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1 Introduction 

Neural Networks can solve increasingly more complex tasks in fields such as 
Computer Vision (CV) and Natural Language Processing (NLP). While these 
Neural Networks can perform complex tasks with increasingly higher accuracy, the 
sheer size of these networks often prevents deployment on edge devices that have 
limited memory capacity and are subject to severe energy constraints. To overcome 
the issues preventing the deployment of neural networks onto edge devices, efforts 
toward reducing the model size and reducing the computational costs have been 
made. These efforts are most often focused on either the algorithmic side, tailoring 
the neural network and its properties, or on the hardware side, creating efficient 
system designs and arithmetic circuitry. 

In an effort to reduce the computational cost and model size of neural networks, 
several approaches are taken. One of these approaches is to automate the synthesis 
of the neural network architecture while taking into account the hardware resources, 
this is called hardware-aware neural architecture search (NAS) [23, 28]. Another 
way to increase the energy efficiency is by compressing the model size, applying 
either quantization [10] or pruning [4]. 

In parallel to research on model compression, research has been performed on 
creating highly specialized hardware that exploits the opportunities arising from 
model compression. ASICs that support neural network inference for operand 
precisions as low as 1 bit exploit the advantages extreme quantization brings: low 
memory size and bandwidth and simplified compute logic. In the pursuit of the 
most energy-efficient hardware design, several design choices regarding memory 
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hierarchy, hardware parallelization of operations, and data-flow are made that 
impact both the ASIC’s efficiency and its flexibility. 

For instance, many architectures have a fixed datapath; the movement of the data 
is fixed at design time which can impose limitations on the layer types, channel 
dimensions, and kernel dimensions. Furthermore, these architectures typically have 
limited programmability and configurability, which restricts the execution schedules 
that can (efficiently) be run. 

In this chapter, a look will be taken at several different approaches of neural 
network accelerators specifically designed for inference with very low-precision 
operands. The efficiency (and origin thereof) of the architectures will be analyzed 
and compared to the flexibility that these architectures offer. 

In short, the contributions of this work are: 

• Overview of state-of-the-art low- and mixed-precision neural network accelera-
tors, in Sect. 3. 

• Analysis on the trade-off between the flexibility and the energy efficiency of 
accelerators, in Sect. 4. 

The remainder of this chapter is structured as follows: in Sect. 2, background infor-
mation on neural network architecture and quantization is presented. Thereafter, in 
Sect. 3, the low- and mixed-precision accelerators are presented and a comparison 
is presented in Sect. 4. Section 5 concludes this chapter. 

2 Background: Extreme Quantization and Network Variety 

Modern neural network architectures consist of many different layers with millions 
of parameters and operations. The storage required to store all parameters and 
features is not in line with the storage capacity typically found on embedded devices, 
leading to costly off-chip memory accesses. Next to the memory and bandwidth 
limitations, computational costs for full-precision (float32) operations require 
power-hungry compute blocks that quickly overtax the energy requirements of the 
embedded devices. To reduce both the computational cost and the cost of data access 
and transport, quantization can be applied. 

Quantization leads to lower precision parameters and therefore induces infor-
mation loss. Naturally, when weights and activations can represent fewer distinct 
values, the representational capabilities of the network decrease. This decrease may 
create an accuracy loss. In [14], Gholami et al. show, however, that quantization 
down to integer8 can be done without significant accuracy loss. But even when 
quantizing down to integer8, the memory requirements can still overtax the 
memory capacity typically found in embedded systems. Therefore, research has 
been done on extreme quantization, i.e., quantization below 8-bit precision. 

In the next subsection, several frequently utilized building blocks for convolu-
tional neural networks (CNNs) are listed. Thereafter, in Sects. 2.2 and 2.3, two
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forms of extreme quantization, namely binary and ternary quantization, are 
discussed. Finally, in Sect. 2.4, the need for mixed-precision is considered. 

2.1 Neural Network Architecture Design Space 

Neural network architectures have a great variety in the type of layers, the size of 
these layers, and the connectivity between these layers. Furthermore, with mixed-
precision architectures, the precision can also be chosen on a per-layer basis. An 
example network is shown in Fig. 1. Some common building blocks are listed below: 

• Convolutional Layer 
• Fully connected Layer 
• Depth-wise Convolutional Layer 
• Residual Addition 
• Requantization 
• Pooling 

The working horse of CNNs is the convolutional layer. Between different 
convolutional layers, there can be variety in the kernel size, number of input feature 
maps, output feature maps, etc. In Fig. 2, the different parameters of a convolutional 
layer are presented. These parameters will later on prove to be an important basis 
for designing efficient hardware. The goal of Sect. 3 is to show how these network 
parameters relate to hardware design, hardware efficiency, and hardware flexibility. 
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Fig. 1 Binary ResNet-18, an exemplary network containing several different building blocks and 
using different operand precisions. Note that the first layer and the “skip connections” have a higher 
than binary precision. Furthermore, the number of channels C can differ between the building 
blocks
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Fig. 2 A convolutional layer 
can vary in different ways. 
The Input Feature Map (IFM) 
has height H and width W 
and contains C channels; the 
Output Feature Map (OFM) 
has height E, width  F , and  M 
channels; and the kernel has 
height R and width S. 
Between different layers and 
different networks, these 
parameters vary 

IFM 

Kernel 

OFM 

+1 +1 -1 -1

-1 +1 -1 -1
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1 1 0 0 
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2*POPCOUNT-N 
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Fig. 3 Simplified arithmetic circuitry as a consequence of binary quantization. The top displays 
the default multiplication, while the bottom displays how binary quantization can replace it with 
XNOR and popcount. N is the number of bits of the input vector 

