of a given length. As initial input, a vector of zeros is passed to the network
and the end-of-stroke signal is turned on, signalling to the network that the next
point it produces will be the start of a new stroke, rather than a continuation of
an existing one. A zero state is also passed into the network for the initialization.
After that, the network outputs the parameters of the probability distributions
from which we randomly sample a set of values that represent a point of the
synthetic sample. Afterwards, we repeat the loop and feed in the sampled point
and network state back in as inputs, to get another probability distribution to
sample from for the next point, and we repeat until we get the desired number
of points.

4.2 The Implementation

The method described before was proposed to generate synthetic handwritten
text, which consists of sequences of characters and then of words, and therefore,
in the original implementation, the term end-of-stroke referred to the end of a
pen-down.

Instead, in this paper, we want to synthesize drawing samples that are usually
executed in a single pen-down. We know by handwriting generation theory that
a pen-down is a superimposition of elementary movements, so, in our implemen-
tation, the end of a stroke corresponds to the end of an elementary movement.

The real samples were segmented in elementary movements by looking at the
zero crossings of the tangential velocity along the y-axis [26]. Because the samples
in NewHandPD include only the acceleration along the three axes, we needed to
integrate these signals to detect the start and the end of elementary movements.
Accelerations were filtered before integration, as suggested in another paper that
used a smartpen similar to the one used for collecting NewHandPD data [27].
We filtered the acceleration signals between 0.5 Hz and 12 Hz with a 4th order
Butterworth filter to remove the DC component related to slow oscillations and
gravity and the frequencies beyond the range of relevant tremor components.

Given the time series available for each real sample, the inputs of the network
were the acceleration along x and y instead of x and y as in Graves’ paper.

As with regards to the architecture of the network, we used a 2-layer stacked
basic-LSTM network (no peephole connections) with 256 nodes in each layer.
The number M of mixture components was set equal to 20, as in the original
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Graves’ paper. Overall, the network outputs 121 real values used to infer the
probability distribution.

In our experiments, we adopted the implementation made available by David
Ha at [8]. This implementation adopts mini-batches to fast the learning process.
Mini-batches require to be the same length to be efficient and therefore time
series were divided in sequences of length SL. Afterward, continuous portions of
SL points were randomly sampled from the training sample and included in the
mini-batches. Eventually, a dropout layer was included for each of the output
layers of the LSTM to regularise training and reduce the overfitting.

5 Classification Stage

5.1 From Signal to Image

Let K be the total number of time series available for each handwriting sample
and k the time series selected for the generation of the 2D image. Let n be the
number of points of each time series.

The selected k time series of a handwriting sample are rearranged into a
(
√

n × k,
√

n × k) square matrix Im that, in turn, is resized into a 64×64 image
using the Lanczos resampling method. When n×k is not a square number, time
series are truncated just enough to guarantee that Im has two natural numbers
as dimensions.

Im is built by concatenating n arrays of k elements. In particular, the i-th
array is made up of the value at time ti of each time series. The arrays are
horizontally concatenated so that the rows of Im are filled one by one. It is
worth noting that the values of the time series are scaled in the range [0, 255] so
that each value can be represented by a grayscale pixel.

This approach for the generation of a 2D image from the time series of a
sample is similar to the ones proposed in [19,25] but differs in the way Im is
filled. In particular, the approaches in the literature concatenate the arrays so
that the columns of the matrix, instead of rows, are filled one by one. Figure 1
shows an example of an image generated by following the approach described in
this subsection.

5.2 Convolutional Neural Network

The 2D images representing the time series of handwriting samples are classified
by a Convolutional Neural Network (CNN) whose architecture is taken from
the neural network CIFAR-10 presented in [18]. The network has been fully
implemented from scratch using the Python TensorFlow2.0 library. Figure 2
shows a top-level view of the entire architecture and the hyper-parameters related
to each layer.
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Fig. 1. An example of a grayscale 2D image obtained by k = K = 6 time series

6 Validation of Synthetic Data

The solution adopted in this work to assess the output of the RNN draws inspi-
ration from the operation of Generative Adversarial Networks, or GANs [6].
GANs learn how to generate new data by adopting an architecture with two
agents: a Generator Model, which generates a new example, and a Discrimina-
tor Model, which decides if the generated example is real or synthetic. Both the
Generator and the Discriminator are Neural Networks: the Generator output is
connected directly to the Discriminator input so, through backpropagation, the
Discriminator’s classification provides signals that the Generator uses to update
its weights.

The main difference between standard GAN models and the approach pro-
posed here is that the Generator doesn’t learn from Discriminator’s feedback
since the two models are independent of each other. In fact, while in the GANs
the two agents are connected through backpropagation so that the output of
the Discriminator updates the weights of the Generator, in this work Generator
and Discriminator are two separate subsystems: the RNN described in Sect. 4
generates synthetic data and, in a separate moment, these data are validated
by the classifier described in Sect. 5 and trained on real data. So, the synthetic
samples correctly classified by the CNN will be used to increase the dimension
of the training set while the others will be discarded. Figure 3 shows the system
implemented to validate synthetic samples.

It is worth noting that in our system the Discriminator consists of 5 CNNs
and it classifies samples by a majority vote algorithm. The dataset of real samples
is shuffled 5 times and each time a CNN is trained with 35% of the data.
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– Input Layer;
– Convolution Layer (1):

• Features: 32
• Kernel size: 5× 5
• Stride: 1× 1
• Activation Function: ReLU

– MaxPooling Layer:
• Pool size: 3× 3
• Stride: 2× 2

– Convolution Layer (2):
• Features: 32
• Kernel size: 5× 5
• Stride: 1× 1
• Activation Function: ReLU

– AveragePooling Layer (1):
• Pool size: 3× 3
• Stride: 2× 2

– Convolution Layer (3):
• Features: 64
• Kernel size: 5× 5
• Stride: 1× 1
• Activation Function: ReLU

– AveragePooling Layer (3):
• Pool size: 3× 3
• Stride: 2× 2

– Flatten;
– Dense Layer (1):

• Features: 64
• Activation Function: Sigmoid

– Dense Layer (2):
• Features: 10
• Activation Function: Sigmoid

– Dense Layer (3) - Output:
• Features: 1
• Activation Function: Sigmoid

Fig. 2. Top-level view of the CNN used as classifier and hyper-parameters of each layer.
The image was realized with Plotneuralnet.

7 Experimental Setup

7.1 Time Series Selection

We performed a preliminary experiment to verify if representing each sample
with two time series instead of six could affect the performance of the classifier.
In particular, we compared the performance of the network when the following
two sets of time series were considered:



Generation of Synthetic Drawing Samples to Diagnose Parkinson’s Disease 277

Fig. 3. The approach adopted to validate synthetic samples

– {m(ti), gr(ti), p(ti), ax(ti), ay(ti), az(ti)};
– {ax(ti), ay(ti)}

Table 1 resumes all the choices we did to configure the experiment and the
learning process of the convolutional neural network. Those values were selected
after a fine-tuning process aimed at avoiding overfitting and maximizing the
performance of the network on the validation set. The partition of the data in
training, validation and test sets was made by guaranteeing that all the samples
drawn by an individual were included in only one of the sets. We trained two
different CNNs, one devoted to discriminating between PD and healthy subjects
by looking at spirals and the other by looking at meanders.

Table 2 shows the results obtained by the two CNNs when images are gener-
ated by one of the two sets of time series. For each drawing task, we evaluated
if the difference between the classification accuracies was statistically significant
or not by performing a Wilcoxon test, with a level of significance α = 0.05. As
shown in the table, differences are not statistically significant, both for spirals
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and meanders, but the p-value obtained in the case of spirals is close to the level
of significance and the evidence for the null hypothesis that using two time series
instead of six has no effect on the accuracy is weaker.

We chose to represent samples only with two time series, tilt and acceleration
in X direction ax(t) and tilt and acceleration in Y direction ay(t).

Table 1. Experimental setup to classify 2D images with the CNN

Parameter Value

Kernel initializer Glorot normal

Bias initializer 0

Pseudorandom number generators Fixed seeds

Training/validation/test size 35%/15%/50%

k-fold cross validation 5-fold

Batch size 5

Optimization algorithm SGD

Learning rate 2 × 10−5

Momentum 0.9

Nesterov momentum True

Loss Binary cross entropy

Early stopping Min validation loss

Epochs 10000

Table 2. Performance of the CNN when two different sets of time series are considered.
The last column reports the p-value of the Wilcoxon statistical test. 2 time series:
{ax(ti), ay(ti)}, 6 time series: {m(ti), gr(ti), p(ti), ax(ti), ay(ti), az(ti)}.

Task Accuracy (%) p-value

2 time series 6 time series

Spirals 70.75 ± 3.22 77.01 ± 3.25 0.07961

Meanders 74.42 ± 7.81 74.72 ± 2.62 0.89274

7.2 Generation and Validation of Synthetic Samples

We trained 4 different RNNs, which were implemented according to the architec-
ture described in Sect. 4: the first synthesized spiral drawn by healthy subjects,
the second synthesized spiral drawn by PD patients, the third and the fourth
synthesized meanders drawn by healthy and PD patients, respectively.
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Table 3 reports the hyper-parameter values used for these networks, which
were fine-tuned with the aim of minimizing the loss on the validation set.

Once the 4 networks were trained, each of them generated SS valid samples.
The validity of a sample was verified with the system that combines the synthetic
generator and the classifier, as described in Sect. 6. We evaluated seven conditions
with SS = [100, 300, 500, 600, 800, 1000, 1500].

The length of each sample (the number of its points) generated by one of the
RNNs was chosen so that the distribution of synthetic samples per number of
points was similar to the distribution of real samples per number of points.

Table 3. RNN hyper-parameters to generate synthetic samples

Parameter Value

RNN hidden state 256

Number of stacked cells (layers) 2

Cell type LSTM

Sequence length SL 512

Number of epochs 300

Learning rate 0.005

Number of mixture M 20

Dropout keep probability 0.8

Training/validation set 70%/30% of total samples

Loss function Log likelihood loss

7.3 Data Augmentation and Classification

Two CNNs were trained with both real and synthetic samples to diagnose Parkin-
son’s disease: one processed spirals, the other one meanders. The two CNNs were
trained using the hyper-parameters reported in Table 1, the same ones we used
to train the network with only real samples.

The 2∗SS synthetic spirals (SS per class) and the 2∗SS synthetic meanders
were added to the 50% of real samples used in the training phase, which were
split between training and validation sets. Synthetic samples were not included
in the test set.

The performance was measured by averaging on 5 training of the CNNs.
Every time, the real dataset was shuffled and 50% of subjects were kept apart
as test set. So, the samples drawn by an individual were included in the training
or in the test set but never in both of them.

8 Results

Figure 4 shows how the accuracy of the system varies as the number of synthetic
samples varies from 0 to 1500, both for spirals and meanders. Figure 4a shows
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(a) meanders

(b) spirals

Fig. 4. Accuracy vs number of synthetic samples for meanders and spirals
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Table 4. Accuracy (Acc.), Sensitivity (Sens.) and Specificity (Spec.) of the CNN when
it is trained without or with synthetic samples.

No synthetic samples 1500 synthetic samples

Acc. (%) Sens. (%) Spec. (%) Acc. (%) Sens. (%) Spec. (%)

Spirals 70.75 ± 3.22 68.69 ± 5.19 72.62 ± 3.17 74.93 ± 3.58 74.08 ± 5.54 76.09 ± 3.26

Meanders 74.42 ± 7.81 75.60 ± 6.22 73.54 ± 8.10 79.63 ± 3.09 78.77 ± 4.28 80.32 ± 6.78

an evident increasing linear trend of the average accuracy as the number of
synthetic meanders in the training set increases. Moreover, the increase in the
number of synthetic meanders reduces the differences in the performance of the
system when it is trained with a different set of data. Figure 4b shows that these
comments are still valid for spirals even though less evident.

Table 4 reports the results obtained when the CNN described in Sect. 5 was
trained only with real samples or with the addition of 1500 synthetic samples
(15% of which were used as validation).

The use of synthetic spirals had the effect of increasing accuracy, sensitivity
and specificity of 4.18%, 5.39% and 3.47%, respectively. The use of synthetic
meanders had the effect of increasing accuracy, sensitivity and specificity of
5.21%, 3.17% and 6.78%, respectively. Moreover, the standard deviation of the
system trained with real and synthetic samples is lower than the variability of
the system trained with real data only. In particular, the standard deviation of
the accuracy is more than halved when synthetic samples are used.

9 Discussion

The RNN used to generate synthetic samples does not directly output the next
location of the pentip but the parameters of mixture distributions that are sam-
pled to predict the next point of the trajectory. Sampling one point at a time
from probability distributions favours the diversity between real and synthetic
samples. A preliminary analysis confirmed that the synthetic samples differ from
the ones in the test set although the entire real dataset was used to train and
validate the RNN. Nevertheless, this aspect will be further investigated in future
works by keeping the test set apart from the data used to train the generator
network.

The difference in performance when the system is trained with meanders
instead of spirals could be ascribed to the selection of time series. In fact, as
we can see in Table 2, the use of two time series instead of six has no effect on
meanders but lower the accuracy when spirals are evaluated, even though it is
not statistically significant. This aspect needs to be investigated in the future
by increasing the number of experiments.
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10 Conclusions

Publicly available datasets are made-up of samples handwritten by small num-
bers of subjects. This aspect limits the use of top-performing deep learning algo-
rithms that need a huge amount of data to correctly classify samples. To solve
this problem, we have proposed to use algorithms for handwriting synthesis to
increase the size of the training set.

Preliminary results have confirmed that the addition of synthetic samples to
the training set increases the performance of a basic convolution neural network
and reduce the variability of performance as the training set varies.

In our future investigations, we will aim at performing a systematic investi-
gation that will take into account different neural network architectures as well
as samples corresponding to other motor tasks, as for example words and sen-
tences. Moreover, we plan to combine template-based and learning-based meth-
ods to increase the diversity of synthetic samples. Eventually, we will exploit a
correlation analysis between basic handwriting features and the clinical state of
participants in order to evaluate if it is possible to generate synthetic samples
that denote different stages of PD, from early to severe stages.
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Abstract. Timely diagnosis plays a crucial role for the treatment of neurodegen-
erative diseases. In particular, Dementia Identification in early stages is important
to help patients have a better quality of life and to help clinicians to find a pathway
of treatments to slow the effects. To the aim, a wide set of different handwrit-
ing tasks is here considered, and Shallow and Deep Learning methodologies are
compared. Furthermore, Random Hybrid Stroke (RHS) are adopted to represent
the handwriting time series. This solution outperforms the classical Deep Learn-
ing methodology and it is compared to a state-of-art shallow learning approach.
Finally, a decision-level fusion for the results is adopted.

Keywords: Neurodegenerative disease · Handwriting · Kinematic theory ·
Velocity-based features · Hand-Uniba · Random hybrid stroke · Bidirectional
LSTM

1 Introduction

Neurodegenerative diseases are a diverse group of diseases affecting the central nervous
system, united by a chronic and selective process of cell death of neurons. Depending on
the type of disease, the deterioration process may involve a range of symptoms affecting
the individual’s memory, cognitive, functional, and motor skills. Alzheimer’s disease
(AD) and Parkinson’s disease (PD) are the most common neurodegenerative disorders
characterized by a progressive decline in cognitive, functional, and behavioral areas of
the brain [1, 2]. Unfortunately, there are no cures for these diseases. However, an early
diagnosis is crucial for the prospect of appropriate medical treatment.

Non-invasive behavioral biometric techniques traditionally used for security pur-
poses can also be used effectively in the medical field by showing good accuracies in
binary (healthy/diseased) classification [3, 4]. Indeed, as an integral part of neurological
testing, handwriting appears to be a complex activity involving cognitive, functional,
and perceptual-motor components whose changes may be an effective biomarker for the
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assessment of degenerative dementia [5]. So, changes in handwriting are linked to neu-
rodegenerative diseases because it involves cognitive, kinesthetic, and perceptual-motor
tasks [1, 2]. In the field of medical and computer science research, behavioral biometrics
are used for the assessment of Dementia that results in diseases such as PD and AD
[6–9].

Alzheimer’s disease is the most common form of degenerative Dementia, progres-
sively crippling and occursmainly in the presenile age (over 65 years). Themost frequent
initial symptom is difficulty in remembering recent events. With advancing age, the fol-
lowing symptoms may occur aphasia, disorientation, sudden mood changes, depression,
inability to take care of oneself, behavioral problems [3]. Parkinson’s disease, on the
other hand, has more obvious movement-related symptoms, including tremors, rigidity,
slowness ofmovement, and difficultywalking. Later, cognitive, and behavioral problems
may occur, with Dementia sometimes appearing in the advanced stages, except in cases
of early Dementia with Lewy bodies, which are associated with a more severe prognosis.
Parkinson’s disease is more common in the elderly [4].

In this work, a subset of the “HAND-UNIBA dataset,” is adopted. It includes individ-
uals, divided between healthy and dementia diseased [10]. In this way, the classification
considered in this work is binary. More specifically distinguishing individuals who are
healthy from individuals who are in the very early stages of dementia is difficult. To the
best of authors’ knowledge this is one of the first attempts since many other works also
considered patient in advanced disease stages.

Moreover, the large majority of works have tried to understand which features could
be better than others for discrimination aims. Even if some general conclusion can be
stated, the set of relevant features is user and taskdependent,moreover it is also dependent
from the specific task execution. In this direction, this work adopts a random sampling of
handwritings coupled with Deep Learning techniques. Results are compared to standard
state of art approaches.

This study aims to build a system that could help the sustainability of the health
care looking the third Sustainable Development Goals (SDGs). The SDGs are goals to
reach found, approved and accepted by the UN. Specifically, the third one about “Ensure
healthy lives and promote well-being for all at all ages”. So, achieving an affordable,
safe, quality and effective health treatment it’s the first aspect that this study is covering
with the presentation of a lower costs, non-invasive system. Furthermore, the cut of
the costs in diagnosis could lead in financial investment in health system following the
target 3.c of the third SDGs. It is specified that each SDGs is composed by a different
number of target and each target is composed by one or more indicators to measure the
improvement in the target direction.

