
Sudeep Pasricha
Muhammad Shafique Editors

Embedded
Machine Learning
for Cyber-Physical,
IoT, and Edge
Computing
Hardware Architectures

Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing

Sudeep Pasricha • Muhammad Shafique
Editors

Embedded Machine Learning
for Cyber-Physical, IoT, and
Edge Computing
Hardware Architectures

Editors
Sudeep Pasricha
Colorado State University
Fort Collins, CO, USA

Muhammad Shafique
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

ISBN 978-3-031-19567-9 ISBN 978-3-031-19568-6 (eBook)
https://doi.org/10.1007/978-3-031-19568-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6

Preface

Machine learning (ML) has emerged as a prominent approach for achieving state-of-
the-art accuracy for many data analytic applications, ranging from computer vision
(e.g., classification, segmentation, and object detection in images and video), speech
recognition, language translation, healthcare diagnostics, robotics, and autonomous
vehicles to business and financial analysis. The driving force of the ML success
is the advent of neural network (NN) algorithms, such as deep neural networks
(DNNs)/deep learning (DL) and spiking neural networks (SNNs) with support
from today’s evolving computing landscape to better exploit data and thread-level
parallelism with ML accelerators.

Current trends show an immense interest in attaining the powerful abilities of
NN algorithms for solving ML tasks using embedded systems with limited compute
and memory resources, i.e., so-called Embedded ML. One of the main reasons is that
embedded ML systems may enable a wide range of applications, especially the ones
with tight memory and power/energy constraints, such as mobile systems, Internet
of Things (IoT), edge computing, and cyber-physical applications. Furthermore,
embedded ML systems can also improve the quality of service (e.g., personalized
systems) and privacy as compared to centralized ML systems (e.g., based on cloud
computing). However, state-of-the-art NN-based ML algorithms are costly in terms
of memory sizes and power/energy consumption, thereby making it difficult to enable
embedded ML systems.

This book explores and identifies the most challenging issues that hinder the
implementation of embedded ML systems. These issues arise from the fact that, to
achieve better accuracy, the development of NN algorithms has led to state-of-the-
art models with higher complexity with respect to model sizes and operations, the
implications of which are discussed below:

• Massive Model Sizes: Larger NN models usually obtain higher accuracy than
the smaller ones because they have a larger number of NN parameters that can
learn the features from the training dataset better. However, a huge number of
parameters may not be fully stored on chip, hence requiring large-sized off-chip
memory to store them and intensive off-chip memory accesses during run time.

v

vi Preface

Furthermore, these intensive off-chip accesses are significantly more expensive
in terms of latency and energy than on-chip operations, hence exacerbating the
overall system energy.

• Complex and Intensive Operations: The complexity of operations in NN
algorithms depends on the computational model and the network architecture.
For instance, DNNs and SNNs have different complexity of operations since
DNNs typically employ multiply-and-accumulate (MAC) while SNNs employ
more bio-plausible operations like leaky-integrate-and-fire (LIF). Besides, more
complex neural architectures (e.g., residual networks) may require additional
operations to accommodate the architectural variations. These complex archi-
tectures with a huge number of parameters also lead to intensive neural
operations (e.g., a large number of MAC operations in DNNs), thereby requiring
high computing power/energy during model execution.

In summary, achieving acceptable accuracy for the given ML applications while
meeting the latency, memory, and power/energy constraints of the embedded ML
systems is not a trivial task.

This volume of the book focuses on addressing these challenges from a hardware
perspective, with multiple solutions towards the design of efficient accelerators,
memory, and emerging technology substrates for embedded ML systems. A brief
outline of the book along with the section structure is as follows.

1. Efficient Hardware Acceleration: To improve the performance efficiency of NN
algorithms, ML-focused hardware acceleration has been considered an effective
approach. Therefore, the first part of the book focuses on hardware acceleration
techniques for embedded ML systems.

• Chapter “Massively Parallel Neural Processing Array (MPNA): A CNN
Accelerator for Embedded Systems” develops a convolutional neural net-
work (CNN) accelerator that employs efficient computing architecture
coupled with dataflows that exploit parameter/data reuse on-chip.

• Chapter “Photonic NoCs for Energy-Efficient Data-Centric Computing”
discusses how an approximate computing paradigm can be used in photonic-
based network-on-chip (NoC) systems to achieve energy-efficient data
movement during the execution of NN and other data-centric applications.

• Chapter “Low- and Mixed-Precision Inference Accelerators” describes the
design choices and the implications of implementing low- and mixed-
precision DNNs on the flexibility and energy efficiency of the inference
accelerators.

• Chapter “Designing Resource-Efficient Hardware Arithmetic for FPGA-
Based Accelerators Leveraging Approximations and Mixed Quantizations”
explains the designs of resource-efficient hardware arithmetic for field
programmable gate array (FPGA)-based DNN accelerators by leveraging
approximation and quantization.

 5744 33686 a 5744 33686 a

http://doi.org/10.1007/978-3-031-19568-6_1

 5798 39019
a 5798 39019 a

 5606 44353
a 5606 44353 a

 5767 49686 a 5767 49686
a

http://doi.org/10.1007/978-3-031-19568-6_4

Preface vii

• Chapter “Efficient Hardware Acceleration of Emerging Neural Networks
for Embedded Machine Learning: An Industry Perspective” provides a
comprehensive review of an industry perspective on the efficient hardware
acceleration for emerging neural networks targeting embedded applications.

2. Memory Design and Optimizations: Oftentimes, memories are one of the biggest
bottlenecks when processing NN algorithms due to frequent accesses to them (to
load and store parameters and activations during execution) and their physical
limitations of high latency- and energy-per-access. Hence, the second part of the
book explores techniques for memory design and optimizations for embedded
ML systems.

• Chapter “An Off-Chip Memory Access Optimization for Embedded Deep
Learning Systems” discusses optimization techniques that exploit data reuse
for reducing the number of DRAM memory accesses and DRAM energy-
per-access for DNN hardware accelerators.

• Chapter “In-Memory Computing for AI Accelerators: Challenges and Solu-
tions” explains the challenges of designing energy-efficient in-memory
computing (IMC) for DNN hardware accelerators and then describes the
recent advances to address these challenges.

• Chapter “Efficient Deep Learning Using Non-Volatile Memory Technology
in GPU Architectures” describes how non-volatile memory (NVM) tech-
nologies can be used in graphic processing unit (GPU) architectures for deep
learning acceleration.

• Chapter “SoC-GANs: Energy-Efficient Memory Management for System-
On-Chip Generative Adversarial Networks” discusses the on-chip memory
management for achieving energy-efficient generative adversarial network
(GAN) acceleration on system-on-chip architecture.

• Chapter “Using Approximate DRAM for Enabling Energy-Efficient, High-
Performance Deep Neural Network Inference” presents how to leverage
approximate DRAM with reduced voltage and reduced latency for achieving
energy-efficient and high-performance DNN inference.

3. Emerging Substrates: To improve the efficiency of NN acceleration, recent
efforts have also explored new device technologies for the corresponding
hardware accelerators, such as silicon photonics, and NVM technologies like
resistive random access memory (ReRAM), phase change memory (PCM), and
spin-transfer torque magnetic RAM (STT-MRAM). The fourth part of the book
focuses on emerging substrates for embedded ML systems.

• Chapter “On-Chip DNN Training for Direct Feedback Alignment in FeFET”
studies the benefits of using a ferroelectric field-effect transistor (FeFET)
for DNN training on-chip leveraging the direct feedback alignment (DFA)
algorithm.

• Chapter “Platform-Based Design of Embedded Neuromorphic Systems”
describes how platform-based design methodologies can be employed to

 5706 -307 a 5706 -307 a

http://doi.org/10.1007/978-3-031-19568-6_5

 5627 14355 a 5627 14355 a

http://doi.org/10.1007/978-3-031-19568-6_6

 5524 19688 a 5524 19688
a

http://doi.org/10.1007/978-3-031-19568-6_7

 5546 25022
a 5546 25022 a

http://doi.org/10.1007/978-3-031-19568-6_8

 5635 30355 a 5635 30355 a

http://doi.org/10.1007/978-3-031-19568-6_9

 5575 35688 a 5575 35688
a

http://doi.org/10.1007/978-3-031-19568-6_10

 5477 50350
a 5477 50350 a

 5780 55683 a 5780 55683 a

viii Preface

develop neuromorphic systems considering different manufacturing process-
es/NVM technologies.

• Chapter “Light Speed Machine Learning Inference on the Edge” presents
a fast silicon photonic-based BNN accelerator by employing microring
resonator (MR)-based optical devices for light-speed computing.

• Chapter “Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with
Bit-Parallel Unary Computing” explains how to enable low-latency and
energy-efficient CNN acceleration in DRAM by leveraging bit-parallel
unary computing.

We hope this book provides a comprehensive review and useful information on
the recent advances in embedded machine learning for cyber-physical, IoT, and
edge-computing applications.

Fort Collins, CO, USA Sudeep Pasricha
Abu Dhabi, UAE Muhammad Shafique
October 25, 2022

 5644 2360
a 5644 2360 a

 5506 6360
a 5506 6360 a

http://doi.org/10.1007/978-3-031-19568-6_20

Acknowledgments

This book would not be possible without the contributions of many researchers and
experts in the field of embedded systems, machine learning, IoT, edge platforms, and
cyber-physical systems. We would like to gratefully acknowledge the contributions
of Rachmad Putra (Technische Universität Wien), Muhammad Abdullah Hanif
(New York University, Abu Dhabi), Febin Sunny (Colorado State University), Asif
Mirza (Colorado State University), Mahdi Nikdast (Colorado State University),
Ishan Thakkar (University of Kentucky), Maarten Molendijk (Eindhoven Uni-
versity of Technology), Floran de Putter (Eindhoven University of Technology),
Henk Corporaal (Eindhoven University of Technology), Salim Ullah (Technische
Universität Dresden), Siva Satyendra Sahoo (Technische Universität Dresden),
Akash Kumar (Technische Universität Dresden), Arnab Raha (Intel), Raymond
Sung (Intel), Soumendu Ghosh (Purdue University), Praveen Kumar Gupta (Intel),
Deepak Mathaikutty (Intel), Umer I. Cheema (Intel), Kevin Hyland (Intel), Cormac
Brick (Intel), Vijay Raghunathan (Purdue University), Gokul Krishnan (Arizona
State University), Sumit K. Mandal (Arizona State University), Chaitali Chakrabarti
(Arizona State University), Jae-sun Seo (Arizona State University), Yu Cao (Ari-
zona State University), Umit Y. Ogras (University of Wisconsin, Madison), Ahmet
Inci (University of Texas, Austin), Mehmet Meric Isgenc (University of Texas,
Austin), and Diana Marculescu (University of Texas, Austin), Rehan Ahmed
(National University of Sciences and Technology, Islamabad), Muhammad Zuhaib
Akbar (National University of Sciences and Technology, Islamabad), Lois Orosa
(ETH Zürich, Skanda Koppula (ETH Zürich), Konstantinos Kanellopoulos (ETH
Zürich), A. Giray Yağlikçi (ETH Zürich), Onur Mutlu (ETH Zürich), Saideep Tiku
(Colorado State University), Liping Wang (Colorado State University), Xiaofan
Zhang (University of Illinois Urbana-Champaign), Yao Chen (University of Illinois
Urbana-Champaign), Cong Hao (University of Illinois Urbana-Champaign), Sitao
Huang (University of Illinois Urbana-Champaign), Yuhong Li (University of Illinois
Urbana-Champaign), Deming Chen (University of Illinois Urbana-Champaign),
Alexander Wendt (Technische Universität Wien), Horst Possegger (Technische
Universität Graz), Matthias Bittner (Technische Universität Wien), Daniel Schnoell
(Technische Universität Wien), Matthias Wess (Technische Universität Wien),

ix

x Acknowledgments

Dušan Malić (Technische Universität Graz), Horst Bischof (Technische Universität
Graz), Axel Jantsch (Technische Universität Wien), Floran de Putter (Eindhoven
University of Technology), Alberto Marchisio (Technische Universitat Wien),
Fan Chen (Indiana University Bloomington), Lakshmi Varshika Mirtinti (Drexel
University), Anup Das (Drexel University), Supreeth Mysore Shivanandamurthy
(University of Kentucky), Sayed Ahmad Salehi (University of Kentucky), Biresh
Kumar Joardar (University of Houston), Janardhan Rao Doppa (Washington State
University), Partha Pratim Pande (Washington State University), Georgios Zervakis
(Karlsruhe Institute of Technology), Mehdi B. Tahoori (Karlsruhe Institute of Tech-
nology), Jörg Henkel (Karlsruhe Institute of Technology), Zheyu Yan (University of
Notre Dame), Qing Lu (University of Notre Dame), Weiwen Jiang (George Mason
University), Lei Yang (University of New Mexico), X. Sharon Hu (University of
Notre Dame), Jingtong Hu (University of Pittsburgh), Yiyu Shi (University of Notre
Dame), Beatrice Bussolino (Politecnico di Torino), Alessio Colucci (Technische
Universität Wien), Vojtech Mrazek (Brno University of Technology), Maurizio
Martina (Politecnico di Torino), Guido Masera (Politecnico di Torino), Ji Lin (Mas-
sachusetts Institute of Technology), Wei-Ming Chen (Massachusetts Institute of
Technology), Song Han (Massachusetts Institute of Technology), Yawen Wu (Uni-
versity of Pittsburgh), Yue Tang (University of Pittsburgh), Dewen Zeng (University
of Notre Dame), Xinyi Zhang (University of Pittsburgh), Peipei Zhou (University of
Pittsburgh), Ehsan Aghapour (University of Amsterdam), Yujie Zhang (National
University of Singapore), Anuj Pathania (University of Amsterdam), Tulika Mitra
(National University of Singapore), Hiroki Matsutani (Keio University), Keisuke
Sugiura (Keio University), Soonhoi Ha (Seoul National University), Donghyun
Kang (Seoul National University), Ayush Mittal (Colorado State University),
Bharath Srinivas Prabakaran (Technische Universität Wien), Ganapati Bhat (Wash-
ington State University), Dina Hussein (Washington State University), Nuzhat
Yamin (Washington State University), Rafael Makrigiorgis (University of Cyprus),
Shahid Siddiqui (University of Cyprus), Christos Kyrkou (University of Cyprus),
Panayiotis Kolios (University of Cyprus), Theocharis Theocharides (University
of Cyprus), Anil Kanduri (University of Turku), Sina Shahhosseini (University
of California, Irvine), Emad Kasaeyan Naeini (University of California, Irvine),
Hamidreza Alikhani (University of California, Irvine), Pasi Liljeberg (University of
Turku), Nikil Dutt (University of California, Irvine), Amir M. Rahmani (University
of California, Irvine), Sizhe An (University of Wisconsin-Madison), Yigit Tuncel
(University of Wisconsin-Madison), Toygun Basaklar (University of Wisconsin-
Madison), Aditya Khune (Colorado State University), Rozhin Yasaei (University
of California, Irvine), Mohammad Abdullah Al Faruque (University of California,
Irvine), Kruttidipta Samal (University of Nebraska, Lincoln), Marilyn Wolf (Univer-
sity of Nebraska, Lincoln), Joydeep Dey (Colorado State University), Vipin Kumar
Kukkala (Colorado State University), Sooryaa Vignesh Thiruloga (Colorado State
University), Marios Pafitis (University of Cyprus), Antonis Savva (University of
Cyprus), Yue Wang (New York University), Esha Sarkar (New York University),
Saif Eddin Jabari (New York University Abu Dhabi), Michail Maniatakos (New
York University Abu Dhabi), Mahum Naseer (Technische Universität Wien), Iram

Acknowledgments xi

Tariq Bhatti (National University of Sciences and Technology, Islamabad), Osman
Hasan (National University of Sciences and Technology, Islamabad), Hao Fu (New
York University), Alireza Sarmadi (New York University), Prashanth Krishna-
murthy (New York University), Siddharth Garg (New York University), Farshad
Khorrami (New York University), Priyadarshini Panda (Yale University), Abhiroop
Bhattacharjee (Yale University), Abhishek Moitra (Yale University), Ihsen Alouani
(Queen’s University Belfast), Stefanos Koffas (Delft University of Technology),
Behrad Tajalli (Radboud University), Jing Xu (Delft University of Technology),
Mauro Conti (University of Padua), and Stjepan Picek (Radboud University).

This work was partially supported by the National Science Foundation (NSF)
grants CCF-1302693, CCF-1813370, and CNS-2132385; by the NYUAD Center
for Interacting Urban Networks (CITIES), funded by Tamkeen under the NYUAD
Research Institute Award CG001, Center for Cyber Security (CCS), funded by
Tamkeen under the NYUAD Research Institute Award G1104, and Center for
Artificial Intelligence and Robotics (CAIR), funded by Tamkeen under the NYUAD
Research Institute Award CG010; and by the project “eDLAuto: An Automated
Framework for Energy-Efficient Embedded Deep Learning in Autonomous Sys-
tems,” funded by the NYUAD Research Enhancement Fund (REF). The opinions,
findings, conclusions, or recommendations presented in this book are those of the
authors and do not necessarily reflect the views of the National Science Foundation
and other funding agencies.

Contents

Part I Efficient Hardware Acceleration for Embedded Machine
Learning

Massively Parallel Neural Processing Array (MPNA): A CNN
Accelerator for Embedded Systems . 3
Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif,
and Muhammad Shafique

Photonic NoCs for Energy-Efficient Data-Centric Computing 25
Febin P. Sunny, Asif Mirza, Ishan G. Thakkar, Mahdi Nikdast,
and Sudeep Pasricha

Low- and Mixed-Precision Inference Accelerators . 63
Maarten J. Molendijk, Floran A. M. de Putter, and Henk Corporaal

Designing Resource-Efficient Hardware Arithmetic
for FPGA-Based Accelerators Leveraging Approximations
and Mixed Quantizations . 89
Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar

Efficient Hardware Acceleration of Emerging Neural Networks
for Embedded Machine Learning: An Industry Perspective 121
Arnab Raha, Raymond Sung, Soumendu Ghosh, Praveen Kumar Gupta,
Deepak A. Mathaikutty, Umer I. Cheema, Kevin Hyland, Cormac Brick,
and Vijay Raghunathan

Part II Memory Design and Optimization for Embedded Machine
Learning

An Off-Chip Memory Access Optimization for Embedded Deep
Learning Systems . 175
Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif,
and Muhammad Shafique

xiii

xiv Contents

In-Memory Computing for AI Accelerators: Challenges
and Solutions . 199
Gokul Krishnan, Sumit K. Mandal, Chaitali Chakrabarti, Jae-sun Seo,
Umit Y. Ogras, and Yu Cao

Efficient Deep Learning Using Non-volatile Memory Technology
in GPU Architectures . 225
Ahmet Inci, Mehmet Meric Isgenc, and Diana Marculescu

SoC-GANs: Energy-Efficient Memory Management for
System-on-Chip Generative Adversarial Networks . 253
Rehan Ahmed, Muhammad Zuhaib Akbar, Muhammad Abdullah Hanif,
and Muhammad Shafique

Using Approximate DRAM for Enabling Energy-Efficient,
High-Performance Deep Neural Network Inference . 275
Lois Orosa, Skanda Koppula, Konstantinos Kanellopoulos,
A. Giray Yağlıkçı, and Onur Mutlu

Part III Emerging Substrates for Embedded Machine Learning

On-Chip DNN Training for Direct Feedback Alignment in FeFET 317
Fan Chen

Platform-Based Design of Embedded Neuromorphic Systems 337
M. L. Varshika and Anup Das

Light Speed Machine Learning Inference on the Edge . 359
Febin P. Sunny, Asif Mirza, Mahdi Nikdast, and Sudeep Pasricha

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration
with Bit-Parallel Unary Computing . 393
Ishan G. Thakkar, Supreeth M. Shivanandamurthy,
and Sayed Ahmad Salehi

Index . 411

Part I
Efficient Hardware Acceleration for

Embedded Machine Learning

Massively Parallel Neural Processing
Array (MPNA): A CNN Accelerator for
Embedded Systems

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif,
and Muhammad Shafique

1 Introduction

Machine Learning (ML) algorithms have rapidly proliferated into different field
of applications, ranging from object recognition, automotive, healthcare to busi-
ness [22, 33]. The field of ML encompasses several algorithms, and the most
influential ones in recent years are the Deep Neural Networks (DNNs) or Deep
Learning [13, 14]. The reason is that DNNs have achieved state-of-the-art accuracy
and even surpassed humans’ accuracy, especially through Convolutional Neural
Networks (CNNs) [35]. In recent years, larger and deeper CNNs have been
proposed in the literature since they can achieve higher accuracy than the smaller
ones, thereby becoming the key enabler for many applications (e.g., advanced
vision processing). Such large CNN models typically require a huge memory
footprint, intensive computations, and energy consumption [5]. Furthermore, recent
trends show that many ML applications are moving toward mobile and embedded
platforms, such as Cyber-Physical System (CPS) and IoT-Edge devices, due to
performance, privacy, and security reasons. These embedded platforms typically
employ the pretrained CNN models for performing inferences. However, perform-
ing such an inference is challenging because the embedded platforms are resource-
and power/energy-constrained. For instance, the ResNet-152 model needs more than
200MB of memory footprint and 11.3 billion operations to perform an inference
for a single input image [16]. Such a high amount of processing is infeasible

R. V. W. Putra (�)
Embedded Computing Systems, Institute of Computer Engineering, Technische Universität Wien,
Vienna, Austria
e-mail: rachmad.putra@tuwien.ac.at

M. A. Hanif · M. Shafique
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_1

3

 31368 2385 a 31368 2385 a

 885 52970 a 885 52970
a

mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at

 885 56845 a 885 56845 a

mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1

4 R. V. W. Putra et al.

to be performed by embedded platforms in an efficient manner. Therefore, it is
necessary to design a specialized hardware accelerator that efficiently performs
CNN inferences for embedded systems.

1.1 State of the Art and Their Limitations

A significant amount of works has been carried out for proposing specialized
CNN accelerators. Some of the accelerators aim at accelerating the un-structurally
sparse networks by exploiting sparse weights and/or activations to decrease the
computational requirements, which is expected to improve the performance and
energy efficiency [1, 11, 12, 17, 19, 24, 29, 38]. However, recent studies show that
employing sparsity does not directly lead to energy savings, and it requires more
complex and sophisticated accelerator designs to achieve high performance which
incur considerably high power/energy and area consumption [9, 37]. Moreover,
since these accelerators typically employ the Rectified Linear Unit (ReLU) to
convert all the negative activations to zeros, they cannot efficiently handle the
advanced activation functions that do not result in high sparsity (e.g., Leaky
ReLU [15, 27]), thereby decreasing their efficiency benefits. Meanwhile, the other
accelerators aim at accelerating dense networks for achieving high performance
and energy efficiency [6, 7, 10, 18, 21, 25, 26, 34, 36]. They can also be used
for accelerating the structurally sparse networks by tailoring the dataflows to
the respective accelerator architectures [2, 37]. However, they also employ ReLU
operations which make them inefficient for computing the advanced activation
functions and hence decreasing their efficiency gains. Furthermore, most of these
accelerators consume relatively large area and high power/energy which are not
suitable for embedded applications [10, 18]. Moreover, despite showing a good
performance for the convolutional (CONV) layers, many of these accelerators offer
limited acceleration for the fully connected (FC) layers, as we will show with the
help of a motivational case study in Sect. 1.2.

1.2 Motivational Case Study and Research Challenges

Motivational Case Study To obtain high performance and energy efficiency, state-
of-the-art CNN accelerators exploit the reuse of weights and activations (including
partial sums), hence reducing the number of off-chip memory (DRAM) accesses [5,
30, 31]. In this respect, the conventional systolic array-based designs (like Google’s
TPU [18]) are very effective, as each Processing Element (PE) in the Systolic Array
(SA) engine performs three key tasks, as follows:

• It receives data from their upstream neighbor.
• It performs basic DNN operations, i.e., multiply and accumulate (MAC).
• It passes the data along with the partial sum to their downstream neighbor.

Massively Parallel Neural Processing Array (MPNA) 5

1

5

25

125

CONV1 CONV2 CONV3 CONV4 CONV5 FC1 FC2 FC3

deepS
-u

p
)gol(

AlexNet

Systolic Array 2x2 Systolic Array 4x4 Systolic Array 8x8

Network Layer

Reduced speed-up
in the case of FC layers

Fig. 1 Speed-up values for CONV and FC layers of AlexNet for different sizes of systolic array
engines, which are normalized to the 1 × 1 systolic array engine

Therefore, the overall speed-up of the SA engine is significant for computations
that involve weight and activation reuse (i.e., CONV layers), as shown in Fig. 1 for
AlexNet [20]. However, if only activation reuse happens (i.e., a single input is used
for multiple computations, while the weights are used only once), the speed-up of
SA engines is very limited, as shown in Fig. 1. Such operations are found in the FC
layers, and their conventional dataflow on an SA engine is shown in Fig. 2. These
observations indicate that the conventional SA-based engines can provide a high
speed-up for the CONV layers, but it does not provide comparable speed-up for
the FC layers. This significantly limits the overall speed-up of CNN acceleration,
especially when the networks are dominated by FC layers. Therefore, there is a
significant need for a CNN accelerator that can expedite both the CONV and FC
layers to obtain a high speed-up for the complete CNN model while consuming a
low operational power/energy. However, designing such an accelerator bears a wide
range of challenges, as discussed in the following.

Associated Research Challenges From results in Figs. 1 and 2, we identify the
following research challenges:

• First, specialized SA-based designs need to be developed to facilitate accelerating
both the CONV and FC layers without consuming significant area and power/en-
ergy overheads as compared to the conventional SA designs.

• Second, the SA designs should consider diverse dataflows of both the CONV and
FC layers, while fully utilizing the available memory bandwidth. For instance,
the acceleration of CONV layers requires simple, fast, yet massively parallel
PEs to maximally the reuse of weights and activations (including partial sums).
Meanwhile, the acceleration of FC layers should maximize the activation reuse
in a single-sample batch processing. Note, the acceleration of FC layers can only
exploit weight reuse in a multi-sample batch processing, which is not suitable for
latency-sensitive/real-time embedded applications as targeted in this work.

6 R. V. W. Putra et al.

a1

…

Corresponding
Inputs

t1t2t3tK

Weights are mapped on the Conventional Systolic Array (SA)
that has K weights-per-column and L neurons (SA dimension: K x L)

w1,1

…

w2,1 w3,1 wL,1…
w1,2 w2,2 w3,2 wL,2…
w1,3 w2,3 w3,3 wL,3…

w1,K w2,K w3,K wL,K…

o1
o2

o3

oL

a2

a3

aK

time [cycles]

time [cycles]

tK+1
tK+2
tK+3

tK+L

Corresponding
Partial Sums

LEGEND:
ti : ith clock cycle
ai : ith activation value
oi : ith partial sum value

: Movement direction
of activations

: Movement direction
of partial sums

wj,i : ith weight of jth neuron

…

…

…

…

PE

Fig. 2 The dataflow for the FC layer execution using a conventional SA engine. The input
activations are fed to the SA from the left side and then shifted one step to the right toward the
adjacent processing element (PE) at each cycle. The partial sums start appearing in the SA output
at K+1 cycles

• Third, the dataflows should consider minimizing the off-chip memory (DRAM)
accesses to optimize the energy consumption, since the DRAM access energy
typically dominates the total CNN acceleration system energy [4, 30, 31, 35, 38].

1.3 Our Novel Contributions

To address the above research challenges, we propose a novel Massively Parallel
Neural Processing Array (MPNA) accelerator through the following key steps:

• A Design Methodology: The MPNA architecture is designed using a methodol-
ogy that systematically integrates heterogeneous SA designs, specialized on-chip
memory, and other necessary components, while exploring different dataflow
patterns to maximize data reuse and jointly accelerate the CONV and FC layers

• Optimized Dataflows: We propose different optimizations of dataflow patterns
for enabling efficient processing on heterogeneous SA engine and maximally
exploiting data reuse, thereby improving the overall processing efficiency.

• Hardware Implementation and Evaluation: We perform functional validation
of the MPNA accelerator architecture and synthesize it using the ASIC design
tools for a 28-nm CMOS technology library. Our experimental results show that
the MPNA architecture offers up to 2. × performance speed-up and 51% energy
saving as compared to the baseline accelerator. Our MPNA achieves 149.7GOP-
S/W performance efficiency at 280MHz and incurs 239mW of operational power.

Massively Parallel Neural Processing Array (MPNA) 7

2 Preliminaries

2.1 Convolutional Neural Networks (CNNs)

In this section, we explain the fundamentals of CNN processing, which are neces-
sary to understand the contributions of this work. A neural network is composed of a
number of layers that are connected in a cascade fashion. Each layer receives inputs
from the preceding layer, performs certain operations, and passes the results to the
succeeding layer. A CNN, a particular type of neural networks, typically consists of
four types of processing layers: convolutional (CONV) layer for extracting features,
fully connected (FC) layer for classification, activation layer for introducing non-
linearity, and pooling layer for sub-sampling. Each layer of CONV processing
is illustrated in Fig. 3a and can be represented using for loops line in Fig. 3b.
Furthermore, the FC layer processing can also be represented using the same loops

Input Activations
(IA)

Output Activations
(OA)

J

I

M

N

…

Weights (W)

Q

P

I

H

W

p

q

m

n

(p,q)

(m,n)

W J,I

IA1

OA 1

W 1,I

W 1,1

W J,1

OA JIAI

(a) CNN Processing

for j = 1 : J { % Loop for the output activations
for i = 1 : I { % Loop for the input activations

for m = 1 : M { % Loop for the rows of output activations
for n = 1 : N { % Loop for the columns of output activations

for p = 1 : P { % Loop for the rows of the filter weights
for q = 1 : Q { % Loop for the columns of the filter weights

OA j (m, n) = OA j (m, n) + W j , i (p, q) x IA i (m + p - 1, n + p - 1);
}}}}}} % Loops end

(b) Pseudocode of the CONV processing

a filter

Fig. 3 (a) Illustration of a CONV layer processing, i.e., a set of input activations are convolved
with the weights for generating a set of output activations. (b) Pseudocode of the CONV layer
processing. An FC layer processing can be represented using the same loops with .H = W = P =
Q = 1

8 R. V. W. Putra et al.

0%

20%

40%

60%

80%

100%

AlexNet VGG-16 AlexNet VGG-16

of MACs # of Weights

ega tne cr eP

CONV FC

1

10

100

1000

10000

CONV1 CONV2 CONV3 CONV4 CONV5 FC6 FC7 FC8

Nu
m

be
r o

f
Da

ta
 R

eu
se

Weight Reuse Input Ac�va�on Reuse Output Ac�va�on Reuse

1

10

100

1000

10000

100000

f or eb
mu N

esueR
ataD

Weight Reuse Input Ac�va�on Reuse Output Ac�va�on Reuse

(a) (b)

VGG-16

AlexNet

Number of
MACs

Number of
Weights

(c)

1 1 1

1 1 1

Fig. 4 (a) Percentage of the number of MAC operations and filter weights for the AlexNet and the
VGG-16. The number of reuse for different data types, i.e., weights, input activations, and output
activations for (b) the AlexNet and (c) the VGG-16

with .H = W = P = Q = 1. A CONV layer receives input feature maps (i.e., input
activations) from the inputs or the preceding layer and then performs the convolution
operation using several filters (i.e., weights) to produce output feature maps (i.e.,
output activations), where each feature map corresponds to the output of one set of
filters. Among different layers in a CNN processing, the CONV layer is the most
computationally intensive as input activations and weights have a high number of
reuse for computations. Meanwhile, the FC layer is the most memory intensive as
weights have a low number of reuse. Figure 4a shows these characteristics using the
percentage of MAC operations and weights required for the CONV and FC layers in
the AlexNet and the VGG-16. Meanwhile, Fig. 4b and c shows the number of reuse
for different data types in the AlexNet and the VGG-16, respectively. .IAi is the
input activations at channel-i, .OAj is the output activations at channel-j, and . Wj,i

is the weight filters between .IAi and .OAj . Furthermore, .OAj(m, n) denotes the
activation at location .(m, n) in the j-th output activations. Meanwhile, . Wj,i(p, q)

denotes the weight at location .(p, q) in the filter kernel between .IAi and .OAj .
We consider CONV stride . = 1, unless stated otherwise. The FC layers can be
considered as a special case of CONV layers where the input and the output have a 1-
dimensional array, and hence they can be represented using the above terminologies.

2.2 Systolic Array (SA)

In SA-based computations, first, weights are accessed from the weight memory and
then are loaded to the PEs in the array. The weights are held stationary in the PEs in

Massively Parallel Neural Processing Array (MPNA) 9

…

MAC
(PE)

MAC
(PE)

MAC
(PE)

…

MAC
(PE)

MAC
(PE)

MAC
(PE)

…

MAC
(PE)

MAC
(PE)

MAC
(PE)

…

…

…

…

Activations

Partial
sums

Systolic
Array

Memory for Weights

Memory for Output Activations
…

snoitavitcAt upnIrofyro
me

M

ac
t r

eg
.

weight reg.

× +

psum reg.

weight

input
partial sum

(psum)

output
partial sum

(psum)

ac
tiv

at
io

n
da

ta

ac
tiv

at
io

n
da

ta

weight

MAC
(PE)

Fig. 5 The conventional SA architecture that shows the processing elements (PEs), the connec-
tions among PEs as well as between the array and memories. Note that we refer the on-chip
memories to as the on-chip buffers to distinguish them from the off-chip memory (DRAM)

the manner that the same column of the array holds the weights from the same filter
or neuron. During the processing, the input activations are accessed from the input
activation memory, and then they are streamed into the array. These activations are
passed on neighboring PEs from left to right of the array at each clock cycle, and
the respective partial sums are moved downstream on neighboring PEs from top to
bottom of the array. The input activations are aligned so that each input activation
reaches a specific PE at the same time when its respective partial sum also reaches
the same PE, hence producing a correct output partial sum. If the number of weights
of a filter is larger than the number of rows in the systolic array, the output partial
sums are divided into multiple sets (portions). Therefore, accumulators are required
to hold the generated partial sums when the rest of the partial sums are computed in
the array. A detailed description of the SA-based computations can be found in [18]
(Fig. 5).

3 Our Design Methodology

We develop a novel methodology for designing an optimized CNN accelerator for
embedded systems, as shown in Fig. 6. It consists of the following key steps, which
are explained in detail in the subsequent sections.

10 R. V. W. Putra et al.

CNN Model
Architectures

Defining the
Efficient Dataflow

Patterns
(Section 4)

Analyzing Different Data-Reuse
Techniques (Section 4)

Designing a Hardware Accelerator
Architecture (Section 5)

Optimizing the Individual Hardware
Components (Section 5)

Designing Efficient Processing Arrays
(Section 5)

Hardware Evaluation
(Section 6)

CNN Accelerator

Fig. 6 Overview of our methodology for designing the MPNA accelerator, showing the key steps

1. Analyzing different data reuse techniques (Sect. 4). It aims at identifying data
reuse techniques that can be exploited to achieve high performance efficiency of
the given CNN targeting resource-constrained embedded systems.

2. Defining the efficient dataflow patterns (Sect. 4). It identifies the dataflow
patterns that offer high data reuse on-chip and a low number of DRAM accesses,
while considering the SA-based computations.

3. Designing efficient processing arrays (Sect. 5). The processing arrays are
designed to support the selected dataflow patterns for executing the complete
layers of a CNN, thereby efficiently processing the respective operations.

4. Optimizing the individual hardware components (Sect. 5). It aims at minimiz-
ing the latency, area, and power/energy consumption of the elementary functions
that lead to the optimized system-level design.

5. Designing a hardware accelerator architecture (Sect. 5). We determine the
key architectural parameters like the size of processing arrays, interconnect
of components, and memory organization to judiciously integrate different
hardware components into an MPNA architecture.

6. Hardware evaluation (Sect. 6). We evaluate the functionality of the MPNA
architecture through functional simulations and synthesize it using the ASIC
design flow with 28-nm technology library for obtaining the characteristics of
area, performance, and power consumption.

4 Dataflow Optimization

4.1 Data Reuse Analysis

The CNN complexity can be estimated using the number of MAC operations and
weights required by the CONV and FC layers. Table 1 provides the number of MAC
operations and weights of the AlexNet and VGG-16 networks for inferring one input
sample. These indicate that the CONV layers are computationally intensive due to
their high number of MAC operations, while the FC layers are memory intensive
due to their high number of weights that need to be accessed from memories, as

Massively Parallel Neural Processing Array (MPNA) 11

Table 1 Number of MACs
and weights in the AlexNet
and the VGG-16 for inferring
one sample

Number of MACs Number of weights

Layer AlexNet VGG-16 AlexNet VGG-16

CONV layers 1.07 B 15.34B 3.74M 14.71M

FC layers 58.62M 123.63M 58.63M 123.64M

indicated by Fig. 4a. Moreover, the CONV layers and the FC layers have different
reuse factors for different data types (i.e., weights, input activations, and output
activations), as shown in Fig. 4b and c. The reuse factor defines the number of
MAC operations that are performed for a specific data type [31]. In CONV layers,
all data types typically have comparable reuse factor, while in FC layers, weights
have a significantly lower reuse factor than the activations. Furthermore, we observe
that different layers in a network have different reuse factor characteristics, which
is in line with previous studies [23, 30, 31]. For instance, the order of reuse
factor for the AlexNet-CONV1 is weights, input activations, and output activations,
while the order for the AlexNet-FC6 is output activations, input activations, and
weights, respectively. This order of reuse factor is proportional to the significance
of each data type to be stored longer in the on-chip memory and used for multiple
computations, while avoiding costly DRAM accesses. These observations are then
exploited for determining the efficient dataflow patterns to maximally benefit from
the data reuse, thereby minimizing the number of DRAM accesses.

4.2 Proposed Dataflow Patterns

To effectively use the (off-chip and on-chip) memories and the compute capabilities
of our SA-based architecture, we propose a set of dataflow patterns (as shown in
Fig. 7) that can be employed by both the CONV and FC layers.

Before devising efficient dataflow patterns, we present different possible types of
data reuse schemes and their dependencies on different data types as follows:

• Weight Reuse: It is defined by the number of times a specific weight used in the
MAC operations of a given layer, which equals the size of output activations in
a specific channel-j [31]. Hence, to maximally exploit the weight reuse, all input
activations in a specific channel-i and the respective output activations should be
available on-chip.

• Input Activation Reuse: It is defined by the number of times a specific input
activation used by the same filter multiplied by the number of filters for the MAC
operations of a given layer [31]. Hence, to maximally exploit the input activation
reuse, all the weights from a specific channel-i across all filters and the respective
output activations should be available on-chip.

• Output Activation Reuse: It is defined by the number of times partial sums
accumulated to generate a specific output activation. It equals the size of a filter
of a given layer [31]. Hence, to maximally exploit the output activation reuse, all

12 R. V. W. Putra et al.

* =

Case-1:

… …

Input Activations (IA) Filters (W) Output Activations (OA)

W

H

I

N

M

J

Q

PI

A set of filters

Step-1
Step-1

Step-2 Step-2

Step-3

* =

Case-2:

… …

W

H

I

N

M

J

Q

PI

A set of filters

Step-1 Step-1

Step-2 Step-2

Step-4
Step-3

* =

Case-3:

… …

W

H

I

N

M

J

Q

PI

A set of filters

Step-3 Step-3

Step-5Step-4

Step-1 Step-2 Step-2

Step-4

Step-1

Fig. 7 Different possible dataflow patterns that are considered in this work. Portions of data stored
in the on-chip buffers are highlighted with the bold boxes

input activations and weights that correspond to a specific output activation should
be available on-chip.

In embedded applications, the operational power is typically limited, hence
leading to limited hardware resources that can be designed and used for performing
the CNN inference at a time. Therefore, we consider a higher priority to generate
a set of final output activations on-chip before starting other computations that
generate different sets of partial sums (output activations). In this manner, the size of
the accumulator units and the on-chip activation buffers are optimized. Furthermore,
we leverage the data reuse observations (like the ones in Fig. 4) and the data tiling
approach1 to devise different possible dataflow patterns for embedded applications,
as explained in the following:

1 The data tiling defines the portion of the weights and the input activations that need to be accessed
from the off-chip DRAM, stored in the on-chip memories (buffers), and then computed together to
generate a portion of output activations at one time.

Massively Parallel Neural Processing Array (MPNA) 13

• Case-1: It has the following conditions: (1) all input and output activations can
be stored in the on-chip buffer, (2) the weights can only be partially stored in the
on-chip buffer, and (3) the complete output activations in a specific channel-j can
be stored in a single accumulation unit. In this case, we aim at maximally reusing
the weights while considering the output activation reuse. To do this, we define a
set of weight filters where the number of filters per set equals the SA column (L),
and the number of weights per filter equals a multiple of the SA row (K). This
dataflow pattern is shown in Fig. 7a.

• Case-2: It has the following conditions: (1) all input and output activations can be
stored in the on-chip buffer, (2) the weight filters can only be partially stored in
the on-chip buffer, and (3) the complete output activations in a specific channel-j
cannot be stored in a single accumulation unit. In this case, we aim at maximally
reusing the output activation reuse while considering the weight reuse. To do this,
we define a portion of input activations so that it includes activations from all
channels. We also define a set of weight filters where the number of filters per set
equals L and include all weights from each filter. This dataflow pattern is shown
in Fig. 7b.

• Case-3: For other cases, the best configuration for data partitioning and schedul-
ing is selected using the ROMANet methodology [31] with the following
constraints. First, the number of filters per set (as a tile of weights) should be
a multiple of L. Second, the number of weights per filter should be a multiple of
K . This dataflow pattern is shown in Fig. 7c.

5 The MPNA Architecture

5.1 Overview of Our MPNA Architecture

Figure 8a presents the top-level view of our MPNA accelerator architecture, show-
ing its detailed components, which are explained in the subsequent subsections. Our
MPNA architecture consists of heterogeneous systolic arrays (SAs), accumulation
block, pooling-and-activation block, on-chip buffers, and a control unit. The arrays
receive weights and input activations from the respective on-chip buffers, perform
MAC operations, and forward the partial sums to the accumulation block. Each
SA is designed to support specific types of dataflow patterns and data parallelism
for accelerating CONV and FC layers while incurring minimum overheads. This
accumulation block holds the generated partial sums while their remaining partial
sums are being computed on the arrays and then accumulates them together
to generate the updated partial sums or final output activations. Afterward, the
accumulator block forwards these partial sums (or final output activations) to the
subsequent block for performing pooling-and-activation operations or sending them
to the on-chip buffer. These data are then either used for further computations or
moved to the DRAM until the rest of operations are completed.

DR
AM

SA-FC

Weight Buffer

Accumulation Block

Pooling-and-Activation Block

Ac
tiv

at
io

n
Bu

ffe
r

Off-chip On-chip

Co
nt

ro
l

(a) MPNA Architecture

SA-CONV

He
te

ro
ge

ne
ou

s S
ys

to
lic

 A
rr

ay
s

(b) SA-CONV Architecture

…

…

…

…

…

…

PE

PE

PE

PE

PE

PE

PE

PE

PE

IA0

IA1

IAK-1

w w wps0 ps1 psL-1

psum0 psum1 psumL-1

…

SPM

add0

…

+

wr_en0

…

+

…

+

…

unit

psum0 psum1 psumL-1

accu0 accu1 accuL-1

(e) Accumulation Block per Array

…

PE

PE

PE

w ps

psumL-1

…

IA0

IA1

IAK-1

…

PE

PE

PE

w ps

psum0

…

…

PE

PE

PE

w ps

psum1

…

(d) SA-FC Architecture

…

…

…

…

…

add0

wr_en0

…

PA Module

accu0

pa0

…

PA Module

accu1

pa1

…

…

PA Module

accuL-1

paL-1

(f) Pooling-and-Activation Block per Array

SPM

1
2

3

4

(c) PE Architecture

ac
t r

eg
.

weight reg.

× +

psum reg.

weight (w)

input
partial sum

(ps)

output
partial sum

(psum)

(
noitavitcatupnI

IA
)

weight (w)

PE

weight reg.

In
pu

t a
ct

iv
at

io
n

(IA
)

Pool Function

Activation
Function

12

43

MaxPool

MaxPool

123

MaxPool
output

(g) PA Module (h) Pool Function (i) Activation Function

s

s

2’s 2’s
×

2’s 0

ctrl

input

α

4

Re
LU

 &
 L

ea
ky

 R
eL

U

Ac
tiv

at
io

ns

Fig. 8 MPNA architecture. (a) Top-level view of our MPNA architecture showing different
components and their interconnections. The heterogeneous systolic arrays, (b) the SA-CONV, (c)
the PE, and (d) the SA-FC. (e) Accumulation block per array for accumulating and storing the
partial sums generated by the arrays. The micro-architecture of (f) a Pooling-and-Activation block
per array and (g) a Pooling-and-Activation module for performing. (h) MaxPooling and (i) ReLU
and Leaky-ReLU activation functions

Massively Parallel Neural Processing Array (MPNA) 15

5.2 Heterogeneous Systolic Arrays (SAs)

Based on our observations in Fig. 4, we propose for utilizing two different SAs (i.e.,
heterogeneous SAs) that can process different types of layers in a given network,
that is, an array that targets only accelerating CONV layers (i.e., SA-CONV) and an
array that targets accelerating FC layers (i.e., SA-FC).

Systolic Array for CONV Layers (SA-CONV) For CONV layers, we employ the
SA design to exploit the weight, input activation, and partial sum (output activation)
reuse, following the design of [18] (i.e., so-called SA-CONV). Figure 8b shows that
our SA-CONV integrates a massively parallel array of Processing Elements (PEs)
for MAC operations. Each PE receives an input activation from its left-adjacent PE
and a weight and a partial sum from the top-adjacent PE and passes a generated
partial sum to its bottom-adjacent PE. The left-most PEs in the array receive input
from the input activation buffer, while the top-most PEs receive weights from the
weight buffer. The generated partial sums are then passed to the accumulation block
by the bottom-most PEs. To support such a processing dataflow on the array, weights
from the same filter (or neuron) are mapped on the same column of the array.
Meanwhile, weights that need to be multiplied with the same input activation are
mapped on parallel columns. In this manner, activation reuse and weight reuse are
maximized. Furthermore, we also include an additional register that holds a weight
that is being used for MAC operation, while moving new weights (which will be
used in the next iteration) to their respective locations, as shown in Fig. 8c. In this
manner, the initialization time for weight loading on the array can be significantly
reduced.

Systolic Array for FC Layers (SA-FC) The SA-CONV can provide a significant
throughput for batch processing with large batch size due to the weight reuse
in CONV layer processing. However, it can significantly affect the latency of
the overall CNN inference which is an important parameter for many real-world
applications. The reason is that FC layer processing in a CNN inference has low
weight reuse, thereby making the SA-CONV inefficient for accelerating FC layers
and decreasing the benefit of batch processing with large batch size, as shown
in Fig. 2. Toward this, we propose a novel systolic array architecture that can
expedite both the CONV and FC layers (i.e., so-called SA-FC). However, the
overall bandwidth required for accelerating FC layers is huge, especially for larger
CNNs. Therefore, our proposed SA-FC is designed so that it can be multiplexed
for processing both the bandwidth-intensive FC and computation-intensive CONV
layers. In this manner, the SA-FC can also be used for batch processing while
incurring minimum area and power overheads as compared to the SA-CONV. Figure
8d shows that, unlike the SA-CONV, the SA-FC has dedicated connections from
the weight buffer to each PE. It enables the system to update the weights in PEs
at every clock cycle, hence providing a matching data throughput to support high-
performance execution of the FC layers. The supporting dataflow for the SA-FC is
shown in Fig. 9.

16 R. V. W. Putra et al.

a1

…

Corresponding
Inputs

t1t2tK

…

o1
o2

oLU-L+1

a2

aK

time [cycles]

time [cycles]

tK+1
tK+2
tK+3

tK+U+1

Corresponding
Partial Sums

a1 PE PE PE…

PE PE PE…

PE PE PE…

…

…
 …

a2

…

…

…
 …

 …
aK

a2 …

aK

a2 …
 …

aK

tUtU+1tU+K

o3

oQ

…
oLU

oU+1
oU+2

o2U

o2U-1
tK+U+2

tK+U+L

oLU-L+2

…
…

o(L-1)U+1

a1 a1
LEGEND:
ti : ith clock cycle
ai : ith activation value
oi : ith partial sum value
U : number of neurons in

processed in a column
PE : processing element

Systolic Array for FC Acceleration (SA-FC)
with K rows and L columns (SA dimension: K x L)

Fig. 9 The dataflow for the FC layer execution using our SA-FC engine. The input activations are
fed to the array from the left side. Meanwhile, each PE will receive and store a new weight each
clock cycle to generate a new partial sum accordingly cycle for FC layer processing

Integration of the SA-CONV and the SA-FC To determine the processing array
design, several aspects need to be considered. First, the SA-CONV design is not
efficient for processing FC layers especially in the real-time or latency-sensitive
applications. Second, the SA-FC has area and power overheads over the SA-CONV,
thereby limiting its array size for efficient processing. Third, the available data for
SA computations are limited by the memory bandwidth. Toward this, we propose
to integrate the SA-CONV and the SA-FC as heterogeneous systolic arrays for
providing a better design with respect to the area, performance, and power/energy
efficiency as compared to employing the individual design of SA-CONV or SA-FC.

5.3 Accumulation Block

The accumulation block consists of several accumulation units, whose number
equals the total number of columns in the SA-CONV and the SA-FC. Each
accumulation unit consists of (1) a Scratch-Pad Memory (SPM) for storing the
partial sums of the output activations that are generated by the arrays and (2) an
adder for accumulating the incoming partial sums with the other partial sums in
the SPM. Once the final output activations are computed, the values are passed to
the pooling-and-activation block for further processing. The accumulation block is
shown in Fig. 8e

Massively Parallel Neural Processing Array (MPNA) 17

5.4 Pooling-and-Activation Block

After the CONV and FC layer processing, an activation function is typically
employed and followed by a pooling layer to reduce the size of feature maps for
subsequent layers. For these activation and pooling operations, our MPNA also
provides specialized hardware. Our MPNA considers the state-of-the-art MaxPool-
ing function, which is used by almost all modern CNNs. Furthermore, since the
state-of-the activation functions are typically monotonically increasing, they can
be moved after the pooling operation to reduce the number activation functions
and the hardware complexity. The pooling-and-accumulation block consists of
several pooling-and-accumulation units, whose number equals the total number
of columns in the SA-CONV and the SA-FC. Each pooling-and-activation unit
consists of (1) an SPM to hold the intermediate pooling results and (2) a pooling
and activation computation module. Our MPNA architecture currently supports two
state-of-the-art activation functions that are commonly used in CNNs, i.e., ReLU
and Leaky-ReLU [32]. The pooling-and-activation block is shown in Fig. 8f

5.5 Hardware Configuration

We analyze the characteristics of the workloads such as the AlexNet [20] to
determine the hardware configuration for our MPNA architecture. A summary of
the hardware configuration for our MPNA architecture is provided in Table 2. For
the AlexNet case, we make the following observations:

• The output activations of the last three CONV layers (i.e., CONV3 until CONV5)
should fit in the SPM of the accumulation and pooling-and-activation blocks.
Since the size of output activations in these layers is 13 . × 13, we select the SPM
size that can store up to 256 elements. In this manner, pooling and activations can
be efficiently performed with local data in the blocks, thereby avoiding accessing
data from the buffers or even the DRAM.

Table 2 The hardware configuration of our MPNA architecture

Module Description

Systolic arrays Size of SA-CONV . = 8 . × 8 of PEs

Size of SA-FC . = 8 . × 8 of PEs

SPM Size of SPM in each accumulation unit

and each pooling-and-activation unit . = 256B

Weight buffer Size of weight buffer . = 32KB

Activation buffer Size of weight buffer . = 256KB

DRAM Size of DRAM . = 2Gb

Bandwidth of DRAM . = 12.8GB/s [28]

18 R. V. W. Putra et al.

• For holding the input and output activations of the CONV3-CONV5 layers on-
chip, we select a 256-KB activation buffer for two arrays. The reason is that this
buffer is greater than four times of the 13 . × 13 . × 384, i.e., the biggest size of
input activations across CONV3-CONV5 layers (i.e., CONV4). In this manner,
we can maximize the activation reuse.

• We select the size of 8 . × 8 of PEs for each processing array, as it provides
high parallelism while requiring relatively low off-chip memory bandwidth, as
compared to the SA-FC design with the same number of PEs.

6 Evaluation Methodology

For evaluating the MPNA architecture, we build the MPNA design using RTL codes
and then perform the logic simulation through the ModelSim for functional and
timing validations. Afterward, we synthesize the design for a 28-nm technology
using the Synopsys Design Compiler to extract critical path delay, area, and power.
We also employ the CACTI 7.0 [3] for modeling the off-chip and on-chip memories
and then estimating the respective latency, area, and power/energy. We compare our
SA-FC with the SA-CONV to evaluate the overheads. Afterward, we compare our
MPNA design with the conventional SA-based accelerators (as the baselines) across
different array sizes (i.e., 2 . × 2, 4 . × 4, and 8 . × 8). Furthermore, we compare our
MPNA accelerator with several well-known CNN accelerators such as Eyeriss [8],
SCNN [29], and FlexFlow [25]. In this evaluation, we consider the AlexNet [20] as
the workload.

7 Experimental Results and Discussion

7.1 Systolic Array Evaluation

We first evaluate our SA-CONV and SA-FC designs to obtain their profiles on
area and power, and the results are shown in Fig. 10a–b. This figure shows that
our SA-FC architecture incurs insignificant overheads as compared to the SA-
CONV architecture, i.e., 2.1% area and 4.4% power overheads on average across
different sizes of arrays. The reason is that our SA-FC design employs a relatively
simple additional modifications for each PE (i.e., multiplexer and wires), thereby
consuming significantly smaller area and power as compared to the combined
components in a PE (i.e., registers, multiplier, addition, and wires).

In terms of performance, the experimental results are shown in Fig. 10c. This
figure indicates that the SA-FC 8 . × 8 achieves 8.1. × speed-up as compared to the
SA-CONV 8 . × 8 when accelerating the FC layers. This performance improvement
is due to the micro-architectural enhancements in the SA-FC (i.e., multiplexer

Massively Parallel Neural Processing Array (MPNA) 19

0
20
40
60
80

100

2x2 4x4 8x8

[
aerA

µm
2]

Systolic Array Size

(a) (b)

Area overhead of
the SA-FC is 2.1%

on average

0
2
4
6
8

10

2x2 4x4 8x8

Po
w

er
 [m

W
]

Systolic Array Size

SA-CONV SA-FC

Power overhead of
the SA-FC is 4.4%

on average

SA-CONV SA-FC

1

10

100

1000

deepS
-u

p

(lo
g)

Array

SA-CONV 2x2 SA-CONV 4x4 SA-CONV 8x8 SA-FC 8x8(c)

Network Layer

Improved speed-up

Fig. 10 Comparisons of the SA-CONV with the SA-FC in terms of (a) area and (b) power. (c)
Performance speed-up of different array designs that are normalized to the SA-CONV .1 × 1 for
the AlexNet workload

and wires) that can provide data (i.e., weights and activations) timely to PEs for
producing results each clock cycle.

7.2 Comparison with Other CNN Accelerators

The comparisons of our MPNA accelerator with the state-of-the-art accelerators are
summarized in Table 3. This table shows that, in general, our MPNA accelerator
achieves competitive characteristics as compared to other accelerators for a full
CNN acceleration (i.e., for both the CONV and FC layers).

7.2.1 Performance Evaluation

Figure 11 shows the performance comparison between our MPNA accelerator and
the conventional SA-based accelerators (i.e., SA-CONV-based designs). OurMPNA
design achieves up to 2. × speed-up for expediting all layers of the AlexNet as
compared to the SA-CONV 8 . × 8-based accelerators. The speed-up on CONV
layers is due to the higher parallelism of computations offered by the heterogeneous

20 R. V. W. Putra et al.

Table 3 Comparisons to the state-of-the-art CNN accelerators

Eyeriss SCNN FlexFlow MPNA

Evaluated aspects [8] [29] [25] (this work)

Technology (nm) 65 16 65 28

Precision (fixed-point) 16-bit 16-bit 16-bit 8-bit

Number of PEs (MACs) 168 64 256 128

On-chip memory (KB) 181.5 1024 64 288

Area (mm. 2) 12.25 7.9 3.89 2.34

Power (mW) 278 NA . ∼1000 239

Frequency (MHz) 100–250 1000 1000 280

Performance (GOPS) 23.1 NA 420 35.8

Efficiency (GOPS/W) 83.1 NA 300–500 149.7

Acceleration target CONV CONV CONV CONV+FC

Network Layer

1

10

100

1000

deepS
-u

p

(lo
g)

Accelerator

SA-CONV 2x2 SA-CONV 4x4 SA-CONV 8x8 MPNA

Improved speed-up

Fig. 11 Performance speed-up of different SA-based accelerators that are normalized to the
accelerator with SA-CONV 1 . × 1 for the AlexNet workload

arrays in the MPNA as compared to the SA-CONV-based designs with smaller array
sizes (i.e., 2 . × 2, 4 . × 4, and 8 . × 8). Meanwhile, the speed-up on FC layers is mainly
due to the enhancements in SA-FC that enable the array generating output partial
sums at each clock cycle, thereby providing a higher throughput as compared to the
SA-CONV-based designs. Our MPNA design also achieves better performance than
Eyeriss [8] especially for FC layers, since Eyeriss only prioritizes for accelerating
CONV layers through the row stationary dataflow, and Eyeriss also does not disclose
their speed-up for the FC layers. Furthermore, the MPNA can operate at 280MHz
with 35.8GOPs, which is higher than Eyeriss, as shown in Table 3. Although the
MPNA has lower performance (GOPs) and operating frequency than other designs
(e.g., FlexFlow and SCNN), it offers other important benefits for embedded systems
(e.g., power/energy and area), which will be discussed in the following subsections.

Massively Parallel Neural Processing Array (MPNA) 21

1

100

10000

1000000

deta
mitsE

ygrenE
[

noitp
musnoC

µJ
]

(lo
g)

Energy reduction achieved by MPNA is 51% on average

SA-CONV 8x8-based Accelerator MPNA

Network Layer

Fig. 12 Estimated energy consumption of the conventional SA-based accelerator with 8 . × 8 array
size and our MPNA for the AlexNet workload

7.2.2 Power and Energy Consumption

For operational power, our MPNA consumes 239mW on average which is domi-
nated by the Pooling-and-Activation block, mainly due to its local memory (SPM)
operations (i.e., memory accesses). This power number is comparable to the
operational power of Eyeriss, and however our MPNA offers better acceleration
for a complete CNN architecture (i.e., including both the CONV and FC layers).
Furthermore, power consumption of the MPNA is also significantly lower than
other designs (e.g., 1W power for FlexFlow). Our MPNA achieves a performance
efficiency of . ∼149GOPs/W, which is considered high for embedded systems with
power budgets, such as the battery-powered IoT devices. In terms of energy
consumption, our MPNA achieves about 51% of energy saving as compared to
the conventional SA-based accelerator, as shown in Fig. 12. The reason is that our
MPNA effectively exploits (1) data reuse through the optimized dataflows and (2)
high parallelism from the heterogeneous arrays that lead to reduced processing
latency, thereby decreasing the energy consumption.

7.2.3 Area Footprint

Our MPNA design occupies 2.34mm. 2 area which encompasses the computation
part (i.e., about 1.38mm. 2) and the on-chip memories (i.e., about 0.96mm. 2),
including both the activation and weight buffers. Furthermore, Table 3 shows that
our MPNA accelerator occupies a competitively small area as compared to other
state-of-the-art CNN accelerators. This characteristic is especially beneficial for
embedded applications which typically require small-sized hardware implementa-
tion to enable their use cases, such as mobile and wearable devices.

22 R. V. W. Putra et al.

8 Conclusion

In this work, we show that a significant speed-up for the complete SNN architecture
(i.e., including both the CONV and FC layers) can be achieved through a synergistic
design methodology encompassing (1) the dataflow optimization that exploit differ-
ent types of data reuse and (2) the MPNA architecture with heterogeneous systolic
arrays and specialized on-chip buffers. The MPNA architecture is synthesized for a
28-nm technology through the ASIC design flow and evaluated for performance,
power/energy, and area. The results show performance gain of our design as
compared to the conventional systolic array-based accelerators. They also show that
our MPNA achieves better power/energy and area than several state-of-the-art CNN
accelerators. All these results suggest that our MPNA accelerator is suitable for
various resource- and power-/energy-constrained embedded systems.

Acknowledgments This work was partly supported by the Indonesia Endowment Fund for Edu-
cation (IEFE/LPDP) Graduate Scholarship Program, Ministry of Finance, Republic of Indonesia,
under Grant PRJ-1477/LPDP.3/2017.

References

1. Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N.E., Moshovos, A.: Cnvlutin:
Ineffectual-neuron-free deep neural network computing. In: Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture, pp. 1–13 (2016)

2. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural networks. J.
Emerg. Technol. Comput. Syst. 13(3) (2017). https://doi.org/10.1145/3005348

3. Balasubramonian, R., Kahng, A.B., Muralimanohar, N., Shafiee, A., Srinivas, V.: Cacti 7: New
tools for interconnect exploration in innovative off-chip memories. ACM Trans. Archit. Code
Optim. 14, 1–25 (2017)

4. Capra, M., Peloso, R., Masera, G., Ruo Roch, M., Martina, M.: Edge computing: a survey on
the hardware requirements in the internet of things world. Future Int. 11(4), 100 (2019). https://
doi.org/10.3390/fi11040100. https://www.mdpi.com/1999-5903/11/4/100

5. Capra, M., Bussolino, B., Marchisio, A., Shafique, M., Masera, G., Martina, M.: An updated
survey of efficient hardware architectures for accelerating deep convolutional neural networks.
Future Int. 12(7), 113 (2020)

6. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: Diannao: A small-
footprint high-throughput accelerator for ubiquitous machine-learning. In: 19th International
Conference on Architectural Support for Programming Languages and Operating Systems, pp.
269–284 (2014). https://doi.org/10.1145/2541940.2541967

7. Chen, Y.H., Emer, J., Sze, V.: Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture, pp. 367–379 (2016). https://doi.org/10.1109/ISCA.2016.40

8. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–
138 (2016)

9. Chen, Y., Yang, T.J., Emer, J., Sze, V.: Understanding the limitations of existing energy-
efficient design approaches for deep neural networks. In: 2018 Proceedings of SysML
Conference (2018)

https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40

Massively Parallel Neural Processing Array (MPNA) 23

10. Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu, M., Lo, D., Alkalay, S.,
Haselman, M., Adams, L., Ghandi, M., Heil, S., Patel, P., Sapek, A., Weisz, G., Woods,
L., Lanka, S., Reinhardt, S.K., Caulfield, A.M., Chung, E.S., Burger, D.: A configurable
cloud-scale DNN processor for real-time AI. In: 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 1–14 (2018). https://doi.org/10.1109/
ISCA.2018.00012

11. Gondimalla, A., Chesnut, N., Thottethodi, M., Vijaykumar, T.: Sparten: A sparse tensor
accelerator for convolutional neural networks. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 151–165 (2019)

12. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: Efficient
inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture, pp. 243–254 (2016). https://doi.org/10.
1109/ISCA.2016.30

13. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: Reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design, pp. 257–260 (2018). https://doi.
org/10.1109/IOLTS.2018.8474192

14. Hanif, M.A., Khalid, F., Putra, R.V.W., Teimoori, M.T., Kriebel, F., Zhang, J.J., Liu, K.,
Rehman, S., Theocharides, T., Artusi, A., et al.: Robust computing for machine learning-based
systems. In: Dependable Embedded Systems, pp. 479–503. Springer, Cham (2021)

15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1026–1034 (2015)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

17. Hegde, K., Yu, J., Agrawal, R., Yan, M., Pellauer, M., Fletcher, C.: UCNN: Exploiting
computational reuse in deep neural networks via weight repetition. In: 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA), pp. 674–687. IEEE
(2018)

18. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley,
M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, W., Hagmann,
R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A.,
Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law,
J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony,
M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick,
M., Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C.,
Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian,
B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon, D.H.: In-
datacenter performance analysis of a tensor processing unit. In: 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture, pp. 1–12 (2017). https://doi.org/10.1145/
3079856.3080246

19. Kim, D., Ahn, J., Yoo, S.: Zena: Zero-aware neural network accelerator. IEEE Design Test
35(1), 39–46 (2017)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

21. Kwon, H., Samajdar, A., Krishna, T.: Maeri: Enabling flexible dataflow mapping over
DNN accelerators via reconfigurable interconnects. In: 23rd International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 461–475
(2018). https://doi.org/10.1145/3173162.3173176

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176

24 R. V. W. Putra et al.

23. Li, J., Yan, G., Lu, W., Jiang, S., Gong, S., Wu, J., Li, X.: SmartShuttle: Optimizing off-chip
memory accesses for deep learning accelerators. In: 2018 Design, Automation Test in Europe
Conference Exhibition, pp. 343–348 (2018). https://doi.org/10.23919/DATE.2018.8342033

24. Li, J., Jiang, S., Gong, S., Wu, J., Yan, J., Yan, G., Li, X.: SqueezeFlow: a sparse CNN
accelerator exploiting concise convolution rules. IEEE Trans. Comput. 68(11), 1663–1677
(2019)

25. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: A flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium
on High Performance Computer Architecture, pp. 553–564 (2017). https://doi.org/10.1109/
HPCA.2017.29

26. Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., Xu, Z., Temam, O., Chen, Y.:
DaDianNao: A neural network supercomputer. IEEE Trans. Comput. 66(1), 73–88 (2016)

27. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network
acoustic models. In: Proceedings of the 30 th International Conference on Machine Learning,
vol. 30, p. 3. Citeseer (2013)

28. Malladi, K.T., Nothaft, F.A., Periyathambi, K., Lee, B.C., Kozyrakis, C., Horowitz, M.:
Towards energy-proportional datacenter memory with mobile dram. In: 2012 39th Annual
International Symposium on Computer Architecture (ISCA), pp. 37–48. IEEE (2012)

29. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer,
J., Keckler, S.W., Dally, W.J.: SCNN: An accelerator for compressed-sparse convolutional
neural networks. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture, pp. 27–40 (2017). https://doi.org/10.1145/3079856.3080254

30. Putra, R.V.W., Hanif, M.A., Shafique, M.: DRMap: A generic dram data mapping policy for
energy-efficient processing of convolutional neural networks. In: 2020 57th ACM/IEEEDesign
Automation Conference, pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218672

31. Putra, R.V.W., Hanif, M.A., Shafique, M.: ROMANet: Fine-grained reuse-driven off-chip
memory access management and data organization for deep neural network accelerators. IEEE
Trans. Very Large Scale Integr. Syst. 29(4), 702–715 (2021). https://doi.org/10.1109/TVLSI.
2021.3060509

32. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788 (2016)

33. Shafique, M., Marchisio, A., Putra, R.V.W., Hanif, M.A.: Towards energy-efficient and secure
edge ai: A cross-layer framework ICCAD special session paper. In: 2021 IEEE/ACM
International Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/
ICCAD51958.2021.9643539

34. Shin, D., Lee, J., Lee, J., Lee, J., Yoo, H.J.: DNPU: An energy-efficient deep-learning processor
with heterogeneous multi-core architecture. IEEE Micro 38(5), 85–93 (2018). https://doi.org/
10.1109/MM.2018.053631145

35. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: a tutorial
and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.
2761740

36. Tu, F., Yin, S., Ouyang, P., Tang, S., Liu, L., Wei, S.: Deep convolutional neural network
architecture with reconfigurable computation patterns. IEEE Trans. Very Large Scale Integr.
Syst. 25(8), 2220–2233 (2017)

37. Yu, J., Lukefahr, A., Palframan, D., Dasika, G., Das, R., Mahlke, S.: Scalpel: customizing DNN
pruning to the underlying hardware parallelism. ACM SIGARCH Comput. Architect. News
45(2), 548–560 (2017)

38. Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., Guo, Q., Chen, T., Chen, Y.: Cambricon-
X: An accelerator for sparse neural networks. In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 1–12 (2016). https://doi.org/10.1109/MICRO.2016.
7783723

https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723

Photonic NoCs for Energy-Efficient
Data-Centric Computing

Febin P. Sunny, Asif Mirza, Ishan G. Thakkar, Mahdi Nikdast,
and Sudeep Pasricha

1 Introduction

To match the increasing demand in processing capabilities of modern applications,
the core count in emerging manycore systems has been steadily increasing. For
example, Intel Xeon processors today have up to 56 cores [1], while NVIDIA’s
GPU’s have reported over 10,000 shader cores [2]. Emerging application-specific
processors are pushing these numbers to new highs, e.g., the Cerebras AI accelerator
has over 400,000 lightweight cores [3]. The increasing number of cores creates
greater core-to-core and core-to-memory communication.

Electrical networks-on-chip (ENoCs), which employ conventional metallic inter-
connects, already dissipate very high power to support the high bandwidths and low-
latency requirements of data-driven parallel applications today and are unlikely to
scale to meet the demands of future applications [4]. Fortunately, chip-scale silicon
photonics technology has emerged in recent years as a promising development to
enhance multicore systems with light speed photonic links that can overcome the
bottlenecks of slow and noise-prone electrical links. Silicon photonics can enable
photonic NoCs (PNoCs) with a promise of much higher bandwidths and lower
latencies than ENoCs [5].

Typical PNoC architectures employ several photonic devices such as photonic
waveguides, couplers, splitters, and multiwavelength laser sources, along with mod-

F. P. Sunny (�) · A. Mirza · M. Nikdast · S. Pasricha
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: Febin.Sunny@colostate.edu; asifmirz@rams.colostate.edu;
Mahdi.Nikdast@colostate.edu; sudeep@colostate.edu

I. G. Thakkar
Department of Electrical and Computer Engineering, Lexington, KY, USA
e-mail: igthakkar@uky.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_2

25

 31368 2385 a 31368 2385 a

 885 51863 a 885 51863
a

mailto:Febin.Sunny@colostate.edu
mailto:Febin.Sunny@colostate.edu
mailto:Febin.Sunny@colostate.edu

 11957 51863 a 11957
51863 a

mailto:asifmirz@rams.colostate.edu
mailto:asifmirz@rams.colostate.edu
mailto:asifmirz@rams.colostate.edu

 -2016
52970 a -2016 52970 a

mailto:Mahdi.Nikdast@colostate.edu
mailto:Mahdi.Nikdast@colostate.edu
mailto:Mahdi.Nikdast@colostate.edu

 9906 52970 a 9906 52970
a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

 885 56845 a 885 56845
a

mailto:igthakkar@uky.edu
mailto:igthakkar@uky.edu

26 F. P. Sunny et al.

ulators, detectors, and switches, devised using devices such as microring resonators
(MRs) and Mach-Zehnder interferometers (MZIs) [5]. PNoCs employ a laser source
(either off-chip or on-chip) to generate light with one or more wavelengths, which
is coupled by an optical coupler to an on-chip photonic waveguide. This waveguide
guides the input optical power of potentially multiple carrier wavelengths (referred
to as wavelength-division-multiplexed (WDM) transmission), via a series of optical
power splitters, to the individual nodes (e.g., processing cores) on the chip. Each
wavelength serves as a carrier for a data signal. Typically, multiple data signals are
generated at a source node in the electrical digital domain as sequences of logical 0
and 1 voltage levels. These input electrical data signals can be modulated onto the
wavelengths using a group (bank) of modulator MRs (e.g., 64-bit data modulated on
64 wavelengths), typically using on-off keying (OOK) modulation. Subsequently,
the carrier wavelengths are routed over the PNoC till they reach their destination
node, where the wavelengths are filtered and dropped into the waveguide by a bank
of filter MRs that redirect the wavelengths to photodetectors to recover the data in
the electrical domain. Each node in a PNoC can communicate to multiple other
nodes through such WDM-enabled photonic waveguides in PNoCs.

Unfortunately, optical signals accumulate losses and crosstalk noise as they
traverse PNoCs. This accumulation of losses necessitates high optical input power
from the laser for signal-to-noise ratio compensation and to guarantee that the
signal can be received at the destination node with sufficient power to enable
error-free recovery of the transmitted data. Moreover, the sensitivity of an MR to
the wavelength it is intended to couple with is related to its physical properties
(e.g., radius, width, thickness, refractive index of the device material) that can
vary with fabrication process and thermal variations. To rectify these problems,
MRs require active “tuning” components to correct the impact of these variations.
MRs can be tuned either by free-carrier injection (electro-optic tuning) or thermally
tuning the device (thermo-optic tuning), both these techniques aim at affecting the
effective refractive index of MR material, thereby the changing optical properties
to counteract the impact of variations. Such tuning entails energy and power
overheads, which can become significant as the number of MRs in PNoCs increases.
Novel solutions are therefore urgently needed to reduce these power overheads, so
that PNoCs can serve as a viable replacement to ENoCs in emerging and future
manycore architectures.

One promising direction towards this goal is to utilize approximate computing
in conjunction with silicon photonic communication. As computational complexity
and data volumes increase for emerging applications, ensuring fault-free computing
for them becomes increasingly difficult, for various reasons including the following:
(i) traditional redundancy-based fault tolerance require additional resources which is
hard to allocate among the increasing resource demands for big-data processing, and
(ii) the ongoing scaling of semiconductor devices makes them increasingly sensitive
to variations, e.g., due to imperfect fabrication processes. Approximate computing
trades off “acceptable errors” during execution for reduced energy consumption and
runtime and is a potential solution to both these challenges [6]. With diminishing

Photonic NoCs for Energy-Efficient Data-Centric Computing 27

performance-per-watt gains from Dennard scaling, leveraging such aggressive
techniques to achieve higher energy-efficiency is becoming increasingly important.

In this chapter, we explore how to leverage data approximation to benefit
the energy and power consumption footprints of PNoC architectures. To achieve
this goal, we analyze how data approximation impacts the output quality of
various applications and how that will impact energy and power requirements for
laser operation, transmission, and MR tuning. The framework discussed in this
chapter, called ARXON [7], extends a previous work (LORAX [8]) to implement
an aggressive loss-aware approximated-packet-transmission solution that reduces
power overheads due to the laser, crosstalk mitigation, and MR tuning. The main
contributions of this work are as follows:

• Developed an approach that relies on approximating a subset of data transfers
for applications, to reduce energy consumption in PNoCs while still maintaining
acceptable output quality for applications

• Proposed a strategy that adaptively switches between two modes of approximate
data transmission, based on the photonic signal loss profile along the traversed
path

• Evaluated the impact of utilizing multilevel signaling (pulse-amplitude mod-
ulation) instead of conventional on-off keying (OOK) signaling along with
approximate transfers for achieving significantly better energy-efficiency

• Explored how adapting existing approaches towards MR tuning and crosstalk
mitigation can help further reduce power overheads in PNoCs

• Evaluated ARXON framework on multiple applications and show its effective-
ness over the best-known prior work on approximating data transfers over PNoC
architectures

2 Related Work

By carefully relaxing the requirement for computational correctness, so as not
to impact the quality of service (QoS) of the application, it has been shown
that many applications can execute with a much lower energy consumption and
without significantly impacting application output quality. Some examples for
approximation-tolerant applications that can save energy through this approach
include audio transcoding, image processing, encoding/decoding during video
streaming [9, 10], and big-data applications [11, 12]. The fast-growing repository
of machine learning (ML) applications represents a particularly promising target
for approximation because of the exhibited resilience to errors in parameter
values by ML applications. As an example, it is possible to approximate the
weights (e.g., from 32-bit floating-point to 8-bit fixed point) in convolutional and
deep neural networks and with negligible degradation in the output classification
accuracy [10]. Many other approaches have been proposed for ML algorithm-level
approximations [13–15]. With ML applications becoming increasingly prevalent

28 F. P. Sunny et al.

in resource-constrained environments such as mobile and IoT platforms, there is
growing interest in utilizing approximated versions of ML applications for faster
and lower-energy inference [16].

In general, the approximate computing solutions can be broadly categorized into
four types based on their scope [17]: hardware, storage, software, and systems. The
approximation of hardware components allows for a reduction in their complexity,
and consequently their energy overheads [18]. For instance, an approximate full
adder can utilize simpler approximated components such as XOR/XNOR-based
adders and pass transistor-based multiplexers, for reduced energy consumption and
operational latency [19, 20]. Additional reduction in circuit complexity and power
dissipation can be enabled by avoiding XOR operations [21]. Techniques for storage
approximation can include reducing refresh rates in DRAM [22, 23], which results
in a deterioration of stored data, but at the advantage of increased energy-efficiency.
Approaches for software approximation include algorithmic approximation that
leverages domain specific knowledge [23–25]. They may also refer to approx-
imating annotated data, variables, and high-level programming constructs (e.g.,
loop iterations), via annotations in the software code [26, 27]. At the system
level, approximation involves modification of architectures to support imprecise
operations. Attempts to design an approximate NoC architecture fall under the
system level approximation category.

Several strategies have been proposed to approximate data transfers over ENoC
architectures by using strategies that reduce the number of bits or packets being
transmitted to reduce NoC utilization and thus reduce communication energy. An
approximate ENoC for GPUs was presented in [28], where similar data packets
were coalesced at the memory controller, to reduce the packets that traverse over
the network. A hardware-data-approximation framework with an online data error
control mechanism, which facilitates approximate matching of data patterns within
a controllable value range, for ENoCs, was presented in [29]. In [30], traffic data was
approximated by dropping values from a packet before it is sent on to the ENoC,
at a set interval. The data is then recreated at the destination nodes using a linear
interpolator-based predictor. A dual voltage ENoC is proposed in [31], where lower-
priority bits in a packet are transferred at a lower voltage level, which can save
energy at the cost of possible bit flips. In contrast, the higher priority bits of the
packet, including header bits, are transmitted with higher voltage, ensuring a lower
bit-error rate (BER) for them.

The approaches discussed so far focused on approximations for ENoCs. The
complex and unique design space of approximation techniques for PNoCs remains
relatively unexplored. There is a wide body of work which discusses strategies
to make PNoCs more efficient and overall viable [32–54]. However, the use of
approximate data communication in PNoCs for the first time was explored in [55].
The authors explored different levels of laser power for transmission of bits across
a photonic waveguide, with a lower level of laser power used for bits that could
be approximated, but at the cost of higher BER for these bits. The work focused
specifically on approximation of floating-point data, where the least significant
bits (LSBs) were transmitted at a lower laser-power level. However, the specific

Photonic NoCs for Energy-Efficient Data-Centric Computing 29

number of these bits to be approximated as well as the laser-power levels were
decided in an application-independent manner, which ignores application-specific
sensitivity to approximation. Moreover, the laser-power level is set statically and
without considering the dynamic optical loss that photonic signals encounter as
they traverse the network. LORAX framework [8] improved upon the work in
[55] by using a loss- and QoS aware approach to adapt laser power at runtime
for approximate communication in PNoCs. LORAX took into consideration the
impact of adaptive approximation, varying laser-power levels, and the use of 4-
pulse amplitude modulation (PAM4) on application output quality, to maximize
application-specific energy savings in an acceptable manner. There may be apparent
similarities between these approaches and works in say [55] or [56], but the design
considerations, modeling, and implementation in hardware required for PNoC are
very different from an ENoC. These differences stem from the differences in
physical operation of the basic components in ENoCs (transistors operating in
digital domain) and PNoCs (photonic devices such as MZIs or MRs operating in
the optical analog domain).

The ARXON (AppRoXimation framework for On-chip photonic Networks)
framework discussed in this chapter improves upon LORAX in multiple ways
through:

(i) Considering integer data for approximation in addition to floating-point data
(LORAX only considered floating-point data)

(ii) Integrating the impact of fabrication-process variations (FPV) and thermal
variations (TV) on MR tuning and leveraging it for energy savings

(iii) Approximating error correction techniques, which are commonly used in
PNoCs, to save more energy

(iv) Analyzing the potential for approximation for a much broader set of applica-
tions and across multiple PNoC architectures.

Section 5 of this chapter discusses the ARXON framework in detail, with
evaluation results presented in Sect. 6.

3 Data Formats and Approximations

3.1 Floating-Point Data

In many applications, floating-point data can be safely considered for approximation
and without impacting the QoS of the approximation, as explored and demonstrated
in [8, 55]. This compatibility of floating-point data to approximation is in large
part due to the way in which it is represented. The IEEE-754 standard defines a
standardized floating-point data representation, which consists of three parts: sign
(S), exponent (E), and mantissa (M), as shown in Fig. 1. The value of the data
stored is

30 F. P. Sunny et al.

Fig. 1 IEEE 754 floating-point representation

X = (−1)S × 2E−bias × (1 + M) (1)

where X is the resulting floating-point value. The bias values are fixed values, 127
and 1203, respectively, for single and double precision representation, and are used
to ensure that the exponent is always positive, thereby eliminating the need to
store the exponent sign bit. The single precision (SP) and double precision (DP)
representations vary in the number of bits allocated to the E and M (see Fig. 1).
E is 8 bits for SP and 11 bits for DP, while M is 23 bits for SP and 52 bits for
DP. S remains 1 bit for both cases. From Eq. (1), we can observe that the S and E
values notably affect the value of X. But X is typically less sensitive to alterations
in M in many cases. M also takes up a significant portion of the floating-point data
representation. We consider S and E as MSBs that may not be altered, whereas M
makes up the LSBs that are more suitable for approximation to save energy during
photonic transmission.

3.2 Integer Data

Integer data approximation is significantly more challenging, as it does not have
exploitable separations in its representation, like those present in the IEEE754
standard for floating-point data. An integer data value is usually represented as an
N-bit chunk of bits that can represent signed or unsigned integer data. If unsigned,
the N-bits of data can be used to represent an integer value in the range from 0 to
2N−1. If signed, the most significant bit represents the sign bit, and the remaining
N−1 bits represent an integer value in the range from – (2N−1−1) to + (2N−1−1).
Moreover, the number of bits, N, in an integer data word can change depending
on the usage or application. N is usually in the range from 8 to 64 bits in today’s
platforms. Therefore, devising a generalized approach to approximate the integer
data values is challenging. As a result, we have opted for an application-specific
approach, where we identify possible integer variables that have larger than required
size, depending on the values they handle. We deem the size of an unsigned integer
variable as larger than required, if the MSBs of the variable are not holding any
useful information, i.e., consisting of 0-bits. We approximate such unnecessarily

Photonic NoCs for Energy-Efficient Data-Centric Computing 31

large unsigned-integer variables by truncating their MSBs. We also consider LSB
approximation for integer packets, when viable. However, we observed that integer
data is generally not as tolerant to LSB approximation as floating-point data, so this
approximation approach cannot utilized be as aggressive as LSB approximation in
floating-point data and is thus used sparsely in the proposed framework.

3.3 Applications Considered for Approximation

To establish the effectiveness of this approach that focuses on approximating
floating-point LSB data and integer MSB data, we evaluate the breakdown of
integer and floating-point data usage across multiple applications. We selected the
ACCEPT benchmark suite [25], which consists of several applications, including
some from the well-known benchmark suite PARSEC [56], that exhibit a relatively
strong potential for data approximations. While the applications in this suite may be
executed on a single core, to adapt these to a PNoC-based multicore platform with
64 cores, we used a multi-application simulation approach where the applications
were replicated across the 64 cores to emulate multi-application workloads on
real systems. Along with the applications from [25], we also considered several
convolutional neural-network applications from the tinyDNN [57] benchmark suite
to see how the ARXON framework would perform for ML applications. The
multi-application simulation approach was adopted, as this would simulate multiple
applications will be running and competing for on-chip resources simultaneously,
as in a real many-core system.

To count the total number of integer and floating-point packets in transit
across the memory hierarchy during the simulations, we used the gem5 [58] full
system-level simulator and the Intel PIN tool [59] in tandem. Figure 2 shows the
breakdown of the floating-point and integer packets across the applications for
large input workloads. We considered all floating-point data packets as candidates
for approximation. As for integer packets, we identified specific variables and a
subset of their bits (“approximable integer packets”) that can be approximated
safely. The goal while selecting floating-point and integer packets for approximation
was to keep application-specific error to below 10% of the original output. It can
be observed that while a majority of the applications have integer packets that
cannot be approximated without hurting output quality significantly, most of these
applications have a nontrivial percentage of their overall packet count that can be
approximated. This is a promising observation that establishes the validity of the
framework. However, before we describe the framework in detail (Sect. 5), we
briefly cover challenges in PNoCs related to crosstalk and signal loss (Sect. 4),
which this approximation approach leverages for energy savings.

32 F. P. Sunny et al.

Fig. 2 Characterization of applications considered for evaluation, as presented in [7]

4 Crosstalk and Optical Loss in PNoCs

The overall data movement on the chip increases as the number of on-chip
processing elements increases and applications utilize more data. To meet the
demands of the increased communication, a larger number of photonic waveguides,
wavelengths, and MR devices are necessary. However, using a larger number of
photonic components makes it challenging to maintain acceptable BER and achieve
sufficient signal-to-noise ratio (SNR) in any PNoC architecture due to optical signal
loss and crosstalk noise accumulation in photonic building blocks [60].

Light wave propagation in photonic interconnects relies significantly on the
precise geometry adjustment of photonic components. Any distortion in waveguide
geometries and shape can notably affect the optical power and energy-efficiency
in waveguides. For instance, sidewall roughness due to inevitable lithography and
etching-process imperfections can result in scattering and hence optical losses in
waveguides [61]. Such losses experienced by the optical signal as it passes through
a waveguide is called propagation losses. In addition to propagation loss, there is
optical loss whenever a waveguide bends (i.e., bending loss) or when a wavelength
passes (i.e., passing loss) or drops (i.e., drop loss) into an MR device. To compensate
for the losses and ensure appropriate optical-power levels at destination nodes where
the signals are detected, increased laser power is required.

Crosstalk is another inherent phenomenon in photonic interconnects that
degrades energy-efficiency and reliability. Crosstalk in PNoCs occurs due to
variations in MR geometry or refractive index and imperfect spectral properties
of MRs, which can cause an MR to couple optical power from another
optical channel/wavelength in addition to its own optical channel (i.e., resonant

Photonic NoCs for Energy-Efficient Data-Centric Computing 33

wavelength). This leakage of power from one optical channel to other essentially
becomes crosstalk noise in photonic interconnects. Such crosstalk noise is of
concern when multiple optical channels exist within close (<1 nm) spectral
proximity (referred to as channel spacing). This is especially evident in dense-
wavelength-division multiplexed (DWDM) waveguides, which is necessary to
support a higher bandwidth for emerging manycore platforms. In such DWDM
systems, not only will optical signals in each channel suffer from optical loss,
but inter- and intra-channel crosstalk [62] accumulating on optical signals can
severely reduce SNR and increase BER. Reducing crosstalk is challenging, and
techniques to minimize crosstalk (e.g., [43, 63, 64]) introduce further power and
latency overheads.

It should be noted that the optical-power loss and crosstalk noise from a single
silicon photonic device (e.g., MR) can be very small, and hence negligible [65].
However, in PNoCs integrating a large number of such devices (e.g., hundreds of
thousands of MRs), the small power loss and crosstalk noise at the device-level
accumulate to a point that they can severely reduce the performance and energy-
efficiency in such architectures. In ARXON framework, as we are considering
approximated data packets, we can intelligently relax crosstalk-mitigation mech-
anisms and optical loss compensation for the approximated bits, to aggressively
reduce power and energy consumption overheads.

5 ARXON Framework: Overview

This section of this chapter discusses the components of the ARXON framework.
Section 5.1 provides an overview of our loss-aware laser-power optimization
strategy. Sections 5.2 and 5.3 discuss how crosstalk mitigation and tuning can be
relaxed to save power during approximate bit transfers. Finally, Sect 5.4 describes
the integration of multilevel signaling to reduce power dissipation further during
approximate communication in PNoCs.

5.1 Loss-Aware Power Management for Approximation

Optical signals transmitted over a waveguide (photonic link) experiences various
optical losses along the path from a source to a destination, as discussed in Sect
4. To express how these optical losses tie in with the required input laser power
provisioned to the optical signals in the waveguide, we can use the following model
[66]:

Plaser − Sdetector ≥ Pphotoloss + 10 × log10Nλ (2)

34 F. P. Sunny et al.

Here, Plaser is the laser power in dBm, Sdetector is the receiver sensitivity, and Nλ is
the number of unique wavelengths, i.e., optical channels in the link. Also, Pphotoloss
is the total optical loss accumulated on the optical signal during its transmission,
which includes propagation, crossing, and bending losses in the waveguides,
through- and drop-port losses of MR modulators and filters and modulating loss
in modulator MRs due to imperfect modulation [63]. Plaser thus depends on the
link bandwidth in terms of Nλ and the total loss Pphotoloss encountered by each
optical signal traversing the network. A signal can only be accurately recovered
at the destination node if the received signal power is higher than Sdetector, after
encountering Pphotoloss. Ensuring this requires a high-enough Plaser to compensate
for all optical losses.

To approximate data transmission for floating-point data transfers [55], use lower
Plaser for transmitting LSBs while keeping Plaser unchanged for MSBs. However,
this technique fails to take into account the higher losses encountered by a packet
if the destination node is relatively farther along a waveguide from a source node.
The higher losses encountered can drive the signal power at the detector MRs lower
than Sdetector, which would result in detecting logic “0” for all the approximated
signals at the destination node (e.g., with OOK modulation). On the other hand,
in the scenario where the destination is closer to the source, it may be possible
to detect the approximated signals accurately, even with the reduced Plaser for the
approximated bits, as the losses encountered are low enough that the signal power
at the detector MRs would be higher than Sdetector. For each data transfer on a
waveguide, if we are aware of the distance of the destination from the source, it
is possible to calculate the losses encountered for the signals, which can allow us to
determine whether the signals can be recovered accurately, or if they will be detected
as “0s.” In this scenario, it is more efficient to simply truncate all the approximated
bits (i.e., reduce Plaser to 0 for optical channels carrying the approximated signals)
when the destination is farther along the waveguide and there is no likelihood of the
signal being recovered accurately. Moreover, in the cases where the destination is
closer to the source, we can transmit the approximated signals with a lower Plaser
and still retrieve the correct data. This intelligent distance-aware transmission model
for data approximation allows for some of the data to be detected accurately at the
destination, while approximating other data depending on its content and distance
to the destination.

Figure 3 shows the operational details of the distance-aware transmission model
in our framework, on a single-writer-multiple-reader (SWMR) waveguide that is
part of a PNoC architecture. Note that while the framework is to illustrate an
SWMR waveguide, it is also applicable (with minimal changes) to multiple-writer-
multiple reader (MWMR) and multiple-writer-single reader (MWSR) waveguides
that are also used in many PNoCs. In Fig. 3, only one sender node is active per
data transmission phase, and there is one receiver node (out of three nodes in the
figure) that acts as the destination for the transmission. In a pre-transmission phase
(called receiver-selection phase), the sender notifies the rest of the nodes about the
destination for the upcoming data transmission, and only the destination node will
activate its MR banks, whereas the other nodes will power down their MR banks

Photonic NoCs for Energy-Efficient Data-Centric Computing 35

Fig. 3 Overview of the ARXON framework

to save power. As shown in Fig. 3, if the destination node is close to the sender
node (e.g., D1), we can transmit the approximated bit signals with a lower Plaser.
Otherwise, if the destination node is farther away from the sender node (e.g., D3),
we determine that it would not be possible to detect the approximated signals at
that destination due to the greater losses the signals will encounter. In this second
scenario, we can dynamically turn off Plaser, essentially truncating the bits.

We consider both integer and floating-point data for approximation. For floating-
point data, we perform distance aware transmission of the LSBs (M bits of the
floating-point data representation) of the data in a controlled manner, so as not
to impact the overall output quality of the application. Figure 4 shows how
transmission of data will conform to the distance aware transmission policy of our
framework. In the case where substantial losses are expected to be encountered
between a source and destination, we adopt the strategy shown in Fig. 4a, where the
data is truncated, as the approximated bits would have been lost during transmission
anyway. When the signal can have enough power to be successfully received at the
destination node, we adopt the strategy shown in Fig. 4b, where the LSB of the data
is transmitted at a lowered laser power than its nonapproximated counterparts. The
power at which the bits can be transmitted, and the number of the approximated bits
will depend on the application, as discussed in Sect. 6.

For approximating integer variables, we take a different approach. From our
analysis, we observe that indiscriminate approximation of integer data in an
application can significantly reduce output quality. Therefore, we instead profile
applications and log the range of values stored in each integer variable. If the range
of values is smaller than the bit size allotted to the variable (e.g., the case where

36 F. P. Sunny et al.

Fig. 4 Floating-point data transmission on a photonic waveguide via (a) truncation and (b)
lowering laser power

a 32-bit integer variable only stores values up to 24 bits throughout the run of
the application), we consider it a candidate for approximation. We can remove or
truncate the MSBs that are unused in such variables that will otherwise take up input
laser power, modulation/demodulation energy, and tuning energy necessary for
transmission. We can also try and approximate the LSBs of the integer packets, and
this approach can work in integer variables that store very large values where slight
errors in the LSBs have minimal impact. But integer variables amenable to LSB
approximation without significantly reducing output quality are rare. Nonetheless,
for any such amenable integer data, the distance aware transmission model is applied
to approximated LSB bits as well. Figure 5 summarizes our approximation strategy
for integer packets.

To implement these strategies, we require the following: (i) a dynamic control
mechanism for the laser power being injected into the on-chip waveguides and (ii)
a mechanism to annotate approximable variables in the application source code, for
runtime adaptation of transfers involving these variables.

We use an on-chip laser array with vertical-cavity surface-emitting lasers
(VCSELs) [67], which can be directly controlled using on-chip laser drivers.
With the laser drivers, we control the power fed into each individual VCSEL, thus
controlling the power of the laser output for a particular wavelength corresponding
to that VCSEL. The gateway interface (GWI) that interfaces the electrical layer

Photonic NoCs for Energy-Efficient Data-Centric Computing 37

Fig. 5 The adopted approximated integer data transmission method

of the chip to the PNoC (see Fig. 3) communicates the desired Plaser power level
(including 0 for truncation) to the drivers, via an optical link manager, similar in
structure to the one proposed in [68].

To generate necessary flags for data that is approximable, identification of
candidate packets to be approximated is done at the processing-element level, via
source-code annotations [25]. To allow for proper decoding of approximated or
truncated packets at the destination flags indicating the type of data and the amount
of data being truncated/approximated is necessary. For this, the two additional
flags can be included in the packet header, at the processing-element level. The
first (1 bit) flag indicates whether the approximable packet contains integer or
float data and the second (1 bit) flag indicates whether the approximation is to be
done for LSBs or MSBs. The number of bits that can be safely approximated or
truncated are determined offline for each application and stored in lookup tables
(LUTs) at the network interface (NI) which connects processing elements to routers
that are in turn connected to GWIs. The number of bits approximated/truncated
in a packet is also passed as part of the header flit of the packet to the GWI.
This information can be used to gate (i.e., prevent) those bits from being passed
into encoding/decoding circuitry. We also add six bits to the header flit to convey
the number of bits truncated/approximated in the data packet, which is necessary
information for decoding the data at the destination GWI. These six bits represent
the number of approximated/truncated bits in the range from 0 to 32 bits, which is
the range of approximation/truncation in ARXON.

Usually the header flit of the packet contains the routing information, which can
just be the destination address. We consider a flit size of 64 bits, i.e., 64 bits from
a packet are transmitted per transmission cycle. The number of used bits in the
header flit in a NoC do not exceed 16 bits (for the destination and source addresses),
thus making it possible to incorporate the 8 necessary bits containing the two bits
for the necessary flags and 6 bits for the approximation/truncation size information
without causing any additional latency overheads. Once the header flit is received
at the destination GWI, the flags and the approximated/truncated bits information

38 F. P. Sunny et al.

are used to select the appropriate LSB/MSB to be not considered for decoding. The
packet ID from the flit can then be used to track the remaining flits in the packet and
treat them accordingly, depending on whether they were approximated or truncated.

Once the approximable bits in a packet have been identified, we must determine
whether the approximation during their transfer is to be accomplished via reduced
power transmission or truncation. This requires a LUT at each GWI (see Fig. 3)
populated with the destination IDs to which the loss values are sufficiently large
enough to warrant truncation. The values can be easily calculated post-fabrication
at design time, as the distance between nodes as well as the cumulative loss to their
GWI from the source does not change at runtime. Once the decision to truncate
or transmit at a lower laser power is made, depending on the destination node,
the required power levels for the wavelengths are communicated to the VCSEL
drivers via the optical-link manager. We discuss the overheads of the tables and the
application specific tuning of Plaser for the approximated signals in Sect. 6.

5.2 Relaxed Crosstalk Mitigation Strategy

Due to the challenges with signal crosstalk outlined in Sect. 4, PNoCs must
utilize one or more crosstalk mitigation strategies to reduce BER and achieve
high SNR. We consider a state-of-the-art crosstalk mitigation strategy from [43]
that can be applied at the link level in PNoCs. Analyses from [43] showed that
a “1” carried by the wavelengths in the DWDM wavelength group adjacent to
the resonant wavelength (λ _ MR) of an MR causes higher crosstalk in that MR.
Hence, an encoding strategy to avoid two consecutive optical channels to carry
“1,” by replacing adjacent “1s” with “0s” was proposed, to reduce interchannel
crosstalk. This technique essentially helps by reducing the optical signal-strength of
immediate nonresonant wavelengths and improving SNR. Two encoding techniques
were proposed that encoded nibbles (4 bits) of data. The PCTM5B technique
encoded the nibble to 5-bit data, while the PCTM6B technique encoded the nibble
to 6-bit data. Table 1 shows the code words used in these encoding techniques.
Note that to implement PCTM5B on a photonic link with 64-bit word parallel
transfers, 16 additional bits are required, which increases the number of MRs by
25%. Similarly, for PCTM6B, 32 additional bits are required for a 64-bit data word,
and this increases the number of MRs by 50%. We consider the lower-overhead
PCTM5B technique to be integrated into the PNoCs considered for analyses (Sect
.6) by default, to meet BER goals.

We assume the baseline configuration of the PNoC to have implemented
PCTM5B, for crosstalk mitigation. This means the encoder/decoder circuitry and
the LUT, containing the data word-code word pairs, are incorporated into the
GWI. Using these additions, the incoming packets from the processing elements
can be encoded to PCTM5B code words before they are transmitted to their
destination, and at the destination, the packets are decoded using the LUTs. In
the approximation scheme employed in ARXON, applying crosstalk mitigation

Photonic NoCs for Energy-Efficient Data-Centric Computing 39

Table 1 Data word to code
word conversion [43]

Data word Code word Data word Code word

Code words for PCTM5B technique
0000 00000 1000 01000
0001 00001 1001 01001
0010 00010 1010 01010
0011 10101 1011 10100
0100 00100 1100 01100
0101 00101 1101 10010
0110 00110 1110 10001
0111 10110 1111 10000
Code words for PCTM6B technique
0000 000000 1000 001000
0001 000001 1001 001001
0010 000010 1010 001010
0011 100000 1011 010100
0100 000100 1100 100010
0101 000101 1101 010010
0110 010101 1110 010001
0111 100001 1111 010000

via PCTM5B technique to the approximated bits is an unnecessary overhead as
it does not provide any benefits towards BER. By relaxing crosstalk mitigation
for the truncated or approximated bits, it is possible to reduce the energy costs of
the mitigation strategy. We do this by leveraging the approximation information
gathered using our offline analysis of applications, where we consider that some
LSB/MSB of the data can be approximated/truncated. We do not consider these
approximable bits for encoding, by gating their access to the encoder. Similarly, at
the destination, when an approximated/truncated packet is received, the information
from our LUTs are used to gate the approximated/truncated bits from being passed
into the decoder circuitry.

5.3 Relaxed MR Tuning Strategy

Thermo-optic or electro-optic tuning of MRs in a PNoC is crucial for ensuring
reliable communication, by counter-acting the effects of FPV and TV. We assume
the use of thermo-optic tuning in PNoCs, due to its better range of resonant
wavelength shift (�λMR) correction. Electro-optic tuning can provide a tuning range
of at most 1.5 nm [69]. In contrast, thermo-optic tuning can provide a tuning range
of about 6.6 nm corresponding to the temperature range of up to 60 K [70] at
0.11 nm/K sensitivity [71]. This comes at the price of higher energy consumption
(~mW/nm) and slower operation (in units of µs). In our framework, we aim to
reduce the overhead of tuning the MRs associated with truncated bits. We relax the

40 F. P. Sunny et al.

tuning requirement for MRs associated with the truncated bits, by turning off the
tuning mechanism for those MRs. We do not consider approximated bits for relaxed
MR tuning, as the added noise this approach generates, due to thermal drift of λMR,
may render the approximated bits unreadable at the destination GWI.

5.4 Integrating Multilevel Signaling

The discussion in the previous subsections assumes the use of conventional on-
off keying (OOK) signal modulation, where each photonic signal can have one of
two amplitude levels: high or on (when transmitting a “1”), and low or off (when
transmitting a “0”). In contrast, multilevel signaling is a signal-modulation scheme
where more than two levels of voltage can be used to modulate multiple bits of
data simultaneously in each optical signal. The obvious benefit with such multilevel
signaling is an increase in the bandwidth. But for PNoCs multilevel signaling also
provides the added benefit of reduced power consumption (compared to an OOK-
based PNoC), by reducing the number of optical channels needed to obtain the same
bandwidth. Leveraging this technique in the photonic domain has, however, tradi-
tionally been a cumbersome process with high overheads, e.g., when using the signal
superposition techniques from [72]. But with advances such as the introduction of
optical digital to analog converter (ODAC) circuits [73] that are much more compact
and faster than MZIs used in techniques involving superimposition [72], multilevel
signaling has been shown to be more energy efficient than OOK [66]. The overall
reduction in power and energy makes multilevel signaling a promising candidate for
more aggressive energy savings in silicon photonic networks.

Four-level pulse amplitude modulation (PAM4) is a multilevel signal modulation
scheme where two extra levels of voltage (or optical signal power in case of optical
modulation) are added in between the “0” and “1” levels of OOK. This allows PAM4
to transmit two bits per modulator as opposed to one bit per modulator in OOK.
This in turn increases the communication bandwidth of PAM4 when compared to
OOK. We are interested in evaluating the impact of using PAM4 in PNoCs and
how its use will impact the effectiveness of the discussed approximation strategies
in ARXON. While PAM4 promises better energy-efficiency than OOK, it is prone
to higher BER due to having multiple levels of the signal close to each other in
optical power. Thus, we cannot reduce the laser-power level of the LSB bits to the
level used in OOK, as it would significantly reduce the likelihood of accurate data
recovery even when destination nodes are relatively close to the source. Thus, when
PAM4 is used, we need to increase the laser power compared to OOK. We used
an empirically determined value of 1.5× the laser power that was used for OOK,
to prevent the degradation of approximated signals transmitted with PAM4. This
may seem like a backward step in conserving energy, but the reduced-operational
cost per modulation, reduced modulator and demodulator losses, and the reduced
wavelength count for achieving the same bandwidth as OOK may reduce the overall
laser power and energy consumption. Also, while it is possible to add more signaling

Photonic NoCs for Energy-Efficient Data-Centric Computing 41

levels (e.g., to use a PAM8 modulation scheme [74]), as the number of amplitude
levels increases, the optical signal becomes increasingly susceptible to noise and
causes increase in BER [75]. To ensure reliable communication when using PAM8,
the bandwidth and speed of operation must be sacrificed [74]. Considering these
constraints, we limit the extent of multilevel signaling integration in our framework
to PAM4. The experimental results in the next section quantify the impact and trade-
off when using PAM4 signaling in our framework.

6 ARXON Evaluation and Simulation Results

6.1 Simulation Setup

To evaluate our ARXON framework, we implement it in Clos [76] and SwiftNoC
PNoC architectures [77] for a 64-core processor, with baseline OOK signaling,
PCTM5B crosstalk mitigation, and thermo-optic tuning in MRs.

The Clos PNoC, shown in Fig. 6a, has an 8-ary three-stage topology for a
64-core system with eight clusters and eight cores per cluster. The PNoC is
used for communication between clusters. It utilizes an optical crossbar topology
with point-to-point photonic links utilizing SWMR waveguides for inter-cluster
communication. Each cluster has two concentrators, and a group of four cores is
connected to each concentrator, where concentrators communicate with each other
using an electrical router.

For the SwiftNoC PNoC, as shown in Fig. 6b, we have again considered a 64-core
system. Each node here has four cores and communication within the node happens
through a 5 × 5 router, with the fifth port of the router connected to a GWI, which
facilitates transfers between the CMOS-electrical layer and the photonic layer. Each
GWI connects four nodes (16 processing cores). The architecture utilizes eight
waveguide groups with four MWMR waveguides per group in a crossbar topology.
In order to support the MWMR communication, SwiftNoC utilizes a concurrent
token stream arbitration that provides multiple simultaneous tokens and increases
channel utilization.

We performed a simulation-based analysis to visualize the impact of losses on
laser power, modeled using Eq. (2). These losses are critical in ARXON’s loss-
aware approximation/truncation strategy. The Clos PNoC has a waveguide length
of 4.5 cm, and the SwiftNoC PNoC has a waveguide length of 8.3 cm over the
considered 400 mm2 chip. In both PNoCs, the first MR is encountered at ~1 cm, and
the last MR is encountered at ~3.8 cm for Clos PNoC and ~7.8 cm for SwiftNoC.
This relationship is visualized in Fig. 7, where the sudden jumps in power indicate
a new GWI with the optical devices being encountered along the waveguide.

The considered PNoC architectures were modeled and simulated using an in-
house SystemC-based cycle-accurate simulator. A combination of gem5 full-system
simulator [58] and Intel PIN toolkit [59] was used to generate traces for the

42 F. P. Sunny et al.

Fig. 6 PNoC architectures considered for analyses. (a) 8-ary 3-stage Clos architecture with 64
cores [76] and (b) schematic overview of SwiftNoC architecture [77]

considered application; these were replayed on the PNoC simulators to determine
the effectiveness of ARXON framework on the PNoC. The PIN tool was used
to obtain the addresses of the variables we deemed suitable for approximation
from our profiling analysis of applications and then to track accesses to them.
Using this information in gem5 simulation, we track the relevant data flow at
various levels of the simulated system (processor level, memory controller level,
DRAM level, and cache level). The information generated while the simulation is
running was consolidated, and custom python scripts were created to extract the
necessary information about the data packets (e.g., timestamp at origin, their source,
destination, data values, and control values from the packet header) and to generate
the traces necessary for our cycle accurate simulator to simulate the applications
on these PNoC architectures. Then, details of the approximate data communication

Photonic NoCs for Energy-Efficient Data-Centric Computing 43

Fig. 7 Laser-power consumption behavior over the length of the waveguide in (a) Clos PNoC and
(b) SwiftNoC. (Taken from Sunny et al. [7])

(i.e., whether a packet was truncated or transmitted at lower power) were used to
modify data packets in a subsequent gem5 simulation, to estimate the impact of the
approximation strategy on output quality for the application being considered. Table
2 shows gem5 architectural simulation parameters considered in our experiments.
We have based our simulations on x86 cores, but these simulations and our approach
is applicable to systems having other types of cores as well, e.g., ARM cores.
Twelve applications, ten from the ACCEPT benchmark suite and two from tinyDNN
benchmark suite, were used in our evaluations. The performance was evaluated at

44 F. P. Sunny et al.

Table 2 64-core architecture configuration

Simulated component Specification

No. of cores, processor type 64, ×86
DRAM 8 GB, DDR3
Memory controllers 8
L1 I/D cache, line size 128 KB each, direct mapped, 64 B
L2 cache, line size, coherence 2 MB, two-way set associative, 64 B, MESI

the 22 nm CMOS node for 400 mm2 chips, with cores and routers operating at
5 GHz clock frequency. DSENT [78] was used to calculate the energy consumption
of routers and the GWI at each node. Each GWI holds two LUTs for our framework;
these are one which holds the information regarding which destination addresses
are preferred for truncation and another for PCTMB5 encoding scheme. The size
of both the LUTs at GWI level is fixed and is application independent, as the
information one store is hardware dependent and the other stores a fixed set of
encoding-decoding information. The PCTM5B LUT takes up only 144 bits for
storing encoding decoding information at each GWI. The destination ID LUT can
take up a maximum of 32 bits at each GWI for Clos PNoC and 64 bits for SwiftNoC
variants.

The table containing information regarding number of bits to be approximat-
ed/truncated for integer/float approximable packets is stored at the network interface
(NI) of each processor. The maximum number of bits required in these LUTs for
the worst case (application with the highest number of approximable variables)
is a few hundred bits for the applications we considered. CACTI v6.5 [79] and
scaling equations from [80] were used to evaluate the power, area, and delay for
the lookup tables in NIs and GWIs. These values were found to be 0.236 mm2 for
the area consumption for all the tables, with a total power overhead, for reading
from and writing into the tables, of 0.135 mW for Clos and 0.472 mm2 and
0.27 mW respectively, for SwiftNoC. The combined power and area consumption
of associated circuitry necessary for accessing information in the LUTs, calculated
using gate-level analysis, is 0.0274 mm2 and 4.224 mW for Clos and 0.0548 mm2

and 8.448 mW for SwiftNoC. LUTs in both Clos and SwiftNoC have the same
number of entries as both architectures have the same number of processing
elements. The encoding/decoding scheme is the same and the approximations done
depend on the output error quality of the application and not the architecture, while
SwiftNoC has double the number of GWIs, and hence double the number of LUTs.
The access time for scratchpad RAMs designed with 22-nm technology node was
under 1 cycle from synthesis estimates.

For implementing the dynamic Plaser control, ARXON needs a VCSEL control
unit. The VCSEL control in ARXON was modeled after the optical link manager
in [68], where the channel management for their PNoC design was described.
However, since we are considering PNoCs from prior works with their own channel
management systems in place for our analysis, we only adopt the approach for

Photonic NoCs for Energy-Efficient Data-Centric Computing 45

Table 3 Loss and power parameters considered for PNoC simulations

Parameters considered Standard values Aggressive values

Receiver sensitivity −20 dBm [81] −23.4 dBm [82]
MR through loss 0.02 dB [83] 0.02 dB [83]
MR drop loss 0.7 dB [84] 0.5 dB [85]
Propagation loss 1 dB/cm 0.25 dB/cm [86]
Bending loss 0.01 dB/90◦ [87] 0.005 dB/90◦ [88]
Thermo-optic tuning 6.67 mW/nm [89] 240 µW/nm [71]

VCSEL control from [68]. The VCSEL control described in [68] uses a combination
of MRs and PDs, but we only require the MR-based switching mechanism for the
VCSEL output. From the data available in [68], we calculated the area overhead
necessary for implementing the VCSEL control, which was 0.093 mm2 for OOK
variants and 0.047 mm2 for PAM4 variants of both the architectures.

Clos and SwiftNoC PNoC architectures with PCTM5B are used as baselines
for our analyses in this work. We have also considered a two-cycle overhead for
PCTM5B encoding and decoding of the signals, as calculated in [43]. We considered
Nλ = 64 for OOK, which would enable 64-bit transmission across a waveguide
per cycle. For PAM4, we only need to consider Nλ = 32 to achieve the same
bandwidth as with OOK modulation. Table 3 shows the energy values for losses
and power dissipation in different photonic devices, which we have used in our
modeling efforts. We use a “standard” set of values for these parameters from
existing prototyping efforts, and a more “aggressive” set of values as per future
projections from various research efforts. Our approach sacrifices reliability of
approximated bits in floating point data LSB and selected integer variable data, for
EPB and laser-power savings, as discussed in Sects. 5.2, 5.3, and 5.4.

We use the standard values for most of our simulations and use the aggressive
values in Sect. 6.4. These values are used to calculate laser power from Eq. (2)
and total power after considering tuning and lookup-table overheads. We consider
a laser efficiency of 10% for our on-chip VCSELs, which is midway, the initial
and worst-case efficiencies mentioned in [67]. We additionally consider a PAM4-
induced-signaling loss of 5.8 dB in Ppho for laser-power calculations for PAM4 [66].
To compensate for the increased sensitivity of PAM4 to bit errors, we also consider
laser-power levels that are 1.5× than those used for OOK signaling. For ensuring
reliable communication, we have considered a BER of 10−9 in our designs. Finally,
we calculated application output error for the non-machine learning applications
due to our approximation approach as:

Percentage (Output) Error =
|approximated value − exact value|

exact value
× 100

(3)

The “exact value” refers to the original output values, which can be can be pixel
values of output images/frames, like in the case of JPEG, Sobel or X264, or a

46 F. P. Sunny et al.

set of values presented in the output files, like in the case of Blackscholes. The
“approximated value” refers to the value of these outputs once the approximation
approach is applied to the applications. For our analysis, we assume an error
threshold of 10% output error, which was seen experimentally to be the limit at
which the errors became apparent in the outputs of the majority of the applications
[8]. For example, artifacts become noticeable in JPEG output as we cross the
10% error threshold. Thus, we want to ensure that none of the approximation
strategies degrade output quality by more than 10%. For our machine-learning
applications (convolution neural networks for MNIST and CIFAR10 classification),
we have considered the drop in classification accuracy to measure the impact of our
framework, and we have set the threshold as 10% drop in the accuracy.

6.2 Impact of ARXON on Considered Applications

Our first set of experiments involve analyzing the sensitivity of an application to
varying degrees of approximation of their floating-point data. We are interested
in studying the impact of our approximation strategies on output error due to (i)
approximating a number of bits in the packets carrying data deemed approximable
and (ii) varying levels of lowered laser power for those approximated bits.

Figure 8 shows the results of our comprehensive study for the applications we
considered (as depicted earlier in Fig. 2). The z-axis shows the percentage error
(PE) in application output or drop in accuracy for ML applications, as a function
of the reduction in Plaser level for the photonic signals that carry the approximated
bits (x-axis; varying from 0% to 100%, where 100% refers to truncation), and the
number of bits that were considered for approximation (y-axis; with the number of
approximated float and integer bits given in [float, integer] format). The subset of
combination of these values were selected for enabling viable trade-offs between
output quality and power consumption. It should be noted that not all applications
consider both floating-point and integer data for approximation. For example,
Fluidanimate only considers integers for approximation while the ML applications
(convolution neural network-based classifiers for CIFAR10 and MNIST datasets)
only considers floating-point data. This selection of datatypes to be approximated
was made after profiling the application and determining the datatypes that do
not have adequate impact on the traffic (e.g., floating-point data in Fluidanimate
and X264) or the functionality of the application (integers in the case of the ML
applications considered). This is a more comprehensive version of the experiments
in our earlier work, presented in [8].

In those experiments in [8], we had determined how much floating-point
approximation can be tolerated by the applications from ACCEPT benchmark. Here
we not only consider a larger number and variety of applications, but also use
more comprehensive analyses to determine thresholds than in [8] to explore how
approximating the integer bits along with the float bits affects the output quality.
It is clear from our analyses that not all applications can tolerate the same level

Photonic NoCs for Energy-Efficient Data-Centric Computing 47

Fig. 8 Percentage error (PE)/drop in accuracy in application output as a function of the number of
approximated bit signals (y axis) and reduction in laser power (x axis) for the approximated signals,
for Blackscholes, canneal, fft, jpeg, sobel, streamcluster, fluidanimate, and X264 benchmarks
with large input workloads and MNIST (training and testing) and CIFAR10 (training and testing)
models

48 F. P. Sunny et al.

of approximation. From the PE values, we can observe that FFT with a large
volume of floating-point data traffic (see Fig. 2) reaches the error threshold of 10%
rather quickly as the number of approximated bits increases and laser power levels
reduce, whereas Canneal with a lower floating-point traffic-volume observed seems
to have very low PE values across the various experiments. The edge detection
algorithm Sobel performs well in approximated conditions, possibly owing to
the lowered data accuracy requirements to construct the output. Streamcluster
involves an approximation strategy for data streams and is observed to be quite
resilient to greater levels of approximation. Blackscholes, which performs market
options calculations, is particularly sensitive to the approximated number of bits
and the laser-power levels. JPEG performs image compression, and the output
image quality is more sensitive to approximation. Fluidanimate generates a video of
flowing liquid depending on the input data provided. X264 is a video codec, which
generates compressed video from the input, which is raw video data. Fluidanimate
and X264 applications were subjected to only integer MSB approximation, and
threshold is quickly breached after the amount of MSBs approximated start taking
up bits, which contain values; the quick rise in error can be explained by the fact
that we are approximating MSBs which would cause very large shift in values.
Moreover, we considered implementations of deep convolutional neural networks
for classification of CIFAR-10 and MNIST datasets, from tinyDNN. The machine
learning applications used single precision floats, and we were able to approximate
till the point where we encroached on the exponent, but the decay of output accuracy
ramped up very quickly once we tried to approximate any further.

