
Chapter 4
Elementary Cardinality

Abstract What does it mean that two sets have the same number of elements? This
may appear clear if we can write down all the members in a finite list. The answer
becomes complicated if the sets contain infinitely many elements. In this chapter we
propose a definition of cardinality in an elementary fashion.

4.1 Countable and Uncountable Sets

Definition 4.1 (Sequences) A sequence is any function whose domain is of the
form N \ F , for some finite subset F of N. If X is a set, a sequence in X is any
function which takes values in X and whose domain is of the form N \ F , for some
finite subset F of N.

If s is a sequence, it is customary to abridge the notation s(n) to sn. Hence we
will also write {sn}n for a sequence, but we remark that n is a dummy variable:
{sn}n = {sj }j = {sk}k = . . .

Important: Notation for Sequences

Since a sequence is a function, one might wonder why we make so many efforts to
avoid the natural use of functional notation. This sounds as a reasonable question,
because historical habit remains the only answer. Sequence are often denoted by
(sn)n or 〈sn〉n, to distinguish the sequence from the set of its values.

We try to illustrate our definition of sequences.

Theorem 4.1 Let N be a subset of N. The following statements are equivalent:

(a) N = N \ F for some finite subset F of N;
(b) N contains an interval of the form N ∩ [n0,+∞) for some n0 ∈ N.

Proof If (a) holds, we call n0 − 1 the largest positive integer which does not belong
to N . Then (b) holds. Conversely, we suppose that (b) holds and we consider the
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38 4 Elementary Cardinality

finite set {1, 2, . . . , n0 − 1}. Thus at most finitely many positive integers do not
belong to N , and (a) holds. ��

In other words, our sequences may be considered as functions from an
unbounded interval N ∩ [n0,+∞) for some n0 ∈ N. In the Comments at the
end of the chapter we will discuss again our definition.

Definition 4.2 (Subsequences) Let s be a sequence, and let k : N → N a sequence
of positive integers with the property that kn < kn+1 for each n ∈ N. Then the
composition s ◦ k is called a subsequence of s. Explicitly, s ◦ k = {skn}n.
Remark 4.1 In a subsequent chapter we will see that a weaker condition on
the sequence k could be assumed in order to define subsequences. The strong
monotonicity kn < kn+1 is however more popular in the literature.

Definition 4.3 (Equal Cardinality) Two sets A and B are equinumerous (or have
the same cardinality), if there exists a bijective function F : A → B. In this case we
will write A ∼ B, or even #A = #B.

It is an easy exercise in set theory to check that ∼ is actually an equivalence
relation between sets. We will use this fact in the rest of the chapter.

Definition 4.4 We say that a set A has cardinality n, if A ∼ {1, 2, . . . , n}. By
extension, the cardinality of the empty set is zero. A set A is finite, if there exists a
positive integer n such that A has cardinality n. Otherwise it is called infinite. A set
A is countably infinite if A ∼ N, and it is countable if it is either finite or countably
infinite. If A is not countable, we say that A is uncountable.

Important: Finite or Countable?

The use of the adjective “countable” is not completely universal. Several mathemati-
cians actually think of countable sets as countably infinite sets. Hence they would
not say that {5, 7, 11, 23} is a countable set. In my opinion, such an agreement is
popular among analysts, who seldom work with finite structures. For this reason, it
may happen that in this book the word countable can be used instead of countably
infinite. The reader should not have any trouble in recognizing such an abuse of
language.

Exercise 4.1 Prove that the Cartesian product of two finite sets is a finite set. Hint:
this is essentially a “matrix” proof. If X has n members and Y has m members, you
can write down X × Y as a matrix of n rows and m columns. Then just... count the
entries of this matrix.

A countably infinite set S can always be described as S = {s1, s2, . . .}, where s

is the bijective function that describes the fact that A ∼ N. In this sense, a countably
infinite set can be seen as a labeled list of points.
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Theorem 4.2 Every subset of a countable set is countable.

