
Chapter 2
Sets, Relations, Functions in a Naïve Way

Abstract We start our journey with naïve set theory. In the second half of the book
we will provide a rigorous foundation of these ideas.

We begin this book in the worst possible manner: we introduce a meaningless
definition.

Definition 2.1 (Sets) A set is a collection of elements.

Important: Sets Remain Undefined

It should be clear in the reader’s mind that the previous sentence is far from being a
mathematical definition. A set is defined through the word “collection”, but we do
not provide any primitive definition of collections. In other words, we are assuming
that the concept of set is already present in our minds. More formally, we can say
that our set theory is based on two primitive objects: sets and elements.

We write .x ∈ X to mean that x is an element of the set X, and we say that x is
an element of X, or that x belongs to X. We will avoid the reversed symbol .X � x,
since .� is sometimes used in mathematics with a different meaning.

The typical way of constructing a set is as follows:

.X = {x | some proposition about x}.

The variable x is a dummy variable, in the sense that it can be replaced by any other
symbol without affecting the validity of the definition of the set X.

Example 2.1 To clarify the use of dummy variables, consider

. {x | x is a cat} = {C | C is a cat} .
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8 2 Sets, Relations, Functions in a Naïve Way

On both sides we are introducing the set of all cats, no matter how we name the
generic cat.

By definition, .X = {x | x ∈ X}. Two sets X and Y are equal when they share the
same elements: .x ∈ X if and only if .x ∈ Y .

Definition 2.2 (Empty Set) The empty set is

.∅ = {x | x �= x},

Exercise 2.1 Prove that and .∅ contains no element at all. Hint: for every x, the
statement .x �= x is false.

It should be remarked that the definition of the empty set is meaningful, in the
sense that it does not rely on some intuitive knowledge. The empty set could be
equally defined by means of any statement which is false, for instance

.∅ =
{
x ∈ R

∣∣∣ x2 = −1
}

= {n ∈ N | n is neither odd nor even}
= {f | f is a function which is both bounded and unbounded}

Example 2.2 Why don’t we define the opposite of the empty set, namely

.U = {x | x = x}?

This object would contain anything, since anything is equal to itself by definition
of equality. It would be desirable to have such a “set”. wouldn’t it? Unfortunately
.U cannot be a set, as Russel showed in his celebrated paradox. Let us consider
.R = {x | x /∈ x}, the set of all sets which do not belong to themselves. What can we
say about the relation .R ∈ R?

Well, if .R ∈ R, then R is a set which does not belong to itself, so that .R /∈ R.
Viceversa, if .R /∈ R, then R is not a set which does not belong to itself, hence .R ∈ R.
Formally, .R ∈ R if and only if .R /∈ R. The consequence of this logical equivalence
is that sets cannot be described unrestrictedly, and the universe .U cannot be a set
in the naïve sense. We will see in the second part of this book that Axiomatic Set
Theory can be used to speak of sets without facing Russel’s paradox. But most
mathematicians think of sets naïvely, and so will we do for the moment. The only
recommendation is to avoid any use of the universe.

Definition 2.3 (Subsets) If A and B are sets, then A is a subset of B if and only if
each element of A is an element of B: in symbols,

.∀x(x ∈ A ⇒ x ∈ B).

In this situation we write .A ⊂ B or .B ⊃ A. A set A is a proper subset of B if
.A ⊂ B and .A �= B. We remark that .A = B if and only if .(A ⊂ B) ∧ (B ⊂ A).



2 Sets, Relations, Functions in a Naïve Way 9

Important: Proper Inclusion

It must be observed that .A ⊂ B is compatible with .A = B. Since many
mathematicians do not like this occurrence, the notation .A ⊆ B is often found
in the literature, so that .A ⊂ B means .A ⊆ B and .A �= B. In this book we will
never understand .⊂ in this restrictive sense.

Definition 2.4 (Union and Intersection) The union of two sets A and B is the set
.A ∪ B of all points that are element of either A or B (or both):

.A ∪ B = {x | (x ∈ A) ∨ (x ∈ B)}.