From Fig. 8 we can see that there is a sharp increase in percentage output error
(PE), as we approximated beyond a certain number of bits, in the case of many of the
applications considered, e.g., the applications in the bottom two rows. The erratic
jumps in error rate for the six applications in the top two rows of Fig. 8 are because
we are considering discrete combinations of approximated bits for floating point
and integer variables, along the “approximated bits” axis. Table 4 summarizes the
best combination of approximable bits and the laser-power-transmission levels for
these bits and for each application while ensuring that the application output error
does not exceed 10% for our proposed framework (ARXON). Table 4 also shows
the number of bits that can be truncated, selected to meet the <10% PE constraint.
For the approach in [55], we perform approximations on 16 LSBs transmitted at
20% laser power (advocated as an optimal choice in that work), which also satisfies
the <10% PE constraint.

Figure 9 shows the EPB and laser power comparison results for the various
frameworks in the Clos PNoC architecture. These analyses consider the benefits
from distance-aware transmission and the relaxed encoding technique for approx-
imated packets for ARXON. Figure 9a shows that using ARXON-OOK results
in lower EPB than the previous approaches, including our previous framework
LORAX-OOK. The better EPB for LORAX and ARXON can be attributed the
fact that they avoid wasteful transmission at lower laser power when it is unlikely

Photonic NoCs for Energy-Efficient Data-Centric Computing 49

Ta
bl
e
4

N
um

be
r

of
 b

its
 c

on
si

de
re

d
fo

r
ap

pr
ox

im
at

io
n

an
d

la
se

r-
tr

an
sm

is
si

on
-p

ow
er

 l
ev

el
 f

or
 t

he
 c

or
re

sp
on

di
ng

 s
ig

na
ls

 a
cr

os
s

be
nc

hm
ar

ks
 a

nd
 f

ra
m

ew
or

ks

co
ns

id
er

ed

T
ru

nc
at

io
n

[5
5]

L
O

R
A

X
 [

8]
A

R
X

O
N

A
pp

lic
at

io
n

na
m

e
T

ru
nc

at
ed

 b
its

(fl

oa
t)

A

pp
ro

xi
m

at
ed

bi

ts
 (

flo
at

)
%

Po
w

er

re
du

ct
io

n

A
pp

ro
xi

m
at

ed

bi
ts

 in

flo
at

in
g-

po
in

t
pa

ck
et

s

A
pp

ro
xi

m
at

ed

bi
ts

 in
 in

te
ge

r
pa

ck
et

s
%

po
w

er

re
du

ct
io

n

B
la

ck
sc

ho
le

s
12

16
 b

its

ap
pr

ox
im

at
ed

,
w

ith
 2

0%
 p

ow
er

re

du
ct

io
n

32
90

32
24

90

C
an

ne
al

32
32

10
0

32
24

10
0

FF
T

8
32

50
32

20
50

JP

E
G

20
24

80
22

4
80

So

be
l

32
32

10
0

32
20

10
0

St
re

am
cl

us
te

r
12

28
80

28
20

80

Fl
ui

da
ni

m
at

e
–

–
–

–
8

10
0

X
26

4
–

–
–

–
12

10
0

M
N

IS
T

_t
ra

in
24

24
10

0
24

–
10

0
M

N
IS

T
_t

es
t

24
24

10
0

24
–

10
0

C
IF

A
R

10
_t

ra
in

24
24

10
0

24
–

10
0

C
IF

A
R

10
_t

es
t

24
24

10
0

24
–

10
0

50 F. P. Sunny et al.

Fig. 9 (a) Energy per bit (EPB) and (b) laser power comparison across different frameworks for
Clos PNoC architecture

that the destination can recover the transmitted data due to high optical losses.
Also, [55] has noticeably higher EPB values for which we are not considering the
benefits of relaxed encoding and distance-aware transmission for the framework
to be consistent with the framework presented in that chapter. The ARXON-
OOK framework improves upon LORAX-OOK [55] and truncation, by adaptively
switching between truncation and an application-specific laser-power-intensity level
for approximated bits of both floating-point and integer packets. The ARXON-
PAM4 variant of our framework achieves the largest reduction in EPB, even though

Photonic NoCs for Energy-Efficient Data-Centric Computing 51

it uses 1.5× higher laser-power levels for the approximated bits. The use of fewer
wavelengths in PAM4 allows for more energy savings, despite greater losses and the
use of more laser power per wavelength than OOK variant.

On average, ARXON-PAM4 shows 21%, 17.2%, 9.7%, 9.2%, and 1.2% lower
EPB compared to the baseline Clos, [55], truncation, LORAX-OOK, and LORAX-
PAM4 approaches, respectively. ARXON-OOK exhibits lower EPB on average
while having a 6% higher EPB than the LORAX-PAM4 approach. In the best-case
scenarios for the Blackscholes and Sobel applications, ARXON-PAM4 has 21.2%
and 23.5% lower EPB than the Clos baseline; and 17.4% and 15.6% lower EPB than
[55]; 9.8% and 11.5% lower EPB when compared to truncation; 8.6% and 10.25%
lower EPB than LORAX-OOK; and 1.24% and 2.5% lower EPB than LORAX-
PAM4 for these two applications.

Figure 9b shows the laser power reduction. On average, ARXON-PAM4 uses
50.45%, 49.5%, 43.2%, 42.5%, and 7.7% lower laser power compared to the
baseline Clos, [55], truncation, LORAX-OOK, and LORAX-PAM4, respectively.
ARXON-OOK exhibits lower average laser-power consumption on average while
exhibiting 28% higher laser power consumption than LORAX-PAM4. For the best
case Blackscholes and Sobel applications, laser power for ARXON-PAM4 is 51.7%
and 59.2% lower than the Clos baseline and 50.8% and 57.9% lower than [55],
while against truncation it is 51% and 58.5% lower; against LORAX-OOK, we see
38% and 57% lowered laser-power utilization; and against LORAX-PAM4, we have
6.5% and 20% lower laser-power utilization.

Figure 10 shows the same analyses but done for the frameworks implemented
on the SwiftNoC architecture. The larger data rate and the larger number of GWIs
in the architecture have impacted the packets and their distance aware transmission
profile, creating more avenues to truncate the packets, yielding better EPB results in
this architecture. The general trend in EPB and laser-power savings is similar to that
for the Clos architecture, with Blackscholes and Sobel applications again exhibiting
the best EPB and laser-power saving values. From Fig. 10a, ARXON-PAM4
exhibits 36%, 23.8%, 13.5%, 12.9%, and 1.8% lower EPB on average than baseline
SwiftNoC, [55], truncation, LORAX-OOK, and LORAX-PAM4, respectively.

The results for SwiftNoC show the same trend as the Clos architecture for
normalized laser power (Fig. 10b), albeit with lower laser power across applications
with average laser power consumption for ARXON-PAM4 at 57.2%, 56.4%, 50.8%,
49.3%, and 15.7% better than baseline SwiftNoC, [55], truncation, LORAX-OOK,
and LORAX-PAM4, respectively.

These results highlight the promise of our ARXON framework, as it improves
upon the ability LORAX exhibited to trade-off output correctness with energy-
efficiency and laser-power savings in PNoC architectures executing selected appli-
cations.

52 F. P. Sunny et al.

Fig. 10 (a) Energy per bit (EPB) and (b) laser power comparison across different frameworks for
SwiftNoC architecture

6.3 MR Tuning Relaxation-Based Analyses

We also consider the potential for relaxed thermo-optic tuning for truncated bits, in
addition to distance-aware transmission for float and integer packets and relaxing
crosstalk-mitigation encoding techniques. We have considered thermal MR tuning
in our work for its larger range of operation over other tuning methods such
as electro-optic tuning. However, thermal tuning strategies are much slower in
operation when compared to electro-optic tuning (microseconds for operation as

Photonic NoCs for Energy-Efficient Data-Centric Computing 53

opposed to nano to picoseconds for electro-optic tuning). However, this overhead
cannot be avoided, as using just the electro-optic tuning method will not offer
sufficient coverage for FPV and TV encountered by MRs, the effect of which must
be mitigated for robust operation of the PNoC.

However, with the increasing maturity of silicon photonics, we envision faster
thermo-optic tuning strategies or a combination of different tuning strategies to
reduce this tuning latency. Therefore, in this section we explore the potential of
energy savings due to relaxed MR tuning, i.e., by turning off the tuning mechanism
for MRs associated with truncated bits. For this experiment, we utilize thermal and
process-variation information. For TV, we have referred to the study conducted in
[90] and have adopted the worst-case TV induced shift to be 6.5 nm. For analysis
of FPV, we utilized the FPV analysis method as described in [90], where FPV is
considered as a Gaussian random distribution. As the granularity of the method is at
30 nm, we have opted for analyzing FPV at the GWI level rather than for individual
MR devices. We have generated FPV maps for the architectures using the method
from [91] and have selected locations corresponding to the GWIs in the layouts. We
took the average of device variations (i.e., width and thickness) in that location. This
was repeated over 100 different FPV maps.

Utilizing the FPV and TV information obtained, we implement the tuning-
relaxation approach, where we turn off thermo-optic tuning for all truncated bits.
We use a gating mechanism similar to the one utilized for the encoding strategy, as
mentioned in Sect. 5.2, to implement the control necessary for relaxing the tuning.
With this mechanism, we can power gate the tuning circuits to the MR, as per the
information from LUTs, turning them off for the transmission cycle, again similar
to the description in Sect. 5.2. From our analysis, this had a substantial impact on
the EPB values of our ARXON framework, as shown in Fig. 11. Our observations in
Fig. 11a for Clos PNoC and Fig. 11b for SwiftNoC, show that the ARXON variants
have substantial savings over the other frameworks considered, a trend maintained
even while using the aggressive values as it was with standard values. To reiterate,
the standard values are from existing prototyping efforts, and the aggressive values
are as per future projections from various research efforts. The savings exhibited
by ARXON is because the tuning-based approach is again dependent on the traffic
profile of the applications, with higher truncated packets meaning better savings.
So, we see Blackscholes and Sobel as the best performing applications again. We do
not consider laser-power savings in this scenario, as the tuning relaxation approach
does not impact the laser power. On average, ARXON-PAM4 has 38.1%, 36.1%,
26.8%, 26.4%, and 19.2% better EPB values than baseline Clos, [55], truncation,
LORAX-OOK, and LORAX-PAM4. When implemented in SwiftNoC, ARXON-
PAM4 exhibits 48.6%, 39.3%, 29%, 28.5%, and 16.9% better EPB than baseline,
[55], truncation, LORAX-OOK, and LORAX-PAM4, respectively. This only adds
to the significant reduction in the overall laser power consumption achieved by
ARXON, showing how our framework achieves better laser power and EPB values
for all the applications considered in our analyses.

54 F. P. Sunny et al.

Fig. 11 EPB values for ARXON implemented on (a) Clos and (b) SwiftNoC while considering
thermal-tuning relaxation

6.4 Power Dissipation Breakdown

We performed an experiment to determine how much more power can be saved
as silicon photonics technology matures and devices with improved characteristics
become available (aggressive values from Table 3). For this, we contrast the power
dissipation with our framework on the Clos and SwiftNoC architectures, for the
standard and aggressive values of parameters in Table 3. As the EPB and laser
power, once normalized, follow the same trends, we decided to use a detailed

Photonic NoCs for Energy-Efficient Data-Centric Computing 55

Fig. 12 Power dissipation breakdown for standard and aggressive values (“aggr” in the plots) for
(a) Clos and (b) SwiftNoC PNoCs

power-dissipation breakdown to show how much ARXON improves the power
consumption in PNoC and in which areas.

Figure 12 shows the detailed power breakdown for the framework applied
on Clos and SwifNoC, averaged across the applications. From the figures we
can clearly observe how ARXON impacts both laser power and tuning-power
dissipation, having the lowest power dissipation in both these categories and in
total, be it while considering standard loss and power utilization values or while
considering aggressive values.

56 F. P. Sunny et al.

Table 5 Comparison of
power savings between
systems implementing the
discussed PNoC variants

Total power (W) Power savings (%)
PNoC variant Clos SwiftNoC Clos SwiftNoC

Truncation 94.25 106.25 1.57 3.19
[55] 94.95 108.25 0.84 1.37
LORAX-OOK 94.0 106.0 1.83 3.42
LORAX-PAM4 86.25 93.25 9.92 15.03
ARXON-OOK 90.75 100.25 5.22 8.66

Finally, Table 5 shows the power consumption at the 64-core chip level when
using the PNoC variants. For this comparison, we have assumed the individual
core to be a 14 nm x86-64 core from Intel, with the power consumption of the
64-core chip being 77.75 W. This assumption includes power consumption of
128 KB private L1 caches, 2 MB L2 cache (shared between four cores), and
memory controllers (shared between four cores) [92]. This assumption sets the
total power consumption for the baseline Clos PNoC-based system at 95.75 W
and for the baseline SwiftNoC PNoC-based system at 109.75 W. Table 5 considers
power and loss values for PNoC variants calculated using the standard parameter
values from Table 3. It can be seen that even at the entire chip granularity, the
ARXON framework provides notable reduction in overall power consumption,
with ARXON-PAM4-based Clos and SwiftNoC PNoCs saving 10.97% and 16.86%
power compared to the Clos and SwiftNoC PNoC baselines, respectively.

7 Conclusion

In this chapter, we discussed a new framework called ARXON for loss-aware
approximation of data communicated over PNoC architectures. We also studied
how multilevel signaling can assist with the proposed approximation framework.
We considered crosstalk mitigation strategies and dynamic MR tuning as avenues
to save energy while our distance aware transmission technique is in effect. Our
results indicate that using multilevel signaling as part of our framework can reduce
laser-power consumption by up to 57.2% over a baseline PNoC architecture.
Our framework also shows up to 56.4% lower laser power and up to 23.8%
better energy-efficiency compared to the best-known prior work on approximating
communication in PNoCs. These results highlight the potential of approximation in
PNoC architectures to reduce energy and power consumption in emerging manycore
platforms.

Photonic NoCs for Energy-Efficient Data-Centric Computing 57

References

1. Intel Xeon Platinum Processor Family. [Online]: https://www.intel.com/content/www/us/en/
products/processors/xeon/scalable/platinum-processors/platinum-8180.html

2. NVIDIA ampere GA102 GPU Architecture Whitepaper. [Online]: https://images.nvidia.com/
aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-
Whitepaper-V1.pdf

3. Cerebras Wafer-Scale Engine. [Online]: https://www.cerebras.net/
4. Pasricha, S., Dutt, N.: On-Chip Communication Architectures. Morgan Kauffman (2008).

ISBN 978-0-12-373892-9
5. Alexoudi, T., Terzenidis, N., Pitris, S., Moralis-Pegios, M., Maniotis, P., Vagionas, C.,

Mitsolidou, C., Mourgias-Alexandris, G., Kanellos, G.T., Miliou, A., Vyrsokinos, K.: Optics
in computing: from photonic network-on-chip to chip-to-chip interconnects and disintegrated
architectures. J. Lightwave Technol. 37, 363–379 (2019)

6. Xu, Q., Mytkowicz, T., Kim, N.S.: Approximate computing: a survey. IEEE Des. Test. 33,
8–22 (2016)

7. Sunny, F., Mirza, A., Thakkar, I., Nikdast, M., Pasricha, S.: ARXON: a framework for
approximate communication over photonic networks-on-chip. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 29(6), 1206–1219 (2021)

8. Sunny, F., Mirza, A., Thakkar, I., Nikdast, M., Pasricha, S.: LORAX: loss-aware approxima-
tions for energy-efficient silicon photonic networks-on-chip. In: ACM GLSVLSI. ACM (2020)

9. Qiao, F., Zhou, N., Chen, Y., Yang, H.: Approximate computing in chrominance cache for
image/video processing. In: IEEE ICMBD, pp. 180–183 (2015)

10. Nyugen, D.T., Kim, H., Lee, H.J., Chang, I.J.: An approximate memory architecture for
reduction of a reduction of refresh power consumption in deep learning applications. In: IEEE
ISCAS. IEEE (2018)

11. Liu, H., Ong, Y.S., Shen, X., Cai, J.: When Gaussian process meets big data: A review of
scalable GPs. IEEE Trans. Neural Netw. Learn. Syst. 31, 4405–4423 (2020)

12. Ahmadvand, H., Goudarzi, M., Foroutan, F.: Gapprox: using gallup approach for approxima-
tion in big data processing. J Big Data. 6, 20 (2019)

13. Younes, H., Ibrahim, A., Rizk, M., Valle, M.: Algorithmic level approximate computing for
machine learning classifiers. In: IEEE ICECS. IEEE (2019)

14. Sen, S., Raghunathan, A.: Approximate computing for long short term memory (LSTM) neural
networks. In: IEEE TCAD. IEEE (2018)

15. Van Leussen, M., Huisken, J., Wang, L., Jiao, H., De Gyvez, J.P.: Reconfigurable support vector
machine classifier with approximate computing. In: IEEE ISVLSI. IEEE (2017)

16. Ibrahim, A., Osta, M., Alameh, M., Saleh, M., Chible, H., Valle, M.: Approximate computing
methods for embedded machine learning. In: IEEE ICECS. IEEE (2018)

17. Yellu, P., Boskov, N., Kinsy, M.A., Yu, Q.: Security threats in approximate computing systems.
In: ACM GLSVLSI, pp. 387–392. IEEE (2019)

18. Han, J., Orshansky, M.: Approximate computing: an emerging paradigm for energy-efficient
design. In: IEEE ETS, pp. 1–6. IEEE (2013)

19. Chippa, V.K., Venkataramani, S., Chakradhar, S.T., Roy, K., Raghunathan, A.: Approximate
computing: an integrated hardware approach. In: Asilomar Conference on Signals, Systems
and Computers (ACSSC). IEEE (2013)

20. Yang, Z., Jain, A., Liang, J., Han, J., Lombardi, F.: Approximate XOR/XNOR-based adders
for inexact computing. In: IEEE-Nano. IEEE (2013)

21. Ramasamy, M., Narmadha, G., Deivasigamani, S.: Carry based approximate full adder for low
power approximate computing. In: ICSCC. IEEE (2019)

22. Raha, A., Sutar, S., Jayakumar, H., Raghunathan, V.: Quality configurable approximate
DRAM. In: TC. IEEE (2017)

23. Venketaramani, S., Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Quality
programmable vector processors for approximate computing. In: IEEE MICRO. IEEE (2013)

 18639 2715 a 18639 2715 a

https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8180.html

 24887 4929 a 24887 4929 a

https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf

 14680 8250 a 14680 8250 a

58 F. P. Sunny et al.

24. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for general purpose
approximate programs. In: IEEE MICRO. IEEE (2013)

25. Sampson, A., Baixo, A., Ransford, B., Moreau, T., Yip, J., Ceze, L., Oskin, M.: ACCEPT:
A Programmer-Guided Compiler Framework for Practical Approximate Computing, White
Chapter. University of Washington (2014)

26. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.: EnerJ:
approximate data types for safe and general low-power computation. In: PLD. ACM (2011)

27. Park, J., Esmaeilzadeh, H., Zhang, X., Naik, M., Harris, W.: FlexJava: language support for
safe and modular approximate programming. In: FSE. ACM (2015)

28. Raparti, Y., Pasricha, S.: DAPPER: data aware approximate NoC for GPGPU architectures. In:
IEEE/ACM NOCS. IEEE (2018)

29. Boyapati, R., Huang, J., Majumder, P., Yum, K.H., Kim, E.J.: APPROX-NoC: a data approxi-
mation framework for network-on-chip architectures. In: ISCA. IEEE (2017)

30. Wang, L., Wang, X., Wang, Y.: ABDTR: approximation-based dynamic traffic regulation for
networks-on-chip systems. In: IEEE ICCD. IEEE (2017)

31. Ahmed, A.B., Fujiki, D., Matsutani, H., Koibuchi, M., Amano, H.: AxNoC: low-power
approximate network-on-chips using critical-path isolation. In: IEEE/ACM NOCS (2018)

32. Bahirat, S., Pasricha, S.: METEOR: hybrid photonic ring-mesh network-on-chip for multicore
architectures. ACM Trans. Embed. Comput. Syst. 13(3), 116:1–116:33 (Mar 2014)

33. Bahirat, S., Pasricha, S.: HELIX: design and synthesis of hybrid nanophotonic application-
specific network-on-chip architectures. In: IEEE International Symposium on Quality Elec-
tronic Design (ISQED). IEEE (2014)

34. Bahirat, S., Pasricha, S.: 3D HELIX: design and synthesis of hybrid nanophotonic application-
specific 3D network-on-chip architectures. In: Workshop on Exploiting Silicon Photonics for
Energy Efficient Heterogeneous Parallel Architectures (SiPhotonics). IEEE (2014)

35. Bahirat, S., Pasricha, S.: A particle swarm optimization approach for synthesizing application-
specific hybrid photonic networks-on-chip. In: IEEE International Symposium on Quality
Electronic Design (ISQED). IEEE (2012)

36. Bahirat, S., Pasricha, S.: UC-PHOTON: a novel hybrid photonic network-on-chip for multiple
use-case applications. In: IEEE International Symposium on Quality Electronic Design
(ISQED). IEEE, Santa Clara (2010)

37. Bahirat, S., Pasricha, S.: Exploring hybrid photonic networks-on-chip for emerging chip
multiprocessors. In: IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). IEEE, Grenoble (2009)

38. Chittamuru, S.V.R., Thakkar, I., Pasricha, S., Vatsavai, S.S., Bhat, V.: Exploiting process
variations to secure photonic NoC architectures from snooping attacks. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 40, 850–863 (2021)

39. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: LIBRA: thermal and process variation aware
reliability management in photonic networks-on-chip. IEEE Trans. Multi-Scale Comput. Syst.
4(4), 758–772 (2018)

40. Chittamuru, S.V.R., Dharnidhar, D., Pasricha, S., Mahapatra, R.: BiGNoC: accelerating big
data computing with application-specific photonic network-on-chip architectures. IEEE Trans.
Parallel Distrib. Syst. 29(11), 2402–2415 (2018)

41. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: HYDRA: heterodyne crosstalk mitigation with
double microring resonators and data encoding for photonic NoC. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 26(1), 168–181 (2018)

42. Chittamuru, S.V.R., Desai, S., Pasricha, S.: Swiftnoc: a reconfigurable silicon-photonic
network with multicast enabled channel sharing for multicore architectures. ACM J. Emerg.
Technol. Comput. Syst. 13(4), 58:1–58:27 (2017)

43. Chittamuru, S.V.R., Pasricha, S.: Crosstalk mitigation for high-radix and low-diameter pho-
tonic NoC architectures. IEEE Des. Test. 32(3), 29–39 (2015)

44. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: Mitigating the energy impacts of VBTI aging
in photonic networks-on-chip architectures with multilevel signaling. In: IEEE Workshop on
Energy-Efficient Networks of Computers (E2NC): From the Chip to the Cloud. IEEE (2018)

Photonic NoCs for Energy-Efficient Data-Centric Computing 59

45. Pasricha, S., Chittamuru, S.V.R., Thakkar, I., Bhat, V.: Securing photonic NoC architec-
tures from hardware trojans. In: IEEE/ACM International Symposium on Networks-on-Chip
(NOCS). IEEE, Torino (2018)

46. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: SOTERIA: exploiting process variations to
enhance hardware security with photonic NoC architectures. In: IEEE/ACM Design Automa-
tion Conference (DAC). IEEE, San Francisco (2018)

47. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: Improving the reliability and energy-efficiency
of high-bandwidth photonic NoC architectures with multilevel signaling. In: IEEE/ACM
International Symposium on Networks-on-Chip (NOCS). IEEE (2017)

48. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: Analyzing voltage bias and temperature induced
aging effects in photonic interconnects for manycore computing. In: ACM System Level
Interconnect Prediction Workshop (SLIP). IEEE (2017)

49. Dang, D., Chittamuru, S.V.R., Mahapatra, R.N., Pasricha, S.: Islands of heaters: a novel thermal
management framework for photonic NoCs. In: IEEE/ACM Asia & South Pacific Design
Automation Conference (ASPDAC). IEEE (2017)

50. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: A comparative analysis of front-end and back-end
compatible silicon photonic on-chip interconnects. In: ACM/IEEE System Level Interconnect
Prediction Workshop (SLIP). IEEE (2016)

51. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: Run-time laser power management in photonic
NoCs with on-chip semiconductor optical amplifiers. In: IEEE/ACM International Symposium
on Networks-on-Chip (NOCS). IEEE (2016)

52. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: PICO: mitigating heterodyne crosstalk due to
process variations and intermodulation effects in photonic NoCs. In: IEEE/ACM Design
Automation Conference (DAC). IEEE (2016)

53. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: Process variation aware crosstalk mitigation for
DWDM based photonic NoC architectures. In: IEEE International Symposium on Quality
Electronic Design (ISQED). IEEE (2016)

54. Chittamuru, S.V.R., Pasricha, S.: SPECTRA: a framework for thermal reliability management
in silicon-photonic networks-on-chip. In: IEEE International Conference on VLSI Design
(VLSI). IEEE (2016)

55. Lee, J., Killian, C., Le Beux, S., Chillet, D.: Approximate nanophotonic interconnects. In:
IEEE/ACM NOCS. IEEE (2019)

56. Bieneia, C.: Benchmarking Modern Multiprocessors. Ph. D Thesis, Princeton University,
January (2011)

57. https://github.com/tiny-dnn/tiny-dnn
58. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower,

D.R., Krishna, T., Sardashti, S., Sen, R.: The gem5 simulator. Comp. Arch. News. 39, 1–7
(2011)

59. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumenta-
tion. ACM Sigplan. 40, 190–200 (2005)

60. Pasricha, S., Nikdast, M.: A survey of silicon photonics for energy-efficient manycore
computing. IEEE Des. Test. 37, 60–81 (2020)

61. Soref, R.I., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23,
123–129 (1987)

62. Thakkar, I., et al.: Mitigation of homodyne crosstalk noise in silicon photonic NoC architec-
tures with tunable decoupling. In: CODES+ISSS. IEEE (2016)

63. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: HYDRA: heterodyne crosstalk mitigation with
double microring resonators and data encoding for photonic NoCs. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 26, 168–181 (2018)

64. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: PICO: mitigating heterodyne crosstalk due to
process variations and intermodulation effects in photonic NoCs. In: IEEE/ACM DAC (2016)

65. Nikdast, M., et al.: Crosstalk noise in WDM-based optical networks-on-chip: a formal study
and comparison. In: IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 23, pp. 2552–2565
(2015)

 -2016 36427 a -2016 36427 a

60 F. P. Sunny et al.

66. Thakkar, I., et al.: Improving the reliability and energy-efficiency of high bandwidth photonic
noc architectures with multilevel signaling. In: IEEE/ACM NOCS. IEEE (2017)

67. Li, H., Fourmigue, A., Le Beux, S., Letartre, X., O’Connor, I., Nicolescu, G.: Thermal aware
design method for VCSEL-based On-Chip Optical Interconnect. In: IEEE/ACM DATE. IEEE
(2015)

68. Wu, X., Xu, J., Ye, Y., Wang, Z., Nikdast, M., Wang, X.: Suor: sectioned unidirectional optical
ring for chip multiprocessor. ACM J. Emerg. Technol. Comput. Syst. 10, 1–25 (2014)

69. Mohamed, M., Li, Z., Chen, X., Shang, L., Mickelson, A.R.: Reliability-aware design flow for
silicon photonics on-chip interconnect. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22,
1763–1776 (2014)

70. Padmaraju, K., Bergman, K.: Resolving the thermal challenges for silicon microring resonator
devices. Nanophotonics. 3, 269–281 (2013)

71. Sun, C., Wade, M.T., Lee, Y., Orcutt, J.S., Alloatti, L., Georgas, M.S., Waterman, A.S., Shain-
line, J.M., Avizienis, R.R., Lin, S., Moss, B.R.: Single-chip microprocessor that communicates
directly using light. Nature. 528, 24–31 (2015)

72. Kao, T.J., Louri, A.: Optical multilevel signaling for high bandwidth and power-efficient on-
chip interconnects. IEEE Photon. Technol. Lett. 27(19), 2051–2054 (2015)

73. Roshan-Zamir, A., Wang, B., Telaprolu, S., Yu, K., Li, C., Seyedi, M.A., Fiorentino, M.,
Beausoleil, R., Palermo, S.: A 40 Gb/s PAM4 silicon microring resonator modulator transmitter
in 65nm CMOS. In: OIC. IEEE (2016)

74. D-Demers, R., LaRochelle, S., Shi, W.: Ultrafast pulse-amplitude modulation with a femtojoule
silicon photonic modulator. Optica. 3(6), 622–627 (2016)

75. Wu, X., Dama, B., Gothoskar, P., Metz, P., Shastri, K., Sunder, S., der Spiegel, J.V., Wang,
Y., Webster, M., Wilson, W.: A 20Gb/s NRZ/PAM-4 1V transmitter in 40nm CMOS driving a
Si-photonic modulator in 0.13µm CMOS. In: ISSCC. IEEE (2013)

76. Joshi, A., Batten, C., Kwon, Y.-J., Beamer, S., Shamim, I., Asanovic, K., Stojanovic, V.:
Silicon-photonic clos networks for global on-chip communication. In: IEEE/ACM NOCS.
IEEE (2009)

77. Chittamuru, S.V.R., Deasi, S., Pasricha, S.: Swiftnoc: a reconfigurable silicon photonic network
with multicast enabled channel sharing for multicore architectures. ACM J. Emerg. Technol.
Comput. Syst. 13, 1–27 (2017)

78. Sun, C., Chen, C.-H.O., Kurian, G., Wei, L., Miller, J., Agarwal, A., Peh, L.-S., Stojanovic, V.:
DSENT a tool connecting emerging photonics with electronics for opto-electronic networks-
on-chip modeling. In: IEEE/ACM NOCS. IEEE (2012)

79. Chen, K., Li, S., Muralimanohar, N., Ahn, J.H., Brockman, J.B., Jouppi, N.P.: CACTI-3DD:
architecture-level modeling for 3D diestacked DRAM main memory. In: IEEE/ACM DATE.
IEEE (2012)

80. Stillmaker, A., Baas, B.: Scaling equations for the accurate prediction of CMOS device
performance from 180nm to 7nm. Integration. 58, 74–81 (2017). https://doi.org/10.1016/
j.vlsi.2017.02.002

81. Biberman, A., Preston, K., Hendry, G., Sherwood-Droz, N., Chan, J., Levy, J.S., Lipson,
M., Bergman, K.: Photonic network-on-chip architectures using multilayer deposited silicon
materials for high-performance Chip multiprocessors. ACM J. Emerg. Technol. Comput. Syst.
7, 1–25 (2011)

82. Chen, H.T., Verbist, J., Verheyen, P., De Heyn, P., Lepage, G., De Coster, J., Absil, P., Yin,
X., Bauwelinck, J., Van Campenhout, J., Roelkens, G.: High Sensitivity 10 Gb/s Si photonic
receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector. Opt. Express.
23, 815–822 (2015)

83. Bahirat, S., Pasricha, S.: OPAL: A multi-layer hybrid photonic NoC for 3D ICs. In: ASPDAC.
IEEE (2011)

84. Jayatileka, H., Caverley, M., Jaeger, N.A.F., Shekhar, S., Chrostowski, L.: Crosstalk limitations
of microring-resonator based WDM demultiplexers on SOI. In: OIC. IEEE (2015)

85. Yahya, M.R., Wu, N., Fang, Z., Ge, F., Shah, M.H.: A low insertion loss 5×5 optical router for
mesh photonic network-on-chip topology. In: IEEE CSUDET. IEEE (2019)

 25964 41758 a 25964 41758 a

http://doi.org/10.1016/j.vlsi.2017.02.002

Photonic NoCs for Energy-Efficient Data-Centric Computing 61

86. http://www.aimphotonics.com/pdk
87. Behadori, M., Nikdast, M., Cheng, Q., Bergman, K.: Universal design of waveguide bends in

silicon-on-insulator photonics platform. J. Lightwave Technol. 37, 3044–3054 (2019)
88. Grani, P., Bartolini, S.: Design options for optical ring interconnect in future client devices.

ACM J. Emerg. Technol. Comput. Syst. 10, 1–25 (2014)
89. Yu, K., Li, C., Li, H., Titriku, A., Shafik, A., Wang, B., Wang, Z.: A 25 gb/s hybrid-integrated

silicon photonic source synchronous receiver with microring wavelength stabilization. IEEE J.
Solid-State Circuits. 51, 2129–2141 (2016)

90. Thakkar, I.G., Pasricha, S.: LIBRA: thermal and process variation aware reliability manage-
ment in photonic networks-on-chip. In: TMSCS (2018)

91. Mirza, A., Sunny, F., Walsh, P., Hassan, K., Pasricha, S., Nikdast, M.: Silicon photonic
microring resonators: a comprehensive design-space exploration and optimization under
fabrication-process variations. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2021)

92. Totoni, E., Behzad, B., Ghike, S., Torrellas, J.: Comparing the power and performance of Intel’
SCC to state-of-the-art CPUs and GPUs. In: IEEE International Symposium on Performance
Analysis of Systems & Software. IEEE (2012)

 -2016 -1081 a -2016 -1081 a

Low- and Mixed-Precision Inference
Accelerators

Maarten J. Molendijk, Floran A. M. de Putter, and Henk Corporaal

1 Introduction

Neural Networks can solve increasingly more complex tasks in fields such as
Computer Vision (CV) and Natural Language Processing (NLP). While these
Neural Networks can perform complex tasks with increasingly higher accuracy, the
sheer size of these networks often prevents deployment on edge devices that have
limited memory capacity and are subject to severe energy constraints. To overcome
the issues preventing the deployment of neural networks onto edge devices, efforts
toward reducing the model size and reducing the computational costs have been
made. These efforts are most often focused on either the algorithmic side, tailoring
the neural network and its properties, or on the hardware side, creating efficient
system designs and arithmetic circuitry.

In an effort to reduce the computational cost and model size of neural networks,
several approaches are taken. One of these approaches is to automate the synthesis
of the neural network architecture while taking into account the hardware resources,
this is called hardware-aware neural architecture search (NAS) [23, 28]. Another
way to increase the energy efficiency is by compressing the model size, applying
either quantization [10] or pruning [4].

In parallel to research on model compression, research has been performed on
creating highly specialized hardware that exploits the opportunities arising from
model compression. ASICs that support neural network inference for operand
precisions as low as 1 bit exploit the advantages extreme quantization brings: low
memory size and bandwidth and simplified compute logic. In the pursuit of the
most energy-efficient hardware design, several design choices regarding memory

M. J. Molendijk (�) · F. A. M. de Putter · H. Corporaal
Eindhoven Artificial Intelligence Systems Institute and PARsE lab, Eindhoven University of
Technology, Eindhoven, The Netherlands
e-mail: m.j.molendijk@tue.nl; f.a.m.d.putter@tue.nl; h.corporaal@tue.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_3

63

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845
a

mailto:m.j.molendijk@tue.nl
mailto:m.j.molendijk@tue.nl
mailto:m.j.molendijk@tue.nl
mailto:m.j.molendijk@tue.nl

 9646 56845 a 9646 56845 a

mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl
mailto:f.a.m.d.putter@tue.nl

 18196
56845 a 18196 56845 a

mailto:h.corporaal@tue.nl
mailto:h.corporaal@tue.nl
mailto:h.corporaal@tue.nl
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3
https://doi.org/10.1007/978-3-031-19568-6_3

64 M. J. Molendijk et al.

hierarchy, hardware parallelization of operations, and data-flow are made that
impact both the ASIC’s efficiency and its flexibility.

For instance, many architectures have a fixed datapath; the movement of the data
is fixed at design time which can impose limitations on the layer types, channel
dimensions, and kernel dimensions. Furthermore, these architectures typically have
limited programmability and configurability, which restricts the execution schedules
that can (efficiently) be run.

In this chapter, a look will be taken at several different approaches of neural
network accelerators specifically designed for inference with very low-precision
operands. The efficiency (and origin thereof) of the architectures will be analyzed
and compared to the flexibility that these architectures offer.

In short, the contributions of this work are:

• Overview of state-of-the-art low- and mixed-precision neural network accelera-
tors, in Sect. 3.

• Analysis on the trade-off between the flexibility and the energy efficiency of
accelerators, in Sect. 4.

The remainder of this chapter is structured as follows: in Sect. 2, background infor-
mation on neural network architecture and quantization is presented. Thereafter, in
Sect. 3, the low- and mixed-precision accelerators are presented and a comparison
is presented in Sect. 4. Section 5 concludes this chapter.

2 Background: Extreme Quantization and Network Variety

Modern neural network architectures consist of many different layers with millions
of parameters and operations. The storage required to store all parameters and
features is not in line with the storage capacity typically found on embedded devices,
leading to costly off-chip memory accesses. Next to the memory and bandwidth
limitations, computational costs for full-precision (float32) operations require
power-hungry compute blocks that quickly overtax the energy requirements of the
embedded devices. To reduce both the computational cost and the cost of data access
and transport, quantization can be applied.

Quantization leads to lower precision parameters and therefore induces infor-
mation loss. Naturally, when weights and activations can represent fewer distinct
values, the representational capabilities of the network decrease. This decrease may
create an accuracy loss. In [14], Gholami et al. show, however, that quantization
down to integer8 can be done without significant accuracy loss. But even when
quantizing down to integer8, the memory requirements can still overtax the
memory capacity typically found in embedded systems. Therefore, research has
been done on extreme quantization, i.e., quantization below 8-bit precision.

In the next subsection, several frequently utilized building blocks for convolu-
tional neural networks (CNNs) are listed. Thereafter, in Sects. 2.2 and 2.3, two

Low- and Mixed-Precision Inference Accelerators 65

forms of extreme quantization, namely binary and ternary quantization, are
discussed. Finally, in Sect. 2.4, the need for mixed-precision is considered.

2.1 Neural Network Architecture Design Space

Neural network architectures have a great variety in the type of layers, the size of
these layers, and the connectivity between these layers. Furthermore, with mixed-
precision architectures, the precision can also be chosen on a per-layer basis. An
example network is shown in Fig. 1. Some common building blocks are listed below:

• Convolutional Layer
• Fully connected Layer
• Depth-wise Convolutional Layer
• Residual Addition
• Requantization
• Pooling

The working horse of CNNs is the convolutional layer. Between different
convolutional layers, there can be variety in the kernel size, number of input feature
maps, output feature maps, etc. In Fig. 2, the different parameters of a convolutional
layer are presented. These parameters will later on prove to be an important basis
for designing efficient hardware. The goal of Sect. 3 is to show how these network
parameters relate to hardware design, hardware efficiency, and hardware flexibility.

3x
3

C
on

vo
lu

tio
n

Bl
oc

k
C

=6
4

Bl
oc

k
C

=6
4

Bl
oc

k
C

=1
28

Bl
oc

k
C

=1
28

Bl
oc

k
C

=2
56

Bl
oc

k
C

=2
56

Bl
oc

k
C

=5
12

Bl
oc

k
C

=5
12

Fu
lly

-c
on

ne
ct

ed

IN
T8

3x
3

C
on

vo
lu

tio
n

Ba
tc

h
no

rm
al

iz
at

io
n

IN
T1

6

Si
gn

IN
T1

6

+

3x
3

C
on

vo
lu

tio
n

Bi
na

ry

IN
T8

Ba
tc

h
no

rm
al

iz
at

io
n

IN
T1

6

IN
T8

H
ar

d
Ta

nh

Block

Bi
na

ry

Si
gn

Fig. 1 Binary ResNet-18, an exemplary network containing several different building blocks and
using different operand precisions. Note that the first layer and the “skip connections” have a higher
than binary precision. Furthermore, the number of channels C can differ between the building
blocks

66 M. J. Molendijk et al.

Fig. 2 A convolutional layer
can vary in different ways.
The Input Feature Map (IFM)
has height H and width W
and contains C channels; the
Output Feature Map (OFM)
has height E, width F , and M
channels; and the kernel has
height R and width S.
Between different layers and
different networks, these
parameters vary

IFM

Kernel

OFM

+1 +1 -1 -1

-1 +1 -1 -1

-1 +1 +1 +1 +2

1 1 0 0

0 1 0 0

0 1 1 1 +2

MUL

XNOR
2*POPCOUNT-N

SUM

Fig. 3 Simplified arithmetic circuitry as a consequence of binary quantization. The top displays
the default multiplication, while the bottom displays how binary quantization can replace it with
XNOR and popcount. N is the number of bits of the input vector

2.2 Binary Quantization

On the extreme end of quantization is binary quantization. Binary quantization
restricts both weights and activations to binary values. This means that the acti-
vations .a ∈ {−1,+1} and weights .w ∈ {−1,+1}. Reduction of the precision of the
operands introduces several advantages. First of all, the required storage capacity
and bandwidth on the device are drastically reduced, compared to float32 by
a factor of 32. Furthermore, the Multiply–Accumulate (MAC) operation, involving
expensive multiplication hardware, can be replaced by the much more simple and
cheaper XNOR and popcount operations [21]. An example of this simplified
arithmetic is shown in Fig. 3.

Low- and Mixed-Precision Inference Accelerators 67

The output value of the popcount produces a value that needs to be stored
with a larger bit-width compared to the binary input value, e.g., integer16.
Therefore, to feed the outputs into a new layer, the nonlinear activation function
needs to requantize the values back to the binary bit-width. For this purpose, the
sign function is used. The quantized operand can be derived from its unquantized
form as follows:

.Xquant = Sign(X) =
{

+1 if X ≥ 0

−1 if X < 0
(1)

This function is non-differentiable; for training, a Straight-Through Estima-
tor (STE) [3] can be used that passes gradients as is. By employing an STE, gradient
descent is possible, and binary neural networks can be trained.

2.3 Ternary Quantization

Compared to binary quantization, ternary quantization allows for only one—albeit
very important—extra value to be represented in the operands, namely zero. Ternary
networks therefore have operands .w, a ∈ {−1, 0,+1} called trits. Next to the
increased representational capabilities, the ability to represent zero also solves some
issues found in binary networks. First of all, zero padding is not possible in binary
networks since it lacks the ability to represent zero, and this is most often solved by
employing on–off padding. Furthermore, the ability to represent zero introduces the
capability to exploit sparsity, i.e., skipping computations when either the weights or
activation is zero. As will be seen later on, this can have a significant impact on the
efficiency of the computational hardware if the network itself is sparse.

The arithmetic circuitry required to perform multiply–accumulate (MAC) oper-
ations on ternary operands is very similar to that of binary networks. The MAC
operation can be replaced by a Gated-XNOR [8] (XNOR and AND gates) combined
with two popcount modules, one for the +1s and one for the -1s. The arithmetic
is shown in Fig. 4.

Again, as with the binary popcount, the final result has a higher bit-width
and needs to be requantized before being fed into the next layer. The quantization
function typically uses a symmetric threshold value . �:

.Xquant = T ernarize(X) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if X > �

0 if |X| ≤ �

−1 if X < −�

(2)

During computation, each trit occupies 2 bits. However, this is a wasteful way to
store them since theoretically .log2(3) = 1.58 bits are needed for each trit. Muller et

68 M. J. Molendijk et al.

0 1 0 1

+2

01 01 00 11

11 01 11 11

MSB
XOR

1 1 0 1

1 0 1 0

MSB
XNOR

LSB
AND

0 1 0 1

1 0 0 0 +1

+1

+1 +1 0 -1

-1 +1 -1 -1

-1 +1 0 +1 +1

MUL
SUM

POPCAND

AND POPC ADD

SUB

Fig. 4 Simplified arithmetic circuitry as a consequence of ternary quantization. The top displays
the default multiplication, while the bottom displays the ternary simplified variant. Note that the
ternary variant needs two popcount modules (one to count . +1s and one to count . −1s)

al. [18] derived an efficient mapping, compressing 5 trits into 8 bits, yielding a total
storage of 1.6 bit per trit, close to the theoretical lower bound.

2.4 Mixed-Precision

Despite all the advantages of extreme quantization, binary and ternary quantization
often induce severe accuracy loss, especially on more complex tasks. For example,
there is a large gap in accuracy when comparing integer8 quantization to
binary and ternary [5, 10]. Moreover, the accuracy loss that is induced differs
per layer in the network [11]; i.e., some layers are more resilient to extreme
quantization than others. Therefore, a combination of different precisions in a per-
layer fashion can give a good balance between accuracy and efficiency.

An overview of different data precisions typically found in neural network
architectures is given in Fig. 5. The figure shows the width of different data formats
and how the bits are allocated. Next to the data format, the range is displayed, i.e.,
the minimum and maximum value that can be attained using that data format. Note
that the range for the floating-point number only displays the positive numbers,
while it is able to represent negative numbers using the sign bit.

In the past, float32 was used as the de facto standard for neural networks.
Gradually, movements toward smaller data types like float16 were made to
save on storage and computational cost. Moreover, it was found that the dynamic
range of the data types has a larger impact on the accuracy than the relative
precision, leading to the creation of bfloat16 [27] (Brain Floating Point) and
tf32 [15] (TensorFloat32), both trading off relative precision in favor of increased
range. Using integer8 precision completely gets rid of the expensive floating-

Low- and Mixed-Precision Inference Accelerators 69

S E E E E E E E E M M M M MM M

S E E E E E M M M M M MM M M M

S M

S

32

S M M M M M M M M

S E E E E E E E E M M M M M M M M M

S E E E E E E E E M M M M MM M M

19

Fig. 5 Breakdown of the bit usage inside data formats commonly used in neural networks. S is
sign, E is exponent, and M is mantissa. Floating point data formats specifically for neural networks
prefer higher range over more precision

point arithmetic, vastly increasing the throughput and energy efficiency, with at the
extreme end binary and ternary quantization.

By the nature of floating-point arithmetic units, exponents are added up together,
while the mantissa bits are multiplied. Therefore, bf16, which has 3 less mantissa
bits compared to float16, will have a two times smaller footprint, while compared
to float32 it will even have an eight times smaller area. This is because the area
of the multiplier unit is roughly proportional to the square of the mantissa bits. In
Sect. 3, accelerators that support integer8 (which can also be used for fixed-point
arithmetic), binary, and ternary precisions are discussed.

3 Accelerators for Low- and Mixed-Precision Inference

With the aim to get the energy per MAC operation as low as possible, several
accelerators specifically designed for low-precision inference have been created.
Some of these architectures also support different precisions on the same platform.
The accelerators can be split into two groups: fully digital accelerators and mixed-
signal/analog compute-in-memory (CIM) approaches. Although state-of-the-art
CIM architectures [2, 26] and mixed-signal implementations [25] have the potential
to achieve high energy efficiency, they also introduce new unique challenges.
These challenges include longer design time and chip-to-chip variation due to
CMOS process variation, which makes it more difficult to benchmark the actual
performance of such a design, and no programmability, making it more difficult to

70 M. J. Molendijk et al.

use the accelerator. The further focus in this chapter will therefore be solely on fully
digital implementations.

First, characterization criteria that are important to embedded neural network
accelerators will be established, and these include key performance indicators to
measure the efficiency (in both area and energy) of the architecture. Furthermore, the
basis for the flexibility analysis is laid out, based on the robustness of architectures
against different layer types, dimensionality, and precisions. Thereafter, five state-
of-the-art digital inference accelerators will be discussed.

3.1 Characterization Criteria

The accelerators will be characterized according to both their flexibility and their
energy efficiency. Defining flexibility as a quantitative metric can often be cumber-
some, although some recent effort toward bringing structure has been made [12].
Next to the flexibility aspects, the most important quantitative performance evalua-
tion criteria for neural network inference accelerators will be listed and motivated.

3.1.1 Flexibility

Before the characterization criteria are established, a closer look is taken at the
nature of a convolution kernel. A convolution kernel can be described by 6 nested
for-loops (7 when adding the batch dimension), and an exemplary schedule is shown
in Listing 1. It is assumed that the target application is image processing, i.e., inputs
are referred to as pixels.

In Listing 1, the for-loops are arranged in a so-called output stationary way, i.e.,
one output pixel is calculated as soon as possible. In other words, all calculations
that are needed for a set of output pixels are performed before moving to the next set
of output pixels. This avoids having to store and reload partially calculated output
pixels.

for h in [0, H - R + 1]: Output feature map height
for w in [0, W - S + 1]: Output feature map width
for m in [0, M]: Output channels
acc = bias[m]
for c in [0, C]: Input channels
for r in [0, R]: Kernel height
for s in [0, S]: Kernel width
acc += ifm[h + r][w + s][c] * weights[n][r][s][m]

ofm[h][w][m] = acc

Listing 1 A naive convolutional layer with output stationary schedule and a stride of 1; acc is the
temporary accumulated value, for simplicity, the IFM is assumed to be padded. The loop iterators
are visualized in Fig. 2

Low- and Mixed-Precision Inference Accelerators 71

Loop nest optimization (LNO) can be performed to increase data locality. Two
important techniques, part of LNO, are loop tiling (also known as loop blocking),
where a loop is split up into an inner and an outer loop, and loop interchange,
where two loops are swapped in hierarchy level. The problem of finding the best
combination of the two is called the temporal mapping problem (i.e., finding
the best execution schedule). The temporal mapping greatly influences the number
of memory accesses needed and therefore indirectly greatly influences the energy
efficiency of an accelerator.

Next to the temporal mapping, the operations performed in the convolutional
kernel can also be parallelized in hardware. The problem of finding the optimal
parallelization dimensions is called the spatial mapping problem. Using optimal
spatial mapping can increase data reuse in hardware and reduce memory traffic. A
good example of this is the mapping on a systolic array. It is important to note that
the spatial mapping should be carefully chosen, as it imposes constraints on the
dimensions being parallelized.

Hardware parallelization over a dimension is called vectorization. Vectorization
over any of the dimensions given in Fig. 2 will be denoted as the vectorization factor
.vparam, where param can be any of the dimensions in Fig. 2. For instance, when
parallelizing over the C dimension using a vectorization factor of 32, it is denoted
as .vC = 32. This vectorization factor also implies constraints: any convolutional
network layer that does not have an input channel multiple of 32 will not run at
100% utilization. There will be a trade-off between the vectorization factor and the
flexibility with respect to convolutional layers with certain layer dimensions being
able to run at full utilization.

Research has been done on structurally exploring the temporal and spatial
mapping design space [20, 29]. Most recently, the ZigZag framework [17] has been
published aiming to fully co-design temporal mapping with hardware architecture
finding the best spatial and temporal mappings available.

One other facet of flexibility is programmability. Programmability allows run-
ning different, possibly even non-DNN workloads on the accelerators. Especially,
high-level programmability increases the usability of the device since it allows the
workload to be configured while programming it via a high-level language, requiring
less knowledge about the hardware implementation from a user perspective.

3.1.2 Performance Characteristics

To compare the performance of the several accelerators reviewed, some quantitative
metrics that reflect the performance of the accelerator are established. First of
all, the most widely promoted metric to compare accelerators is to compare the
energy efficiency, defined as the energy per operation (either [pJ/op] or inversely in
[TOPS/W]).

Secondly, the memory capacity plays an important role in the efficiency of
the accelerator. Since off-chip memory access energy is much larger than the
energy needed to compute, off-chip memory access should be avoided at all costs.

72 M. J. Molendijk et al.

More on-chip memory means fewer external memory accesses, benefiting energy
consumption. Two different ways to implement on-chip memory are SRAM and
Standard-Cell Memory (SCM). While SRAM has a much higher memory density,
it is less efficient in terms of energy usage for smaller sizes compared to SCM.
Especially, when applying voltage–frequency scaling, the SCM can be scaled
to a much lower voltage than SRAM. Therefore, SCM tends to be a popular
choice to keep down the energy cost of the total system while sacrificing area
and storage capacity. Other important metrics are throughput [GOPS] and area
efficiency [GOPS/mm.

2].

3.2 Five Low- and Mixed-Precision Accelerators Reviewed

Five state-of-the-art accelerators will be discussed and compared against one
another. These accelerators were chosen because of their support for very low
precisions (i.e., binary or ternary). These accelerators are:

• XNOR Neural Engine [6] is a binary neural network accelerator built into a
programmable microcontroller unit. A full system on a chip (SoC), implemented
in 22-nm technology, is presented including the accelerator, RISC host processor,
and peripherals.

• ChewBaccaNN [1] is an architecture for binary neural network inference that
exploits efficient data reuse by co-designing the memory hierarchy with the neural
network ran on the architecture. The hard-wired kernel size allows efficient data
reuse.

• CUTIE [22] is an accelerator for ternary neural networks. This is a massively
parallel architecture, hard-coding all the network parameters into the hardware
design. Furthermore, it exploits sparsity opportunities from ternary networks that
are not present in binary networks.

• Knag et al. produced a binary neural network accelerator in 10-nm FinFet
technology [16]. The design focuses on utilizing the compute near memory
paradigm, minimizing the cost of data movement by interleaving memory and
computational elements.

• BrainTTA is a flexible, fully programmable solution based on a Transport-
Triggered Architecture. The architecture has support for mixed-precision and
focuses, next to the energy efficiency objective also on flexibility, trying to
minimize the concessions made while still pursuing energy efficiency.

A summary of these architectures is given in Table 1, and the strengths and
weaknesses of the architectures are discussed in Sect. 4.

3.2.1 XNOR Neural Engine (XNE)

XNOR Neural Engine [6] is a binary accelerator exploiting the arithmetic simpli-
fications introduced by binarizing the weights and activations (see Fig. 3). Conti et

Low- and Mixed-Precision Inference Accelerators 73

Table 1 Comparison of performance, efficiency, and flexibility of the architectures discussed

ChewBaccaNN [1] CUTIE [22] XNE [6] 10nm FinFet [16] BrainTTA

Implementation characteristics

Tech node [nm] 22 22 22 10 28

Supply voltage
[V]

0.4 0.65 0.6 0.4 0.39 0.9

Inference
precision. a

b b. b, t b b b, t, i8

Memory
technology

SCM SRAM SCM SRAM SCM SRAM SRAM

Key Performance Indicators

Peak throughput
[GOPS]

240 16,000 67 5 3400 880

Energy/op [fJ]
binary

4.48/15.38.c – 115 21.6 1.62 101

Energy/op [fJ]
ternary

– 2.19 1.70 – – 188

Energy/op [fJ]
8-bit

– – – – 1105

Core area [mm. 2] 0.7 7.5 2.32 0.39 3.6

Area efficiency
[GOPS/mm. 2]

343 2133 28.88 8717 244.44

Memory
capacity [kB]

153 1190 281 520 16 161 1024

Flexibility

Full utilization for

C multiple of 16 128 128 1024 32/16/4. d

M multiple of Any 128 128 128 32

R is 7 3 Any 2 Any

S is 7 3 Any 2 Any

Partial result
support (for
scheduling
freedom)

Yes No.e No No Yes

Residual layer
support

Yes No No No Yes

Programmability None None None None C-language

. a b = binary, t = ternary, i8 = integer8

. bOnly estimates were provided, under the assumption that all ternary specific hardware is removed

. c For 7 . × 7 and 3 . × 3 convolution, respectively

. d For binary, ternary and integer8, respectively

. e Partial result support is not needed since the output pixel computation is fully unrolled in hardware

al. present an SoC consisting of an accelerator core (XNE) inside a microcontroller
unit (MCU) and peripheries. The accelerator can independently run simple network
configurations but requires the programmable MCU to execute more complex

74 M. J. Molendijk et al.

INTERCONNECT

RISC-V

SRAM
56 kB

SCM
8 kB

SRAM
112 kB

SCM
2 kB

SRAM
112 kB

SCM
2 kB

SRAM
112 kB

SCM
2 kB

SRAM
112 kB

SCM
2 kB

XNE
core

I/O
μDMA

JTAG

SPI
I2C
I2S

UART
CPI

RAM

Shared memory CCM

Fig. 6 Top-level view of the SoC with XNE inside the MCU. The memory is a hybrid of latch-
based SCM and SRAM

layers. The MCU is programmed using some assembly dialect. The full system is
shown in Fig. 6. It consists of:

• XNE core, where the binary MAC operations are performed; this core consists
of a streamer, to stream feature maps and weights in and out of the architecture,
a controller consisting of a finite-state machine, the programmable microcode
processor, and a latch-based register file.

• RISC-V host processor, used to realize more complex layer behaviors than
supported with the XNE core alone.

• Shared Memory, shared between the . μDMA, RISC-V core, and XNE core. This
memory is a hybrid of SRAM and SCM, allowing aggressive voltage scaling when
the SRAMs are turned off.

• Core-Coupled Memory (CCM), primarily for the RISC-V core, again composed
of both SRAM and SCM.

• . μDMA, which is an autonomous unit able to send and receive data via several
communication protocols from and to the shared memory.

The accelerator core, XNE, is shown in Fig. 7. The throughput of the design can
be chosen at design time by means of a throughput parameter TP. This throughput
parameter can be described as follows: it takes the accelerator TP cycles to calculate
TP output pixels. While doing this, the accelerator keeps the same input activations
for TP cycles while loading TP weights each cycle (for a total of TP sets of
TP weights). Therefore, this TP parameter essentially hard-wires the C and M
dimension of the convolution dimensions shown in Fig. 2 into the design.

For instance, each accumulator in Fig. 7 contains the partial result of one output
pixel (i.e., the number of accumulators is equal to the output feature map channel
vectorization . vM). Therefore, all the inputs that are processed while a single
accumulator is selected via the mux should contribute to the same output pixel.

Low- and Mixed-Precision Inference Accelerators 75

PO
PC

O
U

N
T

+ TH
R

ES
H

O
LD

IN
G

 OUTPUT
BUFFER

16

16

16

1

ACCUMULATORS

Fig. 7 Accelerator core of XNOR Neural Engine with TP = 128. The XNOR operation is
performed on the activations a and weights w. Whenever the number of input operands is not
a multiple of TP, the outputs can be masked by masking bits m to make sure that they do not
contribute to the popcount output

In this case, the different pixels concurrently offered to the compute core belong to
different input channels. Therefore, the choice of TP directly imposes a constraint
on the C and M loops in order to run at full efficiency. Furthermore, the output of the
popcount operation is directly fed through the binarization function; this means
that partial (higher bit-width) results cannot be extracted, prohibiting their use for
residual layers. For benchmarking the platform, a TP factor of 128 was chosen,
which means that .vC = 128 and .vM = 128 for this design point.

3.2.2 ChewBaccaNN

ChewBaccaNN [1] is like XNE, an accelerator utilizing binary weights and binary
activations. Contrary to XNE, this architecture does not implement a full SoC and
is therefore purely based on the accelerator core. ChewBaccaNN is designed using
GF22 technology and uses SCM to enable aggressive voltage scaling. A top-level
view of the architecture is shown in Fig. 8. The components in this architecture are:

• BPU Array consists of seven Basic Processing Units (BPUs) and forms the
computational heart of the accelerator; the BPU is detailed in Fig. 9 and is
discussed in the next paragraph.

• Feature Map Memory (FMM) holds the input and output feature maps and also
has the ability to store partial results (e.g., for residual layers). The FMM is
implemented using SCM only. This enables aggressive voltage scaling for the
whole chip at the expense of sacrificing memory capacity.

• Row Banks buffer the input feature map rows and kernel rows. The crossbar (x-
bar) is utilized when the convolutional window slides down. Since each BPU
processes one kernel row, the kernel weights can stay inside the BPUs, while the
input feature map needs to move one row down. This is done by loading one new
row and shifting the other rows by one BPU (using the crossbar).

76 M. J. Molendijk et al.

B
PU

 A
rr

ay

FM
M

Row bank 0

NMCU

X-
B

A
R

Scheduler

Pa
ra

m
et

er

B
uf

fe
r DMA

I/O

IN
TE

R
C

O
N

N
EC

T

Row bank 1

Row bank 6

Fig. 8 The top-level architectural overview of the ChewBaccaNN accelerator. All the memories
are implemented using latch-based standard-cell memory. The control signals are not shown in this
overview

BPU ARRAY

BPU

+
0

6

0

6
16

CU
16

PO
PC

O
U

N
T

Fig. 9 ChewBaccaNN compute core. Hardware parallelization is performed over the kernel height
(R) in the Basic Processing Unit (BPU) array, over the kernel width (S) inside a single BPU and
over the input channel dimension (C) inside the compute unit (CU). The Controlled Shift Register
(CSR) enables data reuse in a sliding window fashion. The architecture contains a total of . 16×7×
7 = 784 (.vC × vR × vS) binary multipliers

• Scheduler, used to control the crossbar behavior and make sure that the row banks
are timely rotated to the next BPU and the correct weights and IFM pixels are
loaded.

• Near Memory Compute Unit (NMCU), which writes output data from the BPU
array to the correct location in the FMM, accumulates residual paths, rebinarizes
results, and is used for bit-packing (rebinarized) outputs into 16-bit packets.

In Fig. 9, the compute core of ChewBaccaNN is depicted. It can be seen that several
of the parameters listed in Fig. 2 are hard-wired into the design. The kernel height

Low- and Mixed-Precision Inference Accelerators 77

(R) and width (S) are completely unrolled (in this case with a factor of 7), while
the channel dimension (C) should be a multiple of 16 (the number of XNOR gates)
to achieve full utilization; in other words, the vectorization factors are .vC = 16,
.vR = 7, and .vS = 7.

The Controlled Shift Register (CSR) allows using the sliding window principle
to get data reuse; for each IFM image row, initially, the full kernel width (in this
case 7) is transferred, while the iterations thereafter only need one new column
(.vR × 1 × vC) of activations.

3.2.3 Completely Unrolled Ternary Inference Engine (CUTIE)

Completely Unrolled Ternary Inference Engine (CUTIE) [22] is, as the name
suggests, an inference accelerator using Ternary operands. The main design
philosophy behind CUTIE is to avoid iteration by spatially unrolling most of the
convolutional loops found in Listing 1, namely the loops over the R, S, C, and
M dimensions. Furthermore, ternary operands allow the representation of zero,
therefore making the accelerator capable of exploiting neural network sparsity by
silencing compute units. The top-level design of CUTIE is depicted in Fig. 10. The
main components within the CUTIE architecture are:

• Output Channel Compute Unit (OCU), the basic compute building block of this
architecture, computing the output pixels belonging to one single output channel.
A detailed view of the OCU is given in Fig. 11.

• Feature Map Memory (FMM), used to store the inputs coming either from
previous computations (OCUs) or from an external interface. The FMM is double-
buffered such that the latency for loading new input feature maps can be hidden.

So
C

 In
te

rf
ac

e

FMM

Tile buffer
OCU array

DECOMPRESSOR

C
O

M
PR

ES
SO

R

Weight
Memory
(M=127)

Weight
Memory
(M=0)

DECOMPRESSOR

DECOMPRESSOR OCU (M = 0)

OCU (M = 127)

Weight Buffer
(M=0)

Weight Buffer
(M=127)

Fig. 10 CUTIE top-level architecture. The OCU array contains one output channel compute unit
for each output channel in the neural network design

78 M. J. Molendijk et al.

OCU ARRAY

OCU

+

TH
R

ES
H

O
LD

IN
G

+

+ PO
PC

O
U

N
T-

PO
PC

O
U

N
T+

+
PO

O
LI

N
G

 (O
PT

IO
N

A
L)

Fig. 11 CUTIE compute core, consisting of several Output Channel Compute Units (OCUs) and
one weight buffer per OCU. For brevity, decompression and pipelining are omitted in this figure.
The ternary multipliers are unrolled over the R, S, and C dimensions, which in this case gives
.3× 3× 128 = 1152 ternary multipliers. In total, the architecture can process . 3× 3× 128× 128 =
147,456 (.vR × vS × vM × vC) inputs each compute cycle

• Tile buffer, used to buffer IFM pixels in a sliding window fashion.
• Weight buffer, one is attached to each OCU: it is designed with enough capacity
to contain the full kernel for a single output channel (.R × S × C), which enables
great weight reuse. The weight buffer is also double-buffered to hide latency.

• Compression/decompression units are used to shift between the computational
form of the trits, i.e., 2 bits, and the compressed form of the trits which is 1.6 bits
wide.

The compute core of CUTIE is depicted in Fig. 11. Its main workhorse is
the Output Channel Compute Unit (OCU), which is a unit that calculates pixels
exclusive to a single output channel. Having a separate compute unit for each output
channel brings the advantage that the weight kernel can stay inside the weight buffer
(w buffer) while moving the convolutional window over the IFM giving maximum
weight data reuse. Alongside the weight reuse, there is also IFM reuse being utilized

Low- and Mixed-Precision Inference Accelerators 79

in two different ways: (1) the IFM is broadcasted to each of the OCUs and (2) just
like ChewBaccaNN, when sliding the convolutional window over the IFM image,
only R new IFM pixels are needed (i.e., only one new column of the IFM needs to
be loaded, assuming a stride of 1).

Each Output Channel Compute Unit (OCU) processes .128×3×3 (.vC ×vR ×vS)
input pixels each cycle. By hard-wiring many of the convolutional layer parameters,
CUTIE sacrifices area in favor of avoiding temporal iteration. This also means
that this architecture sacrifices most flexibility by constraining C, M , R, and S.
Therefore, the only dimensions that are freely schedulable are W and H . By
constraining many of the dimensions into the hardware, flexibility crumbles, but
the temporal mapping is greatly simplified. The fully spatially unrolled structure
also minimizes the movement of (large) partial sums. Since each OCU directly
computes an output pixel, there is no need, in contrast to the other architectures,
to move around partial results. This is beneficial since the partial results have a
higher bit-width than the final (requantized) results.

3.2.4 Binary Neural Network Accelerator in 10-nm FinFet

In [16], Knag et al. show a fully digital accelerator with binary operands which
is implemented using 10nm FinFet technology. The SoC designed intersperses
arithmetic with memory according to the Compute Near Memory (CNM) paradigm.
Contrary to the other architectures discussed, this work focuses more on the physical
implementation and circuit-level design choices rather than the architectural design
aspects. The design of this accelerator is shown in Fig. 12. The main components of
this accelerator are:

• Control Unit, which consists of four 256-bit wide SRAM memory banks used
as main storage and a Finite-State Machine (FSM) that controls the flow of data
between memory banks and the MEUs.

• Memory Execution Unit (MEU). Each MEU can compute two output pixels in a
time-interleaved manner (see Fig. 12, each MEU contains two output registers).
The MEUs are interleaved with latch-based memories to utilize the compute near
memory advantages. In total, there is an array of .16 × 8 MEUs. Having 8 weight
SCM banks was found to be the right trade-off between energy consumed by
the computational elements and energy consumed by the transportation of data
to the compute units. The SRAM memory banks are connected to the MEUs by
means of a crossbar network. Since the input feature map pixels are stored in an
interleaved manner, the crossbar network allows any (2 . × 2) combination of the
input feature map to be read. The weights are also loaded from this memory.

The authors of the work do not discuss the external interfacing required on this
chip.

Binary arithmetic is relatively cheap, compared to the cost of accessing memory
(e.g., for loading weights). To amortize the costs of memory reads and data
movement, the computational intensity should be sufficient to balance the energy

80 M. J. Molendijk et al.

W
ei

gh
t S

C
M

Control Unit

M
EU

 a
rr

ay

M
em

 b
an

k
0

X-BAR

M
em

 b
an

k
1

M
em

 b
an

k
3

M
em

 b
an

k
2

FSMParam RF

M
EU

 a
rr

ay

M
EU

 a
rr

ay

M
EU

 a
rr

ay

MEU array

MEU

1024

W
ei

gh
t S

C
M

PO
PC

O
U

N
T

TH
R

ES
H

O
LD

IN
G

16 2

W
ei

gh
t S

C
M

8

1024

256

ou
tp

ut
 re

g
ou

tp
ut

 re
g

Fig. 12 Top-level view of the 10nm FinFet BNN accelerator. The central memory inside the
control unit consists of 4. × 256-bit wide SRAM banks to enable 2 . × 2 convolutional window
access in a single cycle and a finite-state machine (FSM). The MEUs are placed in an 8 . × 16 array
to exploit the compute near memory principle. In total, .1024 × 16 × 8 = 131,072 (.vC × vM × 8)
binary operations can be performed each cycle

consumption. Parallelism of the MAC unit (as shown in Fig. 12) is used to balance
the power mismatch of the (expensive, high bit-width) accumulator, present in
the popcount module, and the (cheap) XNOR gates. By enlarging the number
of inputs of the popcount module, the fixed accumulator cost is amortized by
many XNOR gates. Like the other architectures, this accelerator parallelizes the
MAC operation over the input channel (C) dimension. The parallelization should
be high enough to offset the accumulator cost while being low enough to not
impose unreasonable constraints on the number of input channels (C) required for

Low- and Mixed-Precision Inference Accelerators 81

full utilization. Therefore, a trade-off study was performed to see which level of
parallelism was needed to offset the accumulator cost. A design with an input feature
map parallelization factor of 1024 (.vC = 1024) was chosen as the sweet-spot.
Negligible energy improvements were shown when going for more parallelism.

Furthermore, the idea of pipelining the popcount-adder tree was explored.
When pipelining the design, the voltage can be lowered at iso-performance (i.e.,
iso-frequency). However, due to the sequential logic and clock-power dissipated
while adding more pipeline stages, the final design choice was to not pipeline the
popcount-adder tree.

3.2.5 BrainTTA

BrainTTA is a fully compiler-programmable mixed-precision flexible-datapath
architecture. Contrary to the fixed-path accelerators, BrainTTA is based on the
Transport-Triggered Architecture (TTA) [7] that provides a fully programmable
datapath (via a compiler) directly to the user. Before diving into the BrainTTA
architecture, a proper introduction to the Transport-Triggered Architecture is given.

Transport-Triggered Architectures are programmed by data movements instead
of arithmetic operations typically found in Very Long Instruction Word (VLIW)
architectures. This means that the movement of data between function units (FUs)
and register files (RFs) is exposed to the programmer; the TTA is an explicit
datapath architecture. This is in stark contrast to VLIW architectures, where the
data movement is implicit and performed in hardware (i.e., not exposed to the
programmer). With the control of the datapath given to the compiler, several
optimizations can be performed like operand sharing and register file bypass.

An example instance of a TTA is displayed in Fig. 13. The TTA consists of a
Control Unit (CU) used for instruction fetching and decoding, Register Files (RFs)
for temporary storage, and Load-Store Units (LSUs) to access the memories. The
gray circles inside the busses denote that this bus is connected to the corresponding
input- or output-port of some function unit. This connectivity is design time
configurable, visible to the compiler, and can be made as generic or specific
for certain applications as desired; more connectivity is at the expense of larger
instruction size and more switching activity in the interconnect. In [19], Multanen
presented several ways to alleviate this effect by applying techniques that reduce
the instruction overhead such as instruction compression. An example instruction is
shown in Fig. 13, which shows that the instruction can be broken down into move
operations for each bus.

BrainTTA is based on the TTA, built specifically for inference with precisions
integer8, binary, and ternary. A top-level view of the BrainTTA SoC is
shown in Fig. 14. BrainTTA is designed using the open-source toolchain TTA-based
Co-design Environment (TCE) [9, 13]. The SoC consists of:

82 M. J. Molendijk et al.

DMEM

ALULSU RF CU

IMEM

RF.out → ALU.in1t.add nop LSU.out → CU.in2

Bus 2

Example TTA instruction

Bus 1Bus 0

Bus 0
Bus 1
Bus 2

Fig. 13 An example TTA instance and instruction, the square blocks denote input- and output-
ports. A cross denotes a trigger-port. The colored arrows drawn on the architecture illustrate the
move operations inside the example instruction

DBG

TTA CORE

A
R

B
IT

ER

DMA

GCU

PMEM LSU

DMEM LSU

IRQ

AXI INTERCONNECT

GPIOQSPI UART

RISC
DMEM

32x16kB

PMEM
32x16kB

IMEM
4x32kB

RISC
DMEM
16kB

RISC
IMEM
16kB

JTAG

APB

TT
A

C
on

tro
l

Fig. 14 Top-level view of the BrainTTA SoC, the arbiter forms the border between the RISC and
TTA part of the SoC

• RISC-V host processor, which is taken from an open-source repository [24], the
host processor starts and halts execution of the TTA core and takes care of the
external communication (e.g., loading the on-chip memories).

• TTA core, the workhorse of the architecture, supports mixed-precision inference.

Low- and Mixed-Precision Inference Accelerators 83

DMEM PMEM

vADD vOPS ALU ALU ALULSU LSU DMA RF
Bool RF RF vRF vRF RF IMM CU

IMEM

Legend
Scalar (32-bit)

Vector (1024-bit)

vMAC

Fig. 15 BrainTTA core instance, thicker lines denote vector busses, thinner lines scalar busses

• SRAM Memories, separate memories for the RISC and TTA core, the TTA
core memories are highly banked to allow efficient access of smaller bit-widths,
while also supporting wide vector accesses. The TTA core is connected to three
memories, the DMEM, used for storing input and output feature maps, the
PMEM, used to store the weights, and the IMEM used for instructions to program
the behavior of the TTA core.

• Debugger (DBG), used to control the execution of the TTA core, can signal task
completion to the RISC-V.

• AXI interconnect, used for on- and off-chip communication between the RISC,
TTA core, and peripherals.

The workhorse of this architecture is the TTA core, where the actual inference
happens. The details of the TTA core instantiation used in BrainTTA can be found
in Fig. 15. The core contains different Function Units (FUs), divided into scalar and
vector FUs. The FUs are interconnected via the busses, with 32-bit scalar busses
(bus 0–5) and 1024-bit vector busses (bus 6–9). The core consists of the following
units:

Control Unit (CU) it contains the logic to fetch and decode instructions and steers
the other units to execute the correct operations. Furthermore, the CU contains a
hardware loop buffer to save energy on the instruction memory accesses. This can
be very beneficial since all network layers are essentially described by multiple
nested loops (see Listing 1).

Vector Multiply–Accumulate (vMAC), the actual number cruncher. This unit
supports the following operations: integer8 MAC (scalar–vector product and
vector–vector product), binary MAC, and ternary MAC. Its vector size is
1024-bit, with 32 entries of 32-bits each. The scalar–vector MAC multiplies a scalar
by a vector by broadcasting the (32-bit) scalar value to all vector entries. This is
beneficial when multiple inputs share the same weights (as in convolution).

For each precision MAC operation, the vectorization factor is different. All
arithmetic circuitry contains 32 accumulators for the (intermediate) output channel

84 M. J. Molendijk et al.

result, i.e., .vM = 32. The number of concurrent input channels is the vector
size (1024) divided by 32 (the number of output channels) divided by the operand
size (i.e., 1, 2, or 8 bits). Therefore, the input channel vectorization is .vC = 32,
.vC = 16, and .vC = 4 for binary, ternary, and integer8, respectively.

Vector Add (vADD) is used to add two (either 512- or 1024-bit) vectors. This can
for example be used to support residual layers.

Vector Operations (vOPS), auxiliary (vector) operations that are required in the
network, alongside to the computations. This FU can perform requantization,
binarization, ternarization, as well as activation functions, e.g., ReLU
and pooling functions such as MaxPool. Furthermore, various other operations to
extract and insert scalar elements into a vector are also supported by this unit.

Register Files (RFs) come in different bit-widths, namely binary, 32-bit scalar,
and 1024-bit vector. These registers can be used to facilitate data reuse and store
intermediate results without performing (more costly) access to the SRAM.

Load-Store Units (LSUs) form the interface between the TTA core and the SRAM
memory. For each memory, there is a separate LSU to facilitate concurrent weight
and input loading. The units support loads and stores for different bit-widths ranging
from 8 bits all the way up to 1024 bits. Since the memory is banked, a strobe signal
can be used to selectively turn on banks when data with smaller bit-widths are
loaded/stored, in order to save energy.

Scalar ALUs are mostly used for address calculations needed as inputs to the
LSUs. These units support basic arithmetic on values up to 32 bit.

4 Comparison and Discussion

All architectures discussed in Sect. 3 are evaluated on flexibility and energy
efficiency. These results are given in Table 1. This table is split into three sections:
the implementation characteristics, performance characteristics as discussed in
Sect. 3.1.2, and the flexibility aspects as discussed in Sect. 3.1.1.

The energy efficiency of the accelerators ranges from 1.6 to 115 fJ per operation
for binary precision, a large range. It should be noted, however, that the two
architectures that have the highest energy usage (XNE and BrainTTA) are the only
architectures that show a full autonomous SoC including peripherals. Furthermore,
all architectures except BrainTTA utilize voltage–frequency scaling to run the
accelerator at lower than nominal supply voltage, trading off throughput for better
energy efficiency.

Next to the energy efficiency, the table also lists the neural network layer
requirements that these architectures impose in order to fully utilize the arithmetic
hardware. It is seen that the most energy-efficient architectures, CUTIE [22] and
the BNN accelerator in 10-nm FinFet from Knag et al. [16], are also the most
constrained architectures, in terms of neural network layer requirements. Therefore,

Low- and Mixed-Precision Inference Accelerators 85

the question arises, does hard-wiring the neural network layer parameters directly
improve the energy efficiency of an architecture, for different models, also when
layer variety is high?

Interestingly, the XNE and BrainTTA share very similar layer constraints. Both
are only constrained in the input channel (C) and output channel (M) dimensions.
The energy consumption of BrainTTA is somewhat lower at an older technology
node while using a higher supply voltage. The reason for this is that BrainTTA better
exploits data reuse. The execution schedule for BrainTTA was tuned to maximize
data reuse, while XNOR neural engine only reuses a set of input feature maps for
TP (in this case 128) cycles while reloading the weights for each MAC operation.

The inefficient schedule of XNE is confirmed by the energy numbers of the
implementation that only uses SCM. XNE was benchmarked using SCM only,
severely cutting the very high energy cost associated with these redundant memory
fetches, at the cost of losing memory capacity. Some architectures report energy
numbers for an SCM as well as an SRAM implementation. The memory capacity
of the SCM versions is very low compared to the SRAM versions, hindering the
ability to run full-size networks on it without adding expensive off-chip memory
accesses. For the sake of comparison, for all the architectures with an SRAM version
available, the SRAM version is chosen for further analysis.

Support for residual layers can only be found in ChewBaccaNN and BrainTTA.
Other architectures are not able to support this due to their fixed datapath. The
dataflow through these accelerators is very static, and the accumulated value will
directly be binarized or ternarized after all inputs are accumulated. This
prohibits the use of residual layers since residual layers need the intermediate (larger
bit-width) results that were obtained before requantization.

It is clear that parallelism and data reuse (either in the form of locally buffering
or by broadcasting) are the keys to amortizing the memory access cost, which is
so much larger than the low-precision arithmetic cost. Techniques to mitigate these
costs are to replace SRAM with low-voltage SCM, hard-wire network parameters to
enable broadcasting, and use the sliding window principle (like the FMM banks in
combination with the crossbar in ChewBaccaNN [1]). In essence, all these solutions
boil down to designing the architecture around the data movements in a less-flexible
manner. These architectures solve the mapping problem by fixing most parameters
using spatial mapping, greatly simplifying the task of temporal mapping at the
cost of losing flexibility. XNE and BrainTTA fix the least number of parameters
using spatial mapping, therefore leaving a larger temporal mapping space to be
explored.

5 Summary and Conclusions

Neural networks are all around and are making an advance into the embedded
domain. With the increasing popularity of edge computing, new methods are needed
to port the typically power- and memory-hungry neural networks to devices that

86 M. J. Molendijk et al.

have limited storage and are subject to severe energy constraints. Quantization is a
fundamental ingredient in overcoming these challenges. Very low precisions, down
to 1 bit, have shown to achieve great energy efficiency while drastically reducing the
model size and computational cost involved in neural network inference. To fully
exploit the reduced computational complexity and memory requirements of these
networks, neural network accelerators aimed specifically at these heavily quantized
networks have been developed.

In this chapter, state-of-the-art low- and mixed-precision architectures are
reviewed. Taking into account the variety present in network layers of CNNs,
the architectures are compared against each other in terms of flexibility and energy
efficiency. It was found that spatially mapping more dimensions of the neural
network layer increases the energy efficiency as it allows minimization of data
movement by tailoring the memory hierarchy design, which is a big contributor to
energy cost in inference accelerators. Contrary to the group of accelerators that maps
most layer dimensions spatially, there is a group of accelerators that minimizes the
layer dimension requirements by less heavily relying on spatial mapping, retaining
more freedom in the temporal mapping domain. They are more flexible and can
handle a larger part of the neural architecture design space. In addition, they may
have support for multiple bit precisions.

With new attempts to streamline the process of finding the best combination
of temporal and spatial mappings [17], while co-designing the memory hierarchy,
the question arises if an optimized temporal mapping in combination with memory
hierarchy co-design can close the energy efficiency gap with the more constrained,
heavily spatially mapped accelerators, giving better energy efficiency at a wider
range of neural network layers.

References

1. Andri, R., Karunaratne, G., Cavigelli, L., Benini, L.: ChewBaccaNN: A flexible 223 TOPS/W
BNN accelerator. arXiv (May), 23–26 (2020)

2. Bankman, D., Yang, L., Moons, B., Verhelst, M., Murmann, B.: An always-on 3.8 μ J/86%
CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS.
IEEE J. Solid-State Circuits 54(1), 158–172 (2019). https://doi.org/10.1109/JSSC.2018.
2869150. https://ieeexplore.ieee.org/document/8480105/

3. Bengio, Y., Léonard, N., Courville, A.: Estimating or Propagating Gradients Through Stochas-
tic Neurons for Conditional Computation pp. 1–12 (2013). http://arxiv.org/abs/1308.3432

4. Blalock, D., Ortiz, J.J.G., Frankle, J., Guttag, J.: What is the State of Neural Network Pruning?
(2020). http://arxiv.org/abs/2003.03033

5. Bulat, A., Tzimiropoulos, G.: XNOR-Net++: Improved binary neural networks. In: 30th British
Machine Vision Conference 2019, BMVC 2019 pp. 1–12 (2020)

6. Conti, F., Schiavone, P.D., Benini, L.: XNOR neural engine: a hardware accelerator IP for 21.6-
fJ/op binary neural network inference. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 37(11), 2940–2951 (2018). https://doi.org/10.1109/TCAD.2018.2857019

7. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Hoboken (1997)

https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019

Low- and Mixed-Precision Inference Accelerators 87

8. Deng, L., Jiao, P., Pei, J., Wu, Z., Li, G.: GXNOR-Net: training deep neural networks with
ternary weights and activations without full-precision memory under a unified discretization
framework. Neural Netw. 100, 49–58 (2018). https://doi.org/10.1016/j.neunet.2018.01.010

9. Esko, O., Jääskeläinen, P., Huerta, P., De La Lama, C.S., Takala, J., Martinez, J.I.: Customized
exposed datapath soft-core design flow with compiler support. In: Proceedings - 2010
International Conference on Field Programmable Logic and Applications, FPL 2010, pp. 217–
222 (2010). https://doi.org/10.1109/FPL.2010.51

10. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A Survey of
Quantization Methods for Efficient Neural Network Inference (2021). http://arxiv.org/abs/
2103.13630

11. Gluska, S., Grobman, M.: Exploring Neural Networks Quantization via Layer-Wise Quantiza-
tion Analysis (2020). http://arxiv.org/abs/2012.08420

12. Huang, S., Waeijen, L., Corporaal, H.: How flexible is your computing system? ACM Trans.
Embedd. Comput. Syst. (2022). https://doi.org/10.1145/3524861. https://dl.acm.org/doi/10.
1145/3524861

13. Jääskeläinen, P., Viitanen, T., Takala, J., Berg, H.: HW/SW co-design toolset for customization
of exposed datapath processors. In: Computing Platforms for Software-Defined Radio, pp.
147–164. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-
49679-5_8

14. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.:
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 2704–2713 (2018). https://doi.org/10.1109/CVPR.2018.00286

15. Kharya, P.: TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x (2020).
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

16. Knag, P.C., Chen, G.K., Sumbul, H.E., Kumar, R., Hsu, S.K., Agarwal, A., Kar, M., Kim,
S., Anders, M.A., Kaul, H., Krishnamurthy, R.K.: A 617-TOPS/W all-digital binary neural
network accelerator in 10-nm FinFET CMOS. IEEE J. Solid-State Circuits 56(4), 1082–1092
(2021). https://doi.org/10.1109/JSSC.2020.3038616

17. Mei, L., Houshmand, P., Jain, V., Giraldo, S., Verhelst, M.: ZigZag: enlarging joint architecture-
mapping design space exploration for DNN accelerators. IEEE Trans. Comput. 70(8), 1160–
1174 (2021). https://doi.org/10.1109/TC.2021.3059962

18. Muller, O., Prost-Boucle, A., Bourge, A., Petrot, F.: Efficient decompression of binary encoded
balanced ternary sequences. IEEE Trans. Very Large Scale Integr. Syst. 27(8), 1962–1966
(2019). https://doi.org/10.1109/TVLSI.2019.2906678

19. Multanen, J.: Energy-Efficient Instruction Streams for Embedded Processors. Ph.D. Thesis,
Tampere University (2021)

20. Parashar, A., Raina, P., Shao, Y.S., Chen, Y.H., Ying, V.A., Mukkara, A., Venkatesan, R.,
Khailany, B., Keckler, S.W., Emer, J.: Timeloop: A systematic approach to DNN accelerator
evaluation. In: Proceedings - 2019 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2019, pp. 304–315 (2019). https://doi.org/10.1109/ISPASS.
2019.00042

21. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: ImageNet classification using
binary convolutional neural networks. In: Computer Vision—ECCV 2016. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, vol. 9908, pp. 525–542 (2016). https://doi.org/10.1007/978-
3-319-46493-0_32

22. Scherer, M., Rutishauser, G., Cavigelli, L., Benini, L.: CUTIE: Beyond PetaOp/s/W Ternary
DNN Inference Acceleration with Better-than-Binary Energy Efficiency pp. 1–14 (2020).
http://arxiv.org/abs/2011.01713

23. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: MnasNet:
Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition 2019-June, pp. 2815–2823
(2019). https://doi.org/10.1109/CVPR.2019.00293

https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293

88 M. J. Molendijk et al.

24. Traber, A., Gautschi, M.: PULPino: Datasheet. ETH Zurich, University of Bologna (2017)
25. Ueyoshi, K., Papistas, I.A., Houshmand, P., Sarda, G.M., Jain, V., Shi, M., Zheng, Q., Giraldo,

S., Vrancx, P., Doevenspeck, J., Bhattacharjee, D., Cosemans, S., Mallik, A., Debacker, P.,
Verkest, D., Verhelst, M.: DIANA: An end-to-end energy-efficient digital and ANAlog hybrid
neural network SoC. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC),
pp. 1–3. IEEE (2022). https://doi.org/10.1109/ISSCC42614.2022.9731716. https://ieeexplore.
ieee.org/document/9731716/

26. Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A 64-Tile 2.4-Mb in-memory-computing
CNN accelerator employing charge-domain compute. IEEE J. Solid-State Circuits 54(6),
1789–1799 (2019). https://doi.org/10.1109/JSSC.2019.2899730. https://ieeexplore.ieee.org/
document/8660469/

27. Wang, S., Kanwar, P.: BFloat16: The secret to high performance on Cloud TPUs
(2019). https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-
high-performance-on-cloud-tpus

28. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.:
FBNET: Hardware-aware efficient convnet design via differentiable neural architecture search.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2019-June, pp. 10726–10734 (2019). https://doi.org/10.1109/CVPR.2019.01099

29. Wu, Y.N., Emer, J.S., Sze, V.: Accelergy: An architecture-level energy estimation methodology
for accelerator designs. In: IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers, ICCAD 2019-Nov (2019). https://doi.org/10.1109/ICCAD45719.
2019.8942149

https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149

Designing Resource-Efficient Hardware
Arithmetic for FPGA-Based Accelerators
Leveraging Approximations and Mixed
Quantizations

Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar

1 Introduction

With the recent advancements in the field of Artificial Intelligence (AI), Machine
Learning (ML) is becoming an imperative part of modern applications such as
autonomous driving [1], personalized healthcare [2], precision agriculture [3], smart
factories [4], and smart homes [5]. Machine learning algorithms perform various
tasks for these applications, such as scene perception, object recognition and clas-
sification, voice recognition and decision-making, and natural language processing.
However, machine learning algorithms, such as Artificial Neural Networks (ANNs),
are computationally expensive and have very high energy requirements and memory
footprints [6]. Therefore, high-performance parallel architectures, such as Graphic
Processing Units (GPUs), and cloud-based computing are typically utilized for
training the ML models. Nonetheless, the GPUs’ high power consumption makes
them an infeasible choice for deploying the trained ML models on embedded
devices at the edge. Similarly, factors such as high power consumption of data
transmission from device to cloud, network costs, throughput, and data security are
the primary reasons to avoid cloud-based inference and thus motivate the need for
executing trained ML algorithms at the edge.

Embedded machine learning refers to utilizing and executing machine learning
models on embedded systems to perform the aforementioned AI/ML-related tasks.
The ubiquitous deployment of embedded systems in almost every application—
from space rockets to microwave ovens—further emphasizes the need for smart
embedded systems by utilizing ML models. Toward this end, various state-of-the-
art works, such as [7], have presented various techniques to reduce these models’

S. Ullah · S. S. Sahoo · A. Kumar (�)
Technische Universität Dresden, Dresden, Germany
e-mail: salim.ullah@tu-dresden.de; siva_satyendra.sahoo@tu-dresden.de;
akash.kumar@tu-dresden.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_4

89

 31368 2385 a 31368 2385 a

 885 55738 a 885 55738
a

mailto:salim.ullah@tu-dresden.de
mailto:salim.ullah@tu-dresden.de
mailto:salim.ullah@tu-dresden.de
mailto:salim.ullah@tu-dresden.de

 11555 55738 a 11555 55738 a

mailto:siva_satyendra.sahoo@tu-dresden.de
mailto:siva_satyendra.sahoo@tu-dresden.de
mailto:siva_satyendra.sahoo@tu-dresden.de
mailto:siva_satyendra.sahoo@tu-dresden.de

 -2016
56845 a -2016 56845 a

mailto:akash.kumar@tu-dresden.de
mailto:akash.kumar@tu-dresden.de
mailto:akash.kumar@tu-dresden.de
mailto:akash.kumar@tu-dresden.de
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4
https://doi.org/10.1007/978-3-031-19568-6_4

90 S. Ullah et al.

overall computational complexity, memory footprint, and storage requirements for
execution on embedded systems. Most of these techniques exploit the inherent error
resilience of ML models to introduce various approximations in the implementation
of a trained ML model. This inherent error resilience enables an application to
produce acceptable quality results despite some of its operations and data being
approximate/inaccurate [8]. It should be noted that error-tolerant applications may
not produce a single golden answer and instead produce multiple feasible answers.
For example, a search engine can return multiple feasible options instead of a
single golden answer while searching for the best theater in the town. Similarly,
an ML model trained to recognize cat images can produce outputs with 70%,
80%, and 90% confidence values, and all these results are acceptable depending
on an application’s output quality requirements. For machine learning models such
as Deep Neural Networks (DNNs), network pruning [9], quantization of trained
parameters [10], and utilization of approximate arithmetic modules [11, 12] are
the commonly utilized techniques to trade the output accuracy with corresponding
performance gains in the implementation. To this end, TensorFlow [13], one of the
most commonly used frameworks for developing machine learning models, also
provides the TensorFlow Lite tool for optimizing ML models for embedded systems.
These optimizations have enabled the execution of ML models on single-board
computers such as those provided by Raspberry Pi and Arduino [7].

The various optimizations performed by tools, such as TensorFlow Lite, however,
mainly focus on reducing an ML model size and utilizing 16-bit and 8-bit integer
number schemes, along with single-precision floating-point numbers, to represent
the trained parameters of a model. Many recent works have demonstrated that ML
models’ inherent error resilience can be exploited further to utilize fewer bits (less
than 8 bits) to represent a model’s parameters and still achieve acceptable quality
results. For example, the binary and ternary networks utilize 1-bit and 2-bit number
representation schemes, respectively, to represent the parameters of DNNs [16, 17].
The utilization of fewer bits to represent parameters of a model significantly
reduces the storage and memory requirements of its implementation. However, these
number schemes underutilize the computational resources of a standard processor.
Moreover, many recent works, such as [10], have defined new number representation
(quantization) schemes to utilize the available bit widths efficiently. These number
schemes also underutilize the available processing resources in a general-purpose
processor. These challenges can be addressed by utilizing custom architectures
designed according to the employed number representation scheme. For instance,
Fig. 1 compares the impact of deploying different number representation schemes
across multiple performance parameters—behavioral (quantization-induced errors
in weights), computational (critical path delay (CPD) of a Multiply and Accumulate
(MAC) unit), and memory requirements (weights’ storage) in the Conv2_1 layer
of a pre-trained VGG16 network [14]. For this experiment, we have used single-
precision floating point (FP32), fixed point (Fxp), and the recently proposed number
representation scheme Posit (Pos) [18]. The results compare the accuracy and
performance of FP32-based MAC with 16-bit and 8-bit fixed-point and Posit
representations-based MACs (Fxp16, Pos16, Fxp8, Pos8). For this experiment, each

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 91

(a)

nS

(b) (c)

Fig. 1 Accuracy and performance comparison of various schemes of numbers representation for
the Conv2_1 layer of pre-trained VGG16 [14]: (a) Average absolute relative error with respect to
single-precision floating-point-based parameters, (b) CPD, (c) normalized memory footprints [15].
(a) Accuracy. (b) Computation. (c) Storage

technique has been implemented on the Xilinx UltraScale Field Programmable Gate
Array (FPGA) to obtain the corresponding implementation results. The MAC units
in this experiment have been implemented using 6-input Lookup Tables (LUTs)
and with a latency constraint of a single cycle. The results show that the utilization
of more bits for the representations of the parameters significantly reduces the
errors induced by quantization schemes. However, the single-precision (FP32)
implementation holds the highest memory footprint with the worst CPD of .42 ns.
Similarly, compared to the Fxp-based number representation scheme, the Posit
number representation schemes offer better coverage of the FP32-based pre-trained
parameters. However, compared to the Posit-based arithmetic, the simplicity of the
Fxp-based arithmetic results in significantly reducing the CPD of the MAC units.
Therefore, there is a need to explore the various available number representation
schemes and corresponding efficient arithmetic architectures to implement ML
models on resource-constrained embedded systems.

FPGA vendors provide various MultiProcessor System On Chips (MPSoCs),
such as Zynq UltraScale+ [19], to combine the power efficiency and programmabil-
ity of general-purpose ARM processors with the reconfigurability and parallelism
of FPGAs for embedded systems. The reconfigurable nature of FPGAs allows
designing area-optimized, low-latency, and energy-efficient accelerators for various
functions of an embedded application. Moreover, using custom architectures also
facilitates achieving higher throughputs in embedded systems by exploiting the large
parallelism supported by FPGAs. This chapter provides a comprehensive overview
of some of the commonly utilized number representation schemes and their
corresponding FPGA-optimized custom arithmetic architectures for the embedded

92 S. Ullah et al.

machine learning. Specifically, it focuses on the architectures for multiplication
operations as it is one of the most commonly used operations in ML models.
For example, VGG16 network deploys .15.5G MAC operations to perform the
inference on a single .224 × 224 RGB input image [14]. Therefore, the availability
of resource-efficient and high-performance multiplier architectures can help in
enabling embedded machine learning.

The rest of the chapter is organized as follows: Sect. 2 presents accurate and
approximate multiplier architectures for fixed-point-based integer arithmetic. We
first describe the fixed-point representation technique to represent fractions followed
by various FPGA-optimized architectures for accurate signed multipliers. Consider-
ing the error-resilient nature of ML algorithms, we then present two architectures for
approximate signed multipliers. Afterward, we present the implementation results
of the discussed architectures and evaluate their efficacy by employing them in
different high-level applications. Section 3 discusses the opportunities provided by
both commonly used and novel number representation schemes. In particular, we
discuss the Posit number representation scheme and the associated challenges for
Posit-based arithmetic in embedded systems. To this end, we present a modified
Posit representation for ML algorithms. Utilizing the modified scheme, we present a
technique for deploying fixed-point arithmetic for the Posit numbers. Finally, we use
DNNs as a benchmark application and present a detailed accuracy and performance
analysis of utilizing Posit for an FPGA-based accelerator design for DNNs.

2 Integer Arithmetic for Embedded Machine Learning

As described in Sect. 1, high-performance Central Processing Units (CPUs) and
GPUs are typically used to train ML models. These systems utilize IEEE single-
precision and double-precision floating-point number schemes to provide high
computational accuracy. However, due to the high computational cost of floating-
point arithmetic, it is a common practice to exploit the inherent error resilience
of ML models and represent the floating-point trained parameters of a model in
the fixed-point number representation scheme. This process is commonly known
as the quantization of a trained model. The quantized models are then executed
using fixed-point arithmetic (integer arithmetic) on resource-constrained embedded
systems.

2.1 Fixed-Point Representation

The commonly used technique to represent floating-point trained parameters in
fixed-point representation is linear quantization. The linear quantization of a data
tensor x from floating-point precision to N -bit fixed-point precision is illustrated by
Eqs. (1) –(5). The step size . � in Eq. (1) represents the minimum possible increment

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 93

in the quantized value .xquant . Equation (2) transforms the step size . � in a power
of 2 so that it can be represented in the fixed-point representation. Depending upon
the selected rounding function (round up and round down), the . � and the resulting
quantized values will change accordingly. Finally, Eq. (3) utilizes the calculated . � to
compute the fixed-point representation of a floating-point number. The clip function,
defined in Eq. (5) , ensures that a parameter does not violate the allowed range of
values. The limited precision of the N -bit fixed-point representation can reduce
the precision of the quantized numbers, as defined in Eq. (4) ; however, as defined
previously, due to the inherent error resilience of ML models, the ML models can
produce acceptable quality results in most situations.

.� = max (| x |)
2N−1 (1)

. � = 2round(log2(�)) (2)

.xquant_Rep = clip
(
round

(x

�

)
,−2N−1, 2N−1 − 1

)
(3)

.xquant = � • xquant_Rep (4)

.clip(x,Max,Min) =
⎧⎨
⎩

x, Min < x < Max

Max, x ≥ Max

Min, otherwise
. (5)

2.2 Accurate Custom Signed Multipliers

FPGA vendors, such as Xilinx and Intel, provide Digital Signal Processing (DSP)
blocks to achieve fast multipliers [20, 21]. However, as shown by the work
presented in [22], it is necessary to have logic-based soft multipliers along with DSP
blocks to obtain overall performance gains in different implementation scenarios.
Consequently, Xilinx and Intel also provide logic-based soft multipliers [23, 24].
In this section, we describe some state-of-the-art FPGA-optimized accurate signed
multipliers. These designs are based on the efficient utilization of the 6-input LUTs
and associated fast carry chains of Xilinx FPGAs.

Baugh–Wooley’s Multiplier (Mult-BW)
Baugh–Wooley’s multiplication algorithm [25] eliminates the need for computing
and communicating sign-extension bits by encoding the sign information in the

94 S. Ullah et al.

Fig. 2 Baugh–Wooley’s .N × M signed multiplier design [22]

A
1

B
M-2A

0
B

M-1

O
5

O
6

T
y

p
e
-A

(a)

A
0

B
M-2

O
5

O
6

A
N-1

B
M-1

T
y

p
e
-B

(b)

A
1

B
M-2A

0
B

M-1

O
5

O
6

T
y

p
e
-C

(c)

A
0

B
M-2

O
5

O
6

A
N-1

B
M-1

T
y
p

e
-D

(d)

A
N-1

B
M-2

A
N-2B

M-1

O
5

O
6

T
y

p
e
-E

(e)

Fig. 3 The various functions implemented by LUTs to realize a Baugh–Wooley’s multiplier: (a)
LUT configuration-A, (b) LUT configuration-B, (c) LUT configuration-C, (d) LUT configuration-
D, and (e) LUT configuration-E [22]

generated partial products. Figure 2 presents the graphical representation of Baugh–
Wooley’s algorithm. The authors of [22] have used this algorithm and defined
different configurations of the 6-input LUTs to generate the signed partial products.
These configurations are presented in Fig. 3. For an .N × M signed multiplier, the

proposed implementation generates only .
⌈

M
2

⌉
partial products by fusing every

two consecutive partial products. Figure 4 presents the mapping of the LUTs
configurations and carry chains to generate all partial products of an . N × M

signed multiplier. The proposed methodology utilizes LUTs- and carry chains-based
binary and ternary adders to add all the generated partial products for computing
the final product. Compared to a binary adder that can add two operands at a
time, a ternary adder can add three operands simultaneously, as shown in Fig. 5.
The proposed LUT-level design optimizations result in realizing resource-efficient
implementations for various sizes of multiplications.

Booth’s Multiplier (Mult-Booth)
The authors of [12, 26, 27] have used Booth’s multiplication algorithm to present
area-optimized, reduced-latency, and energy-efficient implementations of radix-4
Booth’s multiplication algorithm [28]. These works utilize similar Booth’s encoding
techniques for the 6-input LUTs of the FPGAs that can be used to implement

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 95

A
1

B
0

A
0

B
1A

2
B

0
A

1
B

1
A

N-1
B

0
A

N-2
B

1

. . .Type-C Type-A Type-A

PPP
1

A
0

B
0

A
N-1

B
1

Type-D

PPP
0

Carry-out

A
1

B
2

A
0

B
3A

2
B

2
A

1
B

3
A

N-1
B

2
A

N-2
B

3

. . .Type-C Type-A Type-A

A
0

B
2

A
N-1

B
3

Carry-out Type-D

A
1

B
M-2

A
0

B
M-1

A
2

B
M-2

A
1

B
M-1

A
N-1

B
M-2

A
N-2

B
M-1

. . .Type-E Type-C Type-C

A
0

B
M-2

A
N-1

B
M-1

Type-B

. . .

. . .

. . .

Carry-out

Fig. 4 Partial products generation for an .N × M Mult-BW multiplier [22]

Fig. 5 LUTs- and carry chain-based ternary adder

multipliers of various sizes. The work presented in [12] generates the signed
partial products sequentially, and each generated partial product is added with
the previous partial product row in a single step, as shown in Fig. 6. Figure 7
describes the corresponding configurations of the LUTs. The sequential generation
of the partial products significantly reduces the overall utilized resources of the
multiplier. The work presented in [26] explores the parallel generation of all partial
products and then utilizes 4:2 compressors and binary adders for the addition
of the generated partial product rows to compute the final product. The parallel
generation of partial product rows significantly reduces the overall latency of the
implemented multipliers. The work presented in [27] has used Booth’s algorithm to
implement custom unsigned multipliers. The unsigned multipliers can be utilized to
implement signed multipliers by employing dedicated signed–unsigned converters.
These converters receive 2’s complement numbers and generate corresponding
numbers in sign-magnitude format. After multiplication in sign-magnitude format,
the result is converted back to 2’s complement scheme using a signed–unsigned
converter. However, as described in Sect. 2.4, these converters result in increasing
the total number of utilized resources, critical path delay, and power consumption
of the whole circuit. Moreover, due to the limited dynamic range of sign-magnitude
format, the .−2N−1 number in 2’s complement format cannot be represented in
an N-bit sign-magnitude format. However, ML models, such as ANNs, process

96 S. Ullah et al.

Fig. 6 A 6. ×6 area-optimized accurate Booth’s multiplier [12]

Fig. 7 Configuration of LUTs for implementing Booth’s multiplier [12]. (a) Type-A. (b) Type-B.
(c) Type-C. (d) Type-D

signed numbers; therefore, the employment of the unsigned multipliers and the
dedicated signed–unsigned converters can degrade the overall performance of
hardware accelerators for these applications.

2.3 Approximate Custom Signed Multipliers

As discussed in Sect. 1, the error resilience of ML models allows introducing
different approximations at the various layers of the computation stack to trade

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 97

the output accuracy with corresponding implementation performance gains. To this
end, many approximate computing-related works have focused on the resources-
optimized, high-performance, and energy-efficient architectures of approximate
arithmetic operators. For example, the works in [11, 12] have proposed various
strategies for designing approximate signed custom multipliers. The authors of [12]
have analyzed the Booth’s multiplier accurate implementation, presented in Fig. 6,
for various sizes of multipliers and identified the logic elements that contribute
the most to the CPD and the dynamic power consumption for all possible input
combinations. For example, Fig. 8a presents this analysis for a 6 × 6 multiplier
highlighting the five topmost power-consuming elements and the five worst critical
paths. Based on the analysis, the authors have proposed various approximations to
reduce the approximate implementation’s overall dynamic power consumption and
CPD. Figure 8b presents the approximate multiplier’s dynamic power consumption
and critical path analysis.

Further generalizing this idea, the authors of [11] have proposed a generic
framework, “AppAxO,” for implementing application-specific approximate oper-
ators optimized for FPGA-based systems. AppAxO employs the 6-input LUTs
and the associated carry chains of FPGAs to implement approximate operators
according to binarized string configurations. These configurations specify the
LUTs, in an accurate operator implementation that should be disabled to realize
a corresponding approximate operator. For example, for an M × N accurate mul-
tiplier, utilizing “T” LUTs, AppAxO explores the design space of 2T approximate
multipliers with different accuracy and performance parameters. To determine the
feasible configurations for an application, AppAxO employs a Multi-objective
Bayesian Optimization (MBO)-based exploration method to generate only those
approximate operator configurations that fulfill an application’s accuracy and
performance constraints. The authors have shown that by considering application-
specific accuracy–performance constraints, AppAxO provides novel approximate
operators, providing better design points for an application than the traditional
application-agnostic design methodology.

2.4 Comparison of Multiplier Designs

This section summarizes the performance (resources, CPD, and power consump-
tion) and accuracy results of the discussed FPGA-optimized accurate and approx-
imate multipliers. All presented multipliers have been implemented in VHDL
and synthesized for Virtex-7 family FPGA using Xilinx Vivado. For Power-Delay
Product (PDP) calculations, Vivado Simulator and Power Analyzer tools have been
used.

Figure 9 compares the average performance of the Baugh–Wooley (Mult-
BW) [22], Booth’s multipliers Mult-Booth-1, Mult-Booth-2, and Mult-Booth-3
presented in [12, 26], and [27], respectively, with Vivado speed- and area-optimized
multiplier IPs [23]. The Mult-Booth-3 design also employs signed–unsigned con-

98 S. Ullah et al.

(a)

(b)

Fig. 8 CPD and dynamic power analysis to implement approximate circuits [12]. (a) 6× 6 Booth
multiplier showing top five critical paths per output (in blue) and top five most power-consuming
elements. (b) 6 × 6 Booth approximate multiplier showing top five critical paths per output (in
blue) and top five most power-consuming elements

verters to perform signed multiplications, as discussed in Sect. 2.2. We have
utilized the Average Performance metric to compare the performance of the custom
multipliers for .4×4, .8×8, .16×16, and .32×32 multipliers. The Average Performance
metric is the average of the product of normalized values of LUTs utilization, CPD,
and PDP, as shown in Eq. (6) . All individual performance metrics of each multiplier
have been normalized to the corresponding performance metrics of Vivado area-
optimized multiplier IP [23]. It should be noted that a smaller average value of

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 99

Fig. 9 Performance comparison of accurate signed multipliers across different sizes of multipli-
ers: a smaller average value shows a design with a better performance

the metric presents an implementation with a better performance. As shown by
the results in Fig. 9, the custom multipliers Mult-BW, Mult-Booth-1, and Mult-
Booth-2 provide better overall performance than Vivado speed- and area-optimized
IPs. Mult-Booth-1 is more resource- and energy-efficient than other designs due
to its sequential generation and addition of partial products. Mult-Booth-2 offers
significantly reduced critical path delay due to the parallel generation of the partial
products. The signed–unsigned converters increase the total number of utilized
LUTs, CPD, and dynamic power consumption of the Mult-Booth-3 design.

.Average P erf ormance = Average(Norm. LUTs × Norm. CPD × Norm. PDP).(6)

Figure 10 presents the utilization of Mult-Booth-2 in the implementation of an
accelerator of an ANN for the classification of the MNIST digits dataset [29]. The
inference accuracy of the dataset using the single-precision floating-point number
is . 97%. The corresponding inference accuracy using 8-bit fixed-point quantization
is .96.6%, resulting in an insignificant drop in output accuracy. First, the network is
implemented using Vivado speed-optimized multiplier IP with as many neurons as
possible using three different input sizes, .8 × 8, .16 × 16, and .32 × 32. The same
setups are then used for the Vivado area-optimized multiplier and Mult-Booth-
2 multipliers. The resulting LUT utilization, CPD, and PDP for each design are
normalized to Vivado area-optimized IPs. Mult-Booth-2 produces the best results in
the combined .LUT×PDP averaged across all input sizes. Mult-Booth-2 outperforms
Vivado speed- and area-optimized IPs by .8.4% and .29.4%, respectively. Mult-Booth-
2 is comparable in PDP to Vivado’s speed-optimized IP but requires an average of
. 8% fewer LUTs.

Figure 11 compares the implementation performance of various approximate
multipliers with the Vivado speed- and area-optimized IPs [23]. The Booth-Approx
multiplier is discussed in Sect. 2.3. S1 [30] and S2 [31] are two approximate
unsigned multipliers originally designed for ASIC-based systems. These multi-

100 S. Ullah et al.

Fig. 10 Application-level performance comparison of accurate signed multipliers

Fig. 11 Performance comparison of approximate signed multipliers

pliers are implemented again using signed–unsigned converters and synthesized
for Virtex-7 FPGA for the performance comparison. The P(N,2) is a precision-
reduced soft multiplier. P(N,2) truncates the two least significant bits (LSBs) of
the input operands before multiplication and then utilizes a lower bit-width accurate
multiplier, .(N − 2) × (N − 2), for multiplication. The computed product is shifted by
4 locations to calculate the final approximate result. Figure 11 depicts the product of
normalized values of total utilized LUTs, CPD, and PDP for each design across
different bit widths. All values have been normalized to corresponding Vivado
area-optimized multiplier IP values. As previously stated, a lower product value
.(LUTs × CPD × PDP) indicates a better performing implementation. Although the
P(N,2) multiplier outperforms the Booth-Approx multiplier for smaller designs, the
performance gains do not scale proportionally for higher-order P(N,2) multipliers.
For example, for .24 × 24 multipliers, Booth-Approx reduces the product of the
normalized performance metrics by .5.2% when compared to the P(N,2) multiplier.
Furthermore, a detailed error analysis of the approximate multipliers reveals that
P(N,2) multipliers have lower accuracy across all error metrics.

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 101

Table 1 Error analysis of .8 × 8 approximate signed multipliers

Design
Error
Occurrences %

Maximum
Error

Average Abs.
Error

Max. Abs.
Relative Error

Avg. Abs.
Relative Error

Booth-Approx 90.56 361 85.01 6 0.091

S1 [30] 86.46 7225 1842.44 1 0.362

S2 [31] 34.19 882 118.875 1 0.0223

P(8,2) 93 759 149.78 15 0.121

Noise-induced Image all-approximate Difference Imageall-accurate

PSNR: 16.9 PSNR: 20.6, SSIM: 1.0 PSNR: 20.5, SSIM: 0.95

Gaussian Smoothed Images

Fig. 12 Comparison of Gaussian image smoothing application for .8 × 8 multiplier: Average
PSNR=52.36, Average SSIM=0.99 for 15 images

Table 1 shows the error analysis for the Booth-Approx multiplier, as well as
precision-reduced P(8,2) and other state-of-the-art signed approximate multipliers
(using signed–unsigned converters). As the number .−128 cannot be represented
using the sign-magnitude format using 8-bit representation, the maximum error
magnitude observed in S1 and S2 is .16,384. To provide a fair comparison, the range
of 8-bit operands for computing the maximum error is limited to [.−127, .+127] for
designs in S1 and S2. The Booth-Approx multiplier has the lowest maximum error
magnitude and average absolute error among all presented multipliers, as shown by
the highlighted cells in the table. Furthermore, it can be seen that Booth-Approx
outperforms the P(8,2) multiplier across all error parameters.

Figure 12 depicts the impact of using approximate multipliers on application-
level accuracy. We used Gaussian Smoothing as a test case to determine the
efficiency of the Booth-Approx multiplier. We processed 15 images from the
USC-SIPI Database [32] for this experiment and reported their average output
quality using the Peak Signal-to-noise Ratio (PSNR) and Structural Similarity Index
(SSIM) metrics. In comparison to the accurate multipliers-based implementation,
the approximate multipliers-based Gaussian smoothing produces insignificant out-
put quality degradation. However, this slight reduction in output quality can be
exchanged for considerable performance gains in the corresponding implementa-
tion.

102 S. Ullah et al.

3 Arithmetic for Novel Number Representation Schemes

A plethora of recent works has proposed different types of data representation tech-
niques to reduce the memory and energy budgets of employing machine learning
models. For example, the Google Tensor Processing Units (TPUs) utilize the Brain
Floating-Point Format (bfloat16) for providing high-performance operations. The
bfloat16, a subset of the IEEE 754 single-precision floating point, utilizes only 7 bits
for storing the fraction (mantissa) [33], as shown in Fig. 13. Compared to the IEEE
754 half-precision, the bfloat16 provides the dynamic range of the single-precision
format by committing 8 bits for storing the exponent value. However, compared to
the single- and half-precision format, it utilizes only 7 bits for storing the mantissa.
The bfloat16 is designed for reducing the storage requirements and accelerated
computations of machine learning algorithms. It is currently used by different
architectures such as Google TPUs [34], Intel FPGAs and Intel AI processors [35],
ARM processors [36], and Nvidia’s GPUs [37]. To accelerate the computation
performance of ML models, Nvidia’s GPUs also utilize a custom 19-bit floating-
point representation, Tensor Float 32 (TF32). Figure 13d shows the structure of
TF32. However, TF32 is used only for computation in the tensor cores, and the
results of these computations are still stored in single-precision format.

Besides the commercially utilized number representation schemes, many recent
works have also defined custom number representation schemes for ML algorithms.
These schemes focus on the efficient mapping of the application-specific dynamic
range of values of ML models to the available bit width. For example, the
number representation scheme proposed in [38] focuses on computing the optimal
quantization step sizes for features and parameters of DNNs. The proposed scheme

(a)

(b)

(c)

(d)

Fig. 13 Various commonly utilized number representation schemes. (a) IEEE 754 single-
precision 32-bit float. (b) IEEE half-precision 16-bit float. (c) bfloat16. (d) 19-bit Tensor Float
32

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 103

iteratively adjusts the step size for each layer’s data structure and records the
generated errors in the layer under consideration. The individual computation of
optimal step size for each layer helps reduce the quantization-induced errors by
adjusting the step size according to the distribution of parameters in each layer. The
authors of [10] have considered the power of 2 quantization schemes to represent
the floating-point trained parameters of ANN. The proposed scheme uses a custom
template for storing the most significant fractional bits in the trained parameters of
DNNs. In this technique, .log2 is used to find the location of the most significant 1
in the trained parameters. The location of the leading 1 fractional bit and the actual
values of the following fractional bits are stored in the proposed template.1 The
experimental results of the proposed scheme in various networks and applications
show that identifying and recording only the most significant fractional bits result
in insignificant accuracy loss compared to the floating-point precision-based results.
Moreover, the power of 2 quantization allows the implementation of computationally
complex multiplication operation using bit-shift and addition operations. Similarly,
the authors of [39] have also utilized the power of 2 quantization to use bit-shift and
addition operations for implementing DNNs.

