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Preface 

Machine learning (ML) has emerged as a prominent approach for achieving state-of-
the-art accuracy for many data analytic applications, ranging from computer vision 
(e.g., classification, segmentation, and object detection in images and video), speech 
recognition, language translation, healthcare diagnostics, robotics, and autonomous 
vehicles to business and financial analysis. The driving force of the ML success 
is the advent of neural network (NN) algorithms, such as deep neural networks 
(DNNs)/deep learning (DL) and spiking neural networks (SNNs) with support 
from today’s evolving computing landscape to better exploit data and thread-level 
parallelism with ML accelerators. 

Current trends show an immense interest in attaining the powerful abilities of 
NN algorithms for solving ML tasks using embedded systems with limited compute 
and memory resources, i.e., so-called Embedded ML. One of the main reasons is that 
embedded ML systems may enable a wide range of applications, especially the ones 
with tight memory and power/energy constraints, such as mobile systems, Internet 
of Things (IoT), edge computing, and cyber-physical applications. Furthermore, 
embedded ML systems can also improve the quality of service (e.g., personalized 
systems) and privacy as compared to centralized ML systems (e.g., based on cloud 
computing). However, state-of-the-art NN-based ML algorithms are costly in terms 
of memory sizes and power/energy consumption, thereby making it difficult to enable 
embedded ML systems. 

This book explores and identifies the most challenging issues that hinder the 
implementation of embedded ML systems. These issues arise from the fact that, to 
achieve better accuracy, the development of NN algorithms has led to state-of-the-
art models with higher complexity with respect to model sizes and operations, the 
implications of which are discussed below:

• Massive Model Sizes: Larger NN models usually obtain higher accuracy than 
the smaller ones because they have a larger number of NN parameters that can 
learn the features from the training dataset better. However, a huge number of 
parameters may not be fully stored on chip, hence requiring large-sized off-chip 
memory to store them and intensive off-chip memory accesses during run time. 
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Furthermore, these intensive off-chip accesses are significantly more expensive 
in terms of latency and energy than on-chip operations, hence exacerbating the 
overall system energy.

• Complex and Intensive Operations: The complexity of operations in NN 
algorithms depends on the computational model and the network architecture. 
For instance, DNNs and SNNs have different complexity of operations since 
DNNs typically employ multiply-and-accumulate (MAC) while SNNs employ 
more bio-plausible operations like leaky-integrate-and-fire (LIF). Besides, more 
complex neural architectures (e.g., residual networks) may require additional 
operations to accommodate the architectural variations. These complex archi-
tectures with a huge number of parameters also lead to intensive neural 
operations (e.g., a large number of MAC operations in DNNs), thereby requiring 
high computing power/energy during model execution. 

In summary, achieving acceptable accuracy for the given ML applications while 
meeting the latency, memory, and power/energy constraints of the embedded ML 
systems is not a trivial task. 

This volume of the book focuses on addressing these challenges from a hardware 
perspective, with multiple solutions towards the design of efficient accelerators, 
memory, and emerging technology substrates for embedded ML systems. A brief 
outline of the book along with the section structure is as follows. 

1. Efficient Hardware Acceleration: To improve the performance efficiency of NN 
algorithms, ML-focused hardware acceleration has been considered an effective 
approach. Therefore, the first part of the book focuses on hardware acceleration 
techniques for embedded ML systems.

• Chapter “Massively Parallel Neural Processing Array (MPNA): A CNN 
Accelerator for Embedded Systems” develops a convolutional neural net-
work (CNN) accelerator that employs efficient computing architecture 
coupled with dataflows that exploit parameter/data reuse on-chip.

• Chapter “Photonic NoCs for Energy-Efficient Data-Centric Computing” 
discusses how an approximate computing paradigm can be used in photonic-
based network-on-chip (NoC) systems to achieve energy-efficient data 
movement during the execution of NN and other data-centric applications.

• Chapter “Low- and Mixed-Precision Inference Accelerators” describes the 
design choices and the implications of implementing low- and mixed-
precision DNNs on the flexibility and energy efficiency of the inference 
accelerators.

• Chapter “Designing Resource-Efficient Hardware Arithmetic for FPGA-
Based Accelerators Leveraging Approximations and Mixed Quantizations” 
explains the designs of resource-efficient hardware arithmetic for field 
programmable gate array (FPGA)-based DNN accelerators by leveraging 
approximation and quantization. 
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• Chapter “Efficient Hardware Acceleration of Emerging Neural Networks 
for Embedded Machine Learning: An Industry Perspective” provides a 
comprehensive review of an industry perspective on the efficient hardware 
acceleration for emerging neural networks targeting embedded applications. 

2. Memory Design and Optimizations: Oftentimes, memories are one of the biggest 
bottlenecks when processing NN algorithms due to frequent accesses to them (to 
load and store parameters and activations during execution) and their physical 
limitations of high latency- and energy-per-access. Hence, the second part of the 
book explores techniques for memory design and optimizations for embedded 
ML systems.

• Chapter “An Off-Chip Memory Access Optimization for Embedded Deep 
Learning Systems” discusses optimization techniques that exploit data reuse 
for reducing the number of DRAM memory accesses and DRAM energy-
per-access for DNN hardware accelerators.

• Chapter “In-Memory Computing for AI Accelerators: Challenges and Solu-
tions” explains the challenges of designing energy-efficient in-memory 
computing (IMC) for DNN hardware accelerators and then describes the 
recent advances to address these challenges.

• Chapter “Efficient Deep Learning Using Non-Volatile Memory Technology 
in GPU Architectures” describes how non-volatile memory (NVM) tech-
nologies can be used in graphic processing unit (GPU) architectures for deep 
learning acceleration.

• Chapter “SoC-GANs: Energy-Efficient Memory Management for System-
On-Chip Generative Adversarial Networks” discusses the on-chip memory 
management for achieving energy-efficient generative adversarial network 
(GAN) acceleration on system-on-chip architecture.

• Chapter “Using Approximate DRAM for Enabling Energy-Efficient, High-
Performance Deep Neural Network Inference” presents how to leverage 
approximate DRAM with reduced voltage and reduced latency for achieving 
energy-efficient and high-performance DNN inference. 

3. Emerging Substrates: To improve the efficiency of NN acceleration, recent 
efforts have also explored new device technologies for the corresponding 
hardware accelerators, such as silicon photonics, and NVM technologies like 
resistive random access memory (ReRAM), phase change memory (PCM), and 
spin-transfer torque magnetic RAM (STT-MRAM). The fourth part of the book 
focuses on emerging substrates for embedded ML systems.

• Chapter “On-Chip DNN Training for Direct Feedback Alignment in FeFET” 
studies the benefits of using a ferroelectric field-effect transistor (FeFET) 
for DNN training on-chip leveraging the direct feedback alignment (DFA) 
algorithm.

• Chapter “Platform-Based Design of Embedded Neuromorphic Systems” 
describes how platform-based design methodologies can be employed to
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develop neuromorphic systems considering different manufacturing process-
es/NVM technologies.

• Chapter “Light Speed Machine Learning Inference on the Edge” presents 
a fast silicon photonic-based BNN accelerator by employing microring 
resonator (MR)-based optical devices for light-speed computing.

• Chapter “Low-Latency, Energy-Efficient In-DRAM CNN Acceleration with 
Bit-Parallel Unary Computing” explains how to enable low-latency and 
energy-efficient CNN acceleration in DRAM by leveraging bit-parallel 
unary computing. 

We hope this book provides a comprehensive review and useful information on 
the recent advances in embedded machine learning for cyber-physical, IoT, and 
edge-computing applications. 

Fort Collins, CO, USA Sudeep Pasricha 
Abu Dhabi, UAE Muhammad Shafique 
October 25, 2022 
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Efficient Hardware Acceleration for 

Embedded Machine Learning



Massively Parallel Neural Processing 
Array (MPNA): A CNN Accelerator for 
Embedded Systems 

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, 
and Muhammad Shafique 

1 Introduction 

Machine Learning (ML) algorithms have rapidly proliferated into different field 
of applications, ranging from object recognition, automotive, healthcare to busi-
ness [22, 33]. The field of ML encompasses several algorithms, and the most 
influential ones in recent years are the Deep Neural Networks (DNNs) or Deep 
Learning [13, 14]. The reason is that DNNs have achieved state-of-the-art accuracy 
and even surpassed humans’ accuracy, especially through Convolutional Neural 
Networks (CNNs) [35]. In recent years, larger and deeper CNNs have been 
proposed in the literature since they can achieve higher accuracy than the smaller 
ones, thereby becoming the key enabler for many applications (e.g., advanced 
vision processing). Such large CNN models typically require a huge memory 
footprint, intensive computations, and energy consumption [5]. Furthermore, recent 
trends show that many ML applications are moving toward mobile and embedded 
platforms, such as Cyber-Physical System (CPS) and IoT-Edge devices, due to 
performance, privacy, and security reasons. These embedded platforms typically 
employ the pretrained CNN models for performing inferences. However, perform-
ing such an inference is challenging because the embedded platforms are resource-
and power/energy-constrained. For instance, the ResNet-152 model needs more than 
200MB of memory footprint and 11.3 billion operations to perform an inference 
for a single input image [16]. Such a high amount of processing is infeasible 

R. V. W. Putra (�) 
Embedded Computing Systems, Institute of Computer Engineering, Technische Universität Wien, 
Vienna, Austria 
e-mail: rachmad.putra@tuwien.ac.at 

M. A. Hanif · M. Shafique 
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE 
e-mail: mh6117@nyu.edu; muhammad.shafique@nyu.edu 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Pasricha, M. Shafique (eds.), Embedded Machine Learning for Cyber-Physical, 
IoT, and Edge Computing, https://doi.org/10.1007/978-3-031-19568-6_1 

3


 31368 2385 a 31368 2385 a
 

 885 52970 a 885 52970
a
 
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at

 885 56845 a 885 56845 a
 
mailto:mh6117@nyu.edu
mailto:mh6117@nyu.edu

 8324 56845 a 8324 56845
a
 
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
mailto:muhammad.shafique@nyu.edu
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1
https://doi.org/10.1007/978-3-031-19568-6_1


4 R. V. W. Putra et al.

to be performed by embedded platforms in an efficient manner. Therefore, it is 
necessary to design a specialized hardware accelerator that efficiently performs 
CNN inferences for embedded systems. 

1.1 State of the Art and Their Limitations 

A significant amount of works has been carried out for proposing specialized 
CNN accelerators. Some of the accelerators aim at accelerating the un-structurally 
sparse networks by exploiting sparse weights and/or activations to decrease the 
computational requirements, which is expected to improve the performance and 
energy efficiency [1, 11, 12, 17, 19, 24, 29, 38]. However, recent studies show that 
employing sparsity does not directly lead to energy savings, and it requires more 
complex and sophisticated accelerator designs to achieve high performance which 
incur considerably high power/energy and area consumption [9, 37]. Moreover, 
since these accelerators typically employ the Rectified Linear Unit (ReLU) to 
convert all the negative activations to zeros, they cannot efficiently handle the 
advanced activation functions that do not result in high sparsity (e.g., Leaky 
ReLU [15, 27]), thereby decreasing their efficiency benefits. Meanwhile, the other 
accelerators aim at accelerating dense networks for achieving high performance 
and energy efficiency [6, 7, 10, 18, 21, 25, 26, 34, 36]. They can also be used 
for accelerating the structurally sparse networks by tailoring the dataflows to 
the respective accelerator architectures [2, 37]. However, they also employ ReLU 
operations which make them inefficient for computing the advanced activation 
functions and hence decreasing their efficiency gains. Furthermore, most of these 
accelerators consume relatively large area and high power/energy which are not 
suitable for embedded applications [10, 18]. Moreover, despite showing a good 
performance for the convolutional (CONV) layers, many of these accelerators offer 
limited acceleration for the fully connected (FC) layers, as we will show with the 
help of a motivational case study in Sect. 1.2. 

1.2 Motivational Case Study and Research Challenges 

Motivational Case Study To obtain high performance and energy efficiency, state-
of-the-art CNN accelerators exploit the reuse of weights and activations (including 
partial sums), hence reducing the number of off-chip memory (DRAM) accesses [5, 
30, 31]. In this respect, the conventional systolic array-based designs (like Google’s 
TPU [18]) are very effective, as each Processing Element (PE) in the Systolic Array 
(SA) engine performs three key tasks, as follows: 

• It receives data from their upstream neighbor. 
• It performs basic DNN operations, i.e., multiply and accumulate (MAC). 
• It passes the data along with the partial sum to their downstream neighbor.
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Fig. 1 Speed-up values for CONV and FC layers of AlexNet for different sizes of systolic array 
engines, which are normalized to the 1 × 1 systolic array engine 

Therefore, the overall speed-up of the SA engine is significant for computations 
that involve weight and activation reuse (i.e., CONV layers), as shown in Fig. 1 for 
AlexNet [20]. However, if only activation reuse happens (i.e., a single input is used 
for multiple computations, while the weights are used only once), the speed-up of 
SA engines is very limited, as shown in Fig. 1. Such operations are found in the FC 
layers, and their conventional dataflow on an SA engine is shown in Fig. 2. These 
observations indicate that the conventional SA-based engines can provide a high 
speed-up for the CONV layers, but it does not provide comparable speed-up for 
the FC layers. This significantly limits the overall speed-up of CNN acceleration, 
especially when the networks are dominated by FC layers. Therefore, there is a 
significant need for a CNN accelerator that can expedite both the CONV and FC 
layers to obtain a high speed-up for the complete CNN model while consuming a 
low operational power/energy. However, designing such an accelerator bears a wide 
range of challenges, as discussed in the following. 

Associated Research Challenges From results in Figs. 1 and 2, we identify the 
following research challenges: 

• First, specialized SA-based designs need to be developed to facilitate accelerating 
both the CONV and FC layers without consuming significant area and power/en-
ergy overheads as compared to the conventional SA designs. 

• Second, the SA designs should consider diverse dataflows of both the CONV and 
FC layers, while fully utilizing the available memory bandwidth. For instance, 
the acceleration of CONV layers requires simple, fast, yet massively parallel 
PEs to maximally the reuse of weights and activations (including partial sums). 
Meanwhile, the acceleration of FC layers should maximize the activation reuse 
in a single-sample batch processing. Note, the acceleration of FC layers can only 
exploit weight reuse in a multi-sample batch processing, which is not suitable for 
latency-sensitive/real-time embedded applications as targeted in this work.
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Fig. 2 The dataflow for the FC layer execution using a conventional SA engine. The input 
activations are fed to the SA from the left side and then shifted one step to the right toward the 
adjacent processing element (PE) at each cycle. The partial sums start appearing in the SA output 
at K+1 cycles 

• Third, the dataflows should consider minimizing the off-chip memory (DRAM) 
accesses to optimize the energy consumption, since the DRAM access energy 
typically dominates the total CNN acceleration system energy [4, 30, 31, 35, 38]. 

1.3 Our Novel Contributions 

To address the above research challenges, we propose a novel Massively Parallel 
Neural Processing Array (MPNA) accelerator through the following key steps: 

• A Design Methodology: The MPNA architecture is designed using a methodol-
ogy that systematically integrates heterogeneous SA designs, specialized on-chip 
memory, and other necessary components, while exploring different dataflow 
patterns to maximize data reuse and jointly accelerate the CONV and FC layers 

• Optimized Dataflows: We propose different optimizations of dataflow patterns 
for enabling efficient processing on heterogeneous SA engine and maximally 
exploiting data reuse, thereby improving the overall processing efficiency. 

• Hardware Implementation and Evaluation: We perform functional validation 
of the MPNA accelerator architecture and synthesize it using the ASIC design 
tools for a 28-nm CMOS technology library. Our experimental results show that 
the MPNA architecture offers up to 2. × performance speed-up and 51% energy 
saving as compared to the baseline accelerator. Our MPNA achieves 149.7GOP-
S/W performance efficiency at 280MHz and incurs 239mW of operational power.
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2 Preliminaries 

2.1 Convolutional Neural Networks (CNNs) 

In this section, we explain the fundamentals of CNN processing, which are neces-
sary to understand the contributions of this work. A neural network is composed of a 
number of layers that are connected in a cascade fashion. Each layer receives inputs 
from the preceding layer, performs certain operations, and passes the results to the 
succeeding layer. A CNN, a particular type of neural networks, typically consists of 
four types of processing layers: convolutional (CONV) layer for extracting features, 
fully connected (FC) layer for classification, activation layer for introducing non-
linearity, and pooling layer for sub-sampling. Each layer of CONV processing 
is illustrated in Fig. 3a and can be represented using for loops line in Fig. 3b. 
Furthermore, the FC layer processing can also be represented using the same loops 

Input Activations 
(IA) 

Output Activations 
(OA) 

J 

I 

M 

N 

…
 

Weights (W) 

Q 

P 

I 

H 

W 

p 

q 

m 

n 

(p,q) 

(m,n) 

W J,I 

IA1 

OA 1 

W 1,I 

W 1,1 

W J,1 

OA JIAI 

(a) CNN Processing 

for j = 1 : J { % Loop for the output activations 
for i = 1 : I { % Loop for the input activations 

for m = 1 : M { % Loop for the rows of output activations 
for n = 1 : N { % Loop for the columns of output activations 

for p = 1 : P { % Loop for the rows of the filter weights 
for q = 1 : Q { % Loop for the columns of the filter weights 

OA j (m, n) = OA j (m, n) + W j , i (p, q) x IA i (m + p - 1, n + p - 1);  
}}}}}} % Loops end  

(b) Pseudocode of the CONV processing 

a filter 

Fig. 3 (a) Illustration of a CONV layer processing, i.e., a set of input activations are convolved 
with the weights for generating a set of output activations. (b) Pseudocode of the CONV layer 
processing. An FC layer processing can be represented using the same loops with .H = W = P =
Q = 1
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Fig. 4 (a) Percentage of the number of MAC operations and filter weights for the AlexNet and the 
VGG-16. The number of reuse for different data types, i.e., weights, input activations, and output 
activations for (b) the AlexNet and (c) the VGG-16 

with .H = W = P = Q = 1. A CONV layer receives input feature maps (i.e., input 
activations) from the inputs or the preceding layer and then performs the convolution 
operation using several filters (i.e., weights) to produce output feature maps (i.e., 
output activations), where each feature map corresponds to the output of one set of 
filters. Among different layers in a CNN processing, the CONV layer is the most 
computationally intensive as input activations and weights have a high number of 
reuse for computations. Meanwhile, the FC layer is the most memory intensive as 
weights have a low number of reuse. Figure 4a shows these characteristics using the 
percentage of MAC operations and weights required for the CONV and FC layers in 
the AlexNet and the VGG-16. Meanwhile, Fig. 4b and c shows the number of reuse 
for different data types in the AlexNet and the VGG-16, respectively. .IAi is the 
input activations at channel-i, .OAj is the output activations at channel-j, and . Wj,i

is the weight filters between .IAi and .OAj . Furthermore, .OAj(m, n) denotes the 
activation at location .(m, n) in the j-th output activations. Meanwhile, . Wj,i(p, q)

denotes the weight at location .(p, q) in the filter kernel between .IAi and .OAj . 
We consider CONV stride . = 1, unless stated otherwise. The FC layers can be 
considered as a special case of CONV layers where the input and the output have a 1-
dimensional array, and hence they can be represented using the above terminologies. 

2.2 Systolic Array (SA) 

In SA-based computations, first, weights are accessed from the weight memory and 
then are loaded to the PEs in the array. The weights are held stationary in the PEs in
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Fig. 5 The conventional SA architecture that shows the processing elements (PEs), the connec-
tions among PEs as well as between the array and memories. Note that we refer the on-chip 
memories to as the on-chip buffers to distinguish them from the off-chip memory (DRAM) 

the manner that the same column of the array holds the weights from the same filter 
or neuron. During the processing, the input activations are accessed from the input 
activation memory, and then they are streamed into the array. These activations are 
passed on neighboring PEs from left to right of the array at each clock cycle, and 
the respective partial sums are moved downstream on neighboring PEs from top to 
bottom of the array. The input activations are aligned so that each input activation 
reaches a specific PE at the same time when its respective partial sum also reaches 
the same PE, hence producing a correct output partial sum. If the number of weights 
of a filter is larger than the number of rows in the systolic array, the output partial 
sums are divided into multiple sets (portions). Therefore, accumulators are required 
to hold the generated partial sums when the rest of the partial sums are computed in 
the array. A detailed description of the SA-based computations can be found in [18] 
(Fig. 5). 

3 Our Design Methodology 

We develop a novel methodology for designing an optimized CNN accelerator for 
embedded systems, as shown in Fig. 6. It consists of the following key steps, which 
are explained in detail in the subsequent sections.
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CNN Accelerator 

Fig. 6 Overview of our methodology for designing the MPNA accelerator, showing the key steps 

1. Analyzing different data reuse techniques (Sect. 4). It aims at identifying data 
reuse techniques that can be exploited to achieve high performance efficiency of 
the given CNN targeting resource-constrained embedded systems. 

2. Defining the efficient dataflow patterns (Sect. 4). It identifies the dataflow 
patterns that offer high data reuse on-chip and a low number of DRAM accesses, 
while considering the SA-based computations. 

3. Designing efficient processing arrays (Sect. 5). The processing arrays are 
designed to support the selected dataflow patterns for executing the complete 
layers of a CNN, thereby efficiently processing the respective operations. 

4. Optimizing the individual hardware components (Sect. 5). It aims at minimiz-
ing the latency, area, and power/energy consumption of the elementary functions 
that lead to the optimized system-level design. 

5. Designing a hardware accelerator architecture (Sect. 5). We determine the 
key architectural parameters like the size of processing arrays, interconnect 
of components, and memory organization to judiciously integrate different 
hardware components into an MPNA architecture. 

6. Hardware evaluation (Sect. 6). We evaluate the functionality of the MPNA 
architecture through functional simulations and synthesize it using the ASIC 
design flow with 28-nm technology library for obtaining the characteristics of 
area, performance, and power consumption. 

4 Dataflow Optimization 

4.1 Data Reuse Analysis 

The CNN complexity can be estimated using the number of MAC operations and 
weights required by the CONV and FC layers. Table 1 provides the number of MAC 
operations and weights of the AlexNet and VGG-16 networks for inferring one input 
sample. These indicate that the CONV layers are computationally intensive due to 
their high number of MAC operations, while the FC layers are memory intensive 
due to their high number of weights that need to be accessed from memories, as
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Table 1 Number of MACs 
and weights in the AlexNet 
and the VGG-16 for inferring 
one sample 

Number of MACs Number of weights 

Layer AlexNet VGG-16 AlexNet VGG-16 

CONV layers 1.07 B 15.34B 3.74M 14.71M 

FC layers 58.62M 123.63M 58.63M 123.64M 

indicated by Fig. 4a. Moreover, the CONV layers and the FC layers have different 
reuse factors for different data types (i.e., weights, input activations, and output 
activations), as shown in Fig. 4b and c. The reuse factor defines the number of 
MAC operations that are performed for a specific data type [31]. In CONV layers, 
all data types typically have comparable reuse factor, while in FC layers, weights 
have a significantly lower reuse factor than the activations. Furthermore, we observe 
that different layers in a network have different reuse factor characteristics, which 
is in line with previous studies [23, 30, 31]. For instance, the order of reuse 
factor for the AlexNet-CONV1 is weights, input activations, and output activations, 
while the order for the AlexNet-FC6 is output activations, input activations, and 
weights, respectively. This order of reuse factor is proportional to the significance 
of each data type to be stored longer in the on-chip memory and used for multiple 
computations, while avoiding costly DRAM accesses. These observations are then 
exploited for determining the efficient dataflow patterns to maximally benefit from 
the data reuse, thereby minimizing the number of DRAM accesses. 

4.2 Proposed Dataflow Patterns 

To effectively use the (off-chip and on-chip) memories and the compute capabilities 
of our SA-based architecture, we propose a set of dataflow patterns (as shown in 
Fig. 7) that can be employed by both the CONV and FC layers. 

Before devising efficient dataflow patterns, we present different possible types of 
data reuse schemes and their dependencies on different data types as follows: 

• Weight Reuse: It is defined by the number of times a specific weight used in the 
MAC operations of a given layer, which equals the size of output activations in 
a specific channel-j [31]. Hence, to maximally exploit the weight reuse, all input 
activations in a specific channel-i and the respective output activations should be 
available on-chip. 

• Input Activation Reuse: It is defined by the number of times a specific input 
activation used by the same filter multiplied by the number of filters for the MAC 
operations of a given layer [31]. Hence, to maximally exploit the input activation 
reuse, all the weights from a specific channel-i across all filters and the respective 
output activations should be available on-chip. 

• Output Activation Reuse: It is defined by the number of times partial sums 
accumulated to generate a specific output activation. It equals the size of a filter 
of a given layer [31]. Hence, to maximally exploit the output activation reuse, all
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input activations and weights that correspond to a specific output activation should 
be available on-chip. 

In embedded applications, the operational power is typically limited, hence 
leading to limited hardware resources that can be designed and used for performing 
the CNN inference at a time. Therefore, we consider a higher priority to generate 
a set of final output activations on-chip before starting other computations that 
generate different sets of partial sums (output activations). In this manner, the size of 
the accumulator units and the on-chip activation buffers are optimized. Furthermore, 
we leverage the data reuse observations (like the ones in Fig. 4) and the data tiling 
approach1 to devise different possible dataflow patterns for embedded applications, 
as explained in the following:

1 The data tiling defines the portion of the weights and the input activations that need to be accessed 
from the off-chip DRAM, stored in the on-chip memories (buffers), and then computed together to 
generate a portion of output activations at one time. 
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• Case-1: It has the following conditions: (1) all input and output activations can 
be stored in the on-chip buffer, (2) the weights can only be partially stored in the 
on-chip buffer, and (3) the complete output activations in a specific channel-j can 
be stored in a single accumulation unit. In this case, we aim at maximally reusing 
the weights while considering the output activation reuse. To do this, we define a 
set of weight filters where the number of filters per set equals the SA column (L), 
and the number of weights per filter equals a multiple of the SA row (K). This 
dataflow pattern is shown in Fig. 7a. 

• Case-2: It has the following conditions: (1) all input and output activations can be 
stored in the on-chip buffer, (2) the weight filters can only be partially stored in 
the on-chip buffer, and (3) the complete output activations in a specific channel-j 
cannot be stored in a single accumulation unit. In this case, we aim at maximally 
reusing the output activation reuse while considering the weight reuse. To do this,  
we define a portion of input activations so that it includes activations from all 
channels. We also define a set of weight filters where the number of filters per set 
equals L and include all weights from each filter. This dataflow pattern is shown 
in Fig. 7b. 

• Case-3: For other cases, the best configuration for data partitioning and schedul-
ing is selected using the ROMANet methodology [31] with the following 
constraints. First, the number of filters per set (as a tile of weights) should be 
a multiple of L. Second, the number of weights per filter should be a multiple of 
K . This dataflow pattern is shown in Fig. 7c. 

5 The MPNA Architecture 

5.1 Overview of Our MPNA Architecture 

Figure 8a presents the top-level view of our MPNA accelerator architecture, show-
ing its detailed components, which are explained in the subsequent subsections. Our 
MPNA architecture consists of heterogeneous systolic arrays (SAs), accumulation 
block, pooling-and-activation block, on-chip buffers, and a control unit. The arrays 
receive weights and input activations from the respective on-chip buffers, perform 
MAC operations, and forward the partial sums to the accumulation block. Each 
SA is designed to support specific types of dataflow patterns and data parallelism 
for accelerating CONV and FC layers while incurring minimum overheads. This 
accumulation block holds the generated partial sums while their remaining partial 
sums are being computed on the arrays and then accumulates them together 
to generate the updated partial sums or final output activations. Afterward, the 
accumulator block forwards these partial sums (or final output activations) to the 
subsequent block for performing pooling-and-activation operations or sending them 
to the on-chip buffer. These data are then either used for further computations or 
moved to the DRAM until the rest of operations are completed.
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Fig. 8 MPNA architecture. (a) Top-level view of our MPNA architecture showing different 
components and their interconnections. The heterogeneous systolic arrays, (b) the SA-CONV, (c) 
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and Leaky-ReLU activation functions
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5.2 Heterogeneous Systolic Arrays (SAs) 

Based on our observations in Fig. 4, we propose for utilizing two different SAs (i.e., 
heterogeneous SAs) that can process different types of layers in a given network, 
that is, an array that targets only accelerating CONV layers (i.e., SA-CONV) and an 
array that targets accelerating FC layers (i.e., SA-FC). 

Systolic Array for CONV Layers (SA-CONV) For CONV layers, we employ the 
SA design to exploit the weight, input activation, and partial sum (output activation) 
reuse, following the design of [18] (i.e., so-called SA-CONV). Figure 8b shows that 
our SA-CONV integrates a massively parallel array of Processing Elements (PEs) 
for MAC operations. Each PE receives an input activation from its left-adjacent PE 
and a weight and a partial sum from the top-adjacent PE and passes a generated 
partial sum to its bottom-adjacent PE. The left-most PEs in the array receive input 
from the input activation buffer, while the top-most PEs receive weights from the 
weight buffer. The generated partial sums are then passed to the accumulation block 
by the bottom-most PEs. To support such a processing dataflow on the array, weights 
from the same filter (or neuron) are mapped on the same column of the array. 
Meanwhile, weights that need to be multiplied with the same input activation are 
mapped on parallel columns. In this manner, activation reuse and weight reuse are 
maximized. Furthermore, we also include an additional register that holds a weight 
that is being used for MAC operation, while moving new weights (which will be 
used in the next iteration) to their respective locations, as shown in Fig. 8c. In this 
manner, the initialization time for weight loading on the array can be significantly 
reduced. 

Systolic Array for FC Layers (SA-FC) The SA-CONV can provide a significant 
throughput for batch processing with large batch size due to the weight reuse 
in CONV layer processing. However, it can significantly affect the latency of 
the overall CNN inference which is an important parameter for many real-world 
applications. The reason is that FC layer processing in a CNN inference has low 
weight reuse, thereby making the SA-CONV inefficient for accelerating FC layers 
and decreasing the benefit of batch processing with large batch size, as shown 
in Fig. 2. Toward this, we propose a novel systolic array architecture that can 
expedite both the CONV and FC layers (i.e., so-called SA-FC). However, the 
overall bandwidth required for accelerating FC layers is huge, especially for larger 
CNNs. Therefore, our proposed SA-FC is designed so that it can be multiplexed 
for processing both the bandwidth-intensive FC and computation-intensive CONV 
layers. In this manner, the SA-FC can also be used for batch processing while 
incurring minimum area and power overheads as compared to the SA-CONV. Figure 
8d shows that, unlike the SA-CONV, the SA-FC has dedicated connections from 
the weight buffer to each PE. It enables the system to update the weights in PEs 
at every clock cycle, hence providing a matching data throughput to support high-
performance execution of the FC layers. The supporting dataflow for the SA-FC is 
shown in Fig. 9.
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clock cycle to generate a new partial sum accordingly cycle for FC layer processing 

Integration of the SA-CONV and the SA-FC To determine the processing array 
design, several aspects need to be considered. First, the SA-CONV design is not 
efficient for processing FC layers especially in the real-time or latency-sensitive 
applications. Second, the SA-FC has area and power overheads over the SA-CONV, 
thereby limiting its array size for efficient processing. Third, the available data for 
SA computations are limited by the memory bandwidth. Toward this, we propose 
to integrate the SA-CONV and the SA-FC as heterogeneous systolic arrays for 
providing a better design with respect to the area, performance, and power/energy 
efficiency as compared to employing the individual design of SA-CONV or SA-FC. 

5.3 Accumulation Block 

The accumulation block consists of several accumulation units, whose number 
equals the total number of columns in the SA-CONV and the SA-FC. Each 
accumulation unit consists of (1) a Scratch-Pad Memory (SPM) for storing the 
partial sums of the output activations that are generated by the arrays and (2) an 
adder for accumulating the incoming partial sums with the other partial sums in 
the SPM. Once the final output activations are computed, the values are passed to 
the pooling-and-activation block for further processing. The accumulation block is 
shown in Fig. 8e
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5.4 Pooling-and-Activation Block 

After the CONV and FC layer processing, an activation function is typically 
employed and followed by a pooling layer to reduce the size of feature maps for 
subsequent layers. For these activation and pooling operations, our MPNA also 
provides specialized hardware. Our MPNA considers the state-of-the-art MaxPool-
ing function, which is used by almost all modern CNNs. Furthermore, since the 
state-of-the activation functions are typically monotonically increasing, they can 
be moved after the pooling operation to reduce the number activation functions 
and the hardware complexity. The pooling-and-accumulation block consists of 
several pooling-and-accumulation units, whose number equals the total number 
of columns in the SA-CONV and the SA-FC. Each pooling-and-activation unit 
consists of (1) an SPM to hold the intermediate pooling results and (2) a pooling 
and activation computation module. Our MPNA architecture currently supports two 
state-of-the-art activation functions that are commonly used in CNNs, i.e., ReLU 
and Leaky-ReLU [32]. The pooling-and-activation block is shown in Fig. 8f 

5.5 Hardware Configuration 

We analyze the characteristics of the workloads such as the AlexNet [20] to  
determine the hardware configuration for our MPNA architecture. A summary of 
the hardware configuration for our MPNA architecture is provided in Table 2. For  
the AlexNet case, we make the following observations: 

• The output activations of the last three CONV layers (i.e., CONV3 until CONV5) 
should fit in the SPM of the accumulation and pooling-and-activation blocks. 
Since the size of output activations in these layers is 13 . × 13, we select the SPM 
size that can store up to 256 elements. In this manner, pooling and activations can 
be efficiently performed with local data in the blocks, thereby avoiding accessing 
data from the buffers or even the DRAM. 

Table 2 The hardware configuration of our MPNA architecture 

Module Description 

Systolic arrays Size of SA-CONV . = 8 . × 8 of PEs  

Size of SA-FC . = 8 . × 8 of PEs  

SPM Size of SPM in each accumulation unit 

and each pooling-and-activation unit . = 256B 

Weight buffer Size of weight buffer . = 32KB 

Activation buffer Size of weight buffer . = 256KB 

DRAM Size of DRAM . = 2Gb  

Bandwidth of DRAM . = 12.8GB/s [28]
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• For holding the input and output activations of the CONV3-CONV5 layers on-
chip, we select a 256-KB activation buffer for two arrays. The reason is that this 
buffer is greater than four times of the 13 . × 13 . × 384, i.e., the biggest size of 
input activations across CONV3-CONV5 layers (i.e., CONV4). In this manner, 
we can maximize the activation reuse. 

•  We select  the size of 8  . × 8 of PEs for each processing array, as it provides 
high parallelism while requiring relatively low off-chip memory bandwidth, as 
compared to the SA-FC design with the same number of PEs. 

6 Evaluation Methodology 

For evaluating the MPNA architecture, we build the MPNA design using RTL codes 
and then perform the logic simulation through the ModelSim for functional and 
timing validations. Afterward, we synthesize the design for a 28-nm technology 
using the Synopsys Design Compiler to extract critical path delay, area, and power. 
We also employ the CACTI 7.0 [3] for modeling the off-chip and on-chip memories 
and then estimating the respective latency, area, and power/energy. We compare our 
SA-FC with the SA-CONV to evaluate the overheads. Afterward, we compare our 
MPNA design with the conventional SA-based accelerators (as the baselines) across 
different array sizes (i.e., 2 . × 2, 4 . × 4, and 8 . × 8). Furthermore, we compare our 
MPNA accelerator with several well-known CNN accelerators such as Eyeriss [8], 
SCNN [29], and FlexFlow [25]. In this evaluation, we consider the AlexNet [20] as  
the workload. 

7 Experimental Results and Discussion 

7.1 Systolic Array Evaluation 

We first evaluate our SA-CONV and SA-FC designs to obtain their profiles on 
area and power, and the results are shown in Fig. 10a–b. This figure shows that 
our SA-FC architecture incurs insignificant overheads as compared to the SA-
CONV architecture, i.e., 2.1% area and 4.4% power overheads on average across 
different sizes of arrays. The reason is that our SA-FC design employs a relatively 
simple additional modifications for each PE (i.e., multiplexer and wires), thereby 
consuming significantly smaller area and power as compared to the combined 
components in a PE (i.e., registers, multiplier, addition, and wires). 

In terms of performance, the experimental results are shown in Fig. 10c. This 
figure indicates that the SA-FC 8 . × 8 achieves 8.1. × speed-up as compared to the 
SA-CONV 8 . × 8 when accelerating the FC layers. This performance improvement 
is due to the micro-architectural enhancements in the SA-FC (i.e., multiplexer
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and wires) that can provide data (i.e., weights and activations) timely to PEs for 
producing results each clock cycle. 

7.2 Comparison with Other CNN Accelerators 

The comparisons of our MPNA accelerator with the state-of-the-art accelerators are 
summarized in Table 3. This table shows that, in general, our MPNA accelerator 
achieves competitive characteristics as compared to other accelerators for a full 
CNN acceleration (i.e., for both the CONV and FC layers). 

7.2.1 Performance Evaluation 

Figure 11 shows the performance comparison between our MPNA accelerator and 
the conventional SA-based accelerators (i.e., SA-CONV-based designs). OurMPNA 
design achieves up to 2. × speed-up for expediting all layers of the AlexNet as 
compared to the SA-CONV 8 . × 8-based accelerators. The speed-up on CONV 
layers is due to the higher parallelism of computations offered by the heterogeneous
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Table 3 Comparisons to the state-of-the-art CNN accelerators 

Eyeriss SCNN FlexFlow MPNA 

Evaluated aspects [8] [29] [25] (this work) 

Technology (nm) 65 16 65 28 

Precision (fixed-point) 16-bit 16-bit 16-bit 8-bit 

Number of PEs (MACs) 168 64 256 128 

On-chip memory (KB) 181.5 1024 64 288 

Area (mm. 2) 12.25 7.9 3.89 2.34 

Power (mW) 278 NA . ∼1000 239 

Frequency (MHz) 100–250 1000 1000 280 

Performance (GOPS) 23.1 NA 420 35.8 

Efficiency (GOPS/W) 83.1 NA 300–500 149.7 

Acceleration target CONV CONV CONV CONV+FC 

Network Layer 
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Accelerator 

SA-CONV 2x2 SA-CONV 4x4 SA-CONV 8x8 MPNA 
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Fig. 11 Performance speed-up of different SA-based accelerators that are normalized to the 
accelerator with SA-CONV 1 . × 1 for the AlexNet workload 

arrays in the MPNA as compared to the SA-CONV-based designs with smaller array 
sizes (i.e., 2 . × 2, 4 . × 4, and 8 . × 8). Meanwhile, the speed-up on FC layers is mainly 
due to the enhancements in SA-FC that enable the array generating output partial 
sums at each clock cycle, thereby providing a higher throughput as compared to the 
SA-CONV-based designs. Our MPNA design also achieves better performance than 
Eyeriss [8] especially for FC layers, since Eyeriss only prioritizes for accelerating 
CONV layers through the row stationary dataflow, and Eyeriss also does not disclose 
their speed-up for the FC layers. Furthermore, the MPNA can operate at 280MHz 
with 35.8GOPs, which is higher than Eyeriss, as shown in Table 3. Although the 
MPNA has lower performance (GOPs) and operating frequency than other designs 
(e.g., FlexFlow and SCNN), it offers other important benefits for embedded systems 
(e.g., power/energy and area), which will be discussed in the following subsections.
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7.2.2 Power and Energy Consumption 

For operational power, our MPNA consumes 239mW on average which is domi-
nated by the Pooling-and-Activation block, mainly due to its local memory (SPM) 
operations (i.e., memory accesses). This power number is comparable to the 
operational power of Eyeriss, and however our MPNA offers better acceleration 
for a complete CNN architecture (i.e., including both the CONV and FC layers). 
Furthermore, power consumption of the MPNA is also significantly lower than 
other designs (e.g., 1W power for FlexFlow). Our MPNA achieves a performance 
efficiency of . ∼149GOPs/W, which is considered high for embedded systems with 
power budgets, such as the battery-powered IoT devices. In terms of energy 
consumption, our MPNA achieves about 51% of energy saving as compared to 
the conventional SA-based accelerator, as shown in Fig. 12. The reason is that our 
MPNA effectively exploits (1) data reuse through the optimized dataflows and (2) 
high parallelism from the heterogeneous arrays that lead to reduced processing 
latency, thereby decreasing the energy consumption. 

7.2.3 Area Footprint 

Our MPNA design occupies 2.34mm. 2 area which encompasses the computation 
part (i.e., about 1.38mm. 2) and the on-chip memories (i.e., about 0.96mm. 2), 
including both the activation and weight buffers. Furthermore, Table 3 shows that 
our MPNA accelerator occupies a competitively small area as compared to other 
state-of-the-art CNN accelerators. This characteristic is especially beneficial for 
embedded applications which typically require small-sized hardware implementa-
tion to enable their use cases, such as mobile and wearable devices.
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8 Conclusion 

In this work, we show that a significant speed-up for the complete SNN architecture 
(i.e., including both the CONV and FC layers) can be achieved through a synergistic 
design methodology encompassing (1) the dataflow optimization that exploit differ-
ent types of data reuse and (2) the MPNA architecture with heterogeneous systolic 
arrays and specialized on-chip buffers. The MPNA architecture is synthesized for a 
28-nm technology through the ASIC design flow and evaluated for performance, 
power/energy, and area. The results show performance gain of our design as 
compared to the conventional systolic array-based accelerators. They also show that 
our MPNA achieves better power/energy and area than several state-of-the-art CNN 
accelerators. All these results suggest that our MPNA accelerator is suitable for 
various resource- and power-/energy-constrained embedded systems. 
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Photonic NoCs for Energy-Efficient 
Data-Centric Computing 

Febin P. Sunny, Asif Mirza, Ishan G. Thakkar, Mahdi Nikdast, 
and Sudeep Pasricha 

1 Introduction 

To match the increasing demand in processing capabilities of modern applications, 
the core count in emerging manycore systems has been steadily increasing. For 
example, Intel Xeon processors today have up to 56 cores [1], while NVIDIA’s 
GPU’s have reported over 10,000 shader cores [2]. Emerging application-specific 
processors are pushing these numbers to new highs, e.g., the Cerebras AI accelerator 
has over 400,000 lightweight cores [3]. The increasing number of cores creates 
greater core-to-core and core-to-memory communication. 

Electrical networks-on-chip (ENoCs), which employ conventional metallic inter-
connects, already dissipate very high power to support the high bandwidths and low-
latency requirements of data-driven parallel applications today and are unlikely to 
scale to meet the demands of future applications [4]. Fortunately, chip-scale silicon 
photonics technology has emerged in recent years as a promising development to 
enhance multicore systems with light speed photonic links that can overcome the 
bottlenecks of slow and noise-prone electrical links. Silicon photonics can enable 
photonic NoCs (PNoCs) with a promise of much higher bandwidths and lower 
latencies than ENoCs [5]. 

Typical PNoC architectures employ several photonic devices such as photonic 
waveguides, couplers, splitters, and multiwavelength laser sources, along with mod-
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ulators, detectors, and switches, devised using devices such as microring resonators 
(MRs) and Mach-Zehnder interferometers (MZIs) [5]. PNoCs employ a laser source 
(either off-chip or on-chip) to generate light with one or more wavelengths, which 
is coupled by an optical coupler to an on-chip photonic waveguide. This waveguide 
guides the input optical power of potentially multiple carrier wavelengths (referred 
to as wavelength-division-multiplexed (WDM) transmission), via a series of optical 
power splitters, to the individual nodes (e.g., processing cores) on the chip. Each 
wavelength serves as a carrier for a data signal. Typically, multiple data signals are 
generated at a source node in the electrical digital domain as sequences of logical 0 
and 1 voltage levels. These input electrical data signals can be modulated onto the 
wavelengths using a group (bank) of modulator MRs (e.g., 64-bit data modulated on 
64 wavelengths), typically using on-off keying (OOK) modulation. Subsequently, 
the carrier wavelengths are routed over the PNoC till they reach their destination 
node, where the wavelengths are filtered and dropped into the waveguide by a bank 
of filter MRs that redirect the wavelengths to photodetectors to recover the data in 
the electrical domain. Each node in a PNoC can communicate to multiple other 
nodes through such WDM-enabled photonic waveguides in PNoCs. 

Unfortunately, optical signals accumulate losses and crosstalk noise as they 
traverse PNoCs. This accumulation of losses necessitates high optical input power 
from the laser for signal-to-noise ratio compensation and to guarantee that the 
signal can be received at the destination node with sufficient power to enable 
error-free recovery of the transmitted data. Moreover, the sensitivity of an MR to 
the wavelength it is intended to couple with is related to its physical properties 
(e.g., radius, width, thickness, refractive index of the device material) that can 
vary with fabrication process and thermal variations. To rectify these problems, 
MRs require active “tuning” components to correct the impact of these variations. 
MRs can be tuned either by free-carrier injection (electro-optic tuning) or thermally 
tuning the device (thermo-optic tuning), both these techniques aim at affecting the 
effective refractive index of MR material, thereby the changing optical properties 
to counteract the impact of variations. Such tuning entails energy and power 
overheads, which can become significant as the number of MRs in PNoCs increases. 
Novel solutions are therefore urgently needed to reduce these power overheads, so 
that PNoCs can serve as a viable replacement to ENoCs in emerging and future 
manycore architectures. 

One promising direction towards this goal is to utilize approximate computing 
in conjunction with silicon photonic communication. As computational complexity 
and data volumes increase for emerging applications, ensuring fault-free computing 
for them becomes increasingly difficult, for various reasons including the following: 
(i) traditional redundancy-based fault tolerance require additional resources which is 
hard to allocate among the increasing resource demands for big-data processing, and 
(ii) the ongoing scaling of semiconductor devices makes them increasingly sensitive 
to variations, e.g., due to imperfect fabrication processes. Approximate computing 
trades off “acceptable errors” during execution for reduced energy consumption and 
runtime and is a potential solution to both these challenges [6]. With diminishing
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performance-per-watt gains from Dennard scaling, leveraging such aggressive 
techniques to achieve higher energy-efficiency is becoming increasingly important. 

In this chapter, we explore how to leverage data approximation to benefit 
the energy and power consumption footprints of PNoC architectures. To achieve 
this goal, we analyze how data approximation impacts the output quality of 
various applications and how that will impact energy and power requirements for 
laser operation, transmission, and MR tuning. The framework discussed in this 
chapter, called ARXON [7], extends a previous work (LORAX [8]) to implement 
an aggressive loss-aware approximated-packet-transmission solution that reduces 
power overheads due to the laser, crosstalk mitigation, and MR tuning. The main 
contributions of this work are as follows:

• Developed an approach that relies on approximating a subset of data transfers 
for applications, to reduce energy consumption in PNoCs while still maintaining 
acceptable output quality for applications

• Proposed a strategy that adaptively switches between two modes of approximate 
data transmission, based on the photonic signal loss profile along the traversed 
path

• Evaluated the impact of utilizing multilevel signaling (pulse-amplitude mod-
ulation) instead of conventional on-off keying (OOK) signaling along with 
approximate transfers for achieving significantly better energy-efficiency

• Explored how adapting existing approaches towards MR tuning and crosstalk 
mitigation can help further reduce power overheads in PNoCs

• Evaluated ARXON framework on multiple applications and show its effective-
ness over the best-known prior work on approximating data transfers over PNoC 
architectures 

2 Related Work 

By carefully relaxing the requirement for computational correctness, so as not 
to impact the quality of service (QoS) of the application, it has been shown 
that many applications can execute with a much lower energy consumption and 
without significantly impacting application output quality. Some examples for 
approximation-tolerant applications that can save energy through this approach 
include audio transcoding, image processing, encoding/decoding during video 
streaming [9, 10], and big-data applications [11, 12]. The fast-growing repository 
of machine learning (ML) applications represents a particularly promising target 
for approximation because of the exhibited resilience to errors in parameter 
values by ML applications. As an example, it is possible to approximate the 
weights (e.g., from 32-bit floating-point to 8-bit fixed point) in convolutional and 
deep neural networks and with negligible degradation in the output classification 
accuracy [10]. Many other approaches have been proposed for ML algorithm-level 
approximations [13–15]. With ML applications becoming increasingly prevalent
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in resource-constrained environments such as mobile and IoT platforms, there is 
growing interest in utilizing approximated versions of ML applications for faster 
and lower-energy inference [16]. 

In general, the approximate computing solutions can be broadly categorized into 
four types based on their scope [17]: hardware, storage, software, and systems. The 
approximation of hardware components allows for a reduction in their complexity, 
and consequently their energy overheads [18]. For instance, an approximate full 
adder can utilize simpler approximated components such as XOR/XNOR-based 
adders and pass transistor-based multiplexers, for reduced energy consumption and 
operational latency [19, 20]. Additional reduction in circuit complexity and power 
dissipation can be enabled by avoiding XOR operations [21]. Techniques for storage 
approximation can include reducing refresh rates in DRAM [22, 23], which results 
in a deterioration of stored data, but at the advantage of increased energy-efficiency. 
Approaches for software approximation include algorithmic approximation that 
leverages domain specific knowledge [23–25]. They may also refer to approx-
imating annotated data, variables, and high-level programming constructs (e.g., 
loop iterations), via annotations in the software code [26, 27]. At the system 
level, approximation involves modification of architectures to support imprecise 
operations. Attempts to design an approximate NoC architecture fall under the 
system level approximation category. 

Several strategies have been proposed to approximate data transfers over ENoC 
architectures by using strategies that reduce the number of bits or packets being 
transmitted to reduce NoC utilization and thus reduce communication energy. An 
approximate ENoC for GPUs was presented in [28], where similar data packets 
were coalesced at the memory controller, to reduce the packets that traverse over 
the network. A hardware-data-approximation framework with an online data error 
control mechanism, which facilitates approximate matching of data patterns within 
a controllable value range, for ENoCs, was presented in [29]. In [30], traffic data was 
approximated by dropping values from a packet before it is sent on to the ENoC, 
at a set interval. The data is then recreated at the destination nodes using a linear 
interpolator-based predictor. A dual voltage ENoC is proposed in [31], where lower-
priority bits in a packet are transferred at a lower voltage level, which can save 
energy at the cost of possible bit flips. In contrast, the higher priority bits of the 
packet, including header bits, are transmitted with higher voltage, ensuring a lower 
bit-error rate (BER) for them. 

The approaches discussed so far focused on approximations for ENoCs. The 
complex and unique design space of approximation techniques for PNoCs remains 
relatively unexplored. There is a wide body of work which discusses strategies 
to make PNoCs more efficient and overall viable [32–54]. However, the use of 
approximate data communication in PNoCs for the first time was explored in [55]. 
The authors explored different levels of laser power for transmission of bits across 
a photonic waveguide, with a lower level of laser power used for bits that could 
be approximated, but at the cost of higher BER for these bits. The work focused 
specifically on approximation of floating-point data, where the least significant 
bits (LSBs) were transmitted at a lower laser-power level. However, the specific
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number of these bits to be approximated as well as the laser-power levels were 
decided in an application-independent manner, which ignores application-specific 
sensitivity to approximation. Moreover, the laser-power level is set statically and 
without considering the dynamic optical loss that photonic signals encounter as 
they traverse the network. LORAX framework [8] improved upon the work in 
[55] by using a loss- and QoS aware approach to adapt laser power at runtime 
for approximate communication in PNoCs. LORAX took into consideration the 
impact of adaptive approximation, varying laser-power levels, and the use of 4-
pulse amplitude modulation (PAM4) on application output quality, to maximize 
application-specific energy savings in an acceptable manner. There may be apparent 
similarities between these approaches and works in say [55] or [56], but the design 
considerations, modeling, and implementation in hardware required for PNoC are 
very different from an ENoC. These differences stem from the differences in 
physical operation of the basic components in ENoCs (transistors operating in 
digital domain) and PNoCs (photonic devices such as MZIs or MRs operating in 
the optical analog domain). 

The ARXON (AppRoXimation framework for On-chip photonic Networks) 
framework discussed in this chapter improves upon LORAX in multiple ways 
through: 

(i) Considering integer data for approximation in addition to floating-point data 
(LORAX only considered floating-point data) 

(ii) Integrating the impact of fabrication-process variations (FPV) and thermal 
variations (TV) on MR tuning and leveraging it for energy savings 

(iii) Approximating error correction techniques, which are commonly used in 
PNoCs, to save more energy 

(iv) Analyzing the potential for approximation for a much broader set of applica-
tions and across multiple PNoC architectures. 

Section 5 of this chapter discusses the ARXON framework in detail, with 
evaluation results presented in Sect. 6. 

3 Data Formats and Approximations 

3.1 Floating-Point Data 

In many applications, floating-point data can be safely considered for approximation 
and without impacting the QoS of the approximation, as explored and demonstrated 
in [8, 55]. This compatibility of floating-point data to approximation is in large 
part due to the way in which it is represented. The IEEE-754 standard defines a 
standardized floating-point data representation, which consists of three parts: sign 
(S), exponent (E), and mantissa (M), as shown in Fig. 1. The value of the data 
stored is
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Fig. 1 IEEE 754 floating-point representation 

X = (−1)S × 2E−bias × (1 + M) (1) 

where X is the resulting floating-point value. The bias values are fixed values, 127
and 1203, respectively, for single and double precision representation, and are used
to ensure that the exponent is always positive, thereby eliminating the need to
store the exponent sign bit. The single precision (SP) and double precision (DP)
representations vary in the number of bits allocated to the E and M (see Fig. 1). 
E is 8 bits for SP and 11 bits for DP, while M is 23 bits for SP and 52 bits for 
DP. S remains 1 bit for both cases. From Eq. (1), we can observe that the S and E 
values notably affect the value of X. But  X is typically less sensitive to alterations 
in M in many cases. M also takes up a significant portion of the floating-point data 
representation. We consider S and E as MSBs that may not be altered, whereas M 
makes up the LSBs that are more suitable for approximation to save energy during 
photonic transmission. 

3.2 Integer Data 

Integer data approximation is significantly more challenging, as it does not have 
exploitable separations in its representation, like those present in the IEEE754 
standard for floating-point data. An integer data value is usually represented as an 
N-bit chunk of bits that can represent signed or unsigned integer data. If unsigned, 
the N-bits of data can be used to represent an integer value in the range from 0 to 
2N−1. If signed, the most significant bit represents the sign bit, and the remaining 
N−1 bits represent an integer value in the range from – (2N−1−1) to + (2N−1−1). 
Moreover, the number of bits, N, in an integer data word can change depending 
on the usage or application. N is usually in the range from 8 to 64 bits in today’s 
platforms. Therefore, devising a generalized approach to approximate the integer 
data values is challenging. As a result, we have opted for an application-specific 
approach, where we identify possible integer variables that have larger than required 
size, depending on the values they handle. We deem the size of an unsigned integer 
variable as larger than required, if the MSBs of the variable are not holding any 
useful information, i.e., consisting of 0-bits. We approximate such unnecessarily
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large unsigned-integer variables by truncating their MSBs. We also consider LSB 
approximation for integer packets, when viable. However, we observed that integer 
data is generally not as tolerant to LSB approximation as floating-point data, so this 
approximation approach cannot utilized be as aggressive as LSB approximation in 
floating-point data and is thus used sparsely in the proposed framework. 

3.3 Applications Considered for Approximation 

To establish the effectiveness of this approach that focuses on approximating 
floating-point LSB data and integer MSB data, we evaluate the breakdown of 
integer and floating-point data usage across multiple applications. We selected the 
ACCEPT benchmark suite [25], which consists of several applications, including 
some from the well-known benchmark suite PARSEC [56], that exhibit a relatively 
strong potential for data approximations. While the applications in this suite may be 
executed on a single core, to adapt these to a PNoC-based multicore platform with 
64 cores, we used a multi-application simulation approach where the applications 
were replicated across the 64 cores to emulate multi-application workloads on 
real systems. Along with the applications from [25], we also considered several 
convolutional neural-network applications from the tinyDNN [57] benchmark suite 
to see how the ARXON framework would perform for ML applications. The 
multi-application simulation approach was adopted, as this would simulate multiple 
applications will be running and competing for on-chip resources simultaneously, 
as in a real many-core system. 

To count the total number of integer and floating-point packets in transit 
across the memory hierarchy during the simulations, we used the gem5 [58] full  
system-level simulator and the Intel PIN tool [59] in tandem. Figure 2 shows the 
breakdown of the floating-point and integer packets across the applications for 
large input workloads. We considered all floating-point data packets as candidates 
for approximation. As for integer packets, we identified specific variables and a 
subset of their bits (“approximable integer packets”) that can be approximated 
safely. The goal while selecting floating-point and integer packets for approximation 
was to keep application-specific error to below 10% of the original output. It can 
be observed that while a majority of the applications have integer packets that 
cannot be approximated without hurting output quality significantly, most of these 
applications have a nontrivial percentage of their overall packet count that can be 
approximated. This is a promising observation that establishes the validity of the 
framework. However, before we describe the framework in detail (Sect. 5), we 
briefly cover challenges in PNoCs related to crosstalk and signal loss (Sect. 4), 
which this approximation approach leverages for energy savings.



32 F. P. Sunny et al.

Fig. 2 Characterization of applications considered for evaluation, as presented in [7] 

4 Crosstalk and Optical Loss in PNoCs 

The overall data movement on the chip increases as the number of on-chip 
processing elements increases and applications utilize more data. To meet the 
demands of the increased communication, a larger number of photonic waveguides, 
wavelengths, and MR devices are necessary. However, using a larger number of 
photonic components makes it challenging to maintain acceptable BER and achieve 
sufficient signal-to-noise ratio (SNR) in any PNoC architecture due to optical signal 
loss and crosstalk noise accumulation in photonic building blocks [60]. 

Light wave propagation in photonic interconnects relies significantly on the 
precise geometry adjustment of photonic components. Any distortion in waveguide 
geometries and shape can notably affect the optical power and energy-efficiency 
in waveguides. For instance, sidewall roughness due to inevitable lithography and 
etching-process imperfections can result in scattering and hence optical losses in 
waveguides [61]. Such losses experienced by the optical signal as it passes through 
a waveguide is called propagation losses. In addition to propagation loss, there is 
optical loss whenever a waveguide bends (i.e., bending loss) or when a wavelength 
passes (i.e., passing loss) or drops (i.e., drop loss) into an MR device. To compensate 
for the losses and ensure appropriate optical-power levels at destination nodes where 
the signals are detected, increased laser power is required. 

Crosstalk is another inherent phenomenon in photonic interconnects that 
degrades energy-efficiency and reliability. Crosstalk in PNoCs occurs due to 
variations in MR geometry or refractive index and imperfect spectral properties 
of MRs, which can cause an MR to couple optical power from another 
optical channel/wavelength in addition to its own optical channel (i.e., resonant
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wavelength). This leakage of power from one optical channel to other essentially 
becomes crosstalk noise in photonic interconnects. Such crosstalk noise is of 
concern when multiple optical channels exist within close (<1 nm) spectral 
proximity (referred to as channel spacing). This is especially evident in dense-
wavelength-division multiplexed (DWDM) waveguides, which is necessary to 
support a higher bandwidth for emerging manycore platforms. In such DWDM 
systems, not only will optical signals in each channel suffer from optical loss, 
but inter- and intra-channel crosstalk [62] accumulating on optical signals can 
severely reduce SNR and increase BER. Reducing crosstalk is challenging, and 
techniques to minimize crosstalk (e.g., [43, 63, 64]) introduce further power and 
latency overheads. 

It should be noted that the optical-power loss and crosstalk noise from a single 
silicon photonic device (e.g., MR) can be very small, and hence negligible [65]. 
However, in PNoCs integrating a large number of such devices (e.g., hundreds of 
thousands of MRs), the small power loss and crosstalk noise at the device-level 
accumulate to a point that they can severely reduce the performance and energy-
efficiency in such architectures. In ARXON framework, as we are considering 
approximated data packets, we can intelligently relax crosstalk-mitigation mech-
anisms and optical loss compensation for the approximated bits, to aggressively 
reduce power and energy consumption overheads. 

5 ARXON Framework: Overview 

This section of this chapter discusses the components of the ARXON framework. 
Section 5.1 provides an overview of our loss-aware laser-power optimization 
strategy. Sections 5.2 and 5.3 discuss how crosstalk mitigation and tuning can be 
relaxed to save power during approximate bit transfers. Finally, Sect 5.4 describes 
the integration of multilevel signaling to reduce power dissipation further during 
approximate communication in PNoCs. 

5.1 Loss-Aware Power Management for Approximation 

Optical signals transmitted over a waveguide (photonic link) experiences various 
optical losses along the path from a source to a destination, as discussed in Sect 
4. To express how these optical losses tie in with the required input laser power 
provisioned to the optical signals in the waveguide, we can use the following model 
[66]: 

Plaser − Sdetector ≥ Pphotoloss + 10 × log10Nλ (2)
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Here, Plaser is the laser power in dBm, Sdetector is the receiver sensitivity, and Nλ is 
the number of unique wavelengths, i.e., optical channels in the link. Also, Pphotoloss 
is the total optical loss accumulated on the optical signal during its transmission, 
which includes propagation, crossing, and bending losses in the waveguides, 
through- and drop-port losses of MR modulators and filters and modulating loss 
in modulator MRs due to imperfect modulation [63]. Plaser thus depends on the 
link bandwidth in terms of Nλ and the total loss Pphotoloss encountered by each 
optical signal traversing the network. A signal can only be accurately recovered 
at the destination node if the received signal power is higher than Sdetector, after  
encountering Pphotoloss. Ensuring this requires a high-enough Plaser to compensate 
for all optical losses. 

To approximate data transmission for floating-point data transfers [55], use lower 
Plaser for transmitting LSBs while keeping Plaser unchanged for MSBs. However, 
this technique fails to take into account the higher losses encountered by a packet 
if the destination node is relatively farther along a waveguide from a source node. 
The higher losses encountered can drive the signal power at the detector MRs lower 
than Sdetector, which would result in detecting logic “0” for all the approximated 
signals at the destination node (e.g., with OOK modulation). On the other hand, 
in the scenario where the destination is closer to the source, it may be possible 
to detect the approximated signals accurately, even with the reduced Plaser for the 
approximated bits, as the losses encountered are low enough that the signal power 
at the detector MRs would be higher than Sdetector. For each data transfer on a 
waveguide, if we are aware of the distance of the destination from the source, it 
is possible to calculate the losses encountered for the signals, which can allow us to 
determine whether the signals can be recovered accurately, or if they will be detected 
as “0s.” In this scenario, it is more efficient to simply truncate all the approximated 
bits (i.e., reduce Plaser to 0 for optical channels carrying the approximated signals) 
when the destination is farther along the waveguide and there is no likelihood of the 
signal being recovered accurately. Moreover, in the cases where the destination is 
closer to the source, we can transmit the approximated signals with a lower Plaser 
and still retrieve the correct data. This intelligent distance-aware transmission model 
for data approximation allows for some of the data to be detected accurately at the 
destination, while approximating other data depending on its content and distance 
to the destination. 

Figure 3 shows the operational details of the distance-aware transmission model 
in our framework, on a single-writer-multiple-reader (SWMR) waveguide that is 
part of a PNoC architecture. Note that while the framework is to illustrate an 
SWMR waveguide, it is also applicable (with minimal changes) to multiple-writer-
multiple reader (MWMR) and multiple-writer-single reader (MWSR) waveguides 
that are also used in many PNoCs. In Fig. 3, only one sender node is active per 
data transmission phase, and there is one receiver node (out of three nodes in the 
figure) that acts as the destination for the transmission. In a pre-transmission phase 
(called receiver-selection phase), the sender notifies the rest of the nodes about the 
destination for the upcoming data transmission, and only the destination node will 
activate its MR banks, whereas the other nodes will power down their MR banks
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Fig. 3 Overview of the ARXON framework 

to save power. As shown in Fig. 3, if the destination node is close to the sender 
node (e.g., D1), we can transmit the approximated bit signals with a lower Plaser. 
Otherwise, if the destination node is farther away from the sender node (e.g., D3), 
we determine that it would not be possible to detect the approximated signals at 
that destination due to the greater losses the signals will encounter. In this second 
scenario, we can dynamically turn off Plaser, essentially truncating the bits. 

We consider both integer and floating-point data for approximation. For floating-
point data, we perform distance aware transmission of the LSBs (M bits of the 
floating-point data representation) of the data in a controlled manner, so as not 
to impact the overall output quality of the application. Figure 4 shows how 
transmission of data will conform to the distance aware transmission policy of our 
framework. In the case where substantial losses are expected to be encountered 
between a source and destination, we adopt the strategy shown in Fig. 4a, where the 
data is truncated, as the approximated bits would have been lost during transmission 
anyway. When the signal can have enough power to be successfully received at the 
destination node, we adopt the strategy shown in Fig. 4b, where the LSB of the data 
is transmitted at a lowered laser power than its nonapproximated counterparts. The 
power at which the bits can be transmitted, and the number of the approximated bits 
will depend on the application, as discussed in Sect. 6. 

For approximating integer variables, we take a different approach. From our 
analysis, we observe that indiscriminate approximation of integer data in an 
application can significantly reduce output quality. Therefore, we instead profile 
applications and log the range of values stored in each integer variable. If the range 
of values is smaller than the bit size allotted to the variable (e.g., the case where
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Fig. 4 Floating-point data transmission on a photonic waveguide via (a) truncation and (b) 
lowering laser power 

a 32-bit integer variable only stores values up to 24 bits throughout the run of 
the application), we consider it a candidate for approximation. We can remove or 
truncate the MSBs that are unused in such variables that will otherwise take up input 
laser power, modulation/demodulation energy, and tuning energy necessary for 
transmission. We can also try and approximate the LSBs of the integer packets, and 
this approach can work in integer variables that store very large values where slight 
errors in the LSBs have minimal impact. But integer variables amenable to LSB 
approximation without significantly reducing output quality are rare. Nonetheless, 
for any such amenable integer data, the distance aware transmission model is applied 
to approximated LSB bits as well. Figure 5 summarizes our approximation strategy 
for integer packets. 

To implement these strategies, we require the following: (i) a dynamic control 
mechanism for the laser power being injected into the on-chip waveguides and (ii) 
a mechanism to annotate approximable variables in the application source code, for 
runtime adaptation of transfers involving these variables. 

We use an on-chip laser array with vertical-cavity surface-emitting lasers 
(VCSELs) [67], which can be directly controlled using on-chip laser drivers. 
With the laser drivers, we control the power fed into each individual VCSEL, thus 
controlling the power of the laser output for a particular wavelength corresponding 
to that VCSEL. The gateway interface (GWI) that interfaces the electrical layer
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Fig. 5 The adopted approximated integer data transmission method 

of the chip to the PNoC (see Fig. 3) communicates the desired Plaser power level 
(including 0 for truncation) to the drivers, via an optical link manager, similar in 
structure to the one proposed in [68]. 

To generate necessary flags for data that is approximable, identification of 
candidate packets to be approximated is done at the processing-element level, via 
source-code annotations [25]. To allow for proper decoding of approximated or 
truncated packets at the destination flags indicating the type of data and the amount 
of data being truncated/approximated is necessary. For this, the two additional 
flags can be included in the packet header, at the processing-element level. The 
first (1 bit) flag indicates whether the approximable packet contains integer or 
float data and the second (1 bit) flag indicates whether the approximation is to be 
done for LSBs or MSBs. The number of bits that can be safely approximated or 
truncated are determined offline for each application and stored in lookup tables 
(LUTs) at the network interface (NI) which connects processing elements to routers 
that are in turn connected to GWIs. The number of bits approximated/truncated 
in a packet is also passed as part of the header flit of the packet to the GWI. 
This information can be used to gate (i.e., prevent) those bits from being passed 
into encoding/decoding circuitry. We also add six bits to the header flit to convey 
the number of bits truncated/approximated in the data packet, which is necessary 
information for decoding the data at the destination GWI. These six bits represent 
the number of approximated/truncated bits in the range from 0 to 32 bits, which is 
the range of approximation/truncation in ARXON. 

Usually the header flit of the packet contains the routing information, which can 
just be the destination address. We consider a flit size of 64 bits, i.e., 64 bits from 
a packet are transmitted per transmission cycle. The number of used bits in the 
header flit in a NoC do not exceed 16 bits (for the destination and source addresses), 
thus making it possible to incorporate the 8 necessary bits containing the two bits 
for the necessary flags and 6 bits for the approximation/truncation size information 
without causing any additional latency overheads. Once the header flit is received 
at the destination GWI, the flags and the approximated/truncated bits information
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are used to select the appropriate LSB/MSB to be not considered for decoding. The 
packet ID from the flit can then be used to track the remaining flits in the packet and 
treat them accordingly, depending on whether they were approximated or truncated. 

Once the approximable bits in a packet have been identified, we must determine 
whether the approximation during their transfer is to be accomplished via reduced 
power transmission or truncation. This requires a LUT at each GWI (see Fig. 3) 
populated with the destination IDs to which the loss values are sufficiently large 
enough to warrant truncation. The values can be easily calculated post-fabrication 
at design time, as the distance between nodes as well as the cumulative loss to their 
GWI from the source does not change at runtime. Once the decision to truncate 
or transmit at a lower laser power is made, depending on the destination node, 
the required power levels for the wavelengths are communicated to the VCSEL 
drivers via the optical-link manager. We discuss the overheads of the tables and the 
application specific tuning of Plaser for the approximated signals in Sect. 6. 

5.2 Relaxed Crosstalk Mitigation Strategy 

Due to the challenges with signal crosstalk outlined in Sect. 4, PNoCs must 
utilize one or more crosstalk mitigation strategies to reduce BER and achieve 
high SNR. We consider a state-of-the-art crosstalk mitigation strategy from [43] 
that can be applied at the link level in PNoCs. Analyses from [43] showed that 
a “1” carried by the wavelengths in the DWDM wavelength group adjacent to 
the resonant wavelength (λ _ MR) of an MR causes higher crosstalk in that MR. 
Hence, an encoding strategy to avoid two consecutive optical channels to carry 
“1,” by replacing adjacent “1s” with “0s” was proposed, to reduce interchannel 
crosstalk. This technique essentially helps by reducing the optical signal-strength of 
immediate nonresonant wavelengths and improving SNR. Two encoding techniques 
were proposed that encoded nibbles (4 bits) of data. The PCTM5B technique 
encoded the nibble to 5-bit data, while the PCTM6B technique encoded the nibble 
to 6-bit data. Table 1 shows the code words used in these encoding techniques. 
Note that to implement PCTM5B on a photonic link with 64-bit word parallel 
transfers, 16 additional bits are required, which increases the number of MRs by 
25%. Similarly, for PCTM6B, 32 additional bits are required for a 64-bit data word, 
and this increases the number of MRs by 50%. We consider the lower-overhead 
PCTM5B technique to be integrated into the PNoCs considered for analyses (Sect 
.6) by default, to meet BER goals. 

We assume the baseline configuration of the PNoC to have implemented 
PCTM5B, for crosstalk mitigation. This means the encoder/decoder circuitry and 
the LUT, containing the data word-code word pairs, are incorporated into the 
GWI. Using these additions, the incoming packets from the processing elements 
can be encoded to PCTM5B code words before they are transmitted to their 
destination, and at the destination, the packets are decoded using the LUTs. In 
the approximation scheme employed in ARXON, applying crosstalk mitigation
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Table 1 Data word to code 
word conversion [43] 

Data word Code word Data word Code word 

Code words for PCTM5B technique 
0000 00000 1000 01000 
0001 00001 1001 01001 
0010 00010 1010 01010 
0011 10101 1011 10100 
0100 00100 1100 01100 
0101 00101 1101 10010 
0110 00110 1110 10001 
0111 10110 1111 10000 
Code words for PCTM6B technique 
0000 000000 1000 001000 
0001 000001 1001 001001 
0010 000010 1010 001010 
0011 100000 1011 010100 
0100 000100 1100 100010 
0101 000101 1101 010010 
0110 010101 1110 010001 
0111 100001 1111 010000 

via PCTM5B technique to the approximated bits is an unnecessary overhead as 
it does not provide any benefits towards BER. By relaxing crosstalk mitigation 
for the truncated or approximated bits, it is possible to reduce the energy costs of 
the mitigation strategy. We do this by leveraging the approximation information 
gathered using our offline analysis of applications, where we consider that some 
LSB/MSB of the data can be approximated/truncated. We do not consider these 
approximable bits for encoding, by gating their access to the encoder. Similarly, at 
the destination, when an approximated/truncated packet is received, the information 
from our LUTs are used to gate the approximated/truncated bits from being passed 
into the decoder circuitry. 