2.2 Binary Quantization 

On the extreme end of quantization is binary quantization. Binary quantization 
restricts both weights and activations to binary values. This means that the acti-
vations .a ∈ {−1,+1} and weights .w ∈ {−1,+1}. Reduction of the precision of the 
operands introduces several advantages. First of all, the required storage capacity 
and bandwidth on the device are drastically reduced, compared to float32 by 
a factor of 32. Furthermore, the Multiply–Accumulate (MAC) operation, involving 
expensive multiplication hardware, can be replaced by the much more simple and 
cheaper XNOR and popcount operations [21]. An example of this simplified 
arithmetic is shown in Fig. 3.
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The output value of the popcount produces a value that needs to be stored 
with a larger bit-width compared to the binary input value, e.g., integer16. 
Therefore, to feed the outputs into a new layer, the nonlinear activation function 
needs to requantize the values back to the binary bit-width. For this purpose, the 
sign function is used. The quantized operand can be derived from its unquantized 
form as follows: 

.Xquant = Sign(X) =
{

+1 if X ≥ 0

−1 if X < 0
(1) 

This function is non-differentiable; for training, a Straight-Through Estima-
tor (STE) [3] can be used that passes gradients as is. By employing an STE, gradient 
descent is possible, and binary neural networks can be trained. 

2.3 Ternary Quantization 

Compared to binary quantization, ternary quantization allows for only one—albeit 
very important—extra value to be represented in the operands, namely zero. Ternary 
networks therefore have operands .w, a ∈ {−1, 0,+1} called trits. Next to the  
increased representational capabilities, the ability to represent zero also solves some 
issues found in binary networks. First of all, zero padding is not possible in binary 
networks since it lacks the ability to represent zero, and this is most often solved by 
employing on–off padding. Furthermore, the ability to represent zero introduces the 
capability to exploit sparsity, i.e., skipping computations when either the weights or 
activation is zero. As will be seen later on, this can have a significant impact on the 
efficiency of the computational hardware if the network itself is sparse. 

The arithmetic circuitry required to perform multiply–accumulate (MAC) oper-
ations on ternary operands is very similar to that of binary networks. The MAC 
operation can be replaced by a Gated-XNOR [8] (XNOR and AND gates) combined 
with two popcount modules, one for the +1s and one for the -1s. The arithmetic 
is shown in Fig. 4. 

Again, as with the binary popcount, the final result has a higher bit-width 
and needs to be requantized before being fed into the next layer. The quantization 
function typically uses a symmetric threshold value . �: 

.Xquant = T ernarize(X) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if X > �

0 if |X| ≤ �

−1 if X < −�

(2) 

During computation, each trit occupies 2 bits. However, this is a wasteful way to 
store them since theoretically .log2(3) = 1.58 bits are needed for each trit. Muller et
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Fig. 4 Simplified arithmetic circuitry as a consequence of ternary quantization. The top displays 
the default multiplication, while the bottom displays the ternary simplified variant. Note that the 
ternary variant needs two popcount modules (one to count . +1s and one to count . −1s) 

al. [18] derived an efficient mapping, compressing 5 trits into 8 bits, yielding a total 
storage of 1.6 bit per trit, close to the theoretical lower bound. 

2.4 Mixed-Precision 

Despite all the advantages of extreme quantization, binary and ternary quantization 
often induce severe accuracy loss, especially on more complex tasks. For example, 
there is a large gap in accuracy when comparing integer8 quantization to 
binary and ternary [5, 10]. Moreover, the accuracy loss that is induced differs 
per layer in the network [11]; i.e., some layers are more resilient to extreme 
quantization than others. Therefore, a combination of different precisions in a per-
layer fashion can give a good balance between accuracy and efficiency. 

An overview of different data precisions typically found in neural network 
architectures is given in Fig. 5. The figure shows the width of different data formats 
and how the bits are allocated. Next to the data format, the range is displayed, i.e., 
the minimum and maximum value that can be attained using that data format. Note 
that the range for the floating-point number only displays the positive numbers, 
while it is able to represent negative numbers using the sign bit. 

In the past, float32 was used as the  de facto standard for neural networks. 
Gradually, movements toward smaller data types like float16 were made to 
save on storage and computational cost. Moreover, it was found that the dynamic 
range of the data types has a larger impact on the accuracy than the relative 
precision, leading to the creation of bfloat16 [27] (Brain Floating Point) and 
tf32 [15] (TensorFloat32), both trading off relative precision in favor of increased 
range. Using integer8 precision completely gets rid of the expensive floating-
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Fig. 5 Breakdown of the bit usage inside data formats commonly used in neural networks. S is 
sign, E is exponent, and M is mantissa. Floating point data formats specifically for neural networks 
prefer higher range over more precision 

point arithmetic, vastly increasing the throughput and energy efficiency, with at the 
extreme end binary and ternary quantization. 

By the nature of floating-point arithmetic units, exponents are added up together, 
while the mantissa bits are multiplied. Therefore, bf16, which has 3 less mantissa 
bits compared to float16, will have a two times smaller footprint, while compared 
to float32 it will even have an eight times smaller area. This is because the area 
of the multiplier unit is roughly proportional to the square of the mantissa bits. In 
Sect. 3, accelerators that support integer8 (which can also be used for fixed-point 
arithmetic), binary, and ternary precisions are discussed. 