3.1 Posit Number Representation Scheme-Based Arithmetic

Compared to the IEEE 754 single-precision floating-point format, the recently
developed Posit number representation scheme offers a larger dynamic range
and greater precision for various applications [18]. The Posit number scheme’s
constituent fields, sign, regime, exponent, and fraction, are shown in Fig. 14. The
number of bits sets aside for the exponent (ES), and the total number of bits (N)
defines a Posit number configuration. Equation (7) describes the computation of
a Posit value using the four fields of the Posit scheme. The value of k in Eq. (7) is
determined using the regime field in Fig. 14. When an inverted bit (r̄) is encountered,
the regime field is terminated, and the associated value of k is decided by the number
of identical bits (m); if the identical bits are a string of 0s, then k = −m; if they are
a string of 1s, then k = m − 1. Next, the remaining bits are used to calculate the
exponent (e) and fraction value (f). The Posit number scheme has a wider dynamic
range thanks to the use of the regime field. For instance, according to the authors
in [40], it is possible to obtain comparable output precision for some applications
by substituting m-bit Posit-based numbers for n-bit floats (where m < n).

.Posit value = s ∗ (22
ES

)k ∗ 2e ∗ 1.f. (7)

1 The total number of recorded fractional bits depends on the deployed bit width of the quantization
scheme.

104 S. Ullah et al.

Fig. 14 Posit number representation

Table 2 Comparison of
resource utilization of adders
and multipliers for
single-precision
floating-point, fixed-point,
and Posit [40] and [12]

Adder Multiplier

Bit configuration LUTs LUTs DSP Blocks

Single precision 1049 533 4

32-bit fixed point 32 167 0

Posit (32,1) 934 576 4

(32,2) 981 572 4

(32,3) 951 582 4

(31,3) 894 560 4

(30,3) 873 655 3

(29,3) 837 464 2

(28,3) 821 459 2

Half-precision 356 212 1

16-bit fixed point 16 144 0

Posit (16,1) 391 218 1

(16,2) 404 223 1

(16,3) 386 219 1

(15,1) 382 207 1

(14,1) 353 184 1

(13,1) 290 181 1

(12,1) 254 167 0

The associated arithmetic circuits, however, have larger critical path delays and
resource utilization than the single-precision-based arithmetic units because of the
dynamic nature of the various fields of the Posit scheme. For instance, Table 2
compares the resource usage of floating-point, fixed-point (integer), and Posit
scheme-based adders and multipliers. These results include those Posit configura-
tions that offer output accuracy comparable to the floating-point representation [40].
We also compare the resource usage of 32-bit and 16-bit fixed-point adders and
multipliers [12]. The comparison demonstrates that fixed-point architectures use sig-
nificantly fewer resources than the other number representation schemes. Depending
on the utilized Posit configuration, the corresponding arithmetic circuit (adder or
multiplier) may use more resources than the floating-point-based implementation.
It is also noteworthy that for some Posit configuration, Posit-based adders can use
more resources than multipliers. Such drawbacks of the Posit number scheme may
prevent their utilization in resource-constrained embedded systems.

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 105

Designing resource-effective and performance-optimized hardware architectures
for Posit-based arithmetic has received a lot of attention recently. For instance,
the authors in [40] address the run-time variable field length by creating hardware
arithmetic structures for conversion from Posit into floating point and vice versa.
A tool to create pipelined Posit operators as a drop-in replacement in processing
units is proposed in [41]. The architecture of a parameterized Posit arithmetic
unit to implement Posit adders and multipliers of arbitrary bit width is presented
in [42]. Similarly, PACoGen uses a three-stage procedure—Posit data extraction,
core arithmetic processing, and Posit construction—to conduct parameterized Posit
arithmetic, such as multiplication and division [43]. Additionally, Posit arithmetic
has been incorporated into Clarinet [44], a RISC-V ISA-based processor that
supports employing a Posit arithmetic core.

Some recent studies have also explored the improved dynamic range of Posit-
based representation for the training and inference stages of various machine
learning models. For instance, the work in [45] has presented vectorized extensions
for the cppPosit, a C++ posit arithmetic library, using the ARM scalable vector
extension Single Instruction Multiple Data (SIMD) engine. An Exact Multiply and
Accumulate (EMAC) has been proposed in [46] to implement the MAC operations
in ANN. This work demonstrates that the output accuracy of ANN is maintained
more accurately by the Posit-based representation of network parameters than by
the fixed-point-based representation. However, compared to fixed-point-based MAC
operations, Posit-based EMACs operations have much higher resource utilization
and Energy-Delay Product (EDP). In [47], the authors have also utilized the EDP
metric to compare their presented Posit-based design with the floating-point- and
fixed-point-based implementations. Their results show that the fixed-point-based
implementations always have lower EDP values than the corresponding Posit-
based designs. The research works in [48, 49] have considered the Posit techniques
for storing the trained weights of ANNs and then employing floating-point-based
computations to calculate output values.

3.2 Fixed-Point-Based Posit Arithmetic

ExPAN(N)D, proposed in [15], is a framework for investigating the joint usage of
Posit and fixed-point representation for implementing ML models. By modifying
the Posit number representation to store numbers (parameters of pre-trained ML
models) within the sub-normal region and by implementing a Posit to Fixed-point
(PoFx) converter, ExPAN(N)D aims to take advantage of Posit’s useful storage capa-
bility and the compute efficiency of fixed-point-based arithmetic. ExPAN(N)D’s
top-level view is depicted in Fig. 15. The hardware design and characterization of
the MAC units for various number representation (quantization) schemes form
the central theme around which the other two methods—behavioral analysis and
accelerator design—are implemented. The behavioral analysis allows the analysis
of quantization-induced errors in a given ML model, such as ANNs, utilizing

106 S. Ullah et al.

•

•

Fig. 15 ExPAN(N)D design methodology for various quantization schemes: FP32, FxP, Posit [15]

the proposed hardware designs. Using the accelerator design flow, a designer can
also evaluate the performance–resource trade-offs resulting from the adoption of
different quantization schemes in an accelerator for a specific layer of the ANN. The
results from each of the three processes of ExPAN(N)D can be used to constrain
the search space in the design of an efficient ML model using successive design
space pruning. In this chapter, we discuss only the Posit-based representation, PoFx
conversion, and the PoFx-based MAC design for implementing ML models.

Hardware Design
Normalized Posit Representation: Trained ML models, such as ANNs, have param-
eters with values between −1 and +1. The standard Posit-based representation
of these values leads to partial utilization of the available dynamic range. The
sub-optimal usage of the dynamic range can result in communication and storage
overheads, as more than the required bits are utilized. Correspondingly, more bits
than necessary for storing the information are processed during each computation.
ExPAN(N)D [15] uses normalized Posit, a unique representation built on the Posit
scheme that maintains its hardware implementation, tapered accuracy, and efficient
encoding while doubling the number of usable bit-pattern values (x) inside the
normalized range (−1 ≤ x < +1). This normalized Posit representation—a logical
subset of Posits—is customized for quantizing and storing weight normalized
FP32 values. For instance, Table 3 displays all possible bit patterns and their
corresponding real values for a N = 4, ES = 0 Posit configuration. The highlighted
rows in the table display the bit patterns that correspond to normalized numbers. An
analysis of the normalized representation identifies that the two leading bits of the
Posit representation are identical; ExPAN(N)D takes advantage of this observation
to omit the leading Posit bit in the normalized Posit representation.

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 107

Table 3 Posit(N=4, ES=0)
to normalized Posit
representation

Posit s k f Value ExPAN(N)D

0000 0 −3 0 0 000
0001 0 −2 0 0.25 001
0010 0 −1 0 0.5 010
0011 0 −1 0.5 0.75 011
0100 0 0 0 1 –

0101 0 0 0.5 1.5 –

0110 0 1 0 2 –

0111 0 2 0 4 –

1000 1 −3 0 NaR –

1001 1 2 0 −4 –

1010 1 1 0 −2 –

1011 1 0 0.5 −1.5 –

1100 1 0 0 −1 100
1101 1 −1 0.5 −0.75 101
1110 1 −1 0 −0.5 110
1111 1 −2 0 −0.25 111

PoFx: Normalized Posit to Fixed-Point Converter: The PoFx conversion hardware
can efficiently quantize and store weight normalized FP32 values in memory while
also providing FxP converted values close to the processing components. The PoFx
enables the efficient execution of ML models with very little conversion overhead.
Posit representation, Posit(N, ES), is converted via the PoFx conversion method to
fixed-point representation, FxP(M, F), where M is the overall length of the output
and F is the length of the output’s fraction. Based on the Posits numbers decoding
scheme, this method successfully transforms a Posit into an FxP number. We
demonstrate this conversion using the Posit(N = 4, ES = 0) bit patterns in Table 3.
The key to understanding this algorithm is to realize that the fraction field recovered
from the Posit representation is the same as the one required in the FxP output. Once
the data in the Posit bit pattern are extracted into its components s, k, e, and f ; the
Posit value can be computed by setting a bit and storing the extracted fraction bits
to its right, followed by a final bit shift determined by the term 2ES ∗ k + e. The term
2ES ∗ k + e can be computed by adding the e value to the bit sequence created by
appending k to the ES number of zero bits. The Posit representation is given by the
sign bit and the shifted bit sequence in sign-magnitude FxP format, which is easily
convertible into a 2’s complement format.

MAC Unit with PoFx Converter: Any application that can benefit from efficiently
storing a large number of parameters can leverage the PoFx converter. As a
particular case for ML models, the authors in [15] incorporate the normalized PoFx
into MAC units to improve low-precision ANN inference. The schematic of their
proposed parameterized PoFx converter-basedMACwith a ReLU activation function
is shown in Fig. 16. The figure shows that the weights/biases are assumed to be
stored/communicated as Posit(N −1, ES) numbers. These values are then multiplied
with the M-bit input activation values after being transformed to their equivalent M-

108 S. Ullah et al.

FxP

FxPPoFx

FxP

FxP(M, F)
Posit(N-1,ES)

FxP

M

N-1 M

2M
3M 3M

M

Fig. 16 MAC unit (with ReLU activation) using PoFx converter to convert numbers from Posit
into fixed-point (FxP) representation

bit FxP representations. The authors have selected a 3M-bit adder for accumulation
across all configurations. This choice of adder size was made in order to account
for the overflows caused by the accumulation of numerous 2M-bit values and thus
facilitate the evaluation of the proposed architecture. The 3M-bit result for a single
node in a layer of an ANN is supplied to the activation function after all values
have been added up for that node. It should be noted that the PoFx-based MAC unit
enables the designer to express the weights/biases with fewer bits while still being
able to apply various FxP-based arithmetic optimizations, such as precision scaling,
approximations, in the processing element.

3.3 Results

For ExPAN(N)D framework, the Posit-based arithmetic designs are produced using
the SmallPosit HDL repository [50]. Verilog HDL is used to implement the PoFx
converter and the related arithmetic blocks. Xilinx Vivado Design Suite is used
to characterize the hardware designs. Every design has been implemented on
the Xilinx Zynq UltraScale+ MPSoC (xczu3eg-sbva484-1-e device). Python and
TensorFlow [13] are utilized to carry out the behavioral analysis of ANNs. All of
the proposed methods can be applied to any arbitrary application. However, in the
presented work, VGG16 network [14] is used as a test application.

MAC Design Analysis
The presented PoFx enables the use of high-performance, resource-efficient com-
putation for Posit number systems. We compare 8-bit MAC units based on PoFx
with the conventional FxP-based MAC units, in order to assess the effectiveness of
the presented technique and estimate the associated overheads of the PoFx-based
designs. In addition, we have created two types of designs for a deeper investigation

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 109

PoFx-based MAC:

4.859
nS

F
x
P

e

v
i
t

a
l
e

R
 P
o
w
e
r

n
o

i
t
a

p
i

s
s

i
D

e

v
i

t
a

l
e

R

h
t
a

P

l
a

c
i
t

i
r
C

D
e
l
a
y

e
v

i
t

a
l
e

R

e
c

r
u
o

s
e

R

n
o
i

t
a

z
i
l

i
t

U

N-1=4 N-1=5 N-1=6 N-1=7

E
S
=
0

E
S
=
1

E
S
=
2

E
S
=
0

E
S
=
1

E
S
=
2

E
S
=
0

E
S
=
1

E
S
=
2

E
S
=
0

E
S
=
1

E
S
=
2

90
LUTs

1289.6 uW

E
S
=
3

E
S
=
3

E
S
=
3

Fixed-point(FxP) MAC
Worse
than FxP

Better
than FxP

Fig. 17 Relative hardware performance metrics of PoFx-based MAC units with varying values of
ES and N − 1 for Posit(N − 1, ES) inputs to 8-bit FxP MAC. The PoFx-based design points with
worse performance than the FxP-based design are highlighted in red

of the PoFx-based designs: ToolOpt, which enables the synthesis tool to optimize
across the constituent blocks (decoder–encoder, multipliers, and adders), and non-
ToolOpt, which performs optimization for the constituent blocks separately. Figure
17 presents the findings of comparisons made across multiple design metrics for
different Posit configurations.2 The MAC’s critical path delay and resource usage
exhibit a steadily increasing trend for both N and ES values. It should be observed
that the PoFx-based MAC occasionally outperforms the FxP-only MAC in terms
of critical path delay, power consumption, and LUT utilization. This behavior is
especially true when ES = 0. The dynamic range of the Posit scheme is restricted
for ES = 0, and the PoFx does not use the entire dynamic range of the FxP.

2 The data in Fig. 17 refer to the design with the better metrics among the ToolOpt and non-ToolOpt
versions.

110 S. Ullah et al.

4000

6000

8000

10000

12000

14000

16000

50 100 150 200 250 300 350

P
o
w
e
r

D
e
l
a
y

P
r
o
d
u
c
t

(
n
S
*
u
W
)

Resource Utilization (#LUTs)

PoFx MAC (ToolOpt) PoFx MAC
Posit-only MAC (ToolOpt) Posit-only MAC
Posit-based FMA FxP-only MAC

PoFx

P
o
F
x

P
o
s
i
t

F
M
A

FxP-only

F
x
P
-
o
n
l
y

R
a
n
g
e

o
f

P
D
P

v
a
l
u
e
s

Range of Resource Utilization values
Posit-only

Posit FMA

P
o
s
i
t
-
o
n
l
y

Fig. 18 Comparison of various 8-bit MAC implementations: for Posit(N − 1, ES) N − 1 ∈
[4 .. 7] and ES ∈ {0, 1, 2}. The PoFx MAC refers to the non-ToolOpt version. The range of
performance values reported by each scheme is shown along the axes (top and right)

After conversion, the small pool of distinct FxP values allows the synthesis tool
to improve the PoFx-based MACs’ design and performance characteristics. Since
power measurements are generated based on the bit switches (necessary to get the
right bit sequence as the output), hence they do not follow a well-defined trend.
We report worst-case overheads for critical path delay, power dissipation, and LUT
utilization of 22.8%, 5.0%, and 15.5%, respectively, as compared to the FxP-only
MAC.

We compare PoFx-based MAC designs with FxP-only MAC, Posit-only MAC,
and Posit-based 3-input Fused Multiply Add (FMA) [51] to assess its efficacy
further. Figure 18 compares the implementation results of these designs for 8-
bit inputs in terms of PDP and utilized LUTs. Posit-only MAC, developed by
employing a standalone N-bit Posit adder and N-bit Posit multiplier, has much
higher PDP and LUT consumption due to the extraction and packaging of Posit
numbers between stages. Despite being optimized to reduce the overheads of the
encode–decode stages, the Posit-based FMA requires more hardware resources for
its implementation. It can be observed that the results for PoFx-based MAC designs
are very similar to those based on FxP while providing a wider range of designs with
performance trade-offs. Furthermore, the PoFx-based designs generate a more exact
3N − bit output compared to the Posit-only MAC and Posit-based FMA designs,
which both produce N-bit outputs. The higher output precision can enable reduced
inter-layer quantization-induced errors in ANNs as one can analyze and determine

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 111

Table 4 Joint analysis of classification accuracy and MAC hardware characteristics of FxP, Posit,
and PoFx-based designs

Relative MAC Metrics

Configuration N ES Top-1 [%] Top-5 [%]
PDP [Maximum:
13616 uW*nS]

LUTs [Maximum:
319]

FxP 16 – 69.66 89.02 0.763 1.000

8 – 64.71 86.26 0.475 0.282

Posit (N,ES) 7 1 68.88 88.5 0.578 0.671

8 1 69.59 89 1.000 0.815

6 2 66.32 86.99 0.441 0.555
7 2 68.77 88.54 0.550 0.618

8 2 69.65 89 0.853 0.837
7 3 68.02 87.97 0.469 0.567

8 3 69.43 88.86 0.747 0.712

PoFx (N-1,ES) 6 1 64.38 85.94 0.432 0.304
7 1 64.48 86.15 0.451 0.326

5 2 58.27 81.99 0.417 0.310

6 2 64.36 85.99 0.388 0.304
7 2 64.4 86.08 0.478 0.326

5 3 57.13 81.13 0.446 0.304
6 3 62.67 84.62 0.418 0.304
7 3 64.45 86.15 0.413 0.361

the type of rounding mechanism at the output to maintain as much precision as
possible before communicating the values to the next stage in the network.

Application-Level Accuracy Analysis of PoFx-Based Arithmetic
To demonstrate the impact of different number representation schemes on the output
accuracy of high-level applications, we used DNNs as a test case application. For
this work, we classified the ImageNet dataset using a pre-trained VGG16 net-
work [14]. VGG16 network—with thirteen convolutional and three fully connected
layers—has 138 million trainable parameters, which makes it a good candidate for
assessing the effectiveness of different number representation systems. For 50,000
validation images in the ImageNet dataset and utilizing single-precision FP32-based
trained parameters, the network reports 69.72% and 89.09% as Top-1 and Top-5
percentage output classification accuracies, respectively.

Estimating the impact of the presented methods on the network’s classification
accuracy forms the primary component of the behavioral analysis. To this end,
Table 4 presents the combined analysis of the ImageNet dataset classification
accuracy and the related MAC designs for various number representation sys-
tems. In this experiment, the parameters (weights and biases) are encoded using
multiple 8-bit representation schemes, and the activations have FP32 precision.
The results also demonstrate the classification accuracy using a 16-bit FxP-based
quantization approach for comparison. Compared to FP32-based results, the FxP-

112 S. Ullah et al.

16 and Posit(N = 8, ES = 2) produce similar classification results by reducing
the final output accuracy by only 0.06 and 0.07, respectively. The Top-1 and Top-5
classification accuracies are reduced by 5.01 and 2.83, respectively, using the FxP-
8-based configuration. We take into account the normalized PoFx approach and
make use of Posit(N-1, ES) configurations of N-bit Posit numbers for the PoFx-based
schemes. It should be noted that Table 4 includes only Posit and PoFx variants with
comparable accuracy and with feasible hardware designs. Moreover, the values for
the PDP and LUT metrics in the table correspond to values relative to the maximum
value displayed in the top row of the table.

The configurations of Posit(N = 8, ES = 1) and FxP-16, respectively, show the
maximum PDP and LUT utilization values. In Table 4, the bold text highlights
the greatest and lowest values of the performance metrics for each of the two
categories—Posit and PoFx. It is evident that Posit(N = 8, ES = 2), the Posit
configuration with the best Top-1 accuracy, corresponds to the MAC design with
the maximum LUT utilization. Similarly, Posit(N = 8, ES = 1) and Posit(N =
8, ES = 2), the Posit configurations with the highest Top-5 accuracies, correspond
to the highest PDP values. The design with the lowest PDP and LUT utilization
among Posit-based MACs corresponds to the Posit configuration with the lowest
accuracy, Posit(N = 6, ES = 2).

PoFx-based designs showed comparable correlations as well. Typically, designs
with higher PDP yield more precise results. Compared to FxP-8-based designs,
PoFx(N − 1 = 7, ES = 1) achieves comparable accuracy with reduced PDP (≈ 5%)
and slightly greater LUT overhead (≈ 15.5%). The same is evident with PoFx
(N − 1 = 6, ES = 2), which achieves equivalent accuracy with much smaller PDP
(≈ 18%) and LUT overheads (≈ 8%). Further, the PoFx-based designs use fewer
bits to express network characteristics. As a result, each layer of the network’s
accelerator design may result in lower communication and storage overheads.

Accelerator-Level Design Analysis
The benefits of employing PoFx-based arithmetic operators are evident in the
design of accelerators. As observed in the experiment results, compared to Posit-
and FxP-based accelerators, the suggested PoFx technique significantly reduces
processing overheads at an insignificant cost to accuracy. We incorporated the
potential solutions in the design of an accelerator for a fully connected layer
of a DNN to calculate the system-level effects of employing the proposed PoFx
approach. The accelerator was created in C++ and synthesized in Xilinx Vivado
HLS. We used a matrix–vector multiplication to keep the design generic. The
vector represents a single input activation, and the matrix represents the weights
of a fully connected layer. We estimated the switching activity using thousand
input activations to calculate the dynamic power dissipation of each design. The
implemented accelerator employs the ReLU activation function. LUTRAMs were
employed to store the local arrays, along with sufficient partitioning to facilitate
parallel execution obtained by loop unrolling. In order to compare the effect of
using Posit-based, PoFx-based, and FxP-based MAC units, the following variants
of the accelerator were considered:

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 113

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

1
.
0

10 12 14 16 18 20

t

c
u
d

o
r
P

e

c
r
u
o

s
e
R

e

v
i
t

a
l

e
R

(
#

)
s

F
F
g
e
R
#

x

s
T
U

L

Top-5 Error (in %)

Posit PoFx Fxp84
7
0
8

7
6
0
1

PoFx(6,1),
14.06, 0.34

PoFx(7,1),
13.85, 0.37

PoFx(5,2),
18.01, 0.31

PoFx(6,2),
14.01, 0.34

PoFx(7,2),
13.92, 0.37

PoFx(5,3),
18.87, 0.31

PoFx(6,3),
15.38, 0.34

PoFx(7,3),
13.85, 0.37

FxP8,
13.74, 0.48

0
.
3
0

0
.
3
5

0
.
4
0

0
.
4
5

0
.
5
0

1
3
.
5

1
4
.
0

1
4
.
5

1
5
.
0

1
5
.
5

1
6
.
0

1
6
.
5

1
7
.
0

1
7
.
5

1
8
.
0

1
8
.
5

1
9
.
0

1
9
.
5

H

L

Fig. 19 Top-5 percentage errors in ImageNet dataset classification using VGG-16 vs. the resource
utilization of a sample accelerator implementing a fully connected layer. The zoomed-in portion
shows the detailed comparison of PoFx- and FxP8-based accelerator implementations

1. Posit: The accelerator stores and computes all operations in Posit(N, ES) format.
2. PoFx: The weights are moved from the main memory and stored in local memory

in normalized PoFx(N − 1, ES) format. During computation, the weights are
fetched from local memory, converted into FxP(M = 8), and used in the
computation of the output activation values.

3. FxP(8): The weights are moved from the main memory to the accelerator and
stored in the local memory of the accelerator as FxP(M = 8) numbers. The com-
putation stage does not involve any conversions between number representations.

Figures 19, 20, and 21 plot the ImageNet dataset’s classification accuracy using
the VGG-16 network for FxP8, Posit, and PoFx, along with various performance
metrics of an accelerator implementing multiply and accumulate operations with
these number representation schemes. The accelerators created for generating the
data in the figures correspond to a weight matrix of size 32 × 10. The plot with
all the designs is shown on the left of each figure, along with a zoomed-in plot
for comparison between FxP8-based and PoFx-based designs. The design points
shown in the figures match the configurations displayed in Table 4 (except Fxp-
16). The vertical axis of the graphs depicts the relative performance metric, and
the horizontal axis displays the Top-5 classification error (in %) for the ImageNet
dataset. Along the vertical axis, each performance metric’s maximum values, which

114 S. Ullah et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 14 16 18 20

n
o
i
t
a
p
i
s
s
i
D

r
e
w
o
P

e
v
i
t
a
l
e
R

Top-5 Error (in %)

Posit PoFx Fxp8W
u

0
3
0
2

3
1

PoFx(6,1),
14.06, 0.08

PoFx(7,1),
13.85, 0.09

PoFx(5,2),
18.01, 0.08

PoFx(6,2),
14.01, 0.08

PoFx(7,2),
13.92, 0.08

PoFx(5,3),
18.87, 0.06

PoFx(6,3),
15.38, 0.06

PoFx(7,3),
13.85, 0.08

FxP8,
13.74, 0.11

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

1
3
.
5

1
4
.
0

1
4
.
5

1
5
.
0

1
5
.
5

1
6
.
0

1
6
.
5

1
7
.
0

1
7
.
5

1
8
.
0

1
8
.
5

1
9
.
0

1
9
.
5

H

L

Fig. 20 Top-5 percentage errors in ImageNet dataset classification using VGG-16 vs. the power
dissipation of a sample accelerator implementing a fully connected layer

correspond to 1.00, are displayed in red. The accelerator designs based on PoFx and
FxP8 exhibit noticeably better performance (lower values on the vertical axis) than
those based on Posit, as shown throughout Figs. 19, 20, and 21. The penalty of this
enhanced performance is a slightly increased classification error.

The effect of using fixed-point operators, with inherently lower computational
complexity than Posits, on the overall resource usage of the accelerators is depicted
in Fig. 19. The dominant (Pareto) Posit-based designs in the figure are H(Posit(8,2))
and L(Posit(6,2)), with the highest and lowest resource utilization, respectively.
The figure demonstrates that, in comparison to H and L designs, the FxP8-based
design exhibits around 2.74% and 0.73% greater error, respectively. However,
compared to H implementation, the FxP8-based design reduces the overall amount
of utilized resources by nearly 45.5%. Resource usage for implementing the FxP8-
based design is 1.2% higher than that for the L implementation. The increased use
of RegFFs by the FxP8-based architecture to store weights is the primary cause for
the rise in overall utilized resources. When comparing the PoFx(7,1)-based design
to the FxP8-based designs, in the zoomed-in area of the figure, the PoFx(7,1)-
based design has an additional 0.11% inaccuracy but uses 22.7% fewer resources.
Similarly, PoFx(6,1)-based design utilizes 30% fewer resources than the FxP8-based
version while adding 0.32% more error. The various PoFx-based design points
offer different error–resource trade-offs. The PoFx-based design points’ lower total
resource usage, compared to the FxP8-based implementation, can be attributed to

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 115

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 12 14 16 18 20

)
D
P

C

x

s
e

l
c
y

c

#

(

y

c
n
e
t

a
l

e

v
i

t
a
l

e
R

Top-5 Error (in %)

Posit PoFx Fxp8S
n

1
4
8
0

5

PoFx(6,1),
14.06, 0.13

PoFx(7,1),
13.85, 0.13

PoFx(5,2),
18.01, 0.13

PoFx(6,2),
14.01, 0.13

PoFx(7,2),
13.92, 0.13

PoFx(5,3),
18.87, 0.13

PoFx(6,3),
15.38, 0.13

PoFx(7,3),
13.85, 0.14

FxP8,
13.74, 0.17

0
.
1
2

0
.
1
4

0
.
1
6

0
.
1
8

1
3
.
5

1
4
.
0

1
4
.
5

1
5
.
0

1
5
.
5

1
6
.
0

1
6
.
5

1
7
.
0

1
7
.
5

1
8
.
0

1
8
.
5

1
9
.
0

1
9
.
5

H

L

Fig. 21 Top-5 percentage errors in ImageNet dataset classification using VGG-16 vs. the best-
case latency of a sample accelerator implementing a fully connected layer

their lower storage needs, which also improves resource efficiency by amortizing
the conversion overheads of each PoFx-based MAC unit.

With regard to power dissipation, the advantages of employing PoFx-based
designs are shown in Fig. 20. H (Posit(8,2)) and L (Posit(6,2)) are the dominant
Posit-based design points with the highest and lowest power dissipations, respec-
tively. The power consumption of the FxP8-based design is nearly 75.71mW and
37.85mW less than that of the H and L designs, respectively. This reduced power
dissipation comes at the expense of additional classification errors of 2.74% and
0.73%, respectively. The PoFx-based designs exhibit even lower power dissipa-
tion. Compared to the FxP8-based implementation, designs utilizing PoFx(7,3),
PoFx(6,3), and PoFx(5,3) report 4.49mW, 6.33mW, and 7.09mW less power with
0.11%, 1.64%, and 5.13% more error, respectively. In the accelerator, the increased
power dissipation of the Posit-based MAC units is made worse by routing power,
which makes up a sizable portion of the overall power dissipation.

The best-case3 latency of the accelerator for various Posit and PoFx-based designs
is shown in Fig. 21. The Pareto-optimal Posit-based designs are shown as H and
L, based on the highest and lowest accelerator performance metrics, respectively.
In Fig. 21, Posit(8,1) and Posit(7,1) are the points denoted by the letters H and L,

3 The best-case latency refers to the latency corresponding to the CPD of the design.

116 S. Ullah et al.

respectively. The FxP8-based design exhibits better performance than Posit-based
designs with a minor decrease in classification accuracy (compared to L), similar to
the results shown in Figs. 19 and 20. Additional design points that offer additional
accuracy–performance trade-offs are provided by the PoFx-based designs. Because
of having substantially lower CPD than Posit-based designs, FxP8- and PoFx-based
systems have lower latency.

4 Conclusion

Embedded machine learning models are increasingly used to implement smart
embedded systems for various application domains such as smart factories, per-
sonalized health care, and autonomous vehicles. However, the high computational
cost and large memory footprints of the machine learning models are the challenges
that hinder their ubiquitous deployment in resource-constrained embedded systems.
To this end, state-of-the-art works exploit the inherent error resilience of machine
learning algorithms to explore various techniques to optimize these models for
embedded systems. This chapter presents selected novel approaches that address
these challenges by focusing on the capabilities of various number representation
schemes (quantization) and associated efficient arithmetic architectures for them. As
multiplication is one of the most costly and commonly used operations in machine
learning algorithms, the chapter mainly focuses on this operation, and it presents
various architectures for accurate and approximate custom signed multipliers. The
chapter also discusses the recently proposed number representation scheme Posit,
which can provide the dynamic range and precision of the floating-point scheme.
In particular, it introduces a modified Posit representation optimized for machine
learning algorithms. Compared to the floating-point and fixed-point representations,
Posit provides better storage efficiency by utilizing fewer bits to represent trained
parameters of a machine learning model. However, Posit-based arithmetic has a high
computational cost, and to this end, the chapter presents a Posit to the fixed-point
converter to enable computationally efficient integer arithmetic for Posits.

The various architecture described in this chapter are available as open-source
libraries at https://cfaed.tu-dresden.de/pd-downloads. Related future research may
involve exploiting the inherent error tolerance of machine learning models across
multiple degrees of freedom. For instance, in one of our recent works, we have
proposed a framework to analyze the various approximation knobs available
at different layers of the computation stack to implement high-performance
accelerators for error-resilient applications. This framework can be extended to
include and analyze the various degrees of freedom (approximation knobs) provided
by the embedded machine learning model. Most state-of-the-art approximate
computing-related works have focused on the basic arithmetic operators such
as adders and multipliers. However, the approximation opportunities provided
by larger operators, such as MAC, can result in more efficient architectures for
machine learning models. The Posit to fixed-point converter discussed in this

https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 117

chapter combines the advantages of two different number representation schemes.
Similar mixed quantization schemes can be further explored to enable efficient
implementations of machine learning models on embedded systems.

References

1. Zablocki, É., Ben-Younes, H., Pérez, P., Cord, M.: Explainability of vision-based autonomous
driving systems: Review and challenges. CoRR, vol. abs/2101.05307, 2021. https://arxiv.org/
abs/2101.05307

2. Prabakaran, B.S., Akhtar, A., Rehman, S., Hasan, O., Shafique, M.: BioNetExplorer:
Architecture-space exploration of biosignal processing deep neural networks for wearables.
IEEE Internet Things J. 8(17), 13251–13265 (2021)

3. Chlingaryan, A., Sukkarieh, S., Whelan, B.: Machine learning approaches for crop yield
prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron.
Agric. 151, 61–69 (2018)

4. Kotsiopoulos, T., Sarigiannidis, P., Ioannidis, D., Tzovaras, D.: Machine learning and deep
learning in smart manufacturing: The smart grid paradigm. Computer Science Review 40,
100341 (2021). https://www.sciencedirect.com/science/article/pii/S157401372030441X

5. Control your smart home | google assistant. Accessed on 17 February, 2022. https://assistant.
google.com/smart-home/

6. Lin, J., Chen, W.-M., Lin, Y., cohn, j., Gan, C., Han, S.: MCUNet: Tiny deep learn-
ing on IoT devices. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H.
(eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 11711–11722.
Curran Associates, Inc., New York (2020). https://proceedings.neurips.cc/paper/2020/file/
86c51678350f656dcc7f490a43946ee5-Paper.pdf

7. Warden, P., Situnayake, D.: TinyML: Machine learning with TensorFlow Lite on Arduino and
ultra-low-power microcontrollers. O’Reilly Media (2019)

8. Chippa, V.K., Chakradhar, S.T., Roy, K., and Raghunathan, A.: Analysis and characterization
of inherent application resilience for approximate computing. In: Proceedings of the 50th
Annual Design Automation Conference (2013), pp. 1–9

9. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient
neural network. In: Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1 (NIPS’15), pp. 1135–1143. MIT Press, Cambridge, MA (2015)

10. Gupta, S., Ullah, S., Ahuja, K., Tiwari, A., Kumar, A.: ALigN: A highly accurate adaptive
layerwise log_2_lead quantization of pre-trained neural networks. IEEE Access 8, 118899–
118911 (2020)

11. Ullah, S., Sahoo, S.S., Ahmed, N., Chaudhury, D., Kumar, A.: AppAxO: Designing
application-specific approximate operators for FPGA-based embedded systems. ACM Trans.
Embed. Comput. Syst. (2022). https://doi.org/10.1145/3513262

12. Ullah, S., Schmidl, H., Sahoo, S.S., Rehman, S., Kumar, A.: Area-optimized accurate and
approximate softcore signed multiplier architectures. IEEE Trans. Comput. 70(3), 384–392
(2020)

13. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems. In:
2015, Software available from tensorflow.org. https://www.tensorflow.org/

https://arxiv.org/abs/2101.05307
https://arxiv.org/abs/2101.05307
https://arxiv.org/abs/2101.05307
https://arxiv.org/abs/2101.05307
https://arxiv.org/abs/2101.05307
https://arxiv.org/abs/2101.05307
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://www.sciencedirect.com/science/article/pii/S157401372030441X
https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/86c51678350f656dcc7f490a43946ee5-Paper.pdf
https://doi.org/10.1145/3513262
https://doi.org/10.1145/3513262
https://doi.org/10.1145/3513262
https://doi.org/10.1145/3513262
https://doi.org/10.1145/3513262
https://doi.org/10.1145/3513262
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

118 S. Ullah et al.

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition (2014)

15. Nambi, S., Ullah, S., Sahoo, S.S., Lohana, A., Merchant, F., Kumar, A.: ExPAN(N)D:
Exploring posits for efficient artificial neural network design in FPGA-based systems. IEEE
Access 9, 103691–103708 (2021)

16. Courbariaux, M., Bengio, Y., David, J.-P.: BinaryConnect: training deep neural networks with
binary weights during propagations. In: Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2 (NIPS’15), pp. 3123–3131. MIT Press,
Cambridge, MA, USA (2015)

17. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)
18. Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game: Posit arithmetic.

Supercomputing Frontiers and Innovations 4(2), 71–86 (2017)
19. Xilinx: UltraScale Architecture Configuration: User Guide. https://www.xilinx.com/support/

documentation/user_guides/ug570-ultrascale-configuration.pdf (2022)
20. Xilinx 7 Series DSP48E1 Slice. https://www.xilinx.com/support/documentation/user_guides/

ug479_7Series_DSP48E1.pdf (2018)
21. Intel® Stratix® 10 Variable Precision DSP Blocks User Guide. https://www.intel.com/content/

dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf (2020)
22. Ullah, S., Rehman, S., Shafique, M., Kumar, A.: High-performance accurate and approximate

multipliers for FPGA-based hardware accelerators. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1–1 (2021). https://doi.org/10.1109%2Ftcad.
2021.3056337

23. Xilinx LogiCORE IP v12.0 . https://www.xilinx.com/support/documentation/ip_
documentation/mult_gen/v12_0/pg108-mult-gen.pdf (2015)

24. Intel: Integer Arithmetic IP Cores User Guide. https://www.altera.com/en_US/pdfs/literature/
ug/ug_lpm_alt_mfug.pdf (2020)

25. Baugh, C., Wooley, B.: A two’s complement parallel array multiplication algorithm. IEEE
Trans. Comput. C-22(12), 1045–1047 (1973)

26. Ullah, S., Nguyen, T.D.A., Kumar, A.: Energy-efficient low-latency signed multiplier for fpga-
based hardware accelerators. IEEE Embed. Syst. Lett. 13(2), 41–44 (2021)

27. Kumm, M., Abbas, S., Zipf, P.: An efficient softcore multiplier architecture for Xilinx FPGAs.
In: 2015 IEEE 22nd Symposium on Computer Arithmetic, pp. 18–25. IEEE, New York (2015)

28. Booth, A.D.: A signed binary multiplication technique. Q. J. Mech. Appl. Math. 4(2), 236–240
(1951)

29. MNIST-cnn. https://github.com/integeruser/MNIST-cnn (2016)
30. Rehman, S., El-Harouni, W., Shafique, M., Kumar, A., Henkel, J.: Architectural-space

exploration of approximate multipliers. In: Proceedings of the 35th International Conference on
Computer-Aided Design, ser. ICCAD ’16. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2966986.2967005

31. Kulkarni, P., Gupta, P., Ercegovac, M.: Trading accuracy for power with an underdesigned
multiplier architecture. In: 2011 24th International Conference on VLSI Design, pp. 346–351.
IEEE, New York (2011)

32. SIPI Image Database. http://sipi.usc.edu/database/database.php?volume=misc (2019)
33. Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D., Banerjee, K., Avancha, S., Vooturi,

D.T., Jammalamadaka, N., Huang, J., Yuen, H., et al.: A study of BFLOAT16 for deep learning
training. arXiv preprint arXiv:1905.12322 (2019)

34. Introduction to Cloud TPU. https://cloud.google.com/tpu/docs/intro-to-tpu
35. Intel® Deep Learning Boost New Deep Learning Instruction BFLOAT16 - Intrinsic

Functions. https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-
learning-boost-new-instruction-bfloat16.html

36. Arm Armv9-A A64 Instruction Set Architecture. https://developer.arm.com/documentation/
ddi0602/2021-12/?lang=en

37. TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x. https://blogs.nvidia.
com/blog/2020/05/14/tensorfloat-32-precision-format/

https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://doi.org/10.1109%2Ftcad.2021.3056337
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://github.com/integeruser/MNIST-cnn
https://github.com/integeruser/MNIST-cnn
https://github.com/integeruser/MNIST-cnn
https://github.com/integeruser/MNIST-cnn
https://github.com/integeruser/MNIST-cnn
https://github.com/integeruser/MNIST-cnn
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1145/2966986.2967005
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-deep-learning-boost-new-instruction-bfloat16.html
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://developer.arm.com/documentation/ddi0602/2021-12/?lang=en
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

Approximation and Mixed Quantization for FPGA-Based Hardware Arithmetic 119

38. Vogel, S., Springer, J., Guntoro, A., Ascheid, G.: Self-supervised quantization of pre-trained
neural networks for multiplierless acceleration. In: 2019 Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 1094–1099. IEEE, New York (2019).

39. Sarwar, S.S., Venkataramani, S., Raghunathan, A., Roy, K.: Multiplier-less artificial neurons
exploiting error resiliency for energy-efficient neural computing. In: 2016 Design, Automation
and Test in Europe Conference and Exhibition (DATE), pp. 145–150. IEEE, New York (2016)

40. Chaurasiya, R., Gustafson, J., Shrestha, R., Neudorfer, J., Nambiar, S., Niyogi, K., Merchant,
F., Leupers, R.: Parameterized posit arithmetic hardware generator. In: 2018 IEEE 36th
International Conference on Computer Design (ICCD), pp. 334–341. IEEE, New York (2018)

41. Podobas, A., Matsuoka, S.: Hardware Implementation of POSITs and Their Application
in FPGAs. In: 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 138–145 (2018)

42. Jaiswal, M.K., So, H.K.: Universal number posit arithmetic generator on FPGA. In: 2018
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1159–1162 (2018)

43. Jaiswal, M.K., So, H.K.: PACoGen: A Hardware Posit Arithmetic Core Generator. IEEE
Access 7, 74586–74601 (2019)

44. Jain, R., Sharma, N., Merchant, F., Patkar, S., Leupers, R.: CLARINET: A RISC-V Based
Framework for Posit Arithmetic Empiricism (2020)

45. Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Fast deep neural networks for image
processing using posits and ARM scalable vector extension. J. Real-Time Image Proc. 17(3),
759–771 (2020)

46. Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustafson, J.L., Kudithipudi, D.:
Deep Positron: A deep neural network using the posit number system. In: 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1421–1426 (2019)

47. Langroudi, H.F., Carmichael, Z., Gustafson, J.L., Kudithipudi, D.: PositNN framework:
Tapered precision deep learning inference for the edge. In: 2019 IEEE Space Computing
Conference (SCC), pp. 53–59. IEEE, New York (2019)

48. Fatemi Langroudi, S.H., Pandit, T., Kudithipudi, D.: Deep learning inference on embedded
devices: Fixed-point vs posit. In: 2018 1st Workshop on Energy Efficient Machine Learning
and Cognitive Computing for Embedded Applications (EMC2), pp. 19–23 (2018)

49. Langroudi, H.F., Karia, V., Gustafson, J.L., Kudithipudi, D.: Adaptive posit: Parameter aware
numerical format for deep learning inference on the edge. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 726–727 (2020)

50. Wu, B.: SmallPositHDL. https://github.com/starbrilliance/SmallPositHDL (2020)
51. Xiao, F., Liang, F., Wu, B., Liang, J., Cheng, S., Zhang, G.: Posit arithmetic hardware

implementations with the minimum cost divider and SquareRoot. Electronics 9(10), 1622
(2020). https://www.mdpi.com/2079-9292/9/10/1622

https://github.com/starbrilliance/SmallPositHDL
https://github.com/starbrilliance/SmallPositHDL
https://github.com/starbrilliance/SmallPositHDL
https://github.com/starbrilliance/SmallPositHDL
https://github.com/starbrilliance/SmallPositHDL
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622
https://www.mdpi.com/2079-9292/9/10/1622

Efficient Hardware Acceleration of
Emerging Neural Networks for
Embedded Machine Learning: An
Industry Perspective

Arnab Raha, Raymond Sung, Soumendu Ghosh, Praveen Kumar Gupta,
Deepak A. Mathaikutty, Umer I. Cheema, Kevin Hyland, Cormac Brick,
and Vijay Raghunathan

1 Introduction

The breakthroughs achieved by neural networks to solve challenging problems have
ushered in a new era of demand for high-performance computing and domain-
specific acceleration. The vast majority of existing AI-enabled applications still
run on CPUs and GPUs due to the ease of programming and availability of
high-level frameworks that make it easier to experiment with network parameters
and deploy these solutions from the cloud to the edge. However, these solutions
are not as energy-efficient nor do they match the throughput of domain-specific
accelerators. As networks become more complex, the energy required for doing
training and inference has resulted in a noticeable shift towards adopting specialized
accelerators to meet strict latency and energy constraints that are prevalent in both
edge and cloud deployments. These accelerators, which we call edge accelerators,

A. Raha (�) · R. Sung · C. Brick
Intel Corporation, Santa Clara, CA, USA
e-mail: arnab.raha@intel.com; raymond.sung@intel.com; cormac.brick@intel.com

S. Ghosh · V. Raghunathan
Purdue University, West Lafayette, IN, USA
e-mail: ghosh37@purdue.edu; vr@purdue.edu

P. K. Gupta · U. I. Cheema
Intel Corporation, Hillsboro, OR, USA
e-mail: praveen.kumar.gupta@intel.com; umer.i.cheema@intel.com

D. A. Mathaikutty
Intel Corporation, Chandler, AZ, USA
e-mail: deepak.a.mathaikutty@intel.com

K. Hyland
Intel Corporation, Leixlip, Kildare, Ireland
e-mail: kevin.j.hyland@intel.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_5

121

 31368 2385 a 31368 2385 a

 885
41347 a 885 41347 a

mailto:arnab.raha@intel.com
mailto:arnab.raha@intel.com
mailto:arnab.raha@intel.com

 9684 41347 a 9684 41347
a

mailto:raymond.sung@intel.com
mailto:raymond.sung@intel.com
mailto:raymond.sung@intel.com

 19933 41347 a 19933
41347 a

mailto:cormac.brick@intel.com
mailto:cormac.brick@intel.com
mailto:cormac.brick@intel.com

 885 45222
a 885 45222 a

mailto:ghosh37@purdue.edu
mailto:ghosh37@purdue.edu

 9644 45222 a 9644 45222
a

mailto:vr@purdue.edu
mailto:vr@purdue.edu

 885
49096 a 885 49096 a

mailto:praveen.kumar.gupta@intel.com
mailto:praveen.kumar.gupta@intel.com
mailto:praveen.kumar.gupta@intel.com
mailto:praveen.kumar.gupta@intel.com

 13635 49096 a 13635 49096 a

mailto:umer.i.cheema@intel.com
mailto:umer.i.cheema@intel.com
mailto:umer.i.cheema@intel.com
mailto:umer.i.cheema@intel.com

 885 52970 a 885 52970
a

mailto:deepak.a.mathaikutty@intel.com
mailto:deepak.a.mathaikutty@intel.com
mailto:deepak.a.mathaikutty@intel.com
mailto:deepak.a.mathaikutty@intel.com

 885 56845
a 885 56845 a

mailto:kevin.j.hyland@intel.com
mailto:kevin.j.hyland@intel.com
mailto:kevin.j.hyland@intel.com
mailto:kevin.j.hyland@intel.com
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5
https://doi.org/10.1007/978-3-031-19568-6_5

122 A. Raha et al.

achieve high performance through parallelism in hundreds of processing elements
and improve energy efficiency by minimizing data movement and maximizing
resource utilization through data reuse [1, 2]. In this chapter, we will first provide a
comprehensive summary of the problems that neural networks have been solving in
the domains of Computer Vision, Natural Language Processing, Recommendation
Systems, Networking, the Internet of Things (IoT), and Graph Processing (Fig. 1).
The two phases of a neural network include training (or learning) and inference
(or prediction). The number and type of layers are determined by the network
architecture, whereas training determines the network weights. These weights are
combined with new input activations to make predictions during inference. We
will limit our focus to custom edge accelerators for inference and how individual
layers of each of these different types of neural network can be accelerated in
an energy-efficient way. In particular, we will focus on mapping neural networks
on these architectures that attempt to minimize data movement by reusing input
activations/weights during a particular compute round or across compute rounds.
Work has to be distributed over multiple compute rounds when the layer cannot fit
in its entirety onto the available processing elements. The bulk of our discussion
will be on Convolutional Neural Networks (CNNs) due to their popularity on edge

Fig. 1 Application domains of deep neural networks at the edge. This image has been designed
using some icons from Flaticon.com, Freepik.com, and Vecteezy.com

Efficient Hardware Acceleration of Emerging Neural Networks 123

accelerators. However, instead of discussing at length how to map the standard
convolution operator itself, for which extensive prior research exists [3, 4], we will
focus on the mapping of the special layers in a CNN. These layers can become
the performance bottleneck after the standard convolutions have been accelerated,
and there exists little insight on how these layers are accelerated in the literature.
Furthermore, we will discuss the layers in newer lightweight CNNs that attempt to
reduce the number of operations, such as in DepthWise Convolution, and how these
might map to an accelerator originally optimized for standard convolutions. This is
difficult because standard convolution lends itself to channel accumulation, while
this is not the case for lightweight CNNs, resulting in reduced compute utilization.
Newer neural networks such as Transformers and Graph Neural Networks present
even more challenges for edge accelerators in the amount of data that must be
processed and the shape and size of the input embeddings. The amount and types of
computations in these emerging networks are non-optimal for edge accelerators, as
they are currently being implemented, and may lead to newer design paradigms. It is
not our intention to provide mappings for all the operators that one might encounter
in different types of Deep Neural Networks (DNNs). In fact, exact mappings are
specific to the resources found in a DNN accelerator. Instead, we seek to provide
insights on the challenges that one might encounter during the design mapping
process and the trade-offs to consider when designing an edge DNN accelerator
for various types of layer. We will conclude by touching on future trends in neural
network models and applications that can affect DNN accelerator design going
forward.

2 Background

This section provides an overview of some of the key applications of DNNs in
embedded machine learning and the various network models that are used in
these applications. Figure 1 gives an overview of the DNN application domains
in embedded machine learning. As demonstrated in the figure, the applications of
DNNs are very diverse, but in this section we will cover some of the most popular
ones in the domains of Computer Vision (CV), Natural Language Processing (NLP),
Recommendation Systems (RSs), and Graph Neural Networks (GNNs). We also
discuss the DNN models used in these domains and their progression over the years.
Following the application domains and the corresponding models, we examine some
common layer types used in DNNs today.

2.1 Computer Vision

Computer Vision is one of the most powerful and compelling types of Artificial
Intelligence (AI) that enables computers and other execution platforms to analyze

124 A. Raha et al.

visual data from different sources, such as digital images, videos, and other visual
systems, and extract valuable information, thereby providing recommendations or
taking decisions based on the information. Unprecedented innovations in Deep
Learning (DL) and DNNs in the past decade have enabled this field to progress
leaps and bounds to such an extent that computers can now surpass human-level
intelligence in multiple vision-related applications. Although the first CV research
began in the 1950s, advances in DL powered by the exorbitant amount of visual
data generated every day (. ∼3 billion images shared online every day) coupled with
significant improvements in hardware and computing resources (GPU, TPU [5],
NPU [6]), have resulted in exponential growth in CV applications. Today, these
applications in the real world are ubiquitous in health care, transportation, enter-
tainment, business, and our daily lives. Given the multitude of these applications, it
is important to understand the underlying DL architectures that power them. In the
following sections, we discuss three of the most common types of DNN architecture
used in CV, viz., CNNs, transformers, and multilayer perceptrons (MLPs).

2.1.1 Convolutional Neural Networks

Looking back at the 2010s, the renaissance of neural networks was mainly driven
by CNNs. AlexNet [7] ushered in a new era in CV, and since then many popular
CNNs have evolved with varying degrees of accuracy, efficiency, and scalability. In
the past decade, the vision community has made tremendous efforts to improve the
design of CNNs. Some representative networks that have revolutionized this field
include VGGNet, InceptionV3, ResNet, MobileNet, EfficientNet, RegNet, U-Net,
Faster RCNN, EfficientDet, and YOLOv(1-5) [8, 9]. Figure 2 shows the progression
of the most popular CNNs since 2012 for different CV applications. These networks
use the convolution layer as the core building block to extract features from images.
Inherent group equivariance and spatial inductive bias in these models facilitate
efficient learning of visual features. These features have made CNNs well adapted to
various CV applications, such as image classification, object detection, and image
segmentation, as indicated in Fig. 2. We can also infer that, compared to CNNs
developed in the earlier part of the last decade, relatively newer models such as
Mask RCNN, PANet, HRNet, EfficientDet, CondInst, and K-Net [9] are capable of
handling multiple applications, as evident from the figure. In addition, this field
has witnessed the continuous emergence of innovative applications powered by
Generative Adversarial Networks (GANs) [10] that use CNNs as generator and
discriminator models. Examples of some applications include image synthesis,
image style transfer, image colorization, and image super-resolution, among others.
In recent years, CNNs have also demonstrated their prowess in various video
analytics applications such as video classification, continuous object tracking, and
video prediction. In Table 1, we present a holistic view of traditional and emerging
CV applications, together with the widely popular CNN architectures used for them.

Efficient Hardware Acceleration of Emerging Neural Networks 125

Fig. 2 Timeline of development of state-of-the-art convolutional neural networks. CNNs per year
are arranged based on popularity and citation from publications

2.1.2 Emerging Deep Learning Architectures for Vision

Although CNNs have dominated as the mainstream DNN architecture in CV for
many years, recently two types of architecture, namely Transformers and MLPs,
have shown promising results similar to CNNs. This has ignited a spark in the
research community to build better vision models by investing in these architectures.

Transformer-Based Vision Models As evident in Sect. 2.1.1, CNN models have
been dominating the CV paradigm with tremendous success. Despite the over-
whelming progress, CNNs lack a global understanding of the image itself and,
therefore, are not able to model the dependencies between the extracted visual fea-
tures. Any attempt to track long-range dependencies requires large receptive fields,
which increases the model complexity many times. The attempt to overcome these
limitations of inductive convolutional biases in CNNs led to the discovery of vision
transformers. Before its grand debut in this domain, the first Transformer model
based on a sequence-to-sequence architecture was proposed in [11] for machine
translation. Since then, multiple pioneering breakthroughs using transformers have
been made in NLP using state-of-the-art (SOTA) transformer-based models, such
as BERT (Google), GPTv(1-3) (OpenAI), RoBERTa (Facebook) [9, 12]. These
innovations sparked great interest in the CV community, leading to the design of
transformers for visual and multi-modal learning tasks. Specifically, the advent of
the Vision Transformer (ViT) [13] in 2021 initiated the design of multiple variants
of transformer models for applications such as image classification, detection, and
segmentation. Table 2 presents a holistic view of many emerging CV applications
in addition to these, together with different variants of transformer architectures and

126 A. Raha et al.

Table 1 Variants of CNNs for representative CV applications. Model details are available in [9]

Application Convolutional neural networks (CNNs)

Application description Model Model type

Image classification Classify images and
assign class-specific
labels

ResNet, InceptionV3,
MobileNetV2,
ResNext,
EfficientNet, RegNet

Classification CNNs

Object detection Combine classification
and localization to
detect instances of
objects of certain class
in image

SSD, RetinaNet,
YOLOv5, FCOS

One-stage object
detection models

Faster RCNN, Mask
RCNN, Cascade
RCNN

Two-stage object
detection models

Semantic
segmentation

Perform pixel-level
prediction to cluster
parts of an image
together that belong to
same object class

DeepLabv3, FCN,
U-Net++, HTC

Semantic
segmentation models

Mask RCNN, PaNet,
HRNet, YOLOP

Instance
segmentation models

Medical image
diagnosis

Identify abnormalities in
medical images and
perform tissue-based
detection and
characterization

U-Net, SegNet,
ESPNet, CPN

Medical image
segmentation models

Image generation Generate new images by
learning unsupervised
representations

DCGAN, StyleGan Generative
adversarial networks
(GANs)SNGAN, SAGAN

Low-level vision Style transfer,
super-resolution,
denoising, colorization

Pix2Pix, CycleGAN,
SRGAN, AgileGan

GANs

Video understanding Video classification Mask RCNN, DCGN Video-based CNNs

Object tracking SORT, FairMOT, Re3

Video object
segmentation

PreMVOS, AT-Net

Video prediction PredNet, Vid2Vid

Human pose
estimation

Pose estimation HRNet, VoxelPose CNNs+GANs

Face generation DeblurGan, EDVR

Face deblurring FaceShifter, Pose2Vid

Face swapping DeepFaceLab

the corresponding model categories/types. Examples of many popular transformer-
based models are DETR, SwinT, DINO, T2T-ViT, TNT, and Twins [12]. In addition,
interesting efforts to use the knowledge of CNNs led to a substantial improvement in
ViT in terms of new designs, better accuracy, and training scalability. Consequently,
transformers have emerged as a generic vision backbone and have demonstrated
remarkable performance in a wide variety of new CV applications, as shown in
Table 2. Deeper dives in these applications and models could be found in [12, 14].

Efficient Hardware Acceleration of Emerging Neural Networks 127

Table 2 Variants of transformers for different CV applications. Model details are available in [12]

Transformer-based vision architectures

Application Application description Model Model type

Image Classify images and assign ViT, DeiT Uniform-scale vision transformer

classification class-specific labels PVT, SwinT Multi-scale vision transformer

Object
detection

Combine classification and
localization and detect
instances of objects of
certain class in image

DETR, Pix2Seq CNN backbone + transformer
detector

YOLOS, PVT +
DETR

Pure transformer

Semantic
segmenta-
tion

Perform pixel-level
prediction to cluster parts
of an image together that
belong to the same object
class

CMSA CNN + cross-modal self-attention

SETR, SegFormer Pure transformer

Image
generation

Generate new images by
learning unsupervised
representation

TransGAN
DALL E

GAN-based transformer

Low-level
vision

Super-resolution,
denoising, colorization,
image restoration

IPT, TTSR,
ColTran

Transformer

Video under-
standing

Video and language
modeling
Video action recognition
Video instance
segmentation

VideoBERT,
VTN, MaskT

CNN backbone + transformer
decoder

VisTR, VTN,
MViT,
TimeSFormer

ViT-based backone + transformer
decorder

3D analysis 3D point cloud
classification
3D segmentation
3D pose reconstruction

PT Self-attention-based transformer

PCT, METRO Pure transformer

Multi-modal
tasks

Visual question answering
Visual commonsense
reasoning
Cross-modal retrieval
Image captioning

ViLBERT, PEMT,
VLN, CLIP

Multi-stream transformer

VisualBERT,
UNITER,
OSCAR, VLP

Single-stream transformer

Fundamentally, transformer models comprise the encoder and/or the decoder
module, which again consist of multi-head attention layers and feedforward layers.
Here, the attention layer only performs feature aggregation (Fig. 23), while the
feedforward layer performs feature transformation (Fig. 24), that is, in contrast
to simultaneous aggregation and transformation in CNNs. Despite exceptional
performance, the high computational complexity and associated inference cost
due to the enormous size and operations of these models hinder their widespread
applicability to NLP and CV applications at the edge or mobile/end-user device.
In fact, the .O(n2) time and memory cost of self-attention operation is still a major
challenge in applications such as detection, segmentation, super-resolution, etc. To
address these challenges, researchers have come up with different approximation

128 A. Raha et al.

strategies in attention and lightweight transformer models, such as Hardware-aware-
Transformer (MIT-IBM), MobileViT (Apple), and EdgeFormer (Microsoft) [9]. The
optimization space in transformers is still untapped; therefore, emerging research
will hopefully compress and accelerate SOTA transformer models and increase their
applicability in edge computing devices. Some examples of how to map compute-
intensive transformer layers on SOTA accelerators will be discussed in Sect. 5.1.

MLP-Based Vision Models Multilayer Perceptrons that originated in the 1980s
have traditionally been used for simple regression, classification prediction, and, of
late, machine translation and speech recognition. Although MLPs were considered
insufficient since they mainly comprised fully connected layers and were inefficient
due to inherent redundancy, MLP-Mixer (Google, 2021) [15] achieved competitive
scores on image classification benchmarks, with ImageNet Top-1 accuracy of
.87.8%. Interestingly, this model does not use the computation-hungry convolution
layers and attention layers. On the contrary, the constituent layers are (1) per
patch linear embedding, (2) mixer layers (channel-mixing MLP and token-mixing
MLP), and (3) the classification head, which contributes to its simplicity. As
a result, this model performs on-par with the SOTA vision transformer models
and even outperforms them with respect to throughput and TPU training time.
From the perspective of AI for resource-constrained embedded devices/IoT, these
results are very promising and will definitely spark further research in MLP-
based vision models for embedded CV. Furthermore, this breakthrough has led
prominent research teams to propose other MLP-based models, viz., ResMLP,
gMLP, RepMLPNet, and ConvMLP [9] in 2021.

2.2 Natural Language Processing

Natural Language Processing deals with the transformation of human language into
a representation that computers can understand and manipulate. A wide range of
neural network models, including Recurrent Neural Network (RNN), CNN, GAN,
and Transformers, are used for NLP applications. Figure 3 shows a progression of
the most popular neural networks since 2014 and shows the type of architectures to
which they belong. As one can clearly comprehend, lately transformers have been
the forerunner in this field. Here, we introduce some NLP subdomains where neural
networks have found applications in embedded machine learning.

Language Modeling is an important application of NLP that deals with the
prediction of the upcoming word sequence based on an earlier word sequence.
Taking into account the importance of this application in various fields, numerous
neural networks are proposed, as shown in Table 3. Machine Translation is another
important application of NLP, which involves the computer-based automatic con-
version of one natural language into another language while keeping the meaning of
the input text intact. Speech recognition enables the conversion of natural language
to text. Some examples of speech recognition at the edge are Amazon Alexa, Apple

Efficient Hardware Acceleration of Emerging Neural Networks 129

Fig. 3 Timeline of development of SOTA neural networks used for NLP with corresponding
model type. Networks per year are ordered according to popularity and citation from publications

Siri, and Google Assistant. Although the processing of these assistants may be in
the cloud, these devices utilize speech recognition to process the wake word at
the edge terminal itself. Text Generation, generating text that is indistinguishable
from human-written text, is another popular domain of NLP. Some of the most
widely used text generator networks are based on autoencoders, GANs, and
transformers. NLP-based Question Answering (QA) is about building systems that
answer questions posed in natural language and abstaining if the question cannot
be answered based on the given context. Sentiment Analysis, another important
application in the age of social media, is a technique that is used to classify the
polarity of a given language as positive, negative, or neutral. Table 3 shows the
main types of NN models used for these applications and some of the latest high-
performing models.

2.3 Deep Learning Based Recommendation Systems

The goal of recommendation systems (RSs) is to generate personalized recom-
mendations for users based on collected user data. In other words, these systems
predict the rating or ranking a user might give to a specific item and provide data
to the user based on these predictions. Emerging innovations in this field have been
continuously driven by improvements in Internet technology, smart edge devices,
and e-Commerce. Traditionally, RSs have been based on techniques such as text
mining, nearest neighbor, clustering, and matrix factorization [16]. However, in
recent years, RSs have greatly benefited from the progress made in DNNs. Figure
4 highlights some of the SOTA and representative models from a wide range of
neural networks such as MLP, Autoencoder, CNN, RNN, RBM, etc., and the most
common data sources used by the models. As highlighted in the figure, GNNs

130 A. Raha et al.

Table 3 Some major application of NLP and types and examples of models used [9]

Application Common model types Examples of some top models

Language modeling Transformer BERT, Megatron-LM, Transformer-XL, GPT3

LSTM LSTM (RMC), LSTM (Hebbian, Cache,
MbPA), AWD-LSTM-MoS+ATOI, LSTM

CNN TaLK Convolutions, GCNN-8, TCN,
Temporal CNN

Machine translation Transformer Temporal Cycle, Transformer+Rep, T5-11B,
Transformer + R-Drop

LSTM GNMT+RL, MoE, RNN Enc-Dec Att,
Deep-Att

CNN DynamicConv, TaLK Convolutions, ConvS2S,
SliceNet

Multiscale MUSE

Speech recognition Transformer Conv+Transformer+Wav2vec2.0 + pseudo
labeling, Wav2vec 2.0 with Libri-Light,
Transformer+Time reduction+Self knowledge
distillation

Conformer Conformer+Wav2vec 2.0 + Noisy training,
SpeechStew, Conformer

LSTM ContextNet+SpecAugment-based Noisy
training, LSTM transducer, tdnn+chain+rnnlm
rescoring

CNN Multistream CNN with self-attentive SRU

Text generation Autoencoders Aggressive VAE, BART, CNN-VAE, SA-VAE

GAN LeakGAN, partGAN, RelGaN

Transformer GPT2, T5, UnitLM

Question answering LSTM SAN, FusionNet, BiDAF

Transformer LUKE, XLNet, SpanBERT

DCN DCN+,DCN+Char+CoVe

Sentiment analysis Transformer SMART-RoBERT, T5-3B, ALBERT

LSTM Block-sparse LSTM, bmLSTM, byte
mLSTM7

CNN CNN Large, CNN, CNN+Logic rules

MLP gMLP-large

(covered in Sect. 2.4) have recently found increased usage in these systems due
to the inherent graph-like structure of the input data [17]. Many of these are used
by tech giants such as Amazon, Meta (Facebook), Google, Netflix, and Spotify to
offer personalized AI-based ads to users. The success of DNNs in this field can be
attributed to the inherent structure of RSs that these models could exploit [18]. In the
context of user recommendation, this structure could correspond to a sequence of
click logs or a sequence of specific words used in a sentence. The other property that
makes DNNs a good fit for RSs is the composite nature that allows multiple neural

Efficient Hardware Acceleration of Emerging Neural Networks 131

Fig. 4 Timeline of development of SOTA neural network-based Recommendation Systems along
with common data sources used by these systems

building blocks to be composed into a large unit that could target the multi-modal
nature of the data (data that include text, image, audio, video, among others).

Furthermore, compared to conventional recommendation models that are linear
(e.g., factorization machines, sparse linear models, etc.), DNNs allow modeling of
non-linearity in data using non-linear activation functions such as ReLU, sigmoid,
tanh, etc., and with arbitrary precision by changing the activation combination
and choices [18]. This property allows DNNs to model complicated patterns and
behaviors with more precision. In addition, the inherent sequence modeling ability
in modern DNNs allows them to mine the temporal context of user behavior and,
hence, provide a better recommendation. Besides, the ability to learn new features
automatically allows these networks to keep the recommendation up-to-date. These
DNNs are also capable of processing heterogeneous content, such as video, audio,
text, image, etc., allowing them to efficiently represent the underlying domain.

2.4 Graph Neural Networks

Graph Neural Networks are a set of connectivity-driven models that take advantage
of the connectivity of structured graph data to learn and model relationships between
graph nodes. Depending on the structure of the graph, these networks employ an
iterative process to take input edges, vertex, and graph features (known attributes
of the underlying application) and transform them into output features (e.g., target
predictions). Figure 5 shows common GNN application domains, such as CV,

132 A. Raha et al.

Fig. 5 Applications of Graph Neural Networks and corresponding GNN models. Model names
are underlined and in bold

NLP, and RSs. In this figure, we have also denoted an example GNN model for
each application in these domains. Furthermore, GNNs have been explored in the
context of edge intelligence and IoT [19]. These networks can capture complex
interactions within multi-modal sensory topology, enabling them to achieve SOTA
results in application domains such as autonomous vehicles, IoT sensor networks,
and robotics, as shown in Fig. 5. Other application areas include computer networks,
science discovery (particle physics and chemistry), combinatorial optimization, and
computer networks. We refer our readers to [20, 21] for more details on GNN
models and applications.

Now that we have covered some key DL-based applications and the correspond-
ing DNN models, we will briefly discuss some of the common layer types used
in DNNs in Sect. 3. This description will be followed by a section on the efficient
implementation of these layers in Sect. 4.

3 Common Layers Across Neural Networks

An overview of the common deep learning layers along with their operator-level
description is given in Tables 4 and 5. For better readability, we have classified
the layers into different categories, such as convolution layer, pooling layer,
activation layer, normalization layer, combination layer, input/output layer, and fully
connected layer. Other layers typically found in newer DNNs, such as Transformers
and GNNs, have been categorized into miscellaneous layers. Note that we only list
several representative layers rather than providing an exhaustive list. The following
sections dive deep into the details of the most computationally complex layers
among these and describe how they are mapped to a SOTA accelerator for inference
on resource-constrained edge platforms.

Efficient Hardware Acceleration of Emerging Neural Networks 133

Table 4 Common types of layers used in deep neural networks (1/2)

Layer Subtypes Layer description Op level description

Convolution
layers

n-D simple conv Apply sliding convolution
filters to n-D input

Standard convolution

n-D grouped conv Apply sliding convolutional
filters on group of input
channels

Group convolution

1 . × 1 conv Used for dimensionality
reduction, efficient low
dimensional embeddings

1 . × 1 convolution

n-D dilated/atrous
conv

Expands the input by
inserting holes between
consecutive kernel elements

Dilated convolution

n-D transposed
conv/deconvolution

Up-samples n-dimensional
input feature maps

Standard convolution

n-D depthwise conv Apply a single convolutional
filter for each input channel

Depthwise
convolution

Pointwise conv Apply a 1 . × 1 kernel to
iterate through every single
point of the input

Standard convolution

n-D depthwise
separable conv

Apply depthwise
convolution and then
pointwise convolution

Depthwise
convolution

Pooling layers n-D average pool Average pooling operation
for temporal/spatial/3D data

Pooling—
combination/decode

n-D max pool Max pooling operation for
temporal/spatial/3D data

Pooling

n-D global avg pool Global average pooling
operation for
temporal/spatial/3D data

Pooling

n-D global max
pool

Global max pooling
operation for
temporal/spatial/3D data

Pooling

Activation
layers

ELU Exponential linear unit Activation functions

Leaky ReLU Leaky version of a rectified
linear unit

Activation functions

PReLU Parametric rectified linear
unit

Activation funtions

ReLU Rectified linear unit
activation function

Activation functions

Thresholded ReLU Thresholded/clipped
rectified linear unit

Activation functions

Swish Swish activation function Activation functions

Hyperbolic tangent tanh activation function Activation functions

(continued)

134 A. Raha et al.

Table 4 (continued)

Layer Subtypes Layer description Op level description

Normalization layers Normalization Preprocessing layer
which normalizes
continuous features

Normalization

Batch
normalization

Normalize mini-batch of
data throughout all
observations of each
channel independently

Batch
norm—combination

Layer
normalization

Normalize mini-batch of
data for each observation
independently
throughout all channels

Elementwise other

Table 5 Common types of layers used in deep neural networks (2/2)

Layer Subtypes Layer description Op level description

Combination layers Add Adds a list of inputs
(from multiple layers)
elementwise

Elementwise
add-aggregation

Average Averages list of inputs
elementwise

Math
other—aggregation

Multiply Multiplies list of inputs
elementwise

Elementwise

Subtract Subtracts two inputs
elementwise

Elementwise

Concatenate Concatenates a list of
inputs along a specified
dimension

Other memory
operation

Miscellaneous layers Maximum Computes the maximum
(elementwise) from a list
of inputs

Elementwise

Minimum Computes the minimum
(elementwise) from a list
of inputs

Elementwise

Reshape Reshapes inputs into the
given shape

Memory other

n-D ZeroPadding Zero-pads layer for n-D
data in specified
dimension

Padding

Text vectorization Preprocessing layer that
maps text features to
integer sequences

Embedding

(continued)

Efficient Hardware Acceleration of Emerging Neural Networks 135

Table 5 (continued)

Layer Subtypes Layer description Op level description

Embedding Turns positive integers
(indexes) into dense
vectors of fixed size

Other memory
operation

Masking Masks a sequence by
using a mask value to
skip timesteps

Elementwise

Attention/self-attention Dot-product attention
layer, aka Luong-style
attention

Matrix-matrix

Multi head attention Module for attention
output from multiple
self-attention layers

Matrix-matrix

Fully connected Dense Multiply the input by a
weight matrix and then
adds a bias vector

Vector to
matrix/matrix—
matrix

Input/output layers Input layer Used as an entry point
into a network (or a
graph of layers)

First layer

Softmax layer Applies softmax
function to the input

Activation

4 Efficient Implementation of Emerging NN Operators

Since CNNs make up the majority of edge AI models, most embedded accelerators
are primarily designed to process convolution layers. Convolution layers consist
of seven nested loops where an output tensor, OFMAP, is produced from multiple
kernel feature maps (FMAPs), on one or more input tensors, IFMAP, as shown
in Fig. 6. The calculation of each point in the output volume is a multiply-and-
accumulate (MAC) operation. As a result, DNN accelerators consist of one or
more arrays of MAC units in their computation core. An example of a 1 . × 1
convolution layer is the second convolution layer in ResNet50 where the IFMAP
is represented by the dimensions IX . = 56, IY . = 56, IC . = 64, and the filters are
represented by the dimensions FX . = 1, FY . = 1, IC . = 64, OC . = 256. These are
convolved together (with a batch size of ON . = 1) to generate an OFMAP of
dimensions OX . = 56, OY . = 56, OC . = 256 with appropriate padding values.

To understand the basic principles of DNN acceleration, we first provide an IP
level overview of a typical DNN accelerator, as shown in Fig. 7. There exist multiple
types of core within this system: (i) a main scalar processor core that coordinates
data movement between system memory (DRAM) and associated coprocessors, as
well as issuing the required instructions, (ii) an associated vector DSP processor
(VDP), and (iii) a neural network (NNP)/DNN accelerator [5]. Custom decoded
instructions are communicated from the scalar processor to the NNP/VDP via a
Network-On-Chip (NOC), while separate NOCs communicate the input feature

136 A. Raha et al.

Fig. 6 Convolution operation in DNN

Vector
DSP

Processor
(VDP)

Neural
Network

Processor
(NNP)

On-chip Memory (TCM)

NOC Interfaces

Main
Processor

System
Memory

Feature
Maps

Filter
Weights

AI Accelerator

Fig. 7 High-level schematic of a typical DNN accelerator-based IP

maps, filter maps, and output feature maps from a tightly coupled on-chip SRAM
memory that can be accessed by both the VDP and NNP.

The VDP is required to map DNN operators that either cannot be mapped
efficiently to the NNP or in the worst case cannot be mapped at all to the
DNN accelerator. Examples of such operators include various non-linear activation
functions such as HardSwish, GeLU, HardTanh, etc. Although, considering the
frequency of these operations, some of the recent DNN accelerators implement these
non-linear activation functions using specialized programmable look-up tables [22].
It is also used to perform a host of pre-processing and post-processing steps on the
input and output data before they can be executed on the NNP. Usually, the VDP has
significantly lower throughput compared to the NNP because of a limited number
of arithmetic units, a lower frequency of operation, and no local RF reuse compared

Efficient Hardware Acceleration of Emerging Neural Networks 137

RF
Rd/Wr
Signals

Fig. 8 Microarchitecture details of a generic DNN accelerator

to the NNP. Therefore, based on the exact arithmetic operator required, we always
try to map any layer first on the NNP, and if that fails, the VDP is used.

In this chapter, we will focus entirely on the DNN accelerator (NNP), since this
is the processing core that consumes the most area and power and is responsible
for the bulk of the computations. Figure 8 shows a high-level diagram of a DNN
accelerator. The main components of the NNP are the Processing Element Array
(PEA) that is constructed using an NxM rectangular grid of Processing Elements
(PE), a local SRAM memory to store and load activations and weights for each
DNN layer, a tensor distribution network that consists of load and drain datapaths
to and from the PE array, and finally the control logic that orchestrates the loading,
computation, partial sum accumulation, and extraction of the output points to and
from the PEA.

To understand how convolution layers are efficiently mapped to a DNN accel-
erator, it is useful to make some assumptions about the details of the underlying
microarchitecture. Without any loss in generality, the processing element array
(NxM) is assumed to be a square grid of NxN processing elements to simplify
control logic both inside and outside the PE array. In DNNs, MAC operations are
used to compute the dot product of many weights and hidden-layer activations to
produce the output feature maps for the next layer. Each PE is capable of performing
MAC operations using local datapaths consisting of register files, multipliers, and
accumulators. Local register files (RF) are discrete or shared storage that contains
input activations (IF), filter weights (FL), and output points (OF). There can
be multiple MACs within a PE based on the performance requirements of the
accelerator and limited by area and power constraints. The PEs have storage for
multiple IF and FL operands mostly in the input channel (or IC) dimension, along
which it can perform MAC operations over multiple consecutive clock cycles. All
PEs work in parallel by sourcing IF and FL operands from their local RFs, as
shown in Fig. 9 and high performance is achieved through parallelism over hundreds
of processing elements. There exists a “Load Path” to retrieve the weights and
activations from SRAM and distribute them to the register files within each PE.
This type of architecture is efficient for data movement since it can take advantage
of memory reuse, especially for convolutional neural networks, where a small
kernel is multiplied by a large input matrix. Data movement has been shown to

138 A. Raha et al.

Fig. 9 Convolution operation in PE array

be a significant contributor to DNN accelerator energy cost. The Load is generally
implemented as an NOC which allows it to broadcast, multicast, or unicast the
input data to different processing elements with the goal of reusing as many of the
inputs as possible depending on the neural network layer. The “Drain Path,” also
implemented as an NOC, is used to retrieve the output feature maps for each layer,
running them through post-processing operations such as biasing and rounding, and
eventually compressing the results before writing them back to memory. A popular
example of such a spatial architecture in academia is Eyeriss [23, 24] and recent
designs in the industry include Samsung and MediaTek NPUs [6, 25]. Another
popular spatial architecture for performing General Matrix-Matrix Multiplication
(GEMM) is systolic arrays. These provide the benefits of low area footprint and high
frequency of operation, with a famous example being Google TPU [26]. However,
systolic arrays are also known to suffer from low utilization issues due to limited
programmability, inefficient mapping of odd dimensions [27] and are generally
more power hungry due to limited reuse potential. Our high-level Fig. 8 diagram of
a DNN accelerator can be easily extended to a systolic array with the modification
that PEs within a systolic array usually lack local RF memories (or may contain just
a staging buffer for IF and FL) and a single MAC unit that is responsible for the
creation and forwarding of partial sums to adjacent PEs.

In some spatial microarchitectures, it may not be possible to map all the Input
Channels (ICs) corresponding to an OC to the same PE. This may be the case
for deeper layers within a DNN where the ICs are much larger compared to IX,
IY, FX, or FY. In these cases, the partial sums (psums) generated across multiple
PEs must be accumulated to generate the final OF point, as shown in Fig. 10.

Efficient Hardware Acceleration of Emerging Neural Networks 139

Fig. 10 Partial sum movement in PE array

We term this as internal psum accumulation. Due to memory limitations, most
DNN architectures only allow accumulation over a maximum number of ICs while
bringing the subsequent sets of ICs later. This requires the ability to spill and fill
intermediate psums to and from the DNN accelerator. We term this as external psum
accumulation. Note that most SOTA DNN accelerators support FP16/BF16 as well
as INT8 precision arithmetic. Some accelerators even support lower precision and
mixed precision, such as INT4, ternary, and binary, to increase overall throughput.
However, we will concentrate only on the INT8 precision for DNN inference
acceleration.

Apart from creating an efficient DNN accelerator, a well-defined software or
compiler framework must exist to program the configuration registers, mapping
different types of DNN operators, and preparing the input data and filter weights in
the correct format. However, we do not go into the details of the compiler framework
that is required for various hardware-software co-design mapping and optimization
techniques, as described in this chapter.

A popular and efficient technique to improve the performance and reduce the
energy consumption of DNN accelerators is to exploit the sparsity that is present in
abundance in DNN networks [24, 28, 29]. Sparsity refers to the existence of zeros
in the weights and activations in DNNs. Zero-valued activations occur from the
processing of the IFMAP tensors through activation functions such as ReLU, which
clamp negative values to zero. Zero-valued weights arise from the structured/un-
structured pruning of weights and the quantization of weights from higher precision
floating point numbers to narrow fixed point integers (converting FP32/FP16 to
INT8/4/2/1, etc.). These zero-valued activations and weights do not contribute
towards the result during multiply-and-accumulate operations, and hence, can be
skipped during both computation and storage. Toward this end, machine learning
accelerators can exploit the available sparsity to achieve significant speedup during
compute, which leads to power savings because the same work is accomplished

140 A. Raha et al.

Load Round

Sparsity Bitmap
(binary)

Uncompressed Data reqd.
in this round

Compressed Data Segment loaded every
round

R0 1000 0010 0001 0100 0d000000 00000c00 0000000b 000a0000 1a0908070605040302010f0e0d0c0b0a

R1 1010 1000 0100 1100 04000300 02000000 00010000 0f0e0000 2d2c2b2a1a0908070605040302010f0e

R2 0100 0000 0111 0000 00080000 00000000 00070605 00000000 242322212f2e2d2c2b2a1a0908070605

R3 0000 0000 0001 0001 00000000 00000000 0000001a 00000009 28272625242322212f2e2d2c2b2a1a09

16B Sparsity Bitmap (hex):

Consecu�ve Zero-
Compressed Data (hex): 1a090807 0605040302010f0e 0d0c0b0a

… 1f1f 0f4f 7aff 0000 0011 4070 a84c 8214

R0R1R2R3

Data mapping
… 22212f2e2d2c2b2a

2827262522212f2e2d2c2b2a1a0908070605040302010f0e0d0c0b0aCompressed Data:
1f1f 0f4f 7aff 0000 0011 4070 a84c 8214Bitmap:

Unused data Consumed data

Fig. 11 Zero-value compression (ZVC) of data

in fewer cycles, as well as reducing the storage and bandwidth requirements for
the weights and activations via efficient compression schemes. Reducing the total
amount of data transferred through the memory hierarchy and decreasing the total
computation time are critical to improving the energy efficiency of the NNP [24, 29].
Sparsity acceleration during computation is often bounded by the rate at which
load data can keep the compute units busy. Previous works have addressed the load
bottleneck by proposing techniques such as zero-value compression (ZVC) [30] to
encode sparse weights and activations so that the loading of sparse data does not
stall the compute. Figure 11 illustrates the ZVC scheme while Fig. 12 demonstrates
how ZVC is leveraged during the loading of compressed data. Finally, Fig. 13
shows how sparse data are decompressed and the non-intersecting zeros between
the weights and activations are extracted as input to the MAC within each PE to
accelerate computation. Note that the OFMAPs will need to be compressed by the
drain path, using the same ZVC, before they are written to the SRAM. Sparsity adds
extra complexity to data loading, computation, and draining, and designers need to
ensure that it can be enabled without adding too much overhead.

Before beginning our discussion of mapping different layers of the neural
network, let us consider some characteristics of those layers that influence the
utilization of the accelerator. If a layer is small, then only a subset of the compute
units will be utilized, with no opportunity for further parallelism, since layers in
a DNN need to be processed layer by layer. If the layer has large X, Y, and IC
dimensions, then the layer must be split across multiple dimensions into smaller
chunks of work both spatially across processing elements in the same accelerator (or
even across multiple instances of the same accelerator) and over time. Irrespective of
the layer dimensions, the goal is to maximize reuse by sharing weights/activations
across processing elements in a single compute round and across compute rounds
without refetching the same data from the memory hierarchy. The IC dimension

Efficient Hardware Acceleration of Emerging Neural Networks 141

1a0208070635040342010f0e5d0c3b0abca..

4814356789301938412327425937159204..

1a020807 06350

4814335678930193841232 0f0e5d0c3b0abca.
040342010

IF+FL
Compressed Data

Data

Bitm
ap

R0

R1

R2

R3

R0

R1
MAC

PE

IF RF

FL RF

IF bmp

FL bmp

OF

rf_data_wren

rf_bmp_wren

rf_data_wren

rf_bmp_wren

On chip memory

0 1 0 1

0 0 0 1

L
O
C
A
L

M
E
M

P
i
p
e

R
e
g

P
i
p
e

R
e
g

…

…

…

PE PEPE

PEPEPE
…

…

…

…

PE

PE

PE

PE

PE

PE

Intermediate Buffers

C
o
m
p D
r a
e t
s a
s
e
d

PE Array

Fig. 12 Loading of compressed data from on-chip memory within each PE

requires special consideration since it determines various design trade-offs such as
the size in bytes of the data that are distributed from the tensor distribution unit to
and from the array, the amount and arrangement of the internal storage in each PE
(. # of ICs stored per X, Y) and the amount of sparsity decoding done during the
compute round.

142 A. Raha et al.

Accumulate
over all ICs

OF RF

0 1 0 1

0 0 0 1

0 0 0 1

Sparsity Acceleration
Logic X +

Activation RF

Weight RF

Activation Bitmap

Weight Bitmap

Combined Bitmap

MAC

Compressed Weight

Compressed Activations

Fig. 13 Sparsity acceleration within each PE

It is reasonable to assume that many SOTA edge accelerators distribute ICs
in multiples of 16, since most layers in modern DNNs contain channels that are
divisible by this number. This also simplifies the storage and retrieval of ICs from
memory, since each line in SRAM can also be a multiple of 16.

However, the complication arises when the number of ICs is not a multiple of
16, where the packing of these ICs across different X,Y points is not uniform in
memory and requires storing additional information regarding the start and end of
each X,Y to allow their retrieval during processing. Furthermore, it also introduces
additional complexities in the exploitation of sparsity, where the amount of sparsity
in a given X,Y is determined on the basis of the number of ICs that are zeros. Most
accelerators that exploit sparsity need to manage the storage and retrieval of sparse
data, as well as the sparsity bitmap from the memory and their distribution to the PE
array. While there are several lossless compression techniques to leverage sparsity in
storage, such as run-length encoding and compressed sparse row/column, we found
that one of the simplest and most commonly used compression techniques is ZVC,
as mentioned earlier. In ZVC, for every byte of data, one bit of sparsity bitmap
is stored. Therefore, a typical SOTA accelerator needs to support sparsity bitmaps
varying from 2B (16B of ICs) to the maximum size of ICs divided by 8. This implies
the storage and retrieval of the sparse data and sparsity bitmap needs to be carefully
considered to avoid over-designing the distribution network. A common solution is
to always pad your ICs to be a multiple of 16, but this can have an adverse effect on
the bandwidth of the distribution network and will result in a decrease in the overall
compute efficiency for these padded layers.

Another aspect of ICs, specifically for layers that require accumulating over ICs,
is that most SOTA accelerators implement an adder tree in some form or shape that
allows them to generate output points by accumulating over ICs. To accomplish this,
the accelerators have a structural layout of their PEs to allow the output of multiple

Efficient Hardware Acceleration of Emerging Neural Networks 143

PEs to be accumulated through the adder tree. This design choice limits the mapping
of layers that do not require IC accumulation (Separable Channels) and results in an
inefficient mapping of these layers on the accelerator. In the following section, we
will discuss how to overcome these design choices to perform efficient mapping of
the different layer types.

Hyperparameters, such as padding, striding, and dilation, and their configuration
for the kernel size of interest affect the shape of the output feature map. These
hyperparameters help solve problems related to maintaining the original size or
down-sampling or up-sampling the resolution of the output image, which provides
the accelerator with a means to adjust the dimensionality of the data effectively.
In order for accelerators to support these hyperparameters, the various stages of
operation, such as load, compute, and output of an accelerator, need to incorporate
them. We will cover the design implications of these hyperparameters for the
individual layers in the following section.

4.1 Efficient Mapping and Acceleration of Special DNN Layers

Profiling a DNN shows that the total number of operations (and execution time)
spent on the convolution layers of DNNs is significantly higher than all other layers
combined. Therefore, a DNN accelerator is constructed primarily to accelerate the
convolution layers of a DNN that consists of a series of nested loops of MAC
operations, as demonstrated in Fig. 6. There exists a plethora of recent research
and studies on best practices and design considerations for standard convolution
layers on DNNs [1, 2] that have recently led to the design of several efficient DNN
accelerators [23, 26, 31] recently. However, most of these accelerators (if not all) are
inefficient for accelerating non-convolution layers such as the eltwise layer or even
convolution layers with unique dimensions and characteristics such as the first layer
of DNNs. We term these layers as special DNN layers. Once we have accelerated
the standard convolution layers, these special layers become the performance (or
energy) bottleneck for the entire DNN. Therefore, improving their efficiency can
lead to significant improvement in network level performance. Here, we list some
of these special layers and how they can be efficiently implemented on a DNN
accelerator IP.

4.1.1 First Layer

The first layer is the visible/input layer of the network with three channels, where
the channels correspond to the red, green, and blue components of the input image.
The first layer is typically mapped to the NNP due to the large number of operations
involved. Consider the first layer of the ResNet50 network; it has an activation layer
(X, Y, IC) of dimension 224 . × 224 . × 3 and a weight layer (FX, FY, IC, OC) of
dimension 7 . × 7 . × 3 . × 64 and applies a stride parameter of 2, which results in the

144 A. Raha et al.

output layer of dimension 112 . × 112 . × 64. The number of operations required to
compute this layer is 118,013,952. Due to the large number of operations, if this
layer is not efficiently mapped onto the accelerator, it will have an adverse effect on
the overall network-level performance.

Design Consideration The two main characteristics of the first layer that affect its
mapping on the NNP are the limited number of ICs and the channel-major layout of
the data in memory due to the sources from which the data are captured. For NNPs
that are typically built for IC accumulation, a smaller number of ICs will result in
a drop in the number of MACs that are engaged for the first-layer processing. This
aspect can be improved if the NNP has some flexibility in prioritizing either the
larger X or Y dimensions of the activation or the higher FX or FY dimension of the
filter over the ICs. The channel-major layout brings in additional complexity during
the distribution of the input data, where there needs to be an agent that is aware of
the first-layer layout in memory to perform an efficient load on the PE array. This
load costs an additional area, and then the data needs to be repackaged in a way
that it can be fed to a typical NNP. Performing these additional optimizations on
the NNP to accelerate dimensions other than the ICs together with a specialized
load can improve the efficient mapping of the first layer. The first layer is typically
processed as dense due to the inability to introduce sparsity from the small number
of ICs and therefore the load part of the distribution network needs to be provisioned
for sufficient bandwidth so that it does not become the bottleneck for the network.
Software / compiler can be used to transpose the tensor data with padded ICs to
simplify the load considerations.

4.1.2 Eltwise Layer

Elementwise (eltwise) operations are deployed in various popular DNNs such as
Residual Networks (ResNets), as well as Transformers and LSTMs. For example,
in ResNets, the addition operation is the underlying eltwise operation that occurs
between two tensors, which are output activations from two convolution layers, one
earlier and another later in sequence. The elementwise summation between the two
input tensors creates an output tensor with the same dimensions as that of the two
input tensors. A second type of elementwise operation involves multiplying two
tensors elementwise and this operator is mostly required for LSTM and transformer-
based NNs.

Design Consideration The default option to map these eltwise operations is the
VDP (Fig. 7), but this will result in significantly lower throughput compared to the
VDP. On the other hand, the presence of MAC operators within the DNN PE array
provides us with an inherent advantage of mapping these eltwise layers due to the
existence of both addition and multiplication operations. However, we still need to
ensure that we can bypass the multiplier and adder operators of the MAC during
the add-eltwise and mult-eltwise, respectively, using multiplexers within the PE.
For existing DNN accelerators that have dedicated data load paths for activations

Efficient Hardware Acceleration of Emerging Neural Networks 145

OF RF

X +

MAC
1

Weight

Activations

tensor B, tensor A

OF RF

X +

MAC

1

Weight

Activations
tensor B, tensor AInit accum to 0 Init accum to 0

0
phase

phase

Add eltwise Mult eltwise

Fig. 14 Eltwise operation within a PE

and weights, an efficient way to perform eltwise is by loading the two tensors
sequentially one after another within a PE using the activation load path. As part
of this scheme, the weights are set to 1 so that we can bypass the multiplier and
load the first tensor as it is in the accumulator. When the second tensor is loaded,
we need to ensure that it uses either the MAC adder or the multiplier along with the
loaded value to generate the final value. This can enable eltwise operation within an
existing DNN accelerator with minimum overhead, as depicted in Fig. 14.

4.1.3 Fully Connected Layers

From an implementation point of view, fully connected (FC) layers can be assumed
to be a special type of DNN convolution layer in which the IX, IY, FX, FY
dimensions can be assumed to be set to 1. These densely connected linear layers
usually form the last layer of a DNN and connect every input neuron to every
output neuron. The output points are created by multiplying the input vector by
a set of 2D weights. Due to the lack of IX, IY, FX, and FY dimensions, one cannot
exploit any kind of data reuse for fully connected layers, resulting in bandwidth-
limited execution of these layers in a DNN accelerator. Due to the streaming nature
of input activations in FC layers, these layers can frequently be load-bound (from
the weight side) or drain-bound (for output points). A secondary issue for fully
connected layers can be the underutilization of available total MACs, which can
be attributed to a fixed way of distributing the overall convolution work on the PE
array. For example, some DNN accelerators split the total convolution work along
the OX or OY dimensions, while the weights are multicast to these PEs. There will
be considerable underutilization of MACs for such types of DNN accelerators due
to non-existence of IX and IY dimensions for FC layers. A similar issue will arise
if the fixed reuse pattern occurs along the FX, FY dimensions.

Design Consideration One way to improve the efficiency of FC layers is by
splitting the convolution work along the IC and OC dimensions while allocating
higher weight load and activation drain bandwidth. However, IC partitioning

146 A. Raha et al.

…
..

Maxpool

OF
RF POOLER

Fig. 15 Maxpool operation within a PE

requires additional logic like the presence of an adder tree to sum partial sums across
the PEs, while the bandwidth increase also results in a significant area overhead.
Note that the sparsity usually makes this bandwidth problem even worse. Since the
FC layers usually occur at the end of a DNN, one alternative will be to execute
them on the VDP which will free up the NNP for processing the next set of inputs.
In general, VDP has fewer PEs that but that will usually be enough for allocated
memory bandwidth.

4.1.4 Maxpool/Average Pool

The pooling operation reduces an NxN spatial window to generate a single point. A
pool layer (maxpool or average pool) slides an N . × N spatial pool window along
the IX and IY dimensions of the input tensor to create a smaller output window (by
a factor of N2) per channel. This operation occurs only on the activations and does
not involve any weights.

Design Consideration For implementation purposes, the pooling layer can be
assumed to be almost similar to a depthwise layer, with the only difference being
the reduction operation. For maxpool and average pool, the reduction operations
are implemented using comparators and adders instead of a MAC based reduction
for depthwise layers. We explain the inefficiencies of the implementation of a
depthwise layer in Sect. 4.2.1 and also propose various architectural optimizations
to improve its efficiency. All these optimizations are also valid for the pool layers.
From a hardware perspective, the only additional component required to perform
the maxpool operation is a comparator operator, as depicted in Fig. 15.

Efficient Hardware Acceleration of Emerging Neural Networks 147

4.1.5 Activation Functions

Activation functions are used in DNNs to evaluate the output of a node. Depending
on the choice of the activation function, the output value usually falls within a fixed
range (e.g., .[0, 1] or .[−1, 1]). Hyperbolic Tangent (Tanh), Sigmoid, ReLU, and
Swish are some of the activation functions that are popularly used. To implement an
activation function in the hardware, various approximation methods are used, such
as direct computation [32], piecewise linear approximation (PWL) [33], or look-up
table (LUT) [34] or a combination of all these methods [35]. Usually, the activation
function for a particular DNN is fixed. However, it may change from one DNN to
another.

Design Consideration In order to support multiple activation functions in the
hardware, we need to provision area and logic for each one of them in the hardware.
We can potentially enable this in the VDP as it has a limited number of processing
elements. Consequently, this requires the extraction of the output of the convolution
to local shared memory, which incurs significant memory overhead. One way to
eliminate this overhead is by fusing the activation layer with the convolution layer,
where we can apply the activation function immediately after the convolution takes
place before it is drained out to the shared memory. This can be implemented easily
for hardware-amenable (linear) activation functions such as ReLU with minimal
area overhead. The ReLU function can be integrated within the post-processing unit
(PPE) of the accelerator before it is drained out. However, integrating non-linear
activation functions that require a combination of LUTs and interpolation functions
come with a significant area overhead. A possible efficient implementation will be
to select a limited number of the most popular activation functions and integrate
them within the PPE. The remaining ones can be mapped to the VDP.

4.2 Efficient Mapping and Acceleration of Layers in New
Neural Networks

Similarly to the special layers of existing networks, current SOTA DNNs constitute
multiple new types of layer with varying characteristics that may not be effi-
ciently accelerated on a DNN accelerator without any optimization. The following
subsections describe some of these layers and potential techniques for efficiently
implementing them on existing DNN accelerators.

4.2.1 Channel Separable Depthwise Convolution Layers

In the case of standard convolution, a three-dimensional volume, representing
a kernel or a filter, is slid across the input activation tensor. Subsequently, the
activation and filter volumes (or tensors) are convolved to combine all the input

148 A. Raha et al.

0 0 00 0 0

3

3
3

0 0 0

3

3
3

0 0 0

3

3
3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

DC0 DC1 DC2

DC0
DC1

DC2

Fig. 16 Depthwise operation

channels to produce the output feature map. Multiple filters produce multiple output
channels in the output feature map. In Depthwise Convolution (DWC), a three-
dimensional volume representing a kernel or filter is still slid across the input tensor
(Fig. 16). However, individual input channels are not combined, with multiplying
and accumulations occurring only within a channel in the FX-FY directions, as
shown in Fig. 17b (depthwise mode). This constraint substantially reduces the MAC
utilization in almost all accelerator designs, since they handle DWC the same as
standard convolution on the same hardware (Fig. 17a). The channel-combining step
is done instead in the next layer using a 1 . × 1 point-wise convolution to produce the
output feature map. As before, multiple filters produce multiple output channels in
the output feature map.

Design Consideration One obvious way to improve utilization is to use dedicated
hardware for DWC but that has a prohibitively large silicon area and leakage power.
Such a use of silicon real estate, extra leakage power, and the associated difficulties
of distributing data to multiple processing arrays precludes such a solution for
many Edge AI accelerators. Comparatively, a more desirable alternative would
be to execute DWC on hardware optimized for standard convolution, but then it
will only use a small fraction of the available MACs during DWC, and hence
performance will suffer. All MACs that would normally operate on ICs in each
cycle during standard convolution but cannot be used during DWC are marked with
“0” in Figs. 16 and 17a. The percentage of underutilized MACs will continue to
rise as the process nodes advance from one generation to the next due to memories
and wires not scaling nearly as well as logic. It makes sense for future designs to

Efficient Hardware Acceleration of Emerging Neural Networks 149

K=0, CSTEP

ACT

WGT

x +

PE

0 . 0 0 1

0 . 0 0 1

0 . 0 1 0

0 . 0 1 0

0 . 1 0 0

0 . 1 0 0

K=0, CSTEPK=1, CSTEPK=2, CSTEP

K=1, CSTEPK=2, CSTEP

x

x

…

…

+

+

+…

NMAC

AdderTree

DC0DC1DC2

Z

Z-major Mode

X

Y

Depthwise Mode

(a)

(b)

Fig. 17 Depthwise operation within a PE: (a) Depthwise operation performed using a conven-
tional input channel (z-major) accumulating MAC; (b) Difference in accumulation pattern between
conventional Z-major convolution mode and depthwise mode

increase the number of MACs since logic is “relatively free.” However, if the MACs
cannot be properly utilized for Edge AI workloads, then adding more of them does
not make sense. Furthermore, many weights and activations need to be read from
external memory, since it will not be possible to reuse the input activation data
when performing the DWC. This will result in large amounts of data movement
from external memory to local storage on PEs, causing high-power dissipation. In a
standard AI accelerator, the number of activations that must be reloaded to process
a typical 3 . × 3-s1 DWC kernel is .∼ 5x in the activations if one were to look at the
halo regions alone between successive rounds of DWC.

Significant improvement of DWC efficiency in DNN accelerators that are
originally optimized for standard convolutions can be achieved via a combination
of three techniques: (1) improved reuse of activations by multicast/broadcast of
fetched data between PEs and sliding window multiplexing within a PE, while
retaining the standard convolution mode of data delivery to the PEs, (2) ability
to process multiple output points within a single PE, and (3) combination of
internal and external adder tree hardware to perform reduction in the XY dimension
(as opposed to the conventional Z dimension reduction in standard convolution).
Each of the novel techniques can be controlled by means of software-programmed
configuration registers, allowing our optimization to be effective for a wide range of
layer dimensions.

A generic high-level architectural diagram of a typical AI accelerator running
DWC is shown in Fig. 17a which basically accumulates in the IC (or Z) dimension
as shown in Fig. 17b. In the figure, we use the notation DC to denote individual
depthwise channels where the input channel is the same as the output channel.

150 A. Raha et al.

0+1+2
+3+4+5+

6+7+8

0+1+2
+3+4+5+

6+7+8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

0 1 2
3 4 5
6 7 8

ACT

WGT

x

PE0

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

x

x

+

+

+…

AdderTree
Internal

DC0DC1DC2

CSTEP

CSTEP

0

1

2

0+1+2
. .

0

. .
1

. .
2

ACT

WGT

x

PE1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

x

x

+

+

+…

AdderTree
Internal

DC0DC1DC2

CSTEP

CSTEP

3

4

5

3+4+5
. .

3

. .
4

. .
5

ACT

WGT

x

PE2

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

1 . 1 1 1

x

x

+

+

+…

AdderTree
Internal

DC0DC1DC2

CSTEP

CSTEP

6

7

8

6+7+8
. .

6

. .
7

. .
8

+

+

+…

AdderTree
External

0+1+2
+3+4+5+

6+7+8

3x3
Kernel

. .

. .

. .

1x1x3
Output

Fig. 18 Proposed efficient depthwise operation in a Z-major based PE array. The depthwise
accumulation grid (columns and rows) is partitioned both within and across multiple PEs. This
figure shows the use of both internal and external (to the PE) partial sum adder trees for adding the
partial sums generated within and across PEs to generate the final output point

DC0, DC1, DC2 denote the depthwise channels 0, 1, 2, respectively. Putting the
optimizations 1, 2, and 3 together, we arrive at the final proposed DNN architecture
for improved DWC efficiency as shown in Fig. 18. For a 3 . × 3 kernel, the filter
rows are split between PE0, PE1, and PE2, while a single row is split between
the subbanks within a single PE. The internal adder tree within the PE is used
for performing intra-row-wise accumulation of the partial sums for each of the 16
DC, generating 16 output partial sum points. The external adder tree is used for
accumulating the inter-row-wise partial sums of the 3 rows of the 3 . × 3 kernel
from PE0, PE1, and PE2 to generate the final output point. Yellow, red, and green
are used to denote the input channel . = 0, 1, 2, respectively, in the DC direction
in Fig. 17 and 18. The gray boxes denoting 0, 1, 2, 3, 4, 5, 6, 7, 8 indicate the
position in the 3 . × 3 kernel that is contributing to the partial sum (row0 is 0, 1, 2,
row1 is 3, 4, 5 and row2 is 6, 7, 8, respectively) within a subbank of the individual
PE. Note that data reuse occurs across different IF RF subbanks (both within or
across adjacent PEs) that can eliminate redundant loads of data already available
inside using multiplexers within or across PE to reuse data for subsequent rounds
of DWC operation with an adjacent window of activations. This reuse of IF data
is demonstrated in Fig. 19. Note that this inherently requires the filter points to be
stationary within the PEs, enhancing filter reuse.

Efficient Hardware Acceleration of Emerging Neural Networks 151

IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6
IY 0 IY 0 IY 0 IY 0 IY 0

1 1 1 1 1
2 2 2 2 2

Prior Art 3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 6 6

IX 0 1 2 3 4 IX 0 1 2 3 4 IX 0 1 2 3 4 IX 0 1 2 3 4 IX 0 1 2 3 4
IY 0 IY 0 IY 0 IY 0 IY 0

1 1 1 1 1

Output 2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6 IX 0 1 2 3 4 5 6
IY 0 IY 0 IY 0 IY 0 IY 0

1 1 1 1 1
2 2 2 2 2

Proposed 3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 6 6

- Newfetch - Output - Reuse

Fig. 19 Proposed reuse of data for depthwise operation. The spatial overlap of activation data in
the sliding filter window (shown in the last (proposed) row) allows the elimination of the load of
redundant activation data resulting in memory and compute savings

4.2.2 Group Convolution Layers

The concept of group convolutions was introduced in AlexNet [36, 37] to distribute
the work over multiple GPUs as a means of introducing model parallelism.
However, later with models such as ResNeXt, it was shown to improve classification
accuracy. Consider a standard convolution with input channels and output channels;
then the output feature map is produced when each of the filters is convolved with
all the ICs to produce a single channel filter output and all outputs are concatenated.
The total cost associated with a standard convolution is IC * OC * FX * FY. Now,
let us consider that the filters are divided into two groups, where the first group of
filters (g0) are convolved with the first IC/2 channels of the input and the other half
of the filters (g1) are convolved with the second IC/2 channels of the input. The
overall cost associated is now (g0 * IC/2 * FX * FY) + (g1 * IC/2 * FX * FY),
which is half that of a standard convolution. This is a grouped convolution with a
group size of 2. The total savings is typically a factor of the number of groups in a
grouped convolution.

Design Considerations From the description, the group convolution can be paral-
lelized, which allows splitting each group within a group convolution as a separate
task and running them in parallel on multiple instances of the NNP on the AI
accelerator. Since each group is just a smaller convolution, no specialized hardware
is required to perform the convolution. The complexity arises when the output of
the individual groups needs to be concatenated to produce the complete output
for the next layer. If the different groups are run on the same NNP over time,
then it simplifies the concatenation if the NNP has a continuous/back-2-back mode
of operation, where it is told that is operating on tasks that are parts of a single

152 A. Raha et al.

tensor. If the groups are run on multiple NNPs, then their results are stored at
different locations in the on-chip memory. Then an agent must perform a gather
task to concatenate the outputs of each group to create the input for the next layer.
Typically, group convolutions are processed as dense, since with sparsity the zeros
are introduced along the input channels. Splitting the input channels and the sparsity
bitmap into groups would require specialized hardware to decompress the sparse
data to correctly identify the boundaries of each group and their corresponding
bitmap.

4.2.3 Transposed Convolution/Deconvolution Layers

The intuition behind transposed convolution is to go in the opposite direction
of a normal convolution, where we upsample the input feature map to a desired
output feature map using some learnable parameters [38]. They are typically used
in super-resolution networks to upscale the input image to a higher resolution and
for semantic segmentation to decompress the abstract representation into a domain
different from the input RGB input image. Consider the transposed convolution of
a 2 . × 2 input feature map with a 3 . × 3 filter to generate a 5 . × 5 output feature
map, as shown in Fig. 20. The transposed convolution can be performed using
normal convolution if the input feature map is expanded as shown in the figure.
The expansion is done by padding the input tensor with zeros, and the number of
zeros inserted would be equal to the stride of the normal convolution that was in the
forward direction.

Design Considerations Most NNPs have the ability to pad the input tensor around
the edges (left, right, top, and bottom). However, padding between the input
coordinates requires additional support. The padding can be done during the output
of the previous layer by packing the output with the padded zeros in the right
locations, or it can be done as part of the input load, where the added specialized

Fig. 20 Transposed convolution done using normal convolution

Efficient Hardware Acceleration of Emerging Neural Networks 153

support inserts the zeros into the input data when it is on its way to the PE array
from the memory as part of the distribution network. The second option will save
memory storage and bandwidth, but will require additional hardware capable of
inserting zeros into exact tensor coordinate locations to create an expanded tensor,
as shown by the 7 . × 7 padded tensor in Fig. 20 in yellow. Sparsity can be exploited
to indicate which coordinates have valid data and which ones are padded with zeros.
Note that in this scenario, sparsity is used to indicate which X,Y coordinates are
sparse by marking all ICs for this coordinate as zeros.

4.2.4 Dilated Convolution/Atrous Convolution Layers

Dilated convolution is a technique to expand the filter input by inserting holes
(dilation factor) between consecutive elements as a means to skip pixels and
cover a larger area of the input. Alternate solutions such as pooling and/or strided
convolutions reduce the resolution. Dilated convolution is used to exponentially
expand the receptive view of the network without loss of resolution and maintaining
the same computation and memory cost. It is a simple and effective way to detect
fine details by processing inputs at higher resolution and utilizes the broader view
of inputs to capture more contextual information with faster run times and fewer
parameters [38]. It is typically used in semantic segmentation and to convert text to
audio (WaveNet). Let us look at a 3 . × 3 conv filter with dilation factors of 1, 2, and
3 as shown in Fig. 21.

Design Considerations These layers are typically mapped onto the NNP of the
AI accelerator, but if the NNP tries to perform the convolution with the dilation,
then there will be a drop in throughput due to the extra computation performed
for the dilated coordinates. Furthermore, software intervention would be required
to rearrange the filter layout in memory. Therefore, the goal should be to map this
layer onto the NNP and perform a normal convolution without dilation. Another
approach would be to break the tensor into a series of smaller 1 . × 1 convolutions
and compute the results through a continuous mode of operation on the NNP, but
depending on the filter size, there can be a large number of tasks to complete for

Fig. 21 3 . × 3 convolution filter with varying dilation factors

154 A. Raha et al.

the entire tensor. A third approach is to enable a strided load from memory, which
will skip the dilated coordinates during load and compute. Similarly to transposed
convolution, sparsity can be exploited to indicate which coordinates have valid data
and which ones are dilated. Note that the dilation factor value can vary from 1 to 32,
which for larger filter sizes can cause a huge expansion of the filter, and therefore
implementation constraints should be applied to NNP for the maximum supported
dilation factor.

5 Efficient Mapping and Acceleration of Layers in Emerging
Neural Networks

Now that we have looked at efficient mapping of some important NN operators, let
us dive into efficient implementation of some important emerging neural networks
such as Transformers and Graph Neural Networks (GNNs).

5.1 Transformers

Transformers were first introduced for sequence-to-sequence language transla-
tion [11] and have become one of the most important network architectures in
Deep Learning. Within the context of NLP, traditionally LSTMs and RNNs were
restricted to processing the tokens in sequential order, one word at a time, making
them slow and unable to capture long-term dependencies between words that
are spaced far apart. The self-attention mechanism in transformers, on the other
hand, processes all words in the sentence at once, with each word attending to
all the other words, as any of these can modify its meaning. A diagram of the
vanilla transformer [11] is shown in Fig. 22. SOTA NLP networks extend the
vanilla transformer by using i) stacks of encoders only such as BERT [39] for
classification or sequence labeling problems, or ii) stacks of decoders only such
as GPT-2 [40]/GPT-3 [41] for sequence generation, such as language modeling, or
iii) multiple encoders/decoders such as T5 [42] for sequence-to-sequence modeling.
Even more recently, Vision Transformers (as discussed in Sect. 2.1.2) have been
applied to tasks normally associated with CNNs [13] through the idea that an image
can be broken up into patches and embedding vectors are associated with each patch.
These embedded patches are fed to the transformer model in the same way as words
in a sentence. Great strides have also been made to reduce the number of operations
in ViTs to that of larger CNNs through computing attention hierarchically and
implementing shifted windows [43]. Irrespective of the transformer model, the two
most computationally intensive building blocks are the “Multi-Headed Attention”
and “Point-Wise Feed Forward.” In these two blocks, the embeddings for each token
require a large amount of memory, and compute in terms of matrix multiplications
require the most Tera Operations per Second (TOPS).

Efficient Hardware Acceleration of Emerging Neural Networks 155

Fig. 22 Transformer network architecture

5.1.1 Input Embedding and Positional Encoding

Before the transformer encoders implement self-attention, each input word needs to
index into the entire dictionary of words for the given task followed by every word
being individually encoded with an embedding vector. During the training process,
values of the learnable embedding vectors for words that often occur together will
eventually be made more similar than those that do not occur together. Table 6 shows
the size of the embedding vectors for different transformer networks .dmodel , as well
as the dimensions of the feedforward vector .dff and the number of multi-headed
attention heads. Because, transformers process all the words in parallel, the position
(relative or absolute) of each word is represented through positional embeddings
of size .dmodel . The input embedding and positional encoding are merged using an

156 A. Raha et al.

Table 6 Transformer model dimensions

Model
Embedding vector
size (.dmodel)

Feedforward vector
dimension (. dff)

multi-head attention
heads (h)

Transformer-base 512 2048 8

Transformer-big 1024 4096 16

BERT.BASE 768 3072 12

BERT.LARGE 1024 4096 16

GPT-3.Small 768 3072 12

GPT-3.Large 1536 6144 16

elementwise addition and provided to the encoder and decoder blocks. For more
details on how unique position embeddings are obtained using time signals, the
reader is encouraged to refer to [11].

5.1.2 Multi-headed Self-Attention

All the relevant operations in a typical Multi-Headed Sell-Attention (MHSA) block
are shown in Fig. 23. In the first transformer encoder, the matrix containing the
position-aware word embeddings X is input to the MHSA. Note that all MHSA
heads are fed the same input matrix X. Subsequent encoders take the output matrix
from the previous encoder into the stack of encoders. The input matrix is multiplied
by three different weight matrices WQ,WK,WV in a linear layer to produce the
Query (Q), Key (K), and Value (V) matrices whose contents are loosely based
on retrieval systems. To help gain insight into the neural network, an example of
retrieval might start with an online search using a broad query for a type of video.
The search engine will map the Query against a set of Keys (title, genre, description,
etc.) associated with candidates in the database and present the best matched Values
(videos). Let us analyze how general matrix multiplications (GEMMs) might be
mapped to the NNP of Fig. 8 to produce the Q , K , V matrices. As we proceed
through the network, we will see that the transformers mainly compute large
GEMMs of different dimensions. In our example, we limit the maximum sequence
length of the sentence (s) to 64 and assume an embedding of .dmodel = 1024 and a
dimension of dim = 64 for the linear layers. GEMMs are 2D convolutions and can
be thought of as a 7D standard convolution, as shown in Fig. 6, with many of the
loop parameters set to one. Using the notation of a standard convolution, let us look
at how the linear layers of an MHSA are mapped to perform matrix multiplication
(MATMUL).

.IF (IX ∗ IY ∗ IC) = 1 ∗ 64 ∗ 1024

FL (FX ∗ FY ∗ IC ∗ OC) = 1 ∗ 1 ∗ 1024 ∗ 64

OF (OX ∗ OY ∗ OC) = 1 ∗ 64 ∗ 64

Efficient Hardware Acceleration of Emerging Neural Networks 157

Fig. 23 Multi-headed self-attention

To demonstrate a potential mapping, assume an output stationary dataflow [4]
and a 64 . × 64 PE grid, where each PE contains a MAC and local storage for 32
IF and FL entries (IC .= 32). Through this particular mapping, all 4096 MACs in
the array can work together to produce the 4096 output points across 32 compute
rounds. Note that there is no reuse across the different compute rounds since a
different set of ICs need to be brought in from the on-chip memory. Each column
of PEs can share a set of weights (OCs) and each row of PEs can share a set of
words (OYs). The activation (X) or weight (Q, K, V) reuse is high since each set
of weights and activations are reused 64 times to compute different output points.
An important design consideration for transformers is that many MATMUL layers
have one spatial dimension that is much smaller than the other. Because of this, one
should consider designing an NNP where multiple PEs can work on different ICs
simultaneously and pass accumulations between them to maximize the utilization
of the array.

All of the (Q, K, V) matrices must be computed across all heads, and the intuition
for employing multiple heads is that each will learn different features of the sentence
in parallel. Let us assume that h . = 16 for this example, as seen in the BERT.LARGE .
Biasing operations to adjust the zero-point values of the matrices occur throughout
the self-attention step, and these operations are mapped to elementwise operation of
an Eltwise layer and are accelerated as such. Most SOTA neural networks, including
transformer models, rely on a fixed layout of the tensor in memory to simplify
load and drain design and build an efficient data distribution network. Typically
matrices are stored in either row major or column major, and each element of the
row/column is stored in the Z-major dimension to exploit sparsity savings seen in

158 A. Raha et al.

the ICs. To compute the similarity between the Query and the Key matrix, the Key
matrix is transposed to align the dimensions with the Q matrix for multiplication.
This operation requires a rearrangement in the memory or in the load path to move
data efficiently into the NNP. In fact, it has been shown that on some platforms,
such as CPU or GPU, MATMUL operation only accounts for 27% of the latency,
with memory reshaping operations contributing more substantially to the total
latency [44]. Many cloud accelerators have dedicated transpose/permute units [5]
to handle this tensor reshaping operation, although these are prohibitive in area and
power for edge inference. Instead, a power optimization alternative to consider is
to perform the transpose on the drain path before writing the output results back to
memory for the next layer.