In this study, we consider the task of early dementia identification using Shallow
Learning and Deep Learning approaches (Sect. 2). After this we show the experimental
protocol (Sect. 3) and the dataset properties (Sect. 4). Then we compare the results with
related discussion (Sect. 5) and the consequent conclusion (Sect. 6).

2 Related Works

Scientific research has moved towards predictive models that can detect subtle changes
in handwriting behavior. The techniques illustrated in this work will support clinicians
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in preventing neurodegenerative diseases through online sub-tasks in handwriting [10,
11].

Online writing is a methodology studied and implemented in scientific research,
which is why this work will consider this methodology. As illustrated in many state-of-
the-art works [10, 11] the capture tool is a digital tablet with a pen. This device captures
spatial and temporal data and saves it in storage memory. Often, after data acquisition
phase, there is a feature extraction phase in order to perform classification in the field of
Shallow Learning [1, 11]. Different authors have used different types of classifiers of the
Shallow Learning’s approaches (SVM, K-NN, Random Forest). Other used approaches
are that of the field of Deep Learning [11, 12].

As far as Shallow Learning approaches are concerned, Impedovo D. et al. [1] used
different features on five other datasets called EMOTHAW [13], PaHaw [12], Parkin-
sonHW [14], ISUNIBA [15], NewHandPH [16]. EMOTHAW [13] was the first public
available dataset which relates emotional states to handwriting and drawing. This dataset
includes samples of 129 participants whose emotional states, namely anxiety, depres-
sion, and stress, are assessed by the Depression–Anxiety–Stress Scales (DASS) ques-
tionnaire. Seven tasks are recorded through a digitizing tablet. PaHaw [12] is composed
by 37 medicated PD patients and 38 age- and sex- matched controls. The handwriting
samples were collected during seven tasks such as writing a syllable, word, or sentence.
ParkinsonHW [14] is composed by 25 PD patients and 15 control subjects that per-
forms handwriting drawing task using a graphics tablet. ISUNIBA [15] is composed by
50 patients affected by Alzheimer diseased patients. Each patient supplied 10 of his/her
handwriting words in two different sessions (5 for each session). NewHandPH [16] is the
extended version of HandPD [17] dataset which is composed by images extracted from
handwriting exams. The novelty in this new version is the adding of signals extracted
from the smart pen. The new version comprises 35 individuals, 14 diseased patients and
21 healthy patients, which performs online handwriting drawing tasks such as spirals
and meanders drawings. The features used are button state, position, pressure, azimuth,
altitude, displacement, speed, and acceleration. The results obtained contain accuracies
ranging from 79.4% to 93.3%.

Zhang X. et al. [18] have work on the use of the Recurrent Neural Network (RNN)
to perform online writer identification independent from the executed task [18]. They
also used a Bi-Directional Long Short-Term Memory (BiLSTM) in combination with a
newer data augmentation technique called Random Hybrid Stroke (RHS) [18]. RHS are
here adopted based on the intuition that there could be an underlining dementia pattern
in handwriting which is independent from the specific written text.

The use of RNN to identify the writer was explored also from different works as
Doetsch P. et al. [19] that studied BiLSTMs with Attention Mechanisms [20] for online
handwriting recognition, obtaining actual results on the RIMES handwriting recogni-
tion task [19]. Furthermore, the use of BiLSTM, despite the Multi-Level LSTM, was
encouraged by Puigcerver J. [21] explored the use of BiLSTM compared to the use of
Multi-Level LSTM showing that BiLSTM has better or equivalent results than the other
ones and allowing a faster network training.
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In this work it was used the same classifier as in [18] with and without the RHS
technique. Furthermore, it was used the same protocol for the Shallow Learning as in
[11]. The complete description is in the next section.

3 Methods

3.1 Shallow Learning

Following the protocol related to the Shallow Learning in [11], each of the data sequen-
cies was elaborated by a Features Extraction module. In this module the extracted fea-
tures are Distance-Based Features, Velocity-Based Features, Kinematic-Based Features,
features related to the application of Discrete Cosine Transform and Discrete Fourier
Transform and related to the velocity aspect. Every feature is a time-series, thus sta-
tistical functions such a mean, median, standard deviation 1st and 99th percentile was
applied to obtain synthetic description of that time-series. Interested readers can find
details here omitted for the sake of readability in our previous work [11].

For each writing task, the Random Forest [22] was used to select features [11]. The
number of selected features is approximately in the range from 400 to 500. Obviously,
that number and the specific set of features change for each task thus demonstrating
once more that the dementia affects handwriting in different ways based on the specific
writing task. Table 1 shows some of the common selected features.

Table 1. Common features on each task

Common features name Description

ACCx_ia [99 per] Acceleration in x

GL_FD_ACC_seventh_ia [99 per] Grunwald-Letnikov Acceleration fractional derivatives
alpha = 0.7 in-air

GL_FD_JERKy_sixth_os [mean] Grunwald-Letnikov JERKy fractional derivatives alpha
= 0.6 on-surface

GL_FD_JERKx_eighth_os [99 per] Grunwald-Letnikov JERKx fractional derivatives alpha
= 0.8 on-surface

GL_FD_ACC_first [1–99 per] Grunwald-Letnikov Acceleration fractional derivatives
alpha = 0.1

GL_FD_DISx_fifth [stan. Dev.] Grunwald-Letnikov Displacement x fractional
derivatives alpha = 0.5

GL_FD_ACC_fifth_os [median] Grunwald-Letnikov Acceleration fractional derivatives
alpha = 0.5 on-surface

GL_FD_VEL_seventh_os [1 per] Grunwald-Letnikov Velocity fractional derivatives
alpha = 0.7 on-surface

(continued)
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Table 1. (continued)

Common features name Description

GL_FD_JERK_third_os [99 per] Grunwald-Letnikov JERK fractional derivatives alpha
= 0.3 on-surface

VELx_os [1–99 per] Velocity in x on-surface

ACCx_os [stan. Dev.] Acceleration in x on-surface

GL_FD_DISx_seventh [mean] Grunwald-Letnikov Displacement x fractional
derivatives alpha = 0.7

GL_FD_VEL_eighth [mean] Grunwald-Letnikov Velocity fractional derivatives
alpha = 0.8

GL_FD_VEL_ninth_os [1 per] Grunwald-Letnikov Velocity fractional derivatives
alpha = 0.9 on-surface

The Random Forest [22] is also used as a classifier, taking selected features from
the previous model as input, with the purpose of disambiguating the diseased class from
the healthy class. For the next sections, experiments performed with this approach are
referred as “RF”.

3.2 Deep Learning

BiLSTM with Self-Attention [20] with and without Random Hybrid Stroke (RHS) [18]
has been adopted.

The RHS [18] technique makes it possible to perform classification on data that are
independent of the task in which they are sampled. The RHS [18] technique requires
that the data points’ sequences are time series composed by X and Y coordinates and
the pen status (a binary value that indicates that the pen is touching the device or not,
respectively 0 and 1). So, the data-points sequence S will be of the following form:

S = [[
x1, y1, p1

]
,
[
x2, y2, p2

]
, . . . ,

[
xn, yn, pn

]]
(1)

where pi is the features related to the pen-status and its values will be 0 for the pen-up
and 1 for the pen-down and n is the number of the points. Subsequently, the sequence S is
transformed to obtain information related to the strokes rather than information related
to the points. In this phase, strokes are defined as the segment between two points.
Furthermore, the transformation distinguishes the strokes in real and imaginary ones.
The imaginary ones are which one that occurs when, between two points, there is -at
least- a point with button status as pen-up. It is specified that to avoid misunderstanding
by the term “imaginary” that the points with button status as pen-up are sampled by the
device and they are the effective pen position in air. Furthermore, imaginary stroke was
chosen because of in the study of the effectiveness of imaginary stroke in [18] that point
of those real and imaginary strokes are better than only the real one. Meanwhile the real
ones are which one that occur between points with button status as pen-down (Figure 1
shows an example of real and imaginary stroke).
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Fig. 1. Example of real and imaginary stroke [18].

The sequence S is as follows:

�S =
[[x2 − x1, y2 − y1, p2 × p1

]
, . . .[

xi − xi−1, yi − yi−1, pi × pi−1
]
, . . .[

xn − xn−1, yn − yn−1, pn × pn−1
]]

(2)

After this transformation, an N number of random sub-sequences were sampled
which are the “Random Hybrid Stroke” (RHS). This technique is adopted in the contest
of writer’s identification when shorts sequences of handwriting text are available and a
writer could haven’t enough training data. Moreover, these techniques make the task of
identification independent from the text extrapolating subsequences from the text that
lead the model such as RNN to learn features related to writer rather than related to the
task. In our case, we are attempting to learn a disease pattern independently from the
specific task execution. So, this random sampling is performed taking multiple short
continuous subsequences from �S. Each of the sub-sequencies will be in the following
form:

RHS = [
. . . ,

[
�xi,�yi, p̃i

]
, . . .

]
(3)

where �xi = xi − xi−1, �yi = yi − yi−1, and p̃i = pi × pi−1.
Once obtained a number N of RHS for each patient, such RHS are given to a model

following the protocol described in [18].Clearly, our experiments aim to label the patients
as diseased or healthy rather than identifies the patients. So, the label described in dataset
subsection are One-Hot Encoded. To simplify the reading of the results, the original label
was the indices of the position of the 1 in the one-hot encoded label. As in [18], after
the model gives N results for the N RHS, the results are averaged to obtain a final vector
where, applying the argmax gives us the classification of the patients. To achieve this a
SoftMax Activation function was used in the last layer. Figure 2 shows the model used
by this work.

Deep Learning with RHS, was initially tested with 1000 RHS of length 100 samples,
as experimented in the paper [18]. However different setup showed different results, 90
RHS of length 30 was used in this paper. For this experiment the reference acronym is
set to “RHS”.
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Fig. 2. Deep learning model structure

It was tested the same model described above (Fig. 2) but using the raw data sequen-
cies. Because of the obviously difference in terms of data sequencies’ length between
patients, the sequencies was Zero Padded at task level considering as length to achieve
the max length of all the sequencies. Then, all the padded data sequencies was given to
the samemodel as in Fig. 2. This experiment is referenced with the acronym “NORHS”.
This was a required test to inspect potentialities of RHS.

The number of LSTM Units was chosen by a comparison of different setups, as for
the choose of the number and the length of the RHS.

4 Data

The dataset here adopted is called “Balanced-Hand” and name stands for “Balanced
HAND-UNIBA”. “HAND-UNIBA” [10] originally contains handwriting data from 97
patients (diseased patients) with four different level of dementia assessed by a group
of medics, it also contains (at this date) 56 healthy persons (healthy patients). Table 2
shows the described division.

Each patient had to perform several tasks that includes cognitive and functional tests.
The tasks recordedwere of the category:Mental StatusAssessment ofOlderAdults (Mini-
COG), Mini Mental State Examination (MMSE), Attentional Matrix, Trail making test
and some other test. The full description is in Table 3.
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For each user, and for each performed task, the x and y coordinates were recorded,
the pressure applied by the patients during the execution of the task in range between
0 and 1, the timestamp in milliseconds, the azimuth-x and azimuth-y of the pen in the
range between 0 and 1 and the button status (pen-up and pen-down). For the use of RHS
technique, x and y coordinates and Button State were used for each of the experiments
that are described in the following subsection.

The original “HAND-UNIBA” is unbalanced because of the number of patients with
dementia is more than the patients without dementia [10]. Thus, patients with the second
and third level of dementia are clearly diseased and their classification through handwrit-
ing ismeaningless since the disease is already evident andovert.With this small prologue,
the balanced method report is introduced. Patients with mild and first-stage dementia
were selected, incorporating these terms into the generic class (diseased). These patients
are more difficult to distinguish from healthy because they present dementia symptoms
or very early stages. As can be seen from the Table 2 the number of diseased patients is
49. In this way, 49 healthy patients were selected to have the same number of healthy
patients. This is how the “Balanced-Hand” dataset was built.

Table 2. Classes division of “HAND-UNIBA” [10]

Class N° Patients

Healthy patients 56

Mild 17

First 32

Second 32

Third 16

Table 3. Task and their description

Abbreviation Description User request Category

CDT Clock drawing test Draw a clock with numbers in
it, then draw the clock hands at
11.10 a.m

Mini-COG

SW Sentence drawing test Think and then write a
sentence

MMSE

IPC Pentagons drawing test Copy the shape of this design

M1 First matrix test Mark all the numbers “5” in
the matrix, without correcting
the barriers already made

Trail

(continued)
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Table 3. (continued)

Abbreviation Description User request Category

M2 Second matrix test Mark all the numbers “2” and
“6” in the matrix, without
correcting the barriers already
made

M3 Third matrix test Mark all the numbers “1”, “4”
and “9” in the matrix, without
correcting the barriers already
made

TMT1 First trail-making test Connect the circles following
the order of the numbers. For
example, 1–2-3, and so on.
Perform the exercise as
quickly as possible and never
lift the pen. In case of error,
correct immediately

TMT2 Second trail-making test Connect the circles alternately
following the order of the
numbers and the order of the
letters of the alphabet. For
example, 1-A-2-B-3-C, and so
on. Perform the exercise as
quickly as possible and never
lift the pen. In case of error,
correct immediately

TMTT1 Trail test 1 Connect the circles following
the order of the numbers. For
example, 1-2-3, and so on.
Perform the exercise as
quickly as possible and never
lift the pen. In case of error,
correct immediately

TMTT2 Trail test 2 Connect the circles alternately
following the order of the
numbers and the order of the
letters of the alphabet. For
example, 1-A-2-B-3-C, and so
on. Perform the exercise as
quickly as possible and never
lift the pen. In case of error,
correct immediately

(continued)
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Table 3. (continued)

Abbreviation Description User request Category

H Writing the word test Write the word “Ciao” in
italics, resting your wrist on
the tablet

Additional tests

VP Connecting two vertical
points tests

Link the vertical points with a
straight line four times by
going back and forth

HP Connecting two horizontal
points tests

Link the horizontal points with
a straight line four times by
going back and forth

SC Square copy task Copy the square drawing
shown

S1 First signature acquisition Sign your signature here

S2 Second signature
acquisition

Sign your signature here

CS Spiral copying test Copy the shape of this design

TS Retrace spiral test Retrace the shape of this
design

CHK Bank check copying task Look at the fields on the
completed check and copy
them back to the blank check
below

LE Write “le” repetitions Write a sequence of “L” and
“E” in italics, for example
“LELELELE”

MOM Writing the word test Write the word “MAMMA” in
italics inside the three boxes,
from top to bottom

W Writing the word test Write the word “FINESTRA”
in italics

DS Listen and write sentence Listen and write in italics what
you will hear. (The sentence
“Oggi è una bella giornata”
will be dictated)

After the balancing of the dataset in terms of the distribution of the patients between
the two class (to obtain a 50% of healthy patients and 50% of diseased patients), it’s
important to exploit that, for some tasks there were less than 50 points. For this reason,
that patients haven’t been considered during the training and test phases for that specific
task. This policy of exclusionwas the same for all the experiments, so all the experiments
are comparable at task-level. We mean that all the experiments are performed with the
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same raw data. The situation is summarized in Table 5 including the final size of the
dataset.

The dataset couldn’t be shared with the research community because of the presence
of sensible data by the patients.

5 Results

Experiments share the same dataset, the same type of encoding patient’s label and the
same methodology of train/test phases: the Leave-One Out (LOO). The LOOmethodol-
ogy consists of training and testing the model N times and each times using N-1 samples
as training data and 1 sample as test data. Assuming that N is the number of patients. For
the experiments described above, from the training data one patient at time is excluded
and then used it as test data. After all the experiments, the results were used to calcu-
late the evaluation metrics. Related to the encoding phases, the diseased patients were
considered as positive class, so they had the label “1”, and the healthy patients were con-
sidered as negative class, with the label “0”. The practical meaning is that the reported
F1-Scores are referencing the diseased class. These values are important because they
are a balanced evaluation of the two base metrics needed for the calculus of F1-Scores:
Precision and Recall. In this way obtained values in the range [0, 1] that it’s an important
information about the quality of the model to recognize the diseased patients. F1-Score
is defined as follow:

F1 = 2
precision× recall

precision+ recall
(4)

So, the precision and recall are defined as:

precision = TP

TP + FP
(5)

recall = TP

TP + FN
(6)

where TP is the number of True Positive, diseased patients classified as diseased, FP
is the number of False Positive, healthy patients classified as diseased, and FN is the
number of False Negative, diseased patients classified as healthy.

Table 4 presents the F1-Scores for each task and for each algorithm used in the exper-
iments. The first three columns contain the results of their homonymous experiments, the
fourth column contain the acronym of the considered task, the fifth column summarize
which experiment has the best result for that task and the last column contains the task’s
category looking Table 3.

Furthermore, Table 5 contains the information about the quantity of data available for
each task regarding the total number the patients (98 patients) and how much diseased
patients was an-available due to the fact that some patients did not perform the task.

The “NORHS” reach the best result only with the “le” task which is a very simple
task composed by the repetition of a similar pattern: “l” and the “e” in italics have the
same movement on a different scale during the handwriting. The approach has very
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Table 4. Results obtained from the previous experiments

NORHS RF RHS Task Best technique Category task

0,3571 0,6237 0,6383 cdt RHS Mini-CGO

0,5556 0,7273 0,6972 chk RF Additional tests

0,1867 0,6316 0,6168 cs RF Additional tests

0,4211 0,6517 0,6545 ds RHS Additional tests

0,3218 0,6392 0,5376 h RF Additional tests

0,3291 0,6593 0,56 hp RF Additional tests

0,381 0,6882 0,5517 ipc RF MMSE

0,6721 0,6526 0,5631 le NORHS Additional tests

0,5849 0,6316 0,6972 m1 RHS Matrix

0,5098 0,7253 0,7818 m2 RHS Matrix

0,338 0,76596 0,75 m3 RF Matrix

0,5217 0,6667 0,5714 mom RF Additional tests

0,4348 0,6136 0,6725 s1 RHS Additional tests

0,5287 0,6526 0,6061 s2 RF Additional tests

0,5641 0,6531 0,6372 sc RF Additional tests

0,4578 0,6222 0,6552 sw RHS MMSE

0,4146 0,7640 0,6218 tmt1 RF TRAIL

0,4839 0,6462 0,5714 tmt2 RF TRAIL

0,3768 0,8041 0,5057 tmtt1 RF TRAIL

0,1538 0,7027 0,5652 tmtt2 RF TRAIL

0,411 0,6739 0,6237 ts RF Additional tests

0,5275 0,6598 0,5102 vp RF Additional tests

0,3846 0,622 0,6942 w RHS Additional tests

instable performance on different tasks thus showing that the use of a “black box”
deep learning approach merely fails when the classification task is not sustained by the
presence of handwriting from severe diseased patients. “RHS” reaches the best results
on tasks “cdt”, “ds”, “m1”, “m2”, “s1”, “sw” and “w”. Meanwhile, “RF” reaches the
best results on all the other tasks. Both the RHS and RF systems have a stable behavior
among the different tasks.

