
Low- and Mixed-Precision Inference
Accelerators

Maarten J. Molendijk, Floran A. M. de Putter, and Henk Corporaal

1 Introduction

Neural Networks can solve increasingly more complex tasks in fields such as
Computer Vision (CV) and Natural Language Processing (NLP). While these
Neural Networks can perform complex tasks with increasingly higher accuracy, the
sheer size of these networks often prevents deployment on edge devices that have
limited memory capacity and are subject to severe energy constraints. To overcome
the issues preventing the deployment of neural networks onto edge devices, efforts
toward reducing the model size and reducing the computational costs have been
made. These efforts are most often focused on either the algorithmic side, tailoring
the neural network and its properties, or on the hardware side, creating efficient
system designs and arithmetic circuitry.

In an effort to reduce the computational cost and model size of neural networks,
several approaches are taken. One of these approaches is to automate the synthesis
of the neural network architecture while taking into account the hardware resources,
this is called hardware-aware neural architecture search (NAS) [23, 28]. Another
way to increase the energy efficiency is by compressing the model size, applying
either quantization [10] or pruning [4].

In parallel to research on model compression, research has been performed on
creating highly specialized hardware that exploits the opportunities arising from
model compression. ASICs that support neural network inference for operand
precisions as low as 1 bit exploit the advantages extreme quantization brings: low
memory size and bandwidth and simplified compute logic. In the pursuit of the
most energy-efficient hardware design, several design choices regarding memory

M. J. Molendijk (�) · F. A. M. de Putter · H. Corporaal
Eindhoven Artificial Intelligence Systems Institute and PARsE lab, Eindhoven University of
Technology, Eindhoven, The Netherlands
e-mail: m.j.molendijk@tue.nl; f.a.m.d.putter@tue.nl; h.corporaal@tue.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_3

63

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845
a

mailto:m.j.molendijk@tue.nl
mailto:m.j.molendijk@tue.nl
mailto:m.j.molendijk@tue.nl
mailto:m.j.molendijk@tue.nl

 9646 56845 a 9646 56845 a

mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl

 18196
56845 a 18196 56845 a

mailto:h.corporaal@tue.nl
mailto:h.corporaal@tue.nl
mailto:h.corporaal@tue.nl
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3

64 M. J. Molendijk et al.

hierarchy, hardware parallelization of operations, and data-flow are made that
impact both the ASIC’s efficiency and its flexibility.

For instance, many architectures have a fixed datapath; the movement of the data
is fixed at design time which can impose limitations on the layer types, channel
dimensions, and kernel dimensions. Furthermore, these architectures typically have
limited programmability and configurability, which restricts the execution schedules
that can (efficiently) be run.

In this chapter, a look will be taken at several different approaches of neural
network accelerators specifically designed for inference with very low-precision
operands. The efficiency (and origin thereof) of the architectures will be analyzed
and compared to the flexibility that these architectures offer.

In short, the contributions of this work are:

• Overview of state-of-the-art low- and mixed-precision neural network accelera-
tors, in Sect. 3.

• Analysis on the trade-off between the flexibility and the energy efficiency of
accelerators, in Sect. 4.

The remainder of this chapter is structured as follows: in Sect. 2, background infor-
mation on neural network architecture and quantization is presented. Thereafter, in
Sect. 3, the low- and mixed-precision accelerators are presented and a comparison
is presented in Sect. 4. Section 5 concludes this chapter.

2 Background: Extreme Quantization and Network Variety

Modern neural network architectures consist of many different layers with millions
of parameters and operations. The storage required to store all parameters and
features is not in line with the storage capacity typically found on embedded devices,
leading to costly off-chip memory accesses. Next to the memory and bandwidth
limitations, computational costs for full-precision (float32) operations require
power-hungry compute blocks that quickly overtax the energy requirements of the
embedded devices. To reduce both the computational cost and the cost of data access
and transport, quantization can be applied.

Quantization leads to lower precision parameters and therefore induces infor-
mation loss. Naturally, when weights and activations can represent fewer distinct
values, the representational capabilities of the network decrease. This decrease may
create an accuracy loss. In [14], Gholami et al. show, however, that quantization
down to integer8 can be done without significant accuracy loss. But even when
quantizing down to integer8, the memory requirements can still overtax the
memory capacity typically found in embedded systems. Therefore, research has
been done on extreme quantization, i.e., quantization below 8-bit precision.

In the next subsection, several frequently utilized building blocks for convolu-
tional neural networks (CNNs) are listed. Thereafter, in Sects. 2.2 and 2.3, two

Low- and Mixed-Precision Inference Accelerators 65

forms of extreme quantization, namely binary and ternary quantization, are
discussed. Finally, in Sect. 2.4, the need for mixed-precision is considered.

2.1 Neural Network Architecture Design Space

Neural network architectures have a great variety in the type of layers, the size of
these layers, and the connectivity between these layers. Furthermore, with mixed-
precision architectures, the precision can also be chosen on a per-layer basis. An
example network is shown in Fig. 1. Some common building blocks are listed below:

• Convolutional Layer
• Fully connected Layer
• Depth-wise Convolutional Layer
• Residual Addition
• Requantization
• Pooling

The working horse of CNNs is the convolutional layer. Between different
convolutional layers, there can be variety in the kernel size, number of input feature
maps, output feature maps, etc. In Fig. 2, the different parameters of a convolutional
layer are presented. These parameters will later on prove to be an important basis
for designing efficient hardware. The goal of Sect. 3 is to show how these network
parameters relate to hardware design, hardware efficiency, and hardware flexibility.

3x
3

C
on

vo
lu

tio
n

Bl
oc

k
C

=6
4

Bl
oc

k
C

=6
4

Bl
oc

k
C

=1
28

Bl
oc

k
C

=1
28

Bl
oc

k
C

=2
56

Bl
oc

k
C

=2
56

Bl
oc

k
C

=5
12

Bl
oc

k
C

=5
12

Fu
lly

-c
on

ne
ct

ed

IN
T8

3x
3

C
on

vo
lu

tio
n

Ba
tc

h
no

rm
al

iz
at

io
n

IN
T1

6

Si
gn

IN
T1

6

+

3x
3

C
on

vo
lu

tio
n

Bi
na

ry

IN
T8

Ba
tc

h
no

rm
al

iz
at

io
n

IN
T1

6

IN
T8

H
ar

d
Ta

nh

Block

Bi
na

ry

Si
gn

Fig. 1 Binary ResNet-18, an exemplary network containing several different building blocks and
using different operand precisions. Note that the first layer and the “skip connections” have a higher
than binary precision. Furthermore, the number of channels C can differ between the building
blocks

66 M. J. Molendijk et al.

Fig. 2 A convolutional layer
can vary in different ways.
The Input Feature Map (IFM)
has height H and width W
and contains C channels; the
Output Feature Map (OFM)
has height E, width F , and M
channels; and the kernel has
height R and width S.
Between different layers and
different networks, these
parameters vary

IFM

Kernel

OFM

+1 +1 -1 -1

-1 +1 -1 -1

-1 +1 +1 +1 +2

1 1 0 0

0 1 0 0

0 1 1 1 +2

MUL

XNOR
2*POPCOUNT-N

SUM

Fig. 3 Simplified arithmetic circuitry as a consequence of binary quantization. The top displays
the default multiplication, while the bottom displays how binary quantization can replace it with
XNOR and popcount. N is the number of bits of the input vector

2.2 Binary Quantization

On the extreme end of quantization is binary quantization. Binary quantization
restricts both weights and activations to binary values. This means that the acti-
vations .a ∈ {−1,+1} and weights .w ∈ {−1,+1}. Reduction of the precision of the
operands introduces several advantages. First of all, the required storage capacity
and bandwidth on the device are drastically reduced, compared to float32 by
a factor of 32. Furthermore, the Multiply–Accumulate (MAC) operation, involving
expensive multiplication hardware, can be replaced by the much more simple and
cheaper XNOR and popcount operations [21]. An example of this simplified
arithmetic is shown in Fig. 3.