Following the similarity matrix which calculated the attention score, there exists
a scale operation which divides each value in the matrix by the square root of
the dimensions of the query/key. This is similar to an Eltwise layer and can be
accelerated as such. The next masking operation is only required when the MHSA
is used in the transformer decoder to limit how much of the output sentence to attend
to. This is also an elementwise operation that zeros out tokens that are supposed to
be seen in the future. Softmax layers which produce output probabilities between 0
and 1, are difficult to efficiently implement within NNPs and will often be executed
on the VDP. The final matrix multiplication in a head calculates the scaled dot
product attention between the (Q.KT and V). The outputs from all the heads are
then concatenated into a matrix Z of size 64 . × 1024 and passed through a final
linear layer. This linear layer is another learnable matrix (W. G) of size 1024 . ×
1024 which also has the effect of downsampling the output and reshaping it to
the proper dimensions. Next, a residual connection combines the original input X
and the output of the multi-headed attention through another elementwise addition.
Residual connections were first introduced in [45] and have become extremely
widespread across many DNNs including transformers. This is because they allow
faster convergence during training through allowing the easier propagation of
gradients during the backward pass and also allows DNNs to retain information
from earlier in the network as deeper networks do not always perform better than
shallower ones. Finally, before the point-wise feed-forward network, the matrix is
layer normalized. Layer normalization normalizes the activations across features,
whereas the more commonly known batch normalization normalizes the activations
within a feature. In transformers, the feature vectors are each of the indices of
.dmodel in the token embeddings. There are addition and subtraction operations in
layer normalization, which can be accelerated on the NNP while the mean, standard
deviation, and division operations can be executed on the VDP.

5.1.3 Point-Wise Feed-Forward

The Position-Wise Feed-Forward Network (PFFN), as shown in Fig. 24, is the other
main contributor to the arithmetic intensity in transformers. The input Y from the
MHSA is combined in a first linear layer with critical dimension . dff . This is again a

Efficient Hardware Acceleration of Emerging Neural Networks 159

Fig. 24 Position-wise feed-forward

MATMUL operation with the same considerations as those that exist for MATMUL
in the MHSA. This is then followed by an activation function, whose optimizations
are discussed in Sect. 4.1.5. Newer transformers, such as BERT [39], use the GeLU
activation function, while the original vanilla transformer [11] used the ReLU
activation. This is important to consider when considering sparsity acceleration, as
GeLU activations do not produce sparsity in the output matrix in the same way as
ReLU. Another linear layer follows the activation function with critical dimension
. dff . We see that there are two large GEMMs, where .dff = 4dmodel , with individual
MATMULs in the PFFN larger than the ones in the MHSA. Larger GEMMs will
consume more of the total TOPS and runtime but have the added effect of keeping
the PE array highly utilized. The high utilization is dependent of course, on the load
path supplying the array with enough data. Smaller GEMMs can often underutilize
the array because they are fully contained in only a subset of PEs. One simple
optimization for increased efficiency would be to map MATMULs of different heads
to different portions of the PE array, as there is no interaction between them. Finally,
the different biases applied throughout this block and the final layer normalization
are similar to what occurs in the MHSA.

5.1.4 Enabling Transformers on the Edge

Transformers have a huge number of learnable parameters/weights compared
to most CNNs. For example, ResNet101 [45] has 1.7M parameters while
BERT.BASE [39] contains 110M parameters and GPT-3.Large contains 760M

160 A. Raha et al.

parameters [41], which may limit their deployment in edge inference applications.
In addition to energy concerns, the inference latency of a transformer can be
prohibitive for real-time applications. However, much research has been done to
reduce the number of computations and memory requirements for transformers [12].
These mainly focus on reducing the number of operations in self-attention since the
complexity of that is .s2∗dmodel . Some methods [14] include sparse attention, where
every token does not attend to all other tokens, as well as query prototyping and
memory compression, where the complexity of attention is reduced by eliminating
the number of queries or key-value pairs. These approaches also improve the
multi-head mechanism, where altering the behavior of different attention heads or
allowing interaction across heads is allowed.

5.1.5 Summary of Design Considerations for Transformers

NNPs that accelerates Transformers can have slightly different design consider-
ations than those that accelerate mainly convolutions. The computation of many
GEMMs often have high reuse thus alleviating the throughput requirements of the
load datapath. Furthermore, the matrices to be multiplied often have one spatial
dimension which is smaller than the other. To maximize array utilization, there
should be flexibility for mapping different portions of the larger matrix dimension
across multiple PEs and also a means to accumulate partial sums across them. Some
GEMMs are small enough in size that they can only fit entirely in a subset of the
available PEs. It is important for the compiler to be able to map unrelated matrix
multiplies, i.e., MATMULs of different heads, to different portions of the array
to maximize utilization. Finally, newer transformer networks often use activation
functions, such as GeLU, that do not produce sparsity in the output activations
as much as older activations such as ReLU. This makes the case for adding the
additional hardware for supporting activation sparsity much harder to justify.

5.2 Graph Neural Networks

GNNs are another class of emerging NNs that have found applications in multiple
domains, as discussed in Sect. 2.4. These networks are employed for learning
relationships in a graph-structured data. GNNs have become very popular in
recent years because of their applicability in wide variety of real-world problems.
From a network architecture perspective, GNNs can be viewed as an evolution
of transformers. SOTA transformers can be applied to multi-modal application
domains by adapting the input embedding layers and creating attention vectors
which are capable of representing multiple modalities. Multi-headed attention layers
can extract features from the embedded vectors based on the desired objective. In
GNNs, the entire network architecture depends on the application or input graph, not
just the input features. The neural network-based compute layers gather and extract

Efficient Hardware Acceleration of Emerging Neural Networks 161

Fig. 25 Graph neural network—execution flow

information from graph vertex and edges. As we move to deeper layers, the network
learns information/relations from more distant neighbors. Detailed execution flow
of GNN layers is described in Sect. 5.2.1.

The computation pattern in GNNs stretches from sparse and irregular accesses
during the Aggregation phase to dense and regular compute during the Combination
phase. In the following sections, we provide detailed categorization of different
compute phases. We will refer to a stripped-down structure of graph algorithm
execution (as shown in Fig. 25) for the remaining part of this discussion.

5.2.1 Compute Phases of GNN

GNN computation (inference only) is a time evolving execution of the input graph,
similar to RNNs. The execution is split into multiple layers, broadly classified into
four categories, viz., Node Embedding, Aggregation, Combination, and Decode.
Node Embedding and Decode stages are performed only at the start and end of
the execution, respectively. Aggregation and Combination phases can be iterated
multiple times depending on the choice of algorithm. Aggregation phase can be
preceded by an optional sampling layer that creates a subgraph of the neighboring
nodes. The vertices and edges are updated with the information gathered from
their neighbors at the end of each layer. We now provide a detailed description of
the computations and operators used in different GNN execution (inference only)
layers.

• Node Embedding—This step is for transforming raw/real-world input data into
feature vectors/matrices. It can be done either offline or online depending on

162 A. Raha et al.

the GNN algorithm. The computation kernels for this step are: vectorization,
encoding transformations, layout changes, etc.

• Aggregation—This phase accumulates the features of the neighboring nodes
(usually one-hop, but can vary depending on the choice of algorithm) and applies
transformations, such as reduce mean, pool, fully connected NN, over the vertex
and edge feature vectors. Vertex and Edge aggregation can follow different
algorithms and node selection schemes. Some algorithms have also explored
different sampling techniques for improved generalization [46].

• Combination—This is the feature extraction phase of the GNN. Neural network
transformations are applied over aggregated Vertex/Edge feature vectors for
deriving high-level feature representations/relations. SOTA GNNs have explored
multiple network architectures ranging from simple fully connected layers to
CNNs. Recent works have also applied attention networks [47].

• Decode/Readout—This is the final block of the GNN computation where
the high-level features generated by multiple iterations of the Aggregation-
Combination layers and the Graph global features are converted to output data
or predictions. Compute kernels used in this phase is similar to other DNN
algorithms and operators, e.g., MLP, Softmax.

In addition to the layers and operators mentioned above, Concatenation and
Transpose operators are widely used at subblock boundaries in GNN architectures
to improve inference accuracy/performance. Based on the layer-wise computations
and operations described in the section, we have summarized the data access and
compute patterns of the SOTA GNNs in Table 7.

5.2.2 Design Considerations

The Compute and Data access patterns in GNN layers are very diverse. In order to
match the diversity of compute requirements, many SOTA hardware architectures
built for GNN computation [48, 49] have taken a hybrid approach to efficiently
process different GNN layers. Based on the compute characteristics of these layers

Table 7 GNN compute and data access patterns

Characteristic Node embedding Aggregation Combination Decode or readout

Compute kernels Enumeration, FC Vector, V*M NN-MLP, conv,
attention

Pool, norm, ReLU,
. . .

Access patterns Regular Indirect,
irregular

Direct, regular Direct, regular

Data reusability Low Mid High Low

Compute pattern – Dynamic,
irregular

Static, regular –

Compute
intensity

Low Low High Low

Exceution bound Memory Memory Compute Memory

Efficient Hardware Acceleration of Emerging Neural Networks 163

and the capabilities of the DNN accelerator-based IP considered in this work
(Fig. 7), we believe that the following hardware design will be ideal.

• Node Embedding—This phase has low data reusability, is more control flow
dependent and is usually done as part of offline processing/preparation. Therefore,
this phase is ideal for processing in the CPU.

• Aggregation—This phase is dominated by sparse and random memory accesses,
arithmetic and binary operations, followed by reduction or transformations. VDP
block in our architecture (Fig. 7) is most suitable for the execution of these
kernels. VDP hardware unit is a vector processor with additional capability to
compute activation functions and matrix/vector transformations.

• Combination—As mentioned earlier, depending on the algorithm, different
neural network topologies can be used in this phase, ranging from convolution to
attention networks. Also, similarly to CNNs, the layer parameters are fully shared
among the nodes in the combination phase. Thus, this phase is characterized by
high compute intensity and high opportunity for data reuse. The NNP compute
block in our architecture (Fig. 7) can provide the best hardware acceleration and
efficiency for this computation. The hardware design requirements for compu-
tation of different Neural Network kernels is already covered in the previous
sections.

• Decode/Readout—In the final phase, the high-level features extracted after
multiple iterations of the Aggregation and Combination phase are transformed
to obtain the final graph representation. Depending on the type of non-linear
operators, this phase can be mapped to either the NNP or the VDP block.

5.2.3 GNN Data Flow

From an execution time perspective, most of the compute time in a GNN execution
is spent on the Aggregation and Combination stage. Though some GNNs can
also have a significant node embedding compute, this is not a common case.
Figure 26 shows the computation flow for the Aggregation and Combination phases
of a simple bidirectional Graph Network with seven nodes. Specific operators and
network type are avoided to keep the generality. The node features are assumed to
be a 1D vector of length equal to the feature size (assuming feature size . = 1024 for
the purpose of this discussion), henceforth referred to as . hi .

The Aggregation phase gathers the feature vectors of the immediate neighbors
of node 1 (number of neighbors . = 3). The one-hop neighbor feature map of node 1
after this gather stage is of dimension [4, 1024]. Note that the number of neighboring
nodes on a practical GNN will be much higher. In addition, some GNNs [46]
employ multi-hop neighbor aggregation strategies, which will lead to an exponential
increase in the dimension of the feature map. Let us consider two aggregators for the
gathered feature matrix, a mean and a pooling aggregator. Mean aggregator is a sim-
ple elementwise mean of the vectors representing the feature map of the neighboring
nodes. On the other hand, the pooling aggregator independently multiplies each of

164 A. Raha et al.

Fig. 26 Graph neural network—layer computation

the neighboring vectors with a fully connected network and applies ReLU, followed
by an elementwise maxpool operation across neighbor sets. Mathematically, this can
be expressed in the form: .Aggregate = EltwiseMax(ReLU([4, 1024]T ∗ [4, 4])).
The output vector dimension will remain the same after elementwise operations i.e.,
[1, 1024]. Two different hardware mapping schemes for the aggregator phase is
covered in the next subsection. In most of the research literature, this stage also
includes a concatenation of updated feature vectors and history feature vectors (not
shown in Fig. 26). Assuming concat layer, the feature vector size will be [1, 2048].

These operations have traditionally run on CPU with SIMD capabilities, and
SOTA caching and prefetching mechanisms. But the additional requirements of
network specific operators and fine-grained data/control sharing with rest of layer
computes provides hardware acceleration opportunity by using VDP cores. As
we observed, for a given layer, each vertex and edge performs an independent
aggregation of its neighbors, with the possibility of shared neighbors, allowing
data reuse. Note that the graph sizes are generally large compared to memory in
a typical edge device. Another interesting characteristic is that the feature vectors in
GNNs are usually very large and of different lengths. Different graph partitioning-
based acceleration schemes that leverage the above characteristics are described in
the next section. In the Combination phase, the aggregated node/edge feature (or

Efficient Hardware Acceleration of Emerging Neural Networks 165

concatenated feature) is multiplied by the layer weight matrix (W (n)), followed
by the ReLU and Norm operation, as shown in Fig. 26. The Combination phase
is optionally followed by the pooling operation. Further details of different NN
compute (MLP, Conv, Attention) mappings to the NNP core are already covered
in the previous sections.

As an illustration example, we will provide a description of the Attention Layer
compute on a GNN, using the basic building blocks described in Sect. 5.1. Consider
a graph feature map of dimension [number of nodes, number of features] (for the
graph in Fig. 26, this will be [7, 1024]), where the dimension of the individual
node feature (. hi) is [1, 1024]. The application of self-attention to the graph nodes
is equivalent to determining the importance of node “m” for node “n.” As the
graph nodes are not fully connected, masked attention is performed. One of the
masking approaches is to determine the self-attention for the immediate neighbors
of a node. Therefore, the feature map of node 1 will be of dimension [4, 1024].
The self-attention of node “i” relative to node “j” is calculated using single-layer
MLP followed by ReLU activation. Mathematically, this can be expressed in the
form: .AttentionFactor = ReLU(aT ∗ concat (hi, hj)), where a is the weight
matrix of MLP. Softmax operation is applied over the output of the MLP layer.
Attention factors are averaged to calculate the output feature. Single head attention
described above can be easily extended to multi-headed attention. Each attention
head independently executes the attention mechanisms, and the output feature is the
concatenation of all. For the final layer decode, we can use the averaging function
followed by Softmax to obtain the final output prediction. The readers are advised
to refer to [47] for training and performance of Graph Attention Networks. From
a hardware mapping perspective, the creation of node feature maps is performed
as part of aggregation and mapped to the VDP block. As graph networks are
very sparse, masked attention is adjacency list-based feature access (not a masking
mechanism as done in language attention networks). The linear layers of MLP-based
self-attention are mapped using the matrix multiplication (MATMUL) template of
the NNP block.

Tensor Transformations and Memory Layout change operations (e.g., transpose,
concat) within a compute phase or at phase boundaries account for significant
execution latency. Both VDP and NNP blocks can perform these transformations
as part of their write-back stage. Some commercial architectures also use dedicated
hardware units for these operations. The ordering of aggregation and combination
phase is an algorithm choice, either of the phases can be done first. Regardless of
the ordering choice, both layers form a producer-consumer relationship and require
hardware architecture support for synchronization. Vertex and edge features are
updated at the end of a layer. Network weights within a layer are shared across
nodes and can possibly be shared across layers.

166 A. Raha et al.

5.2.4 Additional Opportunities for Hardware Acceleration

GNNs can leverage most of the hardware acceleration schemes described in the
previous section. In addition, the following patterns can be exploited in the graphs
to improve performance and efficiency.

Aggregation Phase Acceleration Section 5.2.3 has established the opportunities
for the Aggregation phase in graph partitioning algorithms. On the basis of the
observations, hardware mapping of Vertex/Edge aggregation across VDP cores can
be done in two different ways, viz., (a) each vertex/edge is mapped to a single
VDP core, and (b) the feature vector of a node is mapped across VDP cores. If
we map our graph example from the previous section, mapping option (a) will
map each of the seven nodes in the graph to a VDP core, whereas mapping option
(b) will split the 1024 feature vectors between “N” VDP cores, where “N” can be
an optimization parameter. Option (a) creates an imbalance between the execution
time of the fast and slow vertices, which becomes more prominent in GNNs as
the number of neighbors and the sparsity is dynamic, while option (b) solves the
imbalance problem.

Sparsity Acceleration We can find the following two types of sparsity in a GNN.
(a) Zero elements in the input activations and weights are seen in the Combination
phase of the graph computation. Sparsity acceleration schemes are similar to those
described in the previous sections. (b) Sparse connections/edges in Adjacency
Matrix or sub-sampled graph are seen in the Aggregation phase of the graph
computation. Sparsity can be due to either the input graph topology (static) or
the sampling schemes employed in the algorithm (dynamic). Static sparsity can
be handled by the graph partitioning algorithm executed by the compiler. The
algorithm takes the graph topology as input and decides the grouping of vertex and
edges for the best data reuse. Dynamic Sparsity, on the other hand, needs custom
hardware acceleration support to eliminate redundant access of sparse edges. One
such technique is covered in [48] where the vertex/edge partition boundaries are
dynamically determined using window sliding and shrinking methods.

Data Flow In addition to the data reuse opportunities covered in the previous sec-
tions, further data flow optimizations are possible, as the GNN execution time shows
a large amount of data copy and synchronization overheads. Different buffering and
caching schemes are explored to accelerate iterations between layers and phase-by-
phase computation within a layer. The control flow and data movement between
NNP and VDP cores are described in the previous section.

Because of the dynamic nature and scale of GNNs, software acceleration
schemes have also been abundantly explored in the research literature. However,
software acceleration is not covered because it is beyond the scope of this chapter.

Efficient Hardware Acceleration of Emerging Neural Networks 167

6 Future Trends: Networks and Applications

In summary, the previous sections provided a comprehensive survey of popular
DNN architectures and corresponding applications in computer vision, natural
language processing, recommendation systems, and graph neural networks. Sub-
sequently, the mapping of common layers in these networks to SOTA hardware
AI accelerators and insights derived on challenges and trade-offs are discussed.
Now, we illuminate some of the hottest developments in DL-based applications and
hardware that could very well be the foundation of the next frontier of AI.

1. Emerging Applications and NNs. The idea of combining CNNs and vision
transformers has led to the emergence of new generation of Hybrid Vision Mod-
els, which essentially inherit the advantages of these complementary architec-
tures [12]. These models, which either use depthwise convolutions or complete
CNNs to tokenize an input, have led to better performance in low data regimes
at reduced computational complexity. Some popular examples include CvT,
LeViT, CoAtNets, NesT, TransCNN, AlterNet, and Conformer. Recent efforts
such as ConvMLP have also explored combination of CNNs and MLPs for
better accuracy vs. computation trade-offs. Interestingly, ConvNeXt (Facebook,
2022 [50]), built entirely of CNN modules have also demonstrated competitive
results. On the other hand, Multi-modal AI (MMA) is another emerging field
that consolidates heterogeneous data from multi-modal sensors and employs
multiple AI algorithms such as conversational AI, image processing, natural
language understanding, etc., to learn, reason, and synthesize information.
Recent efforts in MMA have contributed state-of-the-art Transformer-based
models catering to diverse workloads [9, 12], e.g., GLIDE, ALIGN, SwinBERT,
Omnivore, FLAVA, Data2vec, and PerceiverIO among others. Self-Supervised
Learning (SSL) is another emerging paradigm that enables learning from any
random data as well as from any unbounded dataset. This makes SSL an ideal
candidate for IoT applications. For example, Federated Learning that exploits
decentralized computing power available in a network of edge devices could
leverage SSL to learn from real-time unlabeled data. Popular examples such
as SEER (Facebook), BYOL (Google), DINO, EsViT [12] uses transformers
and exhibits exceptional performance in various CV applications. On the other
hand, Neuro-Symbolic AI (NeSy AI) models [51] such as NCSCL, NSDR (MIT-
IBM), and NLM (Google) integrate DL techniques with traditional rule-based
symbolic AI approaches and generates error-resilient, explainable, and scalable
models. Nevertheless, accelerating the low-operational-intensity computations
and expensive data movement in these workloads are some of the challenges
that needs to be addressed in the future. These discussions clearly indicate the
need for future accelerator designs to cater to emerging NNs for compute and
energy-efficient edge AI applications.

2. Approximate Computing and Approximate Systems. Approximate comput-
ing (AxC) is an emerging design paradigm that takes advantage of the inherent
error resiliency of cutting-edge DNNs and increases the energy efficiency and

168 A. Raha et al.

performance of the underlying edge computing systems, including custom
accelerators, FPGA, GPU, and CPU [52]. In this paradigm, popular algorith-
mic and software approximation strategies include model scaling, early exit
branch, channel pruning, weight sharing, sparsity prediction, and knowledge
distillation [2]. Hardware-software co-approximation techniques such as quanti-
zation [53] have increased performance and energy efficiency of DNN inference
in edge devices by adopting low-precision data types, such as FP16, BF16, 8-bit,
4-bit (NVIDIA [54]) and 2-bit (IBM [55]), while maintaining accuracy. Based on
these efforts, we envision almost all DNN accelerators of the future to integrate
lower precision MAC and have dedicated compiler support for the same. Apart
from these compute approximations, recent efforts have also explored approx-
imations in memory, sensor, and communication subsystems found in typical
edge devices [2]. Finally, in their groundbreaking paper, authors [2, 56] have
applied synergistic approximations across multiple subsystems to provide better
system-level energy savings compared to individual subsystem approximations
ushering the era of Approximate Systems (AxS). These studies suggest that
future designs of DNN-based hardware accelerators should explore AxC and
AxS to reap their benefits for energy-efficient edge AI applications.

3. Processing in Memory. The areas of In-memory Computing (IMC) and Near-
memory Computing (NMC) are attracting growing attention among Non-Von
Neumann computing architectures. This paradigm addresses the performance
bottlenecks of modern DNN-based hardware accelerators which arises due to
high data communication latency with off-chip memory (DRAM) and low mem-
ory bandwidth, popularly termed as the “memory wall” [57]. By implementing
the processing units inside the memory chip, several IMC architectures have
demonstrated significant performance optimization with orders of magnitude
better throughput and energy efficiency than traditional Von Neumann architec-
tures. Therefore, these are ideal for mobile and edge devices as well as real-time
IoT applications. IMC designs developed for traditional memory platforms such
as DRAM include AMBIT, DRISA, DrAcc, SCOPE, and LAcc [57]. From
technology availability perspective, SRAM is suitable for IMC and pioneering
works in SRAM-based IMCs include Neural Cache, IMAC, XNOR-SRAM,
Conv-RAM, Twin-8T [57, 58]. Apart from these works, research efforts have
also explored IMCs in novel non-volatile memory architectures such as ReRAM
(ISSAC, PRIME), STT-MRAM (Binary CNN, MRIMA), and SOT-MRAM
(IMCE, CMP-PIM) [57]. In fact, IMC technologies also leverage emerging
approximate computing techniques like quantization of DNNs. However, future
research should consider the major design challenges in IMC chips including
analog-to-digital conversion (ADC) bottleneck, memory non-idealities, and
analog compute variations to reflect similar gains in commercial settings.

4. Dedicated Hardware For Emerging NNs. To date, research on designing
computing platforms dedicated for AI applications has mainly concentrated on
accelerating CNNs. However, the growth of emerging neural network archi-
tectures such as Transformers and GNNs (Sects. 5.1 and 5.2), GANs, RNNs,
sparse NNs, low-precision NNs, as well as new types of convolution operations

Efficient Hardware Acceleration of Emerging Neural Networks 169

(Table 4) have very recently led to the design of domain-specific accelerators.
For example, authors [59] have designed an FPGA-based CNN accelerator for
depthwise separable convolution that provides optimal balance between speed
and hardware resource. Another recent work [60] has developed a systolic
array-based reconfigurable accelerator that employs matrix partitioning, dataflow
optimizations, and non-linear function optimizations to accelerate transformers.
Early research on GNN acceleration includes GRIP [61] that uses custom
compute unit for arithmetic-intensive vertex-centric operations and memory-
intensive edge-centric operations found in GNNs. GNNerator [49] exploits the
inherent inter-stage parallelism in GNNs and developed a programmable accel-
erator composed of heterogeneous compute engines targeting sparse and dense
computations in GNNs. These emerging trends lead us to expect further research
in custom hardware designs specific to various emerging NNs, which could take
advantage of AxC, AxS, and IMC and facilitate real-time and energy-efficient
AI applications at the edge. Due to the area impact of additional hardware, this
is still not seen as a viable solution for many edge devices, however, eventually
an ensemble of different NN accelerators can soon become a reality with the
emergence of smaller NN models and even smaller process technology.

References

1. Raha, A., Kim, S.K., Mathaikutty, D.A., Venkataramanan, G., Mohapatra, D., Sung, R.,
Brick, C., Chinya, G.N.: Design considerations for edge neural network accelerators: An
industry perspective. In: 34th International Conference on VLSI Design and 20th International
Conference on Embedded Systems, pp. 328–333 (2021)

2. Raha, A., Ghosh, S., Mohapatra, D., Mathaikutty, D.A., Sung, R., Brick, C., Raghunathan,
V.: Special session: Approximate TinyML systems: Full system approximations for extreme
energy-efficiency in intelligent edge devices. In: IEEE 39th International Conference on
Computer Design (ICCD), pp. 13–16 (2021)

3. Sze, V., Chen, Y.H., Yang, T.-J., Emer, J.S.: Efficient processing of deep neural networks: A
tutorial and survey. Proc. IEEE 105, 2295–2329 (2017)

4. Kwon, H., Chatarasi, P., Sarkar, V., Krishna, T., Pellauer, M., Parashar, A.: Maestro: A data-
centric approach to understand reuse, performance, and hardware cost of DNNmappings. IEEE
Micro 40, 20–29 (2020)

5. Norrie, T., Patil, N., Yoon, D.H., Kurian, G., Li, S., Laudon, J., Young, C., Jouppi, N.P.,
Patterson, D.A.: The design process for Google’s training chips: Tpuv2 and tpuv3. IEEE
Micro 41, 56–63 (2021)

6. Jang, J.-W., Lee, S., Kim, D., Park, H., Ardestani, A.S., Choi, Y., Kim, C., Kim, Y., Yu, H.,
et al.: Sparsity-aware and re-configurable NPU architecture for Samsung flagship mobile soc.
In: ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp.
15–28, (2021)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. Commun. ACM 60, 6, 84–90 (2017). https://doi.org/10.1145/3065386

8. Zhao, Y., Wang, G., Tang, C., Luo, C., Zeng, W., Zha, Z.-J.: A battle of network structures: An
empirical study of CNN, transformer, and MLP (2021). arXiv

9. Meta AI. The latest in machine learning | papers with code. https://paperswithcode.com/

https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://paperswithcode.com/
https://paperswithcode.com/
https://paperswithcode.com/

170 A. Raha et al.

10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems, vol. 27 (2014)

11. Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need (2017). arXiv

12. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision:
A survey. ACM Comput. Surv. 54, 1–41 (2021)

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image
is worth 16x16 words: Transformers for image recognition at scale (2021). arXiv

14. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers (2021). arXiv
15. Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J.,

Steiner, A., Keysers, D., Uszkoreit, J., et al.: MLP-mixer: An all-MLP architecture for vision.
Adv. Neural Inf. Process. Syst. 34, 24261–24272 (2021)

16. Ko, H., Lee, S., Park, Y., Choi, A.: A survey of recommendation systems: Recommendation
models, techniques, and application fields. Electronics 11(1), 141 (2022)

17. Wu, S., Sun, F., Zhang, W., Cui, B.: Graph neural networks in recommender systems: A survey
(2020). arXiv

18. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: A survey and
new perspectives. ACM Comput. Surv. 52(1), 1–38 (2019)

19. Dong, G., Tang, M., Wang, Z., Gao, J., Guo, S., Cai, L., Gutierrez, R., Campbell, B., Barnes,
L.E., Boukhechba, M.L: Graph neural networks in IoT: A survey. ACM Trans. Sensor Netw.
(2022). http://nvdla.org/hw/v1/ias/lut-programming.html

20. Abadal, S., Jain, A., Guirado, R., López-Alonso, J., Alarcón, E.: Computing graph neural
networks: A survey from algorithms to accelerators. ACM Comput. Surv. 54(9), 1–38 (2021)

21. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph neural
networks: A review of methods and applications. AI Open 1, 57–81 (2020)

22. NVDLA Open Source Project - LUT programming
23. Chen, Y.-H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52(1), 127–
138 (2017)

24. Chen, Y.-H., Yang, T.J., Emer, J., Sze, V.: Eyeriss v2: A flexible accelerator for emerging deep
neural networks on mobile devices. IEEE J. Emerg. Sel. Topics Circuits Syst. 9(2), 292–308
(2019)

25. Lin, C.-H., Cheng, C.-C., Tsai, Y.-M., Hung, S.-J., Kuo, Y.-T., Wang, P.H., Tsung, P.-K., Hsu,
J.-Y., Lai, W.-C., et al.: 7.1 a 3.4-to-13.3tops/w 3.6tops dual-core deep-learning accelerator for
versatile AI applications in 7nm 5g smartphone soc. In: IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 134–136 (2020)

26. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,
Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing unit.
SIGARCH Comput. Archit. News 45(2), 1–12 (2017)

27. Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S.M., Das, D., Kaul, B., Krishna, T.:
Sigma: A sparse and irregular GEMM accelerator with flexible interconnects for DNN training.
In: IEEE International Symposium on High Performance Computer Architecture (HPCA), pp.
58–70 (2020)

28. NVIDIA. Nvidia ampere architecture (2022). https://www.nvidia.com/en-us/data-center/
ampere-architecture/

29. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer,
J., Keckler, S.W., Dally, W.J.: Scnn: An accelerator for compressed-sparse convolutional
neural networks. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 27–40 (2017)

30. Rhu, M., O’Connor, M., Chatterjee, N., Pool, J., Kwon, Y., Keckler, S.W.: Compressing DMA
engine: Leveraging activation sparsity for training deep neural networks. In: IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 78–91 (2018)

http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
http://nvdla.org/hw/v1/ias/lut-programming.html
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/

Efficient Hardware Acceleration of Emerging Neural Networks 171

31. Intel� Movidius™ Myriad™ X Vision Processing Unit (VPU). https://www.intel.com/
content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html

32. Lee, B., Burgess, N.: Some results on Taylor-series function approximation on FPGA. In: The
Thirty-Seventh Asilomar Conference on Signals, Systems Computers, vol. 2, pp. 2198–2202
(2003)

33. Lin, C.-W., Wang, J.-S.: A digital circuit design of hyperbolic tangent sigmoid function for
neural networks. In: 2008 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 856–859 (2008)

34. Leboeuf, K., Namin, A.H., Muscedere, R., Wu, H., Ahmadi, M.: High speed VLSI
implementation of the hyperbolic tangent sigmoid function. In: Third International Conference
on Convergence and Hybrid Information Technology, vol. 1, pp. 1070–1073 (2008)

35. Zamanlooy, B., Mirhassani, M.: Efficient VLSI implementation of neural networks with
hyperbolic tangent activation function. IEEE Trans. Very Large Scale Integr. Syst. 22(1), 39–48
(2014)

36. Ioannou, Y.A., Robertson, D.P., Cipolla, R., Criminisi, A.: Deep roots: Improving CNN
efficiency with hierarchical filter groups. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5977–5986 (2017)

37. Sun, K., Li, M., Liu, D., Wang, J.: Igcv3: Interleaved low-rank group convolutions for efficient
deep neural networks. In: BMVC (2018)

38. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning (2016). arXiv
39. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional

transformers for language understanding. In: NAACL (2019)
40. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are

unsupervised multitask learners. OpenAI Blog 1, 9 (2019)
41. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,

Shyam, P., et al.: Language models are few-shot learners (2020). arXiv
42. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,

P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer (2019).
arXiv

43. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hier-
archical vision transformer using shifted windows. In: IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 9992–10002 (2021)

44. Wang, H., Zhang, Z., Han, S.: SpAtten: Efficient sparse attention architecture with cascade
token and head pruning. In: IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 97–110 (2021)

45. He, K., Zhang, X., Ren, S., Sun, J.: “Deep Residual Learning for Image Recognition,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016).
https://doi.org/10.1109/CVPR.2016.90

46. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs
(2017). arXiv

47. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention
networks (2018). arXiv

48. Yan, M., Deng, L., Hu, X., Liang, L., Feng, Y., Ye, X., Zhang, Z., Fan, D., Xie, Y.: HyGCN: A
GCN accelerator with hybrid architecture (2020). arXiv

49. Stevens, J.R., Das, D., Avancha, S., Kaul, B., Raghunathan, A.: GNNerator: A hardware/soft-
ware framework for accelerating graph neural networks (2021). arXiv

50. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s
(2022). arXiv

51. Susskind, Z., Arden, B., John, L.K., Stockton, P., John, E.B.: Neuro-symbolic AI: An emerging
class of AI workloads and their characterization (2021). arXiv

52. Wang, X., Han, Y., Leung, V.C., Niyato, D., Yan, X., Chen, X.: Convergence of edge
computing and deep learning: A comprehensive survey. IEEE Commun. Surv. Tutor. 22(2),
869–904 (2020)

https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu/movidius-myriad-x.html
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

172 A. Raha et al.

53. Raha, A., Raghunathan, V.: qLUT: Input-aware quantized table lookup for energy-efficient
approximate accelerators. ACM Trans. Embed. Comput. Syst. 16(5s), 1–23 (2017)

54. Salvator, D., Wu, H., Kulkarni, M., Emmart, N.: Nvidia technical blog: Int4 precision for AI
inference (2019). https://www.nvidia.com/en-us/data-center/ampere-architecture/

55. Choi, J., Venkataramani, S.: Highly accurate deep learning inference with 2-bit precision
(2019). https://www.ibm.com/blogs/research/2019/04/2-bit-precision/

56. Ghosh, S.K., Raha, A., Raghunathan, V.: Approximate inference systems (axis) end-to-end
approximations for energy-efficient inference at the edge. In: Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design, pp. 7–12 (2020)

57. Bavikadi, S., Sutradhar, P.R., Khasawneh, K.N., Ganguly, A., Dinakarrao, S.M.P.: A review of
in-memory computing architectures for machine learning applications. In: Proceedings of the
Great Lakes Symposium on VLSI, pp. 89–94 (2020)

58. Yu, S., Jiang, H., Huang, S., Peng, X., Lu, A.: Compute-in-memory chips for deep learning:
recent trends and prospects. IEEE Circuits Syst. Mag. 21(3), 31–56 (2021)

59. Bai, L., Zhao, Y., Huang, X.: A CNN accelerator on FPGA using depthwise separable
convolution. IEEE Trans. Circuits Syst. II: Express Briefs 65(10), 1415–1419 (2018)

60. Lu, S., Wang, M., Liang, S., Lin, J., Wang, Z.: Hardware accelerator for multi-head attention
and position-wise feed-forward in the transformer. In: IEEE 33rd International System-on-
Chip Conference (SOCC), pp. 84–89. IEEE (2020)

61. Kiningham, K., Re, C., Levis, P.: Grip: A graph neural network accelerator architecture (2020).
arXiv

https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.nvidia.com/en-us/data-center/ampere-architecture/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/
https://www.ibm.com/blogs/research/2019/04/2-bit-precision/

Part II
Memory Design and Optimization for

Embedded Machine Learning

An Off-Chip Memory Access
Optimization for Embedded Deep
Learning Systems

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif,
and Muhammad Shafique

1 Introduction

1.1 Overview

Artificial Intelligence (AI) is considered a prominent solution to process and
analyze a continuous stream of data in the era of Internet-of-Things (IoT) and
Big Data, where a large amount of data is generated every day by digital devices.
Analyzing the generated data and inferring useful information are beneficial for
improving the users’ productivity and their quality of life [59]. In the last decade,
the development and research in AI, specifically on Machine Learning (ML), have
increased exponentially and spread across different fields, covering a wide range
of applications [34]. The field of ML encompasses several algorithms, and the
most influential ones in recent years are the brain-inspired ML algorithms, such
as Artificial Neural Networks (ANNs) [7, 34, 59–61] and Spiking Neural Networks
(SNNs) [39, 50, 53–55, 57, 58]. Among these algorithms, ANNs have achieved state-
of-the-art performance/accuracy and even surpassed humans’ accuracy through the
Deep Learning (DL) or Deep Neural Network (DNN) algorithms [7, 61], as shown
in Fig. 1. Consequently, nowadays, DL has become a de facto algorithm for solving
many ML-based applications, such as computer vision [27, 42, 69], finance and
business [15, 65, 66], healthcare [4, 5, 43], and autonomous driving systems (e.g.,
drones and cars) [13, 46].

R. V. W. Putra (�)
Embedded Computing Systems, Institute of Computer Engineering, Technische Universität Wien,
Vienna, Austria
e-mail: rachmad.putra@tuwien.ac.at

M. A. Hanif · M. Shafique
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_6

175

 31368 2385 a 31368 2385 a

 885 52970 a 885 52970 a

mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at

 885 56845 a 885 56845 a

mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845
a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6
https://doi.org/10.1007/978-3-031-19568-6_6

176 R. V. W. Putra et al.

1950 1960 1970 1980 1990 2000 2010 2020 … …

Artificial
Intelligence
(AI)

Machine
Learning
(ML) Deep Learning

(DL)
Programs that try to
mimic the cogni�ve
func�on of human
brain.

Algorithms that
learn without
being explicitly
programmed.

Brain-inspired ML
algorithms based on
ANNs with many
hidden layers.

(a) The development of AI, ML, and DL throughout the years. (b) Training and inference phases in DL.

Large batch
of samples

error =
predic�on -
reference

Training
(supervised)

Small batch
of samples

Forward-pass

Backward-pass

predic�on

Inference

Forward-pass

Fig. 1 Illustrations of (a) Artificial Intelligence development throughout the years, including
Machine Learning and Deep Learning, and (b) training and inference phases of Deep Learning
(adapted from [7])

Although DL algorithms have achieved a cutting edge performance, they con-
sume enormous memory and computing power/energy due to their memory-
and compute-intensive nature during the training phase (at design time) and the
inference phase (at run time) [1, 61]. In the training phase, a DNN experiences
the forward-pass and the backward-pass, while in the inference phase, it only
experiences a forward-pass. Therefore, the training phase needs a much more
expensive cost of memory accesses and computational efforts than the inference.
Recent trends show that many DL applications are moving towards mobile/embed-
ded platforms, such as IoT-Edge and smart cyber-physical system (CPS) devices,
mainly due to privacy and security reasons [7, 8, 59]. These embedded platforms
usually employ the DNN models that have been trained at the cloud for performing
inferences at the edge. However, performing such an inference is challenging since
the embedded platforms are typically resource- and power/energy-constrained. For
instance, the ResNet-50 requires more than 95MB of weight memory and more than
3.8 billion operations to process a single image input [21]. Such a high amount of
processing is infeasible to be performed by embedded platforms for providing real-
time results. Therefore, it is necessary to provide specialized hardware accelerators
for efficiently performing DL inference, hence fulfilling the memory and compute
requirements of different types of DNN models for embedded DL systems.

1.2 Design Constraints for Embedded DL Systems

In embedded applications, the resources of hardware platforms (e.g., accelerators)
are tightly constrained. Embedded accelerators typically have small on-chip memory
like 100KB–500KB [59, 61] and have to function properly using low operational
power like within 5W [44, 52, 56, 59]. Moreover, some applications may even pose
additional constraints such as latency and throughput [59], especially for safety-

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 177

critical applications requiring correct real-time decision like autonomous driving.
All these constraints make it even more challenging to efficiently run DL inference
on embedded platforms. For instance, limited memory and power budgets lead to
limited DNN operations that can be performed at the same time, and consequently,
this leads to very long latency and very low throughput.

Previous studies have shown that many DL accelerators incur high energy
consumption due to DL algorithms’ memory- and compute-intensive nature [2, 36,
49, 51, 61, 62]. Recent works have identified that the energy consumption of DL
accelerators is typically dominated by the off-chip memory (i.e., DRAM) [36, 51].
For instance, the DRAM operations in the Cambricon-X accelerator incur over 80%
of the total energy consumption [71]. The reasons are the following:

• High DRAM access energy: The energy consumption for single DRAM access
is significantly higher than other DNN operations. For instance, single DRAM
access incurs about 200x energy consumption of a Multiply-And-Accumulate
(MAC) operation [10, 61].

• A large number of DRAM accesses: The number of DRAM accesses required
for a single inference is proportional to the number of data that need to be stored
in and fetched from DRAM, including weights and feature maps (activations) [2,
49, 51]. Therefore, larger DNN models are likely to require more DRAM accesses
than the smaller ones, thereby higher energy consumption.

Therefore, optimizing the DRAM access energy is the key to minimizing the energy
consumption of DL accelerators, hence enabling efficient embedded DL systems.

In the following sections of this chapter, we discuss:

1. In Sect. 2, we provide a brief overview of DL, hardware accelerators, and DRAM
background.

2. In Sect. 3, we discuss our design methodology to optimize the DRAM access
energy for DL accelerators.

3. In Sect. 4, we discuss the experimental evaluations for our design methodology.
4. In Sect. 5, we conclude the chapter with a summary.

2 Preliminaries

2.1 Deep Learning

Deep Learning (DL) or Deep Neural Network (DNN) is a computational model
inspired by biological neural networks and described as a network of interconnected
neurons. Neurons are the fundamental units in a neural network, and each neuron
performs a weighted sum of inputs (so-called dot-product operation) [18, 19]. These
neurons are grouped into layers, encompassing an input layer, multiple hidden
layers, and an output layer [6]. An input layer receives input signals, which are

178 R. V. W. Putra et al.

zf = wef xe∑
e ԑ Input

yf = f(zf)

zg = wfg xf∑
f ԑ HL1

yg = f(zg)

zh = wgh xg∑
g ԑ HL2

yh = f(zh)

Output
Layer

Input
Layer

Hidden Layers
HL1 HL2

e

f

g
h

wef

wfg

wgh

�

�

�

�

�

(a) Multi-Layer Perceptron

(b) Convolutional layer

…

Input feature maps
Output feature maps

Filters

Layer-1 Layer-2 Layer-3 Layer-4

Layer-2:

Layer-3:

Layer-4:

�

Fig. 2 Illustrations of (a) multi-layer perceptron, and (b) convolutional layer

then processed by hidden layers. Afterwards, the last layer obtains the result, i.e.,
the output layer. There are several types of DL, such as Multi-Layer Perceptrons
(MLPs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks
(RNNs) [34]. In this chapter, we focus on feed-forward neural network models, i.e.,
MLPs and CNNs, due to their widespread use in many ML applications.

An MLP is composed of multiple fully connected layers. In a fully connected
layer, each neuron is connected to all neurons in the adjacent layers. An illustration
of a simple three-layer MLP is shown in Fig. 2a. Meanwhile, a CNN is typically
composed of convolutional layers and fully connected layers. An illustration of a
convolutional layer is shown in Fig. 2b. In each convolutional layer, multiple filters
are convolved with input feature maps to generate output feature maps. The input
and output feature maps are also called activation maps or simply activations. The
depth of filters (so-called channel) is the same as the depth of input feature maps.
Convolution between input feature maps with one filter produces one output feature
map, hence the total number of output feature maps equals the number of filters. A
detailed discussion of the CNN operations can be found in [61].

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 179

2.2 Hardware Accelerators for Embedded DL Systems

To expedite DL inference for embedded applications in an energy-efficient manner,
many specialized hardware accelerators have been proposed [9, 10, 16, 20, 26,
33, 38, 47, 63, 67, 71]. All these DL accelerators support specific dataflows while
providing some unique advantages, and among them, systolic array-based designs
are considered among the most prominent ones [20, 26, 38, 63].

A systolic array-based accelerator has a set of processing elements (PEs), which
are tightly connected together in a homogeneous network, as shown in Fig. 3a.
Each PE receives data from its nearest adjacent PEs, performs MAC operation,
and passes the result and data to the adjacent PEs. In this manner, data reuse
is exploited, reducing the need for expensive memory accesses and alleviating
the memory bottleneck. Moreover, the systolic array is inherently suitable for
performing matrix multiplications, which is the main operation in neural networks.
For instance, the Tensor Processing Unit (TPU), a DL accelerator developed by
Google, has a systolic array architecture with 256x256 MAC units (i.e., PEs), and
achieves 15x-30x faster performance and 30x-80x more efficiency as compared to
the K80 GPU and the Haswell CPU [26]. The systolic array engine receives data
from memories designed to meet the requirements of systolic array computations,
such as latency and throughput, hence avoiding memory bottleneck. In this chapter,
the typical systolic array-based architecture of DL accelerators is considered, as
shown in Fig. 3b.

…

snoitavitcA rof yro
me

M

PE
(MAC)

PE
(MAC)

PE
(MAC)

…

+

…

PE
(MAC)

PE
(MAC)

PE
(MAC)

…

+

…

PE
(MAC)

PE
(MAC)

PE
(MAC)

…

+

…

…

…

…

…

Activations

Partial
sums

Ac
cu

m
ul

at
or

s
Sy

st
ol

ic
 A

rr
ay

Memory for Weights

(a) Systolic Array Architecture (b) DL Accelerator Architecture

Systolic Array

PE

Accumulators

Activation
Units

Pooling Units

PE

PEPE PE

PE PEPE

PE

DRAM

Ac
tiv

at
io

n
M

em
.

Weight
(WGH)

Memory

Input
Feature
Maps
(IFM)

Memory

Output
Feature
Maps
(OFM)

Memory

On-chip part

Off-chip part

…

…

…

…

…

…

Fig. 3 (a) Systolic array architecture (adapted from [20]). (b) Architecture of systolic array-based
DL accelerators (adapted from [51])

180 R. V. W. Putra et al.

Systolic Array Computations Before performing the neural network processing,
weights are accessed from the weight memory, then loaded and held stationary in
the PEs, in the manner that the same column of the array is loaded with weights
from the same neuron or filter. During the processing, the activations are accessed
from the activation memory and then streamed into the array. At each clock cycle,
the activations are passed on adjacent PEs from left to right of the array, while the
partial sums are moved downstream on adjacent PEs from top to bottom of the array.
The activations across rows are aligned so that each activation reaches a particular
PE at the same time when its corresponding partial sum also reaches the same PE,
thereby generating a correct output partial sum. If the number of weights of a filter
is larger than the number of rows in the array, output partial sums are divided into
multiple portions. To support this, the accumulators hold the generated partial sums
when the rest of the partial sums are computed by the array. A further detailed
description of the architecture can be found in [20, 26, 70].

2.3 DRAM Fundamentals

2.3.1 Organization

DRAM is widely used as the main memory in modern computing systems, and it is
organized hierarchically, as shown in Fig. 4. DRAM is accessed through memory
channel. Each channel has specialized command, address, and data buses [45],
and can be used for connecting multiple memory modules. Each memory module
typically contains several DRAM chips, which are grouped into multiple ranks. The
DRAM chips in the same rank operate in lockstep and parallel [28, 51]. Each chip
typically contains several banks, and each bank consists of multiple subarrays. In
each subarray, DRAM cells are organized into multiple rows and columns, whose
contents can be accessed using sense amplifiers.

DRAM

…
Rank

Chip Chip

Channel

eludo
M

Chip

Bank
Subarray

Subarray

…

Subarray

Ro
w

 D
ec

od
er

Row Buffer

Wordline

Bitline

DRAM cell

Sense amplifier

Fig. 4 A hierarchical organization of a DRAM (adapted from [28])

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 181

2.3.2 Operations

If there is a DRAM request, either read or write, a specific DRAM rank will
respond. Afterwards, each DRAM request is decoded into a specific address of
DRAM cells. Depending upon the request type (read/write), the contents of DRAM
cells are accessed and read/written. To do this, the following DRAM operations are
performed.

• Activate (ACT): This operation activates a specific row of a DRAM bank, whose
address is defined in the given command. Afterwards, data bits in the activated
row are read into the row buffer.

• Read (RD) or Write (WR): This operation accesses the data bits in the specified
column of the row buffer. If the RD operation is executed, then the data bits are
read and brought to DRAM I/O for on-chip computations. Meanwhile, if WR
operation is executed, then the data bits are written by the given value.

• Precharge (PRE): To activate a new row, the DRAM bank (with an activated
row) should be brought back to the precharged state. To do this, PRE operation
deactivates the row buffer and ensures that data bits from the row buffer are copied
back to the corresponding activated row.

The above descriptions indicate that, accessing data that is already in the row
buffer can be performed fast and efficiently. This condition is known as a row
buffer hit [11]. Meanwhile, accessing data that is not in the row buffer, incurs higher
latency and energy consumption than a row buffer hit. If such access happens when
there is no activated row, then this is known as a row buffer miss, but if it happens
when there is an activated row, then this is known as a row buffer conflict [11]. A
row buffer conflict has a longer service time than a row buffer miss, as a row buffer
conflict must wait to issue a PRE operation, and may also need to wait for an earlier
request to complete. For a detailed explanation of DRAM fundamentals, we refer to
DRAM papers [11, 28, 51].

3 DRAM Access Optimization for Embedded DL Systems

3.1 Overview

Several techniques can be employed for optimizing the DRAM access energy for
embedded DL systems. These techniques can be categorized into run-time and
design-time approaches, encompassing software- and hardware-level techniques,
as shown in Fig. 5. At run time, power management techniques, such as clock
gating, power gating, and Dynamic Voltage and Frequency Scaling (DVFS), can
be employed to reduce the dynamic power of DRAM [59]. However, these
techniques need monitoring and decision units to manage the operational power
properly, thereby requiring sophisticated designs to meet the constraints of the
embedded applications (e.g., latency, throughput, and energy) [59]. At design time,

182 R. V. W. Putra et al.

Systolic Array

PE

Accumulators

Activation
Units

Pooling Units

PE

PEPE PE

PE PEPE

PE

Ac
t.

M
em

.

WGH
Memory

IFM
Memory

OFM
Memory

On-chip part

Off-chip part

…

…

…

DL Accelerator

DL/DNN Model

era
wtfoS

era
wdra H

Model Compression

Pruning

Quantization

Data Mapping
in DRAM

1 0 1 0 1 0 1 1 1 0 1 0

Data Partitioning and Scheduling

1 0 1 0
1 0 1 1
0 1 0 1

Fixed Scheduling

Adaptive Scheduling

Low Latency DRAM Approximate DRAM

High Bandwidth DRAM

Low Power DRAM

DRAM

Reduced-Voltage DRAM

Reduced-Timing DRAM

Reduced-Refresh Rate DRAM

Techniques for Optimizing DRAM Access Energy for DL-based Systems

IFM reuse-based scheduling

OFM reuse-based scheduling

Weight reuse-based scheduling

Subarray-level Parallelism, etc.

Run-time Run-time Power Management Clock Gating Power Gating Run-time DVFS

Fig. 5 Techniques for optimizing DRAM access energy for DL-based systems. Detailed descrip-
tions for each technique can be found in [59]

software- and hardware-level techniques can be employed to reduce the DRAM
access energy. The software-level techniques include model compression (such as
pruning [3, 17, 22, 35, 41] and quantization [14, 17, 23, 40]), data partitioning
and scheduling [36, 51, 62, 67], and DRAM data mapping [31, 49, 51]. Meanwhile,
the hardware-level techniques include the employment of different DRAM designs,
such as low latency DRAM [49], high bandwidth DRAM [24, 25, 37, 48], low power
DRAM [30, 64], and approximate DRAM [31, 52].

In this chapter, we discuss our design methodology to optimize the DRAM access
energy by 1 reducing the DRAM accesses through design space exploration (DSE),
and judiciously employing low latency DRAM through 2 effective DRAM data
mapping, and 3 DSE that investigates the energy-delay-product (EDP) of DRAM
accesses; see Fig. 6. Our design methodology is a generic solution for different DNN
models and different sizes of DL accelerators (e.g., sizes of memory and systolic
array), thereby having high applicability for different embedded applications. In the
following, we discuss the details for each proposed technique.

3.2 Reduction of DRAM Accesses

The size of a DNN model is usually larger than the size of on-chip memory in DL
accelerators [61]. Therefore, to run the inference process on such accelerators, the
data need to be partitioned into tiles.1 Afterwards, a tile of weights (WGH) and a

1 Tiling technique is widely used in the DL community to partition the DNN data, as it can exploit
data reuse in convolutional processing [51].

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 183

Analy�cal
model for

DRAM
accesses

DL accelerator
configura�on

DRAM
configura�on

DNN model

Determining
the data par��oning

and scheduling
for a given DNN

through DSE

Data par��oning
configura�on

Scheduling
configura�on

Determining
the DRAM

data mapping
policies

Analyzing the EDP of
DRAM accesses through DSE

Data mapping
policy in the

DRAM

DRAM access
characteris�cs

1

3
Analy�cal

model for the
EDP of DRAM

accesses2

Fig. 6 Our design methodology for optimizing DRAM energy for embedded DL systems,
showing the key proposed techniques (adapted from studies in [49, 51])

for (b = 0; b < B; b++) {
for (x = 0; x < X; x += Tx) {

for (y = 0; y < Y; y += Ty) {
for (z = 0; z < Z; z += Tz) {

for (c = 0; c < C; c += Tc) {
// load WGH, IFM, and OFM (par�al sum)
for (k = 0; k < K; k++) {

for (l = 0; l < L; l++) {
for (xi = x; xi < min(xi+Tx , X); xi++) {

for (yi = y; yi < min(yi+Ty , Y); yi++) {
for (zi = z; zi < min(zi+Tz , Z); zi++) {

for (ci = c; ci < min(ci+Tc , C); ci++) {
OFM [b][xi][yi][zi] += …
WGH [k][l][ci][zi] * IFM [b][S*xi+k][S*yi+l][ci] }}}}}}

// store OFM (par�al sum) }}}}}

Outer loops

Inner loops

� B: number of samples in a batch.
� S: stride of convolution.
� OFM: height (X), width (Y), depth (Z).

� WGH: height (K), width (L), depth (C).
� Tx , Ty , Tz , and Tc : Tiling factor for X, Y, Z,

and C, respec�vely.

Fig. 7 Pseudo-code of the tile-based convolution processing (adapted from studies in [36, 51])

tile of input feature maps (IFM) are transferred from DRAM to on-chip memory,
and used in computations for producing a tile of output feature maps (OFM) at
one time. This tile-based DNN processing can be represented as convolution loops,
which can be divided into two parts, i.e., outer and inner loops, as shown in Fig. 7.
The outer loops represent how the data transfer between off-chip and on-chip parts
is scheduled, reflecting the DRAM accesses. Meanwhile, the inner loops represent
how the on-chip computations are performed. However, this tile-based processing
usually requires redundant accesses for the same data to DRAM, thereby leading to
high energy consumption.

To address this issue, recent works have proposed different DSE techniques to
find data partitioning and scheduling that offer minimum DRAM accesses for DNN

184 R. V. W. Putra et al.

workloads [36, 62, 67, 68]. These techniques aim at maximizing the on-chip data
reuse based on the convolution loops in Fig. 7. Work of [67, 68] exploited data
reuse based on a specific data type (i.e., either WGH, IFM, or OFM) across all
layers of a network (i.e., so-called fixed scheduling). SmartShuttle [36] extended
this concept by employing either WGH- or OFM-based scheduling based on the data
type that has a higher reuse profile in each layer of a network (i.e., so-called adaptive
scheduling), hence reducing the DRAM accesses than previous works. Meanwhile,
the work of [62] further extended the concept from SmartShuttle by considering the
DRAM bus-width to further reduce the DRAM accesses. Although all these works
have provided some advantages, they do not optimize redundant accesses for the
overlapping data (as shown in Fig. 8) and do not consider all possible scheduling
schemes. Therefore, their optimization results are sub-optimal.

Towards this, we develop a DSE technique to find the effective data partitioning
and scheduling that lead to minimum DRAM accesses for each layer of a network,
while considering overlapping data, all possible scheduling schemes, and DRAM
organization [49, 51], as shown by label 1 in Fig. 6, through the following key
steps.

• Define the data partitioning: We define different combinations of data parti-
tioning for different data types (i.e., WGH, IFM, and OFM) in each layer of a
network, while considering the available on-chip memory. We consider accessing
a tile of IFM and a tile of WGH from DRAM, then storing them on-chip for
computations that produce a tile of OFM. The generated OFM are then stored
back to DRAM.

• Define the adaptive scheduling: For each combination of data partitioning for all
data types, we consider different possible scheduling schemes (i.e., WGH-, IFM-
, and OFM-based reuse scheduling) for evaluating the corresponding DRAM
accesses. When defining the scheduling, we consider avoiding redundant DRAM
accesses for the respective overlapping data, as shown in Fig. 8.

• Evaluate the number of DRAM accesses: To quickly explore different combi-
nations of data partitioning and scheduling schemes, we employ the analytical
model for estimating the number of DRAM accesses, while considering the
DRAM organization and DRAM data alignment, as presented in Eqs. 1–6.
Further details on how we map the data in DRAM will be discussed in Sect. 3.3.1.

Our Analytical Model for Estimating the Number of DRAM Accesses The total
number of DRAM accesses of an inference (.#DRaccess) is defined as the sum of the
DRAM accesses from all layers of a network, as shown in Eq. 1. .#DRl

access denotes
the total number of DRAM accesses in layer-l, and L denotes the number of layers
in a given network.

.#DRaccess =
L∑

l=1

#DRl
access (1)

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 185

Overlapped region

weights
(WGH) input feature

maps (IFM)

output feature
maps (OFM)

X

Y
Z

C

K

L S
P

Q

� WGH: height (K), width (L), depth (C), and
number of filters (Z).

� IFM: height (P), width (Q), and depth (C).
� OFM: height (X), width (Y), and depth (Z).
� S: stride of convolu�on.

Fig. 8 Illustration of convolution processing showing the overlapped region (adapted from [51])

DRAM accesses-per-layer (.#DRl
access) can be defined as the sum of DRAM

accesses for all data types, as shown in Eq. 2. For each data type, we define its
DRAM accesses-per-layer (.#accesslx) as the sum of the DRAM accesses-per-tile
(.#accesstx), as shown in Eq. 3. We consider tile-based accesses since the size of on-
chip memory typically limits the volume of data that can be stored at one time for
on-chip computations.

. #DRl
access = #accesslWGH + #accesslIFM + #accesslOFM (2)

. #accesslx =
Tx∑

t=1

#accesstx with x ∈ {WGH, IFM,OFM} (3)

We observe that the WGH and IFM only need DRAM read, hence we estimate their
number of DRAM accesses-per-tile using Eqs. 4–5. Meanwhile, the OFM may have
DRAM read and write. These two access types (read and write) happen when a
tile of partial sums in on-chip memory still needs to be calculated with other partial
sums to produce the final OFM, but they cannot be accumulated with the latest
generated partial sums. Hence, these partial sums (that are stored in the on-chip
memory), have to be transferred to DRAM so that the on-chip memory can store the
latest generated data. Later, these partial sums (that are stored in the DRAM) will be
transferred back to the on-chip memory for further computations generating a tile
of final OFM. We estimate the number of DRAM accesses-per-tile for OFM using
Eq. 6.

. #accesstWGH =
⌈
Tk · Tl · Tc · Tz

Dp

⌉

read

(4)

. #accesstIFM =
⌈
Tp · Tq · Tc

Dp

⌉

read

(5)

186 R. V. W. Putra et al.

. #accesstOFM =
⌈
Tx · Ty · Tz

Dp

⌉

read

+
⌈
Tx · Ty · Tz

Dp

⌉

write

(6)

Note, . Tx denotes the tiling factor that defines the partition size for dimension-x,
following the dimensions of data types, as shown in Fig. 8. Therefore, .x ∈ {k, l, c,
z} for WGH, .x ∈ {p, q, c} for IFM, and .x ∈ {x, y, z} for OFM. Meanwhile, . Dp

denotes the number of DRAM chips-per-rank which operate in parallel.

3.3 Employment of Low Latency DRAM

DL accelerators can employ different types of DRAM based on the design require-
ments, e.g., low latency DRAM, low power DRAM, high bandwidth memory, etc.
Since different DRAM types have the same internal organization, they have similar
behavior of latency and energy consumption for every single access [11]. Therefore,
the DRAM latency-per-access and energy-per-access always depend on whether a
single access faces a row buffer hit, miss, or conflict [49]. Towards this, we employ
a low latency DRAM since it has lower latency-per-access and lower energy-per-
access than conventional DRAM, which are beneficial for embedded DL systems.
Specifically, we employ a low latency DRAM design that exploits subarray-level
parallelism (SALP) [28]. The reason is that any techniques that exploit SALP will
be applicable for any DRAM types since a commodity DRAM bank is typically
implemented as multiple subarrays with multiple local row buffers, as shown in
Fig. 4. Work of [28] has proposed three variants of SALP architectures, i.e., SALP-
1, SALP-2, and Multitude of Activated Subarrays (MASA), whose key ideas are
explained in the following.

• SALP-1: It reduces the service time of commodity DRAM by overlapping ACT
of one subarray with PRE of another subarray. To do this, a re-interpretation of
the timing constraint for PRE operation is required.

• SALP-2: It reduces the service time more than SALP-1 by overlapping the ACT
of one subarray with the latency of write-recovery for an active subarray. To do
this, additional circuitry is required to activate two subarrays at the same time.

• SALP-MASA: It reduces the service time more than SALP-2 by activating
multiple subarrays at the same time. To do this, additional circuitry is required
to activate multiple subarrays at the same time, and it is more complex than the
circuitry for SALP-2.

To understand the characteristics of SALP architectures, we perform experiments
to observe their latency-per-access and energy-per-access for each row buffer hit,
row buffer miss, row buffer conflict, subarray-level parallelism, and bank-level
parallelism. The experimental results in Fig. 9 indicate that SALP architectures have
the potential to reduce the latency-per-access and energy-per-access as compared to
commodity DRAM. To judiciously employ such low latency DRAM architectures
for embedded DL systems, we define an effective DRAM data mapping policy and

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 187

0
4
8
12

0
1
2
3

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

 M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

 M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

 M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

 M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

 M
AS

A

Row buffer hit Row buffer miss Row buffer
conflict

Subarray-level
parallelism

Bank-level
parallelism

DR
AM

 e
ne

rg
y

[n
J]

de zila
m ro

N

selc ycforeb
mun

- - - - -

SALP potentially reduces the latency-
per-access and energy-per-access than

the commodity DRAM.

Bank-level parallelism has lower latency-
per-access and energy-per-access than

a row buffer miss/conflict.

Fig. 9 Experimental results for the latency and energy consumption for a row buffer hit, a row
buffer miss, a row buffer conflict, a subarray-level parallelism, and a bank-level parallelism
on different DRAM architectures, i.e., DDR3, SALP-1, SALP-2, and SALP-MASA (adapted
from [49]). For DDR3, we use DDR3-1600 2Gb x8 configuration, while for SALP, we use
2Gb x8 with 8 subarrays-per-bank. We generate data using state-of-the-art cycle-accurate DRAM
simulators [12, 29]

conduct a DSE that quickly evaluates the EDP of DRAM accesses, which will be
discussed in the Sects. 3.3.1 and 3.3.2, respectively.

3.3.1 Devising the Data Mapping Policy in DRAM

Figure 9 shows that different DRAM architectures (e.g., DDR3, SALP-1, SALP-2,
and SALP-MASA) have similar patterns in terms of latency-per-access and energy-
per-access. To exploit such patterns, we develop a DRAM data mapping policy
that incurs the lowest DRAM latency-per-access and energy-per-access for DL
accelerators, as shown by label 2 in Fig. 6. Its idea is to orderly prioritize the row
buffer hit, bank-level parallelism, and subarray-level parallelism (if applicable) for
each given data. Following are the key steps for performing our data mapping.

1. We map data from a given data tile to different columns in the same row of a bank
to maximize the row buffer hits. If multiple DRAM chips exist in the same rank,
then this step is also performed in different chips for maximizing the chip-level
parallelism.

2. If all columns in the same row are filled, then the remaining data are placed on
different banks in the same DRAM chip to maximize bank-level parallelism. If
multiple DRAM chips exist in the same rank, then this step is also performed in
different chips.

3. If all columns in the same row of all banks are filled, then the remaining data
are placed on a different subarray in the same bank to maximize subarray-level
parallelism. If multiple DRAM chips exist in the same rank, then this step is also
performed in different chips.

188 R. V. W. Putra et al.

Each data type
(WGH, IFM, or OFM)

is partitioned
into several tiles

subarray
…Subarray

…

map

subarray
…Subarray

…

subarray
…Subarray

…
…

…

…Bank…

…Bank…

…Bank…

map

I/O

(b) Our DRAM data mapping policy for SALP architectures

(a) Our DRAM data mapping policy for commodity DRAM architectures

I/O

Chip

Rank

Chip

Rank

Fig. 10 Our data mapping policy (a) for commodity DRAM architectures, and (b) for SALP
architectures, i.e., SALP-1, SALP-2, and SALP-MASA (adapted from studies in [49, 51])

4. If there are remaining data, then steps (1) to (3) are performed for different
subarrays until all data are stored in the same rank.

5. If there are remaining data, then steps (1) to (4) are performed for different ranks,
modules, and channels subsequently, if applicable.

For commodity DRAM architectures, our data mapping policy is shown in Fig. 10a,
while for SALP architectures, our data mapping policy is shown in Fig. 10b.

3.3.2 Analysis for the EDP of DRAM Accesses

Our Analytical Model for Estimating the EDP of DRAM Accesses We leverage
the experimental results in Fig. 9 to estimate the DRAM access latency and energy
for a given network. Such estimation is beneficial for quickly investigating different
possible configurations (e.g., DRAM organization, on-chip memory size, etc.) and
determining the DRAM data mapping policy that can support data partitioning and
scheduling, while incurring minimum DRAM access latency and energy. Towards
this, we develop an analytical model for estimating the energy-delay-product (EDP)
of the DRAM accesses for a given network [49], as shown by label 3 in Fig. 6. Our
analytical model employs the following key ideas.

• We define the EDP of DRAM accesses for an inference as the sum of the
EDP-per-layer of a given network. Meanwhile, the EDP-per-layer is obtained by
multiplying the DRAM latency-per-layer and the DRAM energy-per-layer.

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 189

• We calculate the latency-per-layer by accumulating all latency values required by
the DRAM accesses for all data tiles in a layer. Then, we calculate the energy-
per-layer by accumulating all energy values required by the DRAM accesses for
all data tiles in a layer.

• For each data tile, we estimate the number of cycles required for DRAM accesses
(.Ntile) using Eq. 7 and estimate the energy consumption for DRAM accesses
(.Etile) using Eq. 8.

.

Ntile =Adif _column · Ndif _column + Adif _row · Ndif _row+
Adif _subarray · Ndif _subarray + Adif _bank · Ndif _bank

(7)

.

Etile =Adif _column · Edif _column + Adif _row · Edif _row+
Adif _subarray · Edif _subarray + Adif _bank · Edif _bank

(8)

Note, .Adif _x denotes the number of accesses to different DRAM x-location.
.Ndif _x denotes the number of cycles required for accessing different DRAM x-
location. .Edif _x denotes the energy consumption required for accessing different
DRAM x-location. For all terms, .x ∈ {column, row, subarray, bank}.

Our DSE for Evaluating the EDP of DRAM Accesses To show that our DRAM
data mapping policy always leads to minimum EDP in different possible conditions,
we perform a DSE that leverages our analytical models on DRAM accesses and
EDP estimation. The key idea of our DSE is to evaluate the EDP under different
possible conditions, including different DRAM mapping policies (as presented in
Table 1), different data partitioning and scheduling schemes (i.e., WGH-, IFM-, and
OFM-based scheduling), and different DRAM architectures (e.g., DDR3, SALP-1,
SALP-2, and SALP-MASA). This DSE is important to show that the best solution
that achieves the minimum EDP for each given condition is the same as our design
methodology through (1) effective data partitioning and scheduling, and (2) effective
DRAM data mapping policy.

Table 1 Different
(loop-based) DRAM mapping
policies which are considered
in the DSE. Note, our DRAM
mapping policy is the same as
the Mapping 3

Mapping Inner-most loop to outer-most loop

1 column, subarray, bank, row

2 subarray, column, bank, row

3 column, bank, subarray, row

4 bank, column, subarray, row

5 subarray, bank, column, row

6 bank, subarray, column, row

190 R. V. W. Putra et al.

4 Experimental Evaluations

To evaluate our design methodology, we build the following experimental setup.

DRAM Simulators We use a cycle-accurate DRAM simulator [29] to obtain
the number of cycles for different DRAM access conditions, i.e., row buffer
hit, row buffer miss, row buffer conflict, subarray-level parallelism, and bank-
level parallelism. We also use a real experiments-based DRAM power/energy
simulator [12] to obtain the energy consumption values for different DRAM access
conditions.

DSE Simulator We develop our DSE simulator to find the data partitioning and
scheduling that offer minimum EDP of DRAM accesses, while considering the
network information (e.g., number of layers, data size, etc.), the DRAM access
statistics (e.g., number of cycles and energy consumption), the configuration of a
DL accelerator, and our analytical models on DRAM accesses and EDP estimation.

DL Accelerator and Workload We employ a TPU-like DL accelerator with
reduced size of on-chip memories and systolic array. Details of the DL accelerator
are provided in Table 2. To represent different DRAM architectures, we employ
DDR3 and SALP (i.e., SALP-1, SALP-2, and SALP-MASA). For DRAM mapping
policies, we use different mapping policies shown in Table 1. For the workload, we
use AlexNet [32] with the ImageNet dataset.

4.1 Reduction of DRAM Accesses

Evaluation results for the number of DRAM accesses are shown in Fig. 11. Our
design methodology decreases the number of DRAM accesses over other state-
of-the-art works, e.g., by 12% over the BWA design. These improvements come

Table 2 Configuration of the systolic array-based DL accelerator

Module Description

Systolic array 8 . × 8 of PEs (MAC units)

On-chip memories WGH: 64KB; IFM: 64KB; OFM: 64KB

Memory controller Policy = open row; Scheduler = FCFS

DDR3-1600 Configuration: 2Gb x8

1 channel, 1 rank-per-channel,

1 chip-per-rank, 8 banks-per-chip

SALP Configuration: 2Gb x8

1 channel, 1 rank-per-channel,

1 chip-per-rank, 8 banks-per-chip,

8 subarrays-per-bank

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 191

Caffeine
SmartShuttle
BWA
ROMANet

100000
1000

10
0.1

0.001

foreb
mu

N

se ss eccA
MARD

[1
03]

(lo
g)

Layers of the network

Our method

Our design methodology can achieve less number of DRAM accesses
in each layer of a network as compared to other techniques.

Fig. 11 Experimental results for the number of DRAM accesses on AlexNet under DDR3-1600
DRAM configuration, using Caffeine [68], SmartShuttle [36], Bus-Width Aware (BWA) [62], and
our methodology (adapted from [51]). Note, CONV denotes the convolution processing, and FC
denotes the fully connected processing

from the effective data partitioning and scheduling that are found using our DSE,
which can be associated with several reasons. First, our analytical model for
DRAM accesses reduces redundant accesses for the overlapping data. Second,
our DSE considers more possible scheduling schemes than other works, i.e., by
observing WGH-, IFM-, and OFM-based reuse scheduling. Therefore, our design
methodology employs a wider search space than other works, as it considers a more
detailed analytical model as well as more data partitioning and scheduling schemes,
which lead to a higher possibility of finding less number of DRAM accesses. These
results show that our methodology offers reductions of the DRAM accesses on a
layer-wise basis, which is in-line with the defined analytical model. Furthermore,
these results also emphasize that the adaptive scheduling scheme can achieve the
lowest DRAM accesses compared to the fixed one.

4.2 Impact of Different DRAM Mapping Policies on EDP

Our DSE investigates different possible scheduling schemes, such as fixed schedul-
ing (i.e., either WGH-, IFM-, or OFM-based reuse scheduling) and adaptive
scheduling. The experimental results suggest that the adaptive one always offers the
lowest DRAM accesses, thus in-line with the observation in Sect. 4.1. Evaluation
results for the impact of different DRAM mapping policies on EDP under adaptive
scheduling and different DRAM architectures, are shown in Fig. 12. From these
results, we make the following key observations.

• Observation 1 : Mapping-3 (our DRAM mapping policy) achieves the lowest
EDP across different network layers and different DRAM architectures. It
indicates that our mapping policy is the most effective DRAM data mapping

192 R. V. W. Putra et al.

Mapping-3 (our DRAM mapping policy in our methodology) obtains
the lowest EDP values than other mapping policies.

0.001

0.1

10

1000

100000

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

CONV1 CONV2 CONV3 CONV4 CONV5

Mapping-1 and Mapping-3 obtain
comparable EDP values to each other.

Mapping-2 and Mapping-5 obtain worse
EDP values than other mapping policies.

)gol(]s*J[
PDE

0.001

0.1

10

1000

100000

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

DD
R3

SA
LP

-1

SA
LP

-2

SA
LP

-M
AS

A

FC6 FC7 FC8 Total

Mapping 1

Mapping 2

Mapping 3

Mapping 4

Mapping 5

Mapping 6

1

4

Layers of the network

(Our method)

2 3

-

-

-

-

-

-

Fig. 12 Experimental results for the EDP of DRAM accesses on AlexNet under adaptive
scheduling for different DRAM mapping policies and across different DRAM architectures, i.e.,
DDR3, SALP-1, SALP-2, and SALP-MASA (adapted from [49])

policy for different possible conditions that any DL accelerators may face. The
reason is that, based on Table 1, Mapping-3 orderly prioritizes placing data on:

(1) different columns in the same row of a bank, hence maximizing row buffer
hits in both DDR3 and SALP,

(2) different banks in the same chip, hence maximizing bank-level parallelism in
both DDR3 and SALP,

(3) different subarrays in the same bank, hence maximizing subarray-level
parallelism in SALP, but leading to row buffer conflicts in DDR3, and

(4) different rows in the same subarray, hence causing row buffer conflicts in
both DDR3 and SALP.

Furthermore, any DL accelerators with any scheduling schemes can also benefit
from our mapping policy to optimize their DRAM access latency and energy.
Our mapping policy improves the EDP by up to 96% for DDR3 and 80%–94%
for SALP, as compared to other mapping policies.

• Observation 2 : Mapping-2 and Mapping-5 obtain worse EDP values across
different layers of the network and different DRAM architectures, as compared to
other mapping policies. The reason is that Mapping-2 and Mapping-5 prioritize

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 193

placing data on different subarrays of the same bank. These mapping policies
exploit subarray-level parallelism in SALP, but cause row buffer conflicts in
DDR3, thereby consuming higher access latency and energy than row buffer hits
and bank-level parallelism.

• Observation 3 : Mapping-1 and Mapping-3 obtain comparable EDP values
since they prioritize placing data on different columns of the same row, which
leads to row buffer hits in both DDR3 and SALP. The difference between
Mapping-1 and Mapping-3 is that Mapping-1 prioritizes exploiting subarray-
level parallelism than bank-level parallelism, while Mapping-3 is the opposite.
Therefore, Mapping-1 incurs higher EDP than Mapping-3.

• Observation 4 : Generally, employing SALP architectures provides EDP
improvements over DDR3 due to latency and energy reduction when exploiting
subarray-level parallelism. The EDP improvements achieved by employing
SALP as compared to DDR3 are 0.6%–3.9% (for Mapping-1), 19.9%–81%
(for Mapping-2), 0.6%–3.9% (for Mapping-3), 0.5%–1.4% (for Mapping-4),
19.8%–81.8% (for Mapping-5), and 3.2%–7.6% (for Mapping-6).

4.3 Further Discussion

To further improve the energy efficiency of DL-based systems, a DNN model may
go through a compression framework for achieving a compact model that can
be deployed in tightly constrained embedded devices [17]. Recently, it has been
observed that the structured pruning techniques are highly desirable due to their
feasibility to be deployed on DL hardware accelerators [3, 22]. Towards this, our
design methodology can be combined with the state-of-the-art structured pruning
techniques, like the AutoML for Model Compression (AMC) [22], to efficiently
expedite the sparse DNN model, thereby further reducing the DRAM access energy
for efficient embedded DL systems [51].

5 Conclusion

In this chapter, we discuss our design methodology to optimize the DRAM access
energy for embedded DL systems. It employs a DSE that incorporates our analytical
model for DRAM accesses, to find the effective data partitioning and scheduling
that offer the minimum DRAM accesses. It also employs low latency DRAM
and effective DRAM data mapping policy to ensure that each DRAM request
always incurs minimum latency-per-access and energy-per-access. We also employ
a DSE that incorporates our analytical model for EDP estimation to corroborate
that our design choice (data partitioning, scheduling, and DRAM mapping policy)
always provides minimum EDP of DRAM accesses. In this manner, our design
methodology can determine how the data partitioning, scheduling, and data mapping

194 R. V. W. Putra et al.

in DRAM should be performed for the given DL accelerator and network for
meeting the design constraints of embedded DL systems.

Acknowledgments This work was partly supported by the Indonesia Endowment Fund for Edu-
cation (IEFE/LPDP) Graduate Scholarship Program, Ministry of Finance, Republic of Indonesia,
under Grant PRJ-1477/LPDP.3/2017.

References

1. Achararit, P., Hanif, M.A., Putra, R.V.W., Shafique, M., Hara-Azumi, Y.: APNAS: Accuracy-
and-performance-aware neural architecture search for neural hardware accelerators. IEEE
Access 8, 165319–165334 (2020). https://doi.org/10.1109/ACCESS.2020.3022327

2. Ahmad, H., Arif, T., Hanif, M.A., Hafiz, R., Shafique, M.: SuperSlash: A unified design space
exploration and model compression methodology for design of deep learning accelerators with
reduced off-chip memory access volume. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
39(11), 4191–4204 (2020). https://doi.org/10.1109/TCAD.2020.3012865

3. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural networks. J.
Emerg. Technol. Comput. Syst. 13(3) (2017). https://doi.org/10.1145/3005348

4. Arslan, A.K., Yasar, S., Colak, C.: An intelligent system for the classification of lung cancer
based on deep learning strategy. In: 2019 International Artificial Intelligence and Data
Processing Symposium (IDAP), pp. 1–4 (2019). https://doi.org/10.1109/IDAP.2019.8875896

5. Barata, C., Marques, J.S.: Deep learning for skin cancer diagnosis with hierarchical architec-
tures. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp.
841–845 (2019). https://doi.org/10.1109/ISBI.2019.8759561

6. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127
(2009). https://doi.org/10.1561/2200000006

7. Capra, M., Bussolino, B., Marchisio, A., Shafique, M., Masera, G., Martina, M.: An updated
survey of efficient hardware architectures for accelerating deep convolutional neural networks.
Future Internet 12(7), 113 (2020)

8. Capra, M., Peloso, R., Masera, G., Ruo Roch, M., Martina, M.: Edge computing: A survey on
the hardware requirements in the internet of things world. Future Internet 11(4) (2019). https://
doi.org/10.3390/fi11040100. https://www.mdpi.com/1999-5903/11/4/100

9. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: Diannao: A small-
footprint high-throughput accelerator for ubiquitous machine-learning. In: 19th International
Conference on Architectural Support for Programming Languages and Operating Systems, pp.
269–284 (2014). https://doi.org/10.1145/2541940.2541967

10. Chen, Y.H., Emer, J., Sze, V.: Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In: 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture, pp. 367–379 (2016). https://doi.org/10.1109/ISCA.2016.40

11. Ghose, S., Li, T., Hajinazar, N., Cali, D.S., Mutlu, O.: Demystifying complex workload-DRAM
interactions: An experimental study. Proc. ACM Meas. Anal. Comput. Syst. 3(3) (2019).
https://doi.org/10.1145/3366708

12. Ghose, S., et al.: What your DRAM power models are not telling you: Lessons from a detailed
experimental study. Proc. ACM Meas. Anal. Comput. Syst. 2(3), 38:1–38:41 (2018). https://
doi.org/10.1145/3224419

13. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for
autonomous driving. J. Field Rob. 37(3), 362–386 (2020). https://doi.org/10.1002/rob.21918

14. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited
numerical precision. In: Int. Conf. on Machine Learning (ICML), pp. 1737–1746 (2015)

https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/ACCESS.2020.3022327
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1109/TCAD.2020.3012865
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1145/3005348
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/IDAP.2019.8875896
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1109/ISBI.2019.8759561
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://doi.org/10.3390/fi11040100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://www.mdpi.com/1999-5903/11/4/100
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1145/3366708
https://doi.org/10.1145/3366708
https://doi.org/10.1145/3366708
https://doi.org/10.1145/3366708
https://doi.org/10.1145/3366708
https://doi.org/10.1145/3366708
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1145/3224419
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918
https://doi.org/10.1002/rob.21918

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 195

15. Ha, V.S., Lu, D.N., Choi, G.S., Nguyen, H.N., Yoon, B.: Improving credit risk prediction in
online peer-to-peer (p2p) lending using feature selection with deep learning. In: 2019 21st
International Conference on Advanced Communication Technology (ICACT), pp. 511–515
(2019). https://doi.org/10.23919/ICACT.2019.8701943

16. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: Efficient
inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture, pp. 243–254 (2016). https://doi.org/10.
1109/ISCA.2016.30

17. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding. Preprint (2015). arXiv:1510.00149

18. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: Reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design, pp. 257–260 (2018). https://doi.
org/10.1109/IOLTS.2018.8474192

19. Hanif, M.A., Khalid, F., Putra, R.V.W., Teimoori, M.T., Kriebel, F., Zhang, J.J., Liu, K.,
Rehman, S., Theocharides, T., Artusi, A., et al.: Robust computing for machine learning-based
systems. In: Dependable Embedded Systems, pp. 479–503. Springer, Cham (2021)

20. Hanif, M.A., Putra, R.V.W., Tanvir, M., Hafiz, R., Rehman, S., Shafique, M.: MPNA: A
massively-parallel neural array accelerator with dataflow optimization for convolutional neural
networks. Preprint (2018). arXiv:1810.12910

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

22. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: AMC: AutoML for model compression
and acceleration on mobile devices. In: The European Conference on Computer Vision, pp.
784–800 (2018)

23. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.:
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2704–2713
(2018). https://doi.org/10.1109/CVPR.2018.00286

24. Jain, A.K., Kumar, S., Tripathi, A., Gaitonde, D.: Sparse deep neural network acceleration
on HBM-enabled FPGA platform. In: 2021 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7 (2021). https://doi.org/10.1109/HPEC49654.2021.9622804

25. Jiang, W., He, Z., Zhang, S., Zeng, K., Feng, L., Zhang, J., Liu, T., Li, Y., Zhou, J., Zhang,
C., et al.: FleetRec: Large-scale recommendation inference on hybrid GPU-FPGA clusters. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 3097–3105 (2021)

26. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M.,
Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, W., Hagmann, R.,
Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan,
A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller,
K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda,
N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham,
M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle,
E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., Yoon, D.H.: In-datacenter performance
analysis of a tensor processing unit. In: 2017 ACM/IEEE 44th Annual Int. Symp. on Computer
Architecture, pp. 1–12 (2017). https://doi.org/10.1145/3079856.3080246

27. Kaskavalci, H.C., Gören, S.: A deep learning based distributed smart surveillance architecture
using edge and cloud computing. In: 2019 International Conference on Deep Learning and
Machine Learning in Emerging Applications (Deep-ML), pp. 1–6 (2019). https://doi.org/10.
1109/Deep-ML.2019.00009

https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.23919/ICACT.2019.8701943
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/IOLTS.2018.8474192
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1109/HPEC49654.2021.9622804
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009
https://doi.org/10.1109/Deep-ML.2019.00009

196 R. V. W. Putra et al.

28. Kim, Y., Seshadri, V., Lee, D., Liu, J., Mutlu, O.: A case for exploiting subarray-level
parallelism (SALP) in DRAM. In: 2012 39th Annual International Symposium on Computer
Architecture, pp. 368–379 (2012). https://doi.org/10.1109/ISCA.2012.6237032

29. Kim, Y., et al.: Ramulator: A fast and extensible DRAM simulator. IEEE Comput. Archit. Lett.
15(1), 45–49 (2016). https://doi.org/10.1109/LCA.2015.2414456

30. Ko, J.H., Na, T., Amir, M.F., Mukhopadhyay, S.: Edge-host partitioning of deep neural
networks with feature space encoding for resource-constrained internet-of-things platforms. In:
2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance,
pp. 1–6 (2018). https://doi.org/10.1109/AVSS.2018.8639121

31. Koppula, S., Orosa, L., Yağlıkçı, A.G., Azizi, R., Shahroodi, T., Kanellopoulos, K., Mutlu,
O.: Eden: Enabling energy-efficient, high-performance deep neural network inference using
approximate DRAM. In: 52nd Annual IEEE/ACM Int. Symp. on Microarchitecture, pp. 166–
181 (2019). https://doi.org/10.1145/3352460.3358280

32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

33. Kwon, H., Samajdar, A., Krishna, T.: Maeri: Enabling flexible dataflow mapping over
DNN accelerators via reconfigurable interconnects. In: 23th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 461–475
(2018). https://doi.org/10.1145/3173162.3173176

34. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
35. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets.

Preprint (2016). arXiv:1608.08710
36. Li, J., Yan, G., Lu, W., Jiang, S., Gong, S., Wu, J., Li, X.: SmartShuttle: Optimizing off-chip

memory accesses for deep learning accelerators. In: 2018 Design, Automation Test in Europe
Conference Exhibition, pp. 343–348 (2018). https://doi.org/10.23919/DATE.2018.8342033

37. Li, Z., Zhang, Y., Wang, J., Lai, J.: A survey of FPGA design for AI era. J. Semicond. 41(2),
021402 (2020). https://doi.org/10.1088/1674-4926/41/2/021402

38. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: A flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium
on High Performance Computer Architecture, pp. 553–564 (2017). https://doi.org/10.1109/
HPCA.2017.29

39. Maass, W.: Networks of spiking neurons: The third generation of neural network models.
Neural Networks 10(9), 1659–1671 (1997). https://doi.org/10.1016/S0893-6080(97)00011-
7

40. Marchisio, A., Bussolino, B., Colucci, A., Martina, M., Masera, G., Shafique, M.: Q-CapsNets:
A specialized framework for quantizing capsule networks. In: 2020 57th ACM/IEEE Design
Automation Conference

41. Marchisio, A., Hanif, M.A., Martina, M., Shafique, M.: Prunet: Class-blind pruning method for
deep neural networks. In: 2018 Int. Joint Conf. on Neural Networks, pp. 1–8 (2018). https://
doi.org/10.1109/IJCNN.2018.8489764

42. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image
segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI),
1–1 (2021). https://doi.org/10.1109/TPAMI.2021.3059968

43. Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classification using
deep learning neural networks for brain tumors. Future Comput. Inf. J. 3(1), 68–71 (2018).
https://doi.org/10.1016/j.fcij.2017.12.001. https://www.sciencedirect.com/science/article/pii/
S2314728817300636

44. Nvidia: Nvidia jetson nano. https://developer.nvidia.com/embedded/jetson-nano-developer-kit
45. Olgun, A., Luna, J.G., Kanellopoulos, K., Salami, B., Hassan, H., Ergin, O., Mutlu, O.: Pidram:

A holistic end-to-end FPGA-based framework for processing-in-DRAM. Preprint (2021).
arXiv:2111.00082

https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 197

46. Palossi, D., Loquercio, A., Conti, F., Flamand, E., Scaramuzza, D., Benini, L.: Ultra low power
deep-learning-powered autonomous nano drones. CoRR abs/1805.01831 (2018). http://arxiv.
org/abs/1805.01831

47. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer,
J., Keckler, S.W., Dally, W.J.: SCNN: An accelerator for compressed-sparse convolutional
neural networks. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture, pp. 27–40 (2017). https://doi.org/10.1145/3079856.3080254

48. Park, K., Han, Y., Kim, L.S.: Deferred dropout: An algorithm-hardware co-design DNN
training method provisioning consistent high activation sparsity. In: 2021 IEEE/ACM
International Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/
ICCAD51958.2021.9643433

49. Putra, R.V.W., Hanif, M.A., Shafique, M.: DRMap: A generic DRAM data mapping policy for
energy-efficient processing of convolutional neural networks. In: 2020 57th ACM/IEEEDesign
Automation Conference, pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218672

50. Putra, R.V.W., Hanif, M.A., Shafique, M.: Respawn: Energy-efficient fault-tolerance for
spiking neural networks considering unreliable memories. In: 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/
ICCAD51958.2021.9643524

51. Putra, R.V.W., Hanif, M.A., Shafique, M.: ROMANet: Fine-grained reuse-driven off-chip
memory access management and data organization for deep neural network accelerators. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 29(4), 702–715 (2021). https://doi.org/10.1109/
TVLSI.2021.3060509

52. Putra, R.V.W., Hanif, M.A., Shafique, M.: SparkXD: A framework for resilient and energy-
efficient spiking neural network inference using approximate DRAM. In: 2021 58th
ACM/IEEE Design Automation Conference, pp. 379–384 (2021). https://doi.org/10.1109/
DAC18074.2021.9586332

53. Putra, R.V.W., Hanif, M.A., Shafique, M.: SoftSNN: Low-cost fault tolerance for spiking neural
network accelerators under soft errors. Preprint (2022). arXiv:2203.05523

54. Putra, R.V.W., Shafique, M.: FSpiNN: An optimization framework for memory-and energy-
efficient spiking neural networks. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(11),
3601–3613 (2020). https://doi.org/10.1109/TCAD.2020.3013049

55. Putra, R.V.W., Shafique, M.: Q-SpiNN: A framework for quantizing spiking neural networks.
In: 2021 International Joint Conference on Neural Networks, pp. 1–8 (2021). https://doi.org/
10.1109/IJCNN52387.2021.9534087

56. Putra, R.V.W., Shafique, M.: SpikeDyn: A framework for energy-efficient spiking neural
networks with continual and unsupervised learning capabilities in dynamic environments. In:
2021 58th ACM/IEEE Design Automation Conference, pp. 1057–1062 (2021). https://doi.org/
10.1109/DAC18074.2021.9586281

57. Putra, R.V.W., Shafique, M.: lpSpikeCon: Enabling low-precision spiking neural network
processing for efficient unsupervised continual learning on autonomous agents. Preprint
(2022). arXiv:2205.12295

58. Putra, R.V.W., Shafique, M.: tinySNN: Towards memory-and energy-efficient spiking neural
networks. Preprint (2022). arXiv:2206.08656

59. Shafique, M., Marchisio, A., Putra, R.V.W., Hanif, M.A.: Towards energy-efficient and secure
edge ai: A cross-layer framework ICCAD special session paper. In: 2021 IEEE/ACM
International Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/
ICCAD51958.2021.9643539

60. Shafique, M., Naseer, M., Theocharides, T., Kyrkou, C., Mutlu, O., Orosa, L., Choi, J.: Robust
machine learning systems: Challenges, current trends, perspectives, and the road ahead. IEEE
Des. Test 37(2), 30–57 (2020)

61. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: A tutorial
and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.
2761740

http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740

198 R. V. W. Putra et al.

62. Tewari, S., Kumar, A., Paul, K.: Bus width aware off-chip memory access minimization for
CNN accelerators. In: 2020 IEEE Computer Society Annual Symposium on VLSI, pp. 240–
245 (2020). https://doi.org/10.1109/ISVLSI49217.2020.00051

63. Wei, X., Yu, C.H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang, Y., Cong, J.: Automated
systolic array architecture synthesis for high throughput CNN inference on FPGAs. In: 2017
54th ACM/EDAC/IEEE Design Automation Conference, pp. 1–6 (2017). https://doi.org/10.
1145/3061639.3062207

64. Yamada, Y., Sano, T., Tanabe, Y., Ishigaki, Y., Hosoda, S., Hyuga, F., Moriya, A., Hada, R.,
Masuda, A., Uchiyama, M., Jobashi, M., Koizumi, T., Tamai, T., Sato, N., Tanabe, J., Kimura,
K., Ojima, Y., Murakami, R., Yoshikawa, T.: A 20.5 tops multicore soc with DNN accelerator
and image signal processor for automotive applications. IEEE J. Solid State Circ. 55(1), 120–
132 (2020). https://doi.org/10.1109/JSSC.2019.2951391

65. Ying, J.J.C., Huang, P.Y., Chang, C.K., Yang, D.L.: A preliminary study on deep learning for
predicting social insurance payment behavior. In: 2017 IEEE International Conference on Big
Data, pp. 1866–1875 (2017). https://doi.org/10.1109/BigData.2017.8258131

66. Zanc, R., Cioara, T., Anghel, I.: Forecasting financial markets using deep learning. In: 2019
IEEE 15th International Conference on Intelligent Computer Communication and Processing,
pp. 459–466 (2019). https://doi.org/10.1109/ICCP48234.2019.8959715

67. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator
design for deep convolutional neural networks. In: ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 161–170 (2015). https://doi.org/10.1145/2684746.
2689060

68. Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., Cong, J.: Caffeine: Toward uniformed
representation and acceleration for deep convolutional neural networks. IEEE Trans. Comput.
Aided Des. Integr. Circ. Syst. 38(11), 2072–2085 (2019). https://doi.org/10.1109/TCAD.2017.
2785257

69. Zhang, D., Liu, S.E.: Top-down saliency object localization based on deep-learned features. In:
2018 11th International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics, pp. 1–9 (2018). https://doi.org/10.1109/CISP-BMEI.2018.8633218

70. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: ThUnderVolt: Enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep learning accelerators. In:
Proceedings of the 55th Annual Design Automation Conference, DAC ’18. Association for
ComputingMachinery, NewYork, NY, USA (2018). https://doi.org/10.1145/3195970.3196129

71. Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., Guo, Q., Chen, T., Chen, Y.: Cambricon-
x: An accelerator for sparse neural networks. In: 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 1–12 (2016). https://doi.org/10.1109/MICRO.2016.
7783723

https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723

In-Memory Computing for AI
Accelerators: Challenges and Solutions

Gokul Krishnan, Sumit K. Mandal, Chaitali Chakrabarti, Jae-sun Seo,
Umit Y. Ogras, and Yu Cao

1 Introduction

1.1 Machine Learning in Modern Times

Machine learning (ML) or artificial intelligence (AI) has made an enormous impact
on the society. ML algorithms, such as deep neural networks (DNNs), achieve accu-
racy that exceeds human-level perception for a variety of applications, including
computer vision, natural language processing, and medical imaging [19, 59, 63].
The popularity of ML algorithms has been driven by two main sources. First, the
availability of big datasets for various applications, such as image classification,
object detection, and segmentation [28, 59, 61]. Second, the increased computation
power, provided by the next generation machine learning hardware accelerators and
general purpose server platforms, has made both training and inference of large ML
models more accessible.

Figure 1 shows the taxonomy of ML algorithms, which can be broadly classified
into supervised and unsupervised learning. Unsupervised learning refers to the
process of extracting features from a distribution without any annotation for the data.
Applications of unsupervised learning include selecting samples from a distribution,

G. Krishnan
Arizona State University, Tempe, AZ, USA
e-mail: gkrish19@asu.edu

S. K. Mandal · U. Y. Ogras
University of Wisconsin-Madison, Madison, WI, USA
e-mail: skmandal@wisc.edu; uogras@wisc.edu

C. Chakrabarti · J.-s. Seo · Y. Cao (�)
School of ECEE, Arizona State University, Tempe, AZ, USA
e-mail: chaitali@asu.edu; jseo28@asu.edu; Yu.Cao@asu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_7

199

 31368 2385 a 31368 2385 a

 885 49096
a 885 49096 a

mailto:gkrish19@asu.edu
mailto:gkrish19@asu.edu

 885 52970 a 885 52970
a

mailto:skmandal@wisc.edu
mailto:skmandal@wisc.edu

 9174 52970 a 9174 52970 a

mailto:uogras@wisc.edu
mailto:uogras@wisc.edu

 885
56845 a 885 56845 a

mailto:chaitali@asu.edu
mailto:chaitali@asu.edu

 7867 56845 a 7867 56845
a

mailto:jseo28@asu.edu
mailto:jseo28@asu.edu

 14535
56845 a 14535 56845 a

mailto:Yu.Cao@asu.edu
mailto:Yu.Cao@asu.edu
mailto:Yu.Cao@asu.edu
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7
https://doi.org/10.1007/978-3-031-19568-6_7

200 G. Krishnan et al.

Machine
Learning

Unsupervised

Clustering

PCA

Autoencoders

Gaussian
Potential
Function

Kohonen
Maps

Reinforcement
Learning

Supervised

Classical

Markov
Chains

Decision
Trees

SVM

MLE

Boltzmann
Machine

Simulated
Annealing

Deep
Learning

MLP

CNN

RNN

LSTM

GNN/GCN

Neural Turing
Machines

Fig. 1 Taxonomy of machine learning showing different types of learning and the associated
techniques

learning to denoise data, and clustering data into different groups. The unsupervised
learning algorithm aims to find the most optimal representation of the data. The
optimal representation preserves maximum information about the input data x,
while utilizing constraints to ensure the representation is simpler than the data itself.
The three main ways of defining the simpler representation are lower dimensional
representation, sparse representation, and independent representation [64, 86].
Popular unsupervised learning techniques include clustering, principal component
analysis (PCA), autoencoders, Gaussian potential functions, etc.

Supervised learning deals with the ML model being trained with a set of
labelled training set and testing it with a labelled testing set. Supervised learning
can be classified into two types, classical approaches and deep learning. Classical
approaches focus on conventional techniques that utilize a probabilistic model to
determine the next state based on a set of parameters. Some of the popular classical
techniques include Markov chains, decision trees, support vector machines (SVM),
and maximum likelihood estimation (MLE), among others [23, 26, 48, 84]. But clas-
sical techniques suffered from several drawbacks including lack of generalization,
difficulty in scaling, and the need for significant data engineering for each algorithm.

Deep learning algorithms are built on top of the classical techniques and resolve
the drawbacks within them. In this chapter, we focus on the deep learning techniques
for supervised learning. Convolutional neural networks (CNNs) are the most
popular deep learning algorithm due to their ability to perform exceedingly well

In-Memory Computing for AI Accelerators: Challenges and Solutions 201

Input Feature Map Output Feature Map

KernelKernel

Hidden
Layer

Input
Layer

Output
Layer

(b)(a)

Fig. 2 (a) Convolution operation within a CNN consisting of the input feature map (IFM), kernel,
and the output feature map (OFM). The kernel window slides over the IFM to generate the OFM
and (b) fully connected (FC) layer in a CNN. Each neuron within the FC layer is connected to a
neuron in the subsequent layer. The edges represent weights of the FC layer

for a variety of machine learning tasks, such as computer vision, object detection,
and object segmentation. In addition, recurrent neural networks (RNNs) have been
very effective in processing temporal data, while graph convolutional networks
(GCNs) have combined both graphs and neural networks for a wide variety of
applications. We will discuss the recent advancements in CNNs, RNNs, and GCNs
with focus on structures, training methods, and execution efficiency for both training
and inference operations. Conventional CNNs consist of a set of layers connected
in a sequential manner or with skip connections. In addition to convolutional layers,
ReLU, pooling, and batch-normalization are utilized for better performance.

Figure 2 shows the typical structure of a convolution and fully connected layer.
The sequential layers usually consists of a stack of convolution (Conv) layers
that perform feature extraction from the input. Examples of Conv layer kernels
include 7. ×7, 5. ×5, 3. ×3, and 1. ×1. In addition, depth-wise convolutions proposed
in MobileNet [32] break down a given N. ×N convolution into two parts. First, an
N. ×1 is performed, and the result is then run through a 1. ×N convolution. Depth-
wise convolution results in better accuracy and lower hardware complexity. Pooling
layers are utilized periodically to reduce the feature map size and in turn truncate
noisy input. Finally, a set of classifier layers or fully connected (FC) layers are
utilized to perform classification on the extracted features. The Conv and FC layers
have a set of weights that are trained to achieve the best accuracy. Popular CNN
structures include AlexNet [59], GoogleNet [101], ResNet [29], DenseNet [34],
MobileNet [32], and SqueezeNet [35]. CNNs such as DenseNet and ResNet feature
skip connections from prior layers that result in a highly branched structure. The
skip connections aim to improve the feature extraction process and are present
within the Conv layers only.

On the other hand, conventional CNNs suffer from a wide range of drawbacks,
including over-parameterization [21, 49, 51], higher hardware cost in training and
inference, and vanishing gradient problem, among others. Network architecture

202 G. Krishnan et al.

search (NAS) was introduced to automatically search the optimal neural network
architecture based on the target design point. The design point is determined by
the target application. For example, higher accuracy, better generalization, higher
hardware efficiency, lower memory access, etc. are some of the popular design
points used in NAS. Some of the popular techniques proposed include NasNet [117],
FBNet [105], AmoebaNet [85], PNAS [66], ECONas [115], and MNasNet [102],
among others.

RNN is also a popular deep learning technique, which provides an efficient
solution to model data with temporal or sequential structure and varying length
inputs and outputs, across different applications [43, 62, 100]. RNNs process
sequential data one element at a time utilizing a connectionist model with the ability
to selectively pass information. Through this, RNNs model input and/or output data
consisting of a sequence of elements that are dependent. Furthermore, RNNs can
simultaneously model sequential and time dependencies at different scales. RNNs
utilize a feedforward network that utilizes the edges that span adjacent time steps,
introducing time to the model. RNNs do not have cycles among conventional edges,
while edges that connect adjacent time steps, called recurrent edges, can form
cycles. Modern RNN architectures can be classified into two main categories. Long
short-term memory (LSTM) introduces the memory cell, a unit of computation that
replaces traditional nodes in the hidden layer of a network [30]. The other variant of
RNNs includes bi-directional RNNs (BRNNs) proposed in [90].

Finally, while CNNs and RNNs effectively capture the hidden patterns within
Euclidean data, an increasing number of applications utilize graphs to represent
data. For example, for e-commerce, a graph-based learning system can exploit the
interactions between users and products to make highly accurate recommendations.
However, the complexity of graphs and the underlying irregularity pose significant
challenges to existing DNNs. Hence to address this, graph neural networks (GNNs)
were introduced. GNNs can be categorized into three types: recurrent GNNs
(RecGNNs) [24, 27, 89], convolutional GNNs (CGNNs) [16, 67, 106], and graph
autoecnoders (GAEs) [18, 70, 95]. RecGNNs aim to learn node representations
with recurrent neural architectures. RecGNNs assume that a node within the graph
constantly exchanges information with the neighboring nodes until a stable equilib-
rium is reached. Convolutional GNNs (CGNNs) were introduced to generalize the
operation of convolution to graph data. CGNNs utilize an aggregation of a given
node’s features and the features from neighboring nodes. Furthermore, CGNNs
stack multiple graph convolution layers to extract high-level node representation.
Finally, GAEs map nodes into a latent feature space and decode the graph infor-
mation from latent representations. GAEs are used to learn network embeddings
or generate new graphs. A low-dimensional vector is used to represent the node
that preserves the node’s topological information. GAEs learn network embeddings
using an encoder to extract network embeddings. A decoder is used to enforce
network embeddings to preserve the graph topological information (PPMI matrix
and the adjacency matrix).

In-Memory Computing for AI Accelerators: Challenges and Solutions 203

1.2 Hardware Implications of DNNs

The diverse structures of state-of-the-art DNNs spanning across CNNs, RNNs, and
GCNs result in significant compute and memory requirements. The higher accuracy
achieved by these ML models requires increased computational complexity and
model size, which in turn requires more memory to store both the weights and
activations. In addition to memory and computation, the total volume of on-chip
data movement is increased due to the increased model size and complexity. For
example, ResNet-50 [29] for the ImageNet dataset [59] requires 50MB of memory
and needs to perform 4 GFLOPs for each inference. Simultaneously, DenseNet-
121 [34] for ImageNet requires 110MB of memory and required 8GFLOPs for
each inference. Furthermore, due to limited on-chip memory capacity, conventional
architectures that separate memory and computation result in a significant number
of external memory access. The increased off-chip memory access leads to reduced
energy efficiency and performance. The average cost of an external memory access
is 1000. × higher than the energy required to perform computations [31]. To further
understand the impact on the hardware platform, we analyze the total energy spent
in performing the inference for both VGG-16 and ResNet-50 using conventional
von-Neumann architectures. A floating-point 32-bit (FP-32) multiplication results
in 3.2pJ, and an FP-32 add requires 0.9pJ in the 45-nm technology node [25].
Therefore, only accounting for computations, to perform inference for one image,
65mJ of energy is consumed using the VGG-16 CNN, while ResNet-50 takes 16mJ.
Scaling the computation energy up for 1000 inference performs, VGG-16 takes
65J while ResNet-50 consumes 16J of energy. Through this, we conclude that the
increased accuracy achieved in DNNs results in higher computation complexity,
increased memory requirements, higher off-chip memory access, and lower energy
efficiency.

In this chapter, we discuss an alternative to conventional von-Neumann archi-
tecture, in-memory computing (IMC), that provides higher energy efficiency,
better performance, and reduced off-chip memory access. In-memory computing
(IMC) has emerged as a promising method to address the memory access, energy
efficiency, and performance bottleneck introduced by DNN applications. Both
SRAM and nanoscale non-volatile memory (e.g., resistive RAM or RRAM)-based
IMC hardware architectures provide a dense and parallel structure to achieve high
performance and energy efficiency [17, 22, 39, 47, 52, 56, 92, 96, 97, 103, 108–111].
However, IMC-based AI accelerators also require on-chip communication calling
for an energy-efficient on-chip interconnect. Hence, we detail the different choices
of on-chip interconnect and the impact on the overall performance of the accelerator.
Finally, to perform efficient design space exploration, a quick and efficient simulator
suite is necessary. To this end, this chapter explores the different benchmarking
simulators for IMC architectures.

204 G. Krishnan et al.

2 In-Memory Computing Architectures

In the earlier section, we discussed the hardware implications of modern DNNs,
specifically the memory and computation complexity in von-Neumann archi-
tectures. For example, dense structures like DenseNet perform approximately
.2.7 × 107 off-chip memory accesses to process a frame of an image [34].
The increased number of off-chip memory access degrades energy efficiency of
the overall system. In-memory computing (IMC) architectures offer a promising
alternative to conventional von-Neumann architectures. Figure 3 shows the generic
block diagram of an IMC architecture with RRAM/SRAM memory cells. IMC
utilizes either analog- or digital-domain computation to perform the multiply-
and-accumulate (MAC) operations. Specifically, the crossbar-based IMC structure
efficiently combines both memory access and analog-domain computation into a
single unit for the acceleration of DNN workloads. Overall, the enhanced energy
efficiency is attributed to a full-custom design, higher density, and higher memory
bandwidth [52, 78, 92]. Therefore, IMC-based systems are becoming more popular
for implementing compute- and memory-intensive AI applications. In this section,
we will discuss different IMC architectures in detail using both SRAM and RRAM
memory cells.

2.1 RRAM/SRAM-Based IMC Architectures

2.1.1 RRAM Device

RRAM-Based IMC architectures consist of an RRAM memory cell at each cross
point within the IMC crossbar array. RRAM is a two-terminal device with pro-
grammable resistance representing the weights of the neural network and has high
integration density, fast read speed, high memory accessing bandwidth, and good

IMC Crossbar with
RRAM/SRAM CellsNoCIMC Tiles

PE PE PEPE PE PE

PE PE PEPE PE PE

Shift & Add Buffer

MUX

ADC/SA

P2P Interconnect

Pooling Unit Activation

Accumulator Buffer

T T TT T T TT T T T

T T TT T T TT T T T

T TT T TT TT TT T

cigoL lortno
C

Fig. 3 Generic block diagram of an IMC architecture for DNN acceleration. It consists of an array
of IMC tiles connected by an NoC with each tile consisting of a number of IMC arrays

In-Memory Computing for AI Accelerators: Challenges and Solutions 205

compatibility with CMOS fabrication technology. For example, the RRAM device
stack can include a TiN bottom electrode, HfO. 2 mem-resistive switching layer, a
PVD Ti oxygen exchange layer (OEL), and . ∼40 nm TiN top electrode [57, 60].
This specific stack is implemented between the M1 and M2 metallization layers,
using a FEOL-compatible process flow.

Each RRAM cell can be characterized by the number of resistance levels that can
be accessed within them. Broadly, RRAM can be classified into single-level cells
(SLCs) and multi-level cells (MLCs). SLC only has two resistance levels, i.e., they
can store only binary data. On the other hand, MLC cells have multiple resistance
levels that represent higher precision data. The number of available resistance levels
is governed by the ratio of the off resistance (. Roff) to the on resistance (. Ron). The
ratio provides the range of resistances that are accessible for the given RRAM
device. The overall resistance range can be divided into two main states, a low
resistance state (LRS) and a high resistance state (HRS). LRS deals with the lower
spectrum within the resistance band, while the HRS deals with the upper band of
resistance of the RRAM device.

To program the RRAM device, a series of steps need to be followed. First, the
RRAM device is formed by applying a large voltage across the two terminals.
This process breaks the barrier and then allows for the flow of electrons across
the terminals. Next, the RRAM is programmed to the required resistance by passing
a specific current (compliance current) through the two electrodes. Depending on
the compliance current, the RRAM can be programmed at different resistances.
Furthermore, depending on the RRAM device (SLC or MLC), different levels of
resistance can be achieved. Finally, once the RRAM device is programmed, we
can perform a read by applying a voltage across the device electrodes. For the
RRAM device proposed in [57, 60], a read voltage of up to 0.4V can be sustained
by the RRAM device. The application of a higher voltage results in the damage of
the device or goes into the write state, resulting in the change of the programmed
resistance level.

2.1.2 IMC Architecture

Studies involving crossbar architectures have demonstrated that a 100. × to 1000. ×
improvement in energy efficiency is achieved as compared to traditional CPU
and GPU architectures [39, 52, 75, 92, 96, 108, 108, 110]. Figure 3 shows the
block diagram of an IMC architecture with an RRAM/SRAM memory cell. The
architecture consists of an array of IMC tiles connected by a network on chip (NoC).
The architecture also consists of a global pooling unit, nonlinear activation unit,
accumulator, and input/output buffers. A global control logic performs the overall
handling of the blocks within the architecture.

Each tile consists of an array of processing elements (PEs), where each PE is an
IMC crossbar array with either an SRAM or an RRAM cell. Each IMC crossbar
array consists of a set of peripheral circuits that enable the MAC computations.

206 G. Krishnan et al.

Column Multiplexer

ADC

retfihSleveL
dnare vir

D
L

W

BL and SL MUX and Precharge Circuits
redoce

D
M

A
R

R

Shift and Add Circuit

reffu
B

O/I

Fig. 4 Block diagram of an RRAM-based IMC crossbar array. An array of RRAM cells form the
IMC crossbar array. Peripheral circuits such as bitline (BL)/select-line (SL)/column multiplexer
(MUX), precharge circuit, wordline (WL) decoder and driver, buffers, level shifters, ADC, and
shift and add circuit complete the RRAM-based IMC

Figure 4 shows the generic block diagram for a single RRAM-based IMC
crossbar array. In the case of RRAM IMC, a transistor connects the gate to
the wordline (WL) of the IMC crossbar array [57]. For the SRAM-based IMC
with a conventional 6T structure, the WL connects to the access transistors. The
IMC crossbar arrays consist of a wordline (WL) decoder, WL driver, a column
multiplexer, analog-to-digital converter (ADC) or a sense amplifier, shifter and add
circuit, control logic, and input/output buffers. The WL decoder turns on and off
the WL for the IMC crossbar array. Meanwhile, the WL driver and level shifter
are used to ensure that the driver can turn on the memory cell. Next, for an N. ×N
IMC crossbar array, M columns are shared across the read-out circuit. The read-out
circuit consists of the ADC, shift and add circuit, and the precharge circuit for the
read operation. To enable the sharing of M columns, a column multiplexer is used.
Finally, a custom control logic is utilized to drive the control signals during the
operation of the IMC crossbar array. We will now go over the operation for both the
SRAM- and RRAM-based IMC architectures. First, we will detail the working of
the RRAM-based IMC architecture. Figure 4 shows the generic block diagram for
a single RRAM-based IMC crossbar array. The RRAM devices are programmed by
connecting the two terminals to a given voltage. To facilitate this, the terminals are

In-Memory Computing for AI Accelerators: Challenges and Solutions 207

connected to the bitline (BL) and the select-line (SL). By applying a voltage across
the BL and the SL, forming, programming, and read operations are performed in
a cell-by-cell fashion. During the write state of the IMC, each cell is chosen, and
then the write is performed. During the compute state, the RRAM undergoes the
read operation. Two kinds of read-out are performed, parallel and serial. During the
parallel read-out, all/multiple WLs are turned on simultaneously, and the output is
accumulated across the BL. Two kinds of input schemes are employed for single-
and multi-bit inputs. The first method uses a digital-to-analog converter (DAC) to
convert the input vector to an analog voltage and performs the computation in the
charge domain [92]. The second method is to perform bit-serial computing, where
each bit in the input vector is computed one at a time. The bit significance for each
input vector is handled by using a shift and add circuit [52, 75, 110].

Depending on the resistance stored in the RRAM, an output current/charge is
generated by the product of the voltage and resistance (conductance). This operation
is analogous to multiply with the MAC. This current/charge is then accumulated
across all rows for a given column to perform addition in the MAC. In the case
of the serial read-out, a row-wise access of the IMC array is performed for MAC
computations. Overall, the final MAC output is generated by accumulating across
all rows of the IMC crossbar array.

Figure 5 shows the generic block diagram for a single SRAM-based IMC
crossbar array. Next, we will discuss the operation for an SRAM-based IMC
architecture [20, 39, 94, 98, 103, 109, 110]. Depending on the SRAM bitcell type
and the degree of parallelism, the IMC design can be largely divided into three
categories [91]: 6T bitcell with parallel compute, 6T bitcell with local compute,
and (6T+extra-T) bitcell with parallel compute. Originally, SRAM-based IMC
architecture employed the 6T bitcell with a parallel computation [45, 112]. The
parallel computation was achieved by turning on all the WLs together to perform
the MAC operations. The WLs are driven by the input vector where a 1 means it
turns on that cell, while a 0 means the cell is turned off. Next, a 6T bitcell with
a local compute structure is utilized where a special compute engine is designed
to perform the MAC operation [98]. Here, the MAC operation is performed in a
row-by-row fashion, similar to the serial read-out in RRAM-based IMC. Finally, in
addition to the 6T cell, extra transistors are added in each bitcell to perform parallel
compute [20, 94, 109]. In addition to the bitcell structure, peripheral circuits such
as precharge circuit, ADCs, write driver, column multiplexer, row decoder, and row
drivers are used.

2.1.3 Challenges with IMC Architectures

IMC architectures provide improved energy efficiency and throughput but suffer
from certain drawbacks. The limited precision with the IMC crossbar array,
specifically the memory cell, and the ADC impact the inference accuracy for
DNNs [15, 50]. In addition, the impact of noise within the analog computation also
adversely impacts the inference accuracy of DNNs.

208 G. Krishnan et al.

Column MUX and Write Drivers

ADC

BL and BLB Precharge and Conditioning Circuit

dnaredoce
D

wo
R

M
A

RS
revir

D
L

W

Shift and Add Circuit

reffu
B

O/I
6T6T 6T6T 6T6T 6T6T 6T6T6T 6T 6T 6T 6T

6T6T 6T6T 6T6T 6T6T 6T6T6T 6T 6T 6T 6T

6T6T 6T6T 6T6T 6T6T 6T6T6T 6T 6T 6T 6T

6T6T 6T6T 6T6T 6T6T 6T6T6T 6T 6T 6T 6T

Fig. 5 Block diagram of an SRAM-based IMC crossbar array. An array of SRAM cells (6T
or 6T+additional circuit) form the IMC crossbar array. Peripheral circuits such as bitline (BL)
and bitline bar (BLB) precharge and conditioning circuits, row decoder and WL driver, column
multiplexers, buffers, write drivers, ADC, and shift and add circuit complete the SRAM-based
IMC

First, we will discuss the challenges with an RRAM-based IMC architecture.
RRAM device suffers from several non-idealities such as limited resistance levels,
device-to-device write variations, stuck at faults, and limited Roff/Ron ratio, posing
a significant challenge to designing reliable RRAM-based IMC architectures [7–
9, 44, 57, 58, 68, 69, 99, 107, 114]. The non-idealities within the RRAM device
result in a deviation of the programmed weights values (resistance value), causing a
significant reduction in post-mapping accuracy for DNNs. Furthermore, the crossbar
structure of the IMC, with its limited array size, requires splitting of the large
convolution (conv) or fully connected (FC) layers into partial operations. Such
partial operation (conv/FC) results in further error due to the limited precision of
the peripheral circuits (ADC and shift and add) of the RRAM-based IMC crossbar.