It’s important highlight that the “RF” covers all the tasks of the TRAIL category (in
the Table 3 there are all the task with their category). Furthermore, “RF” reaches the
best result around on the totality of tasks of the Additional Test category. Similarly, the
“RHS” reach the bests results onMini-COG and the first two tasks ofMATRIX category.
The highest F1 score is achieved adopting “RF” on the trail test 2 (i.e., “Connect the
circles alternately following the order of the numbers and the order of the letters of
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Table 5. The differences in quantity of data available for each task

Task Best technique Patients performing
the task (ratio)

Patients performing
the task (final size)

Diseased people not
performing the task

cdt RHS 98,98% 97 1,02%

chk RF 100,00% 98 0,00%

cs RF 98,98% 97 1,02%

ds RHS 100,00% 98 0,00%

h RF 100,00% 98 0,00%

hp RF 100,00% 98 0,00%

ipc RF 98,98% 97 1,02%

le NORHS 98,98% 97 1,02%

m1 RHS 100,00% 98 0,00%

m2 RHS 100,00% 98 0,00%

m3 RF 100,00% 98 0,00%

mom RF 100,00% 98 0,00%

s1 RHS 98,98% 97 1,02%

s2 RF 98,98% 97 1,02%

sc RF 100,00% 98 0,00%

sw RHS 100,00% 98 0,00%

tmt1 RF 97,96% 96 2,04%

tmt2 RF 83,67% 82 16,33%

tmtt1 RF 98,98% 97 1,02%

tmtt2 RF 90,82% 89 9,18%

ts RF 98,98% 97 1,02%

vp RF 100,00% 98 0,00%

w RHS 100,00% 98 0,00%

the alphabet. For example, 1-A-2-B-3-C, and so on. Perform the exercise as quickly as
possible and never lift the pen. In case of error, correct immediately”).

At this stage it is difficult to draw some consistent conclusion and more research is
needed.

More experiments are going to be performed. In the following a first is briefly
described. It deals with task-based “RHS” results and their combination. In particular,
it has been investigated the case in which the classification of each patient is performed
independently for each task adopting the “RHS” system as previously discussed. Then,
the resulting decision (0 or 1) is used to build a single feature vector. In this way, a table
was obtained as in the example in Table 6.
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The new matrix of data was containing some “NaN” values because some patients
hadnot performed some tasks. Then, columnswith “NaN” valueswere removed resulting
in a matrix full of values, considering all values of a patient as a single vector to perform
decision-level fusion.

Table 6. Example of the obtained features for decision level fusion

Id Ground truth Task1 Task2 Task3 Task4 Task5 … TaskN

1234 0 0 0 1 0 1 … 0

5678 1 1 0 0 1 1 … 1

The AdaBoost classifier with 100 decision tree estimators was used and the training
and testing phase in LOO. The result is summarized in the next table Table 7.

Table 7. Result from the decision-level fusion

RHS decision-level fusion Ada-Boost

F1-Score 0.7238

This test has shown that decision-level fusion using all the decision from “RHS”,
for each of the task the was performed by all the patients, reach an F1-Score that is the
third, in a rank, compared with the other F1-Score.

6 Conclusion

This work has shown the possibility to identify dementia from handwriting considering
data of patients at the very early stages of the disease. To the aim, RHS has been adopted
to cope with high variability of results obtained with deep learning techniques. RHS
also represents a possibility to open the research within a task independent disease
recognition. Although the use of RHS significantly improve F1-Score if compared to
the use of raw coordinates, a standard random forest approach built upon a massive set
of features still represent the best performing approach on the majority of tasks.
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Abstract. Tremor is one of the motor impairments of Parkinson’s disease (PD)
and manifests as different types, i.e. rest, kinetic and postural. To date, kinetic
tremor in PD is barely examined and there is no agreed methodology to test and
analyse it. In this exploratory and preliminary study, we aimed at characterizing
handwriting-related kinetic tremor in PD during Archimedes’ Spiral and over-
lapped Circles drawing execution using a digitizing tablet. To achieve this, we
integrated classical kinematic analysis with spectral analysis to establish the set
of parameters better suited to discriminate PD patients from healthy controls. 15
PD patients and 11 elderly healthy control subjects were enrolled in the trial.

The results reveal that there are significant differences betweenPDpatients and
control subjects, especially at the level of spectral features. PD tremor produces
higher Spectral Power and a clear peak in the band of involuntary movements,
while Spectral Power of enhanced physiological tremor in controls is lower and
randomly distributed over the frequencies. We conclude that spectral analysis and
features extracted from the band of involuntary movements can be used to char-
acterize parkinsonian handwriting kinetic tremor. The findings support the theory
that the kinetic tremor in PD patients can be distinguished from the involuntary
movement of the elderly caused by physiological age-related deterioration of the
neuromuscular system’s functional capacity.

Keywords: Parkinson’s disease · Spectral analysis · Handwriting-related kinetic
tremor · Physiological tremor

1 Introduction

Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterized by
motor impairments and manifested as muscular rigidity, resistance to passive move-
ments, smaller amplitude of movements (hypokinesia), lower frequency of movement
(bradykinesia), delay in movement initiation (akinesia) and rest tremor [1]. Generally,
PD is diagnosed by a clinical examination of patient’s signs, symptoms, and health his-
tory. During the last years, research on PD has focused on the analysis of movements
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during the execution of specific handwriting tasks utilizing digitizing tablets that seem
to represent a convenient method to evaluate upper limb motor dysfunctions. This non-
invasive and low-cost approach offers a solution to quantify handwriting impairments,
to identify biomarkers and has the potential to develop into a diagnostic tool to support
clinicians [2].

Kinematic analysis is the most used approach to characterize handwriting impair-
ments in PD and is applied to two task categories: drawing tasks of simple geometrical
figures and writing tasks. The most widespread drawing task is the reproduction of a spi-
ral because it is easy to perform andwell tolerated by patients [3]. To characterize writing
abnormalities, repetitive l-loops and patients’ mother-tongue sentences are rather used.
These tasks allow portraying anomalies concerning not only the typical parkinsonian
micrographia but also other complex alterations involving velocity, acceleration, pres-
sure, andfluency, comprehensively defined asPDdysgraphia [4]. PD subjects show lower
pressure, lower velocity and acceleration, smaller movements, longer in-air movements,
and an overall loss of fluency [5].

Rest tremor is one of the cardinal criteria for PD diagnosis but clinical research
states that parkinsonian tremor can manifest also in other forms, i.e. kinetic tremor and
postural tremor [6]. Since each patient can manifest none, one or more tremor types, it
leads to the great variability of tremor clinical appearance. Even if there is no complete
consensus about tremor types definitions and corresponding frequency ranges [7], the
classification in rest, postural and kinetic tremor is well accepted aswell as the associated
frequency ranges of 4–6 Hz for rest tremor and 4–9 Hz for postural and kinetic tremors
[8]. Spectral analysis of velocity and acceleration signals is a tool to analyse tremor.
However, only a few studies have focused on that approach to analyse handwriting
kinetic tremor in PD, reporting conflicting results. A study estimated spectral power
of velocity and acceleration signals in two specific frequency bands, associated with
voluntary movement execution or with involuntary tremor; the results did not show any
statistically significant difference between healthy subjects and PD patients [9]. Another
study used the same approach and found a higher power in the 4–6 Hz band for PD
patients compared to controls [10]. Handwriting-related kinetic tremor can occur also in
healthy subjects, especially in the elderly. In this case, tremor is physiological and due
to a natural decline in the functional capacity of the neuromuscular system with aging.
Physiological kinetic tremor (4–10 Hz) associated to digitized drawings of Archimedes’
spiral strongly correlates with age in healthy subjects [11].

Since there is a lack of research characterizing handwriting kinetic tremor due to
pathological neurodegeneration in respect of normal-aging physiological tremor and the
results are inconsistent, further studies are needed to better comprehend their differences.
Thus, this preliminary and exploratory study aims at characterizing handwriting tremor
in PD patients and healthy elderly. For this purpose, we used spectral analysis, alongside
classical kinematic analysis, to identify features able to highlight possible differences
between the two groups.
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2 Materials and Methods

2.1 Subjects and Tasks

This study encompasses 35 subjects, 16 PD patients on antiparkinsonian medications
(aged 62–88, mean 77.0 ± 6.4 years) and 19 healthy age-matched elderly control sub-
jects, HC (aged 60–84, mean 71.0 ± 7.7 years). The subjects performed two different
exercises: an ingoing, clockwise Archimedes’ Spiral (AS) drawn following a given
template, and repetition of overlapped Circles (C). Subjects were required to draw AS
accurately with no time limits and C as fast as possible for a duration of 15 s. Participants
were instructed to execute the exercises without pen lift and keeping the arm leaned on
the table, otherwise the response was excluded from the analysis. Thus, 34 C samples
(15 PD patients, 19 HC) and 27 AS samples (11 PD patients, 16 HC) were eventually
considered. All the subjects released their written informed consent.

2.2 Handwriting Acquisition and Analysis

Handwriting was acquired by means of a commercial digitizing tablet (Wacom, Inc.,
Vancouver, WA, Model Intuos 3.0), using an ink pen thus providing visual feedback.
The pen displacement was sampled at 200 Hz and acquired with a spatial resolution
of 0.02 mm. The horizontal and vertical pen positions were filtered separately using a
second-order low-pass Butterworth filter (15 Hz cut-off frequency) and the velocity and
acceleration profileswere derived. For each test, the handwriting featureswere calculated
and analysed by using an ad hoc custom program written in MATLAB® [12].

The following kinematic parameters were calculated: mean pressure (P), mean dura-
tion of strokes (Ds),mean curvilinear velocity of strokes (Vcs), stroke number normalized
by total track length (Ns/L), and normalized jerk (JN). The stroke is here defined as a sin-
gle writing movement comprised between two curvilinear velocity minima. JN and Ns/L
represent measures of fluidity; the smaller their values, the less fragmented and more
fluid amovement is [13]. Power Spectral Density (PSD) of both velocity and acceleration
profiles in their horizontal, vertical and curvilinear components was estimated by using
Welch’s method, with a Hammingwindow on intervals of 5 s and a 50% overlap. In order
to analyse the power distribution related to different movement-associated phenomena,
two frequency bands were selected: a band concerning voluntary Movement Execution
required by the task (BME), ranging from 0.2 to 4 Hz, and a band associated with invol-
untary Tremor (BT), ranging from 4.0 to 12 Hz. BT includes the frequencies associated
with both kinetic parkinsonian tremor and physiological tremor. For each subject, the
following spectral parameters were selected: ratio of relative spectral powers, quantified
by dividing the absolute power in each frequency band by their sum (rSP-BME and rSP-
BT) and subsequently calculating their ratio (rSPBME/rSPBT); frequency at the spectral
power peak in BT (FP); bandwidth in BT, defined as the frequency range in which the
power is above the 10% of the peak value (BW-BT).

For each task, the median value and the interquartile range of parameters were
calculated in the two groups; the difference between themwas assessed by theWilcoxon
Rank sum test, with a significance level of 5%. The statistical analysis did not include any
correction for multiple testing since the study is oriented toward features selection. The
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Bonferroni correction would not offer the flexibility required in such exploratory stage
that has the purpose of emphasizing what parameters better characterize the tremor of
the two groups rather than evaluating if the groups are different in all tested parameters
[14].

Table 1. I. Median values and Interquartile Range (Iqr) of kinematic and spectral parameters in
the two groups and p-values of their comparison, for Circles and Archimedes’ Spiral (in bold,
p-value < 0.05).

Median  Iqr Median  Iqr p-value Median  Iqr Median  Iqr p-value
DS (ms) 133.00 14.88 143.00 22.50 0.054 131.00 12.50 145.50 10.50 0.040

VcS (mm/s) 81.32 70.09 53.16 145.56 0.755 39.82 19.65 38.89 20.26 0.824
NS/L (mm-1) 0.08 0.10 0.11 0.15 0.755 0.18 0.07 0.18 0.08 0.863

JN 2.08 1.00 3.45 2.66 0.003 2.15 1.32 2.91 1.54 0.191
P (A.U.) 281.83 190.88 238.36 140.12 0.445 287.64 145.17 276.81 118.38 0.604

rSPBME/rSPBT 65.06 49.12 39.29 58.77 0.118 86.78 124.41 50.24 66.05 0.175
BW-BT 3.32 2.49 2.73 1.66 0.095 4.98 1.95 4.10 1.51 0.075

rSPBME/rSPBT 61.43 46.09 16.98 20.65 0.003 83.60 123.41 29.53 73.44 0.080
BW-BT 2.92 2.92 2.73 1.56 0.465 5.27 1.86 3.52 2.29 0.048

rSPBME/rSPBT 3.32 2.06 1.49 1.19 0.020 8.89 12.08 3.61 5.59 0.025
BW-BT 3.51 2.34 4.29 1.41 0.626 4.98 2.05 3.91 2.34 0.347

rSPBME/rSPBT 1.94 5.21 0.41 5.1 0.199 0.53 0.61 0.21 0.24 0.019
BW-BT 4.29 2.44 3.32 0.73 0.338 6.45 2.73 3.91 0.73 0.013

rSPBME/rSPBT 1.75 4.42 0.26 3.17 0.056 0.41 0.36 0.18 0.28 0.019
BW-BT 3.51 2.63 3.12 1.61 0.305 5.86 3.13 3.71 3.13 0.045

rSPBME/rSPBT 0.21 0.22 0.07 0.09 0.016 0.36 0.50 0.11 0.19 0.017
BW-BT 4.49 2.97 3.90 1.70 0.305 5.57 2.73 3.52 2.73 0.021
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3 Results

Median and range values of kinematic and spectral parameters for PD patients and HC,
as well as the p-values of their comparison, are reported in Table 1. Kinematic analysis
reveals that Ds is higher in PD patients compared to HC in both tasks but significant
only in AS. Other stroke parameters (Vcs, Ns/L and JN) show only slight differences
in AS. On the contrary, in C task, PD patients present a reduced stroke velocity and a
greater fragmentation, as indicated by higher JN and Ns/L values. Furthermore, mean
pressure is always smaller in PD patients although the statistics do not reveal significance
in either task. Regarding spectral analysis, PD patients show lower power in BME and
higher power in BT compared to HC in all velocity and acceleration signal components
resulting in smaller rSPBME/rSPBT values (Table 1). PD tremor bandwidth is always
narrower compared to HC, except for curvilinear velocity in C task.



Spectral Analysis of Handwriting Kinetic Tremor 305

Fig. 1. PSD of horizontal (solid line) and vertical (dotted line) components of Velocity andAccel-
eration signals in a HC subject (a, b) and in a PD patient (c, d). For the HC subject, the spectral
activity in the frequency range of tremor was distributed over a broader range. By contrast, the
parkinsonian patient produced a consistent spectral peak. Both participants drew tremulous tracks
(the corresponding tests are shown on the right).

Figure 1 shows the PSD of horizontal and vertical components of velocity and accel-
eration in a HC subject and in a PD patient and the corresponding C test tracks. The
example highlights the different power distribution in BT with the presence of a clear
peak in vertical components of velocity and acceleration in the PD patient.

Fig. 2. (a) Distribution of rSPBME/rSPBT values of vertical velocity obtained from C exercise
in each subject of both groups. (b) Boxplots of AS frequencies at peak in horizontal (Vh, Ah),
vertical (Vv, Av), and curvilinear (Vc, Ac) components of Velocity and Acceleration signals; PD
= PD patients, HC = healthy controls.

Figure 2a illustrates the distribution of rSPBME/rSPBT vertical velocity values for
each subject in the C task. A clear separation of the two groups is appreciable. Figure 2b
displays boxplots of tremor band FP, at group level and for each signal component, in AS
task. Though FP is variable in both groups, HC subjects always show a higher variability
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compared to PD patients whose FP are included in a range between 4.0 and 7.5 Hz with
median values very consistent among signal components, between 6.2 and 6.8 Hz.

4 Discussion

Handwriting assessment may serve as a complementary method to support the clinical
diagnosis of PD. Discussion regarding kinematic analysis has dominated research in
recent years, while spectral analysis is still an under-explored area. In our study, the
kinematic analysis highlights that PDpatientsmove slower (lowerVcs) thanHCsubjects,
produce strokes of longer duration and exert less pressure in both tasks. These differences
confirm the results of previous studies [2, 5, 10], although they are significant just in
some cases due to a large variability found both in the responses of the PD patients and
in those of the HC subjects. Furthermore, higher JN reveals that the tracks of PD patients
are significantly less fluid compared to healthy HCs, at least in the C exercise. The result
is confirmed by a higher fragmentation (Ns/L) in PD patients. The loss of fluency has
already been assessed in PD handwriting and it is attributed to impairment in fine motor
control due to a deterioration of finger-wrist coordination ability [13]. The reason our
data highlight a different fragmentation between the two tasksmay be due to the different
modalities (fast vs accurate) employed for C and AS execution.We hypothesize that task
nature may influence the response, but more data are needed to verify this possibility.