Low- and Mixed-Precision Inference Accelerators 67

The output value of the popcount produces a value that needs to be stored
with a larger bit-width compared to the binary input value, e.g., integer16.
Therefore, to feed the outputs into a new layer, the nonlinear activation function
needs to requantize the values back to the binary bit-width. For this purpose, the
sign function is used. The quantized operand can be derived from its unquantized
form as follows:

.Xquant = Sign(X) =
{

+1 if X ≥ 0

−1 if X < 0
(1)

This function is non-differentiable; for training, a Straight-Through Estima-
tor (STE) [3] can be used that passes gradients as is. By employing an STE, gradient
descent is possible, and binary neural networks can be trained.

2.3 Ternary Quantization

Compared to binary quantization, ternary quantization allows for only one—albeit
very important—extra value to be represented in the operands, namely zero. Ternary
networks therefore have operands .w, a ∈ {−1, 0,+1} called trits. Next to the
increased representational capabilities, the ability to represent zero also solves some
issues found in binary networks. First of all, zero padding is not possible in binary
networks since it lacks the ability to represent zero, and this is most often solved by
employing on–off padding. Furthermore, the ability to represent zero introduces the
capability to exploit sparsity, i.e., skipping computations when either the weights or
activation is zero. As will be seen later on, this can have a significant impact on the
efficiency of the computational hardware if the network itself is sparse.

The arithmetic circuitry required to perform multiply–accumulate (MAC) oper-
ations on ternary operands is very similar to that of binary networks. The MAC
operation can be replaced by a Gated-XNOR [8] (XNOR and AND gates) combined
with two popcount modules, one for the +1s and one for the -1s. The arithmetic
is shown in Fig. 4.

Again, as with the binary popcount, the final result has a higher bit-width
and needs to be requantized before being fed into the next layer. The quantization
function typically uses a symmetric threshold value . �:

.Xquant = T ernarize(X) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if X > �

0 if |X| ≤ �

−1 if X < −�

(2)

During computation, each trit occupies 2 bits. However, this is a wasteful way to
store them since theoretically .log2(3) = 1.58 bits are needed for each trit. Muller et

68 M. J. Molendijk et al.

0 1 0 1

+2

01 01 00 11

11 01 11 11

MSB
XOR

1 1 0 1

1 0 1 0

MSB
XNOR

LSB
AND

0 1 0 1

1 0 0 0 +1

+1

+1 +1 0 -1

-1 +1 -1 -1

-1 +1 0 +1 +1

MUL
SUM

POPCAND

AND POPC ADD

SUB

Fig. 4 Simplified arithmetic circuitry as a consequence of ternary quantization. The top displays
the default multiplication, while the bottom displays the ternary simplified variant. Note that the
ternary variant needs two popcount modules (one to count . +1s and one to count . −1s)

al. [18] derived an efficient mapping, compressing 5 trits into 8 bits, yielding a total
storage of 1.6 bit per trit, close to the theoretical lower bound.

2.4 Mixed-Precision

Despite all the advantages of extreme quantization, binary and ternary quantization
often induce severe accuracy loss, especially on more complex tasks. For example,
there is a large gap in accuracy when comparing integer8 quantization to
binary and ternary [5, 10]. Moreover, the accuracy loss that is induced differs
per layer in the network [11]; i.e., some layers are more resilient to extreme
quantization than others. Therefore, a combination of different precisions in a per-
layer fashion can give a good balance between accuracy and efficiency.

An overview of different data precisions typically found in neural network
architectures is given in Fig. 5. The figure shows the width of different data formats
and how the bits are allocated. Next to the data format, the range is displayed, i.e.,
the minimum and maximum value that can be attained using that data format. Note
that the range for the floating-point number only displays the positive numbers,
while it is able to represent negative numbers using the sign bit.

In the past, float32 was used as the de facto standard for neural networks.
Gradually, movements toward smaller data types like float16 were made to
save on storage and computational cost. Moreover, it was found that the dynamic
range of the data types has a larger impact on the accuracy than the relative
precision, leading to the creation of bfloat16 [27] (Brain Floating Point) and
tf32 [15] (TensorFloat32), both trading off relative precision in favor of increased
range. Using integer8 precision completely gets rid of the expensive floating-

Low- and Mixed-Precision Inference Accelerators 69

S E E E E E E E E M M M M MM M

S E E E E E M M M M M MM M M M

S M

S

32

S M M M M M M M M

S E E E E E E E E M M M M M M M M M

S E E E E E E E E M M M M MM M M

19

Fig. 5 Breakdown of the bit usage inside data formats commonly used in neural networks. S is
sign, E is exponent, and M is mantissa. Floating point data formats specifically for neural networks
prefer higher range over more precision

point arithmetic, vastly increasing the throughput and energy efficiency, with at the
extreme end binary and ternary quantization.

By the nature of floating-point arithmetic units, exponents are added up together,
while the mantissa bits are multiplied. Therefore, bf16, which has 3 less mantissa
bits compared to float16, will have a two times smaller footprint, while compared
to float32 it will even have an eight times smaller area. This is because the area
of the multiplier unit is roughly proportional to the square of the mantissa bits. In
Sect. 3, accelerators that support integer8 (which can also be used for fixed-point
arithmetic), binary, and ternary precisions are discussed.

3 Accelerators for Low- and Mixed-Precision Inference

With the aim to get the energy per MAC operation as low as possible, several
accelerators specifically designed for low-precision inference have been created.
Some of these architectures also support different precisions on the same platform.
The accelerators can be split into two groups: fully digital accelerators and mixed-
signal/analog compute-in-memory (CIM) approaches. Although state-of-the-art
CIM architectures [2, 26] and mixed-signal implementations [25] have the potential
to achieve high energy efficiency, they also introduce new unique challenges.
These challenges include longer design time and chip-to-chip variation due to
CMOS process variation, which makes it more difficult to benchmark the actual
performance of such a design, and no programmability, making it more difficult to

70 M. J. Molendijk et al.

use the accelerator. The further focus in this chapter will therefore be solely on fully
digital implementations.

First, characterization criteria that are important to embedded neural network
accelerators will be established, and these include key performance indicators to
measure the efficiency (in both area and energy) of the architecture. Furthermore, the
basis for the flexibility analysis is laid out, based on the robustness of architectures
against different layer types, dimensionality, and precisions. Thereafter, five state-
of-the-art digital inference accelerators will be discussed.