5.3 Relaxed MR Tuning Strategy 

Thermo-optic or electro-optic tuning of MRs in a PNoC is crucial for ensuring 
reliable communication, by counter-acting the effects of FPV and TV. We assume 
the use of thermo-optic tuning in PNoCs, due to its better range of resonant 
wavelength shift (�λMR) correction. Electro-optic tuning can provide a tuning range 
of at most 1.5 nm [69]. In contrast, thermo-optic tuning can provide a tuning range 
of about 6.6 nm corresponding to the temperature range of up to 60 K [70] at  
0.11 nm/K sensitivity [71]. This comes at the price of higher energy consumption 
(~mW/nm) and slower operation (in units of µs). In our framework, we aim to 
reduce the overhead of tuning the MRs associated with truncated bits. We relax the
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tuning requirement for MRs associated with the truncated bits, by turning off the 
tuning mechanism for those MRs. We do not consider approximated bits for relaxed 
MR tuning, as the added noise this approach generates, due to thermal drift of λMR, 
may render the approximated bits unreadable at the destination GWI. 

5.4 Integrating Multilevel Signaling 

The discussion in the previous subsections assumes the use of conventional on-
off keying (OOK) signal modulation, where each photonic signal can have one of 
two amplitude levels: high or on (when transmitting a “1”), and low or off (when 
transmitting a “0”). In contrast, multilevel signaling is a signal-modulation scheme 
where more than two levels of voltage can be used to modulate multiple bits of 
data simultaneously in each optical signal. The obvious benefit with such multilevel 
signaling is an increase in the bandwidth. But for PNoCs multilevel signaling also 
provides the added benefit of reduced power consumption (compared to an OOK-
based PNoC), by reducing the number of optical channels needed to obtain the same 
bandwidth. Leveraging this technique in the photonic domain has, however, tradi-
tionally been a cumbersome process with high overheads, e.g., when using the signal 
superposition techniques from [72]. But with advances such as the introduction of 
optical digital to analog converter (ODAC) circuits [73] that are much more compact 
and faster than MZIs used in techniques involving superimposition [72], multilevel 
signaling has been shown to be more energy efficient than OOK [66]. The overall 
reduction in power and energy makes multilevel signaling a promising candidate for 
more aggressive energy savings in silicon photonic networks. 

Four-level pulse amplitude modulation (PAM4) is a multilevel signal modulation 
scheme where two extra levels of voltage (or optical signal power in case of optical 
modulation) are added in between the “0” and “1” levels of OOK. This allows PAM4 
to transmit two bits per modulator as opposed to one bit per modulator in OOK. 
This in turn increases the communication bandwidth of PAM4 when compared to 
OOK. We are interested in evaluating the impact of using PAM4 in PNoCs and 
how its use will impact the effectiveness of the discussed approximation strategies 
in ARXON. While PAM4 promises better energy-efficiency than OOK, it is prone 
to higher BER due to having multiple levels of the signal close to each other in 
optical power. Thus, we cannot reduce the laser-power level of the LSB bits to the 
level used in OOK, as it would significantly reduce the likelihood of accurate data 
recovery even when destination nodes are relatively close to the source. Thus, when 
PAM4 is used, we need to increase the laser power compared to OOK. We used 
an empirically determined value of 1.5× the laser power that was used for OOK, 
to prevent the degradation of approximated signals transmitted with PAM4. This 
may seem like a backward step in conserving energy, but the reduced-operational 
cost per modulation, reduced modulator and demodulator losses, and the reduced 
wavelength count for achieving the same bandwidth as OOK may reduce the overall 
laser power and energy consumption. Also, while it is possible to add more signaling
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levels (e.g., to use a PAM8 modulation scheme [74]), as the number of amplitude 
levels increases, the optical signal becomes increasingly susceptible to noise and 
causes increase in BER [75]. To ensure reliable communication when using PAM8, 
the bandwidth and speed of operation must be sacrificed [74]. Considering these 
constraints, we limit the extent of multilevel signaling integration in our framework 
to PAM4. The experimental results in the next section quantify the impact and trade-
off when using PAM4 signaling in our framework. 

6 ARXON Evaluation and Simulation Results 

6.1 Simulation Setup 

To evaluate our ARXON framework, we implement it in Clos [76] and SwiftNoC 
PNoC architectures [77] for a 64-core processor, with baseline OOK signaling, 
PCTM5B crosstalk mitigation, and thermo-optic tuning in MRs. 

The Clos PNoC, shown in Fig. 6a, has an 8-ary three-stage topology for a 
64-core system with eight clusters and eight cores per cluster. The PNoC is 
used for communication between clusters. It utilizes an optical crossbar topology 
with point-to-point photonic links utilizing SWMR waveguides for inter-cluster 
communication. Each cluster has two concentrators, and a group of four cores is 
connected to each concentrator, where concentrators communicate with each other 
using an electrical router. 

For the SwiftNoC PNoC, as shown in Fig. 6b, we have again considered a 64-core 
system. Each node here has four cores and communication within the node happens 
through a 5 × 5 router, with the fifth port of the router connected to a GWI, which 
facilitates transfers between the CMOS-electrical layer and the photonic layer. Each 
GWI connects four nodes (16 processing cores). The architecture utilizes eight 
waveguide groups with four MWMR waveguides per group in a crossbar topology. 
In order to support the MWMR communication, SwiftNoC utilizes a concurrent 
token stream arbitration that provides multiple simultaneous tokens and increases 
channel utilization. 

We performed a simulation-based analysis to visualize the impact of losses on 
laser power, modeled using Eq. (2). These losses are critical in ARXON’s loss-
aware approximation/truncation strategy. The Clos PNoC has a waveguide length 
of 4.5 cm, and the SwiftNoC PNoC has a waveguide length of 8.3 cm over the 
considered 400 mm2 chip. In both PNoCs, the first MR is encountered at ~1 cm, and 
the last MR is encountered at ~3.8 cm for Clos PNoC and ~7.8 cm for SwiftNoC. 
This relationship is visualized in Fig. 7, where the sudden jumps in power indicate 
a new GWI with the optical devices being encountered along the waveguide. 

The considered PNoC architectures were modeled and simulated using an in-
house SystemC-based cycle-accurate simulator. A combination of gem5 full-system 
simulator [58] and Intel PIN toolkit [59] was used to generate traces for the
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Fig. 6 PNoC architectures considered for analyses. (a) 8-ary 3-stage Clos architecture with 64 
cores [76] and (b) schematic overview of SwiftNoC architecture [77] 

considered application; these were replayed on the PNoC simulators to determine 
the effectiveness of ARXON framework on the PNoC. The PIN tool was used 
to obtain the addresses of the variables we deemed suitable for approximation 
from our profiling analysis of applications and then to track accesses to them. 
Using this information in gem5 simulation, we track the relevant data flow at 
various levels of the simulated system (processor level, memory controller level, 
DRAM level, and cache level). The information generated while the simulation is 
running was consolidated, and custom python scripts were created to extract the 
necessary information about the data packets (e.g., timestamp at origin, their source, 
destination, data values, and control values from the packet header) and to generate 
the traces necessary for our cycle accurate simulator to simulate the applications 
on these PNoC architectures. Then, details of the approximate data communication
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Fig. 7 Laser-power consumption behavior over the length of the waveguide in (a) Clos PNoC and  
(b) SwiftNoC. (Taken from Sunny et al. [7]) 

(i.e., whether a packet was truncated or transmitted at lower power) were used to 
modify data packets in a subsequent gem5 simulation, to estimate the impact of the 
approximation strategy on output quality for the application being considered. Table 
2 shows gem5 architectural simulation parameters considered in our experiments. 
We have based our simulations on x86 cores, but these simulations and our approach 
is applicable to systems having other types of cores as well, e.g., ARM cores. 
Twelve applications, ten from the ACCEPT benchmark suite and two from tinyDNN 
benchmark suite, were used in our evaluations. The performance was evaluated at
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Table 2 64-core architecture configuration 

Simulated component Specification 

No. of cores, processor type 64, ×86 
DRAM 8 GB, DDR3 
Memory controllers 8 
L1 I/D cache, line size 128 KB each, direct mapped, 64 B 
L2 cache, line size, coherence 2 MB, two-way set associative, 64 B, MESI 

the 22 nm CMOS node for 400 mm2 chips, with cores and routers operating at 
5 GHz clock frequency. DSENT [78] was used to calculate the energy consumption 
of routers and the GWI at each node. Each GWI holds two LUTs for our framework; 
these are one which holds the information regarding which destination addresses 
are preferred for truncation and another for PCTMB5 encoding scheme. The size 
of both the LUTs at GWI level is fixed and is application independent, as the 
information one store is hardware dependent and the other stores a fixed set of 
encoding-decoding information. The PCTM5B LUT takes up only 144 bits for 
storing encoding decoding information at each GWI. The destination ID LUT can 
take up a maximum of 32 bits at each GWI for Clos PNoC and 64 bits for SwiftNoC 
variants. 

The table containing information regarding number of bits to be approximat-
ed/truncated for integer/float approximable packets is stored at the network interface 
(NI) of each processor. The maximum number of bits required in these LUTs for 
the worst case (application with the highest number of approximable variables) 
is a few hundred bits for the applications we considered. CACTI v6.5 [79] and 
scaling equations from [80] were used to evaluate the power, area, and delay for 
the lookup tables in NIs and GWIs. These values were found to be 0.236 mm2 for 
the area consumption for all the tables, with a total power overhead, for reading 
from and writing into the tables, of 0.135 mW for Clos and 0.472 mm2 and 
0.27 mW respectively, for SwiftNoC. The combined power and area consumption 
of associated circuitry necessary for accessing information in the LUTs, calculated 
using gate-level analysis, is 0.0274 mm2 and 4.224 mW for Clos and 0.0548 mm2 

and 8.448 mW for SwiftNoC. LUTs in both Clos and SwiftNoC have the same 
number of entries as both architectures have the same number of processing 
elements. The encoding/decoding scheme is the same and the approximations done 
depend on the output error quality of the application and not the architecture, while 
SwiftNoC has double the number of GWIs, and hence double the number of LUTs. 
The access time for scratchpad RAMs designed with 22-nm technology node was 
under 1 cycle from synthesis estimates. 

For implementing the dynamic Plaser control, ARXON needs a VCSEL control 
unit. The VCSEL control in ARXON was modeled after the optical link manager 
in [68], where the channel management for their PNoC design was described. 
However, since we are considering PNoCs from prior works with their own channel 
management systems in place for our analysis, we only adopt the approach for
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Table 3 Loss and power parameters considered for PNoC simulations 

Parameters considered Standard values Aggressive values 

Receiver sensitivity −20 dBm [81] −23.4 dBm [82] 
MR through loss 0.02 dB [83] 0.02 dB [83] 
MR drop loss 0.7 dB [84] 0.5 dB [85] 
Propagation loss 1 dB/cm 0.25 dB/cm [86] 
Bending loss 0.01 dB/90◦ [87] 0.005 dB/90◦ [88] 
Thermo-optic tuning 6.67 mW/nm [89] 240 µW/nm [71] 

VCSEL control from [68]. The VCSEL control described in [68] uses a combination 
of MRs and PDs, but we only require the MR-based switching mechanism for the 
VCSEL output. From the data available in [68], we calculated the area overhead 
necessary for implementing the VCSEL control, which was 0.093 mm2 for OOK 
variants and 0.047 mm2 for PAM4 variants of both the architectures. 

Clos and SwiftNoC PNoC architectures with PCTM5B are used as baselines 
for our analyses in this work. We have also considered a two-cycle overhead for 
PCTM5B encoding and decoding of the signals, as calculated in [43]. We considered 
Nλ = 64 for OOK, which would enable 64-bit transmission across a waveguide 
per cycle. For PAM4, we only need to consider Nλ = 32 to achieve the same 
bandwidth as with OOK modulation. Table 3 shows the energy values for losses 
and power dissipation in different photonic devices, which we have used in our 
modeling efforts. We use a “standard” set of values for these parameters from 
existing prototyping efforts, and a more “aggressive” set of values as per future 
projections from various research efforts. Our approach sacrifices reliability of 
approximated bits in floating point data LSB and selected integer variable data, for 
EPB and laser-power savings, as discussed in Sects. 5.2, 5.3, and 5.4. 

We use the standard values for most of our simulations and use the aggressive 
values in Sect. 6.4. These values are used to calculate laser power from Eq. (2) 
and total power after considering tuning and lookup-table overheads. We consider 
a laser efficiency of 10% for our on-chip VCSELs, which is midway, the initial 
and worst-case efficiencies mentioned in [67]. We additionally consider a PAM4-
induced-signaling loss of 5.8 dB in Ppho for laser-power calculations for PAM4 [66]. 
To compensate for the increased sensitivity of PAM4 to bit errors, we also consider 
laser-power levels that are 1.5× than those used for OOK signaling. For ensuring 
reliable communication, we have considered a BER of 10−9 in our designs. Finally, 
we calculated application output error for the non-machine learning applications 
due to our approximation approach as: 

Percentage (Output) Error = 
|approximated value − exact value| 

exact value
× 100 

(3) 

The “exact value” refers to the original output values, which can be can be pixel 
values of output images/frames, like in the case of JPEG, Sobel or X264, or a
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set of values presented in the output files, like in the case of Blackscholes. The 
“approximated value” refers to the value of these outputs once the approximation 
approach is applied to the applications. For our analysis, we assume an error 
threshold of 10% output error, which was seen experimentally to be the limit at 
which the errors became apparent in the outputs of the majority of the applications 
[8]. For example, artifacts become noticeable in JPEG output as we cross the 
10% error threshold. Thus, we want to ensure that none of the approximation 
strategies degrade output quality by more than 10%. For our machine-learning 
applications (convolution neural networks for MNIST and CIFAR10 classification), 
we have considered the drop in classification accuracy to measure the impact of our 
framework, and we have set the threshold as 10% drop in the accuracy. 

6.2 Impact of ARXON on Considered Applications 

Our first set of experiments involve analyzing the sensitivity of an application to 
varying degrees of approximation of their floating-point data. We are interested 
in studying the impact of our approximation strategies on output error due to (i) 
approximating a number of bits in the packets carrying data deemed approximable 
and (ii) varying levels of lowered laser power for those approximated bits. 

Figure 8 shows the results of our comprehensive study for the applications we 
considered (as depicted earlier in Fig. 2). The z-axis shows the percentage error 
(PE) in application output or drop in accuracy for ML applications, as a function 
of the reduction in Plaser level for the photonic signals that carry the approximated 
bits (x-axis; varying from 0% to 100%, where 100% refers to truncation), and the 
number of bits that were considered for approximation (y-axis; with the number of 
approximated float and integer bits given in [float, integer] format). The subset of 
combination of these values were selected for enabling viable trade-offs between 
output quality and power consumption. It should be noted that not all applications 
consider both floating-point and integer data for approximation. For example, 
Fluidanimate only considers integers for approximation while the ML applications 
(convolution neural network-based classifiers for CIFAR10 and MNIST datasets) 
only considers floating-point data. This selection of datatypes to be approximated 
was made after profiling the application and determining the datatypes that do 
not have adequate impact on the traffic (e.g., floating-point data in Fluidanimate 
and X264) or the functionality of the application (integers in the case of the ML 
applications considered). This is a more comprehensive version of the experiments 
in our earlier work, presented in [8]. 

In those experiments in [8], we had determined how much floating-point 
approximation can be tolerated by the applications from ACCEPT benchmark. Here 
we not only consider a larger number and variety of applications, but also use 
more comprehensive analyses to determine thresholds than in [8] to explore how 
approximating the integer bits along with the float bits affects the output quality. 
It is clear from our analyses that not all applications can tolerate the same level



Photonic NoCs for Energy-Efficient Data-Centric Computing 47 

Fig. 8 Percentage error (PE)/drop in accuracy in application output as a function of the number of 
approximated bit signals (y axis) and reduction in laser power (x axis) for the approximated signals, 
for Blackscholes, canneal, fft, jpeg, sobel, streamcluster, fluidanimate, and X264 benchmarks 
with large input workloads and MNIST (training and testing) and CIFAR10 (training and testing) 
models
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of approximation. From the PE values, we can observe that FFT with a large 
volume of floating-point data traffic (see Fig. 2) reaches the error threshold of 10% 
rather quickly as the number of approximated bits increases and laser power levels 
reduce, whereas Canneal with a lower floating-point traffic-volume observed seems 
to have very low PE values across the various experiments. The edge detection 
algorithm Sobel performs well in approximated conditions, possibly owing to 
the lowered data accuracy requirements to construct the output. Streamcluster 
involves an approximation strategy for data streams and is observed to be quite 
resilient to greater levels of approximation. Blackscholes, which performs market 
options calculations, is particularly sensitive to the approximated number of bits 
and the laser-power levels. JPEG performs image compression, and the output 
image quality is more sensitive to approximation. Fluidanimate generates a video of 
flowing liquid depending on the input data provided. X264 is a video codec, which 
generates compressed video from the input, which is raw video data. Fluidanimate 
and X264 applications were subjected to only integer MSB approximation, and 
threshold is quickly breached after the amount of MSBs approximated start taking 
up bits, which contain values; the quick rise in error can be explained by the fact 
that we are approximating MSBs which would cause very large shift in values. 
Moreover, we considered implementations of deep convolutional neural networks 
for classification of CIFAR-10 and MNIST datasets, from tinyDNN. The machine 
learning applications used single precision floats, and we were able to approximate 
till the point where we encroached on the exponent, but the decay of output accuracy 
ramped up very quickly once we tried to approximate any further. 

From Fig. 8 we can see that there is a sharp increase in percentage output error 
(PE), as we approximated beyond a certain number of bits, in the case of many of the 
applications considered, e.g., the applications in the bottom two rows. The erratic 
jumps in error rate for the six applications in the top two rows of Fig. 8 are because 
we are considering discrete combinations of approximated bits for floating point 
and integer variables, along the “approximated bits” axis. Table 4 summarizes the 
best combination of approximable bits and the laser-power-transmission levels for 
these bits and for each application while ensuring that the application output error 
does not exceed 10% for our proposed framework (ARXON). Table 4 also shows 
the number of bits that can be truncated, selected to meet the <10% PE constraint. 
For the approach in [55], we perform approximations on 16 LSBs transmitted at 
20% laser power (advocated as an optimal choice in that work), which also satisfies 
the <10% PE constraint. 

Figure 9 shows the EPB and laser power comparison results for the various 
frameworks in the Clos PNoC architecture. These analyses consider the benefits 
from distance-aware transmission and the relaxed encoding technique for approx-
imated packets for ARXON. Figure 9a shows that using ARXON-OOK results 
in lower EPB than the previous approaches, including our previous framework 
LORAX-OOK. The better EPB for LORAX and ARXON can be attributed the 
fact that they avoid wasteful transmission at lower laser power when it is unlikely



Photonic NoCs for Energy-Efficient Data-Centric Computing 49 

Ta
bl
e 
4 

N
um

be
r 

of
 b

its
 c

on
si

de
re

d 
fo

r 
ap

pr
ox

im
at

io
n 

an
d 

la
se

r-
tr

an
sm

is
si

on
-p

ow
er

 l
ev

el
 f

or
 t

he
 c

or
re

sp
on

di
ng

 s
ig

na
ls

 a
cr

os
s 

be
nc

hm
ar

ks
 a

nd
 f

ra
m

ew
or

ks
 

co
ns

id
er

ed
 

T
ru

nc
at

io
n

[5
5]

L
O

R
A

X
 [

8]
A

R
X

O
N

 

A
pp

lic
at

io
n 

na
m

e 
T

ru
nc

at
ed

 b
its

 
(fl

oa
t)

 
A

pp
ro

xi
m

at
ed

 
bi

ts
 (

flo
at

) 
%

Po
w

er
 

re
du

ct
io

n 

A
pp

ro
xi

m
at

ed
 

bi
ts

 in
 

flo
at

in
g-

po
in

t 
pa

ck
et

s 

A
pp

ro
xi

m
at

ed
 

bi
ts

 in
 in

te
ge

r 
pa

ck
et

s 
%

po
w

er
 

re
du

ct
io

n 

B
la

ck
sc

ho
le

s
12

16
 b

its
 

ap
pr

ox
im

at
ed

, 
w

ith
 2

0%
 p

ow
er

 
re

du
ct

io
n 

32
90

32
24

90
 

C
an

ne
al

32
32

10
0

32
24

10
0 

FF
T

8
32

50
32

20
50

 
JP

E
G

20
24

80
22

4
80

 
So

be
l

32
32

10
0

32
20

10
0 

St
re

am
cl

us
te

r
12

28
80

28
20

80
 

Fl
ui

da
ni

m
at

e
–

–
–

–
8

10
0 

X
26

4
–

–
–

–
12

10
0 

M
N

IS
T

_t
ra

in
24

24
10

0
24

–
10

0 
M

N
IS

T
_t

es
t

24
24

10
0

24
–

10
0 

C
IF

A
R

10
_t

ra
in

24
24

10
0

24
–

10
0 

C
IF

A
R

10
_t

es
t

24
24

10
0

24
–

10
0



50 F. P. Sunny et al.

Fig. 9 (a) Energy per bit (EPB) and (b) laser power comparison across different frameworks for 
Clos PNoC architecture 

that the destination can recover the transmitted data due to high optical losses. 
Also, [55] has noticeably higher EPB values for which we are not considering the 
benefits of relaxed encoding and distance-aware transmission for the framework 
to be consistent with the framework presented in that chapter. The ARXON-
OOK framework improves upon LORAX-OOK [55] and truncation, by adaptively 
switching between truncation and an application-specific laser-power-intensity level 
for approximated bits of both floating-point and integer packets. The ARXON-
PAM4 variant of our framework achieves the largest reduction in EPB, even though
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it uses 1.5× higher laser-power levels for the approximated bits. The use of fewer 
wavelengths in PAM4 allows for more energy savings, despite greater losses and the 
use of more laser power per wavelength than OOK variant. 

On average, ARXON-PAM4 shows 21%, 17.2%, 9.7%, 9.2%, and 1.2% lower 
EPB compared to the baseline Clos, [55], truncation, LORAX-OOK, and LORAX-
PAM4 approaches, respectively. ARXON-OOK exhibits lower EPB on average 
while having a 6% higher EPB than the LORAX-PAM4 approach. In the best-case 
scenarios for the Blackscholes and Sobel applications, ARXON-PAM4 has 21.2% 
and 23.5% lower EPB than the Clos baseline; and 17.4% and 15.6% lower EPB than 
[55]; 9.8% and 11.5% lower EPB when compared to truncation; 8.6% and 10.25% 
lower EPB than LORAX-OOK; and 1.24% and 2.5% lower EPB than LORAX-
PAM4 for these two applications. 

Figure 9b shows the laser power reduction. On average, ARXON-PAM4 uses 
50.45%, 49.5%, 43.2%, 42.5%, and 7.7% lower laser power compared to the 
baseline Clos, [55], truncation, LORAX-OOK, and LORAX-PAM4, respectively. 
ARXON-OOK exhibits lower average laser-power consumption on average while 
exhibiting 28% higher laser power consumption than LORAX-PAM4. For the best 
case Blackscholes and Sobel applications, laser power for ARXON-PAM4 is 51.7% 
and 59.2% lower than the Clos baseline and 50.8% and 57.9% lower than [55], 
while against truncation it is 51% and 58.5% lower; against LORAX-OOK, we see 
38% and 57% lowered laser-power utilization; and against LORAX-PAM4, we have 
6.5% and 20% lower laser-power utilization. 

Figure 10 shows the same analyses but done for the frameworks implemented 
on the SwiftNoC architecture. The larger data rate and the larger number of GWIs 
in the architecture have impacted the packets and their distance aware transmission 
profile, creating more avenues to truncate the packets, yielding better EPB results in 
this architecture. The general trend in EPB and laser-power savings is similar to that 
for the Clos architecture, with Blackscholes and Sobel applications again exhibiting 
the best EPB and laser-power saving values. From Fig. 10a, ARXON-PAM4 
exhibits 36%, 23.8%, 13.5%, 12.9%, and 1.8% lower EPB on average than baseline 
SwiftNoC, [55], truncation, LORAX-OOK, and LORAX-PAM4, respectively. 

The results for SwiftNoC show the same trend as the Clos architecture for 
normalized laser power (Fig. 10b), albeit with lower laser power across applications 
with average laser power consumption for ARXON-PAM4 at 57.2%, 56.4%, 50.8%, 
49.3%, and 15.7% better than baseline SwiftNoC, [55], truncation, LORAX-OOK, 
and LORAX-PAM4, respectively. 

These results highlight the promise of our ARXON framework, as it improves 
upon the ability LORAX exhibited to trade-off output correctness with energy-
efficiency and laser-power savings in PNoC architectures executing selected appli-
cations.
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Fig. 10 (a) Energy per bit (EPB) and (b) laser power comparison across different frameworks for 
SwiftNoC architecture 

6.3 MR Tuning Relaxation-Based Analyses 

We also consider the potential for relaxed thermo-optic tuning for truncated bits, in 
addition to distance-aware transmission for float and integer packets and relaxing 
crosstalk-mitigation encoding techniques. We have considered thermal MR tuning 
in our work for its larger range of operation over other tuning methods such 
as electro-optic tuning. However, thermal tuning strategies are much slower in 
operation when compared to electro-optic tuning (microseconds for operation as
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opposed to nano to picoseconds for electro-optic tuning). However, this overhead 
cannot be avoided, as using just the electro-optic tuning method will not offer 
sufficient coverage for FPV and TV encountered by MRs, the effect of which must 
be mitigated for robust operation of the PNoC. 

However, with the increasing maturity of silicon photonics, we envision faster 
thermo-optic tuning strategies or a combination of different tuning strategies to 
reduce this tuning latency. Therefore, in this section we explore the potential of 
energy savings due to relaxed MR tuning, i.e., by turning off the tuning mechanism 
for MRs associated with truncated bits. For this experiment, we utilize thermal and 
process-variation information. For TV, we have referred to the study conducted in 
[90] and have adopted the worst-case TV induced shift to be 6.5 nm. For analysis 
of FPV, we utilized the FPV analysis method as described in [90], where FPV is 
considered as a Gaussian random distribution. As the granularity of the method is at 
30 nm, we have opted for analyzing FPV at the GWI level rather than for individual 
MR devices. We have generated FPV maps for the architectures using the method 
from [91] and have selected locations corresponding to the GWIs in the layouts. We 
took the average of device variations (i.e., width and thickness) in that location. This 
was repeated over 100 different FPV maps. 

Utilizing the FPV and TV information obtained, we implement the tuning-
relaxation approach, where we turn off thermo-optic tuning for all truncated bits. 
We use a gating mechanism similar to the one utilized for the encoding strategy, as 
mentioned in Sect. 5.2, to implement the control necessary for relaxing the tuning. 
With this mechanism, we can power gate the tuning circuits to the MR, as per the 
information from LUTs, turning them off for the transmission cycle, again similar 
to the description in Sect. 5.2. From our analysis, this had a substantial impact on 
the EPB values of our ARXON framework, as shown in Fig. 11. Our observations in 
Fig. 11a for Clos PNoC and Fig. 11b for SwiftNoC, show that the ARXON variants 
have substantial savings over the other frameworks considered, a trend maintained 
even while using the aggressive values as it was with standard values. To reiterate, 
the standard values are from existing prototyping efforts, and the aggressive values 
are as per future projections from various research efforts. The savings exhibited 
by ARXON is because the tuning-based approach is again dependent on the traffic 
profile of the applications, with higher truncated packets meaning better savings. 
So, we see Blackscholes and Sobel as the best performing applications again. We do 
not consider laser-power savings in this scenario, as the tuning relaxation approach 
does not impact the laser power. On average, ARXON-PAM4 has 38.1%, 36.1%, 
26.8%, 26.4%, and 19.2% better EPB values than baseline Clos, [55], truncation, 
LORAX-OOK, and LORAX-PAM4. When implemented in SwiftNoC, ARXON-
PAM4 exhibits 48.6%, 39.3%, 29%, 28.5%, and 16.9% better EPB than baseline, 
[55], truncation, LORAX-OOK, and LORAX-PAM4, respectively. This only adds 
to the significant reduction in the overall laser power consumption achieved by 
ARXON, showing how our framework achieves better laser power and EPB values 
for all the applications considered in our analyses.
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Fig. 11 EPB values for ARXON implemented on (a) Clos and (b) SwiftNoC while considering 
thermal-tuning relaxation 

6.4 Power Dissipation Breakdown 

We performed an experiment to determine how much more power can be saved 
as silicon photonics technology matures and devices with improved characteristics 
become available (aggressive values from Table 3). For this, we contrast the power 
dissipation with our framework on the Clos and SwiftNoC architectures, for the 
standard and aggressive values of parameters in Table 3. As the EPB and laser 
power, once normalized, follow the same trends, we decided to use a detailed
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Fig. 12 Power dissipation breakdown for standard and aggressive values (“aggr” in the plots) for 
(a) Clos and (b) SwiftNoC PNoCs 

power-dissipation breakdown to show how much ARXON improves the power 
consumption in PNoC and in which areas. 

Figure 12 shows the detailed power breakdown for the framework applied 
on Clos and SwifNoC, averaged across the applications. From the figures we 
can clearly observe how ARXON impacts both laser power and tuning-power 
dissipation, having the lowest power dissipation in both these categories and in 
total, be it while considering standard loss and power utilization values or while 
considering aggressive values.
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Table 5 Comparison of 
power savings between 
systems implementing the 
discussed PNoC variants 

Total power (W) Power savings (%) 
PNoC variant Clos SwiftNoC Clos SwiftNoC 

Truncation 94.25 106.25 1.57 3.19 
[55] 94.95 108.25 0.84 1.37 
LORAX-OOK 94.0 106.0 1.83 3.42 
LORAX-PAM4 86.25 93.25 9.92 15.03 
ARXON-OOK 90.75 100.25 5.22 8.66 

Finally, Table 5 shows the power consumption at the 64-core chip level when 
using the PNoC variants. For this comparison, we have assumed the individual 
core to be a 14 nm x86-64 core from Intel, with the power consumption of the 
64-core chip being 77.75 W. This assumption includes power consumption of 
128 KB private L1 caches, 2 MB L2 cache (shared between four cores), and 
memory controllers (shared between four cores) [92]. This assumption sets the 
total power consumption for the baseline Clos PNoC-based system at 95.75 W 
and for the baseline SwiftNoC PNoC-based system at 109.75 W. Table 5 considers 
power and loss values for PNoC variants calculated using the standard parameter 
values from Table 3. It can be seen that even at the entire chip granularity, the 
ARXON framework provides notable reduction in overall power consumption, 
with ARXON-PAM4-based Clos and SwiftNoC PNoCs saving 10.97% and 16.86% 
power compared to the Clos and SwiftNoC PNoC baselines, respectively. 

7 Conclusion 

In this chapter, we discussed a new framework called ARXON for loss-aware 
approximation of data communicated over PNoC architectures. We also studied 
how multilevel signaling can assist with the proposed approximation framework. 
We considered crosstalk mitigation strategies and dynamic MR tuning as avenues 
to save energy while our distance aware transmission technique is in effect. Our 
results indicate that using multilevel signaling as part of our framework can reduce 
laser-power consumption by up to 57.2% over a baseline PNoC architecture. 
Our framework also shows up to 56.4% lower laser power and up to 23.8% 
better energy-efficiency compared to the best-known prior work on approximating 
communication in PNoCs. These results highlight the potential of approximation in 
PNoC architectures to reduce energy and power consumption in emerging manycore 
platforms.
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Low- and Mixed-Precision Inference 
Accelerators 

Maarten J. Molendijk, Floran A. M. de Putter, and Henk Corporaal 

1 Introduction 

Neural Networks can solve increasingly more complex tasks in fields such as 
Computer Vision (CV) and Natural Language Processing (NLP). While these 
Neural Networks can perform complex tasks with increasingly higher accuracy, the 
sheer size of these networks often prevents deployment on edge devices that have 
limited memory capacity and are subject to severe energy constraints. To overcome 
the issues preventing the deployment of neural networks onto edge devices, efforts 
toward reducing the model size and reducing the computational costs have been 
made. These efforts are most often focused on either the algorithmic side, tailoring 
the neural network and its properties, or on the hardware side, creating efficient 
system designs and arithmetic circuitry. 

In an effort to reduce the computational cost and model size of neural networks, 
several approaches are taken. One of these approaches is to automate the synthesis 
of the neural network architecture while taking into account the hardware resources, 
this is called hardware-aware neural architecture search (NAS) [23, 28]. Another 
way to increase the energy efficiency is by compressing the model size, applying 
either quantization [10] or pruning [4]. 

In parallel to research on model compression, research has been performed on 
creating highly specialized hardware that exploits the opportunities arising from 
model compression. ASICs that support neural network inference for operand 
precisions as low as 1 bit exploit the advantages extreme quantization brings: low 
memory size and bandwidth and simplified compute logic. In the pursuit of the 
most energy-efficient hardware design, several design choices regarding memory 
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hierarchy, hardware parallelization of operations, and data-flow are made that 
impact both the ASIC’s efficiency and its flexibility. 

For instance, many architectures have a fixed datapath; the movement of the data 
is fixed at design time which can impose limitations on the layer types, channel 
dimensions, and kernel dimensions. Furthermore, these architectures typically have 
limited programmability and configurability, which restricts the execution schedules 
that can (efficiently) be run. 

In this chapter, a look will be taken at several different approaches of neural 
network accelerators specifically designed for inference with very low-precision 
operands. The efficiency (and origin thereof) of the architectures will be analyzed 
and compared to the flexibility that these architectures offer. 

In short, the contributions of this work are: 

• Overview of state-of-the-art low- and mixed-precision neural network accelera-
tors, in Sect. 3. 

• Analysis on the trade-off between the flexibility and the energy efficiency of 
accelerators, in Sect. 4. 

The remainder of this chapter is structured as follows: in Sect. 2, background infor-
mation on neural network architecture and quantization is presented. Thereafter, in 
Sect. 3, the low- and mixed-precision accelerators are presented and a comparison 
is presented in Sect. 4. Section 5 concludes this chapter. 

2 Background: Extreme Quantization and Network Variety 

Modern neural network architectures consist of many different layers with millions 
of parameters and operations. The storage required to store all parameters and 
features is not in line with the storage capacity typically found on embedded devices, 
leading to costly off-chip memory accesses. Next to the memory and bandwidth 
limitations, computational costs for full-precision (float32) operations require 
power-hungry compute blocks that quickly overtax the energy requirements of the 
embedded devices. To reduce both the computational cost and the cost of data access 
and transport, quantization can be applied. 

Quantization leads to lower precision parameters and therefore induces infor-
mation loss. Naturally, when weights and activations can represent fewer distinct 
values, the representational capabilities of the network decrease. This decrease may 
create an accuracy loss. In [14], Gholami et al. show, however, that quantization 
down to integer8 can be done without significant accuracy loss. But even when 
quantizing down to integer8, the memory requirements can still overtax the 
memory capacity typically found in embedded systems. Therefore, research has 
been done on extreme quantization, i.e., quantization below 8-bit precision. 

In the next subsection, several frequently utilized building blocks for convolu-
tional neural networks (CNNs) are listed. Thereafter, in Sects. 2.2 and 2.3, two
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forms of extreme quantization, namely binary and ternary quantization, are 
discussed. Finally, in Sect. 2.4, the need for mixed-precision is considered. 

2.1 Neural Network Architecture Design Space 

Neural network architectures have a great variety in the type of layers, the size of 
these layers, and the connectivity between these layers. Furthermore, with mixed-
precision architectures, the precision can also be chosen on a per-layer basis. An 
example network is shown in Fig. 1. Some common building blocks are listed below: 

• Convolutional Layer 
• Fully connected Layer 
• Depth-wise Convolutional Layer 
• Residual Addition 
• Requantization 
• Pooling 

The working horse of CNNs is the convolutional layer. Between different 
convolutional layers, there can be variety in the kernel size, number of input feature 
maps, output feature maps, etc. In Fig. 2, the different parameters of a convolutional 
layer are presented. These parameters will later on prove to be an important basis 
for designing efficient hardware. The goal of Sect. 3 is to show how these network 
parameters relate to hardware design, hardware efficiency, and hardware flexibility. 
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Fig. 1 Binary ResNet-18, an exemplary network containing several different building blocks and 
using different operand precisions. Note that the first layer and the “skip connections” have a higher 
than binary precision. Furthermore, the number of channels C can differ between the building 
blocks



66 M. J. Molendijk et al.

Fig. 2 A convolutional layer 
can vary in different ways. 
The Input Feature Map (IFM) 
has height H and width W 
and contains C channels; the 
Output Feature Map (OFM) 
has height E, width  F , and  M 
channels; and the kernel has 
height R and width S. 
Between different layers and 
different networks, these 
parameters vary 

IFM 

Kernel 

OFM 

+1 +1 -1 -1

-1 +1 -1 -1

-1 +1 +1 +1 +2 

1 1 0 0 

0 1 0 0 

0 1 1 1 +2 

MUL 

XNOR 
2*POPCOUNT-N 

SUM 

Fig. 3 Simplified arithmetic circuitry as a consequence of binary quantization. The top displays 
the default multiplication, while the bottom displays how binary quantization can replace it with 
XNOR and popcount. N is the number of bits of the input vector 

2.2 Binary Quantization 

On the extreme end of quantization is binary quantization. Binary quantization 
restricts both weights and activations to binary values. This means that the acti-
vations .a ∈ {−1,+1} and weights .w ∈ {−1,+1}. Reduction of the precision of the 
operands introduces several advantages. First of all, the required storage capacity 
and bandwidth on the device are drastically reduced, compared to float32 by 
a factor of 32. Furthermore, the Multiply–Accumulate (MAC) operation, involving 
expensive multiplication hardware, can be replaced by the much more simple and 
cheaper XNOR and popcount operations [21]. An example of this simplified 
arithmetic is shown in Fig. 3.
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The output value of the popcount produces a value that needs to be stored 
with a larger bit-width compared to the binary input value, e.g., integer16. 
Therefore, to feed the outputs into a new layer, the nonlinear activation function 
needs to requantize the values back to the binary bit-width. For this purpose, the 
sign function is used. The quantized operand can be derived from its unquantized 
form as follows: 

.Xquant = Sign(X) =
{

+1 if X ≥ 0

−1 if X < 0
(1) 

This function is non-differentiable; for training, a Straight-Through Estima-
tor (STE) [3] can be used that passes gradients as is. By employing an STE, gradient 
descent is possible, and binary neural networks can be trained. 

2.3 Ternary Quantization 

Compared to binary quantization, ternary quantization allows for only one—albeit 
very important—extra value to be represented in the operands, namely zero. Ternary 
networks therefore have operands .w, a ∈ {−1, 0,+1} called trits. Next to the  
increased representational capabilities, the ability to represent zero also solves some 
issues found in binary networks. First of all, zero padding is not possible in binary 
networks since it lacks the ability to represent zero, and this is most often solved by 
employing on–off padding. Furthermore, the ability to represent zero introduces the 
capability to exploit sparsity, i.e., skipping computations when either the weights or 
activation is zero. As will be seen later on, this can have a significant impact on the 
efficiency of the computational hardware if the network itself is sparse. 

The arithmetic circuitry required to perform multiply–accumulate (MAC) oper-
ations on ternary operands is very similar to that of binary networks. The MAC 
operation can be replaced by a Gated-XNOR [8] (XNOR and AND gates) combined 
with two popcount modules, one for the +1s and one for the -1s. The arithmetic 
is shown in Fig. 4. 

Again, as with the binary popcount, the final result has a higher bit-width 
and needs to be requantized before being fed into the next layer. The quantization 
function typically uses a symmetric threshold value . �: 

.Xquant = T ernarize(X) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if X > �

0 if |X| ≤ �

−1 if X < −�

(2) 

During computation, each trit occupies 2 bits. However, this is a wasteful way to 
store them since theoretically .log2(3) = 1.58 bits are needed for each trit. Muller et
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Fig. 4 Simplified arithmetic circuitry as a consequence of ternary quantization. The top displays 
the default multiplication, while the bottom displays the ternary simplified variant. Note that the 
ternary variant needs two popcount modules (one to count . +1s and one to count . −1s) 

al. [18] derived an efficient mapping, compressing 5 trits into 8 bits, yielding a total 
storage of 1.6 bit per trit, close to the theoretical lower bound. 

2.4 Mixed-Precision 

Despite all the advantages of extreme quantization, binary and ternary quantization 
often induce severe accuracy loss, especially on more complex tasks. For example, 
there is a large gap in accuracy when comparing integer8 quantization to 
binary and ternary [5, 10]. Moreover, the accuracy loss that is induced differs 
per layer in the network [11]; i.e., some layers are more resilient to extreme 
quantization than others. Therefore, a combination of different precisions in a per-
layer fashion can give a good balance between accuracy and efficiency. 

An overview of different data precisions typically found in neural network 
architectures is given in Fig. 5. The figure shows the width of different data formats 
and how the bits are allocated. Next to the data format, the range is displayed, i.e., 
the minimum and maximum value that can be attained using that data format. Note 
that the range for the floating-point number only displays the positive numbers, 
while it is able to represent negative numbers using the sign bit. 

In the past, float32 was used as the  de facto standard for neural networks. 
Gradually, movements toward smaller data types like float16 were made to 
save on storage and computational cost. Moreover, it was found that the dynamic 
range of the data types has a larger impact on the accuracy than the relative 
precision, leading to the creation of bfloat16 [27] (Brain Floating Point) and 
tf32 [15] (TensorFloat32), both trading off relative precision in favor of increased 
range. Using integer8 precision completely gets rid of the expensive floating-
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Fig. 5 Breakdown of the bit usage inside data formats commonly used in neural networks. S is 
sign, E is exponent, and M is mantissa. Floating point data formats specifically for neural networks 
prefer higher range over more precision 

point arithmetic, vastly increasing the throughput and energy efficiency, with at the 
extreme end binary and ternary quantization. 

By the nature of floating-point arithmetic units, exponents are added up together, 
while the mantissa bits are multiplied. Therefore, bf16, which has 3 less mantissa 
bits compared to float16, will have a two times smaller footprint, while compared 
to float32 it will even have an eight times smaller area. This is because the area 
of the multiplier unit is roughly proportional to the square of the mantissa bits. In 
Sect. 3, accelerators that support integer8 (which can also be used for fixed-point 
arithmetic), binary, and ternary precisions are discussed. 

3 Accelerators for Low- and Mixed-Precision Inference 

With the aim to get the energy per MAC operation as low as possible, several 
accelerators specifically designed for low-precision inference have been created. 
Some of these architectures also support different precisions on the same platform. 
The accelerators can be split into two groups: fully digital accelerators and mixed-
signal/analog compute-in-memory (CIM) approaches. Although state-of-the-art 
CIM architectures [2, 26] and mixed-signal implementations [25] have the potential 
to achieve high energy efficiency, they also introduce new unique challenges. 
These challenges include longer design time and chip-to-chip variation due to 
CMOS process variation, which makes it more difficult to benchmark the actual 
performance of such a design, and no programmability, making it more difficult to
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use the accelerator. The further focus in this chapter will therefore be solely on fully 
digital implementations. 

First, characterization criteria that are important to embedded neural network 
accelerators will be established, and these include key performance indicators to 
measure the efficiency (in both area and energy) of the architecture. Furthermore, the 
basis for the flexibility analysis is laid out, based on the robustness of architectures 
against different layer types, dimensionality, and precisions. Thereafter, five state-
of-the-art digital inference accelerators will be discussed. 

3.1 Characterization Criteria 

The accelerators will be characterized according to both their flexibility and their 
energy efficiency. Defining flexibility as a quantitative metric can often be cumber-
some, although some recent effort toward bringing structure has been made [12]. 
Next to the flexibility aspects, the most important quantitative performance evalua-
tion criteria for neural network inference accelerators will be listed and motivated. 

3.1.1 Flexibility 

Before the characterization criteria are established, a closer look is taken at the 
nature of a convolution kernel. A convolution kernel can be described by 6 nested 
for-loops (7 when adding the batch dimension), and an exemplary schedule is shown 
in Listing 1. It is assumed that the target application is image processing, i.e., inputs 
are referred to as pixels. 

In Listing 1, the for-loops are arranged in a so-called output stationary way, i.e., 
one output pixel is calculated as soon as possible. In other words, all calculations 
that are needed for a set of output pixels are performed before moving to the next set 
of output pixels. This avoids having to store and reload partially calculated output 
pixels. 

for h in [0, H - R + 1]: Output feature map height 
for w in [0,  W - S + 1]: Output feature map width 
for m in [0, M]: Output channels 
acc = bias[m] 
for c in [0, C]: Input channels 
for r in [0, R]: Kernel height 
for s in [0, S]: Kernel width 
acc += ifm[h + r][w + s][c] * weights[n][r][s][m] 

ofm[h][w][m] = acc 

Listing 1 A naive convolutional layer with output stationary schedule and a stride of 1; acc is the 
temporary accumulated value, for simplicity, the IFM is assumed to be padded. The loop iterators 
are visualized in Fig. 2 
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Loop nest optimization (LNO) can be performed to increase data locality. Two 
important techniques, part of LNO, are loop tiling (also known as loop blocking), 
where a loop is split up into an inner and an outer loop, and loop interchange, 
where two loops are swapped in hierarchy level. The problem of finding the best 
combination of the two is called the temporal mapping problem (i.e., finding 
the best execution schedule). The temporal mapping greatly influences the number 
of memory accesses needed and therefore indirectly greatly influences the energy 
efficiency of an accelerator. 

Next to the temporal mapping, the operations performed in the convolutional 
kernel can also be parallelized in hardware. The problem of finding the optimal 
parallelization dimensions is called the spatial mapping problem. Using optimal 
spatial mapping can increase data reuse in hardware and reduce memory traffic. A 
good example of this is the mapping on a systolic array. It is important to note that 
the spatial mapping should be carefully chosen, as it imposes constraints on the 
dimensions being parallelized. 

Hardware parallelization over a dimension is called vectorization. Vectorization 
over any of the dimensions given in Fig. 2 will be denoted as the vectorization factor 
.vparam, where param can be any of the dimensions in Fig. 2. For instance, when 
parallelizing over the C dimension using a vectorization factor of 32, it is denoted 
as .vC = 32. This vectorization factor also implies constraints: any convolutional 
network layer that does not have an input channel multiple of 32 will not run at 
100% utilization. There will be a trade-off between the vectorization factor and the 
flexibility with respect to convolutional layers with certain layer dimensions being 
able to run at full utilization. 

Research has been done on structurally exploring the temporal and spatial 
mapping design space [20, 29]. Most recently, the ZigZag framework [17] has been 
published aiming to fully co-design temporal mapping with hardware architecture 
finding the best spatial and temporal mappings available. 

One other facet of flexibility is programmability. Programmability allows run-
ning different, possibly even non-DNN workloads on the accelerators. Especially, 
high-level programmability increases the usability of the device since it allows the 
workload to be configured while programming it via a high-level language, requiring 
less knowledge about the hardware implementation from a user perspective. 

3.1.2 Performance Characteristics 

To compare the performance of the several accelerators reviewed, some quantitative 
metrics that reflect the performance of the accelerator are established. First of 
all, the most widely promoted metric to compare accelerators is to compare the 
energy efficiency, defined as the energy per operation (either [pJ/op] or inversely in 
[TOPS/W]). 

Secondly, the memory capacity plays an important role in the efficiency of 
the accelerator. Since off-chip memory access energy is much larger than the 
energy needed to compute, off-chip memory access should be avoided at all costs.
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More on-chip memory means fewer external memory accesses, benefiting energy 
consumption. Two different ways to implement on-chip memory are SRAM and 
Standard-Cell Memory (SCM). While SRAM has a much higher memory density, 
it is less efficient in terms of energy usage for smaller sizes compared to SCM. 
Especially, when applying voltage–frequency scaling, the SCM can be scaled 
to a much lower voltage than SRAM. Therefore, SCM tends to be a popular 
choice to keep down the energy cost of the total system while sacrificing area 
and storage capacity. Other important metrics are throughput [GOPS] and area 
efficiency [GOPS/mm. 

2]. 

3.2 Five Low- and Mixed-Precision Accelerators Reviewed 

Five state-of-the-art accelerators will be discussed and compared against one 
another. These accelerators were chosen because of their support for very low 
precisions (i.e., binary or ternary). These accelerators are: 

• XNOR Neural Engine [6] is a binary neural network accelerator built into a 
programmable microcontroller unit. A full system on a chip (SoC), implemented 
in 22-nm technology, is presented including the accelerator, RISC host processor, 
and peripherals. 

• ChewBaccaNN [1] is an architecture for binary neural network inference that 
exploits efficient data reuse by co-designing the memory hierarchy with the neural 
network ran on the architecture. The hard-wired kernel size allows efficient data 
reuse. 

• CUTIE [22] is an accelerator for ternary neural networks. This is a massively 
parallel architecture, hard-coding all the network parameters into the hardware 
design. Furthermore, it exploits sparsity opportunities from ternary networks that 
are not present in binary networks. 

• Knag et al. produced a binary neural network accelerator in 10-nm FinFet 
technology [16]. The design focuses on utilizing the compute near memory 
paradigm, minimizing the cost of data movement by interleaving memory and 
computational elements. 

• BrainTTA is a flexible, fully programmable solution based on a Transport-
Triggered Architecture. The architecture has support for mixed-precision and 
focuses, next to the energy efficiency objective also on flexibility, trying to 
minimize the concessions made while still pursuing energy efficiency. 

A summary of these architectures is given in Table 1, and the strengths and 
weaknesses of the architectures are discussed in Sect. 4. 

3.2.1 XNOR Neural Engine (XNE) 

XNOR Neural Engine [6] is a binary accelerator exploiting the arithmetic simpli-
fications introduced by binarizing the weights and activations (see Fig. 3). Conti et
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Table 1 Comparison of performance, efficiency, and flexibility of the architectures discussed 

ChewBaccaNN [1] CUTIE [22] XNE [6] 10nm FinFet [16] BrainTTA 

Implementation characteristics 

Tech node [nm] 22 22 22 10 28 

Supply voltage 
[V] 

0.4 0.65 0.6 0.4 0.39 0.9 

Inference 
precision. a

b b. b, t b b b, t, i8 

Memory 
technology 

SCM SRAM SCM SRAM SCM SRAM SRAM 

Key Performance Indicators 

Peak throughput 
[GOPS] 

240 16,000 67 5 3400 880 

Energy/op [fJ] 
binary 

4.48/15.38.c – 115 21.6 1.62 101 

Energy/op [fJ] 
ternary 

– 2.19 1.70 – – 188 

Energy/op [fJ] 
8-bit 

– – – – 1105 

Core area [mm. 2] 0.7 7.5 2.32 0.39 3.6 

Area efficiency 
[GOPS/mm. 2] 

343 2133 28.88 8717 244.44 

Memory 
capacity [kB] 

153 1190 281 520 16 161 1024 

Flexibility 

Full utilization for 

C multiple of 16 128 128 1024 32/16/4. d

M multiple of Any 128 128 128 32 

R is 7 3 Any 2 Any 

S is 7 3 Any 2 Any 

Partial result 
support (for 
scheduling 
freedom) 

Yes No.e No No Yes 

Residual layer 
support 

Yes No No No Yes 

Programmability None None None None C-language 

. a b =  binary, t =  ternary, i8 =  integer8 

. bOnly estimates were provided, under the assumption that all ternary specific hardware is removed 

. c For 7 . × 7 and  3 . × 3 convolution, respectively 

. d For binary, ternary and integer8, respectively 

. e Partial result support is not needed since the output pixel computation is fully unrolled in hardware 

al. present an SoC consisting of an accelerator core (XNE) inside a microcontroller 
unit (MCU) and peripheries. The accelerator can independently run simple network 
configurations but requires the programmable MCU to execute more complex
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Fig. 6 Top-level view of the SoC with XNE inside the MCU. The memory is a hybrid of latch-
based SCM  and SRAM  

layers. The MCU is programmed using some assembly dialect. The full system is 
shown in Fig. 6. It consists of: 

• XNE core, where the binary MAC operations are performed; this core consists 
of a streamer, to stream feature maps and weights in and out of the architecture, 
a controller consisting of a finite-state machine, the programmable microcode 
processor, and a latch-based register file. 

• RISC-V host processor, used to realize more complex layer behaviors than 
supported with the XNE core alone. 

• Shared Memory, shared between the . μDMA, RISC-V core, and XNE core. This 
memory is a hybrid of SRAM and SCM, allowing aggressive voltage scaling when 
the SRAMs are turned off. 

• Core-Coupled Memory (CCM), primarily for the RISC-V core, again composed 
of both SRAM and SCM. 

• . μDMA, which is an autonomous unit able to send and receive data via several 
communication protocols from and to the shared memory. 

The accelerator core, XNE, is shown in Fig. 7. The throughput of the design can 
be chosen at design time by means of a throughput parameter TP. This throughput 
parameter can be described as follows: it takes the accelerator TP cycles to calculate 
TP output pixels. While doing this, the accelerator keeps the same input activations 
for TP cycles while loading TP weights each cycle (for a total of TP sets of 
TP weights). Therefore, this TP parameter essentially hard-wires the C and M 
dimension of the convolution dimensions shown in Fig. 2 into the design. 

For instance, each accumulator in Fig. 7 contains the partial result of one output 
pixel (i.e., the number of accumulators is equal to the output feature map channel 
vectorization . vM ). Therefore, all the inputs that are processed while a single 
accumulator is selected via the mux should contribute to the same output pixel.
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Fig. 7 Accelerator core of XNOR Neural Engine with TP = 128. The XNOR operation is 
performed on the activations a and weights w. Whenever the number of input operands is not 
a multiple of TP, the outputs can be masked by masking bits m to make sure that they do not 
contribute to the popcount output 

In this case, the different pixels concurrently offered to the compute core belong to 
different input channels. Therefore, the choice of TP directly imposes a constraint 
on the C and M loops in order to run at full efficiency. Furthermore, the output of the 
popcount operation is directly fed through the binarization function; this means 
that partial (higher bit-width) results cannot be extracted, prohibiting their use for 
residual layers. For benchmarking the platform, a TP factor of 128 was chosen, 
which means that .vC = 128 and .vM = 128 for this design point. 

3.2.2 ChewBaccaNN 

ChewBaccaNN [1] is like XNE, an accelerator utilizing binary weights and binary 
activations. Contrary to XNE, this architecture does not implement a full SoC and 
is therefore purely based on the accelerator core. ChewBaccaNN is designed using 
GF22 technology and uses SCM to enable aggressive voltage scaling. A top-level 
view of the architecture is shown in Fig. 8. The components in this architecture are: 

• BPU Array consists of seven Basic Processing Units (BPUs) and forms the 
computational heart of the accelerator; the BPU is detailed in Fig. 9 and is 
discussed in the next paragraph. 

• Feature Map Memory (FMM) holds the input and output feature maps and also 
has the ability to store partial results (e.g., for residual layers). The FMM is 
implemented using SCM only. This enables aggressive voltage scaling for the 
whole chip at the expense of sacrificing memory capacity. 

• Row Banks buffer the input feature map rows and kernel rows. The crossbar (x-
bar) is utilized when the convolutional window slides down. Since each BPU 
processes one kernel row, the kernel weights can stay inside the BPUs, while the 
input feature map needs to move one row down. This is done by loading one new 
row and shifting the other rows by one BPU (using the crossbar).
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Fig. 9 ChewBaccaNN compute core. Hardware parallelization is performed over the kernel height 
(R) in the Basic Processing Unit (BPU) array, over the kernel width (S) inside a single BPU and 
over the input channel dimension (C) inside the compute unit (CU). The Controlled Shift Register 
(CSR) enables data reuse in a sliding window fashion. The architecture contains a total of . 16×7×
7 = 784 (.vC × vR × vS) binary multipliers 

• Scheduler, used to control the crossbar behavior and make sure that the row banks 
are timely rotated to the next BPU and the correct weights and IFM pixels are 
loaded. 

• Near Memory Compute Unit (NMCU), which writes output data from the BPU 
array to the correct location in the FMM, accumulates residual paths, rebinarizes 
results, and is used for bit-packing (rebinarized) outputs into 16-bit packets. 

In Fig. 9, the compute core of ChewBaccaNN is depicted. It can be seen that several 
of the parameters listed in Fig. 2 are hard-wired into the design. The kernel height
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(R) and width (S) are completely unrolled (in this case with a factor of 7), while 
the channel dimension (C) should be a multiple of 16 (the number of XNOR gates) 
to achieve full utilization; in other words, the vectorization factors are .vC = 16, 
.vR = 7, and .vS = 7. 

The Controlled Shift Register (CSR) allows using the sliding window principle 
to get data reuse; for each IFM image row, initially, the full kernel width (in this 
case 7) is transferred, while the iterations thereafter only need one new column 
(.vR × 1 × vC) of activations. 

3.2.3 Completely Unrolled Ternary Inference Engine (CUTIE) 

Completely Unrolled Ternary Inference Engine (CUTIE) [22] is, as the name 
suggests, an inference accelerator using Ternary operands. The main design 
philosophy behind CUTIE is to avoid iteration by spatially unrolling most of the 
convolutional loops found in Listing 1, namely the loops over the R, S, C, and 
M dimensions. Furthermore, ternary operands allow the representation of zero, 
therefore making the accelerator capable of exploiting neural network sparsity by 
silencing compute units. The top-level design of CUTIE is depicted in Fig. 10. The  
main components within the CUTIE architecture are: 

• Output Channel Compute Unit (OCU), the basic compute building block of this 
architecture, computing the output pixels belonging to one single output channel. 
A detailed view of the OCU is given in Fig. 11. 

• Feature Map Memory (FMM), used to store the inputs coming either from 
previous computations (OCUs) or from an external interface. The FMM is double-
buffered such that the latency for loading new input feature maps can be hidden. 
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Fig. 10 CUTIE top-level architecture. The OCU array contains one output channel compute unit 
for each output channel in the neural network design
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Fig. 11 CUTIE compute core, consisting of several Output Channel Compute Units (OCUs) and 
one weight buffer per OCU. For brevity, decompression and pipelining are omitted in this figure. 
The ternary multipliers are unrolled over the R, S, and  C dimensions, which in this case gives 
.3× 3× 128 = 1152 ternary multipliers. In total, the architecture can process . 3× 3× 128× 128 =
147,456 (.vR × vS × vM × vC ) inputs each compute cycle 

• Tile buffer, used to buffer IFM pixels in a sliding window fashion. 
• Weight buffer, one is attached to each OCU: it is designed with enough capacity 
to contain the full kernel for a single output channel (.R × S × C), which enables 
great weight reuse. The weight buffer is also double-buffered to hide latency. 

• Compression/decompression units are used to shift between the computational 
form of the trits, i.e., 2 bits, and the compressed form of the trits which is 1.6 bits 
wide. 

The compute core of CUTIE is depicted in Fig. 11. Its main workhorse is 
the Output Channel Compute Unit (OCU), which is a unit that calculates pixels 
exclusive to a single output channel. Having a separate compute unit for each output 
channel brings the advantage that the weight kernel can stay inside the weight buffer 
(w buffer) while moving the convolutional window over the IFM giving maximum 
weight data reuse. Alongside the weight reuse, there is also IFM reuse being utilized
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in two different ways: (1) the IFM is broadcasted to each of the OCUs and (2) just 
like ChewBaccaNN, when sliding the convolutional window over the IFM image, 
only R new IFM pixels are needed (i.e., only one new column of the IFM needs to 
be loaded, assuming a stride of 1). 

Each Output Channel Compute Unit (OCU) processes .128×3×3 (.vC ×vR ×vS) 
input pixels each cycle. By hard-wiring many of the convolutional layer parameters, 
CUTIE sacrifices area in favor of avoiding temporal iteration. This also means 
that this architecture sacrifices most flexibility by constraining C, M , R, and S. 
Therefore, the only dimensions that are freely schedulable are W and H . By  
constraining many of the dimensions into the hardware, flexibility crumbles, but 
the temporal mapping is greatly simplified. The fully spatially unrolled structure 
also minimizes the movement of (large) partial sums. Since each OCU directly 
computes an output pixel, there is no need, in contrast to the other architectures, 
to move around partial results. This is beneficial since the partial results have a 
higher bit-width than the final (requantized) results. 

3.2.4 Binary Neural Network Accelerator in 10-nm FinFet 

In [16], Knag et al. show a fully digital accelerator with binary operands which 
is implemented using 10nm FinFet technology. The SoC designed intersperses 
arithmetic with memory according to the Compute Near Memory (CNM) paradigm. 
Contrary to the other architectures discussed, this work focuses more on the physical 
implementation and circuit-level design choices rather than the architectural design 
aspects. The design of this accelerator is shown in Fig. 12. The main components of 
this accelerator are: 

• Control Unit, which consists of four 256-bit wide SRAM memory banks used 
as main storage and a Finite-State Machine (FSM) that controls the flow of data 
between memory banks and the MEUs. 

• Memory Execution Unit (MEU). Each MEU can compute two output pixels in a 
time-interleaved manner (see Fig. 12, each MEU contains two output registers). 
The MEUs are interleaved with latch-based memories to utilize the compute near 
memory advantages. In total, there is an array of .16 × 8 MEUs. Having 8 weight 
SCM banks was found to be the right trade-off between energy consumed by 
the computational elements and energy consumed by the transportation of data 
to the compute units. The SRAM memory banks are connected to the MEUs by 
means of a crossbar network. Since the input feature map pixels are stored in an 
interleaved manner, the crossbar network allows any (2 . × 2) combination of the 
input feature map to be read. The weights are also loaded from this memory. 

The authors of the work do not discuss the external interfacing required on this 
chip. 

Binary arithmetic is relatively cheap, compared to the cost of accessing memory 
(e.g., for loading weights). To amortize the costs of memory reads and data 
movement, the computational intensity should be sufficient to balance the energy
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Fig. 12 Top-level view of the 10nm FinFet BNN accelerator. The central memory inside the 
control unit consists of 4. × 256-bit wide SRAM banks to enable 2 . × 2 convolutional window 
access in a single cycle and a finite-state machine (FSM). The MEUs are placed in an 8 . × 16 array 
to exploit the compute near memory principle. In total, .1024 × 16 × 8 = 131,072 (.vC × vM × 8) 
binary operations can be performed each cycle 

consumption. Parallelism of the MAC unit (as shown in Fig. 12) is used to balance 
the power mismatch of the (expensive, high bit-width) accumulator, present in 
the popcount module, and the (cheap) XNOR gates. By enlarging the number 
of inputs of the popcount module, the fixed accumulator cost is amortized by 
many XNOR gates. Like the other architectures, this accelerator parallelizes the 
MAC operation over the input channel (C) dimension. The parallelization should 
be high enough to offset the accumulator cost while being low enough to not 
impose unreasonable constraints on the number of input channels (C) required for
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full utilization. Therefore, a trade-off study was performed to see which level of 
parallelism was needed to offset the accumulator cost. A design with an input feature 
map parallelization factor of 1024 (.vC = 1024) was chosen as the sweet-spot. 
Negligible energy improvements were shown when going for more parallelism. 

Furthermore, the idea of pipelining the popcount-adder tree was explored. 
When pipelining the design, the voltage can be lowered at iso-performance (i.e., 
iso-frequency). However, due to the sequential logic and clock-power dissipated 
while adding more pipeline stages, the final design choice was to not pipeline the 
popcount-adder tree. 

3.2.5 BrainTTA 

BrainTTA is a fully compiler-programmable mixed-precision flexible-datapath 
architecture. Contrary to the fixed-path accelerators, BrainTTA is based on the 
Transport-Triggered Architecture (TTA) [7] that provides a fully programmable 
datapath (via a compiler) directly to the user. Before diving into the BrainTTA 
architecture, a proper introduction to the Transport-Triggered Architecture is given. 

Transport-Triggered Architectures are programmed by data movements instead 
of arithmetic operations typically found in Very Long Instruction Word (VLIW) 
architectures. This means that the movement of data between function units (FUs) 
and register files (RFs) is exposed to the programmer; the TTA is an explicit 
datapath architecture. This is in stark contrast to VLIW architectures, where the 
data movement is implicit and performed in hardware (i.e., not exposed to the 
programmer). With the control of the datapath given to the compiler, several 
optimizations can be performed like operand sharing and register file bypass. 

An example instance of a TTA is displayed in Fig. 13. The TTA consists of a 
Control Unit (CU) used for instruction fetching and decoding, Register Files (RFs) 
for temporary storage, and Load-Store Units (LSUs) to access the memories. The 
gray circles inside the busses denote that this bus is connected to the corresponding 
input- or output-port of some function unit. This connectivity is design time 
configurable, visible to the compiler, and can be made as generic or specific 
for certain applications as desired; more connectivity is at the expense of larger 
instruction size and more switching activity in the interconnect. In [19], Multanen 
presented several ways to alleviate this effect by applying techniques that reduce 
the instruction overhead such as instruction compression. An example instruction is 
shown in Fig. 13, which shows that the instruction can be broken down into move 
operations for each bus. 

BrainTTA is based on the TTA, built specifically for inference with precisions 
integer8, binary, and ternary. A top-level view of the BrainTTA SoC is 
shown in Fig. 14. BrainTTA is designed using the open-source toolchain TTA-based 
Co-design Environment (TCE) [9, 13]. The SoC consists of:
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Fig. 13 An example TTA instance and instruction, the square blocks denote input- and output-
ports. A cross denotes a trigger-port. The colored arrows drawn on the architecture illustrate the 
move operations inside the example instruction 
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Fig. 14 Top-level view of the BrainTTA SoC, the arbiter forms the border between the RISC and 
TTA part of the SoC 

• RISC-V host processor, which is taken from an open-source repository [24], the 
host processor starts and halts execution of the TTA core and takes care of the 
external communication (e.g., loading the on-chip memories). 

• TTA core, the workhorse of the architecture, supports mixed-precision inference.
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Legend 
Scalar (32-bit) 

Vector (1024-bit) 

vMAC 

Fig. 15 BrainTTA core instance, thicker lines denote vector busses, thinner lines scalar busses 

• SRAM Memories, separate memories for the RISC and TTA core, the TTA 
core memories are highly banked to allow efficient access of smaller bit-widths, 
while also supporting wide vector accesses. The TTA core is connected to three 
memories, the DMEM, used for storing input and output feature maps, the 
PMEM, used to store the weights, and the IMEM used for instructions to program 
the behavior of the TTA core. 

• Debugger (DBG), used to control the execution of the TTA core, can signal task 
completion to the RISC-V. 

• AXI interconnect, used for on- and off-chip communication between the RISC, 
TTA core, and peripherals. 

The workhorse of this architecture is the TTA core, where the actual inference 
happens. The details of the TTA core instantiation used in BrainTTA can be found 
in Fig. 15. The core contains different Function Units (FUs), divided into scalar and 
vector FUs. The FUs are interconnected via the busses, with 32-bit scalar busses 
(bus 0–5) and 1024-bit vector busses (bus 6–9). The core consists of the following 
units: 

Control Unit (CU) it contains the logic to fetch and decode instructions and steers 
the other units to execute the correct operations. Furthermore, the CU contains a 
hardware loop buffer to save energy on the instruction memory accesses. This can 
be very beneficial since all network layers are essentially described by multiple 
nested loops (see Listing 1). 

Vector Multiply–Accumulate (vMAC), the actual number cruncher. This unit 
supports the following operations: integer8 MAC (scalar–vector product and 
vector–vector product), binary MAC, and ternary MAC. Its vector size is 
1024-bit, with 32 entries of 32-bits each. The scalar–vector MAC multiplies a scalar 
by a vector by broadcasting the (32-bit) scalar value to all vector entries. This is 
beneficial when multiple inputs share the same weights (as in convolution). 

For each precision MAC operation, the vectorization factor is different. All 
arithmetic circuitry contains 32 accumulators for the (intermediate) output channel
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result, i.e., .vM = 32. The number of concurrent input channels is the vector 
size (1024) divided by 32 (the number of output channels) divided by the operand 
size (i.e., 1, 2, or 8 bits). Therefore, the input channel vectorization is .vC = 32, 
.vC = 16, and .vC = 4 for binary, ternary, and integer8, respectively. 

Vector Add (vADD) is used to add two (either 512- or 1024-bit) vectors. This can 
for example be used to support residual layers. 

Vector Operations (vOPS), auxiliary (vector) operations that are required in the 
network, alongside to the computations. This FU can perform requantization, 
binarization, ternarization, as well as activation functions, e.g., ReLU 
and pooling functions such as MaxPool. Furthermore, various other operations to 
extract and insert scalar elements into a vector are also supported by this unit. 

Register Files (RFs) come in different bit-widths, namely binary, 32-bit scalar, 
and 1024-bit vector. These registers can be used to facilitate data reuse and store 
intermediate results without performing (more costly) access to the SRAM. 

Load-Store Units (LSUs) form the interface between the TTA core and the SRAM 
memory. For each memory, there is a separate LSU to facilitate concurrent weight 
and input loading. The units support loads and stores for different bit-widths ranging 
from 8 bits all the way up to 1024 bits. Since the memory is banked, a strobe signal 
can be used to selectively turn on banks when data with smaller bit-widths are 
loaded/stored, in order to save energy. 

Scalar ALUs are mostly used for address calculations needed as inputs to the 
LSUs. These units support basic arithmetic on values up to 32 bit. 

4 Comparison and Discussion 

All architectures discussed in Sect. 3 are evaluated on flexibility and energy 
efficiency. These results are given in Table 1. This table is split into three sections: 
the implementation characteristics, performance characteristics as discussed in 
Sect. 3.1.2, and the flexibility aspects as discussed in Sect. 3.1.1. 

The energy efficiency of the accelerators ranges from 1.6 to 115 fJ per operation 
for binary precision, a large range. It should be noted, however, that the two 
architectures that have the highest energy usage (XNE and BrainTTA) are the only 
architectures that show a full autonomous SoC including peripherals. Furthermore, 
all architectures except BrainTTA utilize voltage–frequency scaling to run the 
accelerator at lower than nominal supply voltage, trading off throughput for better 
energy efficiency. 

Next to the energy efficiency, the table also lists the neural network layer 
requirements that these architectures impose in order to fully utilize the arithmetic 
hardware. It is seen that the most energy-efficient architectures, CUTIE [22] and 
the BNN accelerator in 10-nm FinFet from Knag et al. [16],  are also the  most  
constrained architectures, in terms of neural network layer requirements. Therefore,
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the question arises, does hard-wiring the neural network layer parameters directly 
improve the energy efficiency of an architecture, for different models, also when 
layer variety is high? 

Interestingly, the XNE and BrainTTA share very similar layer constraints. Both 
are only constrained in the input channel (C) and output channel (M) dimensions. 
The energy consumption of BrainTTA is somewhat lower at an older technology 
node while using a higher supply voltage. The reason for this is that BrainTTA better 
exploits data reuse. The execution schedule for BrainTTA was tuned to maximize 
data reuse, while XNOR neural engine only reuses a set of input feature maps for 
TP (in this case 128) cycles while reloading the weights for each MAC operation. 

The inefficient schedule of XNE is confirmed by the energy numbers of the 
implementation that only uses SCM. XNE was benchmarked using SCM only, 
severely cutting the very high energy cost associated with these redundant memory 
fetches, at the cost of losing memory capacity. Some architectures report energy 
numbers for an SCM as well as an SRAM implementation. The memory capacity 
of the SCM versions is very low compared to the SRAM versions, hindering the 
ability to run full-size networks on it without adding expensive off-chip memory 
accesses. For the sake of comparison, for all the architectures with an SRAM version 
available, the SRAM version is chosen for further analysis. 

Support for residual layers can only be found in ChewBaccaNN and BrainTTA. 
Other architectures are not able to support this due to their fixed datapath. The 
dataflow through these accelerators is very static, and the accumulated value will 
directly be binarized or ternarized after all inputs are accumulated. This 
prohibits the use of residual layers since residual layers need the intermediate (larger 
bit-width) results that were obtained before requantization. 

It is clear that parallelism and data reuse (either in the form of locally buffering 
or by broadcasting) are the keys to amortizing the memory access cost, which is 
so much larger than the low-precision arithmetic cost. Techniques to mitigate these 
costs are to replace SRAM with low-voltage SCM, hard-wire network parameters to 
enable broadcasting, and use the sliding window principle (like the FMM banks in 
combination with the crossbar in ChewBaccaNN [1]). In essence, all these solutions 
boil down to designing the architecture around the data movements in a less-flexible 
manner. These architectures solve the mapping problem by fixing most parameters 
using spatial mapping, greatly simplifying the task of temporal mapping at the 
cost of losing flexibility. XNE and BrainTTA fix the least number of parameters 
using spatial mapping, therefore leaving a larger temporal mapping space to be 
explored. 

5 Summary and Conclusions 

Neural networks are all around and are making an advance into the embedded 
domain. With the increasing popularity of edge computing, new methods are needed 
to port the typically power- and memory-hungry neural networks to devices that
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have limited storage and are subject to severe energy constraints. Quantization is a 
fundamental ingredient in overcoming these challenges. Very low precisions, down 
to 1 bit, have shown to achieve great energy efficiency while drastically reducing the 
model size and computational cost involved in neural network inference. To fully 
exploit the reduced computational complexity and memory requirements of these 
networks, neural network accelerators aimed specifically at these heavily quantized 
networks have been developed. 

