
Chapter 6
Series

Abstract Series are just a special type of sequences. The main feature of numerical
series is that they lead us to finding convergence theorems which do not involve the
value of the limit.

If .a = {an}n is a sequence of real numbers, we use the symbol

.

q∑

n=p

an

to denote the finite sum .ap + ap+1 + · · · + aq−1 + aq . We use the sequence a to
construct a new sequence .s = {sn}n by means of the formula

.sn =
n∑

k=1

ak.

The sequence s is called the sequence of partial sums of a. It is customary to
introduce a different notation for the sequence s:

.s =
∞∑

n=1

an.

In a really formal world, a series should be defined as an ordered couple .(a, s)

such that a is a sequence, s is a sequence, and .sn = ∑n
k=1 ak for each .n ∈ N.

Remark 6.1 The language about series is very unprecise. In a completely rigorous
world, we should probably remove the word series and continue to use the word
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sequence, as in

consider the sequence .

{∑n
k=1

k

k2+1

}

n
.

Furthermore, several mathematicians interpret .
∑∞

n=1 an as .limN→+∞
∑N

n=1 an,
which is either a real number of a symbol of infinity. Despite these difficulties,
tradition rules, and in this chapter we will freely abuse of language and define a
series with the symbol .

∑
n an.

Definition 6.1 We say that the series .
∑∞

n=1 an converges to s if .limn→+∞ sn = s.
In this case, we will often say that s is the sum of the series.

Remark 6.2 It should be clear that sequences and series are the same object.
Indeed, series are sequences by definition. Conversely, the sequence .{an}n can be
recovered from the sequence .{sn}n by writing .an = sn − sn−1. Of course this logical
equivalence is not a good reason to forget about numerical series at all.

We will often write .
∑

n an or even .
∑

an to denote a series. We agree that the
first index of the sum may also be different than 1, as in .

∑∞
n=7 an. Clearly, the

convergence of a series does not depend on the first terms that we add or discard:
remember that the character of a sequence is not altered by the modification of
finitely many terms.

Example 6.1 Let us consider the series

.

∞∑

n=2

1

n(n − 1)
.

Since

.
1

n(n − 1)
= 1

n − 1
− 1

n
,

we see that

.sn =
n∑

k=2

1

k(k − 1)
= 1 − 1

n
→ 1

as .n → +∞. Hence the series converges to the sum 1.

Example 6.2 The previous example can be easily generalized. Suppose that we are
given the series

.

∞∑

n=1

(bn+1 − bn) ,
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where .{bn}n is a sequence such that .limn→+∞ bn = b. Then

.

∞∑

n=1

(bn − bn+1) = b1 − b.

These are called telescoping series.

Since a closed formula for the partial sums of a sequence is usually unavailable,
the whole theory of convergence must be based on some indirect approach. A very
general one is the Cauchy characterization of convergence.

Theorem 6.1 (Cauchy for Series) A series .
∑

an converges if and only if for every
.ε > 0 there exists a positive integer N such that

.

∣∣∣∣∣

m∑

k=n

ak

∣∣∣∣∣ < ε

for any .m ≥ n > N .

Proof Since

.

∣∣∣∣∣

m∑

k=n

ak

∣∣∣∣∣ = |sm − sn−1| ,

the conclusion follows from Theorem 5.14. ��
Corollary 6.1 (Necessary Condition for Convergence) If .

∑
an converges, then

.limn→+∞ an = 0.

Proof We take .m = n in the previous theorem. ��
Remark 6.3 We will see that this corollary cannot be reversed. For instance the
harmonic series .

∑∞
n=1

1
n
diverges, although .1/n → 0 as .n → +∞.

The necessary condition for convergence confirms an intuitive fact: you
cannot sum infinitely many numbers and obtain a finite result, unless the
numbers you add get smaller and smaller. As usual, intuitive results in
mathematics are weak results.