On the other hand, the spectral analysis offers very consistent results. Whether the
statistical significance is present or not, the data always follow a pattern. In general, for
both tasks, the trend is clear and coherent. The outcome of statistical analysis confirms
our hypothesis about the different character of kinetic tremor in parkinsonian patients
and in healthy subjects. In PD, this tremor manifests at higher frequencies in comparison
to rest tremor and has specific features that allow differentiating it from the involuntary
component of movement in elderly HCs. In fact, in PD patients, kinetic tremor is visible
as a clear peak in the PSD of all examined velocity and acceleration components with a
median frequency value of about 6.5 Hz (Fig. 1d and 2b), confirming what previously
observed in [10], although in our study, the peaks are at slightly higher frequencies.
This is not the case in elderly HC subjects, as they show a broader spectral distribution
without a clear frequency peak (Fig. 1b). For this reason, in elderly HC subjects, a larger
BW-BT is present (Table 1), especially in vertical component of acceleration, and FP
shows greater variability than in PD patients (Fig. 1b), ranging from 4 to 10Hz. The latter
findings confirm previous results suggesting the presence of an enhanced physiological
tremor in healthy elderly handwriting [11].

5 Conclusions

The outcomes of this study illustrate that the features extracted from spectral analy-
sis offer a valid inquiring approach to characterize parkinsonian motor behavior, since
they can distinguish between the groups even when kinematic analysis shows weak dif-
ferences. These results support the hypothesis that, at group level, PD patients show
handwriting-related kinetic tremor and that it is distinguishable from the involuntary
movement of elderly HC subjects that is, on the contrary, due to age-related enhanced
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tremor. The accurate task seems to be the most sensitive to kinetic tremor detection,
especially at the level of the acceleration signal, leading to the conclusion that the emer-
gence of tremor, and its characteristics, are task-dependent. Further studies including
more tasks, to establish what signal component better brings out themotor impairment in
different conditions, and a larger examined population are needed to support or discard
our findings.

The natural development of this feature selection step would be to perform a confir-
matory study aiming at testing if the PD patients and the control group differ in all tested
variables. This research line could support the implementation of spectral analysis as
a tool for differential diagnosis of tremor-presenting patients but, to evaluate to which
extent the spectral analysis can be used for early diagnosis of PD, a better characteriza-
tion of patients’ diagnosis is needed, including information about since how many years
the patients have been diagnosed and the severity of the disease.
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Abstract. Parkinson’s disease (PD) is a common neurodegenerative
disorder with a prevalence rate estimated to 2.0% for people aged over
65 years. Cardinal motor symptoms of PD such as rigidity and bradyki-
nesia affect the muscles involved in the handwriting process resulting
in handwriting abnormalities called PD dysgraphia. Nowadays, online
handwritten signal (signal with temporal information) acquired by the
digitizing tablets is the most advanced approach of graphomotor diffi-
culties analysis. Although the basic kinematic features were proved to
effectively quantify the symptoms of PD dysgraphia, a recent research
identified that the theory of fractional calculus can be used to improve
the graphomotor difficulties analysis. Therefore, in this study, we fol-
low up on our previous research, and we aim to explore the utilization
of various approaches of fractional order derivative (FD) in the anal-
ysis of PD dysgraphia. For this purpose, we used the repetitive loops
task from the Parkinson’s disease handwriting database (PaHaW). Hand-
written signals were parametrized by the kinematic features employing
three FD approximations: Grünwald-Letnikov’s, Riemann-Liouville’s,
and Caputo’s. Results of the correlation analysis revealed a significant
relationship between the clinical state and the handwriting features based
on the velocity. The extracted features by Caputo’s FD approximation
outperformed the rest of the analyzed FD approaches. This was also con-
firmed by the results of the classification analysis, where the best model
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trained by Caputo’s handwriting features resulted in a balanced accuracy
of 79.73% with a sensitivity of 83.78% and a specificity of 75.68%.

Keywords: Fractional order derivatives · Fractional calculus ·
Parkinson’s disease · Online handwriting · Handwriting difficulties

1 Introduction

Fractional calculus (FC) is a name of the theory of integrals and derivatives of an
arbitrary order [28]. It has been developed simultaneously with the well-known
differential calculus [16] and its principles have been successfully used in modern
engineering and science in general [18,32,37]. The advances of FC have been
employed in the modeling of different diseases as well, like the human immunod-
eficiency virus (HIV) [2] or malaria [27]. In addition, the FC has been widely uti-
lized in several computer vision disciplines such as the super-resolution, motion
estimation, image restoration or image segmentation [34]. Furthermore, in our
recent research we developed new handwriting features extraction techniques
based on the application of the fractional order derivatives (FD) [11,21–25].

Parkinson’s disease (PD) is a chronic idiopathic disorder, with the prevalence
rate estimated to be approximately 2.0% for people aged over 65 years [12]. It is
characterized by the progressive loss of dopaminergic neurons in the substancia
nigra pars compacta [6,13], which is a major cause of the symptoms linked with
the PD. Primary PD motor symptoms are tremor at rest, muscular rigidity,
progressive bradykinesia, and postural instability [3,14]. One of the essential
motor symptoms of PD is PD dysgraphia [17,36]. Additionally, a variety of non-
motor symptoms such as cognitive impairment, sleep disturbances, depression,
etc. may arise.

PD dysgraphia includes a spectrum of neuromuscular difficulties like
motor-memory dysfunction, motor feedback difficulties, graphomotor production
deficits and others [17,31]. These disabilities leads to a variety of handwriting
difficulties manifesting as dysfluent, shaky, slow, and less readable handwrit-
ing. The most commonly observed handwriting abnormality in PD patients is
micrographia. Micrographia represents the progressive decrease of letter’s ampli-
tude or width [20]. Some PD patients never develop micrographia, but they still
exhibit other handwriting difficulties. Accordingly, the consequences of PD dys-
graphia significantly affect a person’s quality of life. Starting with slow and less
legible handwriting and often progressing to lower self-esteem, poor emotional
well-being, problematic communication and social interaction, and many others.
Nowadays, the most advanced approaches of the PD manifestations quantifi-
cation contained in the handwriting are based on digitizing tablets [9,21,35].
These devices can acquire x and y trajectories along with temporal information,
therefore the temporal, kinematic, or dynamic characteristics can be processed
together with the spatial features. Handwritten signal acquired by the digitizing
tablet is called online handwriting.

In the past decades, researchers have been exploring the effect of several
handwriting/drawing tasks in PD dysgraphia analysis, including the simplest
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ones (loops, circles, lines, Archimedean spiral) together with more complex ones
(words, sentences, drawings, etc.) [7–9,21–23,26]. Drotar et al. [7–9] reported
classification accuracy up to 89% using a combination of kinematic, pressure,
energy or empirical mode decomposition features. The diagnosis of PD with
accuracy of 71.95% based on the kinematic and entropy features extracted from
the sentence task was reported by Impedovo et al. [15]. Taleb et al. [35] reported
up to 94% accuracy of PD severity prediction using kinematic and pressure
features in combination with adaptive synthetic sampling approach (ADASYN)
for model training. Rios-Urrego et al. [30] achieved classification accuracy of
83.3% using the kinematic, geometric, spectral and nonlinear dynamic features.
New kinematic features utilizing the discrete time wavelet transform, the fast
Fourier transform and a Butter/adaptive filter introduced by Aouraghe et al. [1]
resulted in classification accuracy of 92.2%.

Finally, in our recent works [21–23,25] we introduced and evaluated a new
advanced approach of PD dysgraphia analysis employing the FD as a substitu-
tion of the conventional differential derivative during the basic kinematic feature
extraction. Newly designed handwriting features achieved classification accuracy
up to 90%, using the Grünwald-Letnikov approach only. In addition to PD dys-
graphia analysis, we explored the FD-based handwriting features in analysis of
graphomotor difficulties in school-aged children, where we examined three dif-
ferent FD approaches [24]. The results suggests that the employment of various
FD approximations brings major differences in kinematic handwriting features.
Therefore, as a next logical step, this study aims to:

1. extend our previous research in PD dysgraphia analysis by the utilization of
various FD approaches,

2. explore the differences of various FD approaches in the analysis of PD dys-
graphia,

3. compare the power of the FD-based handwriting features extracted by sev-
eral FD approximations to distinguish between the PD patients and healthy
controls (HC).

2 Materials and Methods

2.1 Dataset

For the purpose of this study, we used the Parkinson’s disease handwriting
database (PaHaW) [7]. The database consists of several handwriting or drawing
tasks acquired in 37 PD patients and 38 healthy controls (HC). The partici-
pants were enrolled at the First Department of Neurology, St. Anne’s University
Hospital in Brno, Czech Republic. All participants reported Czech language as
their native language and they were right-handed. The patients completed their
tasks approximately 1 h after their regular dopaminergic medication (L-dopa).
All participants signed an informed consent form approved by the local ethics
committee. Demographic and clinical data of the participants involved in this
study can be found in Table 1. For the purpose of this study, we selected the
repetitive loop handwriting task. This task is missing for several participants of
the PaHaW dataset, therefore, we processed 31 PD patients and 37 HC only.
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Table 1. Demographic and clinical data of the participants.

Gender N Age [y] PD dur [y] UPDRS V LED [mg/day]

Parkinson’s disease patients

Females 15 70.2 ± 8.4 7.9 ± 3.9 1.9 ± 0.4 1129.7 ± 572.9

Males 16 65.9 ± 13.1 7.0 ± 3.9 2.4 ± 0.9 1805.7 ± 743.3

All 31 68.0 ± 11.1 7.4 ± 3.9 2.2 ± 0.8 1478.6 ± 739.8

Healthy controls

Females 17 61.6 ± 10.2 – – –

Males 20 63.3 ± 12.5 – – –

All 37 62.9 ± 11.5 – – –

N – number of subjects; y – years; PD dur – PD duration; UPDRS V–
Unified Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr
staging score [10]; LED– L-dopa equivalent daily dose.

2.2 Data Acquisition

The PaHaW database [7] consists of nine handwriting tasks. For the purpose of
this study we selected the repetitive loop task only. An example of the repet-
itive loop task for a PD patient and a HC can be seen in Fig. 1. During the
acquisition of the handwriting tasks, the participants were rested and seated
in a comfortable position with a possibility to look at a pre-filled template. In
case of some mistakes, they were allowed to repeat the task. A digitizing tablet
(Wacom Intuos 4M) was overlaid with an empty paper and the participants wrote
on that using the Wacom Inking pen. Online handwriting signals were recorded
with fs = 150 Hz sampling rate, and the following time sequences were acquired:
x and y coordinates (x[t], y[t]); time-stamp (t); on-surface and in-air movement
status (b[t]); pressure (p[t]); azimuth (az[t]); and tilt (also called altitude; al[t]).

2.3 Fractional Order Derivative

The main subject of this study is the exploration of the various FD approxima-
tions as a substitution of the conventional differential derivatives in the handwrit-
ing feature extraction process. We utilized three different FD approximations,
namely: Grünwald-Letnikov (GL), Riemann-Liouville (RL), and Caputo (C),
implemented by Valério Duarte in Matlab [38–40].

First approach employed in this study was developed by Grünwald and Let-
nikov. A direct definition of the derivation of the function y(t) by the order α
– Dαy(t) [28] is based on the finite differences of an equidistant grid in [0, τ ],
assuming that the function y(t) satisfies certain smoothness conditions in every
finite interval (0, t), t ≤ T , where T denotes the period. Choosing the grid

0 = τ0 < τ1 < ... < τn+1 = t = (n + 1)h, (1)

with
τk+1 − τk = h, (2)
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Fig. 1. Example of the repetitive loop task for a HC (left) and a PD patient (right).

and using the notation of finite differences

1
hα

Δα
hy(t) =

1
hα

(
y(τn+1) −

n+1∑
v=1

cα
v y(τn+1−v)

)
, (3)

where
cα
v = (−1)v−1(α

v ). (4)

The Grünwald–Letnikov definition from 1867 is defined as

GLDαy(t) = lim
h→0

1
hα

Δα
hy(t), (5)

where GLDαy(t) denotes the Grünwald-Letnikov derivatives of order α of the
function y(t), and h represents the sampling lattice.

Second approach used in this study has been given by Riemann-Liouville. The
left-inverse interpretation of Dαy(t) by Riemann-Liouville [18,28] from 1869 is
defined as

RLDαy(t) =
1

Γ(n − α)

(
d
dt

)n
t∫

0

(t − τ)n−α−1y(t) dt, (6)

where RLDαy(t) denotes the Riemann-Liouville derivatives of order α of the
function y(t), Γ is the gamma function and n − 1 < α ≤ n, n ∈ N, t > 0.

Third and last FD approach involved in this study was developed by M.
Caputo [4]. In contrast to the previous ones, the improvement hereabouts lies in
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the unnecessity to define the initial FD condition [18,28]. The Caputo’s definition
from 1967 is

CDαy(t) =
1

Γ(n − α)

t∫
0

(t − τ)n−α−1yn(t) dt, (7)

where CDαy(t) denotes the Caputo derivatives of order α of the function y(t),
Γ is the gamma function and n − 1 < α ≤ n, n ∈ N, t > 0.

2.4 Feature Extraction

Considering the nature of the selected task, on-surface handwriting features were
extracted only. Since we did employ three FD approaches in the feature extrac-
tion process, three sets of the handwriting features were created. Digitizing tablet
rarely omits 3–4 samples during the acquisition, therefore the in-signal outliers
removal was performed (outliers were considered as elements more than three
scaled median absolute deviations from the median). If not pre-processed, the
differentiation of this gap would leave significant peaks in the output handwrit-
ing feature. All handwriting features were computed for α in the range of 0.1–1.0
(with the step of 0.1), where α = 1.0 is equal to the full derivation. Furthermore,
the statistical properties of all extracted handwriting features were described by
the mean and the relative standard deviation (relstd). To sum up, each feature
set consists of 180 computed kinematic features.

2.5 Statistical Analysis and Machine Learning

Firstly, the normality test of the handwriting features using the Shapiro-Wilk
test was performed [33]. Since most of the features were found to come from
normal distribution, we did not apply any normalization on a feature basis.
To control for the effect of confounding factors (also known as covariates), we
controlled for the effect of age and gender of the subjects.

Next, Spearman’s (ρ) and Pearson’s (r) correlation coefficient with the sig-
nificance level of 0.05 were computed to assess the strength of the monotonous
and linear relationship between the handwriting features and the subject’s clin-
ical status (PD/HC). Finally, to control for the issue of multiple comparisons,
p-values were adjusted using the False Discovery Rate (FDR) method.

Consequently, binary classification models were built in order to distinguish
between the PD patients and HC utilizing the extracted handwriting features.
An ensemble extreme gradient boosting algorithm known as XGBoost [5] (with
100 estimators) was used for this purpose. The XGBoost algorithm was selected
due to its ability to find complex interactions among features as well as the
possibility of ranking their importance and its robustness to outliers. Hyper-
parameter space optimization (1000 iteration) by the randomized search strategy
(stratified 5-fold cross-validation with 10 repetitions) was performed to optimize
balanced accuracy. The set of hyper-parameters that were optimized can be
found in the following table (Table 2).



314 J. Mucha et al.

Table 2. Hyper-parameters set.

Hyper-parameter Values

Learning rate [0.001, 0.01, 0.1, 0.2, 0.3]

Gamma [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.5]

Maximum tree depth [6, 8, 10, 12, 15]

Subsample ratio [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Columns subsample ratio at each level [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Columns subsample ratio for each tree [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Balance between positive and negative weights [1, 2, 3, 4]

Minimum weights required in a child node [0.5, 1.0, 3.0, 5.0, 7.0, 10.0]

The classification performance was evaluated by the following classifica-
tion metrics: Matthew’s correlation coefficient [19] (MCC), balanced accuracy
(BACC), sensitivity (SEN) also known as recall (REC), specificity (SPE), pre-
cision (PRE) and F1 score (F1). These metrics are defined as follows:

MCC =
TP × TN + FP × FN√

N
, (8)

BACC =
1
2

(
TP

TP + FN

TN

TN + FP

)
, (9)

SPE =
TN

TN + FP
, (10)

PRE =
TP

TP + FP
, (11)

REC =
TP

TP + FN
, (12)

F1 = 2
PRE × REC

PRE + REC
(13)

where N = (TP + FP ) × (TP + FN) × (TN + FP ) × (TN + FN), TP (true
positive) and FP (false positive) represent the number of correctly identified
PD patient and the number of subjects incorrectly identified as PD patient,
respectively. Similarly, TN (true negative) and FN (false negative) represent
the number of correctly identified HC and the number of subjects with PD
incorrectly identified as being healthy.

For a better illustration, the overview of the performed analysis from the
handwriting task selection to the evaluation of the results can be found in Fig. 2.
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Fig. 2. Flow overview of the performed experiments.

3 Results

The results of the correlation analysis can be seen in Table 3, where the top
5 features per FD approximation according to the p-values of Spearman’s corre-
lation are shown. The most significant correlation (after the FDR adjustment)
with the clinical state (PD/HC) of the participants was identified in the features
extracted by the Caputo’s FD approach. Nevertheless, all FD approaches pro-
vided the handwriting features that pass the selected significance level (p < 0.05),
while features extracted by Caputo’s and Riemann-Liouville’s achieved the p-
values very close to 0. Most of the top selected handwriting features are based
on horizontal velocity, and all of them have α different from 1, which confirms
the positive impact of the FD in PD dysgraphia analysis.

The results of the classification analysis are summarized in Table 4. In total,
4 models were trained: one model per each FD approach and one model com-
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Table 3. Results of the correlation analysis between the subjects’ clinical status
(PD/HC) and the computed handwriting features ranked by the adjusted p-value (and
the correlation coefficient) of Spearman’s correlation.