3 Accelerators for Low- and Mixed-Precision Inference 

With the aim to get the energy per MAC operation as low as possible, several 
accelerators specifically designed for low-precision inference have been created. 
Some of these architectures also support different precisions on the same platform. 
The accelerators can be split into two groups: fully digital accelerators and mixed-
signal/analog compute-in-memory (CIM) approaches. Although state-of-the-art 
CIM architectures [2, 26] and mixed-signal implementations [25] have the potential 
to achieve high energy efficiency, they also introduce new unique challenges. 
These challenges include longer design time and chip-to-chip variation due to 
CMOS process variation, which makes it more difficult to benchmark the actual 
performance of such a design, and no programmability, making it more difficult to
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use the accelerator. The further focus in this chapter will therefore be solely on fully 
digital implementations. 

First, characterization criteria that are important to embedded neural network 
accelerators will be established, and these include key performance indicators to 
measure the efficiency (in both area and energy) of the architecture. Furthermore, the 
basis for the flexibility analysis is laid out, based on the robustness of architectures 
against different layer types, dimensionality, and precisions. Thereafter, five state-
of-the-art digital inference accelerators will be discussed. 

3.1 Characterization Criteria 

The accelerators will be characterized according to both their flexibility and their 
energy efficiency. Defining flexibility as a quantitative metric can often be cumber-
some, although some recent effort toward bringing structure has been made [12]. 
Next to the flexibility aspects, the most important quantitative performance evalua-
tion criteria for neural network inference accelerators will be listed and motivated. 

3.1.1 Flexibility 

Before the characterization criteria are established, a closer look is taken at the 
nature of a convolution kernel. A convolution kernel can be described by 6 nested 
for-loops (7 when adding the batch dimension), and an exemplary schedule is shown 
in Listing 1. It is assumed that the target application is image processing, i.e., inputs 
are referred to as pixels. 

In Listing 1, the for-loops are arranged in a so-called output stationary way, i.e., 
one output pixel is calculated as soon as possible. In other words, all calculations 
that are needed for a set of output pixels are performed before moving to the next set 
of output pixels. This avoids having to store and reload partially calculated output 
pixels. 

for h in [0, H - R + 1]: Output feature map height 
for w in [0,  W - S + 1]: Output feature map width 
for m in [0, M]: Output channels 
acc = bias[m] 
for c in [0, C]: Input channels 
for r in [0, R]: Kernel height 
for s in [0, S]: Kernel width 
acc += ifm[h + r][w + s][c] * weights[n][r][s][m] 

ofm[h][w][m] = acc 

Listing 1 A naive convolutional layer with output stationary schedule and a stride of 1; acc is the 
temporary accumulated value, for simplicity, the IFM is assumed to be padded. The loop iterators 
are visualized in Fig. 2 
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Loop nest optimization (LNO) can be performed to increase data locality. Two 
important techniques, part of LNO, are loop tiling (also known as loop blocking), 
where a loop is split up into an inner and an outer loop, and loop interchange, 
where two loops are swapped in hierarchy level. The problem of finding the best 
combination of the two is called the temporal mapping problem (i.e., finding 
the best execution schedule). The temporal mapping greatly influences the number 
of memory accesses needed and therefore indirectly greatly influences the energy 
efficiency of an accelerator. 

Next to the temporal mapping, the operations performed in the convolutional 
kernel can also be parallelized in hardware. The problem of finding the optimal 
parallelization dimensions is called the spatial mapping problem. Using optimal 
spatial mapping can increase data reuse in hardware and reduce memory traffic. A 
good example of this is the mapping on a systolic array. It is important to note that 
the spatial mapping should be carefully chosen, as it imposes constraints on the 
dimensions being parallelized. 

Hardware parallelization over a dimension is called vectorization. Vectorization 
over any of the dimensions given in Fig. 2 will be denoted as the vectorization factor 
.vparam, where param can be any of the dimensions in Fig. 2. For instance, when 
parallelizing over the C dimension using a vectorization factor of 32, it is denoted 
as .vC = 32. This vectorization factor also implies constraints: any convolutional 
network layer that does not have an input channel multiple of 32 will not run at 
100% utilization. There will be a trade-off between the vectorization factor and the 
flexibility with respect to convolutional layers with certain layer dimensions being 
able to run at full utilization. 

Research has been done on structurally exploring the temporal and spatial 
mapping design space [20, 29]. Most recently, the ZigZag framework [17] has been 
published aiming to fully co-design temporal mapping with hardware architecture 
finding the best spatial and temporal mappings available. 

One other facet of flexibility is programmability. Programmability allows run-
ning different, possibly even non-DNN workloads on the accelerators. Especially, 
high-level programmability increases the usability of the device since it allows the 
workload to be configured while programming it via a high-level language, requiring 
less knowledge about the hardware implementation from a user perspective. 

3.1.2 Performance Characteristics 

To compare the performance of the several accelerators reviewed, some quantitative 
metrics that reflect the performance of the accelerator are established. First of 
all, the most widely promoted metric to compare accelerators is to compare the 
energy efficiency, defined as the energy per operation (either [pJ/op] or inversely in 
[TOPS/W]). 