Proof Let S be a countable set, and let A ⊂ S. If A is finite, there is nothing to
prove. We may therefore assume that A is infinite, and S is infinite as well. We
select a sequence s = {sn}n of distinct points such that S = {s1, s2, . . .}. We define
a function as follows: let k1 be the smallest positive integer such that sk1 ∈ A. If
k2, k3, . . . , kn−1 have been selected, we choose kn as the smallest positive integer
> kn−1 such that skn ∈ A. It is evident that kn < kn+1 for each n. The composition
s ◦ k is defined on N and its range is A. Since skn = skm implies kn = km (because
the points s1, s2, . . . are distinct) and this implies n = m, we see that s◦k is injective.
The proof is complete. ��
Theorem 4.3 The cartesian product N × N is countably infinite.

Proof For each (m, n) ∈ N × N we set f (m, n) = 2m3n. This is an injective
functionwhose range is contained inN. Since this range is countable by the previous
theorem and N × N is clearly infinite, the proof is complete. ��

What about the cardinality of Q? To answer this question we need some
preliminary result about unions of countable sets.

We say that a family F of sets is a collection of disjoint sets, if any two elements
of F are disjoint.

Theorem 4.4 If F is a countable collection of disjoint sets, say F = {A1, A2, . . .},
such that each An is countable, then

⋃
F = ⋃∞

n=1 An is also countable.

Proof For each n, let An = {a1,n, a2,n, a3,n, . . .}. Call S = ⋃∞
n=1 An. Every

element x of S must lie in some An, thus x = am,n for some pair of integers (m, n).
This pair is uniquely determined, since F is a collection of disjoint sets. This defines
a function f : S → N × N via f (x) = am,n. We have just seen that f is injective,
so its range is countable. We conclude that S is also countable. ��

We want to remove the assumption that F should be a collection of disjoint sets.
This is possible, but it requires some attention.

Theorem 4.5 If F is a countable collection of countable sets, then the union of all
the members of F is also countable.

Proof We need to reduce to the case of a collection of disjoint sets. A standard way
to achieve this result is as follows: put B1 = A1, and, for n > 1,

.Bn = An \
n−1⋃

k=1

Ak.

Clearly G = {B1, B2, B3, . . .} is a disjoint collection. Setting A = ⋃∞
n=1 An, B =⋃∞

n=1 Bn, we show that A = B. If x ∈ A, then x ∈ Ak for some k. Let n be the
smallest k with this property, so that x /∈ Ak for k < n. This implies x ∈ Bn, and in
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turn x ∈ B. Viceversa, if x ∈ B, then x ∈ Bn for some n, and in particular x ∈ An

for the same n. The proof is complete. ��
Corollary 4.1 The set Q of rational numbers is countably infinite.

Proof We call An the set of all positive rational numbers whose denominator is
n. The set Q is therefore equal to

⋃∞
n=1 An, a union of countable sets. The result

follows from the previous theorem and the trivial remark thatQ is an infinite set. ��
We already know that R = Q as sets. We can now show that R has actually more

elements than Q.

Theorem 4.6 The set R is uncountable.

Proof Since the interval (0, 1) = {x ∈ R | 0 < x < 1} is a subset of R, it suffices
to show that (0, 1) is uncountable. Suppose not, so that there exists a sequence
s = {sn}n whose range is (0, 1). We show that this is impossible by constructing
a real number in (0, 1) which is not a term of the sequence s. As a starting point,
we assume that each real number can be uniquely written as an infinite decimal,
and in particular sn = 0.un,1un,2un,3 . . . Each un,i is a digit, i.e. an element of
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Consider the number y = 0.v1v2v3 . . . where

.vn =
{
1 if un,n = 1

2 if un,n = 1.

We claim that no term of the sequence {sn}n can equal y. Indeed y differs from s1
in the first digit, differs from s2 in the second digit, and in general differs from sn in
the n-th digit. But 0 < y < 1 by construction, and this contradicts the assumption
that (0, 1) is countable. ��
Example 4.1 Every open subset (a, b) of R has the same cardinality as R. Indeed,
we choose a number c ∈ (a, b) and we define f : (a, b) → R as

.f (x) =
{

x−c
b−x

if c ≤ x < b

x−c
x−a

if a < x ≤ c.

It is easy to check that f is a bijective map.