3.1 Characterization Criteria

The accelerators will be characterized according to both their flexibility and their
energy efficiency. Defining flexibility as a quantitative metric can often be cumber-
some, although some recent effort toward bringing structure has been made [12].
Next to the flexibility aspects, the most important quantitative performance evalua-
tion criteria for neural network inference accelerators will be listed and motivated.

3.1.1 Flexibility

Before the characterization criteria are established, a closer look is taken at the
nature of a convolution kernel. A convolution kernel can be described by 6 nested
for-loops (7 when adding the batch dimension), and an exemplary schedule is shown
in Listing 1. It is assumed that the target application is image processing, i.e., inputs
are referred to as pixels.

In Listing 1, the for-loops are arranged in a so-called output stationary way, i.e.,
one output pixel is calculated as soon as possible. In other words, all calculations
that are needed for a set of output pixels are performed before moving to the next set
of output pixels. This avoids having to store and reload partially calculated output
pixels.

for h in [0, H - R + 1]: Output feature map height
for w in [0, W - S + 1]: Output feature map width
for m in [0, M]: Output channels
acc = bias[m]
for c in [0, C]: Input channels
for r in [0, R]: Kernel height
for s in [0, S]: Kernel width
acc += ifm[h + r][w + s][c] * weights[n][r][s][m]

ofm[h][w][m] = acc

Listing 1 A naive convolutional layer with output stationary schedule and a stride of 1; acc is the
temporary accumulated value, for simplicity, the IFM is assumed to be padded. The loop iterators
are visualized in Fig. 2

Low- and Mixed-Precision Inference Accelerators 71

Loop nest optimization (LNO) can be performed to increase data locality. Two
important techniques, part of LNO, are loop tiling (also known as loop blocking),
where a loop is split up into an inner and an outer loop, and loop interchange,
where two loops are swapped in hierarchy level. The problem of finding the best
combination of the two is called the temporal mapping problem (i.e., finding
the best execution schedule). The temporal mapping greatly influences the number
of memory accesses needed and therefore indirectly greatly influences the energy
efficiency of an accelerator.

Next to the temporal mapping, the operations performed in the convolutional
kernel can also be parallelized in hardware. The problem of finding the optimal
parallelization dimensions is called the spatial mapping problem. Using optimal
spatial mapping can increase data reuse in hardware and reduce memory traffic. A
good example of this is the mapping on a systolic array. It is important to note that
the spatial mapping should be carefully chosen, as it imposes constraints on the
dimensions being parallelized.

Hardware parallelization over a dimension is called vectorization. Vectorization
over any of the dimensions given in Fig. 2 will be denoted as the vectorization factor
.vparam, where param can be any of the dimensions in Fig. 2. For instance, when
parallelizing over the C dimension using a vectorization factor of 32, it is denoted
as .vC = 32. This vectorization factor also implies constraints: any convolutional
network layer that does not have an input channel multiple of 32 will not run at
100% utilization. There will be a trade-off between the vectorization factor and the
flexibility with respect to convolutional layers with certain layer dimensions being
able to run at full utilization.

Research has been done on structurally exploring the temporal and spatial
mapping design space [20, 29]. Most recently, the ZigZag framework [17] has been
published aiming to fully co-design temporal mapping with hardware architecture
finding the best spatial and temporal mappings available.

One other facet of flexibility is programmability. Programmability allows run-
ning different, possibly even non-DNN workloads on the accelerators. Especially,
high-level programmability increases the usability of the device since it allows the
workload to be configured while programming it via a high-level language, requiring
less knowledge about the hardware implementation from a user perspective.

3.1.2 Performance Characteristics

To compare the performance of the several accelerators reviewed, some quantitative
metrics that reflect the performance of the accelerator are established. First of
all, the most widely promoted metric to compare accelerators is to compare the
energy efficiency, defined as the energy per operation (either [pJ/op] or inversely in
[TOPS/W]).

Secondly, the memory capacity plays an important role in the efficiency of
the accelerator. Since off-chip memory access energy is much larger than the
energy needed to compute, off-chip memory access should be avoided at all costs.

72 M. J. Molendijk et al.

More on-chip memory means fewer external memory accesses, benefiting energy
consumption. Two different ways to implement on-chip memory are SRAM and
Standard-Cell Memory (SCM). While SRAM has a much higher memory density,
it is less efficient in terms of energy usage for smaller sizes compared to SCM.
Especially, when applying voltage–frequency scaling, the SCM can be scaled
to a much lower voltage than SRAM. Therefore, SCM tends to be a popular
choice to keep down the energy cost of the total system while sacrificing area
and storage capacity. Other important metrics are throughput [GOPS] and area
efficiency [GOPS/mm.

2].

3.2 Five Low- and Mixed-Precision Accelerators Reviewed

Five state-of-the-art accelerators will be discussed and compared against one
another. These accelerators were chosen because of their support for very low
precisions (i.e., binary or ternary). These accelerators are:

• XNOR Neural Engine [6] is a binary neural network accelerator built into a
programmable microcontroller unit. A full system on a chip (SoC), implemented
in 22-nm technology, is presented including the accelerator, RISC host processor,
and peripherals.

• ChewBaccaNN [1] is an architecture for binary neural network inference that
exploits efficient data reuse by co-designing the memory hierarchy with the neural
network ran on the architecture. The hard-wired kernel size allows efficient data
reuse.

• CUTIE [22] is an accelerator for ternary neural networks. This is a massively
parallel architecture, hard-coding all the network parameters into the hardware
design. Furthermore, it exploits sparsity opportunities from ternary networks that
are not present in binary networks.

• Knag et al. produced a binary neural network accelerator in 10-nm FinFet
technology [16]. The design focuses on utilizing the compute near memory
paradigm, minimizing the cost of data movement by interleaving memory and
computational elements.

• BrainTTA is a flexible, fully programmable solution based on a Transport-
Triggered Architecture. The architecture has support for mixed-precision and
focuses, next to the energy efficiency objective also on flexibility, trying to
minimize the concessions made while still pursuing energy efficiency.

A summary of these architectures is given in Table 1, and the strengths and
weaknesses of the architectures are discussed in Sect. 4.