Feature name ρ ps p∗
s r pp p∗

p

Caputo

relstd horizontal velocity-α = 0.6 −0.5408 0.0001 0.0001 −0.5456 0.0001 0.0001

relstd horizontal velocity-α = 0.5 −0.5122 0.0001 0.0001 −0.5204 0.0001 0.0001

relstd horizontal velocity-α = 0.4 −0.4912 0.0001 0.0001 −0.5024 0.0001 0.0001

mean horizontal velocity-α = 0.3 0.4791 0.0001 0.0001 0.4049 0.0006 0.0051

mean horizontal velocity-α = 0.4 0.4716 0.0001 0.0001 0.4240 0.0003 0.0036

Grünwald-Letnikov

relstd horizontal velocity-α = 0.8 −0.4475 0.0001 0.0180 −0.4332 0.0002 0.0240

relstd horizontal velocity-α = 0.9 −0.4310 0.0002 0.0180 −0.4184 0.0004 0.0240

relstd horizontal velocity-α = 0.7 −0.4220 0.0003 0.0180 −0.4162 0.0004 0.0240

relstd horizontal velocity-α = 0.6 −0.3964 0.0008 0.0324 −0.3682 0.0020 0.0720

relstd vertical velocity-α = 0.9 −0.3949 0.0009 0.0324 −0.3801 0.0014 0.0630

Riemann-Liouville

mean horizontal velocity-α = 0.2 0.4882 0.0001 0.0001 0.3869 0.0011 0.0060

relstd horizontal velocity-α = 0.2 −0.4716 0.0001 0.0001 −0.4643 0.0001 0.0013

mean horizontal velocity-α = 0.3 0.4716 0.0001 0.0001 0.4240 0.0003 0.0022

relstd vertical velocity-α = 0.2 −0.4686 0.0001 0.0008 −0.4654 0.0001 0.0013

relstd vertical velocity-α = 0.3 −0.4475 0.0001 0.0008 −0.4483 0.0001 0.0013

ρ – Spearman’s correlation coefficient; ps – p-value of Spearman’s correlation; p∗
s –

adjusted p-value of Spearman’s correlation; r – Pearson’s correlation coefficient; pp –
p-value of Pearson’s correlation; p∗

p – adjusted p-value of Pearson’s correlation; relstd –
relative standard deviation; h. – horizontal; v. – vertical.

bining all the features. The best classification performance was achieved by the
Caputo’s FD approach with BACC = 0.7973, SEN = 0.8378, SPE = 0.7568,
PRE = 0.7750 and F1 = 0.8052. However, the highest SEN and SPE were
achieved by the Riemann-Liouville approach (SPE = 0.8378, PRE = 0.8065).

Next, in Fig. 3 the comparison of the horizontal velocity function for α =
0.6 across all of the utilized FD approximations is visualized. The handwriting
features were extracted from the performance of the PD patient with high PD
severity. And finally, an example of the dependency of the mean of horizontal
velocity on the FD order α for all three FD approaches is shown in Fig. 4.

4 Discussion

The main goal of this study is to explore various FD approximations and their
differences in the analysis of the PD dysgraphia by online handwriting. For bet-
ter illustration and more understanding of the differences as well as the common
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Table 4. Results of the classification analysis.

FD approach MCC BACC SEN SPE PRE F1

C 0.5966 0.7973 0.8378 0.7568 0.7750 0.8052

RL 0.5204 0.7568 0.6757 0.8378 0.8065 0.7353

GL 0.4867 0.7432 0.7297 0.7568 0.7500 0.7397

ALL 0.5135 0.7568 0.7568 0.7568 0.7568 0.7568

MCC – Matthew’s correlation coefficient; BACC– balanced accuracy;
SEN– sensitivity; SPE– specificity; PRE–precision; F1 – F1 score; GL –
Grünwald-Letnikov; C –Caputo; RL –Riemann-Liouville; ALL (combina-
tion of all feature-types, i. e. 540 features).

Fig. 3. Comparison of the horizontal velocity function (α = 0.6) across all of the
FD approximations (PD patient; C – Caputo; GL – Grünwald-Letnikov; RL – Riemann-
Liouville).

Fig. 4. Mean of horizontal velocity depending on FD order α (PD patient; C –Caputo;
GL –Grünwald-Letnikov; RL – Riemann-Liouville).

characteristics, the comparison of the identical handwriting feature extracted for
all three FD approaches can be found in Fig. 3. The feature is extracted from the
handwritten product of a PD patient and the feature represents the horizontal
velocity for α = 0.6. The velocity function extracted by the Riemann-Liouville’s
approximation dominates by its oscillatory nature in comparison to the other two
approaches. Nevertheless the envelope of Riemann-Liouville’s approach follows
the local maximums and minimums of the functions computed by the Caputo’s
and Grünwald-Letnikov’s approximation. A minor shift of the velocity function
can be noticed between the Caputo’s and Grünwald-Letnikov’s approaches. This
is due to the nature of the Caputo’s FD approach, which differentiates input



318 J. Mucha et al.

data before the convolution operation, so the temporal memory is applied to
the velocity afterwards. Regarding the visualization in Fig. 3, we can confirm
the differences in the same handwriting feature extracted by various FD approx-
imations. Additionally, the dependency comparison of the mean of horizontal
velocity on the order α is provided in Fig. 4. The oscillatory behaviour of the
Riemann-Liouville’s function results in the wider gap from the Caputo’s and
Grünwald-Letnikov’s functions. Nevertheless, all three FD approaches converge
to the same point as the order α is closer to 1.0. This behaviour is expected,
because the full derivation has to be the same for all approaches.

Regarding the results of the correlation analysis, the most significantly cor-
related handwriting features (after the FDR adjustment) were extracted by the
Caputo’s FD. This observation is in line with our previous results [24], where
we analysed the same three FD approaches in assessment of the graphomo-
tor difficulties in school-aged children. The performance of the handwriting
features extracted by the Riemann-Liouville’s approach is almost as good as
the Caputo’s features. The Grünwald-Letnikov’s handwriting features achieved
weaker relationship, however the features are still below selected level of signifi-
cance (p < 0.05). Most significantly correlated handwriting features are related
to the horizontal velocity. In general, PD dysgraphia is linked with the reduced
velocity, which could occur even more often than micrographia [15,29,31]. This
strong relationship is reasonable due to the cardinal symptoms of PD, such as
bradykinesia or rigidity, which have a significant impact on fine motor skills,
including handwriting/drawing. Moreover, some studies suggest that the hor-
izontal version of micrographia is even more common than the vertical ver-
sion [36]. The values of the correlation coefficients for handwriting features
described by the mean are positive, which means that the performance of the
participant is worse with the higher values of the horizontal velocity. This can be
confusing because just the opposite effect may be expected. However, this may
be specific for the repetitive loop task, where the velocity for the healthy writer
is more constant. On the other hand, the writer with PD dysgraphia performs
the loop more jerkily, which leads to higher velocity with more variability. This
is confirmed by the fact that the features described by the relative standard
deviation are negative, which means that the handwriting performance is better
with the lower variability of the horizontal velocity.

Based on the results of the classification analysis, the best classification
performance was obtained by the handwriting features computed by Caputo’s
FD. The resulting balanced accuracy was 79.73% with SEN = 83.78% and
SPE = 75.68%. In our similar study [21] we achieved classification accuracy
of 80.60% with SEN = 79.4% and SPE = 80.56% using all of the handwrit-
ing tasks from the PaHaW database, but only the Grünwald-Letnikov FD was
employed. In comparison to this study, we can conclude that the exploration
of the various FD approaches improved the classification analysis, considering
that we achieved almost the same performance only by one handwriting task
and using the on-surface kinematic features only. The balanced accuracy of the
Riemann-Liouville and Grünwald-Letnikov FD is approximately 5% lower while
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the sensitivity is lower up to 15% in comparison to the Caputo’s FD. Considering
the reported results, we can conclude that the Caputo’s approach is the most
suitable FD approximation of the kinematic analysis of the PD dysgraphia by
online handwriting.

5 Conclusion

To the best of our knowledge, this is one of the first studies performing an inves-
tigation of the various FD approaches in the computerized analysis of the PD
dysgraphia by online handwriting. For that reason, the outcomes should be con-
sidered as being rather exploratory and pilot in nature. Based on the reported
results, Caputo’s FD approximation outperformed the rest of the analysed FD
approaches in all experiments. The correlation analysis resulted in the significant
relationship between the clinical state and the handwriting features based on the
velocity, which is in line with our previous findings. Additionally, the best clas-
sification model achieved the balanced accuracy of 79.73% with SEN = 83.78%
and SPE = 75.68%, which is a comparable result to our previous studies.

This study has several limitations and possible parts, that could be further
improved. The processed dataset is relatively small in terms of the statistical
validity of the achieved results. Next, the α order should be explored more sensi-
tively (e.g. with a step of 0.01 or even less) in order to identify the optimal range
for PD dysgraphia analysis. Additionally, other feature types, such as temporal,
spatial, and dynamic, should be included in future comparisons. Moreover, the
comparison of the various FD-based features with the conventionally used hand-
writing features should be performed. Besides, all handwriting tasks included
in the PaHaW database have to be investigated by the various FD approaches.
And finally, various machine learning models should be trained and compared
in future studies.
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Abstract. Alzheimer’s disease causes most of dementia cases. Although
currently there is no cure for this disease, predicting the cognitive decline
of people at the first stage of the disease allows clinicians to alleviate
its burden. Clinicians evaluate individuals’ cognitive decline by using
neuropsychological tests consisting of different sections, each devoted
to test a specific set of cognitive skills. The sigma-lognormal model
allows complex movements to be represented as a summation of sim-
ple time-overlapped movements, and has been used in several fields to
model numerous human movements such as, for example, handwriting
and speech. Recently, this theory has been also used for detecting and
monitoring neurodegenerative disorders. In this paper, we present the
results of a preliminary study aimed at exploring the use of lognormal
features to classify patients affected by Alzheimer’s disease. The promis-
ing results achieved confirms that lognormal features can be used to
support Alzheimer’s diagnosis.

1 Introduction

Neurodegenerative diseases (NDs in the following) are incurable and debilitating,
caused by progressive degeneration of nerve cells, affecting movements and/or
mental skills. Alzheimer’s disease (AD) is the most common among them, and
because of worldwide lifespan lengthening, it is expected that its incidence will
dramatically increase in the coming decades.

AD produces a slow and progressive decline in mental functions such as
memory, thought, judgment, and learning abilities. The predominant symptom
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in the early stages of AD is the episodic memory impairment, whereas later stages
are characterized by progressive amnesia and deterioration in other cognitive
domains.

Unfortunately, there is no cure for AD, but its symptoms can be managed
during their progression. This creates a critical need for the improvement of the
approaches currently used for diagnosing them as early as possible. As cognitive
and motor functions are both involved in planning and execution of movements,
and because handwriting requires a precise and properly coordinated control of
the body [20], the analysis of handwriting dynamics might provide a cheap and
non-invasive method for evaluating the disease progression [10]. Furthermore, it
has been observed that the application of machine learning methods to motor
function has shown promise in decreasing the time taken to perform clinical
assessments [1,12]. To this aim, cheap and widely used graphic tablets can be
used to administer handwriting tests, which include simple and easy-to-perform
handwriting/drawing tasks [10], and to record kinematic and dynamic infor-
mation of the performed movements. For this reason, researchers are showing
an increasing interest in developing and using machine learning based method-
ologies to support both the diagnosis and the treatment of NDs, and several
methods have been proposed for the diagnosis of both AD [24].

The Kinematic Theory of rapid movements, together with the use of the
Sigma-Lognormal model, allows the decomposition of a complex movement into
a vector summation of simple time-overlapped movements [15–17]. This theory
has been applied in several fields to model numerous human movements such
as, handwriting [14], speech [2], head and trunk movement [11], etc. However,
it has been barely applied to the detection and monitoring of neuromuscular
disorders [13,19]. Specifically, this model has been used to classify parkinso-
nian patients in this pair of papers [8,9]. The authors found competitive perfor-
mance by combining this model with other velocity-based features like Maxwell-
Boltzmann distribution, Fourier, and Cepstrum transforms.

In this paper, we present the results of a preliminary study aimed at explor-
ing the use of lognormal features to classify patients affected by AD, on the basis
of their ability to accomplish six handwriting tasks. Those tasks were introduced
in [4], and are described later in this paper. We collected the data produced by
174 participants (89 AD patients and 85 healthy people). To the best of our
knowledge, this is the largest dataset containing handwriting data related to
AD. Starting from the lognormal parameters computed to represent the hand-
writing contained in this data, we have identified fourteen features that can be
used to characterize the handwriting of people affected by AD. We assessed the
effectiveness of the features extracted We used seven well-known and widely
used classifiers to asses the effectiveness of the features proposed. The promising
results achieved confirms that lognormal features can be used to support AD
diagnosis.

The organization of this paper is as follows. Section describes the Sigma-
lognormal model used for the representation of handwriting. In Sect. 3 we present
the tasks used to collect handwriting data and the features extracted using the



324 N. D. Cilia et al.

Sigma-lognormal model. Section 4 details some experimental results. Concluding
remarks and possible future investigations are outolined in Sect. 5.

2 The Sigma-Lognormal Model

Based on lognormal movement decomposition, there are several studies about the
normative range of variations in the lognormal parameters, which give a notion
of how ideal a movement could be [18]. To parametrizing the human movement
velocity and trajectory by the Kinematic Theory, different algorithms have been
developed, as Robust XZERO [5,14] and IDeLog [6]. In this work we based on
the IDeLog algorithm [6].

Sigma-Lognormal model considers the resulting velocity of each simple fast
movement primitive as a lognormal function (Λ), being each peak of velocity
between two speed minima modeling by a lognormal. The lognormal parameters,
t0j , μj and σ2

j are calculated finding the less minimimun error between the
velocity profile and the obtained lognormal from successive interactions and the
trajectory original profile and the reconstructed one. The lognornormal function
that model each velocity peak or “simple movement” or “stroke” can be defined
as:

vj(t; t0j , μj , σ
2
j ) = DjΛ(t; t0j , μj , σ

2
j ) =

Dj

σj

√
2π(t − t0j )

exp{ [−ln(t − t0j ) − μj ]2

2σ2
j

(1)
where t is the time basis, Dj the amplitude , toj the time of occurrence, μj the
time delay and σj the response time, both on a logarithmic time scale.

In case a complex movement, a succession of simple movements or strokes as
can be observed in Fig. 1, the velocity profile vn(t) is given by the time super-
position of the M previous lognormals.
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where Φj(t) is the angular position given by:

Φj(t) = Θsj +
(Θej − Θsj )
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√
2

)] (3)

being Θsj and Θej are the starting and the end angular direction of the jth
simple movement or stroke.

3 Tasks and Features

Following subsections detail the data collection procedure, the tasks used, and
the features extracted.
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Fig. 1. An example of lognormal.

3.1 Data Collection

Nowadays it is known that alteration in handwriting is one of the first signs of
AD, that is why data acquisition step for this work focus on the recording and
collection of handwriting samples. Those samples comes from the execution of a
protocol [4] composed of different kinds of handwriting tasks. Every participant
executed all the tasks with a special pen on A4 paper sheets fixed to a graphic
tablet, that allow the recording of the handwriting in terms of x-y-z coordinates
for each point, acquired at a constant sampling rate, equal to 200 Hz. The first
two coordinates are spatial ones and represent the point position in the two-
dimensional surface where the writing is produced, while the third one is a
measure of the pressure exerted by the subject at that point. This last measure
assumes positive values when the pen is on the sheet, while a null value when it
is detached, up to a maximum distance of 3 cm from the sheet, beyond which the
system is not able to receive information. The protocol was administered to a
group of 174 participants: 89 patients at the first stages of AD and a control group
of 85 people. Both the AD patients and the control group were recruited with
the support of the geriatrics department, Alzheimer’s unit, of the “Federico II”
hospital in Naples. Both groups were selected according to a recruiting criteria
based on standard clinical tests, such as the Mini-Mental State Examination
(MMSE), the Frontal Assessment Battery (FAB) and the Montreal Cognitive
Assessment (MoCA).

3.2 Tasks

In this study we considered only the handwriting samples relative to six tasks
of the protocol:

1. Join two points with a vertical line continuously for four times. The up-down
vertical movements require the finger joint and wrist movements. This task
is useful to investigate elementary motor functions [27];

2. Trace a circle continuously for four times. The circle diameter has to be 6 cm.
This task allows to test the automaticity of movements and the regularity
and coordination of the sequence of movements [21];
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3. Write continuously for four times, in cursive, the bigram ‘le’. These letters
allow to test the motion control alternation;

4. Copy in reverse order a simple italian word: “bottiglia” (bottle in English).
This task has been inspired by the MMSE test, where one of the task requires
people spelling a word backward;

5. In the fifth task a telephone number (10 digits) has to be written under dic-
tation. The hypothesis underlying the introduction of this task is that motor
planning in writing a telephone number is different from that for writing a
word;

6. The sixth task is the Clock Drawing Test (CDT). In [26] the authors found
that CDT shows a high sensitivity for mild AD.

The first two tasks belong to the category of graphic tasks, whose objective is to
test the patient’s ability in: (i) writing elementary traits; (ii) joining some points;
(iii) drawing figures (simple or complex and scaled in various dimensions). The
third and the fourth tasks are copy and reverse Copy tasks, whose objective is
to test the person’s abilities in repeating complex graphic gestures, which have a
semantic meaning, such as letters, words and numbers (of different lengths and
with different spatial organizations). The fifth is a dictation task, whose purpose
is to investigate how the writing varies (with phrases or numbers) in which the
use of the working memory is necessary throughout the execution. The sixth
task is a graphic task whose purpose is not only to test the dynamic ability of a
person, but also his cognitive skills, the spatial dysfunction and lack of attention.
This test requires verbal understanding, memory and spatially coded knowledge
in addition to constructive skills [25].