Several methods have been proposed in prior works to mitigate the post-mapping
accuracy loss for RRAM-based in-memory acceleration of DNNs. Closed-Loop-
on-Device (CLD) and Open-Loop-off-Device (OLD) perform iterative read–verify–
write (R–V–W) operations at the RRAM device till the resistance converges to the
desired value [33, 65]. References [7, 10] utilize variation-aware training (VAT)
based on known device variation (. σ) characterized from RRAM devices, while [68]

In-Memory Computing for AI Accelerators: Challenges and Solutions 209

combines VAT with dynamic precision quantization to mitigate the post-mapping
accuracy loss. In [14], RRAM macro-measurement results that include variability
and noise have been injected during the DNN training process to improve the DNN
accuracy of the RRAM IMC hardware. Reference [79] utilizes a post mapping
training by selecting a random subset of weights and mapping them to an on-chip
memory to recover the accuracy. Meanwhile, [9] utilizes knowledge distillation and
online adaptation for accuracy mitigation. The authors in [9] utilize an SRAM-based
IMC as the parallel network, while the authors in [79] propose to use a register file
and a randomization circuit. At the same time, [69, 99] propose to use a custom
unary mapping scheme by mapping the MSB and LSB of the weights to RRAM
devices based on the individual cell variations and bit significance.

Next, we discuss the challenges associated with SRAM-based IMC architectures.
A compromise between parallelism and reliability is employed for best perfor-
mance. In a conventional 6T SRAM IMC architecture, the parallel computation
is achieved by turning on all or multiple rows. The higher parallelism raises the
critical issue of read disturbance, resulting in the WL voltage to be driven with a
lower voltage [45, 87, 112]. To mitigate this, a reduced parallelism is employed
by exploiting the local compute engine [98]. The reduced parallelism results in
reduced throughput for DNN inference. References [20, 94, 109] propose to utilize
additional transistors that isolate the bitcell and employ parallel computation.
Such a solution comes at the cost of increased area overhead, thus limiting the
density of the SRAM-based IMC architecture. The additional transistor solution
is typically implemented using a resistance or a capacitance. The resistive IMC
method implements a multi-bit MAC operation by utilizing a resistive pull-up/-
down by using transistors [20, 94, 109]. The pull-up/-down characteristics of the
transistors exhibit a nonlinear behavior for the read bitline (RBL) transfer curve
across different voltage ranges, thus having reduced reliability. At the same time,
the capacitive SRAM-based IMC utilized a capacitor per bitcell and utilizes charge
sharing and capacitive coupling to perform the MAC operations [39]. The capacitive
SRAM IMC exhibits a more linear transfer characteristic on the RBL, but at the cost
of a capacitor per bitcell. Finally, the limited precision of the ADC and the noise on
the bitline (BL) requires careful design of the algorithm to achieve best inference
accuracy [87].

3 Interconnect Challenges and Solutions

In the earlier sections, we have discussed that the IMC technique reduces the need
for notoriously power-hungry off-chip memory (e.g., DRAM) accesses. Therefore,
these techniques have a great potential to deliver energy-efficient AI accelerators.
Deep neural networks consist of layer-by-layer operation, i.e., the output to the
kth layer is the input of the (.k + 1)th layer. In IMC-based accelerators, the data
movement (i.e., communication) between the DNN layers is enabled by on-chip
interconnects. Since the number of parameters of the neural networks has grown

210 G. Krishnan et al.

Fig. 6 Comparison of communication volume across different AI workloads

over past ten years as shown in [74], the on-chip communication volume also
increases. We also observe this trend in other emerging AI algorithms, such as graph
convolutional networks (GCNs). Figure 6 shows the total communication volume
(in MB) for different AI algorithms. Increasing communication volume, in turn,
increases energy consumption due to communication which can mask the energy
benefit of IMC technology itself. Therefore, an energy-efficient communication
strategy is required for AI accelerator to compliment the energy benefits of IMC
technology. Indeed, a single technique may not be suitable for all kinds of AI
algorithms as discussed in [53].

Emergence of newer SoC paradigms (beyond monolithic integration) necessi-
tates novel interconnect approaches. Therefore, the rest of this section discusses
various interconnect technologies proposed for different AI algorithms as well
as different types of SoCs. First, we highlight various interconnect techniques
proposed for planar IMC-based SoCs targeting AI acceleration in Sect. 3.1. Then,
we explore different interconnect techniques for monolithic 3D ICs with IMC
technology in Sect. 3.3. After that, we discuss multiple research efforts that target
on-package communication for chiplet-based AI accelerator in Sect. 3.2. A more
comprehensive survey on an efficient on-chip network for DNN accelerator in
general can be found in [80].

3.1 Interconnect for IMC-Based Planar AI Accelerators

There exist several NoC architectures for DNN accelerators. A recent study aims
to maximize local data reuse and reduce data access from DRAM [12]. To this

In-Memory Computing for AI Accelerators: Challenges and Solutions 211

end, a row-stationary data flow is proposed, where filter weights and input feature
maps (ifmap) are reused to minimize movement of ifmaps and filter weights. The
architecture has later been extended to incorporate compact and sparse neural
networks in [13]. In the extended version [13], a hierarchical mesh NoC is
incorporated in the architecture. It consists of 16 PE clusters and 16 global buffer
clusters distributed in an 8. ×2 array. Each PE cluster consists of 12 PEs arranged in
a 3. ×4 array. However, both architectures consider a system with off-chip memory
where frequent data transfer from off-chip to on-chip is required. Therefore, the
NoC optimizations incorporated in these architectures are not applicable for IMC-
based accelerators. ISAAC is one of the first IMC-based DNN accelerators proposed
in the literature [92]. It uses an NoC with concentrated mesh (c-mesh) topology.
However, only one NoC router is connected to each IMC tile, and no special
interconnect optimization is considered in this architecture. Since larger DNNs (e.g.,
DenseNet with 100 layers) may contain 100s of IMC tiles, this architecture may
require 100s of NoC routers, which may not be practical at all.

The growing number of NoC routers increases area as well as on-chip inter-
connect power consumption. To that end, a recent study proposes an optimization
technique to determine the number of NoC routers for a given DNN [52]. The
authors first construct an objective function for communication energy, which
considers the number of activations between two consecutive layers for each layer
as input. Then the objective function is minimized to obtain the number of routers
needed for all layers of the DNN. A scheduling technique is also proposed in this
work to minimize the congestion in the on-chip network. The optimized number
of routers along with the scheduling technique provides up to 78% improvement in
energy-delay product with respect to another DNN accelerator [92]. Although this
work minimizes congestion in the on-chip network with a scheduling technique,
it does not guarantee minimum latency for a given DNN. The authors in [75]
proposed an NoC architecture that guarantees minimum possible communication
latency for a given DNN. However, the proposed NoC architecture is customized
for a single DNN. Therefore, a reconfigurable NoC is also proposed in [75], where
a certain number of routers (determined with handful DNNs known at the design
time) are allocated for each DNN layer. At runtime, if a new (not considered in
the design time) DNN appears, then first the number of routers required for each
DNN layer is computed first. If the number of routers required for a particular
layer is more than the number of available routers on-chip, then the DNN layer will
occupy the maximum number of routers available for that layer. The reconfigurable
NoC shows 60%–80% improvement in communication latency over state-of-the-art
2D-mesh NoC. A communication-aware IMC accelerator for graph convolutional
network (GCN), COIN, is proposed in [76]. In this work, a number of GCN nodes
are implemented in a compute element, and multiple CEs are connected with an
NoC router. The number of NoC routers is obtained by minimizing inter-CE and
intra-CE communication energy. COIN shows up to 105. × improvement in energy
consumption with respect to state-of-the-art GCN accelerator.

212 G. Krishnan et al.

3.2 On-Package Communication for Chiplet-Based AI
Accelerators

The area of monolithic hardware accelerators increases with an increasing number
of parameters of AI algorithms. Higher silicon area of a single monolithic system
reduces the yield, which in turn increases fabrication cost [56]. Chiplet-based
system solves the issue of higher fabrication cost by integrating multiple small
chips (known as chiplets) on a single die. Since the area of each chiplet in the
system is considerably lower than a monolithic chip (for the same AI algorithm), the
yield of the chiplet-based system increases, which reduces the fabrication cost. The
communication between chiplets is performed through network on package (NoP),
as shown in Fig. 7. There are several works in the literature which propose NoP
for chiplet-based system considering different performance objectives (e.g., latency,
energy) [5, 56, 93, 104].

Kite is a family of NoP proposed in [5], which is mainly targeted for general
purpose processors. In this work, three topologies are proposed—Kite-Small,
Kite-Medium, and Kite-Large. First, an objective function is constructed with
combination of the average delay between source and destination, diameter, and
bisection bandwidth of the NoP. Experimental evaluations on synthetic traffic show
that the proposed Kite topologies reduce latency by 7% and improve the peak
throughput by 17% with respect to other well-known interconnect topologies. A
chiplet-based system with 96-core processor, INTACT, is proposed in [104]. The
chiplets are connected through a generic chiplet-interposer interfaces (called as 3D-
plugs in the chapter). 3D-plugs consist of micro-bump arrays. However, both Kite
and INTACT are not specific to AI workloads.

Shao et al. designed and fabricated a 36-chiplet system called SIMBA for deep
learning inference [93]. The chiplets in the system are connected through a mesh
NoP. Ground-referenced signaling (GRS) is used for intra-package communication.
The NoP follows a hybrid wormhole/cut-through flow control. The NoP bandwidth
is 100 GBps/chiplet, and the latency for one hop is 20 ns. Extensive evaluation on
the fabricated chip shows up to 16% speed up compared to baseline layer mapping

Fig. 7 Architecture utilized within SIAM [56] that includes an NoP for on-package communica-
tion, NoC for on-chip communication within each chiplet, and a point-to-point network like H-Tree
for within tile communication

In-Memory Computing for AI Accelerators: Challenges and Solutions 213

for ResNet-50. A simulator for chiplet-based system, SIAM, is proposed in [56],
targeting AI workloads. In this simulator, a mesh topology is considered for NoP.
It is shown that up to 85% of the total system area is contributed by NoP. In this
work, multiple studies were performed by varying NoP parameters. For example,
it is shown that increasing NoP channel width increases energy-delay product of
the NoP for ResNet-110. This phenomenon is demonstrated for systems with 25
and 36 chiplets. However, none of the prior works considered any workload-aware
optimization for the NoP. Therefore, there is ample opportunity of future research
which considers NoP optimization for AI accelerators.

3.3 Interconnect for Monolithic 3D (M3D)-Based AI
Accelerators

With increasing complexity of AI algorithms, the computing resource needed to
execute the algorithms also increases. Therefore, complex AI algorithms require
a large number of processing elements on-chip. For example, DenseNet-110 with
28.1M parameters requires 2184 ReRAM tiles on a single system [56]. Increasing
the number of on-chip tiles results in long-range inter-tile communication. Too
many long-range communications hurt energy efficiency of the system. Therefore,
monolithic 3D (M3D)-based AI accelerators have emerged to facilitate energy-
efficient communication between multiple processing elements. In M3D-based
accelerators, multiple processing elements are placed in each plane. The processors
across different planes are connected using through silicon vias (TSV).

REGENT is such an approach which integrates ReRAM-based IMC tiles as
well as GPU cores on an M3D IC [42]. The processors in the IC are connected
through a 3D-NoC. REGENT is optimized to perform energy-efficient CNN
training. Specifically, a bin-package-based framework is adopted to map CNN
layers on processing cores as well as physically place the cores in such a way
that the overall system meets certain performance objectives. However, REGENT
does not consider hardware implementation of normalization layers. To address
this drawback, the authors in [41] propose a 3D-NoC-enabled IMC-based system
considering normalization layers. Apart from considering hardware implementation
of normalization layers, a performance-thermal aware mapping of CNN layers is
also proposed in this work. The mapping helps to reduce thermal noise which
can degrade the quality of CNN training. As a result, the proposed architecture
is able to perform CNN training which achieves accuracy similar to GPU. The
accelerator proposed in the aforementioned work is further extended in [40] by
considering fewer normalization layers for CNNs. In this work, the authors show
that considering few normalization layers actually improves CNN classification
accuracy, since normalization helps to reduce bias occurring from a weight with
high absolute value. Then, Bayesian optimization is utilized to construct an M3D
system. The communication between multiple processing elements is facilitated by

214 G. Krishnan et al.

a mesh-NoC with XYZ routing. The accelerator proposed in this work reduces the
latency by 15. × compared to conventional GPU-based system. However, all these
works only consider CNN training on IMC-based M3D system.

Recently, several other works proposed IMC-based M3D systems which are
capable of training graph neural networks (GNNs). ReGraphX is a 3D-NoC-
enabled heterogeneous IMC-based system which performs energy-efficient GNN
training [2]. In this system, there are two types of processing elements: V-PEs,
which perform vertex computations, and E-PEs, which perform edge computation
pertaining to a GNN. V-PEs consist of 128. ×128 crossbar arrays, whereas E-PEs
consist of 8. ×8 crossbar arrays. Experimental evaluations show that ReGraphX
reduces energy consumption by 11. × with respect to conventional GPUs. The
authors in [4] show performance and accuracy trade-offs in 3D-NoC-enabled IMC-
based GNN accelerator. In this work, a stochastic rounding technique is proposed
to reduce the precision of ReRAM crossbar arrays. The reduced precision helps
to improve energy efficiency of the accelerator. A DropLayer-aware M3D-based
manycore ReRAM architecture for training GNNs, DARe, is proposed in [3]. The
DropLayer-based technique reduces on-chip communication volume in the system,
which, in turn, prevents communication hotspot. Reduced communication hotspot
improves the energy efficiency of the overall system. The proposed architecture
demonstrates 1.9. × reduction in execution time with respect to ReGraphX [2]. Thus,
M3D-based systems with 3D NoC provide energy-efficient platform for CNN as
well as GNN training.

4 Evaluation Frameworks for IMC-Based AI Accelerator

Since in-memory computing (IMC)-based AI accelerators are recently drawing
more attention due to their energy efficiency, extensive evaluations of power, perfor-
mance and area for the accelerators are required. The pre-silicon evaluations help to
identify the bottleneck of the systems as well as compare the performance with other
systems. There exist multiple simulators that evaluate the performance of systems
with general purpose processing elements. Gem5 is the most popular cycle accurate
simulator which considers various architectural parameters of a system and eval-
uates its performance [6]. Furthermore, a detailed on-chip interconnect simulator,
GARNET, is integrated with Gem5 [1]. However, cycle accurate simulators incur
significant simulation time which is prohibitive for fast design space exploration.
To accelerate the design space exploration process, several prior works proposed
analytical model-based performance evaluation of the underlying system [46, 71–
73, 77, 81]. However, none of these evaluation techniques specifically target AI
applications. AI applications (e.g., DNNs, GNNs) mainly consist of multiply and
accumulate operations which can be implemented as systolic arrays. The authors
in [88] propose a systolic array-based simulator, SCALE-sim, which is able to
evaluate system performance executing DNN workloads. Nonetheless, none of
the aforementioned approaches consider performance evaluation of IMC-based

In-Memory Computing for AI Accelerators: Challenges and Solutions 215

Fig. 8 Block diagram on an IMC benchmarking simulator proposed in [54]. The simulator
consists of a circuit part and an interconnect part that perform system-level benchmarking of IMC
architectures

accelerators (Fig. 8). In the next sections, we will discuss multiple performance
evaluation technique for IMC-based AI accelerators. Table 1 provides a summary
of evaluation frameworks proposed for IMC-based DNN accelerators.

4.1 Evaluation Frameworks for Monolithic AI Accelerators

Multiple researchers have proposed evaluation frameworks for IMC-based AI accel-
erators. NeuroSim is the first simulator which evaluates performance IMC-based AI
accelerators [11]. The performance evaluation metrics in NeuroSim include area,
latency, and power consumption of an IMC system under a given DNN workload.
NeuroSim provides excellent flexibility to users to evaluate the performance of
IMC-based AI accelerators under different system specifications. For example, it
considers conventional CMOS-based memory technology (e.g., SRAM) as well
as emerging non-volatile memory technologies (e.g., ReRAM, STT-MRAM) for
the in-memory compute elements. NeuroSim assumes a tile-based architecture as
proposed in [92]. Specifically, the architecture under consideration in NeuroSim
consists of multiple tiles. The tiles consist of PE’s (processing elements), and PEs
consist of IMC-based crossbar arrays. The lower level components (e.g., buffers,
ADC, multiplexers) in NeuroSim are simulated using the Predictive Technology
Model (PTM) [113], and verified against circuit simulation (e.g., SPICE), reaching
more than 90% accuracy. Furthermore, Peng et al. [83] created an interface between
NeuroSim and popular machine learning frameworks (PyTorch and TensorFlow),
which make NeuroSim more user friendly. One important drawback of NeuroSim
is that it assumes H-Tree-based bus interconnect for inter-tile communication. H-
Tree-based bus interconnect is not practical since it can consume up to 90% total
energy consumption of DNN inference [53]. Network on chip (NoC) is a promising

216 G. Krishnan et al.

Ta
bl
e
1

Su
m
m
ar
y
of
 d
if
fe
re
nt
 e
va
lu
at
io
n
fr
am

ew
or
ks
 f
or
 I
M
C
-b
as
ed
 a
rc
hi
te
ct
ur
es

Si
m
ul
at
or

Sy
st
em

O
pe
ra
tio

n
M
em

or
y
el
em

en
ts

In
te
rc
on
ne
ct

Pe
rf
or
m
an
ce
 m

et
ri
c

C
he
n
et
 a
l.
[1
1]

M
on
ol
ith

ic
In
fe
re
nc
e

SP
IC
E
 m

od
el

B
us
-b
as
ed

A
re
a,
 L
at
en
cy
, E

ne
rg
y

Z
hu

 e
t a
l.
[1
16

]
M
on
ol
ith

ic
In
fe
re
nc
e

B
eh
av
io
ra
l m

od
el

N
oC

A
re
a,
 L
at
en
cy
, E

ne
rg
y

K
ri
sh
na
n
et
 a
l.
[5
4]

M
on
ol
ith

ic
In
fe
re
nc
e

SP
IC
E
 m

od
el

N
oC

A
re
a,
 L
at
en
cy
, E

ne
rg
y

Ja
in
 e
t a
l.
[3
6]

M
on
ol
ith

ic
In
fe
re
nc
e

SP
IC
E
 m

od
el

N
ot
 s
up
po
rt
ed

A
cc
ur
ac
y

Pe
ng

 e
t a
l.
[8
2]

M
on
ol
ith

ic
T
ra
in
in
g

SP
IC
E
 m

od
el

B
us
-b
as
ed

A
re
a,
 L
at
en
cy
, E

ne
rg
y

K
ri
sh
na
n
et
 a
l.
[5
6]

C
hi
pl
et
(2
.5
D
)

In
fe
re
nc
e

SP
IC
E
 m

od
el

N
oC

+
N
oP

A
re
a,
 L
at
en
cy
, E

ne
rg
y

In-Memory Computing for AI Accelerators: Challenges and Solutions 217

alternative for inter-tile communication. Therefore, Krishnan et al. [54] proposed
an evaluation framework for IMC-based AI accelerator which considers cycle
accurate NoC simulation. Specifically, a customized version of BookSim [38] is
integrated with NeuroSim to provide more realistic performance evaluation of AI
accelerators. MNSIM [116] also considers performance evaluation of IMC-based
system to execute AI applications similar to NeuroSim. Apart from evaluating the
system with a baseline architecture, MNSIM also integrates software–hardware co-
design technique in the evaluation framework. Chakraborty et al. proposed GeneiX,
an evaluation framework for crossbar-based IMC accelerator considering the non-
idealities in the memory elements [7]. While hardware performance evaluation
under AI workload is crucial, evaluation of accuracy of the AI workload while
implemented on-chip is also important. Non-idealities in the memory elements
can reduce the accuracy of DNNs. RxNN is a framework where accuracy of a
given DNN workload is evaluated in the presence of memory non-idealities [36].
All these techniques consider performance evaluation of IMC systems executing
DNN inference. However, emerging edge devices perform online learning which
require training the DNN. Therefore, performance evaluation of AI accelerators
while executing DNN inference is not enough.

An evaluation framework for IMC-based AI accelerators with on-chip training
is presented in [82]. In this work, the authors introduce “non-linearity, asym-
metry, device-to-device and cycle-to-cycle variation of weight update into the
python wrapper, and peripheral circuits for error/weight gradient computation in
NeuroSim core” for a given AI workload. The training framework is based on
authors’ prior work [37], where SRAM-based transposable function is proposed.
SRAM-based arrays are able to perform write operations fast while consuming
low energy. Therefore, the weight-gradient computation function is implemented
through SRAM-based arrays as opposed to other non-volatile memory technology.

4.2 Evaluation Framework for Chiplet-Based AI Accelerators

Chiplet-based systems are becoming popular for large-scale integration due to its
yield and fabrication cost benefit. Apart from general purpose workloads, chiplet-
based systems have shown superior energy efficiency for AI workloads too [93].
Therefore, it is important to have an evaluation framework for chiplet-based systems
executing AI workloads. SIAM, as shown in Fig. 9, is such a simulator where
the performance of chiplet-based systems with IMC is evaluated for a given
DNN workload. Specifically, SIAM integrates evaluation of IMC-based compute
elements, on-chip interconnect within a chiplet and on-package communication
between chiplets. This simulator utilizes model-based as well as cycle-accurate
simulation components to evaluate system performance for a wide range of DNNs.
SIAM automatically maps DNN workloads into multiple chiplets with a given
mapping algorithm. The simulation time taken by SIAM is low compared to cycle-
accurate simulators. For example, performance evaluation of a chiplet-based system

218 G. Krishnan et al.

C1 C2 C3C1 C2 C3
R R RR R R

C4 C5 C6C4 C5 C6
R R RR R R

C7 C8 C9C7 C8 C9
R R RR R R

DRAM

Accumulator Buffer

C1 C2 C3
R R R

C4 C5 C6
R R R

C7 C8 C9
R R R

DRAM

Accumulator Buffer
IMC Chip Mode
NoP Frequency
Chiplet Size
Chiplet Count
IMC Mapping

Tiles/Chiplet
Crossbar Size
Memory Cell Type
Technology Node
Accumulator Size

Architectural Inputs

Deep Neural Network

●
●NoP Frequency
●Chiplet Size
●Chiplet Count
● IMC Mapping

●Tiles/Chiplet
●Crossbar Size
●Memory Cell Type
●Technology Node
●Accumulator Size

Architectural Inputs

Deep Neural Network Partition and Mapping Engine

Circuit and NoC Engine

Mapping to IMC Tiles

Intra-Chiplet
Floorplanning

Trace Generation and
Placement

DRAM Engine

Inter-Chiplet
Floorplanning

Chiplet
Placement

NoP Engine

ApplicationApplication

Fig. 9 Block diagram of the chiplet-based IMC architecture simulator SIAM [56]

for ResNet-110 with 1.7M parameters takes only 12 min enabling fast design
space exploration. SIAM also provides chiplet-level as well as DNN layer-level
performance evaluation which enables fine-grained analysis of the system as well
as the AI workload. A summary of SIAM can be found in [55].

5 Conclusion

In this chapter, we discussed about in-memory computing-based AI accelera-
tors. In-memory computing technique reduces on-chip energy consumption of AI
accelerators. We discuss various in-memory computing architectures proposed in
the literature. Both CMOS (e.g., SRAM)- and memristor (e.g., RRAM)-based
IMC architectures are discussed. We also introduce the challenges associated with
IMC architectures and introduce some of the solutions proposed in the literature.
Although in-memory computing improves energy efficiency of computing elements,
it increases on-chip communication volume. Increasing on-chip communication
volume may mask the benefits of in-memory computing technique. We discuss
multiple research which aim to construct energy-efficient interconnect for IMC-
based AI accelerators. Finally, we discussed few frameworks to evaluate the
performance of IMC-based AI accelerators.

References

1. Agarwal, N., Krishna, T., Peh, L.S., Jha, N.K.: GARNET: A Detailed on-chip Network Model
inside a Full-system Simulator. In: 2009 IEEE International Symposium on Performance
Analysis of Sand Software, pp. 33–42 (2009)

2. Arka, A.I., Doppa, J.R., Pande, P.P., Joardar, B.K., Chakrabarty, K.: ReGraphX: NoC-enabled
3D heterogeneous ReRAM architecture for training graph neural networks. In: 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1667–1672. IEEE (2021)

3. Arka, A.I., Joardar, B.K., Doppa, J.R., Pande, P.P., Chakrabarty, K.: DARe: DropLayer-aware
manycore ReRAM architecture for training graph neural networks. In: 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pp. 1–9 (2021)

In-Memory Computing for AI Accelerators: Challenges and Solutions 219

4. Arka, A.I., Joardar, B.K., Doppa, J.R., Pande, P.P., Chakrabarty, K.: Performance and
accuracy tradeoffs for training graph neural networks on ReRAM-based architectures. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 29(10), 1743–1756 (2021)

5. Bharadwaj, S., Yin, J., Beckmann, B., Krishna, T.: Kite: A family of heterogeneous interposer
topologies enabled via accurate interconnect modeling. In: 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE (2020)

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J.,
Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM SIGARCH Comput.
Archit. News 39(2), 1–7 (2011)

7. Chakraborty, I., Ali, M.F., Kim, D.E., Ankit, A., Roy, K.: Geniex: A generalized approach to
emulating non-ideality in memristive Xbars using neural networks. In: 2020 57th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6 (2020)

8. Charan, G., Mohanty, A., Du, X., Krishnan, G., Joshi, R.V., Cao, Y.: Accurate inference
with inaccurate rram devices: A joint algorithm-design solution. IEEE J. Explor. Solid State
Comput. Dev. Circuits 6(1), 27–35 (2020a)

9. Charan, G., et al.: Accurate inference with inaccurate RRAM devices: statistical data, model
transfer, and on-line adaptation. In: DAC. IEEE (2020b)

10. Chen, L., et al.: Accelerator-friendly neural-network training: learning variations and defects
in RRAM crossbar. In: DATE. IEEE (2017)

11. Chen, P.Y., Peng, X., Yu, S.: Neurosim: A circuit-level macro model for benchmarking neuro-
inspired architectures in online learning. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
37(12), 3067–3080 (2018)

12. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE J. Solid State Circ. 52(1), 127–
138 (2016)

13. Chen, Y.H., Yang, T.J., Emer, J., Sze, V.: Eyeriss v2: A flexible accelerator for emerging deep
neural networks on mobile devices. IEEE J. Emerg. Sel. Top. Circ. Syst. 9(2), 292–308 (2019)

14. Cherupally, S.K., Meng, J., Rakin, A.S., Yin, S., Yeo, I., Yu, S., Fan, D., Seo, J.: Improving
the accuracy and robustness of RRAM-based in-memory computing against RRAM hardware
noise and adversarial attacks. Semicond. Sci. Technol. 37(3), 034001 (2022). https://doi.org/
10.1088/1361-6641/ac461f

15. Cherupally, S.K., Meng, J., Rakin, A.S., Yin, S., Yeo, I., Yu, S., Fan, D., Seo, J.S.: Improving
the accuracy and robustness of rram-based in-memory computing against rram hardware noise
and adversarial attacks. Semicond. Sci. Technol. 37(3), 034001 (2022)

16. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266 (2019)

17. Chih, Y.D., Lee, P.H., Fujiwara, H., Shih, Y.C., Lee, C.F., Naous, R., Chen, Y.L., Lo, C.P., Lu,
C.H., Mori, H., et al.: An 89tops/w and 16.3 tops/mm 2 all-digital sram-based full-precision
compute-in memory macro in 22nm for machine-learning edge applications. In: 2021 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 252–254. IEEE (2021)

18. De Cao, N., Kipf, T.: Molgan: An implicit generative model for small molecular graphs.
Preprint (2018). arXiv:1805.11973

19. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech
recognition and related applications: an overview. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 8599–8603. IEEE (2013)

20. Dong, Q., Sinangil, M.E., Erbagci, B., Sun, D., Khwa, W.S., Liao, H.J., Wang, Y., Chang,
J.: 15.3 a 351tops/w and 372.4 gops compute-in-memory sram macro in 7nm finfet cmos for
machine-learning applications. In: 2020 IEEE International Solid-State Circuits Conference-
(ISSCC), pp. 242–244. IEEE (2020)

21. Du, X., Krishnan, G., Mohanty, A., Li, Z., Charan, G., Cao, Y.: Towards efficient neural
networks on-a-chip: Joint hardware-algorithm approaches. In: 2019 China Semiconductor
Technology International Conference (CSTIC), pp. 1–5. IEEE (2019)

https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f

220 G. Krishnan et al.

22. Fujiwara, H., Mori, H., Zhao, W.C., Chuang, M.C., Naous, R., Chuang, C.K., Hashizume,
T., Sun, D., Lee, C.F., Akarvardar, K., et al.: A 5-nm 254-tops/w 221-tops/mm 2 fully-digital
computing-in-memory macro supporting wide-range dynamic-voltage-frequency scaling and
simultaneous mac and write operations. In: 2022 IEEE International Solid-State Circuits
Conference (ISSCC), vol. 65, pp. 1–3. IEEE (2022)

23. Gagniuc, P.A.: Markov Chains: From Theory to Implementation and Experimentation. Wiley
(2017)

24. Gallicchio, C., Micheli, A.: Graph echo state networks. In: The 2010 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

25. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantiza-
tion methods for efficient neural network inference. Preprint (2021). arXiv:2103.13630

26. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
27. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In:

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729–
734. IEEE (2005)

28. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv.
Neural Inf. Proces. Syst. 30, (2017). arXiv:1706.02216

29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

30. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–
1780 (1997)

31. Horowitz, M.: Computing’s energy problem (and What We Can Do About It). In: IEEE
ISSCC, pp. 10–14 (2014)

32. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications.
Preprint (2017). arXiv:1704.04861

33. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S.: BSB training scheme implementation on
memristor-based circuit. In: IEEE CISDA. IEEE (2013)

34. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708 (2017)

35. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size. Preprint (2016).
arXiv:1602.07360

36. Jain, S., Sengupta, A., Roy, K., Raghunathan, A.: RxNN: A framework for evaluating deep
neural networks on resistive crossbars. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
40(2), 326–338 (2020)

37. Jiang, H., Huang, S., Peng, X., Su, J.W., Chou, Y.C., Huang, W.H., Liu, T.W., Liu, R., Chang,
M.F., Yu, S.: A two-way SRAM array based accelerator for deep neural network on-chip
training. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2020)

38. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 86–96. IEEE (2013)

39. Jiang, Z., Yin, S., Seo, J.S., Seok, M.: C3SRAM: An in-memory-computing SRAM macro
based on robust capacitive coupling computing mechanism. IEEE J. Solid State Circ. 55(7),
1888–1897 (2020). https://doi.org/10.1109/JSSC.2020.2992886

40. Joardar, B.K., Deshwal, A., Doppa, J.R., Pande, P.P., Chakrabarty, K.: High-throughput train-
ing of deep CNNs on ReRAM-based heterogeneous architectures via optimized normalization
layers. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 41(5), 1537–1549 (2021)

41. Joardar, B.K., Doppa, J.R., Pande, P.P., Li, H., Chakrabarty, K.: AccuReD: high accuracy
training of CNNs on ReRAM/GPU heterogeneous 3-D architecture. IEEE Trans. Comput.
Aided Des. Integr. Circ. Syst. 40(5), 971–984 (2020)

https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886

In-Memory Computing for AI Accelerators: Challenges and Solutions 221

42. Joardar, B.K., Li, B., Doppa, J.R., Li, H., Pande, P.P., Chakrabarty, K.: REGENT: A
heterogeneous ReRAM/GPU-based architecture enabled by NoC for training CNNs. In: 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 522–527. IEEE
(2019)

43. Jordan, M.I.: Serial order: A parallel distributed processing approach. In: Advances in
Psychology, vol. 121, pp. 471–495. Elsevier (1997)

44. Joshi, V., et al.: Accurate deep neural network inference using computational phase-change
memory. Nature Communications (2020)

45. Kang, M., Kim, Y., Patil, A.D., Shanbhag, N.R.: Deep in-memory architectures for machine
learning–accuracy versus efficiency trade-offs. IEEE Trans. Circ. Syst. I Regul. Pap. 67(5),
1627–1639 (2020)

46. Kiasari, A.E., Lu, Z., Jantsch, A.: An analytical latency model for networks-on-chip. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 113–123 (2012)

47. Kim, H., Yoo, T., Kim, T.T.H., Kim, B.: Colonnade: A reconfigurable sram-based digital bit-
serial compute-in-memory macro for processing neural networks. IEEE J. Solid State Circ.
56(7), 2221–2233 (2021)

48. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283 (2013)
49. Krishnan, G., Du, X., Cao, Y.: Structural pruning in deep neural networks: A small-world

approach. Preprint (2019). arXiv:1911.04453
50. Krishnan, G., Hazra, J., Liehr, M., Du, X., Beckmann, K., Joshi, R.V., Cady, N.C., Cao, Y.:

Design limits of in-memory computing: Beyond the crossbar. In: 2021 5th IEEE Electron
Devices Technology & Manufacturing Conference (EDTM), pp. 1–3. IEEE (2021)

51. Krishnan, G., Ma, Y., Cao, Y.: Small-world-based structural pruning for efficient fpga
inference of deep neural networks. In: 2020 IEEE 15th International Conference on Solid-
State & Integrated Circuit Technology (ICSICT), pp. 1–5. IEEE (2020)

52. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.s., Ogras, U.Y., Cao, Y.: Interconnect-
aware area and energy optimization for in-memory acceleration of DNNs. IEEE Des. Test
37(6), 79–87 (2020)

53. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.S., Ogras, U.Y., Cao, Y.: Impact of on-chip
interconnect on in-memory acceleration of deep neural networks. ACM J. Emerg. Technol.
Comput. Syst. (JETC) 18(2), 1–22 (2021)

54. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.s., Ogras, U.Y., Cao, Y.: Interconnect-
centric benchmarking of in-memory acceleration for DNNs. In: 2021 China Semiconductor
Technology International Conference (CSTIC), pp. 1–4. IEEE (2021)

55. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.S., Ogras, U.Y., Cao, Y.: System-level
benchmarking of chiplet-based IMC architectures for deep neural network acceleration. In:
2021 IEEE 14th International Conference on ASIC (ASICON), pp. 1–4 (2021)

56. Krishnan, G., Mandal, S.K., Pannala, M., Chakrabarti, C., Seo, J.S., Ogras, U.Y., Cao, Y.:
SIAM: Chiplet-based scalable in-memory acceleration with mesh for deep neural networks.
ACM Trans. Embed. Comput. Syst. (TECS) 20(5s), 1–24 (2021)

57. Krishnan, G., Sun, J., Hazra, J., Du, X., Liehr, M., Li, Z., Beckmann, K., Joshi, R.V., Cady,
N.C., Cao, Y.: Robust RRAM-based in-memory computing in light of model stability. In:
IRPS. IEEE (2021)

58. Krishnan, G., Yang, L., Sun, J., Hazra, J., Du, X., Liehr, M., Li, Z., Beckmann, K., Joshi,
R., Cady, N.C., et al.: Exploring model stability of deep neural networks for reliable RRAM-
based in-memory acceleration. IEEE Trans. Comput. 71(11), 2740–2752 (2022)

59. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

60. Liehr, M., Hazra, J., Beckmann, K., Rafiq, S., Cady, N.: Impact of switching variability of
65nm CMOS integrated hafnium dioxide-based ReRAM devices on distinct level operations.
In: IIRW. IEEE (2020)

61. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.:
Microsoft coco: Common objects in context. In: European Conference on Computer Vision,
pp. 740–755. Springer (2014)

222 G. Krishnan et al.

62. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for
sequence learning. Preprint (2015). arXiv:1506.00019

63. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van
Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image
analysis. Med. Image Anal. 42, 60–88 (2017)

64. Liu, B., Chen, Y., Liu, S., Kim, H.S.: Deep learning in latent space for video prediction and
compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 701–710 (2021)

65. Liu, B., et al.: Reduction and IR-drop compensations techniques for reliable neuromorphic
computing systems. In: ICCAD. IEEE (2014)

66. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A., Huang,
J., Murphy, K.: Progressive neural architecture search. In: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 19–34 (2018)

67. Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., Qi, Y.: Geniepath: Graph neural
networks with adaptive receptive paths. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 4424–4431 (2019)

68. Long, Y., She, X., Mukhopadhyay, S.: Design of reliable DNN accelerator with un-reliable
ReRAM. In: DATE. IEEE (2019)

69. Ma, C., et al.: Go unary: A novel synapse coding and mapping scheme for reliable ReRAM-
based neuromorphic computing. In: DATE. IEEE (2020)

70. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically valid graphs via regulariz-
ing variational autoencoders. Preprint (2018). arXiv:1809.02630

71. Mandal, S.K., Ayoub, R., Kishinevsky, M., Islam, M.M., Ogras, U.Y.: Analytical performance
modeling of NoCs under priority arbitration and bursty traffic. IEEE Embed. Syst. Lett. 13(3),
98–101 (2020)

72. Mandal, S.K., Ayoub, R., Kishinevsky, M., Ogras, U.Y.: Analytical performance models for
NoCs with multiple priority traffic classes. ACM Trans. Embed. Comput. Syst. (TECS)
18(5s), 1–21 (2019)

73. Mandal, S.K., Krishnakumar, A., Ayoub, R., Kishinevsky, M., Ogras, U.Y.: Performance
analysis of priority-aware NoCs with deflection routing under traffic congestion. In:
Proceedings of the 39th International Conference on Computer-Aided Design, pp. 1–9 (2020)

74. Mandal, S.K., Krishnakumar, A., Ogras, U.Y.: Energy-efficient networks-on-chip architec-
tures: design and run-time optimization. In: Network-on-Chip Security and Privacy, p. 55
(2021)

75. Mandal, S.K., Krishnan, G., Chakrabarti, C., Seo, J.S., Cao, Y., Ogras, U.Y.: A latency-
optimized reconfigurable NoC for in-memory acceleration of DNNs. IEEE J. Emerg. Sel.
Top. Circ. Syst. 10(3), 362–375 (2020)

76. Mandal, S.K., Krishnan, G., Goksoy, A.A., Nair, G.R., Cao, Y., Ogras, U.Y.: COIN:
Communication-aware in-memory acceleration for graph convolutional networks. IEEE J.
Emerg. Sel. Top. Circ. Syst. 2(2), 472–485 (2022)

77. Mandal, S.K., Tong, J., Ayoub, R., Kishinevsky, M., Abousamra, A., Ogras, U.Y.: Theoretical
analysis and evaluation of NoCs with weighted round-robin arbitration. In: 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pp. 1–9 (2021)

78. Mao, M., et al.: MAX2: An ReRAM-based neural network accelerator that maximizes data
reuse and area utilization. IEEE J. Emerg. Sel. Top. Circ. Syst. 9(2), 398–410 (2019)

79. Mohanty, A., et al.: Random sparse adaptation for accurate inference with inaccurate multi-
level RRAM arrays. In: IEDM. IEEE (2017)

80. Nabavinejad, S.M., Baharloo, M., Chen, K.C., Palesi, M., Kogel, T., Ebrahimi, M.: An
overview of efficient interconnection networks for deep neural network accelerators. IEEE J.
Emerg. Sel. Top. Circ. Syst. 10(3), 268–282 (2020)

81. Ogras, U.Y., Bogdan, P., Marculescu, R.: An analytical approach for network-on-chip
performance analysis. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 29(12), 2001–
2013 (2010)

In-Memory Computing for AI Accelerators: Challenges and Solutions 223

82. Peng, X., Huang, S., Jiang, H., Lu, A., Yu, S.: DNN+ NeuroSim V2. 0: An end-to-end
benchmarking framework for compute-in-memory accelerators for on-chip training. IEEE
Trans. Comput. Aided Des. Integr. Circ. Syst. 40(11), 2306–2319 (2020)

83. Peng, X., Huang, S., Luo, Y., Sun, X., Yu, S.: DNN+ NeuroSim: An end-to-end benchmarking
framework for compute-in-memory accelerators with versatile device technologies. In: 2019
IEEE International Electron Devices Meeting (IEDM), pp. 32–35 (2019)

84. Pisner, D.A., Schnyer, D.M.: Support vector machine. In: Machine Learning, pp. 101–121.
Elsevier (2020)

85. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier
architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 4780–4789 (2019)

86. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling.
Proc. IEEE 98(6), 1045–1057 (2010)

87. Saikia, J., Yin, S., Cherupally, S.K., Zhang, B., Meng, J., Seok, M., Seo, J.S.: Modeling
and optimization of SRAM-based in-memory computing hardware design. In: 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 942–947. IEEE (2021)

88. Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., Krishna, T.: Scale-sim: systolic CNN
accelerator simulator. Preprint (2018). arXiv:1811.02883

89. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

90. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal
Process. 45(11), 2673–2681 (1997)

91. Seo, J.: Advances in digital vs. analog AI accelerators (2022). In: Tutorial at IEEE
International Solid-State Circuits Conference (ISSCC)

92. Shafiee, A., et al.: ISAAC: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. ACM SIGARCH Comput. Archit. News 44(3), 14–26 (2016)

93. Shao, Y.S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B.,
Klinefelter, A., Pinckney, N., Raina, P., et al.: Simba: Scaling deep-learning inference with
multi-chip-module-based architecture. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 14–27 (2019)

94. Si, X., Chen, J.J., Tu, Y.N., Huang, W.H., Wang, J.H., Chiu, Y.C., Wei, W.C., Wu, S.Y.,
Sun, X., Liu, R., et al.: 24.5 a twin-8t SRAM computation-in-memory macro for multiple-bit
CNN-based machine learning. In: 2019 IEEE International Solid-State Circuits Conference-
(ISSCC), pp. 396–398. IEEE (2019)

95. Simonovsky, M., Komodakis, N.: Graphvae: Towards generation of small graphs using
variational autoencoders. In: International Conference on Artificial Neural Networks, pp.
412–422. Springer (2018)

96. Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: A pipelined ReRAM-based accelerator for
deep learning. In: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 541–552 (2017)

97. Spetalnick, S.D., Chang, M., Crafton, B., Khwa, W.S., Chih, Y.D., Chang, M.F., Raychowd-
hury, A.: A 40nm 64kb 26.56 tops/w 2.37 mb/mm 2 rram binary/compute-in-memory macro
with 4.23 x improvement in density and >75% use of sensing dynamic range. In: 2022 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 65, pp. 1–3. IEEE (2022)

98. Su, J.W., Si, X., Chou, Y.C., Chang, T.W., Huang, W.H., Tu, Y.N., Liu, R., Lu, P.J., Liu,
T.W., Wang, J.H., et al.: 15.2 a 28nm 64kb inference-training two-way transpose multibit 6t
SRAM compute-in-memory macro for AI edge chips. In: 2020 IEEE International Solid-State
Circuits Conference-(ISSCC), pp. 240–242. IEEE (2020)

99. Sun, Y., et al.: Unary coding and variation-aware optimal mapping scheme for reliable
ReRAM-based neuromorphic computing. TCAD (2021)

100. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

101. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–9 (2015)

224 G. Krishnan et al.

102. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: Mnasnet:
Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

103. Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A 64-tile 2.4-mb in-memory-computing
CNN accelerator employing charge-domain compute. IEEE J. Solid State Circ. 54(6), 1789–
1799 (2019)

104. Vivet, P., Guthmuller, E., Thonnart, Y., Pillonnet, G., Fuguet, C., Miro-Panades, I., Moritz,
G., Durupt, J., Bernard, C., Varreau, D., et al.: IntAct: A 96-core processor with six chiplets
3D-stacked on an active interposer with distributed interconnects and integrated power
management. IEEE J. Solid State Circ. 56(1), 79–97 (2020)

105. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.:
Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10734–10742 (2019)

106. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? Preprint
(2018). arXiv:1810.00826

107. Yang, X., et al.: Multi-objective optimization of ReRAM crossbars for robust DNN inferenc-
ing under stochastic noise. In: ICCAD. IEEE/ACM (2021)

108. Yin, S., Jiang, Z., Kim, M., Gupta, T., Seok, M., Seo, J.s.: Vesti: energy-efficient in-memory
computing accelerator for deep neural networks. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 28(1), 48–61 (2019)

109. Yin, S., Jiang, Z., Seo, J.S., Seok, M.: XNOR-SRAM: In-memory computing sram macro for
binary/ternary deep neural networks. IEEE J. Solid State Circ. 55(6), 1733–1743 (2020)

110. Yin, S., Zhang, B., Kim, M., Saikia, J., Kwon, S., Myung, S., Kim, H., Kim, S.J., Seok,
M., Seo, J.s.: Pimca: A 3.4-mb programmable in-memory computing accelerator in 28nm for
on-chip DNN inference. In: 2021 Symposium on VLSI Technology, pp. 1–2. IEEE (2021)

111. Yue, J., Liu, Y., Yuan, Z., Feng, X., He, Y., Sun, W., Zhang, Z., Si, X., Liu, R., Wang, Z.,
et al.: Sticker-im: A 65 nm computing-in-memory NN processor using block-wise sparsity
optimization and inter/intra-macro data reuse. IEEE J. Solid State Circ. 57(8), 2560–2573
(2022)

112. Zhang, J., Wang, Z., Verma, N.: In-memory computation of a machine-learning classifier in a
standard 6t SRAM array. IEEE J. Solid State Circ. 52(4), 915–924 (2017)

113. Zhao,W., Cao, Y.: New generation of predictive technology model for Sub-45 nm early design
exploration. IEEE Trans. Electron Dev. 53(11), 2816–2823 (2006)

114. Zhou, C., Kadambi, P., Mattina, M., Whatmough, P.N.: Noisy machines: understanding
noisy neural networks and enhancing robustness to analog hardware errors using distillation.
Preprint (2020). arXiv:2001.04974

115. Zhou, D., Zhou, X., Zhang, W., Loy, C.C., Yi, S., Zhang, X., Ouyang, W.: Econas: Finding
proxies for economical neural architecture search. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11396–11404 (2020)

116. Zhu, Z., Sun, H., Qiu, K., Xia, L., Krishnan, G., Dai, G., Niu, D., Chen, X., Hu, X.S., Cao,
Y., et al.: MNSIM 2.0: A behavior-level modeling tool for memristor-based neuromorphic
computing systems. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp.
83–88 (2020)

117. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable
image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8697–8710 (2018)

Efficient Deep Learning Using
Non-volatile Memory Technology in GPU
Architectures

Ahmet Inci, Mehmet Meric Isgenc, and Diana Marculescu

1 Introduction

Over the last decade, the performance boost achieved through CMOS scaling has
plateaued, necessitating sophisticated computer architecture solutions to gain higher
performance in computing systems while maintaining a feasible power density.
These objectives, however, are concurrently challenged by the limitations of the
performance of memory resources [1]. In contrast to the initial insight of Dennard on
power density [2], deep CMOS scaling has exacerbated static power consumption,
causing the heat density of ICs to reach catastrophic levels unless properly addressed
[3–5].

As computers suffer from memory- and power-related limitations, the demand
for data-intensive applications has been on the rise. With the increasing data deluge
and recent improvements in GPU architectures, deep neural networks (DNNs) have
achieved remarkable success in various tasks such as image recognition [6, 7], object
detection [8], and chip placement [9] by utilizing inherent massive parallelism
of GPU platforms. However, DNN workloads continue to have large memory
footprints and significant computational requirements to achieve higher accuracy.
Thus, DNN workloads exacerbate the memory bottleneck that degrades the overall
performance of the system. To this end, while deep learning (DL) practitioners focus
on model compression techniques [10–12], system architects investigate hardware

A. Inci · M. M. Isgenc
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: ainci@andrew.cmu.edu; misgenc@andrew.cmu.edu

D. Marculescu (�)
Carnegie Mellon University, Pittsburgh, PA, USA
The University of Texas at Austin, Austin, TX, USA
e-mail: dianam@utexas.edu; dianam@cmu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_8

225

 31368 2385 a 31368 2385 a

 885 51863 a 885 51863 a

mailto:ainci@andrew.cmu.edu
mailto:ainci@andrew.cmu.edu
mailto:ainci@andrew.cmu.edu

 10211 51863 a 10211
51863 a

mailto:misgenc@andrew.cmu.edu
mailto:misgenc@andrew.cmu.edu
mailto:misgenc@andrew.cmu.edu

 885 56845 a 885 56845 a

mailto:dianam@utexas.edu
mailto:dianam@utexas.edu

 9002 56845 a 9002 56845
a

mailto:dianam@cmu.edu
mailto:dianam@cmu.edu
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8
https://doi.org/10.1007/978-3-031-19568-6_8

226 A. Inci et al.

Fig. 1 L2 cache capacity in recent NVIDIA GPUs [29]

architectures to overcome the memory bottleneck problem and improve the overall
system performance [13–24].

We note the current trend of GPU architectures is toward increasing last-level
cache capacity as shown in Fig. 1. Our analysis shows that conventional SRAM
technology incurs scalability problems as far as power, performance, and area (PPA)
are concerned [21, 25–27]. Non-volatile memory (NVM) technology is one of the
most promising solutions to tackle memory bottleneck problem for data-intensive
applications [28]. However, because much of emerging NVM technology is not
available for commercial use, there is an obvious need for a framework to perform
design space exploration for these emerging NVM technologies for DL workloads.

In this chapter, we present DeepNVM++ [19], an extended and improved frame-
work [18] to characterize, model, and optimize NVM-based caches in GPU archi-
tectures for deep learning workloads. Without loss of generality, we demonstrate
our framework for spin-transfer torque magnetic random access memory (STT-
MRAM) and spin-orbit torque magnetic random access memory (SOT-MRAM),
keeping in mind that it can be used for any NVM technology, GPU platform, or deep
learning workload. Our cross-layer analysis framework incorporates both circuit-
level characterization aspects and the memory behavior of various DL workloads
running on an actual GPU platform. DeepNVM++ enables the evaluation of power,
performance, and area of NVMs when used for last-level (L2) caches in GPUs and
seeks to exploit the benefits of this emerging technology to improve the performance
of deep learning applications.

To perform iso-capacity analysis, we carry out extensive memory profiling of
various deep learning workloads for both training and inference on the existing
GPU platforms. For the iso-area analysis, the existing platforms cannot be used for

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 227

varying cache sizes, so we rely on architecture-level simulation of GPUs to quantify
and better understand last-level cache capacity and off-chip memory accesses. In
both cases, our framework automatically combines resulting memory statistics with
circuit and microarchitecture-level characterization and analysis of emerging NVM
technologies to gauge their impact on DL workloads running on future GPU-based
platforms.

We make the following contributions:

1. Circuit-level bitcell characterization. We perform detailed circuit-level charac-
terization combining a commercial 16nm CMOS technology and prominent STT
[30] and SOT [31] models from the literature to iterate through our framework
in an end-to-end manner to demonstrate the flexibility of DeepNVM++ [19] for
future studies.

2. Microarchitecture-level cache design exploration. We use NVSim [32] to
perform a fair comparison between SRAM, STT-MRAM, and SOT-MRAM by
incorporating the circuit-level models developed in 1) using 16nm technology
and choosing the best cache configuration for each of them.

3. Iso-capacity analysis. To compare the efficacy of magnetic random access
memory (MRAM) caches to conventional SRAM caches, we perform our novel
iso-capacity analysis based on actual platform profiling results for the memory
behavior of various DNNs by using the Caffe framework [33] on a high-end
NVIDIA 1080 Ti GPU (implemented in 16nm technology) for the ImageNet
dataset [34].

4. Iso-area analysis. Because of their different densities, we compare SRAM and
NVM caches in an iso-area analysis to quantify the benefits of higher density
of NVM technologies on DL workloads running on GPU platforms. Since the
existing platforms do not support resulting iso-area cache sizes, we extend the
GPGPU-Sim [35] simulator to run DL workloads and support larger cache
capacities for STT-MRAM and SOT-MRAM.

5. Scalability analysis. Finally, we perform a thorough scalability analysis and
compare SRAM, STT-MRAM, and SOT-MRAM in terms of power, perfor-
mance, and area to project and gauge the efficacy of NVM- and SRAM-based
caches for DL workloads as cache capacity increases.

To the best of our knowledge, putting everything together, DeepNVM++ [19] is
the first comprehensive framework for cross-layer characterization, modeling, and
analysis of emerging NVM technologies for deep learning workloads running on
GPU platforms. Our results show that in the iso-capacity case, STT-MRAM and
SOT-MRAM achieve up to .3.8× and .4.7× energy-delay product reduction and
.2.4× and .2.8× area reduction compared to SRAM baseline, respectively. In the
iso-area case, STT-MRAM and SOT-MRAM achieve up to .2.2× and .2.4× energy-
delay product reduction and accommodate .2.3× and .3.3× larger cache capacity
compared to SRAM, respectively.

228 A. Inci et al.

Fig. 2 Overview of the DeepNVM++ [19] cross-layer analysis flow

Next, we present our cross-layer analysis framework, as shown in Fig. 2. First,
we present the background and related work on non-volatile memory technologies
(Sect. 2). Next, we show our detailed circuit-level characterization analysis using
CMOS, STT, and SOT device models (Sect. 3.1). After developing bitcell models,
we present our microarchitecture-level cache design methodology to obtain cache
area, latency, and energy results (Sect. 3.2). Next, we describe our iso-capacity
analysis flow in which we gather actual memory statistics through GPU profiling
(Sect. 3.3). Furthermore, we detail our iso-area analysis in which we extend
GPGPU-Sim to run deep learning workloads and support larger cache capacities
for STT-MRAM and SOT-MRAM (Sect. 3.4). Next, we present experimental
results demonstrating the efficiency of STT-MRAM and SOT-MRAM over the
conventional SRAM for iso-capacity and iso-area cases (Sect. 4). We then discuss
the implications of the results shown in this chapter (Sect. 5). Finally, we conclude
this chapter by summarizing the results (Sect. 6).

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 229

2 Related Work

Although 16nm has become a commonplace technology for high-end customers of
foundries, an intriguing inflection point awaits the electronics community as we
approach the end of the traditional density, power, and performance benefits of
CMOS scaling [36, 37]. To move beyond the computing limitations imposed by
staggering CMOS scaling trends, MRAM has emerged as a promising candidate
[28].

The enabling technology of MRAM consists of magnetic tunnel junction (MTJ)
pillars that can store data as a resistive state [38]. An MTJ pillar consists of a thin
oxide film sandwiched by two ferromagnetic layers. One of these ferromagnetic
layers has a fixed magnetization that serves as a reference layer. The magnetization
of the other layer can be altered by changing the direction of the current that flows
through the pillar. If the magnetization of the free layer and the reference layer are
in parallel, the device is in the low-resistance state. If the magnetization of layers is
in opposite directions, the device is in the high-resistance state [39].

STT bitcells [40] use an MTJ pillar as their core storage element and an
additional access transistor to enable read and write operations. Although STT
bitcells offer non-volatility, low read latency, and high endurance [41], the write
current is also high [42–44], which increases power consumption. To this end, SOT
bitcells have been proposed to overcome the write current challenges by isolating the
read and write paths [45]. Because the read disturbance errors are much less likely in
SOT bitcells, both read and write access devices can be tuned in accordance with the
lower current requirements [46, 47]. The read and write current requirements of STT
and SOT bitcells can have a crucial impact on the eventual MRAM characteristics
because they affect the CMOS access transistors, bitcell area, and peripheral logic.
Thus, a comparison of these bitcells and the traditional SRAM merits a meticulous
analysis that takes these factors into account.

Prior work has proposed effective approaches to overcome the shortcomings of
emerging NVM technologies such as using hybrid SRAM- and NVM-based caches
that utilize the complementary features of different memory technologies [48–51],
relaxing non-volatility properties to reduce the high write latency and energy [52–
55], and implementing cache replacement policies [56–58] for higher level caches
such as L1 caches and register files. However, NVM technology appears to be
a better choice for lower level caches such as L2 or L3 caches due to its long
write latency and high cell density. Higher level L1 caches are latency-sensitive
and optimized for performance, whereas last-level caches are capacity-sensitive and
optimized for a high hit rate to reduce off-chip memory accesses. Therefore, NVM-
based caches provide a better use case for replacing SRAM in last-level caches due
to their high cell density when compared to SRAM-based caches. To this end, we
evaluate power, performance, and area of NVM technology when used for last-level
caches in GPU platforms.

While prior work has shown the potential of NVM technologies for generic
applications to some extent, there is a need for a cross-layer analysis framework

230 A. Inci et al.

to explore the potential of NVM technologies in GPU platforms, particularly
for DL workloads. The most commonly used modeling tool for emerging NVM
technologies is NVSim [32], a circuit-level model for performance, energy, and
area estimation. However, NVSim is not sufficient to perform a detailed cross-layer
analysis for NVM technologies for DL workloads since it does not take architecture-
level analysis and application-specific memory behavior into account. To this end,
prior work has proposed cross-layer evaluation frameworks for non-traditional
architectures such as processing-in-memory-based analog and digital architectures
[59–61]. However, there is still a need for a cross-layer analysis framework to
perform design space exploration of NVM technologies for GPU architectures for
DL workloads. In this chapter, we incorporate NVSim with our cross-layer modeling
and optimization flow including novel architecture-level iso-capacity and iso-area
analysis flow to perform design space exploration for conventional SRAM and
emerging NVM caches for DL workloads running on GPU architectures.

3 Methodology

3.1 Circuit-Level NVM Characterization

A vast majority of work in the literature use simple bitcell models [46] to assess
the PPA of corresponding cache designs. Because bitcells are the core components
of the memory, the methodology to calculate the bitcell latency, energy, and area
is crucial for accurate comparisons. To this end, we use a commercial 16nm bitcell
design as a baseline as we model the STT and SOT bitcells. This technology node
also matches the fabrication technology of the GPU platform that we use to gather
actual memory statistics in Sect. 3.3.

The key bitcell parameters needed for cache modeling are read and write currents
and latency values for high-to-low and low-to-high resistive transitions. These
parameters can be optimized by tuning the size of the access transistors. While
larger access transistors enable faster reads and writes, they increase the energy
consumption and the bitcell layout size. The optimal sizing of the access transistor
and the array architecture varies based on the bitcell type. The access transistor
sizing optimization is crucial since it impacts the eventual PPA characteristics of the
bitcell and the cache. To address the array architecture differences between STT and
SOT MRAM for a fair comparison, we performed transient simulations.

For our simulations, we used perpendicular to the plane STT [30] and SOT [31]
models and a commercial 16nm FinFET model that takes post-layout effects into
account. To find the latency and energy parameters, we used parameterized SPICE
netlists wherein the read/write pulse widths were modulated to the point of failure.
Furthermore, we swept a range of fin counts for the access devices to find the
optimal balance between the latency, energy, and area. For the transient SPICE
simulations, we picked the FinFET models corresponding to the worst delay and

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 231

Table 1 STT-MRAM and SOT-MRAM bitcell parameters after device-level characterization

STT-MRAM SOT-MRAM

Sense Latency (ps) 650 650

Sense Energy (pJ) 0.076 0.020

Write Latency (ps) 8400 (set)/7780 (reset) 313 (set)/243 (reset)

Write Energy (pJ) 1.1 (set)/2.2 (reset) 0.08 (set)/0.08 (reset)

Fin Counts 4 (read/write) 3 (write) + 1 (read)

Area (normalized) 0.34.a 0.29. a

a Area is normalized with respect to the foundry SRAM bitcell

power scenarios. To calculate the bitcell area for the 16nm layout design rules, we
used the bitcell area formulations provided in prior work [62].

We summarize the obtained bitcell parameters in Table 1. The sensing delay is
measured from wordline activation to the point where the bitline voltage difference
reaches 25mV. The sense energy is the integration of the power consumed over
the sensing time window. For both magnetic flavors, the sense delay is similar;
however, SOT-MRAM is more energy-efficient in terms of read operation owing
to the separation of the read/write terminals. The write latency in this context refers
to the time between the arrival of the write-enable signal to the access transistor
and a complete magnetization change for the MTJ. The write latencies for STT and
SOT bitcells are significantly different, as expected. This difference can be seen
in the energy values as well. The access device is more than double the width of
the technology minimum device in order to enable a larger current flow to the STT
bitcell, causing the 1T1R STT bitcell to occupy a larger area than the 2T1R SOT
bitcell. The isolation of the read and write terminals in the SOT bitcell allows for a
smaller write access device. The area values are normalized by the foundry bitcell
area. We highlight the significant area difference and demonstrate its impact on the
cache characteristics in Sect. 3.2. We use these bitcell parameters for energy-delay-
area product (EDAP)-optimized cache design exploration as discussed in the next
section.

3.2 Microarchitecture-Level Cache Design Exploration

In order to demonstrate the impact of using STT and SOT bitcells in L2 caches,
we use NVSim [32], a circuit-level analysis framework that delivers energy, latency,
and area results. After developing NVSim-compatible bitcell models as described in
Sect. 3.1, we analyzed a range of cache capacities (1MB to 32MB) for all possible
configurations and cache access types to demonstrate the potential of STT-MRAM
and SOT-MRAM as the cache capacity tends to grow. Such a scalability study will
help in determining the benefits of switching from conventional SRAM- to NVM-
based caches in future GPU platforms as depicted by the trend in Fig. 1.

232 A. Inci et al.

Algorithm 1: EDAP-optimal cache tuning algorithm
Input: Memory type mem, Cache capacity cap, Optimization target opt , ...
... Access type acc
Output: EDAP-tuned cache configuration

1 mem ∈ M = {SRAM, ST T , SOT };
2 cap ∈ C = {1, 2, 4, 8, 16, 32};
3 opt ∈ O = {ReadLatency ,WriteLatency, ReadEnergy,WriteEnergy, ReadEDP , ...

4 ...WriteEDP , Area, Leakage};
5 acc ∈ A = {Normal, F ast, Sequential};
6 for each mem ∈ M do
7 for each cap ∈ C do
8 Q

′ ← ∞;
9 for each opt ∈ O do
10 for each acc ∈ A do
11 Q ← calculate(EDAP);

12 if Q < Q
′
then

13 Q
′ ← Q;

14 end
15 end
16 end
17 T unedConf ig.append(argv(Q));
18 end
19 end
20 return T unedConf ig;

Algorithm 1 depicts the EDAP-optimal cache tuning algorithm. Based on
the optimization target used in NVSim, the cache PPA values vary substantially.
Therefore, we independently choose the best configuration for each type of memory
technology in terms of EDAP metric to perform a fair comparison that encompasses
all and not just one of the design constraint dimensions.

As described in Sect. 3.1, we use a commercial 16nm bitcell design. To
ensure a correct analysis, we modified the internal technology file of NVSim to
the corresponding 16nm technology parameters. Next, we compare SRAM, STT-
MRAM, and SOT-MRAM for various cache capacities in terms of area, latency, and
energy results. Based on these, we determine the EDAP for the cache (as denoted
by calculate(EDAP) in Algorithm 1).

Table 2 shows the latency, energy, and area results that correspond to the cache
capacity of NVIDIA GTX 1080 Ti GPU (3MB) and to the larger MRAM caches
that fit into the same area of SRAM baseline. We convert read and write latencies
to clock cycles based on 1080 Ti GPU’s clock frequency for our calculations. For
STT-MRAM and SOT-MRAM, we show parameters for both iso-capacity and iso-
area when compared to SRAM. We use these parameters to evaluate the workload-
dependent impact of memory choices using DL workloads with diverse structures
and multiply–accumulate operation (MAC) configurations.

The energy and latency benefits of STT-MRAM and SOT-MRAM depend on
the data characteristics of a given workload. To account for differences in the data-

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 233

Table 2 Latency, energy, and area results for SRAM, STT-MRAM, and SOT-MRAM caches for
iso-capacity and iso-area

STT-MRAM SOT-MRAM

SRAM Iso-capacity Iso-area Iso-capacity Iso-area

Capacity (MB) 3 3 7 3 10

Read Latency (ns) 2.91 2.98 4.58 3.71 6.69

Write Latency (ns) 1.53 9.31 10.06 1.38 2.47

Read Energy (nJ) 0.35 0.81 0.93 0.49 0.51

Write Energy (nJ) 0.32 0.31 0.43 0.22 0.40

Leakage Power (mW) 6442 748 1706 527 1434

Area (mm2) 5.53 2.34 5.12 1.95 5.64

Table 3 Configurations for DNNs under consideration

AlexNet [63] GoogLeNet [64] VGG-16 [65] ResNet-18 [66] SqueezeNet [67]

Top-5 Error (%) 16.4 6.7 7.3 10.71 16.4

CONV Layers 5 57 13 17 26

FC Layers 3 1 3 1 0

Total Weights 61M 7M 138M 11.8M 1.2M

Total MACs 724M 1.43G 15.5G 2G 837M

related read/write characteristics, we used a simple model where we multiply the
number of read and write transactions by the corresponding latency and energy
values for those operations.

Implications in Architecture-Level Analysis To gauge the benefits of using
MRAM technology, we consider two scenarios: (i) First, one could replace the
SRAM cache in a GPU with the same capacity MRAM with a smaller area. (ii)
Alternatively, by using the same area dedicated to the cache, one can increase the on-
chip cache capacity, thereby reducing costly DRAM traffic. We analyze and discuss
both approaches through platform profiling results for iso-capacity scenario and a
set of architecture-level simulations for iso-area scenario.

3.3 Architecture-Level Iso-Capacity Analysis

As the target platform to demonstrate our work, we use a high-end NVIDIA GTX
1080 Ti GPU that is fabricated in a commercial 16nm technology node that also
matches our bitcell and cache models. We use the Caffe [33] framework to run
various DNNs such as AlexNet [63], GoogLeNet [64], VGG-16 [65], ResNet-18
[66], and SqueezeNet [67] for the ImageNet [34] dataset as shown in Table 3.
Our analysis is generalizable to other types of neural network architectures since
we cover a wide range of DNN configurations with various workload characteris-
tics. Furthermore, we also use the high-performance conjugate gradients (HPCG)

234 A. Inci et al.

Fig. 3 Profiling results for L2 cache read/write ratio for various workloads

[68] benchmark, a widely used high-performance computing (HPC) workload, to
demonstrate the generalizability of our analysis to different workloads besides deep
learning applications.

We use the NVIDIA profiler [69] to obtain the device memory and L2 cache
read and write transactions to better understand both on-chip and off-chip memory
behavior of various deep learning and HPC workloads. To this end, Fig. 3 shows
the profiling results for L2 cache read/write ratio for various deep learning and HPC
workloads. In particular, we run the HPCG benchmark with different input local
subgrid dimensions such as 4. ×4. ×4, 8. ×8. ×8, 16. ×16. ×16, 32. ×32. ×32, 64. ×64. ×64,
and 128. ×128. ×128. We show that the ratio of the total number of read transactions
to the total number of write transactions in L2 cache varies significantly from 2
to 26. Therefore, these profiling results also show that we cover a wide range
of workloads with different workload characteristics in our analysis. To this end,
we use 128. ×128. ×128, 32. ×32. ×32, and 8. ×8. ×8 workload configurations for our
analysis in the rest of the chapter that we refer to as HPCG-L, HPCG-M, and HPCG-
S, respectively.

3.4 Architecture-Level Iso-Area Analysis

Since the iso-area larger capacities enabled by higher density NVM implementa-
tions do not exist in the existing platforms, we use GPGPU-Sim [35] to explore
power and performance implications of having these larger L2 caches in GPU
architectures for DNN workloads. For comparison, we model the high-end NVIDIA

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 235

Table 4 GPGPU-Sim
configurations

NVIDIA GTX 1080 Ti

Number of Cores 28

Number of Threads/Core 2048

Number of Registers/Core 65,536

L1 Data Cache
48 KB, 128 B line,

6-way LRU

L2 Data Cache
128 KB/channel, 128 B line,

16-way LRU

Instruction Cache
8 KB, 128 B line,

16-way LRU

Number of
4

Schedulers/Core

Core Frequency 1481 MHz

Interconnect Frequency 2962 MHz

L2 Cache Frequency 1481 MHz

Memory Frequency 2750 MHz

GTX 1080 Ti GPU. The configurations for NVIDIA GTX 1080 Ti GPU are shown
in Table 4. We extend the GPGPU-Sim simulator to support the cache capacity
of NVIDIA GTX 1080 Ti GPU. This GPU is built using a commercial 16nm
technology node that matches our bitcell and cache models. In particular, for
GPGPU-Sim compatibility, we set L2 cache capacity to 3MB. We use this capacity
for our analysis in the rest of the chapter. We measure the number of DRAM
transactions to quantify and better understand the relationship between larger L2
caches and the overall system power and performance. As a DNN benchmark, we
use AlexNet [63] with the ImageNet [34] dataset that is provided by the DarkNet
[70] framework. We extend DarkNet source code to enable deep learning workloads
on GPGPU-Sim.

4 Experimental Results

We analyze STT-MRAM and SOT-MRAM in terms of energy, performance, and
area results by using GPU profiling results for both iso-capacity and iso-area cases
in Sects. 4.1 and 4.2, respectively. In Sect. 4.2, we use iso-area cache parameters as
shown in Table 2, and we use GPGPU-Sim to quantify the DRAM access reduction
in the iso-area case at larger cache capacities. We include DRAM accesses in our
performance and energy calculations for iso-area case. In Sect. 4.3, we perform a
scalability analysis to project the implications of the current GPU trend shown in
Fig. 1 on performance and energy results.

236 A. Inci et al.

4.1 Performance and Energy Results for Iso-Capacity

By combining the actual technology-dependent latency and energy metrics from
Table 2, we can perform a performance and energy analysis for replacing conven-
tional SRAM caches with MRAM caches. We choose batch size 4 for inference and
64 for training for our workloads as it is typically used in related work [71].

Figure 4 shows normalized dynamic energy and leakage energy breakdown
results for NVIDIA GTX 1080 Ti GPU based on actual platform memory statistics
and our MRAM cache models at the same cache capacity. We use our cache
parameters and profiling results to calculate results for various DNNs for both
inference and training workloads as well as HPCG workloads with different input
sizes.

Fig. 4 Dynamic energy (top chart) and leakage energy (bottom chart) (lower is better) normalized
with respect to SRAM by using NVMs with iso-capacity (3MB) for inference (I) and training (T)
stages

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 237

In Fig. 4, we observe that STT-MRAM consumes .2.2× more dynamic energy,
whereas SOT-MRAM has .1.3× more dynamic energy on average when compared
to the SRAM baseline. Furthermore, our results show that 83% of the total dynamic
energy of SRAM comes from read operations, whereas write operations only make
for 17% of all transactions on average across deep learning workloads. For HPCG
workloads, read operations take 96% of the total dynamic energy of SRAM, and
write operations only make for 4% of the total energy. Our profiling results also
support these findings as read operations dominate write operations in these DL and
HPCG workloads.

On the other hand, Fig. 4 also shows that STT-MRAM and SOT-MRAM
provide .6.3× and .10× lower leakage energy on average when compared to SRAM,
respectively. Based on this result, Fig. 5 shows significant total normalized energy
reduction of STT-MRAM and SOT-MRAM when compared to SRAM given that
leakage energy dominates the total energy. In more detail, STT-MRAM and SOT-
MRAM achieve .5.3× and .8.6× energy reduction on average across all workloads
compared to SRAM baseline, respectively, due to their significantly low leakage
energy. Moreover, Fig. 5 shows that STT-MRAM and SOT-MRAM provide up to
.3.8× and .4.7× EDP reduction and .2.4× and .2.8× area reduction, respectively.

The Impact of Batch Size on EDP We perform this study to better understand
the relationship between batch size and its implications for performance and energy
results of SRAM, STT-MRAM, and SOT-MRAM. Figure 6 shows the impact of
batch size on EDP results for AlexNet during training and inference stages based
on NVIDIA GTX 1080 Ti memory profiling statistics. We show that batch size
significantly affects the improvement of STT-MRAM and SOT-MRAM for training.
For training, STT-MRAM provides .2.3× to .4.6× EDP reduction as batch size
increases. On the other hand, SOT-MRAM provides .7.2× to .7.6× EDP reduction
when compared to SRAM baseline. For inference, STT-MRAM and SOT-MRAM
achieve .4.1× to .5.4× and .7.1× to .7.3× EDP reduction, respectively. These
results also confirm the different workload characteristics of training and inference.
STT-MRAM provides higher EDP reduction for training workloads as batch size
increases. On the other hand, SOT-MRAM follows the same pattern for inference
workloads due to their different access characteristics as shown in Table 2. We
observe that training workloads become more read dominant, whereas inference
workloads have lower read/write ratio as batch size increases.

4.2 Performance and Energy Results for Iso-Area

As in the iso-capacity study, for iso-area analysis, we use a batch size 4 for inference
and 64 for training. Figure 7 shows the reduction in the total number of DRAM
accesses as L2 cache capacity increases. We use GPGPU-Sim and start with the
baseline configuration that is 3MB for NVIDIA GTX 1080 Ti and double its cache
capacity up to 24MB to quantify the percentage of DRAM access reduction for STT-

238 A. Inci et al.

Fig. 5 Iso-capacity (3MB) energy (top chart) and energy-delay product (bottom chart) for NVM-
based caches (lower is better) normalized with respect to SRAM-based caches for inference (I) and
training (T) stages. DRAM energy and latency are also included in EDP results

MRAM and SOT-MRAM at larger cache capacities. Figure 7 shows that replacing
SRAM with STT-MRAM and SOT-MRAM equivalents that fit into the same area
significantly reduces the total number of DRAM transactions by 14.6% and 19.8%,
respectively, for 1080 Ti GPU.

Figure 8 shows normalized dynamic energy and leakage energy breakdown
results for 1080 Ti GPU based on actual platform memory statistics and our MRAM
cache models at the same area. We use our iso-area cache parameters in which STT-
MRAM (7MB) and SOT-MRAM (10MB) have larger cache capacities for the same
area budget with SRAM. We use these cache parameters and profiling results to
calculate results for various DNNs for both inference and training workloads and
HPCG workloads with various input sizes.

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 239

Fig. 6 Impact of batch size on energy-delay product (lower is better) normalized with respect to
SRAM by using NVMs with iso-capacity (3MB) for AlexNet for training (top chart) and inference
(bottom chart)

Fig. 7 Simulation results for the reduction in the total number of DRAM accesses in percentage

240 A. Inci et al.

Fig. 8 Dynamic energy (top chart) and leakage energy (bottom chart) (lower is better) normalized
with respect to SRAM by using STT-MRAM (7MB) and SOT-MRAM (10MB) with iso-area for
inference (I) and training (T) stages

In Fig. 8, we observe that STT-MRAM has .2.5× dynamic energy, whereas
SOT-MRAM has .1.5× dynamic energy on average when compared to SRAM
baseline. On the other hand, Fig. 8 also shows that STT-MRAM and SOT-MRAM
provide .2.2× and .2.3× lower leakage energy on average when compared to SRAM,
respectively. Based on this result, STT-MRAM and SOT-MRAM achieve . 2× and
.2.2× lower energy when compared to SRAM.

Furthermore, Fig. 9 shows that STT-MRAM and SOT-MRAM provide . 1.2×
EDP reduction and .2.3× and .3.3× larger cache capacity on average across all
workloads when compared to SRAM and off-chip DRAM accesses are not included
in the calculations, respectively. When DRAM accesses are included in determining

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 241

Fig. 9 Iso-area energy-delay product results for STT-MRAM (7MB) and SOT-MRAM (10MB)
(lower is better) normalized with respect to SRAM-based caches for inference (I) and training (T)
stages without (top chart) and with (bottom chart) DRAM energy and latency

EDP, as shown in Fig. 9, STT-MRAM and SOT-MRAM provide . 2× and .2.3× EDP
reduction on average across all workloads when compared to SRAM, respectively.

We show that although the cache latency and energy results for STT-MRAM and
SOT-MRAM do not outperform SRAM results at larger cache capacities as shown
in Table 2, they do outperform SRAM when costly off-chip DRAM accesses are
also considered in EDP calculations. To this end, Chen et al. [13] showed that the
normalized energy cost of a global buffer access relative to a MAC operation is . 6×,
whereas a DRAM access is .200× for a machine learning hardware accelerator. By
the same token, the higher cell density of NVM can be exploited to shift the memory
traffic from DRAM to L2 cache to further improve power and performance of the
overall system. This approach can dramatically reduce the total number of costly

242 A. Inci et al.

DRAM accesses and reduce data movement, which is a daunting impediment for
achieving energy-efficient machine learning hardware [13, 71–74].

4.3 Scalability Analysis

As shown in Fig. 1, the current trend for NVIDIA GPUs is toward increasing L2
size with each new GPU generation. The most recent high-end NVIDIA GPUs have
even up to 6MB L2 cache to further improve performance of the system by reducing
costly off-chip memory accesses. However, SRAM has a scalability problem due to
its high leakage and large bitcell area, which poses a significant challenge to further
continue the current GPU trend. To this end, non-volatile memory technologies
come to the rescue of future GPU architectures since their PPA scale better as cache
capacity increases. Therefore, there is a need for a scalability analysis to project and
quantify performance and energy gains that can be achieved by using more scalable
memory solutions.

To this end, we perform a scalability analysis by first comparing SRAM, STT-
MRAM, and SOT-MRAM for various cache capacities in terms of area, latency,
energy results following the DeepNVM++ framework methodology as described in
Fig. 2. Therefore, each memory technology is optimized for EDAP objective at each
cache capacity independently to perform a fair comparison among SRAM, STT-
MRAM, and SOT-MRAM. Next, we evaluate and show how NVM-based caches
behave in terms of performance and energy when compared to conventional SRAM-
based caches for deep learning workloads in a scalability analysis.

Area Figure 10a demonstrates the impact of higher cell density of MRAMs on
the area of caches compared to SRAM. The area difference between SRAM
and the MRAM variants grows significantly as the cache capacity increases. The
main reason of this difference comes from the bitcell area difference between
SRAM and MRAMs as shown in the last row of Table 1. Particularly for deeply
scaled technology nodes wherein interconnects account for a significant portion of
parasitics, bigger bitcells translate to longer wires, bigger buffers, and peripheral
logic. Therefore, STT-MRAM and SOT-MRAM caches become more area-efficient
when compared to SRAM caches as cache capacity increases.

Latency Figure 10b shows that for capacities smaller than 3MB SRAM offers
lower read latency, whereas both MRAM variants have lower read latency than
SRAM beyond 4MB. In terms of write latency, STT-MRAM has always the highest
among all memory technologies due to its inherent device characteristic. In contrast,
the write latency of SOT-MRAM becomes increasingly smaller than that of SRAM.
Moreover, the write latency of SRAM almost matches that of STT-MRAM at 32MB.

Energy In terms of read access energy, Fig. 10c shows that 7MB is a breakeven
point where SOT-MRAM becomes more efficient than SRAM, whereas STT-
MRAM clearly has the highest read energy among all memories. Regarding write

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 243

Fig. 10 Cache capacity scaling results for SRAM, STT-MRAM, and SOT-MRAM for (a) area,
(b) latency, and (c) energy metrics

access energy, SOT-MRAM is the most efficient option, whereas SRAM consumes
the most energy for a write operation beyond 3MB.

Based on these PPA results, we perform a detailed scalability analysis for SRAM,
STT-MRAM, and SOT-MRAM. In Figs. 11, 12, 13, we show the normalized energy,
latency, and EDP results with respect to SRAM for STT-MRAM and SOT-MRAM
for various cache capacities, respectively. As it can be seen, STT-MRAM and SOT-
MRAM provide lower energy and latency results as cache capacity increases.

In terms of energy, STT-MRAM and SOT-MRAM provide lower energy as cache
capacity increases. Specifically, STT-MRAM and SOT-MRAM caches achieve up
to .31.2× and .36.4× energy reduction as cache capacity increases, respectively. In
terms of latency, STT-MRAM and SOT-MRAM have higher latency results for
cache capacities up to 4MB, whereas both MRAM variants have lower latency
results when compared to SRAM beyond that point. In more detail, SRAM provides
up to .3.2× and . 2× latency reduction for small cache capacities when compared
to STT-MRAM and SOT-MRAM, respectively. However, STT-MRAM and SOT-
MRAM achieve up to .2.1× and .2.6× latency reduction as cache capacity increases,

244 A. Inci et al.

Fig. 11 Mean energy results across all workloads (lower is better) normalized with respect to
SRAM for various cache capacities for inference (top chart) and training (bottom chart) stages.
Error bars show standard deviation across workloads

respectively. In terms of EDP, we show that STT-MRAM and SOT-MRAM provide
up to .65× and .95× EDP reduction when compared to SRAM, respectively.
Therefore, we conclude that for latency-critical applications, SRAM-based caches
become a more suitable option when compared to MRAM variants for small cache
capacities, whereas MRAMs provide more energy-efficient solutions. Although
SRAM provides lower EDP results for smaller cache capacities, STT-MRAM and
SOT-MRAM outperform SRAM by orders of magnitude for larger cache capacities
due to their better PPA scalability when compared to SRAM. These results show
that a significant portion of the overall system energy or latency is saved and can be
used for additional on-chip resources or capabilities that are not available now.

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 245

Fig. 12 Mean latency results across all workloads (lower is better) normalized with respect to
SRAM for various cache capacities for inference (top chart) and training (bottom chart) stages.
Error bars show standard deviation across workloads

5 Discussion

In this section, we discuss the implications of the results shown in this chapter. We
also share the potential future directions to guide our community to better explore
the use of non-volatile memories for deep learning workloads in different design
spaces.

Scalability Is a Major Problem for SRAM As we show in Fig. 10 and Sect. 4.3,
one of the key challenges for the current GPU architectures is the scalability problem
of SRAM due to its significantly high leakage energy and large area when compared

246 A. Inci et al.

Fig. 13 Mean energy-delay product results across all workloads (lower is better) normalized with
respect to SRAM for various cache capacities for inference (top chart) and training (bottom chart)
stages. Error bars show standard deviation across workloads

to STT-MRAM and SOT-MRAM. We observe that there is a current trend in GPU
architectures toward increasing L2 cache capacity, and we show that SRAM has
significant scalability problems in terms of area, latency, and energy. We show that
STT-MRAM and SOT-MRAM have promising solutions for larger cache capacities
that can maintain the current trend shown in Fig. 1 with increasing performance and
energy benefits.

Implications of Dense NVM Caches on Logic Usage Figure 10a shows the area
results for SRAM, STT-MRAM, and SOT-MRAM for various cache capacities. We
note that STT-MRAM and SOT-MRAM provide increasingly smaller area than
SRAM as cache capacity increases. For the same cache capacity, STT-MRAM

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 247

and SOT-MRAM provide 58% and 65% area reduction on average, respectively.
Therefore, the remaining whitespace can be utilized by cramming more processing
elements, register files, or L2 cache on the die. This analysis is left for future work.

As CMOS scaling issues limit the affordable improvement of computing sys-
tems, our results from device-level simulations to actual GPU profiling show that
MRAMs are extremely promising candidates. Particularly, as STT-MRAM and
SOT-MRAM fabrication processes become more mature, system-level benefits of
STT-MRAM and SOT-MRAM can be maximized, enabling faster and more energy-
efficient computation.

Mobile Design Space Exploration for NVM In this chapter, we explore the GPU
architecture design space to unveil the potential of non-volatile memories for deep
learning workloads. Having said that, we note that inference at the edge devices
also becomes a common practice for many service providers such as Google [75],
Amazon [76], and Facebook [77] to improve user experience by reducing latency
and preserving the private user data on device [78]. To this end, Wu et al. [77]
shows that a majority of mobile inference for Facebook workloads run on mobile
CPUs. Mobile platforms have various resource constraints such as energy, memory,
and computing capabilities. Thus, last-level caches of mobile CPUs or hardware
accelerators can also be replaced by STT-MRAM and SOT-MRAM to improve
performance and energy by reducing leakage energy and costly off-chip memory
accesses due to their non-volatility and higher cell density [79–82]. Therefore, the
design space exploration of STT-MRAM and SOT-MRAM for mobile CPUs and
hardware accelerators for inference workloads merits further research.

6 Conclusion

In this chapter, we present the first cross-layer analysis framework to characterize,
model, and analyze various NVM technologies in GPU architectures for deep learn-
ing workloads. Our novel framework can be used to further explore the feasibility
of emerging NVM technologies for DL applications for different design choices
such as technology nodes, bitcell models, DL workloads, cache configurations,
optimization targets, and target platforms.

Our results show that in the iso-capacity case, STT-MRAM and SOT-MRAM
provide up to .3.8× and .4.7× EDP reduction and .2.4× and .2.8× area reduction
when compared to SRAM, respectively. In the iso-area case, STT-MRAM and SOT-
MRAM achieve up to .2.2× and .2.4× EDP reduction and accommodate .2.3× and
.3.3× cache capacity when compared to SRAM, respectively. Finally, we perform a
scalability analysis and show that STT-MRAM and SOT-MRAM outperform their
SRAM counterpart by orders of magnitude in terms of energy-delay product for
large cache capacities. The newly created energy or latency slack can be used for
additional on-chip resources or capabilities that are currently not possible.

248 A. Inci et al.

Acknowledgments This research was supported in part by NSF CCF Grant No. 1815899 and
NSF CSR Grant No. 1815780.

References

1. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious. SIGARCH
Comput. Archit. News 23(1), 20–24 (1995). https://doi.org/10.1145/216585.216588

2. Dennard, R.H., Gaensslen, F.H., Yu, H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of
ion-implanted mosfet’s with very small physical dimensions. IEEE J. Solid State Circ. 9(5),
256–268 (1974). https://doi.org/10.1109/JSSC.1974.1050511

3. Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., Benini, L., De Micheli, G.:
Temperature control of high-performance multi-core platforms using convex optimization. In:
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 110–115 (2008).
https://doi.org/10.1109/DATE.2008.4484671

4. Coskun, A.K., Rosing, T.S., Whisnant, K.: Temperature aware task scheduling in MPSoCs. In:
2007 Design, Automation Test in Europe Conference Exhibition, pp. 1–6 (2007). https://doi.
org/10.1109/DATE.2007.364540

5. Coskun, A.K., Rosing, T.S., Whisnant, K.A., Gross, K.C.: Static and dynamic temperature-
aware scheduling for multiprocessor SoCs. IEEE Trans. Very Large Scale Integr. Syst. 16(9),
1127–1140 (2008). https://doi.org/10.1109/TVLSI.2008.2000726

6. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks, pp.
6105–6114. PMLR, Long Beach, California, USA (2019). http://proceedings.mlr.press/v97/
tan19a.html

7. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy.
In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

8. Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 10778–
10787 (2020)

9. Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J., Songhori, E., Wang, S., Lee, Y.J., Johnson, E.,
Pathak, O., Bae, S., Nazi, A., Pak, J., Tong, A., Srinivasa, K., Hang, W., Tuncer, E., Babu, A.,
Le, Q.V., Laudon, J., Ho, R., Carpenter, R., Dean, J.: Chip placement with deep reinforcement
learning (2020)

10. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural networks with
pruning, trained quantization and Huffman coding (2016)

11. Ding, R., Liu, Z., Blanton, R.D.S., Marculescu, D.: Lightening the load with highly accurate
storage- and energy-efficient lightnns. ACM Trans. Reconfigurable Technol. Syst. 11(3)
(2018). https://doi.org/10.1145/3270689

12. Chin, T.W., Ding, R., Zhang, C., Marculescu, D.: Towards efficient model compression via
learned global ranking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2020)

13. Chen, Y., Emer, J., Sze, V.: Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In: Proceedings of the 43rd International Symposium on
Computer Architecture, pp. 367–379. IEEE Press, Piscataway, NJ, USA (2016). https://doi.
org/10.1109/ISCA.2016.40

14. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: Efficient
inference engine on compressed deep neural network. In: International Conference on
Computer Architecture (ISCA) (2016)

15. Chen, Y.H., Emer, J., Sze, V.: Using dataflow to optimize energy efficiency of deep neural
network accelerators. IEEE Micro 37(3), 12–21 (2017). https://doi.org/10.1109/MM.2017.54

16. Shao, Y., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M.R., Jiang, N., Keller, B.,
Klinefelter, A., Pinckney, N., Raina, P., Tell, S., Zhang, Y., Dally, W., Emer, J., Gray, C.T.,
Khailany, B., Keckler, S.: Simba: Scaling deep-learning inference with multi-chip-module-

https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2008.4484671
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/DATE.2007.364540
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
https://doi.org/10.1109/TVLSI.2008.2000726
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1145/3270689
https://doi.org/10.1145/3270689
https://doi.org/10.1145/3270689
https://doi.org/10.1145/3270689
https://doi.org/10.1145/3270689
https://doi.org/10.1145/3270689
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54
https://doi.org/10.1109/MM.2017.54

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 249

based architecture. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (2019)

17. Inci, A., Marculescu, D.: Solving the non-volatile memory conundrum for deep learning
workloads. In: Architectures and Systems for Big Data Workshop in Conjunction with ISCA
(2018)

18. Inci, A.F., Isgenc, M.M., Marculescu, D.: Deepnvm: A framework for modeling and analysis
of non-volatile memory technologies for deep learning applications. In: Proceedings of the
23rd Conference on Design, Automation and Test in Europe, DATE ’20, p. 1295–1298 (2020)

19. Inci, A., Isgenc, M.M., Marculescu, D.: Deepnvm++: Cross-layer modeling and optimization
framework of non-volatile memories for deep learning. IEEE Trans. Comput. Aided Des.
Integr. Circ. Syst., 1–1 (2021). https://doi.org/10.1109/TCAD.2021.3127148

20. Inci, A., Bolotin, E., Fu, Y., Dalal, G., Mannor, S., Nellans, D., Marculescu, D.: The
architectural implications of distributed reinforcement learning on CPU-GPU systems. Preprint
(2020). arXiv:2012.04210

21. Inci, A., Isgenc, M.M., Marculescu, D.: Cross-layer design space exploration of NVM-based
caches for deep learning. NVMW (2021)

22. Inci, A., Virupaksha, S.G., Jain, A., Thallam, V.V., Ding, R., Marculescu, D.: QAPPA:
Quantization-aware power, performance, and area modeling of DNN accelerators. Preprint
(2022). arXiv:2205.08648

23. Inci, A., Virupaksha, S.G., Jain, A., Thallam, V.V., Ding, R., Marculescu, D.: QADAM:
Quantization-aware DNN accelerator modeling for pareto-optimality. Preprint (2022).
arXiv:2205.13045

24. Inci, A., Virupaksha, S.G., Jain, A., Chin, T.W., Thallam, V.V., Ding, R., Marculescu, D.:
Quidam: A framework for quantization-aware DNN accelerator and model co-exploration.
Preprint (2022). arXiv:2206.15463

25. Chang, M., Rosenfeld, P., Lu, S., Jacob, B.: Technology comparison for large last-level caches
(l3cs): Low-leakage SRAM, low write-energy STT-RAM, and refresh-optimized edram. In:
2013 IEEE 19th International Symposium on High Performance Computer Architecture
(HPCA), pp. 143–154 (2013). https://doi.org/10.1109/HPCA.2013.6522314

26. Homayoun, H., Veidenbaum, A.: Reducing leakage power in peripheral circuits of l2 caches.
In: 2007 25th International Conference on Computer Design, pp. 230–237 (2007). https://doi.
org/10.1109/ICCD.2007.4601907

27. Xu, W., Sun, H., Wang, X., Chen, Y., Zhang, T.: Design of last-level on-chip cache using spin-
torque transfer RAM (STT RAM). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(3),
483–493 (2011). https://doi.org/10.1109/TVLSI.2009.2035509

28. Dong, X., Wu, X., Sun, G., Xie, Y., Li, H., Chen, Y.: Circuit and microarchitecture evaluation
of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In: 2008 45th
ACM/IEEE Design Automation Conference, pp. 554–559 (2008)

29. List of NVIDIA GPUs: https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-
units

30. Kim, J., Chen, A., Behin-Aein, B., Kumar, S., Wang, J., Kim, C.H.: A technology-agnostic
MTJ spice model with user-defined dimensions for STT-MRAM scalability studies. In: 2015
IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2015). https://doi.org/10.1109/
CICC.2015.7338407

31. Kazemi, M., Rowlands, G.E., Ipek, E., Buhrman, R.A., Friedman, E.G.: Compact model for
spin–orbit magnetic tunnel junctions. IEEE Trans. Electron Dev. 63(2), 848–855 (2016).
https://doi.org/10.1109/TED.2015.2510543

32. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst.
31(7), 994–1007 (2012). https://doi.org/10.1109/TCAD.2012.2185930

33. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell,
T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22Nd
ACM International Conference on Multimedia, MM ’14, pp. 675–678. ACM, New York, NY,
USA (2014). https://doi.org/10.1145/2647868.2654889

https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/TCAD.2021.3127148
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/HPCA.2013.6522314
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/ICCD.2007.4601907
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://doi.org/10.1109/TVLSI.2009.2035509
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://en.wikipedia.org/wiki/List-of-Nvidia-graphics-processing-units
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/CICC.2015.7338407
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TED.2015.2510543
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889

250 A. Inci et al.

34. Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei: Imagenet: A large-scale hierarchical
image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255 (2009)

35. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing cuda workloads
using a detailed GPU simulator. In: 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, pp. 163–174 (2009). https://doi.org/10.1109/ISPASS.2009.
4919648

36. Isgenc, M.M.: Enabling design of low-volume high-performance ICs. Ph.D. thesis, Carnegie
Mellon University (2019)

37. Isgenc, M.M., Martins, M.G.A., Zackriya, V.M., Pagliarini, S.N., Pileggi, L.: Logic IP for low-
cost IC design in advanced CMOS nodes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
28(2), 585–595 (2020). https://doi.org/10.1109/TVLSI.2019.2942825

38. Pagliarini, S.N., Bhuin, S., Isgenc, M.M., Biswas, A.K., Pileggi, L.: A probabilistic synapse
with strained MTJs for spiking neural networks. IEEE Trans. Neural Networks Learn. Syst.
31(4), 1113–1123 (2020). https://doi.org/10.1109/TNNLS.2019.2917819

39. Scheuerlein, R.E.: Magneto-resistive IC memory limitations and architecture implications. In:
Seventh Biennial IEEE International Nonvolatile Memory Technology Conference. Proceed-
ings (Cat. No.98EX141), pp. 47–50 (1998). https://doi.org/10.1109/NVMT.1998.723217

40. Zhao, W., Belhaire, E., Mistral, Q., Chappert, C., Javerliac, V., Dieny, B., Nicolle, E.: Macro-
model of spin-transfer torque based magnetic tunnel junction device for hybrid magnetic-
CMOS design. In: 2006 IEEE International Behavioral Modeling and Simulation Workshop,
pp. 40–43 (2006). https://doi.org/10.1109/BMAS.2006.283467

41. Kan, J.J., Park, C., Ching, C., Ahn, J., Xie, Y., Pakala, M., Kang, S.H.: A study on practically
unlimited endurance of STT-MRAM. IEEE Trans. Electron Dev. 64(9), 3639–3646 (2017).
https://doi.org/10.1109/TED.2017.2731959

42. Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K., Yamada, H.,
Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H.: A novel nonvolatile memory
with spin torque transfer magnetization switching: spin-RAM. In: IEEE International Electron
Devices Meeting, 2005. IEDM Technical Digest., pp. 459–462 (2005)

43. Chi, P., Li, S., Yuanqing Cheng, Yu Lu, Kang, S.H., Xie, Y.: Architecture design with STT-
RAM: Opportunities and challenges. In: 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 109–114 (2016)

44. Rasquinha, M., Choudhary, D., Chatterjee, S., Mukhopadhyay, S., Yalamanchili, S.: An
energy efficient cache design using spin torque transfer (STT) RAM. In: 2010 ACM/IEEE
International Symposium on Low-Power Electronics and Design (ISLPED), pp. 389–394
(2010). https://doi.org/10.1145/1840845.1840931

45. Prenat, G., Jabeur, K., Vanhauwaert, P., Pendina, G.D., Oboril, F., Bishnoi, R., Ebrahimi,
M., Lamard, N., Boulle, O., Garello, K., Langer, J., Ocker, B., Cyrille, M., Gambardella, P.,
Tahoori, M., Gaudin, G.: Ultra-fast and high-reliability SOT-MRAM: From cache replacement
to normally-off computing. IEEE Trans. Multi-Scale Comput. Syst. 2(1), 49–60 (2016). https://
doi.org/10.1109/TMSCS.2015.2509963

46. Bishnoi, R., Ebrahimi, M., Oboril, F., Tahoori, M.B.: Architectural aspects in design and
analysis of SOT-based memories. In: 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 700–707 (2014)

47. Oboril, F., Bishnoi, R., Ebrahimi, M., Tahoori, M.B.: Evaluation of hybrid memory technolo-
gies using SOT-MRAM for on-chip cache hierarchy. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 34(3), 367–380 (2015). https://doi.org/10.1109/TCAD.2015.2391254

48. Li, G., Chen, X., Sun, G., Hoffmann, H., Liu, Y., Wang, Y., Yang, H.: A STT-RAM-based low-
power hybrid register file for GPGPUs. In: 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6 (2015)

49. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., Xie, Y.: Hybrid cache architecture
with disparate memory technologies. In: ISCA ’09, p. 34–45. Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1555754.1555761

https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TVLSI.2019.2942825
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/TNNLS.2019.2917819
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/NVMT.1998.723217
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/BMAS.2006.283467
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1109/TED.2017.2731959
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1145/1840845.1840931
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TMSCS.2015.2509963
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1109/TCAD.2015.2391254
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761

Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 251

50. Imani, M., Patil, S., Rosing, T.: Low power data-aware STT-RAM based hybrid cache
architecture. In: 2016 17th International Symposium on Quality Electronic Design (ISQED),
pp. 88–94 (2016). https://doi.org/10.1109/ISQED.2016.7479181

51. Beigi, M.V., Memik, G.: Tapas: Temperature-aware adaptive placement for 3D stacked hybrid
caches. In: Proceedings of the Second International Symposium on Memory Systems,
MEMSYS ’16, p. 415–426. Association for Computing Machinery, New York, NY, USA
(2016). https://doi.org/10.1145/2989081.2989085

52. Smullen, C.W., Mohan, V., Nigam, A., Gurumurthi, S., Stan, M.R.: Relaxing non-volatility for
fast and energy-efficient STT-RAM caches. In: 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, pp. 50–61 (2011)

53. Kuan, K., Adegbija, T.: Energy-efficient runtime adaptable l1 STT-RAM cache design. IEEE
Trans. Comput. Aided Des. Integr. Circ. Syst. 39(6), 1328–1339 (2020). https://doi.org/10.
1109/TCAD.2019.2912920

54. Jog, A., Mishra, A.K., Xu, C., Xie, Y., Narayanan, V., Iyer, R., Das, C.R.: Cache revive:
Architecting volatile STT-RAM caches for enhanced performance in CMPs. In: DAC Design
Automation Conference 2012, pp. 243–252 (2012). https://doi.org/10.1145/2228360.2228406

55. Sun, Z., Bi, X., Li, H., Wong, W., Ong, Z., Zhu, X., Wu, W.: Multi retention level STT-RAM
cache designs with a dynamic refresh scheme. In: 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 329–338 (2011)

56. Wang, J., Dong, X., Xie, Y.: Oap: An obstruction-aware cache management policy for STT-
RAM last-level caches. In: 2013 Design, Automation Test in Europe Conference Exhibition
(DATE), pp. 847–852 (2013)

57. Sun, G., Dong, X., Xie, Y., Li, J., Chen, Y.: A novel architecture of the 3D stacked MRAM l2
cache for CMPs. In: 2009 IEEE 15th International Symposium on High Performance Computer
Architecture, pp. 239–249 (2009). https://doi.org/10.1109/HPCA.2009.4798259

58. Imani, M., Rahimi, A., Kim, Y., Rosing, T.: A low-power hybrid magnetic cache architecture
exploiting narrow-width values. In: 2016 5th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), pp. 1–6 (2016). https://doi.org/10.1109/NVMSA.2016.7547174

59. Angizi, S., He, Z., Reis, D., Hu, X., Tsai, W., Lin, S.J., Fan, D.: Accelerating deep neural
networks in processing-in-memory platforms: Analog or digital approach? In: 2019 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp. 197–202 (2019)

60. Reis, D., Gao, D., Angizi, S., Yin, X., Fan, D., Niemier, M., Zhuo, C., Hu, X.S.: Modeling
and benchmarking computing-in-memory for design space exploration. In: Proceedings of the
2020 on Great Lakes Symposium on VLSI (2020)

61. Angizi, S., Khoshavi, N., Marshall, A., Dowben, P., Fan, D.: Meram: Non-volatile cache
memory based on magneto-electric fets (2020)

62. Seo, Y., Roy, K.: High-density SOT-MRAM based on shared bitline structure. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 26(8), 1600–1603 (2018). https://doi.org/10.1109/
TVLSI.2018.2822841

63. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, pp. 1097–1105. Curran Associates Inc., Red Hook,
NY, USA (2012)

64. Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

65. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

66. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

67. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size (2016)

68. Dongarra, J.J., Heroux, M., Luszczek, P.: HPCG benchmark: a new metric for ranking high
performance computing systems (2015)

https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1145/2989081.2989085
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1109/TCAD.2019.2912920
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/NVMSA.2016.7547174
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
https://doi.org/10.1109/TVLSI.2018.2822841
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

252 A. Inci et al.

69. NVIDIA CUDA Profiler: https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
70. Redmon, J.: Darknet: Open source neural networks in C. http://pjreddie.com/darknet/ (2013–

2016)
71. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE J. Solid State Circ. 52(1), 127–138
(2017). https://doi.org/10.1109/JSSC.2016.2616357

72. Gao, M., Pu, J., Yang, X., Horowitz, M., Kozyrakis, C.: Tetris: Scalable and efficient neural
network acceleration with 3D memory. SIGARCH Comput. Archit. News 45(1), 751–764
(2017). https://doi.org/10.1145/3093337.3037702

73. Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R., Kim, D.,
Kuusela, A., Knies, A., Ranganathan, P., Mutlu, O.: Google workloads for consumer devices:
Mitigating data movement bottlenecks. In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, p. 316–331. Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3173162.3173177

74. Donato, M., Reagen, B., Pentecost, L., Gupta, U., Brooks, D., Wei, G.: On-chip deep neural
network storage with multi-level eNVM. In: 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pp. 1–6 (2018). https://doi.org/10.1109/DAC.2018.8465818

75. Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins, A., Miklos, B., Corrado, G., Lukács,
L., Ganea, M., Young, P., Ramavajjala, V.: Smart reply: Automated response suggestion for
email. CoRR abs/1606.04870 (2016). http://arxiv.org/abs/1606.04870

76. Tucker, G., Wu, M., Sun, M., Panchapagesan, S., Fu, G., Vitaladevuni, S.: Model compression
applied to small-footprint keyword spotting. In: Interspeech 2016, pp. 1878–1882 (2016).
https://doi.org/10.21437/Interspeech.2016-1393

77. Wu, C., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan, M., Hazelwood, K., Isaac, E.,
Jia, Y., Jia, B., Leyvand, T., Lu, H., Lu, Y., Qiao, L., Reagen, B., Spisak, J., Sun, F., Tulloch, A.,
Vajda, P., Wang, X., Wang, Y., Wasti, B., Wu, Y., Xian, R., Yoo, S., Zhang, P.: Machine learning
at facebook: Understanding inference at the edge. In: 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 331–344 (2019). https://doi.org/10.
1109/HPCA.2019.00048

78. Ghodsi, Z., Veldanda, A., Reagen, B., Garg, S.: Cryptonas: Private inference on a relu budget
(2020)

79. Korgaonkar, K., Bhati, I., Liu, H., Gaur, J., Manipatruni, S., Subramoney, S., Karnik, T.,
Swanson, S., Young, I., Wang, H.: Density tradeoffs of non-volatile memory as a replacement
for SRAM based last level cache. In: 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pp. 315–327 (2018). https://doi.org/10.1109/ISCA.2018.
00035

80. Hankin, A., Shapira, T., Sangaiah, K., Lui, M., Hempstead, M.: Evaluation of non-volatile
memory based last level cache given modern use case behavior. In: 2019 IEEE International
Symposium on Workload Characterization (IISWC), pp. 143–154 (2019). https://doi.org/10.
1109/IISWC47752.2019.9042051

81. Pentecost, L., Donato, M., Reagen, B., Gupta, U., Ma, S., Wei, G.Y., Brooks, D.: MaxNVM:
Maximizing DNN storage density and inference efficiency with sparse encoding and error
mitigation. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’52, p. 769–781. Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3352460.3358258

82. Li, H., Bhargav, M., Whatmough, P.N., Philip Wong, H..: On-chip memory technology design
space explorations for mobile deep neural network accelerators. In: 2019 56th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6 (2019)

https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/nvprof-overview
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3093337.3037702
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
https://doi.org/10.1109/DAC.2018.8465818
http://arxiv.org/abs/1606.04870
http://arxiv.org/abs/1606.04870
http://arxiv.org/abs/1606.04870
http://arxiv.org/abs/1606.04870
http://arxiv.org/abs/1606.04870
http://arxiv.org/abs/1606.04870
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.21437/Interspeech.2016-1393
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258
https://doi.org/10.1145/3352460.3358258

SoC-GANs: Energy-Efficient Memory
Management for System-on-Chip
Generative Adversarial Networks

Rehan Ahmed, Muhammad Zuhaib Akbar, Muhammad Abdullah Hanif,
and Muhammad Shafique

1 Introduction

Deep neural networks (DNNs) process the information artificially based on math-
ematical models in order to mimic the human-level perception. They are widely
used in emerging fields such as robotics, language processing, and computer vision,
to name a few. The usage of DNNs is a two-step process: they are first trained,
where the training stage tunes the network parameters, and then put in the inference
stage, where information from the test data is inferred based on the trained network
parameters. Conventionally, supervised learning is used to train DNNs [5], but this
technique requires a significant amount of labeled data for training. Alternatively,
semi-supervised and unsupervised learning have gained a lot of traction as these
techniques can infer information from un-tagged data [1, 6, 10, 11].

Generative adversarial networks (GANs) are the most interesting idea to generate
synthetic but realistic examples from the original dataset using unsupervised learn-
ing [3]. GANs consist of two neural network models: generator and discriminator
as shown in Fig. 1. The generator model competes against the discriminator model
(an adversary) that determines whether a sample generated by the generator belongs
to the data distribution of the training samples or not [11]. During the training phase,
both the networks are trained as a two-player game with the objective to outperform
each other. The objective of the generator network is to generate samples from the

R. Ahmed (�) · M. Z. Akbar
School of Electrical Engineering and Computer Science (SEECS), National University of
Sciences and Technology (NUST), Islamabad, Pakistan
e-mail: rehan.ahmed@seecs.edu.pk; makbar.msee16seecs@seecs.edu.pk

M. A. Hanif · M. Shafique
A1-173, Division of Engineering, New York University Abu Dhabi, Saadiyat Island, United Arab
Emirates
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_9

253

 31368 2385 a 31368 2385 a

 885
51863 a 885 51863 a

mailto:rehan.ahmed@seecs.edu.pk
mailto:rehan.ahmed@seecs.edu.pk
mailto:rehan.ahmed@seecs.edu.pk
mailto:rehan.ahmed@seecs.edu.pk

 11837
51863 a 11837 51863 a

mailto:makbar.msee16seecs@seecs.edu.pk
mailto:makbar.msee16seecs@seecs.edu.pk
mailto:makbar.msee16seecs@seecs.edu.pk
mailto:makbar.msee16seecs@seecs.edu.pk

 885 56845 a 885 56845 a

mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845 a

mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9
https://doi.org/10.1007/978-3-031-19568-6_9

254 R. Ahmed et al.

10
24

rotareneG
rotani

mircsiD

4
4

8
8

16

16

32

32

64

64

4
4

8
8

16

16

32

32

64

64

Fig. 1 Deep-convolution-based generative adversarial network (DCGAN) architecture showing
the generator and discriminator models

latent space that cannot be detected by the discriminator, while the objective of the
discriminator network is to accurately classify examples as either generated (fake)
or from the data (real). Both the two models are trained together until the generator
model starts to generate the plausible examples, therefore making GANs extremely
useful in data generation applications such as text to image synthesis [8], image
classifications [7], mobile robots [4], and video prediction [2], to name a few.

GANs are quite computationally expensive in contrast to DNNs. One of the key
differences in deep-convolution-based generative adversarial network (DCGAN)
is that the max-pooling layer in conventional CNNs is replaced with the strided
convolution, which is used in the forward-computation phases of the discriminator.
The strided convolution operation skips output pixel computation based on a
stride size (zero-skipping) that corresponds to a down-sampling process. Similarly,
another key operation in DCGANs is transposed convolution (de-convolution),
which is used in the forward-computation phases of the generator. In transposed
convolution, the convolution operation inserts zeros in the input feature map (zero-
inserting) that corresponds to up-sampling process. Another type of convolution
used in the training phase of GANs is four-dimensional convolution that itself
is a convolution operation in nature, but there is no accumulation involved after
convolving error of one layer with the output of previous layer that results in
a four-dimensional output matrix. During weights update in discriminator layers,
this operation is used in a similar fashion as that of strided convolution i.e.,
skipping zeros operation, whereas during weights update in generator layers, this
operation inserts zeros similar to the transposed convolution. In most cases, these
computations are accelerated at the software level by a server equipped with several
CPUs and GPUs. But there is a need for more energy-efficient hardware accelerators
for GANs as the applications are moved to a mobile form factor.

Energy-Efficient Memory Management for GANs 255

2 Background: DCGAN Hardware Acceleration and Its
Design Challenges

Song et al. [9] proposed a hardware accelerator design that deals with the above
mentioned complex computations, namely: strided convolution, transposed con-
volution, and four-dimensional convolutions. The proposed hardware design con-
sists of two main microarchitectures, namely: zero-free and output stationary
(ZFOST) and zero-free and weight stationary (ZFWST):

1. Zero-free and output stationary (ZFOST) Microarchitecture: The ZFOST
microarchitecture, shown in Fig. 2, aims at accelerating strided convolution and
transposed convolution. It is used in forward data pass and backward error pass.
The ZFOST microarchitecture is composed of a .4 × 4 processing element (PE)
array and an input register array. The PE array is used for processing the output,
and the input register array is for feeding the input neurons (i.e., the pixels of an
input feature map) to the PEs. The registers shown in green in the register array
directly correspond to the respective PEs in the PE array, while the additional

PE ARRAY

Input Register Array
R(0,0) R(0,1) R(0,2) R(0,3)

R(1,0) R(1,1) R(1,2) R(1,3)

R(2,0) R(2,1) R(2,2) R(2,3)

R(3,0) R(3,1) R(3,2) R(3,3)

R(0,4)

R(1,4)

R(2,4)

R(3,4)

R(0,5)

R(1,5)

R(2,5)

R(3,5)

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

x

R

Out

+

Fig. 2 Zero-free output stationary architecture (ZFOST)

256 R. Ahmed et al.

Input Register Array
R(0,0) R(0,1) R(0,2) R(0,3)

R(1,0) R(1,1) R(1,2) R(1,3)

R(2,0) R(2,1) R(2,2) R(2,3)

R(3,0) R(3,1) R(3,2) R(3,3)

R(0,4)

R(1,4)

R(2,4)

R(3,4)

R(0,5)

R(1,5)

R(2,5)

R(3,5)

PE ARRAY

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)

x

R

K

Adder Tree

+

+

+
+

+

+

+

+

+
+ Out+

4x4 PEs
Output

Fig. 3 Zero-free weight stationary architecture (ZFWST)

registers are used to allow temporal reuse of input data by shifting the content of
the registers.

2. Zero-free and weight stationary (ZFWST) Microarchitecture: The ZFWST
microarchitecture, as shown in Fig. 3, is used to accelerate multi-dimensional
convolution that is used for backpropagation to update the weights during the
training phase. ZFWST microarchitecture consists of a .4 × 4 PE array, an input
register array, and an adder tree. The weights are spatially shared by the PEs

Energy-Efficient Memory Management for GANs 257

and are fed one at a time. The size of the PE array is kept at .4 × 4 to match
the size of the minimum output feature map in DCGANs. For computations in
this microarchitecture, the output neurons (i.e., the pixels of an output feature
map) are unrolled, and the spatially neighboring neurons are mapped on the PE
array where one output neuron is mapped to one PE and is kept there throughout
its computation. The kernel weights are relayed one at a time and are spatially
shared by the PEs in the PE array.

In order to avoid bubbles in the computation flow of ZFOST and ZFWST
pipelines, an efficient dataflow has also been proposed in [9]. In this flow, the
kernel/filter weights are loaded into ZFOST and ZFWST input register arrays in
a type-oriented format instead of being fetched in a sequential order. The type-
oriented format refers to the alignment of data based on its row and column indexes
being even or odd in its data class. That is, pixels or weights belonging to even rows
and even columns are considered a part of even–even type, and similarly others are
placed in even–odd, odd–even, and odd–odd categories.

Next, let us take a look at the dataflow for performing computations in the ZFOST
and ZFWST microarchitectures.

ZFOST Strided Convolution Dataflow
Figure 4 illustrates the dataflow of strided convolution performed by ZFOST
microarchitecture. As depicted, first even–even weights (i.e., weights with even row
and even column indexes) are processed followed by even–odd kernel weights, then
odd–even kernel weights, and at the end odd–odd kernel weights are processed.
Since each PE is mapped to an output .O(ox,oy), its required input for kernel weight
.K(kx,ky) can be computed as .I(kx+2ox,ky+2oy). Initially, all the inputs marked with
“Red” are loaded into the input register array. Then in the next clock cycle, data
is shifted in input register array for temporal reuse. Let us take an example, when
the kernel weight .K(0,0) is provided to all PEs in the first clock cycle for processing,

I(0,0) I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(0,0)I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0)I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10) I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)

K(0,0)

K(0,2)

K(2,0)

K(0,1) I(0,1) I(0,3) I(0,5) I(0,7) I(0,9) I(0,11) I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11)

K(0,3) I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11) I(4,1) I(4,3) I(4,5) I(4,7) I(4,9) I(3,11)

K
)

n
e

v
E,

n
e

v
E(

K
)

d
d

O,
n

e
v

E(

K(Odd,Even)

K(Odd,Odd)

O(0,0) O(0,1) O(0,2) O(0,3) O(1,0) O(1,1) O(2,2) O(1,3)

R(0,0) R(0,1) R(0,2) R(0,3) R(1,0) R(1,1) R(2,2) R(1,3)

PE(0,0)PE(0,1)PE(0,2) PE(0,3) PE(1,0)PE(1,1)PE(2,2) PE(1,3)

0
1
2

0
3

Operation
 Code

Fig. 4 Strided convolution dataflow controller using ZFOST. Two out of four rows of processing
element array are shown in this figure. Pixels with the type even–even are processed first followed
by the even–odd, odd–even, and finally pixel with odd–odd type are processed. All weight
contributes in the computation of each output pixel

258 R. Ahmed et al.

then all pixels marked with red are required to be loaded into the input register array,
as shown in Fig. 5b. The data is then shifted within the input register array for the
next two clock transitions to perform the processing on kernel weights .K(0,2) and
.K(0,4) as illustrated in the dataflow of Fig. 4. For the fourth clock transition when the
next even–even kernel weight .K(2,0) is broadcasted to all PEs, six new data pixels
are required in the last row of the input register array, as shown in Fig. 5c.