3.2.1 XNOR Neural Engine (XNE)

XNOR Neural Engine [6] is a binary accelerator exploiting the arithmetic simpli-
fications introduced by binarizing the weights and activations (see Fig. 3). Conti et

Low- and Mixed-Precision Inference Accelerators 73

Table 1 Comparison of performance, efficiency, and flexibility of the architectures discussed

ChewBaccaNN [1] CUTIE [22] XNE [6] 10nm FinFet [16] BrainTTA

Implementation characteristics

Tech node [nm] 22 22 22 10 28

Supply voltage
[V]

0.4 0.65 0.6 0.4 0.39 0.9

Inference
precision. a

b b. b, t b b b, t, i8

Memory
technology

SCM SRAM SCM SRAM SCM SRAM SRAM

Key Performance Indicators

Peak throughput
[GOPS]

240 16,000 67 5 3400 880

Energy/op [fJ]
binary

4.48/15.38.c – 115 21.6 1.62 101

Energy/op [fJ]
ternary

– 2.19 1.70 – – 188

Energy/op [fJ]
8-bit

– – – – 1105

Core area [mm. 2] 0.7 7.5 2.32 0.39 3.6

Area efficiency
[GOPS/mm. 2]

343 2133 28.88 8717 244.44

Memory
capacity [kB]

153 1190 281 520 16 161 1024

Flexibility

Full utilization for

C multiple of 16 128 128 1024 32/16/4. d

M multiple of Any 128 128 128 32

R is 7 3 Any 2 Any

S is 7 3 Any 2 Any

Partial result
support (for
scheduling
freedom)

Yes No.e No No Yes

Residual layer
support

Yes No No No Yes

Programmability None None None None C-language

. a b = binary, t = ternary, i8 = integer8

. bOnly estimates were provided, under the assumption that all ternary specific hardware is removed

. c For 7 . × 7 and 3 . × 3 convolution, respectively

. d For binary, ternary and integer8, respectively

. e Partial result support is not needed since the output pixel computation is fully unrolled in hardware

al. present an SoC consisting of an accelerator core (XNE) inside a microcontroller
unit (MCU) and peripheries. The accelerator can independently run simple network
configurations but requires the programmable MCU to execute more complex

74 M. J. Molendijk et al.

INTERCONNECT

RISC-V

SRAM
56 kB

SCM
8 kB

SRAM
112 kB

SCM
2 kB

SRAM
112 kB

SCM
2 kB

SRAM
112 kB

SCM
2 kB

SRAM
112 kB

SCM
2 kB

XNE
core

I/O
μDMA

JTAG

SPI
I2C
I2S

UART
CPI

RAM

Shared memory CCM

Fig. 6 Top-level view of the SoC with XNE inside the MCU. The memory is a hybrid of latch-
based SCM and SRAM

layers. The MCU is programmed using some assembly dialect. The full system is
shown in Fig. 6. It consists of:

• XNE core, where the binary MAC operations are performed; this core consists
of a streamer, to stream feature maps and weights in and out of the architecture,
a controller consisting of a finite-state machine, the programmable microcode
processor, and a latch-based register file.

• RISC-V host processor, used to realize more complex layer behaviors than
supported with the XNE core alone.

• Shared Memory, shared between the . μDMA, RISC-V core, and XNE core. This
memory is a hybrid of SRAM and SCM, allowing aggressive voltage scaling when
the SRAMs are turned off.

• Core-Coupled Memory (CCM), primarily for the RISC-V core, again composed
of both SRAM and SCM.

• . μDMA, which is an autonomous unit able to send and receive data via several
communication protocols from and to the shared memory.

The accelerator core, XNE, is shown in Fig. 7. The throughput of the design can
be chosen at design time by means of a throughput parameter TP. This throughput
parameter can be described as follows: it takes the accelerator TP cycles to calculate
TP output pixels. While doing this, the accelerator keeps the same input activations
for TP cycles while loading TP weights each cycle (for a total of TP sets of
TP weights). Therefore, this TP parameter essentially hard-wires the C and M
dimension of the convolution dimensions shown in Fig. 2 into the design.

For instance, each accumulator in Fig. 7 contains the partial result of one output
pixel (i.e., the number of accumulators is equal to the output feature map channel
vectorization . vM). Therefore, all the inputs that are processed while a single
accumulator is selected via the mux should contribute to the same output pixel.

Low- and Mixed-Precision Inference Accelerators 75

PO
PC

O
U

N
T

+ TH
R

ES
H

O
LD

IN
G

 OUTPUT
BUFFER

16

16

16

1

ACCUMULATORS

Fig. 7 Accelerator core of XNOR Neural Engine with TP = 128. The XNOR operation is
performed on the activations a and weights w. Whenever the number of input operands is not
a multiple of TP, the outputs can be masked by masking bits m to make sure that they do not
contribute to the popcount output

In this case, the different pixels concurrently offered to the compute core belong to
different input channels. Therefore, the choice of TP directly imposes a constraint
on the C and M loops in order to run at full efficiency. Furthermore, the output of the
popcount operation is directly fed through the binarization function; this means
that partial (higher bit-width) results cannot be extracted, prohibiting their use for
residual layers. For benchmarking the platform, a TP factor of 128 was chosen,
which means that .vC = 128 and .vM = 128 for this design point.

3.2.2 ChewBaccaNN

ChewBaccaNN [1] is like XNE, an accelerator utilizing binary weights and binary
activations. Contrary to XNE, this architecture does not implement a full SoC and
is therefore purely based on the accelerator core. ChewBaccaNN is designed using
GF22 technology and uses SCM to enable aggressive voltage scaling. A top-level
view of the architecture is shown in Fig. 8. The components in this architecture are:

• BPU Array consists of seven Basic Processing Units (BPUs) and forms the
computational heart of the accelerator; the BPU is detailed in Fig. 9 and is
discussed in the next paragraph.

• Feature Map Memory (FMM) holds the input and output feature maps and also
has the ability to store partial results (e.g., for residual layers). The FMM is
implemented using SCM only. This enables aggressive voltage scaling for the
whole chip at the expense of sacrificing memory capacity.

• Row Banks buffer the input feature map rows and kernel rows. The crossbar (x-
bar) is utilized when the convolutional window slides down. Since each BPU
processes one kernel row, the kernel weights can stay inside the BPUs, while the
input feature map needs to move one row down. This is done by loading one new
row and shifting the other rows by one BPU (using the crossbar).

76 M. J. Molendijk et al.

B
PU

 A
rr

ay

FM
M

Row bank 0

NMCU

X-
B

A
R

Scheduler

Pa
ra

m
et

er

B
uf

fe
r DMA

I/O

IN
TE

R
C

O
N

N
EC

T

Row bank 1

Row bank 6

Fig. 8 The top-level architectural overview of the ChewBaccaNN accelerator. All the memories
are implemented using latch-based standard-cell memory. The control signals are not shown in this
overview

BPU ARRAY

BPU

+
0

6

0

6
16

CU
16

PO
PC

O
U

N
T

Fig. 9 ChewBaccaNN compute core. Hardware parallelization is performed over the kernel height
(R) in the Basic Processing Unit (BPU) array, over the kernel width (S) inside a single BPU and
over the input channel dimension (C) inside the compute unit (CU). The Controlled Shift Register
(CSR) enables data reuse in a sliding window fashion. The architecture contains a total of . 16×7×
7 = 784 (.vC × vR × vS) binary multipliers

• Scheduler, used to control the crossbar behavior and make sure that the row banks
are timely rotated to the next BPU and the correct weights and IFM pixels are
loaded.

• Near Memory Compute Unit (NMCU), which writes output data from the BPU
array to the correct location in the FMM, accumulates residual paths, rebinarizes
results, and is used for bit-packing (rebinarized) outputs into 16-bit packets.