The intersection of two sets A and B is the set .A ∩ B of all points that are elements
of both A and B:

.A ∩ B = {x | (x ∈ A) ∧ (x ∈ B)}.

Two sets A and B are disjoint if .A ∩ B = ∅.

Definition 2.5 (Complement) The absolute complement of a set A is the set .�A =
{x | x /∈ A}. We remark that .��A = A. The relative complement of a set A with
respect to a set X is .X \ A = X ∩ �A.

Figures 2.1, 2.2, and 2.3 describe visually the basic operations on sets.

Definition 2.6 (Singleton) The set that contains only the element x is denoted by
.{x} and called singleton x.

Fig. 2.1 Intersection of two
sets

Fig. 2.2 Union of two sets
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Fig. 2.3 Difference of two
sets

\

Let us suppose that for each element .α of a set A, which is called the index set,
we are given a set .Xα. We can extend our definition of union and intersection as
follows:

.

⋃
{Xα | α ∈ A} =

⋃
α∈A

Xα = {x | ∃α(α ∈ A ∧ x ∈ Xα)}. (2.1)

⋂
{Xα | α ∈ A} =

⋂
α∈A

Xα = {x | ∀α(α ∈ A ∧ x ∈ Xα)}. (2.2)

A particular case arises when the index set is a collection .A of sets, and in this case
we can write

.

⋃
{A | A ∈ A} = {x | x ∈ A for some A ∈ A}

and similarly

.

⋂
{A | A ∈ A} = {x | x ∈ A for each A ∈ A}.

Exercise 2.2 For each positive real numbers .α and .β, let .Qα,β be the rectangle
.[0, α] × [0, β] in the plane. Describe the sets

.

⋂
{Qα,β | α > 0, β > 0},

⋃
{Qα,β | α > 0, β > 0}.

Theorem 2.1 Let A be an index set, and for each .α ∈ A let .Xα be a subset of a
fixed set Y . Then

(a) If B is a subset of A, then

.

⋃
{Xβ | β ∈ B} ⊂

⋃
{Xα | α ∈ A},



2 Sets, Relations, Functions in a Naïve Way 11

and

.

⋂
{Xβ | β ∈ B} ⊃

⋂
{Xα | α ∈ A}.

(b) .Y \ ⋃{Xα | α ∈ A} = ⋂{Y \ Xα | α ∈ A}, and .Y \ ⋂{Xα | α ∈ A} =⋃{Y \ Xα | α ∈ A}.
Proof

(a) If .x ∈ ⋃{Xβ | β ∈ B} then there exists .β ∈ B such that .x ∈ Xβ . By assumption
.β ∈ A, and thus .x ∈ ⋃{Xα | α ∈ A}. If .x ∈ ⋂{Xα | α ∈ A} then .x ∈ Xα for
each .α ∈ A, so that in particular .x ∈ Xβ for each .β ∈ B. Thus .x ∈ ⋂{Xβ | β ∈
B}.

(b) If .x ∈ Y \ ⋃{Xα | α ∈ A} then .x ∈ Y and x is not an element of any .Xα ,
.α ∈ A. Hence x belongs to Y and for each .α ∈ A there holds .x /∈ Xα . This
means that .x ∈ ⋂{Y \ Xα | α ∈ A}. Reversing this argument we prove the first
identity. Now, if .x ∈ Y \ ⋂{Xα | α ∈ A} then .x ∈ Y and there exists .α ∈ A

such that .x /∈ Xα. Hence .x ∈ ⋃{Y \ Xα | α ∈ A}. Reversing this argument we
prove the second identity.

��
An ordered pair is a new object .(x, y) characterized by the following property:

two ordered pairs .(x, y) and .(u, v) are equal if and only if .x = u and .y = v.
Actually an ordered pair may be defined in terms of sets as follows.

Definition 2.7 (Ordered Pair)

.(x, y) = {{x}, {x, y}}.

Exercise 2.3 Prove that indeed .(x, y) = (u, v) if and only if .x = u and .y = v.
Hint: by assumption .{{x}, {x, y}} = {{u}, {u, v}}. Consider first the case .x = y,
then deal with the general case.