In this chapter, state-of-the-art low- and mixed-precision architectures are 
reviewed. Taking into account the variety present in network layers of CNNs, 
the architectures are compared against each other in terms of flexibility and energy 
efficiency. It was found that spatially mapping more dimensions of the neural 
network layer increases the energy efficiency as it allows minimization of data 
movement by tailoring the memory hierarchy design, which is a big contributor to 
energy cost in inference accelerators. Contrary to the group of accelerators that maps 
most layer dimensions spatially, there is a group of accelerators that minimizes the 
layer dimension requirements by less heavily relying on spatial mapping, retaining 
more freedom in the temporal mapping domain. They are more flexible and can 
handle a larger part of the neural architecture design space. In addition, they may 
have support for multiple bit precisions. 

With new attempts to streamline the process of finding the best combination 
of temporal and spatial mappings [17], while co-designing the memory hierarchy, 
the question arises if an optimized temporal mapping in combination with memory 
hierarchy co-design can close the energy efficiency gap with the more constrained, 
heavily spatially mapped accelerators, giving better energy efficiency at a wider 
range of neural network layers. 

References 

1. Andri, R., Karunaratne, G., Cavigelli, L., Benini, L.: ChewBaccaNN: A flexible 223 TOPS/W 
BNN accelerator. arXiv (May), 23–26 (2020) 

2. Bankman, D., Yang, L., Moons, B., Verhelst, M., Murmann, B.: An always-on 3.8 μ J/86% 
CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS. 
IEEE J. Solid-State Circuits 54(1), 158–172 (2019). https://doi.org/10.1109/JSSC.2018. 
2869150. https://ieeexplore.ieee.org/document/8480105/ 

3. Bengio, Y., Léonard, N., Courville, A.: Estimating or Propagating Gradients Through Stochas-
tic Neurons for Conditional Computation pp. 1–12 (2013). http://arxiv.org/abs/1308.3432 

4. Blalock, D., Ortiz, J.J.G., Frankle, J., Guttag, J.: What is the State of Neural Network Pruning? 
(2020). http://arxiv.org/abs/2003.03033 

5. Bulat, A., Tzimiropoulos, G.: XNOR-Net++: Improved binary neural networks. In: 30th British 
Machine Vision Conference 2019, BMVC 2019 pp. 1–12 (2020) 

6. Conti, F., Schiavone, P.D., Benini, L.: XNOR neural engine: a hardware accelerator IP for 21.6-
fJ/op binary neural network inference. IEEE Trans. Comput.-Aided Design Integr. Circuits 
Syst. 37(11), 2940–2951 (2018). https://doi.org/10.1109/TCAD.2018.2857019 

7. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Hoboken (1997)

https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
https://ieeexplore.ieee.org/document/8480105/
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2003.03033
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019


Low- and Mixed-Precision Inference Accelerators 87

8. Deng, L., Jiao, P., Pei, J., Wu, Z., Li, G.: GXNOR-Net: training deep neural networks with 
ternary weights and activations without full-precision memory under a unified discretization 
framework. Neural Netw. 100, 49–58 (2018). https://doi.org/10.1016/j.neunet.2018.01.010 

9. Esko, O., Jääskeläinen, P., Huerta, P., De La Lama, C.S., Takala, J., Martinez, J.I.: Customized 
exposed datapath soft-core design flow with compiler support. In: Proceedings - 2010 
International Conference on Field Programmable Logic and Applications, FPL 2010, pp. 217– 
222 (2010). https://doi.org/10.1109/FPL.2010.51 

10. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A Survey of 
Quantization Methods for Efficient Neural Network Inference (2021). http://arxiv.org/abs/ 
2103.13630 

11. Gluska, S., Grobman, M.: Exploring Neural Networks Quantization via Layer-Wise Quantiza-
tion Analysis (2020). http://arxiv.org/abs/2012.08420 

12. Huang, S., Waeijen, L., Corporaal, H.: How flexible is your computing system? ACM Trans. 
Embedd. Comput. Syst. (2022). https://doi.org/10.1145/3524861. https://dl.acm.org/doi/10. 
1145/3524861 

13. Jääskeläinen, P., Viitanen, T., Takala, J., Berg, H.: HW/SW co-design toolset for customization 
of exposed datapath processors. In: Computing Platforms for Software-Defined Radio, pp. 
147–164. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-
49679-5_8 

14. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D.: 
Quantization and training of neural networks for efficient integer-arithmetic-only inference. 
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, pp. 2704–2713 (2018). https://doi.org/10.1109/CVPR.2018.00286 

15. Kharya, P.: TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up to 20x (2020). 
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/ 

16. Knag, P.C., Chen, G.K., Sumbul, H.E., Kumar, R., Hsu, S.K., Agarwal, A., Kar, M., Kim, 
S., Anders, M.A., Kaul, H., Krishnamurthy, R.K.: A 617-TOPS/W all-digital binary neural 
network accelerator in 10-nm FinFET CMOS. IEEE J. Solid-State Circuits 56(4), 1082–1092 
(2021). https://doi.org/10.1109/JSSC.2020.3038616 

17. Mei, L., Houshmand, P., Jain, V., Giraldo, S., Verhelst, M.: ZigZag: enlarging joint architecture-
mapping design space exploration for DNN accelerators. IEEE Trans. Comput. 70(8), 1160– 
1174 (2021). https://doi.org/10.1109/TC.2021.3059962 

18. Muller, O., Prost-Boucle, A., Bourge, A., Petrot, F.: Efficient decompression of binary encoded 
balanced ternary sequences. IEEE Trans. Very Large Scale Integr. Syst. 27(8), 1962–1966 
(2019). https://doi.org/10.1109/TVLSI.2019.2906678 

19. Multanen, J.: Energy-Efficient Instruction Streams for Embedded Processors. Ph.D. Thesis, 
Tampere University (2021) 

20. Parashar, A., Raina, P., Shao, Y.S., Chen, Y.H., Ying, V.A., Mukkara, A., Venkatesan, R., 
Khailany, B., Keckler, S.W., Emer, J.: Timeloop: A systematic approach to DNN accelerator 
evaluation. In: Proceedings - 2019 IEEE International Symposium on Performance Analysis 
of Systems and Software, ISPASS 2019, pp. 304–315 (2019). https://doi.org/10.1109/ISPASS. 
2019.00042 

21. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: ImageNet classification using 
binary convolutional neural networks. In: Computer Vision—ECCV 2016. Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics), LNCS, vol. 9908, pp. 525–542 (2016). https://doi.org/10.1007/978-
3-319-46493-0_32 

22. Scherer, M., Rutishauser, G., Cavigelli, L., Benini, L.: CUTIE: Beyond PetaOp/s/W Ternary 
DNN Inference Acceleration with Better-than-Binary Energy Efficiency pp. 1–14 (2020). 
http://arxiv.org/abs/2011.01713 

23. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: MnasNet: 
Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition 2019-June, pp. 2815–2823 
(2019). https://doi.org/10.1109/CVPR.2019.00293

https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1016/j.neunet.2018.01.010
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
https://doi.org/10.1109/FPL.2010.51
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
http://arxiv.org/abs/2012.08420
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://dl.acm.org/doi/10.1145/3524861
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1007/978-3-319-49679-5{_}8
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/JSSC.2020.3038616
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TC.2021.3059962
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/TVLSI.2019.2906678
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
https://doi.org/10.1007/978-3-319-46493-0{_}32
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
http://arxiv.org/abs/2011.01713
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293
https://doi.org/10.1109/CVPR.2019.00293


88 M. J. Molendijk et al.

24. Traber, A., Gautschi, M.: PULPino: Datasheet. ETH Zurich, University of Bologna (2017) 
25. Ueyoshi, K., Papistas, I.A., Houshmand, P., Sarda, G.M., Jain, V., Shi, M., Zheng, Q., Giraldo, 

S., Vrancx, P., Doevenspeck, J., Bhattacharjee, D., Cosemans, S., Mallik, A., Debacker, P., 
Verkest, D., Verhelst, M.: DIANA: An end-to-end energy-efficient digital and ANAlog hybrid 
neural network SoC. In: 2022 IEEE International Solid- State Circuits Conference (ISSCC), 
pp. 1–3. IEEE (2022). https://doi.org/10.1109/ISSCC42614.2022.9731716. https://ieeexplore. 
ieee.org/document/9731716/ 

26. Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A 64-Tile 2.4-Mb in-memory-computing 
CNN accelerator employing charge-domain compute. IEEE J. Solid-State Circuits 54(6), 
1789–1799 (2019). https://doi.org/10.1109/JSSC.2019.2899730. https://ieeexplore.ieee.org/ 
document/8660469/ 

27. Wang, S., Kanwar, P.: BFloat16: The secret to high performance on Cloud TPUs 
(2019). https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-
high-performance-on-cloud-tpus 

28. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.: 
FBNET: Hardware-aware efficient convnet design via differentiable neural architecture search. 
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition 2019-June, pp. 10726–10734 (2019). https://doi.org/10.1109/CVPR.2019.01099 

29. Wu, Y.N., Emer, J.S., Sze, V.: Accelergy: An architecture-level energy estimation methodology 
for accelerator designs. In: IEEE/ACM International Conference on Computer-Aided Design, 
Digest of Technical Papers, ICCAD 2019-Nov (2019). https://doi.org/10.1109/ICCAD45719. 
2019.8942149

https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://ieeexplore.ieee.org/document/9731716/
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2019.2899730
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://ieeexplore.ieee.org/document/8660469/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149


Designing Resource-Efficient Hardware 
Arithmetic for FPGA-Based Accelerators 
Leveraging Approximations and Mixed 
Quantizations 

Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar 

1 Introduction 

With the recent advancements in the field of Artificial Intelligence (AI), Machine 
Learning (ML) is becoming an imperative part of modern applications such as 
autonomous driving [1], personalized healthcare [2], precision agriculture [3], smart 
factories [4], and smart homes [5]. Machine learning algorithms perform various 
tasks for these applications, such as scene perception, object recognition and clas-
sification, voice recognition and decision-making, and natural language processing. 
However, machine learning algorithms, such as Artificial Neural Networks (ANNs), 
are computationally expensive and have very high energy requirements and memory 
footprints [6]. Therefore, high-performance parallel architectures, such as Graphic 
Processing Units (GPUs), and cloud-based computing are typically utilized for 
training the ML models. Nonetheless, the GPUs’ high power consumption makes 
them an infeasible choice for deploying the trained ML models on embedded 
devices at the edge. Similarly, factors such as high power consumption of data 
transmission from device to cloud, network costs, throughput, and data security are 
the primary reasons to avoid cloud-based inference and thus motivate the need for 
executing trained ML algorithms at the edge. 

Embedded machine learning refers to utilizing and executing machine learning 
models on embedded systems to perform the aforementioned AI/ML-related tasks. 
The ubiquitous deployment of embedded systems in almost every application— 
from space rockets to microwave ovens—further emphasizes the need for smart 
embedded systems by utilizing ML models. Toward this end, various state-of-the-
art works, such as [7], have presented various techniques to reduce these models’ 
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overall computational complexity, memory footprint, and storage requirements for 
execution on embedded systems. Most of these techniques exploit the inherent error 
resilience of ML models to introduce various approximations in the implementation 
of a trained ML model. This inherent error resilience enables an application to 
produce acceptable quality results despite some of its operations and data being 
approximate/inaccurate [8]. It should be noted that error-tolerant applications may 
not produce a single golden answer and instead produce multiple feasible answers. 
For example, a search engine can return multiple feasible options instead of a 
single golden answer while searching for the best theater in the town. Similarly, 
an ML model trained to recognize cat images can produce outputs with 70%, 
80%, and 90% confidence values, and all these results are acceptable depending 
on an application’s output quality requirements. For machine learning models such 
as Deep Neural Networks (DNNs), network pruning [9], quantization of trained 
parameters [10], and utilization of approximate arithmetic modules [11, 12] are  
the commonly utilized techniques to trade the output accuracy with corresponding 
performance gains in the implementation. To this end, TensorFlow [13], one of the 
most commonly used frameworks for developing machine learning models, also 
provides the TensorFlow Lite tool for optimizing ML models for embedded systems. 
These optimizations have enabled the execution of ML models on single-board 
computers such as those provided by Raspberry Pi and Arduino [7]. 

The various optimizations performed by tools, such as TensorFlow Lite, however, 
mainly focus on reducing an ML model size and utilizing 16-bit and 8-bit integer 
number schemes, along with single-precision floating-point numbers, to represent 
the trained parameters of a model. Many recent works have demonstrated that ML 
models’ inherent error resilience can be exploited further to utilize fewer bits (less 
than 8 bits) to represent a model’s parameters and still achieve acceptable quality 
results. For example, the binary and ternary networks utilize 1-bit and 2-bit number 
representation schemes, respectively, to represent the parameters of DNNs [16, 17]. 
The utilization of fewer bits to represent parameters of a model significantly 
reduces the storage and memory requirements of its implementation. However, these 
number schemes underutilize the computational resources of a standard processor. 
Moreover, many recent works, such as [10], have defined new number representation 
(quantization) schemes to utilize the available bit widths efficiently. These number 
schemes also underutilize the available processing resources in a general-purpose 
processor. These challenges can be addressed by utilizing custom architectures 
designed according to the employed number representation scheme. For instance, 
Fig. 1 compares the impact of deploying different number representation schemes 
across multiple performance parameters—behavioral (quantization-induced errors 
in weights), computational (critical path delay (CPD) of a Multiply and Accumulate 
(MAC) unit), and memory requirements (weights’ storage) in the Conv2_1 layer 
of a pre-trained VGG16 network [14]. For this experiment, we have used single-
precision floating point (FP32), fixed point (Fxp), and the recently proposed number 
representation scheme Posit (Pos) [18]. The results compare the accuracy and 
performance of FP32-based MAC with 16-bit and 8-bit fixed-point and Posit 
representations-based MACs (Fxp16, Pos16, Fxp8, Pos8). For this experiment, each
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(a) 

nS
 

(b) (c) 

Fig. 1 Accuracy and performance comparison of various schemes of numbers representation for 
the Conv2_1 layer of pre-trained VGG16 [14]: (a) Average absolute relative error with respect to 
single-precision floating-point-based parameters, (b) CPD, (c) normalized memory footprints [15]. 
(a) Accuracy. (b) Computation. (c) Storage  

technique has been implemented on the Xilinx UltraScale Field Programmable Gate 
Array (FPGA) to obtain the corresponding implementation results. The MAC units 
in this experiment have been implemented using 6-input Lookup Tables (LUTs) 
and with a latency constraint of a single cycle. The results show that the utilization 
of more bits for the representations of the parameters significantly reduces the 
errors induced by quantization schemes. However, the single-precision (FP32) 
implementation holds the highest memory footprint with the worst CPD of .42 ns. 
Similarly, compared to the Fxp-based number representation scheme, the Posit 
number representation schemes offer better coverage of the FP32-based pre-trained 
parameters. However, compared to the Posit-based arithmetic, the simplicity of the 
Fxp-based arithmetic results in significantly reducing the CPD of the MAC units. 
Therefore, there is a need to explore the various available number representation 
schemes and corresponding efficient arithmetic architectures to implement ML 
models on resource-constrained embedded systems. 

FPGA vendors provide various MultiProcessor System On Chips (MPSoCs), 
such as Zynq UltraScale+ [19], to combine the power efficiency and programmabil-
ity of general-purpose ARM processors with the reconfigurability and parallelism 
of FPGAs for embedded systems. The reconfigurable nature of FPGAs allows 
designing area-optimized, low-latency, and energy-efficient accelerators for various 
functions of an embedded application. Moreover, using custom architectures also 
facilitates achieving higher throughputs in embedded systems by exploiting the large 
parallelism supported by FPGAs. This chapter provides a comprehensive overview 
of some of the commonly utilized number representation schemes and their 
corresponding FPGA-optimized custom arithmetic architectures for the embedded
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machine learning. Specifically, it focuses on the architectures for multiplication 
operations as it is one of the most commonly used operations in ML models. 
For example, VGG16 network deploys .15.5G MAC operations to perform the 
inference on a single .224 × 224 RGB input image [14]. Therefore, the availability 
of resource-efficient and high-performance multiplier architectures can help in 
enabling embedded machine learning. 

The rest of the chapter is organized as follows: Sect. 2 presents accurate and 
approximate multiplier architectures for fixed-point-based integer arithmetic. We 
first describe the fixed-point representation technique to represent fractions followed 
by various FPGA-optimized architectures for accurate signed multipliers. Consider-
ing the error-resilient nature of ML algorithms, we then present two architectures for 
approximate signed multipliers. Afterward, we present the implementation results 
of the discussed architectures and evaluate their efficacy by employing them in 
different high-level applications. Section 3 discusses the opportunities provided by 
both commonly used and novel number representation schemes. In particular, we 
discuss the Posit number representation scheme and the associated challenges for 
Posit-based arithmetic in embedded systems. To this end, we present a modified 
Posit representation for ML algorithms. Utilizing the modified scheme, we present a 
technique for deploying fixed-point arithmetic for the Posit numbers. Finally, we use 
DNNs as a benchmark application and present a detailed accuracy and performance 
analysis of utilizing Posit for an FPGA-based accelerator design for DNNs. 

2 Integer Arithmetic for Embedded Machine Learning 

As described in Sect. 1, high-performance Central Processing Units (CPUs) and 
GPUs are typically used to train ML models. These systems utilize IEEE single-
precision and double-precision floating-point number schemes to provide high 
computational accuracy. However, due to the high computational cost of floating-
point arithmetic, it is a common practice to exploit the inherent error resilience 
of ML models and represent the floating-point trained parameters of a model in 
the fixed-point number representation scheme. This process is commonly known 
as the quantization of a trained model. The quantized models are then executed 
using fixed-point arithmetic (integer arithmetic) on resource-constrained embedded 
systems. 

2.1 Fixed-Point Representation 

The commonly used technique to represent floating-point trained parameters in 
fixed-point representation is linear quantization. The linear quantization of a data 
tensor x from floating-point precision to N -bit fixed-point precision is illustrated by 
Eqs. (1) –(5). The step size . � in Eq. (1) represents the minimum possible increment
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in the quantized value .xquant . Equation (2) transforms the step size . � in a power 
of 2 so that it can be represented in the fixed-point representation. Depending upon 
the selected rounding function (round up and round down), the . � and the resulting 
quantized values will change accordingly. Finally, Eq. (3) utilizes the calculated . � to 
compute the fixed-point representation of a floating-point number. The clip function, 
defined in Eq. (5) , ensures that a parameter does not violate the allowed range of
values. The limited precision of the N -bit fixed-point representation can reduce
the precision of the quantized numbers, as defined in Eq. (4) ; however, as defined
previously, due to the inherent error resilience of ML models, the ML models can
produce acceptable quality results in most situations.

.� = max (| x |)
2N−1 (1) 

. � = 2round(log2(�)) (2) 

.xquant_Rep = clip
(
round

( x

�

)
,−2N−1, 2N−1 − 1

)
(3) 

.xquant = � • xquant_Rep (4) 

.clip(x,Max,Min) =
⎧⎨
⎩

x, Min < x < Max

Max, x ≥ Max

Min, otherwise
. (5) 

2.2 Accurate Custom Signed Multipliers 

FPGA vendors, such as Xilinx and Intel, provide Digital Signal Processing (DSP) 
blocks to achieve fast multipliers [20, 21]. However, as shown by the work 
presented in [22], it is necessary to have logic-based soft multipliers along with DSP 
blocks to obtain overall performance gains in different implementation scenarios. 
Consequently, Xilinx and Intel also provide logic-based soft multipliers [23, 24]. 
In this section, we describe some state-of-the-art FPGA-optimized accurate signed 
multipliers. These designs are based on the efficient utilization of the 6-input LUTs 
and associated fast carry chains of Xilinx FPGAs. 

Baugh–Wooley’s Multiplier (Mult-BW) 
Baugh–Wooley’s multiplication algorithm [25] eliminates the need for computing 
and communicating sign-extension bits by encoding the sign information in the
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Fig. 2 Baugh–Wooley’s .N × M signed multiplier design [22] 
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Fig. 3 The various functions implemented by LUTs to realize a Baugh–Wooley’s multiplier: (a) 
LUT configuration-A, (b) LUT configuration-B, (c) LUT configuration-C, (d) LUT configuration-
D, and (e) LUT configuration-E [22] 

generated partial products. Figure 2 presents the graphical representation of Baugh– 
Wooley’s algorithm. The authors of [22] have used this algorithm and defined 
different configurations of the 6-input LUTs to generate the signed partial products. 
These configurations are presented in Fig. 3. For an .N × M signed multiplier, the 

proposed implementation generates only .
⌈

M
2

⌉
partial products by fusing every 

two consecutive partial products. Figure 4 presents the mapping of the LUTs 
configurations and carry chains to generate all partial products of an . N × M

signed multiplier. The proposed methodology utilizes LUTs- and carry chains-based 
binary and ternary adders to add all the generated partial products for computing 
the final product. Compared to a binary adder that can add two operands at a 
time, a ternary adder can add three operands simultaneously, as shown in Fig. 5. 
The proposed LUT-level design optimizations result in realizing resource-efficient 
implementations for various sizes of multiplications. 

Booth’s Multiplier (Mult-Booth) 
The authors of [12, 26, 27] have used Booth’s multiplication algorithm to present 
area-optimized, reduced-latency, and energy-efficient implementations of radix-4 
Booth’s multiplication algorithm [28]. These works utilize similar Booth’s encoding 
techniques for the 6-input LUTs of the FPGAs that can be used to implement
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Fig. 4 Partial products generation for an .N × M Mult-BW multiplier [22] 

Fig. 5 LUTs- and carry chain-based ternary adder 

multipliers of various sizes. The work presented in [12] generates the signed 
partial products sequentially, and each generated partial product is added with 
the previous partial product row in a single step, as shown in Fig. 6. Figure 7 
describes the corresponding configurations of the LUTs. The sequential generation 
of the partial products significantly reduces the overall utilized resources of the 
multiplier. The work presented in [26] explores the parallel generation of all partial 
products and then utilizes 4:2 compressors and binary adders for the addition 
of the generated partial product rows to compute the final product. The parallel 
generation of partial product rows significantly reduces the overall latency of the 
implemented multipliers. The work presented in [27] has used Booth’s algorithm to 
implement custom unsigned multipliers. The unsigned multipliers can be utilized to 
implement signed multipliers by employing dedicated signed–unsigned converters. 
These converters receive 2’s complement numbers and generate corresponding 
numbers in sign-magnitude format. After multiplication in sign-magnitude format, 
the result is converted back to 2’s complement scheme using a signed–unsigned 
converter. However, as described in Sect. 2.4, these converters result in increasing 
the total number of utilized resources, critical path delay, and power consumption 
of the whole circuit. Moreover, due to the limited dynamic range of sign-magnitude 
format, the .−2N−1 number in 2’s complement format cannot be represented in 
an N-bit sign-magnitude format. However, ML models, such as ANNs, process
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Fig. 6 A 6. ×6 area-optimized accurate Booth’s multiplier [12] 

Fig. 7 Configuration of LUTs for implementing Booth’s multiplier [12]. (a) Type-A. (b) Type-B. 
(c) Type-C. (d) Type-D 

signed numbers; therefore, the employment of the unsigned multipliers and the 
dedicated signed–unsigned converters can degrade the overall performance of 
hardware accelerators for these applications. 

2.3 Approximate Custom Signed Multipliers 

As discussed in Sect. 1, the error resilience of ML models allows introducing 
different approximations at the various layers of the computation stack to trade
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the output accuracy with corresponding implementation performance gains. To this 
end, many approximate computing-related works have focused on the resources-
optimized, high-performance, and energy-efficient architectures of approximate 
arithmetic operators. For example, the works in [11, 12] have proposed various 
strategies for designing approximate signed custom multipliers. The authors of [12] 
have analyzed the Booth’s multiplier accurate implementation, presented in Fig. 6, 
for various sizes of multipliers and identified the logic elements that contribute 
the most to the CPD and the dynamic power consumption for all possible input 
combinations. For example, Fig. 8a presents this analysis for a 6 × 6 multiplier 
highlighting the five topmost power-consuming elements and the five worst critical 
paths. Based on the analysis, the authors have proposed various approximations to 
reduce the approximate implementation’s overall dynamic power consumption and 
CPD. Figure 8b presents the approximate multiplier’s dynamic power consumption 
and critical path analysis. 

Further generalizing this idea, the authors of [11] have proposed a generic 
framework, “AppAxO,” for implementing application-specific approximate oper-
ators optimized for FPGA-based systems. AppAxO employs the 6-input LUTs 
and the associated carry chains of FPGAs to implement approximate operators 
according to binarized string configurations. These configurations specify the 
LUTs, in an accurate operator implementation that should be disabled to realize 
a corresponding approximate operator. For example, for an M × N accurate mul-
tiplier, utilizing “T” LUTs, AppAxO explores the design space of 2T approximate 
multipliers with different accuracy and performance parameters. To determine the 
feasible configurations for an application, AppAxO employs a Multi-objective 
Bayesian Optimization (MBO)-based exploration method to generate only those 
approximate operator configurations that fulfill an application’s accuracy and 
performance constraints. The authors have shown that by considering application-
specific accuracy–performance constraints, AppAxO provides novel approximate 
operators, providing better design points for an application than the traditional 
application-agnostic design methodology. 

2.4 Comparison of Multiplier Designs 

This section summarizes the performance (resources, CPD, and power consump-
tion) and accuracy results of the discussed FPGA-optimized accurate and approx-
imate multipliers. All presented multipliers have been implemented in VHDL 
and synthesized for Virtex-7 family FPGA using Xilinx Vivado. For Power-Delay 
Product (PDP) calculations, Vivado Simulator and Power Analyzer tools have been 
used. 

Figure 9 compares the average performance of the Baugh–Wooley (Mult-
BW) [22], Booth’s multipliers Mult-Booth-1, Mult-Booth-2, and Mult-Booth-3 
presented in [12, 26], and [27], respectively, with Vivado speed- and area-optimized 
multiplier IPs [23]. The Mult-Booth-3 design also employs signed–unsigned con-
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(a) 

(b) 

Fig. 8 CPD and dynamic power analysis to implement approximate circuits [12]. (a) 6× 6 Booth 
multiplier showing top five critical paths per output (in blue) and top five most power-consuming 
elements. (b) 6  × 6 Booth approximate multiplier showing top five critical paths per output (in 
blue) and top five most power-consuming elements 

verters to perform signed multiplications, as discussed in Sect. 2.2. We have  
utilized the Average Performance metric to compare the performance of the custom 
multipliers for .4×4, .8×8, .16×16, and .32×32 multipliers. The Average Performance 
metric is the average of the product of normalized values of LUTs utilization, CPD, 
and PDP, as shown in Eq. (6) . All individual performance metrics of each multiplier
have been normalized to the corresponding performance metrics of Vivado area-
optimized multiplier IP [23]. It should be noted that a smaller average value of
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Fig. 9 Performance comparison of accurate signed multipliers across different sizes of multipli-
ers: a smaller average value shows a design with a better performance 

the metric presents an implementation with a better performance. As shown by 
the results in Fig. 9, the custom multipliers Mult-BW, Mult-Booth-1, and Mult-
Booth-2 provide better overall performance than Vivado speed- and area-optimized 
IPs. Mult-Booth-1 is more resource- and energy-efficient than other designs due 
to its sequential generation and addition of partial products. Mult-Booth-2 offers 
significantly reduced critical path delay due to the parallel generation of the partial 
products. The signed–unsigned converters increase the total number of utilized 
LUTs, CPD, and dynamic power consumption of the Mult-Booth-3 design. 

.Average P erf ormance = Average(Norm. LUTs × Norm. CPD × Norm. PDP).(6) 

Figure 10 presents the utilization of Mult-Booth-2 in the implementation of an 
accelerator of an ANN for the classification of the MNIST digits dataset [29]. The 
inference accuracy of the dataset using the single-precision floating-point number 
is . 97%. The corresponding inference accuracy using 8-bit fixed-point quantization 
is .96.6%, resulting in an insignificant drop in output accuracy. First, the network is 
implemented using Vivado speed-optimized multiplier IP with as many neurons as 
possible using three different input sizes, .8 × 8, .16 × 16, and .32 × 32. The  same  
setups are then used for the Vivado area-optimized multiplier and Mult-Booth-
2 multipliers. The resulting LUT utilization, CPD, and PDP for each design are 
normalized to Vivado area-optimized IPs. Mult-Booth-2 produces the best results in 
the combined .LUT×PDP averaged across all input sizes. Mult-Booth-2 outperforms 
Vivado speed- and area-optimized IPs by .8.4% and .29.4%, respectively. Mult-Booth-
2 is comparable in PDP to Vivado’s speed-optimized IP but requires an average of 
. 8% fewer LUTs. 

Figure 11 compares the implementation performance of various approximate 
multipliers with the Vivado speed- and area-optimized IPs [23]. The Booth-Approx 
multiplier is discussed in Sect. 2.3. S1 [30] and S2 [31] are two approximate 
unsigned multipliers originally designed for ASIC-based systems. These multi-
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Fig. 10 Application-level performance comparison of accurate signed multipliers 

Fig. 11 Performance comparison of approximate signed multipliers 

pliers are implemented again using signed–unsigned converters and synthesized 
for Virtex-7 FPGA for the performance comparison. The P(N,2) is a precision-
reduced soft multiplier. P(N,2) truncates the two least significant bits (LSBs) of 
the input operands before multiplication and then utilizes a lower bit-width accurate 
multiplier, .(N − 2) × (N − 2), for multiplication. The computed product is shifted by 
4 locations to calculate the final approximate result. Figure 11 depicts the product of 
normalized values of total utilized LUTs, CPD, and PDP for each design across 
different bit widths. All values have been normalized to corresponding Vivado 
area-optimized multiplier IP values. As previously stated, a lower product value 
.(LUTs × CPD × PDP) indicates a better performing implementation. Although the 
P(N,2) multiplier outperforms the Booth-Approx multiplier for smaller designs, the 
performance gains do not scale proportionally for higher-order P(N,2) multipliers. 
For example, for .24 × 24 multipliers, Booth-Approx reduces the product of the 
normalized performance metrics by .5.2% when compared to the P(N,2) multiplier. 
Furthermore, a detailed error analysis of the approximate multipliers reveals that 
P(N,2) multipliers have lower accuracy across all error metrics.
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Table 1 Error analysis of .8 × 8 approximate signed multipliers 

Design 
Error 
Occurrences % 

Maximum 
Error 

Average Abs. 
Error 

Max. Abs. 
Relative Error 

Avg. Abs. 
Relative Error 

Booth-Approx 90.56 361 85.01 6 0.091 

S1 [30] 86.46 7225 1842.44 1 0.362 

S2 [31] 34.19 882 118.875 1 0.0223 

P(8,2) 93 759 149.78 15 0.121 

Noise-induced Image all-approximate Difference  Imageall-accurate 

PSNR: 16.9 PSNR: 20.6, SSIM: 1.0 PSNR: 20.5, SSIM: 0.95 

Gaussian Smoothed Images 

Fig. 12 Comparison of Gaussian image smoothing application for .8 × 8 multiplier: Average 
PSNR=52.36, Average SSIM=0.99 for 15 images 

Table 1 shows the error analysis for the Booth-Approx multiplier, as well as 
precision-reduced P(8,2) and other state-of-the-art signed approximate multipliers 
(using signed–unsigned converters). As the number .−128 cannot be represented 
using the sign-magnitude format using 8-bit representation, the maximum error 
magnitude observed in S1 and S2 is .16,384. To provide a fair comparison, the range 
of 8-bit operands for computing the maximum error is limited to [.−127, .+127] for  
designs in S1 and S2. The Booth-Approx multiplier has the lowest maximum error 
magnitude and average absolute error among all presented multipliers, as shown by 
the highlighted cells in the table. Furthermore, it can be seen that Booth-Approx 
outperforms the P(8,2) multiplier across all error parameters. 

Figure 12 depicts the impact of using approximate multipliers on application-
level accuracy. We used Gaussian Smoothing as a test case to determine the 
efficiency of the Booth-Approx multiplier. We processed 15 images from the 
USC-SIPI Database [32] for this experiment and reported their average output 
quality using the Peak Signal-to-noise Ratio (PSNR) and Structural Similarity Index 
(SSIM) metrics. In comparison to the accurate multipliers-based implementation, 
the approximate multipliers-based Gaussian smoothing produces insignificant out-
put quality degradation. However, this slight reduction in output quality can be 
exchanged for considerable performance gains in the corresponding implementa-
tion.
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3 Arithmetic for Novel Number Representation Schemes 

A plethora of recent works has proposed different types of data representation tech-
niques to reduce the memory and energy budgets of employing machine learning 
models. For example, the Google Tensor Processing Units (TPUs) utilize the Brain 
Floating-Point Format (bfloat16) for providing high-performance operations. The 
bfloat16, a subset of the IEEE 754 single-precision floating point, utilizes only 7 bits 
for storing the fraction (mantissa) [33], as shown in Fig. 13. Compared to the IEEE 
754 half-precision, the bfloat16 provides the dynamic range of the single-precision 
format by committing 8 bits for storing the exponent value. However, compared to 
the single- and half-precision format, it utilizes only 7 bits for storing the mantissa. 
The bfloat16 is designed for reducing the storage requirements and accelerated 
computations of machine learning algorithms. It is currently used by different 
architectures such as Google TPUs [34], Intel FPGAs and Intel AI processors [35], 
ARM processors [36], and Nvidia’s GPUs [37]. To accelerate the computation 
performance of ML models, Nvidia’s GPUs also utilize a custom 19-bit floating-
point representation, Tensor Float 32 (TF32). Figure 13d shows the structure of 
TF32. However, TF32 is used only for computation in the tensor cores, and the 
results of these computations are still stored in single-precision format. 

Besides the commercially utilized number representation schemes, many recent 
works have also defined custom number representation schemes for ML algorithms. 
These schemes focus on the efficient mapping of the application-specific dynamic 
range of values of ML models to the available bit width. For example, the 
number representation scheme proposed in [38] focuses on computing the optimal 
quantization step sizes for features and parameters of DNNs. The proposed scheme 

(a) 

(b) 

(c) 

(d) 

Fig. 13 Various commonly utilized number representation schemes. (a) IEEE 754 single-
precision 32-bit float. (b) IEEE half-precision 16-bit float. (c) bfloat16. (d) 19-bit Tensor Float 
32
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iteratively adjusts the step size for each layer’s data structure and records the 
generated errors in the layer under consideration. The individual computation of 
optimal step size for each layer helps reduce the quantization-induced errors by 
adjusting the step size according to the distribution of parameters in each layer. The 
authors of [10] have considered the power of 2 quantization schemes to represent 
the floating-point trained parameters of ANN. The proposed scheme uses a custom 
template for storing the most significant fractional bits in the trained parameters of 
DNNs. In this technique, .log2 is used to find the location of the most significant 1 
in the trained parameters. The location of the leading 1 fractional bit and the actual 
values of the following fractional bits are stored in the proposed template.1 The 
experimental results of the proposed scheme in various networks and applications 
show that identifying and recording only the most significant fractional bits result 
in insignificant accuracy loss compared to the floating-point precision-based results. 
Moreover, the power of 2 quantization allows the implementation of computationally 
complex multiplication operation using bit-shift and addition operations. Similarly, 
the authors of [39] have also utilized the power of 2 quantization to use bit-shift and 
addition operations for implementing DNNs. 

3.1 Posit Number Representation Scheme-Based Arithmetic 

Compared to the IEEE 754 single-precision floating-point format, the recently 
developed Posit number representation scheme offers a larger dynamic range 
and greater precision for various applications [18]. The Posit number scheme’s 
constituent fields, sign, regime, exponent, and fraction, are  shown in Fig. 14. The  
number of bits sets aside for the exponent (ES), and the total number of bits (N) 
defines a Posit number configuration. Equation (7) describes the computation of 
a Posit value using the four fields of the Posit scheme. The value of k in Eq. (7) is  
determined using the regime field in Fig. 14. When an inverted bit (r̄) is encountered, 
the regime field is terminated, and the associated value of k is decided by the number 
of identical bits (m); if the identical bits are a string of 0s, then k = −m; if they are  
a string of 1s, then k = m − 1. Next, the remaining bits are used to calculate the 
exponent (e) and fraction value (f ). The Posit number scheme has a wider dynamic 
range thanks to the use of the regime field. For instance, according to the authors 
in [40], it is possible to obtain comparable output precision for some applications 
by substituting m-bit Posit-based numbers for n-bit floats (where m < n). 

.Posit value = s ∗ (22
ES

)k ∗ 2e ∗ 1.f. (7)

1 The total number of recorded fractional bits depends on the deployed bit width of the quantization 
scheme. 
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Fig. 14 Posit number representation 

Table 2 Comparison of 
resource utilization of adders 
and multipliers for 
single-precision 
floating-point, fixed-point, 
and Posit [40] and  [12] 

Adder Multiplier 

Bit configuration LUTs LUTs DSP Blocks 

Single precision 1049 533 4 

32-bit fixed point 32 167 0 

Posit (32,1) 934 576 4 

(32,2) 981 572 4 

(32,3) 951 582 4 

(31,3) 894 560 4 

(30,3) 873 655 3 

(29,3) 837 464 2 

(28,3) 821 459 2 

Half-precision 356 212 1 

16-bit fixed point 16 144 0 

Posit (16,1) 391 218 1 

(16,2) 404 223 1 

(16,3) 386 219 1 

(15,1) 382 207 1 

(14,1) 353 184 1 

(13,1) 290 181 1 

(12,1) 254 167 0 

The associated arithmetic circuits, however, have larger critical path delays and 
resource utilization than the single-precision-based arithmetic units because of the 
dynamic nature of the various fields of the Posit scheme. For instance, Table 2 
compares the resource usage of floating-point, fixed-point (integer), and Posit 
scheme-based adders and multipliers. These results include those Posit configura-
tions that offer output accuracy comparable to the floating-point representation [40]. 
We also compare the resource usage of 32-bit and 16-bit fixed-point adders and 
multipliers [12]. The comparison demonstrates that fixed-point architectures use sig-
nificantly fewer resources than the other number representation schemes. Depending 
on the utilized Posit configuration, the corresponding arithmetic circuit (adder or 
multiplier) may use more resources than the floating-point-based implementation. 
It is also noteworthy that for some Posit configuration, Posit-based adders can use 
more resources than multipliers. Such drawbacks of the Posit number scheme may 
prevent their utilization in resource-constrained embedded systems.
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Designing resource-effective and performance-optimized hardware architectures 
for Posit-based arithmetic has received a lot of attention recently. For instance, 
the authors in [40] address the run-time variable field length by creating hardware 
arithmetic structures for conversion from Posit into floating point and vice versa. 
A tool to create pipelined Posit operators as a drop-in replacement in processing 
units is proposed in [41]. The architecture of a parameterized Posit arithmetic 
unit to implement Posit adders and multipliers of arbitrary bit width is presented 
in [42]. Similarly, PACoGen uses a three-stage procedure—Posit data extraction, 
core arithmetic processing, and Posit construction—to conduct parameterized Posit 
arithmetic, such as multiplication and division [43]. Additionally, Posit arithmetic 
has been incorporated into Clarinet [44], a RISC-V ISA-based processor that 
supports employing a Posit arithmetic core. 

Some recent studies have also explored the improved dynamic range of Posit-
based representation for the training and inference stages of various machine 
learning models. For instance, the work in [45] has presented vectorized extensions 
for the cppPosit, a C++ posit arithmetic library, using the ARM scalable vector 
extension Single Instruction Multiple Data (SIMD) engine. An Exact Multiply and 
Accumulate (EMAC) has been proposed in [46] to implement the MAC operations 
in ANN. This work demonstrates that the output accuracy of ANN is maintained 
more accurately by the Posit-based representation of network parameters than by 
the fixed-point-based representation. However, compared to fixed-point-based MAC 
operations, Posit-based EMACs operations have much higher resource utilization 
and Energy-Delay Product (EDP). In [47], the authors have also utilized the EDP 
metric to compare their presented Posit-based design with the floating-point- and 
fixed-point-based implementations. Their results show that the fixed-point-based 
implementations always have lower EDP values than the corresponding Posit-
based designs. The research works in [48, 49] have considered the Posit techniques 
for storing the trained weights of ANNs and then employing floating-point-based 
computations to calculate output values. 

3.2 Fixed-Point-Based Posit Arithmetic 

ExPAN(N)D, proposed in [15], is a framework for investigating the joint usage of 
Posit and fixed-point representation for implementing ML models. By modifying 
the Posit number representation to store numbers (parameters of pre-trained ML 
models) within the sub-normal region and by implementing a Posit to Fixed-point 
(PoFx) converter, ExPAN(N)D aims to take advantage of Posit’s useful storage capa-
bility and the compute efficiency of fixed-point-based arithmetic. ExPAN(N)D’s 
top-level view is depicted in Fig. 15. The  hardware design and characterization of 
the MAC units for various number representation (quantization) schemes form 
the central theme around which the other two methods—behavioral analysis and 
accelerator design—are implemented. The behavioral analysis allows the analysis 
of quantization-induced errors in a given ML model, such as ANNs, utilizing
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•

•

Fig. 15 ExPAN(N)D design methodology for various quantization schemes: FP32, FxP, Posit [15] 

the proposed hardware designs. Using the accelerator design flow, a designer can 
also evaluate the performance–resource trade-offs resulting from the adoption of 
different quantization schemes in an accelerator for a specific layer of the ANN. The 
results from each of the three processes of ExPAN(N)D can be used to constrain 
the search space in the design of an efficient ML model using successive design 
space pruning. In this chapter, we discuss only the Posit-based representation, PoFx 
conversion, and the PoFx-based MAC design for implementing ML models. 

Hardware Design 
Normalized Posit Representation: Trained ML models, such as ANNs, have param-
eters with values between −1 and +1. The standard Posit-based representation 
of these values leads to partial utilization of the available dynamic range. The 
sub-optimal usage of the dynamic range can result in communication and storage 
overheads, as more than the required bits are utilized. Correspondingly, more bits 
than necessary for storing the information are processed during each computation. 
ExPAN(N)D [15] uses normalized Posit, a unique representation built on the Posit 
scheme that maintains its hardware implementation, tapered accuracy, and efficient 
encoding while doubling the number of usable bit-pattern values (x) inside the 
normalized range (−1 ≤ x <  +1). This normalized Posit representation—a logical 
subset of Posits—is customized for quantizing and storing weight normalized 
FP32 values. For instance, Table 3 displays all possible bit patterns and their 
corresponding real values for a N = 4, ES = 0 Posit configuration. The highlighted 
rows in the table display the bit patterns that correspond to normalized numbers. An 
analysis of the normalized representation identifies that the two leading bits of the 
Posit representation are identical; ExPAN(N)D takes advantage of this observation 
to omit the leading Posit bit in the normalized Posit representation.
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Table 3 Posit(N=4, ES=0) 
to normalized Posit 
representation 

Posit s k f Value ExPAN(N)D 

0000 0 −3 0 0 000 
0001 0 −2 0 0.25 001 
0010 0 −1 0 0.5 010 
0011 0 −1 0.5 0.75 011 
0100 0 0 0 1 – 

0101 0 0 0.5 1.5 – 

0110 0 1 0 2 – 

0111 0 2 0 4 – 

1000 1 −3 0 NaR – 

1001 1 2 0 −4 – 

1010 1 1 0 −2 – 

1011 1 0 0.5 −1.5 – 

1100 1 0 0 −1 100 
1101 1 −1 0.5 −0.75 101 
1110 1 −1 0 −0.5 110 
1111 1 −2 0 −0.25 111 

PoFx: Normalized Posit to Fixed-Point Converter: The PoFx conversion hardware 
can efficiently quantize and store weight normalized FP32 values in memory while 
also providing FxP converted values close to the processing components. The PoFx 
enables the efficient execution of ML models with very little conversion overhead. 
Posit representation, Posit(N,  ES), is converted via the PoFx conversion method to 
fixed-point representation, FxP(M, F ), where M is the overall length of the output 
and F is the length of the output’s fraction. Based on the Posits numbers decoding 
scheme, this method successfully transforms a Posit into an FxP number. We 
demonstrate this conversion using the Posit(N = 4, ES  = 0) bit patterns in Table 3. 
The key to understanding this algorithm is to realize that the fraction field recovered 
from the Posit representation is the same as the one required in the FxP output. Once 
the data in the Posit bit pattern are extracted into its components s, k, e, and f ; the  
Posit value can be computed by setting a bit and storing the extracted fraction bits 
to its right, followed by a final bit shift determined by the term 2ES ∗ k + e. The  term  
2ES ∗ k + e can be computed by adding the e value to the bit sequence created by 
appending k to the ES number of zero bits. The Posit representation is given by the 
sign bit and the shifted bit sequence in sign-magnitude FxP format, which is easily 
convertible into a 2’s complement format. 

MAC Unit with PoFx Converter: Any application that can benefit from efficiently 
storing a large number of parameters can leverage the PoFx converter. As a 
particular case for ML models, the authors in [15] incorporate the normalized PoFx 
into MAC units to improve low-precision ANN inference. The schematic of their 
proposed parameterized PoFx converter-basedMACwith a ReLU activation function 
is shown in Fig. 16. The figure shows that the weights/biases are assumed to be 
stored/communicated as Posit(N −1, ES) numbers. These values are then multiplied 
with the M-bit input activation values after being transformed to their equivalent M-
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FxP 

FxPPoFx 

FxP 

FxP(M, F) 
Posit(N-1,ES) 

FxP 

M 

N-1 M 

2M 
3M 3M 

M 

Fig. 16 MAC unit (with ReLU activation) using PoFx converter to convert numbers from Posit 
into fixed-point (FxP) representation 

bit FxP representations. The authors have selected a 3M-bit adder for accumulation 
across all configurations. This choice of adder size was made in order to account 
for the overflows caused by the accumulation of numerous 2M-bit values and thus 
facilitate the evaluation of the proposed architecture. The 3M-bit result for a single 
node in a layer of an ANN is supplied to the activation function after all values 
have been added up for that node. It should be noted that the PoFx-based MAC unit 
enables the designer to express the weights/biases with fewer bits while still being 
able to apply various FxP-based arithmetic optimizations, such as precision scaling, 
approximations, in the processing element. 

3.3 Results 

For ExPAN(N)D framework, the Posit-based arithmetic designs are produced using 
the SmallPosit HDL repository [50]. Verilog HDL is used to implement the PoFx 
converter and the related arithmetic blocks. Xilinx Vivado Design Suite is used 
to characterize the hardware designs. Every design has been implemented on 
the Xilinx Zynq UltraScale+ MPSoC (xczu3eg-sbva484-1-e device). Python and 
TensorFlow [13] are utilized to carry out the behavioral analysis of ANNs. All of 
the proposed methods can be applied to any arbitrary application. However, in the 
presented work, VGG16 network [14] is used as a test application. 

MAC Design Analysis 
The presented PoFx enables the use of high-performance, resource-efficient com-
putation for Posit number systems. We compare 8-bit MAC units based on PoFx 
with the conventional FxP-based MAC units, in order to assess the effectiveness of 
the presented technique and estimate the associated overheads of the PoFx-based 
designs. In addition, we have created two types of designs for a deeper investigation
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PoFx-based MAC: 
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Fig. 17 Relative hardware performance metrics of PoFx-based MAC units with varying values of 
ES and N − 1 for  Posit(N − 1, ES) inputs to 8-bit FxP MAC. The PoFx-based design points with 
worse performance than the FxP-based design are highlighted in red 

of the PoFx-based designs: ToolOpt, which enables the synthesis tool to optimize 
across the constituent blocks (decoder–encoder, multipliers, and adders), and non-
ToolOpt, which performs optimization for the constituent blocks separately. Figure 
17 presents the findings of comparisons made across multiple design metrics for 
different Posit configurations.2 The MAC’s critical path delay and resource usage 
exhibit a steadily increasing trend for both N and ES values. It should be observed 
that the PoFx-based MAC occasionally outperforms the FxP-only MAC in terms 
of critical path delay, power consumption, and LUT utilization. This behavior is 
especially true when ES = 0. The dynamic range of the Posit scheme is restricted 
for ES = 0, and the PoFx does not use the entire dynamic range of the FxP.

2 The data in Fig. 17 refer to the design with the better metrics among the ToolOpt and non-ToolOpt 
versions. 
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After conversion, the small pool of distinct FxP values allows the synthesis tool 
to improve the PoFx-based MACs’ design and performance characteristics. Since 
power measurements are generated based on the bit switches (necessary to get the 
right bit sequence as the output), hence they do not follow a well-defined trend. 
We report worst-case overheads for critical path delay, power dissipation, and LUT 
utilization of 22.8%, 5.0%, and 15.5%, respectively, as compared to the FxP-only 
MAC. 

We compare PoFx-based MAC designs with FxP-only MAC, Posit-only MAC, 
and Posit-based 3-input Fused Multiply Add (FMA) [51] to assess its efficacy 
further. Figure 18 compares the implementation results of these designs for 8-
bit inputs in terms of PDP and utilized LUTs. Posit-only MAC, developed by 
employing a standalone N-bit Posit adder and N-bit Posit multiplier, has much 
higher PDP and LUT consumption due to the extraction and packaging of Posit 
numbers between stages. Despite being optimized to reduce the overheads of the 
encode–decode stages, the Posit-based FMA requires more hardware resources for 
its implementation. It can be observed that the results for PoFx-based MAC designs 
are very similar to those based on FxP while providing a wider range of designs with 
performance trade-offs. Furthermore, the PoFx-based designs generate a more exact 
3N − bit output compared to the Posit-only MAC and Posit-based FMA designs, 
which both produce N-bit outputs. The higher output precision can enable reduced 
inter-layer quantization-induced errors in ANNs as one can analyze and determine
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Table 4 Joint analysis of classification accuracy and MAC hardware characteristics of FxP, Posit, 
and PoFx-based designs 

Relative MAC Metrics 

Configuration N ES Top-1 [%] Top-5 [%] 
PDP [Maximum: 
13616 uW*nS] 

LUTs [Maximum: 
319] 

FxP 16 – 69.66 89.02 0.763 1.000 

8 – 64.71 86.26 0.475 0.282 

Posit (N,ES) 7 1 68.88 88.5 0.578 0.671 

8 1 69.59 89 1.000 0.815 

6 2 66.32 86.99 0.441 0.555 
7 2 68.77 88.54 0.550 0.618 

8 2 69.65 89 0.853 0.837 
7 3 68.02 87.97 0.469 0.567 

8 3 69.43 88.86 0.747 0.712 

PoFx (N-1,ES) 6 1 64.38 85.94 0.432 0.304 
7 1 64.48 86.15 0.451 0.326 

5 2 58.27 81.99 0.417 0.310 

6 2 64.36 85.99 0.388 0.304 
7 2 64.4 86.08 0.478 0.326 

5 3 57.13 81.13 0.446 0.304 
6 3 62.67 84.62 0.418 0.304 
7 3 64.45 86.15 0.413 0.361 

the type of rounding mechanism at the output to maintain as much precision as 
possible before communicating the values to the next stage in the network. 

Application-Level Accuracy Analysis of PoFx-Based Arithmetic 
To demonstrate the impact of different number representation schemes on the output 
accuracy of high-level applications, we used DNNs as a test case application. For 
this work, we classified the ImageNet dataset using a pre-trained VGG16 net-
work [14]. VGG16 network—with thirteen convolutional and three fully connected 
layers—has 138 million trainable parameters, which makes it a good candidate for 
assessing the effectiveness of different number representation systems. For 50,000 
validation images in the ImageNet dataset and utilizing single-precision FP32-based 
trained parameters, the network reports 69.72% and 89.09% as Top-1 and Top-5 
percentage output classification accuracies, respectively. 

Estimating the impact of the presented methods on the network’s classification 
accuracy forms the primary component of the behavioral analysis. To this end, 
Table 4 presents the combined analysis of the ImageNet dataset classification 
accuracy and the related MAC designs for various number representation sys-
tems. In this experiment, the parameters (weights and biases) are encoded using 
multiple 8-bit representation schemes, and the activations have FP32 precision. 
The results also demonstrate the classification accuracy using a 16-bit FxP-based 
quantization approach for comparison. Compared to FP32-based results, the FxP-
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16 and Posit(N = 8, ES  = 2) produce similar classification results by reducing 
the final output accuracy by only 0.06 and 0.07, respectively. The Top-1 and Top-5 
classification accuracies are reduced by 5.01 and 2.83, respectively, using the FxP-
8-based configuration. We take into account the normalized PoFx approach and 
make use of Posit(N-1, ES) configurations of N-bit Posit numbers for the PoFx-based 
schemes. It should be noted that Table 4 includes only Posit and PoFx variants with 
comparable accuracy and with feasible hardware designs. Moreover, the values for 
the PDP and LUT metrics in the table correspond to values relative to the maximum 
value displayed in the top row of the table. 

The configurations of Posit(N = 8, ES  = 1) and FxP-16, respectively, show the 
maximum PDP and LUT utilization values. In Table 4, the bold text highlights 
the greatest and lowest values of the performance metrics for each of the two 
categories—Posit and PoFx. It is evident that Posit(N = 8, ES  = 2), the Posit 
configuration with the best Top-1 accuracy, corresponds to the MAC design with 
the maximum LUT utilization. Similarly, Posit(N = 8, ES  = 1) and Posit(N = 
8, ES  = 2), the Posit configurations with the highest Top-5 accuracies, correspond 
to the highest PDP values. The design with the lowest PDP and LUT utilization 
among Posit-based MACs corresponds to the Posit configuration with the lowest 
accuracy, Posit(N = 6, ES  = 2). 

PoFx-based designs showed comparable correlations as well. Typically, designs 
with higher PDP yield more precise results. Compared to FxP-8-based designs, 
PoFx(N − 1 = 7, ES  = 1) achieves comparable accuracy with reduced PDP (≈ 5%) 
and slightly greater LUT overhead (≈ 15.5%). The same is evident with PoFx 
(N − 1 = 6, ES  = 2), which achieves equivalent accuracy with much smaller PDP 
(≈ 18%) and LUT overheads (≈ 8%). Further, the PoFx-based designs use fewer 
bits to express network characteristics. As a result, each layer of the network’s 
accelerator design may result in lower communication and storage overheads. 

Accelerator-Level Design Analysis 
The benefits of employing PoFx-based arithmetic operators are evident in the 
design of accelerators. As observed in the experiment results, compared to Posit-
and FxP-based accelerators, the suggested PoFx technique significantly reduces 
processing overheads at an insignificant cost to accuracy. We incorporated the 
potential solutions in the design of an accelerator for a fully connected layer 
of a DNN to calculate the system-level effects of employing the proposed PoFx 
approach. The accelerator was created in C++ and synthesized in Xilinx Vivado 
HLS. We used a matrix–vector multiplication to keep the design generic. The 
vector represents a single input activation, and the matrix represents the weights 
of a fully connected layer. We estimated the switching activity using thousand 
input activations to calculate the dynamic power dissipation of each design. The 
implemented accelerator employs the ReLU activation function. LUTRAMs were 
employed to store the local arrays, along with sufficient partitioning to facilitate 
parallel execution obtained by loop unrolling. In order to compare the effect of 
using Posit-based, PoFx-based, and FxP-based MAC units, the following variants 
of the accelerator were considered:
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Fig. 19 Top-5 percentage errors in ImageNet dataset classification using VGG-16 vs. the resource 
utilization of a sample accelerator implementing a fully connected layer. The zoomed-in portion 
shows the detailed comparison of PoFx- and FxP8-based accelerator implementations 

1. Posit: The accelerator stores and computes all operations in Posit(N,  ES) format.  
2. PoFx: The weights are moved from the main memory and stored in local memory 

in normalized PoFx(N − 1, ES) format. During computation, the weights are 
fetched from local memory, converted into FxP(M = 8), and used in the 
computation of the output activation values. 

3. FxP(8): The weights are moved from the main memory to the accelerator and 
stored in the local memory of the accelerator as FxP(M = 8) numbers. The com-
putation stage does not involve any conversions between number representations. 

Figures 19, 20, and 21 plot the ImageNet dataset’s classification accuracy using 
the VGG-16 network for FxP8, Posit, and PoFx, along with various performance 
metrics of an accelerator implementing multiply and accumulate operations with 
these number representation schemes. The accelerators created for generating the 
data in the figures correspond to a weight matrix of size 32 × 10. The plot with 
all the designs is shown on the left of each figure, along with a zoomed-in plot 
for comparison between FxP8-based and PoFx-based designs. The design points 
shown in the figures match the configurations displayed in Table 4 (except Fxp-
16). The vertical axis of the graphs depicts the relative performance metric, and 
the horizontal axis displays the Top-5 classification error (in %) for the ImageNet 
dataset. Along the vertical axis, each performance metric’s maximum values, which
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Fig. 20 Top-5 percentage errors in ImageNet dataset classification using VGG-16 vs. the power 
dissipation of a sample accelerator implementing a fully connected layer 

correspond to 1.00, are displayed in red. The accelerator designs based on PoFx and 
FxP8 exhibit noticeably better performance (lower values on the vertical axis) than 
those based on Posit, as shown throughout Figs. 19, 20, and 21. The penalty of this 
enhanced performance is a slightly increased classification error. 

The effect of using fixed-point operators, with inherently lower computational 
complexity than Posits, on the overall resource usage of the accelerators is depicted 
in Fig. 19. The dominant (Pareto) Posit-based designs in the figure are H(Posit(8,2)) 
and L(Posit(6,2)), with the highest and lowest resource utilization, respectively. 
The figure demonstrates that, in comparison to H and L designs, the FxP8-based 
design exhibits around 2.74% and 0.73% greater error, respectively. However, 
compared to H implementation, the FxP8-based design reduces the overall amount 
of utilized resources by nearly 45.5%. Resource usage for implementing the FxP8-
based design is 1.2% higher than that for the L implementation. The increased use 
of RegFFs by the FxP8-based architecture to store weights is the primary cause for 
the rise in overall utilized resources. When comparing the PoFx(7,1)-based design 
to the FxP8-based designs, in the zoomed-in area of the figure, the PoFx(7,1)-
based design has an additional 0.11% inaccuracy but uses 22.7% fewer resources. 
Similarly, PoFx(6,1)-based design utilizes 30% fewer resources than the FxP8-based 
version while adding 0.32% more error. The various PoFx-based design points 
offer different error–resource trade-offs. The PoFx-based design points’ lower total 
resource usage, compared to the FxP8-based implementation, can be attributed to
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Fig. 21 Top-5 percentage errors in ImageNet dataset classification using VGG-16 vs. the best-
case latency of a sample accelerator implementing a fully connected layer 

their lower storage needs, which also improves resource efficiency by amortizing 
the conversion overheads of each PoFx-based MAC unit. 

With regard to power dissipation, the advantages of employing PoFx-based 
designs are shown in Fig. 20. H (Posit(8,2)) and L (Posit(6,2)) are the dominant 
Posit-based design points with the highest and lowest power dissipations, respec-
tively. The power consumption of the FxP8-based design is nearly 75.71mW and 
37.85mW less than that of the H and L designs, respectively. This reduced power 
dissipation comes at the expense of additional classification errors of 2.74% and 
0.73%, respectively. The PoFx-based designs exhibit even lower power dissipa-
tion. Compared to the FxP8-based implementation, designs utilizing PoFx(7,3), 
PoFx(6,3), and PoFx(5,3) report 4.49mW, 6.33mW, and 7.09mW less power with 
0.11%, 1.64%, and 5.13% more error, respectively. In the accelerator, the increased 
power dissipation of the Posit-based MAC units is made worse by routing power, 
which makes up a sizable portion of the overall power dissipation. 

The best-case3 latency of the accelerator for various Posit and PoFx-based designs 
is shown in Fig. 21. The Pareto-optimal Posit-based designs are shown as H and 
L, based on the highest and lowest accelerator performance metrics, respectively. 
In Fig. 21, Posit(8,1) and Posit(7,1) are the points denoted by the letters H and L,

3 The best-case latency refers to the latency corresponding to the CPD of the design. 
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respectively. The FxP8-based design exhibits better performance than Posit-based 
designs with a minor decrease in classification accuracy (compared to L), similar to 
the results shown in Figs. 19 and 20. Additional design points that offer additional 
accuracy–performance trade-offs are provided by the PoFx-based designs. Because 
of having substantially lower CPD than Posit-based designs, FxP8- and PoFx-based 
systems have lower latency. 

4 Conclusion 

Embedded machine learning models are increasingly used to implement smart 
embedded systems for various application domains such as smart factories, per-
sonalized health care, and autonomous vehicles. However, the high computational 
cost and large memory footprints of the machine learning models are the challenges 
that hinder their ubiquitous deployment in resource-constrained embedded systems. 
To this end, state-of-the-art works exploit the inherent error resilience of machine 
learning algorithms to explore various techniques to optimize these models for 
embedded systems. This chapter presents selected novel approaches that address 
these challenges by focusing on the capabilities of various number representation 
schemes (quantization) and associated efficient arithmetic architectures for them. As 
multiplication is one of the most costly and commonly used operations in machine 
learning algorithms, the chapter mainly focuses on this operation, and it presents 
various architectures for accurate and approximate custom signed multipliers. The 
chapter also discusses the recently proposed number representation scheme Posit, 
which can provide the dynamic range and precision of the floating-point scheme. 
In particular, it introduces a modified Posit representation optimized for machine 
learning algorithms. Compared to the floating-point and fixed-point representations, 
Posit provides better storage efficiency by utilizing fewer bits to represent trained 
parameters of a machine learning model. However, Posit-based arithmetic has a high 
computational cost, and to this end, the chapter presents a Posit to the fixed-point 
converter to enable computationally efficient integer arithmetic for Posits. 

The various architecture described in this chapter are available as open-source 
libraries at https://cfaed.tu-dresden.de/pd-downloads. Related future research may 
involve exploiting the inherent error tolerance of machine learning models across 
multiple degrees of freedom. For instance, in one of our recent works, we have 
proposed a framework to analyze the various approximation knobs available 
at different layers of the computation stack to implement high-performance 
accelerators for error-resilient applications. This framework can be extended to 
include and analyze the various degrees of freedom (approximation knobs) provided 
by the embedded machine learning model. Most state-of-the-art approximate 
computing-related works have focused on the basic arithmetic operators such 
as adders and multipliers. However, the approximation opportunities provided 
by larger operators, such as MAC, can result in more efficient architectures for 
machine learning models. The Posit to fixed-point converter discussed in this

https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
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chapter combines the advantages of two different number representation schemes. 
Similar mixed quantization schemes can be further explored to enable efficient 
implementations of machine learning models on embedded systems. 
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1 Introduction 

The breakthroughs achieved by neural networks to solve challenging problems have 
ushered in a new era of demand for high-performance computing and domain-
specific acceleration. The vast majority of existing AI-enabled applications still 
run on CPUs and GPUs due to the ease of programming and availability of 
high-level frameworks that make it easier to experiment with network parameters 
and deploy these solutions from the cloud to the edge. However, these solutions 
are not as energy-efficient nor do they match the throughput of domain-specific 
accelerators. As networks become more complex, the energy required for doing 
training and inference has resulted in a noticeable shift towards adopting specialized 
accelerators to meet strict latency and energy constraints that are prevalent in both 
edge and cloud deployments. These accelerators, which we call edge accelerators, 
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achieve high performance through parallelism in hundreds of processing elements 
and improve energy efficiency by minimizing data movement and maximizing 
resource utilization through data reuse [1, 2]. In this chapter, we will first provide a 
comprehensive summary of the problems that neural networks have been solving in 
the domains of Computer Vision, Natural Language Processing, Recommendation 
Systems, Networking, the Internet of Things (IoT), and Graph Processing (Fig. 1). 
The two phases of a neural network include training (or learning) and inference 
(or prediction). The number and type of layers are determined by the network 
architecture, whereas training determines the network weights. These weights are 
combined with new input activations to make predictions during inference. We 
will limit our focus to custom edge accelerators for inference and how individual 
layers of each of these different types of neural network can be accelerated in 
an energy-efficient way. In particular, we will focus on mapping neural networks 
on these architectures that attempt to minimize data movement by reusing input 
activations/weights during a particular compute round or across compute rounds. 
Work has to be distributed over multiple compute rounds when the layer cannot fit 
in its entirety onto the available processing elements. The bulk of our discussion 
will be on Convolutional Neural Networks (CNNs) due to their popularity on edge 

Fig. 1 Application domains of deep neural networks at the edge. This image has been designed 
using some icons from Flaticon.com, Freepik.com, and Vecteezy.com
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accelerators. However, instead of discussing at length how to map the standard 
convolution operator itself, for which extensive prior research exists [3, 4], we will 
focus on the mapping of the special layers in a CNN. These layers can become 
the performance bottleneck after the standard convolutions have been accelerated, 
and there exists little insight on how these layers are accelerated in the literature. 
Furthermore, we will discuss the layers in newer lightweight CNNs that attempt to 
reduce the number of operations, such as in DepthWise Convolution, and how these 
might map to an accelerator originally optimized for standard convolutions. This is 
difficult because standard convolution lends itself to channel accumulation, while 
this is not the case for lightweight CNNs, resulting in reduced compute utilization. 
Newer neural networks such as Transformers and Graph Neural Networks present 
even more challenges for edge accelerators in the amount of data that must be 
processed and the shape and size of the input embeddings. The amount and types of 
computations in these emerging networks are non-optimal for edge accelerators, as 
they are currently being implemented, and may lead to newer design paradigms. It is 
not our intention to provide mappings for all the operators that one might encounter 
in different types of Deep Neural Networks (DNNs). In fact, exact mappings are 
specific to the resources found in a DNN accelerator. Instead, we seek to provide 
insights on the challenges that one might encounter during the design mapping 
process and the trade-offs to consider when designing an edge DNN accelerator 
for various types of layer. We will conclude by touching on future trends in neural 
network models and applications that can affect DNN accelerator design going 
forward. 

2 Background 

This section provides an overview of some of the key applications of DNNs in 
embedded machine learning and the various network models that are used in 
these applications. Figure 1 gives an overview of the DNN application domains 
in embedded machine learning. As demonstrated in the figure, the applications of 
DNNs are very diverse, but in this section we will cover some of the most popular 
ones in the domains of Computer Vision (CV), Natural Language Processing (NLP), 
Recommendation Systems (RSs), and Graph Neural Networks (GNNs). We also 
discuss the DNN models used in these domains and their progression over the years. 
Following the application domains and the corresponding models, we examine some 
common layer types used in DNNs today. 

2.1 Computer Vision 

Computer Vision is one of the most powerful and compelling types of Artificial 
Intelligence (AI) that enables computers and other execution platforms to analyze
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visual data from different sources, such as digital images, videos, and other visual 
systems, and extract valuable information, thereby providing recommendations or 
taking decisions based on the information. Unprecedented innovations in Deep 
Learning (DL) and DNNs in the past decade have enabled this field to progress 
leaps and bounds to such an extent that computers can now surpass human-level 
intelligence in multiple vision-related applications. Although the first CV research 
began in the 1950s, advances in DL powered by the exorbitant amount of visual 
data generated every day (. ∼3 billion images shared online every day) coupled with 
significant improvements in hardware and computing resources (GPU, TPU [5], 
NPU [6]), have resulted in exponential growth in CV applications. Today, these 
applications in the real world are ubiquitous in health care, transportation, enter-
tainment, business, and our daily lives. Given the multitude of these applications, it 
is important to understand the underlying DL architectures that power them. In the 
following sections, we discuss three of the most common types of DNN architecture 
used in CV, viz., CNNs, transformers, and multilayer perceptrons (MLPs). 

2.1.1 Convolutional Neural Networks 

Looking back at the 2010s, the renaissance of neural networks was mainly driven 
by CNNs. AlexNet [7] ushered in a new era in CV, and since then many popular 
CNNs have evolved with varying degrees of accuracy, efficiency, and scalability. In 
the past decade, the vision community has made tremendous efforts to improve the 
design of CNNs. Some representative networks that have revolutionized this field 
include VGGNet, InceptionV3, ResNet, MobileNet, EfficientNet, RegNet, U-Net, 
Faster RCNN, EfficientDet, and YOLOv(1-5) [8, 9]. Figure 2 shows the progression 
of the most popular CNNs since 2012 for different CV applications. These networks 
use the convolution layer as the core building block to extract features from images. 
Inherent group equivariance and spatial inductive bias in these models facilitate 
efficient learning of visual features. These features have made CNNs well adapted to 
various CV applications, such as image classification, object detection, and image 
segmentation, as indicated in Fig. 2. We can also infer that, compared to CNNs 
developed in the earlier part of the last decade, relatively newer models such as 
Mask RCNN, PANet, HRNet, EfficientDet, CondInst, and K-Net [9] are capable of 
handling multiple applications, as evident from the figure. In addition, this field 
has witnessed the continuous emergence of innovative applications powered by 
Generative Adversarial Networks (GANs) [10] that use CNNs as generator and 
discriminator models. Examples of some applications include image synthesis, 
image style transfer, image colorization, and image super-resolution, among others. 
In recent years, CNNs have also demonstrated their prowess in various video 
analytics applications such as video classification, continuous object tracking, and 
video prediction. In Table 1, we present a holistic view of traditional and emerging 
CV applications, together with the widely popular CNN architectures used for them.
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Fig. 2 Timeline of development of state-of-the-art convolutional neural networks. CNNs per year 
are arranged based on popularity and citation from publications 

2.1.2 Emerging Deep Learning Architectures for Vision 

Although CNNs have dominated as the mainstream DNN architecture in CV for 
many years, recently two types of architecture, namely Transformers and MLPs, 
have shown promising results similar to CNNs. This has ignited a spark in the 
research community to build better vision models by investing in these architectures. 

Transformer-Based Vision Models As evident in Sect. 2.1.1, CNN models have 
been dominating the CV paradigm with tremendous success. Despite the over-
whelming progress, CNNs lack a global understanding of the image itself and, 
therefore, are not able to model the dependencies between the extracted visual fea-
tures. Any attempt to track long-range dependencies requires large receptive fields, 
which increases the model complexity many times. The attempt to overcome these 
limitations of inductive convolutional biases in CNNs led to the discovery of vision 
transformers. Before its grand debut in this domain, the first Transformer model 
based on a sequence-to-sequence architecture was proposed in [11] for machine 
translation. Since then, multiple pioneering breakthroughs using transformers have 
been made in NLP using state-of-the-art (SOTA) transformer-based models, such 
as BERT (Google), GPTv(1-3) (OpenAI), RoBERTa (Facebook) [9, 12]. These 
innovations sparked great interest in the CV community, leading to the design of 
transformers for visual and multi-modal learning tasks. Specifically, the advent of 
the Vision Transformer (ViT) [13] in 2021 initiated the design of multiple variants 
of transformer models for applications such as image classification, detection, and 
segmentation. Table 2 presents a holistic view of many emerging CV applications 
in addition to these, together with different variants of transformer architectures and
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Table 1 Variants of CNNs for representative CV applications. Model details are available in [9] 

Application Convolutional neural networks (CNNs) 

Application description Model Model type 

Image classification Classify images and 
assign class-specific 
labels 

ResNet, InceptionV3, 
MobileNetV2, 
ResNext, 
EfficientNet, RegNet 

Classification CNNs 

Object detection Combine classification 
and localization to 
detect instances of 
objects of certain class 
in image 

SSD, RetinaNet, 
YOLOv5, FCOS 

One-stage object 
detection models 

Faster RCNN, Mask 
RCNN, Cascade 
RCNN 

Two-stage object 
detection models 

Semantic 
segmentation 

Perform pixel-level 
prediction to cluster 
parts of an image 
together that belong to 
same object class 

DeepLabv3, FCN, 
U-Net++, HTC 

Semantic 
segmentation models 

Mask RCNN, PaNet, 
HRNet, YOLOP 

Instance 
segmentation models 

Medical image 
diagnosis 

Identify abnormalities in 
medical images and 
perform tissue-based 
detection and 
characterization 

U-Net, SegNet, 
ESPNet, CPN 

Medical image 
segmentation models 

Image generation Generate new images by 
learning unsupervised 
representations 

DCGAN, StyleGan Generative 
adversarial networks 
(GANs)SNGAN, SAGAN 

Low-level vision Style transfer, 
super-resolution, 
denoising, colorization 

Pix2Pix, CycleGAN, 
SRGAN, AgileGan 

GANs 

Video understanding Video classification Mask RCNN, DCGN Video-based CNNs 

Object tracking SORT, FairMOT, Re3  

Video object 
segmentation 

PreMVOS, AT-Net 

Video prediction PredNet, Vid2Vid 

Human pose 
estimation 

Pose estimation HRNet, VoxelPose CNNs+GANs 

Face generation DeblurGan, EDVR 

Face deblurring FaceShifter, Pose2Vid 

Face swapping DeepFaceLab 

the corresponding model categories/types. Examples of many popular transformer-
based models are DETR, SwinT, DINO, T2T-ViT, TNT, and Twins [12]. In addition, 
interesting efforts to use the knowledge of CNNs led to a substantial improvement in 
ViT in terms of new designs, better accuracy, and training scalability. Consequently, 
transformers have emerged as a generic vision backbone and have demonstrated 
remarkable performance in a wide variety of new CV applications, as shown in 
Table 2. Deeper dives in these applications and models could be found in [12, 14].
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Table 2 Variants of transformers for different CV applications. Model details are available in [12] 

Transformer-based vision architectures 

Application Application description Model Model type 

Image Classify images and assign ViT, DeiT Uniform-scale vision transformer 

classification class-specific labels PVT, SwinT Multi-scale vision transformer 

Object 
detection 

Combine classification and 
localization and detect 
instances of objects of 
certain class in image 

DETR, Pix2Seq CNN backbone + transformer 
detector 

YOLOS, PVT + 
DETR 

Pure transformer 

Semantic 
segmenta-
tion 

Perform pixel-level 
prediction to cluster parts 
of an image together that 
belong to the same object 
class 

CMSA CNN + cross-modal self-attention 

SETR, SegFormer Pure transformer 

Image 
generation 

Generate new images by 
learning unsupervised 
representation 

TransGAN 
DALL E 

GAN-based transformer 

Low-level 
vision 

Super-resolution, 
denoising, colorization, 
image restoration 

IPT, TTSR, 
ColTran 

Transformer 

Video under-
standing 

Video and language 
modeling 
Video action recognition 
Video instance 
segmentation 

VideoBERT, 
VTN, MaskT 

CNN backbone + transformer 
decoder 

VisTR, VTN, 
MViT, 
TimeSFormer 

ViT-based backone + transformer 
decorder 

3D analysis 3D point cloud 
classification 
3D segmentation 
3D pose reconstruction 

PT Self-attention-based transformer 

PCT, METRO Pure transformer 

Multi-modal 
tasks 

Visual question answering 
Visual commonsense 
reasoning 
Cross-modal retrieval 
Image captioning 

ViLBERT, PEMT, 
VLN, CLIP 

Multi-stream transformer 

VisualBERT, 
UNITER, 
OSCAR, VLP 

Single-stream transformer 

Fundamentally, transformer models comprise the encoder and/or the decoder 
module, which again consist of multi-head attention layers and feedforward layers. 
Here, the attention layer only performs feature aggregation (Fig. 23), while the 
feedforward layer performs feature transformation (Fig. 24), that is, in contrast 
to simultaneous aggregation and transformation in CNNs. Despite exceptional 
performance, the high computational complexity and associated inference cost 
due to the enormous size and operations of these models hinder their widespread 
applicability to NLP and CV applications at the edge or mobile/end-user device. 
In fact, the .O(n2) time and memory cost of self-attention operation is still a major 
challenge in applications such as detection, segmentation, super-resolution, etc. To 
address these challenges, researchers have come up with different approximation
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strategies in attention and lightweight transformer models, such as Hardware-aware-
Transformer (MIT-IBM), MobileViT (Apple), and EdgeFormer (Microsoft) [9]. The 
optimization space in transformers is still untapped; therefore, emerging research 
will hopefully compress and accelerate SOTA transformer models and increase their 
applicability in edge computing devices. Some examples of how to map compute-
intensive transformer layers on SOTA accelerators will be discussed in Sect. 5.1. 