Secondly, the memory capacity plays an important role in the efficiency of 
the accelerator. Since off-chip memory access energy is much larger than the 
energy needed to compute, off-chip memory access should be avoided at all costs.
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More on-chip memory means fewer external memory accesses, benefiting energy 
consumption. Two different ways to implement on-chip memory are SRAM and 
Standard-Cell Memory (SCM). While SRAM has a much higher memory density, 
it is less efficient in terms of energy usage for smaller sizes compared to SCM. 
Especially, when applying voltage–frequency scaling, the SCM can be scaled 
to a much lower voltage than SRAM. Therefore, SCM tends to be a popular 
choice to keep down the energy cost of the total system while sacrificing area 
and storage capacity. Other important metrics are throughput [GOPS] and area 
efficiency [GOPS/mm. 

2]. 

3.2 Five Low- and Mixed-Precision Accelerators Reviewed 

Five state-of-the-art accelerators will be discussed and compared against one 
another. These accelerators were chosen because of their support for very low 
precisions (i.e., binary or ternary). These accelerators are: 

• XNOR Neural Engine [6] is a binary neural network accelerator built into a 
programmable microcontroller unit. A full system on a chip (SoC), implemented 
in 22-nm technology, is presented including the accelerator, RISC host processor, 
and peripherals. 

• ChewBaccaNN [1] is an architecture for binary neural network inference that 
exploits efficient data reuse by co-designing the memory hierarchy with the neural 
network ran on the architecture. The hard-wired kernel size allows efficient data 
reuse. 

• CUTIE [22] is an accelerator for ternary neural networks. This is a massively 
parallel architecture, hard-coding all the network parameters into the hardware 
design. Furthermore, it exploits sparsity opportunities from ternary networks that 
are not present in binary networks. 

• Knag et al. produced a binary neural network accelerator in 10-nm FinFet 
technology [16]. The design focuses on utilizing the compute near memory 
paradigm, minimizing the cost of data movement by interleaving memory and 
computational elements. 

• BrainTTA is a flexible, fully programmable solution based on a Transport-
Triggered Architecture. The architecture has support for mixed-precision and 
focuses, next to the energy efficiency objective also on flexibility, trying to 
minimize the concessions made while still pursuing energy efficiency. 

A summary of these architectures is given in Table 1, and the strengths and 
weaknesses of the architectures are discussed in Sect. 4. 

3.2.1 XNOR Neural Engine (XNE) 

XNOR Neural Engine [6] is a binary accelerator exploiting the arithmetic simpli-
fications introduced by binarizing the weights and activations (see Fig. 3). Conti et
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Table 1 Comparison of performance, efficiency, and flexibility of the architectures discussed 

ChewBaccaNN [1] CUTIE [22] XNE [6] 10nm FinFet [16] BrainTTA 

Implementation characteristics 

Tech node [nm] 22 22 22 10 28 

Supply voltage 
[V] 

0.4 0.65 0.6 0.4 0.39 0.9 

Inference 
precision. a

b b. b, t b b b, t, i8 

Memory 
technology 

SCM SRAM SCM SRAM SCM SRAM SRAM 

Key Performance Indicators 

Peak throughput 
[GOPS] 

240 16,000 67 5 3400 880 

Energy/op [fJ] 
binary 

4.48/15.38.c – 115 21.6 1.62 101 

Energy/op [fJ] 
ternary 

– 2.19 1.70 – – 188 

Energy/op [fJ] 
8-bit 

– – – – 1105 

Core area [mm. 2] 0.7 7.5 2.32 0.39 3.6 

Area efficiency 
[GOPS/mm. 2] 

343 2133 28.88 8717 244.44 

Memory 
capacity [kB] 

153 1190 281 520 16 161 1024 

Flexibility 

Full utilization for 

C multiple of 16 128 128 1024 32/16/4. d

M multiple of Any 128 128 128 32 

R is 7 3 Any 2 Any 

S is 7 3 Any 2 Any 

Partial result 
support (for 
scheduling 
freedom) 

Yes No.e No No Yes 

Residual layer 
support 

Yes No No No Yes 

Programmability None None None None C-language 

. a b =  binary, t =  ternary, i8 =  integer8 

. bOnly estimates were provided, under the assumption that all ternary specific hardware is removed 

. c For 7 . × 7 and  3 . × 3 convolution, respectively 

. d For binary, ternary and integer8, respectively 

. e Partial result support is not needed since the output pixel computation is fully unrolled in hardware 

al. present an SoC consisting of an accelerator core (XNE) inside a microcontroller 
unit (MCU) and peripheries. The accelerator can independently run simple network 
configurations but requires the programmable MCU to execute more complex
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Fig. 6 Top-level view of the SoC with XNE inside the MCU. The memory is a hybrid of latch-
based SCM  and SRAM  

layers. The MCU is programmed using some assembly dialect. The full system is 
shown in Fig. 6. It consists of: 

• XNE core, where the binary MAC operations are performed; this core consists 
of a streamer, to stream feature maps and weights in and out of the architecture, 
a controller consisting of a finite-state machine, the programmable microcode 
processor, and a latch-based register file. 

• RISC-V host processor, used to realize more complex layer behaviors than 
supported with the XNE core alone. 

• Shared Memory, shared between the . μDMA, RISC-V core, and XNE core. This 
memory is a hybrid of SRAM and SCM, allowing aggressive voltage scaling when 
the SRAMs are turned off. 

• Core-Coupled Memory (CCM), primarily for the RISC-V core, again composed 
of both SRAM and SCM. 

• . μDMA, which is an autonomous unit able to send and receive data via several 
communication protocols from and to the shared memory. 