3.3 Lognormal Features

The feature engineering process allowed us to identify a set of features that
according to our domain of knowledge were good candidates to discriminate
the handwriting of people affected by AD from that of healthy people. The
Sigma-Lognormal model, defined in Sect. 2 was applied to the data acquired
as stated in Sect. 3.1. The result of this procedure was the decomposition of
each task into a vector summation of simple time-overlapped movements, from
which it was possible to extract a set of Sigma-Lognormal parameters Pj =
[Dj , t0j , μj , σj , Θsj , Θej ]. In particular, for every point (x, y) acquired during the
execution of the tasks, one or more overlapping lognormals were found, so their
parameters and the percentage of contribution were stored for every point. The
term “First lognormal” is used to refer to the lognormal that most contributes
for a certain point. Once the Sigma-Lognormal parameters were obtained for
every task and every participant, it was possible to compute a set of fourteen
features, described in Table 1.
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Table 1. Summary of computed features

Name Description

num seg Total number of segments generated by the execution of the task

avg log Average of the number of overlapped lognormals for every point

tot log Total number of lognormals extracted from the entire trace of the task

avg D Average of D parameter of the first lognormal for every point

D max Max of D parameter found among the first lognormals of all the points

P first log Average of the percentage of contribution of the first lognormal for all the
points

σ stability Variance of the sigma parameter of the first lognormal for all the points

diff logs Average of the differences between the percentage of contribution of the
first and the second lognormal on all points

var log Variance of the percentage of contribution of the first lognormal on all
points

avg to Average of the to parameter of the first lognormal on all points

avg σ Average of the σ parameter of the first lognormal on all points

avg μ Average of the μ parameter of the first lognormal on all points

avg Θs Average of the Θs parameter of the first lognormal on all points

avg Θe Average of the Θe parameter of the first lognormal on all points

The aim of this procedure is to use those computed features to distinguish
between patients and healthy controls, the two groups of participants involved.
From this section on, those features will be referred as “Lognormal Features”.

4 Experimental Results

This section shows the results obtained by applying several classification
approaches according to the input data. Specifically, lognormal features are clas-
sified through six well known ML algorithms, while RGB images are used to feed
three different kinds of CNNs.

We used the lognormal features (see Sect. 3.3) with standard machine learn-
ing algorithms: k-Nearest Neighbors (K-NN), Random Forest (RF), Decision
Tree (DT), Support Vector Machine (SVM), Logistic Regression (LR), Gradient
Boosting (GB), XGboost (XGB). We used the scikit-Learn library. The settings
of their hyperparameters were left at the default values provided by scikit-Learn.
The only exceptions regard the SVM classifiers, for which we used a linear ker-
nel, and the KNN classifier, for which a the number of neighbours was set to
3. In order to obtain statistically significant results, we performed 30 runs for
each classifier. For each run, the dataset was randomly shuffled and a 5-fold
classification strategy was adopted. In order to evaluate the performance of the
mentioned models we considered the following metrics: accuracy (acc), Sensitiv-
ity (True Positive Rate, TPR), Specificity (True Negative Rate, TNR), Precision,
False Negative Rate (FNR), and Area Under the Curve (AUC).
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Since we performed 30 runs for each classifier, the above mentioned param-
eters were computed for each run and their average and standard deviation (in
parentheses) are shown in the following tables. All the metrics are expressed in
percentages, except for the AUC and bold values highlight the best performance
achieved.

Looking at the accuracies in Table 2 it is worth noting that we achieved the
best performance on task 3 with a value of accuracy equal to 74.66% (SVM),
whereas the worst performance was obtained on the task 1 with an accuracy of
58.24% (DT). The best performing algorithm was SVM, except for tasks 2 and
4 where RF achieved higher values. The DT classifier, on the contrary, achieved
the worst performances for almost every task.

Looking at the table, we can observe a general trend: the first two tasks have
worse performances than the others. An explanation to this phenomenon can
comes from the analysis of the considered tasks. As mentioned in Sect. 3 the
first two tasks are graphic and test the dynamics of simple movements and the
motor control of the person who executes them, without requiring an important
cognitive attention. The other tasks are words, numbers and the clock drawing
test and they indeed require cognitive attention, as some of them have semantic
meanings, include descending and ascending traits, requiring greater coordina-
tion, control skills and the use of the working memory. These considerations
suggest that the use of the lognormal features is more effective on tasks with a
semantic meaning instead of graphic tasks and it better brings out the difference
between patients and healthy controls.

Table 3 shows the sensitivity values obtained during the experimental process.
The sensitivity is a very important metric to consider when facing problems in
the medical field, as it gives information about the number of patients correctly
recognized. The best sensitivity score is obtained by RF on the fourth task
(77.47%), while the worst by DT on the first task (59.29%). According to this
table, RF and LR classifiers achieved good sensitivity values, but this doesn’t
mean they are the best classifiers, because looking at the accuracy the best is
SVM. Despite SVM is the best classifier, this table shows that other classifiers
are better able to recognize patients correctly.

From Table 4 we can see the specificity values obtained. The best specificity
measure is achieved by SVM on the third task (82.03%), while the worst by RF
on the second task (54.06%). This measure is linked to the sensitivity as it gives
information about the healthy control participants correctly classified. As we
said SVM was the best classifier according to the accuracy, but didn’t achieve
the higher sensitivity values, the specificity table, as a consequence, show high
values of this metric for the SVM classifier. It means SVM is the best classifier
according the accuracy, but, taking into account the considerations on sensitivity
and specificity, it seems to better recognize healthy controls instead of patients,
among our participants.

Table 5 shows that the best precision value is achieved from SVM on the third
task (80.36%), while the worst by DT on the first task (59.89%). Though accord-
ing to the sensitivity SVM wasn’t the better classifier in recognising patients,
this table shows that it is the most precise.
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The FNR values obtained during the experimental process are shown in
Table 6, where we can see that the best value is obtained with RF on the fourth
task (22.52%), while the worst by DT on the first task (40.71%). FNR is a metric
linked to Sensitivity, in fact they are complementary measures. FNR represents
the number of patients that are erroneously classified and of course it should be
at the lowest possible value. This is a fundamental information in the medical
field, because an error in classifying a patient is a more serious problem than an
error on a healthy person.

Table 7 shows the AUC values. AUC measures the area under the ROC curve,
which illustrates the diagnostic ability of a binary classifier as its discrimination
threshold is varied with the higher value the better. From the table we can
observe that LR on the third task achieved the best result (0.83), whereas the
worst was obtained by DT on the first task (0.58).

Table 2. Average Accuracy achieved on 30 runs for every ML algorithm on lognormal
features

T Accuracy

KNN RF DT SVM LR GB XGB

1 64.3 (2.7) 63.8 (2.2) 58.2 (3.1) 66.9 (2.2) 63.9 (1.5) 61.5 (2.3) 61.3 (2.9)

2 62.7 (2.4) 63.9 (2.6) 60.8 (3,2) 59.4 (2.0) 61.3 (2.1) 63.3 (3.7) 62.0 (3.0)

3 62.7 (2.0) 72.9 (2.2) 67.0 (2.7) 74.6 (1.5) 74.2 (1.5) 69.7 (2.7) 71.2 (2.4)

4 64.6 (2.6) 72.0 (2.0) 62.1 (3.5) 68.7 (1.8) 70.4 (1.4) 69.9 (3.5) 70.5 (2.7)

5 66.8 (2.3) 71.8 (1.8) 63.5 (2.8) 73.6 (1.9) 72.6 (1.9) 69.7 (3.2) 69.6 (2.9)

6 67.0 (2.8) 67.1 (3.0) 61.1 (3.9) 72.6 (2.8) 71.5 (2.3) 68.4 (2.9) 70.1 (3.0)

Table 3. Average Sensitivity achieved on 30 runs for every ML algorithm on lognormal
features

T Sensitivity

KNN RF DT SVM LR GB XGB

1 67.2 (2.6) 64.3 (3.0) 59.2 (4.2) 64.5 (2.7) 67.3 (2.1) 62.6 (2.5) 62.5 (3.1)

2 66.6 (3.5) 72.0 (3.9) 63.5 (4.2) 62.5 (3.5) 64.5 (3.2) 70.5 (4.3) 67.9 (3.6)

3 63.5 (2.0) 68.0 (3.7) 66.3 (4.1) 67.3 (1.8) 70.1 (2.0) 66.3 (4.2) 68.6 (3.5)

4 67.7 (3.0) 77.4 (2.1) 66.1 (5.4) 68.8 (3.0) 73.4 (2.7) 75.5 (3.5) 75.9 (3.1)

5 62.4 (3.1) 70.1 (3.0) 62.3 (4.1) 68.6 (2.8) 68.5 (2.1) 67.6 (4.2) 68.2 (4.3)

6 70.5 (3.5) 69.6 (4.6) 62.0 (6.2) 75.1 (3.4) 75.2 (3.6) 71.1 (4.8) 72.5 (5.3)

4.1 Comparison Findings

To test the effectiveness of the lognormal features extracted, we compared the
results shown in the above tables with those achieved by some deep neural net-
works (DL) trained on synthetic images generated from the raw data described
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Table 4. Average Specificity achieved on 30 runs for every ML algorithm on lognormal
features

T Specificity

KNN RF DT SVM LR GB XGB

1 61.1 (4.5) 63.2 (4.8) 57.1 (5.9) 69.5 (3.5) 60.3 (2.7) 60.4 (4.3) 59.9 (5.0)

2 58.0 (3.1) 54.0 (3.0) 57.4 (4.2) 55.6 (3.4) 57.3 (2.4) 54.3 (4.7) 54.8 (4.8)

3 61.9 (3.6) 77.8 (2.0) 67.6 (5.5) 82.0 (2.6) 78.4 (2.0) 73.0 (3.2) 73.8 (3.3)

4 60.7 (4.0) 65.0 (3.9) 56.9 (6.4) 68.5 (2.5) 66.5 (2.4) 62.8 (5.1) 63.8 (5.0)

5 71.3 (2.6) 73.4 (2.7) 64.8 (4.7) 78.7 (2.9) 76.9 (3.1) 71.8 (3.5) 71.0 (3.9)

6 63.1 (3.6) 64.0 (4.0) 60.1 (5.0) 69.8 (4.7) 67.1 (3.7) 65.4 (4.7) 67.3 (3.7)

Table 5. Average Precision achieved on 30 runs for every ML algorithm on lognormal
features

T Precision

KNN RF DT SVM LR GB XGB

1 65.3 (3.0) 65.7 (2.8) 59.8 (3.4) 69.7 (2.7) 64.9 (1.7) 63.2 (2.7) 62.9 (3.1)

2 66.3 (2.6) 66.2 (2.4) 65.0 (3.3) 63.8 (2.0) 65.2 (2.0) 65.9 (3.3) 65.4 (3.0)

3 63.2 (2.3) 76.4 (1.9) 68.5 (3.3) 80.3 (2.5) 77.6 (2.0) 72.1 (2.8) 73.6 (3.0)

4 69.2 (2.6) 74.4 (2.5) 66.7 (3.7) 74.5 (2.0) 74.3 (1.7) 72.8 (3.5) 73.2 (2.8)

5 69.6 (2.7) 73.8 (2.3) 64.8 (3.8) 77.3 (2.8) 76.0 (2.9) 71.6 (3.6) 71.1 (3.0)

6 69.0 (3.1) 69.6 (3.1) 64.3 (3.9) 74.6 (3.1) 72.8 (2.6) 71.1 (2.9) 72.3 (2.7)

Table 6. Average FNR achieved on 30 runs for every ML algorithm on lognormal
features

T FNR

KNN RF DT SVM LR GB XGB

1 32.7 (2.7) 35.6 (3.0) 40.7 (4.2) 35.4 (2.7) 32.6 (2.1) 37.3 (2.5) 37.4 (3.1)

2 33.3 (3.5) 27.9 (3.9) 36.4 (4.2) 37.4 (3.5) 35.4 (3.2) 29.4 (4.3) 32.0 (3.6)

3 36.4 (2.0) 31.9 (3.7) 33.6 (4.1) 32.6 (1.8) 29.8 (2.0) 33.6 (4.2) 31.3 (3.5)

4 32.2 (3.0) 22.5 (2.1) 33.8 (5.4) 31.1 (3.0) 26.5 (2.7) 24.4 (3.7) 24.0 (3.1)

5 37.5 (3.1) 29.8 (3.0) 37.6 (4.1) 31.3 (2.1) 31.4 (2.1) 32.3 (4.2) 31.7 (4.3)

6 29.4 (3.5) 30.3 (4.6) 37.9 (6.2) 24.8 (3.4) 24.7 (3.6) 28.8 (4.8) 27.4 (5.3)

Table 7. Average AUC achieved on 30 runs for every ML algorithm on lognormal
features

T AUC

KNN RF DT SVM LR GB XGB

1 0.66 (0.02) 0.70 (0.01) 0.58 (0.03) 0.72 (0.02) 0.71 (0.01) 0.66 (0.02) 0.67 (0.02)

2 0.65 (0.02) 0.68 (0.02) 0.60 (0.03) 0.63 (0.04) 0.65 (0.02) 0.67 (0.03) 0.66 (0.03)

3 0.69 (0.01) 0.82 (0.01) 0.66 (0.02) 0.82 (0.01) 0.83 (0.01) 0.79 (0.02) 0.78 (0.02)

4 0.68 (0.02) 0.78 (0.01) 0.61 (0.03) 0.78 (0.01) 0.79 (0.01) 0.76 (0.02) 0.77 (0.02)

5 0.69 (0.01) 0.78 (0.01) 0.63 (0.02) 0.77 (0.01) 0.76 (0.01) 0.75 (0.02) 0.75 (0.02)

6 0.68 (0.02) 0.72 (0.03) 0.74 (0.02) 0.76 (0.02) 0.75 (0.02) 0.73 (0.03) 0.74 (0.02)
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in Sect. 3.1. The image generation process and the comparison between the our
approach and DL are detailed in the following.

RGB Images. Starting from the raw data acquired as described in Sect. 3.1
and stored in terms of x-y coordinates and pressure at a frequency of 200 Hz, we
generated synthetic images to feed Convolutional Neural Networks (CNN). The
traits of these images are obtained by considering the points (xi, yi) as vertices
of the polygonal that approximates the original curve. We encoded kinematic
information in the RGB channels and as the tools used for the acquisition step
allow us to record in air movements too, these images contains both in air and on
paper information. In particular, they were obtained by considering the triplet of
values (zi, vi, ji) assumed as RGB color components for the i−th trait, delimited
by the couple of points (xi, yi) and (xi+1, yi+1). The triplet is obtained as follows:

– zi is the pressure value at point (xi, yi) and it is assumed constant along the
i-th trait;

– vi is the velocity of the i-th trait, computed as the ratio between the length
of the i-th trait and interval time of 5 ms corresponding to the period of
acquisition of the tablet;

– ji is the jerk of the i-th trait, defined as the second derivative of velocity.

The values of the triplet (zi, vi, ji) have been normalized into the range [0,
255] in order to match the standard 0–255 color scale, by considering the mini-
mum and the maximum value on the entire training set for these three quantities.
For further details about the generation of these images, we suggest checking
out our recent publication [3]. We selected three CNN models that accept input
images that are automatically resized to 256 × 256 for VGG19 [22], to 224 × 224
for ResNet50 [7], to 299× 299 for InceptionV3 [23] respectively. Taking into
account these constraints for both type of images, the original x, y coordinates
have been resized into the range [0, 299] for each image, in order to provide
ex-ante images of suitable size and minimize the loss of information related to
possible zoom in/out.

ML/DL Comparison. As mentioned above, lognormal features can be given in
input to standard ML algorithms, whereas RGB images contain dynamic infor-
mation encoded into the three color channels and can be used to feed a different
CNN. Table 8 shows the accuracy performances achieved by the two approaches.
From the table we can observe that in most cases ML outperformed DL, espe-
cially with the SVM classifier. DL only won on the second task with the VGG19
net. For the sake of comparison, for each task we plotted the ROC curves of the
classification algorithms/nets that outperformed the others in at least one task,
namely LR and SVM among the ML classifiers, and VGG19 among the CNNs
(see Table 8). Looking at these two different sources of evaluation, we can observe
that the deep approach (RGB images) outperformed the lognormal-based one on
the graphic tasks (Tasks #1 and #2). On the contrary, the lognormal features
confirmed their effectiveness in dealing with handwriting and cognitive tasks (see
Fig. 2).
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(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

(e) Task 5 (f) Task 6

Fig. 2. Comparison of ROC curves obtained from RF, SVM and VGG19 for every task.
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Table 8. Comparison results.

T ML Deep

KNN RF DT SVM LR GB XGB VGG19 ResNet50 Inc.V3

1 64.34 63.83 58.24 66.92 63.98 61.56 61.33 61.62 62.64 62.20

2 62.77 63.97 60.83 59.47 61.31 63.30 62.05 72.19 65.90 71.25

3 62.79 72.97 67.01 74.66 74.25 69.73 71.27 66.83 62.09 70.81

4 64.67 72.03 62.11 68.72 70.43 69.97 70.59 66.82 58.62 63.97

5 66.87 71.80 63.58 73.69 72.68 69.70 69.63 66.01 62.43 70.37

6 67.09 67.10 61.14 72.66 71.50 68.45 70.10 66.48 64.07 65.39

5 Conclusions and Future Work

Neurodegenerative disease is a cognitive impairment that can be manifested
through the graphonomics lack of skills. Alzheimer’s and Parkinson’s are the
two most common diseases observed in handwriting. This paper analyzes the
writing of patients and healthy people with kinematic features extracted from
the kinematic theory of rapid movement. To study the skill levels of participants,
we used a dataset with healthy people and patients at the early stage of AD.
Their handwriting included signatures, letters, and drawings following a well-
established protocol for Alzheimer’s [4]. Our preliminary results confirm that
lognormal features model handwriting better than graphic tasks. In particular,
we achieved the best results (ACC > 70 %) with the following tasks:

– ‘le’ (repeated four times);
– Word ‘bottiglia’ backward;
– Dictated telephone number;
– Clock drawing test.