MLP-Based Vision Models Multilayer Perceptrons that originated in the 1980s 
have traditionally been used for simple regression, classification prediction, and, of 
late, machine translation and speech recognition. Although MLPs were considered 
insufficient since they mainly comprised fully connected layers and were inefficient 
due to inherent redundancy, MLP-Mixer (Google, 2021) [15] achieved competitive 
scores on image classification benchmarks, with ImageNet Top-1 accuracy of 
.87.8%. Interestingly, this model does not use the computation-hungry convolution 
layers and attention layers. On the contrary, the constituent layers are (1) per 
patch linear embedding, (2) mixer layers (channel-mixing MLP and token-mixing 
MLP), and (3) the classification head, which contributes to its simplicity. As 
a result, this model performs on-par with the SOTA vision transformer models 
and even outperforms them with respect to throughput and TPU training time. 
From the perspective of AI for resource-constrained embedded devices/IoT, these 
results are very promising and will definitely spark further research in MLP-
based vision models for embedded CV. Furthermore, this breakthrough has led 
prominent research teams to propose other MLP-based models, viz., ResMLP, 
gMLP, RepMLPNet, and ConvMLP [9] in 2021. 

2.2 Natural Language Processing 

Natural Language Processing deals with the transformation of human language into 
a representation that computers can understand and manipulate. A wide range of 
neural network models, including Recurrent Neural Network (RNN), CNN, GAN, 
and Transformers, are used for NLP applications. Figure 3 shows a progression of 
the most popular neural networks since 2014 and shows the type of architectures to 
which they belong. As one can clearly comprehend, lately transformers have been 
the forerunner in this field. Here, we introduce some NLP subdomains where neural 
networks have found applications in embedded machine learning. 

Language Modeling is an important application of NLP that deals with the 
prediction of the upcoming word sequence based on an earlier word sequence. 
Taking into account the importance of this application in various fields, numerous 
neural networks are proposed, as shown in Table 3. Machine Translation is another 
important application of NLP, which involves the computer-based automatic con-
version of one natural language into another language while keeping the meaning of 
the input text intact. Speech recognition enables the conversion of natural language 
to text. Some examples of speech recognition at the edge are Amazon Alexa, Apple
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Fig. 3 Timeline of development of SOTA neural networks used for NLP with corresponding 
model type. Networks per year are ordered according to popularity and citation from publications 

Siri, and Google Assistant. Although the processing of these assistants may be in 
the cloud, these devices utilize speech recognition to process the wake word at 
the edge terminal itself. Text Generation, generating text that is indistinguishable 
from human-written text, is another popular domain of NLP. Some of the most 
widely used text generator networks are based on autoencoders, GANs, and 
transformers. NLP-based Question Answering (QA) is about building systems that 
answer questions posed in natural language and abstaining if the question cannot 
be answered based on the given context. Sentiment Analysis, another important 
application in the age of social media, is a technique that is used to classify the 
polarity of a given language as positive, negative, or neutral. Table 3 shows the 
main types of NN models used for these applications and some of the latest high-
performing models. 

2.3 Deep Learning Based Recommendation Systems 

The goal of recommendation systems (RSs) is to generate personalized recom-
mendations for users based on collected user data. In other words, these systems 
predict the rating or ranking a user might give to a specific item and provide data 
to the user based on these predictions. Emerging innovations in this field have been 
continuously driven by improvements in Internet technology, smart edge devices, 
and e-Commerce. Traditionally, RSs have been based on techniques such as text 
mining, nearest neighbor, clustering, and matrix factorization [16]. However, in 
recent years, RSs have greatly benefited from the progress made in DNNs. Figure 
4 highlights some of the SOTA and representative models from a wide range of 
neural networks such as MLP, Autoencoder, CNN, RNN, RBM, etc., and the most 
common data sources used by the models. As highlighted in the figure, GNNs
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Table 3 Some major application of NLP and types and examples of models used [9] 

Application Common model types Examples of some top models 

Language modeling Transformer BERT, Megatron-LM, Transformer-XL, GPT3 

LSTM LSTM (RMC), LSTM (Hebbian, Cache, 
MbPA), AWD-LSTM-MoS+ATOI, LSTM 

CNN TaLK Convolutions, GCNN-8, TCN, 
Temporal CNN 

Machine translation Transformer Temporal Cycle, Transformer+Rep, T5-11B, 
Transformer + R-Drop 

LSTM GNMT+RL, MoE, RNN Enc-Dec Att, 
Deep-Att 

CNN DynamicConv, TaLK Convolutions, ConvS2S, 
SliceNet 

Multiscale MUSE 

Speech recognition Transformer Conv+Transformer+Wav2vec2.0 + pseudo 
labeling, Wav2vec 2.0 with Libri-Light, 
Transformer+Time reduction+Self knowledge 
distillation 

Conformer Conformer+Wav2vec 2.0 + Noisy training, 
SpeechStew, Conformer 

LSTM ContextNet+SpecAugment-based Noisy 
training, LSTM transducer, tdnn+chain+rnnlm 
rescoring 

CNN Multistream CNN with self-attentive SRU 

Text generation Autoencoders Aggressive VAE, BART, CNN-VAE, SA-VAE 

GAN LeakGAN, partGAN, RelGaN 

Transformer GPT2, T5, UnitLM 

Question answering LSTM SAN, FusionNet, BiDAF 

Transformer LUKE, XLNet, SpanBERT 

DCN DCN+,DCN+Char+CoVe 

Sentiment analysis Transformer SMART-RoBERT, T5-3B, ALBERT 

LSTM Block-sparse LSTM, bmLSTM, byte 
mLSTM7 

CNN CNN Large, CNN, CNN+Logic rules 

MLP gMLP-large 

(covered in Sect. 2.4) have recently found increased usage in these systems due 
to the inherent graph-like structure of the input data [17]. Many of these are used 
by tech giants such as Amazon, Meta (Facebook), Google, Netflix, and Spotify to 
offer personalized AI-based ads to users. The success of DNNs in this field can be 
attributed to the inherent structure of RSs that these models could exploit [18]. In the 
context of user recommendation, this structure could correspond to a sequence of 
click logs or a sequence of specific words used in a sentence. The other property that 
makes DNNs a good fit for RSs is the composite nature that allows multiple neural
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Fig. 4 Timeline of development of SOTA neural network-based Recommendation Systems along 
with common data sources used by these systems 

building blocks to be composed into a large unit that could target the multi-modal 
nature of the data (data that include text, image, audio, video, among others). 

Furthermore, compared to conventional recommendation models that are linear 
(e.g., factorization machines, sparse linear models, etc.), DNNs allow modeling of 
non-linearity in data using non-linear activation functions such as ReLU, sigmoid, 
tanh, etc., and with arbitrary precision by changing the activation combination 
and choices [18]. This property allows DNNs to model complicated patterns and 
behaviors with more precision. In addition, the inherent sequence modeling ability 
in modern DNNs allows them to mine the temporal context of user behavior and, 
hence, provide a better recommendation. Besides, the ability to learn new features 
automatically allows these networks to keep the recommendation up-to-date. These 
DNNs are also capable of processing heterogeneous content, such as video, audio, 
text, image, etc., allowing them to efficiently represent the underlying domain. 

2.4 Graph Neural Networks 

Graph Neural Networks are a set of connectivity-driven models that take advantage 
of the connectivity of structured graph data to learn and model relationships between 
graph nodes. Depending on the structure of the graph, these networks employ an 
iterative process to take input edges, vertex, and graph features (known attributes 
of the underlying application) and transform them into output features (e.g., target 
predictions). Figure 5 shows common GNN application domains, such as CV,



132 A. Raha et al.

Fig. 5 Applications of Graph Neural Networks and corresponding GNN models. Model names 
are underlined and in bold 

NLP, and RSs. In this figure, we have also denoted an example GNN model for 
each application in these domains. Furthermore, GNNs have been explored in the 
context of edge intelligence and IoT [19]. These networks can capture complex 
interactions within multi-modal sensory topology, enabling them to achieve SOTA 
results in application domains such as autonomous vehicles, IoT sensor networks, 
and robotics, as shown in Fig. 5. Other application areas include computer networks, 
science discovery (particle physics and chemistry), combinatorial optimization, and 
computer networks. We refer our readers to [20, 21] for more details on GNN 
models and applications. 

Now that we have covered some key DL-based applications and the correspond-
ing DNN models, we will briefly discuss some of the common layer types used 
in DNNs in Sect. 3. This description will be followed by a section on the efficient 
implementation of these layers in Sect. 4. 

3 Common Layers Across Neural Networks 

An overview of the common deep learning layers along with their operator-level 
description is given in Tables 4 and 5. For better readability, we have classified 
the layers into different categories, such as convolution layer, pooling layer, 
activation layer, normalization layer, combination layer, input/output layer, and fully 
connected layer. Other layers typically found in newer DNNs, such as Transformers 
and GNNs, have been categorized into miscellaneous layers. Note that we only list 
several representative layers rather than providing an exhaustive list. The following 
sections dive deep into the details of the most computationally complex layers 
among these and describe how they are mapped to a SOTA accelerator for inference 
on resource-constrained edge platforms.
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Table 4 Common types of layers used in deep neural networks (1/2) 

Layer Subtypes Layer description Op level description 

Convolution 
layers 

n-D simple conv Apply sliding convolution 
filters to n-D input 

Standard convolution 

n-D grouped conv Apply sliding convolutional 
filters on group of input 
channels 

Group convolution 

1 . × 1 conv Used for dimensionality 
reduction, efficient low 
dimensional embeddings 

1 . × 1 convolution 

n-D dilated/atrous 
conv 

Expands the input by 
inserting holes between 
consecutive kernel elements 

Dilated convolution 

n-D transposed 
conv/deconvolution 

Up-samples n-dimensional 
input feature maps 

Standard convolution 

n-D depthwise conv Apply a single convolutional 
filter for each input channel 

Depthwise 
convolution 

Pointwise conv Apply a 1 . × 1 kernel to  
iterate through every single 
point of the input 

Standard convolution 

n-D depthwise 
separable conv 

Apply depthwise 
convolution and then 
pointwise convolution 

Depthwise 
convolution 

Pooling layers n-D average pool Average pooling operation 
for temporal/spatial/3D data 

Pooling— 
combination/decode 

n-D max pool Max pooling operation for 
temporal/spatial/3D data 

Pooling 

n-D global avg pool Global average pooling 
operation for 
temporal/spatial/3D data 

Pooling 

n-D global max 
pool 

Global max pooling 
operation for 
temporal/spatial/3D data 

Pooling 

Activation 
layers 

ELU Exponential linear unit Activation functions 

Leaky ReLU Leaky version of a rectified 
linear unit 

Activation functions 

PReLU Parametric rectified linear 
unit 

Activation funtions 

ReLU Rectified linear unit 
activation function 

Activation functions 

Thresholded ReLU Thresholded/clipped 
rectified linear unit 

Activation functions 

Swish Swish activation function Activation functions 

Hyperbolic tangent tanh activation function Activation functions

(continued)
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Table 4 (continued) 

Layer Subtypes Layer description Op level description 

Normalization layers Normalization Preprocessing layer 
which normalizes 
continuous features 

Normalization 

Batch 
normalization 

Normalize mini-batch of 
data throughout all 
observations of each 
channel independently 

Batch 
norm—combination 

Layer 
normalization 

Normalize mini-batch of 
data for each observation 
independently 
throughout all channels 

Elementwise other 

Table 5 Common types of layers used in deep neural networks (2/2) 

Layer Subtypes Layer description Op level description 

Combination layers Add Adds a list of inputs 
(from multiple layers) 
elementwise 

Elementwise 
add-aggregation 

Average Averages list of inputs 
elementwise 

Math 
other—aggregation 

Multiply Multiplies list of inputs 
elementwise 

Elementwise 

Subtract Subtracts two inputs 
elementwise 

Elementwise 

Concatenate Concatenates a list of 
inputs along a specified 
dimension 

Other memory 
operation 

Miscellaneous layers Maximum Computes the maximum 
(elementwise) from a list 
of inputs 

Elementwise 

Minimum Computes the minimum 
(elementwise) from a list 
of inputs 

Elementwise 

Reshape Reshapes inputs into the 
given shape 

Memory other 

n-D ZeroPadding Zero-pads layer for n-D 
data in specified 
dimension 

Padding 

Text vectorization Preprocessing layer that 
maps text features to 
integer sequences 

Embedding

(continued)
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Table 5 (continued) 

Layer Subtypes Layer description Op level description 

Embedding Turns positive integers 
(indexes) into dense 
vectors of fixed size 

Other memory 
operation 

Masking Masks a sequence by 
using a mask value to 
skip timesteps 

Elementwise 

Attention/self-attention Dot-product attention 
layer, aka Luong-style 
attention 

Matrix-matrix 

Multi head attention Module for attention 
output from multiple 
self-attention layers 

Matrix-matrix 

Fully connected Dense Multiply the input by a 
weight matrix and then 
adds a bias vector 

Vector to 
matrix/matrix— 
matrix 

Input/output layers Input layer Used as an entry point 
into a network (or a 
graph of layers) 

First layer 

Softmax layer Applies softmax 
function to the input 

Activation 

4 Efficient Implementation of Emerging NN Operators 

Since CNNs make up the majority of edge AI models, most embedded accelerators 
are primarily designed to process convolution layers. Convolution layers consist 
of seven nested loops where an output tensor, OFMAP, is produced from multiple 
kernel feature maps (FMAPs), on one or more input tensors, IFMAP, as shown 
in Fig. 6. The calculation of each point in the output volume is a multiply-and-
accumulate (MAC) operation. As a result, DNN accelerators consist of one or 
more arrays of MAC units in their computation core. An example of a 1 . × 1 
convolution layer is the second convolution layer in ResNet50 where the IFMAP 
is represented by the dimensions IX . = 56, IY . = 56, IC . = 64, and the filters are 
represented by the dimensions FX . = 1, FY . = 1, IC . = 64, OC . = 256. These are 
convolved together (with a batch size of ON . = 1) to generate an OFMAP of 
dimensions OX . = 56, OY . = 56, OC . = 256 with appropriate padding values. 

To understand the basic principles of DNN acceleration, we first provide an IP 
level overview of a typical DNN accelerator, as shown in Fig. 7. There exist multiple 
types of core within this system: (i) a main scalar processor core that coordinates 
data movement between system memory (DRAM) and associated coprocessors, as 
well as issuing the required instructions, (ii) an associated vector DSP processor 
(VDP), and (iii) a neural network (NNP)/DNN accelerator [5]. Custom decoded 
instructions are communicated from the scalar processor to the NNP/VDP via a 
Network-On-Chip (NOC), while separate NOCs communicate the input feature
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Fig. 6 Convolution operation in DNN 
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Fig. 7 High-level schematic of a typical DNN accelerator-based IP 

maps, filter maps, and output feature maps from a tightly coupled on-chip SRAM 
memory that can be accessed by both the VDP and NNP. 

The VDP is required to map DNN operators that either cannot be mapped 
efficiently to the NNP or in the worst case cannot be mapped at all to the 
DNN accelerator. Examples of such operators include various non-linear activation 
functions such as HardSwish, GeLU, HardTanh, etc. Although, considering the 
frequency of these operations, some of the recent DNN accelerators implement these 
non-linear activation functions using specialized programmable look-up tables [22]. 
It is also used to perform a host of pre-processing and post-processing steps on the 
input and output data before they can be executed on the NNP. Usually, the VDP has 
significantly lower throughput compared to the NNP because of a limited number 
of arithmetic units, a lower frequency of operation, and no local RF reuse compared
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Fig. 8 Microarchitecture details of a generic DNN accelerator 

to the NNP. Therefore, based on the exact arithmetic operator required, we always 
try to map any layer first on the NNP, and if that fails, the VDP is used. 

In this chapter, we will focus entirely on the DNN accelerator (NNP), since this 
is the processing core that consumes the most area and power and is responsible 
for the bulk of the computations. Figure 8 shows a high-level diagram of a DNN 
accelerator. The main components of the NNP are the Processing Element Array 
(PEA) that is constructed using an NxM rectangular grid of Processing Elements 
(PE), a local SRAM memory to store and load activations and weights for each 
DNN layer, a tensor distribution network that consists of load and drain datapaths 
to and from the PE array, and finally the control logic that orchestrates the loading, 
computation, partial sum accumulation, and extraction of the output points to and 
from the PEA. 

To understand how convolution layers are efficiently mapped to a DNN accel-
erator, it is useful to make some assumptions about the details of the underlying 
microarchitecture. Without any loss in generality, the processing element array 
(NxM) is assumed to be a square grid of NxN processing elements to simplify 
control logic both inside and outside the PE array. In DNNs, MAC operations are 
used to compute the dot product of many weights and hidden-layer activations to 
produce the output feature maps for the next layer. Each PE is capable of performing 
MAC operations using local datapaths consisting of register files, multipliers, and 
accumulators. Local register files (RF) are discrete or shared storage that contains 
input activations (IF), filter weights (FL), and output points (OF). There can 
be multiple MACs within a PE based on the performance requirements of the 
accelerator and limited by area and power constraints. The PEs have storage for 
multiple IF and FL operands mostly in the input channel (or IC) dimension, along 
which it can perform MAC operations over multiple consecutive clock cycles. All 
PEs work in parallel by sourcing IF and FL operands from their local RFs, as 
shown in Fig. 9 and high performance is achieved through parallelism over hundreds 
of processing elements. There exists a “Load Path” to retrieve the weights and 
activations from SRAM and distribute them to the register files within each PE. 
This type of architecture is efficient for data movement since it can take advantage 
of memory reuse, especially for convolutional neural networks, where a small 
kernel is multiplied by a large input matrix. Data movement has been shown to
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Fig. 9 Convolution operation in PE array 

be a significant contributor to DNN accelerator energy cost. The Load is generally 
implemented as an NOC which allows it to broadcast, multicast, or unicast the 
input data to different processing elements with the goal of reusing as many of the 
inputs as possible depending on the neural network layer. The “Drain Path,” also 
implemented as an NOC, is used to retrieve the output feature maps for each layer, 
running them through post-processing operations such as biasing and rounding, and 
eventually compressing the results before writing them back to memory. A popular 
example of such a spatial architecture in academia is Eyeriss [23, 24] and recent 
designs in the industry include Samsung and MediaTek NPUs [6, 25]. Another 
popular spatial architecture for performing General Matrix-Matrix Multiplication 
(GEMM) is systolic arrays. These provide the benefits of low area footprint and high 
frequency of operation, with a famous example being Google TPU [26]. However, 
systolic arrays are also known to suffer from low utilization issues due to limited 
programmability, inefficient mapping of odd dimensions [27] and are generally 
more power hungry due to limited reuse potential. Our high-level Fig. 8 diagram of 
a DNN accelerator can be easily extended to a systolic array with the modification 
that PEs within a systolic array usually lack local RF memories (or may contain just 
a staging buffer for IF and FL) and a single MAC unit that is responsible for the 
creation and forwarding of partial sums to adjacent PEs. 

In some spatial microarchitectures, it may not be possible to map all the Input 
Channels (ICs) corresponding to an OC to the same PE. This may be the case 
for deeper layers within a DNN where the ICs are much larger compared to IX, 
IY, FX, or FY. In these cases, the partial sums (psums) generated across multiple 
PEs must be accumulated to generate the final OF point, as shown in Fig. 10.
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Fig. 10 Partial sum movement in PE array 

We term this as internal psum accumulation. Due to memory limitations, most 
DNN architectures only allow accumulation over a maximum number of ICs while 
bringing the subsequent sets of ICs later. This requires the ability to spill and fill 
intermediate psums to and from the DNN accelerator. We term this as external psum 
accumulation. Note that most SOTA DNN accelerators support FP16/BF16 as well 
as INT8 precision arithmetic. Some accelerators even support lower precision and 
mixed precision, such as INT4, ternary, and binary, to increase overall throughput. 
However, we will concentrate only on the INT8 precision for DNN inference 
acceleration. 

Apart from creating an efficient DNN accelerator, a well-defined software or 
compiler framework must exist to program the configuration registers, mapping 
different types of DNN operators, and preparing the input data and filter weights in 
the correct format. However, we do not go into the details of the compiler framework 
that is required for various hardware-software co-design mapping and optimization 
techniques, as described in this chapter. 

A popular and efficient technique to improve the performance and reduce the 
energy consumption of DNN accelerators is to exploit the sparsity that is present in 
abundance in DNN networks [24, 28, 29]. Sparsity refers to the existence of zeros 
in the weights and activations in DNNs. Zero-valued activations occur from the 
processing of the IFMAP tensors through activation functions such as ReLU, which 
clamp negative values to zero. Zero-valued weights arise from the structured/un-
structured pruning of weights and the quantization of weights from higher precision 
floating point numbers to narrow fixed point integers (converting FP32/FP16 to 
INT8/4/2/1, etc.). These zero-valued activations and weights do not contribute 
towards the result during multiply-and-accumulate operations, and hence, can be 
skipped during both computation and storage. Toward this end, machine learning 
accelerators can exploit the available sparsity to achieve significant speedup during 
compute, which leads to power savings because the same work is accomplished
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Load Round 
# 

Sparsity Bitmap 
(binary) 

Uncompressed Data reqd. 
in this round 

Compressed Data Segment loaded every 
round 

R0 1000 0010 0001 0100 0d000000 00000c00 0000000b 000a0000 1a0908070605040302010f0e0d0c0b0a 

R1 1010 1000 0100 1100 04000300 02000000 00010000 0f0e0000 2d2c2b2a1a0908070605040302010f0e 

R2 0100 0000 0111 0000 00080000 00000000 00070605 00000000 242322212f2e2d2c2b2a1a0908070605 

R3 0000 0000 0001 0001 00000000 00000000 0000001a 00000009 28272625242322212f2e2d2c2b2a1a09 

16B Sparsity Bitmap (hex): 

Consecu�ve Zero-
Compressed Data (hex): 1a090807 0605040302010f0e 0d0c0b0a 

… 1f1f 0f4f 7aff 0000 0011 4070 a84c 8214 

R0R1R2R3 

Data mapping 
… 22212f2e2d2c2b2a 

2827262522212f2e2d2c2b2a1a0908070605040302010f0e0d0c0b0aCompressed Data: 
1f1f 0f4f 7aff 0000 0011 4070 a84c 8214Bitmap: 

Unused  data Consumed data 

Fig. 11 Zero-value compression (ZVC) of data 

in fewer cycles, as well as reducing the storage and bandwidth requirements for 
the weights and activations via efficient compression schemes. Reducing the total 
amount of data transferred through the memory hierarchy and decreasing the total 
computation time are critical to improving the energy efficiency of the NNP [24, 29]. 
Sparsity acceleration during computation is often bounded by the rate at which 
load data can keep the compute units busy. Previous works have addressed the load 
bottleneck by proposing techniques such as zero-value compression (ZVC) [30] to  
encode sparse weights and activations so that the loading of sparse data does not 
stall the compute. Figure 11 illustrates the ZVC scheme while Fig. 12 demonstrates 
how ZVC is leveraged during the loading of compressed data. Finally, Fig. 13 
shows how sparse data are decompressed and the non-intersecting zeros between 
the weights and activations are extracted as input to the MAC within each PE to 
accelerate computation. Note that the OFMAPs will need to be compressed by the 
drain path, using the same ZVC, before they are written to the SRAM. Sparsity adds 
extra complexity to data loading, computation, and draining, and designers need to 
ensure that it can be enabled without adding too much overhead. 

Before beginning our discussion of mapping different layers of the neural 
network, let us consider some characteristics of those layers that influence the 
utilization of the accelerator. If a layer is small, then only a subset of the compute 
units will be utilized, with no opportunity for further parallelism, since layers in 
a DNN need to be processed layer by layer. If the layer has large X, Y, and IC 
dimensions, then the layer must be split across multiple dimensions into smaller 
chunks of work both spatially across processing elements in the same accelerator (or 
even across multiple instances of the same accelerator) and over time. Irrespective of 
the layer dimensions, the goal is to maximize reuse by sharing weights/activations 
across processing elements in a single compute round and across compute rounds 
without refetching the same data from the memory hierarchy. The IC dimension
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Fig. 12 Loading of compressed data from on-chip memory within each PE 

requires special consideration since it determines various design trade-offs such as 
the size in bytes of the data that are distributed from the tensor distribution unit to 
and from the array, the amount and arrangement of the internal storage in each PE 
(. # of ICs stored per X, Y) and the amount of sparsity decoding done during the 
compute round.
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Fig. 13 Sparsity acceleration within each PE 

It is reasonable to assume that many SOTA edge accelerators distribute ICs 
in multiples of 16, since most layers in modern DNNs contain channels that are 
divisible by this number. This also simplifies the storage and retrieval of ICs from 
memory, since each line in SRAM can also be a multiple of 16. 

However, the complication arises when the number of ICs is not a multiple of 
16, where the packing of these ICs across different X,Y points is not uniform in 
memory and requires storing additional information regarding the start and end of 
each X,Y to allow their retrieval during processing. Furthermore, it also introduces 
additional complexities in the exploitation of sparsity, where the amount of sparsity 
in a given X,Y is determined on the basis of the number of ICs that are zeros. Most 
accelerators that exploit sparsity need to manage the storage and retrieval of sparse 
data, as well as the sparsity bitmap from the memory and their distribution to the PE 
array. While there are several lossless compression techniques to leverage sparsity in 
storage, such as run-length encoding and compressed sparse row/column, we found 
that one of the simplest and most commonly used compression techniques is ZVC, 
as mentioned earlier. In ZVC, for every byte of data, one bit of sparsity bitmap 
is stored. Therefore, a typical SOTA accelerator needs to support sparsity bitmaps 
varying from 2B (16B of ICs) to the maximum size of ICs divided by 8. This implies 
the storage and retrieval of the sparse data and sparsity bitmap needs to be carefully 
considered to avoid over-designing the distribution network. A common solution is 
to always pad your ICs to be a multiple of 16, but this can have an adverse effect on 
the bandwidth of the distribution network and will result in a decrease in the overall 
compute efficiency for these padded layers. 

Another aspect of ICs, specifically for layers that require accumulating over ICs, 
is that most SOTA accelerators implement an adder tree in some form or shape that 
allows them to generate output points by accumulating over ICs. To accomplish this, 
the accelerators have a structural layout of their PEs to allow the output of multiple
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PEs to be accumulated through the adder tree. This design choice limits the mapping 
of layers that do not require IC accumulation (Separable Channels) and results in an 
inefficient mapping of these layers on the accelerator. In the following section, we 
will discuss how to overcome these design choices to perform efficient mapping of 
the different layer types. 

Hyperparameters, such as padding, striding, and dilation, and their configuration 
for the kernel size of interest affect the shape of the output feature map. These 
hyperparameters help solve problems related to maintaining the original size or 
down-sampling or up-sampling the resolution of the output image, which provides 
the accelerator with a means to adjust the dimensionality of the data effectively. 
In order for accelerators to support these hyperparameters, the various stages of 
operation, such as load, compute, and output of an accelerator, need to incorporate 
them. We will cover the design implications of these hyperparameters for the 
individual layers in the following section. 

4.1 Efficient Mapping and Acceleration of Special DNN Layers 

Profiling a DNN shows that the total number of operations (and execution time) 
spent on the convolution layers of DNNs is significantly higher than all other layers 
combined. Therefore, a DNN accelerator is constructed primarily to accelerate the 
convolution layers of a DNN that consists of a series of nested loops of MAC 
operations, as demonstrated in Fig. 6. There exists a plethora of recent research 
and studies on best practices and design considerations for standard convolution 
layers on DNNs [1, 2] that have recently led to the design of several efficient DNN 
accelerators [23, 26, 31] recently. However, most of these accelerators (if not all) are 
inefficient for accelerating non-convolution layers such as the eltwise layer or even 
convolution layers with unique dimensions and characteristics such as the first layer 
of DNNs. We term these layers as special DNN layers. Once we have accelerated 
the standard convolution layers, these special layers become the performance (or 
energy) bottleneck for the entire DNN. Therefore, improving their efficiency can 
lead to significant improvement in network level performance. Here, we list some 
of these special layers and how they can be efficiently implemented on a DNN 
accelerator IP. 

4.1.1 First Layer 

The first layer is the visible/input layer of the network with three channels, where 
the channels correspond to the red, green, and blue components of the input image. 
The first layer is typically mapped to the NNP due to the large number of operations 
involved. Consider the first layer of the ResNet50 network; it has an activation layer 
(X, Y, IC) of dimension 224 . × 224 . × 3 and a weight layer (FX, FY, IC, OC) of 
dimension 7 . × 7 . × 3 . × 64 and applies a stride parameter of 2, which results in the
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output layer of dimension 112 . × 112 . × 64. The number of operations required to 
compute this layer is 118,013,952. Due to the large number of operations, if this 
layer is not efficiently mapped onto the accelerator, it will have an adverse effect on 
the overall network-level performance. 

Design Consideration The two main characteristics of the first layer that affect its 
mapping on the NNP are the limited number of ICs and the channel-major layout of 
the data in memory due to the sources from which the data are captured. For NNPs 
that are typically built for IC accumulation, a smaller number of ICs will result in 
a drop in the number of MACs that are engaged for the first-layer processing. This 
aspect can be improved if the NNP has some flexibility in prioritizing either the 
larger X or Y dimensions of the activation or the higher FX or FY dimension of the 
filter over the ICs. The channel-major layout brings in additional complexity during 
the distribution of the input data, where there needs to be an agent that is aware of 
the first-layer layout in memory to perform an efficient load on the PE array. This 
load costs an additional area, and then the data needs to be repackaged in a way 
that it can be fed to a typical NNP. Performing these additional optimizations on 
the NNP to accelerate dimensions other than the ICs together with a specialized 
load can improve the efficient mapping of the first layer. The first layer is typically 
processed as dense due to the inability to introduce sparsity from the small number 
of ICs and therefore the load part of the distribution network needs to be provisioned 
for sufficient bandwidth so that it does not become the bottleneck for the network. 
Software / compiler can be used to transpose the tensor data with padded ICs to 
simplify the load considerations. 

4.1.2 Eltwise Layer 

Elementwise (eltwise) operations are deployed in various popular DNNs such as 
Residual Networks (ResNets), as well as Transformers and LSTMs. For example, 
in ResNets, the addition operation is the underlying eltwise operation that occurs 
between two tensors, which are output activations from two convolution layers, one 
earlier and another later in sequence. The elementwise summation between the two 
input tensors creates an output tensor with the same dimensions as that of the two 
input tensors. A second type of elementwise operation involves multiplying two 
tensors elementwise and this operator is mostly required for LSTM and transformer-
based NNs. 

Design Consideration The default option to map these eltwise operations is the 
VDP (Fig. 7), but this will result in significantly lower throughput compared to the 
VDP. On the other hand, the presence of MAC operators within the DNN PE array 
provides us with an inherent advantage of mapping these eltwise layers due to the 
existence of both addition and multiplication operations. However, we still need to 
ensure that we can bypass the multiplier and adder operators of the MAC during 
the add-eltwise and mult-eltwise, respectively, using multiplexers within the PE. 
For existing DNN accelerators that have dedicated data load paths for activations
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Fig. 14 Eltwise operation within a PE 

and weights, an efficient way to perform eltwise is by loading the two tensors 
sequentially one after another within a PE using the activation load path. As part 
of this scheme, the weights are set to 1 so that we can bypass the multiplier and 
load the first tensor as it is in the accumulator. When the second tensor is loaded, 
we need to ensure that it uses either the MAC adder or the multiplier along with the 
loaded value to generate the final value. This can enable eltwise operation within an 
existing DNN accelerator with minimum overhead, as depicted in Fig. 14. 

4.1.3 Fully Connected Layers 

From an implementation point of view, fully connected (FC) layers can be assumed 
to be a special type of DNN convolution layer in which the IX, IY, FX, FY 
dimensions can be assumed to be set to 1. These densely connected linear layers 
usually form the last layer of a DNN and connect every input neuron to every 
output neuron. The output points are created by multiplying the input vector by 
a set of 2D weights. Due to the lack of IX, IY, FX, and FY dimensions, one cannot 
exploit any kind of data reuse for fully connected layers, resulting in bandwidth-
limited execution of these layers in a DNN accelerator. Due to the streaming nature 
of input activations in FC layers, these layers can frequently be load-bound (from 
the weight side) or drain-bound (for output points). A secondary issue for fully 
connected layers can be the underutilization of available total MACs, which can 
be attributed to a fixed way of distributing the overall convolution work on the PE 
array. For example, some DNN accelerators split the total convolution work along 
the OX or OY dimensions, while the weights are multicast to these PEs. There will 
be considerable underutilization of MACs for such types of DNN accelerators due 
to non-existence of IX and IY dimensions for FC layers. A similar issue will arise 
if the fixed reuse pattern occurs along the FX, FY dimensions. 

Design Consideration One way to improve the efficiency of FC layers is by 
splitting the convolution work along the IC and OC dimensions while allocating 
higher weight load and activation drain bandwidth. However, IC partitioning
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Fig. 15 Maxpool operation within a PE 

requires additional logic like the presence of an adder tree to sum partial sums across 
the PEs, while the bandwidth increase also results in a significant area overhead. 
Note that the sparsity usually makes this bandwidth problem even worse. Since the 
FC layers usually occur at the end of a DNN, one alternative will be to execute 
them on the VDP which will free up the NNP for processing the next set of inputs. 
In general, VDP has fewer PEs that but that will usually be enough for allocated 
memory bandwidth. 

4.1.4 Maxpool/Average Pool 

The pooling operation reduces an NxN spatial window to generate a single point. A 
pool layer (maxpool or average pool) slides an N . × N spatial pool window along 
the IX and IY dimensions of the input tensor to create a smaller output window (by 
a factor of N2) per channel. This operation occurs only on the activations and does 
not involve any weights. 

Design Consideration For implementation purposes, the pooling layer can be 
assumed to be almost similar to a depthwise layer, with the only difference being 
the reduction operation. For maxpool and average pool, the reduction operations 
are implemented using comparators and adders instead of a MAC based reduction 
for depthwise layers. We explain the inefficiencies of the implementation of a 
depthwise layer in Sect. 4.2.1 and also propose various architectural optimizations 
to improve its efficiency. All these optimizations are also valid for the pool layers. 
From a hardware perspective, the only additional component required to perform 
the maxpool operation is a comparator operator, as depicted in Fig. 15.
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4.1.5 Activation Functions 

Activation functions are used in DNNs to evaluate the output of a node. Depending 
on the choice of the activation function, the output value usually falls within a fixed 
range (e.g., .[0, 1] or .[−1, 1]). Hyperbolic Tangent (Tanh), Sigmoid, ReLU, and 
Swish are some of the activation functions that are popularly used. To implement an 
activation function in the hardware, various approximation methods are used, such 
as direct computation [32], piecewise linear approximation (PWL) [33], or look-up 
table (LUT) [34] or a combination of all these methods [35]. Usually, the activation 
function for a particular DNN is fixed. However, it may change from one DNN to 
another. 

Design Consideration In order to support multiple activation functions in the 
hardware, we need to provision area and logic for each one of them in the hardware. 
We can potentially enable this in the VDP as it has a limited number of processing 
elements. Consequently, this requires the extraction of the output of the convolution 
to local shared memory, which incurs significant memory overhead. One way to 
eliminate this overhead is by fusing the activation layer with the convolution layer, 
where we can apply the activation function immediately after the convolution takes 
place before it is drained out to the shared memory. This can be implemented easily 
for hardware-amenable (linear) activation functions such as ReLU with minimal 
area overhead. The ReLU function can be integrated within the post-processing unit 
(PPE) of the accelerator before it is drained out. However, integrating non-linear 
activation functions that require a combination of LUTs and interpolation functions 
come with a significant area overhead. A possible efficient implementation will be 
to select a limited number of the most popular activation functions and integrate 
them within the PPE. The remaining ones can be mapped to the VDP. 

4.2 Efficient Mapping and Acceleration of Layers in New 
Neural Networks 

Similarly to the special layers of existing networks, current SOTA DNNs constitute 
multiple new types of layer with varying characteristics that may not be effi-
ciently accelerated on a DNN accelerator without any optimization. The following 
subsections describe some of these layers and potential techniques for efficiently 
implementing them on existing DNN accelerators. 

4.2.1 Channel Separable Depthwise Convolution Layers 

In the case of standard convolution, a three-dimensional volume, representing 
a kernel or a filter, is slid across the input activation tensor. Subsequently, the 
activation and filter volumes (or tensors) are convolved to combine all the input



148 A. Raha et al.

0   0   00   0   0 

3 

3 
3 

0   0   0 

3 

3 
3 

0   0   0 

3 

3 
3 

0   0   0 
0   0   0 
0   0   0 

0   0   0 
0   0   0 
0   0   0 

DC0 DC1 DC2 

DC0 
DC1 

DC2 

Fig. 16 Depthwise operation 

channels to produce the output feature map. Multiple filters produce multiple output 
channels in the output feature map. In Depthwise Convolution (DWC), a three-
dimensional volume representing a kernel or filter is still slid across the input tensor 
(Fig. 16). However, individual input channels are not combined, with multiplying 
and accumulations occurring only within a channel in the FX-FY directions, as 
shown in Fig. 17b (depthwise mode). This constraint substantially reduces the MAC 
utilization in almost all accelerator designs, since they handle DWC the same as 
standard convolution on the same hardware (Fig. 17a). The channel-combining step 
is done instead in the next layer using a 1 . × 1 point-wise convolution to produce the 
output feature map. As before, multiple filters produce multiple output channels in 
the output feature map. 

Design Consideration One obvious way to improve utilization is to use dedicated 
hardware for DWC but that has a prohibitively large silicon area and leakage power. 
Such a use of silicon real estate, extra leakage power, and the associated difficulties 
of distributing data to multiple processing arrays precludes such a solution for 
many Edge AI accelerators. Comparatively, a more desirable alternative would 
be to execute DWC on hardware optimized for standard convolution, but then it 
will only use a small fraction of the available MACs during DWC, and hence 
performance will suffer. All MACs that would normally operate on ICs in each 
cycle during standard convolution but cannot be used during DWC are marked with 
“0” in Figs. 16 and 17a. The percentage of underutilized MACs will continue to 
rise as the process nodes advance from one generation to the next due to memories 
and wires not scaling nearly as well as logic. It makes sense for future designs to
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Fig. 17 Depthwise operation within a PE: (a) Depthwise operation performed using a conven-
tional input channel (z-major) accumulating MAC; (b) Difference in accumulation pattern between 
conventional Z-major convolution mode and depthwise mode 

increase the number of MACs since logic is “relatively free.” However, if the MACs 
cannot be properly utilized for Edge AI workloads, then adding more of them does 
not make sense. Furthermore, many weights and activations need to be read from 
external memory, since it will not be possible to reuse the input activation data 
when performing the DWC. This will result in large amounts of data movement 
from external memory to local storage on PEs, causing high-power dissipation. In a 
standard AI accelerator, the number of activations that must be reloaded to process 
a typical 3 . × 3-s1 DWC kernel is .∼ 5x in the activations if one were to look at the 
halo regions alone between successive rounds of DWC. 

Significant improvement of DWC efficiency in DNN accelerators that are 
originally optimized for standard convolutions can be achieved via a combination 
of three techniques: (1) improved reuse of activations by multicast/broadcast of 
fetched data between PEs and sliding window multiplexing within a PE, while 
retaining the standard convolution mode of data delivery to the PEs, (2) ability 
to process multiple output points within a single PE, and (3) combination of 
internal and external adder tree hardware to perform reduction in the XY dimension 
(as opposed to the conventional Z dimension reduction in standard convolution). 
Each of the novel techniques can be controlled by means of software-programmed 
configuration registers, allowing our optimization to be effective for a wide range of 
layer dimensions. 

A generic high-level architectural diagram of a typical AI accelerator running 
DWC is shown in Fig. 17a which basically accumulates in the IC (or Z) dimension 
as shown in Fig. 17b. In the figure, we use the notation DC to denote individual 
depthwise channels where the input channel is the same as the output channel.
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Fig. 18 Proposed efficient depthwise operation in a Z-major based PE array. The depthwise 
accumulation grid (columns and rows) is partitioned both within and across multiple PEs. This 
figure shows the use of both internal and external (to the PE) partial sum adder trees for adding the 
partial sums generated within and across PEs to generate the final output point 

DC0, DC1, DC2 denote the depthwise channels 0, 1, 2, respectively. Putting the 
optimizations 1, 2, and 3 together, we arrive at the final proposed DNN architecture 
for improved DWC efficiency as shown in Fig. 18. For  a 3  . × 3 kernel, the filter 
rows are split between PE0, PE1, and PE2, while a single row is split between 
the subbanks within a single PE. The internal adder tree within the PE is used 
for performing intra-row-wise accumulation of the partial sums for each of the 16 
DC, generating 16 output partial sum points. The external adder tree is used for 
accumulating the inter-row-wise partial sums of the 3 rows of the 3 . × 3 kernel 
from PE0, PE1, and PE2 to generate the final output point. Yellow, red, and green 
are used to denote the input channel . = 0, 1, 2, respectively, in the DC direction 
in Fig. 17 and 18. The gray boxes denoting 0, 1, 2, 3, 4, 5, 6, 7, 8 indicate the 
position in the 3 . × 3 kernel that is contributing to the partial sum (row0 is 0, 1, 2, 
row1 is 3, 4, 5 and row2 is 6, 7, 8, respectively) within a subbank of the individual 
PE. Note that data reuse occurs across different IF RF subbanks (both within or 
across adjacent PEs) that can eliminate redundant loads of data already available 
inside using multiplexers within or across PE to reuse data for subsequent rounds 
of DWC operation with an adjacent window of activations. This reuse of IF data 
is demonstrated in Fig. 19. Note that this inherently requires the filter points to be 
stationary within the PEs, enhancing filter reuse.
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the sliding filter window (shown in the last (proposed) row) allows the elimination of the load of 
redundant activation data resulting in memory and compute savings 

4.2.2 Group Convolution Layers 

The concept of group convolutions was introduced in AlexNet [36, 37] to distribute 
the work over multiple GPUs as a means of introducing model parallelism. 
However, later with models such as ResNeXt, it was shown to improve classification 
accuracy. Consider a standard convolution with input channels and output channels; 
then the output feature map is produced when each of the filters is convolved with 
all the ICs to produce a single channel filter output and all outputs are concatenated. 
The total cost associated with a standard convolution is IC * OC * FX * FY. Now, 
let us consider that the filters are divided into two groups, where the first group of 
filters (g0) are convolved with the first IC/2 channels of the input and the other half 
of the filters (g1) are convolved with the second IC/2 channels of the input. The 
overall cost associated is now (g0 * IC/2 * FX * FY) + (g1 * IC/2 * FX * FY), 
which is half that of a standard convolution. This is a grouped convolution with a 
group size of 2. The total savings is typically a factor of the number of groups in a 
grouped convolution. 

Design Considerations From the description, the group convolution can be paral-
lelized, which allows splitting each group within a group convolution as a separate 
task and running them in parallel on multiple instances of the NNP on the AI 
accelerator. Since each group is just a smaller convolution, no specialized hardware 
is required to perform the convolution. The complexity arises when the output of 
the individual groups needs to be concatenated to produce the complete output 
for the next layer. If the different groups are run on the same NNP over time, 
then it simplifies the concatenation if the NNP has a continuous/back-2-back mode 
of operation, where it is told that is operating on tasks that are parts of a single
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tensor. If the groups are run on multiple NNPs, then their results are stored at 
different locations in the on-chip memory. Then an agent must perform a gather 
task to concatenate the outputs of each group to create the input for the next layer. 
Typically, group convolutions are processed as dense, since with sparsity the zeros 
are introduced along the input channels. Splitting the input channels and the sparsity 
bitmap into groups would require specialized hardware to decompress the sparse 
data to correctly identify the boundaries of each group and their corresponding 
bitmap. 

4.2.3 Transposed Convolution/Deconvolution Layers 

The intuition behind transposed convolution is to go in the opposite direction 
of a normal convolution, where we upsample the input feature map to a desired 
output feature map using some learnable parameters [38]. They are typically used 
in super-resolution networks to upscale the input image to a higher resolution and 
for semantic segmentation to decompress the abstract representation into a domain 
different from the input RGB input image. Consider the transposed convolution of 
a 2  . × 2 input feature map with a 3 . × 3 filter to generate a 5 . × 5 output feature 
map, as shown in Fig. 20. The transposed convolution can be performed using 
normal convolution if the input feature map is expanded as shown in the figure. 
The expansion is done by padding the input tensor with zeros, and the number of 
zeros inserted would be equal to the stride of the normal convolution that was in the 
forward direction. 

Design Considerations Most NNPs have the ability to pad the input tensor around 
the edges (left, right, top, and bottom). However, padding between the input 
coordinates requires additional support. The padding can be done during the output 
of the previous layer by packing the output with the padded zeros in the right 
locations, or it can be done as part of the input load, where the added specialized 

Fig. 20 Transposed convolution done using normal convolution
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support inserts the zeros into the input data when it is on its way to the PE array 
from the memory as part of the distribution network. The second option will save 
memory storage and bandwidth, but will require additional hardware capable of 
inserting zeros into exact tensor coordinate locations to create an expanded tensor, 
as shown by the 7 . × 7 padded tensor in Fig. 20 in yellow. Sparsity can be exploited 
to indicate which coordinates have valid data and which ones are padded with zeros. 
Note that in this scenario, sparsity is used to indicate which X,Y coordinates are 
sparse by marking all ICs for this coordinate as zeros. 

4.2.4 Dilated Convolution/Atrous Convolution Layers 

Dilated convolution is a technique to expand the filter input by inserting holes 
(dilation factor) between consecutive elements as a means to skip pixels and 
cover a larger area of the input. Alternate solutions such as pooling and/or strided 
convolutions reduce the resolution. Dilated convolution is used to exponentially 
expand the receptive view of the network without loss of resolution and maintaining 
the same computation and memory cost. It is a simple and effective way to detect 
fine details by processing inputs at higher resolution and utilizes the broader view 
of inputs to capture more contextual information with faster run times and fewer 
parameters [38]. It is typically used in semantic segmentation and to convert text to 
audio (WaveNet). Let us look at a 3 . × 3 conv filter with dilation factors of 1, 2, and 
3 as shown in Fig. 21. 

Design Considerations These layers are typically mapped onto the NNP of the 
AI accelerator, but if the NNP tries to perform the convolution with the dilation, 
then there will be a drop in throughput due to the extra computation performed 
for the dilated coordinates. Furthermore, software intervention would be required 
to rearrange the filter layout in memory. Therefore, the goal should be to map this 
layer onto the NNP and perform a normal convolution without dilation. Another 
approach would be to break the tensor into a series of smaller 1 . × 1 convolutions 
and compute the results through a continuous mode of operation on the NNP, but 
depending on the filter size, there can be a large number of tasks to complete for 

Fig. 21 3 . × 3 convolution filter with varying dilation factors
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the entire tensor. A third approach is to enable a strided load from memory, which 
will skip the dilated coordinates during load and compute. Similarly to transposed 
convolution, sparsity can be exploited to indicate which coordinates have valid data 
and which ones are dilated. Note that the dilation factor value can vary from 1 to 32, 
which for larger filter sizes can cause a huge expansion of the filter, and therefore 
implementation constraints should be applied to NNP for the maximum supported 
dilation factor. 

5 Efficient Mapping and Acceleration of Layers in Emerging 
Neural Networks 

Now that we have looked at efficient mapping of some important NN operators, let 
us dive into efficient implementation of some important emerging neural networks 
such as Transformers and Graph Neural Networks (GNNs). 

5.1 Transformers 

Transformers were first introduced for sequence-to-sequence language transla-
tion [11] and have become one of the most important network architectures in 
Deep Learning. Within the context of NLP, traditionally LSTMs and RNNs were 
restricted to processing the tokens in sequential order, one word at a time, making 
them slow and unable to capture long-term dependencies between words that 
are spaced far apart. The self-attention mechanism in transformers, on the other 
hand, processes all words in the sentence at once, with each word attending to 
all the other words, as any of these can modify its meaning. A diagram of the 
vanilla transformer [11] is shown in Fig. 22. SOTA NLP networks extend the 
vanilla transformer by using i) stacks of encoders only such as BERT [39] for  
classification or sequence labeling problems, or ii) stacks of decoders only such 
as GPT-2 [40]/GPT-3 [41] for sequence generation, such as language modeling, or 
iii) multiple encoders/decoders such as T5 [42] for sequence-to-sequence modeling. 
Even more recently, Vision Transformers (as discussed in Sect. 2.1.2) have been 
applied to tasks normally associated with CNNs [13] through the idea that an image 
can be broken up into patches and embedding vectors are associated with each patch. 
These embedded patches are fed to the transformer model in the same way as words 
in a sentence. Great strides have also been made to reduce the number of operations 
in ViTs to that of larger CNNs through computing attention hierarchically and 
implementing shifted windows [43]. Irrespective of the transformer model, the two 
most computationally intensive building blocks are the “Multi-Headed Attention” 
and “Point-Wise Feed Forward.” In these two blocks, the embeddings for each token 
require a large amount of memory, and compute in terms of matrix multiplications 
require the most Tera Operations per Second (TOPS).
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Fig. 22 Transformer network architecture 

5.1.1 Input Embedding and Positional Encoding 

Before the transformer encoders implement self-attention, each input word needs to 
index into the entire dictionary of words for the given task followed by every word 
being individually encoded with an embedding vector. During the training process, 
values of the learnable embedding vectors for words that often occur together will 
eventually be made more similar than those that do not occur together. Table 6 shows 
the size of the embedding vectors for different transformer networks .dmodel , as well  
as the dimensions of the feedforward vector .dff and the number of multi-headed 
attention heads. Because, transformers process all the words in parallel, the position 
(relative or absolute) of each word is represented through positional embeddings 
of size .dmodel . The input embedding and positional encoding are merged using an
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Table 6 Transformer model dimensions 

Model 
Embedding vector 
size (.dmodel) 

Feedforward vector 
dimension (. dff) 

# multi-head attention 
heads (h) 

Transformer-base 512 2048 8 

Transformer-big 1024 4096 16 

BERT.BASE 768 3072 12 

BERT.LARGE 1024 4096 16 

GPT-3.Small 768 3072 12 

GPT-3.Large 1536 6144 16 

elementwise addition and provided to the encoder and decoder blocks. For more 
details on how unique position embeddings are obtained using time signals, the 
reader is encouraged to refer to [11]. 

5.1.2 Multi-headed Self-Attention 

All the relevant operations in a typical Multi-Headed Sell-Attention (MHSA) block 
are shown in Fig. 23. In the first transformer encoder, the matrix containing the 
position-aware word embeddings X is input to the MHSA. Note that all MHSA 
heads are fed the same input matrix X. Subsequent encoders take the output matrix 
from the previous encoder into the stack of encoders. The input matrix is multiplied 
by three different weight matrices WQ,WK,WV in a linear layer to produce the 
Query (Q), Key (K), and Value (V) matrices whose contents are loosely based 
on retrieval systems. To help gain insight into the neural network, an example of 
retrieval might start with an online search using a broad query for a type of video. 
The search engine will map the Query against a set of Keys (title, genre, description, 
etc.) associated with candidates in the database and present the best matched Values 
(videos). Let us analyze how general matrix multiplications (GEMMs) might be 
mapped to the NNP of Fig. 8 to produce the Q , K , V matrices. As we proceed 
through the network, we will see that the transformers mainly compute large 
GEMMs of different dimensions. In our example, we limit the maximum sequence 
length of the sentence (s) to 64 and assume an embedding of .dmodel = 1024 and a 
dimension of dim = 64 for the linear layers. GEMMs are 2D convolutions and can 
be thought of as a 7D standard convolution, as shown in Fig. 6, with many of the 
loop parameters set to one. Using the notation of a standard convolution, let us look 
at how the linear layers of an MHSA are mapped to perform matrix multiplication 
(MATMUL). 

.IF (IX ∗ IY ∗ IC) = 1 ∗ 64 ∗ 1024

FL (FX ∗ FY ∗ IC ∗ OC) = 1 ∗ 1 ∗ 1024 ∗ 64

OF (OX ∗ OY ∗ OC) = 1 ∗ 64 ∗ 64
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Fig. 23 Multi-headed self-attention 

To demonstrate a potential mapping, assume an output stationary dataflow [4] 
and a 64 . × 64 PE grid, where each PE contains a MAC and local storage for 32 
IF and FL entries (IC .= 32). Through this particular mapping, all 4096 MACs in 
the array can work together to produce the 4096 output points across 32 compute 
rounds. Note that there is no reuse across the different compute rounds since a 
different set of ICs need to be brought in from the on-chip memory. Each column 
of PEs can share a set of weights (OCs) and each row of PEs can share a set of 
words (OYs). The activation (X) or weight (Q, K, V) reuse is high since each set 
of weights and activations are reused 64 times to compute different output points. 
An important design consideration for transformers is that many MATMUL layers 
have one spatial dimension that is much smaller than the other. Because of this, one 
should consider designing an NNP where multiple PEs can work on different ICs 
simultaneously and pass accumulations between them to maximize the utilization 
of the array. 

All of the (Q, K, V) matrices must be computed across all heads, and the intuition 
for employing multiple heads is that each will learn different features of the sentence 
in parallel. Let us assume that h . = 16 for this example, as seen in the BERT.LARGE . 
Biasing operations to adjust the zero-point values of the matrices occur throughout 
the self-attention step, and these operations are mapped to elementwise operation of 
an Eltwise layer and are accelerated as such. Most SOTA neural networks, including 
transformer models, rely on a fixed layout of the tensor in memory to simplify 
load and drain design and build an efficient data distribution network. Typically 
matrices are stored in either row major or column major, and each element of the 
row/column is stored in the Z-major dimension to exploit sparsity savings seen in
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the ICs. To compute the similarity between the Query and the Key matrix, the Key 
matrix is transposed to align the dimensions with the Q matrix for multiplication. 
This operation requires a rearrangement in the memory or in the load path to move 
data efficiently into the NNP. In fact, it has been shown that on some platforms, 
such as CPU or GPU, MATMUL operation only accounts for 27% of the latency, 
with memory reshaping operations contributing more substantially to the total 
latency [44]. Many cloud accelerators have dedicated transpose/permute units [5] 
to handle this tensor reshaping operation, although these are prohibitive in area and 
power for edge inference. Instead, a power optimization alternative to consider is 
to perform the transpose on the drain path before writing the output results back to 
memory for the next layer. 

Following the similarity matrix which calculated the attention score, there exists 
a scale operation which divides each value in the matrix by the square root of 
the dimensions of the query/key. This is similar to an Eltwise layer and can be 
accelerated as such. The next masking operation is only required when the MHSA 
is used in the transformer decoder to limit how much of the output sentence to attend 
to. This is also an elementwise operation that zeros out tokens that are supposed to 
be seen in the future. Softmax layers which produce output probabilities between 0 
and 1, are difficult to efficiently implement within NNPs and will often be executed 
on the VDP. The final matrix multiplication in a head calculates the scaled dot 
product attention between the (Q.KT and V). The outputs from all the heads are 
then concatenated into a matrix Z of size 64 . × 1024 and passed through a final 
linear layer. This linear layer is another learnable matrix (W. G) of size 1024 . ×
1024 which also has the effect of downsampling the output and reshaping it to 
the proper dimensions. Next, a residual connection combines the original input X 
and the output of the multi-headed attention through another elementwise addition. 
Residual connections were first introduced in [45] and have become extremely 
widespread across many DNNs including transformers. This is because they allow 
faster convergence during training through allowing the easier propagation of 
gradients during the backward pass and also allows DNNs to retain information 
from earlier in the network as deeper networks do not always perform better than 
shallower ones. Finally, before the point-wise feed-forward network, the matrix is 
layer normalized. Layer normalization normalizes the activations across features, 
whereas the more commonly known batch normalization normalizes the activations 
within a feature. In transformers, the feature vectors are each of the indices of 
.dmodel in the token embeddings. There are addition and subtraction operations in 
layer normalization, which can be accelerated on the NNP while the mean, standard 
deviation, and division operations can be executed on the VDP. 

5.1.3 Point-Wise Feed-Forward 

The Position-Wise Feed-Forward Network (PFFN), as shown in Fig. 24, is the other 
main contributor to the arithmetic intensity in transformers. The input Y from the 
MHSA is combined in a first linear layer with critical dimension . dff . This is again  a



Efficient Hardware Acceleration of Emerging Neural Networks 159

Fig. 24 Position-wise feed-forward 

MATMUL operation with the same considerations as those that exist for MATMUL 
in the MHSA. This is then followed by an activation function, whose optimizations 
are discussed in Sect. 4.1.5. Newer transformers, such as BERT [39], use the GeLU 
activation function, while the original vanilla transformer [11] used the ReLU 
activation. This is important to consider when considering sparsity acceleration, as 
GeLU activations do not produce sparsity in the output matrix in the same way as 
ReLU. Another linear layer follows the activation function with critical dimension 
. dff . We see that there are two large GEMMs, where .dff = 4dmodel , with individual 
MATMULs in the PFFN larger than the ones in the MHSA. Larger GEMMs will 
consume more of the total TOPS and runtime but have the added effect of keeping 
the PE array highly utilized. The high utilization is dependent of course, on the load 
path supplying the array with enough data. Smaller GEMMs can often underutilize 
the array because they are fully contained in only a subset of PEs. One simple 
optimization for increased efficiency would be to map MATMULs of different heads 
to different portions of the PE array, as there is no interaction between them. Finally, 
the different biases applied throughout this block and the final layer normalization 
are similar to what occurs in the MHSA. 

5.1.4 Enabling Transformers on the Edge 

Transformers have a huge number of learnable parameters/weights compared 
to most CNNs. For example, ResNet101 [45] has 1.7M parameters while 
BERT.BASE [39] contains 110M parameters and GPT-3.Large contains 760M
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parameters [41], which may limit their deployment in edge inference applications. 
In addition to energy concerns, the inference latency of a transformer can be 
prohibitive for real-time applications. However, much research has been done to 
reduce the number of computations and memory requirements for transformers [12]. 
These mainly focus on reducing the number of operations in self-attention since the 
complexity of that is .s2∗dmodel . Some methods [14] include sparse attention, where 
every token does not attend to all other tokens, as well as query prototyping and 
memory compression, where the complexity of attention is reduced by eliminating 
the number of queries or key-value pairs. These approaches also improve the 
multi-head mechanism, where altering the behavior of different attention heads or 
allowing interaction across heads is allowed. 

5.1.5 Summary of Design Considerations for Transformers 

NNPs that accelerates Transformers can have slightly different design consider-
ations than those that accelerate mainly convolutions. The computation of many 
GEMMs often have high reuse thus alleviating the throughput requirements of the 
load datapath. Furthermore, the matrices to be multiplied often have one spatial 
dimension which is smaller than the other. To maximize array utilization, there 
should be flexibility for mapping different portions of the larger matrix dimension 
across multiple PEs and also a means to accumulate partial sums across them. Some 
GEMMs are small enough in size that they can only fit entirely in a subset of the 
available PEs. It is important for the compiler to be able to map unrelated matrix 
multiplies, i.e., MATMULs of different heads, to different portions of the array 
to maximize utilization. Finally, newer transformer networks often use activation 
functions, such as GeLU, that do not produce sparsity in the output activations 
as much as older activations such as ReLU. This makes the case for adding the 
additional hardware for supporting activation sparsity much harder to justify. 

5.2 Graph Neural Networks 

GNNs are another class of emerging NNs that have found applications in multiple 
domains, as discussed in Sect. 2.4. These networks are employed for learning 
relationships in a graph-structured data. GNNs have become very popular in 
recent years because of their applicability in wide variety of real-world problems. 
From a network architecture perspective, GNNs can be viewed as an evolution 
of transformers. SOTA transformers can be applied to multi-modal application 
domains by adapting the input embedding layers and creating attention vectors 
which are capable of representing multiple modalities. Multi-headed attention layers 
can extract features from the embedded vectors based on the desired objective. In 
GNNs, the entire network architecture depends on the application or input graph, not 
just the input features. The neural network-based compute layers gather and extract



Efficient Hardware Acceleration of Emerging Neural Networks 161

Fig. 25 Graph neural network—execution flow 

information from graph vertex and edges. As we move to deeper layers, the network 
learns information/relations from more distant neighbors. Detailed execution flow 
of GNN layers is described in Sect. 5.2.1. 

The computation pattern in GNNs stretches from sparse and irregular accesses 
during the Aggregation phase to dense and regular compute during the Combination 
phase. In the following sections, we provide detailed categorization of different 
compute phases. We will refer to a stripped-down structure of graph algorithm 
execution (as shown in Fig. 25) for the remaining part of this discussion. 

5.2.1 Compute Phases of GNN 

GNN computation (inference only) is a time evolving execution of the input graph, 
similar to RNNs. The execution is split into multiple layers, broadly classified into 
four categories, viz., Node Embedding, Aggregation, Combination, and Decode. 
Node Embedding and Decode stages are performed only at the start and end of 
the execution, respectively. Aggregation and Combination phases can be iterated 
multiple times depending on the choice of algorithm. Aggregation phase can be 
preceded by an optional sampling layer that creates a subgraph of the neighboring 
nodes. The vertices and edges are updated with the information gathered from 
their neighbors at the end of each layer. We now provide a detailed description of 
the computations and operators used in different GNN execution (inference only) 
layers. 

• Node Embedding—This step is for transforming raw/real-world input data into 
feature vectors/matrices. It can be done either offline or online depending on
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the GNN algorithm. The computation kernels for this step are: vectorization, 
encoding transformations, layout changes, etc. 

• Aggregation—This phase accumulates the features of the neighboring nodes 
(usually one-hop, but can vary depending on the choice of algorithm) and applies 
transformations, such as reduce mean, pool, fully connected NN, over the vertex 
and edge feature vectors. Vertex and Edge aggregation can follow different 
algorithms and node selection schemes. Some algorithms have also explored 
different sampling techniques for improved generalization [46]. 

• Combination—This is the feature extraction phase of the GNN. Neural network 
transformations are applied over aggregated Vertex/Edge feature vectors for 
deriving high-level feature representations/relations. SOTA GNNs have explored 
multiple network architectures ranging from simple fully connected layers to 
CNNs. Recent works have also applied attention networks [47]. 

• Decode/Readout—This is the final block of the GNN computation where 
the high-level features generated by multiple iterations of the Aggregation-
Combination layers and the Graph global features are converted to output data 
or predictions. Compute kernels used in this phase is similar to other DNN 
algorithms and operators, e.g., MLP, Softmax. 

In addition to the layers and operators mentioned above, Concatenation and 
Transpose operators are widely used at subblock boundaries in GNN architectures 
to improve inference accuracy/performance. Based on the layer-wise computations 
and operations described in the section, we have summarized the data access and 
compute patterns of the SOTA GNNs in Table 7. 

5.2.2 Design Considerations 

The Compute and Data access patterns in GNN layers are very diverse. In order to 
match the diversity of compute requirements, many SOTA hardware architectures 
built for GNN computation [48, 49] have taken a hybrid approach to efficiently 
process different GNN layers. Based on the compute characteristics of these layers 

Table 7 GNN compute and data access patterns 

Characteristic Node embedding Aggregation Combination Decode or readout 

Compute kernels Enumeration, FC Vector, V*M NN-MLP, conv, 
attention 

Pool, norm, ReLU, 
. . .  

Access patterns Regular Indirect, 
irregular 

Direct, regular Direct, regular 

Data reusability Low Mid High Low 

Compute pattern – Dynamic, 
irregular 

Static, regular – 

Compute 
intensity 

Low Low High Low 

Exceution bound Memory Memory Compute Memory
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and the capabilities of the DNN accelerator-based IP considered in this work 
(Fig. 7), we believe that the following hardware design will be ideal. 

• Node Embedding—This phase has low data reusability, is more control flow 
dependent and is usually done as part of offline processing/preparation. Therefore, 
this phase is ideal for processing in the CPU. 

• Aggregation—This phase is dominated by sparse and random memory accesses, 
arithmetic and binary operations, followed by reduction or transformations. VDP 
block in our architecture (Fig. 7) is most suitable for the execution of these 
kernels. VDP hardware unit is a vector processor with additional capability to 
compute activation functions and matrix/vector transformations. 

• Combination—As mentioned earlier, depending on the algorithm, different 
neural network topologies can be used in this phase, ranging from convolution to 
attention networks. Also, similarly to CNNs, the layer parameters are fully shared 
among the nodes in the combination phase. Thus, this phase is characterized by 
high compute intensity and high opportunity for data reuse. The NNP compute 
block in our architecture (Fig. 7) can provide the best hardware acceleration and 
efficiency for this computation. The hardware design requirements for compu-
tation of different Neural Network kernels is already covered in the previous 
sections. 

• Decode/Readout—In the final phase, the high-level features extracted after 
multiple iterations of the Aggregation and Combination phase are transformed 
to obtain the final graph representation. Depending on the type of non-linear 
operators, this phase can be mapped to either the NNP or the VDP block. 

5.2.3 GNN Data Flow 

From an execution time perspective, most of the compute time in a GNN execution 
is spent on the Aggregation and Combination stage. Though some GNNs can 
also have a significant node embedding compute, this is not a common case. 
Figure 26 shows the computation flow for the Aggregation and Combination phases 
of a simple bidirectional Graph Network with seven nodes. Specific operators and 
network type are avoided to keep the generality. The node features are assumed to 
be a 1D vector of length equal to the feature size (assuming feature size . = 1024 for 
the purpose of this discussion), henceforth referred to as . hi . 

The Aggregation phase gathers the feature vectors of the immediate neighbors 
of node 1 (number of neighbors . = 3). The one-hop neighbor feature map of node 1 
after this gather stage is of dimension [4, 1024]. Note that the number of neighboring 
nodes on a practical GNN will be much higher. In addition, some GNNs [46] 
employ multi-hop neighbor aggregation strategies, which will lead to an exponential 
increase in the dimension of the feature map. Let us consider two aggregators for the 
gathered feature matrix, a mean and a pooling aggregator. Mean aggregator is a sim-
ple elementwise mean of the vectors representing the feature map of the neighboring 
nodes. On the other hand, the pooling aggregator independently multiplies each of
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Fig. 26 Graph neural network—layer computation 

the neighboring vectors with a fully connected network and applies ReLU, followed 
by an elementwise maxpool operation across neighbor sets. Mathematically, this can 
be expressed in the form: .Aggregate = EltwiseMax(ReLU([4, 1024]T ∗ [4, 4])). 
The output vector dimension will remain the same after elementwise operations i.e., 
[1, 1024]. Two different hardware mapping schemes for the aggregator phase is 
covered in the next subsection. In most of the research literature, this stage also 
includes a concatenation of updated feature vectors and history feature vectors (not 
shown in Fig. 26). Assuming concat layer, the feature vector size will be [1, 2048]. 

These operations have traditionally run on CPU with SIMD capabilities, and 
SOTA caching and prefetching mechanisms. But the additional requirements of 
network specific operators and fine-grained data/control sharing with rest of layer 
computes provides hardware acceleration opportunity by using VDP cores. As 
we observed, for a given layer, each vertex and edge performs an independent 
aggregation of its neighbors, with the possibility of shared neighbors, allowing 
data reuse. Note that the graph sizes are generally large compared to memory in 
a typical edge device. Another interesting characteristic is that the feature vectors in 
GNNs are usually very large and of different lengths. Different graph partitioning-
based acceleration schemes that leverage the above characteristics are described in 
the next section. In the Combination phase, the aggregated node/edge feature (or
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concatenated feature) is multiplied by the layer weight matrix (W (n)), followed 
by the ReLU and Norm operation, as shown in Fig. 26. The Combination phase 
is optionally followed by the pooling operation. Further details of different NN 
compute (MLP, Conv, Attention) mappings to the NNP core are already covered 
in the previous sections. 

As an illustration example, we will provide a description of the Attention Layer 
compute on a GNN, using the basic building blocks described in Sect. 5.1. Consider 
a graph feature map of dimension [number of nodes, number of features] (for the 
graph in Fig. 26, this will be [7, 1024]), where the dimension of the individual 
node feature (. hi) is [1, 1024]. The application of self-attention to the graph nodes 
is equivalent to determining the importance of node “m” for node “n.” As the 
graph nodes are not fully connected, masked attention is performed. One of the 
masking approaches is to determine the self-attention for the immediate neighbors 
of a node. Therefore, the feature map of node 1 will be of dimension [4, 1024]. 
The self-attention of node “i” relative to node “j” is calculated using single-layer 
MLP followed by ReLU activation. Mathematically, this can be expressed in the 
form: .AttentionFactor = ReLU(aT ∗ concat (hi, hj )), where a is the weight 
matrix of MLP. Softmax operation is applied over the output of the MLP layer. 
Attention factors are averaged to calculate the output feature. Single head attention 
described above can be easily extended to multi-headed attention. Each attention 
head independently executes the attention mechanisms, and the output feature is the 
concatenation of all. For the final layer decode, we can use the averaging function 
followed by Softmax to obtain the final output prediction. The readers are advised 
to refer to [47] for training and performance of Graph Attention Networks. From 
a hardware mapping perspective, the creation of node feature maps is performed 
as part of aggregation and mapped to the VDP block. As graph networks are 
very sparse, masked attention is adjacency list-based feature access (not a masking 
mechanism as done in language attention networks). The linear layers of MLP-based 
self-attention are mapped using the matrix multiplication (MATMUL) template of 
the NNP block. 

Tensor Transformations and Memory Layout change operations (e.g., transpose, 
concat) within a compute phase or at phase boundaries account for significant 
execution latency. Both VDP and NNP blocks can perform these transformations 
as part of their write-back stage. Some commercial architectures also use dedicated 
hardware units for these operations. The ordering of aggregation and combination 
phase is an algorithm choice, either of the phases can be done first. Regardless of 
the ordering choice, both layers form a producer-consumer relationship and require 
hardware architecture support for synchronization. Vertex and edge features are 
updated at the end of a layer. Network weights within a layer are shared across 
nodes and can possibly be shared across layers.
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5.2.4 Additional Opportunities for Hardware Acceleration 

GNNs can leverage most of the hardware acceleration schemes described in the 
previous section. In addition, the following patterns can be exploited in the graphs 
to improve performance and efficiency. 