In Fig. 9, the compute core of ChewBaccaNN is depicted. It can be seen that several
of the parameters listed in Fig. 2 are hard-wired into the design. The kernel height

Low- and Mixed-Precision Inference Accelerators 77

(R) and width (S) are completely unrolled (in this case with a factor of 7), while
the channel dimension (C) should be a multiple of 16 (the number of XNOR gates)
to achieve full utilization; in other words, the vectorization factors are .vC = 16,
.vR = 7, and .vS = 7.

The Controlled Shift Register (CSR) allows using the sliding window principle
to get data reuse; for each IFM image row, initially, the full kernel width (in this
case 7) is transferred, while the iterations thereafter only need one new column
(.vR × 1 × vC) of activations.

3.2.3 Completely Unrolled Ternary Inference Engine (CUTIE)

Completely Unrolled Ternary Inference Engine (CUTIE) [22] is, as the name
suggests, an inference accelerator using Ternary operands. The main design
philosophy behind CUTIE is to avoid iteration by spatially unrolling most of the
convolutional loops found in Listing 1, namely the loops over the R, S, C, and
M dimensions. Furthermore, ternary operands allow the representation of zero,
therefore making the accelerator capable of exploiting neural network sparsity by
silencing compute units. The top-level design of CUTIE is depicted in Fig. 10. The
main components within the CUTIE architecture are:

• Output Channel Compute Unit (OCU), the basic compute building block of this
architecture, computing the output pixels belonging to one single output channel.
A detailed view of the OCU is given in Fig. 11.

• Feature Map Memory (FMM), used to store the inputs coming either from
previous computations (OCUs) or from an external interface. The FMM is double-
buffered such that the latency for loading new input feature maps can be hidden.

So
C

 In
te

rf
ac

e

FMM

Tile buffer
OCU array

DECOMPRESSOR

C
O

M
PR

ES
SO

R

Weight
Memory
(M=127)

Weight
Memory
(M=0)

DECOMPRESSOR

DECOMPRESSOR OCU (M = 0)

OCU (M = 127)

Weight Buffer
(M=0)

Weight Buffer
(M=127)

Fig. 10 CUTIE top-level architecture. The OCU array contains one output channel compute unit
for each output channel in the neural network design

78 M. J. Molendijk et al.

OCU ARRAY

OCU

+

TH
R

ES
H

O
LD

IN
G

+

+ PO
PC

O
U

N
T-

PO
PC

O
U

N
T+

+
PO

O
LI

N
G

 (O
PT

IO
N

A
L)

Fig. 11 CUTIE compute core, consisting of several Output Channel Compute Units (OCUs) and
one weight buffer per OCU. For brevity, decompression and pipelining are omitted in this figure.
The ternary multipliers are unrolled over the R, S, and C dimensions, which in this case gives
.3× 3× 128 = 1152 ternary multipliers. In total, the architecture can process . 3× 3× 128× 128 =
147,456 (.vR × vS × vM × vC) inputs each compute cycle

• Tile buffer, used to buffer IFM pixels in a sliding window fashion.
• Weight buffer, one is attached to each OCU: it is designed with enough capacity
to contain the full kernel for a single output channel (.R × S × C), which enables
great weight reuse. The weight buffer is also double-buffered to hide latency.

• Compression/decompression units are used to shift between the computational
form of the trits, i.e., 2 bits, and the compressed form of the trits which is 1.6 bits
wide.

The compute core of CUTIE is depicted in Fig. 11. Its main workhorse is
the Output Channel Compute Unit (OCU), which is a unit that calculates pixels
exclusive to a single output channel. Having a separate compute unit for each output
channel brings the advantage that the weight kernel can stay inside the weight buffer
(w buffer) while moving the convolutional window over the IFM giving maximum
weight data reuse. Alongside the weight reuse, there is also IFM reuse being utilized

Low- and Mixed-Precision Inference Accelerators 79

in two different ways: (1) the IFM is broadcasted to each of the OCUs and (2) just
like ChewBaccaNN, when sliding the convolutional window over the IFM image,
only R new IFM pixels are needed (i.e., only one new column of the IFM needs to
be loaded, assuming a stride of 1).

Each Output Channel Compute Unit (OCU) processes .128×3×3 (.vC ×vR ×vS)
input pixels each cycle. By hard-wiring many of the convolutional layer parameters,
CUTIE sacrifices area in favor of avoiding temporal iteration. This also means
that this architecture sacrifices most flexibility by constraining C, M , R, and S.
Therefore, the only dimensions that are freely schedulable are W and H . By
constraining many of the dimensions into the hardware, flexibility crumbles, but
the temporal mapping is greatly simplified. The fully spatially unrolled structure
also minimizes the movement of (large) partial sums. Since each OCU directly
computes an output pixel, there is no need, in contrast to the other architectures,
to move around partial results. This is beneficial since the partial results have a
higher bit-width than the final (requantized) results.

3.2.4 Binary Neural Network Accelerator in 10-nm FinFet

In [16], Knag et al. show a fully digital accelerator with binary operands which
is implemented using 10nm FinFet technology. The SoC designed intersperses
arithmetic with memory according to the Compute Near Memory (CNM) paradigm.
Contrary to the other architectures discussed, this work focuses more on the physical
implementation and circuit-level design choices rather than the architectural design
aspects. The design of this accelerator is shown in Fig. 12. The main components of
this accelerator are:

• Control Unit, which consists of four 256-bit wide SRAM memory banks used
as main storage and a Finite-State Machine (FSM) that controls the flow of data
between memory banks and the MEUs.

• Memory Execution Unit (MEU). Each MEU can compute two output pixels in a
time-interleaved manner (see Fig. 12, each MEU contains two output registers).
The MEUs are interleaved with latch-based memories to utilize the compute near
memory advantages. In total, there is an array of .16 × 8 MEUs. Having 8 weight
SCM banks was found to be the right trade-off between energy consumed by
the computational elements and energy consumed by the transportation of data
to the compute units. The SRAM memory banks are connected to the MEUs by
means of a crossbar network. Since the input feature map pixels are stored in an
interleaved manner, the crossbar network allows any (2 . × 2) combination of the
input feature map to be read. The weights are also loaded from this memory.

The authors of the work do not discuss the external interfacing required on this
chip.