The accelerator core, XNE, is shown in Fig. 7. The throughput of the design can 
be chosen at design time by means of a throughput parameter TP. This throughput 
parameter can be described as follows: it takes the accelerator TP cycles to calculate 
TP output pixels. While doing this, the accelerator keeps the same input activations 
for TP cycles while loading TP weights each cycle (for a total of TP sets of 
TP weights). Therefore, this TP parameter essentially hard-wires the C and M 
dimension of the convolution dimensions shown in Fig. 2 into the design. 

For instance, each accumulator in Fig. 7 contains the partial result of one output 
pixel (i.e., the number of accumulators is equal to the output feature map channel 
vectorization . vM ). Therefore, all the inputs that are processed while a single 
accumulator is selected via the mux should contribute to the same output pixel.
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Fig. 7 Accelerator core of XNOR Neural Engine with TP = 128. The XNOR operation is 
performed on the activations a and weights w. Whenever the number of input operands is not 
a multiple of TP, the outputs can be masked by masking bits m to make sure that they do not 
contribute to the popcount output 

In this case, the different pixels concurrently offered to the compute core belong to 
different input channels. Therefore, the choice of TP directly imposes a constraint 
on the C and M loops in order to run at full efficiency. Furthermore, the output of the 
popcount operation is directly fed through the binarization function; this means 
that partial (higher bit-width) results cannot be extracted, prohibiting their use for 
residual layers. For benchmarking the platform, a TP factor of 128 was chosen, 
which means that .vC = 128 and .vM = 128 for this design point. 

3.2.2 ChewBaccaNN 

ChewBaccaNN [1] is like XNE, an accelerator utilizing binary weights and binary 
activations. Contrary to XNE, this architecture does not implement a full SoC and 
is therefore purely based on the accelerator core. ChewBaccaNN is designed using 
GF22 technology and uses SCM to enable aggressive voltage scaling. A top-level 
view of the architecture is shown in Fig. 8. The components in this architecture are: 

• BPU Array consists of seven Basic Processing Units (BPUs) and forms the 
computational heart of the accelerator; the BPU is detailed in Fig. 9 and is 
discussed in the next paragraph. 

• Feature Map Memory (FMM) holds the input and output feature maps and also 
has the ability to store partial results (e.g., for residual layers). The FMM is 
implemented using SCM only. This enables aggressive voltage scaling for the 
whole chip at the expense of sacrificing memory capacity. 

• Row Banks buffer the input feature map rows and kernel rows. The crossbar (x-
bar) is utilized when the convolutional window slides down. Since each BPU 
processes one kernel row, the kernel weights can stay inside the BPUs, while the 
input feature map needs to move one row down. This is done by loading one new 
row and shifting the other rows by one BPU (using the crossbar).
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Fig. 8 The top-level architectural overview of the ChewBaccaNN accelerator. All the memories 
are implemented using latch-based standard-cell memory. The control signals are not shown in this 
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Fig. 9 ChewBaccaNN compute core. Hardware parallelization is performed over the kernel height 
(R) in the Basic Processing Unit (BPU) array, over the kernel width (S) inside a single BPU and 
over the input channel dimension (C) inside the compute unit (CU). The Controlled Shift Register 
(CSR) enables data reuse in a sliding window fashion. The architecture contains a total of . 16×7×
7 = 784 (.vC × vR × vS) binary multipliers 

• Scheduler, used to control the crossbar behavior and make sure that the row banks 
are timely rotated to the next BPU and the correct weights and IFM pixels are 
loaded. 

• Near Memory Compute Unit (NMCU), which writes output data from the BPU 
array to the correct location in the FMM, accumulates residual paths, rebinarizes 
results, and is used for bit-packing (rebinarized) outputs into 16-bit packets. 

In Fig. 9, the compute core of ChewBaccaNN is depicted. It can be seen that several 
of the parameters listed in Fig. 2 are hard-wired into the design. The kernel height
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(R) and width (S) are completely unrolled (in this case with a factor of 7), while 
the channel dimension (C) should be a multiple of 16 (the number of XNOR gates) 
to achieve full utilization; in other words, the vectorization factors are .vC = 16, 
.vR = 7, and .vS = 7. 

The Controlled Shift Register (CSR) allows using the sliding window principle 
to get data reuse; for each IFM image row, initially, the full kernel width (in this 
case 7) is transferred, while the iterations thereafter only need one new column 
(.vR × 1 × vC) of activations. 

3.2.3 Completely Unrolled Ternary Inference Engine (CUTIE) 

Completely Unrolled Ternary Inference Engine (CUTIE) [22] is, as the name 
suggests, an inference accelerator using Ternary operands. The main design 
philosophy behind CUTIE is to avoid iteration by spatially unrolling most of the 
convolutional loops found in Listing 1, namely the loops over the R, S, C, and 
M dimensions. Furthermore, ternary operands allow the representation of zero, 
therefore making the accelerator capable of exploiting neural network sparsity by 
silencing compute units. The top-level design of CUTIE is depicted in Fig. 10. The  
main components within the CUTIE architecture are: 

• Output Channel Compute Unit (OCU), the basic compute building block of this 
architecture, computing the output pixels belonging to one single output channel. 
A detailed view of the OCU is given in Fig. 11. 