Theorem 6.2 Suppose that .an ≥ 0 for each n. The series .
∑

an converges if and
only if its partial sums form a bounded sequence.

Proof For a series of non-negative terms, we clearly have

.sn+1 = sn + an+1 ≥ sn



70 6 Series

for every n. In other words, the sequence of partial sums is increasing. The
conclusion follows from Theorem 5.7. ��

The most important test of convergence is based on comparison. We will see that
actually all convergence tests are based on some comparison argument.

Theorem 6.3 (Comparison Test)

(a) If .|an| ≤ cn for .n ≥ N0, where .N0 is some fixed positive integer, and if .
∑

cn

converges, then .
∑

an converges as well.
(b) If .an ≥ dn ≥ 0 for .n ≥ N0, and if .

∑
dn diverges, then .

∑
an diverges as well.

Proof

(a) Given .ε > 0, there exists a positive integer .n0 ≥ N0 such that .m ≥ n > n0
implies .

∑m
k=n ck ≤ ε. Hence .

∣∣∑m
k=n ak

∣∣ ≤ ∑m
k=n |ak| ≤ ∑m

k=n ck < ε.
(b) If .

∑
an converges, by (a) .

∑
dn converges. Contradiction.

��
An important corollary is described in the next result.

Theorem 6.4 (Asymptotic Comparison Test) Let .
∑

an and .
∑

bn be series of
positive terms, and suppose that

. lim
n→+∞

an

bn

= 1.

The series .
∑

an converges if and only if .
∑

bn converges.

Proof Indeed, there exists a positive integer .N0 such that .1/2 < an/bn < 3/2 for
every .n > N0. Hence .

bn

2 < an < 3
2bn for .n > N0. The conclusion follows from the

Comparison test. ��
Example 6.3 The series

.

∞∑

n=1

1

n2

converges. Indeed,

.
1

n2
≤ 1

n(n − 1)

for .n = 2, 3, . . . We conclude by comparison with Example 6.1.

Remark 6.4 If .an = 1/n2 and .bn = 1
n(n−1) , we have .limn→+∞ an/bn = 1. This

shows a typical application of the asymptotic comparison test to the series .
∑∞

n=1
1
n2
,

which often requires less care in checking the validity of the comparison.
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The triangle inequality always ensures that

.

∣∣∣∣∣

m∑

k=n

ak

∣∣∣∣∣ ≤
m∑

k=n

|ak|, (6.1)

leading us to the following definition via the Cauchy condition for convergence.

Definition 6.2 (Absolute Convergence) We say that the series .
∑

an converges
absolutely, if the series .

∑ |an| is convergent.
An easy but not trivial consequence of (6.1) is the next result.

Theorem 6.5 Every absolutely convergent series is convergent.

Proof Let .
∑

an be an absolutely convergent series. By (6.1), the series .
∑

an

satisfies the Cauchy condition, and is therefore convergent. ��
The converse is false, as Exercise 6.4 shows.

6.1 Convergence Tests for Positive Series

Theorem 6.2 says that series of positive terms are somehow easier to deal with, since
no oscillation phenomenon can arise. In this section we develop several convergence
tests for positive series, i.e. series of positive terms.

Important: Negative Series

Of course the very same tests can be applied to series of negative terms, just by
changing signs to each term. For the sake of definiteness, we will always deal with
positive series.

Let us start with a milestone of the theory.

Theorem 6.6 (Geometric Series) If .0 ≤ x < 1, then

.

∞∑

n=0

xn = 1

1 − x
.

If .x ≥ 1, the series .
∑∞

n=0 xn diverges.

Proof If .x = 1, then .
∑n

k=0 1
k = n + 1, and the series diverges. Suppose .x 	= 1,

and compute

.

n∑

k=0

xk = 1 − xn+1

1 − x
.
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Indeed

.(1 − x)(1 + x + x2 + · · · + xn) = 1 + x − x + x2 − x2 + · · · + xn − xn − xn+1

= 1 − xn+1.