Aggregation Phase Acceleration Section 5.2.3 has established the opportunities 
for the Aggregation phase in graph partitioning algorithms. On the basis of the 
observations, hardware mapping of Vertex/Edge aggregation across VDP cores can 
be done in two different ways, viz., (a) each vertex/edge is mapped to a single 
VDP core, and (b) the feature vector of a node is mapped across VDP cores. If 
we map our graph example from the previous section, mapping option (a) will 
map each of the seven nodes in the graph to a VDP core, whereas mapping option 
(b) will split the 1024 feature vectors between “N” VDP cores, where “N” can be 
an optimization parameter. Option (a) creates an imbalance between the execution 
time of the fast and slow vertices, which becomes more prominent in GNNs as 
the number of neighbors and the sparsity is dynamic, while option (b) solves the 
imbalance problem. 

Sparsity Acceleration We can find the following two types of sparsity in a GNN. 
(a) Zero elements in the input activations and weights are seen in the Combination 
phase of the graph computation. Sparsity acceleration schemes are similar to those 
described in the previous sections. (b) Sparse connections/edges in Adjacency 
Matrix or sub-sampled graph are seen in the Aggregation phase of the graph 
computation. Sparsity can be due to either the input graph topology (static) or 
the sampling schemes employed in the algorithm (dynamic). Static sparsity can 
be handled by the graph partitioning algorithm executed by the compiler. The 
algorithm takes the graph topology as input and decides the grouping of vertex and 
edges for the best data reuse. Dynamic Sparsity, on the other hand, needs custom 
hardware acceleration support to eliminate redundant access of sparse edges. One 
such technique is covered in [48] where the vertex/edge partition boundaries are 
dynamically determined using window sliding and shrinking methods. 

Data Flow In addition to the data reuse opportunities covered in the previous sec-
tions, further data flow optimizations are possible, as the GNN execution time shows 
a large amount of data copy and synchronization overheads. Different buffering and 
caching schemes are explored to accelerate iterations between layers and phase-by-
phase computation within a layer. The control flow and data movement between 
NNP and VDP cores are described in the previous section. 

Because of the dynamic nature and scale of GNNs, software acceleration 
schemes have also been abundantly explored in the research literature. However, 
software acceleration is not covered because it is beyond the scope of this chapter.
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6 Future Trends: Networks and Applications 

In summary, the previous sections provided a comprehensive survey of popular 
DNN architectures and corresponding applications in computer vision, natural 
language processing, recommendation systems, and graph neural networks. Sub-
sequently, the mapping of common layers in these networks to SOTA hardware 
AI accelerators and insights derived on challenges and trade-offs are discussed. 
Now, we illuminate some of the hottest developments in DL-based applications and 
hardware that could very well be the foundation of the next frontier of AI. 

1. Emerging Applications and NNs. The idea of combining CNNs and vision 
transformers has led to the emergence of new generation of Hybrid Vision Mod-
els, which essentially inherit the advantages of these complementary architec-
tures [12]. These models, which either use depthwise convolutions or complete 
CNNs to tokenize an input, have led to better performance in low data regimes 
at reduced computational complexity. Some popular examples include CvT, 
LeViT, CoAtNets, NesT, TransCNN, AlterNet, and Conformer. Recent efforts 
such as ConvMLP have also explored combination of CNNs and MLPs for 
better accuracy vs. computation trade-offs. Interestingly, ConvNeXt (Facebook, 
2022 [50]), built entirely of CNN modules have also demonstrated competitive 
results. On the other hand, Multi-modal AI (MMA) is another emerging field 
that consolidates heterogeneous data from multi-modal sensors and employs 
multiple AI algorithms such as conversational AI, image processing, natural 
language understanding, etc., to learn, reason, and synthesize information. 
Recent efforts in MMA have contributed state-of-the-art Transformer-based 
models catering to diverse workloads [9, 12], e.g., GLIDE, ALIGN, SwinBERT, 
Omnivore, FLAVA, Data2vec, and PerceiverIO among others. Self-Supervised 
Learning (SSL) is another emerging paradigm that enables learning from any 
random data as well as from any unbounded dataset. This makes SSL an ideal 
candidate for IoT applications. For example, Federated Learning that exploits 
decentralized computing power available in a network of edge devices could 
leverage SSL to learn from real-time unlabeled data. Popular examples such 
as SEER (Facebook), BYOL (Google), DINO, EsViT [12] uses transformers 
and exhibits exceptional performance in various CV applications. On the other 
hand, Neuro-Symbolic AI (NeSy AI) models [51] such as NCSCL, NSDR (MIT-
IBM), and NLM (Google) integrate DL techniques with traditional rule-based 
symbolic AI approaches and generates error-resilient, explainable, and scalable 
models. Nevertheless, accelerating the low-operational-intensity computations 
and expensive data movement in these workloads are some of the challenges 
that needs to be addressed in the future. These discussions clearly indicate the 
need for future accelerator designs to cater to emerging NNs for compute and 
energy-efficient edge AI applications. 

2. Approximate Computing and Approximate Systems. Approximate comput-
ing (AxC) is an emerging design paradigm that takes advantage of the inherent 
error resiliency of cutting-edge DNNs and increases the energy efficiency and
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performance of the underlying edge computing systems, including custom 
accelerators, FPGA, GPU, and CPU [52]. In this paradigm, popular algorith-
mic and software approximation strategies include model scaling, early exit 
branch, channel pruning, weight sharing, sparsity prediction, and knowledge 
distillation [2]. Hardware-software co-approximation techniques such as quanti-
zation [53] have increased performance and energy efficiency of DNN inference 
in edge devices by adopting low-precision data types, such as FP16, BF16, 8-bit, 
4-bit (NVIDIA [54]) and 2-bit (IBM [55]), while maintaining accuracy. Based on 
these efforts, we envision almost all DNN accelerators of the future to integrate 
lower precision MAC and have dedicated compiler support for the same. Apart 
from these compute approximations, recent efforts have also explored approx-
imations in memory, sensor, and communication subsystems found in typical 
edge devices [2]. Finally, in their groundbreaking paper, authors [2, 56] have  
applied synergistic approximations across multiple subsystems to provide better 
system-level energy savings compared to individual subsystem approximations 
ushering the era of Approximate Systems (AxS). These studies suggest that 
future designs of DNN-based hardware accelerators should explore AxC and 
AxS to reap their benefits for energy-efficient edge AI applications. 

3. Processing in Memory. The areas of In-memory Computing (IMC) and Near-
memory Computing (NMC) are attracting growing attention among Non-Von 
Neumann computing architectures. This paradigm addresses the performance 
bottlenecks of modern DNN-based hardware accelerators which arises due to 
high data communication latency with off-chip memory (DRAM) and low mem-
ory bandwidth, popularly termed as the “memory wall” [57]. By implementing 
the processing units inside the memory chip, several IMC architectures have 
demonstrated significant performance optimization with orders of magnitude 
better throughput and energy efficiency than traditional Von Neumann architec-
tures. Therefore, these are ideal for mobile and edge devices as well as real-time 
IoT applications. IMC designs developed for traditional memory platforms such 
as DRAM include AMBIT, DRISA, DrAcc, SCOPE, and LAcc [57]. From 
technology availability perspective, SRAM is suitable for IMC and pioneering 
works in SRAM-based IMCs include Neural Cache, IMAC, XNOR-SRAM, 
Conv-RAM, Twin-8T [57, 58]. Apart from these works, research efforts have 
also explored IMCs in novel non-volatile memory architectures such as ReRAM 
(ISSAC, PRIME), STT-MRAM (Binary CNN, MRIMA), and SOT-MRAM 
(IMCE, CMP-PIM) [57]. In fact, IMC technologies also leverage emerging 
approximate computing techniques like quantization of DNNs. However, future 
research should consider the major design challenges in IMC chips including 
analog-to-digital conversion (ADC) bottleneck, memory non-idealities, and 
analog compute variations to reflect similar gains in commercial settings. 

4. Dedicated Hardware For Emerging NNs. To date, research on designing 
computing platforms dedicated for AI applications has mainly concentrated on 
accelerating CNNs. However, the growth of emerging neural network archi-
tectures such as Transformers and GNNs (Sects. 5.1 and 5.2), GANs, RNNs, 
sparse NNs, low-precision NNs, as well as new types of convolution operations
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(Table 4) have very recently led to the design of domain-specific accelerators. 
For example, authors [59] have designed an FPGA-based CNN accelerator for 
depthwise separable convolution that provides optimal balance between speed 
and hardware resource. Another recent work [60] has developed a systolic 
array-based reconfigurable accelerator that employs matrix partitioning, dataflow 
optimizations, and non-linear function optimizations to accelerate transformers. 
Early research on GNN acceleration includes GRIP [61] that uses custom 
compute unit for arithmetic-intensive vertex-centric operations and memory-
intensive edge-centric operations found in GNNs. GNNerator [49] exploits the 
inherent inter-stage parallelism in GNNs and developed a programmable accel-
erator composed of heterogeneous compute engines targeting sparse and dense 
computations in GNNs. These emerging trends lead us to expect further research 
in custom hardware designs specific to various emerging NNs, which could take 
advantage of AxC, AxS, and IMC and facilitate real-time and energy-efficient 
AI applications at the edge. Due to the area impact of additional hardware, this 
is still not seen as a viable solution for many edge devices, however, eventually 
an ensemble of different NN accelerators can soon become a reality with the 
emergence of smaller NN models and even smaller process technology. 
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1 Introduction 

1.1 Overview 

Artificial Intelligence (AI) is considered a prominent solution to process and 
analyze a continuous stream of data in the era of Internet-of-Things (IoT) and 
Big Data, where a large amount of data is generated every day by digital devices. 
Analyzing the generated data and inferring useful information are beneficial for 
improving the users’ productivity and their quality of life [59]. In the last decade, 
the development and research in AI, specifically on Machine Learning (ML), have 
increased exponentially and spread across different fields, covering a wide range 
of applications [34]. The field of ML encompasses several algorithms, and the 
most influential ones in recent years are the brain-inspired ML algorithms, such 
as Artificial Neural Networks (ANNs) [7, 34, 59–61] and Spiking Neural Networks 
(SNNs) [39, 50, 53–55, 57, 58]. Among these algorithms, ANNs have achieved state-
of-the-art performance/accuracy and even surpassed humans’ accuracy through the 
Deep Learning (DL) or Deep Neural Network (DNN) algorithms [7, 61], as shown 
in Fig. 1. Consequently, nowadays, DL has become a de facto algorithm for solving 
many ML-based applications, such as computer vision [27, 42, 69], finance and 
business [15, 65, 66], healthcare [4, 5, 43], and autonomous driving systems (e.g., 
drones and cars) [13, 46]. 
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Fig. 1 Illustrations of (a) Artificial Intelligence development throughout the years, including 
Machine Learning and Deep Learning, and (b) training and inference phases of Deep Learning 
(adapted from [7]) 

Although DL algorithms have achieved a cutting edge performance, they con-
sume enormous memory and computing power/energy due to their memory-
and compute-intensive nature during the training phase (at design time) and the 
inference phase (at run time) [1, 61]. In the training phase, a DNN experiences 
the forward-pass and the backward-pass, while in the inference phase, it only 
experiences a forward-pass. Therefore, the training phase needs a much more 
expensive cost of memory accesses and computational efforts than the inference. 
Recent trends show that many DL applications are moving towards mobile/embed-
ded platforms, such as IoT-Edge and smart cyber-physical system (CPS) devices, 
mainly due to privacy and security reasons [7, 8, 59]. These embedded platforms 
usually employ the DNN models that have been trained at the cloud for performing 
inferences at the edge. However, performing such an inference is challenging since 
the embedded platforms are typically resource- and power/energy-constrained. For 
instance, the ResNet-50 requires more than 95MB of weight memory and more than 
3.8 billion operations to process a single image input [21]. Such a high amount of 
processing is infeasible to be performed by embedded platforms for providing real-
time results. Therefore, it is necessary to provide specialized hardware accelerators 
for efficiently performing DL inference, hence fulfilling the memory and compute 
requirements of different types of DNN models for embedded DL systems. 

1.2 Design Constraints for Embedded DL Systems 

In embedded applications, the resources of hardware platforms (e.g., accelerators) 
are tightly constrained. Embedded accelerators typically have small on-chip memory 
like 100KB–500KB [59, 61] and have to function properly using low operational 
power like within 5W [44, 52, 56, 59]. Moreover, some applications may even pose 
additional constraints such as latency and throughput [59], especially for safety-
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critical applications requiring correct real-time decision like autonomous driving. 
All these constraints make it even more challenging to efficiently run DL inference 
on embedded platforms. For instance, limited memory and power budgets lead to 
limited DNN operations that can be performed at the same time, and consequently, 
this leads to very long latency and very low throughput. 

Previous studies have shown that many DL accelerators incur high energy 
consumption due to DL algorithms’ memory- and compute-intensive nature [2, 36, 
49, 51, 61, 62]. Recent works have identified that the energy consumption of DL 
accelerators is typically dominated by the off-chip memory (i.e., DRAM) [36, 51]. 
For instance, the DRAM operations in the Cambricon-X accelerator incur over 80% 
of the total energy consumption [71]. The reasons are the following: 

• High DRAM access energy: The energy consumption for single DRAM access 
is significantly higher than other DNN operations. For instance, single DRAM 
access incurs about 200x energy consumption of a Multiply-And-Accumulate 
(MAC) operation [10, 61]. 

• A large number of DRAM accesses: The number of DRAM accesses required 
for a single inference is proportional to the number of data that need to be stored 
in and fetched from DRAM, including weights and feature maps (activations) [2, 
49, 51]. Therefore, larger DNN models are likely to require more DRAM accesses 
than the smaller ones, thereby higher energy consumption. 

Therefore, optimizing the DRAM access energy is the key to minimizing the energy 
consumption of DL accelerators, hence enabling efficient embedded DL systems. 

In the following sections of this chapter, we discuss: 

1. In Sect. 2, we provide a brief overview of DL, hardware accelerators, and DRAM 
background. 

2. In Sect. 3, we discuss our design methodology to optimize the DRAM access 
energy for DL accelerators. 

3. In Sect. 4, we discuss the experimental evaluations for our design methodology. 
4. In Sect. 5, we conclude the chapter with a summary. 

2 Preliminaries 

2.1 Deep Learning 

Deep Learning (DL) or Deep Neural Network (DNN) is a computational model 
inspired by biological neural networks and described as a network of interconnected 
neurons. Neurons are the fundamental units in a neural network, and each neuron 
performs a weighted sum of inputs (so-called dot-product operation) [18, 19]. These 
neurons are grouped into layers, encompassing an input layer, multiple hidden 
layers, and an output layer [6]. An input layer receives input signals, which are
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Fig. 2 Illustrations of (a) multi-layer perceptron, and (b) convolutional layer 

then processed by hidden layers. Afterwards, the last layer obtains the result, i.e., 
the output layer. There are several types of DL, such as Multi-Layer Perceptrons 
(MLPs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks 
(RNNs) [34]. In this chapter, we focus on feed-forward neural network models, i.e., 
MLPs and CNNs, due to their widespread use in many ML applications. 

An MLP is composed of multiple fully connected layers. In a fully connected 
layer, each neuron is connected to all neurons in the adjacent layers. An illustration 
of a simple three-layer MLP is shown in Fig. 2a. Meanwhile, a CNN is typically 
composed of convolutional layers and fully connected layers. An illustration of a 
convolutional layer is shown in Fig. 2b. In each convolutional layer, multiple filters 
are convolved with input feature maps to generate output feature maps. The input 
and output feature maps are also called activation maps or simply activations. The  
depth of filters (so-called channel) is the same as the depth of input feature maps. 
Convolution between input feature maps with one filter produces one output feature 
map, hence the total number of output feature maps equals the number of filters. A 
detailed discussion of the CNN operations can be found in [61].
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2.2 Hardware Accelerators for Embedded DL Systems 

To expedite DL inference for embedded applications in an energy-efficient manner, 
many specialized hardware accelerators have been proposed [9, 10, 16, 20, 26, 
33, 38, 47, 63, 67, 71]. All these DL accelerators support specific dataflows while 
providing some unique advantages, and among them, systolic array-based designs 
are considered among the most prominent ones [20, 26, 38, 63]. 

A systolic array-based accelerator has a set of processing elements (PEs), which 
are tightly connected together in a homogeneous network, as shown in Fig. 3a. 
Each PE receives data from its nearest adjacent PEs, performs MAC operation, 
and passes the result and data to the adjacent PEs. In this manner, data reuse 
is exploited, reducing the need for expensive memory accesses and alleviating 
the memory bottleneck. Moreover, the systolic array is inherently suitable for 
performing matrix multiplications, which is the main operation in neural networks. 
For instance, the Tensor Processing Unit (TPU), a DL accelerator developed by 
Google, has a systolic array architecture with 256x256 MAC units (i.e., PEs), and 
achieves 15x-30x faster performance and 30x-80x more efficiency as compared to 
the K80 GPU and the Haswell CPU [26]. The systolic array engine receives data 
from memories designed to meet the requirements of systolic array computations, 
such as latency and throughput, hence avoiding memory bottleneck. In this chapter, 
the typical systolic array-based architecture of DL accelerators is considered, as  
shown in Fig. 3b. 
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DL accelerators (adapted from [51])



180 R. V. W. Putra et al.

Systolic Array Computations Before performing the neural network processing, 
weights are accessed from the weight memory, then loaded and held stationary in 
the PEs, in the manner that the same column of the array is loaded with weights 
from the same neuron or filter. During the processing, the activations are accessed 
from the activation memory and then streamed into the array. At each clock cycle, 
the activations are passed on adjacent PEs from left to right of the array, while the 
partial sums are moved downstream on adjacent PEs from top to bottom of the array. 
The activations across rows are aligned so that each activation reaches a particular 
PE at the same time when its corresponding partial sum also reaches the same PE, 
thereby generating a correct output partial sum. If the number of weights of a filter 
is larger than the number of rows in the array, output partial sums are divided into 
multiple portions. To support this, the accumulators hold the generated partial sums 
when the rest of the partial sums are computed by the array. A further detailed 
description of the architecture can be found in [20, 26, 70]. 

2.3 DRAM Fundamentals 

2.3.1 Organization 

DRAM is widely used as the main memory in modern computing systems, and it is 
organized hierarchically, as shown in Fig. 4. DRAM is accessed through memory 
channel. Each channel has specialized command, address, and data buses [45], 
and can be used for connecting multiple memory modules. Each memory module 
typically contains several DRAM chips, which are grouped into multiple ranks. The  
DRAM chips in the same rank operate in lockstep and parallel [28, 51]. Each chip 
typically contains several banks, and each bank consists of multiple subarrays. In  
each subarray, DRAM cells are organized into multiple rows and columns, whose 
contents can be accessed using sense amplifiers. 

DRAM 

… 
Rank 

Chip Chip 

Channel 

eludo
M

 

Chip 

Bank 
Subarray 

Subarray 

…
 

Subarray 

Ro
w

 D
ec

od
er

 

Row Buffer 

Wordline 

Bitline 

DRAM cell 

Sense amplifier 

Fig. 4 A hierarchical organization of a DRAM (adapted from [28])
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2.3.2 Operations 

If there is a DRAM request, either read or write, a specific DRAM rank will 
respond. Afterwards, each DRAM request is decoded into a specific address of 
DRAM cells. Depending upon the request type (read/write), the contents of DRAM 
cells are accessed and read/written. To do this, the following DRAM operations are 
performed. 

• Activate (ACT): This operation activates a specific row of a DRAM bank, whose 
address is defined in the given command. Afterwards, data bits in the activated 
row are read into the row buffer. 

• Read (RD) or Write (WR): This operation accesses the data bits in the specified 
column of the row buffer. If the RD operation is executed, then the data bits are 
read and brought to DRAM I/O for on-chip computations. Meanwhile, if WR 
operation is executed, then the data bits are written by the given value. 

• Precharge (PRE): To activate a new row, the DRAM bank (with an activated 
row) should be brought back to the precharged state. To do this, PRE operation 
deactivates the row buffer and ensures that data bits from the row buffer are copied 
back to the corresponding activated row. 

The above descriptions indicate that, accessing data that is already in the row 
buffer can be performed fast and efficiently. This condition is known as a row  
buffer hit [11]. Meanwhile, accessing data that is not in the row buffer, incurs higher 
latency and energy consumption than a row buffer hit. If such access happens when 
there is no activated row, then this is known as a row buffer miss, but if it happens 
when there is an activated row, then this is known as a row buffer conflict [11]. A 
row buffer conflict has a longer service time than a row buffer miss, as a row buffer 
conflict must wait to issue a PRE operation, and may also need to wait for an earlier 
request to complete. For a detailed explanation of DRAM fundamentals, we refer to 
DRAM papers [11, 28, 51]. 

3 DRAM Access Optimization for Embedded DL Systems 

3.1 Overview 

Several techniques can be employed for optimizing the DRAM access energy for 
embedded DL systems. These techniques can be categorized into run-time and 
design-time approaches, encompassing software- and hardware-level techniques, 
as shown in Fig. 5. At run  time,  power management techniques, such as clock 
gating, power gating, and Dynamic Voltage and Frequency Scaling (DVFS), can 
be employed to reduce the dynamic power of DRAM [59]. However, these 
techniques need monitoring and decision units to manage the operational power 
properly, thereby requiring sophisticated designs to meet the constraints of the 
embedded applications (e.g., latency, throughput, and energy) [59]. At design time,
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Fig. 5 Techniques for optimizing DRAM access energy for DL-based systems. Detailed descrip-
tions for each technique can be found in [59] 

software- and hardware-level techniques can be employed to reduce the DRAM 
access energy. The software-level techniques include model compression (such as 
pruning [3, 17, 22, 35, 41] and quantization [14, 17, 23, 40]), data partitioning 
and scheduling [36, 51, 62, 67], and DRAM data mapping [31, 49, 51]. Meanwhile, 
the hardware-level techniques include the employment of different DRAM designs, 
such as low latency DRAM [49], high bandwidth DRAM [24, 25, 37, 48], low power 
DRAM [30, 64], and approximate DRAM [31, 52]. 

In this chapter, we discuss our design methodology to optimize the DRAM access 
energy by 1 reducing the DRAM accesses through design space exploration (DSE), 
and judiciously employing low latency DRAM through 2 effective DRAM data 
mapping, and 3 DSE that investigates the energy-delay-product (EDP) of DRAM 
accesses; see Fig. 6. Our design methodology is a generic solution for different DNN 
models and different sizes of DL accelerators (e.g., sizes of memory and systolic 
array), thereby having high applicability for different embedded applications. In the 
following, we discuss the details for each proposed technique. 

3.2 Reduction of DRAM Accesses 

The size of a DNN model is usually larger than the size of on-chip memory in DL 
accelerators [61]. Therefore, to run the inference process on such accelerators, the 
data need to be partitioned into tiles.1 Afterwards, a tile of weights (WGH) and a

1 Tiling technique is widely used in the DL community to partition the DNN data, as it can exploit 
data reuse in convolutional processing [51]. 
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for ( b = 0; b < B; b++ ) {  
for ( x = 0; x < X; x += Tx ) {  

for ( y = 0; y < Y; y += Ty ) {  
for ( z = 0; z < Z; z += Tz ) {  

for ( c = 0; c < C; c += Tc ) {  
// load WGH, IFM, and OFM (par�al sum) 
for ( k = 0; k < K; k++ ) {  

for ( l = 0; l < L; l++ ) {  
for ( xi = x; xi < min(xi+Tx , X); xi++ ) { 

for ( yi = y; yi < min(yi+Ty , Y); yi++ ) { 
for ( zi = z; zi < min(zi+Tz , Z); zi++ ) { 

for ( ci = c; ci < min(ci+Tc , C); ci++ ) { 
OFM [b][xi][yi][zi] += … 
WGH [k][l][ci][zi] * IFM [b][S*xi+k][S*yi+l][ci] }}}}}} 

// store OFM (par�al sum) }}}}} 

Outer loops 

Inner loops

� B: number of samples in a batch.
� S: stride of convolution.
� OFM: height (X), width (Y), depth (Z).

� WGH: height (K), width (L), depth (C).
� Tx , Ty , Tz , and Tc : Tiling factor for X, Y, Z, 

and C, respec�vely. 

Fig. 7 Pseudo-code of the tile-based convolution processing (adapted from studies in [36, 51]) 

tile of input feature maps (IFM) are transferred from DRAM to on-chip memory, 
and used in computations for producing a tile of output feature maps (OFM) at 
one time. This tile-based DNN processing can be represented as convolution loops, 
which can be divided into two parts, i.e., outer and inner loops, as shown in Fig. 7. 
The outer loops represent how the data transfer between off-chip and on-chip parts 
is scheduled, reflecting the DRAM accesses. Meanwhile, the inner loops represent 
how the on-chip computations are performed. However, this tile-based processing 
usually requires redundant accesses for the same data to DRAM, thereby leading to 
high energy consumption. 

To address this issue, recent works have proposed different DSE techniques to 
find data partitioning and scheduling that offer minimum DRAM accesses for DNN
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workloads [36, 62, 67, 68]. These techniques aim at maximizing the on-chip data 
reuse based on the convolution loops in Fig. 7. Work of [67, 68] exploited data 
reuse based on a specific data type (i.e., either WGH, IFM, or OFM) across all 
layers of a network (i.e., so-called fixed scheduling). SmartShuttle [36] extended 
this concept by employing either WGH- or OFM-based scheduling based on the data 
type that has a higher reuse profile in each layer of a network (i.e., so-called adaptive 
scheduling), hence reducing the DRAM accesses than previous works. Meanwhile, 
the work of [62] further extended the concept from SmartShuttle by considering the 
DRAM bus-width to further reduce the DRAM accesses. Although all these works 
have provided some advantages, they do not optimize redundant accesses for the 
overlapping data (as shown in Fig. 8) and do not consider all possible scheduling 
schemes. Therefore, their optimization results are sub-optimal. 

Towards this, we develop a DSE technique to find the effective data partitioning 
and scheduling that lead to minimum DRAM accesses for each layer of a network, 
while considering overlapping data, all possible scheduling schemes, and DRAM 
organization [49, 51], as shown by label 1 in Fig. 6, through the following key 
steps. 

• Define the data partitioning: We define different combinations of data parti-
tioning for different data types (i.e., WGH, IFM, and OFM) in each layer of a 
network, while considering the available on-chip memory. We consider accessing 
a tile of IFM and a tile of WGH from DRAM, then storing them on-chip for 
computations that produce a tile of OFM. The generated OFM are then stored 
back to DRAM. 

• Define the adaptive scheduling: For each combination of data partitioning for all 
data types, we consider different possible scheduling schemes (i.e., WGH-, IFM-
, and OFM-based reuse scheduling) for evaluating the corresponding DRAM 
accesses. When defining the scheduling, we consider avoiding redundant DRAM 
accesses for the respective overlapping data, as shown in Fig. 8. 

• Evaluate the number of DRAM accesses: To quickly explore different combi-
nations of data partitioning and scheduling schemes, we employ the analytical 
model for estimating the number of DRAM accesses, while considering the 
DRAM organization and DRAM data alignment, as presented in Eqs. 1–6. 
Further details on how we map the data in DRAM will be discussed in Sect. 3.3.1. 

Our Analytical Model for Estimating the Number of DRAM Accesses The total 
number of DRAM accesses of an inference (.#DRaccess) is defined as the sum of the 
DRAM accesses from all layers of a network, as shown in Eq. 1. .#DRl

access denotes 
the total number of DRAM accesses in layer-l, and L denotes the number of layers 
in a given network. 

.#DRaccess =
L∑

l=1

#DRl
access (1)
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� S: stride of convolu�on. 

Fig. 8 Illustration of convolution processing showing the overlapped region (adapted from [51]) 

DRAM accesses-per-layer (.#DRl
access) can be defined as the sum of DRAM 

accesses for all data types, as shown in Eq. 2. For each data type, we define its 
DRAM accesses-per-layer (.#accesslx) as the sum of the DRAM accesses-per-tile 
(.#accesstx), as shown in Eq. 3. We consider tile-based accesses since the size of on-
chip memory typically limits the volume of data that can be stored at one time for 
on-chip computations. 

. #DRl
access = #accesslWGH + #accesslIFM + #accesslOFM (2) 

. #accesslx =
Tx∑

t=1

#accesstx with x ∈ {WGH, IFM,OFM} (3) 

We observe that the WGH and IFM only need DRAM read, hence we estimate their
number of DRAM accesses-per-tile using Eqs. 4–5. Meanwhile, the OFM may have 
DRAM read and write. These two access types (read and write) happen when a 
tile of partial sums in on-chip memory still needs to be calculated with other partial 
sums to produce the final OFM, but they cannot be accumulated with the latest 
generated partial sums. Hence, these partial sums (that are stored in the on-chip 
memory), have to be transferred to DRAM so that the on-chip memory can store the 
latest generated data. Later, these partial sums (that are stored in the DRAM) will be 
transferred back to the on-chip memory for further computations generating a tile 
of final OFM. We estimate the number of DRAM accesses-per-tile for OFM using 
Eq. 6. 

. #accesstWGH =
⌈
Tk · Tl · Tc · Tz

Dp

⌉

read

(4) 

. #accesstIFM =
⌈
Tp · Tq · Tc

Dp

⌉

read

(5)
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. #accesstOFM =
⌈
Tx · Ty · Tz

Dp

⌉

read

+
⌈
Tx · Ty · Tz

Dp

⌉

write

(6) 

Note, . Tx denotes the tiling factor that defines the partition size for dimension-x, 
following the dimensions of data types, as shown in Fig. 8. Therefore, .x ∈ {k, l, c, 
z} for WGH, .x ∈ {p, q, c} for IFM, and .x ∈ {x, y, z} for OFM. Meanwhile, . Dp

denotes the number of DRAM chips-per-rank which operate in parallel. 

3.3 Employment of Low Latency DRAM 

DL accelerators can employ different types of DRAM based on the design require-
ments, e.g., low latency DRAM, low power DRAM, high bandwidth memory, etc. 
Since different DRAM types have the same internal organization, they have similar 
behavior of latency and energy consumption for every single access [11]. Therefore, 
the DRAM latency-per-access and energy-per-access always depend on whether a 
single access faces a row buffer hit, miss, or conflict [49]. Towards this, we employ 
a low latency DRAM since it has lower latency-per-access and lower energy-per-
access than conventional DRAM, which are beneficial for embedded DL systems. 
Specifically, we employ a low latency DRAM design that exploits subarray-level 
parallelism (SALP) [28]. The reason is that any techniques that exploit SALP will 
be applicable for any DRAM types since a commodity DRAM bank is typically 
implemented as multiple subarrays with multiple local row buffers, as shown in 
Fig. 4. Work of [28] has proposed three variants of SALP architectures, i.e., SALP-
1, SALP-2, and Multitude of Activated Subarrays (MASA), whose key ideas are 
explained in the following. 

• SALP-1: It reduces the service time of commodity DRAM by overlapping ACT 
of one subarray with PRE of another subarray. To do this, a re-interpretation of 
the timing constraint for PRE operation is required. 

• SALP-2: It reduces the service time more than SALP-1 by overlapping the ACT 
of one subarray with the latency of write-recovery for an active subarray. To do 
this, additional circuitry is required to activate two subarrays at the same time. 

• SALP-MASA: It reduces the service time more than SALP-2 by activating 
multiple subarrays at the same time. To do this, additional circuitry is required 
to activate multiple subarrays at the same time, and it is more complex than the 
circuitry for SALP-2. 

To understand the characteristics of SALP architectures, we perform experiments 
to observe their latency-per-access and energy-per-access for each row buffer hit, 
row buffer miss, row buffer conflict, subarray-level parallelism, and bank-level 
parallelism. The experimental results in Fig. 9 indicate that SALP architectures have 
the potential to reduce the latency-per-access and energy-per-access as compared to 
commodity DRAM. To judiciously employ such low latency DRAM architectures 
for embedded DL systems, we define an effective DRAM data mapping policy and
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Fig. 9 Experimental results for the latency and energy consumption for a row buffer hit, a row 
buffer miss, a row buffer conflict, a subarray-level parallelism, and a bank-level parallelism 
on different DRAM architectures, i.e., DDR3, SALP-1, SALP-2, and SALP-MASA (adapted 
from [49]). For DDR3, we use DDR3-1600 2Gb x8 configuration, while for SALP, we use 
2Gb x8 with 8 subarrays-per-bank. We generate data using state-of-the-art cycle-accurate DRAM 
simulators [12, 29] 

conduct a DSE that quickly evaluates the EDP of DRAM accesses, which will be 
discussed in the Sects. 3.3.1 and 3.3.2, respectively. 

3.3.1 Devising the Data Mapping Policy in DRAM 

Figure 9 shows that different DRAM architectures (e.g., DDR3, SALP-1, SALP-2, 
and SALP-MASA) have similar patterns in terms of latency-per-access and energy-
per-access. To exploit such patterns, we develop a DRAM data mapping policy 
that incurs the lowest DRAM latency-per-access and energy-per-access for DL 
accelerators, as shown by label 2 in Fig. 6. Its idea is to orderly prioritize the row 
buffer hit, bank-level parallelism, and subarray-level parallelism (if applicable) for 
each given data. Following are the key steps for performing our data mapping. 

1. We map data from a given data tile to different columns in the same row of a bank 
to maximize the row buffer hits. If multiple DRAM chips exist in the same rank, 
then this step is also performed in different chips for maximizing the chip-level 
parallelism. 

2. If all columns in the same row are filled, then the remaining data are placed on 
different banks in the same DRAM chip to maximize bank-level parallelism. If 
multiple DRAM chips exist in the same rank, then this step is also performed in 
different chips. 

3. If all columns in the same row of all banks are filled, then the remaining data 
are placed on a different subarray in the same bank to maximize subarray-level 
parallelism. If multiple DRAM chips exist in the same rank, then this step is also 
performed in different chips.
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Fig. 10 Our data mapping policy (a) for commodity DRAM architectures, and (b) for  SALP  
architectures, i.e., SALP-1, SALP-2, and SALP-MASA (adapted from studies in [49, 51]) 

4. If there are remaining data, then steps (1) to (3) are performed for different 
subarrays until all data are stored in the same rank. 

5. If there are remaining data, then steps (1) to (4) are performed for different ranks, 
modules, and channels subsequently, if applicable. 

For commodity DRAM architectures, our data mapping policy is shown in Fig. 10a, 
while for SALP architectures, our data mapping policy is shown in Fig. 10b. 

3.3.2 Analysis for the EDP of DRAM Accesses 

Our Analytical Model for Estimating the EDP of DRAM Accesses We leverage 
the experimental results in Fig. 9 to estimate the DRAM access latency and energy 
for a given network. Such estimation is beneficial for quickly investigating different 
possible configurations (e.g., DRAM organization, on-chip memory size, etc.) and 
determining the DRAM data mapping policy that can support data partitioning and 
scheduling, while incurring minimum DRAM access latency and energy. Towards 
this, we develop an analytical model for estimating the energy-delay-product (EDP) 
of the DRAM accesses for a given network [49], as shown by label 3 in Fig. 6. Our  
analytical model employs the following key ideas. 

• We define the EDP of DRAM accesses for an inference as the sum of the 
EDP-per-layer of a given network. Meanwhile, the EDP-per-layer is obtained by 
multiplying the DRAM latency-per-layer and the DRAM energy-per-layer.
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• We calculate the latency-per-layer by accumulating all latency values required by 
the DRAM accesses for all data tiles in a layer. Then, we calculate the energy-
per-layer by accumulating all energy values required by the DRAM accesses for 
all data tiles in a layer. 

• For each data tile, we estimate the number of cycles required for DRAM accesses 
(.Ntile) using  Eq. 7 and estimate the energy consumption for DRAM accesses 
(.Etile) using  Eq. 8. 

.

Ntile =Adif _column · Ndif _column + Adif _row · Ndif _row+
Adif _subarray · Ndif _subarray + Adif _bank · Ndif _bank

(7) 

.

Etile =Adif _column · Edif _column + Adif _row · Edif _row+
Adif _subarray · Edif _subarray + Adif _bank · Edif _bank

(8) 

Note, .Adif _x denotes the number of accesses to different DRAM x-location. 
.Ndif _x denotes the number of cycles required for accessing different DRAM x-
location. .Edif _x denotes the energy consumption required for accessing different 
DRAM x-location. For all terms, .x ∈ {column, row, subarray, bank}. 

Our DSE for Evaluating the EDP of DRAM Accesses To show that our DRAM 
data mapping policy always leads to minimum EDP in different possible conditions, 
we perform a DSE that leverages our analytical models on DRAM accesses and 
EDP estimation. The key idea of our DSE is to evaluate the EDP under different 
possible conditions, including different DRAM mapping policies (as presented in 
Table 1), different data partitioning and scheduling schemes (i.e., WGH-, IFM-, and 
OFM-based scheduling), and different DRAM architectures (e.g., DDR3, SALP-1, 
SALP-2, and SALP-MASA). This DSE is important to show that the best solution 
that achieves the minimum EDP for each given condition is the same as our design 
methodology through (1) effective data partitioning and scheduling, and (2) effective 
DRAM data mapping policy. 

Table 1 Different 
(loop-based) DRAM mapping 
policies which are considered 
in the DSE. Note, our DRAM 
mapping policy is the same as 
the Mapping 3 

Mapping Inner-most loop to outer-most loop 

1 column, subarray, bank, row 

2 subarray, column, bank, row 

3 column, bank, subarray, row 

4 bank, column, subarray, row 

5 subarray, bank, column, row 

6 bank, subarray, column, row
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4 Experimental Evaluations 

To evaluate our design methodology, we build the following experimental setup. 

DRAM Simulators We use a cycle-accurate DRAM simulator [29] to obtain 
the number of cycles for different DRAM access conditions, i.e., row buffer 
hit, row buffer miss, row buffer conflict, subarray-level parallelism, and bank-
level parallelism. We also use a real experiments-based DRAM power/energy 
simulator [12] to obtain the energy consumption values for different DRAM access 
conditions. 

DSE Simulator We develop our DSE simulator to find the data partitioning and 
scheduling that offer minimum EDP of DRAM accesses, while considering the 
network information (e.g., number of layers, data size, etc.), the DRAM access 
statistics (e.g., number of cycles and energy consumption), the configuration of a 
DL accelerator, and our analytical models on DRAM accesses and EDP estimation. 

DL Accelerator and Workload We employ a TPU-like DL accelerator with 
reduced size of on-chip memories and systolic array. Details of the DL accelerator 
are provided in Table 2. To represent different DRAM architectures, we employ 
DDR3 and SALP (i.e., SALP-1, SALP-2, and SALP-MASA). For DRAM mapping 
policies, we use different mapping policies shown in Table 1. For the workload, we 
use AlexNet [32] with the ImageNet dataset. 

4.1 Reduction of DRAM Accesses 

Evaluation results for the number of DRAM accesses are shown in Fig. 11. Our  
design methodology decreases the number of DRAM accesses over other state-
of-the-art works, e.g., by 12% over the BWA design. These improvements come 

Table 2 Configuration of the systolic array-based DL accelerator 

Module Description 

Systolic array 8 . × 8 of PEs (MAC units) 

On-chip memories WGH: 64KB; IFM: 64KB; OFM: 64KB 

Memory controller Policy = open row; Scheduler = FCFS 

DDR3-1600 Configuration: 2Gb x8 

1 channel, 1 rank-per-channel, 

1 chip-per-rank, 8 banks-per-chip 

SALP Configuration: 2Gb x8 

1 channel, 1 rank-per-channel, 

1 chip-per-rank, 8 banks-per-chip, 

8 subarrays-per-bank
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Fig. 11 Experimental results for the number of DRAM accesses on AlexNet under DDR3-1600 
DRAM configuration, using Caffeine [68], SmartShuttle [36], Bus-Width Aware (BWA) [62], and 
our methodology (adapted from [51]). Note, CONV denotes the convolution processing, and FC 
denotes the fully connected processing 

from the effective data partitioning and scheduling that are found using our DSE, 
which can be associated with several reasons. First, our analytical model for 
DRAM accesses reduces redundant accesses for the overlapping data. Second, 
our DSE considers more possible scheduling schemes than other works, i.e., by 
observing WGH-, IFM-, and OFM-based reuse scheduling. Therefore, our design 
methodology employs a wider search space than other works, as it considers a more 
detailed analytical model as well as more data partitioning and scheduling schemes, 
which lead to a higher possibility of finding less number of DRAM accesses. These 
results show that our methodology offers reductions of the DRAM accesses on a 
layer-wise basis, which is in-line with the defined analytical model. Furthermore, 
these results also emphasize that the adaptive scheduling scheme can achieve the 
lowest DRAM accesses compared to the fixed one. 

4.2 Impact of Different DRAM Mapping Policies on EDP 

Our DSE investigates different possible scheduling schemes, such as fixed schedul-
ing (i.e., either WGH-, IFM-, or OFM-based reuse scheduling) and adaptive 
scheduling. The experimental results suggest that the adaptive one always offers the 
lowest DRAM accesses, thus in-line with the observation in Sect. 4.1. Evaluation 
results for the impact of different DRAM mapping policies on EDP under adaptive 
scheduling and different DRAM architectures, are shown in Fig. 12. From these 
results, we make the following key observations. 

• Observation 1 : Mapping-3 (our DRAM mapping policy) achieves the lowest 
EDP across different network layers and different DRAM architectures. It 
indicates that our mapping policy is the most effective DRAM data mapping
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Mapping-3 (our DRAM mapping policy in our methodology) obtains 
the lowest EDP values than other mapping policies. 
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Fig. 12 Experimental results for the EDP of DRAM accesses on AlexNet under adaptive 
scheduling for different DRAM mapping policies and across different DRAM architectures, i.e., 
DDR3, SALP-1, SALP-2, and SALP-MASA (adapted from [49]) 

policy for different possible conditions that any DL accelerators may face. The 
reason is that, based on Table 1, Mapping-3 orderly prioritizes placing data on: 

(1) different columns in the same row of a bank, hence maximizing row buffer 
hits in both DDR3 and SALP, 

(2) different banks in the same chip, hence maximizing bank-level parallelism in 
both DDR3 and SALP, 

(3) different subarrays in the same bank, hence maximizing subarray-level 
parallelism in SALP, but leading to row buffer conflicts in DDR3, and 

(4) different rows in the same subarray, hence causing row buffer conflicts in 
both DDR3 and SALP. 

Furthermore, any DL accelerators with any scheduling schemes can also benefit 
from our mapping policy to optimize their DRAM access latency and energy. 
Our mapping policy improves the EDP by up to 96% for DDR3 and 80%–94% 
for SALP, as compared to other mapping policies. 

• Observation 2 : Mapping-2 and Mapping-5 obtain worse EDP values across 
different layers of the network and different DRAM architectures, as compared to 
other mapping policies. The reason is that Mapping-2 and Mapping-5 prioritize
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placing data on different subarrays of the same bank. These mapping policies 
exploit subarray-level parallelism in SALP, but cause row buffer conflicts in 
DDR3, thereby consuming higher access latency and energy than row buffer hits 
and bank-level parallelism. 

• Observation 3 : Mapping-1 and Mapping-3 obtain comparable EDP values 
since they prioritize placing data on different columns of the same row, which 
leads to row buffer hits in both DDR3 and SALP. The difference between 
Mapping-1 and Mapping-3 is that Mapping-1 prioritizes exploiting subarray-
level parallelism than bank-level parallelism, while Mapping-3 is the opposite. 
Therefore, Mapping-1 incurs higher EDP than Mapping-3. 

• Observation 4 : Generally, employing SALP architectures provides EDP 
improvements over DDR3 due to latency and energy reduction when exploiting 
subarray-level parallelism. The EDP improvements achieved by employing 
SALP as compared to DDR3 are 0.6%–3.9% (for Mapping-1), 19.9%–81% 
(for Mapping-2), 0.6%–3.9% (for Mapping-3), 0.5%–1.4% (for Mapping-4), 
19.8%–81.8% (for Mapping-5), and 3.2%–7.6% (for Mapping-6). 

4.3 Further Discussion 

To further improve the energy efficiency of DL-based systems, a DNN model may 
go through a compression framework for achieving a compact model that can 
be deployed in tightly constrained embedded devices [17]. Recently, it has been 
observed that the structured pruning techniques are highly desirable due to their 
feasibility to be deployed on DL hardware accelerators [3, 22]. Towards this, our 
design methodology can be combined with the state-of-the-art structured pruning 
techniques, like the AutoML for Model Compression (AMC) [22], to efficiently 
expedite the sparse DNN model, thereby further reducing the DRAM access energy 
for efficient embedded DL systems [51]. 

5 Conclusion 

In this chapter, we discuss our design methodology to optimize the DRAM access 
energy for embedded DL systems. It employs a DSE that incorporates our analytical 
model for DRAM accesses, to find the effective data partitioning and scheduling 
that offer the minimum DRAM accesses. It also employs low latency DRAM 
and effective DRAM data mapping policy to ensure that each DRAM request 
always incurs minimum latency-per-access and energy-per-access. We also employ 
a DSE that incorporates our analytical model for EDP estimation to corroborate 
that our design choice (data partitioning, scheduling, and DRAM mapping policy) 
always provides minimum EDP of DRAM accesses. In this manner, our design 
methodology can determine how the data partitioning, scheduling, and data mapping
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in DRAM should be performed for the given DL accelerator and network for 
meeting the design constraints of embedded DL systems. 
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31. Koppula, S., Orosa, L., Yağlıkçı, A.G., Azizi, R., Shahroodi, T., Kanellopoulos, K., Mutlu, 
O.: Eden: Enabling energy-efficient, high-performance deep neural network inference using 
approximate DRAM. In: 52nd Annual IEEE/ACM Int. Symp. on Microarchitecture, pp. 166– 
181 (2019). https://doi.org/10.1145/3352460.3358280 

32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional 
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 
(2012) 

33. Kwon, H., Samajdar, A., Krishna, T.: Maeri: Enabling flexible dataflow mapping over 
DNN accelerators via reconfigurable interconnects. In: 23th International Conference on 
Architectural Support for Programming Languages and Operating Systems, pp. 461–475 
(2018). https://doi.org/10.1145/3173162.3173176 

34. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015) 
35. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. 

Preprint (2016). arXiv:1608.08710 
36. Li, J., Yan, G., Lu, W., Jiang, S., Gong, S., Wu, J., Li, X.: SmartShuttle: Optimizing off-chip 

memory accesses for deep learning accelerators. In: 2018 Design, Automation Test in Europe 
Conference Exhibition, pp. 343–348 (2018). https://doi.org/10.23919/DATE.2018.8342033 

37. Li, Z., Zhang, Y., Wang, J., Lai, J.: A survey of FPGA design for AI era. J. Semicond. 41(2), 
021402 (2020). https://doi.org/10.1088/1674-4926/41/2/021402 

38. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: A flexible dataflow accelerator 
architecture for convolutional neural networks. In: 2017 IEEE International Symposium 
on High Performance Computer Architecture, pp. 553–564 (2017). https://doi.org/10.1109/ 
HPCA.2017.29 

39. Maass, W.: Networks of spiking neurons: The third generation of neural network models. 
Neural Networks 10(9), 1659–1671 (1997). https://doi.org/10.1016/S0893-6080(97)00011-
7 

40. Marchisio, A., Bussolino, B., Colucci, A., Martina, M., Masera, G., Shafique, M.: Q-CapsNets: 
A specialized framework for quantizing capsule networks. In: 2020 57th ACM/IEEE Design 
Automation Conference 

41. Marchisio, A., Hanif, M.A., Martina, M., Shafique, M.: Prunet: Class-blind pruning method for 
deep neural networks. In: 2018 Int. Joint Conf. on Neural Networks, pp. 1–8 (2018). https:// 
doi.org/10.1109/IJCNN.2018.8489764 

42. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image 
segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 
1–1 (2021). https://doi.org/10.1109/TPAMI.2021.3059968 

43. Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classification using 
deep learning neural networks for brain tumors. Future Comput. Inf. J. 3(1), 68–71 (2018). 
https://doi.org/10.1016/j.fcij.2017.12.001. https://www.sciencedirect.com/science/article/pii/ 
S2314728817300636 

44. Nvidia: Nvidia jetson nano. https://developer.nvidia.com/embedded/jetson-nano-developer-kit 
45. Olgun, A., Luna, J.G., Kanellopoulos, K., Salami, B., Hassan, H., Ergin, O., Mutlu, O.: Pidram: 

A holistic end-to-end FPGA-based framework for processing-in-DRAM. Preprint (2021). 
arXiv:2111.00082

https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/ISCA.2012.6237032
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1109/AVSS.2018.8639121
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3352460.3358280
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.1145/3173162.3173176
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.23919/DATE.2018.8342033
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1088/1674-4926/41/2/021402
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://www.sciencedirect.com/science/article/pii/S2314728817300636
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit


An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems 197

46. Palossi, D., Loquercio, A., Conti, F., Flamand, E., Scaramuzza, D., Benini, L.: Ultra low power 
deep-learning-powered autonomous nano drones. CoRR abs/1805.01831 (2018). http://arxiv. 
org/abs/1805.01831 

47. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, 
J., Keckler, S.W., Dally, W.J.: SCNN: An accelerator for compressed-sparse convolutional 
neural networks. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer 
Architecture, pp. 27–40 (2017). https://doi.org/10.1145/3079856.3080254 

48. Park, K., Han, Y., Kim, L.S.: Deferred dropout: An algorithm-hardware co-design DNN 
training method provisioning consistent high activation sparsity. In: 2021 IEEE/ACM 
International Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/ 
ICCAD51958.2021.9643433 

49. Putra, R.V.W., Hanif, M.A., Shafique, M.: DRMap: A generic DRAM data mapping policy for 
energy-efficient processing of convolutional neural networks. In: 2020 57th ACM/IEEEDesign 
Automation Conference, pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218672 

50. Putra, R.V.W., Hanif, M.A., Shafique, M.: Respawn: Energy-efficient fault-tolerance for 
spiking neural networks considering unreliable memories. In: 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/ 
ICCAD51958.2021.9643524 

51. Putra, R.V.W., Hanif, M.A., Shafique, M.: ROMANet: Fine-grained reuse-driven off-chip 
memory access management and data organization for deep neural network accelerators. IEEE 
Trans. Very Large Scale Integr. (VLSI) Syst. 29(4), 702–715 (2021). https://doi.org/10.1109/ 
TVLSI.2021.3060509 

52. Putra, R.V.W., Hanif, M.A., Shafique, M.: SparkXD: A framework for resilient and energy-
efficient spiking neural network inference using approximate DRAM. In: 2021 58th 
ACM/IEEE Design Automation Conference, pp. 379–384 (2021). https://doi.org/10.1109/ 
DAC18074.2021.9586332 

53. Putra, R.V.W., Hanif, M.A., Shafique, M.: SoftSNN: Low-cost fault tolerance for spiking neural 
network accelerators under soft errors. Preprint (2022). arXiv:2203.05523 

54. Putra, R.V.W., Shafique, M.: FSpiNN: An optimization framework for memory-and energy-
efficient spiking neural networks. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(11), 
3601–3613 (2020). https://doi.org/10.1109/TCAD.2020.3013049 

55. Putra, R.V.W., Shafique, M.: Q-SpiNN: A framework for quantizing spiking neural networks. 
In: 2021 International Joint Conference on Neural Networks, pp. 1–8 (2021). https://doi.org/ 
10.1109/IJCNN52387.2021.9534087 

56. Putra, R.V.W., Shafique, M.: SpikeDyn: A framework for energy-efficient spiking neural 
networks with continual and unsupervised learning capabilities in dynamic environments. In: 
2021 58th ACM/IEEE Design Automation Conference, pp. 1057–1062 (2021). https://doi.org/ 
10.1109/DAC18074.2021.9586281 

57. Putra, R.V.W., Shafique, M.: lpSpikeCon: Enabling low-precision spiking neural network 
processing for efficient unsupervised continual learning on autonomous agents. Preprint 
(2022). arXiv:2205.12295 

58. Putra, R.V.W., Shafique, M.: tinySNN: Towards memory-and energy-efficient spiking neural 
networks. Preprint (2022). arXiv:2206.08656 

59. Shafique, M., Marchisio, A., Putra, R.V.W., Hanif, M.A.: Towards energy-efficient and secure 
edge ai: A cross-layer framework ICCAD special session paper. In: 2021 IEEE/ACM 
International Conference On Computer Aided Design, pp. 1–9 (2021). https://doi.org/10.1109/ 
ICCAD51958.2021.9643539 

60. Shafique, M., Naseer, M., Theocharides, T., Kyrkou, C., Mutlu, O., Orosa, L., Choi, J.: Robust 
machine learning systems: Challenges, current trends, perspectives, and the road ahead. IEEE 
Des. Test 37(2), 30–57 (2020) 

61. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: A tutorial 
and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017. 
2761740

http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
http://arxiv.org/abs/1805.01831
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/ICCAD51958.2021.9643433
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/DAC18072.2020.9218672
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/ICCAD51958.2021.9643524
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/TVLSI.2021.3060509
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/DAC18074.2021.9586332
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/TCAD.2020.3013049
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/IJCNN52387.2021.9534087
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/DAC18074.2021.9586281
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/ICCAD51958.2021.9643539
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740


198 R. V. W. Putra et al.

62. Tewari, S., Kumar, A., Paul, K.: Bus width aware off-chip memory access minimization for 
CNN accelerators. In: 2020 IEEE Computer Society Annual Symposium on VLSI, pp. 240– 
245 (2020). https://doi.org/10.1109/ISVLSI49217.2020.00051 

63. Wei, X., Yu, C.H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang, Y., Cong, J.: Automated 
systolic array architecture synthesis for high throughput CNN inference on FPGAs. In: 2017 
54th ACM/EDAC/IEEE Design Automation Conference, pp. 1–6 (2017). https://doi.org/10. 
1145/3061639.3062207 

64. Yamada, Y., Sano, T., Tanabe, Y., Ishigaki, Y., Hosoda, S., Hyuga, F., Moriya, A., Hada, R., 
Masuda, A., Uchiyama, M., Jobashi, M., Koizumi, T., Tamai, T., Sato, N., Tanabe, J., Kimura, 
K., Ojima, Y., Murakami, R., Yoshikawa, T.: A 20.5 tops multicore soc with DNN accelerator 
and image signal processor for automotive applications. IEEE J. Solid State Circ. 55(1), 120– 
132 (2020). https://doi.org/10.1109/JSSC.2019.2951391 

65. Ying, J.J.C., Huang, P.Y., Chang, C.K., Yang, D.L.: A preliminary study on deep learning for 
predicting social insurance payment behavior. In: 2017 IEEE International Conference on Big 
Data, pp. 1866–1875 (2017). https://doi.org/10.1109/BigData.2017.8258131 

66. Zanc, R., Cioara, T., Anghel, I.: Forecasting financial markets using deep learning. In: 2019 
IEEE 15th International Conference on Intelligent Computer Communication and Processing, 
pp. 459–466 (2019). https://doi.org/10.1109/ICCP48234.2019.8959715 

67. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based accelerator 
design for deep convolutional neural networks. In: ACM/SIGDA International Symposium 
on Field-Programmable Gate Arrays, pp. 161–170 (2015). https://doi.org/10.1145/2684746. 
2689060 

68. Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., Cong, J.: Caffeine: Toward uniformed 
representation and acceleration for deep convolutional neural networks. IEEE Trans. Comput. 
Aided Des. Integr. Circ. Syst. 38(11), 2072–2085 (2019). https://doi.org/10.1109/TCAD.2017. 
2785257 

69. Zhang, D., Liu, S.E.: Top-down saliency object localization based on deep-learned features. In: 
2018 11th International Congress on Image and Signal Processing, BioMedical Engineering 
and Informatics, pp. 1–9 (2018). https://doi.org/10.1109/CISP-BMEI.2018.8633218 

70. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: ThUnderVolt: Enabling aggressive voltage 
underscaling and timing error resilience for energy efficient deep learning accelerators. In: 
Proceedings of the 55th Annual Design Automation Conference, DAC ’18. Association for 
ComputingMachinery, NewYork, NY, USA (2018). https://doi.org/10.1145/3195970.3196129 

71. Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., Guo, Q., Chen, T., Chen, Y.: Cambricon-
x: An accelerator for sparse neural networks. In: 2016 49th Annual IEEE/ACM International 
Symposium on Microarchitecture, pp. 1–12 (2016). https://doi.org/10.1109/MICRO.2016. 
7783723

https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1109/ISVLSI49217.2020.00051
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1145/3061639.3062207
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/JSSC.2019.2951391
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/BigData.2017.8258131
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1109/ICCP48234.2019.8959715
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/TCAD.2017.2785257
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1109/CISP-BMEI.2018.8633218
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1145/3195970.3196129
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/MICRO.2016.7783723


In-Memory Computing for AI 
Accelerators: Challenges and Solutions 

Gokul Krishnan, Sumit K. Mandal, Chaitali Chakrabarti, Jae-sun Seo, 
Umit Y. Ogras, and Yu Cao 

1 Introduction 

1.1 Machine Learning in Modern Times 

Machine learning (ML) or artificial intelligence (AI) has made an enormous impact 
on the society. ML algorithms, such as deep neural networks (DNNs), achieve accu-
racy that exceeds human-level perception for a variety of applications, including 
computer vision, natural language processing, and medical imaging [19, 59, 63]. 
The popularity of ML algorithms has been driven by two main sources. First, the 
availability of big datasets for various applications, such as image classification, 
object detection, and segmentation [28, 59, 61]. Second, the increased computation 
power, provided by the next generation machine learning hardware accelerators and 
general purpose server platforms, has made both training and inference of large ML 
models more accessible. 

Figure 1 shows the taxonomy of ML algorithms, which can be broadly classified 
into supervised and unsupervised learning. Unsupervised learning refers to the 
process of extracting features from a distribution without any annotation for the data. 
Applications of unsupervised learning include selecting samples from a distribution, 
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Fig. 1 Taxonomy of machine learning showing different types of learning and the associated 
techniques 

learning to denoise data, and clustering data into different groups. The unsupervised 
learning algorithm aims to find the most optimal representation of the data. The 
optimal representation preserves maximum information about the input data x, 
while utilizing constraints to ensure the representation is simpler than the data itself. 
The three main ways of defining the simpler representation are lower dimensional 
representation, sparse representation, and independent representation [64, 86]. 
Popular unsupervised learning techniques include clustering, principal component 
analysis (PCA), autoencoders, Gaussian potential functions, etc. 

Supervised learning deals with the ML model being trained with a set of 
labelled training set and testing it with a labelled testing set. Supervised learning 
can be classified into two types, classical approaches and deep learning. Classical 
approaches focus on conventional techniques that utilize a probabilistic model to 
determine the next state based on a set of parameters. Some of the popular classical 
techniques include Markov chains, decision trees, support vector machines (SVM), 
and maximum likelihood estimation (MLE), among others [23, 26, 48, 84]. But clas-
sical techniques suffered from several drawbacks including lack of generalization, 
difficulty in scaling, and the need for significant data engineering for each algorithm. 

Deep learning algorithms are built on top of the classical techniques and resolve 
the drawbacks within them. In this chapter, we focus on the deep learning techniques 
for supervised learning. Convolutional neural networks (CNNs) are the most 
popular deep learning algorithm due to their ability to perform exceedingly well
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Fig. 2 (a) Convolution operation within a CNN consisting of the input feature map (IFM), kernel, 
and the output feature map (OFM). The kernel window slides over the IFM to generate the OFM 
and (b) fully connected (FC) layer in a CNN. Each neuron within the FC layer is connected to a 
neuron in the subsequent layer. The edges represent weights of the FC layer 

for a variety of machine learning tasks, such as computer vision, object detection, 
and object segmentation. In addition, recurrent neural networks (RNNs) have been 
very effective in processing temporal data, while graph convolutional networks 
(GCNs) have combined both graphs and neural networks for a wide variety of 
applications. We will discuss the recent advancements in CNNs, RNNs, and GCNs 
with focus on structures, training methods, and execution efficiency for both training 
and inference operations. Conventional CNNs consist of a set of layers connected 
in a sequential manner or with skip connections. In addition to convolutional layers, 
ReLU, pooling, and batch-normalization are utilized for better performance. 

Figure 2 shows the typical structure of a convolution and fully connected layer. 
The sequential layers usually consists of a stack of convolution (Conv) layers 
that perform feature extraction from the input. Examples of Conv layer kernels 
include 7. ×7, 5. ×5, 3. ×3, and 1. ×1. In addition, depth-wise convolutions proposed 
in MobileNet [32] break down a given N. ×N convolution into two parts. First, an 
N. ×1 is performed, and the result is then run through a 1. ×N convolution. Depth-
wise convolution results in better accuracy and lower hardware complexity. Pooling 
layers are utilized periodically to reduce the feature map size and in turn truncate 
noisy input. Finally, a set of classifier layers or fully connected (FC) layers are 
utilized to perform classification on the extracted features. The Conv and FC layers 
have a set of weights that are trained to achieve the best accuracy. Popular CNN 
structures include AlexNet [59], GoogleNet [101], ResNet [29], DenseNet [34], 
MobileNet [32], and SqueezeNet [35]. CNNs such as DenseNet and ResNet feature 
skip connections from prior layers that result in a highly branched structure. The 
skip connections aim to improve the feature extraction process and are present 
within the Conv layers only. 

On the other hand, conventional CNNs suffer from a wide range of drawbacks, 
including over-parameterization [21, 49, 51], higher hardware cost in training and 
inference, and vanishing gradient problem, among others. Network architecture
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search (NAS) was introduced to automatically search the optimal neural network 
architecture based on the target design point. The design point is determined by 
the target application. For example, higher accuracy, better generalization, higher 
hardware efficiency, lower memory access, etc. are some of the popular design 
points used in NAS. Some of the popular techniques proposed include NasNet [117], 
FBNet [105], AmoebaNet [85], PNAS [66], ECONas [115], and MNasNet [102], 
among others. 

RNN is also a popular deep learning technique, which provides an efficient 
solution to model data with temporal or sequential structure and varying length 
inputs and outputs, across different applications [43, 62, 100]. RNNs process 
sequential data one element at a time utilizing a connectionist model with the ability 
to selectively pass information. Through this, RNNs model input and/or output data 
consisting of a sequence of elements that are dependent. Furthermore, RNNs can 
simultaneously model sequential and time dependencies at different scales. RNNs 
utilize a feedforward network that utilizes the edges that span adjacent time steps, 
introducing time to the model. RNNs do not have cycles among conventional edges, 
while edges that connect adjacent time steps, called recurrent edges, can form 
cycles. Modern RNN architectures can be classified into two main categories. Long 
short-term memory (LSTM) introduces the memory cell, a unit of computation that 
replaces traditional nodes in the hidden layer of a network [30]. The other variant of 
RNNs includes bi-directional RNNs (BRNNs) proposed in [90]. 

Finally, while CNNs and RNNs effectively capture the hidden patterns within 
Euclidean data, an increasing number of applications utilize graphs to represent 
data. For example, for e-commerce, a graph-based learning system can exploit the 
interactions between users and products to make highly accurate recommendations. 
However, the complexity of graphs and the underlying irregularity pose significant 
challenges to existing DNNs. Hence to address this, graph neural networks (GNNs) 
were introduced. GNNs can be categorized into three types: recurrent GNNs 
(RecGNNs) [24, 27, 89], convolutional GNNs (CGNNs) [16, 67, 106], and graph 
autoecnoders (GAEs) [18, 70, 95]. RecGNNs aim to learn node representations 
with recurrent neural architectures. RecGNNs assume that a node within the graph 
constantly exchanges information with the neighboring nodes until a stable equilib-
rium is reached. Convolutional GNNs (CGNNs) were introduced to generalize the 
operation of convolution to graph data. CGNNs utilize an aggregation of a given 
node’s features and the features from neighboring nodes. Furthermore, CGNNs 
stack multiple graph convolution layers to extract high-level node representation. 
Finally, GAEs map nodes into a latent feature space and decode the graph infor-
mation from latent representations. GAEs are used to learn network embeddings 
or generate new graphs. A low-dimensional vector is used to represent the node 
that preserves the node’s topological information. GAEs learn network embeddings 
using an encoder to extract network embeddings. A decoder is used to enforce 
network embeddings to preserve the graph topological information (PPMI matrix 
and the adjacency matrix).



In-Memory Computing for AI Accelerators: Challenges and Solutions 203

1.2 Hardware Implications of DNNs 

The diverse structures of state-of-the-art DNNs spanning across CNNs, RNNs, and 
GCNs result in significant compute and memory requirements. The higher accuracy 
achieved by these ML models requires increased computational complexity and 
model size, which in turn requires more memory to store both the weights and 
activations. In addition to memory and computation, the total volume of on-chip 
data movement is increased due to the increased model size and complexity. For 
example, ResNet-50 [29] for the ImageNet dataset [59] requires 50MB of memory 
and needs to perform 4 GFLOPs for each inference. Simultaneously, DenseNet-
121 [34] for ImageNet requires 110MB of memory and required 8GFLOPs for 
each inference. Furthermore, due to limited on-chip memory capacity, conventional 
architectures that separate memory and computation result in a significant number 
of external memory access. The increased off-chip memory access leads to reduced 
energy efficiency and performance. The average cost of an external memory access 
is 1000. × higher than the energy required to perform computations [31]. To further 
understand the impact on the hardware platform, we analyze the total energy spent 
in performing the inference for both VGG-16 and ResNet-50 using conventional 
von-Neumann architectures. A floating-point 32-bit (FP-32) multiplication results 
in 3.2pJ, and an FP-32 add requires 0.9pJ in the 45-nm technology node [25]. 
Therefore, only accounting for computations, to perform inference for one image, 
65mJ of energy is consumed using the VGG-16 CNN, while ResNet-50 takes 16mJ. 
Scaling the computation energy up for 1000 inference performs, VGG-16 takes 
65J while ResNet-50 consumes 16J of energy. Through this, we conclude that the 
increased accuracy achieved in DNNs results in higher computation complexity, 
increased memory requirements, higher off-chip memory access, and lower energy 
efficiency. 

In this chapter, we discuss an alternative to conventional von-Neumann archi-
tecture, in-memory computing (IMC), that provides higher energy efficiency, 
better performance, and reduced off-chip memory access. In-memory computing 
(IMC) has emerged as a promising method to address the memory access, energy 
efficiency, and performance bottleneck introduced by DNN applications. Both 
SRAM and nanoscale non-volatile memory (e.g., resistive RAM or RRAM)-based 
IMC hardware architectures provide a dense and parallel structure to achieve high 
performance and energy efficiency [17, 22, 39, 47, 52, 56, 92, 96, 97, 103, 108–111]. 
However, IMC-based AI accelerators also require on-chip communication calling 
for an energy-efficient on-chip interconnect. Hence, we detail the different choices 
of on-chip interconnect and the impact on the overall performance of the accelerator. 
Finally, to perform efficient design space exploration, a quick and efficient simulator 
suite is necessary. To this end, this chapter explores the different benchmarking 
simulators for IMC architectures.
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2 In-Memory Computing Architectures 

In the earlier section, we discussed the hardware implications of modern DNNs, 
specifically the memory and computation complexity in von-Neumann archi-
tectures. For example, dense structures like DenseNet perform approximately 
.2.7 × 107 off-chip memory accesses to process a frame of an image [34]. 
The increased number of off-chip memory access degrades energy efficiency of 
the overall system. In-memory computing (IMC) architectures offer a promising 
alternative to conventional von-Neumann architectures. Figure 3 shows the generic 
block diagram of an IMC architecture with RRAM/SRAM memory cells. IMC 
utilizes either analog- or digital-domain computation to perform the multiply-
and-accumulate (MAC) operations. Specifically, the crossbar-based IMC structure 
efficiently combines both memory access and analog-domain computation into a 
single unit for the acceleration of DNN workloads. Overall, the enhanced energy 
efficiency is attributed to a full-custom design, higher density, and higher memory 
bandwidth [52, 78, 92]. Therefore, IMC-based systems are becoming more popular 
for implementing compute- and memory-intensive AI applications. In this section, 
we will discuss different IMC architectures in detail using both SRAM and RRAM 
memory cells. 

2.1 RRAM/SRAM-Based IMC Architectures 

2.1.1 RRAM Device 

RRAM-Based IMC architectures consist of an RRAM memory cell at each cross 
point within the IMC crossbar array. RRAM is a two-terminal device with pro-
grammable resistance representing the weights of the neural network and has high 
integration density, fast read speed, high memory accessing bandwidth, and good 

IMC Crossbar with 
RRAM/SRAM CellsNoCIMC Tiles 

PE PE PEPE PE PE 

PE PE PEPE PE PE 

Shift & Add Buffer 

MUX 

ADC/SA 

P2P Interconnect 

Pooling Unit Activation 

Accumulator Buffer 

T T TT T T TT T T T 

T T TT T T TT T T T 

T TT T TT TT TT T 
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Fig. 3 Generic block diagram of an IMC architecture for DNN acceleration. It consists of an array 
of IMC tiles connected by an NoC with each tile consisting of a number of IMC arrays
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compatibility with CMOS fabrication technology. For example, the RRAM device 
stack can include a TiN bottom electrode, HfO. 2 mem-resistive switching layer, a 
PVD Ti oxygen exchange layer (OEL), and . ∼40 nm TiN top electrode [57, 60]. 
This specific stack is implemented between the M1 and M2 metallization layers, 
using a FEOL-compatible process flow. 

Each RRAM cell can be characterized by the number of resistance levels that can 
be accessed within them. Broadly, RRAM can be classified into single-level cells 
(SLCs) and multi-level cells (MLCs). SLC only has two resistance levels, i.e., they 
can store only binary data. On the other hand, MLC cells have multiple resistance 
levels that represent higher precision data. The number of available resistance levels 
is governed by the ratio of the off resistance (. Roff) to the on resistance (. Ron). The 
ratio provides the range of resistances that are accessible for the given RRAM 
device. The overall resistance range can be divided into two main states, a low 
resistance state (LRS) and a high resistance state (HRS). LRS deals with the lower 
spectrum within the resistance band, while the HRS deals with the upper band of 
resistance of the RRAM device. 

To program the RRAM device, a series of steps need to be followed. First, the 
RRAM device is formed by applying a large voltage across the two terminals. 
This process breaks the barrier and then allows for the flow of electrons across 
the terminals. Next, the RRAM is programmed to the required resistance by passing 
a specific current (compliance current) through the two electrodes. Depending on 
the compliance current, the RRAM can be programmed at different resistances. 
Furthermore, depending on the RRAM device (SLC or MLC), different levels of 
resistance can be achieved. Finally, once the RRAM device is programmed, we 
can perform a read by applying a voltage across the device electrodes. For the 
RRAM device proposed in [57, 60], a read voltage of up to 0.4V can be sustained 
by the RRAM device. The application of a higher voltage results in the damage of 
the device or goes into the write state, resulting in the change of the programmed 
resistance level. 

2.1.2 IMC Architecture 

Studies involving crossbar architectures have demonstrated that a 100. × to 1000. ×
improvement in energy efficiency is achieved as compared to traditional CPU 
and GPU architectures [39, 52, 75, 92, 96, 108, 108, 110]. Figure 3 shows the 
block diagram of an IMC architecture with an RRAM/SRAM memory cell. The 
architecture consists of an array of IMC tiles connected by a network on chip (NoC). 
The architecture also consists of a global pooling unit, nonlinear activation unit, 
accumulator, and input/output buffers. A global control logic performs the overall 
handling of the blocks within the architecture. 