Exercise 4.2 Let P be the set of all positive real numbers. Prove that (0, 1) and P

have the same cardinality by using the function f : (0, 1) → P defined by

.f (x) =
{

x if 0 < x ≤ 1/2
1

4(1−x)
if 1/2 < x < 1.

Exercise 4.3 Prove that any infinite set contains a countably infinite subset. Hint:
let X be an infinite set. Pick any x1 ∈ X. Since X is infinite, there exists x2 ∈
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X \ {x1}. For the same reason, there exists x3 ∈ X \ {x1, x2}, and so on. In this way
we construct a subset {xj | j ∈ N} of X which is clearly countably infinite.

Let us call c the cardinality of R and ℵ0 for the cardinality of N. From our
discussion it is clear that

.ℵ0 < c,

in the sense that there exists an injective function from N into R, but there cannot
exist a bijection between these two sets.

Important: Question

Is there any set whose cardinality is strictly larger than ℵ0 and strictly smaller than
c?

The answer is more than difficult: it is actually impossible! To be more precise,
let us state the following

Continuum Hypothesis There exists no set whose cardinality κ satisfies ℵ0 <

κ < c.

Although David Hilbert proposed a proof that the continuum hypothesis was
actually true, it soon turned out that his proof was incorrect. Some years later, Gödel
showed that the continuum hypothesis cannot be disproved in the framework of
any consistent theory of sets. The debate was closed in 1963 by Paul Cohen, who
showed that the continuum hypothesis cannot be proved in the framework of any
consistent theory of sets, either. Roughly speaking, and since we always assume
to have a consistent Set Theory at our disposal, the continuum hypothesis remains
independent: it is a matter of taste whether we want to include it among our axioms.
Luckily enough, it is rather hard to single out a milestone of Mathematical Analysis
which depends on the continuum hypothesis. For this reason, we will not pursue
further this topic in the book.

4.2 The Schröder-Bernstein Theorem

We have decided that two sets have the same cardinality if a bijective map exists
which takes one set onto the other. A celebrated result by Schröder and Bernstein
simplifies our task.

Theorem 4.7 (Schröder-Bernstein) If there is a one-to-one function on a set A to
a subset of a set B and there is also a one-to-one function on B to a subset of A,
then A and B have the same cardinality.
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Proof Suppose that .f : A → B and .g : B → A are two injective maps. We may
assume without loss of generality that .A ∩ B = ∅. We say that a point x of either A

or B is an ancestor of a point y if and only if y can be obtained from x by successive
application of f and g, or of g and f . Now we split A into three subsets: .AE

consisting of all points ofA which have an even number of ancestors, .AO consisting
of all points of A which have an odd number of ancestors, and .AI consisting of all
points of A which have infinitely many ancestors. The set B can be split in the same
way. We finally define .F : A → B as follows:

.F =
{

f on AE ∪ AI

g−1 on AO

is a bijective map. ��
Remark 4.2 How do we interpret the previous proof? We have actually constructed
the map F by an inductive process:

.E0 = A \ g(B)

E1 = g(f (E0))

E2 = g(f (E1))

. . .

En+1 = g(f (En)),

and so on. Then we set .E = ⋃
n En. The function F is constructed in such a way

that .F = f on A, and .F = g−1 on .A \ E.

We present a second proof of this important result in Set Theory. We need a
preliminary tool.

Lemma 4.1 Let .X be an ordered set such that every non-empty subset has a
greatest lower bound. If .f : X → X is such that

1. there exists .x ∈ X such that .f(x) ≤ x;
2. for every .x ∈ X, .y ∈ X, .x ≤ y implies .f(x) ≤ f(y),

then .f has a fixed point, i.e. there exists .a ∈ X such that .f(a) = a.

Proof The set

.A = {x ∈ X | f(x) ≤ x}

is non-empty, hence there exists a greatest lower bound .a ∈ X for A. If .x ∈ A,
then .a ≤ x, hence assumption 2 implies .f(a) ≤ f(x) ≤ x. Thus .f(a) ≤ a, since
.a = infA. Using again 2, we see that .f(f(a)) ≤ f(a), hence .f(a) ∈ A and so
.a ≤ f(a). The proof is complete. ��
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Proof (of Theorem 4.7) Let .f : X → Y and .g : Y → X be injective functions. We
claim that there exists a subset A of X such that .g(Y \ f (A)) = X \ A. Once this
claim is proved, the construction of a bijective application of X onto Y is easy.