The conclusion follows by letting .n → +∞. ��
Exercise 6.1 Prove the identity

.(1 − x)(1 + x + x2 + · · · + xn) = 1 − xn+1

by induction.

The following test is usually a difficult one for students. It states a rather
surprising fact: under a monotonicity assumption, only those terms of a very
particular subsequence decide whether a series converges.

Theorem 6.7 (Condensation Test) Suppose that .a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0. The
series .

∑∞
n=1 an is convergent if and only if the series .

∑∞
k=0 2

ka2k is convergent.

Proof It suffices to prove that the partial sums of the two series are simultaneously
bounded from above. Set

.sn = a1 + · · · + an

tk = 20a20 + 21a21 + · · · + 2ka2k .

We consider two cases. If .n < 2k, then

.sn ≤ a1 + (a2 + a3) + · · · + (a2k + · · · + a2k+1−1)

≤ a1 + 2a2 + · · · + 2ka2k

= tk

by the monotonicity of .{an}n. Notice that we have grouped terms in blocks that
begin with a power of 2 and end one step before the subsequent power of 2. We
deduce that .sn ≤ tk .

On the other hand, if .2k < n, we group terms in a different way:

.sn ≥ a1 + a2 + (a3 + a4) + · · · + (a2k−1+1 + · · · + a2k )

≥ 1

2
a1 + a2 + 2a4 + · · · + 2k−1a2k

= 1

2
tk.
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In this case, .tk ≤ 2sn. In any case the sequences .{sn}n and .{tk}k are both bounded or
unbounded above, and the proof is complete. ��
Example 6.4 As a fundamental application, we consider the generalized harmonic
series

.

∞∑

n=1

1

np
,

where p is a fixed real number. Clearly .p ≤ 0 implies divergence of the series, since
the general term does not converge to zero. For .p > 0 we use the condensation test,
and look at the series

.

∞∑

k=0

2k 1

(2k)p
=

∞∑

k=0

2(1−p)k.

This is a geometric series, and we know that the latter series converges if and only
if .21−p < 1, i.e. .p > 1.

We propose the following tests for historical reasons. They are based on a
comparison with a geometric series, and we will comment on the weakness of these
tests after the proof.

Theorem 6.8 (Root and Ratio Tests) The series .
∑

an

(a) converges, if .lim supn→+∞ n
√|an| < 1;

(b) diverges, if .lim supn→+∞ n
√|an| > 1;

(c) converges, if .lim supn→+∞
∣∣∣ an+1

an

∣∣∣ < 1;

(d) diverges, if .
∣∣∣ an+1

an

∣∣∣ ≥ 1 for each .n ≥ n0, where .n0 is some fixed positive integer.

Proof Put .α = lim supn→+∞ n
√|an|. If .α < 1, we can choose .β such that .α < β <

1, and a positive integer N such that .
n
√|an| < β for each .n ≥ N . Hence .n ≥ N

implies .|an| < βn. Since .β < 1, the comparison test leads to (a).
If .α > 1, then .

n
√|an| > 1 for infinitely many indices n (otherwise 1 would be an

eventual upper bound). This prevents .an from converging to 0 as .n → +∞, and the
series .

∑
an is divergent. This proves (b).

Suppose that .lim supn→+∞
∣∣∣ an+1

an

∣∣∣ < 1: we can find .β < 1 and a positive integer

N such that .
∣∣∣ an+1

an

∣∣∣ < β for each .n ≥ N . In particular

.|aN+1| < β|aN |
|aN+2| < β|aN+1| < β2|aN |

...

|aN+p| < βp|aN |
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for each positive integer p. Writing .n = N + p we discover that

.|an| < |aN |β−N · βn

for each .n ≥ N . Again (c) follows from the comparison theorem. Finally, if .|an+1| ≥
|an| for .n ≥ n0, then the condition .an → 0 fails, and the series .