Each tile consists of an array of processing elements (PEs), where each PE is an 
IMC crossbar array with either an SRAM or an RRAM cell. Each IMC crossbar 
array consists of a set of peripheral circuits that enable the MAC computations.
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Fig. 4 Block diagram of an RRAM-based IMC crossbar array. An array of RRAM cells form the 
IMC crossbar array. Peripheral circuits such as bitline (BL)/select-line (SL)/column multiplexer 
(MUX), precharge circuit, wordline (WL) decoder and driver, buffers, level shifters, ADC, and 
shift and add circuit complete the RRAM-based IMC 

Figure 4 shows the generic block diagram for a single RRAM-based IMC 
crossbar array. In the case of RRAM IMC, a transistor connects the gate to 
the wordline (WL) of the IMC crossbar array [57]. For the SRAM-based IMC 
with a conventional 6T structure, the WL connects to the access transistors. The 
IMC crossbar arrays consist of a wordline (WL) decoder, WL driver, a column 
multiplexer, analog-to-digital converter (ADC) or a sense amplifier, shifter and add 
circuit, control logic, and input/output buffers. The WL decoder turns on and off 
the WL for the IMC crossbar array. Meanwhile, the WL driver and level shifter 
are used to ensure that the driver can turn on the memory cell. Next, for an N. ×N 
IMC crossbar array, M columns are shared across the read-out circuit. The read-out 
circuit consists of the ADC, shift and add circuit, and the precharge circuit for the 
read operation. To enable the sharing of M columns, a column multiplexer is used. 
Finally, a custom control logic is utilized to drive the control signals during the 
operation of the IMC crossbar array. We will now go over the operation for both the 
SRAM- and RRAM-based IMC architectures. First, we will detail the working of 
the RRAM-based IMC architecture. Figure 4 shows the generic block diagram for 
a single RRAM-based IMC crossbar array. The RRAM devices are programmed by 
connecting the two terminals to a given voltage. To facilitate this, the terminals are
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connected to the bitline (BL) and the select-line (SL). By applying a voltage across 
the BL and the SL, forming, programming, and read operations are performed in 
a cell-by-cell fashion. During the write state of the IMC, each cell is chosen, and 
then the write is performed. During the compute state, the RRAM undergoes the 
read operation. Two kinds of read-out are performed, parallel and serial. During the 
parallel read-out, all/multiple WLs are turned on simultaneously, and the output is 
accumulated across the BL. Two kinds of input schemes are employed for single-
and multi-bit inputs. The first method uses a digital-to-analog converter (DAC) to 
convert the input vector to an analog voltage and performs the computation in the 
charge domain [92]. The second method is to perform bit-serial computing, where 
each bit in the input vector is computed one at a time. The bit significance for each 
input vector is handled by using a shift and add circuit [52, 75, 110]. 

Depending on the resistance stored in the RRAM, an output current/charge is 
generated by the product of the voltage and resistance (conductance). This operation 
is analogous to multiply with the MAC. This current/charge is then accumulated 
across all rows for a given column to perform addition in the MAC. In the case 
of the serial read-out, a row-wise access of the IMC array is performed for MAC 
computations. Overall, the final MAC output is generated by accumulating across 
all rows of the IMC crossbar array. 

Figure 5 shows the generic block diagram for a single SRAM-based IMC 
crossbar array. Next, we will discuss the operation for an SRAM-based IMC 
architecture [20, 39, 94, 98, 103, 109, 110]. Depending on the SRAM bitcell type 
and the degree of parallelism, the IMC design can be largely divided into three 
categories [91]: 6T bitcell with parallel compute, 6T bitcell with local compute, 
and (6T+extra-T) bitcell with parallel compute. Originally, SRAM-based IMC 
architecture employed the 6T bitcell with a parallel computation [45, 112]. The 
parallel computation was achieved by turning on all the WLs together to perform 
the MAC operations. The WLs are driven by the input vector where a 1 means it 
turns on that cell, while a 0 means the cell is turned off. Next, a 6T bitcell with 
a local compute structure is utilized where a special compute engine is designed 
to perform the MAC operation [98]. Here, the MAC operation is performed in a 
row-by-row fashion, similar to the serial read-out in RRAM-based IMC. Finally, in 
addition to the 6T cell, extra transistors are added in each bitcell to perform parallel 
compute [20, 94, 109]. In addition to the bitcell structure, peripheral circuits such 
as precharge circuit, ADCs, write driver, column multiplexer, row decoder, and row 
drivers are used. 

2.1.3 Challenges with IMC Architectures 

IMC architectures provide improved energy efficiency and throughput but suffer 
from certain drawbacks. The limited precision with the IMC crossbar array, 
specifically the memory cell, and the ADC impact the inference accuracy for 
DNNs [15, 50]. In addition, the impact of noise within the analog computation also 
adversely impacts the inference accuracy of DNNs.
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First, we will discuss the challenges with an RRAM-based IMC architecture. 
RRAM device suffers from several non-idealities such as limited resistance levels, 
device-to-device write variations, stuck at faults, and limited Roff/Ron ratio, posing 
a significant challenge to designing reliable RRAM-based IMC architectures [7– 
9, 44, 57, 58, 68, 69, 99, 107, 114]. The non-idealities within the RRAM device 
result in a deviation of the programmed weights values (resistance value), causing a 
significant reduction in post-mapping accuracy for DNNs. Furthermore, the crossbar 
structure of the IMC, with its limited array size, requires splitting of the large 
convolution (conv) or fully connected (FC) layers into partial operations. Such 
partial operation (conv/FC) results in further error due to the limited precision of 
the peripheral circuits (ADC and shift and add) of the RRAM-based IMC crossbar. 

Several methods have been proposed in prior works to mitigate the post-mapping 
accuracy loss for RRAM-based in-memory acceleration of DNNs. Closed-Loop-
on-Device (CLD) and Open-Loop-off-Device (OLD) perform iterative read–verify– 
write (R–V–W) operations at the RRAM device till the resistance converges to the 
desired value [33, 65]. References [7, 10] utilize variation-aware training (VAT) 
based on known device variation (. σ ) characterized from RRAM devices, while [68]
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combines VAT with dynamic precision quantization to mitigate the post-mapping 
accuracy loss. In [14], RRAM macro-measurement results that include variability 
and noise have been injected during the DNN training process to improve the DNN 
accuracy of the RRAM IMC hardware. Reference [79] utilizes a post mapping 
training by selecting a random subset of weights and mapping them to an on-chip 
memory to recover the accuracy. Meanwhile, [9] utilizes knowledge distillation and 
online adaptation for accuracy mitigation. The authors in [9] utilize an SRAM-based 
IMC as the parallel network, while the authors in [79] propose to use a register file 
and a randomization circuit. At the same time, [69, 99] propose to use a custom 
unary mapping scheme by mapping the MSB and LSB of the weights to RRAM 
devices based on the individual cell variations and bit significance. 

Next, we discuss the challenges associated with SRAM-based IMC architectures. 
A compromise between parallelism and reliability is employed for best perfor-
mance. In a conventional 6T SRAM IMC architecture, the parallel computation 
is achieved by turning on all or multiple rows. The higher parallelism raises the 
critical issue of read disturbance, resulting in the WL voltage to be driven with a 
lower voltage [45, 87, 112]. To mitigate this, a reduced parallelism is employed 
by exploiting the local compute engine [98]. The reduced parallelism results in 
reduced throughput for DNN inference. References [20, 94, 109] propose to utilize 
additional transistors that isolate the bitcell and employ parallel computation. 
Such a solution comes at the cost of increased area overhead, thus limiting the 
density of the SRAM-based IMC architecture. The additional transistor solution 
is typically implemented using a resistance or a capacitance. The resistive IMC 
method implements a multi-bit MAC operation by utilizing a resistive pull-up/-
down by using transistors [20, 94, 109]. The pull-up/-down characteristics of the 
transistors exhibit a nonlinear behavior for the read bitline (RBL) transfer curve 
across different voltage ranges, thus having reduced reliability. At the same time, 
the capacitive SRAM-based IMC utilized a capacitor per bitcell and utilizes charge 
sharing and capacitive coupling to perform the MAC operations [39]. The capacitive 
SRAM IMC exhibits a more linear transfer characteristic on the RBL, but at the cost 
of a capacitor per bitcell. Finally, the limited precision of the ADC and the noise on 
the bitline (BL) requires careful design of the algorithm to achieve best inference 
accuracy [87]. 

3 Interconnect Challenges and Solutions 

In the earlier sections, we have discussed that the IMC technique reduces the need 
for notoriously power-hungry off-chip memory (e.g., DRAM) accesses. Therefore, 
these techniques have a great potential to deliver energy-efficient AI accelerators. 
Deep neural networks consist of layer-by-layer operation, i.e., the output to the 
kth layer is the input of the (.k + 1)th layer. In IMC-based accelerators, the data 
movement (i.e., communication) between the DNN layers is enabled by on-chip 
interconnects. Since the number of parameters of the neural networks has grown
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Fig. 6 Comparison of communication volume across different AI workloads 

over past ten years as shown in [74], the on-chip communication volume also 
increases. We also observe this trend in other emerging AI algorithms, such as graph 
convolutional networks (GCNs). Figure 6 shows the total communication volume 
(in MB) for different AI algorithms. Increasing communication volume, in turn, 
increases energy consumption due to communication which can mask the energy 
benefit of IMC technology itself. Therefore, an energy-efficient communication 
strategy is required for AI accelerator to compliment the energy benefits of IMC 
technology. Indeed, a single technique may not be suitable for all kinds of AI 
algorithms as discussed in [53]. 

Emergence of newer SoC paradigms (beyond monolithic integration) necessi-
tates novel interconnect approaches. Therefore, the rest of this section discusses 
various interconnect technologies proposed for different AI algorithms as well 
as different types of SoCs. First, we highlight various interconnect techniques 
proposed for planar IMC-based SoCs targeting AI acceleration in Sect. 3.1. Then, 
we explore different interconnect techniques for monolithic 3D ICs with IMC 
technology in Sect. 3.3. After that, we discuss multiple research efforts that target 
on-package communication for chiplet-based AI accelerator in Sect. 3.2. A more  
comprehensive survey on an efficient on-chip network for DNN accelerator in 
general can be found in [80]. 

3.1 Interconnect for IMC-Based Planar AI Accelerators 

There exist several NoC architectures for DNN accelerators. A recent study aims 
to maximize local data reuse and reduce data access from DRAM [12]. To this
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end, a row-stationary data flow is proposed, where filter weights and input feature 
maps (ifmap) are reused to minimize movement of ifmaps and filter weights. The 
architecture has later been extended to incorporate compact and sparse neural 
networks in [13]. In the extended version [13], a hierarchical mesh NoC is 
incorporated in the architecture. It consists of 16 PE clusters and 16 global buffer 
clusters distributed in an 8. ×2 array. Each PE cluster consists of 12 PEs arranged in 
a 3. ×4 array. However, both architectures consider a system with off-chip memory 
where frequent data transfer from off-chip to on-chip is required. Therefore, the 
NoC optimizations incorporated in these architectures are not applicable for IMC-
based accelerators. ISAAC is one of the first IMC-based DNN accelerators proposed 
in the literature [92]. It uses an NoC with concentrated mesh (c-mesh) topology. 
However, only one NoC router is connected to each IMC tile, and no special 
interconnect optimization is considered in this architecture. Since larger DNNs (e.g., 
DenseNet with 100 layers) may contain 100s of IMC tiles, this architecture may 
require 100s of NoC routers, which may not be practical at all. 

The growing number of NoC routers increases area as well as on-chip inter-
connect power consumption. To that end, a recent study proposes an optimization 
technique to determine the number of NoC routers for a given DNN [52]. The 
authors first construct an objective function for communication energy, which 
considers the number of activations between two consecutive layers for each layer 
as input. Then the objective function is minimized to obtain the number of routers 
needed for all layers of the DNN. A scheduling technique is also proposed in this 
work to minimize the congestion in the on-chip network. The optimized number 
of routers along with the scheduling technique provides up to 78% improvement in 
energy-delay product with respect to another DNN accelerator [92]. Although this 
work minimizes congestion in the on-chip network with a scheduling technique, 
it does not guarantee minimum latency for a given DNN. The authors in [75] 
proposed an NoC architecture that guarantees minimum possible communication 
latency for a given DNN. However, the proposed NoC architecture is customized 
for a single DNN. Therefore, a reconfigurable NoC is also proposed in [75], where 
a certain number of routers (determined with handful DNNs known at the design 
time) are allocated for each DNN layer. At runtime, if a new (not considered in 
the design time) DNN appears, then first the number of routers required for each 
DNN layer is computed first. If the number of routers required for a particular 
layer is more than the number of available routers on-chip, then the DNN layer will 
occupy the maximum number of routers available for that layer. The reconfigurable 
NoC shows 60%–80% improvement in communication latency over state-of-the-art 
2D-mesh NoC. A communication-aware IMC accelerator for graph convolutional 
network (GCN), COIN, is proposed in [76]. In this work, a number of GCN nodes 
are implemented in a compute element, and multiple CEs are connected with an 
NoC router. The number of NoC routers is obtained by minimizing inter-CE and 
intra-CE communication energy. COIN shows up to 105. × improvement in energy 
consumption with respect to state-of-the-art GCN accelerator.
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3.2 On-Package Communication for Chiplet-Based AI 
Accelerators 

The area of monolithic hardware accelerators increases with an increasing number 
of parameters of AI algorithms. Higher silicon area of a single monolithic system 
reduces the yield, which in turn increases fabrication cost [56]. Chiplet-based 
system solves the issue of higher fabrication cost by integrating multiple small 
chips (known as chiplets) on a single die. Since the area of each chiplet in the 
system is considerably lower than a monolithic chip (for the same AI algorithm), the 
yield of the chiplet-based system increases, which reduces the fabrication cost. The 
communication between chiplets is performed through network on package (NoP), 
as shown in Fig. 7. There are several works in the literature which propose NoP 
for chiplet-based system considering different performance objectives (e.g., latency, 
energy) [5, 56, 93, 104]. 

Kite is a family of NoP proposed in [5], which is mainly targeted for general 
purpose processors. In this work, three topologies are proposed—Kite-Small, 
Kite-Medium, and Kite-Large. First, an objective function is constructed with 
combination of the average delay between source and destination, diameter, and 
bisection bandwidth of the NoP. Experimental evaluations on synthetic traffic show 
that the proposed Kite topologies reduce latency by 7% and improve the peak 
throughput by 17% with respect to other well-known interconnect topologies. A 
chiplet-based system with 96-core processor, INTACT, is proposed in [104]. The 
chiplets are connected through a generic chiplet-interposer interfaces (called as 3D-
plugs in the chapter). 3D-plugs consist of micro-bump arrays. However, both Kite 
and INTACT are not specific to AI workloads. 

Shao et al. designed and fabricated a 36-chiplet system called SIMBA for deep 
learning inference [93]. The chiplets in the system are connected through a mesh 
NoP. Ground-referenced signaling (GRS) is used for intra-package communication. 
The NoP follows a hybrid wormhole/cut-through flow control. The NoP bandwidth 
is 100 GBps/chiplet, and the latency for one hop is 20 ns. Extensive evaluation on 
the fabricated chip shows up to 16% speed up compared to baseline layer mapping 

Fig. 7 Architecture utilized within SIAM [56] that includes an NoP for on-package communica-
tion, NoC for on-chip communication within each chiplet, and a point-to-point network like H-Tree 
for within tile communication
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for ResNet-50. A simulator for chiplet-based system, SIAM, is proposed in [56], 
targeting AI workloads. In this simulator, a mesh topology is considered for NoP. 
It is shown that up to 85% of the total system area is contributed by NoP. In this 
work, multiple studies were performed by varying NoP parameters. For example, 
it is shown that increasing NoP channel width increases energy-delay product of 
the NoP for ResNet-110. This phenomenon is demonstrated for systems with 25 
and 36 chiplets. However, none of the prior works considered any workload-aware 
optimization for the NoP. Therefore, there is ample opportunity of future research 
which considers NoP optimization for AI accelerators. 

3.3 Interconnect for Monolithic 3D (M3D)-Based AI 
Accelerators 

With increasing complexity of AI algorithms, the computing resource needed to 
execute the algorithms also increases. Therefore, complex AI algorithms require 
a large number of processing elements on-chip. For example, DenseNet-110 with 
28.1M parameters requires 2184 ReRAM tiles on a single system [56]. Increasing 
the number of on-chip tiles results in long-range inter-tile communication. Too 
many long-range communications hurt energy efficiency of the system. Therefore, 
monolithic 3D (M3D)-based AI accelerators have emerged to facilitate energy-
efficient communication between multiple processing elements. In M3D-based 
accelerators, multiple processing elements are placed in each plane. The processors 
across different planes are connected using through silicon vias (TSV). 

REGENT is such an approach which integrates ReRAM-based IMC tiles as 
well as GPU cores on an M3D IC [42]. The processors in the IC are connected 
through a 3D-NoC. REGENT is optimized to perform energy-efficient CNN 
training. Specifically, a bin-package-based framework is adopted to map CNN 
layers on processing cores as well as physically place the cores in such a way 
that the overall system meets certain performance objectives. However, REGENT 
does not consider hardware implementation of normalization layers. To address 
this drawback, the authors in [41] propose a 3D-NoC-enabled IMC-based system 
considering normalization layers. Apart from considering hardware implementation 
of normalization layers, a performance-thermal aware mapping of CNN layers is 
also proposed in this work. The mapping helps to reduce thermal noise which 
can degrade the quality of CNN training. As a result, the proposed architecture 
is able to perform CNN training which achieves accuracy similar to GPU. The 
accelerator proposed in the aforementioned work is further extended in [40] by  
considering fewer normalization layers for CNNs. In this work, the authors show 
that considering few normalization layers actually improves CNN classification 
accuracy, since normalization helps to reduce bias occurring from a weight with 
high absolute value. Then, Bayesian optimization is utilized to construct an M3D 
system. The communication between multiple processing elements is facilitated by
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a mesh-NoC with XYZ routing. The accelerator proposed in this work reduces the 
latency by 15. × compared to conventional GPU-based system. However, all these 
works only consider CNN training on IMC-based M3D system. 

Recently, several other works proposed IMC-based M3D systems which are 
capable of training graph neural networks (GNNs). ReGraphX is a 3D-NoC-
enabled heterogeneous IMC-based system which performs energy-efficient GNN 
training [2]. In this system, there are two types of processing elements: V-PEs, 
which perform vertex computations, and E-PEs, which perform edge computation 
pertaining to a GNN. V-PEs consist of 128. ×128 crossbar arrays, whereas E-PEs 
consist of 8. ×8 crossbar arrays. Experimental evaluations show that ReGraphX 
reduces energy consumption by 11. × with respect to conventional GPUs. The 
authors in [4] show performance and accuracy trade-offs in 3D-NoC-enabled IMC-
based GNN accelerator. In this work, a stochastic rounding technique is proposed 
to reduce the precision of ReRAM crossbar arrays. The reduced precision helps 
to improve energy efficiency of the accelerator. A DropLayer-aware M3D-based 
manycore ReRAM architecture for training GNNs, DARe, is proposed in [3]. The 
DropLayer-based technique reduces on-chip communication volume in the system, 
which, in turn, prevents communication hotspot. Reduced communication hotspot 
improves the energy efficiency of the overall system. The proposed architecture 
demonstrates 1.9. × reduction in execution time with respect to ReGraphX [2]. Thus, 
M3D-based systems with 3D NoC provide energy-efficient platform for CNN as 
well as GNN training. 

4 Evaluation Frameworks for IMC-Based AI Accelerator 

Since in-memory computing (IMC)-based AI accelerators are recently drawing 
more attention due to their energy efficiency, extensive evaluations of power, perfor-
mance and area for the accelerators are required. The pre-silicon evaluations help to 
identify the bottleneck of the systems as well as compare the performance with other 
systems. There exist multiple simulators that evaluate the performance of systems 
with general purpose processing elements. Gem5 is the most popular cycle accurate 
simulator which considers various architectural parameters of a system and eval-
uates its performance [6]. Furthermore, a detailed on-chip interconnect simulator, 
GARNET, is integrated with Gem5 [1]. However, cycle accurate simulators incur 
significant simulation time which is prohibitive for fast design space exploration. 
To accelerate the design space exploration process, several prior works proposed 
analytical model-based performance evaluation of the underlying system [46, 71– 
73, 77, 81]. However, none of these evaluation techniques specifically target AI 
applications. AI applications (e.g., DNNs, GNNs) mainly consist of multiply and 
accumulate operations which can be implemented as systolic arrays. The authors 
in [88] propose a systolic array-based simulator, SCALE-sim, which is able to 
evaluate system performance executing DNN workloads. Nonetheless, none of 
the aforementioned approaches consider performance evaluation of IMC-based
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Fig. 8 Block diagram on an IMC benchmarking simulator proposed in [54]. The simulator 
consists of a circuit part and an interconnect part that perform system-level benchmarking of IMC 
architectures 

accelerators (Fig. 8). In the next sections, we will discuss multiple performance 
evaluation technique for IMC-based AI accelerators. Table 1 provides a summary 
of evaluation frameworks proposed for IMC-based DNN accelerators. 

4.1 Evaluation Frameworks for Monolithic AI Accelerators 

Multiple researchers have proposed evaluation frameworks for IMC-based AI accel-
erators. NeuroSim is the first simulator which evaluates performance IMC-based AI 
accelerators [11]. The performance evaluation metrics in NeuroSim include area, 
latency, and power consumption of an IMC system under a given DNN workload. 
NeuroSim provides excellent flexibility to users to evaluate the performance of 
IMC-based AI accelerators under different system specifications. For example, it 
considers conventional CMOS-based memory technology (e.g., SRAM) as well 
as emerging non-volatile memory technologies (e.g., ReRAM, STT-MRAM) for 
the in-memory compute elements. NeuroSim assumes a tile-based architecture as 
proposed in [92]. Specifically, the architecture under consideration in NeuroSim 
consists of multiple tiles. The  tiles consist of PE’s (processing elements), and PEs 
consist of IMC-based crossbar arrays. The lower level components (e.g., buffers, 
ADC, multiplexers) in NeuroSim are simulated using the Predictive Technology 
Model (PTM) [113], and verified against circuit simulation (e.g., SPICE), reaching 
more than 90% accuracy. Furthermore, Peng et al. [83] created an interface between 
NeuroSim and popular machine learning frameworks (PyTorch and TensorFlow), 
which make NeuroSim more user friendly. One important drawback of NeuroSim 
is that it assumes H-Tree-based bus interconnect for inter-tile communication. H-
Tree-based bus interconnect is not practical since it can consume up to 90% total 
energy consumption of DNN inference [53]. Network on chip (NoC) is a promising
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alternative for inter-tile communication. Therefore, Krishnan et al. [54] proposed 
an evaluation framework for IMC-based AI accelerator which considers cycle 
accurate NoC simulation. Specifically, a customized version of BookSim [38] is  
integrated with NeuroSim to provide more realistic performance evaluation of AI 
accelerators. MNSIM [116] also considers performance evaluation of IMC-based 
system to execute AI applications similar to NeuroSim. Apart from evaluating the 
system with a baseline architecture, MNSIM also integrates software–hardware co-
design technique in the evaluation framework. Chakraborty et al. proposed GeneiX, 
an evaluation framework for crossbar-based IMC accelerator considering the non-
idealities in the memory elements [7]. While hardware performance evaluation 
under AI workload is crucial, evaluation of accuracy of the AI workload while 
implemented on-chip is also important. Non-idealities in the memory elements 
can reduce the accuracy of DNNs. RxNN is a framework where accuracy of a 
given DNN workload is evaluated in the presence of memory non-idealities [36]. 
All these techniques consider performance evaluation of IMC systems executing 
DNN inference. However, emerging edge devices perform online learning which 
require training the DNN. Therefore, performance evaluation of AI accelerators 
while executing DNN inference is not enough. 

An evaluation framework for IMC-based AI accelerators with on-chip training 
is presented in [82]. In this work, the authors introduce “non-linearity, asym-
metry, device-to-device and cycle-to-cycle variation of weight update into the 
python wrapper, and peripheral circuits for error/weight gradient computation in 
NeuroSim core” for a given AI workload. The training framework is based on 
authors’ prior work [37], where SRAM-based transposable function is proposed. 
SRAM-based arrays are able to perform write operations fast while consuming 
low energy. Therefore, the weight-gradient computation function is implemented 
through SRAM-based arrays as opposed to other non-volatile memory technology. 

4.2 Evaluation Framework for Chiplet-Based AI Accelerators 

Chiplet-based systems are becoming popular for large-scale integration due to its 
yield and fabrication cost benefit. Apart from general purpose workloads, chiplet-
based systems have shown superior energy efficiency for AI workloads too [93]. 
Therefore, it is important to have an evaluation framework for chiplet-based systems 
executing AI workloads. SIAM, as shown in Fig. 9, is such a simulator where 
the performance of chiplet-based systems with IMC is evaluated for a given 
DNN workload. Specifically, SIAM integrates evaluation of IMC-based compute 
elements, on-chip interconnect within a chiplet and on-package communication 
between chiplets. This simulator utilizes model-based as well as cycle-accurate 
simulation components to evaluate system performance for a wide range of DNNs. 
SIAM automatically maps DNN workloads into multiple chiplets with a given 
mapping algorithm. The simulation time taken by SIAM is low compared to cycle-
accurate simulators. For example, performance evaluation of a chiplet-based system
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Fig. 9 Block diagram of the chiplet-based IMC architecture simulator SIAM [56] 

for ResNet-110 with 1.7M parameters takes only 12 min enabling fast design 
space exploration. SIAM also provides chiplet-level as well as DNN layer-level 
performance evaluation which enables fine-grained analysis of the system as well 
as the AI workload. A summary of SIAM can be found in [55]. 

5 Conclusion 

In this chapter, we discussed about in-memory computing-based AI accelera-
tors. In-memory computing technique reduces on-chip energy consumption of AI 
accelerators. We discuss various in-memory computing architectures proposed in 
the literature. Both CMOS (e.g., SRAM)- and memristor (e.g., RRAM)-based 
IMC architectures are discussed. We also introduce the challenges associated with 
IMC architectures and introduce some of the solutions proposed in the literature. 
Although in-memory computing improves energy efficiency of computing elements, 
it increases on-chip communication volume. Increasing on-chip communication 
volume may mask the benefits of in-memory computing technique. We discuss 
multiple research which aim to construct energy-efficient interconnect for IMC-
based AI accelerators. Finally, we discussed few frameworks to evaluate the 
performance of IMC-based AI accelerators. 

References 

1. Agarwal, N., Krishna, T., Peh, L.S., Jha, N.K.: GARNET: A Detailed on-chip Network Model 
inside a Full-system Simulator. In: 2009 IEEE International Symposium on Performance 
Analysis of Sand Software, pp. 33–42 (2009) 

2. Arka, A.I., Doppa, J.R., Pande, P.P., Joardar, B.K., Chakrabarty, K.: ReGraphX: NoC-enabled 
3D heterogeneous ReRAM architecture for training graph neural networks. In: 2021 Design, 
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1667–1672. IEEE (2021) 

3. Arka, A.I., Joardar, B.K., Doppa, J.R., Pande, P.P., Chakrabarty, K.: DARe: DropLayer-aware 
manycore ReRAM architecture for training graph neural networks. In: 2021 IEEE/ACM 
International Conference On Computer Aided Design (ICCAD), pp. 1–9 (2021)



In-Memory Computing for AI Accelerators: Challenges and Solutions 219

4. Arka, A.I., Joardar, B.K., Doppa, J.R., Pande, P.P., Chakrabarty, K.: Performance and 
accuracy tradeoffs for training graph neural networks on ReRAM-based architectures. IEEE 
Trans. Very Large Scale Integr. (VLSI) Syst. 29(10), 1743–1756 (2021) 

5. Bharadwaj, S., Yin, J., Beckmann, B., Krishna, T.: Kite: A family of heterogeneous interposer 
topologies enabled via accurate interconnect modeling. In: 2020 57th ACM/IEEE Design 
Automation Conference (DAC), pp. 1–6. IEEE (2020) 

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., 
Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM SIGARCH Comput. 
Archit. News 39(2), 1–7 (2011) 

7. Chakraborty, I., Ali, M.F., Kim, D.E., Ankit, A., Roy, K.: Geniex: A generalized approach to 
emulating non-ideality in memristive Xbars using neural networks. In: 2020 57th ACM/IEEE 
Design Automation Conference (DAC), pp. 1–6 (2020) 

8. Charan, G., Mohanty, A., Du, X., Krishnan, G., Joshi, R.V., Cao, Y.: Accurate inference 
with inaccurate rram devices: A joint algorithm-design solution. IEEE J. Explor. Solid State 
Comput. Dev. Circuits 6(1), 27–35 (2020a) 

9. Charan, G., et al.: Accurate inference with inaccurate RRAM devices: statistical data, model 
transfer, and on-line adaptation. In: DAC. IEEE (2020b) 

10. Chen, L., et al.: Accelerator-friendly neural-network training: learning variations and defects 
in RRAM crossbar. In: DATE. IEEE (2017) 

11. Chen, P.Y., Peng, X., Yu, S.: Neurosim: A circuit-level macro model for benchmarking neuro-
inspired architectures in online learning. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 
37(12), 3067–3080 (2018) 

12. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: An energy-efficient reconfigurable 
accelerator for deep convolutional neural networks. IEEE J. Solid State Circ. 52(1), 127– 
138 (2016) 

13. Chen, Y.H., Yang, T.J., Emer, J., Sze, V.: Eyeriss v2: A flexible accelerator for emerging deep 
neural networks on mobile devices. IEEE J. Emerg. Sel. Top. Circ. Syst. 9(2), 292–308 (2019) 

14. Cherupally, S.K., Meng, J., Rakin, A.S., Yin, S., Yeo, I., Yu, S., Fan, D., Seo, J.: Improving 
the accuracy and robustness of RRAM-based in-memory computing against RRAM hardware 
noise and adversarial attacks. Semicond. Sci. Technol. 37(3), 034001 (2022). https://doi.org/ 
10.1088/1361-6641/ac461f 

15. Cherupally, S.K., Meng, J., Rakin, A.S., Yin, S., Yeo, I., Yu, S., Fan, D., Seo, J.S.: Improving 
the accuracy and robustness of rram-based in-memory computing against rram hardware noise 
and adversarial attacks. Semicond. Sci. Technol. 37(3), 034001 (2022) 

16. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: An efficient 
algorithm for training deep and large graph convolutional networks. In: Proceedings of the 
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 
257–266 (2019) 

17. Chih, Y.D., Lee, P.H., Fujiwara, H., Shih, Y.C., Lee, C.F., Naous, R., Chen, Y.L., Lo, C.P., Lu, 
C.H., Mori, H., et al.: An 89tops/w and 16.3 tops/mm 2 all-digital sram-based full-precision 
compute-in memory macro in 22nm for machine-learning edge applications. In: 2021 IEEE 
International Solid-State Circuits Conference (ISSCC), vol. 64, pp. 252–254. IEEE (2021) 

18. De Cao, N., Kipf, T.: Molgan: An implicit generative model for small molecular graphs. 
Preprint (2018). arXiv:1805.11973 

19. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech 
recognition and related applications: an overview. In: 2013 IEEE International Conference 
on Acoustics, Speech and Signal Processing, pp. 8599–8603. IEEE (2013) 

20. Dong, Q., Sinangil, M.E., Erbagci, B., Sun, D., Khwa, W.S., Liao, H.J., Wang, Y., Chang, 
J.: 15.3 a 351tops/w and 372.4 gops compute-in-memory sram macro in 7nm finfet cmos for 
machine-learning applications. In: 2020 IEEE International Solid-State Circuits Conference-
(ISSCC), pp. 242–244. IEEE (2020) 

21. Du, X., Krishnan, G., Mohanty, A., Li, Z., Charan, G., Cao, Y.: Towards efficient neural 
networks on-a-chip: Joint hardware-algorithm approaches. In: 2019 China Semiconductor 
Technology International Conference (CSTIC), pp. 1–5. IEEE (2019)

https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f
https://doi.org/10.1088/1361-6641/ac461f


220 G. Krishnan et al.

22. Fujiwara, H., Mori, H., Zhao, W.C., Chuang, M.C., Naous, R., Chuang, C.K., Hashizume, 
T., Sun, D., Lee, C.F., Akarvardar, K., et al.: A 5-nm 254-tops/w 221-tops/mm 2 fully-digital 
computing-in-memory macro supporting wide-range dynamic-voltage-frequency scaling and 
simultaneous mac and write operations. In: 2022 IEEE International Solid-State Circuits 
Conference (ISSCC), vol. 65, pp. 1–3. IEEE (2022) 

23. Gagniuc, P.A.: Markov Chains: From Theory to Implementation and Experimentation. Wiley 
(2017) 

24. Gallicchio, C., Micheli, A.: Graph echo state networks. In: The 2010 International Joint 
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010) 

25. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantiza-
tion methods for efficient neural network inference. Preprint (2021). arXiv:2103.13630 

26. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016) 
27. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: 

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 729– 
734. IEEE (2005) 

28. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. 
Neural Inf. Proces. Syst. 30, (2017). arXiv:1706.02216 

29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770– 
778 (2016) 

30. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735– 
1780 (1997) 

31. Horowitz, M.: Computing’s energy problem (and What We Can Do About It). In: IEEE 
ISSCC, pp. 10–14 (2014) 

32. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., 
Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. 
Preprint (2017). arXiv:1704.04861 

33. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S.: BSB training scheme implementation on 
memristor-based circuit. In: IEEE CISDA. IEEE (2013) 

34. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional 
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 4700–4708 (2017) 

35. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: 
Alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size. Preprint (2016). 
arXiv:1602.07360 

36. Jain, S., Sengupta, A., Roy, K., Raghunathan, A.: RxNN: A framework for evaluating deep 
neural networks on resistive crossbars. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 
40(2), 326–338 (2020) 

37. Jiang, H., Huang, S., Peng, X., Su, J.W., Chou, Y.C., Huang, W.H., Liu, T.W., Liu, R., Chang, 
M.F., Yu, S.: A two-way SRAM array based accelerator for deep neural network on-chip 
training. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2020) 

38. Jiang, N., et al.: A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013 
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 
pp. 86–96. IEEE (2013) 

39. Jiang, Z., Yin, S., Seo, J.S., Seok, M.: C3SRAM: An in-memory-computing SRAM macro 
based on robust capacitive coupling computing mechanism. IEEE J. Solid State Circ. 55(7), 
1888–1897 (2020). https://doi.org/10.1109/JSSC.2020.2992886 

40. Joardar, B.K., Deshwal, A., Doppa, J.R., Pande, P.P., Chakrabarty, K.: High-throughput train-
ing of deep CNNs on ReRAM-based heterogeneous architectures via optimized normalization 
layers. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 41(5), 1537–1549 (2021) 

41. Joardar, B.K., Doppa, J.R., Pande, P.P., Li, H., Chakrabarty, K.: AccuReD: high accuracy 
training of CNNs on ReRAM/GPU heterogeneous 3-D architecture. IEEE Trans. Comput. 
Aided Des. Integr. Circ. Syst. 40(5), 971–984 (2020)

https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2992886


In-Memory Computing for AI Accelerators: Challenges and Solutions 221

42. Joardar, B.K., Li, B., Doppa, J.R., Li, H., Pande, P.P., Chakrabarty, K.: REGENT: A 
heterogeneous ReRAM/GPU-based architecture enabled by NoC for training CNNs. In: 2019 
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 522–527. IEEE 
(2019) 

43. Jordan, M.I.: Serial order: A parallel distributed processing approach. In: Advances in 
Psychology, vol. 121, pp. 471–495. Elsevier (1997) 

44. Joshi, V., et al.: Accurate deep neural network inference using computational phase-change 
memory. Nature Communications (2020) 

45. Kang, M., Kim, Y., Patil, A.D., Shanbhag, N.R.: Deep in-memory architectures for machine 
learning–accuracy versus efficiency trade-offs. IEEE Trans. Circ. Syst. I Regul. Pap. 67(5), 
1627–1639 (2020) 

46. Kiasari, A.E., Lu, Z., Jantsch, A.: An analytical latency model for networks-on-chip. IEEE 
Trans. Very Large Scale Integr. (VLSI) Syst. 21(1), 113–123 (2012) 

47. Kim, H., Yoo, T., Kim, T.T.H., Kim, B.: Colonnade: A reconfigurable sram-based digital bit-
serial compute-in-memory macro for processing neural networks. IEEE J. Solid State Circ. 
56(7), 2221–2233 (2021) 

48. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283 (2013) 
49. Krishnan, G., Du, X., Cao, Y.: Structural pruning in deep neural networks: A small-world 

approach. Preprint (2019). arXiv:1911.04453 
50. Krishnan, G., Hazra, J., Liehr, M., Du, X., Beckmann, K., Joshi, R.V., Cady, N.C., Cao, Y.: 

Design limits of in-memory computing: Beyond the crossbar. In: 2021 5th IEEE Electron 
Devices Technology & Manufacturing Conference (EDTM), pp. 1–3. IEEE (2021) 

51. Krishnan, G., Ma, Y., Cao, Y.: Small-world-based structural pruning for efficient fpga 
inference of deep neural networks. In: 2020 IEEE 15th International Conference on Solid-
State & Integrated Circuit Technology (ICSICT), pp. 1–5. IEEE (2020) 

52. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.s., Ogras, U.Y., Cao, Y.: Interconnect-
aware area and energy optimization for in-memory acceleration of DNNs. IEEE Des. Test 
37(6), 79–87 (2020) 

53. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.S., Ogras, U.Y., Cao, Y.: Impact of on-chip 
interconnect on in-memory acceleration of deep neural networks. ACM J. Emerg. Technol. 
Comput. Syst. (JETC) 18(2), 1–22 (2021) 

54. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.s., Ogras, U.Y., Cao, Y.: Interconnect-
centric benchmarking of in-memory acceleration for DNNs. In: 2021 China Semiconductor 
Technology International Conference (CSTIC), pp. 1–4. IEEE (2021) 

55. Krishnan, G., Mandal, S.K., Chakrabarti, C., Seo, J.S., Ogras, U.Y., Cao, Y.: System-level 
benchmarking of chiplet-based IMC architectures for deep neural network acceleration. In: 
2021 IEEE 14th International Conference on ASIC (ASICON), pp. 1–4 (2021) 

56. Krishnan, G., Mandal, S.K., Pannala, M., Chakrabarti, C., Seo, J.S., Ogras, U.Y., Cao, Y.: 
SIAM: Chiplet-based scalable in-memory acceleration with mesh for deep neural networks. 
ACM Trans. Embed. Comput. Syst. (TECS) 20(5s), 1–24 (2021) 

57. Krishnan, G., Sun, J., Hazra, J., Du, X., Liehr, M., Li, Z., Beckmann, K., Joshi, R.V., Cady, 
N.C., Cao, Y.: Robust RRAM-based in-memory computing in light of model stability. In: 
IRPS. IEEE (2021) 

58. Krishnan, G., Yang, L., Sun, J., Hazra, J., Du, X., Liehr, M., Li, Z., Beckmann, K., Joshi, 
R., Cady, N.C., et al.: Exploring model stability of deep neural networks for reliable RRAM-
based in-memory acceleration. IEEE Trans. Comput. 71(11), 2740–2752 (2022) 

59. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional 
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 
(2012) 

60. Liehr, M., Hazra, J., Beckmann, K., Rafiq, S., Cady, N.: Impact of switching variability of 
65nm CMOS integrated hafnium dioxide-based ReRAM devices on distinct level operations. 
In: IIRW. IEEE (2020) 

61. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: 
Microsoft coco: Common objects in context. In: European Conference on Computer Vision, 
pp. 740–755. Springer (2014)



222 G. Krishnan et al.

62. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for 
sequence learning. Preprint (2015). arXiv:1506.00019 

63. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van 
Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image 
analysis. Med. Image Anal. 42, 60–88 (2017) 

64. Liu, B., Chen, Y., Liu, S., Kim, H.S.: Deep learning in latent space for video prediction and 
compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 701–710 (2021) 

65. Liu, B., et al.: Reduction and IR-drop compensations techniques for reliable neuromorphic 
computing systems. In: ICCAD. IEEE (2014) 

66. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A., Huang, 
J., Murphy, K.: Progressive neural architecture search. In: Proceedings of the European 
Conference on Computer Vision (ECCV), pp. 19–34 (2018) 

67. Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., Qi, Y.: Geniepath: Graph neural 
networks with adaptive receptive paths. In: Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 33, pp. 4424–4431 (2019) 

68. Long, Y., She, X., Mukhopadhyay, S.: Design of reliable DNN accelerator with un-reliable 
ReRAM. In: DATE. IEEE (2019) 

69. Ma, C., et al.: Go unary: A novel synapse coding and mapping scheme for reliable ReRAM-
based neuromorphic computing. In: DATE. IEEE (2020) 

70. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically valid graphs via regulariz-
ing variational autoencoders. Preprint (2018). arXiv:1809.02630 

71. Mandal, S.K., Ayoub, R., Kishinevsky, M., Islam, M.M., Ogras, U.Y.: Analytical performance 
modeling of NoCs under priority arbitration and bursty traffic. IEEE Embed. Syst. Lett. 13(3), 
98–101 (2020) 

72. Mandal, S.K., Ayoub, R., Kishinevsky, M., Ogras, U.Y.: Analytical performance models for 
NoCs with multiple priority traffic classes. ACM Trans. Embed. Comput. Syst. (TECS) 
18(5s), 1–21 (2019) 

73. Mandal, S.K., Krishnakumar, A., Ayoub, R., Kishinevsky, M., Ogras, U.Y.: Performance 
analysis of priority-aware NoCs with deflection routing under traffic congestion. In: 
Proceedings of the 39th International Conference on Computer-Aided Design, pp. 1–9 (2020) 

74. Mandal, S.K., Krishnakumar, A., Ogras, U.Y.: Energy-efficient networks-on-chip architec-
tures: design and run-time optimization. In: Network-on-Chip Security and Privacy, p. 55 
(2021) 

75. Mandal, S.K., Krishnan, G., Chakrabarti, C., Seo, J.S., Cao, Y., Ogras, U.Y.: A latency-
optimized reconfigurable NoC for in-memory acceleration of DNNs. IEEE J. Emerg. Sel. 
Top. Circ. Syst. 10(3), 362–375 (2020) 

76. Mandal, S.K., Krishnan, G., Goksoy, A.A., Nair, G.R., Cao, Y., Ogras, U.Y.: COIN: 
Communication-aware in-memory acceleration for graph convolutional networks. IEEE J. 
Emerg. Sel. Top. Circ. Syst. 2(2), 472–485 (2022) 

77. Mandal, S.K., Tong, J., Ayoub, R., Kishinevsky, M., Abousamra, A., Ogras, U.Y.: Theoretical 
analysis and evaluation of NoCs with weighted round-robin arbitration. In: 2021 IEEE/ACM 
International Conference On Computer Aided Design (ICCAD), pp. 1–9 (2021) 

78. Mao, M., et al.: MAX2: An ReRAM-based neural network accelerator that maximizes data 
reuse and area utilization. IEEE J. Emerg. Sel. Top. Circ. Syst. 9(2), 398–410 (2019) 

79. Mohanty, A., et al.: Random sparse adaptation for accurate inference with inaccurate multi-
level RRAM arrays. In: IEDM. IEEE (2017) 

80. Nabavinejad, S.M., Baharloo, M., Chen, K.C., Palesi, M., Kogel, T., Ebrahimi, M.: An 
overview of efficient interconnection networks for deep neural network accelerators. IEEE J. 
Emerg. Sel. Top. Circ. Syst. 10(3), 268–282 (2020) 

81. Ogras, U.Y., Bogdan, P., Marculescu, R.: An analytical approach for network-on-chip 
performance analysis. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 29(12), 2001– 
2013 (2010)



In-Memory Computing for AI Accelerators: Challenges and Solutions 223

82. Peng, X., Huang, S., Jiang, H., Lu, A., Yu, S.: DNN+ NeuroSim V2. 0: An end-to-end 
benchmarking framework for compute-in-memory accelerators for on-chip training. IEEE 
Trans. Comput. Aided Des. Integr. Circ. Syst. 40(11), 2306–2319 (2020) 

83. Peng, X., Huang, S., Luo, Y., Sun, X., Yu, S.: DNN+ NeuroSim: An end-to-end benchmarking 
framework for compute-in-memory accelerators with versatile device technologies. In: 2019 
IEEE International Electron Devices Meeting (IEDM), pp. 32–35 (2019) 

84. Pisner, D.A., Schnyer, D.M.: Support vector machine. In: Machine Learning, pp. 101–121. 
Elsevier (2020) 

85. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier 
architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, 
vol. 33, pp. 4780–4789 (2019) 

86. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. 
Proc. IEEE 98(6), 1045–1057 (2010) 

87. Saikia, J., Yin, S., Cherupally, S.K., Zhang, B., Meng, J., Seok, M., Seo, J.S.: Modeling 
and optimization of SRAM-based in-memory computing hardware design. In: 2021 Design, 
Automation & Test in Europe Conference & Exhibition (DATE), pp. 942–947. IEEE (2021) 

88. Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., Krishna, T.: Scale-sim: systolic CNN 
accelerator simulator. Preprint (2018). arXiv:1811.02883 

89. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural 
network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008) 

90. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal 
Process. 45(11), 2673–2681 (1997) 

91. Seo, J.: Advances in digital vs. analog AI accelerators (2022). In: Tutorial at IEEE 
International Solid-State Circuits Conference (ISSCC) 

92. Shafiee, A., et al.: ISAAC: A convolutional neural network accelerator with in-situ analog 
arithmetic in crossbars. ACM SIGARCH Comput. Archit. News 44(3), 14–26 (2016) 

93. Shao, Y.S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B., 
Klinefelter, A., Pinckney, N., Raina, P., et al.: Simba: Scaling deep-learning inference with 
multi-chip-module-based architecture. In: Proceedings of the 52nd Annual IEEE/ACM 
International Symposium on Microarchitecture, pp. 14–27 (2019) 

94. Si, X., Chen, J.J., Tu, Y.N., Huang, W.H., Wang, J.H., Chiu, Y.C., Wei, W.C., Wu, S.Y., 
Sun, X., Liu, R., et al.: 24.5 a twin-8t SRAM computation-in-memory macro for multiple-bit 
CNN-based machine learning. In: 2019 IEEE International Solid-State Circuits Conference-
(ISSCC), pp. 396–398. IEEE (2019) 

95. Simonovsky, M., Komodakis, N.: Graphvae: Towards generation of small graphs using 
variational autoencoders. In: International Conference on Artificial Neural Networks, pp. 
412–422. Springer (2018) 

96. Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: A pipelined ReRAM-based accelerator for 
deep learning. In: 2017 IEEE International Symposium on High Performance Computer 
Architecture (HPCA), pp. 541–552 (2017) 

97. Spetalnick, S.D., Chang, M., Crafton, B., Khwa, W.S., Chih, Y.D., Chang, M.F., Raychowd-
hury, A.: A 40nm 64kb 26.56 tops/w 2.37 mb/mm 2 rram binary/compute-in-memory macro 
with 4.23 x improvement in density and >75% use of sensing dynamic range. In: 2022 IEEE 
International Solid-State Circuits Conference (ISSCC), vol. 65, pp. 1–3. IEEE (2022) 

98. Su, J.W., Si, X., Chou, Y.C., Chang, T.W., Huang, W.H., Tu, Y.N., Liu, R., Lu, P.J., Liu, 
T.W., Wang, J.H., et al.: 15.2 a 28nm 64kb inference-training two-way transpose multibit 6t 
SRAM compute-in-memory macro for AI edge chips. In: 2020 IEEE International Solid-State 
Circuits Conference-(ISSCC), pp. 240–242. IEEE (2020) 

99. Sun, Y., et al.: Unary coding and variation-aware optimal mapping scheme for reliable 
ReRAM-based neuromorphic computing. TCAD (2021) 

100. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: 
Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) 

101. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., 
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 1–9 (2015)



224 G. Krishnan et al.

102. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: Mnasnet: 
Platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019) 

103. Valavi, H., Ramadge, P.J., Nestler, E., Verma, N.: A 64-tile 2.4-mb in-memory-computing 
CNN accelerator employing charge-domain compute. IEEE J. Solid State Circ. 54(6), 1789– 
1799 (2019) 

104. Vivet, P., Guthmuller, E., Thonnart, Y., Pillonnet, G., Fuguet, C., Miro-Panades, I., Moritz, 
G., Durupt, J., Bernard, C., Varreau, D., et al.: IntAct: A 96-core processor with six chiplets 
3D-stacked on an active interposer with distributed interconnects and integrated power 
management. IEEE J. Solid State Circ. 56(1), 79–97 (2020) 

105. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., Keutzer, K.: 
Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. 
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
pp. 10734–10742 (2019) 

106. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? Preprint 
(2018). arXiv:1810.00826 

107. Yang, X., et al.: Multi-objective optimization of ReRAM crossbars for robust DNN inferenc-
ing under stochastic noise. In: ICCAD. IEEE/ACM (2021) 

108. Yin, S., Jiang, Z., Kim, M., Gupta, T., Seok, M., Seo, J.s.: Vesti: energy-efficient in-memory 
computing accelerator for deep neural networks. IEEE Trans. Very Large Scale Integr. (VLSI) 
Syst. 28(1), 48–61 (2019) 

109. Yin, S., Jiang, Z., Seo, J.S., Seok, M.: XNOR-SRAM: In-memory computing sram macro for 
binary/ternary deep neural networks. IEEE J. Solid State Circ. 55(6), 1733–1743 (2020) 

110. Yin, S., Zhang, B., Kim, M., Saikia, J., Kwon, S., Myung, S., Kim, H., Kim, S.J., Seok, 
M., Seo, J.s.: Pimca: A 3.4-mb programmable in-memory computing accelerator in 28nm for 
on-chip DNN inference. In: 2021 Symposium on VLSI Technology, pp. 1–2. IEEE (2021) 

111. Yue, J., Liu, Y., Yuan, Z., Feng, X., He, Y., Sun, W., Zhang, Z., Si, X., Liu, R., Wang, Z., 
et al.: Sticker-im: A 65 nm computing-in-memory NN processor using block-wise sparsity 
optimization and inter/intra-macro data reuse. IEEE J. Solid State Circ. 57(8), 2560–2573 
(2022) 

112. Zhang, J., Wang, Z., Verma, N.: In-memory computation of a machine-learning classifier in a 
standard 6t SRAM array. IEEE J. Solid State Circ. 52(4), 915–924 (2017) 

113. Zhao,W., Cao, Y.: New generation of predictive technology model for Sub-45 nm early design 
exploration. IEEE Trans. Electron Dev. 53(11), 2816–2823 (2006) 

114. Zhou, C., Kadambi, P., Mattina, M., Whatmough, P.N.: Noisy machines: understanding 
noisy neural networks and enhancing robustness to analog hardware errors using distillation. 
Preprint (2020). arXiv:2001.04974 

115. Zhou, D., Zhou, X., Zhang, W., Loy, C.C., Yi, S., Zhang, X., Ouyang, W.: Econas: Finding 
proxies for economical neural architecture search. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp. 11396–11404 (2020) 

116. Zhu, Z., Sun, H., Qiu, K., Xia, L., Krishnan, G., Dai, G., Niu, D., Chen, X., Hu, X.S., Cao, 
Y., et al.: MNSIM 2.0: A behavior-level modeling tool for memristor-based neuromorphic 
computing systems. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp. 
83–88 (2020) 

117. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable 
image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 8697–8710 (2018)



Efficient Deep Learning Using 
Non-volatile Memory Technology in GPU 
Architectures 

Ahmet Inci, Mehmet Meric Isgenc, and Diana Marculescu 

1 Introduction 

Over the last decade, the performance boost achieved through CMOS scaling has 
plateaued, necessitating sophisticated computer architecture solutions to gain higher 
performance in computing systems while maintaining a feasible power density. 
These objectives, however, are concurrently challenged by the limitations of the 
performance of memory resources [1]. In contrast to the initial insight of Dennard on 
power density [2], deep CMOS scaling has exacerbated static power consumption, 
causing the heat density of ICs to reach catastrophic levels unless properly addressed 
[3–5]. 

As computers suffer from memory- and power-related limitations, the demand 
for data-intensive applications has been on the rise. With the increasing data deluge 
and recent improvements in GPU architectures, deep neural networks (DNNs) have 
achieved remarkable success in various tasks such as image recognition [6, 7], object 
detection [8], and chip placement [9] by utilizing inherent massive parallelism 
of GPU platforms. However, DNN workloads continue to have large memory 
footprints and significant computational requirements to achieve higher accuracy. 
Thus, DNN workloads exacerbate the memory bottleneck that degrades the overall 
performance of the system. To this end, while deep learning (DL) practitioners focus 
on model compression techniques [10–12], system architects investigate hardware 
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Fig. 1 L2 cache capacity in recent NVIDIA GPUs [29] 

architectures to overcome the memory bottleneck problem and improve the overall 
system performance [13–24]. 

We note the current trend of GPU architectures is toward increasing last-level 
cache capacity as shown in Fig. 1. Our analysis shows that conventional SRAM 
technology incurs scalability problems as far as power, performance, and area (PPA) 
are concerned [21, 25–27]. Non-volatile memory (NVM) technology is one of the 
most promising solutions to tackle memory bottleneck problem for data-intensive 
applications [28]. However, because much of emerging NVM technology is not 
available for commercial use, there is an obvious need for a framework to perform 
design space exploration for these emerging NVM technologies for DL workloads. 

In this chapter, we present DeepNVM++ [19], an extended and improved frame-
work [18] to characterize, model, and optimize NVM-based caches in GPU archi-
tectures for deep learning workloads. Without loss of generality, we demonstrate 
our framework for spin-transfer torque magnetic random access memory (STT-
MRAM) and spin-orbit torque magnetic random access memory (SOT-MRAM), 
keeping in mind that it can be used for any NVM technology, GPU platform, or deep 
learning workload. Our cross-layer analysis framework incorporates both circuit-
level characterization aspects and the memory behavior of various DL workloads 
running on an actual GPU platform. DeepNVM++ enables the evaluation of power, 
performance, and area of NVMs when used for last-level (L2) caches in GPUs and 
seeks to exploit the benefits of this emerging technology to improve the performance 
of deep learning applications. 

To perform iso-capacity analysis, we carry out extensive memory profiling of 
various deep learning workloads for both training and inference on the existing 
GPU platforms. For the iso-area analysis, the existing platforms cannot be used for
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varying cache sizes, so we rely on architecture-level simulation of GPUs to quantify 
and better understand last-level cache capacity and off-chip memory accesses. In 
both cases, our framework automatically combines resulting memory statistics with 
circuit and microarchitecture-level characterization and analysis of emerging NVM 
technologies to gauge their impact on DL workloads running on future GPU-based 
platforms. 

We make the following contributions: 

1. Circuit-level bitcell characterization. We perform detailed circuit-level charac-
terization combining a commercial 16nm CMOS technology and prominent STT 
[30] and SOT [31] models from the literature to iterate through our framework 
in an end-to-end manner to demonstrate the flexibility of DeepNVM++ [19] for  
future studies. 

2. Microarchitecture-level cache design exploration. We use NVSim [32] to  
perform a fair comparison between SRAM, STT-MRAM, and SOT-MRAM by 
incorporating the circuit-level models developed in 1) using 16nm technology 
and choosing the best cache configuration for each of them. 

3. Iso-capacity analysis. To compare the efficacy of magnetic random access 
memory (MRAM) caches to conventional SRAM caches, we perform our novel 
iso-capacity analysis based on actual platform profiling results for the memory 
behavior of various DNNs by using the Caffe framework [33] on a high-end 
NVIDIA 1080 Ti GPU (implemented in 16nm technology) for the ImageNet 
dataset [34]. 

4. Iso-area analysis. Because of their different densities, we compare SRAM and 
NVM caches in an iso-area analysis to quantify the benefits of higher density 
of NVM technologies on DL workloads running on GPU platforms. Since the 
existing platforms do not support resulting iso-area cache sizes, we extend the 
GPGPU-Sim [35] simulator to run DL workloads and support larger cache 
capacities for STT-MRAM and SOT-MRAM. 

5. Scalability analysis. Finally, we perform a thorough scalability analysis and 
compare SRAM, STT-MRAM, and SOT-MRAM in terms of power, perfor-
mance, and area to project and gauge the efficacy of NVM- and SRAM-based 
caches for DL workloads as cache capacity increases. 

To the best of our knowledge, putting everything together, DeepNVM++ [19] is  
the first comprehensive framework for cross-layer characterization, modeling, and 
analysis of emerging NVM technologies for deep learning workloads running on 
GPU platforms. Our results show that in the iso-capacity case, STT-MRAM and 
SOT-MRAM achieve up to .3.8× and .4.7× energy-delay product reduction and 
.2.4× and .2.8× area reduction compared to SRAM baseline, respectively. In the 
iso-area case, STT-MRAM and SOT-MRAM achieve up to .2.2× and .2.4× energy-
delay product reduction and accommodate .2.3× and .3.3× larger cache capacity 
compared to SRAM, respectively.
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Fig. 2 Overview of the DeepNVM++ [19] cross-layer analysis flow 

Next, we present our cross-layer analysis framework, as shown in Fig. 2. First,  
we present the background and related work on non-volatile memory technologies 
(Sect. 2). Next, we show our detailed circuit-level characterization analysis using 
CMOS, STT, and SOT device models (Sect. 3.1). After developing bitcell models, 
we present our microarchitecture-level cache design methodology to obtain cache 
area, latency, and energy results (Sect. 3.2). Next, we describe our iso-capacity 
analysis flow in which we gather actual memory statistics through GPU profiling 
(Sect. 3.3). Furthermore, we detail our iso-area analysis in which we extend 
GPGPU-Sim to run deep learning workloads and support larger cache capacities 
for STT-MRAM and SOT-MRAM (Sect. 3.4). Next, we present experimental 
results demonstrating the efficiency of STT-MRAM and SOT-MRAM over the 
conventional SRAM for iso-capacity and iso-area cases (Sect. 4). We then discuss 
the implications of the results shown in this chapter (Sect. 5). Finally, we conclude 
this chapter by summarizing the results (Sect. 6).
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2 Related Work 

Although 16nm has become a commonplace technology for high-end customers of 
foundries, an intriguing inflection point awaits the electronics community as we 
approach the end of the traditional density, power, and performance benefits of 
CMOS scaling [36, 37]. To move beyond the computing limitations imposed by 
staggering CMOS scaling trends, MRAM has emerged as a promising candidate 
[28]. 

The enabling technology of MRAM consists of magnetic tunnel junction (MTJ) 
pillars that can store data as a resistive state [38]. An MTJ pillar consists of a thin 
oxide film sandwiched by two ferromagnetic layers. One of these ferromagnetic 
layers has a fixed magnetization that serves as a reference layer. The magnetization 
of the other layer can be altered by changing the direction of the current that flows 
through the pillar. If the magnetization of the free layer and the reference layer are 
in parallel, the device is in the low-resistance state. If the magnetization of layers is 
in opposite directions, the device is in the high-resistance state [39]. 

STT bitcells [40] use an MTJ pillar as their core storage element and an 
additional access transistor to enable read and write operations. Although STT 
bitcells offer non-volatility, low read latency, and high endurance [41], the write 
current is also high [42–44], which increases power consumption. To this end, SOT 
bitcells have been proposed to overcome the write current challenges by isolating the 
read and write paths [45]. Because the read disturbance errors are much less likely in 
SOT bitcells, both read and write access devices can be tuned in accordance with the 
lower current requirements [46, 47]. The read and write current requirements of STT 
and SOT bitcells can have a crucial impact on the eventual MRAM characteristics 
because they affect the CMOS access transistors, bitcell area, and peripheral logic. 
Thus, a comparison of these bitcells and the traditional SRAM merits a meticulous 
analysis that takes these factors into account. 

Prior work has proposed effective approaches to overcome the shortcomings of 
emerging NVM technologies such as using hybrid SRAM- and NVM-based caches 
that utilize the complementary features of different memory technologies [48–51], 
relaxing non-volatility properties to reduce the high write latency and energy [52– 
55], and implementing cache replacement policies [56–58] for higher level caches 
such as L1 caches and register files. However, NVM technology appears to be 
a better choice for lower level caches such as L2 or L3 caches due to its long 
write latency and high cell density. Higher level L1 caches are latency-sensitive 
and optimized for performance, whereas last-level caches are capacity-sensitive and 
optimized for a high hit rate to reduce off-chip memory accesses. Therefore, NVM-
based caches provide a better use case for replacing SRAM in last-level caches due 
to their high cell density when compared to SRAM-based caches. To this end, we 
evaluate power, performance, and area of NVM technology when used for last-level 
caches in GPU platforms. 

While prior work has shown the potential of NVM technologies for generic 
applications to some extent, there is a need for a cross-layer analysis framework
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to explore the potential of NVM technologies in GPU platforms, particularly 
for DL workloads. The most commonly used modeling tool for emerging NVM 
technologies is NVSim [32], a circuit-level model for performance, energy, and 
area estimation. However, NVSim is not sufficient to perform a detailed cross-layer 
analysis for NVM technologies for DL workloads since it does not take architecture-
level analysis and application-specific memory behavior into account. To this end, 
prior work has proposed cross-layer evaluation frameworks for non-traditional 
architectures such as processing-in-memory-based analog and digital architectures 
[59–61]. However, there is still a need for a cross-layer analysis framework to 
perform design space exploration of NVM technologies for GPU architectures for 
DL workloads. In this chapter, we incorporate NVSim with our cross-layer modeling 
and optimization flow including novel architecture-level iso-capacity and iso-area 
analysis flow to perform design space exploration for conventional SRAM and 
emerging NVM caches for DL workloads running on GPU architectures. 

3 Methodology 

3.1 Circuit-Level NVM Characterization 

A vast majority of work in the literature use simple bitcell models [46] to assess 
the PPA of corresponding cache designs. Because bitcells are the core components 
of the memory, the methodology to calculate the bitcell latency, energy, and area 
is crucial for accurate comparisons. To this end, we use a commercial 16nm bitcell 
design as a baseline as we model the STT and SOT bitcells. This technology node 
also matches the fabrication technology of the GPU platform that we use to gather 
actual memory statistics in Sect. 3.3. 

The key bitcell parameters needed for cache modeling are read and write currents 
and latency values for high-to-low and low-to-high resistive transitions. These 
parameters can be optimized by tuning the size of the access transistors. While 
larger access transistors enable faster reads and writes, they increase the energy 
consumption and the bitcell layout size. The optimal sizing of the access transistor 
and the array architecture varies based on the bitcell type. The access transistor 
sizing optimization is crucial since it impacts the eventual PPA characteristics of the 
bitcell and the cache. To address the array architecture differences between STT and 
SOT MRAM for a fair comparison, we performed transient simulations. 

For our simulations, we used perpendicular to the plane STT [30] and SOT [31] 
models and a commercial 16nm FinFET model that takes post-layout effects into 
account. To find the latency and energy parameters, we used parameterized SPICE 
netlists wherein the read/write pulse widths were modulated to the point of failure. 
Furthermore, we swept a range of fin counts for the access devices to find the 
optimal balance between the latency, energy, and area. For the transient SPICE 
simulations, we picked the FinFET models corresponding to the worst delay and
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Table 1 STT-MRAM and SOT-MRAM bitcell parameters after device-level characterization 

STT-MRAM SOT-MRAM 

Sense Latency (ps) 650 650 

Sense Energy (pJ) 0.076 0.020 

Write Latency (ps) 8400 (set)/7780 (reset) 313 (set)/243 (reset) 

Write Energy (pJ) 1.1 (set)/2.2 (reset) 0.08 (set)/0.08 (reset) 

Fin Counts 4 (read/write) 3 (write) + 1 (read) 

Area (normalized) 0.34.a 0.29. a

a Area is normalized with respect to the foundry SRAM bitcell 

power scenarios. To calculate the bitcell area for the 16nm layout design rules, we 
used the bitcell area formulations provided in prior work [62]. 

We summarize the obtained bitcell parameters in Table 1. The sensing delay is 
measured from wordline activation to the point where the bitline voltage difference 
reaches 25mV. The sense energy is the integration of the power consumed over 
the sensing time window. For both magnetic flavors, the sense delay is similar; 
however, SOT-MRAM is more energy-efficient in terms of read operation owing 
to the separation of the read/write terminals. The write latency in this context refers 
to the time between the arrival of the write-enable signal to the access transistor 
and a complete magnetization change for the MTJ. The write latencies for STT and 
SOT bitcells are significantly different, as expected. This difference can be seen 
in the energy values as well. The access device is more than double the width of 
the technology minimum device in order to enable a larger current flow to the STT 
bitcell, causing the 1T1R STT bitcell to occupy a larger area than the 2T1R SOT 
bitcell. The isolation of the read and write terminals in the SOT bitcell allows for a 
smaller write access device. The area values are normalized by the foundry bitcell 
area. We highlight the significant area difference and demonstrate its impact on the 
cache characteristics in Sect. 3.2. We use these bitcell parameters for energy-delay-
area product (EDAP)-optimized cache design exploration as discussed in the next 
section. 

3.2 Microarchitecture-Level Cache Design Exploration 

In order to demonstrate the impact of using STT and SOT bitcells in L2 caches, 
we use NVSim [32], a circuit-level analysis framework that delivers energy, latency, 
and area results. After developing NVSim-compatible bitcell models as described in 
Sect. 3.1, we analyzed a range of cache capacities (1MB to 32MB) for all possible 
configurations and cache access types to demonstrate the potential of STT-MRAM 
and SOT-MRAM as the cache capacity tends to grow. Such a scalability study will 
help in determining the benefits of switching from conventional SRAM- to NVM-
based caches in future GPU platforms as depicted by the trend in Fig. 1.
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Algorithm 1: EDAP-optimal cache tuning algorithm 
Input: Memory type mem, Cache capacity cap, Optimization target opt , ... 
... Access type acc 
Output: EDAP-tuned cache configuration 

1 mem ∈ M = {SRAM, ST  T , SOT }; 
2 cap ∈ C = {1, 2, 4, 8, 16, 32}; 
3 opt ∈ O = {ReadLatency ,WriteLatency, ReadEnergy,WriteEnergy, ReadEDP , ... 

4 ...WriteEDP , Area, Leakage}; 
5 acc ∈ A = {Normal, F ast, Sequential}; 
6 for  each mem ∈ M do 
7 for  each cap ∈ C do 
8 Q

′ ← ∞; 
9 for  each opt ∈ O do 
10 for each acc ∈ A do 
11 Q ← calculate(EDAP); 

12 if Q < Q
′
then 

13 Q
′ ← Q; 

14 end 
15 end 
16 end 
17 T unedConf ig.append(argv(Q)); 
18 end 
19 end 
20 return T unedConf  ig; 

Algorithm 1 depicts the EDAP-optimal cache tuning algorithm. Based on 
the optimization target used in NVSim, the cache PPA values vary substantially. 
Therefore, we independently choose the best configuration for each type of memory 
technology in terms of EDAP metric to perform a fair comparison that encompasses 
all and not just one of the design constraint dimensions. 

As described in Sect. 3.1, we use a commercial 16nm bitcell design. To 
ensure a correct analysis, we modified the internal technology file of NVSim to 
the corresponding 16nm technology parameters. Next, we compare SRAM, STT-
MRAM, and SOT-MRAM for various cache capacities in terms of area, latency, and 
energy results. Based on these, we determine the EDAP for the cache (as denoted 
by calculate(EDAP) in Algorithm 1). 

Table 2 shows the latency, energy, and area results that correspond to the cache 
capacity of NVIDIA GTX 1080 Ti GPU (3MB) and to the larger MRAM caches 
that fit into the same area of SRAM baseline. We convert read and write latencies 
to clock cycles based on 1080 Ti GPU’s clock frequency for our calculations. For 
STT-MRAM and SOT-MRAM, we show parameters for both iso-capacity and iso-
area when compared to SRAM. We use these parameters to evaluate the workload-
dependent impact of memory choices using DL workloads with diverse structures 
and multiply–accumulate operation (MAC) configurations. 

The energy and latency benefits of STT-MRAM and SOT-MRAM depend on 
the data characteristics of a given workload. To account for differences in the data-
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Table 2 Latency, energy, and area results for SRAM, STT-MRAM, and SOT-MRAM caches for 
iso-capacity and iso-area 

STT-MRAM SOT-MRAM 

SRAM Iso-capacity Iso-area Iso-capacity Iso-area 

Capacity (MB) 3 3 7 3 10 

Read Latency (ns) 2.91 2.98 4.58 3.71 6.69 

Write Latency (ns) 1.53 9.31 10.06 1.38 2.47 

Read Energy (nJ) 0.35 0.81 0.93 0.49 0.51 

Write Energy (nJ) 0.32 0.31 0.43 0.22 0.40 

Leakage Power (mW) 6442 748 1706 527 1434 

Area (mm2) 5.53 2.34 5.12 1.95 5.64 

Table 3 Configurations for DNNs under consideration 

AlexNet [63] GoogLeNet [64] VGG-16 [65] ResNet-18 [66] SqueezeNet [67] 

Top-5 Error (%) 16.4 6.7 7.3 10.71 16.4 

CONV Layers 5 57 13 17 26 

FC Layers 3 1 3 1 0 

Total Weights 61M 7M 138M 11.8M 1.2M 

Total MACs 724M 1.43G 15.5G 2G 837M 

related read/write characteristics, we used a simple model where we multiply the 
number of read and write transactions by the corresponding latency and energy 
values for those operations. 

Implications in Architecture-Level Analysis To gauge the benefits of using 
MRAM technology, we consider two scenarios: (i) First, one could replace the 
SRAM cache in a GPU with the same capacity MRAM with a smaller area. (ii) 
Alternatively, by using the same area dedicated to the cache, one can increase the on-
chip cache capacity, thereby reducing costly DRAM traffic. We analyze and discuss 
both approaches through platform profiling results for iso-capacity scenario and a 
set of architecture-level simulations for iso-area scenario. 

3.3 Architecture-Level Iso-Capacity Analysis 

As the target platform to demonstrate our work, we use a high-end NVIDIA GTX 
1080 Ti GPU that is fabricated in a commercial 16nm technology node that also 
matches our bitcell and cache models. We use the Caffe [33] framework to run 
various DNNs such as AlexNet [63], GoogLeNet [64], VGG-16 [65], ResNet-18 
[66], and SqueezeNet [67] for the ImageNet [34] dataset as shown in Table 3. 
Our analysis is generalizable to other types of neural network architectures since 
we cover a wide range of DNN configurations with various workload characteris-
tics. Furthermore, we also use the high-performance conjugate gradients (HPCG)
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Fig. 3 Profiling results for L2 cache read/write ratio for various workloads 

[68] benchmark, a widely used high-performance computing (HPC) workload, to 
demonstrate the generalizability of our analysis to different workloads besides deep 
learning applications. 

We use the NVIDIA profiler [69] to obtain the device memory and L2 cache 
read and write transactions to better understand both on-chip and off-chip memory 
behavior of various deep learning and HPC workloads. To this end, Fig. 3 shows 
the profiling results for L2 cache read/write ratio for various deep learning and HPC 
workloads. In particular, we run the HPCG benchmark with different input local 
subgrid dimensions such as 4. ×4. ×4, 8. ×8. ×8, 16. ×16. ×16, 32. ×32. ×32, 64. ×64. ×64, 
and 128. ×128. ×128. We show that the ratio of the total number of read transactions 
to the total number of write transactions in L2 cache varies significantly from 2 
to 26. Therefore, these profiling results also show that we cover a wide range 
of workloads with different workload characteristics in our analysis. To this end, 
we use 128. ×128. ×128, 32. ×32. ×32, and 8. ×8. ×8 workload configurations for our 
analysis in the rest of the chapter that we refer to as HPCG-L, HPCG-M, and HPCG-
S, respectively. 

3.4 Architecture-Level Iso-Area Analysis 

Since the iso-area larger capacities enabled by higher density NVM implementa-
tions do not exist in the existing platforms, we use GPGPU-Sim [35] to explore 
power and performance implications of having these larger L2 caches in GPU 
architectures for DNN workloads. For comparison, we model the high-end NVIDIA



Efficient Deep Learning Using Non-volatile Memory Technology in GPU Architectures 235

Table 4 GPGPU-Sim 
configurations 

NVIDIA GTX 1080 Ti 

Number of Cores 28 

Number of Threads/Core 2048 

Number of Registers/Core 65,536 

L1 Data Cache 
48 KB, 128 B line, 

6-way LRU 

L2 Data Cache 
128 KB/channel, 128 B line, 

16-way LRU 

Instruction Cache 
8 KB, 128 B line, 

16-way LRU 

Number of 
4 

Schedulers/Core 

Core Frequency 1481 MHz 

Interconnect Frequency 2962 MHz 

L2 Cache Frequency 1481 MHz 

Memory Frequency 2750 MHz 

GTX 1080 Ti GPU. The configurations for NVIDIA GTX 1080 Ti GPU are shown 
in Table 4. We extend the GPGPU-Sim simulator to support the cache capacity 
of NVIDIA GTX 1080 Ti GPU. This GPU is built using a commercial 16nm 
technology node that matches our bitcell and cache models. In particular, for 
GPGPU-Sim compatibility, we set L2 cache capacity to 3MB. We use this capacity 
for our analysis in the rest of the chapter. We measure the number of DRAM 
transactions to quantify and better understand the relationship between larger L2 
caches and the overall system power and performance. As a DNN benchmark, we 
use AlexNet [63] with the ImageNet [34] dataset that is provided by the DarkNet 
[70] framework. We extend DarkNet source code to enable deep learning workloads 
on GPGPU-Sim. 