Binary arithmetic is relatively cheap, compared to the cost of accessing memory
(e.g., for loading weights). To amortize the costs of memory reads and data
movement, the computational intensity should be sufficient to balance the energy

80 M. J. Molendijk et al.

W
ei

gh
t S

C
M

Control Unit

M
EU

 a
rr

ay

M
em

 b
an

k
0

X-BAR

M
em

 b
an

k
1

M
em

 b
an

k
3

M
em

 b
an

k
2

FSMParam RF

M
EU

 a
rr

ay

M
EU

 a
rr

ay

M
EU

 a
rr

ay

MEU array

MEU

1024

W
ei

gh
t S

C
M

PO
PC

O
U

N
T

TH
R

ES
H

O
LD

IN
G

16 2

W
ei

gh
t S

C
M

8

1024

256

ou
tp

ut
 re

g
ou

tp
ut

 re
g

Fig. 12 Top-level view of the 10nm FinFet BNN accelerator. The central memory inside the
control unit consists of 4. × 256-bit wide SRAM banks to enable 2 . × 2 convolutional window
access in a single cycle and a finite-state machine (FSM). The MEUs are placed in an 8 . × 16 array
to exploit the compute near memory principle. In total, .1024 × 16 × 8 = 131,072 (.vC × vM × 8)
binary operations can be performed each cycle

consumption. Parallelism of the MAC unit (as shown in Fig. 12) is used to balance
the power mismatch of the (expensive, high bit-width) accumulator, present in
the popcount module, and the (cheap) XNOR gates. By enlarging the number
of inputs of the popcount module, the fixed accumulator cost is amortized by
many XNOR gates. Like the other architectures, this accelerator parallelizes the
MAC operation over the input channel (C) dimension. The parallelization should
be high enough to offset the accumulator cost while being low enough to not
impose unreasonable constraints on the number of input channels (C) required for

Low- and Mixed-Precision Inference Accelerators 81

full utilization. Therefore, a trade-off study was performed to see which level of
parallelism was needed to offset the accumulator cost. A design with an input feature
map parallelization factor of 1024 (.vC = 1024) was chosen as the sweet-spot.
Negligible energy improvements were shown when going for more parallelism.

Furthermore, the idea of pipelining the popcount-adder tree was explored.
When pipelining the design, the voltage can be lowered at iso-performance (i.e.,
iso-frequency). However, due to the sequential logic and clock-power dissipated
while adding more pipeline stages, the final design choice was to not pipeline the
popcount-adder tree.

3.2.5 BrainTTA

BrainTTA is a fully compiler-programmable mixed-precision flexible-datapath
architecture. Contrary to the fixed-path accelerators, BrainTTA is based on the
Transport-Triggered Architecture (TTA) [7] that provides a fully programmable
datapath (via a compiler) directly to the user. Before diving into the BrainTTA
architecture, a proper introduction to the Transport-Triggered Architecture is given.

Transport-Triggered Architectures are programmed by data movements instead
of arithmetic operations typically found in Very Long Instruction Word (VLIW)
architectures. This means that the movement of data between function units (FUs)
and register files (RFs) is exposed to the programmer; the TTA is an explicit
datapath architecture. This is in stark contrast to VLIW architectures, where the
data movement is implicit and performed in hardware (i.e., not exposed to the
programmer). With the control of the datapath given to the compiler, several
optimizations can be performed like operand sharing and register file bypass.

An example instance of a TTA is displayed in Fig. 13. The TTA consists of a
Control Unit (CU) used for instruction fetching and decoding, Register Files (RFs)
for temporary storage, and Load-Store Units (LSUs) to access the memories. The
gray circles inside the busses denote that this bus is connected to the corresponding
input- or output-port of some function unit. This connectivity is design time
configurable, visible to the compiler, and can be made as generic or specific
for certain applications as desired; more connectivity is at the expense of larger
instruction size and more switching activity in the interconnect. In [19], Multanen
presented several ways to alleviate this effect by applying techniques that reduce
the instruction overhead such as instruction compression. An example instruction is
shown in Fig. 13, which shows that the instruction can be broken down into move
operations for each bus.

BrainTTA is based on the TTA, built specifically for inference with precisions
integer8, binary, and ternary. A top-level view of the BrainTTA SoC is
shown in Fig. 14. BrainTTA is designed using the open-source toolchain TTA-based
Co-design Environment (TCE) [9, 13]. The SoC consists of:

82 M. J. Molendijk et al.

DMEM

ALULSU RF CU

IMEM

RF.out → ALU.in1t.add nop LSU.out → CU.in2

Bus 2

Example TTA instruction

Bus 1Bus 0

Bus 0
Bus 1
Bus 2

Fig. 13 An example TTA instance and instruction, the square blocks denote input- and output-
ports. A cross denotes a trigger-port. The colored arrows drawn on the architecture illustrate the
move operations inside the example instruction

DBG

TTA CORE

A
R

B
IT

ER

DMA

GCU

PMEM LSU

DMEM LSU

IRQ

AXI INTERCONNECT

GPIOQSPI UART

RISC
DMEM

32x16kB

PMEM
32x16kB

IMEM
4x32kB

RISC
DMEM
16kB

RISC
IMEM
16kB

JTAG

APB

TT
A

C
on

tro
l

Fig. 14 Top-level view of the BrainTTA SoC, the arbiter forms the border between the RISC and
TTA part of the SoC

• RISC-V host processor, which is taken from an open-source repository [24], the
host processor starts and halts execution of the TTA core and takes care of the
external communication (e.g., loading the on-chip memories).

• TTA core, the workhorse of the architecture, supports mixed-precision inference.

Low- and Mixed-Precision Inference Accelerators 83

DMEM PMEM

vADD vOPS ALU ALU ALULSU LSU DMA RF
Bool RF RF vRF vRF RF IMM CU

IMEM

Legend
Scalar (32-bit)

Vector (1024-bit)

vMAC

Fig. 15 BrainTTA core instance, thicker lines denote vector busses, thinner lines scalar busses

• SRAM Memories, separate memories for the RISC and TTA core, the TTA
core memories are highly banked to allow efficient access of smaller bit-widths,
while also supporting wide vector accesses. The TTA core is connected to three
memories, the DMEM, used for storing input and output feature maps, the
PMEM, used to store the weights, and the IMEM used for instructions to program
the behavior of the TTA core.

• Debugger (DBG), used to control the execution of the TTA core, can signal task
completion to the RISC-V.

• AXI interconnect, used for on- and off-chip communication between the RISC,
TTA core, and peripherals.

The workhorse of this architecture is the TTA core, where the actual inference
happens. The details of the TTA core instantiation used in BrainTTA can be found
in Fig. 15. The core contains different Function Units (FUs), divided into scalar and
vector FUs. The FUs are interconnected via the busses, with 32-bit scalar busses
(bus 0–5) and 1024-bit vector busses (bus 6–9). The core consists of the following
units:

Control Unit (CU) it contains the logic to fetch and decode instructions and steers
the other units to execute the correct operations. Furthermore, the CU contains a
hardware loop buffer to save energy on the instruction memory accesses. This can
be very beneficial since all network layers are essentially described by multiple
nested loops (see Listing 1).

Vector Multiply–Accumulate (vMAC), the actual number cruncher. This unit
supports the following operations: integer8 MAC (scalar–vector product and
vector–vector product), binary MAC, and ternary MAC. Its vector size is
1024-bit, with 32 entries of 32-bits each. The scalar–vector MAC multiplies a scalar
by a vector by broadcasting the (32-bit) scalar value to all vector entries. This is
beneficial when multiple inputs share the same weights (as in convolution).

For each precision MAC operation, the vectorization factor is different. All
arithmetic circuitry contains 32 accumulators for the (intermediate) output channel

84 M. J. Molendijk et al.

result, i.e., .vM = 32. The number of concurrent input channels is the vector
size (1024) divided by 32 (the number of output channels) divided by the operand
size (i.e., 1, 2, or 8 bits). Therefore, the input channel vectorization is .vC = 32,
.vC = 16, and .vC = 4 for binary, ternary, and integer8, respectively.