∑
an is divergent.

��
The root and the ration tests are popular but weak. We know that the series .

∑ 1
n

diverges while .
∑ 1

n2
converges. The ratio and the root tests are both inconclusive,

since the limsup equals 1.

Remark 6.5 It follows from Theorem 5.19 that the root test is stronger than the ratio
test. In particular, if the root test is inconclusive, the ratio test must be inconclusive
as well.

Example 6.5 Consider the series .
∑

n
n

n2+3
. If we put .an = n

n2+3
, there results

.
an+1

an

= n + 1

n

n2 + 3

n2 + 2n + 4
.

We deduce that .limn→+∞ |an+1/an| = 1. Similarly, .limn→+∞ n
√|an| = 1. The

root test and the ratio test are inconclusive, although the series is divergent by
comparison:

.an ≥ n

n2 + 3n2
= 1

4n
.

Once more, we remark that a clever direct comparison is often preferable to a
standard test.

Exercise 6.2 Prove that if a series .
∑

n an of nonnegative numbers converges, then
the series .

∑
n a

p
n converges for every real number .p > 1.Hint: the inequality .an < 1

must hold eventually.

Exercise 6.3 Prove that .
∑

n an and .
∑

n bn are convergent series of nonnegative
numbers, then the series .

∑
n

√
anbn converges.Hint: prove that .

√
anbn ≤ an + bn.

6.2 Euler’s Number as the Sum of a Series

The typical Calculus approach to the definition of the number e is via the
“fundamental limit”

. lim
n→+∞

(
1 + 1

n

)n

.
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Unfortunately the existence of this limit is not straightforward. In the next theorem
we propose a different approach.

Theorem 6.9 (The Euler Number) The series .
∑∞

n=0
1
n! converges to a limit that is

denoted by e and called the Euler number. Furthermore, .e = limn→+∞
(
1 + 1

n

)n

.

Proof Recall that .0! = 1 and, for any positive integer n, the factorial of n is defined
as .n! = 1 · 2 · · · (n − 1)n. Since

.sn = 1 + 1

1
+ 1

1 · 2 + 1

1 · 2 · 3 + · · · + 1

1 · 2 · · ·n
< 1 + 1 + 1

2
+ 1

22
+ · · · + 1

2n−1 < 3,

the series .
∑∞

n=0
1
n! converges to a limit .e < 3. To prove the second part, we

introduce the sequences

.sn =
n∑

k=0

1

k! , tn =
(
1 + 1

n

)n

.

The binomial formula

.(a + b)n =
n∑

k=0

(
n

k

)
an−kbk =

n∑

k=0

n!
k!(n − k)!a

n−kbk

yields

.tn = 1 + 1 + 1

2!
(
1 − 1

n

)
+ 1

3!
(
1 − 1

n

) (
1 − 2

n

)
+ · · ·

+ 1

n!
(
1 − 1

n

) (
1 − 2

n

)
· · ·

(
1 − n − 1

n

)
.

Then .tn ≤ sn and .lim supn→+∞ tn ≤ e. If .n ≥ m,

.tn ≥ 1 + 1 + 1

2!
(
1 − 1

n

)
+ · · · + 1

m!
(
1 − 1

n

)
· · ·

(
1 − m − 1

n

)
,

so that .sm ≤ lim infn→+∞ tn for any m. Letting .m → +∞, .e ≤ lim infn→+∞ tn,
and the proof is complete. ��

The definition .e = ∑∞
n=0

1
n! is rather flexible, and allows us to derive a theoretical

property of the Euler number.

Theorem 6.10 The number e is irrational.
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Proof We begin with an estimate of the convergence of the series .
∑

1/n! to e.
Letting .sn denote the n-th partial sum of this series, we have

.e − sn = 1

(n + 1)! + 1

(n + 2)! + 1

(n + 3)! + · · ·

<
1

(n + 1)!
(
1 + 1

n + 1
+ 1

(n + 1)2
+ · · ·

)

= 1

n!n .