ZFOST Transposed Convolution Dataflow
Dataflow for the transposed convolution is illustrated in Fig. 6. In transposed
convolution, the indexes of non-zero input neurons are spaced due to zero insertion.
Therefore, for a particular type of output neurons, only effective pixels belong to the
same type. It means when kernel weight .K(Even,Even) is being processed, computing
only .O(Even,Even) is effective. Similarly, kernel weights .K(Even,Odd), . K(Odd,Even)

Input Register Array
I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)
I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)
I(6,0) I(6,2) I(6,4) I(6,6) I(6,8) I(6,10)

Input Register Array
I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)
I(6,0) I(6,2) I(6,4) I(6,6) I(6,8) I(6,10)
I(8,0) I(8,2) I(8,4) I(8,6) I(8,8) I(8,10)

(b)

(c)

I(0,0) I(0,2) I(0,4) I(0,6) I(0,8) I(0,10)

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(0,0) I(0,1) I(0,2) I(0,3)
I(0,4) I(0,5) I(0,6) I(0,7)
I(0,8) I(0,9) I(0,10) I(0,11)

64 Bits

0
1
2

I(63,52) I(63,53) I(63,54) I(63,55)
I(63,56) I(63,57) I(63,58) I(63,59)
I(63,60) I(63,61) I(63,62) I(63,63)

1021
1022
1023

(a)

Fig. 5 (a) Linear arrangement of data in on-chip/off-chip memory. Data to be loaded in local
register of ZFOST (b) during processing of K(0,0) and (c) during processing of K(2,0)

I(0,0) I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(0,0)I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0)I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10) I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)

I(0,1) I(0,3) I(0,5) I(0,7) I(0,9) I(0,11) I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11)

I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11) I(4,1) I(4,3) I(4,5) I(4,7) I(4,9) I(3,11)

R(0,0) R(0,1) R(0,2) R(0,3) R(1,0) R(1,1) R(2,2) R(1,3)
PE(0,0) PE(0,1) PE(0,2) PE(0,3) PE(1,0) PE(1,1) PE(2,2) PE(1,3)

O(0,0) O(0,2) O(0,4) O(0,6) O(2,0) O(2,2) O(2,4) O(2,6)O(Even,Even)

O(Even,Odd)O(0,1) O(0,3) O(0,5) O(0,7) O(2,1) O(2,3) O(2,5) O(2,7)

O(Odd,Even)O(1,0) O(1,2) O(1,4) O(1,6) O(3,0) O(3,3) O(3,4) O(3,6)

O(Odd,Odd)O(1,1) O(1,3) O(1,5) O(1,7) O(3,1) O(3,3) O(3,5) O(3,7)

K(0,0)

K(0,2)

K(2,0)

K(0,1)

K(0,3)

K
)

n
e

v
E,

n
e

v
E(

K
)

d
d

O,
n

e
v

E(

K(Odd,Even)

K(Odd,Odd)

0
1
2

0
3

Operation
 Code

Fig. 6 Transposed convolution dataflow controller using ZFOST.Two out of four rows of
processing element array are shown in this figure. In this convolution, input image pixels with a
certain type contribute only to the output pixels of same type. Even–even type pixels are processed
first generating the output pixels of type even–even, followed by even–odd, odd–even, and final
odd–odd pixels are processed with kernel weights generating output pixels of odd–odd type

Energy-Efficient Memory Management for GANs 259

and .K(Odd,Odd) contribute only in the computation of .O(Even,Odd), . O(Odd,Even)

and .O(Odd,Odd), respectively.

ZFWST Four-Dimensional Convolution Dataflow
The ZFWST microarchitecture, shown in Fig. 3, performs four-dimensional con-
volution. Zeros are inserted in the discriminator kernel during its backward phase
as shown in Fig. 7. Similarly, zeros are inserted in the input data of backward
phase in generator, as shown in Fig. 8. Therefore, ZFWST is not only responsible
to skip zeros in input data, but also in kernel weights. In ZFWST, each PE has
stationary kernel weight, and all PEs contribute to one output neuron using an
adder tree as illustrated in Fig. 3. The ZFWST microarchitecture uses a similar
input register array as that of ZFOST microarchitecture and therefore has similar
dataflow. Figures 7 and 8 represent the dataflow of four-dimensional convolution
during backward phase of discriminator and generator, respectively.

It is to be noted that the need of loading multiple data points (up to 24 data
points) into input register array, and that too in a type-oriented format, from an on-
chip memory brings a unique set of challenges. We list the key memory layout and
management challenges as follows:

• Linear on-chip memory does not fulfill the dataflow requirements: The data
in the conventional on-chip memory is stored linearly, which limits the design to
feed multiple data points to ZFOST and ZFWST microarchitectures in a single
clock cycle. Therefore, for a 16-bit fixed-point system, each location of the on-
chip memory will store 4 data point in a cascaded form. In order to load required
24 data points into the input register array during the first clock cycle, a total of
12 read cycles are required to extract the relevant data from the on-chip memory.
Moreover, since only even–even data is required during this computation, half of
the read data will be wasted. Therefore, to implement the dataflow of Figs. 4, 6, 7,

I(0,0) I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(0,0)I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0)I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10) I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)

O(0,0)

O(0,2)

O(2,0)

O(0,1) I(0,1) I(0,3) I(0,5) I(0,7) I(0,9) I(0,11) I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11)

O(0,3) I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11) I(4,1) I(4,3) I(4,5) I(4,7) I(4,9) I(3,11)

O
)

n
e

v
E,

n
e

v
E(

O
)

d
d

O,
n

e
v

E(

O(Odd,Even)

O(Odd,Odd)

K(0,0) K(0,1) K(0,2) K(0,3) K(1,0) K(1,1) K(2,2) K(1,3)

R(0,0) R(0,1) R(0,2) R(0,3) R(1,0) R(1,1) R(2,2) R(1,3)

PE(0,0)PE(0,1)PE(0,2) PE(0,3) PE(1,0)PE(1,1)PE(2,2) PE(1,3)

0
1
2

0
3

Operation
 Code

Fig. 7 Four-dimensional convolution dataflow controller for discriminator using ZFWST. Two
out of four rows of processing element array are shown in this figure. Pixels with the type even–
even are processed first followed by the even–odd, odd–even, and finally pixel with odd–odd type
are processed. Output has been computed with one pixel at a time after processing by all kernel
weights in a weight stationary architecture

260 R. Ahmed et al.

I(0,0) I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(0,0)I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(2,0)I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10) I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)

I(0,1) I(0,3) I(0,5) I(0,7) I(0,9) I(0,11) I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11)

I(2,1) I(2,3) I(2,5) I(2,7) I(2,9) I(2,11) I(4,1) I(4,3) I(4,5) I(4,7) I(4,9) I(3,11)

R(0,0) R(0,1) R(0,2) R(0,3) R(1,0) R(1,1) R(2,2) R(1,3)
PE(0,0) PE(0,1) PE(0,2) PE(0,3) PE(1,0) PE(1,1) PE(2,2) PE(1,3)

K(0,0) K(0,2) K(0,4) K(0,6) K(2,0) K(2,2) K(2,4) K(2,6)K(Even,Even)

K(Even,Odd)K(0,1) K(0,3) K(0,5) K(0,7) K(2,1) K(2,3) K(2,5) K(2,7)

K(Odd,Even)K(1,0) K(1,2) K(1,4) K(1,6) K(3,0) K(3,3) K(3,4) K(3,6)

K(Odd,Odd)K(1,1) K(1,3) K(1,5) K(1,7) K(3,1) K(3,3) K(3,5) K(3,7)

O(0,0)

O(0,2)

O(2,0)

O(0,1)

O(0,3)

O
)

n
e

v
E,

n
e

v
E(

O
)

d
d

O,
n

e
v

E(

O(Odd,Even)

O(Odd,Odd)

0
1
2

0
3

Operation
 Code

Fig. 8 Four-dimensional convolution dataflow controller for generator using ZFWST. Two out
of four rows of processing element array are shown in this figure. In this convolution, input image
pixels with a certain type contribute only to the output pixels of same type. Being the weight
stationary architecture, each pixel of output computed one at a time. Even–even type pixels are
processed first generating the output pixels of type even–even, followed by even–odd, odd–even,
and final odd–odd pixels are processed with kernel weights generating output pixels of odd–odd
type

and 8, a customized memory architecture is needed, which can provide multiple
data points of input feature map from the on-chip memory in one clock cycle
without any data wastage as per the requirements of strided, transposed, and
four-dimensional convolution.

• Multiple type-oriented data points required in a single clock cycle: ZFOST
and ZFWST microarchitectures require the input data to be loaded in type-
oriented form, which becomes challenging with conventional linear memory.
This requires a customized memory controller that intermediately re-packages
the fetched data in type-oriented form before loading it into input register arrays.

3 Memory-Efficient Hardware Architecture for Generative
Adversarial Networks (GANs)

Our work addresses the above mentioned memory-related challenges broadly by
proposing a 2-D distributed on-chip memory array andData re-packaging units, as
shown in Fig. 9. The 2-D distributed on-chip memory supports the simultaneous data
loading as required by the non-standard GAN convolutions: strided/transposed/four-
dimensional convolution. And the data re-packaging units re-arrange the data in
type-oriented format before storing it in on-chip memory. It is to be noted that
we implemented the zero-free output stationary (ZFOST) and zero-free weight
stationary (ZFWST) microarchitectures along with the custom convolution dataflow
controllers, S-CONV, T-CONV, and W-CONV, as proposed in [9] and discussed
in Sect. 2. Altogether, our proposed distributed on-chip memory, its correspond-
ing distributed memory controller, data re-packaging units, and custom dataflow

Energy-Efficient Memory Management for GANs 261

DISTRIBUTED MEMORY
CONTROLLER

D
R

A
M

Read

Data

DISTRIBUTED
ON-CHIP
MEMORY

R
e
a
d

/W
rite

S_CONV
Data Flow
Controller

T_CONV
Data Flow
Controller

W_CONV
Data Flow
Controller

D
a
ta

D
a
ta

ZFWSTZFOST

D
a
ta

Controls

Data (Weights/Inputs)

Address

A
d

d
re

s
s

A
d

d
re

s
s

Data
Re-Packaging

Data
Re-Packaging

Data
Re-Packaging

Fig. 9 Propose Architecture of Generative Adversarial Network

controllers make up the complete hardware architecture for GAN acceleration. We
describe our proposed hardware blocks in the following sections.

3.1 2-D Distributed On-Chip Memory Array

The proposed 2-D distributed on-chip memory array structure is shown in Fig. 10.
The overall structure has two major parts, namely RAM-Block and RAM-Channel.
Each RAM-Block consists of small-sized SRAM blocks that store the same type of
input data, in a type-oriented form. For example, input pixels .I(even,even) are stored
in RAM-Block 0. Similarly, input pixels .I(even,odd), .I(odd,even), .I(odd,odd) are stored
in RAM-Blocks 1, 2, and 3, respectively. Each RAM-Block is further divided into
four RAM-Channels, where each channel stores data required by each row of the
input register array in the ZFOST microarchitecture. Further, each RAM-Channel
is divided into six single-port SRAM (SPRAMs) blocks, which is based on the
number of columns in the input register array. Therefore, each SPRAM in a RAM-
Block feeds data to one register of the input register array that enables simultaneous
registers loading. For example, during the strided convolution dataflow as shown
in Fig. 4, a total of 24 data points are required to be loaded into the local register
when .K(0,0) is being processed. 6 out of 24 data points, for row-0, row-1, row-2, and
row-3 of the local register, are stored in RAM-Block-0 at address-0 of channel-0,
channel-1, channel-2, and channel-3, respectively. The SPRAM size is dependent
on the maximum size of the input and output feature maps, which can be computed
using Eq. (1).

262 R. Ahmed et al.

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

RAM Channel 0 RAM Channel 1 RAM Channel 2 RAM Channel 3
0

kcolB
M

A
R

1
kcolB

M
A

R
2

kcolB
M

A
R

3
kcolB

M
A

R

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

SP
 R

A
M

 0

SP
 R

A
M

 1

SP
 R

A
M

 2

SP
 R

A
M

 3

SP
 R

A
M

 4

SP
 R

A
M

 5

RAM Channel 0 RAM Channel 1 RAM Channel 2 RAM Channel 3
0

kcolB
M

A
R

AA
1

kcolB
M

A
R

AA
2

kcolB
M

A
R

AA
3

kcolB
M

A
R

AA

Fig. 10 Distributed on-chip memory design

.SizeSPRAM = Dimimage × Dimimage × N

NRams × NChannels × NBlocks

. (1)

3.2 Data Re-Packaging Unit

The data re-packaging units re-arrange the data in a type-oriented format before
storing it in on-chip memory. In doing so, it translates the input feature address,
coming either from the external DRAM or ZFOST/ZFWST microarchitectures, into
distributed on-chip memory address. It is to be noted that locating an individual
pixel inside the distributed memory requires to compute six elements of its address:
pixel row, pixel column, RAM-Block index, RAM-Channel index, RAM-Index (index
of a SPRAM inside a block of the grid), and address of the SPRAM, as depicted
in Fig. 11. We discuss the generation of these address components below while
referring to notations used in Table 1.

Energy-Efficient Memory Management for GANs 263

DRAM ADDRESS BUS

Data Re-PackagingData (0)

Data (1)

Data (2)

S
UB

AT
A

D
M

A
R

D

Data (3)

Data Re-Packaging

Data Re-Packaging

Pixel Row Index Computation
Pixel Column Index Computation
RAM-Block Index Computation

RAM-Channel Index Computation
RAM-Index Computation

SPRAM-Address Computation

Data Re-Packaging

Data Re-Packaging

Fig. 11 Data Re-packaging Unit

Table 1 Notations used in the explanation of Re-packaging phases

Symbols Description

Size.SPRAM Size of a SPRAM in distributed memory architecture

N.RAMs The number of SPRAMs in one channel of distributed memory architecture

N.Channels The number of channels in one block of distributed memory architecture

N.Blocks The number of blocks in distributed memory architecture

N The number of bits of one input pixel

P.row Row index of input pixel

P.col Column index of input pixel

Add.DRAM Address of DRAM access

NP.DRAM The number of data point in one DRAM location

dp.x Data point index out of a total number of data points from one DRAM location

Dim.image Feature map dimension (rows/columns where the numbers of rows and columns

are the same)

Blobk.Index Block index of IO-Buffer

ISODD(x) Results 1 if x is an odd number

ISEVEN(x) Results 1 if x is an even number

Channel.Index Channel index of IO-Buffer

Temp.RAMIndex Local temporary variable used in computation of RAM index of IO-Buffer

X (mod Y) Remainder when X is divided by Y

X [B1:B2] Bit wise selection of X with B1 as MSB and B2 as LSB

X [B1] Bit wise selection of bit B1 of X

RAM.Index RAM-Index

RAM.Address SPRAM Address

3.2.1 Pixel Row Index Computation Block

In this first stage pixel row index computation block, the row index of the input pixel
is computed in the following steps:

264 R. Ahmed et al.

X

Add DRAM

Np DRAM

Right Shift Register

Network

Division Logic

PROW

dpx

Adder

Fig. 12 Input pixel row computation using the information of the data point index, address of the
DRAM, and information of the number of data point in one DRAM location

• Address of DRAM location is multiplied with the total number of pixels stored
in each location in DRAM.

• The current index of the data point out of the total number of input data points
stored in a location of DRAM is added to the result.

• Finally, the final row address result is divided by the dimension of the input
feature map to compute the final row address.

Figure 12 shows the block-level diagram for pixel row index computation block.

3.2.2 Pixel Column Index Computation Block

The pixel column index is computed using the following components:

• Pixel row index
• Address of the DRAM from where the data has been fetched
• The total number of input pixels in one location of DRAM
• The dimension of input feature map and the index of input data pixel in the
DRAM location

Figure 13 shows the block-level diagram for pixel column index computation
using the above information.

3.2.3 RAM-Block Index Computation

The 2-D Distributed Memory Array Block Index Computation, RAM-Block, is
calculated based on the pixel type (i.e., even–even, even–odd, odd–even, and odd–
odd). This is achieved by checking the LSBs of the row index and column index. The
block-level circuit diagram of RAM-Block index computation is shown in Fig. 14.
It generates a 2-bit RAM-Block index that is 0, 1, 2, and 3, if pixel is even–even,
even–odd, odd–even, and odd–odd, respectively.

Energy-Efficient Memory Management for GANs 265

x

Add DRAM

Np DRAM

x
Dim Image

PROW

Subtractor

dpX PCOL Adder

Fig. 13 Input pixel column computation using the information of the data point index, address of
the DRAM, information of the number of data point in one DRAM location, computed row in the
previous step, and the dimension of the input feature map

x
2

PROW [0]

PCOL [0]

BlockIndex Adder

Fig. 14 Block-Index Computation using row index and column index computed in the previous
steps

PROW [0]

BlockIndex [0]

PROW [2:1]

Constant 3

ChannelIndex

Fig. 15 Channel Index Computation using row index and block index value

3.2.4 RAM-Channel Index Computation

Figure 15 shows the circuit-level diagram for the RAM-Channel index computation
block. The channel index for each pixel is calculated using the least significant three
bits of row index along with the least significant bit of RAM-Block index.

266 R. Ahmed et al.

+

PCOL [3:1]

1 %6 ==0

5

1

>6

-1

-
RamIndex

Fig. 16 RAM Index Computation using column index value

3.2.5 RAM Index Computation

Each RAM-Channel contains six single-ported SRAMs (SPSRAMs) that are rep-
resented by RAM-Index, and the index runs from 0 to 5. Figure 16 illustrates the
circuit-level diagram for RAM index computation using bits .3 : 1 of the column
indexes of the input pixel. For example, consider the input pixel .I (0, 6) that will
be loaded in row 0 and column 3 of the local register. Bits . [3:. 1] in .(0110)2 give
.(011)2 = 3. Thus, the input pixel .I (0, 6) after the computation, shown in Fig. 16,
will be stored in RAM-Index 2.

3.2.6 SPRAM Address Computation

The size of the input feature map and pixel’s column index is used in order to
compute the address of a particular SPRAM selected by .BlockAdd , . ChannelAdd
and .RAMIndex . Figure 17 shows the block-level diagram implemented for the
SPRAM address computation. Only two types of pixels exist for a single row of
input feature map that reduces the size of a row to be stored in a RAM-Channel
to half. As each RAM-Channel consists of six SPRAMs, therefore each full row is
folded at length six in order to be stored in six RAMs of a RAM-Channel. The base
address of the next row within a RAM-Channel is determined by the first input of
the last adder as shown in Fig. 17.

Let us take an example: if the input feature map is of dimension .32 × 32, then
one row of pixels will be stored in 3 locations of a SPRAM (from address 0 to
address 2). Therefore, when a particular SPRAM is selected again to store a data
value, its address must start from the address 3. If the input feature map is greater
than 12 pixels, the same SPRAM will contain multiple data values of the sample
row. Therefore, the second input of the last adder in Fig. 17 is the address computed
on the basis of the column index of the input pixels.

Energy-Efficient Memory Management for GANs 267

Dim(Image)

12 Adder1
Div

P(col)

12
Div Adder

Ram(Add)

Fig. 17 RAM address computation using the information of input image dimension and computed
column index

4 Results and Discussion

4.1 Experimental Setup

We implemented the microarchitecture of the blocks in the proposed GAN hardware
architecture, shown in Fig. 9, using Verilog-HDL. The design is synthesized using
Xilinx Vivado Design Tool 2017.4 targeting Xilinx Kintex-7 “xc7k410tfbg676-1”
FPGA with a clock speed of 200MHz. The size of an SPRAM inside distributed
memory array is set to 32KB, which is sufficient to hold an image dimension
up to .1024 × 1024 pixels where each pixel is 16-bit-wide. In order to verify the
functionality of the proposed architecture, a trained DCGAN model [7] is used. We
extracted the input feature maps and kernel maps using Matlab tool. These maps
are then used to evaluate the design for strided, transposed, and four-dimensional
convolution.

Figure 18 depicts the complete tool flow that is used to evaluate the proposed
architecture. The weights and input features are pre-loaded in a DRAM linearly that
serves as stimuli. The design is evaluated using different image sizes but with a fixed
kernel size of .4 × 4. In order to emulate a real-world ASIC-based implementation,
the memory configuration used in Vivado Design Tool is also provided to CACTI-p
tool by HP to compute the read/write access energy consumption of memory.

We compare the performance of our architecture with 2-D distributed on-chip
memory array with the state-of-the-art design [9] containing a conventional on-chip
buffer that stores data in a linear format. Figure 19 shows the overall design of a
conventional GAN hardware architecture that uses the conventional linear on-chip
memory. Each memory location in our architecture can store 4 data points, since
the memory data bus is 64-bit-wide and each pixel is 16-bit-wide. So to store an
input image of size up to .1024×1024 pixels, the total overall memory size becomes
512KB.

268 R. Ahmed et al.

MemGANs

Verilog Files

MemGANs

Verilog Files

MemGANs

Verilog Files

Verilog Stimulus

Xilinx Design
Constraints (xdc)

Resource
Utilization
Resource

Utilization
Resource

Utilization

HDL Design Flow (Xilinx Vivado)

Layers Data Extractor
(Matlab)

DCGAN ModelDCGAN ModelDCGAN Model

Input.csv Kernel.csv

Memory
Configuration

Access
Energy

Estimator
(CACTI_P)

Performance
Evaluation

Performance
Evaluation

Performance
Evaluation

Pre-Synthesis Logic Simulation

Logic Synthesis

Post-Synthesis Logic Simulation

Design Implementation

Read/Write Access
Energy Estimates

Read/Write Access
Energy Estimates

Read/Write Access
Energy Estimates

Read/Write
Accesses

Read/Write
Accesses

Read/Write
Accesses

Fig. 18 Tool flow for evaluation of the proposed architecture

Main Controller

Dataflow
Controller

ZFOST

M
A

R
D

IO-Buffer IO-Buffer

Conventional On-Chip Memory

Main Controller

Dataflow
Controller

ZFOST

M
A

R
AA

D

IO-Buffer IO-Buffer

Conventional On-Chip Memory

Fig. 19 Conventional Architecture of Generative Adversarial Network

4.2 Processing Time Evaluation

Processing time consists of the time it takes data to load from off-chip memory
and the time spent in the processing block. Figures 20 and 21 show the processing
times of the various convolution blocks, S-CONV, T-CONV, and W-CONV, in both
conventional and proposed hardware designs, respectively.

As can be seen, our proposed architecture outperforms the conventional design
in processing time of an input feature map. Our proposed architecture supports the
ZFOST to achieve .3.65x faster processing time than the baseline, over different
image sizes.

Figure 22 shows the breakdown of the overall processing time into two compo-
nents: loading time and processing time, in a strided convolution on a input feature
map of different sizes. It can be seen that as the dimensions of the input feature
map increase, the data loading time dominates in the overall processing of the
convolution operation in both proposed and conventional architectures.

Energy-Efficient Memory Management for GANs 269

0

500

1000

1500

0

20

40

60

80

100

120

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Processing Time S-CONV (us)
Processing Time T-CONV (us)
Processing Time W-CONV during Generator Update(us)
Processing Time W-CONV during Discriminator Update(us)
Data Loading Time (us)

Image Dimension

]su[e
miT gni ssecorP Pr

oc
es

sin
g

Ti
m

e
[u

s]

Fig. 20 Performance evaluation of the conventional design of [9]

0
200
400
600
800
1000
1200
1400

0
1
2
3
4
5
6
7
8

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Processing Time S-CONV (us)
Processing Time T-CONV (us)
Processing Time W-CONV during Generator Update(us)
Processing Time W-CONV during Discriminator Update(us)
Data Loading Time (us)

Image Dimension

]su[e
miT gni ssecorP Pr

oc
es

sin
g

Ti
m

e
[u

s]

Fig. 21 Performance evaluation of the proposed architecture

4x4

8x8

16x16

32x32

64x64

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
ProcessingLoading

ProcessingLoading

ProcessingLoading

ProcessingLoading

ProcessingLoading

Fig. 22 Contribution of Loading and Processing Times

270 R. Ahmed et al.

Table 2 Power breakdown comparison of the proposed design with the conventional design

Power Consumption Breakdown [W]

Module Proposed architecture Conventional design

Re-packaging Unit (DRAM to IO-Buffer) 0.23 –

Re-packaging Unit (ZFOST to IO-Buffer) 1.3 –

Main controller 0.19 1.48

Dataflow controller – 1.83

S-CONV controller) 0.58 –

T-CONV controller) 0.61 –

W-CONV controller) 0.73 –

ZFOST 0.10 0.10

ZFWST 0.12 0.12

IOBUFFER (BRAM Blocks in FPGA) 1.74 1.79

Total Power 5.6 5.32

Our proposed architecture consumes . 5% more power compared to the conven-
tional baseline design of Fig. 19. This is because of the additional re-packaging units
used in the design. The overall power consumption as well as the power breakdown
of both the designs is shown in Table 2.

4.3 Memory Accesses Evaluation

In this experiment, we compare the following:

• The number of read/write accesses to the on-chip memory during strided and
transpose convolutions

• The energy consumption of the associated read/write accesses
• The overall time to process the input feature maps of different sizes during
strided, transposed, and four-dimensional convolution

Figure 23 shows the number of read/write accesses to the on-chip memory during
strided convolution. Results show that our architecture reduces the number of read
and write accesses by .85% and .75%, respectively, when compared with the baseline
conventional architecture shown in Fig. 19.

Similarly, during transposed convolution, our proposed design reduces the
number of read and write accesses by .85% and .80%, respectively, when compared
with the baseline conventional architecture as shown in Fig. 24.

It is to be noted that the numbers of read/write accesses during four-dimensional
convolution in its discriminator update phase and four-dimensional convolution in
its generator update phase are similar to the strided convolution and transposed
convolution, respectively, as both convolutions follow the same dataflow.

Figure 25 shows the energy consumption of the read/write accesses during
strided convolution. Results show that our architecture reduces the energy consump-

Energy-Efficient Memory Management for GANs 271

Read Access Write Access Read Access Write Access Read Access Write Access
Conventional

Approach (16-Bits
Wide SRAM)

Conventional
Approach (64-Bits

Wide SRAM)

Proposed
Architecture

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Fig. 23 Comparison between the number of memory accesses during strided convolution
considering different memory architectures for various input image sizes

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Read Access Write Access Read Access Write Access Read Access Write Access
Conventional

Approach (16-Bits
Wide SRAM)

Conventional
Approach (64-Bits

Wide SRAM)

Proposed
Architecture

Fig. 24 Comparison between the number of memory accesses during transposed convolution
considering different memory architectures for various input image sizes

Read Energy Write Energy Read Energy Write Energy Read Energy Write Energy
Conventional

Approach (16-Bits
Wide SRAM)

Conventional
Approach (64-Bits

Wide SRAM)

Proposed
Architecture

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Fig. 25 Comparison between the memory accesses energy during strided convolution considering
different memory architectures for various input image sizes

tion of the read and write accesses by .65% and .58%, respectively, when compared
with the conventional architecture.

Similarly, our architecture reduces the energy consumption of the read and write
accesses in transposed convolution by .65% and .67%, respectively, when compared
with the conventional architecture.

272 R. Ahmed et al.

Read Energy Write Energy Read Energy Write Energy Read Energy Write Energy
Conventional

Approach (16-Bits
Wide SRAM)

Conventional
Approach (64-Bits

Wide SRAM)
MemGANs

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Fig. 26 Comparison between the memory accesses energy during transposed convolution
considering different memory architectures for various input image sizes

Figures 23, 24, 25, and 26 also show the comparison of our proposed GAN
architecture design with the conventional design of Fig. 19 when the SPRAM bit
width is reduced from 64 to 16 bits.

As shown in Fig. 23, in the case of strided convolution, our proposed architecture
reduces the read and write accesses by .92% and .93%, respectively. Similarly,
the read and write accesses in the case transposed convolution are reduced by
.95% and .94%, respectively, as shown in Fig. 24. Consequently, the read and write
energy consumption associated with the strided convolution reduces by .82% and
.89%, respectively, as shown in Fig. 25, and by .86% and .91%, respectively, during
transposed convolution, as shown in Fig. 26.

4.4 Area Utilization Evaluation

As the results of the conventional design with 16-bit-wide SPRAM are worse than
with 64-bit-wide SPRAM, we only consider the results of 64-bit-wide SPRAM for
the following results.

We implemented the microarchitectures of our proposed architecture (Fig. 9) and
the design of [9] (Fig. 19), using Xilinx Vivado design tool for the Xilinx Kintex
7 device (xc7k325tffg900-2 FPGA), in order to compare the hardware resource
utilization. As shown in Table 3, our proposed architecture utilizes more resources
in comparison to the design of Fig. 19. This is understandably a trade-off between
improved performance and energy efficiency.

Table 3 shows the resource utilization of our proposed architecture and con-
ventional design. Our proposed architecture utilizes .1.16x, .1.14x, and .1.14x more
look-up tables, flip flops, and DSP blocks on the FPGA when compared with the
baseline design. Moreover, the number of BRAMs used by our proposed 2-D on-
chip distributed memory array is 6x more. However, this number (i.e., the average
number of BRAMs per ZFOST architecture) can be reduced when multiple ZFOST
architectures are implemented together.

Energy-Efficient Memory Management for GANs 273

Table 3 Comparison of Resource Utilization

Utilized

Available Our proposed architecture Conventional memory Design

LUT 203,800 77,414 69,317

FF 407,600 15,952 13,469

RAM 445 48 8

DSP 840 98 73

5 Conclusion

In this chapter, we discussed the need for having hardware-based solution for
accelerating non-standard convolution operations involved in generative adversarial
networks (GANs) using novel 2-D distributed on-chip memory architecture and
smart data re-packaging units. The 2-D memory architecture helps in simultaneous
loading of multiple pixels into the input register array of the ZFOST/ZFWST
microarchitectures. Similarly, the re-packaging units provide data organization
support by arranging the data in the required type-oriented format. Compared with
the state-of-the-art design of [9], our proposed hardware architecture, shown in
Fig. 9, has the following unique aspects:

• It reduces the number of memory read and write accesses in strided convolution
by .85% and .75%, respectively, and by .85% and .80%, respectively, in transposed
convolution.

• It reduces the energy consumption during the read and write accesses by
.65% and .58%, respectively, during strided convolution, and by .65% and .67%,
respectively, during transposed convolution.

Overall, our proposed distributed on-chip memory architecture and data re-
organization units achieve .3.65x faster processing time as compared with the state
of the art [9]. This shows that by designing complementary memory architectures
for the state-of-the-art GAN accelerators, we can further improve their performance
and energy efficiency.

References

1. Denton, E.L., Gross, S., Fergus, R.: Semi-supervised learning with context-conditional gener-
ative adversarial networks. CoRR, abs/1611.06430 (2016)

2. Ghosh, A., Bhattacharya, B., Chowdhury, S.B.R.: SAD-GAN: synthetic autonomous driving
using generative adversarial networks. CoRR, abs/1611.08788 (2016)

3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems, pp. 2672–2680 (2014)

274 R. Ahmed et al.

4. Lawson, W., Bekele, E., Sullivan, K.: Finding anomalies with generative adversarial networks
for a PatrolBot. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (2017)

5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
6. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw

puzzles. In: European Conference on Computer Vision, pp. 69–84. Springer, New York (2016)
7. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolu-

tional generative adversarial networks. CoRR, abs/1511.06434 (2015)
8. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text

to image synthesis. arXiv:1605.05396 (2016)
9. Song, M., Zhang, J., Chen, H., Li, T.: Towards efficient microarchitectural design for acceler-

ating unsupervised GAN-based deep learning. In: Proceedings of the 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 66–77. IEEE, New
York (2018)

10. Song, M., Zhong, K., Zhang, J., Hu, Y., Liu, D., Zhang, W., Wang, J., Li, T.: In-situ AI: Towards
autonomous and incremental deep learning for IoT systems. In Proceedings of the 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp. 92–103.
IEEE, New York (2018)

11. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and
harmonic functions. In: Proceedings of the 20th International Conference on Machine, pp.
912–919 (2003)

Using Approximate DRAM for Enabling
Energy-Efficient, High-Performance
Deep Neural Network Inference

Lois Orosa, Skanda Koppula, Konstantinos Kanellopoulos, A. Giray Yağlıkçı,
and Onur Mutlu

1 Introduction

Deep neural networks (DNNs) [1] are an effective solution to challenges in com-
puter vision [2], speech recognition [3], or medicine [4]. DNNs and their various
flavors (e.g., convolutional neural networks [2], transformers [5]) are commonly
evaluated in settings with edge devices that demand low energy and real-time
responses [6]. Unfortunately, DNNs have high computational and memory demands
that make these energy and performance requirements difficult to fulfill. As such,
neural networks have been the subject of many recent accelerators and DNN-

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
©2022 Association for Computing Machinery.
XXXX-XXXX/2022/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

L. Orosa
ETH Zürich and Galicia Supercomputing Center (CESGA), Avenida de Vigo s/n, Santiago de
Compostela, Spain

S. Koppula
ETH Zürich and Google DeepMind, DeepMind Technologies, London, England

K. Kanellopoulos · A. G. Yağlıkçı · O. Mutlu (�)
ETH Zürich, Zürich, Switzerland
e-mail: onur.mutlu@inf.ethz.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_10

275

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:onur.mutlu@inf.ethz.ch
mailto:onur.mutlu@inf.ethz.ch
mailto:onur.mutlu@inf.ethz.ch
mailto:onur.mutlu@inf.ethz.ch
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10
https://doi.org/10.1007/978-3-031-19568-6_10

276 L. Orosa et al.

focused architectures. Recent works (e.g., [7–9]) focus on building specialized
architectures for efficient computation scheduling and dataflow to execute DNNs.

Improvements to accelerator efficiency [10], DNN-optimized GPU kernels [11],
and libraries designed to efficiently leverage instruction set extensions [12] have
improved the computational efficiency of DNN evaluation. However, improving the
memory efficiency of DNN evaluation is an on-going challenge [8]. The memory
intensity of DNN inference is increasing, and the sizes of state-of-art DNNs have
grown dramatically in recent years. The winning model of the 2017 ILSVRC image
recognition challenge, ResNeXt [13], contains 837M FP32 parameters (3.3 GB).
This is 13.5x the parameter count of AlexNet, the winning model in 2012 [2].
As the machine learning community trends towards larger, more expressive neural
networks, we expect off-chip memory problems to bottleneck DNN evaluation.

The focus of recent approximate memory research is to alleviate two main issues
(energy and latency) of off-chip DRAM for neural network workloads. First, DRAM
has high energy consumption. Prior work on DNN accelerators reports that between
30 and 80% of system energy is consumed by DRAM [7]. Second, DRAM has
high latency. A load or store that misses the last level cache (LLC) can take 100x
longer time to service compared to an L1 cache hit [14]. Prior work in accelerator
design has targeted DRAM latency as a challenge for sparse and irregular DNN
inference [15].

To overcome both DRAM energy and latency issues, recent works use three
main approaches. First, some works reduce numeric bitwidth, reuse model weights,
and use other algorithmic strategies to reduce the memory requirements of the
DNN workload [16]. Second, other works propose new DRAM designs that offer
lower energy and latency than commodity DRAM [17]. Third, some works propose
processing-in-memory approaches that can reduce data movement and access data
with lower latency and energy [18]. In this chapter, we discuss an approach that
is orthogonal to these existing works: customization of the major operational
parameters (e.g., voltage, latency) of existing DRAM chips to better suit the intrinsic
characteristics of a DNN. The approach is based on two key insights:

(1) DNNs demonstrate remarkable robustness to errors introduced in input, weight,
and output data types. This error tolerance allows accurate DNN evaluation on
unreliable hardware if the DNN error tolerance is accurately characterized and
bit error rates are appropriately controlled.

(2) DRAM manufacturers trade performance for reliability. Prior works show that
reducing DRAM supply voltage and timing parameters improves the DRAM
energy consumption and latency, respectively, at the cost of reduced reliability,
i.e., increased bit error rate.

To exploit these two insights, EDEN1 was developed: the first framework
that improves energy efficiency and performance for DNN inference by using
approximate DRAM, which operates with reduced DRAM parameters (e.g., voltage

1 Energy-Efficient Deep Neural Network Inference Using Approximate DRAM.

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 277

and latency) [19]. EDEN strictly meets a user-specified target DNN accuracy by
providing a general framework that (1) uses a new retraining mechanism to improve
the accuracy of a DNN when executed on approximate DRAM and (2) maps
the DNN to the approximate DRAM using information obtained from rigorous
characterizations of the DNN error tolerance and DRAM error properties.

EDEN is based on three key steps. First, EDEN improves the error tolerance
of the target DNN by retraining the DNN using the error characteristics of the
approximate DRAM module. Second, EDEN profiles the improved DNN to identify
the error tolerance levels of all DNN data (e.g., different layer weights of the
DNN). Third, EDEN maps different DNN data to different DRAM partitions that
best fit each datum’s characteristics and accordingly selects the voltage and latency
parameters to operate each DRAM partition. By applying these three steps, EDEN
can map an arbitrary DNN workload to an arbitrary approximate DRAM module to
evaluate a DNN with low energy, high performance, and high accuracy.

To show example benefits of the approach, EDEN was run with DNN inference
workloads using approximate DRAM with (1) reduced DRAM supply voltage
(.VDD) to decrease DRAM energy consumption, and (2) reduced DRAM latency
to reduce the execution time of latency-bound DNNs. EDEN adjusts the DRAM
supply voltage and DRAM latency through interaction with the memory controller
firmware. For a target accuracy within 1% of the original DNN, results show that
EDEN enables (1) an average DRAM energy reduction of 32% across CPU, GPU,
and DNN accelerator (e.g., Tensor Processing Unit [20]) architectures, and (2) cycle
reductions of up to 17% when evaluating latency-bound neural networks.

The benefits of EDEN stem from its capacity to run on most hardware platforms
in use today for neural network inference, including CPUs, GPUs, FPGAs, and
DNN accelerators. Because EDEN is a general approach, its principles can be
applied (1) on any platform that uses DRAM, and (2) across memory technologies
that can trade-off different parameters (e.g., voltage, latency) at the expense of
reliability. Although the evaluation examines supply voltage and access latency
reductions, the EDEN framework can be used also to improve performance and
energy in other ways: for example, EDEN could increase the effective memory
bandwidth by increasing the data bus frequency at the expense of reliability.

In this chapter, we discuss our work EDEN, which makes the following five key
contributions:

• We propose the first general framework that increases the energy efficiency
and performance of DNN inference by using approximate DRAM that operates
with reduced voltage and latency parameters at the expense of reliability. EDEN
provides a systematic way to scale main memory parameters (e.g., supply voltage
and latencies) while achieving a user-specified DNN accuracy target.

• We discuss how EDEN introduced a methodology to retain DNN accuracy in
the presence of approximate DRAM. Evaluation shows that EDEN increases the
bit error tolerance of a DNN by 5–10x (depending on the network) through a
customized retraining procedure called curricular retraining.

278 L. Orosa et al.

• We provide a systematic, empirical characterization of the resiliency of state-of-
art DNN workloads to the errors introduced by approximate DRAM. We examine
the error resiliency across different numeric precisions, pruning levels, and data
types (e.g., DNN layer weights). We find that (1) lower precision levels and
DNN data closer to the first and last layers exhibit lower error resiliency, and (2)
magnitude-based pruning does not have a significant impact on error resiliency.

• We propose four error models to represent the common error patterns that an
approximate DRAM device exhibits. To do so, EDEN characterizes the bit flip
distributions that are caused by reduced voltage and latency parameters on eight
real DDR4 DRAM modules.

• We evaluate EDEN on multi-core CPUs, GPUs, and DNN accelerators. For a
target accuracy within 1% of the original DNN, results show that EDEN enables
(1) an average DRAM energy reduction of 21%, 37%, 31%, and 32% in CPU,
GPU, and two different DNN accelerator architectures, respectively, across a
variety of state-of-the-art networks, and (2) an average (maximum) speedup of
8% (17%) and 2.7% (5.5%) in CPU and GPU architectures, respectively, when
evaluating latency-bound neural networks. For a target accuracy the same as the
original, EDEN enables 16% average energy savings and 4% average speedup in
CPU architectures.

2 Background

2.1 Deep Neural Networks

Artificial neural networks are a type of machine learning model inspired by the
structure and activation patterns of neurons in the animal nervous systems [21].
Neural networks work by alternating application of linear and non-linear operations
to the data inputs (images, audio signals, etc.) [22]. A convolution operation is one
such linear operation, and one of the most common non-linear operation is the
ReLU activation function [21]. Neural networks have been used since the 1960s,
but it was in the past decade that neural networks—and in particular, deep neural
networks (DNNs) [1]—have shown to strongly outperform competing machine
learning methods across nearly every large-scale data learning task. The power of
neural networks is generally attributed to their lack of hand-crafted input-specific
operations, and as such, these models have been shown to be effective across
multiple different data modalities.

DNNs are composed of a variety of different layers, including convolutional
layers, fully connected layers, attention layers, and pooling layers [1]. Figure 1
shows the three main data types of a DNN layer, and how three DNN layers are
connected with each other. Each of these layers is defined by a weight matrix
learned via a one-time training process that is executed before the DNN is ready
for inference. The three DNN data types that require loads and stores from main

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 279

Fig. 1 Example of three DNN layers. Each layer is composed of its weights, input feature maps
(IFMs), and output feature maps (OFMs). Adapted from [23]

memory include each layer’s input feature maps (IFMs), output feature maps
(OFMs), and the weights. Each layer processes its IFMs using the layer’s weights,
and produces OFMs. The OFMs of a layer are fed to the next layer as the next layer’s
IFMs. In this work, we explore the introduction of bit errors into the three data types
of each layer [19].

The lifecycle of a machine learning model for consumer applications usually
involves (1) training the model on large amounts of training data (2) retraining
(i.e., fine-tuning) the model to adapt to the target task, (3) optionally, applying
modifications to reduce the compute costs of running the model (e.g., through
weight quantization or pruning, described below) and (4) freezing the trained model,
and using it to yield predictions (i.e., inference, or forward pass) on compute-limited
consumer devices. It is common that the model weights are trained once and frozen,
while the forward pass may run thousands of times during the production lifetime
of the model.

Modern DNNs contain hundreds of layers, providing the DNN with a large num-
ber of trainable weights. State-of-art DNNs, as of writing, contain up to half a trillion
FP-32 parameters [24], and sometimes require training and inference systems that
distribute the storage and compute across many machines [25]. The existence of
such a large number of weights is commonly referred to as overparameterization,
and is, in part, the source of a DNN’s accuracy [26]. Overparameterization allows
the model to have sufficient learning capacity so that the network can approximate
complex input-output functions, and adequately capture high-level semantics (e.g.,
the characteristics of a cat in an input image). Importantly, overparameterization
allows the network to obtain some level of error resilience, generalize across
different inputs, and be robust to insignificant changes to the input (e.g., background
pixels in an image).

Overparameterization of modern DNNs have advantages and disadvantages.
While overparameterization provides DNNs with capacity to learn [1], it also
presents significant computational problems, especially on devices that are resource
constrained. State-of-the-art DNNs can barely fit in a single commodity server, let
alone a consumer mobile device. This problem has spurred research on methods
to reduce the computational and storage footprint of these heavy, high-accuracy
models, yielding various techniques to help alleviate the challenges. These methods
include quantization [27] and pruning [28].

280 L. Orosa et al.

Quantization Quantizing floating point weights and OFMs into low-precision
fixed-point numbers can greatly improve performance and energy consumption of
DNNs [27]. Prior works demonstrate that it is possible to quantize DNNs to limited
numeric precision (e.g., eight-bit integers) without significantly affecting DNN
accuracy [27]. In our evaluations, we quantize all DNN models to four different
numeric precisions : int4 (4-bit), int8 (8-bit), int16 (16-bit), and FP32 (32-bit).

Pruning Pruning [28] reduces the memory footprint of a DNN by sparsifying the
weights and feature maps. This is done by zeroing the lowest magnitude weights
and retraining. We study the effects of pruning in EDEN’s evaluations.

Training Training is the process of estimating the set of weights that enables the
model to best perform a specific task [22]. Neural network training is guided by a
training objective specific to that task, also commonly called the loss function. The
goal of training is to minimize this loss function. A loss function can intuitively
be thought of as an estimate of the error as compared to ground truth real values
in a dataset (for tasks in which we have such ground truth labels). For example, in
classification tasks, the loss function is commonly the cross-entropy between model
predicted categorical distribution q(x) and the data points’ true label, given by p(x)
(−∑

x∈X p(x) log q(x)), where X is the data points. Training is usually performed
with an iterative gradient descent algorithm [29] using a particular training dataset.
The training dataset is divided into batches, and each training step corresponds to
a single forward and backward pass through the DNN to compute the gradients
for that particular batch of data. These gradients dictate how the weights should be
modified in order to minimize the loss. A single training “epoch” completes when
the entire dataset is passed over once [1]. As mentioned previously, this procedure is
usually done once, before the model is frozen and deployed on consumer inference
devices.

Additionally, common training-time techniques such as adding input noise [30]
and input feature map dropout [31] try to force the network to not rely on any single
OFM element and enable robustness in the presence of statistical variance in the
IFMs. Additionally, these techniques help combat overfitting that overparameteriza-
tion might induce on smaller datasets. Inspiration for some of EDEN’s mechanisms
come from these techniques: robustness to dropout and noise addition may not just
be an intentionally applied constraint applied during training—it could also perhaps
aid in approximate or unreliable compute environments. EDEN leverages the same
core ideas to adapt DNNs and their training procedure to achieve partial error
robustness against bit errors caused by approximate DRAM, by taking advantage
of weight overparameterization in modern DNNs.

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 281

2.2 DRAM Organization and Operation

DRAM Organization A DRAM device is organized hierarchically. Figure 2a
shows a DRAM cell that consists of a capacitor and an access transistor. A capacitor
encodes a bit value with its charge level. The DRAM cell capacitor is connected to a
bitline via an access transistor that is controlled by a wordline. Figure 2b shows how
the DRAM cells are organized in the form of a 2D array (i.e., a subarray). Cells in
a column of a subarray share a single bitline. Turning on an access transistor causes
charge sharing between the capacitor and the bitline, which shifts the bitline voltage
up or down based on the charge level of the cell’s capacitor. Each bitline is connected
to a sense amplifier (SA) circuit that detects this shift and amplifies it to a full 0 or
1. The cells that share the same wordline in a subarray are referred to as a DRAM
row. A row decoder drives a wordline to enable all cells in a DRAM row. Therefore,
charge sharing and sense amplification operate at row granularity. The array of sense
amplifiers in a subarray is referred to as row buffer. Each subarray typically consists
of 512–1024 rows each of which is typically as large as 2–8 KB.

Figure 2c shows the organization of subarrays, banks, and chips that form a
DRAM device. Each bank partially decodes a given row address and selects the
corresponding subarray’s row buffer. On a read operation, the I/O logic sends the
requested portion of the target row from the corresponding subarray’s row buffer to
the memory controller. A DRAM chip contains multiple banks that can operate in
parallel. A DRAM device is composed of multiple DRAM chips that share the same
command/address bus and are simultaneously accessed to provide high bandwidth
and capacity. In a typical system, each memory controller interfaces with a single
DRAM bus.

DRAM Operation Accessing data stored in each row follows the sequence of
memory controller commands illustrated in Fig. 3. First, the activation command
(ACT) activates the row by pulling up the wordline and enabling sense ampli-

Fig. 2 DRAM organization. Adapted from [23]. (a) DRAM Cell. (b) DRAM Subarray. (c) DRAM
device

282 L. Orosa et al.

Fig. 3 DRAM read timing. We explore reductions of tRCD , tRAS , and tRP as part of EDEN’s
evaluation. CL is a characteristic of the device, and not adjustable in the memory controller [32].
Adapted from [23]

fication. After a manufacturer-specified tRCD nanoseconds, the data is reliably
sensed and amplified in the row buffer. Second, the read command (READ) reads
the data from the row buffer to the IO circuitry. After a manufacturer-specified
CL nanoseconds, the data is available on the memory bus. Third, the precharge
command (PRE) prepares the DRAM bank for activation of another row. A
precharge command can be issued a manufacturer-specified tRAS nanoseconds after
an activation command, and an activation command can be issued tRP nanoseconds
after a precharge command. tRCD , tRAS , tRP , and CL are examples of DRAM
timing parameters and their nominal values provided in DRAM DDR4 datasheets
are 12.5 ns, 32 ns, 12.5 ns, and 12.5 ns, respectively [32].

2.3 Reducing DRAM Parameters

We build on a large body of work on characterizing DRAM behavior in sub-reliable
operation regimes of supply voltage and latency parameters [33–35].

DRAM Voltage Reduction Voltage reduction is critical to reducing DRAM power
consumption since power is proportional to the square of supply voltage (i.e.,
.VDD

2×f).Prior research [35] shows that reducing voltage increases the propagation
delay of signals, which can cause errors when using unmodified timing parameters.
One work avoids these errors by increasing the .tRCD and .tRP latencies [35] to ensure
reliable operation. In contrast, our goal in this work is to aggressively reduce power
consumption and latency by decreasing both supply voltage and timing parameters,
which inevitably causes errors in the form of bit flips in the weakest cells of DRAM,
making DRAM approximate. Resulting error patterns often exhibit locality. Chang
et al. [35] observe that these bit flips accumulate in certain regions (e.g., banks and
rows) of DRAM.

DRAM Access Latency Reduction Latency reduction is critical to increase
system performance, as heavily emphasized by a recent study on workload-
DRAM interactions [36]. Previous works characterize real DRAM devices to find
the minimum reliable row activation (.tRCD) and precharge (. tRP) latency values
[33, 37]. According to these studies, the minimum DRAM latency values are
significantly smaller than the values that datasheets report, due to conservative

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 283

guardbands introduced by DRAM manufacturers. Further reducing these latency
values cause bit flips in weak or unstable DRAM cells.

DRAM Refresh Rate Reduction Other than voltage and latency, previous
research also shows that reducing the refresh rate of DRAM chips both can increase
performance and reduce energy consumption at the cost of introducing errors [38]
that are tolerable by many workloads that can tolerate bit errors.

3 EDEN Framework

To efficiently solve the energy and latency issues of off-chip DRAM for neural
network workloads, we propose EDEN. EDEN is the first general framework that
improves energy efficiency and performance for neural network inference by using
approximate DRAM. EDEN is based on two main insights: (1) neural networks are
tolerant to errors, and (2) DRAM timing parameters and voltage can be reduced at
the cost of introducing more bit errors.

We first provide an overview of EDEN in Sect. 3.1, and explain EDEN’s three
steps in Sects. 3.2, 3.3, and 3.4. Finally, Sect. 3.5 explains the changes required by
the target DNN inference system to support a DNN generated by EDEN.

3.1 EDEN: A High-Level Overview

EDEN enables the effective execution of DNN workloads using approximate
DRAM through three key steps: (1) boosting DNN error tolerance, (2) DNN error
tolerance characterization, and (3) DNN-DRAM mapping. These steps are repeated
iteratively until EDEN finds the most aggressive DNN and DRAM configuration
that meets the target accuracy requirements. EDEN transforms a DNN that is trained
on reliable hardware into a device-tuned DNN that is able to run on a system that
uses approximate DRAM at a target accuracy level. EDEN allows tight control of the
trade-off between accuracy and performance by enabling the user/system to specify
the maximal tolerable accuracy degradation. Figure 4 provides an overview of the
three steps of EDEN, which we describe next.

1. Boosting DNN Error Tolerance EDEN introduces curricular retraining, a new
retraining mechanism that boosts a DNN’s error tolerance for a target approximate
DRAM module. Our curricular retraining mechanism uses the error characteristics
of the target approximate DRAM to inject errors into the DNN training procedure
and boost the DNN accuracy. The key novelty of curricular retraining is to inject
errors at a progressive rate during the training process with the goal of increasing
DNN error tolerance while avoiding accuracy collapse with error correction. EDEN
boosts the intrinsic bit error tolerance of the baseline DNN by 5–10x. We describe
our boosting mechanism in Sect. 3.2.

284 L. Orosa et al.

Fig. 4 Overview of the EDEN framework. Adapted from [23]

2. DNN Error Tolerance Characterization EDEN characterizes the error
resilience of each boosted DNN data type (i.e., IFMs, OFMs, and DNN weights)
to identify the limits of bit error tolerance. EDEN measures the effect of bit errors
on overall accuracy using the DNN validation dataset. We describe error tolerance
characterization in Sect. 3.3.

3. DNN to DRAM Mapping EDEN maps the error tolerance of each DNN data
type to a corresponding approximate DRAM partition (e.g., chip, bank, or subarray)
in a way that meets the specified accuracy requirements, while maximizing perfor-
mance. We describe DNN to DRAM mapping in Sect. 3.4.

Together, the three steps of EDEN enable a baseline DNN to become a
specialized DNN that is error-tolerant and device-tuned to a target approximate
DRAM. EDEN enables energy efficient, high-performance DNN inference on the
target approximate DRAM with a user-defined accuracy.

3.2 Boosting DNN Error Tolerance

According to our evaluations, the error tolerance of common DNNs is not sufficient
to enable significant DRAM voltage and timing parameter reductions. To overcome
this issue, we propose curricular retraining, a new retraining mechanism that
improves the error tolerance of a DNN when running with approximate DRAM
that injects errors into memory locations accessed by the DNN.

The key idea of curricular retraining is based on the observation that introducing
high error rates immediately at the beginning of retraining process occasionally
causes training divergence and a phenomenon called accuracy collapse. To mitigate
this problem, curricular retraining slowly increases the error rate of the approximate
DRAM from 0 to a target value in a step-wise fashion. In our experiments, we
observe a good training convergence rate when we increase the error rate every

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 285

two epochs (i.e., two passes of the entire training dataset). EDEN uses approximate
DRAM in the forward pass, and it uses reliable DRAM for the backward pass.

We demonstrate in Sect. 6.4 that our curricular retraining mechanism is effective
at improving the accuracy of DNN inference executed on systems with approximate
DRAM.

Our experiments show that curricular retraining does not help to improve DNN
accuracy on reliable DRAM. This implies that introducing bit error is not a
regularization technique,2 but rather, a way of obtaining congruence between the
DNN training algorithms and the errors injected by approximate DRAM.

Correcting Implausible Values While executing curricular retraining, a single bit
error in the exponent bits of a floating point value can cause accuracy collapse
in the trained DNN. For example, a bit error in the exponent of a weight creates
an enormously large value (e.g., >. 108) that propagates through the DNN layers,
dominating weights that are significantly smaller (e.g., <10).

To avoid this issue, we propose a mechanism to avoid accuracy collapse caused
by bit errors introduced by approximate DRAM. The key idea of our mechanism
is to correct the values that are implausible. When a value is loaded from memory,
our mechanism probabilistically detects that a data type likely contains an error by
comparing its value against predefined thresholds. The thresholds of the curricular
retraining data types are computed during training of the baseline DNN on DRAM
with nominal parameters. Those thresholds usually have rather small values (e.g.,
most weights in SqueezeNet1.1 are within the range [-5,5]).

Upon detection of an error (i.e., the fact that a value is out of the threshold range)
during curricular retraining, EDEN (1) corrects the erroneous value by zeroing the
value, and (2) uses the corrected value for curricular retraining.

Our mechanism for correcting implausible values can be implemented in two
ways. First, a software implementation that modifies the DNN framework to include
extra instructions that correct implausible values resulting from each DNN memory
access. Second, a hardware implementation that adds a simple hardware logic
to the memory controller that corrects implausible values resulting from each
approximate DRAM memory request. Section 5 describes our low-cost hardware
implementation.

In our experiments, we find that our mechanism for correcting implausible values
increases the tolerable bit error rate from .10−7 to .10−3 to achieve <1% accuracy
degradation in the eight FP32 DNNs we analyze. We evaluate an alternative
mechanism for error correction that saturates an out-of-threshold value (by resetting
to the closest threshold value) instead of zeroing it. We observe that saturating
obtains lower DNN accuracy than zeroing at the same approximate DRAM bit error
rate across all DNN models (e.g., 8% on CIFAR-10 and 7% on ImageNet). We also
correct implausible values during the execution of DNN inference to improve the
inference accuracy (Sect. 3.5).

2 Regularization is a technique that makes slight modifications to the training algorithm such that
the DNN model generalizes better.

286 L. Orosa et al.

3.3 DNN Error Tolerance Characterization

EDEN aims to guarantee that the accuracy of a DNN meets the minimum value
required by the user. To this end, EDEN characterizes the boosted DNN (obtained
from our boosting mechanism in Sect. 3.2) to find the maximum tolerable bit error
rate (BER) by progressively decreasing the approximate DRAM parameters, i.e.,
voltage and latency. EDEN performs either a coarse-grained or a fine-grained DNN
error tolerance characterization.

Coarse-Grained Characterization EDEN’s coarse-grained characterization
determines the highest BER that can be applied uniformly to the entire DNN,
while meeting the accuracy requirements of the user. This characterization is useful
for mapping the DNN to commodity systems (see Sect. 3.4) that apply reduced
DRAM parameters to an entire DRAM module (without fine-grained control).

To find the highest BER that satisfies the accuracy goal, our coarse-grained
characterization method performs a logarithmic-scale binary search on the error
rates. We can use binary search because we found that DNN error tolerance curves
are monotonically decreasing. To adjust the BER while doing this characterization,
EDEN can either (1) tune the parameters of approximate DRAM or (2) use DRAM
error models for injecting bit errors into memory locations (see Sect. 4). EDEN
optimizes the error resiliency of a DNN by repeating cycles of DNN error tolerance
boosting (Sect. 3.2), coarse-grained DNN characterization, and DNN to DRAM
mapping (Sect. 3.4) until the highest tolerable BER stops improving. We evaluate
our coarse-grained characterization mechanism in Sect. 6.5.

Fine-Grained Characterization EDEN can exploit variation in the error toler-
ances of different DNN data types by clustering the data according to its error
tolerance level, and assigning each cluster to a different DRAM partition whose
error rate matches the error tolerance level of the cluster (see Sect. 3.4). For example,
we find that the first and the last convolutional layers have tolerable BERs 2-3x
smaller than the average middle layer in a DNN.

To conduct a fine-grained DNN characterization, EDEN searches for the highest
tolerable BER of each weight and IFM that still yields an acceptable DNN accuracy.
This search space is exponential with respect to the DNN’s layer count. To tackle
the search space challenge, EDEN employs a DNN data sweep procedure that
performs iterations over a list of DNN data types. The mechanism tries to increase
the tolerable error rate of a data type by a small amount, and tests if the DNN
still meets the accuracy requirements. When a DNN data type cannot tolerate more
increase in error rate, it is removed from the sweep list. We evaluate our fine-grained
characterization mechanism in Sect. 6.6.

Effect of Pruning EDEN does not include pruning (Sect. 2.1) as part of its boosting
routine due to two observations. First, we find that DNN sparsification does not
improve the error tolerance. Our experiments show that when we create 10%, 50%,
75%, and 90% sparsity through energy-aware pruning [39], error tolerance of FP32
and int8 DNNs, DNN error tolerance does not improve significantly. Second, the

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 287

zero values in the network, which increase with pruning, are sensitive to memory
error perturbations.

3.4 DNN to DRAM Mapping

After characterizing the error tolerance of each DNN data type, EDEN maps each
data type to the appropriate DRAM partition (with the appropriate voltage and
latency parameters) that satisfies the data type’s error tolerance. Our mechanism
aims to map a data type that is very tolerant (intolerant) to errors into a DRAM
partition with the highest (lowest) BER, matching the error tolerance of the DNN
and the BER of the DRAM partition as much as possible.

DRAM Bit Error Rate Characterization To obtain the BER characteristics of
a DRAM device (both in aggregate and for each partition), we perform reduced
voltage and reduced latency tests for a number of data patterns. For each voltage
level, we iteratively test two consecutive rows at a time. We populate these rows
with inverted data patterns for the worst-case evaluation. Then, we read each bit
with reduced timing parameters (e.g., tRCD). This characterization requires fine-
grained control of the DRAM timing parameters and supply voltage level. EDEN’s
characterization mechanism is very similar to experimental DRAM characterization
mechanisms proposed and evaluated in prior works for DRAM voltage [35] and
DRAM latency [33].

Coarse-Grained DNN to DRAM Module Mapping All DNN data types stored
within the same DRAM module are exposed to the same DRAM voltage level and
timing parameters. These parameters are tuned to produce a bit error rate that is
tolerable by all DNN data types that are mapped to the module.

Under coarse-grained mapping, the application does not need to be modified.
Algorithms used in DNN inference are oblivious to the DRAM mapping used by
the memory controller. The memory controller maps all inference-related requests
to the appropriate approximate DRAM module. Data that cannot tolerate bit errors
at any reduced voltage and latency levels is stored in a separate DRAM module
whose voltage and latency parameters follow the manufacturer specifications.

Coarse-grained mapping can be easily supported by existing systems that allow
the modification of .Vdd and/or .tRCD/RP parameters in the BIOS across the entire
DRAM module. Section 5 describes the simple hardware changes required to sup-
port coarse-grained mapping. We evaluate our coarse-grained mapping mechanism
in Sect. 6.5.

Fine-Grained DNN to DRAM Module Mapping DNN data types stored in
different DRAM partitions can be exposed to different DRAM voltage levels and/or
timing parameters. DRAM can be partitioned at chip, rank, bank, or subarray level
granularities. Algorithm 1 describes our algorithm for fine-grained mapping of DNN
data to DRAM partitions. Our algorithm uses rigorous DRAM characterization and

288 L. Orosa et al.

DNN characterization to iteratively assign DNN data to DRAM partitions in three
basic steps. First, our mechanism looks for DRAM partitions that have BERs lower
than the tolerable BER of a given DNN data type. Second, we select the DRAM
partition with the largest parameter reduction that meets the BER requirements.
Third, if the partition has enough space available, our mechanism assigns the DNN
data type to the DRAM partition. We evaluate our fine-grained mapping mechanism
in Sect. 6.6.

A system that supports fine-grained mapping requires changes in the memory
controller (for voltage and latency adjustment) and in DRAM (for only voltage
adjustment). We describe the hardware changes required to support fine-grained
mapping in Sect. 5.

3.5 DNN Inference with Approximate DRAM

EDEN generates a boosted DNN for running inference in a target system that
uses approximate DRAM. EDEN does not require any modifications in DNN
inference hardware, framework, or algorithm, except for correcting implausible
values. Similar to what happens in our curricular retraining (Sect. 3.2), a single bit
error in the exponent bits of a floating point value can cause accuracy collapse
during DNN inference. We use the same mechanism for correcting implausible
values in our curricular retraining mechanism (i.e., we zero the values that are
outside of a predefined threshold range) to avoid accuracy collapse caused by bit
errors introduced by approximate DRAM during DNN inference.

Algorithm 1 Fine-grained DNN to DRAM mapping
1 function DNN_to_DRAM_Mapping(DNN_characterization,

DRAM_characterization):
2 sorted_data = sort_DNN_data(DNN_characterization)
3 for (target_BER, DNN_data) in sorted_data:
4 # Find the DRAM partition that has the least

voltage/latency at target_BER, and can fit the
DNN_data

5 for DRAM_partition in DRAM_characterization
6 partition_params =

get_voltage_latency(DRAM_partition, target_BER)
7 if DNN_data.size < DRAM_partition.size :
8 if partition_params < best_parameters:
9 best_parameters = partition_params

10 chosen_partition = DRAM_partition
11 DRAM_partition.size -= DNN_data.size
12 final_mapping[chosen_partition].append(DNN_data)
13 return final_mapping

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 289

4 Enabling EDEN with Error Models

EDEN requires extensive characterization of the target approximate DRAM device
for boosting DNN error tolerance (Sect. 3.2), characterization of DNN error tol-
erance (Sect. 3.3), and mapping of the DNN to the approximate DRAM device
(Sect. 3.4). However, applying EDEN in a target system where DNN inference can
be performed is not always feasible or practical. For example, a low-cost DNN
inference accelerator [7] might perform very slowly when executing our curricular
retraining mechanism, because it is not optimized for training. Similarly, the target
hardware might not be available, or might have very limited availability (e.g., in the
pre-production phase of a new approximate hardware design).

To solve this problem and enable EDEN even when target DRAM devices are
not available for characterization, we propose to execute the EDEN framework in a
system that is different from the target approximate system. We call this idea EDEN
offloading. The main challenge of offloading EDEN to a different system is how
to faithfully emulate the errors injected by the target approximate DRAM into the
DNN. To address this challenge, we analyze many works that study DRAM error
patterns [33–35, 40, 41], and we propose to use four different error models that are
representative of most of the error patterns that are observed in real approximate
DRAM modules.

EDEN’s DRAM Error Models EDEN uses four probabilistic error models that
closely fit the error patterns observed in a real approximate DRAM module. Our
models contain information about the location of weak cells in the DRAM module,
which is used to decide the spatial distribution of bit errors during DNN error
tolerance boosting. We create four different types of error models from the data we
obtain based on our characterization of existing DRAM devices using SoftMC [42]
and a variety of DDR3 and DDR4 DRAM modules. Our error models are consistent
with the error patterns observed by prior works [33–35, 40]. In addition, our error
models are parameterizable and can be tuned to model individual DRAM chips,
ranks, banks, and subarrays from different vendors.

• Error Model 0: the bit errors follow a uniform random distribution across
a DRAM bank. Several prior works observe that reducing activation latency
(tRCD) and precharge latency (tRP) can cause randomly distributed bit flips due
to manufacturing process variation at the level of DRAM cells [33, 41]. We model
these errors with two key parameters: (1) P is the percentage of weak cells (i.e.,
cells that fail with reduced DRAM parameters), and (2) FA is the probability of an
error in any weak cell. Such uniform random distributions are already observed
in prior work [43].

• Error Model 1: the bit errors follow a vertical distribution across the bitlines of a
DRAM bank. Prior works [33, 35, 41] observe that some bitlines experience more
bit flips than others under reduced DRAM parameters due to: (1) manufacturing
process variation across sense amplifiers [33, 35], and (2) design-induced latency
variation that arises from the varying distance between different bitlines and the

290 L. Orosa et al.

row decoder [41]. We model this error distribution with two key parameters: (1)
PB is the percentage of weak cells in bitline B, and (2) FB is the probability of an
error in the weak cells of bitline B.

• Error Model 2: the bit errors follow a horizontal distribution across the
wordlines of a DRAM bank. Prior works [33, 35, 41] observe that some DRAM
rows experience more bit flips than others under reduced DRAM parameters
due to (1) manufacturing process variation across DRAM rows [33, 35], and (2)
design-induced latency variation that arises from the varying distance between
different DRAM rows and the row buffer [41]. We model this error distribution
with two key parameters: (1) PW is the percentage of weak cells in wordline W ,
and (2) FW is the probability of an error in the weak cells of wordline W .

• Error Model 3: the bit errors follow a uniform random distribution that depends
on the content of the cells (i.e., this is a data-dependent error model). Figure 5
illustrates how the bit error rates depend on the data pattern stored in DRAM, for
reduced voltage (top) and reduced tRCD (bottom). We observe that 0-to-1 flips are
more probable with tRCD scaling, and 1-to-0 flips are more probable with voltage
scaling. Prior works provide rigorous analyses of data patterns in DRAM with
reduced voltage [35] and timing parameters [33] that show results similar to ours.
This error model has three key parameters: (1) P is the percentage of weak cells,
(2) FV 1 is the probability of an error in the weak cells that contain a 1 value, and
(3) FV 0 is the probability of an error in the weak cells that contain a 0 value.

Model Selection EDEN applies a maximum likelihood estimation (MLE) proce-
dure to determine (1) the parameters (P , FA, PB , FB , PW , FW , FV 1 and FV 0)
of each error model, and (2) the error model that is most likely to produce the
errors observed in the real approximate DRAM chip. In case two models have
very similar probability of producing the observed errors, our selection mechanism
chooses Error Model 0 if possible, or one of the error models randomly otherwise.
Our selection mechanism favors Error Model 0 because we find that it the is error
model that performs better. We observe that generating and injecting errors by
software with Error Model 0 in both DNN retraining and inference is 1.3x faster
than injecting errors with other error models in our experimental setup. We observe
that Error Model 0 provides (1) a reasonable approximation of Error Model 1, if
max(FB) − min(FB) < 0.05 and PB ≈ P , and (2) a reasonable approximation of
Error Model 2, if max(FW) − min(FW) < 0.05 and PW ≈ P .

Handling Error Variations Error rates and error patterns depend on two types
of factors. First, factors intrinsic to the DRAM device. The most common intrinsic
factors are caused by manufacturer [35], chip, and bank variability [37, 40]. Intrinsic
factors are established at DRAM fabrication time. Second, factors extrinsic to the
DRAM device that depend on environmental or operating conditions. The most
common extrinsic factors are aging [44], data values [45], and temperature [46].
Extrinsic factors can introduce significant variability in the error patterns.

EDEN can capture intrinsic factors in the error model with a unique DRAM
characterization pass. However, capturing extrinsic factors in the error model is

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 291

Fig. 5 Bit error rates depend on the data pattern stored in DRAM, with reduced supply voltage
[35] and reduced tRCD [33, 35, 37, 41], motivating Error Model 3. Data is based on DDR3 DRAM
modules from three major vendors. Adapted from [23]

more challenging. Our DNN models capture three factors extrinsic to the DRAM
device.

First, EDEN can capture data-dependent errors by generating different error
models for different DNN models (i.e., different IFM and weight values in memory).
For each DNN model, EDEN stores the actual weight and IFM values in the target
approximate DRAM before characterization to capture data dependencies.

Second, EDEN can capture temperature variations by generating different error
models for the same approximate DRAM operating at different temperatures. Errors
increase with higher temperatures [46], so the model must match the temperature of
DNN inference execution.

Third, EDEN can capture DRAM aging by periodically regenerating new error
models. In our experiments with real DRAM modules, we find that the errors are
temporally consistent and stable for days of continuous execution (with ±5◦ C
deviations from the profiling temperature), without requiring re-characterization.
Prior work [37] reports similar results.

We find in our evaluation that our error models are sufficiently expressive to
generate a boosted DNN that executes on real approximate DRAM with minimal

292 L. Orosa et al.

accuracy loss (Sect. 6.4). Our four error models are also sufficiently expressive to
encompass the bit error models proposed in prior work [47].

5 Memory Controller Support

To obtain the most out of EDEN, we modify the memory controller to (1) correct
implausible values during both curricular retraining and DNN inference, (2) support
coarse-grained memory mapping, and (3) support fine-grained memory mapping.

Hardware Support for Correcting Implausible Values We correct implausible
values that cause accuracy collapse during both curricular retraining (Sect. 3.2)
and DNN inference (Sect. 3.5). Our mechanism (1) compares a loaded value to
an upper-bound and a lower-bound threshold, and (2) sets the value to zero (i.e.,
supplies the load with a zero result) in case the value is out of bounds. Because
these operations are done for every memory access that loads a DNN value, it can
cause significant performance degradation if performed in software. To mitigate this
issue, we incorporate simple hardware logic in the memory controller that we call
bounding logic. Our bounding logic (1) compares the exponent part of the loaded
floating point value to DNN-specific upper-bound and lower-bound thresholds, and
(2) zeros the input value if the value is out of bounds. In our implementation, the
latency of this logic is only 1 cycle and its hardware cost is negligible.

Enabling Coarse-Grained Mapping Coarse-grained mapping applies the same
voltage and timing parameters to the entire DRAM for executing a particular DNN
workload. However, different DNN workloads might require applying different
sets of DRAM parameters to maximize energy savings and performance. In many
existing commodity systems, the memory controller sets the DRAM voltage and the
timing parameters at start-up, and it is not possible to change them at runtime. To
overcome this limitation, the memory controller requires minimal hardware support
for changing the DRAM parameters of each DRAM module at runtime.

Enabling Fine-Grained Mapping Fine-grained mapping applies different voltage
and/or timing parameters to different DRAM partitions.

To apply different voltages to different memory partitions, EDEN (1) adopts the
approach used by Voltron [35] to implement a robust design for voltage scaling at
the bank granularity based on modest changes to the power delivery network, and
(2) tracks which memory partition is operating at what voltage. To implement this
mechanism in commodity DDR4/LPDDR4 chips with 16/32 banks, EDEN requires
at most 32B of metadata to represent all 8-bit voltage step values.

To apply different timing parameters to different memory partitions, EDEN
requires memory controller support for (1) configuring the target memory partition
to operate at specific timing parameters, and (2) tracking which memory partition
is operating at what latency. For the timing parameter we tested in our evaluation

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 293

(.tRCD), 4-bits are enough to encode all possible values of the parameter with enough
resolution.

It is sufficient for EDEN to split DRAM into at most .210 partitions, because
most commonly used DNN architectures have at most 1024 different types of
error-resilient IFMs and weights. EDEN requires 1 KB of metadata to support
.210 partitions. To support mappings at subarray level granularity (i.e., the finest
supported granularity), EDEN needs a larger amount of metadata. For example, for
an 8 GB DDR4 DRAM module with 2048 subarrays, EDEN needs to store 2 KB of
metadata.

6 DNN Accuracy Evaluation

In this section, we evaluate EDEN’s ability to improve DNN accuracy in approx-
imate DRAM. We explain our methodology (Sect. 6.1), evaluate the accuracy
of our error models (Sect. 6.2), evaluate the error tolerance of the DNN base-
lines (Sect. 6.3), and analyze the accuracy of our curricular retraining mechanism
(Sect. 6.4).

6.1 Methodology

We use an FPGA-based infrastructure running SoftMC [42] to reduce DRAM volt-
age and timing parameters. SoftMC allows executing memory controller commands
on individual banks, and modifying .tRCD and other DRAM timing parameters.
We perform all our experiments at room temperature. Using this infrastructure,
we can obtain characteristics of real approximate DRAM devices. However, our
infrastructure also has some performance limitations caused by delays introduced
with SoftMC’s FPGA buffering, host-FPGA data transmission, and instruction
batching on the FPGA.

To overcome these performance limitations, we emulate real approximate
DRAM modules by using the error models described in Sect. 4. To ensure that
our evaluation is accurate, we validate our error models against real approximate
DRAM devices (Sect. 6.2).

We incorporate EDEN’s error models into DNN inference libraries by following
the methodology described in Fig. 6. We create a framework on top of PyTorch
[48] that allows us to modify the loading of weights and IFMs. Our PyTorch
implementation (1) injects errors into the original IFM and weight values using our
DRAM error models, and (2) applies our mechanism to correct implausible values
caused by bit errors in IFMs and weights (Sect. 3.2). Our DRAM error models
are implemented as custom GPU kernels for efficient and simple integration into
PyTorch. This simulation allows us to obtain DNN accuracy estimates 80–90x faster
than with the SoftMC infrastructure.

294 L. Orosa et al.

Fig. 6 Methodology to incorporate DRAM error models in the DNN evaluation framework.
Adapted from [23]

Table 1 DNN models used in our evaluations. The listed total model size and summed
IFM+weight sizes are for the FP32 variant of each model

Model Dataset Model size IFM+Weight size

ResNet101 CIFAR10 163.0 MB 100.0 MB

MobileNetV2 CIFAR10 22.7 MB 68.5 MB

VGG-16 ILSVRC2012 528.0 MB 218.0 MB

DenseNet201 ILSVRC2012 76.0 MB 439.0 MB

SqueezeNet1.1 ILSVRC2012 4.8 MB 53.8 MB

AlexNet CIFAR10 233.0 MB 208.0 MB

YOLO MSCOCO 237.0 MB 360.0 MB

YOLO-Tiny MSCOCO 33.8 MB 51.3 MB

LeNet.� CIFAR10 1.65 MB 2.30 MB
. � we use this small model in some evaluations where the experimental setup does not support large

models

DNN Baselines We describe the DNN baselines that we use in the evaluation of
the three EDEN steps (Sects. 3.2, 3.3, and 3.4). Table 1 lists the eight modern and
commonly used DNN models we evaluate. We target both small (e.g., CIFAR-10)
and large-scale (e.g., ILSVRC2012) image classification datasets. ResNet101 [49],
VGG-16 [50], and DenseNet201 [51] models are top-five winners of past ImageNet
ILSVRC competitions. We use Google MobileNetV2 [6] to test smaller, mobile-
optimized networks that are widely used on mobile platforms, and SqueezeNet [16]
to test embedded, real-time applications. Table 1 also shows the summed sizes of
all IFMs and weights of each network for processing one input, which is a good
indicator of the memory intensity of each DNN model.

Table 2 shows the accuracy we obtain in our experiments for our baseline
networks across four different numeric precisions (int4, int8, int16 and FP32),
using reliable commodity DRAM. We quantize using the popular symmetric linear
DNN quantization scheme [52]. This quantization scheme applies weight-dependent
affine scaling to linearly map weights into the range .[−2b−1, 2b−1 − 1], where b
is the target model weight bit precision. YOLO and YOLO-Tiny’s framework only
support int8 and FP32 numeric precisions.

Two of the models, DenseNet201 and SqueezeNet1.1, suffer from accuracy
collapse at 4-bit precision. We did not use hyper-parameter tuning in our baselines or
subsequent experiments. All results use the default DNN architectures and learning
rates.

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 295

Table 2 Baseline accuracies
of the networks used in our
evaluation with reliable
DRAM memory (no bit
errors) using different
numeric precisions

Model int4 int8 int16 FP32

ResNet101 [49] 89.11% 93.14% 93.11% 94.20%

MobileNetV2 [6] 51.00% 70.44% 70.46% 78.35%

VGG-16 [50] 59.05% 70.48% 70.53% 71.59%

DenseNet201 [51] 0.31% 74.60% 74.82% 76.90%

SqueezeNet1.1 [16] 8.07% 57.07% 57.39% 58.18%

AlexNet [2] 83.13% 86.04% 87.21% 89.13%

YOLO. � [53] – 44.60% – 55.30%

YOLO-Tiny. � [53] – 14.10% – 23.70%

LeNet [21] – 61.30% – 67.40%
. � these models use mean average precision (mAP) instead

of the accuracy metric

6.2 Accuracy Validation of the Error Models

EDEN uses errors obtained from real DRAM devices to build and select accurate
error models. We profile the DRAM (1) before running DNN inference, and (2)
when the environmental factors that can affect the error patterns change (e.g., when
temperature changes). We find that an error model can be accurate for many days if
the environmental conditions do not change significantly, as also observed in prior
work [37, 41, 54].

We derive our probabilistic error models (Sect. 4) from data obtained from eight
real DRAM modules. We use the same FPGA infrastructure as the one described in
Sect. 6.1. We find that complete profiling of a 16-bank, 4 GB DDR4 DRAM module
takes under 4 minutes in our evaluation setup.

We validate our error models by comparing the DNN accuracy obtained after
injecting bit errors using our DRAM error models to the accuracy obtained with each
real approximate DRAM module. Figure 7 shows an example of the DNN accuracy
obtained using DRAM modules from three major vendors with reduced voltage
and .tRCD , and the DNN accuracy obtained using our Error Model 0. We use Error
Model 0 because it is the model that fits better the errors observed in the three tested
DRAM modules. Our main observation is that the DNN accuracy obtained with
our model is very similar to that obtained with real approximate DRAM devices.
We conclude that our error models mimic very well the errors observed in real
approximate DRAM devices.

6.3 Error Tolerance of Baseline DNNs

To better understand the baseline error tolerance of each DNN (before boosting
the error tolerance), we examine the error tolerance of the baseline DNNs. This
also shows us how differences in quantization, best-fit error model, and BER can
potentially affect the final DNN accuracy.

296 L. Orosa et al.

Fig. 7 LeNet/CIFAR-10 accuracies obtained using real approximate DRAM devices (via SoftMC)
and using our Error Model 0. Error bars show the 95% confidence interval of Error Model 0.
Adapted from [23]

Figure 8 shows the accuracy of ResNet101 at different precision levels and BERs
using all four error models. We see that all DNNs exhibit an accuracy drop at high
BER (.>10−2), but different error models cause the drop-off for all DNNs to be
higher or lower. This is rooted in how each error model disperses bit errors into the
DNN IFMs and weights. A good example of this is Error Model 1, which exhibits
the most early and extreme drop-offs, especially for FP32 DNNs. We find that the
cause of this is that, in our experimental setup, IFMs and weights are aligned in
DRAM, so the MSBs of different DNN data types are mapped to the same bitline B.
If the percentage of weak cells in bitline B (. PB) is high, the DNN suffers many MSB
failures. However, Error Model 0 distributes these weak cell failures uniformly and
randomly across the bank, causing far fewer MSB failures. In general, the way in
which each error model captures the distribution of weak cells across data layout in
memory greatly affects its impact on the error curve.

Quantization Precision also affects the error model and the error tolerance curve.
For example, in Error Model 2, we observe that the int-4 DNN has the weakest error
tolerance curve. We find that this is because Error Model 2 clusters weak cells along
a row: a large number of neighboring 4-bit values end up corrupted when Error
Model 2 indicates a weak wordline. This is in contrast to larger precisions, which
might have numbers distributed more evenly across rows, or error models that do
not capture error locality (e.g., Error Model 0). In general, we find that clusters of
erroneous values cause significant problems with accuracy (the errors compound
faster as they interact with each other in the DNN). Such locality of errors is more

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 297

Fig. 8 ResNet101 accuracy across different BERs (x-axis) and quantization levels when we use
four error models to inject bit errors. We fit the parameters of the error models to the errors observed
by reducing tRCD in a real DRAM device from Vendor A. Adapted from [23]

common in low-bitwidth precisions and with spatial correlation-based error models
(Error Models 1 and 2).

DNN Size We observe that larger DNNs (e.g., VGG16) are more error resilient.
Larger models exhibit an accuracy drop-off at higher BER (.>10−2) as compared to
smaller models (e.g., SqueezeNet1.1, .<10−3). These results are not plotted.

Accuracy Collapse We can observe the accuracy collapse phenomenon caused by
implausible values (see Sect. 3.2) when we increase the bit error rate over . 10−6

in large networks. These implausible values propagate, and in the end, they cause
accuracy collapse in the DNN.

298 L. Orosa et al.

6.4 Curricular Retraining Evaluation

We run DNN inference on real DRAM devices using the boosted DNN model
generated by our curricular retraining mechanism. To our knowledge, this is the first
demonstration of DNN inference on real approximate memory. We also evaluate our
curricular retraining mechanism using our error models (see Sect. 4).

Experimental Setup We evaluate curricular retraining using real DRAM devices
by running LeNet [21] on the CIFAR-10 [55] validation dataset. We use
SoftMC [42] to scale .VDD and .tRCD on an FPGA-based infrastructure connected
to a DDR3 DRAM module. We also evaluate curricular retraining using our error
models by running ResNet [49] on the CIFAR-10 validation dataset.

Results with Real DRAM Figure 9 shows the accuracy of (1) baseline LeNet
without applying any retraining mechanism (Baseline), and (2) LeNeT boosted
with our curricular retraining mechanism (Boosted), as a function of DRAM supply
voltage and .tRCD . We make two observations. First, EDEN’s boosted LeNet allows
a voltage reduction of . ∼0.25 V and a .tRCD reduction of 4.5 ns, while maintaining
accuracy values equivalent to those provided by nominal voltage (1.35 V) and
nominal .tRCD (12.5 ns). Second, the accuracy of baseline LeNet decreases very
quickly when reducing voltage and .tRCD below the nominal values. We conclude
that our curricular retraining mechanism can effectively boost the accuracy of
LeNeT on approximate DRAM with reduced voltage and .tRCD .

Results with Error Models Figure 10 (left) shows an experiment that retrains
ResNet101 with two different models: (1) a good-fit error model (that closely
matches the tested device) and (2) a poor-fit error model. We make two observations.
First, retraining using a poor-fit error model (red), yields little improvement over the
baseline (no retraining, green). Second, retraining with a good-fit error model (blue)

Fig. 9 LeNet accuracy using baseline and boosted DNNs. Adapted from [23]

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 299

Fig. 10 Accuracy of boosted ResNet101 DNNs in presence of memory errors. Left: accuracy of
poor-fit and good-fit error models. Right: accuracy of non-curricular and curricular retraining using
a good-fit error model. Adapted from [23]

improves BER at the 89% accuracy point by >10x (shifting the BER curve right).
We conclude that using a good-fit error model in the retraining mechanism is critical
to avoid accuracy collapse.

Figure 10 (right) shows the effectiveness of our curricular retraining mechanism
using a good-fit error model. We make two observations. First, the accuracy of the
DNN with regular retraining (purple) collapses, compared to the baseline DNN (no
retraining, green). Second, the DNN trained with our curricular retraining (orange)
exhibits a boosted error tolerance. We conclude that our curricular retraining mech-
anism is effective at boosting the DNN accuracy in systems that use approximate
DRAM.

Running this retraining process for 10–15 epochs is sufficient to boost tolerable
BERs by 5–10x to achieve the same DNN accuracy as the baseline DNN executed
in DRAM with nominal parameters. For our ResNet101 on CIFAR-10 with an
NVIDIA Tesla P100, this one-time boosting completes within 10 min.

6.5 Coarse-Grained DNN Characterization and Mapping

In this section, we show the results of EDEN’s coarse-grained DNN characterization
(see Sect. 3.3) and how the target DNN model maps to an approximate DRAM with
optimized parameters for a target accuracy degradation of .<1%.

Characterization Table 3 shows the DNN’s maximum tolerable BER for eight
DNN models with FP32 and int8 numeric precisions.

300 L. Orosa et al.

Table 3 Maximum tolerable BER for each DNN using EDEN’s coarse-grained characterization,
and DRAM parameter reduction to achieve the maximum tolerable BER. Nominal parameters are
.VDD = 1.35V and . tRCD = 12.5 ns

FP32 int8

Model BER .�VDD .�tRCD BER .�VDD . �tRCD

ResNet101 4.0% . −0.30 V . −5.5 ns 4.0% . −0.30 V . −5.5 ns

MobileNetV2 1.0% . −0.25 V . −1.0 ns 0.5% . −0.10 V . −1.0 ns

VGG-16 5.0% . −0.35 V . −6.0 ns 5.0% . −0.35 V . −6.0 ns

DenseNet201 1.5% . −0.25 V . −2.0 ns 1.5% . −0.25 V . −2.0 ns

SqueezeNet1.1 0.5% . −0.10 V . −1.0 ns 0.5% . −0.10 V . −1.0 ns

AlexNet 3.0% . −0.30 V . −4.5 ns 3.0% . −0.30 V . −4.5 ns

YOLO 5.0% . −0.35 V . −6.0 ns 4.0% . −0.30 V . −5.5 ns

YOLO-Tiny 3.5% . −0.30 V . −5.0 ns 3.0% . −0.30 V . −4.5 ns

We observe that the maximum tolerable BER demonstrates significant variation
depending on the DNN model. For example, YOLO tolerates 5% BER and
SqueezeNet tolerates only 0.5%. We conclude that (1) the maximum tolerable BER
highly depends on the DNN model, and (2) DNN characterization is required to
optimize approximate DRAM parameters for each DNN model.

Mapping EDEN maps each DNN model to an approximate DRAM module that
operates with the maximum reduction in voltage (.�VDD) and .tRCD (.�tRCD) that
leads to a BER below the maximum DNN tolerable BER for that DNN model.
Table 3 shows the maximum reduction in DRAM voltage (.�VDD) and . tRCD

(.�tRCD) that causes a DRAM BER below the maximum tolerable BER, for a target
DRAM module from vendor A. The nominal DRAM parameters for this DRAM
module are .VDD = 1.35 V and .tRCD = 12.5 ns. We make two observations. First,
the tolerable BER of a network is directly related to the maximum tolerable . VDD

and .tRCD reductions. Second, the reductions in .VDD and .tRCD are very significant
compared to the nominal values. For example, EDEN can reduce voltage by 26%
and .tRCD by 48% in YOLO while maintaining the DNN accuracy to be within 1%
of the original accuracy.

6.6 Fine-Grained DNN Characterization and Mapping

Characterization We characterize the ResNet101 DNN model with our fine-
grained DNN characterization procedure (see Sect. 3.3). For each IFM and weight,
we iteratively increase the bit error rate until we reach the maximum tolerable BER
of the data type for a particular target accuracy degradation. We perform a full
network retraining in each iteration. To reduce the runtime of our procedure, we
sample 10% of the validation set during each inference run to obtain the accuracy
estimate. We also bootstrap the BERs to the BER found in coarse-grained DNN

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 301

Fig. 11 Fine-grained characterization of the tolerable BERs of ResNet101 IFMs and weights.
Deeper layers are on the right. Adapted from [23]

Fig. 12 Mapping of ResNet101 IFMs and weights into four partitions with different .VDD values
(colored horizontal lines). Adapted from [23]

characterization and use a linear scale in 0.5 increments around that value. For
ResNet101, this one-time characterization completes in one hour using an Intel
Xeon CPU E3-1225.

Figure 11 shows the maximum tolerable BER for each IFM and weight in
ResNet101 obtained with our fine-grained DNN characterization method (Sect. 3.3),
assuming a maximum accuracy loss of . <1%. Each bar in the figure represents the
BER tolerance of an IFM or weight, and they are ordered by their depth in the DNN,
going deeper from left to right. We make three observations. First, fine-grained
characterization enables individual IFMs and weights to tolerate up to 3x BER (13%
for the last weight) of the maximum tolerable BER of the coarse-grained approach
(4% for ResNet101 in Table 3). Second, weights usually tolerate more errors than
IFMs. Third, the maximum tolerable BER is smaller in the first layers than in the
middle layers of the DNN. We conclude that fine-grained DNN characterization
enables a significant increase in the maximum tolerable BER compared to coarse-
grained characterization.

Mapping We map each individual IFM or weight into different DRAM partitions
based on (1) the BER tolerance of each IFM and weight, and (2) the BER of each
DRAM partition, using our algorithm in Sect. 3.4. Figure 12 shows an example
that maps the ResNet101 IFMs and weights from Fig. 11 into 4 different DRAM
partitions with different voltage parameters that introduce different BERs (four
horizontal colored bars), following the algorithm in Sect. 3.4.

302 L. Orosa et al.

We conclude that the wide range of tolerable BERs across all ResNet101 data
types enables the use of both (1) DRAM partitions with significant voltage reduction
(e.g., horizontal red line), and (2) DRAM partitions with moderate voltage reduction
(e.g., horizontal blue line).

7 System-Level Evaluation

We evaluate EDEN in three different DNN inference architectures: CPUs, GPUs,
and inference accelerators.

7.1 CPU Inference

Experimental Setup We evaluate EDEN on top of a multi-core OoO CPU
using the simulated core configuration listed in Table 4. We use ZSim [56] and
Ramulator [57] to simulate the core and the DRAM subsystem, respectively. We
use DRAMPower [58] to estimate energy consumption for DDR4 devices. We use
a 2-channel, 32-bank 8GB DDR4-2133 DRAM device.

We use twelve different inference benchmarks: eight from the Intel OpenVINO
toolkit [12] and four from the AlexeyAB-fork of the DarkNet framework. For each
DNN, we study the FP32 and the int8-quantized variant. We use 8-bit quantization
in our baselines, because it is commonly used for production CPU workloads. We
evaluate EDEN’s coarse-grained DNN characterization procedure and target a . <1%
accuracy degradation. Table 3 lists the reduced .VDD and .tRCD values.

DRAM Energy Figure 13 shows the DRAM energy savings of EDEN, compared
to a system with DRAM operating at nominal voltage and nominal latency. We
make two observations. First, EDEN achieves significant DRAM energy savings
across different DNN models. The average DRAM energy savings is 21% across all
workloads, and 29% each for YOLO and VGG. Second, the DRAM energy savings

Table 4 Simulated system configuration

Cores 2 Cores @ 4.0 GHz, 32nm, 4-wide OoO,

Buffers: 18-entry fetch, 128-entry decode,

128-entry reorder buffer,

L1 Caches 32 KB, 8-way, 2-cycle, Split Data/Instr.

L2 Caches 512 KB per core, 8-way, 4-cycle, Shared Data/Instr.,

Stream Prefetcher

L3 Caches 8 MB per core, 16-way, 6-cycle, Shared Data/Instr.,

Stream Prefetcher

Main memory 8GB DDR4-2133 DRAM, 2 channels, 16 banks/channel

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 303

Fig. 13 DRAM energy savings of EDEN. We use FP32 and quantized int8 networks. Adapted
from [23]

Fig. 14 Speedup of EDEN over baseline and versus a system with ideal activation latency. We use
FP32 and an quantized int8 networks. Adapted from [23]

for FP32 and int8 are roughly the same, because the voltage reduction is very similar
for both precisions (see Table 3).

We also perform evaluations for a target accuracy that is the same as the original.
Our results show that EDEN enables an average DRAM energy reduction of 16%
(up to 18%).

We conclude that EDEN is effective at saving DNN inference energy by reducing
voltage while maintaining the DNN accuracy within 1% of the original.

Performance Figure 14 shows the speedup of EDEN when we reduce tRCD , and
the speedup of a system with a DRAM module that has ideal tRCD = 0, compared
to a system that uses DRAM with nominal timing parameters. We make three
observations. First, YOLO DNNs exhibit high speedup with EDEN, reaching up
to 17% speedup. The results of YOLO are better than the average because YOLO
is more sensitive to DRAM latency. This is because some steps in YOLO (e.g.,
Non-Maximum Suppression, confidence, and IoU thresholding) perform arbitrary
indexing into matrices that lead to random memory accesses, which cannot easily
be predicted by the prefetchers. Second, the average speedup of EDEN (8%) is very
close to the average speedup of the ideal system with tRCD = 0 (10%). Third,

304 L. Orosa et al.

we find that SqueezeNet1.1 and ResNet101 exhibit very little maximum theoretical
speedup because they are not bottlenecked by memory latency.

We also perform evaluations for a target accuracy that is the same as the original.
Our results show that EDEN enables an average performance gain of 4% (up to 7%).

We conclude that EDEN is effective at improving DNN inference performance
by reducing DRAM latency while maintaining the DNN accuracy within 1% of the
original, especially on DNNs that are sensitive to memory latency.

7.2 Accelerators

We evaluate EDEN on three different accelerators: GPU, Eyeriss [7], and TPU [20].

GPU Inference We evaluate EDEN on a GPU using the cycle-accurate GPGPU-
Sim simulator [59]. We use GPUWattch [60] to evaluate the overall GPU energy
consumption. Table 5 details the NVIDIA Titan X GPU model we use in our
evaluation. We use the reduced .tRCD and .VDD values that provide .<1% accuracy
degradation (as listed in Table 3). We adapt four DarkNet-based binaries to run
inference on the FP32/int8 YOLO and YOLO-Tiny DNNs.

Our results show that EDEN provides 37% average energy reduction (41.7%
for YOLO-Tiny, and 32.6% for YOLO) compared to a GPU that uses DRAM with
nominal parameters.

Our results also show that EDEN provides 2.7% average speedup (5.5% for the
YOLO-Tiny, and 0% for YOLO) compared to a GPU that uses DRAM with nominal
parameters. DRAM with ideal tRCD (.tRCD = 0) provides .6% speedup for YOLO-
Tiny and 2% speedup for YOLO. These results indicate that (1) the YOLO DNN
family is not DRAM latency bound in our evaluation configuration, and (2) EDEN
can achieve close to the ideal speedup of zero activation latency when the DNN is
latency bound.

Neural Network Inference Accelerators We evaluate EDEN on Eyeriss [7] and
Google’s Tensor Processing Unit (TPU) [20] using the cycle-accurate SCALE-Sim
simulator [61]. We use DRAMPower [58] to obtain DRAM energy consumption
from memory traces produced by SCALE-Sim. We use the built-in int8 AlexNet
and YOLO-Tiny models and their accelerator-specific dataflows. We use DRAM
parameters that yield a maximum accuracy loss of 1% (Table 3). Table 6 details the

Table 5 Simulated NVIDIA Titan X GPU configuration

Shader core 28 SMs, 1417 MHz, 32 SIMT Width,

64 Warps per SM, 4 GTO Schedulers per Core

Private L1 cache 24 KB per SMM, Cache Block Size 128B

Shared memory 96 KB, 32 Banks. Shared L2 Cache: 3 MB

Main memory GDDR5, 2500 MHz, 6 channels, 24 chips

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 305

Table 6 Simulated Eyeriss
and TPU configurations

Eyeriss TPU

Array .12 × 14 PEs .256 × 256 PEs

SRAM buffers 324 KB 24 MB

Main memory 4GB DDR4-2400 4GB DDR4-2400

4GB LPDDR3-1600 4GB LPDDR3-1600

configuration of the Eyeriss and TPU inference accelerators. Eyeriss has an array of
.12 × 14 processing elements (PEs) with a 324 KB SRAM buffer for all data types
(i.e., IFMs, weights and OFMs), and the TPU has an array of .256 × 256 PEs with
a 24 MB SRAM buffer for all data types. We evaluate both accelerators with DDR4
and LPDDR3 DRAM configurations, using AlexNet and YOLO-Tiny workloads.

Our results show that reducing the voltage level in DDR4 DRAM leads to
significant DRAM energy reductions on both Eyeriss and TPU accelerators. EDEN
provides (1) 31% average DRAM energy savings on Eyeriss (31% for YOLO-Tiny,
and 32% for AlexNet), and (2) 32% average DRAM energy savings on TPU (31%
for YOLO-Tiny, and 34% for AlexNet).

Our results with a reduced voltage level in LPDDR3 are similar to those
with DDR4. EDEN provides an average DRAM energy reduction of 21% for
both Eyeriss and TPU accelerators running YOLO-Tiny and AlexNet. By using
the accelerator/network/cache/DRAM energy breakdown provided by the Eyeriss
evaluations on AlexNet [7], we estimate that EDEN can provide 26.8% system-level
energy reduction on fully connected layers and 7% system-level energy reduction
on convolutional layers.

Our results with reduced .tRCD in LPDDR3 and DDR4 show that Eyeriss and
TPU exhibit no speedup from reducing .tRCD . We observe that prefetchers are very
effective in these architectures because the memory access patterns in the evaluated
DNNs are very predictable.

8 Related Work

To our knowledge, EDEN is the first paper to propose a general framework that
reduces energy consumption and increases performance of DNN inference by using
approximate DRAM with reduced voltage and latency. EDEN introduces a new
methodology to improve DNN’s tolerance to approximate DRAM errors which
is based on DNN error tolerance characterization and a new curricular retraining
mechanism. We demonstrate the effectiveness of EDEN by using error patterns that
occur in real approximate DRAM devices.

In this section, we discuss closely related work on (1) approximate computing
hardware for DNN workloads, and (2) modifying DRAM parameters.

306 L. Orosa et al.

Approximate Computing Hardware for DNN Workloads Many prior works
propose to use approximate computing hardware for executing machine learning
workloads [62–74]. All these works propose techniques for improving DNN toler-
ance for different types of approximate hardware mechanisms and error injection
rates. Compared to these works, EDEN is unique in (1) being the first work
to use approximate DRAM with reduced voltage and latency, (2) being the first
demonstration of DNN inference using error characterization of real approximate
DRAM devices, (3) using a novel curricular retraining mechanism that is able to
customize the DNN for tolerating high error rates injected by the target approximate
DRAM, and (4) mapping each DNN data type to a DRAM partition based on the
error tolerance of the DNN data type and the bit error rate of the DRAM partition.
We classify related works on approximate hardware for DNN workloads into six
categories.

First, works that reduce DRAM refresh to save DNN energy [62–64]. RANA [63]
and St-DRC [62] propose to reduce DRAM refresh rate in the embedded DRAM
(eDRAM) memory of DNN accelerators. Nguyen et al. [64] propose to apply similar
refresh optimization techniques to off-chip DRAM in DNN accelerators. These
mechanisms use customized retraining mechanisms to improve the accuracy of the
DNN in the presence of a moderate amount of errors.

Second, works that study the error tolerance of neural networks to uniform
random faults in SRAM memory [65, 66]. For example, Li et al. [65] analyze
the effect of various numeric representations on error tolerance. MoRS [66] is an
approximate undervolting fault model using real faults extracted from experimental
undervolting studies on SRAMs to build the model. The authors inject the faults
generated by MoRS into the on-chip memory of the DNN accelerator to evaluate
the resilience of the system under the test.

Third, works that study approximate arithmetic logic in DNN workloads [67, 68].
ThUnderVolt [67] proposes to underscale the voltage of arithmetic elements. Salami
et al. [68] present fault-mitigation techniques for neural networks that minimize
errors in faulty registers and logic blocks with pruning and retraining.

Fourth, works that study approximate emerging memory technologies for neural
network acceleration. Panda et al. [69] and Kim [70] propose neuromorphic
accelerators that use spintronics and memristors to run a proof-of-concept fuzzy
neural network.

Fifth, works that study the effects of approximate storage devices on DNN
workloads [71, 72]. Qin et al. [71] study the error tolerance of neural networks that
are stored in approximate non-volatile memory (NVM) media. The authors study
the effects of turning the ECC off in parts of the NVM media that store the neural
network data. Wen et al. [72] propose to mitigate the effects of unreliable disk reads
with a specialized ECC variant that aims to mitigate error patterns present in weights
of shallow neural networks.

Sixth, works that study the intrinsic error resilience of DNNs by injecting
randomly distributed errors in DNN data [73, 74]. These works assume that the
errors can come from any component of the system (i.e., they do not target a specific
approximate hardware component). Marques et al. [73] study the accuracy of DNNs

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 307

under different error injection rates and propose various error mitigation techniques.
This work uses a simple probabilistic method to artificially inject errors into the
DNN model. ApproxANN [74] uses an algorithm that optimizes the DNN accuracy
by taking into account the error tolerance and the criticality of each component of
the network.

Approximate Computing Hardware for Other Workloads There are applica-
tions other than neural network inference that can tolerate errors, thus they can
benefit from approximate memory [75, 76]. Bharti et al. [75] propose an hetero-
geneous SRAM structure for low-power multimedia applications in smartphones.
Nguyen et al. [76] propose an approximate DRAM architecture for improving
the performance of neural network training via refreshing only the most critical
bits [76].

Modifying DRAM Parameters Many prior works study the effects of modifying
DRAM parameters on reliability, performance, and energy consumption. We already
discuss some prior works that reduce DRAM voltage, access latency, and refresh
rate in Sect. 2.3. EDEN leverages the characterization techniques introduced in
Voltron [35] and Flexible-Latency DRAM [33] to perform the DRAM character-
ization required to map a DNN to approximate DRAM with reduced voltage and
reduced latency (Sect. 3.4). We classify other related works that modify DRAM
parameters into three categories.

First, works that aim to characterize and reduce energy consumption at reduced
supply voltage levels [35, 77]. David et al. [77] propose memory dynamic voltage
and frequency scaling (DVFS) to reduce DRAM power. Voltron [35] studies
voltage reduction in real DRAM devices in detail and proposes solutions to reduce
voltage reliably based on observed error characteristics and system performance
requirements.

Second, works that investigate DRAM characteristics under reduced access
latency [33, 37]. Adaptive-Latency DRAM [37] characterizes the guardbands
present in timing parameters defined by DRAM manufacturers, and exploits the
extra timing margins to reliably reduce DRAM latency across different chips and
temperatures. Flexible-Latency DRAM [33] analyzes the spatial distribution of
reduced-latency-induced cell failures, and uses this information to reliably access
different regions of DRAM with different timing parameters.

Third, works that aim to reduce DRAM latency by modifying the microarchitec-
ture of DRAM or the memory controller (e.g., [17]). These works reduce latency
without introducing bit errors.

Approximate Solid-StateMemories There are several works that propose to reuse
faulty solid-state memories [78, 79]. Chenlin et al. [78] propose to increase NAND
Flash memory lifetime via reusing faulty memory blocks that contain uncorrectable
errors to store approximate data. Jevdjic et al. [79] propose a novel and efficient
methodology to compute bit-level reliability requirements for encoded videos by
tracking visual and metadata dependencies within encoded bitstreams.

308 L. Orosa et al.

9 Discussion and Challenges

In this section we discuss the potential impact of EDEN on future works, and we
describe the main challenges for EDEN to be commonly accepted by industry

9.1 Discussion

EDEN has inspired several works on approximate computing [80–82], error toler-
ance in neural networks [83–85], improving energy efficiency on neural network
inference [66, 86], improving energy efficiency on neural network training [76], or
make machine learning algorithms more secure [87]. We believe that EDEN will
continue to have impact and inspire future work for five main reasons.

First, large data centers and computing networks are growing very fast due
to their increasing demand. Although the many efforts on making computing
and memory more energy-efficient, the overall energy consumption is increasing
significantly due to the increasing number of available computing resources. Thus,
reducing the energy and power consumption of memory devices when running error-
tolerant applications would have a large impact on global energy consumption.
Other computing networks like cryptocurrency mining can also benefit from the
EDEN framework, as they can potentially be somewhat tolerant to errors. It is
estimated that the energy consumption of bitcoin alone is in the order of 100 TWh
per year, which is larger than the energy consumption of some countries.

Second, data movement between the CPU and main memory is a major obstacle
against improving performance, scalability, and energy efficiency in modern sys-
tems [88]. To solve this issue, many papers propose different Processing-in-Memory
(PIM) mechanisms that place computing units close to memory [88–90]. The power
budget in memory systems is very limited, thus, reducing the energy required for
accessing memory would enable to increase the in-memory computing capabilities.

Third, the number of internet of things (IoT) and edge devices has been
increasing significantly in last few years, and they will continue to grow in the
upcoming years. These devices have a very limited power budget, and they are
usually powered by batteries, or they harvest energy from the environment, thus
reducing energy consumption is critically important. One effective way to reduce the
energy budget of these devices is to reduce the DRAM voltage or timing parameters
in cases where the workload can tolerate bit errors. Many of the applications in
IoT and edge devices are inherently tolerant to noise. For example, IoT devices
acquire data with sensors, which are subject to inherent variations and noises (e.g.,
measurement noise, small differences in a few pixels, etc.), and this data might be
processed by DNNs.

Fourth, many emerging and new applications that can tolerate bit errors can
benefit from some ideas proposed by EDEN. Some examples of common and
very used applications are (1) image processing algorithms and applications [91],

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 309

(2) signal processing algorithms [92], (3) genome analysis [93], (4) financial
analysis [94], or (5) big data analysis [95].

Fifth, modern DRAM devices are becoming fundamentally less reliable and
insecure due to the RowHammer vulnerability [46, 96], where repeatedly accessing
(i.e., hammering) a DRAM row can cause bit flips in physically nearby rows.
RowHammer is caused by the reduction of DRAM cell size and cell-to-cell spacing.
Some works propose RowHammer attacks to gain unrestricted access to the system
(e.g., [97]), or collapse the accuracy of DNNs (e.g., [98]). The EDEN framework
can be useful to retrain the DNN in the presence of RowHammer-induced bit flips
with the goal of avoiding accuracy collapse.

We conclude that EDEN is tackling a problem that is of paramount importance in
a global context. EDEN already demonstrates the advantages in the context of DNN
inference workloads, but it can inspire similar frameworks for other emerging ML
workloads, and new frameworks for other approximate applications.

9.2 Challenges

EDEN has great potential to contribute and inspire future work in low-power
computing using approximate DRAM. However, there are two main challenges that
need to be solve for this approach to be commonly accepted by industry. First, the
characterization of errors in memory devices. Each device are unique, and the bit
errors caused by reducing the voltage levels or timing parameters depend on process
variation, which is unique to each device. To ensure that an approximate application
works reliably in the presence of errors, we must ensure a maximum bit error rate,
which can be obtained only by characterizing each memory device individually.
There are some works that contribute to simplifying the error characterization
errors [46], but there is still work to do for making it a practical solution. Second,
once the errors are characterized for a particular device, the error patters might
change for two main reason. First, the aging of the memory device [44] might cause
variations in the bit error rate and error patterns. Because there is no thorough long-
term DRAM aging study that determines how bit errors change with time, it is not
possible to assess the impact of aging. Second, variable retention time [99], which
makes that the retention time of some cells can change at runtime, might need to be
considered for some critical applications. For example, DeepHammer [98] shows
that flipping only a few bits can collapse the accuracy on some DNN models.

EDEN can also be applied to other memory technologies other than DRAM. To
this end, it is important to understand the different failure mechanisms and error
characteristics of each particular memory technology. There are several works that
analyze the errors of NAND Flash memories (e.g., [78]), or SRAMs (e.g., [100]),
but there are no experimental error studies on real devices from many new memory
technologies that allow us to assess the viability of applying a framework similar to
EDEN on those technologies.

310 L. Orosa et al.

We conclude that EDEN have some important challenges to address before being
commonly adopted by industry, but we believe that the potential benefits of EDEN
are large enough to be considered as an efficient way to reduce energy consumption
on applications that can tolerate bit errors.