Let us define .F : 2X → 2X such that

.A �→ X \ g(Y \ f (A)).

Lemma 4.1 can be applied with .X = 2X, ordered by inclusion .⊂, and .f = F , since
F satisfies condition 2. Condition 1 is also satisfied, since .2X contains a largest
element. Thus .F(A) = A for some .A ⊂ X, and the proof follows. ��

A remarkable fact is that given a set A, one can always construct another set
whose cardinality is different than the cardinality of A. We call .P(A) the set of all
subsets of A.

Theorem 4.8 (Cantor) If .A = ∅, then there exists no surjective map .f : A →
P(A). In particular, A and .P(A) do not have the same cardinality.

Proof Let .f : A → P(A); we will prove that the set

.S = {x ∈ A | x /∈ f (x)}

does not belong to the image of f . Suppose that .S ∈ f (A), so that .S = f (s) for
some member .s ∈ A. If .s ∈ S, then .s /∈ f (s) = S; if .s /∈ S, then .s ∈ f (s) = S. In
any case we reach a contradiction. ��
Exercise 4.4 Suppose that .A = {x}. What is the cardinality of .P(A)? Think
carefully!

4.3 Problems

4.1 A complex number z is an algebraic number if there exist integers a0, . . . , an,
not all zero, such that

.a0z
n + a1z

n−1 + · · · + an−1z + an = 0.

Prove that the set of all algebraic numbers is countable. Hint: given N ∈ N, there
exist only finitely many equations with n + |a0| + · · · + |an| = N .

4.2 Is the set R \ Q countable?

4.3 Prove that a set E is infinite if and only if E has the same cardinality of a proper
subset of E. Hint: one direction is Exercise 4.3. Conversely, if f : E → E is an
injective function and a ∈ E \ f (E), define recursively a1 = f (a), an+1 = f (an).
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4.4 Comments

The rigorous definition of sequences is more problematic than we might suspect.
Most textbooks propose to call sequence in a set X any function from .N to X. But a
problem immediately arises: with this definition the function .n �→ √

n2 − 9 should
not be termed sequence. Our definition clearly absorbs the previous one.

A more refined definition appears in [1]: a sequence in a set X is any function
defined on an infinite subset of .N, taking values in X. It is easy to check that infinite
subsets of .N are characterized as follows.

Theorem 4.9 Let N be a subset of .N. The following statements are equivalent:

(a) N is an infinite set;
(b) for every .n ∈ N there exists .p ∈ N such that .p ≥ n.

We will see later that (b) is actually the characterizing property of nets, a
generalization of sequences.

Comparing sets by counting their elements obviously leads to a rather rough
classification. However, this is the first appearance of the concept of infinity, which
students consider from a philosophical viewpoint. We have proposed a standard
approach to elementary cardinality of sets, and in particular we have avoided
any explicit reference to the complicated issue of choosing elements from non-
empty sets. This immediately leads to the Axiom of Choice and to the exhausting
discussions about the necessity of using it.

Luckily, I have never found a student who needed an axiom to label the elements
of a countable collection of countable sets, although such an operation requires some
flavor of the Axiom of Choice. To clarify this point, we should always compare the
sentences

1. A is a countable set;
2. let .{s1, s2, s3, . . .} be the elements of the countable set A.

The first statement is intrinsic, and we understand that an enumeration of the
elements of A exists. The second statement already contains the choice of an
enumeration of A, since the same countable set can be enumerated in infinitely
many different ways. To summarize, the Axiom of Choice is not needed to define
countable sets, but it comes into play as soon as we want to write down an
enumeration of a countable set.

The Schröder-Bernstein Theorem is a useful result which can be proved in several
ways. The first proof appears in [2] (but the author attributes it to G. Birkhoff and S.
Mac Lane), while the second in based on the fixed point Lemma 4.1. I believe that
both proofs are elegant and readable at an early stage.
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