Therefore .0 < e−sn < 1
n!n for each positive integer n. Now suppose that .e = p/q is

a rational number, where p and q are positive integers. Then .0 < q!(e − sq) < 1/q .
The number .q!e must be an integer, since e is rational. Also

.q!sq = q!
(
1 + 1 + 1

2! + · · · + 1

q

)

is an integer. Hence .q!(e − sq) is an integer between 0 and 1: contradiction. The
number e is therefore irrational. ��

6.3 Alternating Series

The reader should suspect that a complete analysis of series whose terms do not have
constant sign is out of reach. In this section we focus our attention on a particular
class of series of variable sign. We begin with a general result which reminds us of
the popular formula of integration by parts.

Proposition 6.1 (Summation by Parts) Two sequences .{an}n and .{bn}n are given.
Put .A−1 = 0 and .An = ∑n

k=0 ak for .n ≥ 0. For each positive integers .p ≤ q we
have

.

p∑

n=p

anbn =
q−1∑

n=p

An(bn − bn+1) + Aqbq − Ap−1bp.

Proof Since .an = An − An−1, we write

.

p∑

n=p

anbn =
q∑

n=p

(An − An−1) bn =
q∑

n=p

Anbn −
q−1∑

n=p−1

Anbn+1.
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The last difference is equal to .
∑q−1

n=p An(bn − bn+1) + Aqbq − Ap−1bp, and the
proof is complete. ��
Theorem 6.11 (Dirichlet’s Test) Suppose

(a) the partial sums .An of .
∑

an form a bounded sequence;
(b) .b0 ≥ b1 ≥ b2 ≥ . . .;
(c) .limn→+∞ bn = 0.

Then the series .
∑

anbn is convergent.

Proof There exists .M > 0 such that .|An| ≤ M for each n. Let .ε > 0, and
pick a positive integer .ν such that .bν ≤ ε/(2M). For .ν ≤ p ≤ q we have by
Proposition 6.1

.

∣∣∣∣∣

q∑

n=p

anbn

∣∣∣∣∣ ≤
∣∣∣∣∣∣

q−1∑

n=p

An(bn − bn+1) + Aqbq − Ap−1bp

∣∣∣∣∣∣

≤ M

∣∣∣∣∣∣

q−1∑

n=p

(bn − bn+1) + bq + bp

∣∣∣∣∣∣

= 2Mbp ≤ 2Mbν ≤ ε.

The series .
∑

anbn converges by the Cauchy theorem. ��
Choosing .an = (−1)n+1 and .bn = |cn| in the previous theorem yields a popular

test for alternating series.

Theorem 6.12 (Leibnitz Theorem for Alternating Series) Suppose that

(a) .|c1| ≥ |c2| ≥ |c3| ≥ . . .

(b) .c2m−1 ≥ 0, .c2m ≤ 0 for .m = 1, 2, 3, . . .
(c) .limn→+∞ cn = 0

Then the series .
∑

cn is convergent.

Exercise 6.4 Prove that the series .
∑∞

n=1
(−1)n

n
converges, but it does not converge

absolutely. This fact often seems to be surprising, but we must remember that the
factor .(−1)n contributes to a huge balancing of the terms in the series.

6.3.1 Product of Series

Numerical series can be multiplied together. The definition is reminiscent of the
product of two polynomials .p(x) and .q(x), in which terms are grouped according
to the power of the unknown x.
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Definition 6.3 (Cauchy Product of Two Series) The Cauchy product of the series
.
∑

an and .
∑

bn is the series .
∑

cn defined by

.cn =
n∑

k=0

akbn−k.

Remark 6.6 Properly speaking, the Cauchy product of two series is a discrete
convolution product. Since we do not assume the reader to be familiar with integral
convolutions, we will not use this language in the book.