Definition 2.8 (Relations) A relation is a set of ordered pairs: a relation is
therefore a set whose elements are ordered pairs.

If R is a relation, we usually write .xRy instead of the more formal .(x, y) ∈ R,
and we say that x is related to y via R.

Definition 2.9 The domain of a relation R is the set .{x | ∃y((x, y) ∈ R)}. The
range of a relation R is the set .{x | ∃x((x, y) ∈ R)}. The field of a relation R is the
union of the domain and of the range of R.

One of the simplest relations is the set of ordered pairs .(x, y) such that x is a
member of a fixed set A, and y is a member of a fixed set B. This relation reduces
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Fig. 2.4 A cartesian product

therefore to

.A × B = {(x, y) | (x ∈ A) ∧ (y ∈ B)} ,

and is called the cartesian product of A and B: see Fig. 2.4. It is clear that any
relation is a subset of the cartesian product of its domain and its range.

Remark 2.1 The identification of sets and relations usually sounds strange to
students. In this book we will never think of relations or functions like black boxes
which transform elements of some set into elements of some other set.

The inverse of a relation R, denoted by .R−1, is the relation obtained by swapping
each of the ordered pairs belonging to R. Formally,

.R−1 = {(y, x) | (x, y) ∈ R} ,

or equivalently .yR−1x if and only if xRy.
The composition of two relations R and S is

.R ◦ S = {(x, z) | ∃y((x, y) ∈ S ∧ (y, z) ∈ R)} .

We remark that, roughly speaking, first comes S, then comes R, and not viceversa.
The domain of .R ◦ S is the domain of S, while the range of .R ◦ S is the range of R.
This will be of crucial importance when we introduce functions.

Definition 2.10 Suppose that R is a relation and X is the set of all points that are
elements of either the domain or the range of R. We say that R is

• reflexive, if each element of X is in relation R with itself;
• symmetric, if xRy whenever .yRx;
• antisymmetric, if xRy and yRx imply .x = y;
• transitive, if xRy and yRz imply xRz.
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Definition 2.11 An equivalence relation is a reflexive, symmetric and transitive
relation. An order relation is a reflexive, antisymmetric and transitive relation.

It is customary to use the symbol .∼ for equivalence relations, and .≤ for order
relations.

A function is a relation such that no two distinct members have the same first
coordinate. More explicitly, a relation f is a function if for each element x of its
domain there exists a unique element y of its range such that .(x, y) ∈ f , see Fig. 2.5.
Uniqueness means that if .(x, y) ∈ f and .(x, z) ∈ f , then .y = z. For a function it
is customary to abandon the general notation .(x, y) ∈ f (or xfy) in favor of .y =
f (x). Then .f (x) is the image of the element x of the domain of f . In mathematical
analysis a function .f ⊂ X × Y is denoted by the (more complicated) symbol

.f : X → Y, x �→ f (x).

A function .f : X → Y is injective if distinct points of X have distinct images in Y .
Equivalently, .f (x1) = f (x2) implies .x1 = x2. A function .f : X → Y is surjective
if the range of f coincides with Y . Equivalently, for each .y ∈ Y there exists .x ∈ X

such that .f (x) = y. Finally, a function .f : X → Y is bijective if it is both injective
and surjective.

Exercise 2.4 Let X and Y be sets. Prove that the map .f : X × Y → Y × X defined
by .f (x, y) = (y, x) for each .(x, y) ∈ X ×Y is a bijection. In this sense, .X ×Y and
.Y × X are essentially the same object.

If A is a set and f is a function, the set

.f (A) = {y | ∃x(x ∈ A ∧ f (x) = y)} = {f (x) | x ∈ A}

Fig. 2.5 Intuition of a function
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is called the image of the set A under f . Similarly, if B is a set and f is a function,

.f −1(B) = {x | ∃y(x ∈ B ∧ f (x) = y)}

is called the pre-image of B under f . We notice that .f −1(B) is just the image of
the set B under the inverse relation .f −1. Clearly .f (A) is a subset of the range of f ,
while .f −1(B) is a subset of the domain of f .