10 Conclusion

This chapter introduces EDEN, the first general framework that enables energy-
efficient and high-performance DNN inference via approximate DRAM, while
strictly meeting a target DNN accuracy. EDEN uses an iterative mechanism
that profiles the DNN and the target approximate DRAM with reduced voltage
and timing parameters. EDEN improves DNN accuracy with a novel curricular
retraining mechanism that tolerates high bit error rates. We evaluate EDEN in
both simulation and on real hardware. Our evaluation shows that EDEN enables
(1) an average DRAM energy reduction of 21%, 37%, 31%, and 32% in CPU,
GPU, Eyeriss, and TPU architectures, respectively, across a variety of state-of-the-
art DNNs, and (2) average (maximum) performance gains of 8% (17%) in CPUs and
2.7% (5.5%) in GPUs, for latency-bound DNNs. We expect that the core principles
of EDEN generalize well across different memory devices, memory parameters,
and memory technologies. We hope that EDEN (1) enables further research and
development on the use of approximate memory for machine learning workloads
and (2) inspires new research and development on the use of approximate memory
for other workloads and algorithms that tolerate bit errors.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional

neural networks. In: NIPS (2012)
3. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke,

V., Nguyen, P., Sainath, T.N.: Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–
97 (2012)

4. Ramachandran, N., Hong, S.C., Sime, M.J., Wilson, G.A.: Diabetic retinopathy screening
using deep neural network. Clin. Exp. Ophthalmol. 46(4), 412–416 (2018)

5. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I: Attention is all you need. In: Advances in neural information processing
systems (2017)

6. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: the next
generation of on-device computer vision networks. In: CVPR (2018)

7. Chen, Y.-H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfigurable
accelerator for deep convolutional neural networks. In: JSSC (2017)

8. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient
inference engine on compressed deep neural network. In: ISCA (2016)

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 311

9. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: DianNao: a small-footprint
high-throughput accelerator for ubiquitous machine-learning. In: ASPLOS (2014)

10. Chen, Y.-H., Yang, T.-J., Emer, J., Sze, V.: Eyeriss v2: a flexible accelerator for emerging deep
neural networks on mobile devices. In: JETCAS (2019)

11. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.:
cuDNN: efficient primitives for deep learning, arXiv (2014)

12. Kozlov, A., Osokin, D.: Development of real-time ADAS object detector for deployment on
CPU. In: IntelliSys (2019)

13. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep
neural networks. In: CVPR (2017)

14. Levinthal, D.: Performance analysis guide for Intel Core i7 processor and Intel Xeon
5500 processors. https://software.intel.com/sites/products/collateral/hpc/vtune/performance_
analysis_guide.pdf (2009)

15. Ueyoshi, K., Ando, K., Hirose, K., Takamaeda-Yamazaki, S., Kadomoto, J., Miyata, T.,
Hamada, M., Kuroda, T., Motomura, M.: QUEST: A 7.49 TOPS multi-purpose log-quantized
DNN inference engine stacked on 96 MB 3D SRAM using inductive-coupling technology in
40nm CMOS. In: ISSCC (2018)

16. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5 mb model size, arXiv (2016)

17. Wang, Y., Tavakkol, A., Orosa, L., Ghose, S., Ghiasi, N.M., Patel, M., Kim, J.S., Hassan,
H., Sadrosadati, M., Mutlu, O.: Reducing DRAM latency via charge-level-aware look-ahead
partial restoration. In: MICRO (2018)

18. Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch, M.A., Mutlu,
O., Gibbons, P.B., Mowry, T.C.: Ambit: in-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In: MICRO (2017)

19. Koppula, S., Orosa, L., Yağlıkçı, A.G., Azizi, R., Shahroodi, T., Kanellopoulos, K., Mutlu,
O.: EDEN: Enabling energy-efficient, high-performance deep neural network inference
using approximate DRAM. In: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2019)

20. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing
unit. In: ISCA (2017)

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York (2016)
23. Koppula, S., Orosa, L., Yağlıkçı, A.G., Azizi, R., Shahroodi, T., Kanellopoulos, K., Mutlu,

O.: EDEN: Enabling energy-efficient, high-performance deep neural network inference using
approximate DRAM. arXiv (2019)

24. Fedus, W., Zoph, B., Shazeer, N.: Switch transformers: scaling to trillion parameter models
with simple and efficient sparsity, arXiv preprint arXiv:2101.03961 (2021)

25. Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., Chen,
Z.: GShard: scaling giant models with conditional computation and automatic sharding, arXiv
preprint arXiv:2006.16668 (2020)

26. Du, S.S., Lee, J.D.: On the power of over-parametrization in neural networks with quadratic
activation, arXiv (2018)

27. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks:
training neural networks with low precision weights and activations. In: IMLR (2017)

28. Cun, Y.L., Denker, J.S., Solla, S.A.: Optimal brain damage. In: NIPS (1990)
29. Robbins, H., Monro, S.: A stochastic approximation method. In: The Annals of Mathematical

Statistics (1951)
30. Lashgari, E., Liang, D., Maoz, U.: Data augmentation for deep-learning-based electroen-

cephalography. J. Neurosci. Methods 346, 108885 (2020)

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

312 L. Orosa et al.

31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958
(2014)

32. JEDEC Standard: DDR4 SDRAM specification (JESD79-4) (2012)
33. Chang, K.K., Kashyap, A., Hassan, H., Ghose, S., Hsieh, K., Lee, D., Li, T., Pekhimenko, G.,

Khan, S., Mutlu, O.: Understanding latency variation in modern DRAM chips: experimental
characterization, analysis, and optimization. In: SIGMETRICS (2016)

34. Kim, J.S., Patel, M., Hassan, H., Orosa, L., Mutlu, O.: D-RaNGe: using commodity DRAM
devices to generate true random numbers with low latency and high throughput. In: HPCA
(2019)

35. Chang, K.K., Yağlıkçı, A.G., Ghose, S., Agrawal, A., Chatterjee, N., Kashyap, A., Lee, D.,
O’Connor, M., Hassan, H., Mutlu, O.: Understanding reduced-voltage operation in modern
DRAM devices: experimental characterization, analysis, and mechanisms. In: Proceedings of
the ACM on Measurement and Analysis of Computing Systems (SIGMETRICS) (2017)

36. Ghose, S., Li, T., Hajinazar, N., Senol Cali, D., Mutlu, O.: Demystifying complex workload-
DRAM interactions: an experimental study. In: Proceedings of the ACM on Measurement
and Analysis of Computing Systems (SIGMETRICS) (2019)

37. Lee, D., Kim, Y., Pekhimenko, G., Khan, S., Seshadri, V., Chang, K., Mutlu, O.: Adaptive-
latency DRAM: optimizing DRAM timing for the common-case. In: HPCA (2015)

38. Liu, J., Jaiyen, B., Veras, R., Mutlu, O.: RAIDR: retention-aware intelligent DRAM refresh.
In: ISCA (2012)

39. Yang, T.-J., Chen, Y.-H., Sze, V.: Designing energy-efficient convolutional neural networks
using energy-aware pruning. In: CVPR (2017)

40. Kim, J.S., Patel, M., Hassan, H., Mutlu, O.: The DRAM latency PUF: quickly evaluating
physical unclonable functions by exploiting the latency-reliability tradeoff in modern com-
modity DRAM devices. In: HPCA (2018)

41. Lee, D., Khan, S., Subramanian, L., Ghose, S., Ausavarungnirun, R., Pekhimenko, G.,
Seshadri, V., Mutlu, O.: Design-induced latency variation in modern DRAM chips: char-
acterization, analysis, and latency reduction mechanisms. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems (SIGMETRICS) (2017)

42. Hassan, H., Vijaykumar, N., Khan, S., Ghose, S., Chang, K., Pekhimenko, G., Lee, D.,
Ergin, O., Mutlu, O.: SoftMC: a flexible and practical open-source infrastructure for enabling
experimental DRAM studies. In: HPCA (2017)

43. Hamamoto, T., Sugiura, S., Sawada, S.: On the retention time distribution of dynamic random
access memory (DRAM). IEEE Trans. Electron Devices 45(6), 1300–1309 (1998)

44. Fieback, M.: DRAM reliability: aging analysis and reliability prediction model (2017)
45. Khan, S., Lee, D., Mutlu, O.: PARBOR: an efficient system-level technique to detect data-

dependent failures in DRAM. In: DSN (2016)
46. Orosa, L., Yaglikci, A.G., Luo, H., Olgun, A., Park, J., Hassan, H., Patel, M., Kim, J.S., Mutlu,

O.: A deeper look into RowHammer’s sensitivities: experimental analysis of real DRAM
chips and implications on future attacks and defenses. In: MICRO (2021)

47. Patel, M., Kim, J.S., Hassan, H., Mutlu, O.: Understanding and modeling on-die error
correction in modern DRAM: an experimental study using real devices. In: DSN (2019)

48. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS-W (2017)

49. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR
(2016)

50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv (2014)

51. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: DenseNet:
implementing efficient convNet descriptor pyramids. arXiv (2014)

52. Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolutional
networks. In: ICML (2016)

53. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv (2017)

Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 313

54. Orosa, L., Wang, Y., Sadrosadati, M., Kim, J.S., Patel, M., Puddu, I., Luo, H., Razavi, K.,
Gómez-Luna, J., Hassan, H., et al.: CODIC: a low-cost substrate for enabling custom in
DRAM functionalities and optimizations. In: ISCA (2021)

55. The CIFAR-10 Dataset. https://www.cs.toronto.edu/~kriz/cifar.html
56. Sanchez, D., Kozyrakis, C.: ZSim: fast and accurate microarchitectural simulation of

thousand-core systems. In: ISCA (2013)
57. Kim, Y., Yang, W., Mutlu, O.: Ramulator: a fast and extensible DRAM simulator. IEEE

Comput. Archit. Lett. 15(1), 45–49 (2015)
58. Chandrasekar, K., Weis, C., Li, Y., Akesson, B., Wehn, N., Goossens, K., DRAMPower: open-

source DRAM power and energy estimation tool (2012)
59. Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing CUDA workloads

using a detailed GPU simulator. In: ISPASS (2009)
60. Leng, J., Hetherington, T., ElTantawy, A., Gilani, S., Kim, N.S., Aamodt, T.M., Reddi, V.J.:

GPUWattch: enabling energy optimizations in GPGPUs. In: ISCA (2013)
61. Samajdar, A., Zhu, Y., Whatmough, P.N., Mattina, M., Krishna, T.: SCALE-Sim: systolic

CNN accelerator. arXiv (2018)
62. Nguyen, D.-T., Ho, N.-M., Chang, I.-J.: St-DRC: Stretchable DRAM refresh controller with

no parity-overhead error correction scheme for energy-efficient DNNs. In: DAC (2019)
63. Tu, F., Wu, W., Yin, S., Liu, L., Wei, S.: RANA: towards efficient neural acceleration with

refresh-optimized embedded DRAM. In: ISCA (2018)
64. Nguyen, D.T., Kim, H., Lee, H.-J., Chang, I.-J.: An approximate memory architecture for a

reduction of refresh power consumption in deep learning applications. In: ISCAS (2018)
65. Li, G., Hari, S.K.S., Sullivan, M., Tsai, T., Pattabiraman, K., Emer, J., Keckler, S.W.:

Understanding error propagation in deep learning neural network (DNN) accelerators and
applications. In: SC (2017)

66. Yüksel, İ.E., Salami, B., Ergin, O., Unsal, O.S., Kestelman, A.C.: MoRS: an approximate
fault modelling framework for reduced-voltage SRAMs. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 41(6), 1663–1673 (2021)

67. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: Thundervolt: enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep learning accelerators. In:
DAC (2018)

68. Salami, B., Unsal, O., Cristal, A.: On the resilience of RTL NN accelerators: fault characteri-
zation and mitigation. arXiv (2018)

69. Panda, P., Sengupta, A., Sarwar, S.S., Srinivasan, G., Venkataramani, S., Raghunathan, A.,
Roy, K.: Cross-layer approximations for neuromorphic computing: from devices to circuits
and systems. In: DAC (2016)

70. Kim, Y.: Energy efficient and error resilient neuromorphic computing in VLSI, Ph.D.
dissertation. MIT, New York (2013)

71. Qin, M., Sun, C., Vucinic, D.: Robustness of neural networks against storage media errors.
arXiv (2017)

72. Shi, W., Wen, Y., Liu, Z., Zhao, X., Boumber, D., Vilalta, R., Xu, L.: Fault resilient physical
neural networks on a single chip. In: CASES (2014)

73. Marques, J., Andrade, J., Falcao, G.: Unreliable memory operation on a convolutional neural
network processor. In: SiPS (2017)

74. Zhang, Q., Wang, T., Tian, Y., Yuan, F., and Xu, Q.: ApproxANN: an approximate computing
framework for artificial neural network. In: DATE (2015)

75. Bharti, P.K., Surana, N., Mekie, J.: Power and area efficient approximate heterogeneous 8T
SRAM for multimedia applications. In: VLSID (2019)

76. Nguyen, D.-T., Min, C.-H., Ho, N.-M., Chang, I.-J.: DRAMA: an approximate DRAM
architecture for high-performance and energy-efficient deep training system. In: ICCAD
(2020)

77. David, H., Fallin, C., Gorbatov, E., Hanebutte, U.R., Mutlu, O.: Memory power management
via dynamic voltage/frequency scaling. In: ICAC (2011)

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

314 L. Orosa et al.

78. Ma, C., Zhou, Z., Han, L., Shen, Z., Wang, Y., Chen, R., Shao, Z.: Rebirth-FTL: lifetime
optimization via approximate storage for NAND flash memory. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2021)

79. Jevdjic, D., Strauss, K., Ceze, L., Malvar, H.S.: Approximate storage of compressed and
encrypted videos. In: ASPLOS (2017)

80. Salami, B., Onural, E.B., Yuksel, I.E., Koc, F., Ergin, O., Kestelman, A.C., Unsal, O., Sarbazi-
Azad, H., Mutlu, O.: An experimental study of reduced-voltage operation in modern FPGAs
for neural network acceleration. In: DSN (2020)

81. Felzmann, I., Fabrício Filho, J., Wanner, L.: Risk-5: controlled approximations for RISC-V.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(11), 4052–4063 (2020)

82. Larimi, S.S.N., Salami, B., Unsal, O.S., Kestelman, A.C., Sarbazi-Azad, H., Mutlu, O.:
Understanding power consumption and reliability of high-bandwidth memory with voltage
underscaling. In: DATE (2021)

83. Buschjäger, S., Chen, J.-J., Chen, K.-H., M. Günzel, Hakert, C., Morik, K., Novkin, R.,
Pfahler, L., Yayla, M.: Margin-maximization in binarized neural networks for optimizing bit
error tolerance. In: DATE (2021)

84. Putra, R.V.W., Hanif, M.A., Shafique, M.: Respawn: energy-efficient fault-tolerance for
spiking neural networks considering unreliable memories. In: ICCAD (2021)

85. Ponzina, F., Peón-Quirós, M., Burg, A., Atienza, D.: E 2 CNNs: ensembles of convolutional
neural networks to improve robustness against memory errors in edge-computing devices.
IEEE Trans. Comput. 70(8), 1199–1212 (2021)

86. Jafri, S.M., Hassan, H., Hemani, A., Mutlu, O.: Refresh triggered computation: improving
the energy efficiency of convolutional neural network accelerators. ACM Trans. Archit. Code
Optim. (TACO) 18(1), 1–29 (2020)

87. Xu, Q., Arafin, M.T., Qu, G.: MIDAS: model inversion defenses using an approximate
memory system. In: AsianHOST (2020)

88. Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R., Kim, D.,
Kuusela, A., Knies, A., Ranganathan, P., Mutlu, O.: Google workloads for consumer devices:
mitigating data movement bottlenecks. In: ASPLOS (2018)

89. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory accelerator
for parallel graph processing. In: ISCA (2015)

90. Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., Kim, H.: GraphPIM: enabling instruction-
level PIM offloading in graph computing frameworks. In: HPCA (2017)

91. Parker, J.R.: Algorithms for Image Processing and Computer Vision. Wiley, New York (2010)
92. Van Drongelen, W., Signal Processing for Neuroscientists. Academic Press, New York (2018)
93. Alser, M., Shahroodi, T., Gómez-Luna, J., Alkan, C., Mutlu, O.: SneakySnake: a fast and

accurate universal genome pre-alignment filter for CPUs, GPUs and FPGAs. Bioinformatics
36(22–23), 5282–5290 (2020)

94. Ozbayoglu, A.M., Gudelek, M.U., Sezer, O.B.: Deep learning for financial applications: a
survey. Appl. Soft Comput. 93, 106384 (2020)

95. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mobile Networks and Applications 19(2),
171–209 (2014)

96. Kim, J.S., Patel, M., Yağlıkçı, A.G., Hassan, H., Azizi, R., Orosa, L., Mutlu, O.: Revisiting
RowHammer: an experimental analysis of modern DRAM devices and mitigation techniques.
In: ISCA (2020)

97. de Ridder, F., Frigo, P., Vannacci, E., Bos, H., Giuffrida, C., Razavi, K.: SMASH: synchro-
nized many-sided rowhammer attacks from JavaScript. In: USENIX Security (2021)

98. Yao, F., Rakin, A.S., Fan, D.: DeepHammer: depleting the intelligence of deep neural
networks through targeted chain of bit flips. In: USENIX Security 20 (2020)

99. Qureshi, M.K., Kim, D.-H., Khan, S., Nair, P.J., Mutlu, O.: AVATAR: a Variable-Retention-
Time (VRT) aware refresh for DRAM systems. In: DSN (2015)

100. Neggaz, M.A., Alouani, I., Lorenzo, P.R., Niar, S.: A reliability study on CNNs for critical
embedded systems. In: ICCD (2018)

Part III
Emerging Substrates for Embedded

Machine Learning

On-Chip DNN Training for Direct
Feedback Alignment in FeFET

Fan Chen

1 Introduction

Deep neural networks (DNNs) are at the heart of latest revolutions in various
artificial intelligence (AI) applications, such as computer vision [1, 2], natural
language processing [3, 4], autonomous systems [5], and precision health [6].
A DNN is first trained with labeled data to perform a desired task (such as
image classification or object detection) through a training process. To obtain
an acceptable accuracy, training typically needs to run hundreds or thousands of
iterations. Then the developed model can be deployed for inference tasks. The
execution of DNN, especially its training process, requires intensive computing and
huge memory storage. For instance, AlexNet [1]—a medium-sized DNN—involves
62 million parameters, 2.2 billion operations, and . >130 MB memory storage, to
perform training on a single RGB image with only 224. ×224 pixels. Moreover, a
recent analysis [7] shows that the amount of computation used in DNN training has
constantly increased by 300,000. × from AlexNet (2012) to AlphaGo Zero (2018),
yielding a 3.4-month doubling period.

The ever-increasing computing requirements of DNN models motivated the latest
wide adoption of domain-specific accelerators [8–18] that provide two to three
orders of magnitude performance improvement compared to general-purpose CPUs
and GPUs through intensive data reuse and specifically designed memory hierarchy.
However, the majority of these accelerators is designed only for DNN inference
and lacks basic support for the DNN training. The reasons are twofold. First,
the de facto training method, error backpropagation (BP) [19], involves complex
compute phases and sophisticated data dependency. BP requires all weights and

F. Chen (�)
Intelligent Systems Engineering Department, Indiana University Bloomington, Bloomington, IN,
USA
e-mail: fc7@iu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_11

317

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:fc7@iu.edu
mailto:fc7@iu.edu
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11
https://doi.org/10.1007/978-3-031-19568-6_11

318 F. Chen

intermediate data to be stored in memory so that they can be sequentially consumed
in the subsequent error backpropagation paths. In this way, weight updates are non-
local and depend on upstream layers, which make training parallelization extremely
challenging and greatly limit the continuous improvement of system computing
performance. Second, the algorithmic complexity incurs significant overheads on
hardware in terms of computing units, memory, and control circuits. Although some
of the latest accelerators attempted to address the training requirements, with efforts
from both industry (e.g., Google TPU [9] V3) and academia proposals [11, 12], their
power consumption can reach 200. ∼250 Watt.

The recent proposed accelerators using resistive random access memory
(ReRAM)-based in-memory computing circuitry [13] demonstrated a great
potential in low-power DNN acceleration because they can typically provide 1000. ×
to 10,000. × energy reduction in executing massive matrix–vector multiplication
(MVM)—the dominant operator in DNNs. However, the power and area efficiency
of such mix-signal accelerators [14–18] suffer from the significant overhead
of analog-to-digital (A/D) conversion. Essentially, the CMOS analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs) account for . >60% of
the energy consumption and . ∼30% of the chip footprint in a typical ReRAM-based
DNN accelerator [15]. Furthermore, ReRAM-based accelerators still lack efficient
training support due to the inherent algorithmic complexity of the backpropagation
algorithm.

In this chapter, we present our recent research [20] on efficient and low-power
accelerator architecture for DNN training. We set out to address the aforementioned
challenges by combining innovations in training algorithm, circuits, and architec-
ture. We analyze the recently proposed direct feedback alignment (DFA) [21], which
replaces the sequential error information used in BP with a random matrix, thus
avoiding the need to store weights. More importantly, DFA provides an opportunity
for parallel layer updates. Previous studies have shown that DFA can be applied to
various deep learning tasks [21–23] with accuracy closed to fine-tuned BP. Based on
our analysis, we propose a customized design to support DNN training with DFA.
We leverage the unique features of ferroelectric field-effect transistors (FeFETs)
and implemented a holistic accelerator including a FeFET-based low-power ADC, a
random number generator, and a matrix–vector multiplication engine. The following
summarize our contributions:

• We investigate DFA’s potential in overcoming the limitations of long-range
data dependency in the BP algorithm and identify the two major architectural
challenges for deploying DFA on hardware systems: (1) a low-cost on-chip
random number generator and (2) an efficient computing pipeline that supports
parallel training operations.

• We exploit the unique features of FeFET, such as low-power operations,
stochastic polarization switching, and tunable threshold voltage, and propose
a holistic training accelerator that includes an MVM engine, a low-power ADC,
and a real-time random number generator, all of which are implemented by
FeFET.

On-Chip DNN Training for Direct Feedback Alignment in FeFET 319

• We use a diverse set of DNN applications with distinct benchmarks to evaluate
the effectiveness of the proposed accelerator architecture. Our experimental
results show that the proposed design achieves .1.3× speedup and . 2.5x×
improvement on power efficiency compared with the state-of-the-art ReRAM-
based DNN accelerator.

2 Background

2.1 DNN Training Methods

A deep neural network (DNN) is a learning algorithm that deploys a feed-forward
function for inference and a backward process for training. The backpropagation
(BP) algorithm [19] has achieved great success in training supervised DNNs and
has been used as the de facto method due to theoretical simplicity and proven per-
formance. We show the backpropagation and direct feedback alignment algorithm
in Fig. 1. BP and DFA share the same forward inference path but utilize distinct
error backward propagation paths as highlighted in blue. The forward inference
function at layer l can be formulated as the matrix–vector multiplication between
the input vector .hl−1 and weight matrix . Wl , followed by a nonlinear activation .f (·).
Note that here we omit bias in the computation of each layer for simplicity. The
final output is calculated by using a task-specific cost function, which essentially
quantifies the difference between the actual output generated by the neural network

:

:

= ()° ()

=

=

= ()

= ()° ()
:

=

(a) BP

(b) DFA (c) Equations of BP and DFA

Fig. 1 An comparison between backpropagation (BP) and direct feedback alignment (DFA).
Gray arrows indicate the forward path shared by BP and DFA. Black arrows and blue arrows,
respectively, indicate the backward paths of BP and DFA. (a) Backpropagation. (b) Direct feedback
alignment. (c) The mathematical formulas

320 F. Chen

and an expected target value. Below we compare the backward error propagation
paths in BP and DFA.

BP-Based Error Propagation The error propagation follows the chain rule of
derivatives [19], where the error for a specific layer, i.e., . δl , is first multiplied with
the transposed weight matrix of the current layer, i.e., .WT

l , and then multiplied by
the derivatives of the current input to obtain the error vector for the previous layer.
Because the inputs and weights of all the layers are required in the calculation of the
backward path, these values need to be stored in memory, which causes significant
memory overhead. Moreover, the sequential nature of the BP backward execution
prevents the parallellism of error updates. For a DNN model with L layers, a training
on a single input typically takes 3L logical cycles if we assume the computation of
each layer consumes one cycle.

DFA-Based Error Propagation The gradient signal .Wl
T ·δl from the l-th layer is

replaced by .Bl ·δL [21], where . Bl is a random matrix with appropriate shape, and . δL

is the global error signal from the output layer. In this way, the error calculation of
a single layer is independent of other layers, and hence, the error propagation can
be processed in parallel, offering a great potential in reducing latency. In addition,
there is no need to store the weights of each layer, which also saves memory
requirements. Recent works [21–23] have demonstrated the applicability of DFA
to various tasks including computer vision, recommendation systems, and natural
language processing.

2.2 DNN Acceleration in Resistive Memory

An example of resistive memory (ReRAM)-based analog DNN acceleration is
illustrated in Fig. 2a. The key approach of such designs is to implement matrix–
vector multiplication (MVM) units using ReRAM crossbars. We denote each
memory cell as a circle, whose conductance is pre-programmed to represent the
weights of DNNs. The input feature map values are converted to the read voltages
and applied onto the horizontal wordlines. According to Ohm’s law, the current
sensed across each memory cell is the product of the input element and the weight
value stored in the cell. Therefore, the accumulated current at the bit lines (BL)
aggregates all the current along the BL, representing the dot product between the
inputs vector and the stored weight vector in a column. If all the WLs are activated
in an .N×N analog crossbar, the multiplication between a .1×N vector and an . N×N

matrix can be processed in .O(1) time. It is worth mentioning that the calculation in
ReRAM crossbars is analog in nature; hence, digital-to-analog converters (DACs)
and analog-to-digital converters (ADCs) are needed at the input and output to ensure
communication with other digital components on the chip.

Various DNN accelerators [14–18] leveraging ReRAM-based matrix–vector
multiplication engines have been recently proposed. Such designs typically can pro-
vide up to two orders of magnitude performance improvement [15, 16] compared to

On-Chip DNN Training for Direct Feedback Alignment in FeFET 321

(a) ReRAM MVM Engine

1-
bi

t D
AC

BL3BL1 BL2

=

S+H, ADC

ADC/DAC
XB
Buffer

Others
Register

0%

20%

40%

60%

80%

100%

Area Power

Pe
rc

en
ta

ge
 (%

)
(b) Area/Power Breakdown

Fig. 2 ReRAM-based DNN acceleration. (a) An ReRAM MVM engine. (b) The area and power
breakdown in a ReRAM-based CNN accelerator [15]

conventional CMOS-based ASICs. Despite the supreme performance enhancement,
the unacceptable overhead of ADC/DAC makes such design unsuitable for DNN
training. As shown in Fig. 2b, .∼72% of the total system power is consumed by the
CMOS ADCs and DACs. Latest work shows that the power-hungry A/D conversion
still accounts for .>25% of the power and .∼50% of the chip footprint even with
the advanced carbon nanotube field-effect transistors (CNFETs)-based low-power
ADCs [18] in a monolithic 3D integrated ReRAM accelerator.

2.3 Ferroelectric Field-Effect Transistor

As the memory industry marches along Moore’s Law, they are facing the problem
of reduced power efficiency and increased unit cost, which makes the realization
of high-efficiency devices at advanced process nodes a very big challenge. To
address these problems, the ferroelectric field-effect transistor (FeFET) is currently
gaining significant momentum because of their scalability, fast speed, and low-
power operations [24].

Figure 3a illustrates the structure of a FeFET device, which is implemented by
adding an extra ferroelectric (FE) layer, e.g., HfO. 2 [24], in the gate stack of a
conventional MOSFET. By applying a positive (negative) gate-to-source voltage,
i.e., V. G, the polarization of the FE layer can be set (reset) to the positive (negative)
direction and retained under the subsequent withdrawal of . VG. In this case, the
polarization of a FeFET device can be dynamically tuned, resulting in a controllable
threshold voltage (i.e., . Vth) and drain current (i.e., .IDS), as demonstrated in
Fig. 3b. Based on these unique features, previous work [25] proposed to utilize the
programmable .Vth of a FeFET device to represent logic “1” and “0.” By leveraging
the similar design concept with ReRAM crossbar-based designs, a DNN accelerator
using FeFET crossbar is constructed and achieves significantly reduced processing

322 F. Chen

(a) Schema�c Diagram

FE layer

S D
Substrate

Set: Reset: “0”

S

G

S

D

G

G

(b) Circuit Symbol

Fig. 3 FeFET basics. (a) The schematic diagram of a FeFET device. (b) The circuit symbol of a
FeFET device

latency and power consumption due to the fact that FeFET can be programmed with
a shorter write pulse (i.e., several nanoseconds) with significantly reduced pulse
amplitude (i.e., 3 to 5 volts).

A practical FeFET device features .>106 on/off current ratio [26]. By adjusting
the pulse amplitude and width, it is possible to exploit partial polarization states
to record two or more bits of information in a single cell, leading to multi-level
cell FeFET. In addition, FeFET devices exhibit some unique features: (1) The
device characteristics are closely related to the thickness of FE layer (. TFE) [27].
Specifically, a sharper and wider switching hysteresis can be achieved by increasing
the FE thickness. (2) The .IDS-.VG transition curve exhibits an abrupt and stochastic
switching in scaled devices [28]. Using these features, we explored the wide range
of applications of FeFET, including FeFET MVM engine, FeFET-based RNG, and
FeFET-based ADC unit.

3 An FeFET-Based DNN Training Accelerator Architecture
for Direct Feedback Alignment

In this section, we first present the overview of the proposed accelerator architecture,
followed by detailed discussions on each novel feature, including the FeFET-
based on-chip random number generator (RNG) and a low-power ADC leveraging
FE layer conductance tuning. At last, we describe how to integrate the above
innovations into a .(L + 2)-stage pipeline capable of processing L-layer DNNs with
high throughput. We also report the hardware overhead and compare its cost with
previous ReRAM-based DNN accelerators.

On-Chip DNN Training for Direct Feedback Alignment in FeFET 323

3.1 Overall Architecture

The proposed architecture [20] follows the processing-in-memory strategy and can
be used as a standalone accelerator and communicate with a general processor via
a software–hardware interface. The overall architecture of our design is illustrated
in Fig. 4. At a high level, it is composed of a 64 KB eDRAM buffer for input/output
storage, a controller that orchestrates the computing flow, an input/output interface
that communicates with off-chip DRAM, and a number of in situ processing engines
(PE) connected via an on-chip mesh.

Each PE contains a few MVM engines implemented with FeFET crossbars
(XB). Note that we adopt a 2-transistor (2T) FeFET-based device [27] for enhanced
reliability. To facilitate the communication between the analog signal within each
PE and other digital components on the chip, we particularly design an FeFET-
based ADC unit and attach it to the bit lines of each crossbar. The input end
of each PE is equipped with multiple 1-bit DACs for sequential digital-to-analog
conversion. The PE also has (1) multiple sample-and-hold units (S&H) that convert
the output currents into a voltage and send the voltage to ADCs; (2) several
shift-and-add units (S&A) that aggregate the outputs from XBs; (3) an activation
unit (Act) that implements the activation function; and (4) simple algorithm and
logic units (sALU) that provide simple pre- and post-processing functions such as
element-wise addition and scalar multiplication. Each PE has 2.5 KB register for
input/output storage (IR/OR). To support random number generation for DFA-based

IR/OR
sALU ActS&H

O
n-

ch
ip

 B
uff

er

I/
O

 in
te

rf
ac

e

O
ff-

ch
ip

DR

AM

Controller

RS
L

Dr
iv

er

WL Driver

S&H, ADC, S&A

PE PEPE

PE PEPE

PE PEPE

ADC
XB

ADC
XB

ADC
XB

ADC
XB

ADC
XB

ADC
XB

ADC
XB

ADC
XB

S&A

RNG CTRL

(a) Architecture Overview (b) FeFET-based MVM engine

Fig. 4 The overall architecture of the proposed FeFET-based DNN training accelerator [20]. (a)
The architecture overview. (b) The FeFET-based matrix–vector multiplication engine

324 F. Chen

error propagation, a counter-based RNG control circuit is particularly designed and
attached to the PEs that reserved for backward calculation.

CNN mapping follows the standard scheme used in mainstream CNN accel-
erators [15, 16]. As illustrated in Fig. 4b, we store the CNN weights into the
conductance states of FeFET devices. The input vectors are converted into voltages
and sequentially applied onto the data lines (DL). The read lines (RL) aggregate the
currents passing through all the cells on the same RL, representing the dot product
between the DNN weights and the input vector. We adopt a conservative 4-bit per-
cell FeFET device model [25] and set the crossbar size to 128. ×128.

3.2 FeFET Switching Characterization

We adopt the SPICE model proposed in [26] for the FeFET device simulation.
The kinetic coefficient . ρ is set to 0.01 (calculated by considering the polarization
switching time . ∼200 ps), and the ferroelectric layer thickness T. FE is set to 10 nm
and 8.6 nm.

The simulated .IDS − VGS curve is shown in Fig. 5. A hysteresis loop indicates
that a FeFET can be programmed to a reset or a set state with a write pulse with
appropriate amplitude and duration. In addition, FeFET devices exhibit two unique
features. First, the thickness of FE layer (.TFE) plays a crucial role in the device
switching characteristics [27]. As shown in Fig. 5, a device with a 8.6 nm FE layer
switch states at a lower voltage compared with a device with a 10 nm FE layer.
We also validate this feature in a wider range of .TFE , and experimental results
confirmed that a wider switching hysteresis can be achieved by increasing the
FE thickness. In the following, we refer this feature as FE layer tuning. Second,
the .IDS-.VG transition curve exhibits an abrupt and stochastic switching in scaled

(V)

(m
A) 0.3

0.2

0.1

0.4

0.5

-1 10-2-3-4 2
C

B

A

Set

Fig. 5 Simulated .IDS − VGS in FeFET devices. Two devices with respective 8.6 nm and 10 nm
ferroelectric layer thickness are simulated

On-Chip DNN Training for Direct Feedback Alignment in FeFET 325

devices [28]. More specifically, the slope of the switching curve in a FeFET with a
8.6 nm FE layer is sharper than that in a FeFET with a 10 nm FE layer. By exploiting
these features, we explored the applications of FeFET in distinct circuits, including
a FeFET-based random number generator (RNG), a FeFET-based ADC unit, and a
FeFET MVM engine.

3.3 FeFET-Based Random Number Generator

For DFA-based training accelerators, random number generator (RNG) is an
essential module as the layer-wise error map is replaced by a suitably sized matrix
of random numbers. To avoid intensive latency and energy overhead caused by
off-chip random number access, it is important to identify a convenient on-chip
entropy source and design the corresponding circuit to generate a random bit stream
with high throughput and stability. Based on our previous experimental results and
the recent research on a FeFET model [28], we explored how to use the random
characteristics in a scaled FeFET device for random number generation.

The key idea is to utilize the abrupt jump of V.T H in scaled FeFET devices. We
first program a small FeFET device with .W/L = 80 nm/30 nm to the set state;
then we apply a gate voltage .VG close to the median value (i.e., point B in Fig. 5).
The measured output .IDS hence demonstrated random outputs as shown in Fig. 6a.
However, the output random bits are biased and tend to generate more “0’s”. To
address the unbalanced output bits, we adopt the output probability tracking scheme

0.05

0.15

0.25

0.35

1 13

25

37

49

61

73

85

97

10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

0

0.2

0.4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

(b)

(a)
of 100 samples

of 300 samples

(m
A)

(m
A)

Fig. 6 .IDS extracted in a (a) baseline and (b) optimized FeFET-based random number generator

326 F. Chen

proposed in [29] and implement an counter-based output track control circuitry as
detailed in Fig. 4c. We use a 8-bit counter to calculate the output probability of each
consecutive 256-bit segment. The counter output is used as a feedback control signal
to adjust and fine-tune the write voltage applied for the following segments. The
extracted .IDS currents with output tracking are shown in Fig. 6b. As it shows, after
an initial locking period for adjustment, the output bits exhibit unbiased randomness
with evenly distributed “0’s” and “1’s,” which meets the random requirement of
DFA training.

3.4 Low-Power ADC Based on FE Layer Tuning

The output of analog crossbar-based processing engines needs to be converted
into digital signals through ADCs. In order to reduce the large cost of CMOS
ADC, we proposed FeFET-based ADC unit by utilizing the tunability of FE
layer conductance. As we illustrated in previous section, the FeFET switching
hysteresis is closely related to the thickness of the ferroelectric layer (. TFE) [27].
By engineering the FE layer conductance with appropriate program pulses, the
V. th can be fine-tuned, resulting in a shift in the I.DS-V. G curve. Based on this
observation, we can build a FeFET-based low-power ADC to accelerate analog-
to-digital conversion. The proposed ADC unit can be integrated with the FeFET
dot-product units for efficient and low-power MVM processing.

An example of a 9-cell design is demonstrated in Fig. 7. We select multi-level cell
FeFET devices with .TFE of 2.5 nm, 2.4 nm, and 2.3 nm. We conservatively adopt a
3-level per-cell FeFET device based on the SPICE model [26] for preliminary study.
In the ADC array, the difference of V. th is reflected by the stored polarization degree
of the FE layer in the FeFET devices. For instance, TFE2.5S1 and TFE2.5S3 denote
the FeFET device with a 2.5 nm FE layer, respectively, in the reset and set states,
while TFE2.5S2 represent the FeFET device with the same .TFE but in a partial set
state.

The simulated .IDS-. VG of the 9-level ADC is shown in Fig. 8. Devices with the
same .TFE demonstrated a similar .IDS-.VG curve with different . Vth; therefore, the
sensing current can be classified into three groups. The thicker .TFE is, the wider and
more gradual the transition slop is. To work with the FeFET-based ADC, the read

1.5V
‘0’‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘0’‘0’

Fig. 7 A 9-bit ADC FeFET array implemented with multi-level cell FeFET devices with .TFE of
2.5 nm, 2.4 nm, and 2.3 nm

On-Chip DNN Training for Direct Feedback Alignment in FeFET 327

TFE2.5S1 TFE2.5S2 TFE2.5S3
TFE2.4S1 TFE2.4S2 TFE2.4S2
TFE2.3S1 TFE2.3S2 TFE2.3S3

0.2 2.20.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
(V)

0.4
0.2

0
0.2
0.4

(m
A)

1.5

Fig. 8 Input voltage vs. sensing current in a 9-bit ADC FeFET array implemented with multi-level
cell FeFET devices with .TFE of 2.5 nm, 2.4 nm, and 2.3 nm

select line (RSL) is asserted (.VDD), and the write line (WL) is driven to 0V (GND).
The input voltage is then applied to data line (DL). Due to the different . Vth, the
read current sensed at the read lines (RL) is different. For instance, when the input
voltage is within the range of 1.4 V. ∼1.6 V, an higher-than-threshold current will be
sensed on FeFET cells with a FE layer less than 2.5 nm, while a lower current is
detected on devices with a 2.5 nm FE layer. We encode high/low current with logic
“1”/“0” accordingly; therefore, an 9-bit output “111111000” is recorded with an
appropriately set current threshold.

In our ongoing work, we are exploring reliable high-precision ADC design based
on the preliminary implementation. In general, there is a trade-off between .TFE ,
ADC resolution, and ADC frequency. As .TFE increases, the slope of the .IDS-. VG

curve becomes flatter, and hence, higher ADC resolution can be achieved since
more bits can be represented using a single device. However, the ADC frequency
decreases with the increase of .TFE because a longer transition time is required when
.IDS-.VG curve becomes flatter. To balance the trade-off, we conduct a design space
exploration by studying the conductance behavior in response to pulse schemes and
FE layer thickness. For our preliminary work [20], we used 16-level FeFET devices
with 4 different FE layer thickness. We summarize the optimal device parameters
for simulation and the corresponding ADC parameters in Table 1.

3.5 Pipeline

Previous training accelerators implemented a pipeline for DNN training processing
by exploiting the intrinsic parallelism in batch-based training. Typically, a batch of
inputs (e.g., 32, 64, 128) are processed using the same weights. The parameters are
only updated at the end of each batch. For BP-based training method, a DNN with

328 F. Chen

Table 1 Parameters of the
optimal 16-level FeFET ADC

Parameters Specification

Device W/L 500 nm/300 nm

T.FE 2, 2.2, 2.4, 2.6 nm

Kinetic coefficient .ρ 0.01

ADC Resolution 6

Frequency 20 MHz

Number 8*12*168

Total power 1.6 W

Total area 0.1 . mm2

CMOS ADC [15] Total power 32.3 W

Total area 19.4 . mm2

#1

#2

#B …

…

…

…

…

…

50

: forward path
: error calcula�on

: backward path…

…

…

Fig. 9 The training pipeline of a DNN model using DFA

L layers requires .(2L + B + 1) [16, 17] cycles for processing a batch of inputs with
a size of B. Specifically, within a batch, the forward computation for the first input
requires L cycles, while the backward computation requires .L+1 cycles. Then there
will be .(B − 1) cycles until the end of batch. Finally, there is one cycle required to
apply all weight updates within the batch. Therefore, the total number of cycles to
process N inputs is .(N/B)(2L + B + 1).

This work leverages DFA and is implemented in a reduced processing pipeline
as shown in Fig. 9. Since DFA allows the errors to be propagated directly from the
last layer to all the processing layers, the backward computation can be processed
in parallel in one cycle using the FeFET-based PE with RNG support. The overall
number of cycles to process N inputs is .(N/B)(L + B + 2), achieving . ∼2×
reduction in processing time. More importantly, the processing cycle discussed
here is a logical cycle, which may require several physical cycles depending on
the customized implementation. Though the processing time of each stage varies in
ReRAM-based accelerators, the cycle time of the pipeline is essentially bottlenecked

On-Chip DNN Training for Direct Feedback Alignment in FeFET 329

by the ADCs. Previous work [15] uses a 8-bit 1.28 giga-samples-per-second (GSps)
ADC shared among 128 BLs in the same ReRAM crossbar, resulting in a 100 ns
cycle time. This work employs the FeFET-based 6-bit ADC unit with a 50 ns cycle
time, providing 2. × latency reduction for a single processing stage of the pipeline.

4 Evaluation

4.1 Experimental Setup

Benchmark We evaluate the proposed design architecture using MNIST [30],
CIFAR-10, and CIFAR-100 [31]. The networks used in our evaluation are LeNet-
5 [32] on MNIST for simple hand-written digits, AlexNet [1], and CaffeNet [33]
on CIFAR-10/CIFAR-100 for complex classification tasks. To demonstrate the
applicability of DFA and the proposed architecture in a broader range of applica-
tions, we also include two recommender systems, Deep Factorization Machines
(DeepFM) [34] and Adaptative Factorization Network (AFN) [35], into our eval-
uation. Both DeepFM and AFN are evaluated on Criteo dataset [36]. All models are
trained in TensorFlow. We summarize the typologies of the networks and evaluated
dataset in Table 2. We quantized both the activations and weights of all CNNs with
8 bit based on the training accuracy analysis in the following section.

Scheme We compare the proposed design against five counterparts shown in
Table 3. We selected Intel Xeon E5-2630 V3, 8-core CPU, an Nvidia GTX 1080
GPU, a Xilinx Virtex7 FPGA [37], one ASIC chip Google TPU [9], and a ReRAM-
based DNN training accelerator [16]. For TPU, we employ four chips to ensure the
high throughput required for training, but they consume more computing power.
To support DFA training, we equip the above counterparts with the state-of-the-art
CMOS RNG [38] for random matrix generation. The runtimes for CPU/GPU are
measured by TensorFlow, and the energy costs are measured on real hardware. The
FPGA numbers are scaled and calculated based on the original paper. We build an
in-house simulator to model the performance of TPU.

Table 2 Models under evaluation (C: convolutional layer; F: fully connected layer)

Name Database Topology

LeNet-5 [32] MNIST 2C,3F

AlexNet [1] CIFAR-10 5C,3F

CIFAR-100

CaffeNet [33] CIFAR-10 5C,3F

CIFAR-100

DeepFM [34] Criteo [36] Fully connected embedding layer

AFN [35]

330 F. Chen

Table 3 The scheme
comparison (normalized to
32nm)

Name Description Power (W)

CPU Intel Xeon E5-2630 V3 85

GPU Nvidia Tesla P100 250

FPGA [37] Xilinx Virtex7 VX485T 40

TPU [9] 4-chip ASIC 384

PipeLayer [16] ReRAM PIM 168

Table 4 Trade-off between
resolution and accuracy

LeNet AlexNet CaffeeNet DeepFM AFN

Float 1 1 1 1 1

16 bit 0.99 0.98 0.985 0.99 0.99

8 bit 0.987 0.97 0.977 0.97 0.90

6 bit 0.95 0.93 0.935 0.92 0.88

4 bit 0.93 0.88 0.90 0.85 0.75

2 bit 0.78 0.69 0.71 0.66 0.60

For PipeLayer [16] and the proposed architecture, the DAC, S&H, S&A,
maxpool, activation logic designs are all adopted from an existing ReRAM DNN
accelerator [15] implemented in 32 nm process technology. We use CACTI 6.5 [39]
at 32 nm to model energy and area for all buffers and on-chip interconnects. Other
digital circuits (e.g., peripherals for TRNG) all are modeled and estimated using
Cadence Virtuoso with 32 nm PTM CMOS model [40]. We adopt the SPICE model
in [26] for FeFET simulation. The kinetic coefficient ρ is set to 0.01 (calculated
by considering the polarization switching time ∼200 ps), and the ferroelectric layer
thickness TFE is set to 10.5 nm, 8.6 nm, and 6.6 nm. We build a simulator based on
NVSim [41] to evaluate the inference throughput, power, and energy consumption
of the ReRAM-based accelerator and the proposed FeFET-based accelerator.

4.2 Experimental Results

Training Accuracy To deploy DFA training onto the fix-point FeFET crossbars,
we conducted a set of experiments to explore the trade-off between numerical
precision and model training accuracy. We quantize both the weights and activations
to fix-point values on the five evaluation models. We normalized the model
accuracy to float resolution in original implementation [23] and show the results
in Table 4. We see that DFA training with 16-bit precision exhibits negligible
accuracy reduction among all the evaluated CNNs and recommendation systems.
A slight (.<0.09) accuracy degradation is observed in 8-bit training. The accuracy
of all models drops sharply when trained with less than 6-bit precision. In order
to ensure training accuracy while reducing computing and memory requirements,
we implement all the candidate networks in the following discussion with 8-bit
precision.

On-Chip DNN Training for Direct Feedback Alignment in FeFET 331

0
50

100
150
200
250

Se
ep

du
p

CPU GPU FPGA TPU PipeLayer This Work

Fig. 10 The comparison on performance of different designs. Results are normalized to CPU

Performance Figure 10 compares the training performance throughput among
different designs. In general, customized DNN accelerators achieve significant
performance speedup compared with general-purpose CPU and GPU. The main
reason is that accelerators implement dedicated hardware and data management
suitable for the processing patterns in DNNs, especially for large matrix–vector
multiplications, which provides a huge potential for reducing the running time. As
hardware resource increases, the accelerators can achieve higher performance. For
instance, the 4-chip TPU achieves better performance compared with both GPU and
FPGA accelerators in all the benchmarks. The proposed design achieves the best
performance in all the benchmarks. Compared with GPU, FPGA, and TPU, our
design achieves, respectively, 8.9×, 5.1×, and 2.7× speedup. Compared against the
ReRAM-based accelerator, the performance is improved by 1.3×, which is mainly
due to shortened pipeline cycle time and reduced ADC overhead.

Power Efficiency We show the normalized power efficiency among different
hardware platforms in Fig. 11. Although the performance of TPU is better than
the FPGA design, its power efficiency is 5× lower than that of FPGA. As shown
in Table 3, the power consumption of the 4-chip TPU is ∼9× higher than that
of the FPGA design, which excludes TPU from low-power DNN applications.
The ReRAM-based accelerator demonstrated a similar power efficiency as FPGA
design. The proposed architecture achieves 2.2×, 11.5×, 2.5× improvement on
power efficiency compared with FPGA, TPU, and ReRAM-based accelerators,
respectively.

332 F. Chen

0
50

100
150
200
250

FP
S/

W
a�

CPU GPU FPGA TPU PipeLayer This Work

Fig. 11 The comparison on power efficiency of different designs. Results are normalized to CPU

5 Conclusion

In this chapter, we review our recent research efforts on efficient DNN training
accelerators. We investigate the potential of the emerging direct alignment feedback
training algorithm in overcoming the limitations of current backpropagation-based
training and identify the major challenges for deploying direct alignment feedback
training algorithm on hardware computing systems. We then present a customized
FeFET-based accelerator architecture consisting of a FeFET-based random number
generator, a low-power FeFET-based analog–digital converter, and an efficient .(L+
2)-stage pipeline for training of an L-layer deep neural network. Our experimental
results show that the proposed design is suitable for the training of a broader range
of deep neural networks and achieves 1.3. × speedup and .2.5× improvement on
power efficiency compared with the state-of-the-art deep neural network training
accelerator.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, vol. 25, Curran
Associates, Inc., New York (2012)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: Proceedings of the 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is All You Need, vol. 30 (2017)

4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, vol. 1 (Long and
Short Papers), pp. 4171–4186. Association for Computational Linguistics, New York (2019)

On-Chip DNN Training for Direct Feedback Alignment in FeFET 333

5. Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L.D., Muller,
U.: Explaining how a deep neural network trained with end-to-end learning steers a car. CoRR,
vol. abs/1704.07911 (2017)

6. Boža, V., Brejová, B., Vinař, T.: DeepNano: deep recurrent neural networks for base calling in
MinION nanopore reads. PloS One 12(6), e0178751 (2017)

7. AI and Compute (2018). https://openai.com/blog/ai-and-compute/
8. Chen, Y., Chen, T., Xu, Z., Sun, N., Temam, O.: DianNao Family: Energy-Efficient Hardware

Accelerators for Machine Learning, vol. 59, pp. 105–112, ACM, New York (2016)
9. Jouppi, N.P., Young, C., Patil, N., Patterson, D.A., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,

Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M., Dau,
M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, W., Hagmann, R., Ho,
C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A.,
Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C.,
Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan,
R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,
Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J.,
Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V.,
Walter, R., Wang, W., Wilcox, E., Yoon, D.H.: In-datacenter performance analysis of a tensor
processing unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24–28, 2017, pp. 1–12. ACM, New York
(2017)

10. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: 14.5 Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. In: 2016 IEEE International Solid-State
Circuits Conference, ISSCC 2016, San Francisco, CA, USA, January 31–February 4, 2016,
pp. 262–263. IEEE, New York (2016)

11. Venkataramani, S., Ranjan, A., Banerjee, S., Das, D., Avancha, S., Jagannathan, A., Durg, A.,
Nagaraj, D., Kaul, B., Dubey, P., Raghunathan, A.: ScaleDeep: A scalable compute architecture
for learning and evaluating deep networks. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24–28, 2017,
pp. 13–26. ACM, New York (2017)

12. Jain, A., Phanishayee, A., Mars, J., Tang, L., Pekhimenko, G.: Gist: Efficient data encoding
for deep neural network training. In: Proceedings of the 45th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2018, Los Angeles, CA, USA, June 1–6, 2018,
pp. 776–789. IEEE Computer Society, New York (2018)

13. Hu, M., Strachan, J.P., Li, Z., Grafals, E.M., Davila, N., Graves, C., Lam, S., Ge, N., Yang,
J.J., Williams, R.S.: Dot-product engine for neuromorphic computing: programming 1T1M
crossbar to accelerate matrix-vector multiplication. In: Proceedings of the 53rd Annual Design
Automation Conference, DAC 2016, Austin, TX, USA, June 5–9, 2016, pp. 19:1–19:6. ACM,
New York (2016)

14. Fujiki, D., Mahlke, S.A., Das, R.: In-memory data parallel processor. In: Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24–28, 2018, pp. 1–
14. ACM, New York (2018)

15. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M.,
Williams, R.S., Srikumar, V.: ISAAC: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In: Proceedings of the 43rd ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June 18–22, 2016,
pp. 14–26. IEEE Computer Society, New York (2016)

16. Song, L., Qian, X., Li, H., Chen, Y.: PipeLayer: A pipelined ReRAM-based accelerator for deep
learning. In: Proceedings of the 2017 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2017, Austin, TX, USA, February 4–8, 2017, pp. 541–552.
IEEE Computer Society, New York (2017)

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/

334 F. Chen

17. Chen, F., Song, L., Chen, Y.: ReGAN: A pipelined ReRAM-based accelerator for generative
adversarial networks. In: 23rd Asia and South Pacific Design Automation Conference, ASP-
DAC 2018, Jeju, Korea (South), January 22–25, 2018, pp. 178–183. IEEE, New York (2018)

18. Chen, F., Song, L., Li, H., Chen, Y.: Marvel: A vertical resistive accelerator for low-power deep
learning inference in monolithic 3D. In: Design, Automation & Test in Europe Conference and
Exhibition, DATE 2021, Grenoble, France, February 1–5, 2021, pp. 1240–1245. IEEE, New
York (2021)

19. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323(6088), 533–536 (1986)

20. Chen, F.: PUFFIN: an efficient DNN training accelerator for direct feedback alignment in
FeFET. In: IEEE/ACM International Symposium on Low Power Electronics and Design,
ISLPED 2021, Boston, MA, USA, July 26–28, 2021, pp. 1–6. IEEE, New York (2021)

21. Nøkland, A.: Direct feedback alignment provides learning in deep neural networks. In:
Advances in Neural Information Processing System, pp. 1037–1045 (2016).

22. Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random synaptic feedback weights
support error backpropagation for deep learning. Nat. Commun. 7(1), 1–10 (2016)

23. Launay, J., Poli, I., Boniface, F., Krzakala, F.: Direct feedback alignment scales to modern deep
learning tasks and architectures. In: Advances in Neural Information Processing Systems, vol.
33 (2020), pp. 9346–9360

24. Müller, J., Böscke, T., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., Martin, D., Schenk,
T., Khullar, K., Kersch, A., et al.: Ferroelectric hafnium oxide: A CMOS-compatible and
highly scalable approach to future ferroelectric memories. In: 2013 IEEE International Electron
Devices Meeting, pp. 10–8. IEEE, New York (2013)

25. Jerry, M., Chen, P.-Y., Zhang, J., Sharma, P., Ni, K., Yu, S., Datta, S.: Ferroelectric FET analog
synapse for acceleration of deep neural network training. In: Proceeding of the 2017 IEEE
International Electron Devices Meeting (IEDM), pp. 6–2. IEEE, New York (2017)

26. Aziz, A., Ghosh, S., Datta, S., Gupta, S.K.: Physics-based circuit-compatible SPICE model for
ferroelectric transistors. IEEE Electron Device Lett. 37(6), 805–808 (2016)

27. George, S., Ma, K., Aziz, A., Li, X., Khan, A., Salahuddin, S., Chang, M.-F., Datta, S.,
Sampson, J., Gupta, S., et al.: Nonvolatile memory design based on ferroelectric FETs. In:
Proceedings of the 53rd Annual Design Automation Conference, pp. 1–6 (2016)

28. Deng, S., Yin, G., Chakraborty, W., Dutta, S., Datta, S., Li, X., Ni, K.: A comprehensive
model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity,
and accumulation. In: 2020 IEEE Symposium on VLSI Technology. IEEE, New York, pp. 1–2
(2020)

29. Choi, W.H., Lv, Y., Kim, J., Deshpande, A., Kang, G., Wang, J.-P., Kim, C.H.: A magnetic
tunnel junction based true random number generator with conditional perturb and real-time
output probability tracking. In: 2014 IEEE International Electron Devices Meeting. IEEE, New
York, pp. 12–5 (2014)

30. LeCun, Y., et al.: The MNIST Database of Handwritten Images (2012)
31. Krizhevsky, A., Hinton, G., et al.: Learning Multiple Layers of Features from Tiny Images

(2009)
32. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86(11), 2278–2324 (1998)
33. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell,

T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd
ACM International Conference on Multimedia, pp. 675–678 (2014)

34. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: A factorization-machine based neural net-
work for CTR prediction. In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, pp. 1725–
1731, ijcai.org (2017)

35. Cheng, W., Shen, Y., Huang, L.: Adaptive factorization network: Learning adaptive-order
feature interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 3609–3616. AAAI Press, New York (2020)

On-Chip DNN Training for Direct Feedback Alignment in FeFET 335

36. Criteo Dataset. http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-
dataset/

37. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator
design for deep convolutional neural networks. In; Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, February
22–24, 2015, pp. 161–170. ACM, New York (2015)

38. Kim, E., Lee, M., Kim, J.: 8.2 8Mb/s 28Mb/mJ robust true-random-number generator in 65nm
CMOS based on differential ring oscillator with feedback resistors. In: Proceedings of the
2017 IEEE International Solid-State Circuits Conference, ISSCC 2017, San Francisco, CA,
USA, February 5–9, 2017, pp. 144–145. IEEE, New York (2017)

39. Wilton, S.J., Jouppi, N.P.: CACTI: An enhanced cache access and cycle time model. IEEE J.
Solid State Circuits 31(5), 677–688 (1996)

40. Predictive Technology Model. http://ptm.asu.edu/ (2015)
41. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSim: A circuit-level performance, energy, and area

model for emerging nonvolatile memory. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 31(7), 994–1007 (2012)

http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://labs.criteo.com/downloads/2014-kaggle-displayadvertising-challenge-dataset/
http://ptm.asu.edu/
http://ptm.asu.edu/
http://ptm.asu.edu/
http://ptm.asu.edu/

Platform-Based Design of Embedded
Neuromorphic Systems

M. L. Varshika and Anup Das

1 Introduction

Neuromorphic computing is emerging as an attractive candidate for power-
constrained systems such as embedded devices and edge nodes. Neuromorphic
computing operates on the design principles of the central nervous system in
primates. It has the potential to drive the development of a more distributed,
scalable, and efficient computing paradigm. Historically, the term neuromorphic
computing was coined in the late ’80s to describe a type of analog computing
hardware that mimics the architecture of a mammalian brain [69]. Initially, the
primary goal of neuromorphic computing was to emulate the physical properties
of neurons and synapses exploiting the physics of analog complementary metal–
oxide–semiconductor (CMOS) electronics. This is to understand and reproduce
the efficiency of neural computing systems. Today, neuromorphic computing
addresses a broader range of computing systems designed using digital, mixed-
signal (analog/digital) CMOS electronics, and novel emerging non-volatile memory
(NVM) technology elements. Yet, in all neuromorphic systems, the aim is to build
architectures that can execute machine learning applications designed using spiking
neural networks (SNNs). SNNs represent the third and more bio-inspired generation
of neural networks [64]. SNNs enable powerful computations due to their spatio-
temporal information encoding capabilities [78]. SNNs can implement different
machine learning approaches such as supervised learning [100], unsupervised
learning [24], reinforcement learning [59], and lifelong learning [86].

In an SNN, neurons are connected via synapses. A neuron can be implemented
as an integrate-and-fire (IF) logic [15], which is illustrated in Fig. 1 (left). Here, an

M. L. Varshika (�) · A. Das
Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
e-mail: lm3486@drexel.edu; anup.das@drexel.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_12

337

 31368 2385 a 31368 2385 a

 885 56845 a 885 56845 a

mailto:lm3486@drexel.edu
mailto:lm3486@drexel.edu

 9041 56845 a 9041 56845
a

mailto:anup.das@drexel.edu
mailto:anup.das@drexel.edu
mailto:anup.das@drexel.edu
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12
https://doi.org/10.1007/978-3-031-19568-6_12

338 M. L. Varshika and A. Das

Fig. 1 A leaky-integrate-and-fire (LIF) neuron with current input .U(t) (left). The membrane
potential over time of the neuron (middle). The spike output of the neuron representing its firing
times (right). Each firing time represents the time instance when the membrane potential crosses
the firing threshold

input current spike .U(t) from a pre-synaptic neuron raises the membrane voltage of
a post-synaptic neuron. When this voltage crosses a threshold . Vth, the IF logic emits
a spike, which propagates to its post-synaptic neurons. Figure 1 (middle) illustrates
the membrane voltage due to input spike trains. Moments of threshold crossing, i.e.,
the firing times, are illustrated in Fig. 1 (right).

Over the past decades, there has been a significant amount of progress made on
neuromorphic computing, on both the software (e.g., application and algorithm [3,
14, 22, 27, 31, 36, 46, 82, 88, 111]) and hardware (e.g., architecture and technol-
ogy [17, 39, 43, 67, 87]) fronts. These architectures and algorithms differ from
conventional computing paradigms for their memory and communication structures
and computational properties. While traditional von Neumann architectures have
one or more central processing units physically separated from the main memory,
neuromorphic architectures exploit co-localization of memory and compute, near
and in-memory computation [49]. Alongside to the tremendous progress in devising
novel neuromorphic computing architectures, there have been many recent works
that address how to map and compile (trained) SNN models for efficient execution
in neuromorphic hardware [2, 4–8, 10–12, 23, 26, 28, 34, 40, 41, 45, 48, 52, 61–
63, 81, 90, 91, 95, 102, 105, 110].

To cope with the growing complexity of neuromorphic systems, challenges
in integrating emerging NVM technologies, and faster time-to-market pressure,
efficient design methodologies are needed. Here, we discuss one such methodology,
that of platform-based design.

2 Platform-Based Design Methodology

Platform-based design has emerged as an important design style for the electronics
industry [35, 55, 74, 84, 85, 89]. Platform-based design separates parts of the
system design process such that they can be independently optimized for different
metrics such as performance, power, cost, and reliability. Platform-based design
methodology can also be adopted for neuromorphic system design [10], where

Platform-Based Design of Embedded Neuromorphic Systems 339

Fig. 2 Illustration of the
platform-based design
methodology. Here, the
hardware design space
exploration (DSE) is
performed independent of the
application and mapping
(application allocation on
hardware) DSEs. A design
point is obtained by pruning
the design spaces of these
explorations

the software can be optimized independently from the underlying neuromorphic
hardware platform. Figure 2 shows this design methodology for a general electronic
system design. Here, the hardware design space is explored to generate a platform
that satisfies the target design cost. This could include a combination of recurring
and non-recurring design costs. Alongside the hardware development, the software
design space is also explored. Here, the software optimization includes allocation
of tasks of a given application to the hardware computing units for a specific design
objective.

As in a conventional computing system, the abstractions for a neuromorphic
system include: (1) the application software, (2) the system software, and (3) the
hardware [33, 51, 77]. In the context of neuromorphic computing, the application
software includes applications designed using different SNN topologies such as
multi-layer perceptron (MLP) [27], convolutional neural network (CNN) [71] and
recurrent neural network (RNN) [31], and bio-inspired learning algorithms such
as spike timing-dependent plasticity (STDP) [19], long-term plasticity (LTP) [25],
and FORCE [72]. The system software includes the equivalent of a compiler
and a runtime manager to execute SNN applications on the hardware. Finally,
the hardware abstraction includes the platform, which consists of a neuromorphic
hardware.

We focus on the system software abstraction and its design space exploration.
A key optimization objective is the performance of machine learning workloads
on the hardware. Here, we distinguish between application-level and system-
level performance metrics. Examples of application-level metrics include accuracy,
peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM).
System-level metrics include throughput, latency, energy, and reliability.

A key component of the software design space exploration is to estimate/evaluate
the system-level performance. The way to obtain the most realistic performance
estimates is measuring it on the real hardware. However, this is often not available

340 M. L. Varshika and A. Das

until late in the design process. An alternative is simulating the workload on a
cycle-accurate neuromorphic simulator such as NeuroXplorer [10]. However, this
is rather slow. Hardware prototypes on a field-programmable gate array (FPGA) are
also a viable alternative [23]. However, the high synthesis time makes the design
space exploration infeasible. Finally, transaction-level simulators can also be used
to estimate system-level performance. Here, high-level abstractions are often used
to represent the behavior of a machine learning workload. Such abstractions can
then be simulated using a hardware architecture and mapping of the application to
the hardware. The advantage of using such a simulator is that it is faster than a
cycle-accurate simulator or synthesizing a prototype on FPGA.

3 Software Design Space Exploration

Cycle-accurate neuromorphic simulators are those that accurately model the behav-
ior of a neuromorphic system on a cycle-by-cycle basis. We focus on one such
simulator—NeuroXplorer [10]. To understand the basics of this simulator and how it
is used for the software design space exploration within the platform-based design
methodology, we focus on the generic tile-based architecture of a neuromorphic
system [83], where tiles are interconnected via a shared interconnect. A tile may
include: (1) a neuromorphic core, which implements neuron and synapse circuitries,
(2) peripheral logic to encode and decode spikes into address event representation
(AER), and (3) a network interface to send and receive AER packets from the
interconnect. Switches are placed on the interconnect to route AER packets to their
destination tiles.

NVM devices present an attractive option for implementing synaptic storage due
to their demonstrated potential for low-power multi-level operations and high inte-
gration densities [13, 50, 73, 99, 104]. Recently, several NVMs are being explored
for neuromorphic computing: Oxide-based Resistive Random Access Memory
(ReRAM) [107], phase change memory (PCM) [108], ferroelectric RAM [1],
and Spin-Transfer Torque Magnetic or Spin-Orbit-Torque RAM (STT- and SoT-
MRAM) [47]. Figure 3 shows a neuromorphic hardware with tiles (C) and switches
(S). Without loss of generality, we show each tile as a crossbar, where NVM cells
are organized in a two-dimensional grid formed using horizontal and vertical wires.

The figure also illustrates a small example of implementing an SNN on a
crossbar. Synaptic weights . w1 and . w2 are programmed as conductance of NVM
cells P1 and P2, respectively. The output spike voltages, . v1 from N1 and . v2 from
N2, inject currents into the crossbar, which are obtained by multiplying a pre-
synaptic neuron’s output spike voltage with the NVM cell’s conductance (Ohm’s
law). Current summations along columns are performed in parallel (Kirchhoff’s
current law), and they implement the sum .

∑
j wivi (i.e., neuron excitations).

Figure 4 shows the detailed architecture of the NeuroXplorer. It includes an
architecture simulator, which can be configured to simulate a specific neuromorphic
architecture such as TrueNorth [38], Loihi [37], DYNAPs [70], and . μBrain [98].

Platform-Based Design of Embedded Neuromorphic Systems 341

Fig. 3 A representative tile-based neuromorphic hardware [93] (left). Each tile is a neuromorphic
core, which can map a few neurons and synapses. In its simplest form, a neuromorphic core can
be implemented as a crossbar as shown in the figure. An NVM device may be connected at the
intersection of a bitline and a wordline to store synaptic weight. The bottom-right corner illustrates
the mapping of a 2. × 1 neural network on a crossbar

NoC simulation

Neuromorphic Architecture Simulator

Global Synapse Simulator

SPICE simulation
Process technology + NVM

Local Synapse
Simulator SNN Simulator

Technology D
S

E

A
rc

hi
te

ct
ur

e
D

S
E

ML Application System-level Performance

Application
Simulator

(Spiking Behavior)

System Software

Fig. 4 A detailed architecture of the NeuroXplorer simulator [10]. It consists of an architecture
simulator at the frontend and is integrated with hardware-level simulators at the backend.
NeuroXplorer can perform both architectural DSE and technology DSE

Internally, the architecture simulator uses models for: (1) local synapses, i.e., the
tiles, and (2) global synapses, i.e., the shared interconnect.

The system software component is what facilitates the design space exploration.
It consists of two steps—clustering and mapping. An SNN application typically
consists of many neurons and synapses, well beyond the capacity of a single core.
Therefore, the application must first be partitioned into clusters, where each cluster
consists of a subset of neurons and synapses of the application. Recently, several
graph-based SNN partitioning approaches are proposed. Most of these are based on

342 M. L. Varshika and A. Das

the Kernighan–Lin Graph Partitioning algorithm [54], minimizing the inter-cluster
spike communication. Once clusters are generated from an application, they are
mapped to different cores of the hardware. Mapping of a cluster to a core involves
allocating pre-synaptic neurons to the input of the core, post-synaptic neurons to the
output of the core, and programming the synaptic weights connecting a pre- to a
post-synaptic neuron as the conductance of an NVM cell in the core.

In the following, we discuss how the system software component is incorporated
inside a design space exploration (DSE) framework to perform system-level perfor-
mance, energy, and reliability optimizations.

3.1 Performance-Oriented DSE

The problem of mapping neuron clusters to the neuromorphic architecture shares
some similarity with the task mapping problem in multiprocessors, which has been
investigated extensively in the past [20, 29, 30, 32, 53, 68, 75, 76, 89]. However, the
difference is that while high latency of the hardware can impact the application’s
execution time (i.e., its real-time properties) in the case of multiprocessor systems,
high latency for neuromorphic architectures can create distortion (change) of its
inter-spike interval (ISI) and spike disorder, leading to additional impact on the
application’s accuracy.

In fact, when clusters are mapped to cores, inter-cluster spike communications
are mapped on to the shared interconnect of the hardware. Considering a mesh-
based two-dimensional interconnect architecture, the average latency experienced
by spikes on the interconnect is

.L =
Ns∑

i=1

[(hi − 1) ∗ lw + hi ∗ ls]/Ns, (1)

where . Ns is the total number of spikes on the shared interconnect, . hi is the number
of hops a spike traverses between the source and destination, . lw is the interconnect
segment delay, and . ls is the delay of the hop.

To analyze the impact of latency on application performance, Fig. 5 shows the
accuracy numbers achieved via an ad hoc mapping of the clusters to the cores.
Compared to an accuracy of 86% obtained through software-based simulations, the
accuracy on the .6 × 6 neuromorphic hardware (36 crossbars with 25 neurons per
crossbar) is only 66.7%—a loss of .≈ 20%. This loss is due to the latency on the
hardware, which delays some spikes more than others.

Figure 6 summarizes how the latency, ISI distortion, spike disorder increase
as we increase the size of the neuromorphic architecture. We observe that as we
increase the number of crossbars in the hardware, latency, ISI, and spike disorder
increase. This is because with an increase in the number of crossbars, spike traffic on
the shared interconnect increases, which increases the congestion and delays some

Platform-Based Design of Embedded Neuromorphic Systems 343

Fig. 5 Handwritten-digit recognition accuracy on different neuromorphic hardware configura-
tions. This accuracy is lower than the 86% accuracy obtained via software simulation

Fig. 6 Latency, inter-spike interval (ISI) distortion, and spike disorder for five neuromorphic
hardware configurations, normalized with respect to the baseline configuration of . 2 × 2

spikes more than others. When we use a hardware with 36 small crossbars arranged
in a .6 × 6 mesh, we observe a significant increase of latency (average 3.2x), ISI
distortion (average 6x), and spike disorder (average 1.5x) compared to the baseline
configuration of using 4 large crossbars.

In our recent work [6], we propose SpiNeMap to place cluster to cores mini-
mizing the average spike latency on the interconnect. SpiNeMap operates in two
steps. In Step 1 (SpiNeCluster), we use a heuristic-based clustering algorithm to
partition SNNs into local and global synapses, with local synapses mapped within
crossbars, and global synapses to the shared interconnect. SpiNeCluster minimizes
spikes on the shared interconnect, reducing spike congestion and ISI distortion. In
Step 2 (SpiNePlacer), we use an instance of the particle swarm optimization (PSO)
to place clusters on physical crossbars within the tiles in the hardware, optimizing
energy consumption and spike latency on the shared interconnect.

Figure 7 shows the spike latency of SpiNeMap normalized to a baseline
mechanism for ten workloads. These workloads are defined in [6]. The baseline
mechanism randomly places clusters to cores without considering spike latency on
the shared interconnect.

344 M. L. Varshika and A. Das

Fig. 7 Spike latency of SpiNeMap, normalized to baseline. High spike latency leads to larger
inter-spike interval distortion, which directly impacts the latency

Fig. 8 (a) A phase change memory (PCM) cell designed using chalcogenide material that can
be either in amorphous or in crystalline state, and (b) current needed for SET (amorphous to
crystalline transition), RESET (crystalline to amorphous transition), and read (identify the state)
operations

3.2 Energy-Oriented DSE

There are several sources of energy consumption in an NVM-based neuromorphic
hardware. In [102], we have formulated the detailed energy consumption in a
neuromorphic hardware considering phase-change memory (PCM), an emerging
memory technology that has shown significant potential as synapse in a neuromor-
phic hardware [18]. To introduce this technology, Fig. 8a illustrates a chalcogenide
semiconductor alloy that is used to build a PCM cell. The amorphous phase (logic
“0”) has higher resistance than its crystalline phase (logic “1”). When used in these
two stable states, a PCM cell can implement a binary synapse. However, with precise
control of the crystallization process, a PCM cell can be programmed in a partially
crystallized state. This way, the PCM cell can implement a multi-bit synapse.

A phase change in a PCM cell is induced via Joule’s heating by injecting current
into the resistor-chalcogenide junction and heating the chalcogenide alloy. Figure 8b
shows the different current values needed to program and read in a PCM device.
Therefore, depending on whether a PCM device in a crossbar is programmed to SET

Platform-Based Design of Embedded Neuromorphic Systems 345

state, RESET state, or one of the intermediate states, different amount of energy will
be required to propagate a spike through the device.

We formulate the spike energy through a PCM synaptic device in a crossbar as

.esynapse = I 2prog · tspk ·
(

RON + 1

w

)

, (2)

where . w is the conductance of the PCM cell, .Iprog is the programming current, . tspk

is the spike duration (typically in ms), and .RON is the ON resistance of the access
transistor connecting the PCM cell to the bitline and wordline in a crossbar.

Inside a crossbar, the programming current (.Iprog) can vary considerably due
to bitline and wordline parasitics. With technology scaling, the value of parasitic
resistances along the bitline and wordline of a current path increases [42]. The
unit wordline (bitline) parasitic resistance ranges from approximately .2.5� (. 1�)
at 65nm node to .10� (.3.8�) at 16nm node. The values of these unit parasitic
resistances are expected to scale further reaching .≈ 25� at 5nm node [42]. This
increase in the value of unit parasitic resistance increases the voltage drop, which
increases the current variation in a crossbar. Figure 9 shows the current variation
in a 128. ×128 PCM crossbar. We observe that the programming current is higher

Fig. 9 Current map in a 128. ×128 crossbar. There are fewer parasitics on the current path at the
bottom-left corner of the crossbar. So the IR drop is lower and, therefore, the current is higher.
There are more parasitics on the current path at the top-right corner. So, the IR drop is higher and,
therefore, the current is lower. Overall, current varies within a crossbar

346 M. L. Varshika and A. Das

Fig. 10 Total energy distributed into spike propagation energy, which is the energy consumed in
propagating spikes via the synaptic cells of a crossbar, and communication energy, which is the
energy consumed in propagating spikes via the shared interconnect

for spikes propagating through a synaptic cell located at the bottom-left corner than
through a synaptic cell located at the top-right corner.

Spike propagation energy, together with the energy needed to communicate
spikes over the interconnect, can then be used to compute the total energy. There-
fore, that energy consumption depends on: (1) how an SNN model is partitioned
into clusters (determines the number of neurons and synapses in each cluster), (2)
how the clusters are mapped to the cores (determines the hop distances), and 3) how
the neurons and synapses of a cluster are placed inside each core (determines the
propagation current, .Iprog).

Using the total energy formulation, Fig. 10 shows the distribution of the two
energy components—core energy (.Espk) and communication energy (.Ecomm) for
ten different workloads. Description to these workloads can be found in [102].

We observe that the energy distribution is workload-dependent. For some work-
loads such as W6, W7, and W10, the communication energy dominates the total
energy consumption. For other workloads such as W5, the core energy dominates
the total energy consumption.

Figure 11 shows our framework to perform energy-aware DSE. The left sub-
figure shows a neuromorphic system comprising of the application layer, the system
software layer, and the hardware layer. The application layer at the top consists of
the user space to run machine learning applications. In this illustration, we show
the execution of AlexNet for ImageNet classification. The hardware layer at the
bottom consists of the neuromorphic hardware such as TrueNorth [38], Loihi [37],
and DYNAPs [70]. At the middle is the system software layer, which interacts with
both the application and hardware layers. The system software performs energy
optimization using the iterative approach shown to the right.

The workflow of the system software involves clustering a machine learning
application to generate clustered SNN graph. Next, the clusters are mapped to the
tiles of the hardware using a mapping approach. Finally, the clusters are placed to
crossbars using the placement step. Although the clustering step could potentially be
incorporated inside the iterative loop, we placed it outside to limit the complexity
of the design space exploration. In fact, clustering of applications is an NP-hard
problem as shown in SpiNeMap [6]. Our clustering approach uses the graph
partitioning algorithm of SpiNeMap, minimizing: (1) inter-cluster communication
(similar to SpiNeMap) and (2) maximizing cluster utilization (similar to Decom-

Platform-Based Design of Embedded Neuromorphic Systems 347

Fig. 11 Our energy-aware system software for neuromorphic hardware. A typical hardware is
represented as three-layer architecture (left), with the application at the top, the system software
at the middle, and the hardware at the bottom. The hardware layer may have DYNAPs [70],
Loihi [37], or TrueNorth [38] hardware. The system software is elaborated to the right. An SNN-
based application is first partitioned to for clusters that can be mapped to cores. Next, using an
iterative approach, the mapping is refined over time to achieve a desired objective

Fig. 12 Total energy normalized to SpiNeMap [6]. The proposed platform-based design is able to
reduce the total energy consumption significantly using the iterative mapping approach

posedSNN [9]). The iterative approach is based on a Hill Climbing heuristic, which
is described in [102].

Figure 12 reports the total energy consumption for each workload for the
proposed energy-aware DSE normalized to SpiNeMap. The workloads are defined
in [102]. We observe that the proposed DSE reduces energy consumption by 20%.

3.3 Reliability-Oriented DSE

Using NVMs such as PCM as synaptic devices in a crossbar leads to several
reliability issues due to high temperature and current requirements for these devices.

348 M. L. Varshika and A. Das

Fig. 13 Iterative approach to calculating the self-heating temperature of a PCM cell during
amorphization. The PCM cell is initially programmed in its crystalline state. Then a current
is injected, which triggers a raise in the temperature. Through Joule’s heating, the PCM cell
transitions to its amorphous state

Here, we show how design space explorations can be performed to improve
reliability of NVMs in a neuromorphic hardware.

In our recent work [103], we use the phenomenological endurance model [97] to
compute the endurance of a PCM cell as a function of its self-heating temperature
obtained during amorphization of its crystalline state. Figure 13 shows the iterative
approach to compute this self-heating temperature (.TSH) [109].

At start of the amorphization process, the temperature of a PCM cell is equal
to the ambient temperature Tamb. Subsequently, the PCM temperature is computed
iteratively as follows. For a given crystalline fraction VC of the GST material within
the cell, the thermal conductivity k is computed using the TC Module, and PCM
resistance RPCM using the PCMR Module. The thermal conductivity is used to
compute the heat dissipation Wd using the HD Module, while the PCM resistance
is used to compute the Joule heating in the GST Wj for the programming current
Iprog using the JH Module. The self-heating temperature TSH is computed inside
the SH Module using the Joule heating and the heat dissipation. Finally, the self-
heating temperature is used to compute the crystallization fraction Vc using the CF
Module. The iterative process terminates when the GST is amorphized, i.e., Vc = 0.
We now describe these steps:

• Crystallization Fraction (CF) Module: CF represents the fraction of solid
in a GST during the application of a reset current. Vc is computed using the
Johnson–Mehl–Avrami (JMA) equation as

.Vc = exp

[

−α × (TSH − Tamb)

Tm

× t

]

, (3)

where t is the time, Tm = 810K is the melting temperature of the GST
material [66, 109], Tamb is the ambient temperature computed using [101], and
α = 2.25 is a fitting constant [66, 109].

• Thermal Conductivity (TC) Module: TC of the GST is computed as [60]

.k = (ka − kc) × Vc + ka, (4)

Platform-Based Design of Embedded Neuromorphic Systems 349

where ka = 0.002WK−1cm−1 for amorphous GST, and kc = 0.005WK−1cm−1 for
crystalline GST [66, 109].

• PCM Resistance (PCMR) Module: The effective resistance of the PCM cell
is given by

.RPCM = Rset + (1 − Vc) × (Rreset − Rset), (5)

where Rset = 10K� in the crystalline state of the GST and Rreset = 200K� in the
amorphous state.

• Heat Dissipation (HD)Module: Assuming heat is dispersed to the surrounding
along the thickness of the PCM cell, HD is computed as [58]

.Wd = kV

l2
(TSH − Tamb), (6)

where l = 120 nm is the thickness and V = 4×10−14cm3 is the volume of GST [66,
109].

• Joule Heating (JH) Module: The heat generation in a PCM cell due to the
programming current Iprog is

.Wj = I 2prog × RPCM. (7)

• Self-heating (SH) Module: The SH temperature of a PCM cell is computed by
solving an ordinary differential equation as [109]

.TSH = I 2progRPCMl2

kV
−

[

1 − exp

(

− kt

l2C

)]

+ Tamb, (8)

where C = 1.25JK−1cm−3 is the heat capacity of the GST [66, 109].

The endurance of a PCM cell is computed as [97]

.Endurance ≈ tf

ts
, (9)

where tf and ts are, respectively, the failure time and the switching time. In this
model, to switch memory state of a PCM cell, an ion (electron) must travel a distance
d across insulating matrix (the gate oxide) upon application of the programming
current Iprog , which results in the write voltage V across the cell. Assuming
thermally activated motion of an ion with activation energy Us and local self-heating
thermal temperature TSH , the switching speed can be approximated as

.ts = d

vs

≈ 2d

f a
exp

(
Us

kBTSH

)

exp

(

− qV

2kBTSH

a

d

)

, (10)

where d = 10nm, a = 0.2nm, f = 1013Hz, and Us = 2eV [97].

350 M. L. Varshika and A. Das

The failure time is computed considering that the endurance failure mechanism
is due to thermally activated motion of ions (electrons) across the same distance d
but with higher activation energy UF , so that the average time to failure is

.tf = d

vf

≈ 2d

f a
exp

(
Uf

kBTSH

)

exp

(

− qV

2kBTSH

a

d

)

, (11)

where Uf = 3ev [97].
The endurance, which is the ratio of average failure time and switching time, is

given by

.Endurance ≈ tf

ts
≈ exp

(
γ

TSH

)

, (12)

where γ = 1000 is a fitting parameter [97].
Figure 14 plots the temperature and endurance maps of a 128. ×128 crossbar at

65nm process node with Tamb = 298K. The PCM cells at the bottom-left corner have
higher self-heating temperature than at the top-right corner. This asymmetry in the
self-heating temperature creates a wide distribution of endurance, ranging from 106

cycles for PCM cells at the bottom-left corner to 1010 cycles at the top-right corner.
These endurance values are consistent with the values reported for recent PCM chips
from IBM [16].

Figure 15 shows a high-level overview of the proposed design space exploration,
consisting of three abstraction layers—the application layer, system software

Fig. 14 Temperature and endurance map of a 128. ×128 crossbar at 65nm process node with
the ambient temperature Tamb set to 298K. Temperature varies widely within a
crossbar (a). Bottom-left corner is at higher temperature than the top-right corner
due to difference in the parasitic elements. This thermal variation leads to endurance
variation within the crossbar (b)

Platform-Based Design of Embedded Neuromorphic Systems 351

Fig. 15 High-level overview of the reliability (endurance)-aware design space exploration. A
machine learning application is first analyzed using PyCARL [2] to exact workload information.
This is then used to cluster the workload. Following this, clusters are mapped to tiles, and synapses
within a cluster are placed to the NVM cells of crossbar. Device characterization data are used to
do these mappings

layer, and hardware layer. A machine learning application is first simulated using
PyCARL [2], which uses CARLsim [21] for training and testing of SNNs. PyCARL
estimates spike times and synaptic strength on every connection in an SNN.
This constitutes the workload of the machine learning application. The proposed
framework maps and places neurons and synapses of a workload to crossbars
of a neuromorphic hardware, improving the effective lifetime. To this end, a
machine learning workload is first analyzed to generate clusters of neurons and
synapses, where each cluster can fit on a crossbar. It uses the Kernighan–Lin Graph
Partitioning algorithm of SpiNeMap [6] to partition an SNN workload, minimizing
the spike latency. Next, it uses an instance of PSO to map the clusters to the cores
of a hardware, maximizing the minimum effective lifetime of PCM devices in each
core’s crossbar. Synapses of a cluster are implemented on PCM using a synapse-to-
memristor mapping, ensuring that those with higher activation are mapped to PCM
cells with higher endurance, and vice versa.

Figure 16 compares the effective endurance lifetime obtained using the proposed
DSE compared to SpiNeMap for 10 workloads. These workloads are described
in [103]. We observe that the effective inference lifetime of the proposed framework
is higher than SpiNeMap by an average 3.5x.

Limited write endurance is not the only reliability issue in a PCM crossbar. In
our recent works [8, 92–94], we show that elevated voltages and currents needed to
operate PCM cause aging of CMOS-based transistors in each neuron and synapse
circuit in the hardware, drifting the transistor’s parameters from their nominal
values. Aggressive device scaling increases power density and temperature, which
accelerates the aging, challenging the reliable operation of neuromorphic systems.

One important aging mechanism at scaled technology nodes is the bias tem-
perature instability (BTI). This is a failure mechanism in a CMOS device where
positive charges are trapped at the oxide–semiconductor boundary underneath the

352 M. L. Varshika and A. Das

Fig. 16 Effective lifetime for the evaluated applications. The effective lifetime is defined as
the number of inference operations that can be successfully performed between two successive
reprogramming of the synaptic cells in a crossbar [79, 80, 96]

Fig. 17 Demonstration of threshold voltage degradation of a CMOS transistor due to bias
temperature instability (BTI) aging. When a stress voltage is applied, the CMOS transistor
parameters drift from their nominal values, thereby shifting the threshold voltage. Upon removal
of the stress voltage, the threshold voltage recovers partially. The amount of unrecovered threshold
voltage depends on the time duration for which the transistor is exposed to the stress voltage

gate [44]. BTI manifests as: (1) decrease in drain current and transconductance and
(2) increase in off current and threshold voltage.

Recent works such as [44, 56, 57, 106] suggest that BTI is the collective response
of two independent defects—the as-grown hole traps (AHTs) and generated defects
(GDs). AHTs and a small proportion of GDs can be recovered by annealing at high
temperatures if the BTI stress voltage is removed (de-stress). Figure 17 illustrates
the stress and recovery of the threshold voltage of a CMOS transistor on application
of a high (Vspk) and a low voltage (Vidle). We observe that both stress and recovery
depend on the time of exposure to the corresponding voltage level. This implies that
when a neuron is idle, the BTI aging of the neuron recovers from stress.

Figure 18 shows the shift in threshold voltage of a NMOS transistor in a neuron
for continuous usage with a constant firing rate of 50Hz.

BTI aging can also be incorporated in the design space exploration with the
objective of improving the lifetime.

Figure 19 reports the mean time to failure (MTTF) of the proposed reliability-
oriented design space exploration normalized to SpiNeMap for 10 workloads, which
are described in [93]. We observe that the average MTTF is 18% higher using the
reliability-oriented exploration.

Platform-Based Design of Embedded Neuromorphic Systems 353

Fig. 18 Simulation of the long-term impact of BTI aging on the threshold voltage. If CMOS
transistors are continuously exposed to the stress voltage, the threshold voltage shift can be as high
as 10% after 2 years of operation. A significant portion of this drift (indicated by GD) cannot be
recovered even after removing the stress voltage

Fig. 19 MTTF normalized to SpiNeMap (higher is better)

Fig. 20 Mapping explorations for one of the workloads

4 Summary

To summarize, we show that the system software framework of a neuromorphic
hardware can be fine-tuned to improve performance, energy, and reliability without
requiring any changes to the underlying hardware or its interface. These optimiza-
tion objectives can also be combined. For instance, Fig. 20 shows the normalized
effective endurance lifetime and the normalized energy of the mappings explored
using the PSO algorithm of [103] for one of the workloads. The figure shows the
mappings that are Pareto optimal with respect to endurance lifetime and energy.

Therefore, software-based optimizations can be performed orthogonal to any
hardware- and technology-oriented optimization, e.g., [65]. We conclude that
through platform-based design, the system software can proceed independently

354 M. L. Varshika and A. Das

of the hardware. Later in the design stage when the hardware platform becomes
ready, the hardware and software optimization mechanisms can work independently
toward achieving system-wide performance, energy, and reliability goals.

References

1. Arimoto, Y., Ishiwara, H.: Current Status of Ferroelectric Random-Access Memory. Mrs
Bulletin (2004)

2. Balaji, A., Adiraju, P., Kashyap, H.J., Das, A., Krichmar, J.L., Dutt, N.D., Catthoor, F.:
PyCARL: A PyNN interface for hardware-software co-simulation of spiking neural network.
In: IJCNN (2020)

3. Balaji, A., Corradi, F., Das, A., Pande, S., Schaafsma, S., Catthoor, F.: Power-accuracy trade-
offs for heartbeat classification on neural networks hardware. In: JOLPE (2018)

4. Balaji, A., Das, A.: A framework for the analysis of throughput-constraints of SNNs on
neuromorphic hardware. In: ISVLSI (2019)

5. Balaji, A., Das, A.: Compiling spiking neural networks to mitigate neuromorphic hardware
constraints. In: IGSC Workshops (2020)

6. Balaji, A., Das, A., Wu, Y., Huynh, K., Dell’anna, F.G., Indiveri, G., Krichmar, J.L.,
Dutt, N.D., Schaafsma, S., Catthoor, F.: Mapping spiking neural networks to neuromorphic
hardware. In: TVLSI (2020)

7. Balaji, A., Marty, T., Das, A., Catthoor, F.: Run-time mapping of spiking neural networks to
neuromorphic hardware. In: JSPS (2020)

8. Balaji, A., Song, S., Das, A., Dutt, N., Krichmar, J., Kandasamy, N., Catthoor, F.: A
framework to explore workload-specific performance and lifetime trade-offs in neuromorphic
computing. In: CAL (2019)

9. Balaji, A., Song, S., Das, A., Krichmar, J., Dutt, N., Shackleford, J., Kandasamy, N., Catthoor,
F.: Enabling resource-aware mapping of spiking neural networks via spatial decomposition.
In: ESL (2020)

10. Balaji, A., Song, S., Titirsha, T., Das, A., Krichmar, J., Dutt, N., Shackleford, J., Kandasamy,
N., Catthoor, F.: NeuroXplorer 1.0: An extensible framework for architectural exploration
with spiking neural networks. In: ICONS (2021)

11. Balaji, A., Ullah, S., Das, A., Kumar, A.: Design methodology for embedded approximate
artificial neural networks. In: GLSVLSI (2019)

12. Balaji, A., Wu, Y., Das, A., Catthoor, F., Schaafsma, S.: Exploration of segmented bus as
scalable global interconnect for neuromorphic computing. In: GLSVLSI (2019)

13. Bez, R., Pirovano, A.: Non-volatile memory technologies: emerging concepts and new
materials. Materials Science in Semiconductor Processing (2004)

14. Bohte, S.M., Kok, J.N., La Poutré, J.A.: SpikeProp: Backpropagation for networks of spiking
neurons. In: ESANN (2000)

15. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic
input. Biological Cybernetics (2006)

16. Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.Y., Wu, J.Y., Kim, S., Sosa, N.E.,
Papandreou, N., Lung, H.L., Pozidis, H., et al.: Recent progress in phase-change memory
technology. In: JETCAS (2016)

17. Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M.,
Narayanan, P., Fumarola, A., Sanches, L.L., Boybat, I., Le Gallo, M., Moon, K., Woo, J.,
Hwang, H., Leblebici, Y.: Neuromorphic computing using non-volatile memory. Adv. Phys.
X (2017)

18. Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M.,
Narayanan, P., Fumarola, A., et al.: Neuromorphic computing using non-volatile memory.
Adv. Phys. X (2017)

Platform-Based Design of Embedded Neuromorphic Systems 355

19. Caporale, N., Dan, Y.: Spike timing–dependent plasticity: a hebbian learning rule. Annu. Rev.
Neurosci. (2008)

20. Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G., Meyr,
H., Isshiki, T., Kunieda, H.: MAPS: An integrated framework for MPSoC application
parallelization. In: Design Automation Conference (DAC), pp. 754–759 (2008)

21. Chou, T., Kashyap, H., Xing, J., Listopad, S., Rounds, E., Beyeler, M., Dutt, N., Krichmar,
J.: CARLsim 4: An open source library for large scale, biologically detailed spiking neural
network simulation using heterogeneous clusters. In: IJCNN (2018)

22. Corradi, F., Pande, S., Stuijt, J., Qiao, N., Schaafsma, S., Indiveri, G., Catthoor, F.: Ecg-based
heartbeat classification in neuromorphic hardware. In: 2019 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

23. Curzel, S., Agostini, N.B., Song, S., Dagli, I., Limaye, A., Tan, C., Minutoli, M., Castellana,
V.G., Amatya, V., Manzano, J., et al.: Automated generation of integrated digital and spiking
neuromorphic machine learning accelerators. In: ICCAD (2021)

24. Dan, Y., Poo, M.m.: Spike timing-dependent plasticity of neural circuits. Neuron 44(1) (2004)
25. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and

mechanisms. Learning & Memory (2003)
26. Das, A.: Real-time scheduling of machine learning operations on heterogeneous neuromor-

phic SoC. In: MEMOCODE (2022)
27. Das, A., Catthoor, F., Schaafsma, S.: Heartbeat classification in wearables using multi-layer

perceptron and time-frequency joint distribution of ECG. In: CHASE (2018)
28. Das, A., Kumar, A.: Dataflow-based mapping of spiking neural networks on neuromorphic

hardware. In: GLSVLSI (2018)
29. Das, A., Kumar, A., Veeravalli, B.: Energy-aware communication and remapping of tasks

for reliable multimedia multiprocessor systems. In: International Conference on Parallel and
Distributed Systems (ICPADS), pp. 564–571. IEEE (2012)

30. Das, A., Kumar, A., Veeravalli, B.: Fault-tolerant network interface for spatial division
multiplexing based Network-on-Chip. In: ReCoSoC (2012)

31. Das, A., Pradhapan, P., Groenendaal, W., Adiraju, P., Rajan, R., Catthoor, F., Schaafsma, S.,
Krichmar, J., Dutt, N., Van Hoof, C.: Unsupervised heart-rate estimation in wearables with
Liquid states and a probabilistic readout. Neural Networks (2018)

32. Das, A., Singh, A.K., Kumar, A.: Energy-aware dynamic reconfiguration of communication-
centric applications for reliable MPSoCs. In: ReCoSoC (2013)

33. Das, A., Walker, M.J., Hansson, A., Al-Hashimi, B.M., Merrett, G.V.: Hardware-software
interaction for run-time power optimization: A case study of embedded linux on multicore
smartphones. In: ISLPED (2015)

34. Das, A., Wu, Y., Huynh, K., Dell’Anna, F., Catthoor, F., Schaafsma, S.: Mapping of local and
global synapses on spiking neuromorphic hardware. In: DATE (2018)

35. Das, A.K., Kumar, A., Veeravalli, B., Catthoor, F.: Reliable and Energy Efficient Streaming
Multiprocessor Systems. Springer (2018)

36. Davies, M.: Benchmarks for progress in neuromorphic computing. Nat. Mach. Intell. (2019)
37. Davies, M., Srinivasa, N., Lin, T.H., et al.: Loihi: A neuromorphic manycore processor with

on-chip learning. IEEE Micro (2018)
38. Debole, M.V., Taba, B., Amir, A., et al.: TrueNorth: Accelerating from zero to 64 million

neurons in 10 years. Computer (2019)
39. Esser, S.K., Appuswamy, R., Merolla, P., Arthur, J.V., Modha, D.S.: Backpropagation for

energy-efficient neuromorphic computing. NeurIPS (2015)
40. Fang, H., Mei, Z., Shrestha, A., Zhao, Z., Li, Y., Qiu, Q.: Encoding, model, and architecture:

systematic optimization for spiking neural network in FPGAs. In: ICCAD (2020)
41. Fang, H., Taylor, B., Li, Z., Mei, Z., Li, H.H., Qiu, Q.: Neuromorphic algorithm-hardware

codesign for temporal pattern learning. In: DAC (2021)
42. Fouda, M.E., Eltawil, A.M., Kurdahi, F.: Modeling and analysis of passive switching crossbar

arrays. In: TCAS I (2017)
43. Furber, S.: Large-scale neuromorphic computing systems. In: JNE (2016)

356 M. L. Varshika and A. Das

44. Gao, R., Ji, Z., Manut, A.B., Zhang, J.F., Franco, J., Hatta, S.W.M., Zhang, W.D., Kaczer,
B., Linten, D., Groeseneken, G.: NBTI-Generated defects in nanoscaled devices: Fast
characterization methodology and modeling. In: TED (2017). https://doi.org/10.1109/TED.
2017.2742700

45. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based
neuromorphic computing system: A case study. In: TNNLS (2014)

46. Hu, Y., Tang, H., Pan, G.: Spiking deep residual networks. In: TNNLS (2018)
47. Huai, Y., et al.: Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects.

AAPPS Bulletin (2008)
48. Huynh, P.K., Varshika, M.L., Paul, A., Isik, M., Balaji, A., Das, A.: Implementing spiking

neural networks on neuromorphic architectures: A review. arXiv (2022)
49. Indiveri, G., Liu, S.C.: Memory and information processing in neuromorphic systems. Proc.

IEEE 103(8), 1379–1397 (2015)
50. Jeong, H., Shi, L.: Memristor devices for neural networks. J. Phys. D Appl. Phys. (2018)
51. Jerraya, A.A., Bouchhima, A., Pétrot, F.: Programming models and HW-SW interfaces

abstraction for multi-processor SoC. In: DAC (2006)
52. Ji, Y., Zhang, Y., Li, S., Chi, P., Jiang, C., Qu, P., Xie, Y., Chen, W.: NEUTRAMS: Neural

network transformation and co-design under neuromorphic hardware constraints. In: MICRO
(2016)

53. Jiashu, L., Das, A., Kumar, A.: A design flow for partially reconfigurable heterogeneous
multi-processor platforms. In: IEEE International Symposium on Rapid System Prototyping
(RSP), pp. 170–176 (2012)

54. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst.
Tech. J. (1970)

55. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.: System-level design:
Orthogonalization of concerns and platform-based design. In: TCAD (2000)

56. Kraak, D., Agbo, I., Taouil, M., Hamdioui, S., Weckx, P., Cosemans, S., Catthoor, F.:
Degradation analysis of high performance 14nm FinFET SRAM. In: DATE (2018). https://
doi.org/10.23919/DATE.2018.8342003

57. Kraak, D., Taouil, M., Agbo, I., Hamdioui, S., Weckx, P., Cosemans, S., Catthoor, F.:
Parametric and Functional Degradation Analysis of Complete 14-nm FinFET SRAM. In:
TVLSI (2019). https://doi.org/10.1109/TVLSI.2019.2902881

58. Kwong, K.C., Li, L., He, J., Chan, M.: Verilog-A model for phase change memory simulation.
In: ICSICT (2008)

59. Lee, K., Kwon, D.S.: Synaptic plasticity model of a spiking neural network for reinforcement
learning. Neurocomputing (2008)

60. Liao, Y.B., Lin, J.T., et al.: Temperature-based phase change memory model for pulsing
scheme assessment. In: ICICDT (V) (2008)

61. Lin, C.K., Wild, A., Chinya, G.N., Lin, T.H., Davies, M., Wang, H.: Mapping spiking neural
networks onto a manycore neuromorphic architecture. In: PLDI (2018)

62. Liu, C., Yan, B., Yang, C., Song, L., Li, Z., Liu, B., Chen, Y., Li, H., Wu, Q., Jiang, H.: A
spiking neuromorphic design with resistive crossbar. In: DAC (2015)

63. Liu, X., Wen, W., Qian, X., Li, H., Chen, Y.: Neu-NoC: A high-efficient interconnection
network for accelerated neuromorphic systems. In: ASP-DAC (2018)

64. Maass, W.: Networks of spiking neurons: The third generation of neural network models.
Neural Networks (1997)

65. Mallik, A., Garbin, D., Fantini, A., Rodopoulos, D., Degraeve, R., Stuijt, J., Das, A.,
Schaafsma, S., Debacker, P., Donadio, G., et al.: Design-technology co-optimization for
OxRRAM-based synaptic processing unit. In: VLSIT (2017)

66. Marcolini, G., Giovanardi, F., Rudan, M., Buscemi, F., Piccinini, E., Brunetti, R., Cappelli,
A.: Modeling the dynamic self-heating of PCM. In: ESSDERC (2013)

67. Marković, D., Mizrahi, A., Querlioz, D., Grollier, J.: Physics for neuromorphic computing.
Nat. Rev. Phys. (2020)

https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.1109/TED.2017.2742700
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.23919/DATE.2018.8342003
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881
https://doi.org/10.1109/TVLSI.2019.2902881

Platform-Based Design of Embedded Neuromorphic Systems 357

68. Marwedel, P., Bacivarov, I., Lee, C., Teich, J., Thiele, L., Xu, Q., Kouveli, G., Ha, S., Huang,
L.: Mapping of applications to mpsocs. In: International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), pp. 109–118 (2011)

69. Mead, C.: Neuromorphic electronic systems. Proc. IEEE (1990)
70. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture with hetero-

geneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs).
In: TBCAS (2017)

71. Moyer, E.J., Das, A.: Machine learning applications to DNA subsequence and restriction site
analysis. In: SPMB (2020)

72. Nicola, W., Clopath, C.: Supervised learning in spiking neural networks with FORCE
training. Nature Communications (2017)

73. Nishi, Y.: Challenges and opportunities for future non-volatile memory technology. Current
Appl. Phys. (2011)

74. Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D., Geretti, L., Villa, T.: A platform-based
design methodology with contracts and related tools for the design of cyber-physical systems.
Proc. IEEE (2015)

75. Odendahl, M., Castrillon, J., Volevach, V., Leupers, R., Ascheid, G.: Split-cost communi-
cation model for improved MPSoC application mapping. In: International Symposium on
System on Chip (SoC), pp. 1–8 (2013)

76. Onnebrink, G., Walbroel, F., Klimt, J., Leupers, R., Ascheid, G., Murillo, L.G., Schürmans, S.,
Chen, X., Harn, Y.: DVFS-enabled power-performance trade-off in MPSoC SW application
mapping. In: International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), pp. 196–202 (2017)

77. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design ARM Edition: The
Hardware Software Interface. Morgan Kaufmann (2016)

78. Paugam-Moisy, H., Bohte, S.M.: Computing with spiking neuron networks. Handbook of
Natural Computing (2012)

79. Paul, A., Das, A.: Design technology co-optimization for neuromorphic computing. In: IGSC
Workshops (2021)

80. Paul, A., Song, S., Titirsha, T., Das, A.: On the mitigation of read disturbances in neuromor-
phic inference hardware. IEEE Des. Test (2022)

81. Paul, A., Tajin, M.A.S., Das, A., Mongan, W., Dandekar, K.: Energy-efficient respiratory
anomaly detection in premature newborn infants. Electronics (2022)

82. Perez-Nieves, N., Goodman, D.: Sparse spiking gradient descent. NeurIPS (2021)
83. Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., Eleftheriou, E.: Low-power

neuromorphic hardware for signal processing applications: A review of architectural and
system-level design approaches. Signal Proc. Mag. (2019)

84. Sangiovanni-Vincentelli, A., Carloni, L., De Bernardinis, F., Sgroi, M.: Benefits and chal-
lenges for platform-based design. In: DAC (2004)

85. Sangiovanni-Vincentelli, A., Martin, G.: Platform-based design and software design method-
ology for embedded systems. IEEE Des. Test (2001)

86. Schmidgall, S., Hays, J.: Stable lifelong learning: Spiking neurons as a solution to instability
in plastic neural networks. Preprint (2021). arXiv:2111.04113

87. Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., Rose, G.S., Plank,
J.S.: A survey of neuromorphic computing and neural networks in hardware. Preprint (2017).
arXiv:1705.06963

88. Sengupta, A., Ye, Y., Wang, R., Liu, C., Roy, K.: Going deeper in spiking neural networks:
VGG and residual architectures. Front. Neurosci. (2019)

89. Singh, A.K., Das, A., Kumar, A.: Energy optimization by exploiting execution slacks in
streaming applications on multiprocessor systems. In: DAC (2013)

90. Song, S., Balaji, A., Das, A., Kandasamy, N., Shackleford, J.: Compiling spiking neural
networks to neuromorphic hardware. In: LCTES (2020)

358 M. L. Varshika and A. Das

91. Song, S., Chong, H., Balaji, A., Das, A., Shackleford, J., Kandasamy, N.: DFSynthesizer:
Dataflow-based synthesis of spiking neural networks to neuromorphic hardware. In: TECS
(2021)

92. Song, S., Das, A.: A case for lifetime reliability-aware neuromorphic computing. In:
MWSCAS (2020)

93. Song, S., Das, A., Kandasamy, N.: Improving dependability of neuromorphic computing with
non-volatile memory. In: EDCC (2020)

94. Song, S., Hanamshet, J., Balaji, A., Das, A., Krichmar, J., Dutt, N., Kandasamy, N., Catthoor,
F.: Dynamic reliability management in neuromorphic computing. In: JETC (2021)

95. Song, S., Mirtinti, L.V., Das, A., Kandasamy, N.: A design flow for mapping spiking neural
networks to many-core neuromorphic hardware. In: ICCAD (2021)

96. Song, S., Titirsha, T., Das, A.: Improving inference lifetime of neuromorphic systems via
intelligent synapse mapping. In: ASAP (2021)

97. Strukov, D.B.: Endurance-write-speed tradeoffs in nonvolatile memories. Appl. Phys. A
Mater. Sci. Proc. (4) (2016)

98. Stuijt, J., Sifalakis, M., Yousefzadeh, A., Corradi, F.: μBrain: An event-driven and fully
synthesizable architecture for spiking neural networks. Front. Neurosci. (2021)

99. Suzuki, K., Swanson, S.: A survey of trends in non-volatile memory technologies: 2000–2014.
In: IMW (2015)

100. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in
spiking neural networks. Neural Networks (2019)

101. Titirsha, T., Das, A.: Thermal-aware compilation of spiking neural networks to neuromorphic
hardware. In: LCPC (2020)

102. Titirsha, T., Song, S., Balaji, A., Das, A.: On the role of system software in energy
management of neuromorphic computing. In: CF (2021)

103. Titirsha, T., Song, S., Das, A., Krichmar, J., Dutt, N., Kandasamy, N., Catthoor, F.: Endurance-
aware mapping of spiking neural networks to neuromorphic hardware. In: TPDS (2021)

104. Varshika, M.L., Corradi, F., Das, A.: Nonvolatile memories in spiking neural network
architectures: Current and emerging trends. Electronics 11(10), 1610 (2022)

105. Varshika, M.L., et al.: Design of many-core big little μBrains for energy-efficient embedded
neuromorphic computing. In: DATE (2022)

106. Weckx, P., Kaczer, B., Kukner, H., Roussel, J., Raghavan, P., Catthoor, F., Groeseneken,
G.: Non-Monte-Carlo methodology for high-sigma simulations of circuits under workload-
dependent BTI degradation-application to 6T SRAM. In: IRPS (2014). https://doi.org/10.
1109/IRPS.2014.6860671

107. Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai,
M.J.: Metal-oxide RRAM. Proc. IEEE (2012)

108. Wong, H.S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., Asheghi, M.,
Goodson, K.E.: Phase change memory. Proc. IEEE (2010)

109. Xi, L., Zhitang, S., Daolin, C., et al.: An spice model for phase-change memory simulations.
J. Semicond. (9) (2011)

110. Yan, B., Liu, C., Liu, X., Chen, Y., Li, H.: Understanding the trade-offs of device, circuit and
application in ReRAM-based neuromorphic computing systems. In: IEDM (2017)

111. Yin, B., Corradi, F., Bohté, S.M.: Accurate and efficient time-domain classification with
adaptive spiking recurrent neural networks. Nat. Mach. Intell. (2021)

https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671
https://doi.org/10.1109/IRPS.2014.6860671

Light Speed Machine Learning Inference
on the Edge

Febin P. Sunny, Asif Mirza, Mahdi Nikdast, and Sudeep Pasricha

1 Introduction

Over the last decade, machine learning (ML) applications have become increasingly
prevalent, with many emerging applications, such as autonomous transportation,
medical prognosis, real-time speech translation, network anomaly detection, and
audio/video synthesis. This prevalence is fueled by the emergence of sophisticated
and powerful machine learning models over the past decade, such as deep neural
networks (DNNs) and convolutional neural networks (CNNs). More sophisticated
CNN models usually warrant deeper models with higher connectivity, which in
turn increase the compute power and the memory requirement necessary to train
and deploy them. Such increasing complexity also necessitates that the underlying
hardware platforms consistently deliver better performance while satisfying strict
power requirements. This endeavor to achieve high performance per watt has driven
hardware architects to design custom accelerators for deep learning, e.g., Google’s
TPU [1] and Intel’s Movidius [2], with much higher performance per watt than
CPUs and GPUs. The performance-per-watt requirement still remains a challenge
in resource-constrained environments, where computational power, energy expen-
diture, and available memory are often limited, such as many embedded devices.
Binarized neural networks (BNNs) [3, 4] can reduce memory and computational
requirements of DNN and CNN models while offering competitive accuracies with
full precision models. As such, they are a possible solution to the performance
requirement challenge, when executed on custom accelerators.

F. P. Sunny (�) · A. Mirza · M. Nikdast · S. Pasricha
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: Febin.Sunny@colostate.edu; asifmirz@rams.colostate.edu;
Mahdi.Nikdast@colostate.edu; sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_13

359

 31368 2385 a 31368 2385 a

 885 55738 a 885 55738 a

mailto:Febin.Sunny@colostate.edu
mailto:Febin.Sunny@colostate.edu
mailto:Febin.Sunny@colostate.edu

 11957
55738 a 11957 55738 a

mailto:asifmirz@rams.colostate.edu
mailto:asifmirz@rams.colostate.edu
mailto:asifmirz@rams.colostate.edu

 -2016
56845 a -2016 56845 a

mailto:Mahdi.Nikdast@colostate.edu
mailto:Mahdi.Nikdast@colostate.edu
mailto:Mahdi.Nikdast@colostate.edu

 9906 56845 a 9906 56845
a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu

360 F. P. Sunny et al.

Exploring more efficient hardware accelerator platforms is another potential
solution to reduce performance per watt for neural-network processing. Con-
ventional electronic accelerator platforms face fundamental limits in the post-
Moore era where the high costs and diminishing performance improvements
with semiconductor-technology scaling prevent significant improvements in future
product generations [5]. Moving data in accelerators is a well-known bottleneck
in these accelerators, due to the bandwidth and latency limitations of electronic
interconnects, which puts limits on achievable performance and energy savings [6].
A solution to the data-movement bottleneck has presented itself in the form of
silicon photonics technology, which enables ultra-high bandwidth, low-latency, and
energy-efficient communication [7–30]. CMOS-compatible optical interconnects
have already replaced metallic ones for light speed data transmission at almost every
level of computing and are now actively being considered for chip-scale integration
[8]. Recent research work has also shown that it is also possible to use optical
components to efficiently perform computation, e.g., matrix-vector multiplication
[31–33]. Due to the emergence of both chip-scale optical communication and
computation, it is now possible to conceive photonic integrated circuits (PICs)
that offer low latency and energy-efficient optical domain data transport and
computation.

Despite the benefits of utilizing photonics for computation and communication,
there are several challenges that must be addressed before photonic accelerators
become truly viable. One of the main obstacles that impacts the robustness
and reliability of photonic accelerators is the sensitivity of photonic devices to
fabrication process and thermal variations. These variations introduce undesirable
crosstalk, optical phase shifts, frequency drifts, tuning overheads, and photodetec-
tion current mismatches, which adversely affect the reliable and robust operation
of photonic accelerators. In order to correct the impact of variations, thermo-optic
(TO) or electro-optic (EO) tuning circuits are often used, which have notable power
overheads. Because of the phase-change effects, it has on photonic devices, tuning
mechanisms may also be used to control weight/activation imprinting via microring
resonators (MRs). But the high latency of operation (in μs range [34]) of TO tuning
can limit the achievable throughput and parallelism in photonic accelerators.

In this chapter, we discuss ROBIN [35], a novel optical-domain BNN accelerator
that addresses the challenges highlighted above by optimizing electro-optic com-
ponents across the device, circuit, and architecture layers. ROBIN combines novel
device- and circuit-level techniques to achieve more efficient fabrication-process-
variation (FPV) correction in optical devices, which helps with reducing energy and
improving accuracy in BNNs that utilize these devices. Additionally, circuit-level
tuning enhancements for inference latency reduction and an optimized architecture-
level design help improve performance and also energy consumption compared to
the state-of-the-art. The novel contributions from [35] include the following:

• The design of a novel optical-domain BNN accelerator architecture that is
robust to fabrication-process variations (FPVs) and thermal variations and utilizes

Light Speed Machine Learning Inference on the Edge 361

efficient wavelength reuse and a modular structure to enable high-throughput and
energy-efficient execution across BNN models.

• A novel integration of heterogeneous optical microring resonator (MR) devices;
we also conduct design space exploration for these MR designs to determine
device characteristics for efficient BNN execution.

• An enhanced tuning circuit to simultaneously support large thermal-induced
resonance shifts and high-speed, low-loss device tuning to compensate for FPVs.

• A comprehensive comparison with state-of-the-art BNN and non-BNN accel-
erator platforms from the optical and electronic domains, to demonstrate the
potential of our BNN accelerator platform.

The rest of this chapter is organized as follows: Sect. 2 briefly explores the related
works in the field of BNN acceleration. Sect. 3 gives a brief overview of noncoherent
optical computation for photonic accelerators similar to ours. Sect. 4 provides an
overview of BNNs and the partially binarized approach we have adopted for better
accuracy in models. Sect. 5 describes the ROBIN architecture and our optimization
efforts in tuning circuits, photonic devices, and photonic system level. Details of the
experiments conducted, simulation setup, and the obtained results are provided in
Sect. 6. Finally, Sect. 7 presents some concluding remarks.

2 Background and Related Work

Silicon-photonic-based DNN accelerator architectures are becoming increasingly
prominent with significant interest from both academic and industrial research
communities [36]. This growth in interest can be attributed to the previously
discussed benefits of photonic acceleration over electronic acceleration. Optical
DNN accelerator architectures can be broadly classified into two types: coherent
architectures and noncoherent architectures. Coherent architectures use a single
wavelength to operate and imprint weight/activation parameters onto the electrical
field amplitude of the light wave [37, 38]. These architectures mainly use on-
chip optical interferometer devices called Mach-Zehnder interferometers (MZIs).
For imprinting the parameters, optical phase-change mechanisms are introduced
to MZI devices. These mechanisms use heating or carrier injection to change
the refractive index in the MZI structure. Weighting occurs with electrical field
amplitude attenuation proportional to the weight value, and phase modulation
that is proportional to the sign of the weight. The weighted signals are then
accumulated with cascaded optical combiners, through coherent interference. Here
the term coherent refers to the physical property of the wave, where it is possible
for waves of the same wavelength to interfere constructively or destructively.
Noncoherent architectures, such as [32, 33, 39–41], use multiple wavelengths. These
architectures are referred to as non-coherent architectures as they use different
optical wavelengths, the interaction among which can be noncoherent. A large
number of neuron operations can be represented simultaneously in noncoherent

362 F. P. Sunny et al.

architectures by using wavelength-division multiplexing (WDM) or dense WDM
(DWDM). In these architectures, parameter values are imprinted on to the signal
amplitude directly, and to manipulate individual wavelengths, wavelength-selective
devices such as microring resonators (MRs) or microdisks are used. The optical
signal power is controlled, for imprinting parameter values, by controlling the
optical loss in these devices through tuning mechanisms (Sect. 5.1). The broadcast
and weight (B&W) protocol [42] is typically employed for setting and updating the
weight and activation values. The ROBIN architecture we present in this chapter
is a noncoherent architecture, i.e., it uses multiple wavelengths that are routed to
photonic computation units in waveguides using WDM in accordance with the
B&W protocol. The growing interest in noncoherent architectures can be attributed
to the limitations in scalability, phase encoding noise, and phase error accumulation
in coherent architectures [36, 43].

For optical DNN acceleration using noncoherent mechanics, [39] introduced a
photonic accelerator for CNNs where all the layers of CNN models are implemented
using connected photonic convolution units. In these units, MRs are used to tune
wavelength amplitudes to desired kernel values. Another such work, in [40], utilizes
microdisks instead of MRs due to the lower area and power consumption they offer.
But microdisks use “whispering gallery mode” resonance which is inherently lossy
due to the tunneling ray attenuation phenomenon [44], which reduces reliability
and energy-efficiency with microdisks. There are very few works which focus on
implementations of BNN accelerators using silicon photonics. The work in [45]
proposed an MR-based accelerator for discretized neural network acceleration,
with an encoding scheme to enable positive and negative product considerations.
The authors in [46] leveraged microdisks for implementing an accelerator with
a design similar to [40]. This work considered an accelerator for fully binarized
neural networks, i.e., both weights and activations and considered to be single-bit
parameters. Because of this simplification, [46] was able to utilize energy-efficient
photonic XOR and population count operations instead of conventional multiply and
accumulate operations. The work also made use of photonic nonvolatile memory
and claimed operating frequencies of up to 50 GHz. All of these existing works
on noncoherent optical-domain DNN/BNN acceleration have several shortcomings.
They suffer from susceptibility to fabrication-process variations (FPVs) and thermal
crosstalk, which are not addressed in these architectures. Microsecond granularity
thermo-optic tuning latencies further can reduce the speed and efficiency of
optical computing [34], which is also not considered when analyzing accelerator
performance. We address these crucial shortcomings as part of our ROBIN optical-
domain BNN accelerator architecture in this work.

In this work, we aim to ensure the robustness of the architecture against process
and thermal variations by using MR design-space exploration and photonic tuning-
circuit optimizations, which will be further explained in Sect. 5. We also utilize the
broadband capabilities of the key photonic device in our work, microring resonators
(MRs), to perform batch normalization folding, which moves batch normalization
operations from the electrical domain to the photonic domain. Section 5.3 further
details the modular architectural design aiming at ensuring wavelength reuse, to

Light Speed Machine Learning Inference on the Edge 363

reduce VCSEL usage and splitter losses and waveguide length reduction. We also
explore how the architecture performs in the presence of FPVs and how we may
further reduce energy consumption in terms of device tuning in this scenario, in
Sect. 6.2.

3 Overview of Noncoherent Optical Computation

Noncoherent optical accelerators leverage the low-latency and energy-efficient opti-
cal computation for multiply and accumulate (MAC) operations, which consumes
substantial computational power and incurs high latencies in electronic accelerators.
These accelerators typically utilize the B&W protocol with multiple wavelengths.
Figure 1a (from [47]) gives an overview of a B&W-based optical MAC unit. The
figure depicts a recurrent MAC unit which is employed repeatedly to compute
different layers of a neural network model. The layer parameters such as weights
or activations can be imprinted on to the wavelengths using the MRs that are tuned
to modify the optical signal amplitude to represent those values. The MRs are
placed in MR banks where multiple parameters can be imprinted onto wavelengths
simultaneously. In the MR banks, each MR is tuned to a specific optical wavelength
and can be used to alter the amplitude of the wavelength to represent the imprinted
parameter. There can be separate wavelengths which carry positive and negative
parameters, as discussed in [45]; these parameters are summed using balanced
photodetectors (BPDs), as shown in Fig. 1a.

The output from the MAC unit is passed on to a Mach-Zehnder Modulator
(MZM) which tunes the output from a designated laser diode (LD) to this output.
Multiple MZMs and LDs are used to generate the outputs from multiple MAC units;
these are collected and multiplexed using an arrayed waveguide grating (AWG)-
based optical multiplexer (MUX). The output from the MUX, now embedded
with parameters for the next layer, is passed back into the MAC units, through
splitters. Devices such as electro-optic modulators (not depicted) may be used to
implement nonlinearities after the MAC operation. Unfortunately, the static nature
of the hardware limits the size of the neural network model that can be accelerated
using such a configuration. This configuration would also require a large number
of splitters, which can cause increased optical losses and thus higher laser power
requirement to compensate for the losses, as the size of an accelerator using this
B&W configuration increases.

MRs and other on-chip optical resonators such as microdisks are crucial compo-
nents in such noncoherent MAC configurations, as they impact the reliability and
efficiency of the operation performed. Figure 1b depicts an MR bank and its output
spectrum along with the free spectral range (FSR). Factors such as fabrication-
process variations (FPVs) and thermal variations which impact the MR critical
dimensions and hence the effective refractive index (neff) of the device can cause
a drift in the resonant wavelength (�λMR) [48]. This drift can introduce errors
into optical computation and is thus usually corrected with TO or EO tuning

364 F. P. Sunny et al.

Fig. 1 (a) A recurrent noncoherent B&W MAC-based design [47]; (b) an MR bank consisting of
MRs with individual resonant wavelength (λi) coupled to the MRs at crossover coupling (κ) and
the output spectrum, showing free spectral range (FSR)

circuits. While EO offers faster tuning (~ns range) and consumes lesser power
(~4 μm/nm), it also has a smaller tuning range [49]. TO tuning, on the other hand,
consumes higher power (~27 mW/FSR) and has higher tuning latency (~μs range)
[34] but offers a larger tuning range. Because of the larger correction capacity,
TO is often preferred over EO despite its higher latency and power consumption.
Therefore, as the number of MRs increases—when considering larger CNN or MLP
models—the tuning power consumption also increases. This also creates increased
wavelength requirements per waveguide and calls for longer waveguides to host

Light Speed Machine Learning Inference on the Edge 365

the MRs, causing increased laser power consumption to supply the wavelengths
and to compensate for the propagation losses in the longer waveguides. Also, more
MRs and more wavelengths increase optical crosstalk and also introduce thermal
crosstalk due to the larger number of TO tuners employed. To counteract these
challenges and ensure better weight resolution, crosstalk mitigation strategies must
also be considered.

To design an effective optical-domain BNN accelerator, all of these con-
siderations must be taken into account. This highlights the need for (i) better
device optimizations to tolerate variations; (ii) efficient and low-latency tuning
mechanisms; (iii) and a scalable architecture design, which is optimized for energy
efficiency, area, and throughput. The work in [35] addressed all of these concerns
for an efficient BNN accelerator implementation in the photonic domain.

4 Binarized Neural Networks

BNNs [3] are types of DNNs (or CNNs) where both weights and activation
parameters only use binary values, and the binary values are utilized during both
inference and training using backpropagation. In the light of the discussion of
various noises in photonic accelerator architectures, it is to be noted that the binary
nature of weights in BNNs makes them resilient to small perturbations which can
usually lead to gross classification errors in DNNs. Inspired by the seminal work on
efficiently training BNNs [3], recent efforts either explore how BNN accuracy can
be improved, apply BNNs to different application domains, or explore how BNNs
can be implemented efficiently in hardware to leverage their low computation power
and memory requirements in resource constrained environments.