The convergence of a product of two series is a delicate issue. Consider for
example the series

.

∞∑

n=0

(−1)n√
n + 1

= 1 − 1√
2

+ 1√
3

− 1√
4

+ · · ·

Convergence follows from Theorem 6.12. Let us now multiply this series by itself,
obtaining

.

∞∑

n=0

cn = 1 −
(

1√
2

+ 1√
2

)
+

(
1√
3

+ 1√
2
√
2

+ 1√
3

)
+ · · ·

=
∞∑

n=0

(−1)n
n∑

k=0

1√
(n − k + 1)(k + 1)

.

But

.(n − k + 1)(k + 1) =
(n

2
+ 1

)2 −
(n

2
− k

)2 ≤
(n

2
+ 1

)2
,

and

.|cn| ≥
n∑

k=0

2

n + 2
= 2(n + 1)

n + 2
.

Since the necessary condition .cn → 0 is violated, the series .
∑

cn must diverge.
Here comes the basic convergence result about the product of convergent series.

Theorem 6.13 (Mertens) Suppose that

(a) .
∑∞

n=0 an converges absolutely
(b) .

∑∞
n=0 an = A

(c) .
∑∞

n=0 bn = B

(d) .cn = ∑n
k=0 akbn−k .
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Then .
∑∞

n=0 cn converges.

Proof We follow [1], and set

.An =
n∑

k=0

ak

Bn =
n∑

k=0

bk

Cn =
n∑

k=0

ck

βn = Bn − B.

We compute

.Cn = a0b0 + (a0b1 + a1b0) + · · · + (a0bn + a1bn−1 + · · · + anb0)

= a0Bn + a1Bn−1 + · · · + anB0

= a0(B + βn) + · · · + an(B + β0)

= AnB + a0βn + a1βn−1 + · · · + anβ0.

To conclude the proof, we must show that .limn→+∞ γn = 0, where .γn = a0βn +
a1βn−1 +· · ·+anβ0. Let .α = ∑∞

n=0 |an|. Notice that this is the first time we invoke
assumption (a). Given any .ε > 0, we can choose a positive integer .ν such that
.|βn| ≤ ε for each .n ≥ ν. Thus

.|γn| ≤ |β0an + · · · + βνan−ν | + |βν+1an−ν−1 + · · · + βna0|
≤ |β0an + · · · + βnan−ν | + εα.

Since .lim supn→+∞ (β0an + · · · + βnan−ν) = 0, we find .lim supn→+∞ |γn| ≤ εα,
and the conclusion follows. ��

6.4 Problems

6.1 Decide whether the series

.

∞∑

n=1

sin(α) sin(2α) · · · sin(nα)

is convergent, for any fixed value of α ∈ R.
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6.2 Let {an}n be a sequence with the property that there exists a real number h < 1
such that |an+1 −an| ≤ h|an −an−1| for each n. Prove that the sequence converges.

6.3 Using the previous problem, show that the sequence defined by choosing any
two real numbers a1 and a2, and defining

.an+1 = an−1 + an

2

converges. Compute its limit.

6.4 Let {an}n be a sequence of positive real numbers. Prove that the series
∑∞

n=1 an

converges if and only if the series
∑∞

n=1
an

1+an
converges.

6.5 Starting from

.
1

1 − x
=

∞∑

n=1

xn

and using Cauchy products, prove that

.
1

(1 − x)2
=

∞∑

n=1

nxn−1

for each real number x with |x| < 1.

6.5 Comments

Once upon a time, the treatment of numerical series used to fill up long chapters in
Calculus textbooks. As I have tried to show, the theory of series is indeed a long
collection of sufficient conditions for the convergence of particular sequences of
numbers. In recent years this awareness has become prevalent, and we no longer
annoy our students with awful convergence tests. Last but not least, many of these
tests are based on the algebraic properties of real numbers, and they do not extend
to series of complex numbers, for instance.
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