4 Experimental Results 

We analyze STT-MRAM and SOT-MRAM in terms of energy, performance, and 
area results by using GPU profiling results for both iso-capacity and iso-area cases 
in Sects. 4.1 and 4.2, respectively. In Sect. 4.2, we use iso-area cache parameters as 
shown in Table 2, and we use GPGPU-Sim to quantify the DRAM access reduction 
in the iso-area case at larger cache capacities. We include DRAM accesses in our 
performance and energy calculations for iso-area case. In Sect. 4.3, we perform a 
scalability analysis to project the implications of the current GPU trend shown in 
Fig. 1 on performance and energy results.
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4.1 Performance and Energy Results for Iso-Capacity 

By combining the actual technology-dependent latency and energy metrics from 
Table 2, we can perform a performance and energy analysis for replacing conven-
tional SRAM caches with MRAM caches. We choose batch size 4 for inference and 
64 for training for our workloads as it is typically used in related work [71]. 

Figure 4 shows normalized dynamic energy and leakage energy breakdown 
results for NVIDIA GTX 1080 Ti GPU based on actual platform memory statistics 
and our MRAM cache models at the same cache capacity. We use our cache 
parameters and profiling results to calculate results for various DNNs for both 
inference and training workloads as well as HPCG workloads with different input 
sizes. 

Fig. 4 Dynamic energy (top chart) and leakage energy (bottom chart) (lower is better) normalized 
with respect to SRAM by using NVMs with iso-capacity (3MB) for inference (I) and training (T) 
stages
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In Fig. 4, we observe that STT-MRAM consumes .2.2× more dynamic energy, 
whereas SOT-MRAM has .1.3× more dynamic energy on average when compared 
to the SRAM baseline. Furthermore, our results show that 83% of the total dynamic 
energy of SRAM comes from read operations, whereas write operations only make 
for 17% of all transactions on average across deep learning workloads. For HPCG 
workloads, read operations take 96% of the total dynamic energy of SRAM, and 
write operations only make for 4% of the total energy. Our profiling results also 
support these findings as read operations dominate write operations in these DL and 
HPCG workloads. 

On the other hand, Fig. 4 also shows that STT-MRAM and SOT-MRAM 
provide .6.3× and .10× lower leakage energy on average when compared to SRAM, 
respectively. Based on this result, Fig. 5 shows significant total normalized energy 
reduction of STT-MRAM and SOT-MRAM when compared to SRAM given that 
leakage energy dominates the total energy. In more detail, STT-MRAM and SOT-
MRAM achieve .5.3× and .8.6× energy reduction on average across all workloads 
compared to SRAM baseline, respectively, due to their significantly low leakage 
energy. Moreover, Fig. 5 shows that STT-MRAM and SOT-MRAM provide up to 
.3.8× and .4.7× EDP reduction and .2.4× and .2.8× area reduction, respectively. 

The Impact of Batch Size on EDP We perform this study to better understand 
the relationship between batch size and its implications for performance and energy 
results of SRAM, STT-MRAM, and SOT-MRAM. Figure 6 shows the impact of 
batch size on EDP results for AlexNet during training and inference stages based 
on NVIDIA GTX 1080 Ti memory profiling statistics. We show that batch size 
significantly affects the improvement of STT-MRAM and SOT-MRAM for training. 
For training, STT-MRAM provides .2.3× to .4.6× EDP reduction as batch size 
increases. On the other hand, SOT-MRAM provides .7.2× to .7.6× EDP reduction 
when compared to SRAM baseline. For inference, STT-MRAM and SOT-MRAM 
achieve .4.1× to .5.4× and .7.1× to .7.3× EDP reduction, respectively. These 
results also confirm the different workload characteristics of training and inference. 
STT-MRAM provides higher EDP reduction for training workloads as batch size 
increases. On the other hand, SOT-MRAM follows the same pattern for inference 
workloads due to their different access characteristics as shown in Table 2. We  
observe that training workloads become more read dominant, whereas inference 
workloads have lower read/write ratio as batch size increases. 

4.2 Performance and Energy Results for Iso-Area 

As in the iso-capacity study, for iso-area analysis, we use a batch size 4 for inference 
and 64 for training. Figure 7 shows the reduction in the total number of DRAM 
accesses as L2 cache capacity increases. We use GPGPU-Sim and start with the 
baseline configuration that is 3MB for NVIDIA GTX 1080 Ti and double its cache 
capacity up to 24MB to quantify the percentage of DRAM access reduction for STT-
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Fig. 5 Iso-capacity (3MB) energy (top chart) and energy-delay product (bottom chart) for NVM-
based caches (lower is better) normalized with respect to SRAM-based caches for inference (I) and 
training (T) stages. DRAM energy and latency are also included in EDP results 

MRAM and SOT-MRAM at larger cache capacities. Figure 7 shows that replacing 
SRAM with STT-MRAM and SOT-MRAM equivalents that fit into the same area 
significantly reduces the total number of DRAM transactions by 14.6% and 19.8%, 
respectively, for 1080 Ti GPU. 

Figure 8 shows normalized dynamic energy and leakage energy breakdown 
results for 1080 Ti GPU based on actual platform memory statistics and our MRAM 
cache models at the same area. We use our iso-area cache parameters in which STT-
MRAM (7MB) and SOT-MRAM (10MB) have larger cache capacities for the same 
area budget with SRAM. We use these cache parameters and profiling results to 
calculate results for various DNNs for both inference and training workloads and 
HPCG workloads with various input sizes.
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Fig. 6 Impact of batch size on energy-delay product (lower is better) normalized with respect to 
SRAM by using NVMs with iso-capacity (3MB) for AlexNet for training (top chart) and inference 
(bottom chart) 

Fig. 7 Simulation results for the reduction in the total number of DRAM accesses in percentage
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Fig. 8 Dynamic energy (top chart) and leakage energy (bottom chart) (lower is better) normalized 
with respect to SRAM by using STT-MRAM (7MB) and SOT-MRAM (10MB) with iso-area for 
inference (I) and training (T) stages 

In Fig. 8, we observe that STT-MRAM has .2.5× dynamic energy, whereas 
SOT-MRAM has .1.5× dynamic energy on average when compared to SRAM 
baseline. On the other hand, Fig. 8 also shows that STT-MRAM and SOT-MRAM 
provide .2.2× and .2.3× lower leakage energy on average when compared to SRAM, 
respectively. Based on this result, STT-MRAM and SOT-MRAM achieve . 2× and 
.2.2× lower energy when compared to SRAM. 

Furthermore, Fig. 9 shows that STT-MRAM and SOT-MRAM provide . 1.2×
EDP reduction and .2.3× and .3.3× larger cache capacity on average across all 
workloads when compared to SRAM and off-chip DRAM accesses are not included 
in the calculations, respectively. When DRAM accesses are included in determining
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Fig. 9 Iso-area energy-delay product results for STT-MRAM (7MB) and SOT-MRAM (10MB) 
(lower is better) normalized with respect to SRAM-based caches for inference (I) and training (T) 
stages without (top chart) and with (bottom chart) DRAM energy and latency 

EDP, as shown in Fig. 9, STT-MRAM and SOT-MRAM provide . 2× and .2.3× EDP 
reduction on average across all workloads when compared to SRAM, respectively. 

We show that although the cache latency and energy results for STT-MRAM and 
SOT-MRAM do not outperform SRAM results at larger cache capacities as shown 
in Table 2, they do outperform SRAM when costly off-chip DRAM accesses are 
also considered in EDP calculations. To this end, Chen et al. [13] showed that the 
normalized energy cost of a global buffer access relative to a MAC operation is . 6×, 
whereas a DRAM access is .200× for a machine learning hardware accelerator. By 
the same token, the higher cell density of NVM can be exploited to shift the memory 
traffic from DRAM to L2 cache to further improve power and performance of the 
overall system. This approach can dramatically reduce the total number of costly
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DRAM accesses and reduce data movement, which is a daunting impediment for 
achieving energy-efficient machine learning hardware [13, 71–74]. 

4.3 Scalability Analysis 

As shown in Fig. 1, the current trend for NVIDIA GPUs is toward increasing L2 
size with each new GPU generation. The most recent high-end NVIDIA GPUs have 
even up to 6MB L2 cache to further improve performance of the system by reducing 
costly off-chip memory accesses. However, SRAM has a scalability problem due to 
its high leakage and large bitcell area, which poses a significant challenge to further 
continue the current GPU trend. To this end, non-volatile memory technologies 
come to the rescue of future GPU architectures since their PPA scale better as cache 
capacity increases. Therefore, there is a need for a scalability analysis to project and 
quantify performance and energy gains that can be achieved by using more scalable 
memory solutions. 

To this end, we perform a scalability analysis by first comparing SRAM, STT-
MRAM, and SOT-MRAM for various cache capacities in terms of area, latency, 
energy results following the DeepNVM++ framework methodology as described in 
Fig. 2. Therefore, each memory technology is optimized for EDAP objective at each 
cache capacity independently to perform a fair comparison among SRAM, STT-
MRAM, and SOT-MRAM. Next, we evaluate and show how NVM-based caches 
behave in terms of performance and energy when compared to conventional SRAM-
based caches for deep learning workloads in a scalability analysis. 

Area Figure 10a demonstrates the impact of higher cell density of MRAMs on 
the area of caches compared to SRAM. The area difference between SRAM 
and the MRAM variants grows significantly as the cache capacity increases. The 
main reason of this difference comes from the bitcell area difference between 
SRAM and MRAMs as shown in the last row of Table 1. Particularly for deeply 
scaled technology nodes wherein interconnects account for a significant portion of 
parasitics, bigger bitcells translate to longer wires, bigger buffers, and peripheral 
logic. Therefore, STT-MRAM and SOT-MRAM caches become more area-efficient 
when compared to SRAM caches as cache capacity increases. 

Latency Figure 10b shows that for capacities smaller than 3MB SRAM offers 
lower read latency, whereas both MRAM variants have lower read latency than 
SRAM beyond 4MB. In terms of write latency, STT-MRAM has always the highest 
among all memory technologies due to its inherent device characteristic. In contrast, 
the write latency of SOT-MRAM becomes increasingly smaller than that of SRAM. 
Moreover, the write latency of SRAM almost matches that of STT-MRAM at 32MB. 

Energy In terms of read access energy, Fig. 10c shows that 7MB is a breakeven 
point where SOT-MRAM becomes more efficient than SRAM, whereas STT-
MRAM clearly has the highest read energy among all memories. Regarding write
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Fig. 10 Cache capacity scaling results for SRAM, STT-MRAM, and SOT-MRAM for (a) area, 
(b) latency, and (c) energy metrics 

access energy, SOT-MRAM is the most efficient option, whereas SRAM consumes 
the most energy for a write operation beyond 3MB. 

Based on these PPA results, we perform a detailed scalability analysis for SRAM, 
STT-MRAM, and SOT-MRAM. In Figs. 11, 12, 13, we show the normalized energy, 
latency, and EDP results with respect to SRAM for STT-MRAM and SOT-MRAM 
for various cache capacities, respectively. As it can be seen, STT-MRAM and SOT-
MRAM provide lower energy and latency results as cache capacity increases. 

In terms of energy, STT-MRAM and SOT-MRAM provide lower energy as cache 
capacity increases. Specifically, STT-MRAM and SOT-MRAM caches achieve up 
to .31.2× and .36.4× energy reduction as cache capacity increases, respectively. In 
terms of latency, STT-MRAM and SOT-MRAM have higher latency results for 
cache capacities up to 4MB, whereas both MRAM variants have lower latency 
results when compared to SRAM beyond that point. In more detail, SRAM provides 
up to .3.2× and . 2× latency reduction for small cache capacities when compared 
to STT-MRAM and SOT-MRAM, respectively. However, STT-MRAM and SOT-
MRAM achieve up to .2.1× and .2.6× latency reduction as cache capacity increases,
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Fig. 11 Mean energy results across all workloads (lower is better) normalized with respect to 
SRAM for various cache capacities for inference (top chart) and training (bottom chart) stages. 
Error bars show standard deviation across workloads 

respectively. In terms of EDP, we show that STT-MRAM and SOT-MRAM provide 
up to .65× and .95× EDP reduction when compared to SRAM, respectively. 
Therefore, we conclude that for latency-critical applications, SRAM-based caches 
become a more suitable option when compared to MRAM variants for small cache 
capacities, whereas MRAMs provide more energy-efficient solutions. Although 
SRAM provides lower EDP results for smaller cache capacities, STT-MRAM and 
SOT-MRAM outperform SRAM by orders of magnitude for larger cache capacities 
due to their better PPA scalability when compared to SRAM. These results show 
that a significant portion of the overall system energy or latency is saved and can be 
used for additional on-chip resources or capabilities that are not available now.
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Fig. 12 Mean latency results across all workloads (lower is better) normalized with respect to 
SRAM for various cache capacities for inference (top chart) and training (bottom chart) stages. 
Error bars show standard deviation across workloads 

5 Discussion 

In this section, we discuss the implications of the results shown in this chapter. We 
also share the potential future directions to guide our community to better explore 
the use of non-volatile memories for deep learning workloads in different design 
spaces. 

Scalability Is a Major Problem for SRAM As we show in Fig. 10 and Sect. 4.3, 
one of the key challenges for the current GPU architectures is the scalability problem 
of SRAM due to its significantly high leakage energy and large area when compared
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Fig. 13 Mean energy-delay product results across all workloads (lower is better) normalized with 
respect to SRAM for various cache capacities for inference (top chart) and training (bottom chart) 
stages. Error bars show standard deviation across workloads 

to STT-MRAM and SOT-MRAM. We observe that there is a current trend in GPU 
architectures toward increasing L2 cache capacity, and we show that SRAM has 
significant scalability problems in terms of area, latency, and energy. We show that 
STT-MRAM and SOT-MRAM have promising solutions for larger cache capacities 
that can maintain the current trend shown in Fig. 1 with increasing performance and 
energy benefits. 

Implications of Dense NVM Caches on Logic Usage Figure 10a shows the area  
results for SRAM, STT-MRAM, and SOT-MRAM for various cache capacities. We 
note that STT-MRAM and SOT-MRAM provide increasingly smaller area than 
SRAM as cache capacity increases. For the same cache capacity, STT-MRAM
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and SOT-MRAM provide 58% and 65% area reduction on average, respectively. 
Therefore, the remaining whitespace can be utilized by cramming more processing 
elements, register files, or L2 cache on the die. This analysis is left for future work. 

As CMOS scaling issues limit the affordable improvement of computing sys-
tems, our results from device-level simulations to actual GPU profiling show that 
MRAMs are extremely promising candidates. Particularly, as STT-MRAM and 
SOT-MRAM fabrication processes become more mature, system-level benefits of 
STT-MRAM and SOT-MRAM can be maximized, enabling faster and more energy-
efficient computation. 

Mobile Design Space Exploration for NVM In this chapter, we explore the GPU 
architecture design space to unveil the potential of non-volatile memories for deep 
learning workloads. Having said that, we note that inference at the edge devices 
also becomes a common practice for many service providers such as Google [75], 
Amazon [76], and Facebook [77] to improve user experience by reducing latency 
and preserving the private user data on device [78]. To this end, Wu et al. [77] 
shows that a majority of mobile inference for Facebook workloads run on mobile 
CPUs. Mobile platforms have various resource constraints such as energy, memory, 
and computing capabilities. Thus, last-level caches of mobile CPUs or hardware 
accelerators can also be replaced by STT-MRAM and SOT-MRAM to improve 
performance and energy by reducing leakage energy and costly off-chip memory 
accesses due to their non-volatility and higher cell density [79–82]. Therefore, the 
design space exploration of STT-MRAM and SOT-MRAM for mobile CPUs and 
hardware accelerators for inference workloads merits further research. 

6 Conclusion 

In this chapter, we present the first cross-layer analysis framework to characterize, 
model, and analyze various NVM technologies in GPU architectures for deep learn-
ing workloads. Our novel framework can be used to further explore the feasibility 
of emerging NVM technologies for DL applications for different design choices 
such as technology nodes, bitcell models, DL workloads, cache configurations, 
optimization targets, and target platforms. 

Our results show that in the iso-capacity case, STT-MRAM and SOT-MRAM 
provide up to .3.8× and .4.7× EDP reduction and .2.4× and .2.8× area reduction 
when compared to SRAM, respectively. In the iso-area case, STT-MRAM and SOT-
MRAM achieve up to .2.2× and .2.4× EDP reduction and accommodate .2.3× and 
.3.3× cache capacity when compared to SRAM, respectively. Finally, we perform a 
scalability analysis and show that STT-MRAM and SOT-MRAM outperform their 
SRAM counterpart by orders of magnitude in terms of energy-delay product for 
large cache capacities. The newly created energy or latency slack can be used for 
additional on-chip resources or capabilities that are currently not possible.
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SoC-GANs: Energy-Efficient Memory 
Management for System-on-Chip 
Generative Adversarial Networks 

Rehan Ahmed, Muhammad Zuhaib Akbar, Muhammad Abdullah Hanif, 
and Muhammad Shafique 

1 Introduction 

Deep neural networks (DNNs) process the information artificially based on math-
ematical models in order to mimic the human-level perception. They are widely 
used in emerging fields such as robotics, language processing, and computer vision, 
to name a few. The usage of DNNs is a two-step process: they are first trained, 
where the training stage tunes the network parameters, and then put in the inference 
stage, where information from the test data is inferred based on the trained network 
parameters. Conventionally, supervised learning is used to train DNNs [5], but this 
technique requires a significant amount of labeled data for training. Alternatively, 
semi-supervised and unsupervised learning have gained a lot of traction as these 
techniques can infer information from un-tagged data [1, 6, 10, 11]. 

Generative adversarial networks (GANs) are the most interesting idea to generate 
synthetic but realistic examples from the original dataset using unsupervised learn-
ing [3]. GANs consist of two neural network models: generator and discriminator 
as shown in Fig. 1. The generator model competes against the discriminator model 
(an adversary) that determines whether a sample generated by the generator belongs 
to the data distribution of the training samples or not [11]. During the training phase, 
both the networks are trained as a two-player game with the objective to outperform 
each other. The objective of the generator network is to generate samples from the 
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Fig. 1 Deep-convolution-based generative adversarial network (DCGAN) architecture showing 
the generator and discriminator models 

latent space that cannot be detected by the discriminator, while the objective of the 
discriminator network is to accurately classify examples as either generated (fake) 
or from the data (real). Both the two models are trained together until the generator 
model starts to generate the plausible examples, therefore making GANs extremely 
useful in data generation applications such as text to image synthesis [8], image 
classifications [7], mobile robots [4], and video prediction [2], to name a few. 

GANs are quite computationally expensive in contrast to DNNs. One of the key 
differences in deep-convolution-based generative adversarial network (DCGAN) 
is that the max-pooling layer in conventional CNNs is replaced with the strided 
convolution, which is used in the forward-computation phases of the discriminator. 
The strided convolution operation skips output pixel computation based on a 
stride size (zero-skipping) that corresponds to a down-sampling process. Similarly, 
another key operation in DCGANs is transposed convolution (de-convolution), 
which is used in the forward-computation phases of the generator. In transposed 
convolution, the convolution operation inserts zeros in the input feature map (zero-
inserting) that corresponds to up-sampling process. Another type of convolution 
used in the training phase of GANs is four-dimensional convolution that itself 
is a convolution operation in nature, but there is no accumulation involved after 
convolving error of one layer with the output of previous layer that results in 
a four-dimensional output matrix. During weights update in discriminator layers, 
this operation is used in a similar fashion as that of strided convolution i.e., 
skipping zeros operation, whereas during weights update in generator layers, this 
operation inserts zeros similar to the transposed convolution. In most cases, these 
computations are accelerated at the software level by a server equipped with several 
CPUs and GPUs. But there is a need for more energy-efficient hardware accelerators 
for GANs as the applications are moved to a mobile form factor.
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2 Background: DCGAN Hardware Acceleration and Its 
Design Challenges 

Song et al. [9] proposed a hardware accelerator design that deals with the above 
mentioned complex computations, namely: strided convolution, transposed con-
volution, and four-dimensional convolutions. The proposed hardware design con-
sists of two main microarchitectures, namely: zero-free and output stationary 
(ZFOST) and zero-free and weight stationary (ZFWST): 

1. Zero-free and output stationary (ZFOST) Microarchitecture: The ZFOST 
microarchitecture, shown in Fig. 2, aims at accelerating strided convolution and 
transposed convolution. It is used in forward data pass and backward error pass. 
The ZFOST microarchitecture is composed of a .4 × 4 processing element (PE) 
array and an input register array. The PE array is used for processing the output, 
and the input register array is for feeding the input neurons (i.e., the pixels of an 
input feature map) to the PEs. The registers shown in green in the register array 
directly correspond to the respective PEs in the PE array, while the additional 
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Fig. 2 Zero-free output stationary architecture (ZFOST)



256 R. Ahmed et al.

Input Register Array 
R(0,0) R(0,1) R(0,2) R(0,3) 

R(1,0) R(1,1) R(1,2) R(1,3) 

R(2,0) R(2,1) R(2,2) R(2,3) 

R(3,0) R(3,1) R(3,2) R(3,3) 

R(0,4) 

R(1,4) 

R(2,4) 

R(3,4) 

R(0,5) 

R(1,5) 

R(2,5) 

R(3,5) 

PE ARRAY 

PE(0,0) PE(0,1) PE(0,2) PE(0,3) 

PE(1,0) PE(1,1) PE(1,2) PE(1,3) 

PE(2,0) PE(2,1) PE(2,2) PE(2,3) 

PE(3,0) PE(3,1) PE(3,2) PE(3,3) 

x 

R 

K 

Adder Tree 

+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

+ 
+ Out+ 

4x4 PEs 
Output 

Fig. 3 Zero-free weight stationary architecture (ZFWST) 

registers are used to allow temporal reuse of input data by shifting the content of 
the registers. 

2. Zero-free and weight stationary (ZFWST) Microarchitecture: The ZFWST 
microarchitecture, as shown in Fig. 3, is used to accelerate multi-dimensional 
convolution that is used for backpropagation to update the weights during the 
training phase. ZFWST microarchitecture consists of a .4 × 4 PE array, an input 
register array, and an adder tree. The weights are spatially shared by the PEs
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and are fed one at a time. The size of the PE array is kept at .4 × 4 to match 
the size of the minimum output feature map in DCGANs. For computations in 
this microarchitecture, the output neurons (i.e., the pixels of an output feature 
map) are unrolled, and the spatially neighboring neurons are mapped on the PE 
array where one output neuron is mapped to one PE and is kept there throughout 
its computation. The kernel weights are relayed one at a time and are spatially 
shared by the PEs in the PE array. 

In order to avoid bubbles in the computation flow of ZFOST and ZFWST 
pipelines, an efficient dataflow has also been proposed in [9]. In this flow, the 
kernel/filter weights are loaded into ZFOST and ZFWST input register arrays in 
a type-oriented format instead of being fetched in a sequential order. The type-
oriented format refers to the alignment of data based on its row and column indexes 
being even or odd in its data class. That is, pixels or weights belonging to even rows 
and even columns are considered a part of even–even type, and similarly others are 
placed in even–odd, odd–even, and odd–odd categories. 

Next, let us take a look at the dataflow for performing computations in the ZFOST 
and ZFWST microarchitectures. 

ZFOST Strided Convolution Dataflow 
Figure 4 illustrates the dataflow of strided convolution performed by ZFOST 
microarchitecture. As depicted, first even–even weights (i.e., weights with even row 
and even column indexes) are processed followed by even–odd kernel weights, then 
odd–even kernel weights, and at the end odd–odd kernel weights are processed. 
Since each PE is mapped to an output .O(ox,oy), its required input for kernel weight 
.K(kx,ky) can be computed as .I(kx+2ox,ky+2oy). Initially, all the inputs marked with 
“Red” are loaded into the input register array. Then in the next clock cycle, data 
is shifted in input register array for temporal reuse. Let us take an example, when 
the kernel weight .K(0,0) is provided to all PEs in the first clock cycle for processing, 
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Fig. 4 Strided convolution dataflow controller using ZFOST. Two out of four rows of processing 
element array are shown in this figure. Pixels with the type even–even are processed first followed 
by the even–odd, odd–even, and finally pixel with odd–odd type are processed. All weight 
contributes in the computation of each output pixel
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then all pixels marked with red are required to be loaded into the input register array, 
as shown in Fig. 5b. The data is then shifted within the input register array for the 
next two clock transitions to perform the processing on kernel weights .K(0,2) and 
.K(0,4) as illustrated in the dataflow of Fig. 4. For the fourth clock transition when the 
next even–even kernel weight .K(2,0) is broadcasted to all PEs, six new data pixels 
are required in the last row of the input register array, as shown in Fig. 5c. 

ZFOST Transposed Convolution Dataflow 
Dataflow for the transposed convolution is illustrated in Fig. 6. In transposed 
convolution, the indexes of non-zero input neurons are spaced due to zero insertion. 
Therefore, for a particular type of output neurons, only effective pixels belong to the 
same type. It means when kernel weight .K(Even,Even) is being processed, computing 
only .O(Even,Even) is effective. Similarly, kernel weights .K(Even,Odd), . K(Odd,Even)
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Fig. 5 (a) Linear arrangement of data in on-chip/off-chip memory. Data to be loaded in local 
register of ZFOST (b) during processing of K(0,0) and (c) during processing of K(2,0) 
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Fig. 6 Transposed convolution dataflow controller using ZFOST.Two out of four rows of 
processing element array are shown in this figure. In this convolution, input image pixels with a 
certain type contribute only to the output pixels of same type. Even–even type pixels are processed 
first generating the output pixels of type even–even, followed by even–odd, odd–even, and final 
odd–odd pixels are processed with kernel weights generating output pixels of odd–odd type
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and .K(Odd,Odd) contribute only in the computation of .O(Even,Odd), . O(Odd,Even)

and .O(Odd,Odd), respectively. 

ZFWST Four-Dimensional Convolution Dataflow 
The ZFWST microarchitecture, shown in Fig. 3, performs four-dimensional con-
volution. Zeros are inserted in the discriminator kernel during its backward phase 
as shown in Fig. 7. Similarly, zeros are inserted in the input data of backward 
phase in generator, as shown in Fig. 8. Therefore, ZFWST is not only responsible 
to skip zeros in input data, but also in kernel weights. In ZFWST, each PE has 
stationary kernel weight, and all PEs contribute to one output neuron using an 
adder tree as illustrated in Fig. 3. The ZFWST microarchitecture uses a similar 
input register array as that of ZFOST microarchitecture and therefore has similar 
dataflow. Figures 7 and 8 represent the dataflow of four-dimensional convolution 
during backward phase of discriminator and generator, respectively. 

It is to be noted that the need of loading multiple data points (up to 24 data 
points) into input register array, and that too in a type-oriented format, from an on-
chip memory brings a unique set of challenges. We list the key memory layout and 
management challenges as follows: 

• Linear on-chip memory does not fulfill the dataflow requirements: The data 
in the conventional on-chip memory is stored linearly, which limits the design to 
feed multiple data points to ZFOST and ZFWST microarchitectures in a single 
clock cycle. Therefore, for a 16-bit fixed-point system, each location of the on-
chip memory will store 4 data point in a cascaded form. In order to load required 
24 data points into the input register array during the first clock cycle, a total of 
12 read cycles are required to extract the relevant data from the on-chip memory. 
Moreover, since only even–even data is required during this computation, half of 
the read data will be wasted. Therefore, to implement the dataflow of Figs. 4, 6, 7, 
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Fig. 7 Four-dimensional convolution dataflow controller for discriminator using ZFWST. Two  
out of four rows of processing element array are shown in this figure. Pixels with the type even– 
even are processed first followed by the even–odd, odd–even, and finally pixel with odd–odd type 
are processed. Output has been computed with one pixel at a time after processing by all kernel 
weights in a weight stationary architecture
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Fig. 8 Four-dimensional convolution dataflow controller for generator using ZFWST. Two out 
of four rows of processing element array are shown in this figure. In this convolution, input image 
pixels with a certain type contribute only to the output pixels of same type. Being the weight 
stationary architecture, each pixel of output computed one at a time. Even–even type pixels are 
processed first generating the output pixels of type even–even, followed by even–odd, odd–even, 
and final odd–odd pixels are processed with kernel weights generating output pixels of odd–odd 
type 

and 8, a customized memory architecture is needed, which can provide multiple 
data points of input feature map from the on-chip memory in one clock cycle 
without any data wastage as per the requirements of strided, transposed, and 
four-dimensional convolution. 

• Multiple type-oriented data points required in a single clock cycle: ZFOST 
and ZFWST microarchitectures require the input data to be loaded in type-
oriented form, which becomes challenging with conventional linear memory. 
This requires a customized memory controller that intermediately re-packages 
the fetched data in type-oriented form before loading it into input register arrays. 

3 Memory-Efficient Hardware Architecture for Generative 
Adversarial Networks (GANs) 

Our work addresses the above mentioned memory-related challenges broadly by 
proposing a 2-D distributed on-chip memory array andData re-packaging units, as  
shown in Fig. 9. The 2-D distributed on-chip memory supports the simultaneous data 
loading as required by the non-standard GAN convolutions: strided/transposed/four-
dimensional convolution. And the data re-packaging units re-arrange the data in 
type-oriented format before storing it in on-chip memory. It is to be noted that 
we implemented the zero-free output stationary (ZFOST) and zero-free weight 
stationary (ZFWST) microarchitectures along with the custom convolution dataflow 
controllers, S-CONV, T-CONV, and W-CONV, as proposed in [9] and discussed 
in Sect. 2. Altogether, our proposed distributed on-chip memory, its correspond-
ing distributed memory controller, data re-packaging units, and custom dataflow
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Fig. 9 Propose Architecture of Generative Adversarial Network 

controllers make up the complete hardware architecture for GAN acceleration. We 
describe our proposed hardware blocks in the following sections. 

3.1 2-D Distributed On-Chip Memory Array 

The proposed 2-D distributed on-chip memory array structure is shown in Fig. 10. 
The overall structure has two major parts, namely RAM-Block and RAM-Channel. 
Each RAM-Block consists of small-sized SRAM blocks that store the same type of 
input data, in a type-oriented form. For example, input pixels .I(even,even) are stored 
in RAM-Block 0. Similarly, input pixels .I(even,odd), .I(odd,even), .I(odd,odd) are stored 
in RAM-Blocks 1, 2, and 3, respectively. Each RAM-Block is further divided into 
four RAM-Channels, where each channel stores data required by each row of the 
input register array in the ZFOST microarchitecture. Further, each RAM-Channel 
is divided into six single-port SRAM (SPRAMs) blocks, which is based on the 
number of columns in the input register array. Therefore, each SPRAM in a RAM-
Block feeds data to one register of the input register array that enables simultaneous 
registers loading. For example, during the strided convolution dataflow as shown 
in Fig. 4, a total of 24 data points are required to be loaded into the local register 
when .K(0,0) is being processed. 6 out of 24 data points, for row-0, row-1, row-2, and 
row-3 of the local register, are stored in RAM-Block-0 at address-0 of channel-0, 
channel-1, channel-2, and channel-3, respectively. The SPRAM size is dependent 
on the maximum size of the input and output feature maps, which can be computed 
using Eq. (1).
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Fig. 10 Distributed on-chip memory design 

.SizeSPRAM = Dimimage × Dimimage × N

NRams × NChannels × NBlocks

. (1) 

3.2 Data Re-Packaging Unit 

The data re-packaging units re-arrange the data in a type-oriented format before 
storing it in on-chip memory. In doing so, it translates the input feature address, 
coming either from the external DRAM or ZFOST/ZFWST microarchitectures, into 
distributed on-chip memory address. It is to be noted that locating an individual 
pixel inside the distributed memory requires to compute six elements of its address: 
pixel row, pixel column, RAM-Block index, RAM-Channel index, RAM-Index (index 
of a SPRAM inside a block of the grid), and address of the SPRAM, as depicted 
in Fig. 11. We discuss the generation of these address components below while 
referring to notations used in Table 1.
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Fig. 11 Data Re-packaging Unit 

Table 1 Notations used in the explanation of Re-packaging phases 

Symbols Description 

Size.SPRAM Size of a SPRAM in distributed memory architecture 

N.RAMs The number of SPRAMs in one channel of distributed memory architecture 

N.Channels The number of channels in one block of distributed memory architecture 

N.Blocks The number of blocks in distributed memory architecture 

N The number of bits of one input pixel 

P.row Row index of input pixel 

P.col Column index of input pixel 

Add.DRAM Address of DRAM access 

NP.DRAM The number of data point in one DRAM location 

dp.x Data point index out of a total number of data points from one DRAM location 

Dim.image Feature map dimension (rows/columns where the numbers of rows and columns 

are the same) 

Blobk.Index Block index of IO-Buffer 

ISODD(x) Results 1 if x is an odd number 

ISEVEN(x) Results 1 if x is an even number 

Channel.Index Channel index of IO-Buffer 

Temp.RAMIndex Local temporary variable used in computation of RAM index of IO-Buffer 

X (mod Y) Remainder when X is divided by Y 

X [B1:B2] Bit  wise  selection of X with B1 as MSB  and B2 as LSB  

X [B1] Bit wise selection of bit B1 of X 

RAM.Index RAM-Index 

RAM.Address SPRAM Address 

3.2.1 Pixel Row Index Computation Block 

In this first stage pixel row index computation block, the row index of the input pixel 
is computed in the following steps:
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Fig. 12 Input pixel row computation using the information of the data point index, address of the 
DRAM, and information of the number of data point in one DRAM location 

• Address of DRAM location is multiplied with the total number of pixels stored 
in each location in DRAM. 

• The current index of the data point out of the total number of input data points 
stored in a location of DRAM is added to the result. 

• Finally, the final row address result is divided by the dimension of the input 
feature map to compute the final row address. 

Figure 12 shows the block-level diagram for pixel row index computation block. 

3.2.2 Pixel Column Index Computation Block 

The pixel column index is computed using the following components: 

• Pixel row index 
• Address of the DRAM from where the data has been fetched 
• The total number of input pixels in one location of DRAM 
• The dimension of input feature map and the index of input data pixel in the 
DRAM location 

Figure 13 shows the block-level diagram for pixel column index computation 
using the above information. 

3.2.3 RAM-Block Index Computation 

The 2-D Distributed Memory Array Block Index Computation, RAM-Block, is  
calculated based on the pixel type (i.e., even–even, even–odd, odd–even, and odd– 
odd). This is achieved by checking the LSBs of the row index and column index. The 
block-level circuit diagram of RAM-Block index computation is shown in Fig. 14. 
It generates a 2-bit RAM-Block index that is 0, 1, 2, and 3, if pixel is even–even, 
even–odd, odd–even, and odd–odd, respectively.
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Fig. 13 Input pixel column computation using the information of the data point index, address of 
the DRAM, information of the number of data point in one DRAM location, computed row in the 
previous step, and the dimension of the input feature map 
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Fig. 14 Block-Index Computation using row index and column index computed in the previous 
steps 
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Fig. 15 Channel Index Computation using row index and block index value 

3.2.4 RAM-Channel Index Computation 

Figure 15 shows the circuit-level diagram for the RAM-Channel index computation 
block. The channel index for each pixel is calculated using the least significant three 
bits of row index along with the least significant bit of RAM-Block index.
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Fig. 16 RAM Index Computation using column index value 

3.2.5 RAM Index Computation 

Each RAM-Channel contains six single-ported SRAMs (SPSRAMs) that are rep-
resented by RAM-Index, and the index runs from 0 to 5. Figure 16 illustrates the 
circuit-level diagram for RAM index computation using bits .3 : 1 of the column 
indexes of the input pixel. For example, consider the input pixel .I (0, 6) that will 
be loaded in row 0 and column 3 of the local register. Bits . [3:. 1] in .(0110)2 give 
.(011)2 = 3. Thus, the input pixel .I (0, 6) after the computation, shown in Fig. 16, 
will be stored in RAM-Index 2. 

3.2.6 SPRAM Address Computation 

The size of the input feature map and pixel’s column index is used in order to 
compute the address of a particular SPRAM selected by .BlockAdd , . ChannelAdd
and .RAMIndex . Figure 17 shows the block-level diagram implemented for the 
SPRAM address computation. Only two types of pixels exist for a single row of 
input feature map that reduces the size of a row to be stored in a RAM-Channel 
to half. As each RAM-Channel consists of six SPRAMs, therefore each full row is 
folded at length six in order to be stored in six RAMs of a RAM-Channel. The base 
address of the next row within a RAM-Channel is determined by the first input of 
the last adder as shown in Fig. 17. 

Let us take an example: if the input feature map is of dimension .32 × 32, then 
one row of pixels will be stored in 3 locations of a SPRAM (from address 0 to 
address 2). Therefore, when a particular SPRAM is selected again to store a data 
value, its address must start from the address 3. If the input feature map is greater 
than 12 pixels, the same SPRAM will contain multiple data values of the sample 
row. Therefore, the second input of the last adder in Fig. 17 is the address computed 
on the basis of the column index of the input pixels.
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Fig. 17 RAM address computation using the information of input image dimension and computed 
column index 

4 Results and Discussion 

4.1 Experimental Setup 

We implemented the microarchitecture of the blocks in the proposed GAN hardware 
architecture, shown in Fig. 9, using Verilog-HDL. The design is synthesized using 
Xilinx Vivado Design Tool 2017.4 targeting Xilinx Kintex-7 “xc7k410tfbg676-1” 
FPGA with a clock speed of 200MHz. The size of an SPRAM inside distributed 
memory array is set to 32KB, which is sufficient to hold an image dimension 
up to .1024 × 1024 pixels where each pixel is 16-bit-wide. In order to verify the 
functionality of the proposed architecture, a trained DCGAN model [7] is used.  We  
extracted the input feature maps and kernel maps using Matlab tool. These maps 
are then used to evaluate the design for strided, transposed, and four-dimensional 
convolution. 

Figure 18 depicts the complete tool flow that is used to evaluate the proposed 
architecture. The weights and input features are pre-loaded in a DRAM linearly that 
serves as stimuli. The design is evaluated using different image sizes but with a fixed 
kernel size of .4 × 4. In order to emulate a real-world ASIC-based implementation, 
the memory configuration used in Vivado Design Tool is also provided to CACTI-p 
tool by HP to compute the read/write access energy consumption of memory. 

We compare the performance of our architecture with 2-D distributed on-chip 
memory array with the state-of-the-art design [9] containing a conventional on-chip 
buffer that stores data in a linear format. Figure 19 shows the overall design of a 
conventional GAN hardware architecture that uses the conventional linear on-chip 
memory. Each memory location in our architecture can store 4 data points, since 
the memory data bus is 64-bit-wide and each pixel is 16-bit-wide. So to store an 
input image of size up to .1024×1024 pixels, the total overall memory size becomes 
512KB.
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Fig. 19 Conventional Architecture of Generative Adversarial Network 

4.2 Processing Time Evaluation 

Processing time consists of the time it takes data to load from off-chip memory 
and the time spent in the processing block. Figures 20 and 21 show the processing 
times of the various convolution blocks, S-CONV, T-CONV, and W-CONV, in both 
conventional and proposed hardware designs, respectively. 

As can be seen, our proposed architecture outperforms the conventional design 
in processing time of an input feature map. Our proposed architecture supports the 
ZFOST to achieve .3.65x faster processing time than the baseline, over different 
image sizes. 

Figure 22 shows the breakdown of the overall processing time into two compo-
nents: loading time and processing time, in a strided convolution on a input feature 
map of different sizes. It can be seen that as the dimensions of the input feature 
map increase, the data loading time dominates in the overall processing of the 
convolution operation in both proposed and conventional architectures.
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Fig. 20 Performance evaluation of the conventional design of [9] 
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Fig. 21 Performance evaluation of the proposed architecture 
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Table 2 Power breakdown comparison of the proposed design with the conventional design 

Power Consumption Breakdown [W] 

Module Proposed architecture Conventional design 

Re-packaging Unit (DRAM to IO-Buffer) 0.23 – 

Re-packaging Unit (ZFOST to IO-Buffer) 1.3 – 

Main controller 0.19 1.48 

Dataflow controller – 1.83 

S-CONV controller) 0.58 – 

T-CONV controller) 0.61 – 

W-CONV controller) 0.73 – 

ZFOST 0.10 0.10 

ZFWST 0.12 0.12 

IOBUFFER (BRAM Blocks in FPGA) 1.74 1.79 

Total Power 5.6 5.32 

Our proposed architecture consumes . 5% more power compared to the conven-
tional baseline design of Fig. 19. This is because of the additional re-packaging units 
used in the design. The overall power consumption as well as the power breakdown 
of both the designs is shown in Table 2. 

4.3 Memory Accesses Evaluation 

In this experiment, we compare the following: 

• The number of read/write accesses to the on-chip memory during strided and 
transpose convolutions 

• The energy consumption of the associated read/write accesses 
• The overall time to process the input feature maps of different sizes during 
strided, transposed, and four-dimensional convolution 

Figure 23 shows the number of read/write accesses to the on-chip memory during 
strided convolution. Results show that our architecture reduces the number of read 
and write accesses by .85% and .75%, respectively, when compared with the baseline 
conventional architecture shown in Fig. 19. 

Similarly, during transposed convolution, our proposed design reduces the 
number of read and write accesses by .85% and .80%, respectively, when compared 
with the baseline conventional architecture as shown in Fig. 24. 

It is to be noted that the numbers of read/write accesses during four-dimensional 
convolution in its discriminator update phase and four-dimensional convolution in 
its generator update phase are similar to the strided convolution and transposed 
convolution, respectively, as both convolutions follow the same dataflow. 

Figure 25 shows the energy consumption of the read/write accesses during 
strided convolution. Results show that our architecture reduces the energy consump-
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Fig. 23 Comparison between the number of memory accesses during strided convolution 
considering different memory architectures for various input image sizes 
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Fig. 24 Comparison between the number of memory accesses during transposed convolution 
considering different memory architectures for various input image sizes 
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Fig. 25 Comparison between the memory accesses energy during strided convolution considering 
different memory architectures for various input image sizes 

tion of the read and write accesses by .65% and .58%, respectively, when compared 
with the conventional architecture. 

Similarly, our architecture reduces the energy consumption of the read and write 
accesses in transposed convolution by .65% and .67%, respectively, when compared 
with the conventional architecture.
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Fig. 26 Comparison between the memory accesses energy during transposed convolution 
considering different memory architectures for various input image sizes 

Figures 23, 24, 25, and 26 also show the comparison of our proposed GAN 
architecture design with the conventional design of Fig. 19 when the SPRAM bit 
width is reduced from 64 to 16 bits. 

As shown in Fig. 23, in the case of strided convolution, our proposed architecture 
reduces the read and write accesses by .92% and .93%, respectively. Similarly, 
the read and write accesses in the case transposed convolution are reduced by 
.95% and .94%, respectively, as shown in Fig. 24. Consequently, the read and write 
energy consumption associated with the strided convolution reduces by .82% and 
.89%, respectively, as shown in Fig. 25, and by .86% and .91%, respectively, during 
transposed convolution, as shown in Fig. 26. 

4.4 Area Utilization Evaluation 

As the results of the conventional design with 16-bit-wide SPRAM are worse than 
with 64-bit-wide SPRAM, we only consider the results of 64-bit-wide SPRAM for 
the following results. 

We implemented the microarchitectures of our proposed architecture (Fig. 9) and 
the design of [9] (Fig. 19), using Xilinx Vivado design tool for the Xilinx Kintex 
7 device (xc7k325tffg900-2 FPGA), in order to compare the hardware resource 
utilization. As shown in Table 3, our proposed architecture utilizes more resources 
in comparison to the design of Fig. 19. This is understandably a trade-off between 
improved performance and energy efficiency. 

Table 3 shows the resource utilization of our proposed architecture and con-
ventional design. Our proposed architecture utilizes .1.16x, .1.14x, and .1.14x more  
look-up tables, flip flops, and DSP blocks on the FPGA when compared with the 
baseline design. Moreover, the number of BRAMs used by our proposed 2-D on-
chip distributed memory array is 6x more. However, this number (i.e., the average 
number of BRAMs per ZFOST architecture) can be reduced when multiple ZFOST 
architectures are implemented together.
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Table 3 Comparison of Resource Utilization 

Utilized 

Available Our proposed architecture Conventional memory Design 

LUT 203,800 77,414 69,317 

FF 407,600 15,952 13,469 

RAM 445 48 8 

DSP 840 98 73 

5 Conclusion 

In this chapter, we discussed the need for having hardware-based solution for 
accelerating non-standard convolution operations involved in generative adversarial 
networks (GANs) using novel 2-D distributed on-chip memory architecture and 
smart data re-packaging units. The 2-D memory architecture helps in simultaneous 
loading of multiple pixels into the input register array of the ZFOST/ZFWST 
microarchitectures. Similarly, the re-packaging units provide data organization 
support by arranging the data in the required type-oriented format. Compared with 
the state-of-the-art design of [9], our proposed hardware architecture, shown in 
Fig. 9, has the following unique aspects: 

• It reduces the number of memory read and write accesses in strided convolution 
by .85% and .75%, respectively, and by .85% and .80%, respectively, in transposed 
convolution. 

• It reduces the energy consumption during the read and write accesses by 
.65% and .58%, respectively, during strided convolution, and by .65% and .67%, 
respectively, during transposed convolution. 

Overall, our proposed distributed on-chip memory architecture and data re-
organization units achieve .3.65x faster processing time as compared with the state 
of the art [9]. This shows that by designing complementary memory architectures 
for the state-of-the-art GAN accelerators, we can further improve their performance 
and energy efficiency. 
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Using Approximate DRAM for Enabling 
Energy-Efficient, High-Performance 
Deep Neural Network Inference 

Lois Orosa, Skanda Koppula, Konstantinos Kanellopoulos, A. Giray Yağlıkçı, 
and Onur Mutlu 

1 Introduction 

Deep neural networks (DNNs) [1] are an effective solution to challenges in com-
puter vision [2], speech recognition [3], or medicine [4]. DNNs and their various 
flavors (e.g., convolutional neural networks [2], transformers [5]) are commonly 
evaluated in settings with edge devices that demand low energy and real-time 
responses [6]. Unfortunately, DNNs have high computational and memory demands 
that make these energy and performance requirements difficult to fulfill. As such, 
neural networks have been the subject of many recent accelerators and DNN-
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focused architectures. Recent works (e.g., [7–9]) focus on building specialized 
architectures for efficient computation scheduling and dataflow to execute DNNs. 

Improvements to accelerator efficiency [10], DNN-optimized GPU kernels [11], 
and libraries designed to efficiently leverage instruction set extensions [12] have  
improved the computational efficiency of DNN evaluation. However, improving the 
memory efficiency of DNN evaluation is an on-going challenge [8]. The memory 
intensity of DNN inference is increasing, and the sizes of state-of-art DNNs have 
grown dramatically in recent years. The winning model of the 2017 ILSVRC image 
recognition challenge, ResNeXt [13], contains 837M FP32 parameters (3.3 GB). 
This is 13.5x the parameter count of AlexNet, the winning model in 2012 [2]. 
As the machine learning community trends towards larger, more expressive neural 
networks, we expect off-chip memory problems to bottleneck DNN evaluation. 

The focus of recent approximate memory research is to alleviate two main issues 
(energy and latency) of off-chip DRAM for neural network workloads. First, DRAM 
has high energy consumption. Prior work on DNN accelerators reports that between 
30 and 80% of system energy is consumed by DRAM [7]. Second, DRAM has 
high latency. A load or store that misses the last level cache (LLC) can take 100x 
longer time to service compared to an L1 cache hit [14]. Prior work in accelerator 
design has targeted DRAM latency as a challenge for sparse and irregular DNN 
inference [15]. 

To overcome both DRAM energy and latency issues, recent works use three 
main approaches. First, some works reduce numeric bitwidth, reuse model weights, 
and use other algorithmic strategies to reduce the memory requirements of the 
DNN workload [16]. Second, other works propose new DRAM designs that offer 
lower energy and latency than commodity DRAM [17]. Third, some works propose 
processing-in-memory approaches that can reduce data movement and access data 
with lower latency and energy [18]. In this chapter, we discuss an approach that 
is orthogonal to these existing works: customization of the major operational 
parameters (e.g., voltage, latency) of existing DRAM chips to better suit the intrinsic 
characteristics of a DNN. The approach is based on two key insights: 

(1) DNNs demonstrate remarkable robustness to errors introduced in input, weight, 
and output data types. This error tolerance allows accurate DNN evaluation on 
unreliable hardware if the DNN error tolerance is accurately characterized and 
bit error rates are appropriately controlled. 

(2) DRAM manufacturers trade performance for reliability. Prior works show that 
reducing DRAM supply voltage and timing parameters improves the DRAM 
energy consumption and latency, respectively, at the cost of reduced reliability, 
i.e., increased bit error rate. 

To exploit these two insights, EDEN1 was developed: the first framework 
that improves energy efficiency and performance for DNN inference by using 
approximate DRAM, which operates with reduced DRAM parameters (e.g., voltage

1 Energy-Efficient Deep Neural Network Inference Using Approximate DRAM. 
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and latency) [19]. EDEN strictly meets a user-specified target DNN accuracy by 
providing a general framework that (1) uses a new retraining mechanism to improve 
the accuracy of a DNN when executed on approximate DRAM and (2) maps 
the DNN to the approximate DRAM using information obtained from rigorous 
characterizations of the DNN error tolerance and DRAM error properties. 

EDEN is based on three key steps. First, EDEN improves the error tolerance 
of the target DNN by retraining the DNN using the error characteristics of the 
approximate DRAM module. Second, EDEN profiles the improved DNN to identify 
the error tolerance levels of all DNN data (e.g., different layer weights of the 
DNN). Third, EDEN maps different DNN data to different DRAM partitions that 
best fit each datum’s characteristics and accordingly selects the voltage and latency 
parameters to operate each DRAM partition. By applying these three steps, EDEN 
can map an arbitrary DNN workload to an arbitrary approximate DRAM module to 
evaluate a DNN with low energy, high performance, and high accuracy. 

To show example benefits of the approach, EDEN was run with DNN inference 
workloads using approximate DRAM with (1) reduced DRAM supply voltage 
(.VDD) to decrease DRAM energy consumption, and (2) reduced DRAM latency 
to reduce the execution time of latency-bound DNNs. EDEN adjusts the DRAM 
supply voltage and DRAM latency through interaction with the memory controller 
firmware. For a target accuracy within 1% of the original DNN, results show that 
EDEN enables (1) an average DRAM energy reduction of 32% across CPU, GPU, 
and DNN accelerator (e.g., Tensor Processing Unit [20]) architectures, and (2) cycle 
reductions of up to 17% when evaluating latency-bound neural networks. 

The benefits of EDEN stem from its capacity to run on most hardware platforms 
in use today for neural network inference, including CPUs, GPUs, FPGAs, and 
DNN accelerators. Because EDEN is a general approach, its principles can be 
applied (1) on any platform that uses DRAM, and (2) across memory technologies 
that can trade-off different parameters (e.g., voltage, latency) at the expense of 
reliability. Although the evaluation examines supply voltage and access latency 
reductions, the EDEN framework can be used also to improve performance and 
energy in other ways: for example, EDEN could increase the effective memory 
bandwidth by increasing the data bus frequency at the expense of reliability. 

In this chapter, we discuss our work EDEN, which makes the following five key 
contributions: 

• We propose the first general framework that increases the energy efficiency 
and performance of DNN inference by using approximate DRAM that operates 
with reduced voltage and latency parameters at the expense of reliability. EDEN 
provides a systematic way to scale main memory parameters (e.g., supply voltage 
and latencies) while achieving a user-specified DNN accuracy target. 

• We discuss how EDEN introduced a methodology to retain DNN accuracy in 
the presence of approximate DRAM. Evaluation shows that EDEN increases the 
bit error tolerance of a DNN by 5–10x (depending on the network) through a 
customized retraining procedure called curricular retraining.
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• We provide a systematic, empirical characterization of the resiliency of state-of-
art DNN workloads to the errors introduced by approximate DRAM. We examine 
the error resiliency across different numeric precisions, pruning levels, and data 
types (e.g., DNN layer weights). We find that (1) lower precision levels and 
DNN data closer to the first and last layers exhibit lower error resiliency, and (2) 
magnitude-based pruning does not have a significant impact on error resiliency. 

• We propose four error models to represent the common error patterns that an 
approximate DRAM device exhibits. To do so, EDEN characterizes the bit flip 
distributions that are caused by reduced voltage and latency parameters on eight 
real DDR4 DRAM modules. 

• We evaluate EDEN on multi-core CPUs, GPUs, and DNN accelerators. For a 
target accuracy within 1% of the original DNN, results show that EDEN enables 
(1) an average DRAM energy reduction of 21%, 37%, 31%, and 32% in CPU, 
GPU, and two different DNN accelerator architectures, respectively, across a 
variety of state-of-the-art networks, and (2) an average (maximum) speedup of 
8% (17%) and 2.7% (5.5%) in CPU and GPU architectures, respectively, when 
evaluating latency-bound neural networks. For a target accuracy the same as the 
original, EDEN enables 16% average energy savings and 4% average speedup in 
CPU architectures. 

2 Background 

2.1 Deep Neural Networks 

Artificial neural networks are a type of machine learning model inspired by the 
structure and activation patterns of neurons in the animal nervous systems [21]. 
Neural networks work by alternating application of linear and non-linear operations 
to the data inputs (images, audio signals, etc.) [22]. A convolution operation is one 
such linear operation, and one of the most common non-linear operation is the 
ReLU activation function [21]. Neural networks have been used since the 1960s, 
but it was in the past decade that neural networks—and in particular, deep neural 
networks (DNNs) [1]—have shown to strongly outperform competing machine 
learning methods across nearly every large-scale data learning task. The power of 
neural networks is generally attributed to their lack of hand-crafted input-specific 
operations, and as such, these models have been shown to be effective across 
multiple different data modalities. 

DNNs are composed of a variety of different layers, including convolutional 
layers, fully connected layers, attention layers, and pooling layers [1]. Figure 1 
shows the three main data types of a DNN layer, and how three DNN layers are 
connected with each other. Each of these layers is defined by a weight matrix 
learned via a one-time training process that is executed before the DNN is ready 
for inference. The three DNN data types that require loads and stores from main
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Fig. 1 Example of three DNN layers. Each layer is composed of its weights, input feature maps 
(IFMs), and output feature maps (OFMs). Adapted from [23] 

memory include each layer’s input feature maps (IFMs), output feature maps 
(OFMs), and the weights. Each layer processes its IFMs using the layer’s weights, 
and produces OFMs. The OFMs of a layer are fed to the next layer as the next layer’s 
IFMs. In this work, we explore the introduction of bit errors into the three data types 
of each layer [19]. 

The lifecycle of a machine learning model for consumer applications usually 
involves (1) training the model on large amounts of training data (2) retraining 
(i.e., fine-tuning) the model to adapt to the target task, (3) optionally, applying 
modifications to reduce the compute costs of running the model (e.g., through 
weight quantization or pruning, described below) and (4) freezing the trained model, 
and using it to yield predictions (i.e., inference, or forward pass) on compute-limited 
consumer devices. It is common that the model weights are trained once and frozen, 
while the forward pass may run thousands of times during the production lifetime 
of the model. 

Modern DNNs contain hundreds of layers, providing the DNN with a large num-
ber of trainable weights. State-of-art DNNs, as of writing, contain up to half a trillion 
FP-32 parameters [24], and sometimes require training and inference systems that 
distribute the storage and compute across many machines [25]. The existence of 
such a large number of weights is commonly referred to as overparameterization, 
and is, in part, the source of a DNN’s accuracy [26]. Overparameterization allows 
the model to have sufficient learning capacity so that the network can approximate 
complex input-output functions, and adequately capture high-level semantics (e.g., 
the characteristics of a cat in an input image). Importantly, overparameterization 
allows the network to obtain some level of error resilience, generalize across 
different inputs, and be robust to insignificant changes to the input (e.g., background 
pixels in an image). 

Overparameterization of modern DNNs have advantages and disadvantages. 
While overparameterization provides DNNs with capacity to learn [1], it also 
presents significant computational problems, especially on devices that are resource 
constrained. State-of-the-art DNNs can barely fit in a single commodity server, let 
alone a consumer mobile device. This problem has spurred research on methods 
to reduce the computational and storage footprint of these heavy, high-accuracy 
models, yielding various techniques to help alleviate the challenges. These methods 
include quantization [27] and pruning [28].
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Quantization Quantizing floating point weights and OFMs into low-precision 
fixed-point numbers can greatly improve performance and energy consumption of 
DNNs [27]. Prior works demonstrate that it is possible to quantize DNNs to limited 
numeric precision (e.g., eight-bit integers) without significantly affecting DNN 
accuracy [27]. In our evaluations, we quantize all DNN models to four different 
numeric precisions : int4 (4-bit), int8 (8-bit), int16 (16-bit), and FP32 (32-bit). 

Pruning Pruning [28] reduces the memory footprint of a DNN by sparsifying the 
weights and feature maps. This is done by zeroing the lowest magnitude weights 
and retraining. We study the effects of pruning in EDEN’s evaluations. 

Training Training is the process of estimating the set of weights that enables the 
model to best perform a specific task [22]. Neural network training is guided by a 
training objective specific to that task, also commonly called the loss function. The 
goal of training is to minimize this loss function. A loss function can intuitively 
be thought of as an estimate of the error as compared to ground truth real values 
in a dataset (for tasks in which we have such ground truth labels). For example, in 
classification tasks, the loss function is commonly the cross-entropy between model 
predicted categorical distribution q(x) and the data points’ true label, given by p(x) 
(−∑

x∈X p(x) log q(x)), where X is the data points. Training is usually performed 
with an iterative gradient descent algorithm [29] using a particular training dataset. 
The training dataset is divided into batches, and each training step corresponds to 
a single forward and backward pass through the DNN to compute the gradients 
for that particular batch of data. These gradients dictate how the weights should be 
modified in order to minimize the loss. A single training “epoch” completes when 
the entire dataset is passed over once [1]. As mentioned previously, this procedure is 
usually done once, before the model is frozen and deployed on consumer inference 
devices. 

Additionally, common training-time techniques such as adding input noise [30] 
and input feature map dropout [31] try to force the network to not rely on any single 
OFM element and enable robustness in the presence of statistical variance in the 
IFMs. Additionally, these techniques help combat overfitting that overparameteriza-
tion might induce on smaller datasets. Inspiration for some of EDEN’s mechanisms 
come from these techniques: robustness to dropout and noise addition may not just 
be an intentionally applied constraint applied during training—it could also perhaps 
aid in approximate or unreliable compute environments. EDEN leverages the same 
core ideas to adapt DNNs and their training procedure to achieve partial error 
robustness against bit errors caused by approximate DRAM, by taking advantage 
of weight overparameterization in modern DNNs.
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2.2 DRAM Organization and Operation 

DRAM Organization A DRAM device is organized hierarchically. Figure 2a 
shows a DRAM cell that consists of a capacitor and an access transistor. A capacitor 
encodes a bit value with its charge level. The DRAM cell capacitor is connected to a 
bitline via an access transistor that is controlled by a wordline. Figure 2b shows how 
the DRAM cells are organized in the form of a 2D array (i.e., a subarray). Cells in 
a column of a subarray share a single bitline. Turning on an access transistor causes 
charge sharing between the capacitor and the bitline, which shifts the bitline voltage 
up or down based on the charge level of the cell’s capacitor. Each bitline is connected 
to a sense amplifier (SA) circuit that detects this shift and amplifies it to a full 0 or 
1. The cells that share the same wordline in a subarray are referred to as a DRAM 
row. A  row decoder drives a wordline to enable all cells in a DRAM row. Therefore, 
charge sharing and sense amplification operate at row granularity. The array of sense 
amplifiers in a subarray is referred to as row buffer. Each subarray typically consists 
of 512–1024 rows each of which is typically as large as 2–8 KB. 

Figure 2c shows the organization of subarrays, banks, and chips that form a 
DRAM device. Each bank partially decodes a given row address and selects the 
corresponding subarray’s row buffer. On a read operation, the I/O logic sends the 
requested portion of the target row from the corresponding subarray’s row buffer to 
the memory controller. A DRAM chip contains multiple banks that can operate in 
parallel. A DRAM device is composed of multiple DRAM chips that share the same 
command/address bus and are simultaneously accessed to provide high bandwidth 
and capacity. In a typical system, each memory controller interfaces with a single 
DRAM bus. 

DRAM Operation Accessing data stored in each row follows the sequence of 
memory controller commands illustrated in Fig. 3. First, the activation command 
(ACT) activates the row by pulling up the wordline and enabling sense ampli-

Fig. 2 DRAM organization. Adapted from [23]. (a) DRAM Cell. (b) DRAM Subarray. (c) DRAM  
device
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Fig. 3 DRAM read timing. We explore reductions of tRCD , tRAS , and  tRP as part of EDEN’s 
evaluation. CL is a characteristic of the device, and not adjustable in the memory controller [32]. 
Adapted from [23] 

fication. After a manufacturer-specified tRCD nanoseconds, the data is reliably 
sensed and amplified in the row buffer. Second, the read command (READ) reads 
the data from the row buffer to the IO circuitry. After a manufacturer-specified 
CL nanoseconds, the data is available on the memory bus. Third, the precharge 
command (PRE) prepares the DRAM bank for activation of another row. A 
precharge command can be issued a manufacturer-specified tRAS nanoseconds after 
an activation command, and an activation command can be issued tRP nanoseconds 
after a precharge command. tRCD , tRAS , tRP , and CL are examples of DRAM 
timing parameters and their nominal values provided in DRAM DDR4 datasheets 
are 12.5 ns, 32 ns, 12.5 ns, and 12.5 ns, respectively [32]. 

2.3 Reducing DRAM Parameters 

We build on a large body of work on characterizing DRAM behavior in sub-reliable 
operation regimes of supply voltage and latency parameters [33–35]. 

DRAM Voltage Reduction Voltage reduction is critical to reducing DRAM power 
consumption since power is proportional to the square of supply voltage (i.e., 
.VDD

2×f ).Prior research [35] shows that reducing voltage increases the propagation 
delay of signals, which can cause errors when using unmodified timing parameters. 
One work avoids these errors by increasing the .tRCD and .tRP latencies [35] to ensure 
reliable operation. In contrast, our goal in this work is to aggressively reduce power 
consumption and latency by decreasing both supply voltage and timing parameters, 
which inevitably causes errors in the form of bit flips in the weakest cells of DRAM, 
making DRAM approximate. Resulting error patterns often exhibit locality. Chang 
et al. [35] observe that these bit flips accumulate in certain regions (e.g., banks and 
rows) of DRAM.  

DRAM Access Latency Reduction Latency reduction is critical to increase 
system performance, as heavily emphasized by a recent study on workload-
DRAM interactions [36]. Previous works characterize real DRAM devices to find 
the minimum reliable row activation (.tRCD) and precharge (. tRP ) latency values 
[33, 37]. According to these studies, the minimum DRAM latency values are 
significantly smaller than the values that datasheets report, due to conservative



Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 283

guardbands introduced by DRAM manufacturers. Further reducing these latency 
values cause bit flips in weak or unstable DRAM cells. 

DRAM Refresh Rate Reduction Other than voltage and latency, previous 
research also shows that reducing the refresh rate of DRAM chips both can increase 
performance and reduce energy consumption at the cost of introducing errors [38] 
that are tolerable by many workloads that can tolerate bit errors. 

3 EDEN Framework 

To efficiently solve the energy and latency issues of off-chip DRAM for neural 
network workloads, we propose EDEN. EDEN is the first general framework that 
improves energy efficiency and performance for neural network inference by using 
approximate DRAM. EDEN is based on two main insights: (1) neural networks are 
tolerant to errors, and (2) DRAM timing parameters and voltage can be reduced at 
the cost of introducing more bit errors. 

We first provide an overview of EDEN in Sect. 3.1, and explain EDEN’s three 
steps in Sects. 3.2, 3.3, and 3.4. Finally, Sect. 3.5 explains the changes required by 
the target DNN inference system to support a DNN generated by EDEN. 

3.1 EDEN: A High-Level Overview 

EDEN enables the effective execution of DNN workloads using approximate 
DRAM through three key steps: (1) boosting DNN error tolerance, (2) DNN error 
tolerance characterization, and (3) DNN-DRAM mapping. These steps are repeated 
iteratively until EDEN finds the most aggressive DNN and DRAM configuration 
that meets the target accuracy requirements. EDEN transforms a DNN that is trained 
on reliable hardware into a device-tuned DNN that is able to run on a system that 
uses approximate DRAM at a target accuracy level. EDEN allows tight control of the 
trade-off between accuracy and performance by enabling the user/system to specify 
the maximal tolerable accuracy degradation. Figure 4 provides an overview of the 
three steps of EDEN, which we describe next. 

1. Boosting DNN Error Tolerance EDEN introduces curricular retraining, a new  
retraining mechanism that boosts a DNN’s error tolerance for a target approximate 
DRAM module. Our curricular retraining mechanism uses the error characteristics 
of the target approximate DRAM to inject errors into the DNN training procedure 
and boost the DNN accuracy. The key novelty of curricular retraining is to inject 
errors at a progressive rate during the training process with the goal of increasing 
DNN error tolerance while avoiding accuracy collapse with error correction. EDEN 
boosts the intrinsic bit error tolerance of the baseline DNN by 5–10x. We describe 
our boosting mechanism in Sect. 3.2.
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Fig. 4 Overview of the EDEN framework. Adapted from [23] 

2. DNN Error Tolerance Characterization EDEN characterizes the error 
resilience of each boosted DNN data type (i.e., IFMs, OFMs, and DNN weights) 
to identify the limits of bit error tolerance. EDEN measures the effect of bit errors 
on overall accuracy using the DNN validation dataset. We describe error tolerance 
characterization in Sect. 3.3. 

3. DNN to DRAM Mapping EDEN maps the error tolerance of each DNN data 
type to a corresponding approximate DRAM partition (e.g., chip, bank, or subarray) 
in a way that meets the specified accuracy requirements, while maximizing perfor-
mance. We describe DNN to DRAM mapping in Sect. 3.4. 

Together, the three steps of EDEN enable a baseline DNN to become a 
specialized DNN that is error-tolerant and device-tuned to a target approximate 
DRAM. EDEN enables energy efficient, high-performance DNN inference on the 
target approximate DRAM with a user-defined accuracy. 

3.2 Boosting DNN Error Tolerance 

According to our evaluations, the error tolerance of common DNNs is not sufficient 
to enable significant DRAM voltage and timing parameter reductions. To overcome 
this issue, we propose curricular retraining, a new retraining mechanism that 
improves the error tolerance of a DNN when running with approximate DRAM 
that injects errors into memory locations accessed by the DNN. 

The key idea of curricular retraining is based on the observation that introducing 
high error rates immediately at the beginning of retraining process occasionally 
causes training divergence and a phenomenon called accuracy collapse. To mitigate 
this problem, curricular retraining slowly increases the error rate of the approximate 
DRAM from 0 to a target value in a step-wise fashion. In our experiments, we 
observe a good training convergence rate when we increase the error rate every
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two epochs (i.e., two passes of the entire training dataset). EDEN uses approximate 
DRAM in the forward pass, and it uses reliable DRAM for the backward pass. 

We demonstrate in Sect. 6.4 that our curricular retraining mechanism is effective 
at improving the accuracy of DNN inference executed on systems with approximate 
DRAM. 

Our experiments show that curricular retraining does not help to improve DNN 
accuracy on reliable DRAM. This implies that introducing bit error is not a 
regularization technique,2 but rather, a way of obtaining congruence between the 
DNN training algorithms and the errors injected by approximate DRAM. 

Correcting Implausible Values While executing curricular retraining, a single bit 
error in the exponent bits of a floating point value can cause accuracy collapse 
in the trained DNN. For example, a bit error in the exponent of a weight creates 
an enormously large value (e.g., >. 108) that propagates through the DNN layers, 
dominating weights that are significantly smaller (e.g., <10). 

To avoid this issue, we propose a mechanism to avoid accuracy collapse caused 
by bit errors introduced by approximate DRAM. The key idea of our mechanism 
is to correct the values that are implausible. When a value is loaded from memory, 
our mechanism probabilistically detects that a data type likely contains an error by 
comparing its value against predefined thresholds. The thresholds of the curricular 
retraining data types are computed during training of the baseline DNN on DRAM 
with nominal parameters. Those thresholds usually have rather small values (e.g., 
most weights in SqueezeNet1.1 are within the range [-5,5]). 

Upon detection of an error (i.e., the fact that a value is out of the threshold range) 
during curricular retraining, EDEN (1) corrects the erroneous value by zeroing the 
value, and (2) uses the corrected value for curricular retraining. 

Our mechanism for correcting implausible values can be implemented in two 
ways. First, a software implementation that modifies the DNN framework to include 
extra instructions that correct implausible values resulting from each DNN memory 
access. Second, a hardware implementation that adds a simple hardware logic 
to the memory controller that corrects implausible values resulting from each 
approximate DRAM memory request. Section 5 describes our low-cost hardware 
implementation. 

In our experiments, we find that our mechanism for correcting implausible values 
increases the tolerable bit error rate from .10−7 to .10−3 to achieve <1% accuracy 
degradation in the eight FP32 DNNs we analyze. We evaluate an alternative 
mechanism for error correction that saturates an out-of-threshold value (by resetting 
to the closest threshold value) instead of zeroing it. We observe that saturating 
obtains lower DNN accuracy than zeroing at the same approximate DRAM bit error 
rate across all DNN models (e.g., 8% on CIFAR-10 and 7% on ImageNet). We also 
correct implausible values during the execution of DNN inference to improve the 
inference accuracy (Sect. 3.5).

2 Regularization is a technique that makes slight modifications to the training algorithm such that 
the DNN model generalizes better. 
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3.3 DNN Error Tolerance Characterization 

EDEN aims to guarantee that the accuracy of a DNN meets the minimum value 
required by the user. To this end, EDEN characterizes the boosted DNN (obtained 
from our boosting mechanism in Sect. 3.2) to find the maximum tolerable bit error 
rate (BER) by progressively decreasing the approximate DRAM parameters, i.e., 
voltage and latency. EDEN performs either a coarse-grained or a fine-grained DNN 
error tolerance characterization. 

Coarse-Grained Characterization EDEN’s coarse-grained characterization 
determines the highest BER that can be applied uniformly to the entire DNN, 
while meeting the accuracy requirements of the user. This characterization is useful 
for mapping the DNN to commodity systems (see Sect. 3.4) that apply reduced 
DRAM parameters to an entire DRAM module (without fine-grained control). 

To find the highest BER that satisfies the accuracy goal, our coarse-grained 
characterization method performs a logarithmic-scale binary search on the error 
rates. We can use binary search because we found that DNN error tolerance curves 
are monotonically decreasing. To adjust the BER while doing this characterization, 
EDEN can either (1) tune the parameters of approximate DRAM or (2) use DRAM 
error models for injecting bit errors into memory locations (see Sect. 4). EDEN 
optimizes the error resiliency of a DNN by repeating cycles of DNN error tolerance 
boosting (Sect. 3.2), coarse-grained DNN characterization, and DNN to DRAM 
mapping (Sect. 3.4) until the highest tolerable BER stops improving. We evaluate 
our coarse-grained characterization mechanism in Sect. 6.5. 

Fine-Grained Characterization EDEN can exploit variation in the error toler-
ances of different DNN data types by clustering the data according to its error 
tolerance level, and assigning each cluster to a different DRAM partition whose 
error rate matches the error tolerance level of the cluster (see Sect. 3.4). For example, 
we find that the first and the last convolutional layers have tolerable BERs 2-3x 
smaller than the average middle layer in a DNN. 

To conduct a fine-grained DNN characterization, EDEN searches for the highest 
tolerable BER of each weight and IFM that still yields an acceptable DNN accuracy. 
This search space is exponential with respect to the DNN’s layer count. To tackle 
the search space challenge, EDEN employs a DNN data sweep procedure that 
performs iterations over a list of DNN data types. The mechanism tries to increase 
the tolerable error rate of a data type by a small amount, and tests if the DNN 
still meets the accuracy requirements. When a DNN data type cannot tolerate more 
increase in error rate, it is removed from the sweep list. We evaluate our fine-grained 
characterization mechanism in Sect. 6.6. 

Effect of Pruning EDEN does not include pruning (Sect. 2.1) as part of its boosting 
routine due to two observations. First, we find that DNN sparsification does not 
improve the error tolerance. Our experiments show that when we create 10%, 50%, 
75%, and 90% sparsity through energy-aware pruning [39], error tolerance of FP32 
and int8 DNNs, DNN error tolerance does not improve significantly. Second, the
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zero values in the network, which increase with pruning, are sensitive to memory 
error perturbations. 

3.4 DNN to DRAM Mapping 

After characterizing the error tolerance of each DNN data type, EDEN maps each 
data type to the appropriate DRAM partition (with the appropriate voltage and 
latency parameters) that satisfies the data type’s error tolerance. Our mechanism 
aims to map a data type that is very tolerant (intolerant) to errors into a DRAM 
partition with the highest (lowest) BER, matching the error tolerance of the DNN 
and the BER of the DRAM partition as much as possible. 