It is worth noting that we did not apply any parameter optimization in this work.
We expect that a grid search procedure will allow us a significant improvement
in our future outcomes. Furthermore, these results align with those achieved
using standard kinematic features (velocity, acceleration, etc.). We also plan to
analyze which tasks lognormal/deep features perform better. This would allow us
deepening for each task which features (approach) achieve the best classification
performance. Finally, similar to related works, there is room to improve our final
prediction by combining the responses from the single classifiers (one per task).
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Universitat Autònoma de Barcelona, Barcelona, Spain

{abensalah,afornes,josep}@cvc.uab.es
2 Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

cristina.carmona@ulpgc.es

Abstract. Assessing the quality of movements for post-stroke patients
during the rehabilitation phase is vital given that there is no standard
stroke rehabilitation plan for all the patients. In fact, it depends basi-
cally on the patient’s functional independence and its progress along the
rehabilitation sessions. To tackle this challenge and make neurorehabil-
itation more agile, we propose an automatic assessment pipeline that
starts by recognising patients’ movements by means of a shallow deep
learning architecture, then measuring the movement quality using jerk
measure and related measures. A particularity of this work is that the
dataset used is clinically relevant, since it represents movements inspired
from Fugl-Meyer a well common upper-limb clinical stroke assessment
scale for stroke patients. We show that it is possible to detect the con-
trast between healthy and patients movements in terms of smoothness,
besides achieving conclusions about the patients’ progress during the
rehabilitation sessions that correspond to the clinicians’ findings about
each case.

Keywords: Neurorehabilitation · Upper-limb · Movement
classification · Movement smoothness · Deep learning · Jerk

1 Introduction

Neurological disorders result in cognitive and motor impairments. The stroke
survivors in particular may face deficits in motor functions in one side of the
body. These function deficits are addressed through rehabilitation sessions to
partially or fully recover the functional independence of the patient [1]. One of the
central challenges, during this phase, is the assessment of the patient’s evolution.
Essentially, notable progress in post-stroke patient cases happens during the first
weeks namely the critical windows of heightened neuroplasticity [2]. After that,
the non-linear recovery function reaches asymptotic levels. For all above reasons,
both timing and treatment intensity in that critical period of time should be
optimised. Thus it is indispensable to monitor patient’s progress continuously
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and accurately, in order to maximise the patient’s recovery by the end of the
critical window. For long years, the way to proceed has been to use specific
clinical scales [3]. In practice, the patients’ motor functions are evaluated once
or twice in ten days. Ergo, the drawback of such an approach is that the patient’s
evolution is not assessed whenever patient is out of the rehabilitation room. In
fact, its the patient’s daily activities performance that best reflect his functional
independence.

One way to cope with this limitation is to automatize the assessment in
order to help clinicians to asses efficiently the patient. Many issues arise when
automatizing: firstly, determining the movement nature throughout a continu-
ous recording for hours; secondly, finding out which measures describe best the
movement quality.

To address the previous mentioned issues, we propose a framework to auto-
matically assess patients’ movements. The framework has two parts:

– The first part consists of movements’ classification via a shallow deep learning
architecture into four key movements classes;

– The second part is an assessment module based on the jerk measure to ascer-
tain the contrast between patients and healthy individuals’ signals, as well
as estimating the patients’ evolution along the different sessions. Contrary to
other existing kinematic algorithms that need more memory space and com-
putational resources due to the number of kinematic parameters [4], jerk is
easier to implement in an embedded device.

Along the rest of this paper, we give an overview of related works in Sect. 2,
then we describe our classification deep learning architecture in Sect. 3. In Sect. 4,
we give an overview of movement smoothness measurements. Next, we describe
our setup in Sect. 5. Then, we present our results and findings in Sect. 6.

2 Related Work

Spotting a sequence in a signal aims to retrieve the signal or parts of it that
are relevant for a given query. Depending on the nature of the query, many
sequence spotting tasks arise [5–7]. If the signal is a series of one or many different
modalities and the query is an action, activity, motion or gesture, then we’re
addressing a Human Activity Recognition (HAR) task.

HAR has benefited greatly from the deep learning boom. HAR has been per-
formed using different modalities: RGB images [8], skeleton [9], acceleration [10],
wifi [11]...

Acceleration is a broadly exploited modality for action recognition due to
the fact that it is an non-invasive sensing method thus there are no privacy
constraint issues. HAR through acceleration is possible because often humans
perform a movement in the same qualitative way [12]. HAR is either performed
using traditional learning algorithms, for instance, support vector machines [13],
k-nearest neighbors [14] or employing deep learning models such as Convolutional
Neural Networks (CNN) [15], Recurrent Neural Networks (RNNs) [16] or Long
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short-term memory (LSTM) [17]. According to [18], 22% of the HAR works were
dedicated to health applications.

On the other hand, to assess recognized movements particularly for stroke
patients there is no general agreement on how to obtain a movement smoothness
indicator or what measure describes it best [19]. One reason for that is the vague
understanding of the neurophysiology behind movements’ quality, as it is the case
for upper limb movements [20]. According to [21], works about smoothness mea-
sures for stroke patients fall mainly in five different categories: trajectory related
metrics [22], velocity related metrics [23,24], acceleration related metrics [25,26],
jerk related metrics [27] and other metrics [28]. As explained above, HAR tasks
have been tackled in many ways, as well as the assessment movement quality
question. In our work, and given the few available data, we opt for a shallow deep
learning architecture for HAR; moreover, we explore the use of jerk measure for
assessing patients quality movements.

3 Movement Classification

We got inspired from Supratak’s model [29] that was designed to tackle the
Polysomnography challenges, which is one of the ways to assess sleep quality [30].
Traditionally, Polysomnography is performed by a group of experts that annotate
recorded data, using a sleep stage scoring.

To alleviate the previous limitations the architecture implements a data aug-
mentation module and less signal processing steps in the pipeline.

3.1 Architecture

The model is fed with epochs of our raw acceleration signal (see Fig. 1). We
classify the movements into one of the four key movement classes: M1, M2, M3,
M4. The first component of the model is composed of four CNN layers with
the aim of extracting time-invariant features from the raw signal. A max-pool
and a dropout layers are introduced after the first CNN layer and the last one,

Fig. 1. Raw acceleration signal of a healthy individual.
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as exemplified in Fig. 2. The second component is designed to learn temporal
dependencies of the raw signal (sequence learning). This is done via one LSTM
layer followed by a dropout layout, and together they form a unidirectional
RNN. The unidirectional RNN is supposed to learn time transition rules. The
unidirectionality of the LSTM results in eliminating the forward pass, hence,
reducing the number of hyperparameters and the computational resources.

Fig. 2. Model architecture.

Since our dataset is balanced, the weighted cross-entropy loss is set to 1 for
all classes. Furthermore, to address the scarce data issue, a data augmentation
is performed on the original data, every training epoch. Data augmentation is
carried out by shifting the signal through the time axis, the shifting span is
from a certain range of the epoch duration. The model is pretrained with the
Sleep-EDF dataset [31].

4 Movement Smoothness

Following the description of the classification architecture, we present the move-
ments’ smoothness measurements next. Quantifying a movement quality can be
performed in many ways. Measuring the position relative to time, is one of them.
Velocity −→v (Eq. 1), acceleration −→a (Eq. 2), jerk

−→
j (Eq. 3) and snap −→s (Eq. 4)

are respectively the first, second, third and fourth derivative of the trajectory −→x
with respect to time, are the most widespread used measuring quantities [32].
Those are the same measures used by the human body to manage its balance.
More specifically, this is handled by the sensorial functions of the vestibular
system that provides information such as body position together with gravity
direction [33]. If an object is in motion, it experiences velocity. When velocity
is not constant, the object is said to have an acceleration which is not equal
to zero. If acceleration is varying over time, then emerges a sensation of jerki-
ness of the movement. Since attention was brought back to jerk in [34], it has
had many applications in the science and technology fields [35–37]. Jerk should
always take into account when vibrations occur, also whenever an abrupt tran-
sition happens [35]. For example, jerk is considered when designing railways to
ensure a smooth motion whenever train changes from a straight line to a curved
one, equally when ensuring that an industrial tool fails too soon because of fast
acceleration changes.

When analysing a human movement by looking at its acceleration, it is axis
orientation dependent. A small rotation of the wrist while recording data can
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result in a lot of noise in an axis acceleration. Hence, in this work, we focus
on jerk as a movement quality measure, in particular, as a smoothness indi-
cator. Ultimately, jerk is easier to implement in a an embedded device, unlike
other existing kinematic algorithms that need more space due to the number of
kinematic parameters.

−→v (t) =
d−→x (t)

dt
(1)

−→a (t) =
d−→v (t)

dt
(2)

−→
j (t) =

d−→a (t)
dt

(3)

−→s (t) =
d
−→
j (t)
dt

(4)

5 Setup

5.1 Dataset

The dataset used was recorded as a part of 3D kinematics for remote patient
monitoring (RPM3D) project1, aiming to build an automatic pipeline for stroke
patients. A dataset for stroke patients and healthy subjects along with a classifi-
cation baseline was published [38]. Patients and healthy individuals were given a
smartwatch in each hand. Healthy individuals were recorded once while patients
were recorded during four different sessions. The time interval between patients’
sessions is between one or two weeks. Initially, to assess a stroke patient upper
limb motor functions, an assessment is performed once in a week or ten days.
The best-known scale to asses sensorimotor impairments within stroke patients
is the Fugl-Meyer Assessment [39]. For this reason, authors were inspired from
the Fugl-Meyer movements to design their set of key movements Mi, i ∈ [1, 4],
thusly:

– Movement M1: shoulder extension/flexion.
– Movement M2: shoulder abduction.
– Movement M3: external/internal shoulder rotation.
– Movement M4: elbow flexion/extension.

Scenarios. The experiments were held into two different setups: a constrained
scenario L1 and unconstrained one L2. These are described as follows:

– Scenario L1: it represents a constrained scenario, where individuals perform
four key movements Mi: once with the dominant hand, second using the
non-dominant one and lastly with both hands.

– Scenario L2: it represents the unconstrained scenario, composed of a sequence
of key movements Mi along with a set of other non-target movements Rj ,
j ∈ [1, 19]. Ri movements are a list of usual daily activities such as: drinking,
setting on a chair, ... The movements are carried out in a random order.

1 http://dag.cvc.uab.es/patientmonitoring/.

http://dag.cvc.uab.es/patientmonitoring/
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5.2 Pipeline

We start by classifying movements into the four main classes: M1, M2, M3,
M4 (shoulder extension/flexion, shoulder abduction, external/internal shoulder
rotation, elbow flexion/extension).Then we compute the jerk value for a signal
that represents performing one movement, for several times, such as shown in
Fig. 3 to inspect the global acceleration patterns of a movement.

Fig. 3. Acceleration and jerk for a repetition of movements - Healthy individual.

After that, we compute the jerk for a smaller fragment of the previous signal
(one well segmented movement), for a more accurate smoothness estimation.

6 Results

Results below are related to the classification of L1 movements and their smooth-
ness analysis.

6.1 Classification

For the experiments, the data is divided into 80% for training, and 20% for
testing. The testing accuracy reaches an average of 77,01%. We experience a
decrease of accuracy in some epochs, which we believe is due to the small size
of the training data set.
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6.2 Smoothness

In Table 1 we give information about the jerk values for well segmented move-
ments of healthy and patient individuals, along axis x. Theoretically, the jerk
value should be lower in the case of healthy individuals compared to patients,
because their ability to move and perform the movements in a smoother way is
superior, thus their movements are less jerky (see Fig. 4) [21].

Fig. 4. Jerk values for a patient and healthy individual performing the same movement.

As observed in Table 1, this is the case for M2, M3, M4. For instance, regard-
ing movement M3, the absolute value of the jerk mean for patients is 0.7 times
the absolute value of the jerk mean for healthy subjects. Simultaneously, the
trend in Table 1 is that the maximum of jerk within the healthy population is
greater than the patients’ one, for all four movements M1, M2, M3, and M4.

Table 1. Jerk measures for patients and healthy individuals, along axis x.

Jerk measure

Mean Max Min

Axis x Healthy Patient Healthy Patient Healthy Patient

M1 0,00500712 −0,006998 497,99 145,54 −1,96E+02 −138,99182

M2 −0,0004051 −0,001621 157,56 69,46 −186,062127 −152,652

M3 −0,0023341 0,0016529 102,74 84,58 −1,27E+02 −62,973556

M4 0,00031141 0,0006176 161,04 107,14 −1,50E+02 −114,20477

The jerk represents the change in acceleration. In that sense, to gain more
understanding of the movements’ smoothness, we went for jerk related measures,
which are calculated based on the absolute value of the jerk. In this work, we
focus on the squared jerk measure. Table 2 shows the mean, maximum and min-
imum values of the squared jerk measure. Notice that the trend in Table 1 is
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that the mean jerk within healthy individuals is lower, which corresponds to the
theory premises’ that the jerkier and less smooth the movement is, the higher
is the jerk value. Hence, patients should have higher jerk values. Nonetheless,
this is not the case for the squared mean jerk. The general pattern in Table 2
is that the healthy population’s squared jerk mean is higher than patients. We
think that this could be related to the fact that a patient signal is noisier than
healthy individual one because patients are slower, thus a patient’s signal has
more peaks and more cumulative noise (see Fig. 5).

Fig. 5. Healthy vs patient signal.

Table 2. Squared jerk measures for patients and healthy individuals, along axis x.

Squared jerk measure

Mean Max Min

Axis x Healthy Patient Healthy Patient Healthy Patient

M1 19,96 7,65 247993,61 21182,96 8,93E−12 2,22E−12

M2 18,11 5,76 34619,12 23302,63 0 8,42E−10

M3 14,40 3,75 16056,08 7153,85 3,55E−11 0

M4 26,19 4,48 25934,96 13042,73 8,93E−12 0

Tables 3, 4, 5, and 6 provide information about the squared jerk measure
for four patients, namely: 100, 101, 102, 103. It indicates the evolution of four
patients through four sessions, along axis x. Table 3 gives information about the
squared jerk measures: mean, maximum and minimum for patient 100. Patient’s
performance for movement M1 is better in sessions 3 and 4. Figure 6 shows a less
jerky M1 in session 3 compared to the first session. At the same time patient 100
reaches the most significant improvement for M3 and M4 in the third session.
Yet, movement M2 squared jerk mean values present no improvement during the
four sessions.
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Fig. 6. Squared jerk values for movement M1 in session 1 and 3- Patient 100.

Table 3. Squared jerk measures for patient 100 across four sessions, along axis x.

Patient 100

Mean Max Min

Axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 12,88 13,04 5,09 10,16 18882,36 12129,74 4166,80 21182,96 8,38E−09 1,67E−08 1,75E−07 2,30E−09

M2 4,17 9,07 12,74 19,92 715,66 1246,53 23302,63 7364,52 9,35E−08 4,49E−08 8,42E−10 1,88E−08

M3 9,16 6,25 4,65 8,28 3738,07 2385,56 976,07 7153,85 8,53E−10 2,05E−10 5,18E−09 3,94E−08

M4 6,28 30,45 4,80 7,14 1804,63 13042,73 1246,78 670,45 1,98E−08 1,28E−08 1,20E−08 0

As for Patient 101 (see Table 4), the mean squared jerk values have increased
during the four rehabilitation sessions, as illustrated in Fig. 7. The Figure shows
a less smooth M4 movement in the last session, except for movement M1, which
experiences a decrease in the mean squared jerk value compared to the first
session.

Table 5 depicts patient’s 102 data, in which movements M1, M2, M3 witness
a gradual decrease of squared jerk mean until the last rehabilitation session.
Contrary, the M1 mean squared jerk stops lessening after the second session.

It is clear that the three patients 100, 102, 103 have reached lower squared
jerk means than those of their first sessions, for at least three movements.

Table 4. Squared jerk measures for patient 101 across four sessions, along axis x.

Patient 101

Mean Max Min

Axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 7,61 2,62 4,63 5,23 1357,01 445,53 581,59 968,97 1,64E−07 2,22E−12 4,59E−08 3,55E−11

M2 2,03 2,16 7,52 5,20 267,21 484,64 3781,94 1086,66 1,04E−07 1,05E−08 2,22E−08 2,82E−09

M3 2,14 4,05 3,21 8,03 406,89 2257,01 604,45 3965,67 6,13E−08 8,39E−09 4,69E−09 3,60E−08

M4 0,58 0,73 2,88 2,49 44,56 163,14 1068,82 1034,61 2,24E−09 1,52E−08 8,85E−10 5,00E−10
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Fig. 7. Squared jerk values for movement M4 in session 1 and 4- Patient 101.

How Good is Jerk as a Smooth Indicator? Overall, it is not trivial to
compare the jerk values of healthy individuals to the ones of the patients owing
to the way the patients performed the movements. In particular, when patients
have difficulties to perform the movements in a consistent way, it implies that
a simple comparison of healthy movements’ jerk values and patients ones is not
always conclusive. For example, in the case of movement M1, the jerk mean value
is higher within healthy samples than the patient samples. Despite that, the
mean squared jerk values provide interesting insights concerning the evolution
of patients across the four sessions. Our conclusions do align with the clinicians’
closures: most patients’ smoothness improved when compared to the first session.
Additionally, for patient 101, the patient that presented more motor function
issues during the sessions, we observed the least improvement in terms of squared
jerk mean values.

Table 5. Squared jerk measures for patient 102 across four sessions, along axis x.

Patient 102

Mean Max Min

Axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 4,27 1,18 4,82 7,09 5256,19 49,80 3829,05 7841,56 1,61E−08 2,90E−09 1,50E−08 8,84E−12

M2 2,89 4,61 2,21 1,78 473,36 2788,06 353,56 739,78 5,98E−09 4,09E−08 8,61E−10 3,77E−08

M3 1,03 1,56 1,03 0,58 88,71 405,24 117,23 81,77 1,26E−09 0 3,21E−08 6,56E−09

M4 1,90 1,25 1,67 0,84 306,19 165,53 184,44 125,36 1,22E−08 1,77E−09 3,01E−08 2,59E−09

Table 6. Squared jerk measures for patient 103 across four sessions, along axis x.