Vector Add (vADD) is used to add two (either 512- or 1024-bit) vectors. This can
for example be used to support residual layers.

Vector Operations (vOPS), auxiliary (vector) operations that are required in the
network, alongside to the computations. This FU can perform requantization,
binarization, ternarization, as well as activation functions, e.g., ReLU
and pooling functions such as MaxPool. Furthermore, various other operations to
extract and insert scalar elements into a vector are also supported by this unit.

Register Files (RFs) come in different bit-widths, namely binary, 32-bit scalar,
and 1024-bit vector. These registers can be used to facilitate data reuse and store
intermediate results without performing (more costly) access to the SRAM.

Load-Store Units (LSUs) form the interface between the TTA core and the SRAM
memory. For each memory, there is a separate LSU to facilitate concurrent weight
and input loading. The units support loads and stores for different bit-widths ranging
from 8 bits all the way up to 1024 bits. Since the memory is banked, a strobe signal
can be used to selectively turn on banks when data with smaller bit-widths are
loaded/stored, in order to save energy.

Scalar ALUs are mostly used for address calculations needed as inputs to the
LSUs. These units support basic arithmetic on values up to 32 bit.

4 Comparison and Discussion

All architectures discussed in Sect. 3 are evaluated on flexibility and energy
efficiency. These results are given in Table 1. This table is split into three sections:
the implementation characteristics, performance characteristics as discussed in
Sect. 3.1.2, and the flexibility aspects as discussed in Sect. 3.1.1.

The energy efficiency of the accelerators ranges from 1.6 to 115 fJ per operation
for binary precision, a large range. It should be noted, however, that the two
architectures that have the highest energy usage (XNE and BrainTTA) are the only
architectures that show a full autonomous SoC including peripherals. Furthermore,
all architectures except BrainTTA utilize voltage–frequency scaling to run the
accelerator at lower than nominal supply voltage, trading off throughput for better
energy efficiency.

Next to the energy efficiency, the table also lists the neural network layer
requirements that these architectures impose in order to fully utilize the arithmetic
hardware. It is seen that the most energy-efficient architectures, CUTIE [22] and
the BNN accelerator in 10-nm FinFet from Knag et al. [16], are also the most
constrained architectures, in terms of neural network layer requirements. Therefore,

Low- and Mixed-Precision Inference Accelerators 85

the question arises, does hard-wiring the neural network layer parameters directly
improve the energy efficiency of an architecture, for different models, also when
layer variety is high?

Interestingly, the XNE and BrainTTA share very similar layer constraints. Both
are only constrained in the input channel (C) and output channel (M) dimensions.
The energy consumption of BrainTTA is somewhat lower at an older technology
node while using a higher supply voltage. The reason for this is that BrainTTA better
exploits data reuse. The execution schedule for BrainTTA was tuned to maximize
data reuse, while XNOR neural engine only reuses a set of input feature maps for
TP (in this case 128) cycles while reloading the weights for each MAC operation.

The inefficient schedule of XNE is confirmed by the energy numbers of the
implementation that only uses SCM. XNE was benchmarked using SCM only,
severely cutting the very high energy cost associated with these redundant memory
fetches, at the cost of losing memory capacity. Some architectures report energy
numbers for an SCM as well as an SRAM implementation. The memory capacity
of the SCM versions is very low compared to the SRAM versions, hindering the
ability to run full-size networks on it without adding expensive off-chip memory
accesses. For the sake of comparison, for all the architectures with an SRAM version
available, the SRAM version is chosen for further analysis.

Support for residual layers can only be found in ChewBaccaNN and BrainTTA.
Other architectures are not able to support this due to their fixed datapath. The
dataflow through these accelerators is very static, and the accumulated value will
directly be binarized or ternarized after all inputs are accumulated. This
prohibits the use of residual layers since residual layers need the intermediate (larger
bit-width) results that were obtained before requantization.

It is clear that parallelism and data reuse (either in the form of locally buffering
or by broadcasting) are the keys to amortizing the memory access cost, which is
so much larger than the low-precision arithmetic cost. Techniques to mitigate these
costs are to replace SRAM with low-voltage SCM, hard-wire network parameters to
enable broadcasting, and use the sliding window principle (like the FMM banks in
combination with the crossbar in ChewBaccaNN [1]). In essence, all these solutions
boil down to designing the architecture around the data movements in a less-flexible
manner. These architectures solve the mapping problem by fixing most parameters
using spatial mapping, greatly simplifying the task of temporal mapping at the
cost of losing flexibility. XNE and BrainTTA fix the least number of parameters
using spatial mapping, therefore leaving a larger temporal mapping space to be
explored.

5 Summary and Conclusions

Neural networks are all around and are making an advance into the embedded
domain. With the increasing popularity of edge computing, new methods are needed
to port the typically power- and memory-hungry neural networks to devices that

86 M. J. Molendijk et al.

have limited storage and are subject to severe energy constraints. Quantization is a
fundamental ingredient in overcoming these challenges. Very low precisions, down
to 1 bit, have shown to achieve great energy efficiency while drastically reducing the
model size and computational cost involved in neural network inference. To fully
exploit the reduced computational complexity and memory requirements of these
networks, neural network accelerators aimed specifically at these heavily quantized
networks have been developed.

In this chapter, state-of-the-art low- and mixed-precision architectures are
reviewed. Taking into account the variety present in network layers of CNNs,
the architectures are compared against each other in terms of flexibility and energy
efficiency. It was found that spatially mapping more dimensions of the neural
network layer increases the energy efficiency as it allows minimization of data
movement by tailoring the memory hierarchy design, which is a big contributor to
energy cost in inference accelerators. Contrary to the group of accelerators that maps
most layer dimensions spatially, there is a group of accelerators that minimizes the
layer dimension requirements by less heavily relying on spatial mapping, retaining
more freedom in the temporal mapping domain. They are more flexible and can
handle a larger part of the neural architecture design space. In addition, they may
have support for multiple bit precisions.

With new attempts to streamline the process of finding the best combination
of temporal and spatial mappings [17], while co-designing the memory hierarchy,
the question arises if an optimized temporal mapping in combination with memory
hierarchy co-design can close the energy efficiency gap with the more constrained,
heavily spatially mapped accelerators, giving better energy efficiency at a wider
range of neural network layers.