Theorem 2.2 If f is a function and A and B are sets, then

(a) .f −1(A \ B) = f −1(A) \ f −1(B);
(b) .f −1(A ∪ B) = f −1(A) ∪ f −1(B);
(c) .f −1(A ∩ B) = f −1(A) ∩ f −1(B).

More generally, if we are given a set .Xα for each member .α of a non-empty index
set C, then

(d) .f −1(
⋃{Xα | α ∈ C}) = ⋃{f −1(Xα) | α ∈ C};

(e) .f −1(
⋂{Xα | α ∈ C}) = ⋂{f −1(Xα) | α ∈ C}.

Proof We prove part (e), leaving the rest of the proof as a simple exercise. A point
x is an element of .f −1(

⋂{Xα | α ∈ C}) if and only if .f (x) is an element of this
intersection, in which case .f (x) ∈ Xα for each .α ∈ C. But the latter condition is
equivalent to .x ∈ f −1(Xα) for each .α ∈ C, i.e. .x ∈ ⋃{f −1(Xα) | α ∈ C}. ��
Remark 2.2 Any function f is invertible as a relation. However the inverse relation
.f −1 need not be again a function: this happens if and only if for each y there exists
a unique x such that .yf −1x, i.e. .f (x) = y. We have proved that the relation .f −1

is a function if and only if f is a bijective function. It is customary to say that a
function .f : X → Y is invertible if it is bijective.

Remark 2.3 Any injective function .f : X → Y can be somehow inverted, in the
sense that we can define a function .g : f (X) → X such that .g(y) = x if and only
if .f (x) = y. In general the domain of g is a proper subset of Y , but the rule which
defines g is exactly the same rule which defines .f −1. Many mathematicians do not
require surjectivity in order to define invertible functions. This is fairly reasonable,
since .f (X) is the largest subset of Y on which we can define the inverse function of
the injective function f .

Exercise 2.5 Let .f : X → U and .g : Y → V denote two functions. Prove that
.(x, y) �→ (f (x), g(y)) defines a function .f × g : X × Y → U × V , which we call
the Cartesian product of f and g. Prove the following statements:

(i) if f and g are injective, then so is .f × g;
(ii) if f and g are surjective, then so is .f × g.
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Important: Sets or Subsets?

Most surveys of naïve set theory for mathematical analysis only deal with subsets
of a given universe. We followed another route, and this may have been surprising.
The use of a given universe is motivated by Russel’s paradox, but for the moment
this remains irrelevant to us. As we will see, denying the set of all sets is not the
only escape from Russel’s paradox.

2.1 Comments

We have presented a quick survey of Set Theory from a non-axiomatic viewpoint.
Most textbook in Mathematical Analysis contain similar information, with only
minor differences in the language. As an example, functions are typically defined
as rules of assignment instead of special relations between two sets. A standard
reference is [1], a book which goes however much beyond the level suggested by
the title.

Before proceeding further, we should stop and think about notation. It is a matter
of facts that most instructors discourage the abstract use of

. {x | P(x)} (2.3)

for the definition of a set. In this book we may seem to be lazy, since such a notation
is allowed and even typical. Let us try to elaborate on this issue.

From a very abstract viewpoint, (2.3) contains the troublesome formula

. {x | x = x} ,

which leads to the paradox of the universe. On the contrary, the more precise
formula

. {x | x ∈ U ∧ P(x)} ,

often written as .{x ∈ U | P(x)}, is admissible, since it defines a subset of a (given)
set .U. Nowadays, most introductory discussions about (naïve) Set Theory are
based on axiomatic theories which discard arbitrarily large sets, like ZF (Zermelo-
Fraenkel), and this accounts for the recommendation against the use of .{x | P(x)}.

On the contrary, we will discuss a different Axiomatic Theory of Sets which
allows large objects (called classes). In some sense, we should say that .{x | x = x}
exists as a class, but not as a set. Since the algebra of classes is quite similar to the
algebra of sets, at a first stage we forget the distinction and we allow a more relaxed
notation.
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