BNNs utilize the sign function to convert real valued weights to +1 or −1.
But this typically leads to complications in training as the gradient for the sign
function always results in a zero. A heuristic called straight through estimator
(STE), introduced in [50], can be used to circumvent this issue. STEs approximate
the gradient by bypassing the gradient of the layer, by turning it into an identity
function. The gradient thus obtained is used for updating real valued weights, using
standard optimization strategies such as Adam or stochastic gradient descent (SGD).
This process is utilized for activation parameters as well. Also, the use of batch
normalization (BN) layers in BNNs has been shown to lead to several benefits [4].
The gain (γ) and bias (β) terms of the BN layer not only help condition the values
during training, which speeds up BNN training, but also helps to improve accuracy
in BNNs.

Inference accuracy in BNNs can be increased by considering partially binarized
BNNs, where selected layers have their parameters at higher precision. The last
layer is usually not binarized to avoid severe loss in accuracy. With detailed analysis
of the model, critical layers can be identified and can be kept at higher precision,
for better accuracy, at the cost of increased resource (computation, memory)
utilization. We conduct a BNN accuracy analysis to determine the appropriate

366 F. P. Sunny et al.

Fig. 2 The accuracy sensitivity study conducted by varying activation parameter precision
(number of bits). Weights are kept as binary values in all cases. The study was performed across
four different models and their datasets (described later in Sect. 6.1)

activation parameter precision in considered models, which is required to determine
the digital-to-analog converter (DAC) resolution in our accelerator architecture. In
this analysis, weight parameters were restricted to binary (1-bit) values, but the
bit precision level of the activations was altered from 1 bit to 16 bits. During
BNN training, we ensured that we only binarize weights during the forward and
backward propagations but not during the parameter update step, because keeping
good precision weights during the updates is necessary for SGD to work at all
(as parameter changes are usually tiny during gradient descent). After training, all
weights were in binary format, while the precision of input activations was varied.
Figure 2 shows the results of varying activation precision across four different
models and their datasets (described later in Sect. 6.1). We observed that the
accuracy had notable change initially as activations bits were increased, but this
gain in accuracy soon saturated. Based on the results, we consider binary (1-bit)
weights with 4-bit activations and thus use 4-bit DACs in our architecture.

5 ROBIN Architecture

In this section, we describe the various optimization considerations at device, circuit,
and architecture level used for designing the ROBIN architecture.

Light Speed Machine Learning Inference on the Edge 367

5.1 Tuning Circuit Design

A tuning circuit design is essential for fast and accurate operation of MRs in our
BNN accelerator. The presence of fabrication-process variations (FPVs) can impact
MR operations by altering their resonant wavelength (λMR) from the originally
designed values. The errors caused by this shift can be significantly reduced by
using an appropriate MR tuning circuit. The tuning circuit employed can be either
thermo-optic (TO) or electro-optic (EO) tuning circuits. Thermo-optic(TO)-based
tuning mechanisms use microheaters to change the temperature in the proximity of
a microring resonator (MR), which then alters the effective index (neff) of the MR.
This in turn changes the λMR of the device. Such a change in resonant wavelength
(�λMR) can help compensate for fabrication process and thermal variations in MRs.
The electro-optic (EO)-based tuning mechanisms in an MR is based on the depletion
and injection of carriers on a PN diode. However, only small shifts in an MR’s
resonant wavelength can be compensated using this mechanism (i.e., EO has a
limited correction range). TO tuning is preferred to compensate for large shifts in
MR’s resonant wavelength. However, one has to compromise on latency (~μs range)
and power consumption, which is higher than for EO tuning. To reduce ROBIN’s
reliance on TO tuning, which entails high overheads, the possibility of a hybrid
tuning mechanism was explored. In this hybrid tuning mechanism, both TO and EO
tuning are used to compensate for �λMR. Such a tuning method has been proposed
earlier [51] and can be easily transferred to an optimized MR (as discussed in Sect.
5.2) for hybrid tuning in our architecture. Such a mechanism would significantly
reduce the overhead caused just by TO tuning.

To reduce the power overhead of TO tuning in such a hybrid approach, we adapt
a method called thermal eigenmode decomposition (TED), which was first proposed
in [52] that involves collectively tuning all the MRs in an MR bank. By doing so
we can cancel the effect of crosstalk (i.e., undesired phase shift) in MRs with much
lower power consumption. The amount of phase crosstalk induced from one MR on
another MR, placed adjacent to each other, can be modeled using the trend in Fig. 3
(pink line). In this figure, as the distance between two devices (MRs) increases, the
amount of phase crosstalk between them reduces. Correspondingly, as an example
we calculate the tuning power compensation for an MR bank consisting of 10 MRs
and different radii placed at a distance (d) from each other. A few important trends
to observe from Fig. 3 are (i) as the radius of an MR increases, tuning power
compensation for �λMR increases; (ii) without TED (collective tuning of MRs),
the tuning power consumption is high, indicating that each MR would require more
power to compensate for respective shifts in resonant wavelength (�λMR); (iii)
by employing TED, we see a significant reduction in tuning power consumption:
51% (radius of 1.5 μm) and 41% (radius of 5 μm) when MRs are placed at a
distance of 5 and 7 μm apart from each other, respectively. Though placing MRs
further close to each other would yield better compensation in power, one must
take into account the placement and routing of tuning circuit for each MR in an
MR bank. Additional power reduction can be obtained by performing device level

368 F. P. Sunny et al.

Fig. 3 Tuning power compensation in a block of 10 MRs placed with and without considering
thermal eigenmode decomposition (TED) for different MR radius. The orange line represents phase
crosstalk ratio variation with distance between MRs

optimizations, as designing MRs tolerant to FPVs would reduce the total power used
to compensate for fabrication variations.

5.2 Device-Level Optimization

We explore different MR designs to accommodate different needs in our ROBIN
architecture such as multi-bit precision for activation values, single-bit precision for
weight value representation, and batch normalization.

5.2.1 Fabrication-Process Variation Resilience

FPVs cause undesirable changes in device critical dimensions (e.g., width and
thickness), which cause resonant wavelength shifts (�λMR). To address �λMR,
we explore the impact of change in device parameters such as waveguide width,
thickness, gap between input and ring waveguide, and radius using our in-house MR
device-exploration tool. We map the behavior of different changes in the waveguide
width, thickness, and radius in MRs due to FPVs. Figure 4a shows one of our design
exploration results where we understand and observe the behavior of resonant
resonant-wavelength shift slopes due to change variations in the waveguide width,
thickness, and radius represented by orange, green, and blue lines, respectively.

Light Speed Machine Learning Inference on the Edge 369

Fig. 4 (a) Resonant-wavelength shift slopes with respect to changes in waveguide width, thick-
ness, and radius and corresponding cross-over coupling (κ), when the input waveguide (w_i) is
set to 400 nm the marked point represents our selected MR design; (b) the different MR designs
considered in this work

370 F. P. Sunny et al.

Resonant wavelength shift slope due to change in waveguide width (∂λMR/∂w) can
be given as:

∂λMR

∂w
=

∣
∣
∣
∣

(�λMR (λ, w + εW , t, R) − �λMR (λ, w − εW , t, R))
2εW

∣
∣
∣
∣

(1)

In Eq. (1), εw denotes a small change in waveguide width and ΔλMR depends on
changes in width (w), thickness (t), and radius (R). Similarly, ∂λMR/∂(t,R) can also
be approximated.

Figure 4a clearly shows that the impact of resonant-wavelength shift reduces
as we increase the waveguide width, whereas the impact of thickness and radius
variations remains constant. From the conducted experiments, �λMR is more
sensitive to changes in waveguide width, hence the impact of �λMR reduces as the
waveguide width is increased. We employ Lumerical MODE [53], an Eigen mode
solver to calculate these shifts in resonant wavelengths. One can easily overcome
higher-order mode excitation by employing adiabatic designs [53] and waveguide
tapers [54] in MRs with wider waveguides. Such a design translates to lesser tuning-
power consumption due to FPVs.

5.2.2 Multi-Bit Precision MRs

As discussed in Sect. 4, increasing the number of bits used to capture activations in
a model can boost the model accuracy in BNNs. However, we observed that there
is not a significant accuracy boost beyond 4-bit activation values; hence, we explore
MR designs which can achieve a resolution of 4 bits. To achieve a resolution of 4
bits, we have to take into consideration how the optical signals from MRs impact
each other due to crosstalk. We consider calculations from [55] to define the amount
of noise from one MR on the other:

φ (i, j) = δ2

(λi−λj)
2+δ2

, (2)

where φ(i − j) describes the noise content from the jth MR present in the signal
from the ith MR, (λi − λj) is the difference between the resonant wavelengths
(λi, λj), and δ = λ/(2 · Q − factor). The quality factor or Q-factor is a measure
of the sharpness of the resonance relative to the central frequency of a microring
resonator (MR) that impacts the optical channel spacing, crosstalk, bandwidth, and
other factors in the MR [56]. A sharper resonance (i.e., a higher Q-factor) can
result in increased susceptibility to noise, as even a small change in the central
frequency of the MR (due to perturbance) can lead to large losses. This limits
the achievable resolution of the parameters being represented. Thus, smaller Q
factors are preferred. However, too small a Q-factor can also lead to larger device
dimensions and higher optical crosstalk, which in turn can lead to larger losses and
higher tuning power requirements. Q-factor in an MR is defined as follows:

Light Speed Machine Learning Inference on the Edge 371

Q − factor = λMR
FWHM , (3)

where FWHM is the full width at half maximum of a resonance spectrum which can
be defined for an all-pass ring resonator (see Fig. 4) as follows:

FWHM = (1−ra)λ2
MR

πngL
√

ra , (4)

where r is the self-coupling coefficient and a is the single-amplitude transmission,
including both the propagation loss in the ring and the loss in the couplers; this
can be written as a = e−αL, where α is power attenuation coefficient. L is round
trip length or the circumference of the MR. In this chapter, we assume a lossless
coupler in our designed MRs, hence |κ|2 + |r|2 = 1, where κ is the cross-over
coupling coefficient. For ideal cases with zero attenuation, a ≈ 1. Based on the
above equations, the noise power component can thus be calculated as:

Pnoise = ∑(n−1)
j φ (i, j) Pin [i] (5)

For power intensity (Pin) of 1, the resolution can be computed as:

Resolution = 1
max|Pnoise| , (6)

To achieve a bit resolution of at least 4 bits, we need MRs with a Q-factor of
≈5000 (from Eq. (6)) while being tolerant to FPVs. Q-factor is highly sensitive to
losses and change in dimensions of MR. In order to achieve the specific Q-factor
value, we select the following MR dimensions: input waveguide width of 400 nm
and ring waveguide width of 760 nm and radius (RM) of 5 μm. This MR design,
as shown in Fig. 4a (magenta line), provides improved tolerance to FPV, desirable
Q-factor, and smaller area consumption. Such an MR design with Q-factor of 5000
allows enough levels of distinction between bits by slightly changing intensity and
helps easily detect optical signal at the output port satisfying the requirement for
multi-bit precision of activation values.

5.2.3 Single-Bit MRs

In our architecture, we represent weight values with a single bit, and this requires
just two levels of precision with the output signal from an MR. An MR of high Q
factor may be used here, as we do not have to have high resolution here. Compact
ring designs with high Q-factor have been proposed in [57, 58]. The work in [58]
proposes an MR design with radius 1.5 μm to achieve a high Q-factor of 46,000
without the consideration of sidewall roughness while maintaining low bending loss
≈7 cm−1. Similarly, an adiabatic MR structure of radius 3 μm is designed in [57]
to avoid higher order mode excitation where a high Q-factor of 27,000 is achieved.
These works indicate that such high Q-factor rings can be designed.

372 F. P. Sunny et al.

For one-bit weight representation in ROBIN, we design a ring of radius 1.5 μm,
as shown in Fig. 4b, with input waveguide (wi) and ring waveguide (wr) width
both set to 450 nm, to achieve a Q-factor of 25,000 that corresponds to a bit
resolution of 1 from Eq. (6). These designs allow our architecture to save on area
and tuning power consumption. We acknowledge that FPVs are an inevitable part
of the fabrication process. However, since we just need to differentiate between two
levels of operations, we do not explore for designs that are tolerant towards FPVs,
for single-bit MRs.

5.2.4 Broadband MRs

Batch normalization (BN) layers can be considered essential in BNNs as they
add complexity to the models, via the gain (γ) and bias (β) terms of the layer.
These terms are learned during the training process along with the normalization
parameters of the batch mean (μ) and standard deviation (σ). During the training
phase, these terms are dynamic, but during inference they have static values. This
allows for a hardware implementation of a photonic version of batch normalization
folding, where we may tune weights as per the following equation:

wfold = γ · W√
σ 2+ε

= Cfold·W (7)

There is a similar equation for bias terms as well, but since BNN models benefit
from batch normalization after every layer, these will be normalized out and hence
can be ignored. The above constant, Cfold, is applied to every weight term and hence
is a participant in every matrix multiplication operation, i.e.:

Inputl+1 = f
(

Al · (wfold)l
) = Cfold· f (Al · Wl) (8)

In Eq. (8), Inputl + 1 refers to the input to the (l + 1)th layer, f () is nonlinear
activation function, Al is the activation of lth layer, and Wl is the weights from lth
layer. This operation can be applied to partial sums as well, and can be implemented
using a broadband photonic device with its gain tuned to reflect Cfold.

For implementing the photonic batch normalization, a broadband device is
preferred as this allows simultaneous gain tuning of all the wavelengths in the
waveguide efficiently, both area and energy wise. Hence, the last type of MRs we
consider are broadband MRs that are needed for batch normalization (BN) layers
due to their relevance in BNNs. A large passband can be achieved by cascading
several MRs and properly selecting the design parameters of MRs [59]. We explore
such a higher order MR, or cascaded MR filter, to achieve a wide passband. The
work presented in [60] explores a possibility for passband widths ranging from
6.25 Ghz to a maximum of 3 Thz. This work explores different design parameters of
a higher-order filter while evaluating different losses such as insertion, propagation,
and coupling loss in higher order MRs. A 0.5 nm resonant wavelength shift of MR

Light Speed Machine Learning Inference on the Edge 373

was reported for a fabrication error of 10 nm showing that such a design is tolerant
to FPVs.

A third-order MR-based switching device with radius of 2 μm shown in Fig. 4b
fits the requirement for broadband MR. The coupling coefficients at the input (. κ2

i)
is 0.53, and coupling at higher order rings is 0.2. The propagation loss of 25 dB/cm
has been reported and insertion loss of the two elements in higher-order filter are
4.35 dB and 0.36 dB, respectively [59]. Having such a design, one can achieve a
flat-top passband with bandwidth width of at least 3 THz. Employing this broadband
MR can help us apply the batch normalization parameter Cfold on all the available
resonant wavelengths in the bank. Having a large bandwidth such as 2.5 Thz allows
us to conveniently tune up to 20 different wavelengths.

5.3 Architecture Design

An overview of the ROBIN accelerator architecture is shown in Fig. 5. The
optical device and tuning circuit optimizations from the previous subsections are
utilized within the optical binary vector dot product (VDP) units. We use banks
of heterogeneous MRs (described in Sect. 5.2) to imprint activation parameters,
weights, and the BN layer constants onto optical signals. Multiple such VDP units
are composed together to form the overall architecture, as shown in the figure, which
is then used to accelerate a given BNN model. We utilize a photonic summation
unit for summing the partial sum outputs from our VDPs, before passing the partial
sums on to the electronic control unit (ECU), as shown in Fig. 5. We also rely on
the ECU for fetching parameters from the global memory, decomposing them to
lower dimensional vectors, distributing these vectors among the VDP units, and
implementing nonlinear activations functions and pooling layers. We describe the
working of the ROBIN architecture in more detail in the following subsections.

5.3.1 Decomposing Vector Operations

To map convolution (CONV) and fully connected (FC) layers from BNN models
to our accelerator, we first need to decompose large vector sizes into smaller ones,
so they can be mapped to the VDP array in our architecture. This decomposition
approach can be explained as follows.

In CONV layers, a filter performs convolution on a patch (e.g., 2 × 2 elements)
of the activation matrix in a channel to generate an element of the output matrix.
The operation can be represented as:

KA = Y. (9)

Assuming a 2 × 2 filter kernel and weight matrices, Eq. (9) can be rewritten as:

374 F. P. Sunny et al.

Fig. 5 An overview of the ROBIN architecture, showing the electronic control unit, the photonic
vector dot product (VDP) unit array, and the photonic summation unit, along with a detailed view
of the VDP unit internal structure

[

k1 k2

k3 k4

] [

a1 a2

a3 a4

]

= k1a1 + k2a2 + k3a3 + k4a4, (10)

Rewriting Eq. (10) as a vector dot product, we have:

[

k1 k2 k3 k4

]

·

⎡

⎢
⎢
⎣

a1

a2

a3

a4

⎤

⎥
⎥
⎦ = k1a1 + k2a2 + k3a3 + k4a4, (11)

Once we can represent the operation as a vector dot product, it is easy to see how
it can be decomposed into partial sums. For example:

[

k1 k2
] ·

[

a1

a2

]

= k1a1 + k2a2 = PS1, (12a)

[

k3 k4
] ·

[

a3

a4

]

= k3a3 + k4a4 = PS2, (12b)

PS1 + PS2 = Y. (12c)

In FC layers, typically much larger dimension matrix-vector multiplication
operations are performed between input activation vectors and weight matrices.
Therefore, we have:

Light Speed Machine Learning Inference on the Edge 375

A· W =

⎡

⎢
⎢
⎢
⎣

a1

a2
...

an

⎤

⎥
⎥
⎥
⎦

·
[

w1 w2 · · · wn

]

, (13)

A·W =

⎡

⎢
⎢
⎢
⎣

a1·w1 + a1·w2 + · · · + a1·wn

a2·w1 + a2·w2 + · · · + a2·wn

...

an·w1 + an·w2 + · · · + an·wn

⎤

⎥
⎥
⎥
⎦

. (14)

In Eq. (13), a1 to an represent column vectors of activations (A), and w1 to wn

represent row vectors of weight matrix (W). The resulting vector is a summation of
dot products of vector elements Eq. (14). Similar to the decomposition of CONV
operation, these can then be decomposed into lower dimensional dot products.

5.3.2 Vector Dot Product (VDP) Unit Design

As discussed in Sect. 5.3.1, we decompose matrix operations to lower dimensional
vector dot product operations. These vector dot product operations are executed
optically within our VDP units. The heterogeneous MR designs combined with
optical circuit-level optimizations for area and power consumption are utilized to
design VDP units (Fig. 5) suited for accelerating both CONV and FC layers without
compromising on accelerator throughput. For representing weight values, we use
high Q-factor, small radius single-bit MRs described in Sect. 5.2.2. The smaller
radius contributes to lower tuning power and helps reduce propagation loss along
the VDP waveguide. This is possible due to the binarized nature of weight matrices
in BNNs. For activation values, we consider MRs with slightly lower Q-factor,
for better resolution, as discussed in Sect. 5.2.1. Optical BN layer implementation
requires simultaneously tuning all the wavelengths in the waveguide to the batch
normalization constant, and for this, we use third order MR filters, as described in
Sect. 5.2.3. The combination of these heterogeneous designs allows the VDP units
to be highly energy efficient. We also make use of electronic buffering in the VDP
units to reduce the digital to analog converter (DAC) usage. In particular, we make
use of ping-pong buffers, which allow us to use a single DAC array to feed the
activation devices in all the waveguides in a VDP unit. As weight values are single-
bit values, we can use simple switching circuits to essentially turn the MR tuning
circuits on or off depending on the value of the weight parameters.

In designing a VDP unit, there are several important parameters that must be
carefully considered: number of higher resolution MRs for activation representation
(NA), number of single-bit MRs for weight representation (NW), and number of
broadband MRs (NB) for batch normalization folding implementation. Thus, the

376 F. P. Sunny et al.

total number of MRs per waveguide NMR = NA + NW + NB. The number of
required DACs is equal to NA. By the mathematical property of the dot product
operation, NA must be equal to NW. The number of waveguides to which we
distribute the MRs is denoted as NWG. The maximum size of the vector that
can be represented in a VDP unit is given by NWG ∗ NA. We divide this vector
across multiple waveguides to reduce power consumption, as this allows us to
reuse wavelengths and reduce the overall laser power consumption, as discussed
next, in Sect. 5.3.3. Multiple VDP units work concurrently on parameters from the
same layer and generate partial sums simultaneously, for efficient parallelization
and to increase the throughput of the accelerator. The total VDP unit count
used in ROBIN is NVDP. Thus, the VDP and architecture design process can be
considered as an optimization problem where we try to explore NVDP, NWG, NA (=
NW), and NB values while trying to maximize throughput and minimize area and
power consumption. We present results of this architecture exploration analysis in
Sect. 6.3.

5.3.3 Optical Wavelength Reuse in VDP Units

Prior works on optical accelerator design typically considers a separate wavelength
to represent each individual element of a vector. As the size of the vectors
being mapped increase, this approach leads to an increase in the total number
of lasers needed in the laser bank, which in turn increases power consumption.
Beyond employing the decomposition approach discussed above, we also consider
wavelength reuse per VDP unit to minimize laser power. In this approach, within
VDP units, the vectors assigned from the electronic control unit (ECU) are further
decomposed into smaller sized vectors for which dot products can be performed
using MRs in parallel, in each arm of the VDP unit. By decomposing the mapped
vectors further, same wavelengths can be reused across arms within a VDP to reduce
the number of unique wavelengths required from the laser. Photodetectors (PDs)
perform summation of the element-wise products to generate partial sums from
decomposed vector dot products. The partial sums from the decomposed operations
are then converted back to the optical domain by VCSELs (bottom right of Fig. 5),
multiplexed into a single waveguide, and accumulated using another PD, before
being sent for buffering. Thus, our approach leads to an increase in the number
of PDs and splitters compared to other accelerators but significantly reduces both
the number of MRs per waveguide and the overall laser power consumption. The
reduction in overall power consumption is also assisted by the fact that PDs do not
consume significant power.

In each arm within a VDP unit, we can use a maximum of 15 MRs per bank
for a total of 30 MRs per arm. The choice of MRs per arm considers not only the
thermal crosstalk and layout spacing issues and the benefits of wavelength reuse
(as discussed earlier), but also the fact that optical splitter losses become non-
negligible as the number of MRs per arm increase, which in turn increases laser
power requirements. Thus, the selection of MRs per arm within a VDP unit must

Light Speed Machine Learning Inference on the Edge 377

be carefully adjusted to balance parallelism within/across arms and laser power
overheads.

5.3.4 ROBIN Pipelining and Scheduling

The pipeline and schedule of operations during BNN model execution on the
ROBIN accelerator are shown in Fig. 6. The electronic control unit (ECU) for
the accelerator communicates with the global memory and retrieves the trained
weights for the model being accelerated. The weights are stored in SRAM-based
buffers. Considering the vector granularity of the VDP units, latency of operation of
the photonic core, and the parameter sizes (4-bit activation bits and binary weight
parameters), we can calculate the memory bandwidth necessary. From our analyses
(presented in Sect. 6.3), we found that our architecture needs a maximum bandwidth
of 93.75 GB/s at the ECU to photonic core interface. This is a reasonable bandwidth
assumption for an SRAM-based memory with operating frequency ≥2.5 GHz and a
read width of 250 bits. Previous works, such as [61], have explored similar SRAM
systems but for a much higher bandwidth requirement at 250 GB/s. The lower
bandwidth requirement for our system can be attributed to the smaller parameter
sizes, while the work in [61] considered 16-bit precision for the neural network
parameters. Memory interfaces which exceed the necessary bandwidth are already
available commercially: e.g., NVIDIA Tesla K20M GPUs have 320-bit memory
interfaces at 2.6 GHz which can operate every half clock cycle to provide a
bandwidth of 208 GB/s.

These weight matrices are decomposed to lower dimensional vectors and are dis-
tributed to the VDPs by the ECU’s vector decomposition unit. The decomposition

Fig. 6 Pipelined scheduling of operations during BNN execution on the ROBIN accelerator

378 F. P. Sunny et al.

operation is described by the left-hand side of Eqs. 10, 11, and 12. As described in
the equations, the vector decomposition unit converts matrices to vectors (row-wise
conversion for weight matrices and column-wise conversion for activation matrices)
and then those vectors into sub-vectors. The size of the sub-vectors depends on the
granularity of the VDP units. The received vectors are buffered in the VDP units
and are fed into the DAC array through a ping-pong buffer so that they can keep the
MAC operation running continuously. The partial sums generated are passed on to
the photonic summation unit, the output from which is passed on to the ECU. The
ECU buffers the sums and calculates inputs that are then passed on to the next layer
by subjecting the parameters to nonlinearities (activation functions) and performing
other layer specific operations, like pooling.

The model parameter buffering stage is not repeated every pipeline operation, but
must be repeated as the parameters buffered in the buffers in ECU are depleted (i.e.,
distributed to VDP units). As such, the total time required by ROBIN to perform
inference acceleration for a given model can be given as:

Total time of operation =
Tdel + �t × X + (ECU parameter buffering delay) × x,

(15)

where

�t = local buffer operation delay + vector distribution delay, (16)

X = Total number of parameters in the model
Nw× NVDP

, (17)

x = (Parameters buffered in ECU)
Nw×NVDP

. (18)

Comparing our pipeline to the pipeline presented in the previous work on
photonic BNN acceleration [46], we can observe the following differences:

(i) ROBIN’s pipeline takes into consideration model parameter retrieval from
global memory, buffering in the ECU, and how these parameters are utilized in
the photonic core. The pipeline in [46] does not include these operations in its
pipeline:

(ii) ROBIN’s pipeline considers both ECU and photonic core operation, whereas
the pipeline in [46] is photonic system centric.

(iii) ROBIN utilizes photonic batch normalization folding which does not require
an extra step, whereas in [46] this operation is performed electronically and
requires a separate stage in their pipeline.

Light Speed Machine Learning Inference on the Edge 379

6 Experiments and Results

6.1 Simulation Setup

Several simulation studies were conducted to evaluate the effectiveness of the
ROBIN BNN accelerator. The optimized heterogeneous MR designs, the tuning
circuit optimizations, and architectural level considerations discussed so far were
included in our simulation considerations.

The operation of the ROBIN architecture was simulated using a custom Python
simulator to estimate its performance in terms of power, frames per second (FPS)
performance, and energy consumption. For analyzing the inference accuracy across
different activation precision and the impact of FPV noise on the inference accuracy,
we used Tensorflow 2.3 along with Qkeras [62]. Figure 7 shows the training
accuracy versus epoch graph of the models described in Table 1, to illustrate the
accuracy and loss across the epochs.

Fig. 7 The training accuracy vs epoch for the BNN models considered for (a) Sign MNIST, (b)
CIFAR10, (c) STL10, and (d) SVHN datasets. (a) shows top-1 accuracy, while (b–d) show top-5
accuracy

380 F. P. Sunny et al.

Table 1 Models and datasets used for evaluations

Model no. CONV layers FC Layers BN layers Parameters Datasets

1 2 2 3 60,642 Sign MNIST
2 6 3 6 1,546,570 CIFAR10
3 6 3 7 13,570,186 STL10
4 6 2 6 552,362 SVHN

Table 2 Parameters
considered for analysis of
photonic accelerators

Devices Latency Power

EO tuning [49] 20 ns 4 μW/nm
TO tuning [34] 4 μs 27.5 mW/FSR
VCSEL [70] 10 ns 0.66 mW
TIA [71] 0.15 ns 7.2 mW
Photodetector [72] 5.8 ps 2.8 mW
DAC [69] 0.33 ns 59.7 mW
ADC [68] 24 ns 62 mW

We compare ROBIN with DEAP-CNN [39] and HolyLight [40], two recent
optical DNN accelerators from prior work, along with LightBulb [46], which is
an optical BNN accelerator, as well as numbers reported from several electronic
DNN and BNN accelerators. For simulating the operation of optical accelerators,
we considered optical signal losses due to various factors: signal propagation loss
(1 dB/cm [8]), splitter loss (0.13 dB [63]), combiner loss (0.9 dB [64]), MR through
loss (0.02 dB [65]), MR modulation loss (0.72 dB [66]), microdisk loss (1.22 dB
[67]), EO tuning loss (6 dB/cm [49]), and TO tuning loss (1 dB/cm [34]). We also
considered the ADC design from [68] and the 4-bit DAC from [69] in our analyses.
The analysis of the optical accelerators (DEAP-CNN [39], HolyLight [40], and
LightBulb [46]) follows the modeling methodology we have adopted for ROBIN,
where we factor in power consumption and delays associated with photonic devices
used in these accelerators. A summary of the power and latency considerations for
our analyses is given in Table 2. These power and latency values were used in
our simulations and latency of operation of our architecture. In order to give better
perspective on the architecture’s performance, a comparison for inference time on
ROBIN and a conventional CPU is presented in Sect. 6.5.

To calculate laser power consumption, we use the following power model:

Plaser − Sdetector ≥ Pphoto−loss + 10 × log10Nλ, (19)

where Plaser is the laser power in dBm, Sdetector is the PD sensitivity in dBm, and
Pphoto − loss is the total loss encountered by the optical signal, due to all of the factors
discussed above.

Light Speed Machine Learning Inference on the Edge 381

6.2 Fabrication-Process Variation Analysis

FPV in optical devices is corrected using TED tuning in our architecture, as
discussed in Sect. 5. At the system level, this tuning leads to significant power
consumption overhead, and any avenue to further reduce tuning power consumption
becomes important. We conduct an FPV noise injection analysis, where we inject
noise, modeled using FPV data, into the MR devices into our ROBIN accelerator,
during the inference phase. This experiment was conducted to (i) study the impact
of FPV induced noise on BNN models mapped to our accelerator; (ii) determine
how effective TED tuning is in such scenarios; and (iii) uncover any opportunities
for further power minimization.

To analyze the impact of FPV on the model and how TED tuning compensates
for it, we first consider the effect of FPV on the shift in resonant wavelength (�λMR)
in MRs. Resonant-wavelength shift in an MR can be modeled from [73] as:

�λMR = ∂λMR
∂w σw + ∂λMR

∂t σt + ∂λMR
∂R σR, (20)

where σw, t, R are the associated standard deviations for waveguide width, thickness,
and radius variations and .

∂λMR
∂(w,t,r)

is the rate of change in the MR resonant
wavelength considering the variations in the waveguide width, thickness, and radius
represented in Eq. (20). We generate virtual FPV maps for the accelerator layout
with a mean (μ) of 0 and standard deviation (σ (w, t,R)) of 4.9, 1.5, and 0.75 nm
for waveguide width, thickness, and radius, respectively. These standard deviation
values are experimentally obtained based on real fabricated MR devices through
our collaboration with CEA-Leti. Using these values, we are able to derive �λMR
using Eq. (20). So, the current resonant wavelength (.λ′

MR) of the FPV affected MR
becomes:

λ′
MR = λMR + �λMR, (21)

Due to a shift in λMR, the transmission of the wavelength through the MR
is impacted. The intensity of the wavelength at the through port is given by the
following equation from [56].

T = Iout
Iin

= a2−2racosφ+r2

1−2arcosφ+ra2 , (22)

In Eq. (22), φ = βL, with L being the roundtrip length and β the propagation
constant β = 2π /λ of the circulating mode and r2 is the self-coupling coefficient
of an MR. A detailed analyses for the calculation of r using super mode theory is
presented in [74]. The output intensity from the MR is important, as for noncoherent
MAC units, the parameter values are encoded onto the signal intensity, and a change
in expected output can be seen as perturbation or noise source.

382 F. P. Sunny et al.

Fig. 8 Inference accuracy versus level of tuning applied. At 80% tuning, the inference accuracy
saturates, rendering further tuning unnecessary, and providing an opportunity to save tuning power

The noise injection was modeled using Eqs. (20, 22), where we consider the
resonant-wavelength shift (�λMR) in MRs due to FPV and its impact on the
parameters imprinted on the MRs. From our analysis using the FPV data from
our device fabrications with CEA-Leti, and Eq. (18), we are able to obtain the
mean and standard deviation values for �λMR in a wafer. The values calculated
are μ = − 0.1461 nm and σ = 24.417 nm . Using these values, 50 �λMR maps
for the accelerator were generated and then using Eq. (22) the perturbation to the
parameters imprinted on to the devices were modeled. Noise injection to the models
was performed at inference time using TensorFlow.

Figure 8 shows the results of this experiment, where we explored the impact of
FPV-induced noise in the four BNN models and the effect of TED tuning for FPV
compensation. We expected that the better the devices were tuned, the better the
accuracy that would be exhibited by the accelerator. But it was observed that the
model’s accuracy can be sustained without perfectly tuning the devices. Figure 8
shows that at 80% FPV correction through tuning, the BNN retains appreciable
inference accuracy. Thus, there is not a significant accuracy benefit to tune beyond
the 80% level; this allows for a 20% reduction in tuning power requirement. This
reduction in tuning power is factored into our architecture level analysis, which is
presented next.

Light Speed Machine Learning Inference on the Edge 383

6.3 ROBIN Architecture Optimization Analysis

In this section, we show results of our exploration of the parameters discussed in
Sect. 5.3.2. As mentioned in Sect. 5.3.2, we try to optimize NVDP, NWG, NA, and
NB to reduce area and power consumption while trying to obtain the best throughput
(frames per second or FPS) possible. NB was fixed to be 1 per waveguide, allowing
us to have up to 20 wavelengths in the same waveguide with a channel spacing
of 1 nm, which in turn allows us to tune all the MRs simultaneously to the
BN layer parameters. We then explored NVDP, NWG, and NA, with the goal of
optimizing power, area, and FPS. The result of this exploration analysis is shown
in Fig. 9 in the form of a scatter plot. From this analysis, we identified two
configurations for ROBIN, where one is optimized for FPS/Watt, with lowest area
and power consumption (energy optimized ROBIN or ROBIN-EO), and another with
the best FPS but with higher area and power consumption (performance optimized
ROBIN or ROBIN-PO). In terms of (NA, NVDP, NWG), these configurations can
be represented as (10, 50, 10) for ROBIN-EO and (50, 200, 10) for ROBIN-PO.
These configurations were compared against other optical and electronic DNN/BNN
accelerator platforms, to showcase their efficiency of operation. The results for these
comparisons with other accelerators are presented in the following section.

Fig. 9 Scatterplot of average FPS vs. average EPB vs. area of various ROBIN configurations.
The configuration with highest FPS/Watt (energy optimized or EO) and the one with best FPS
(performance optimized or PO) are specified

384 F. P. Sunny et al.

6.4 Comparison with State-of-the-Art Optical and Electronic
DNN/BNN Accelerators

We compared ROBIN-EO and ROBIN-PO against various electronic and optical
neural network acceleration platforms. For optical DNN accelerator platforms, we
selected DEAP-CNN [39] and HolyLight [40]. The electronic accelerator platforms
considered are GPU (Nvidia Tesla P100), SIGMA [75], Edge TPU [76], DaDianNao
[77], and FPGA implementation of Null Hop [78]. We also compare ROBIN against
the best-known previous photonic BNN accelerator, LightBulb [46].

When compared to LightBulb, ROBIN has the following differences:

(i) ROBIN is designed to accelerate partially binarized neural networks, as
opposed to fully binarized neural networks as in [46], for obtaining better
accuracies.

(ii) ROBIN utilizes photonic batch normalization folding for faster, energy-efficient
batch normalization layer operation whereas [46] relies on an electronic
implementation of the batch normalization operation.

(iii) ROBIN has various circuit- and device-level optimizations in place to coun-
teract thermal and process variations, which also ensure high-throughput and
energy-efficient operation, whereas [46] does not take into account thermal and
process variations and the necessary tuning latency and energy consumption
overheads needed to counter them.

(iv) Architecture-level optimizations in ROBIN ensure lower power consumption
in terms of tuning and laser power; these considerations are not part of
the architecture proposed in [46]. We also compare against electronic BNN
accelerators FBNA [79] and FINN [80]. We used the GOPS and power
consumption parameters from [8, 81] to simulate inference on the electronic
platforms.

Figure 10 shows the power comparison across the accelerators from prior work
and the two ROBIN variants. It can be observed that ROBIN-PO has substantially
higher power consumption than ROBIN-EO, as ROBIN-PO is focused on FPS
performance rather than energy conservation. ROBIN-PO has a much larger vector
granularity per VDP unit along with substantially higher VDP unit count to
maximize parallelism, when compared to ROBIN-EO. The larger unit count and
the waveguide count in ROBIN-PO drive its power requirements higher. On the
other hand, it can be observed that the energy- and area-efficient ROBIN-EO
has comparable power consumption to that of edge and mobile electronic neural
network accelerators.

In Fig. 11, we compare the energy-per-bit values (EPB) across the various BNN
accelerators considered in this work. We can observe that both the ROBIN variants
perform significantly better than the optical accelerators in comparison. This lower
EPB is owing to the meticulous device, circuit, and architecture level optimizations
we have considered in our architecture, which takes into account various losses
and delays at the architecture level and counteracts them. The heterogeneous MRs

Light Speed Machine Learning Inference on the Edge 385

Fig. 10 Power consumption comparison among variants of ROBIN versus other optical acceler-
ators (DEAP-CNN, Holylight, LightBulb) and electronic accelerator platforms (P100, SIGMA,
EdgeTPU, DaDianNao, Null Hop, FINN, and FBNA)

Fig. 11 EPB comparison between electrical BNN accelerators, optical accelerators, and the
ROBIN variants

used in ROBIN provide energy and area benefits, and the utilization of TED
for collectively tuning MRs provides further energy benefits on top of the 20%
reduction we obtained from the analysis in Sect. 6.3. TED also allows for closer
placement of MRs, which in turn helps reduce propagation delays. This reduction
is also impacted by the faster inputs to DAC arrays enabled by local buffering and
ping-pong buffers in the VDP units.

386 F. P. Sunny et al.

Fig. 12 Average FPS/Watt among different accelerator platforms, visualized

Fig. 13 FPS comparison between the ROBIN variants and the electronic BNN accelerators

Finally, in Fig. 12 we present the average FPS/Watt comparison between the
various accelerator platforms. Both the ROBIN variants perform well against the
accelerator platforms to which they were compared against. ROBIN-EO outperforms
all other platforms other than FBNA and FINN. This is owing to the extremely low
power consumption reported by these BNN accelerators. However, the ROBIN vari-
ants display superior FPS performance with respect to these electronic accelerators,
as can be seen in Fig. 13.

In summary, this work showcases the effectiveness of cross-layer design of
BNN accelerators with the emerging silicon photonics technology for energy-/area-
efficient implementations and for performance-oriented designs. Overall, we can see

Light Speed Machine Learning Inference on the Edge 387

Table 3 Inference time on ROBIN-PO and Intel i7 desktop for the four models considered in
evaluations

Inference time (for one image)
Model no. Parameters Datasets ROBIN-PO (μs) i7-4790 (ms)

1 60,642 Sign MNIST 0.0218 0.16
2 1,546,570 CIFAR10 0.28 1.75
3 13,570,186 STL10 2.3 2.5
4 552,362 SVHN 0.11 1.25

that our energy-efficient design (ROBIN-EO) exhibits EPB values ~4× lower than
electronic BNN accelerators and ~933× lower than the photonic BNN accelerator,
while the performance-oriented design (ROBIN-PO) shows ~3× and ~25× better
FPS than the electronic and photonic BNN accelerators, respectively. With the
growing maturity of silicon photonic device fabrication in CMOS-compatible
processes, it is expected that the energy costs of device tuning, losses, and laser
power overheads will go further down, making an even stronger case for considering
optical-domain accelerators for deep learning inference.

6.5 Comparison to CPU-Based Inference

To highlight the advantage of dedicated inference acceleration, we have compared
the performance of our ROBIN architecture against a standard desktop CPU
performing inference on these models. The CPU we have considered is an Intel i7-
4790, and we have used Tensorflow to analyze the latency for inference. The CPU,
i7-4790, is reported to have an average power consumption of approximately 103 W.
This power consumption is comparable to the ~90 W we report for the ROBIN-PO
variant. The summary of observations for inference time is shown in Table 3. The
ROBIN accelerator is observed to provide several orders of magnitude reduction in
inference time for all the four models and datasets, compared to the Intel i7 system.

7 Conclusion

In this chapter we proposed ROBIN, an optical-domain BNN accelerator which
utilizes device-level, circuit-level, and architecture-level optimizations to save on
energy and area while improving overall throughput. Through our optimization
efforts, we identified two variants of ROBIN: ROBIN-EO, which is optimized for
energy and area efficiency, and ROBIN-PO, which exhibits higher FPS performance,
at the expense of greater power consumption. Our simulation analysis showed
that ROBIN exhibits significantly better EPB performance than the various state-
of-the-art optical neural network accelerators. Owing to significantly lower power

388 F. P. Sunny et al.

consumption reported by the electronic BNN accelerators considered, ROBIN vari-
ants are not able to obtain better FPS/Watt than them, but upon closer examination,
both ROBIN variants can be seen to have better throughput than the electronic BNN
accelerators. These results highlight the promise of our proposed ROBIN accelerator
for accelerating BNN model execution for resource-constrained platforms.

The work described in this chapter is focused on BNN acceleration using
photonic systems. In this work, we considered how photonic systems can be
used to accelerate the partially binarized networks, with weights remaining binary,
while activations being multi-bit parameters. To improve on this work, one may
consider employing mixed quantization in the models considered, where different
layers have different levels of quantization for their activation parameters. This
can enable better accuracy for the considered models. The photonic system-
and device-level optimizations discussed in this chapter are not limited to BNN
inference accelerators. These techniques may also be considered for other non-BNN
accelerators for DNN/CNNs as well.

References

1. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M.,
Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, W., Hagmann, R.,
Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan,
A., Khaitan, H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu,
Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan,
R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,
Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J.,
Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V.,
Walter, R., Wang, W., Wilcox, E., Yoon, D.H.: In-datacenter performance analysis of a tensor
processing unit. In: ISCA. IEEE (2017)

2. Intel Movidius VPU. [Online]: https://www.intel.com/content/www/us/en/products/
processors/movidius-vpu/movidius-myriad-x.html (2020)

3. Coubariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: BinaryNet: training
deep neural networks with weights and activations constrained to +1 or −1. arXiv 2016,
arXiv:1602.02830

4. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks.
In: NIPS. Curran Associates, Inc. (2016)

5. Waldrop, M.M.: The chips are down for Moore’s law. Nat. News. 530(7589), 144 (2016)
6. Pasricha, S., Dutt, N.: On-Chip Communication Architectures. Morgan Kauffman (2008).

ISBN 978-0-12-373892-9
7. Ziabari, A.K., Abellán, J.L., Ubal, R., Chen, C., Joshi, A., Kaeli, D.: Leveraging silicon-

photonic noc for designing scalable GPUs. In: ACM ICS. ACM (2015)
8. Bahirat, S., Pasricha, S.: METEOR: hybrid photonic ring-mesh network-on-chip for multicore

architectures. ACM Trans. Embed. Comput. Syst. 13(3), 1–33 (2014)
9. Bahirat, S., Pasricha, S.: HELIX: design and synthesis of hybrid nanophotonic application-

specific network-on-chip architectures. In: IEEE International Symposium on Quality Elec-
tronic Design (ISQED). IEEE (2014)

10. Bahirat, S., Pasricha, S.: 3D HELIX: design and synthesis of hybrid nanophotonic application-
specific 3D network-on-chip architectures. In: Workshop on Exploiting Silicon Photonics for
Energy efficient Heterogeneous Parallel Architectures (SiPhotonics). IEEE (2014)

 15137 38291 a 15137 38291
a

https://www.intel.com/content/www/us/en/products/processors/movidius-vpu/movidius-myriad-x.html

Light Speed Machine Learning Inference on the Edge 389

11. Bahirat, S., Pasricha, S.: A particle swarm optimization approach for synthesizing application-
specific hybrid photonic networks-on-chip. In: IEEE International Symposium on Quality
Electronic Design (ISQED). IEEE (2012)

12. Bahirat, S., Pasricha, S.: UC-PHOTON: a novel hybrid photonic network-on-chip for multiple
use-case applications. In: IEEE International Symposium on Quality Electronic Design
(ISQED). IEEE (2010)

13. Bahirat, S., Pasricha, S.: Exploring hybrid photonic networks-on-chip for emerging chip
multiprocessors. In: IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). IEEE (2009)

14. Chittamuru, S.V.R., Thakkar, I., Pasricha, S., Vatsavai, S.S., Bhat, V.: Exploiting process
variations to secure photonic NoC architectures from snooping attacks. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, (TCAD). IEEE (2021)

15. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: LIBRA: thermal and process variation aware
reliability management in photonic networks-on-chip. IEEE Trans. Multi-Scale Comput. Syst.
4(4), 758–772 (2018)

16. Chittamuru, S.V.R., Dharnidhar, D., Pasricha, S., Mahapatra, R.: BiGNoC: accelerating big
data computing with application-specific photonic network-on-chip architectures. IEEE Trans.
Parallel Distrib. Syst. 29(11), 2402 (2018)

17. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: HYDRA: heterodyne crosstalk mitigation with
double microring resonators and data encoding for photonic NoC. IEEE Trans. Very Large
Scale Integr. VLSI Syst. 26(1), 168–181 (2018)

18. Chittamuru, S.V.R., Desai, S., Pasricha, S.: SWIFTNoC: a reconfigurable silicon-photonic
network with multicast enabled channel sharing for multicore architectures. ACM J. Emerg.
Technol. Comput. Syst. 13(4), 1–27 (2017)

19. Chittamuru, S.V.R., Pasricha, S.: Crosstalk mitigation for high-radix and low-diameter pho-
tonic NoC architectures. IEEE Des. Test. 32(3), 29–39 (2015)

20. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: Mitigating the energy impacts of VBTI aging
in photonic networks-on-chip architectures with multilevel signaling. In: IEEE Workshop on
Energy-Efficient Networks of Computers (E2NC). IEEE (2018)

21. Pasricha, S., Chittamuru, S.V.R., Thakkar, I., Bhat, V.: Securing photonic NoC architec-
tures from hardware trojans. In: IEEE/ACM International Symposium on Networks-on-Chip
(NOCS). IEEE (2018)

22. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: SOTERIA: exploiting process variations to
enhance hardware security with photonic NoC architectures. In: IEEE/ACM De-sign Automa-
tion Conference (DAC). IEEE (2018)

23. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: Improving the reliability and energy-efficiency
of high-bandwidth photonic NoC architectures with multilevel signaling. In: IEEE/ACM
International Symposium on Networks-on-Chip (NOCS). IEEE (2017)

24. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: Analyzing voltage bias and temperature induced
aging effects in photonic interconnects for manycore computing. In: ACM System Level
Interconnect Prediction Workshop (SLIP). IEEE (2017)

25. Dang, D., Chittamuru, S.V.R., Mahapatra, R.N., Pasricha, S.: Islands of heaters: a novel thermal
management framework for photonic NoCs. In: IEEE/ACM Asia & South Pacific Design
Automation Conference (ASPDAC). IEEE (2017)

26. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: A comparative analysis of front-end and back-end
compatible silicon photonic on-chip interconnects. In: ACM/IEEE System Level Interconnect
Prediction Workshop (SLIP). IEEE (2016)

27. Thakkar, I., Chittamuru, S.V.R., Pasricha, S.: Run-time laser power management in photonic
NoCs with on-chip semiconductor optical amplifiers. In: IEEE/ACM International Symposium
on Networks-on-Chip (NOCS). IEEE (2016)

28. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: PICO: mitigating heterodyne cross-talk due
to process variations and intermodulation effects in photonic NoCs. In: IEEE/ACM Design
Automation Conference (DAC). IEEE (2016)

390 F. P. Sunny et al.

29. Chittamuru, S.V.R., Thakkar, I., Pasricha, S.: Process variation aware cross-talk mitigation
for DWDM based photonic NoC architectures. In: IEEE International Symposium on Quality
Electronic Design (ISQED). IEEE (2016)

30. Chittamuru, S.V.R., Pasricha, S.: SPECTRA: a framework for thermal reliability management
in silicon-photonic networks-on-chip. In: IEEE International Conference on VLSI Design
(VLSI). IEEE (2016). [8] Pasricha, S., Nikdast, M.: A survey of silicon photonics for energy
efficient manycore computing. In IEEE Design and Test, vol. 37, no. 4 (2020)

31. Miller, D.A.: Silicon photonics: meshing optics with applications. Nat. Photonics. 11(7), 403
(2017)

32. Sunny, F., Mirza, A., Nikdast, M., Pasricha, S.: CrossLight: A cross-layer optimized silicon
photonic neural network accelerator. In: ACM/IEEE Design Automation Conference (DAC).
IEEE (2021)

33. Sunny, F., Nikdast, M., Pasricha, S.: SONIC: a sparse neural network inference accelerator
with silicon photonics for energy-efficient deep learning. In: Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE (2022)

34. Pintus, P., Hofbaurer, M., Manganelli, C.L., Fournier, M., Gundavarapu, S., Lemonnier, O.,
Gambini, F.: PWM-Driven thermally tunable silicon microring resonators: design, fabrication,
and characterization. Laser Photonics Rev. 13(9), 1800275 (2019)

35. Sunny, F., Mirza, A., Nikdast, M., Pasricha, S.: ROBIN: a robust optical binary neural network
accelerator. ACM Trans. Embed. Comput. Syst. 20(5), 1–24 (2021)

36. Sunny, F., Taheri, E., Nikdast, M., Pasricha, S.: A survey on silicon photonics for deep learning.
arXiv 2021, arXiv:2101.01751

37. Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Jones, T.B., Hochberg, M., Sun, X., Zhao, S.,
Larochelle, H., Englund, D., Soljacic, M.: Deep learning with coherent nanophotonic circuits.
Nat. Photonics. 11(7), 441–446 (2017)

38. Zhao, Z., Liu, D., Li, M., Ying, Z., Zhang, L., Xu, B., Yu, B., Chen, R.T., Pan, D.Z.: Hardware-
software co-design of slimmed optical neural networks. In: IEEE/ACM ASPDAC. IEEE
(2019)

39. Bangari, V., Marquez, B.A., Miller, H., Tait, A.N., Nahmias, M.A., De Lima, T.F., Peng, H.T.,
Prucnal, P.R., Shastri, B.J.: Digital electronics and analog photonics for convolutional neural
networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 26(1), 1–13 (2020)

40. Liu, W., Liu, W., Ye, Y., Lou, Q., Xie, Y., Jiang, L.: HolyLight: a nanophotonic accelerator for
deep learning in data centers. In: IEEE/ACM DATE. IEEE (2019)

41. Shiflett, K., Wright, D., Karanth, A., Louri, A.: PIXEL: photonic neural network accelerator.
In: HPCA. IEEE (2020)

42. Tait, A.N., De Lima, T.F., Zhou, E., Wu, A.X., Nahmias, M.A., Shastri, B.J., Prucnal, P.R.:
Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7(1), 1–10
(2017)

43. Mourgias-Alexandris, G., Totovic, A., Tsakyridis, A., Passalis, N., Vyrsokinos, K., Tefas, A.,
Pleros, N.: Neuromorphic photonics with coherent linear neurons using dual-IQ modulation
cells. IEEE J. Lightwave Technol. 38(4), 811–819 (2020)

44. Pask, C.: Generalized parameters for tunneling ray attenuation in optical fibers. J. Opt. Soc.
Am. 68(1), 110 (1978)

45. Anderson, J., Sun, S., Alkabani, Y., Sorger, V., El-Ghazawi, T.: Photonic processor for fully
discretized neural networks. In: IEEE ASAP. IEEE (2019)

46. Zokae, F., Lou, Q., Youngblood, N., Liu, W., Xie, Y., Jiang, L.: LightBulb: a photonic-
nonvolatile-memory-based accelerator for binarized convolutional neural networks. In:
IEEE/ACM DATE. IEEE (2020)

47. Totovic, A.R., Dabos, G., Passalis, N., Tefas, A., Pleros, N.: Femtojoule per MAC neuromor-
phic photonics: an energy and technology roadmap. IEEE J. Sel. Top. Quantum Electron. 26(5),
1–15 (2020)

48. Nikdast, M., Nicolescu, G., Trajkovic, J., Liboiron-Ladouceur, O.: Chip-scale silicon photonic
interconnects: a formal study on fabrication non-uniformity. IEEE J. Lightwave Technol.
34(16), 3682–3695 (2016)

Light Speed Machine Learning Inference on the Edge 391

49. Stefan, A., Stöferle, T., Marchiori, C., Caimi, D., Czornomaz, L., Stuckelberger, M., Sousa,
M., Offrein, B.J., Fompeyrine, J.: A hybrid barium titanate–silicon photonics platform for
ultraefficient electro-optic tuning. IEEE J. Lightwave Technol. 34(8), 1688–1693 (2016)

50. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint, arXiv:13126199 (2013)

51. Lu, L., Li, X., Gao, W., Li, X., Zhou, L., Chen, J.: Silicon non-blocking 4× 4 optical switch
chip integrated with both thermal and electro-optic tuners. IEEE Photonics J. 11(6), 1–9 (2019)

52. Milanizadeh, M., Aguiar, D., Melloni, A., Morichetti, F.: Canceling thermal cross-talk effects
in photonic integrated circuits. IEEE J. Lightwave Technol. 37(4), 1325–1332 (2019)

53. Lumerical Solutions Inc.: Lumerical MODE. [Online]. Available: http://www.lumerical.com/
tcad-products/mode/

54. Liu, Y., Sun, W., Xie, H., Zhang, N., Xu, K., Yao, Y., Xiao, S., Song, Q.: Adiabatic and
ultracompact waveguide tapers based on digital metamaterials. IEEE J. Sel. Top. Quantum
Electron. 25(3), 1–6 (2019)

55. Duong, L., Nikdast, M., Le Beux, S., Xu, J., Wu, X., Wang, Z., Yang, P.: A case study of signal-
to-noise ratio in ring based optical networks-on-chip. IEEE Des. Test. 31(5), 55–65 (2014)

56. Bogaerts, W., Heyn, P.D., Vaerenburgh, T.V., De Vos, K., Selvaraj, S.K., Claes, T., Dumon, P.,
Bienstman, P., Thourhout, D.V., Baets, R.: Silicon microring resonators. Laser Photonics Rev.
6(1), 47–73 (2012)

57. Su, Z., Hosseini, E.S., Timurdogan, E., Sun, J., Leake, G., Coolbaugh, D.D., Watts, M.R.:
Reduced wafer-scale frequency variation in adiabatic microring resonators. In: OFC. Optica
Publishing Group (2014)

58. Xu, Q., Fattal, D., Beausoleil, R.G.: Silicon microring resonators with 1.5-μm radius. Opt.
Express. 16(6), 4309–4315 (2008)

59. Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.-P.: Microring resonator channel
dropping filters. IEEE J. Lightwave Technol. 15(6), 998–1005 (1997)

60. Xia, J., Bianco, A., Bonetto, E., Gaudino, R.: On the design of microring resonator devices
for switching applications in flexible-grid networks. In: IEEE International Conference on
Communications (ICC), pp. 3371–3376. IEEE (2014)

61. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: DianNao: a small-
footprint high-throughput accelerator for ubiquitous machine-learning. In: ACM ASPLOS.
ACM (2014)

62. QKeras: https://github.com/google/qkeras
63. Frandsen, L.H., Borel, P.I., Zhuang, Y.X., Harpøth, A., Thorhauge, M., Kristensen, M.,

Bogaerts, W., Dumon, P., Baets, R., Wiaux, V., Wouters, J.: Ultralow-loss 3-dB photonic crystal
waveguide splitter. Opt. Lett. 29(14), 1623–1625 (2004)

64. Tu, Y., Fu, P.H., Huang, D.W.: High-efficiency ultra-broadband multi-tip edge couplers for
integration of distributed feedback laser with silicon-on-insulator waveguide. IEEE Photonics
J. 11(4), 1–13 (2019)

65. Bahirat, S., Pasricha, S.: OPAL: a multi-layer hybrid photonic NoC for 3D ICs. In: IEEE/ACM
ASPDAC. IEEE (2011)

66. Jayatileka, H., Caverley, M., Jaeger, N.A.F., Shekhar, S., Chrostowski, L.: Crosstalk limitations
of microring-resonator based WDM demultiplexers on SOI. In: OIC. IEEE (2015)

67. Timurdogan, E., Sorace-Agaskar, C.M., Hosseini, E.S., Leake, G., Coolbaugh, D.D., Watts,
M.R.: Vertical junction silicon microdisk modulator with integrated thermal tuner. In: CLEO:
Science and Innovations, OSA. IEEE (2013)

68. Shen, J., Shikata, A., Fernando, L.D., Guthrie, N., Chen, B., Maddox, M., Mascarenhas, N.,
Kapusta, R., Coln, M.C.W.: A 16-bit 16-MS/s SAR ADC with on-chip calibration in 55-nm
CMOS. IEEE J. Solid State Circuits. 53(4), 1149–1160 (2018)

69. Wu, B., Zhu, S., We, B., Chiu, Y.: A 24.7 mW 65 nm CMOS SARassisted CT modulator with
second-order noise coupling achieving 45 MHz bandwidth and 75.3 dB SNDR. IEEE J. Solid
State Circuits. 51(12), 2893–2905 (2016)

70. Ruan, Z., Zhu, Y., Chen, P., Shi, Y., He, S., Cai, X., Liu, L.: Efficient hybrid integration of
long-wavelength VCSELs on silicon photonic circuits. IEEE J. Lightwave Technol. 38(18),
5100–5106 (2020)

 24703 9656 a 24703 9656 a

http://www.lumerical.com/tcad-products/mode/

 2784 35116
a 2784 35116 a

392 F. P. Sunny et al.

71. Güngördü, A.D., Dündar, G., Yelten, M.B.: A high performance TIA design in 40 nm CMOS.
In: IEEE ISCAS. IEEE (2020)

72. Wang, B., Huang, Z., Sorin, W.V., Zeng, X., Liang, D., Fiorentino, M., Beausoleil, R.G.: A
low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic
links. IEEE J. Lightwave Technol. 38(12), 3156–3163 (2020)

73. Mirza, A., Sunny, F., Pasricha, S., Nikdast, M.: Silicon photonic microring resonators: design
optimization under fabrication non-uniformity. In: IEEE/ACM Design, Automation and Test
in Europe (DATE) Conference and Exhibition, pp. 484–489. IEEE, Grenoble (2020)

74. Bahadori, M., Nikdast, M., Rumley, S., Yuan Dai, L., Janosik, N., Van Vaerenbergh, T.,
Gazman, A., Cheng, Q., Polster, R., Bergman, K.: Design space exploration of microring
resonators in silicon photonic interconnects: impact of the ring curvature. IEEE J. Lightwave
Technol. 36(13), 2767–2782 (2018)

75. Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S., Das, D., Kaul, B., Krishna,
T.: SIGMA: a sparse and irregular GEMM accelerator with flexible interconnects for DNN
training. In: IEEE HPCA. IEEE (2020)

76. Cass, S.: Taking AI to the edge: Google’s TPU now comes in a maker-friendly package. IEEE
Spectr. 56(5), 16–17 (2019)

77. Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., Xu, Z., Temam, O., Chen, Y.:
DaDianNao: a neural network supercomputer. IEEE Trans. Comput. 66(1), 73–88 (2017)

78. Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A., Tapiador-Morales, R., Lungu, I.A.,
Milde, M.B., Corradi, F., Linares-Barranco, A., Liu, S.C., Delbruck, T.: NullHop: a flexible
convolutional neural network accelerator based on sparse representations of feature maps.
IEEE Trans. Neural Netw. Learn. Syst. 30(3), 644–656 (2016)

79. Guo, P., Ma, H., Chen, R., Li, P., Xie, S., Wang, D.: FBNA: a Fully binarized neural network
accelerator. In: International Conference on Field Programmable Logic and Applications. IEEE
(2018)

80. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M., Vissers, K.: FINN:
a framework for fast, scalable binarized neural network inference. In: ACM/SIGDA FPGA.
ACM (2017)

81. Capra, M., Bussolino, B., Marchisio, A., Shafique, M., Masera, G., Martina, M.: An updated
survey of efficient hardware architectures for accelerating deep convolutional neural networks.
Future Internet. 12(7), 113 (2020)

Low-Latency, Energy-Efficient In-DRAM
CNN Acceleration with Bit-Parallel
Unary Computing

Ishan G. Thakkar, Supreeth M. Shivanandamurthy, and Sayed Ahmad Salehi

1 Introduction

Convolutional neural networks (CNNs) have achieved remarkable progress in recent
years, and they are being aggressively utilized in real-world applications related to
artificial intelligence (AI) and machine learning [1, 2]. In general, CNNs mimic
biological neural networks and utilize compute-heavy arithmetic functions such
as multiply-accumulate (MAC), nonlinear activation, and pooling. Although these
CNN functions are amenable to acceleration because of a high degree of compute
parallelism, their acceleration using traditional ASIC platforms (e.g., Dadiannao
[1], EIE [3]) is challenging because of the need to avoid the memory wall while
accessing their large number of operands [4]. To address this problem, several prior
works have explored processing-in-memory (PIM) designs based on the emerging
non-volatile memory (NVM) crossbar technologies (e.g., ISAAC [2], PRIME [5],
XNOR-RRAM [6]) as well as the traditional DRAM technology (e.g., DRISA
[7], SCOPE [8], DRACC [9], LACC [10]). Such PIM designs strive to avoid data
movement to consequently achieve a balance between computational efficiency and
memory performance while processing CNNs in situ.

However, it is challenging to support MAC operations in PIM designs. The
NVM crossbar-based PIM designs, such as ISAAC [2] and PRIME [5], leverage the
Kirchhoff’s law to perform MAC operations in the analog domain. However, such
analog-computing-based accelerators require power-hungry and sluggish digital-
to-analog converters and analog-to-digital converters (DACs and ADCs), which

I. G. Thakkar (�) · S. M. Shivanandamurthy · S. A. Salehi
University of Kentucky, Lexington, KY, USA
e-mail: igthakkar@uky.edu; supreethms@uky.edu; SayedSalehi@uky.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_14

393

 31368 2385 a 31368 2385 a

 885 56845
a 885 56845 a

mailto:igthakkar@uky.edu
mailto:igthakkar@uky.edu

 8732 56845 a 8732 56845 a

mailto:supreethms@uky.edu
mailto:supreethms@uky.edu

 17312 56845 a 17312 56845 a

mailto:SayedSalehi@uky.edu
mailto:SayedSalehi@uky.edu
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14
https://doi.org/10.1007/978-3-031-19568-6_14

394 I. G. Thakkar et al.

diminishes the performance and energy-efficiency benefits of such accelerators.
Alternatively, the DRAM-based PIM designs implement in situ MAC operations
digitally, for which they break a single MAC operation into multiple functionally
complete memory operation cycles (MOCs) that are serially run on a single subarray
(the smallest logical cell array in a DRAM module). Multiple such subarrays
typically work in parallel to achieve high processing throughput. Such designs
require a very larger number of MOCs per MAC operation. For instance, DRISA
[7] requires up to 222 MOCs per MAC. To reduce the required number of MOCs,
SCOPE [8], DRACC [9], and LACC [10] employ light-weight optimizations
that simplify the implementation of MAC operations. SCOPE adopts rate-coded
unary (stochastic) computing to implement approximate multiplication, requiring a
reduced number of up to 25 MOCs per MAC [8]. On the other hand, DRACC [9]
eliminates most multiply operations by employing quantized CNNs that use ternary
weights, whereas LACC [10] employs lookup table-based multiply operations.
Because of these optimizations, DRACC and LACC require a reduced number of
MOCs per MAC of up to 13 and 11, respectively. This can still incur very high
latency and energy consumption as one MOC can incur up to 49 ns latency and up
to 4nJ energy consumption [7, 9, 11], depending on the utilized DRAM technology
node and subarray size (bitline length). The high latency and energy values per MAC
operation have prevented the DRAM-based PIM designs from being immediately
adopted for CNN inference.

In this chapter, we present a novel CNN accelerator called ATRIA. ATRIA
employs bit-parallel rate-coded unary (stochastic) computing, which enables it to
perform 16 MAC operations in only 2 consecutive MOCs. ATRIA is most related
to SCOPE [8]. It significantly improves upon SCOPE in two ways. First, SCOPE
uses rate-coded unary (stochastic) computing to perform only multiply opera-
tions, whereas it uses the conventional binary arithmetic to perform accumulate
operations. In contrast, ATRIA performs both multiply and accumulate operations
using bit-parallel rate-coded unary (stochastic) computing. Second, both SCOPE
and ATRIA require expensive binary-to-stochastic (B-to-S) and stochastic-to-binary
(S-to-B) conversions of operands, but ATRIA is better able to hide the latency
of these conversions by successfully removing them from the critical processing
path. Moreover, ATRIA restricts the precision errors induced due to the rate-
coded unary (stochastic)-computing-based accumulate operations by employing
stochastic operands that are 2. × larger in size. As a result, ATRIA exhibits only
3.5% drop in CNN inference accuracy on average compared to SCOPE. Despite
this slight drawback, ATRIA substantially outperforms SCOPE as well as other in-
DRAM accelerators such as DRISA and LACC in terms of the latency, throughput
[frames per second (FPS)], and efficiency (FPS/W/mm.

2) of processing state-of-the-
art CNNs.

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 395

2 Concept of Bit-Parallel Rate-Coded Unary (Stochastic)
Computing

The use of rate-coded unary (stochastic) computing simplifies the implementation of
complex arithmetic functions, such as multiplication and accumulation, by reducing
them to simple bit-wise logical operations [12]. To perform a multiplication of 2 N-
bit stochastic operands (A and B in Fig. 1a) in the bit-serial manner, the bit streams
of the operands are applied to an AND gate serially, and the bit-wise output of the
AND gate is collected for total N clock cycles to generate the multiplication output
bit stream (C in Fig. 1a). Similarly, to perform a scaled accumulation of 4 (or more)
N-bit stochastic operands in the bit-serial manner (A, B, C, D in Fig. 1b), the bit
streams of the operands are applied to a MUX, whose bit-wise output is selected by
a 2-bit (or larger) random number (RND in Fig. 1b) every clock cycle for total N
clock cycles, to generate the output bit stream that represents a scaled accumulation
(E in Fig. 1b). To reduce the area and static power consumption of computing, such
bit-serial implementation of rate-coded unary (stochastic) computing compromises
the latency of computing.

In contrast, we observe that the latency of computing can be improved by N. ×
if the rate-coded unary (stochastic) computing can be implemented in the bit-
parallel manner. For example, if N copies of AND gates and MUX circuits are
available (Figs. 2a and b), the N-bit outputs for the stochastic multiplication and
scaled accumulation can be obtained in one clock cycle in the bit-parallel manner.
In a nutshell, the idea for such bit-parallel implementation of rate-coded unary
(stochastic) computing is to transform the input bit streams into bit vectors by
striping them across the N copies of the AND gates and MUX circuits and then
perform bit-wise AND and MUX operations to generate output bit vectors. For
instance, the individual N bits . a1 to . aN , . b1 to . bN , . c1 to . cN , and . d1 and . dN of
operands A, B, C, and D from Fig. 1b are striped across N copies of MUXs in
Fig. 2b. As a result, the individual N bits of the scaled accumulation output E can
be collected in a bit-parallel manner from N MUXs. For such bit-parallel scaled
accumulation (i.e., MUX operation), total N RND signals (.RND1 to .RNDN) are
needed, which can be generated a priori and made available in a parallel manner

Fig. 1 Bit-serial rate-coded unary (stochastic) computing circuits for (a) multiplication (AND
gate), (b) scaled accumulation (MUX)

396 I. G. Thakkar et al.

Fig. 2 Bit-parallel rate-coded unary (stochastic) computing circuits for (a) multiplication (an
array of AND gates), (b) scaled accumulation (an array of MUXs). Here, the individual N bits
of operands A, B, C, and D from Fig.1 are striped across N copies of AND gates and MUXs

(Fig. 2b). Although Fig. 2b illustrates bit-parallel scaled accumulation for only four
input stochastic operands (A, B, C, and D), this concept can be extended for more
or less than 4 input stochastic operands as well.

Such bit-parallel rate-coded unary (stochastic) computing naturally fits well for
in-DRAM processing of applications because the inherent parallelism of DRAM
makes it fundamentally easy to provision data in the bit-parallel manner. Our
proposed in-DRAM accelerator ATRIA employs such bit-parallel rate-coded unary
(stochastic) computing to implement in-DRAM MAC operations for the first time
and exploits the benefits of such implementation to substantially improve the latency
and throughput of in-DRAM CNN processing, compared to the in-DRAM CNN
processing accelerators from prior work.

3 ATRIA: Overview

Our ATRIA accelerator architecture employs an 8Gb DRAM module with 8 chips.
Figure 3 illustrates the schematic of one such chip. Each chip has 8 banks, with
64 subarrays per bank, and 32 mats per subarray of 256. ×256 bits size each. Each
row in a subarray is of 8Kb size; therefore, each subarray contains total 8Kb sense
amplifiers (S/As) and write drivers (W/Ds). Each subarray acts as a processing
element (PE), which is defined as the smallest independent cell-array structure that

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 397

Fig. 3 The hierarchical structure of our ATRIA accelerator chip

can perform computing. Therefore, there are a total of 4096 PEs in ATRIA. Like the
other in-DRAM accelerators from prior work (e.g., DRISA [7], SCOPE [8], LACC
[10]), the PEs in ATRIA can also operate in parallel to process CNN inference
in situ. To process CNN inference, each PE (i.e., subarray) in ATRIA employs
a feature processing unit (FPU), as shown in Fig. 3. In addition, to orchestrate
these in-parallel processing operations inside the PEs, ATRIA employs hierarchical
controllers (chip, bank, and subarray controllers (CTLRs) in Fig. 3). The operation
of these hierarchical CTLRs is described in Sect. 3.3. The structure and operation of
each FPU in ATRIA support our concept of bit-parallel rate-coded unary (stochastic)
computing for in situ processing of CNNs, as discussed next.

3.1 Structure of a PE in ATRIA

A PE of our ATRIA accelerator is basically a DRAM subarray that is integrated
with an FPU and a subarray CTLR, as illustrated in Fig. 4. The subarray part of the
PE is structured in the manner the conventional DRAM subarrays are organized
[13, 14]. Therefore, in this section, we only provide details of the structure of
the FPU. The role of the subarray CTLR is discussed in Sect. 3.3. The FPU
consists of various hardware components that support the implementation of the
following six functions: (i) bit-parallel stochastic multiply operation (MUL), (ii) bit-
parallel stochastic accumulate operation (ACC), (iii) binary-to-stochastic (B-to-S)
conversion, (iv) stochastic-to-binary (S-to-B) conversion through pop counter (PC),
(v) nonlinear activation function ReLU, and (vi) max-pooling function. To support
bit-parallel MUL, three 8Kb rows of the subarray (Row 1, Row 2, and Row 3 in
Fig. 4a) are reserved and operated following the triple row activation and charge-
sharing protocol of AAP memory operation cycle (MOC) from Ambit [11] (see
Sect. 3.2).

The hardware components that support bit-parallel ACC consist of an array
of 512 copies of 16:1 MUXs and their associated 512 copies of 4-bit registers
(Fig. 4a). These 4-bit registers store the pre-determined random values that enable
the output selection (16:1) for their respective MUXs. Each MUX has 16 inputs;

398 I. G. Thakkar et al.

Fig. 4 Schematic of a processing element (PE) of ATRIA. (a) Schematic of a subarray and feature
processing unit (FPU); (b) pop counter for S-to-B conversion [2]; (c) LUT for B-to-S conversion;
(d) a 16:1 MUX and its connections with S/As as part of the FPU

therefore, the total number of inputs for the entire array of 512 MUXs is 8Kb.
These 8Kb MUX inputs are connected to 8Kb S/As, with 16 adjacent S/As feeding
one MUX and vice versa (Fig. 4d). Note that the S/As in the commodity DRAMs
typically connect to I/O logic through signal S and related control transistors (. M1
to .M16) (Fig. 4d). To facilitate connections of S/As to MUXs, ATRIA employs one
additional inverter (INV) and 16 transistor switches (T1 to T16) per MUX, which
can be controlled by the same signal S (Fig. 4d). An 8Kb row from the subarray can
be read into 8Kb S/As (Fig. 4a), which can hold in total 16 stochastic bit vectors
of 512-bit size each (16 . × 512 = 8Kb). These 16 stochastic bit vectors can be
striped across 512 MUXs, so that each individual bit of a bit vector is fed into a
different MUX with each MUX having all its 16 inputs from 16 different bit vectors.
This arrangement sets up the array of MUXs to perform a 16-operand scaled ACC
in the bit-parallel manner, following our concept of bit-parallel rate-coded unary
(stochastic) computing discussed in Sect. 2. The detailed functioning of this array
of MUXs for performing scaled ACC is presented in Sect. 3.2.

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 399

In addition, to implement in-memory B-to-S conversion, each FPU in ATRIA
employs a lookup table (Fig. 4c). Our idea of using lookup table-based B-to-S
conversion is inspired from the design of SCOPE accelerator [8]. This enables
ATRIA to employ the deterministic method for B-to-S conversion to eliminate
correlation errors [8]. Moreover, each FPU in ATRIA employs an additional lookup
table to perform ReLU (Fig. 4a). Further, it also incorporates a pop counter to
perform in-memory S-to-B conversion (Fig. 4b), as well as logic to implement
max-pooling function (Fig. 4a). ATRIA implements the max-pooling and ReLU
functions in the binary domain. This mandates that the results of processing of
every CNN layer’s parameters always go through S-to-B, ReLU, and then B-to-S
conversions before they can activate processing of the next CNN layer. This in turn
eliminates the undesirable propagation of precision errors (which are very common
in rate-coded unary (stochastic) computing [12]) between the stochastic operations
of two consecutive CNN layers (see more on errors in Sect. 4.2. The overheads
of incorporating FPUs in ATRIA PEs are discussed in Sect. 3.4. The next section
describes the functioning of an FPU-enabled PE of our ATRIA accelerator.

3.2 Functioning of a PE in ATRIA

Each PE of our ATRIA accelerator can perform all essential functions required for
processing CNNs, such as MAC, max pooling, and ReLU. In addition, since ATRIA
employs rate-coded unary (stochastic) computing, each PE can also perform impor-
tant functions for implementing rate-coded unary (stochastic) computing, such as
B-to-S and S-to-B (pop count) conversions. On one hand, each PE performs B-to-
S, S-to-B (pop count), ReLU, and max-pooling functions by relaying the related
operands along the data processing path in the FPU through the corresponding
hardware components (Fig. 4a). To orchestrate the relaying of the operands to
perform these functions, the PE makes use of the subarray CTLR whose functioning
along with the functioning of other hierarchical CTLRs in ATRIA is discussed in
Sect. 3.3. On the other hand, each PE of ATRIA can perform a MAC function
(.FMAC) of 16 stochastic operands of 512-bit size each, by employing a series of
total five memory operation cycles (MOCs) (similar to the AAP/AP MOC from
[7, 11]). These MOCs engage the reserved rows Row 1, Row 2, and Row 3 (Fig. 4a)
and the MUXs in the FPU, as discussed next.

Figure 5 illustrates how ATRIA performs .FMAC . ATRIA performs .FMAC in two
main steps.

Step 1 engages the reserved subarray rows Row 1, Row 2, and Row 3 to perform
MUL. Step 2 engages the array of MUXs to perform ACC. Before performing
.FMAC , ATRIA first makes the involved stochastic operands available in the reserved
subarray rows Row 1 and Row 2. For that, it performs two MOCs similar to
RowClone [15] to copy the contents of two source rows into Row 1 and Row 2,
respectively. Consequently, Row 1 contains 16 512-bit operands . N1 to .N16 (Fig. 5a).
Similarly, Row 2 contains 16 512-bit operands .M1 to .M16 (Fig. 5a). In addition,

400 I. G. Thakkar et al.

Fig. 5 A schematic showing the operation of a PE of ATRIA to perform a 16-operand multiply-
accumulate (MAC) function (.FMAC)

ATRIA initializes Row 3 with “0’s” at system boot. After these initial steps, ATRIA
schedules Step 1 of .FMAC , which employs the triple row activation and charge-
sharing-based MOC from Ambit [11] to perform bit-parallel logical AND (i.e.,
stochastic MUL) of the involved operands . N1 to .N16 and . M1 to .M16. At the end
of the MOC for Step 1, Row 3 contains the results of bit-parallel logical AND, i.e.,
. N1 AND . M1 to .N16 AND .M16 (Fig. 5a and b). These results essentially represent the
outcome of bit-parallel stochastic MUL, i.e., .N1M1 to .N16M16. After this, ATRIA

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 401

schedules Step 2 of .FMAC , where it performs a MOC to read the stochastic MUL
results from Row 3 into S/As. These results from S/As are then pushed through
the array of 16:1 MUXs, MUX1 to MUX512. The 512-bit output of this array of
MUXs is selected using the pre-latched random control signals RND1 to RND512.
This 512-bit output is the stochastic scaled ACC of the input operands .N1M1 to
.N16M16. In other words, this 512-bit output presents .FMAC = (.N1M1 + .N2M2 +

+ .N16M16)/16 (Fig. 5a and b). ATRIA then uses one more MOC to store the result
of this .FMAC into a row in the subarray through W/Ds. Thus, ATRIA uses only 5
MOCs (2 MOCs for initializing Row 1 and Row 2, 1 MOC for MUL, 1 MOC for
ACC, and 1 MOC for write back) to perform a scaled MAC function .FMAC (also
called dot product) of 16 stochastic operands. In other words, if a MAC operation
is conventionally defined as a MUL of two operands followed by an accumulate
operation (i.e., A = A + .NiMi), then ATRIA uses only 5 MOCs to perform 16 MAC
operations in parallel. However, we find from our evaluation results in Sect. 4.4
that the use of bit-parallel rate-coded unary (stochastic) computing in ATRIA can
increase precision errors. Nevertheless, we also find that the increased precision
errors are worth tolerating for due to the substantial performance benefits of ATRIA.

3.3 System Integration and Controller Design

In this section, we describe how our ATRIA accelerator integrates with the host
system and how the hierarchical controllers of ATRIA orchestrate the processing
of CNNs. ATRIA integrates with the host system in the same way the conventional
GPU- or FPGA-based accelerators do through PCIe bus. For a CNN processing
using ATRIA, the host system stores the weighting parameters and inputs of the
CNN in the individual PEs (subarrays) of ATRIA via direct memory access (DMA).
We adopt the strategy from SCOPE [8], wherein the weighting parameters are
stored in ATRIA in the stochastic format. This strategy ensures that in situ B-to-S
conversions are required only for activation parameters, which dramatically reduces
the number of in situ B-to-S conversions. As a result, the latency and energy of
processing CNNs with ATRIA are dramatically reduced as well.

After storing the inputs and weighting parameters of a CNN in PEs of ATRIA,
the host-side ATRIA CTLR (not shown in Fig. 3) orchestrates the processing of the
CNN in conjunction with the hierarchical ATRIA CTLRs shown in Fig. 3. The host-
side ATRIA controller generates a series of . μ operations, which are received by the
hierarchical ATRIA CTLRs. We adopt the designs from [7] for these CTLRs. These
CTLRs support simultaneous multi-subarray/bank activation for better parallelism.
The first chip-level CTLR is essentially a decoder, and it also helps with inter-
bank data movement. The bank-level CTLRs decode the . μ operations, convert them
into addresses, vector lengths, and control codes, and then send them to subarray
CTLRs in the active subarrays. The subarray CTLR consists of address latches,

402 I. G. Thakkar et al.

local decoders, and counters. The address latches are essential for multi-subarray
activation [7]. The counters are used for continuously updating addresses to local
subarray decoders. In addition, the subarray CTLR also contains buffers to support
communication of operands.

Inter-bank and inter-subarray data communications in ATRIA are supported
through the interconnects design adopted from LISA [16]. Data communications
are carried out in binary format instead of stochastic format, which results in better
energy efficiency [8]. Also, the inclusion of buffers in the subarray CTLRs enables
pipelined data communications, which enables better use of resources and efficient
hiding of long latencies, reducing the memory bottleneck to improve the throughput
of CNN processing with ATRIA.

3.4 Overhead Analysis

Table 1 lists the latency, energy, and area overheads of various hardware components
that are part of the FPUs inside the PEs of our ATRIA accelerator. These results
are based on our logic synthesis analysis for 22nm node. We considered standard
SRAM for LUT implementation. After accounting for the extra area overhead
of these components from Table 1, the total area for 8Gb ATRIA accelerator
becomes 77mm.

2. For comparison, DRISA-1T1C-NOR [7], DRISA-3T1C [8],
SCOPE-Vanilla [8], SCOPE-H2D [8], and LACC [10] consume 55mm.

2, 64.6mm.
2,

259.4mm.
2, 273.4mm.

2, and 61mm.
2 area, respectively. Thus, ATRIA consumes

larger area than DRISA-1T1C-NOR, DRISA-3T1C, and LACC. Nevertheless,
ATRIA still achieves substantially better area and energy efficiency compared to
these accelerators (Sect. 4.4). Similarly, despite the S-to-B pop counter in ATRIA
incurring a long latency of 256ns (Table 1), the performance of ATRIA does not get
much affected, as ATRIA manages to keep this latency out of the critical processing
path (Sect. 4.3).

Table 1 Latency, energy, and area overhead values of various hardware components of the FPUs
in the PEs of ATRIA

Component Total area (mm. 2) Latency (ns) Energy per PE (pJ)

16:1 MUXs for ACC 1.3. ×10.−3 2 10

4-bit registers for RND storage 1.1. ×10.−5 2 15.6

B-to-S LUT (512. ×256) 3.4 1 0.3

S-to-B pop counter (PC) (2GHz) 2.1. ×10.−5 256 153.6

ReLU LUT 1.2 1 0.3

Max-pooling logic 4.1 5 940

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 403

4 Evaluation

4.1 Modeling and Setup for Evaluation

We evaluate ATRIA and compare it with other in-DRAM accelerators from
prior work such as SCOPE-Vanilla [8], SCOPE-H2D [8], DRISA-1T1C-NOR [7],
DRISA-3T1C [7], and LACC [10]. We first evaluate the per-MAC latency, per-
MAC energy, and total area values for our considered accelerators. We divide the
evaluation of per-MAC latency/energy into two parts: latency/energy of a multiply
operation (MUL) and latency/energy of an accumulate operation (ACC). All our
considered accelerators follow the AAP/AP memory operation cycle (MOC) from
Ambit [11]. Therefore, the latency and energy values per MOC and the total number
of MOCs per MAC are evaluated first for all considered accelerators. Different
accelerators have different latency and energy per MOC because they employ
different lengths of local bitlines in their subarrays. For example, DRISA [7] and
SCOPE [8] employ shorter local bitlines with only 64 cells per bitline. In contrast,
LACC employs 512 cells per bitline, whereas ATRIA employs 256 cells per bitline.
Shorter bitlines typically yield lower latency per MOC [13]. We evaluate latency
using SPICE-based [17] modeling of local bitlines. To evaluate per-MOC energy as
well as total accelerator area, we used CACTI [18]. We developed a custom simula-
tor in Python to model the MOC-accurate transaction-level performance behavior
of our considered accelerators, as well as to evaluate system-level performance
metrics such as frames per second (FPS), latency, efficiency (FPS/W/mm.

2), and
memory bottleneck ratio. Memory bottleneck ratio is defined as the ratio of total
stall time (time for which an accelerator needs to wait for the operands) over total
inference processing time. We considered four state-of-the-art CNNs to evaluate
these metrics. The quantized versions of these CNN models were trained using
PyTorch for ImageNet dataset and 8-bit fixed precision of activation and weight
parameters. These activation and weight parameters were extracted and provided as
the input to our Python-based performance simulator, which also took our evaluated
energy, latency, and area values for our considered accelerators as the input. Next,
we present and discuss the results of our simulation-based study.

4.2 Precision Error and Accuracy Results

ATRIA has one caveat compared to SCOPE. The use of MUX-based bit-parallel
stochastic accumulation in ATRIA can increase the absolute precision error (APE)
of computing, as explained in [12]. An APE for an operation (i.e., MUL or ACC)
is defined as the absolute difference between the expected result and the observed
result of the operation. From [12] and [19], APE depends on the operand values,
input size (i.e., the number of operands), and operand size (i.e., bit-stream length).
For a MUX-based stochastic ACC with an input size of 16 (as is the case for

404 I. G. Thakkar et al.

Table 2 Average APE (. μAPE), standard deviation in APE (. σAPE) and CNN testing accuracy (A)
for SCOPE-Vanilla, SCOPE-H2D, and ATRIA for various CNNs

SCOPE-Vanilla SCOPE-H2D ATRIA

CNN Benchmarks . μAPE . σAPE A(%) . μAPE . σAPE A (%) . μAPE . σAPE A(%)

AlexNet 0.23 0.04 93.6 0.09 0.01 96.7 0.33 0.05 92.2

GoogleNet 0.30 0.05 87.7 0.17 0.03 88.5 0.41 0.07 87.7

VGG16 0.35 0.05 91.9 0.21 0.03 95.1 0.53 0.09 90.2

ResNET-50 0.26 0.04 90.1 0.12 0.02 93.6 0.47 0.08 89.8

ATRIA), the average APE (. μAPE) can be reduced to an acceptable value in the
range between 0.2 and 0.54, if the operand size is kept 512 bits or longer [12, 19].
Therefore, we increase the operand size, i.e., bit-vector length, of the bit-parallel
stochastic operands in ATRIA to 512 bits from their full-precision length of 256
bits (corresponds to 8-bit binary operands). The resultant . μAPE values and the
corresponding standard deviation in APE (. σAPE) for four benchmark CNNs are
listed in Table 2. The . μAPE and . σAPE values in Table 2 were obtained for the
complete set of individual APEs for all MAC results required in the respective CNNs
when the inferences of these CNNs are implemented on ATRIA, SCOPE-Vanilla,
and SCOPE-H2D for the ImageNet dataset. Table 2 also lists the inference accuracy
results. As evident, ATRIA exhibits 2.9. × and 1.5. ×more . μAPE, and 3.2. × and 1.6. ×
more . σAPE than SCOPE-H2D and SCOPE-Vanilla, respectively, on average across
the CNNs. Nevertheless, compared to SCOPE-H2D and SCOPE-Vanilla, ATRIA
exhibits only 3.5% and 0.85% drop in inference accuracy on average across the
CNNs, which we reason is acceptable due to the significant performance benefits of
ATRIA, as evident from Sects. 4.3 and 4.4.

4.3 Per-MAC Latency Results

Table 3 lists our evaluated latency values and the number of Pes (#PEs) for ATRIA
and other in-DRAM CNN accelerators. The latency values include values for
MUL and ACC in the number of MOCs (#MOCs), latency per MOC in ns, as
well as the latency values for LUT-based B-to-S conversion and pop-count (PC)
operations (required for S-to-B conversion). From Table 3, ATRIA holds three
crucial advantages. First, it exhibits smaller per-MAC latency over SCOPE, DRISA,
and LACC (Table 3). This is because ATRIA performs 16 MAC operations in
parallel. For that, ATRIA uses in total 5 MOCs (total 85ns latency with each MOC
incurring 17ns latency) (Sect. 3.2), 2 MOCs to copy the operand rows, 1 MOC to
perform 16 in-parallel MULs, 1 MOC to perform 16 in-parallel ACCs, and 1 MOC
to store the MAC result. In Table 3, for ATRIA, 2 MOCs for operand row copy are
counted in total MUL MOCs, and 1 MOC for MAC result store is counted in total
ACC MOCs. Thus, by performing 16 MAC operations in parallel, ATRIA achieves
shorter per-MAC latency.

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 405

Table 3 Comparison of various accelerators with ATRIA, in terms of the number of PEs (#PEs)
and latency of MUL, ACC, MAC, binary to stochastic conversion (B-to-S), and pop-count (PC)
operations

Latency values

Various

accelerators

MUL

#MOCs

ACC

#MOCs

MOC

(ns)

MAC

(ns)

B-to-S

(ns)

PC

(ns) #PEs

DRISA-3T1C [1] 200 11 8 1768 – – 32,768

DRISA-1T1C-NOR [1] 200 22 10 2110 – – 16,384

LACC [3] 1 10 21 231 – – 16,384

SCOPE-Vanilla [2] 3 4 8 56 1 176 65,536

SCOPE-H2D [2] 21 4 8 200 1 176 65,536

ATRIA 3/16 2/16 17 5.25 1 256 4098

Second, ATRIA can better hide the latency for PC operations, compared to
SCOPE. This is because SCOPE utilizes full adder-based PC operations that need
to be performed inside PEs. Therefore, despite using the as-late-as-possible (ALAP)
scheduling algorithm, PC operations in SCOPE inevitably stall the PEs. In contrast,
ATRIA offloads PC operations to dedicated serial counters (operating at 2GHz) per
PE (Sects. 3.2 and 3.3). As a result, ATRIA does not need to stall PEs for PC
operations, enabling itself to better hide PC latency. Therefore, although ATRIA
yields higher latency per PC operation than SCOPE (Table 3), ATRIA efficiently
hides this higher latency, not letting it affect the performance.

Third, ATRIA exhibits smaller bottleneck ratio compared to SCOPE and DRISA
(see Fig. 6d in Sect. 4.4). Bottleneck ratio is defined in Section IV.A. ATRIA
achieves lower bottleneck ratio because the use of a massively large number of
PEs in SCOPE and DRISA results in unavoidable inter-PE communication latency,
a substantial portion of which remains on the critical processing path because of
the inherently limited parallelism available for such inter-PE communications. In
contrast, ATRIA is better at hiding the inter-PE communication latency, due to its
smaller number of PEs and its LISA [16] substrate-based implementation of intra-
bank, inter-bank, and inter-PE data communications (Sect. 3.2).

4.4 CNN Inference Performance Results

We evaluate the performance of ATRIA and compare it with the following inDRAM
CNN accelerators from prior work: DRISA-3T1C [7], DRISA1T1CNOR [7],
SCOPEVanilla [8], SCOPEH2D [8], and LACC [10]. We consider four CNNs:
VGG16 [20], AlexNet [21], ResNET_50 [22], GoogleNET [23], with the Ima-
geNet dataset. Using the setup described in Sect. 4.1, we evaluated latency, FPS,
FPS/W/mm.

2, and bottleneck ratio, for batch sizes of 1 and 64. Figure 6a shows

406 I. G. Thakkar et al.

efficiency (FPS/W/mm.
2) results. For batch size 1, ATRIA is 18. ×, 64. ×, 98. ×, and

50. × more efficient than DRISA-1T1C-NOR, DRISA-3T1C, SCOPE-Vanilla, and
SCOPE-H2D, respectively, on average across CNNs. However, ATRIA is 15%
less efficient than LACC, due to the LACC’s lower area (Sect. 3.4). Nevertheless,
for batch size 64, ATRIA is more efficient than LACC as well. ATRIA is 136. ×,
522. ×, 3.4. ×, 71. ×, and 95. ×more efficient than DRISA-1T1C-NOR, DRISA-3T1C,
LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average across CNNs.
In general, ATRIA is more efficient due to the following two reasons: (i) better
FPS due to lower per-MAC latency (Table 3) and (ii) a reasonable average power
consumption of 23.4W.

Figure 6b shows CNN processing latency results normalized w.r.t. ATRIA. For
batch size 1, ATRIA achieves 7.4. ×, 18. ×, 3.3. ×, 6.5. ×, and 4.4. × lower latency
than DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-
H2D, respectively, on average across CNNs. Similarly, for batch size 64, ATRIA
achieves 44. ×, 107. ×, 10. ×, 1.2. ×, and 2.6. × lower latency than DRISA-1T1C-NOR,
DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average
across CNNs. ATRIA achieves lower CNN processing latency because of its lower
per-MAC latency and its ability of efficiently hiding its higher S-to-B conversion
latency. Moreover, DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla,
SCOPE-H2D, and ATRIA achieve 60. ×, 59. ×, 30. ×, 2. ×, 6. ×, and 10. × higher latency
for batch size 64 than batch size 1. This is because the higher parallelism of SCOPE
variants (more #PEs in Table 3) allows them to process larger batch size without
saturating the latency benefits, by distributing the batch processing across multiple
PEs.

Figure 6c shows FPS results. For batch size 1, ATRIA has on average 7.4. ×, 18. ×,
3.3. ×, 6.5. ×, and 4.4. × higher FPS than DRISA-1T1C-NOR, DRISA-3T1C, LACC,
SCOPE-Vanilla, and SCOPE-H2D, respectively. For batch size 64, ATRIA has on
average 44. ×, 107. ×, 10. ×, 1.2. ×, and 2.6. × higher FPS than DRISA-1T1C-NOR,
DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively. ATRIA has
higher FPS due to the combined effects of lower per-MAC latency and lower
memory bottleneck ratio (Sect. 4.3), as discussed next.

Finally, Fig. 6d gives memory bottleneck ratio (MBR) results. MBR for all
accelerators reduces for batch size 64 than batch size 1 because increasing batch size
to 64 does not substantially increase the stall time for weighting parameter accesses,
but doing so increases CNN processing time due to the required time sharing of
resources across multiple batch inputs, resulting in lower MBR. For batch size 64,
ATRIA has lower MBR than all other accelerators, except for LACC. LACC has
only 1% MBR for batch size 64, which corroborates the results from [10]. This
is because the kernel mapping algorithm used in LACC enables better resource
utilization. SCOPE variants have the highest MBR for both batch sizes because
in SCOPE the latency for S-to-B conversions comes in the critical path (Sect. 4.3).
In contrast, ATRIA is able to better hide this latency to achieve lower MBR.

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 407

Fig. 6 (a) Efficiency (FPS/W/mm. 2), (b) latency, (c) throughput (FPS), and (d) memory bottleneck
ratio (MBR) results for various in-DRAM accelerators across CNNs. GM means geometric mean

5 Conclusions

In this chapter, we presented an energy-efficient and high-throughput CNN accel-
erator called ATRIA, which utilizes the novel concept of bit-parallel rate-coded
unary (stochastic) computing to achieve ultra-low latency for multiply-accumulate
(MAC) operations. We mapped four benchmark CNNs on ATRIA to compare

408 I. G. Thakkar et al.

its performance with five state-of-the-art in-DRAM accelerators from prior work.
The results of our analysis show that ATRIA exhibits only 3.5% drop in CNN
inference accuracy and still achieves improvements of up to 3.2. × in frames per
second (FPS) and up to 10. × in efficiency (FPS/W/mm.

2), compared to the best-
performing in-DRAM accelerator from prior work. These results corroborate the
excellent capabilities of ATRIA for accelerating the inference tasks of deep CNNs.

References

1. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N.:
DaDianNao: A machine-learning supercomputer. IEEE MICRO, 609–622 (2014)

2. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M.,
Williams, R.S., Srikumar, V.: ISAAC: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. ACM ISCA 44(3), 14–26 (2016)

3. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: Efficient
inference engine on compressed deep neural network. IEEE ISCA 44(3), 243–254 (2016)

4. Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D., Blaaauw, D., Das, R.:
Neural cache: Bit-serial in-cache acceleration of deep neural networks. ACM ISCA, 383–396
(2017)

5. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.: PRIME: A novel
processing-in-memory architecture for neural network computation in ReRAM-based main
memory. ACM ISCA 44(3), 27–39 (2016)

6. Sun, X., Yin, S., Peng, X., Liu, R., Seo, J.-s., Yu, S.: XNOR-RRAM: A scalable and parallel
resistive synaptic architecture for binary neural networks. IEEE DATE, 1423–1428 (2018)

7. Li, S., Niu, D., Malladi, K.T., Zheng, H., Brennan, B., Xie, Y.: DRISA: A DRAM-based
reconfigurable in-situ accelerator. IEEE Micro, 288–301 (2017)

8. Li, S., Glova, A.O., Hu, X., Gu, P., Niu, D., Malladi, K.T., Zheng, H., Brennan, B., Xie, Y.:
SCOPE: A stochastic computing engine for DRAM based in-situ accelerator. IEEE Micro,
696–709 (2018)

9. Deng, Q., Jiang, L., Zhang, Y., Zhang, M., Yang, J.: DrAcc: a DRAM based accelerator for
accurate CNN inference. IEEE DAC, 1–6 (2018)

10. Deng, Q., Zhang, Y., Zhang, M., Yang, J.: LAcc: Exploiting lookup table-based fast and
accurate vector multiplication in DRAM-based CNN accelerator. In: DAC (2019)

11. Seshadri, V., Lee, D., Mullins, T., Hassan, H., Boroumand, A., Kim, J., Kozuch, M.A., Mutlu,
O., Gibbons, P.B., Mowry, T.C.: Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. IEEE MICRO, 273–287 (2017)

12. Ren, A., Li, Z., Ding, C., Qiu, Q., Wang, Y., Li, J., Qian, X., Yuan, B.: SC-DCNN: Highly-
scalable deep convolutional neural network using stochastic computing. ACM ASPLOS (2017)

13. Jacob, B., Wang, D., Ng, S.: Memory Systems: Cache, DRAM, Disk. Morgan Kaufmann
(2010)

14. Thakkar, I.G., Pasricha, S.: 3D-ProWiz: An energy-efficient and optically-interfaced 3D
DRAM architecture with reduced data access overhead. IEEE TMSCS 1(3), 168–184 (2015)

15. Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko, G., Luo, Y.,
Mutlu, O., Gibbons, P.B., Kozuch, M.A.: RowClone: Fast and energy-efficient in-DRAM bulk
data copy and initialization. IEEE MICRO, 185–197 (2013)

16. Chang, K.K., Nair, P.J., Lee, D., Ghose, S., Qureshi, M.K., Mutlu, O.: Low-cost inter-linked
subarrays (LISA): Enabling fast inter-subarray data movement in DRAM. IEEE HPCA, 568–
580 (2016)

17. Lou, Q., Pan, C., McGuinness, J., Horvath, A., Naeemi, A., Niemier, M., Hu, X.S.: A mixed
signal architecture for convolutional neural networks. ACM JETC 15(2), 1–26 (2019)

Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel. . . 409

18. Balasubramonian, R., Kahng, A.B., Muralimanohar, N., Shafiee, A., Srinivas, V.: CACTI 7:
New tools for interconnect exploration in innovative off-chip memories. TACO 14(2), 1–25
(2017)

19. Li, Z., Ren, A., Li, J., Qiu, Q., Wang, Y., Yuan, B.: DSCNN: Hardware-oriented optimization
for stochastic computing based deep convolutional neural networks. IEEE ICCD, 678–681
(2016)

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Preprint (2014). arXiv:1409.1556

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE CVPR,
770–778 (2016)

23. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. IEEE CVPR, 1–9 (2015)

Index

A
AI acceleration, 210
Application-specific integrated circuits

(ASICs), ix, 6, 10, 22, 63, 64, 99, 267,
321, 329, 330, 393

Approximate computing, vi, 26, 28, 97, 116,
167, 168, 305–308

B
Binary, 65–68, 72, 73, 75, 76, 79, 80, 84, 90,

94, 95, 139, 163, 168, 205, 286, 304,
344, 365, 366, 373, 377, 388, 394, 399,
402, 404, 405

Binary neural networks (BNNs), viii, 67, 72,
79–81, 84, 359–362, 365–367, 370,
372, 373, 375, 377–388

Bit-parallel unary computing, viii, 393–408

C
Clustering, 129, 200, 286, 341, 343, 346
Convolutional neural networks (CNNs), 3, 64,

122, 178, 200, 254, 321, 339, 359, 393

D
Dataflow optimization, 10–13, 22, 169
Data partitioning and scheduling, 13, 182–184,

188–191, 193
Deep learning (DL), v, vii, 3, 124–132, 154,

167, 175–194, 200, 202, 212, 225–247,
318, 359, 387

Deep neural networks (DNNs), 3, 27, 90, 123,
175, 199, 225, 253, 275, 317, 359

Direct feedback alignment (DFA), vii, 317–332
DRAM, 4, 28, 135, 177, 209, 233, 262, 276,

323, 393

E
Embedded ML, v-viii, 89, 92–101, 116,

121–169
Embedded systems, v, vi, viii, 3–22, 64, 89–92,

104, 116, 117
Energy efficiency, vi, 4, 16, 27, 28, 32, 40, 56,

63, 64, 69–72, 84–86, 122, 140, 167,
168, 193, 203–205, 207, 213, 214, 217,
218, 272, 273, 276, 277, 283, 308, 362,
365, 394, 402

Error tolerance, 116, 276, 277, 283–287, 289,
293, 295–297, 299, 305–308

F
Ferroelectric field-effect transistor (FeFET),

vii, 317–332
Field-programmable gate array (FPGA), vi,

89–117, 168, 169, 267, 270, 272, 277,
293, 295, 298, 329–331, 340, 384, 401

G
GANs hardware acceleration, 255–260
GANs system-on-chip memory architecture,

273
Generative adversarial networks (GANs)

memory architecture, 273

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2024
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6

411

https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6
https://doi.org/10.1007/978-3-031-19568-6

412 Index

GPU architectures, vii, 205, 225–247, 278
Graph neural networks (GNNs), 123, 129, 131,

132, 154, 160–169, 202, 214

H
Hardware accelerator, vii, 4, 10, 96, 168, 176,

177, 179–180, 193, 199, 212, 241, 247,
254, 255, 360

Hardware arithmetic, vi, 89–117

I
In-memory computing (IMC), vii, 168, 169,

199–218, 308, 318
In-memory processing, 230, 276, 308, 323,

393

L
Latency, 10, 25, 77, 91, 121, 176, 211, 228,

276, 320, 339, 360, 394
Low-precision inference, 63–86

M
Machine learning (ML), v, vii, viii, 3, 27, 46,

48, 89, 90, 92–102, 105, 116, 117,
121–169, 175, 176, 199–202, 215, 241,
242, 276, 278, 279, 306, 308, 310, 337,
339, 340, 346, 351, 359–388, 393

Mapping, ix, 69, 71, 79, 85, 86, 94, 102, 122,
123, 138–140, 143–147, 154–167, 182,
186–193, 209, 212, 213, 217, 283, 284,
286–289, 292, 293, 299–302, 306, 324,
339–342, 346, 347, 351, 353, 406

Memory systems, 308
Mixed-precision quantization, 68
Mixed quantization, vi, 89–117, 388
Multiply-accumulate (MAC), vi, 4, 8, 10,

11, 13, 15, 20, 66, 67, 69, 74, 80, 83,
85, 90–92, 105–113, 115, 116, 135,
137–140, 143–146, 148, 149, 157, 168,
177, 179, 190, 204, 205, 207, 209, 214,
232, 233, 241, 362–364, 378, 381, 393,
394, 396, 399–401, 403, 405, 407

N
Network-on-chip (NoC), vi, 25–56, 135, 138,

204, 205, 210–212, 214–217

Neural network accelerators, 64, 70, 72, 79–81,
86, 384, 387

Neural network quantization, 64
Neural networks, 7, 63, 121, 177, 201, 233,

253, 275, 319, 337, 360, 393
Neural processing array, 3–22
Neuromorphic computing, viii, 337–340
Non-volatile memory (NVM), vii, viii, 168,

203, 215, 217, 225–247, 306, 337, 338,
340–342, 344, 347, 348, 351, 362, 393

O
Off-chip DRAM accesses, 240, 241
On-chip memory, vii, 6, 9, 11, 12, 18, 20, 21,

72, 82, 141, 152, 157, 176, 182–185,
188, 190, 203, 209, 259–262, 267, 270,
273, 276

P
Photonic NoCs, vi, 25–56
Platform-based design, vii, 337–354
Posit number systems, 108

R
Resistive memory, 320–321

S
Spin-orbit-torque magnetic random access

memory (SOT-MRAM), 168, 226–228,
230–233, 235, 237, 238, 240–244, 246,
247

Spin-transfer-torque magnetic random access
memory (STT-MRAM), vii, 168, 215,
227, 228, 231–233, 235, 237, 238,
240–244, 246, 247

SRAM, 72–74, 79, 80, 83–85, 136, 137, 140,
142, 168, 203–209, 215, 217, 218,
226–233, 236–247, 261, 266, 271,
305–307, 309, 377, 402

T
Ternary, 65, 67–69, 72, 73, 77–79, 81–83, 90,

94, 95, 139, 394
Training, 47, 67, 89, 121, 176, 199, 226, 253,

278, 317, 351, 365
Transformers, 123–130, 132, 144, 154–160,

167–169, 275

	Preface
	Acknowledgments
	Contents
	Part I Efficient Hardware Acceleration for Embedded Machine Learning
	Massively Parallel Neural Processing Array (MPNA): A CNN Accelerator for Embedded Systems
	1 Introduction
	1.1 State of the Art and Their Limitations
	1.2 Motivational Case Study and Research Challenges
	1.3 Our Novel Contributions

	2 Preliminaries
	2.1 Convolutional Neural Networks (CNNs)
	2.2 Systolic Array (SA)

	3 Our Design Methodology
	4 Dataflow Optimization
	4.1 Data Reuse Analysis
	4.2 Proposed Dataflow Patterns

	5 The MPNA Architecture
	5.1 Overview of Our MPNA Architecture
	5.2 Heterogeneous Systolic Arrays (SAs)
	5.3 Accumulation Block
	5.4 Pooling-and-Activation Block
	5.5 Hardware Configuration

	6 Evaluation Methodology
	7 Experimental Results and Discussion
	7.1 Systolic Array Evaluation
	7.2 Comparison with Other CNN Accelerators
	7.2.1 Performance Evaluation
	7.2.2 Power and Energy Consumption
	7.2.3 Area Footprint

	8 Conclusion
	References

	Photonic NoCs for Energy-Efficient Data-Centric Computing
	1 Introduction
	2 Related Work
	3 Data Formats and Approximations
	3.1 Floating-Point Data
	3.2 Integer Data
	3.3 Applications Considered for Approximation

	4 Crosstalk and Optical Loss in PNoCs
	5 ARXON Framework: Overview
	5.1 Loss-Aware Power Management for Approximation
	5.2 Relaxed Crosstalk Mitigation Strategy
	5.3 Relaxed MR Tuning Strategy
	5.4 Integrating Multilevel Signaling

	6 ARXON Evaluation and Simulation Results
	6.1 Simulation Setup
	6.2 Impact of ARXON on Considered Applications
	6.3 MR Tuning Relaxation-Based Analyses
	6.4 Power Dissipation Breakdown

	7 Conclusion
	References

	Low- and Mixed-Precision Inference Accelerators
	1 Introduction
	2 Background: Extreme Quantization and Network Variety
	2.1 Neural Network Architecture Design Space
	2.2 Binary Quantization
	2.3 Ternary Quantization
	2.4 Mixed-Precision

	3 Accelerators for Low- and Mixed-Precision Inference
	3.1 Characterization Criteria
	3.1.1 Flexibility
	3.1.2 Performance Characteristics

	3.2 Five Low- and Mixed-Precision Accelerators Reviewed
	3.2.1 XNOR Neural Engine (XNE)
	3.2.2 ChewBaccaNN
	3.2.3 Completely Unrolled Ternary Inference Engine (CUTIE)
	3.2.4 Binary Neural Network Accelerator in 10-nm FinFet
	3.2.5 BrainTTA

	4 Comparison and Discussion
	5 Summary and Conclusions
	References

	Designing Resource-Efficient Hardware Arithmeticfor FPGA-Based Accelerators Leveraging Approximationsand Mixed Quantizations
	1 Introduction
	2 Integer Arithmetic for Embedded Machine Learning
	2.1 Fixed-Point Representation
	2.2 Accurate Custom Signed Multipliers
	2.3 Approximate Custom Signed Multipliers
	2.4 Comparison of Multiplier Designs

	3 Arithmetic for Novel Number Representation Schemes
	3.1 Posit Number Representation Scheme-Based Arithmetic
	3.2 Fixed-Point-Based Posit Arithmetic
	3.3 Results

	4 Conclusion
	References

	Efficient Hardware Acceleration of Emerging Neural Networks for Embedded Machine Learning: An Industry Perspective
	1 Introduction
	2 Background
	2.1 Computer Vision
	2.1.1 Convolutional Neural Networks
	2.1.2 Emerging Deep Learning Architectures for Vision

	2.2 Natural Language Processing
	2.3 Deep Learning Based Recommendation Systems
	2.4 Graph Neural Networks

	3 Common Layers Across Neural Networks
	4 Efficient Implementation of Emerging NN Operators
	4.1 Efficient Mapping and Acceleration of Special DNN Layers
	4.1.1 First Layer
	4.1.2 Eltwise Layer
	4.1.3 Fully Connected Layers
	4.1.4 Maxpool/Average Pool
	4.1.5 Activation Functions

	4.2 Efficient Mapping and Acceleration of Layers in New Neural Networks
	4.2.1 Channel Separable Depthwise Convolution Layers
	4.2.2 Group Convolution Layers
	4.2.3 Transposed Convolution/Deconvolution Layers
	4.2.4 Dilated Convolution/Atrous Convolution Layers

	5 Efficient Mapping and Acceleration of Layers in Emerging Neural Networks
	5.1 Transformers
	5.1.1 Input Embedding and Positional Encoding
	5.1.2 Multi-headed Self-Attention
	5.1.3 Point-Wise Feed-Forward
	5.1.4 Enabling Transformers on the Edge
	5.1.5 Summary of Design Considerations for Transformers

	5.2 Graph Neural Networks
	5.2.1 Compute Phases of GNN
	5.2.2 Design Considerations
	5.2.3 GNN Data Flow
	5.2.4 Additional Opportunities for Hardware Acceleration

	6 Future Trends: Networks and Applications
	References

	Part II Memory Design and Optimization for Embedded Machine Learning
	An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems
	1 Introduction
	1.1 Overview
	1.2 Design Constraints for Embedded DL Systems

	2 Preliminaries
	2.1 Deep Learning
	2.2 Hardware Accelerators for Embedded DL Systems
	2.3 DRAM Fundamentals
	2.3.1 Organization
	2.3.2 Operations

	3 DRAM Access Optimization for Embedded DL Systems
	3.1 Overview
	3.2 Reduction of DRAM Accesses
	3.3 Employment of Low Latency DRAM
	3.3.1 Devising the Data Mapping Policy in DRAM
	3.3.2 Analysis for the EDP of DRAM Accesses

	4 Experimental Evaluations
	4.1 Reduction of DRAM Accesses
	4.2 Impact of Different DRAM Mapping Policies on EDP
	4.3 Further Discussion

	5 Conclusion
	References

	In-Memory Computing for AI Accelerators: Challengesand Solutions
	1 Introduction
	1.1 Machine Learning in Modern Times
	1.2 Hardware Implications of DNNs

	2 In-Memory Computing Architectures
	2.1 RRAM/SRAM-Based IMC Architectures
	2.1.1 RRAM Device
	2.1.2 IMC Architecture
	2.1.3 Challenges with IMC Architectures

	3 Interconnect Challenges and Solutions
	3.1 Interconnect for IMC-Based Planar AI Accelerators
	3.2 On-Package Communication for Chiplet-Based AI Accelerators
	3.3 Interconnect for Monolithic 3D (M3D)-Based AI Accelerators

	4 Evaluation Frameworks for IMC-Based AI Accelerator
	4.1 Evaluation Frameworks for Monolithic AI Accelerators
	4.2 Evaluation Framework for Chiplet-Based AI Accelerators

	5 Conclusion
	References

	Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Circuit-Level NVM Characterization
	3.2 Microarchitecture-Level Cache Design Exploration
	3.3 Architecture-Level Iso-Capacity Analysis
	3.4 Architecture-Level Iso-Area Analysis

	4 Experimental Results
	4.1 Performance and Energy Results for Iso-Capacity
	4.2 Performance and Energy Results for Iso-Area
	4.3 Scalability Analysis

	5 Discussion
	6 Conclusion
	References

	SoC-GANs: Energy-Efficient Memory Management for System-on-Chip Generative Adversarial Networks
	1 Introduction
	2 Background: DCGAN Hardware Acceleration and Its Design Challenges
	3 Memory-Efficient Hardware Architecture for Generative Adversarial Networks (GANs)
	3.1 2-D Distributed On-Chip Memory Array
	3.2 Data Re-Packaging Unit
	3.2.1 Pixel Row Index Computation Block
	3.2.2 Pixel Column Index Computation Block
	3.2.3 RAM-Block Index Computation
	3.2.4 RAM-Channel Index Computation
	3.2.5 RAM Index Computation
	3.2.6 SPRAM Address Computation

	4 Results and Discussion
	4.1 Experimental Setup
	4.2 Processing Time Evaluation
	4.3 Memory Accesses Evaluation
	4.4 Area Utilization Evaluation

	5 Conclusion
	References

	Using Approximate DRAM for Enabling Energy-Efficient, High-Performance Deep Neural Network Inference
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 DRAM Organization and Operation
	2.3 Reducing DRAM Parameters

	3 EDEN Framework
	3.1 EDEN: A High-Level Overview
	3.2 Boosting DNN Error Tolerance
	3.3 DNN Error Tolerance Characterization
	3.4 DNN to DRAM Mapping
	3.5 DNN Inference with Approximate DRAM

	4 Enabling EDEN with Error Models
	5 Memory Controller Support
	6 DNN Accuracy Evaluation
	6.1 Methodology
	6.2 Accuracy Validation of the Error Models
	6.3 Error Tolerance of Baseline DNNs
	6.4 Curricular Retraining Evaluation
	6.5 Coarse-Grained DNN Characterization and Mapping
	6.6 Fine-Grained DNN Characterization and Mapping

	7 System-Level Evaluation
	7.1 CPU Inference
	7.2 Accelerators

	8 Related Work
	9 Discussion and Challenges
	9.1 Discussion
	9.2 Challenges

	10 Conclusion
	References

	Part III Emerging Substrates for Embedded Machine Learning
	On-Chip DNN Training for Direct Feedback Alignment in FeFET
	1 Introduction
	2 Background
	2.1 DNN Training Methods
	2.2 DNN Acceleration in Resistive Memory
	2.3 Ferroelectric Field-Effect Transistor

	3 An FeFET-Based DNN Training Accelerator Architecture for Direct Feedback Alignment
	3.1 Overall Architecture
	3.2 FeFET Switching Characterization
	3.3 FeFET-Based Random Number Generator
	3.4 Low-Power ADC Based on FE Layer Tuning
	3.5 Pipeline

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

	Platform-Based Design of Embedded Neuromorphic Systems
	1 Introduction
	2 Platform-Based Design Methodology
	3 Software Design Space Exploration
	3.1 Performance-Oriented DSE
	3.2 Energy-Oriented DSE
	3.3 Reliability-Oriented DSE

	4 Summary
	References

	Light Speed Machine Learning Inference on the Edge
	1 Introduction
	2 Background and Related Work
	3 Overview of Noncoherent Optical Computation
	4 Binarized Neural Networks
	5 ROBIN Architecture
	5.1 Tuning Circuit Design
	5.2 Device-Level Optimization
	5.2.1 Fabrication-Process Variation Resilience
	5.2.2 Multi-Bit Precision MRs
	5.2.3 Single-Bit MRs
	5.2.4 Broadband MRs

	5.3 Architecture Design
	5.3.1 Decomposing Vector Operations
	5.3.2 Vector Dot Product (VDP) Unit Design
	5.3.3 Optical Wavelength Reuse in VDP Units
	5.3.4 ROBIN Pipelining and Scheduling

	6 Experiments and Results
	6.1 Simulation Setup
	6.2 Fabrication-Process Variation Analysis
	6.3 ROBIN Architecture Optimization Analysis
	6.4 Comparison with State-of-the-Art Optical and Electronic DNN/BNN Accelerators
	6.5 Comparison to CPU-Based Inference

	7 Conclusion
	References

	Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with Bit-Parallel Unary Computing
	1 Introduction
	2 Concept of Bit-Parallel Rate-Coded Unary (Stochastic) Computing
	3 ATRIA: Overview
	3.1 Structure of a PE in ATRIA
	3.2 Functioning of a PE in ATRIA
	3.3 System Integration and Controller Design
	3.4 Overhead Analysis

	4 Evaluation
	4.1 Modeling and Setup for Evaluation
	4.2 Precision Error and Accuracy Results
	4.3 Per-MAC Latency Results
	4.4 CNN Inference Performance Results

	5 Conclusions
	References

	Index