References

1. Andri, R., Karunaratne, G., Cavigelli, L., Benini, L.: ChewBaccaNN: A flexible 223 TOPS/W
BNN accelerator. arXiv (May), 23–26 (2020)

2. Bankman, D., Yang, L., Moons, B., Verhelst, M., Murmann, B.: An always-on 3.8 μ J/86%
CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS.
IEEE J. Solid-State Circuits 54(1), 158–172 (2019). https://doi.org/10.1109/JSSC.2018.
2869150. https://ieeexplore.ieee.org/document/8480105/

3. Bengio, Y., Léonard, N., Courville, A.: Estimating or Propagating Gradients Through Stochas-
tic Neurons for Conditional Computation pp. 1–12 (2013). http://arxiv.org/abs/1308.3432

4. Blalock, D., Ortiz, J.J.G., Frankle, J., Guttag, J.: What is the State of Neural Network Pruning?
(2020). http://arxiv.org/abs/2003.03033

5. Bulat, A., Tzimiropoulos, G.: XNOR-Net++: Improved binary neural networks. In: 30th British
Machine Vision Conference 2019, BMVC 2019 pp. 1–12 (2020)

6. Conti, F., Schiavone, P.D., Benini, L.: XNOR neural engine: a hardware accelerator IP for 21.6-
fJ/op binary neural network inference. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 37(11), 2940–2951 (2018). https://doi.org/10.1109/TCAD.2018.2857019

7. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Hoboken (1997)

https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019

Low- and Mixed-Precision Inference Accelerators 87

8. Deng, L., Jiao, P., Pei, J., Wu, Z., Li, G.: GXNOR-Net: training deep neural networks with
ternary weights and activations without full-precision memory under a unified discretization
framework. Neural Netw. 100, 49–58 (2018). https://doi.org/10.1016/j.neunet.2018.01.010

9. Esko, O., Jääskeläinen, P., Huerta, P., De La Lama, C.S., Takala, J., Martinez, J.I.: Customized
exposed datapath soft-core design flow with compiler support. In: Proceedings - 2010
International Conference on Field Programmable Logic and Applications, FPL 2010, pp. 217–
222 (2010). https://doi.org/10.1109/FPL.2010.51

10. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A Survey of
Quantization Methods for Efficient Neural Network Inference (2021). http://arxiv.org/abs/
2103.13630

11. Gluska, S., Grobman, M.: Exploring Neural Networks Quantization via Layer-Wise Quantiza-
tion Analysis (2020). http://arxiv.org/abs/2012.08420

12. Huang, S., Waeijen, L., Corporaal, H.: How flexible is your computing system? ACM Trans.
Embedd. Comput. Syst. (2022). https://doi.org/10.1145/3524861. https://dl.acm.org/doi/10.
1145/3524861

13. Jääskeläinen, P., Viitanen, T., Takala, J., Berg, H.: HW/SW co-design toolset for customization
of exposed datapath processors. In: Computing Platforms for Software-Defined Radio, pp.
147–164. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-
49679-5_8

14. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.:
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 2704–2713 (2018). https://doi.org/10.1109/CVPR.2018.00286

15. Kharya, P.: TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x (2020).
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

16. Knag, P.C., Chen, G.K., Sumbul, H.E., Kumar, R., Hsu, S.K., Agarwal, A., Kar, M., Kim,
S., Anders, M.A., Kaul, H., Krishnamurthy, R.K.: A 617-TOPS/W all-digital binary neural
network accelerator in 10-nm FinFET CMOS. IEEE J. Solid-State Circuits 56(4), 1082–1092
(2021). https://doi.org/10.1109/JSSC.2020.3038616

17. Mei, L., Houshmand, P., Jain, V., Giraldo, S., Verhelst, M.: ZigZag: enlarging joint architecture-
mapping design space exploration for DNN accelerators. IEEE Trans. Comput. 70(8), 1160–
1174 (2021). https://doi.org/10.1109/TC.2021.3059962

18. Muller, O., Prost-Boucle, A., Bourge, A., Petrot, F.: Efficient decompression of binary encoded
balanced ternary sequences. IEEE Trans. Very Large Scale Integr. Syst. 27(8), 1962–1966
(2019). https://doi.org/10.1109/TVLSI.2019.2906678

19. Multanen, J.: Energy-Efficient Instruction Streams for Embedded Processors. Ph.D. Thesis,
Tampere University (2021)

20. Parashar, A., Raina, P., Shao, Y.S., Chen, Y.H., Ying, V.A., Mukkara, A., Venkatesan, R.,
Khailany, B., Keckler, S.W., Emer, J.: Timeloop: A systematic approach to DNN accelerator
evaluation. In: Proceedings - 2019 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2019, pp. 304–315 (2019). https://doi.org/10.1109/ISPASS.
2019.00042

21. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: ImageNet classification using
binary convolutional neural networks. In: Computer Vision—ECCV 2016. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, vol. 9908, pp. 525–542 (2016). https://doi.org/10.1007/978-
3-319-46493-0_32

22. Scherer, M., Rutishauser, G., Cavigelli, L., Benini, L.: CUTIE: Beyond PetaOp/s/W Ternary
DNN Inference Acceleration with Better-than-Binary Energy Efficiency pp. 1–14 (2020).
http://arxiv.org/abs/2011.01713

23. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: MnasNet:
Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition 2019-June, pp. 2815–2823
(2019). https://doi.org/10.1109/CVPR.2019.00293

https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293

88 M. J. Molendijk et al.

24. Traber, A., Gautschi, M.: PULPino: Datasheet. ETH Zurich, University of Bologna (2017)
25. Ueyoshi, K., Papistas, I.A., Houshmand, P., Sarda, G.M., Jain, V., Shi, M., Zheng, Q., Giraldo,

S., Vrancx, P., Doevenspeck, J., Bhattacharjee, D., Cosemans, S., Mallik, A., Debacker, P.,
Verkest, D., Verhelst, M.: DIANA: An end-to-end energy-efficient digital and ANAlog hybrid
neural network SoC. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC),
pp. 1–3. IEEE (2022). https://doi.org/10.1109/ISSCC42614.2022.9731716. https://ieeexplore.
ieee.org/document/9731716/

26. Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A 64-Tile 2.4-Mb in-memory-computing
CNN accelerator employing charge-domain compute. IEEE J. Solid-State Circuits 54(6),
1789–1799 (2019). https://doi.org/10.1109/JSSC.2019.2899730. https://ieeexplore.ieee.org/
document/8660469/

27. Wang, S., Kanwar, P.: BFloat16: The secret to high performance on Cloud TPUs
(2019). https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-
high-performance-on-cloud-tpus

28. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.:
FBNET: Hardware-aware efficient convnet design via differentiable neural architecture search.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2019-June, pp. 10726–10734 (2019). https://doi.org/10.1109/CVPR.2019.01099

29. Wu, Y.N., Emer, J.S., Sze, V.: Accelergy: An architecture-level energy estimation methodology
for accelerator designs. In: IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers, ICCAD 2019-Nov (2019). https://doi.org/10.1109/ICCAD45719.
2019.8942149

https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149

	Low- and Mixed-Precision Inference Accelerators
	1 Introduction
	2 Background: Extreme Quantization and Network Variety
	2.1 Neural Network Architecture Design Space
	2.2 Binary Quantization
	2.3 Ternary Quantization
	2.4 Mixed-Precision

	3 Accelerators for Low- and Mixed-Precision Inference
	3.1 Characterization Criteria
	3.1.1 Flexibility
	3.1.2 Performance Characteristics

	3.2 Five Low- and Mixed-Precision Accelerators Reviewed
	3.2.1 XNOR Neural Engine (XNE)
	3.2.2 ChewBaccaNN
	3.2.3 Completely Unrolled Ternary Inference Engine (CUTIE)
	3.2.4 Binary Neural Network Accelerator in 10-nm FinFet
	3.2.5 BrainTTA

	4 Comparison and Discussion
	5 Summary and Conclusions
	References