• Feature Map Memory (FMM), used to store the inputs coming either from 
previous computations (OCUs) or from an external interface. The FMM is double-
buffered such that the latency for loading new input feature maps can be hidden. 
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Fig. 10 CUTIE top-level architecture. The OCU array contains one output channel compute unit 
for each output channel in the neural network design
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Fig. 11 CUTIE compute core, consisting of several Output Channel Compute Units (OCUs) and 
one weight buffer per OCU. For brevity, decompression and pipelining are omitted in this figure. 
The ternary multipliers are unrolled over the R, S, and  C dimensions, which in this case gives 
.3× 3× 128 = 1152 ternary multipliers. In total, the architecture can process . 3× 3× 128× 128 =
147,456 (.vR × vS × vM × vC ) inputs each compute cycle 

• Tile buffer, used to buffer IFM pixels in a sliding window fashion. 
• Weight buffer, one is attached to each OCU: it is designed with enough capacity 
to contain the full kernel for a single output channel (.R × S × C), which enables 
great weight reuse. The weight buffer is also double-buffered to hide latency. 

• Compression/decompression units are used to shift between the computational 
form of the trits, i.e., 2 bits, and the compressed form of the trits which is 1.6 bits 
wide. 

The compute core of CUTIE is depicted in Fig. 11. Its main workhorse is 
the Output Channel Compute Unit (OCU), which is a unit that calculates pixels 
exclusive to a single output channel. Having a separate compute unit for each output 
channel brings the advantage that the weight kernel can stay inside the weight buffer 
(w buffer) while moving the convolutional window over the IFM giving maximum 
weight data reuse. Alongside the weight reuse, there is also IFM reuse being utilized
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in two different ways: (1) the IFM is broadcasted to each of the OCUs and (2) just 
like ChewBaccaNN, when sliding the convolutional window over the IFM image, 
only R new IFM pixels are needed (i.e., only one new column of the IFM needs to 
be loaded, assuming a stride of 1). 

Each Output Channel Compute Unit (OCU) processes .128×3×3 (.vC ×vR ×vS) 
input pixels each cycle. By hard-wiring many of the convolutional layer parameters, 
CUTIE sacrifices area in favor of avoiding temporal iteration. This also means 
that this architecture sacrifices most flexibility by constraining C, M , R, and S. 
Therefore, the only dimensions that are freely schedulable are W and H . By  
constraining many of the dimensions into the hardware, flexibility crumbles, but 
the temporal mapping is greatly simplified. The fully spatially unrolled structure 
also minimizes the movement of (large) partial sums. Since each OCU directly 
computes an output pixel, there is no need, in contrast to the other architectures, 
to move around partial results. This is beneficial since the partial results have a 
higher bit-width than the final (requantized) results. 

3.2.4 Binary Neural Network Accelerator in 10-nm FinFet 

In [16], Knag et al. show a fully digital accelerator with binary operands which 
is implemented using 10nm FinFet technology. The SoC designed intersperses 
arithmetic with memory according to the Compute Near Memory (CNM) paradigm. 
Contrary to the other architectures discussed, this work focuses more on the physical 
implementation and circuit-level design choices rather than the architectural design 
aspects. The design of this accelerator is shown in Fig. 12. The main components of 
this accelerator are: 

• Control Unit, which consists of four 256-bit wide SRAM memory banks used 
as main storage and a Finite-State Machine (FSM) that controls the flow of data 
between memory banks and the MEUs. 

• Memory Execution Unit (MEU). Each MEU can compute two output pixels in a 
time-interleaved manner (see Fig. 12, each MEU contains two output registers). 
The MEUs are interleaved with latch-based memories to utilize the compute near 
memory advantages. In total, there is an array of .16 × 8 MEUs. Having 8 weight 
SCM banks was found to be the right trade-off between energy consumed by 
the computational elements and energy consumed by the transportation of data 
to the compute units. The SRAM memory banks are connected to the MEUs by 
means of a crossbar network. Since the input feature map pixels are stored in an 
interleaved manner, the crossbar network allows any (2 . × 2) combination of the 
input feature map to be read. The weights are also loaded from this memory. 

The authors of the work do not discuss the external interfacing required on this 
chip. 

Binary arithmetic is relatively cheap, compared to the cost of accessing memory 
(e.g., for loading weights). To amortize the costs of memory reads and data 
movement, the computational intensity should be sufficient to balance the energy
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Fig. 12 Top-level view of the 10nm FinFet BNN accelerator. The central memory inside the 
control unit consists of 4. × 256-bit wide SRAM banks to enable 2 . × 2 convolutional window 
access in a single cycle and a finite-state machine (FSM). The MEUs are placed in an 8 . × 16 array 
to exploit the compute near memory principle. In total, .1024 × 16 × 8 = 131,072 (.vC × vM × 8) 
binary operations can be performed each cycle 

consumption. Parallelism of the MAC unit (as shown in Fig. 12) is used to balance 
the power mismatch of the (expensive, high bit-width) accumulator, present in 
the popcount module, and the (cheap) XNOR gates. By enlarging the number 
of inputs of the popcount module, the fixed accumulator cost is amortized by 
many XNOR gates. Like the other architectures, this accelerator parallelizes the 
MAC operation over the input channel (C) dimension. The parallelization should 
be high enough to offset the accumulator cost while being low enough to not 
impose unreasonable constraints on the number of input channels (C) required for
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full utilization. Therefore, a trade-off study was performed to see which level of 
parallelism was needed to offset the accumulator cost. A design with an input feature 
map parallelization factor of 1024 (.vC = 1024) was chosen as the sweet-spot. 
Negligible energy improvements were shown when going for more parallelism. 

Furthermore, the idea of pipelining the popcount-adder tree was explored. 
When pipelining the design, the voltage can be lowered at iso-performance (i.e., 
iso-frequency). However, due to the sequential logic and clock-power dissipated 
while adding more pipeline stages, the final design choice was to not pipeline the 
popcount-adder tree. 