Patient 103

Mean Max Min

Axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 8,57 16,17 9,97 9,47 2570,08 19318,73 2733,30 1991,19 2,35E−08 2,79E−08 5,36E−11 7,71E−08

M2 2,80 4,34 1,88 3,79 500,42 2143,84 222,50 1488,18 2,18E−07 1,73E−09 1,29E−09 4,98E−08

M3 1,66 2,14 1,86 1,34 1039,28 707,50 297,98 331,72 8,53E−09 2,33E−10 2,86E−08 3,82E−08

M4 3,18 4,12 2,11 2,52 4304,22 2560,54 1628,78 713,06 4,45E−10 8,66E−09 3,60E−08 4,36E−01
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7 Conclusion

In this paper, we have presented a fully automatic assessment stroke patients
pipeline, combining a deep learning model and a smoothness quality module
based on the jerk measure, which is computed on movements inspired from
the valid clinical functional Fugl-Meyer scale. The classification of movements
reached a good accuracy even though the dataset is small, probably due to the
data augmentation performed on the original signal. The jerk has proved to be a
promising measure to assess stroke patients when compared to healthy subjects,
while squared jerk gives a good indication for intersession patient’s performance
variability.

Alike all vision and machine learning tasks that are not image or NLP related,
the data available for our task is few. Hence, in the future work will be directed
toward enhancing available data and exploiting more robust smoothness mea-
sures.
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9. Memmesheimer, R., Häring, S., Theisen, N., Paulus, D.: Skeleton-DML: deep met-
ric learning for skeleton-based one-shot action recognition. In: 2022 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pp. 837–845
(2022)



Easing Automatic Neurorehabilitation 347

10. Zhou, C., Yang, L., Liao, H., Liang, B., Ye, X.: Ankle foot motion recognition
based on wireless wearable sEMG and acceleration sensors for smart AFO. Sens.
Actuators, A 331, 113025 (2021)

11. Li, C., Liu, M., Cao, Z.: WiHF: gesture and user recognition with WiFi. IEEE
Trans. Mob. Comput. 21(2), 757–768 (2022)

12. Rahmani, H., Bennamoun, M., Ke, Q.: Human action recognition from various
data modalities: a review (2021)

13. Chaabane, S.B., Hijji, M., Harrabi, R., Seddik, H.: Face recognition based on sta-
tistical features and SVM classifier. Multimed. Tools Appl. 81, 8767–8784 (2022).
Query date: 2022-02-22 13:16:18

14. Malik, N.U.R., Abu Bakar, S.A.R., Sheikh, U.U.: Multiview human action recog-
nition system based on OpenPose and KNN classifier. In: Mahyuddin, N.M., Mat
Noor, N.R., Mat Sakim, H.A. (eds.) Proceedings of the 11th International Confer-
ence on Robotics, Vision, Signal Processing and Power Applications. LNEE, vol.
829, pp. 890–895. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-
8129-5 136

15. Khalid, H.-U.-R., Gorji, A., Bourdoux, A., Pollin, S., Sahli, H.: Multi-view CNN-
LSTM architecture for radar-based human activity recognition. IEEE Access 10,
1 (2022). Query date: 2022-02-23 12:56:18

16. Zhu, Q., Chen, Z., Soh, Y.C.: A novel semisupervised deep learning method for
human activity recognition. IEEE Trans. Ind. Inform. 15(7), 3821–3830 (2019)

17. He, J.-Y., Xiao, W., Cheng, Z.-Q., Yuan, Z., Jiang, Y.-G.: DB-LSTM: densely-
connected Bi-directional LSTM for human action recognition. Neurocomputing
444, 319–331 (2021)

18. Gupta, N.: Human activity recognition in artificial intelligence framework: a nar-
rative review. Artif. Intell. Rev. 55, 4755–4808 (2022)

19. Refai, M.I.M.: Moving on: measuring movement remotely after stroke. Ph.D. thesis.
University of Twente, Netherlands (2021)

20. Buma, F., Kordelaar, J., Raemaekers, M., van Wegen, E., Ramsey, N., Kwakkel,
G.: Brain activation is related to smoothness of upper limb movements after stroke.
Exp. Brain Res. 234, 07 (2016)

21. Scheltinga, B.L.: Suitable metrics for upper limb movement smoothness during
stroke recovery (2019)

22. Bigoni, M., et al.: Does kinematics add meaningful information to clinical assess-
ment in post-stroke upper limb rehabilitation? A case report. J. Phys. Therapy
Sci. 28, 2408–2413 (2016)

23. Rohrer, B., et al.: Movement smoothness changes during stroke recovery. J. Neu-
rosci.: Official J. Soc. Neurosci. 22, 8297–304 (2002)

24. Liebermann, D.G., Levin, M.F., McIntyre, J., Weiss, P.L., Berman, S.: Arm path
fragmentation and spatiotemporal features of hand reaching in healthy subjects
and stroke patients. In: 2010 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pp. 5242–5245. IEEE (2010)

25. Pila, O., Duret, C., Laborne, F.-X., Gracies, J.-M., Bayle, N., Hutin, E.: Pattern
of improvement in upper limb pointing task kinematics after a 3-month training
program with robotic assistance in stroke. J. Neuroeng. Rehabil. 14, 10 (2017)

26. Rahman, H.A., Khor, K., Fai, Y., Su, E., Narayanan, L.: The potential of iRest
in measuring the hand function performance of stroke patients. Bio-Med. Mater.
Eng. 28, 105–116 (2017)

27. Laczko, J., Scheidt, R., Simo, L., Piovesan, D.: Inter-joint coordination deficits
revealed in the decomposition of endpoint jerk during goal-directed arm movement
after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. PP, 1 (2017)

https://doi.org/10.1007/978-981-16-8129-5_136
https://doi.org/10.1007/978-981-16-8129-5_136


348 A. Bensalah et al.

28. Irfan, M., et al.: Smoothness metrics for reaching performance after stroke. Part
1: which one to choose? J. NeuroEng. Rehabil. 18, 10 (2021)

29. Supratak, A., Guo, Y.: TinySleepNet: an efficient deep learning model for sleep
stage scoring based on raw single-channel EEG. In: 2020 42nd Annual International
Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp.
641–644 (2020)

30. Wang, X., Zhou, Y., Zhao, C.: Heart-rate analysis of healthy and insomnia groups
with detrended fractal dimension feature in edge. Tsinghua Sci. Technol. 27(2),
325–332 (2022)

31. Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A.C., Oberye, J.J.L.: Anal-
ysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity
of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000)

32. Van Dam, J., Tanous, K., Werner, M., Gabbard, J.L.: Calculating and analyzing
angular head jerk in augmented and virtual reality: effect of AR cue design on
angular jerk. Appl. Sci. 11(21), 10082 (2021)

33. Oliveira, S.M.S., et al.: The balance concept on unilateral vestibular hypofunction
patients changes the balance and quality of life. Health Sci. J. 15(5), 1–5 (2021)

34. Schot, S.H.: Jerk: the time rate of change of acceleration. Am. J. Phys. 46, 1090–
1094 (1978)

35. Hayati, H., Eager, D., Pendrill, A.-M., Alberg, H.: Jerk within the context of science
and engineering—A systematic review. Vibration 3(4), 371–409 (2020)

36. Hostler, D., Schwob, J., Schlader, Z.J., Cavuoto, L.: Heat stress increases movement
jerk during physical exertion. Front. Physiol. 12, 748981 (2021)

37. Alpers, B.: On fast jerk–, acceleration– and velocity–restricted motion functions
for online trajectory generation. Robotics 10(1), 25 (2021)

38. Bensalah, A., Chen, J., Fornés, A., Carmona-Duarte, C., Lladós, J., Ferrer, M.Á.:
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Abstract. The analysis of signatures attributed to individuals with Alzheimer’s
disease (AD) poses special challenges to Forensic Handwriting Examiners (FHEs)
and research on the subject has been scarce. The aim of the study was to assess
howAD impactsmotor features in signature execution through kinematic analysis.
The study included 10 individuals with mild AD, 10 individuals with moderate
AD and 10 healthy controls matched by age, education and gender. Eight hybrid
signatureswere collected from each participant using a digitizer andNeuroScript’s
MovAlyzeR® software. The study revealed no statistically significant intergroup
differences regarding average absolute velocity, absolute jerk, normalized jerk and
average pen pressure in the text-based that were produced. Findings suggest that,
in text-based signatures, motor features are relatively preserved in the initial and
moderate stages of Alzheimer’s disease. Therefore, at these stages of the illness,
FHEs should not expect significant changes in such features for this signature
type. These results also support the hypothesis that motor programs responsible
for the creation/execution of text-based signatures are not significantly impaired
in the initial and moderate stages of the illness, due to the automation and lower
cognitive demands of well-trained signatures.

Keywords: Signature execution · Alzheimer’s disease · Dementia · Dynamic
features · Digitally captured signatures · Motor programs

1 Introduction

Forensic Handwriting Examination is a complex discriminatory process that requires
the analysis, comparison and evaluation of handwriting patterns [1]. The analysis of
handwriting attributed to a signatory with Alzheimer’s disease poses special challenges
to Forensic Handwriting Examiners (FHEs), since this irreversible neurodegenerative
disease progressively impairs several cognitive domains [2, 3] and hence is susceptible
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of affecting handwriting. Moreover, simulations and handwriting changes due to illness
may share common characteristics, such as tremor, lack of fluency, retouching and a
higher number of pen lifts [4, 5], thusmaking the evaluation of the findingsmore intricate.

Research on how Alzheimer’s disease (AD) affects motor features in signature exe-
cution has been scarce, particularly from a FHE’s perspective. Behrendt [6], in 1984,
described the preservation of writing skill despite cognitive decline. However, the author
also highlighted that when deterioration occurs it may progress rapidly. These findings
were confirmed in a study conducted by Caligiuri and Mohammed [7], using digitiz-
ers. The authors found no significant differences between signatures produced by AD
participants with moderate dementia and the control group regarding stroke duration,
amplitude, velocity, pen pressure and fluency, although there was an increase in the
natural variation of handwriting [7]. Despite these findings, other forensic studies using
conventional pen and paper signatures described lower line quality in AD individuals
with more severe dementia due to tremor and hesitations [8, 9], whereas velocity and
pressure were considered similar [7].

Non forensic studies also suggest changes in motor features of signatures in AD.
Research by Pirlo et al. [10] extracted dynamic features from signatures using a Sig-
malognormal model. In this study, the bagging CART classification tree allowed the
differentiation between AD participants and healthy controls with an error rate of 3%.
Wang et al. [11] also reported that the signatures of individuals with AD, when compared
to healthy controls, had lower information content in the time sequences of pressure and
pen altitude angles. The authors found significant differences in the way AD subjects
hold the pen, due to lower muscle tonus. However, whether these findings have forensic
relevance and therefore can be applied in Forensic Handwriting Examination warrants
further research.

In this context, the aim of the study was to assess how Alzheimer’s disease impacts
motor features in signature execution through kinematic analysis, thereby providing
more information for FHEs dealing with such cases.

2 Material and Methods

2.1 Participants

The study included 20 subjectswith a previousmedical diagnosis of probableADaccord-
ing to the DSM-5 criteria [12], recruited from hospitals and dementia day care centers
located in Porto, Portugal. These subjects were divided into two groups according to
dementia severity, as 10 individuals had mild stage AD and 10 were in the moderate
stage, based on the criteria of the clinical dementia rating (CDR) [13]. The study also
included a control group with 10 healthy matched individuals, recruited from day care
centers or through senior associations, who underwent neuropsychological testing to
confirm the absence of cognitive deficits and non-dementia status. Inclusion criteria for
the study subjects were the following: all individuals were Portuguese, right-handed,
had normal or corrected hearing and eyesight, and knew how to read and write, as the
minimum level of education was the 4th grade, taking into consideration the literacy
levels for this age group in the Portuguese population [14]. In the Alzheimer’s disease
groups, subjects with additional medical conditions that further impaired cognition or
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motor control, or individuals with signs of parkinsonism were excluded. In the con-
trol group, subjects with any medical condition that could adversely affect cognition or
motor control were also excluded. A description of the demographic characteristics for
each group and the scores obtained in theMini-Mental State Examination Test (MMSE),
adapted to the Portuguese population by Guerreiro et al. [15], is presented in Table 1.

Table 1. Description of the three groups (Control, Mild AD and Moderate) regarding age,
education, gender and MMSE scores.

Control group Mild AD Moderate AD

Participants 10 10 10

Age (years) 80 ± 6 80 ± 5 78 ± 9

Education (years) 6 ± 3 5 ± 2 6 ± 3

Gender (f/m) 6/4 6/4 5/5

MMSE Scores 28 ± 2 23 ± 4 19 ± 3

Age, Education and MMSE scores are means ± Standard deviation (SD)

This study was approved by the Ethics Committee of the University of Alcalá, as
well as by the Ethics Committees of the Institutions involved. Informed consent was
obtained from all the study subjects or their legal representatives prior to the beginning
of the experiment.

2.2 Equipment and Procedure for Signature Collection

Participants wrote with an electronic inking pen (Wacom inking pen KP-130-01) on an
A4 sized unlined form, affixed to the surface of a Wacom Intuos Pro M digitizing tablet
(active area 22.4 cm × 14.8 cm, sampling rate 133 Hz, accuracy 0.01 cm) with sticky
tape. With this procedure, for each signature that was produced, researchers obtained
simultaneously a digital representation and a conventional pen and paper signature sam-
ple. The digitizing tablet was connected to a laptop PCwithNeuroScript’sMovAlyzeR®
software (Version 6.1.), which was the software used to conduct the experimental proce-
dure and record handwritten signature data. For signature collection, participants were
seated with the digitizing tablet placed on top of the table in front of them. Subjects were
allowed to adjust the position of the digitizer and their own writing position. Participants
were instructed to write their signature eight times on the forms (only one signature per
form), as naturally as possible, and were given the opportunity to practice prior to the
trials, in order to familiarize themselves with the equipment.

2.3 Data Analysis

Themotor features included in the present studywere: average absolute velocity, absolute
jerk, normalized jerk and average pen pressure, which was measured in tablet pressure
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units that vary from 0 to 1023. Data extraction and analysis was performed with Neu-
roScript’s MovAlyzeR® software (Version 6.1.0.0), using the following segmentation
criteria: first segment added at any rate, last segment added at any rate and the entire trial
was regarded as one stroke. Prior to statistical analysis, all trials were reviewed to ensure
that discontinuities or recording errors were not present. All the statistical analysis in this
study were performed using SPSS Statistics 17.0, with a level of significance of 0.05.
Intergroup differences regarding demographics and MMSE scores were first explored.
Age analysis was conducted using one-way analysis of variance (ANOVA), since this
variable met the criteria for normal distribution. Educational level was examined using
Kruskal-Wallis H test, as this variable was not normally distributed (Shapiro-Wilk test: p
≤ 0.05). Gender differences were evaluated using Fisher´s Exact Test, given the number
of study subjects.

As for the kinematic parameters, differences between the three groups regarding
average absolute velocity, absolute jerk and average pen pressure were examined using
ANOVA, as these variables were normally distributed. Normalized jerk were analyzed
using the non-parametric Kruskal-Wallis H test, since this variable was not normally
distributed (Shapiro-Wilk test: p ≤ 0.05).

3 Results and Discussion

The signatures produced by all the participants in this study were text-based, since all
of the allographs that composed the various names were clearly recognizable. This is
an expected result, as this is the most common signature form for this age group, in the
Portuguese population.

The analysis of demographic characteristics showed no statistically significant differ-
ences between healthy controls, mild AD subjects and moderate AD subjects regarding
age (ANOVA test; F = 0.36; p = 0.70), educational level (Kruskal-Wallis H test; χ2 =
1.27; p = 0.53) and gender (Fisher’s Exact Test = 0.38; p = 1.00). However, MMSE
scores did reveal significant intergroup differences, with the control group exhibiting the
highest scores and the moderate AD group the lowest ones (ANOVA test; F = 26.42; p
= 0.00).

Table 2 summarizes the descriptive statistics for each of the examined motor features
in the control, mild and moderate AD groups. One-way analyses of variance (ANOVA),
executed with SPSS Statistics 17.0 with a level of significance of 0.05, showed no
statistically significant differences between the three groups in average absolute velocity
(F = 0.24; p = 0.79), absolute jerk (F = 0.44; p = 0.65) and average pen pressure (F =
0.02; p= 0.98).Moreover, the Kruskal-Wallis H test didn’t reveal statistically significant
intergroup differences concerning normalized jerk (Chi-square = 0.79; p = 0.68).

The results of the study suggest that, in text-based signatures, motor features are
relatively preserved in the initial and moderate stages of Alzheimer’s disease. There-
fore, these findings support the hypothesis that motor programs responsible for the
creation/execution of text-based signatures are not significantly impaired in the initial
and moderate stages of the illness. This may be attributed to the automatization of well-
trained signatures and the fact that they are programmed as a single unit, hence being less
cognitively demanding than other forms of handwriting, such as text [16, 17]. However,
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Table 2. Descriptive statistics for the motor features in the three groups (Control, Mild AD and
Moderate), shown as means ± standard deviation

Control group Mild AD Moderate AD

Average absolute velocity
(cm/s)

3.1 ± 0.6 3.4 ± 0.9 3.2 ± 1.3

Absolute jerk (cm/s3) 15150 ± 7830 17955 ± 5251 16156 ± 7017

Normalized jerk 1.38E6 ± 1.07E6 1.97E6 ± 1.69E6 1.38E6 ± 7.87E5

Average pen pressure (tablet
pressure units)

317 ± 144 313 ± 108 324 ± 133

it should also be noted that there is a very high variation of average normalized jerk in
all the three groups, suggesting that there may be an age effect.

These results are in agreement with the findings of Behrendt [6] and Caligiuri and
Mohammed [7], but differ from the results presented by Fernandes and Lopes Lima [8]
and Birincioglu et al. [9]. The differences that were encountered could be due to the
fact that the latter studies included subjects in more severe stages, who exhibited higher
degrees of cognitive impairment.

It is worth noting that the present study has limitations, given the small number
of subjects per group, the restricted number of dynamic features that were examined
and the fact that only eight signatures were collected per participant. As such, further
research should be conducted with a larger sample and, in connection to both forensic
and non-forensic studies [10, 11], include additional dynamic characteristics.

4 Conclusion

According to the results of the present study, Forensic Handwriting Examiners should
not expect significant changes in motor features of text-based signatures, in early and
moderate stages of Alzheimer’s disease. Moreover, the motor programs involved in
the creation/execution of such signatures appear to be relatively preserved in early and
moderate stages of the disease.
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