3.2.5 BrainTTA 

BrainTTA is a fully compiler-programmable mixed-precision flexible-datapath 
architecture. Contrary to the fixed-path accelerators, BrainTTA is based on the 
Transport-Triggered Architecture (TTA) [7] that provides a fully programmable 
datapath (via a compiler) directly to the user. Before diving into the BrainTTA 
architecture, a proper introduction to the Transport-Triggered Architecture is given. 

Transport-Triggered Architectures are programmed by data movements instead 
of arithmetic operations typically found in Very Long Instruction Word (VLIW) 
architectures. This means that the movement of data between function units (FUs) 
and register files (RFs) is exposed to the programmer; the TTA is an explicit 
datapath architecture. This is in stark contrast to VLIW architectures, where the 
data movement is implicit and performed in hardware (i.e., not exposed to the 
programmer). With the control of the datapath given to the compiler, several 
optimizations can be performed like operand sharing and register file bypass. 

An example instance of a TTA is displayed in Fig. 13. The TTA consists of a 
Control Unit (CU) used for instruction fetching and decoding, Register Files (RFs) 
for temporary storage, and Load-Store Units (LSUs) to access the memories. The 
gray circles inside the busses denote that this bus is connected to the corresponding 
input- or output-port of some function unit. This connectivity is design time 
configurable, visible to the compiler, and can be made as generic or specific 
for certain applications as desired; more connectivity is at the expense of larger 
instruction size and more switching activity in the interconnect. In [19], Multanen 
presented several ways to alleviate this effect by applying techniques that reduce 
the instruction overhead such as instruction compression. An example instruction is 
shown in Fig. 13, which shows that the instruction can be broken down into move 
operations for each bus. 

BrainTTA is based on the TTA, built specifically for inference with precisions 
integer8, binary, and ternary. A top-level view of the BrainTTA SoC is 
shown in Fig. 14. BrainTTA is designed using the open-source toolchain TTA-based 
Co-design Environment (TCE) [9, 13]. The SoC consists of:
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TTA part of the SoC 

• RISC-V host processor, which is taken from an open-source repository [24], the 
host processor starts and halts execution of the TTA core and takes care of the 
external communication (e.g., loading the on-chip memories). 

• TTA core, the workhorse of the architecture, supports mixed-precision inference.
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• SRAM Memories, separate memories for the RISC and TTA core, the TTA 
core memories are highly banked to allow efficient access of smaller bit-widths, 
while also supporting wide vector accesses. The TTA core is connected to three 
memories, the DMEM, used for storing input and output feature maps, the 
PMEM, used to store the weights, and the IMEM used for instructions to program 
the behavior of the TTA core. 

• Debugger (DBG), used to control the execution of the TTA core, can signal task 
completion to the RISC-V. 

• AXI interconnect, used for on- and off-chip communication between the RISC, 
TTA core, and peripherals. 

The workhorse of this architecture is the TTA core, where the actual inference 
happens. The details of the TTA core instantiation used in BrainTTA can be found 
in Fig. 15. The core contains different Function Units (FUs), divided into scalar and 
vector FUs. The FUs are interconnected via the busses, with 32-bit scalar busses 
(bus 0–5) and 1024-bit vector busses (bus 6–9). The core consists of the following 
units: 

Control Unit (CU) it contains the logic to fetch and decode instructions and steers 
the other units to execute the correct operations. Furthermore, the CU contains a 
hardware loop buffer to save energy on the instruction memory accesses. This can 
be very beneficial since all network layers are essentially described by multiple 
nested loops (see Listing 1). 

Vector Multiply–Accumulate (vMAC), the actual number cruncher. This unit 
supports the following operations: integer8 MAC (scalar–vector product and 
vector–vector product), binary MAC, and ternary MAC. Its vector size is 
1024-bit, with 32 entries of 32-bits each. The scalar–vector MAC multiplies a scalar 
by a vector by broadcasting the (32-bit) scalar value to all vector entries. This is 
beneficial when multiple inputs share the same weights (as in convolution). 

For each precision MAC operation, the vectorization factor is different. All 
arithmetic circuitry contains 32 accumulators for the (intermediate) output channel
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result, i.e., .vM = 32. The number of concurrent input channels is the vector 
size (1024) divided by 32 (the number of output channels) divided by the operand 
size (i.e., 1, 2, or 8 bits). Therefore, the input channel vectorization is .vC = 32, 
.vC = 16, and .vC = 4 for binary, ternary, and integer8, respectively. 

Vector Add (vADD) is used to add two (either 512- or 1024-bit) vectors. This can 
for example be used to support residual layers. 

Vector Operations (vOPS), auxiliary (vector) operations that are required in the 
network, alongside to the computations. This FU can perform requantization, 
binarization, ternarization, as well as activation functions, e.g., ReLU 
and pooling functions such as MaxPool. Furthermore, various other operations to 
extract and insert scalar elements into a vector are also supported by this unit. 

Register Files (RFs) come in different bit-widths, namely binary, 32-bit scalar, 
and 1024-bit vector. These registers can be used to facilitate data reuse and store 
intermediate results without performing (more costly) access to the SRAM. 

Load-Store Units (LSUs) form the interface between the TTA core and the SRAM 
memory. For each memory, there is a separate LSU to facilitate concurrent weight 
and input loading. The units support loads and stores for different bit-widths ranging 
from 8 bits all the way up to 1024 bits. Since the memory is banked, a strobe signal 
can be used to selectively turn on banks when data with smaller bit-widths are 
loaded/stored, in order to save energy. 

Scalar ALUs are mostly used for address calculations needed as inputs to the 
LSUs. These units support basic arithmetic on values up to 32 bit. 

4 Comparison and Discussion 

All architectures discussed in Sect. 3 are evaluated on flexibility and energy 
efficiency. These results are given in Table 1. This table is split into three sections: 
the implementation characteristics, performance characteristics as discussed in 
Sect. 3.1.2, and the flexibility aspects as discussed in Sect. 3.1.1. 

The energy efficiency of the accelerators ranges from 1.6 to 115 fJ per operation 
for binary precision, a large range. It should be noted, however, that the two 
architectures that have the highest energy usage (XNE and BrainTTA) are the only 
architectures that show a full autonomous SoC including peripherals. Furthermore, 
all architectures except BrainTTA utilize voltage–frequency scaling to run the 
accelerator at lower than nominal supply voltage, trading off throughput for better 
energy efficiency. 

Next to the energy efficiency, the table also lists the neural network layer 
requirements that these architectures impose in order to fully utilize the arithmetic 
hardware. It is seen that the most energy-efficient architectures, CUTIE [22] and 
the BNN accelerator in 10-nm FinFet from Knag et al. [16],  are also the  most  
constrained architectures, in terms of neural network layer requirements. Therefore,
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the question arises, does hard-wiring the neural network layer parameters directly 
improve the energy efficiency of an architecture, for different models, also when 
layer variety is high? 

Interestingly, the XNE and BrainTTA share very similar layer constraints. Both 
are only constrained in the input channel (C) and output channel (M) dimensions. 
The energy consumption of BrainTTA is somewhat lower at an older technology 
node while using a higher supply voltage. The reason for this is that BrainTTA better 
exploits data reuse. The execution schedule for BrainTTA was tuned to maximize 
data reuse, while XNOR neural engine only reuses a set of input feature maps for 
TP (in this case 128) cycles while reloading the weights for each MAC operation. 

The inefficient schedule of XNE is confirmed by the energy numbers of the 
implementation that only uses SCM. XNE was benchmarked using SCM only, 
severely cutting the very high energy cost associated with these redundant memory 
fetches, at the cost of losing memory capacity. Some architectures report energy 
numbers for an SCM as well as an SRAM implementation. The memory capacity 
of the SCM versions is very low compared to the SRAM versions, hindering the 
ability to run full-size networks on it without adding expensive off-chip memory 
accesses. For the sake of comparison, for all the architectures with an SRAM version 
available, the SRAM version is chosen for further analysis. 

Support for residual layers can only be found in ChewBaccaNN and BrainTTA. 
Other architectures are not able to support this due to their fixed datapath. The 
dataflow through these accelerators is very static, and the accumulated value will 
directly be binarized or ternarized after all inputs are accumulated. This 
prohibits the use of residual layers since residual layers need the intermediate (larger 
bit-width) results that were obtained before requantization. 

It is clear that parallelism and data reuse (either in the form of locally buffering 
or by broadcasting) are the keys to amortizing the memory access cost, which is 
so much larger than the low-precision arithmetic cost. Techniques to mitigate these 
costs are to replace SRAM with low-voltage SCM, hard-wire network parameters to 
enable broadcasting, and use the sliding window principle (like the FMM banks in 
combination with the crossbar in ChewBaccaNN [1]). In essence, all these solutions 
boil down to designing the architecture around the data movements in a less-flexible 
manner. These architectures solve the mapping problem by fixing most parameters 
using spatial mapping, greatly simplifying the task of temporal mapping at the 
cost of losing flexibility. XNE and BrainTTA fix the least number of parameters 
using spatial mapping, therefore leaving a larger temporal mapping space to be 
explored. 

5 Summary and Conclusions 

Neural networks are all around and are making an advance into the embedded 
domain. With the increasing popularity of edge computing, new methods are needed 
to port the typically power- and memory-hungry neural networks to devices that
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have limited storage and are subject to severe energy constraints. Quantization is a 
fundamental ingredient in overcoming these challenges. Very low precisions, down 
to 1 bit, have shown to achieve great energy efficiency while drastically reducing the 
model size and computational cost involved in neural network inference. To fully 
exploit the reduced computational complexity and memory requirements of these 
networks, neural network accelerators aimed specifically at these heavily quantized 
networks have been developed. 

In this chapter, state-of-the-art low- and mixed-precision architectures are 
reviewed. Taking into account the variety present in network layers of CNNs, 
the architectures are compared against each other in terms of flexibility and energy 
efficiency. It was found that spatially mapping more dimensions of the neural 
network layer increases the energy efficiency as it allows minimization of data 
movement by tailoring the memory hierarchy design, which is a big contributor to 
energy cost in inference accelerators. Contrary to the group of accelerators that maps 
most layer dimensions spatially, there is a group of accelerators that minimizes the 
layer dimension requirements by less heavily relying on spatial mapping, retaining 
more freedom in the temporal mapping domain. They are more flexible and can 
handle a larger part of the neural architecture design space. In addition, they may 
have support for multiple bit precisions. 

With new attempts to streamline the process of finding the best combination 
of temporal and spatial mappings [17], while co-designing the memory hierarchy, 
the question arises if an optimized temporal mapping in combination with memory 
hierarchy co-design can close the energy efficiency gap with the more constrained, 
heavily spatially mapped accelerators, giving better energy efficiency at a wider 
range of neural network layers. 
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