DRAM Bit Error Rate Characterization To obtain the BER characteristics of 
a DRAM device (both in aggregate and for each partition), we perform reduced 
voltage and reduced latency tests for a number of data patterns. For each voltage 
level, we iteratively test two consecutive rows at a time. We populate these rows 
with inverted data patterns for the worst-case evaluation. Then, we read each bit 
with reduced timing parameters (e.g., tRCD). This characterization requires fine-
grained control of the DRAM timing parameters and supply voltage level. EDEN’s 
characterization mechanism is very similar to experimental DRAM characterization 
mechanisms proposed and evaluated in prior works for DRAM voltage [35] and 
DRAM latency [33]. 

Coarse-Grained DNN to DRAM Module Mapping All DNN data types stored 
within the same DRAM module are exposed to the same DRAM voltage level and 
timing parameters. These parameters are tuned to produce a bit error rate that is 
tolerable by all DNN data types that are mapped to the module. 

Under coarse-grained mapping, the application does not need to be modified. 
Algorithms used in DNN inference are oblivious to the DRAM mapping used by 
the memory controller. The memory controller maps all inference-related requests 
to the appropriate approximate DRAM module. Data that cannot tolerate bit errors 
at any reduced voltage and latency levels is stored in a separate DRAM module 
whose voltage and latency parameters follow the manufacturer specifications. 

Coarse-grained mapping can be easily supported by existing systems that allow 
the modification of .Vdd and/or .tRCD/RP parameters in the BIOS across the entire 
DRAM module. Section 5 describes the simple hardware changes required to sup-
port coarse-grained mapping. We evaluate our coarse-grained mapping mechanism 
in Sect. 6.5. 

Fine-Grained DNN to DRAM Module Mapping DNN data types stored in 
different DRAM partitions can be exposed to different DRAM voltage levels and/or 
timing parameters. DRAM can be partitioned at chip, rank, bank, or subarray level 
granularities. Algorithm 1 describes our algorithm for fine-grained mapping of DNN 
data to DRAM partitions. Our algorithm uses rigorous DRAM characterization and
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DNN characterization to iteratively assign DNN data to DRAM partitions in three 
basic steps. First, our mechanism looks for DRAM partitions that have BERs lower 
than the tolerable BER of a given DNN data type. Second, we select the DRAM 
partition with the largest parameter reduction that meets the BER requirements. 
Third, if the partition has enough space available, our mechanism assigns the DNN 
data type to the DRAM partition. We evaluate our fine-grained mapping mechanism 
in Sect. 6.6. 

A system that supports fine-grained mapping requires changes in the memory 
controller (for voltage and latency adjustment) and in DRAM (for only voltage 
adjustment). We describe the hardware changes required to support fine-grained 
mapping in Sect. 5. 

3.5 DNN Inference with Approximate DRAM 

EDEN generates a boosted DNN for running inference in a target system that 
uses approximate DRAM. EDEN does not require any modifications in DNN 
inference hardware, framework, or algorithm, except for correcting implausible 
values. Similar to what happens in our curricular retraining (Sect. 3.2), a single bit  
error in the exponent bits of a floating point value can cause accuracy collapse 
during DNN inference. We use the same mechanism for correcting implausible 
values in our curricular retraining mechanism (i.e., we zero the values that are 
outside of a predefined threshold range) to avoid accuracy collapse caused by bit 
errors introduced by approximate DRAM during DNN inference. 

Algorithm 1 Fine-grained DNN to DRAM mapping 
1 function DNN_to_DRAM_Mapping(DNN_characterization, 

DRAM_characterization): 
2 sorted_data = sort_DNN_data(DNN_characterization) 
3 for (target_BER, DNN_data) in sorted_data: 
4 # Find the DRAM partition that has the least 

voltage/latency at target_BER, and can fit the 
DNN_data 

5 for DRAM_partition in DRAM_characterization 
6 partition_params = 

get_voltage_latency(DRAM_partition, target_BER) 
7 if DNN_data.size < DRAM_partition.size : 
8 if partition_params < best_parameters: 
9 best_parameters = partition_params 

10 chosen_partition = DRAM_partition 
11 DRAM_partition.size -= DNN_data.size 
12 final_mapping[chosen_partition].append(DNN_data) 
13 return final_mapping 



Using Approximate DRAM for Enabling Energy-Efficient, High-Performance. . . 289

4 Enabling EDEN with Error Models 

EDEN requires extensive characterization of the target approximate DRAM device 
for boosting DNN error tolerance (Sect. 3.2), characterization of DNN error tol-
erance (Sect. 3.3), and mapping of the DNN to the approximate DRAM device 
(Sect. 3.4). However, applying EDEN in a target system where DNN inference can 
be performed is not always feasible or practical. For example, a low-cost DNN 
inference accelerator [7] might perform very slowly when executing our curricular 
retraining mechanism, because it is not optimized for training. Similarly, the target 
hardware might not be available, or might have very limited availability (e.g., in the 
pre-production phase of a new approximate hardware design). 

To solve this problem and enable EDEN even when target DRAM devices are 
not available for characterization, we propose to execute the EDEN framework in a 
system that is different from the target approximate system. We call this idea EDEN 
offloading. The main challenge of offloading EDEN to a different system is how 
to faithfully emulate the errors injected by the target approximate DRAM into the 
DNN. To address this challenge, we analyze many works that study DRAM error 
patterns [33–35, 40, 41], and we propose to use four different error models that are 
representative of most of the error patterns that are observed in real approximate 
DRAM modules. 

EDEN’s DRAM Error Models EDEN uses four probabilistic error models that 
closely fit the error patterns observed in a real approximate DRAM module. Our 
models contain information about the location of weak cells in the DRAM module, 
which is used to decide the spatial distribution of bit errors during DNN error 
tolerance boosting. We create four different types of error models from the data we 
obtain based on our characterization of existing DRAM devices using SoftMC [42] 
and a variety of DDR3 and DDR4 DRAM modules. Our error models are consistent 
with the error patterns observed by prior works [33–35, 40]. In addition, our error 
models are parameterizable and can be tuned to model individual DRAM chips, 
ranks, banks, and subarrays from different vendors. 

• Error Model 0: the bit errors follow a uniform random distribution across 
a DRAM bank. Several prior works observe that reducing activation latency 
(tRCD) and precharge latency (tRP ) can cause randomly distributed bit flips due 
to manufacturing process variation at the level of DRAM cells [33, 41]. We model 
these errors with two key parameters: (1) P is the percentage of weak cells (i.e., 
cells that fail with reduced DRAM parameters), and (2) FA is the probability of an 
error in any weak cell. Such uniform random distributions are already observed 
in prior work [43]. 

• Error Model 1: the bit errors follow a vertical distribution across the bitlines of a 
DRAM bank. Prior works [33, 35, 41] observe that some bitlines experience more 
bit flips than others under reduced DRAM parameters due to: (1) manufacturing 
process variation across sense amplifiers [33, 35], and (2) design-induced latency 
variation that arises from the varying distance between different bitlines and the
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row decoder [41]. We model this error distribution with two key parameters: (1) 
PB is the percentage of weak cells in bitline B, and (2) FB is the probability of an 
error in the weak cells of bitline B. 

• Error Model 2: the bit errors follow a horizontal distribution across the 
wordlines of a DRAM bank. Prior works [33, 35, 41] observe that some DRAM 
rows experience more bit flips than others under reduced DRAM parameters 
due to (1) manufacturing process variation across DRAM rows [33, 35], and (2) 
design-induced latency variation that arises from the varying distance between 
different DRAM rows and the row buffer [41]. We model this error distribution 
with two key parameters: (1) PW is the percentage of weak cells in wordline W , 
and (2) FW is the probability of an error in the weak cells of wordline W . 

• Error Model 3: the bit errors follow a uniform random distribution that depends 
on the content of the cells (i.e., this is a data-dependent error model). Figure 5 
illustrates how the bit error rates depend on the data pattern stored in DRAM, for 
reduced voltage (top) and reduced tRCD (bottom). We observe that 0-to-1 flips are 
more probable with tRCD scaling, and 1-to-0 flips are more probable with voltage 
scaling. Prior works provide rigorous analyses of data patterns in DRAM with 
reduced voltage [35] and timing parameters [33] that show results similar to ours. 
This error model has three key parameters: (1) P is the percentage of weak cells, 
(2) FV 1 is the probability of an error in the weak cells that contain a 1 value, and 
(3) FV 0 is the probability of an error in the weak cells that contain a 0 value. 

Model Selection EDEN applies a maximum likelihood estimation (MLE) proce-
dure to determine (1) the parameters (P , FA, PB , FB , PW , FW , FV 1 and FV 0) 
of each error model, and (2) the error model that is most likely to produce the 
errors observed in the real approximate DRAM chip. In case two models have 
very similar probability of producing the observed errors, our selection mechanism 
chooses Error Model 0 if possible, or one of the error models randomly otherwise. 
Our selection mechanism favors Error Model 0 because we find that it the is error 
model that performs better. We observe that generating and injecting errors by 
software with Error Model 0 in both DNN retraining and inference is 1.3x faster 
than injecting errors with other error models in our experimental setup. We observe 
that Error Model 0 provides (1) a reasonable approximation of Error Model 1, if 
max(FB) − min(FB) <  0.05 and PB ≈ P , and (2) a reasonable approximation of 
Error Model 2, if max(FW) − min(FW) <  0.05 and PW ≈ P . 

Handling Error Variations Error rates and error patterns depend on two types 
of factors. First, factors intrinsic to the DRAM device. The most common intrinsic 
factors are caused by manufacturer [35], chip, and bank variability [37, 40]. Intrinsic 
factors are established at DRAM fabrication time. Second, factors extrinsic to the 
DRAM device that depend on environmental or operating conditions. The most 
common extrinsic factors are aging [44], data values [45], and temperature [46]. 
Extrinsic factors can introduce significant variability in the error patterns. 

EDEN can capture intrinsic factors in the error model with a unique DRAM 
characterization pass. However, capturing extrinsic factors in the error model is
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Fig. 5 Bit error rates depend on the data pattern stored in DRAM, with reduced supply voltage 
[35] and reduced tRCD [33, 35, 37, 41], motivating Error Model 3. Data is based on DDR3 DRAM 
modules from three major vendors. Adapted from [23] 

more challenging. Our DNN models capture three factors extrinsic to the DRAM 
device. 

First, EDEN can capture data-dependent errors by generating different error 
models for different DNN models (i.e., different IFM and weight values in memory). 
For each DNN model, EDEN stores the actual weight and IFM values in the target 
approximate DRAM before characterization to capture data dependencies. 

Second, EDEN can capture temperature variations by generating different error 
models for the same approximate DRAM operating at different temperatures. Errors 
increase with higher temperatures [46], so the model must match the temperature of 
DNN inference execution. 

Third, EDEN can capture DRAM aging by periodically regenerating new error 
models. In our experiments with real DRAM modules, we find that the errors are 
temporally consistent and stable for days of continuous execution (with ±5◦ C 
deviations from the profiling temperature), without requiring re-characterization. 
Prior work [37] reports similar results. 

We find in our evaluation that our error models are sufficiently expressive to 
generate a boosted DNN that executes on real approximate DRAM with minimal
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accuracy loss (Sect. 6.4). Our four error models are also sufficiently expressive to 
encompass the bit error models proposed in prior work [47]. 

5 Memory Controller Support 

To obtain the most out of EDEN, we modify the memory controller to (1) correct 
implausible values during both curricular retraining and DNN inference, (2) support 
coarse-grained memory mapping, and (3) support fine-grained memory mapping. 

Hardware Support for Correcting Implausible Values We correct implausible 
values that cause accuracy collapse during both curricular retraining (Sect. 3.2) 
and DNN inference (Sect. 3.5). Our mechanism (1) compares a loaded value to 
an upper-bound and a lower-bound threshold, and (2) sets the value to zero (i.e., 
supplies the load with a zero result) in case the value is out of bounds. Because 
these operations are done for every memory access that loads a DNN value, it can 
cause significant performance degradation if performed in software. To mitigate this 
issue, we incorporate simple hardware logic in the memory controller that we call 
bounding logic. Our bounding logic (1) compares the exponent part of the loaded 
floating point value to DNN-specific upper-bound and lower-bound thresholds, and 
(2) zeros the input value if the value is out of bounds. In our implementation, the 
latency of this logic is only 1 cycle and its hardware cost is negligible. 

Enabling Coarse-Grained Mapping Coarse-grained mapping applies the same 
voltage and timing parameters to the entire DRAM for executing a particular DNN 
workload. However, different DNN workloads might require applying different 
sets of DRAM parameters to maximize energy savings and performance. In many 
existing commodity systems, the memory controller sets the DRAM voltage and the 
timing parameters at start-up, and it is not possible to change them at runtime. To 
overcome this limitation, the memory controller requires minimal hardware support 
for changing the DRAM parameters of each DRAM module at runtime. 

Enabling Fine-Grained Mapping Fine-grained mapping applies different voltage 
and/or timing parameters to different DRAM partitions. 

To apply different voltages to different memory partitions, EDEN (1) adopts the 
approach used by Voltron [35] to implement a robust design for voltage scaling at 
the bank granularity based on modest changes to the power delivery network, and 
(2) tracks which memory partition is operating at what voltage. To implement this 
mechanism in commodity DDR4/LPDDR4 chips with 16/32 banks, EDEN requires 
at most 32B of metadata to represent all 8-bit voltage step values. 

To apply different timing parameters to different memory partitions, EDEN 
requires memory controller support for (1) configuring the target memory partition 
to operate at specific timing parameters, and (2) tracking which memory partition 
is operating at what latency. For the timing parameter we tested in our evaluation
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(.tRCD), 4-bits are enough to encode all possible values of the parameter with enough 
resolution. 

It is sufficient for EDEN to split DRAM into at most .210 partitions, because 
most commonly used DNN architectures have at most 1024 different types of 
error-resilient IFMs and weights. EDEN requires 1 KB of metadata to support 
.210 partitions. To support mappings at subarray level granularity (i.e., the finest 
supported granularity), EDEN needs a larger amount of metadata. For example, for 
an 8 GB DDR4 DRAM module with 2048 subarrays, EDEN needs to store 2 KB of 
metadata. 

6 DNN Accuracy Evaluation 

In this section, we evaluate EDEN’s ability to improve DNN accuracy in approx-
imate DRAM. We explain our methodology (Sect. 6.1), evaluate the accuracy 
of our error models (Sect. 6.2), evaluate the error tolerance of the DNN base-
lines (Sect. 6.3), and analyze the accuracy of our curricular retraining mechanism 
(Sect. 6.4). 

6.1 Methodology 

We use an FPGA-based infrastructure running SoftMC [42] to reduce DRAM volt-
age and timing parameters. SoftMC allows executing memory controller commands 
on individual banks, and modifying .tRCD and other DRAM timing parameters. 
We perform all our experiments at room temperature. Using this infrastructure, 
we can obtain characteristics of real approximate DRAM devices. However, our 
infrastructure also has some performance limitations caused by delays introduced 
with SoftMC’s FPGA buffering, host-FPGA data transmission, and instruction 
batching on the FPGA. 

To overcome these performance limitations, we emulate real approximate 
DRAM modules by using the error models described in Sect. 4. To ensure that 
our evaluation is accurate, we validate our error models against real approximate 
DRAM devices (Sect. 6.2). 

We incorporate EDEN’s error models into DNN inference libraries by following 
the methodology described in Fig. 6. We create a framework on top of PyTorch 
[48] that allows us to modify the loading of weights and IFMs. Our PyTorch 
implementation (1) injects errors into the original IFM and weight values using our 
DRAM error models, and (2) applies our mechanism to correct implausible values 
caused by bit errors in IFMs and weights (Sect. 3.2). Our DRAM error models 
are implemented as custom GPU kernels for efficient and simple integration into 
PyTorch. This simulation allows us to obtain DNN accuracy estimates 80–90x faster 
than with the SoftMC infrastructure.
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Fig. 6 Methodology to incorporate DRAM error models in the DNN evaluation framework. 
Adapted from [23] 

Table 1 DNN models used in our evaluations. The listed total model size and summed 
IFM+weight sizes are for the FP32 variant of each model 

Model Dataset Model size IFM+Weight size 

ResNet101 CIFAR10 163.0 MB 100.0 MB 

MobileNetV2 CIFAR10 22.7 MB 68.5 MB 

VGG-16 ILSVRC2012 528.0 MB 218.0 MB 

DenseNet201 ILSVRC2012 76.0 MB 439.0 MB 

SqueezeNet1.1 ILSVRC2012 4.8 MB 53.8 MB 

AlexNet CIFAR10 233.0 MB 208.0 MB 

YOLO MSCOCO 237.0 MB 360.0 MB 

YOLO-Tiny MSCOCO 33.8 MB 51.3 MB 

LeNet.� CIFAR10 1.65 MB 2.30 MB 
. � we use this small model in some evaluations where the experimental setup does not support large 

models 

DNN Baselines We describe the DNN baselines that we use in the evaluation of 
the three EDEN steps (Sects. 3.2, 3.3, and 3.4). Table 1 lists the eight modern and 
commonly used DNN models we evaluate. We target both small (e.g., CIFAR-10) 
and large-scale (e.g., ILSVRC2012) image classification datasets. ResNet101 [49], 
VGG-16 [50], and DenseNet201 [51] models are top-five winners of past ImageNet 
ILSVRC competitions. We use Google MobileNetV2 [6] to test smaller, mobile-
optimized networks that are widely used on mobile platforms, and SqueezeNet [16] 
to test embedded, real-time applications. Table 1 also shows the summed sizes of 
all IFMs and weights of each network for processing one input, which is a good 
indicator of the memory intensity of each DNN model. 

Table 2 shows the accuracy we obtain in our experiments for our baseline 
networks across four different numeric precisions (int4, int8, int16 and FP32), 
using reliable commodity DRAM. We quantize using the popular symmetric linear 
DNN quantization scheme [52]. This quantization scheme applies weight-dependent 
affine scaling to linearly map weights into the range .[−2b−1, 2b−1 − 1], where b 
is the target model weight bit precision. YOLO and YOLO-Tiny’s framework only 
support int8 and FP32 numeric precisions. 

Two of the models, DenseNet201 and SqueezeNet1.1, suffer from accuracy 
collapse at 4-bit precision. We did not use hyper-parameter tuning in our baselines or 
subsequent experiments. All results use the default DNN architectures and learning 
rates.
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Table 2 Baseline accuracies 
of the networks used in our 
evaluation with reliable 
DRAM memory (no bit 
errors) using different 
numeric precisions 

Model int4 int8 int16 FP32 

ResNet101 [49] 89.11% 93.14% 93.11% 94.20% 

MobileNetV2 [6] 51.00% 70.44% 70.46% 78.35% 

VGG-16 [50] 59.05% 70.48% 70.53% 71.59% 

DenseNet201 [51] 0.31% 74.60% 74.82% 76.90% 

SqueezeNet1.1 [16] 8.07% 57.07% 57.39% 58.18% 

AlexNet [2] 83.13% 86.04% 87.21% 89.13% 

YOLO. � [53] – 44.60% – 55.30% 

YOLO-Tiny. � [53] – 14.10% – 23.70% 

LeNet [21] – 61.30% – 67.40% 
. � these models use mean average precision (mAP) instead 

of the accuracy metric 

6.2 Accuracy Validation of the Error Models 

EDEN uses errors obtained from real DRAM devices to build and select accurate 
error models. We profile the DRAM (1) before running DNN inference, and (2) 
when the environmental factors that can affect the error patterns change (e.g., when 
temperature changes). We find that an error model can be accurate for many days if 
the environmental conditions do not change significantly, as also observed in prior 
work [37, 41, 54]. 

We derive our probabilistic error models (Sect. 4) from data obtained from eight 
real DRAM modules. We use the same FPGA infrastructure as the one described in 
Sect. 6.1. We find that complete profiling of a 16-bank, 4 GB DDR4 DRAM module 
takes under 4 minutes in our evaluation setup. 

We validate our error models by comparing the DNN accuracy obtained after 
injecting bit errors using our DRAM error models to the accuracy obtained with each 
real approximate DRAM module. Figure 7 shows an example of the DNN accuracy 
obtained using DRAM modules from three major vendors with reduced voltage 
and .tRCD , and the DNN accuracy obtained using our Error Model 0. We use Error 
Model 0 because it is the model that fits better the errors observed in the three tested 
DRAM modules. Our main observation is that the DNN accuracy obtained with 
our model is very similar to that obtained with real approximate DRAM devices. 
We conclude that our error models mimic very well the errors observed in real 
approximate DRAM devices. 

6.3 Error Tolerance of Baseline DNNs 

To better understand the baseline error tolerance of each DNN (before boosting 
the error tolerance), we examine the error tolerance of the baseline DNNs. This 
also shows us how differences in quantization, best-fit error model, and BER can 
potentially affect the final DNN accuracy.
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Fig. 7 LeNet/CIFAR-10 accuracies obtained using real approximate DRAM devices (via SoftMC) 
and using our Error Model 0. Error bars show the 95% confidence interval of Error Model 0. 
Adapted from [23] 

Figure 8 shows the accuracy of ResNet101 at different precision levels and BERs 
using all four error models. We see that all DNNs exhibit an accuracy drop at high 
BER (.>10−2), but different error models cause the drop-off for all DNNs to be 
higher or lower. This is rooted in how each error model disperses bit errors into the 
DNN IFMs and weights. A good example of this is Error Model 1, which exhibits 
the most early and extreme drop-offs, especially for FP32 DNNs. We find that the 
cause of this is that, in our experimental setup, IFMs and weights are aligned in 
DRAM, so the MSBs of different DNN data types are mapped to the same bitline B. 
If the percentage of weak cells in bitline B (. PB ) is high, the DNN suffers many MSB 
failures. However, Error Model 0 distributes these weak cell failures uniformly and 
randomly across the bank, causing far fewer MSB failures. In general, the way in 
which each error model captures the distribution of weak cells across data layout in 
memory greatly affects its impact on the error curve. 

Quantization Precision also affects the error model and the error tolerance curve. 
For example, in Error Model 2, we observe that the int-4 DNN has the weakest error 
tolerance curve. We find that this is because Error Model 2 clusters weak cells along 
a row: a large number of neighboring 4-bit values end up corrupted when Error 
Model 2 indicates a weak wordline. This is in contrast to larger precisions, which 
might have numbers distributed more evenly across rows, or error models that do 
not capture error locality (e.g., Error Model 0). In general, we find that clusters of 
erroneous values cause significant problems with accuracy (the errors compound 
faster as they interact with each other in the DNN). Such locality of errors is more
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Fig. 8 ResNet101 accuracy across different BERs (x-axis) and quantization levels when we use 
four error models to inject bit errors. We fit the parameters of the error models to the errors observed 
by reducing tRCD  in a real DRAM device from Vendor A. Adapted from [23] 

common in low-bitwidth precisions and with spatial correlation-based error models 
(Error Models 1 and 2). 

DNN Size We observe that larger DNNs (e.g., VGG16) are more error resilient. 
Larger models exhibit an accuracy drop-off at higher BER (.>10−2) as compared to 
smaller models (e.g., SqueezeNet1.1, .<10−3). These results are not plotted. 

Accuracy Collapse We can observe the accuracy collapse phenomenon caused by 
implausible values (see Sect. 3.2) when we increase the bit error rate over . 10−6

in large networks. These implausible values propagate, and in the end, they cause 
accuracy collapse in the DNN.
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6.4 Curricular Retraining Evaluation 

We run DNN inference on real DRAM devices using the boosted DNN model 
generated by our curricular retraining mechanism. To our knowledge, this is the first 
demonstration of DNN inference on real approximate memory. We also evaluate our 
curricular retraining mechanism using our error models (see Sect. 4). 

Experimental Setup We evaluate curricular retraining using real DRAM devices 
by running LeNet [21] on the CIFAR-10 [55] validation dataset. We use 
SoftMC [42] to scale .VDD and .tRCD on an FPGA-based infrastructure connected 
to a DDR3 DRAM module. We also evaluate curricular retraining using our error 
models by running ResNet [49] on the CIFAR-10 validation dataset. 

Results with Real DRAM Figure 9 shows the accuracy of (1) baseline LeNet 
without applying any retraining mechanism (Baseline), and (2) LeNeT boosted 
with our curricular retraining mechanism (Boosted), as a function of DRAM supply 
voltage and .tRCD . We make two observations. First, EDEN’s boosted LeNet allows 
a voltage reduction of . ∼0.25 V and a .tRCD reduction of 4.5 ns, while maintaining 
accuracy values equivalent to those provided by nominal voltage (1.35 V) and 
nominal .tRCD (12.5 ns). Second, the accuracy of baseline LeNet decreases very 
quickly when reducing voltage and .tRCD below the nominal values. We conclude 
that our curricular retraining mechanism can effectively boost the accuracy of 
LeNeT on approximate DRAM with reduced voltage and .tRCD . 

Results with Error Models Figure 10 (left) shows an experiment that retrains 
ResNet101 with two different models: (1) a good-fit error model (that closely 
matches the tested device) and (2) a poor-fit error model. We make two observations. 
First, retraining using a poor-fit error model (red), yields little improvement over the 
baseline (no retraining, green). Second, retraining with a good-fit error model (blue) 

Fig. 9 LeNet accuracy using baseline and boosted DNNs. Adapted from [23]
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Fig. 10 Accuracy of boosted ResNet101 DNNs in presence of memory errors. Left: accuracy of 
poor-fit and good-fit error models. Right: accuracy of non-curricular and curricular retraining using 
a good-fit error model. Adapted from [23] 

improves BER at the 89% accuracy point by >10x (shifting the BER curve right). 
We conclude that using a good-fit error model in the retraining mechanism is critical 
to avoid accuracy collapse. 

Figure 10 (right) shows the effectiveness of our curricular retraining mechanism 
using a good-fit error model. We make two observations. First, the accuracy of the 
DNN with regular retraining (purple) collapses, compared to the baseline DNN (no 
retraining, green). Second, the DNN trained with our curricular retraining (orange) 
exhibits a boosted error tolerance. We conclude that our curricular retraining mech-
anism is effective at boosting the DNN accuracy in systems that use approximate 
DRAM. 

Running this retraining process for 10–15 epochs is sufficient to boost tolerable 
BERs by 5–10x to achieve the same DNN accuracy as the baseline DNN executed 
in DRAM with nominal parameters. For our ResNet101 on CIFAR-10 with an 
NVIDIA Tesla P100, this one-time boosting completes within 10 min. 

6.5 Coarse-Grained DNN Characterization and Mapping 

In this section, we show the results of EDEN’s coarse-grained DNN characterization 
(see Sect. 3.3) and how the target DNN model maps to an approximate DRAM with 
optimized parameters for a target accuracy degradation of .<1%. 

Characterization Table 3 shows the DNN’s maximum tolerable BER for eight 
DNN models with FP32 and int8 numeric precisions.
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Table 3 Maximum tolerable BER for each DNN using EDEN’s coarse-grained characterization, 
and DRAM parameter reduction to achieve the maximum tolerable BER. Nominal parameters are 
.VDD = 1.35V and . tRCD = 12.5 ns

FP32 int8 

Model BER .�VDD .�tRCD BER .�VDD . �tRCD

ResNet101 4.0% . −0.30 V . −5.5 ns 4.0% . −0.30 V . −5.5 ns 

MobileNetV2 1.0% . −0.25 V . −1.0 ns 0.5% . −0.10 V . −1.0 ns 

VGG-16 5.0% . −0.35 V . −6.0 ns 5.0% . −0.35 V . −6.0 ns 

DenseNet201 1.5% . −0.25 V . −2.0 ns 1.5% . −0.25 V . −2.0 ns 

SqueezeNet1.1 0.5% . −0.10 V . −1.0 ns 0.5% . −0.10 V . −1.0 ns 

AlexNet 3.0% . −0.30 V . −4.5 ns 3.0% . −0.30 V . −4.5 ns 

YOLO 5.0% . −0.35 V . −6.0 ns 4.0% . −0.30 V . −5.5 ns 

YOLO-Tiny 3.5% . −0.30 V . −5.0 ns 3.0% . −0.30 V . −4.5 ns 

We observe that the maximum tolerable BER demonstrates significant variation 
depending on the DNN model. For example, YOLO tolerates 5% BER and 
SqueezeNet tolerates only 0.5%. We conclude that (1) the maximum tolerable BER 
highly depends on the DNN model, and (2) DNN characterization is required to 
optimize approximate DRAM parameters for each DNN model. 

Mapping EDEN maps each DNN model to an approximate DRAM module that 
operates with the maximum reduction in voltage (.�VDD) and .tRCD (.�tRCD) that 
leads to a BER below the maximum DNN tolerable BER for that DNN model. 
Table 3 shows the maximum reduction in DRAM voltage (.�VDD) and . tRCD

(.�tRCD) that causes a DRAM BER below the maximum tolerable BER, for a target 
DRAM module from vendor A. The nominal DRAM parameters for this DRAM 
module are .VDD = 1.35 V and .tRCD = 12.5 ns. We make two observations. First, 
the tolerable BER of a network is directly related to the maximum tolerable . VDD

and .tRCD reductions. Second, the reductions in .VDD and .tRCD are very significant 
compared to the nominal values. For example, EDEN can reduce voltage by 26% 
and .tRCD by 48% in YOLO while maintaining the DNN accuracy to be within 1% 
of the original accuracy. 

6.6 Fine-Grained DNN Characterization and Mapping 

Characterization We characterize the ResNet101 DNN model with our fine-
grained DNN characterization procedure (see Sect. 3.3). For each IFM and weight, 
we iteratively increase the bit error rate until we reach the maximum tolerable BER 
of the data type for a particular target accuracy degradation. We perform a full 
network retraining in each iteration. To reduce the runtime of our procedure, we 
sample 10% of the validation set during each inference run to obtain the accuracy 
estimate. We also bootstrap the BERs to the BER found in coarse-grained DNN
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Fig. 11 Fine-grained characterization of the tolerable BERs of ResNet101 IFMs and weights. 
Deeper layers are on the right. Adapted from [23] 

Fig. 12 Mapping of ResNet101 IFMs and weights into four partitions with different .VDD values 
(colored horizontal lines). Adapted from [23] 

characterization and use a linear scale in 0.5 increments around that value. For 
ResNet101, this one-time characterization completes in one hour using an Intel 
Xeon CPU E3-1225. 

Figure 11 shows the maximum tolerable BER for each IFM and weight in 
ResNet101 obtained with our fine-grained DNN characterization method (Sect. 3.3), 
assuming a maximum accuracy loss of . <1%. Each bar in the figure represents the 
BER tolerance of an IFM or weight, and they are ordered by their depth in the DNN, 
going deeper from left to right. We make three observations. First, fine-grained 
characterization enables individual IFMs and weights to tolerate up to 3x BER (13% 
for the last weight) of the maximum tolerable BER of the coarse-grained approach 
(4% for ResNet101 in Table 3). Second, weights usually tolerate more errors than 
IFMs. Third, the maximum tolerable BER is smaller in the first layers than in the 
middle layers of the DNN. We conclude that fine-grained DNN characterization 
enables a significant increase in the maximum tolerable BER compared to coarse-
grained characterization. 

Mapping We map each individual IFM or weight into different DRAM partitions 
based on (1) the BER tolerance of each IFM and weight, and (2) the BER of each 
DRAM partition, using our algorithm in Sect. 3.4. Figure 12 shows an example 
that maps the ResNet101 IFMs and weights from Fig. 11 into 4 different DRAM 
partitions with different voltage parameters that introduce different BERs (four 
horizontal colored bars), following the algorithm in Sect. 3.4.
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We conclude that the wide range of tolerable BERs across all ResNet101 data 
types enables the use of both (1) DRAM partitions with significant voltage reduction 
(e.g., horizontal red line), and (2) DRAM partitions with moderate voltage reduction 
(e.g., horizontal blue line). 

7 System-Level Evaluation 

We evaluate EDEN in three different DNN inference architectures: CPUs, GPUs, 
and inference accelerators. 

7.1 CPU Inference 

Experimental Setup We evaluate EDEN on top of a multi-core OoO CPU 
using the simulated core configuration listed in Table 4. We use ZSim [56] and 
Ramulator [57] to simulate the core and the DRAM subsystem, respectively. We 
use DRAMPower [58] to estimate energy consumption for DDR4 devices. We use 
a 2-channel, 32-bank 8GB DDR4-2133 DRAM device. 

We use twelve different inference benchmarks: eight from the Intel OpenVINO 
toolkit [12] and four from the AlexeyAB-fork of the DarkNet framework. For each 
DNN, we study the FP32 and the int8-quantized variant. We use 8-bit quantization 
in our baselines, because it is commonly used for production CPU workloads. We 
evaluate EDEN’s coarse-grained DNN characterization procedure and target a . <1%
accuracy degradation. Table 3 lists the reduced .VDD and .tRCD values. 

DRAM Energy Figure 13 shows the DRAM energy savings of EDEN, compared 
to a system with DRAM operating at nominal voltage and nominal latency. We 
make two observations. First, EDEN achieves significant DRAM energy savings 
across different DNN models. The average DRAM energy savings is 21% across all 
workloads, and 29% each for YOLO and VGG. Second, the DRAM energy savings 

Table 4 Simulated system configuration 

Cores 2 Cores @ 4.0 GHz, 32nm, 4-wide OoO, 

Buffers: 18-entry fetch, 128-entry decode, 

128-entry reorder buffer, 

L1 Caches 32 KB, 8-way, 2-cycle, Split Data/Instr. 

L2 Caches 512 KB per core, 8-way, 4-cycle, Shared Data/Instr., 

Stream Prefetcher 

L3 Caches 8 MB per core, 16-way, 6-cycle, Shared Data/Instr., 

Stream Prefetcher 

Main memory 8GB DDR4-2133 DRAM, 2 channels, 16 banks/channel
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Fig. 13 DRAM energy savings of EDEN. We use FP32 and quantized int8 networks. Adapted 
from [23] 

Fig. 14 Speedup of EDEN over baseline and versus a system with ideal activation latency. We use 
FP32 and an quantized int8 networks. Adapted from [23] 

for FP32 and int8 are roughly the same, because the voltage reduction is very similar 
for both precisions (see Table 3). 

We also perform evaluations for a target accuracy that is the same as the original. 
Our results show that EDEN enables an average DRAM energy reduction of 16% 
(up to 18%). 

We conclude that EDEN is effective at saving DNN inference energy by reducing 
voltage while maintaining the DNN accuracy within 1% of the original. 

Performance Figure 14 shows the speedup of EDEN when we reduce tRCD , and 
the speedup of a system with a DRAM module that has ideal tRCD = 0, compared 
to a system that uses DRAM with nominal timing parameters. We make three 
observations. First, YOLO DNNs exhibit high speedup with EDEN, reaching up 
to 17% speedup. The results of YOLO are better than the average because YOLO 
is more sensitive to DRAM latency. This is because some steps in YOLO (e.g., 
Non-Maximum Suppression, confidence, and IoU thresholding) perform arbitrary 
indexing into matrices that lead to random memory accesses, which cannot easily 
be predicted by the prefetchers. Second, the average speedup of EDEN (8%) is very 
close to the average speedup of the ideal system with tRCD = 0 (10%). Third,
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we find that SqueezeNet1.1 and ResNet101 exhibit very little maximum theoretical 
speedup because they are not bottlenecked by memory latency. 

We also perform evaluations for a target accuracy that is the same as the original. 
Our results show that EDEN enables an average performance gain of 4% (up to 7%). 

We conclude that EDEN is effective at improving DNN inference performance 
by reducing DRAM latency while maintaining the DNN accuracy within 1% of the 
original, especially on DNNs that are sensitive to memory latency. 

7.2 Accelerators 

We evaluate EDEN on three different accelerators: GPU, Eyeriss [7], and TPU [20]. 

GPU Inference We evaluate EDEN on a GPU using the cycle-accurate GPGPU-
Sim simulator [59]. We use GPUWattch [60] to evaluate the overall GPU energy 
consumption. Table 5 details the NVIDIA Titan X GPU model we use in our 
evaluation. We use the reduced .tRCD and .VDD values that provide .<1% accuracy 
degradation (as listed in Table 3). We adapt four DarkNet-based binaries to run 
inference on the FP32/int8 YOLO and YOLO-Tiny DNNs. 

Our results show that EDEN provides 37% average energy reduction (41.7% 
for YOLO-Tiny, and 32.6% for YOLO) compared to a GPU that uses DRAM with 
nominal parameters. 

Our results also show that EDEN provides 2.7% average speedup (5.5% for the 
YOLO-Tiny, and 0% for YOLO) compared to a GPU that uses DRAM with nominal 
parameters. DRAM with ideal tRCD  (.tRCD = 0) provides .6% speedup for YOLO-
Tiny and 2% speedup for YOLO. These results indicate that (1) the YOLO DNN 
family is not DRAM latency bound in our evaluation configuration, and (2) EDEN 
can achieve close to the ideal speedup of zero activation latency when the DNN is 
latency bound. 

Neural Network Inference Accelerators We evaluate EDEN on Eyeriss [7] and 
Google’s Tensor Processing Unit (TPU) [20] using the cycle-accurate SCALE-Sim 
simulator [61]. We use DRAMPower [58] to obtain DRAM energy consumption 
from memory traces produced by SCALE-Sim. We use the built-in int8 AlexNet 
and YOLO-Tiny models and their accelerator-specific dataflows. We use DRAM 
parameters that yield a maximum accuracy loss of 1% (Table 3). Table 6 details the 

Table 5 Simulated NVIDIA Titan X GPU configuration 

Shader core 28 SMs, 1417 MHz, 32 SIMT Width, 

64 Warps per SM, 4 GTO Schedulers per Core 

Private L1 cache 24 KB per SMM, Cache Block Size 128B 

Shared memory 96 KB, 32 Banks. Shared L2 Cache: 3 MB 

Main memory GDDR5, 2500 MHz, 6 channels, 24 chips
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Table 6 Simulated Eyeriss 
and TPU configurations 

Eyeriss TPU 

Array .12 × 14 PEs .256 × 256 PEs 

SRAM buffers 324 KB 24 MB 

Main memory 4GB DDR4-2400 4GB DDR4-2400 

4GB LPDDR3-1600 4GB LPDDR3-1600 

configuration of the Eyeriss and TPU inference accelerators. Eyeriss has an array of 
.12 × 14 processing elements (PEs) with a 324 KB SRAM buffer for all data types 
(i.e., IFMs, weights and OFMs), and the TPU has an array of .256 × 256 PEs with 
a 24 MB SRAM buffer for all data types. We evaluate both accelerators with DDR4 
and LPDDR3 DRAM configurations, using AlexNet and YOLO-Tiny workloads. 

Our results show that reducing the voltage level in DDR4 DRAM leads to 
significant DRAM energy reductions on both Eyeriss and TPU accelerators. EDEN 
provides (1) 31% average DRAM energy savings on Eyeriss (31% for YOLO-Tiny, 
and 32% for AlexNet), and (2) 32% average DRAM energy savings on TPU (31% 
for YOLO-Tiny, and 34% for AlexNet). 

Our results with a reduced voltage level in LPDDR3 are similar to those 
with DDR4. EDEN provides an average DRAM energy reduction of 21% for 
both Eyeriss and TPU accelerators running YOLO-Tiny and AlexNet. By using 
the accelerator/network/cache/DRAM energy breakdown provided by the Eyeriss 
evaluations on AlexNet [7], we estimate that EDEN can provide 26.8% system-level 
energy reduction on fully connected layers and 7% system-level energy reduction 
on convolutional layers. 

Our results with reduced .tRCD in LPDDR3 and DDR4 show that Eyeriss and 
TPU exhibit no speedup from reducing .tRCD . We observe that prefetchers are very 
effective in these architectures because the memory access patterns in the evaluated 
DNNs are very predictable. 

8 Related Work 

To our knowledge, EDEN is the first paper to propose a general framework that 
reduces energy consumption and increases performance of DNN inference by using 
approximate DRAM with reduced voltage and latency. EDEN introduces a new 
methodology to improve DNN’s tolerance to approximate DRAM errors which 
is based on DNN error tolerance characterization and a new curricular retraining 
mechanism. We demonstrate the effectiveness of EDEN by using error patterns that 
occur in real approximate DRAM devices. 

In this section, we discuss closely related work on (1) approximate computing 
hardware for DNN workloads, and (2) modifying DRAM parameters.
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Approximate Computing Hardware for DNN Workloads Many prior works 
propose to use approximate computing hardware for executing machine learning 
workloads [62–74]. All these works propose techniques for improving DNN toler-
ance for different types of approximate hardware mechanisms and error injection 
rates. Compared to these works, EDEN is unique in (1) being the first work 
to use approximate DRAM with reduced voltage and latency, (2) being the first 
demonstration of DNN inference using error characterization of real approximate 
DRAM devices, (3) using a novel curricular retraining mechanism that is able to 
customize the DNN for tolerating high error rates injected by the target approximate 
DRAM, and (4) mapping each DNN data type to a DRAM partition based on the 
error tolerance of the DNN data type and the bit error rate of the DRAM partition. 
We classify related works on approximate hardware for DNN workloads into six 
categories. 

First, works that reduce DRAM refresh to save DNN energy [62–64]. RANA [63] 
and St-DRC [62] propose to reduce DRAM refresh rate in the embedded DRAM 
(eDRAM) memory of DNN accelerators. Nguyen et al. [64] propose to apply similar 
refresh optimization techniques to off-chip DRAM in DNN accelerators. These 
mechanisms use customized retraining mechanisms to improve the accuracy of the 
DNN in the presence of a moderate amount of errors. 

Second, works that study the error tolerance of neural networks to uniform 
random faults in SRAM memory [65, 66]. For example, Li et al. [65] analyze 
the effect of various numeric representations on error tolerance. MoRS [66] is an  
approximate undervolting fault model using real faults extracted from experimental 
undervolting studies on SRAMs to build the model. The authors inject the faults 
generated by MoRS into the on-chip memory of the DNN accelerator to evaluate 
the resilience of the system under the test. 

Third, works that study approximate arithmetic logic in DNN workloads [67, 68]. 
ThUnderVolt [67] proposes to underscale the voltage of arithmetic elements. Salami 
et al. [68] present fault-mitigation techniques for neural networks that minimize 
errors in faulty registers and logic blocks with pruning and retraining. 

Fourth, works that study approximate emerging memory technologies for neural 
network acceleration. Panda et al. [69] and Kim [70] propose neuromorphic 
accelerators that use spintronics and memristors to run a proof-of-concept fuzzy 
neural network. 

Fifth, works that study the effects of approximate storage devices on DNN 
workloads [71, 72]. Qin et al. [71] study the error tolerance of neural networks that 
are stored in approximate non-volatile memory (NVM) media. The authors study 
the effects of turning the ECC off in parts of the NVM media that store the neural 
network data. Wen et al. [72] propose to mitigate the effects of unreliable disk reads 
with a specialized ECC variant that aims to mitigate error patterns present in weights 
of shallow neural networks. 

Sixth, works that study the intrinsic error resilience of DNNs by injecting 
randomly distributed errors in DNN data [73, 74]. These works assume that the 
errors can come from any component of the system (i.e., they do not target a specific 
approximate hardware component). Marques et al. [73] study the accuracy of DNNs
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under different error injection rates and propose various error mitigation techniques. 
This work uses a simple probabilistic method to artificially inject errors into the 
DNN model. ApproxANN [74] uses an algorithm that optimizes the DNN accuracy 
by taking into account the error tolerance and the criticality of each component of 
the network. 

Approximate Computing Hardware for Other Workloads There are applica-
tions other than neural network inference that can tolerate errors, thus they can 
benefit from approximate memory [75, 76]. Bharti et al. [75] propose an hetero-
geneous SRAM structure for low-power multimedia applications in smartphones. 
Nguyen et al. [76] propose an approximate DRAM architecture for improving 
the performance of neural network training via refreshing only the most critical 
bits [76]. 

Modifying DRAM Parameters Many prior works study the effects of modifying 
DRAM parameters on reliability, performance, and energy consumption. We already 
discuss some prior works that reduce DRAM voltage, access latency, and refresh 
rate in Sect. 2.3. EDEN leverages the characterization techniques introduced in 
Voltron [35] and Flexible-Latency DRAM [33] to perform the DRAM character-
ization required to map a DNN to approximate DRAM with reduced voltage and 
reduced latency (Sect. 3.4). We classify other related works that modify DRAM 
parameters into three categories. 

First, works that aim to characterize and reduce energy consumption at reduced 
supply voltage levels [35, 77]. David et al. [77] propose memory dynamic voltage 
and frequency scaling (DVFS) to reduce DRAM power. Voltron [35] studies 
voltage reduction in real DRAM devices in detail and proposes solutions to reduce 
voltage reliably based on observed error characteristics and system performance 
requirements. 

Second, works that investigate DRAM characteristics under reduced access 
latency [33, 37]. Adaptive-Latency DRAM [37] characterizes the guardbands 
present in timing parameters defined by DRAM manufacturers, and exploits the 
extra timing margins to reliably reduce DRAM latency across different chips and 
temperatures. Flexible-Latency DRAM [33] analyzes the spatial distribution of 
reduced-latency-induced cell failures, and uses this information to reliably access 
different regions of DRAM with different timing parameters. 

Third, works that aim to reduce DRAM latency by modifying the microarchitec-
ture of DRAM or the memory controller (e.g., [17]). These works reduce latency 
without introducing bit errors. 

Approximate Solid-StateMemories There are several works that propose to reuse 
faulty solid-state memories [78, 79]. Chenlin et al. [78] propose to increase NAND 
Flash memory lifetime via reusing faulty memory blocks that contain uncorrectable 
errors to store approximate data. Jevdjic et al. [79] propose a novel and efficient 
methodology to compute bit-level reliability requirements for encoded videos by 
tracking visual and metadata dependencies within encoded bitstreams.
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9 Discussion and Challenges 

In this section we discuss the potential impact of EDEN on future works, and we 
describe the main challenges for EDEN to be commonly accepted by industry 

9.1 Discussion 

EDEN has inspired several works on approximate computing [80–82], error toler-
ance in neural networks [83–85], improving energy efficiency on neural network 
inference [66, 86], improving energy efficiency on neural network training [76], or 
make machine learning algorithms more secure [87]. We believe that EDEN will 
continue to have impact and inspire future work for five main reasons. 

First, large data centers and computing networks are growing very fast due 
to their increasing demand. Although the many efforts on making computing 
and memory more energy-efficient, the overall energy consumption is increasing 
significantly due to the increasing number of available computing resources. Thus, 
reducing the energy and power consumption of memory devices when running error-
tolerant applications would have a large impact on global energy consumption. 
Other computing networks like cryptocurrency mining can also benefit from the 
EDEN framework, as they can potentially be somewhat tolerant to errors. It is 
estimated that the energy consumption of bitcoin alone is in the order of 100 TWh 
per year, which is larger than the energy consumption of some countries. 

Second, data movement between the CPU and main memory is a major obstacle 
against improving performance, scalability, and energy efficiency in modern sys-
tems [88]. To solve this issue, many papers propose different Processing-in-Memory 
(PIM) mechanisms that place computing units close to memory [88–90]. The power 
budget in memory systems is very limited, thus, reducing the energy required for 
accessing memory would enable to increase the in-memory computing capabilities. 

Third, the number of internet of things (IoT) and edge devices has been 
increasing significantly in last few years, and they will continue to grow in the 
upcoming years. These devices have a very limited power budget, and they are 
usually powered by batteries, or they harvest energy from the environment, thus 
reducing energy consumption is critically important. One effective way to reduce the 
energy budget of these devices is to reduce the DRAM voltage or timing parameters 
in cases where the workload can tolerate bit errors. Many of the applications in 
IoT and edge devices are inherently tolerant to noise. For example, IoT devices 
acquire data with sensors, which are subject to inherent variations and noises (e.g., 
measurement noise, small differences in a few pixels, etc.), and this data might be 
processed by DNNs. 

Fourth, many emerging and new applications that can tolerate bit errors can 
benefit from some ideas proposed by EDEN. Some examples of common and 
very used applications are (1) image processing algorithms and applications [91],
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(2) signal processing algorithms [92], (3) genome analysis [93], (4) financial 
analysis [94], or (5) big data analysis [95]. 

Fifth, modern DRAM devices are becoming fundamentally less reliable and 
insecure due to the RowHammer vulnerability [46, 96], where repeatedly accessing 
(i.e., hammering) a DRAM row can cause bit flips in physically nearby rows. 
RowHammer is caused by the reduction of DRAM cell size and cell-to-cell spacing. 
Some works propose RowHammer attacks to gain unrestricted access to the system 
(e.g., [97]), or collapse the accuracy of DNNs (e.g., [98]). The EDEN framework 
can be useful to retrain the DNN in the presence of RowHammer-induced bit flips 
with the goal of avoiding accuracy collapse. 

We conclude that EDEN is tackling a problem that is of paramount importance in 
a global context. EDEN already demonstrates the advantages in the context of DNN 
inference workloads, but it can inspire similar frameworks for other emerging ML 
workloads, and new frameworks for other approximate applications. 

9.2 Challenges 

EDEN has great potential to contribute and inspire future work in low-power 
computing using approximate DRAM. However, there are two main challenges that 
need to be solve for this approach to be commonly accepted by industry. First, the 
characterization of errors in memory devices. Each device are unique, and the bit 
errors caused by reducing the voltage levels or timing parameters depend on process 
variation, which is unique to each device. To ensure that an approximate application 
works reliably in the presence of errors, we must ensure a maximum bit error rate, 
which can be obtained only by characterizing each memory device individually. 
There are some works that contribute to simplifying the error characterization 
errors [46], but there is still work to do for making it a practical solution. Second, 
once the errors are characterized for a particular device, the error patters might 
change for two main reason. First, the aging of the memory device [44] might cause 
variations in the bit error rate and error patterns. Because there is no thorough long-
term DRAM aging study that determines how bit errors change with time, it is not 
possible to assess the impact of aging. Second, variable retention time [99], which 
makes that the retention time of some cells can change at runtime, might need to be 
considered for some critical applications. For example, DeepHammer [98] shows  
that flipping only a few bits can collapse the accuracy on some DNN models. 

EDEN can also be applied to other memory technologies other than DRAM. To 
this end, it is important to understand the different failure mechanisms and error 
characteristics of each particular memory technology. There are several works that 
analyze the errors of NAND Flash memories (e.g., [78]), or SRAMs (e.g., [100]), 
but there are no experimental error studies on real devices from many new memory 
technologies that allow us to assess the viability of applying a framework similar to 
EDEN on those technologies.
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We conclude that EDEN have some important challenges to address before being 
commonly adopted by industry, but we believe that the potential benefits of EDEN 
are large enough to be considered as an efficient way to reduce energy consumption 
on applications that can tolerate bit errors. 

10 Conclusion 

This chapter introduces EDEN, the first general framework that enables energy-
efficient and high-performance DNN inference via approximate DRAM, while 
strictly meeting a target DNN accuracy. EDEN uses an iterative mechanism 
that profiles the DNN and the target approximate DRAM with reduced voltage 
and timing parameters. EDEN improves DNN accuracy with a novel curricular 
retraining mechanism that tolerates high bit error rates. We evaluate EDEN in 
both simulation and on real hardware. Our evaluation shows that EDEN enables 
(1) an average DRAM energy reduction of 21%, 37%, 31%, and 32% in CPU, 
GPU, Eyeriss, and TPU architectures, respectively, across a variety of state-of-the-
art DNNs, and (2) average (maximum) performance gains of 8% (17%) in CPUs and 
2.7% (5.5%) in GPUs, for latency-bound DNNs. We expect that the core principles 
of EDEN generalize well across different memory devices, memory parameters, 
and memory technologies. We hope that EDEN (1) enables further research and 
development on the use of approximate memory for machine learning workloads 
and (2) inspires new research and development on the use of approximate memory 
for other workloads and algorithms that tolerate bit errors. 
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On-Chip DNN Training for Direct 
Feedback Alignment in FeFET 

Fan Chen 

1 Introduction 

Deep neural networks (DNNs) are at the heart of latest revolutions in various 
artificial intelligence (AI) applications, such as computer vision [1, 2], natural 
language processing [3, 4], autonomous systems [5], and precision health [6]. 
A DNN is first trained with labeled data to perform a desired task (such as 
image classification or object detection) through a training process. To obtain 
an acceptable accuracy, training typically needs to run hundreds or thousands of 
iterations. Then the developed model can be deployed for inference tasks. The 
execution of DNN, especially its training process, requires intensive computing and 
huge memory storage. For instance, AlexNet [1]—a medium-sized DNN—involves 
62 million parameters, 2.2 billion operations, and . >130 MB memory storage, to 
perform training on a single RGB image with only 224. ×224 pixels. Moreover, a 
recent analysis [7] shows that the amount of computation used in DNN training has 
constantly increased by 300,000. × from AlexNet (2012) to AlphaGo Zero (2018), 
yielding a 3.4-month doubling period. 

The ever-increasing computing requirements of DNN models motivated the latest 
wide adoption of domain-specific accelerators [8–18] that provide two to three 
orders of magnitude performance improvement compared to general-purpose CPUs 
and GPUs through intensive data reuse and specifically designed memory hierarchy. 
However, the majority of these accelerators is designed only for DNN inference 
and lacks basic support for the DNN training. The reasons are twofold. First, 
the de facto training method, error backpropagation (BP) [19], involves complex 
compute phases and sophisticated data dependency. BP requires all weights and 
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intermediate data to be stored in memory so that they can be sequentially consumed 
in the subsequent error backpropagation paths. In this way, weight updates are non-
local and depend on upstream layers, which make training parallelization extremely 
challenging and greatly limit the continuous improvement of system computing 
performance. Second, the algorithmic complexity incurs significant overheads on 
hardware in terms of computing units, memory, and control circuits. Although some 
of the latest accelerators attempted to address the training requirements, with efforts 
from both industry (e.g., Google TPU [9] V3) and academia proposals [11, 12], their 
power consumption can reach 200. ∼250 Watt. 

The recent proposed accelerators using resistive random access memory 
(ReRAM)-based in-memory computing circuitry [13] demonstrated a great 
potential in low-power DNN acceleration because they can typically provide 1000. ×
to 10,000. × energy reduction in executing massive matrix–vector multiplication 
(MVM)—the dominant operator in DNNs. However, the power and area efficiency 
of such mix-signal accelerators [14–18] suffer from the significant overhead 
of analog-to-digital (A/D) conversion. Essentially, the CMOS analog-to-digital 
converters (ADCs) and digital-to-analog converters (DACs) account for . >60% of 
the energy consumption and . ∼30% of the chip footprint in a typical ReRAM-based 
DNN accelerator [15]. Furthermore, ReRAM-based accelerators still lack efficient 
training support due to the inherent algorithmic complexity of the backpropagation 
algorithm. 

In this chapter, we present our recent research [20] on efficient and low-power 
accelerator architecture for DNN training. We set out to address the aforementioned 
challenges by combining innovations in training algorithm, circuits, and architec-
ture. We analyze the recently proposed direct feedback alignment (DFA) [21], which 
replaces the sequential error information used in BP with a random matrix, thus 
avoiding the need to store weights. More importantly, DFA provides an opportunity 
for parallel layer updates. Previous studies have shown that DFA can be applied to 
various deep learning tasks [21–23] with accuracy closed to fine-tuned BP. Based on 
our analysis, we propose a customized design to support DNN training with DFA. 
We leverage the unique features of ferroelectric field-effect transistors (FeFETs) 
and implemented a holistic accelerator including a FeFET-based low-power ADC, a 
random number generator, and a matrix–vector multiplication engine. The following 
summarize our contributions: 

• We investigate DFA’s potential in overcoming the limitations of long-range 
data dependency in the BP algorithm and identify the two major architectural 
challenges for deploying DFA on hardware systems: (1) a low-cost on-chip 
random number generator and (2) an efficient computing pipeline that supports 
parallel training operations. 

• We exploit the unique features of FeFET, such as low-power operations, 
stochastic polarization switching, and tunable threshold voltage, and propose 
a holistic training accelerator that includes an MVM engine, a low-power ADC, 
and a real-time random number generator, all of which are implemented by 
FeFET.
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• We use a diverse set of DNN applications with distinct benchmarks to evaluate 
the effectiveness of the proposed accelerator architecture. Our experimental 
results show that the proposed design achieves .1.3× speedup and . 2.5x×
improvement on power efficiency compared with the state-of-the-art ReRAM-
based DNN accelerator. 

2 Background 

2.1 DNN Training Methods 

A deep neural network (DNN) is a learning algorithm that deploys a feed-forward 
function for inference and a backward process for training. The backpropagation 
(BP) algorithm [19] has achieved great success in training supervised DNNs and 
has been used as the de facto method due to theoretical simplicity and proven per-
formance. We show the backpropagation and direct feedback alignment algorithm 
in Fig. 1. BP and DFA share the same forward inference path but utilize distinct 
error backward propagation paths as highlighted in blue. The forward inference 
function at layer l can be formulated as the matrix–vector multiplication between 
the input vector .hl−1 and weight matrix . Wl , followed by a nonlinear activation .f (·). 
Note that here we omit bias in the computation of each layer for simplicity. The 
final output is calculated by using a task-specific cost function, which essentially 
quantifies the difference between the actual output generated by the neural network 
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(a) BP 

(b) DFA (c)  Equations of BP and DFA 

Fig. 1 An comparison between backpropagation (BP) and direct feedback alignment (DFA). 
Gray arrows indicate the forward path shared by BP and DFA. Black arrows and blue arrows, 
respectively, indicate the backward paths of BP and DFA. (a) Backpropagation. (b) Direct feedback 
alignment. (c) The mathematical formulas
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and an expected target value. Below we compare the backward error propagation 
paths in BP and DFA. 

BP-Based Error Propagation The error propagation follows the chain rule of 
derivatives [19], where the error for a specific layer, i.e., . δl , is first multiplied with 
the transposed weight matrix of the current layer, i.e., .WT

l , and then multiplied by 
the derivatives of the current input to obtain the error vector for the previous layer. 
Because the inputs and weights of all the layers are required in the calculation of the 
backward path, these values need to be stored in memory, which causes significant 
memory overhead. Moreover, the sequential nature of the BP backward execution 
prevents the parallellism of error updates. For a DNN model with L layers, a training 
on a single input typically takes 3L logical cycles if we assume the computation of 
each layer consumes one cycle. 

DFA-Based Error Propagation The gradient signal .Wl
T ·δl from the l-th layer is 

replaced by .Bl ·δL [21], where . Bl is a random matrix with appropriate shape, and . δL

is the global error signal from the output layer. In this way, the error calculation of 
a single layer is independent of other layers, and hence, the error propagation can 
be processed in parallel, offering a great potential in reducing latency. In addition, 
there is no need to store the weights of each layer, which also saves memory 
requirements. Recent works [21–23] have demonstrated the applicability of DFA 
to various tasks including computer vision, recommendation systems, and natural 
language processing. 

2.2 DNN Acceleration in Resistive Memory 

An example of resistive memory (ReRAM)-based analog DNN acceleration is 
illustrated in Fig. 2a. The key approach of such designs is to implement matrix– 
vector multiplication (MVM) units using ReRAM crossbars. We denote each 
memory cell as a circle, whose conductance is pre-programmed to represent the 
weights of DNNs. The input feature map values are converted to the read voltages 
and applied onto the horizontal wordlines. According to Ohm’s law, the current 
sensed across each memory cell is the product of the input element and the weight 
value stored in the cell. Therefore, the accumulated current at the bit lines (BL) 
aggregates all the current along the BL, representing the dot product between the 
inputs vector and the stored weight vector in a column. If all the WLs are activated 
in an .N×N analog crossbar, the multiplication between a .1×N vector and an . N×N

matrix can be processed in .O(1) time. It is worth mentioning that the calculation in 
ReRAM crossbars is analog in nature; hence, digital-to-analog converters (DACs) 
and analog-to-digital converters (ADCs) are needed at the input and output to ensure 
communication with other digital components on the chip. 

Various DNN accelerators [14–18] leveraging ReRAM-based matrix–vector 
multiplication engines have been recently proposed. Such designs typically can pro-
vide up to two orders of magnitude performance improvement [15, 16] compared to
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Fig. 2 ReRAM-based DNN acceleration. (a) An ReRAM MVM engine. (b) The area and power 
breakdown in a ReRAM-based CNN accelerator [15] 

conventional CMOS-based ASICs. Despite the supreme performance enhancement, 
the unacceptable overhead of ADC/DAC makes such design unsuitable for DNN 
training. As shown in Fig. 2b, .∼72% of the total system power is consumed by the 
CMOS ADCs and DACs. Latest work shows that the power-hungry A/D conversion 
still accounts for .>25% of the power and .∼50% of the chip footprint even with 
the advanced carbon nanotube field-effect transistors (CNFETs)-based low-power 
ADCs [18] in a monolithic 3D integrated ReRAM accelerator. 

2.3 Ferroelectric Field-Effect Transistor 

As the memory industry marches along Moore’s Law, they are facing the problem 
of reduced power efficiency and increased unit cost, which makes the realization 
of high-efficiency devices at advanced process nodes a very big challenge. To 
address these problems, the ferroelectric field-effect transistor (FeFET) is currently 
gaining significant momentum because of their scalability, fast speed, and low-
power operations [24]. 

Figure 3a illustrates the structure of a FeFET device, which is implemented by 
adding an extra ferroelectric (FE) layer, e.g., HfO. 2 [24], in the gate stack of a 
conventional MOSFET. By applying a positive (negative) gate-to-source voltage, 
i.e., V. G, the polarization of the FE layer can be set (reset) to the positive (negative) 
direction and retained under the subsequent withdrawal of . VG. In this case, the 
polarization of a FeFET device can be dynamically tuned, resulting in a controllable 
threshold voltage (i.e., . Vth) and drain current (i.e., .IDS), as demonstrated in 
Fig. 3b. Based on these unique features, previous work [25] proposed to utilize the 
programmable .Vth of a FeFET device to represent logic “1” and “0.” By leveraging 
the similar design concept with ReRAM crossbar-based designs, a DNN accelerator 
using FeFET crossbar is constructed and achieves significantly reduced processing
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Fig. 3 FeFET basics. (a) The schematic diagram of a FeFET device. (b) The circuit symbol of a 
FeFET device 

latency and power consumption due to the fact that FeFET can be programmed with 
a shorter write pulse (i.e., several nanoseconds) with significantly reduced pulse 
amplitude (i.e., 3 to 5 volts). 

A practical FeFET device features .>106 on/off current ratio [26]. By adjusting 
the pulse amplitude and width, it is possible to exploit partial polarization states 
to record two or more bits of information in a single cell, leading to multi-level 
cell FeFET. In addition, FeFET devices exhibit some unique features: (1) The 
device characteristics are closely related to the thickness of FE layer (. TFE) [27]. 
Specifically, a sharper and wider switching hysteresis can be achieved by increasing 
the FE thickness. (2) The .IDS-.VG transition curve exhibits an abrupt and stochastic 
switching in scaled devices [28]. Using these features, we explored the wide range 
of applications of FeFET, including FeFET MVM engine, FeFET-based RNG, and 
FeFET-based ADC unit. 

3 An FeFET-Based DNN Training Accelerator Architecture 
for Direct Feedback Alignment 

In this section, we first present the overview of the proposed accelerator architecture, 
followed by detailed discussions on each novel feature, including the FeFET-
based on-chip random number generator (RNG) and a low-power ADC leveraging 
FE layer conductance tuning. At last, we describe how to integrate the above 
innovations into a .(L + 2)-stage pipeline capable of processing L-layer DNNs with 
high throughput. We also report the hardware overhead and compare its cost with 
previous ReRAM-based DNN accelerators.
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3.1 Overall Architecture 

The proposed architecture [20] follows the processing-in-memory strategy and can 
be used as a standalone accelerator and communicate with a general processor via 
a software–hardware interface. The overall architecture of our design is illustrated 
in Fig. 4. At a high level, it is composed of a 64 KB eDRAM buffer for input/output 
storage, a controller that orchestrates the computing flow, an input/output interface 
that communicates with off-chip DRAM, and a number of in situ processing engines 
(PE) connected via an on-chip mesh. 

Each PE contains a few MVM engines implemented with FeFET crossbars 
(XB). Note that we adopt a 2-transistor (2T) FeFET-based device [27] for enhanced 
reliability. To facilitate the communication between the analog signal within each 
PE and other digital components on the chip, we particularly design an FeFET-
based ADC unit and attach it to the bit lines of each crossbar. The input end 
of each PE is equipped with multiple 1-bit DACs for sequential digital-to-analog 
conversion. The PE also has (1) multiple sample-and-hold units (S&H) that convert 
the output currents into a voltage and send the voltage to ADCs; (2) several 
shift-and-add units (S&A) that aggregate the outputs from XBs; (3) an activation 
unit (Act) that implements the activation function; and (4) simple algorithm and 
logic units (sALU) that provide simple pre- and post-processing functions such as 
element-wise addition and scalar multiplication. Each PE has 2.5 KB register for 
input/output storage (IR/OR). To support random number generation for DFA-based 
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Fig. 4 The overall architecture of the proposed FeFET-based DNN training accelerator [20]. (a) 
The architecture overview. (b) The FeFET-based matrix–vector multiplication engine
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error propagation, a counter-based RNG control circuit is particularly designed and 
attached to the PEs that reserved for backward calculation. 

CNN mapping follows the standard scheme used in mainstream CNN accel-
erators [15, 16]. As illustrated in Fig. 4b, we store the CNN weights into the 
conductance states of FeFET devices. The input vectors are converted into voltages 
and sequentially applied onto the data lines (DL). The read lines (RL) aggregate the 
currents passing through all the cells on the same RL, representing the dot product 
between the DNN weights and the input vector. We adopt a conservative 4-bit per-
cell FeFET device model [25] and set the crossbar size to 128. ×128. 

3.2 FeFET Switching Characterization 

We adopt the SPICE model proposed in [26] for the FeFET device simulation. 
The kinetic coefficient . ρ is set to 0.01 (calculated by considering the polarization 
switching time . ∼200 ps), and the ferroelectric layer thickness T. FE is set to 10 nm 
and 8.6 nm. 

The simulated .IDS − VGS curve is shown in Fig. 5. A hysteresis loop indicates 
that a FeFET can be programmed to a reset or a set state with a write pulse with 
appropriate amplitude and duration. In addition, FeFET devices exhibit two unique 
features. First, the thickness of FE layer (.TFE) plays a crucial role in the device 
switching characteristics [27]. As shown in Fig. 5, a device with a 8.6 nm FE layer 
switch states at a lower voltage compared with a device with a 10 nm FE layer. 
We also validate this feature in a wider range of .TFE , and experimental results 
confirmed that a wider switching hysteresis can be achieved by increasing the 
FE thickness. In the following, we refer this feature as FE layer tuning. Second, 
the .IDS-.VG transition curve exhibits an abrupt and stochastic switching in scaled 
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Fig. 5 Simulated .IDS − VGS in FeFET devices. Two devices with respective 8.6 nm and 10 nm 
ferroelectric layer thickness are simulated
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devices [28]. More specifically, the slope of the switching curve in a FeFET with a 
8.6 nm FE layer is sharper than that in a FeFET with a 10 nm FE layer. By exploiting 
these features, we explored the applications of FeFET in distinct circuits, including 
a FeFET-based random number generator (RNG), a FeFET-based ADC unit, and a 
FeFET MVM engine. 

3.3 FeFET-Based Random Number Generator 

For DFA-based training accelerators, random number generator (RNG) is an 
essential module as the layer-wise error map is replaced by a suitably sized matrix 
of random numbers. To avoid intensive latency and energy overhead caused by 
off-chip random number access, it is important to identify a convenient on-chip 
entropy source and design the corresponding circuit to generate a random bit stream 
with high throughput and stability. Based on our previous experimental results and 
the recent research on a FeFET model [28], we explored how to use the random 
characteristics in a scaled FeFET device for random number generation. 

The key idea is to utilize the abrupt jump of V.T H in scaled FeFET devices. We 
first program a small FeFET device with .W/L = 80 nm/30 nm to the set state; 
then we apply a gate voltage .VG close to the median value (i.e., point B in Fig. 5). 
The measured output .IDS hence demonstrated random outputs as shown in Fig. 6a. 
However, the output random bits are biased and tend to generate more “0’s”. To 
address the unbalanced output bits, we adopt the output probability tracking scheme 
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proposed in [29] and implement an counter-based output track control circuitry as 
detailed in Fig. 4c. We use a 8-bit counter to calculate the output probability of each 
consecutive 256-bit segment. The counter output is used as a feedback control signal 
to adjust and fine-tune the write voltage applied for the following segments. The 
extracted .IDS currents with output tracking are shown in Fig. 6b. As it shows, after 
an initial locking period for adjustment, the output bits exhibit unbiased randomness 
with evenly distributed “0’s” and “1’s,” which meets the random requirement of 
DFA training. 

3.4 Low-Power ADC Based on FE Layer Tuning 

The output of analog crossbar-based processing engines needs to be converted 
into digital signals through ADCs. In order to reduce the large cost of CMOS 
ADC, we proposed FeFET-based ADC unit by utilizing the tunability of FE 
layer conductance. As we illustrated in previous section, the FeFET switching 
hysteresis is closely related to the thickness of the ferroelectric layer (. TFE) [27]. 
By engineering the FE layer conductance with appropriate program pulses, the 
V. th can be fine-tuned, resulting in a shift in the I.DS-V. G curve. Based on this 
observation, we can build a FeFET-based low-power ADC to accelerate analog-
to-digital conversion. The proposed ADC unit can be integrated with the FeFET 
dot-product units for efficient and low-power MVM processing. 

An example of a 9-cell design is demonstrated in Fig. 7. We select multi-level cell 
FeFET devices with .TFE of 2.5 nm, 2.4 nm, and 2.3 nm. We conservatively adopt a 
3-level per-cell FeFET device based on the SPICE model [26] for preliminary study. 
In the ADC array, the difference of V. th is reflected by the stored polarization degree 
of the FE layer in the FeFET devices. For instance, TFE2.5S1 and TFE2.5S3 denote 
the FeFET device with a 2.5 nm FE layer, respectively, in the reset and set states, 
while TFE2.5S2 represent the FeFET device with the same .TFE but in a partial set 
state. 

The simulated .IDS-. VG of the 9-level ADC is shown in Fig. 8. Devices with the 
same .TFE demonstrated a similar .IDS-.VG curve with different . Vth; therefore, the 
sensing current can be classified into three groups. The thicker .TFE is, the wider and 
more gradual the transition slop is. To work with the FeFET-based ADC, the read 

1.5V 
‘0’‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘0’‘0’ 

Fig. 7 A 9-bit ADC FeFET array implemented with multi-level cell FeFET devices with .TFE of 
2.5 nm, 2.4 nm, and 2.3 nm
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Fig. 8 Input voltage vs. sensing current in a 9-bit ADC FeFET array implemented with multi-level 
cell FeFET devices with .TFE of 2.5 nm, 2.4 nm, and 2.3 nm 

select line (RSL) is asserted (.VDD), and the write line (WL) is driven to 0V (GND). 
The input voltage is then applied to data line (DL). Due to the different . Vth, the  
read current sensed at the read lines (RL) is different. For instance, when the input 
voltage is within the range of 1.4 V. ∼1.6 V, an higher-than-threshold current will be 
sensed on FeFET cells with a FE layer less than 2.5 nm, while a lower current is 
detected on devices with a 2.5 nm FE layer. We encode high/low current with logic 
“1”/“0” accordingly; therefore, an 9-bit output “111111000” is recorded with an 
appropriately set current threshold. 

In our ongoing work, we are exploring reliable high-precision ADC design based 
on the preliminary implementation. In general, there is a trade-off between .TFE , 
ADC resolution, and ADC frequency. As .TFE increases, the slope of the .IDS-. VG

curve becomes flatter, and hence, higher ADC resolution can be achieved since 
more bits can be represented using a single device. However, the ADC frequency 
decreases with the increase of .TFE because a longer transition time is required when 
.IDS-.VG curve becomes flatter. To balance the trade-off, we conduct a design space 
exploration by studying the conductance behavior in response to pulse schemes and 
FE layer thickness. For our preliminary work [20], we used 16-level FeFET devices 
with 4 different FE layer thickness. We summarize the optimal device parameters 
for simulation and the corresponding ADC parameters in Table 1. 

3.5 Pipeline 

Previous training accelerators implemented a pipeline for DNN training processing 
by exploiting the intrinsic parallelism in batch-based training. Typically, a batch of 
inputs (e.g., 32, 64, 128) are processed using the same weights. The parameters are 
only updated at the end of each batch. For BP-based training method, a DNN with
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Table 1 Parameters of the 
optimal 16-level FeFET ADC 

Parameters Specification 

Device W/L 500 nm/300 nm 

T.FE 2, 2.2, 2.4, 2.6 nm 

Kinetic coefficient .ρ 0.01 

ADC Resolution 6 

Frequency 20 MHz 

Number 8*12*168 

Total power 1.6 W 

Total area 0.1 . mm2

CMOS ADC [15] Total power 32.3 W 

Total area 19.4 . mm2

#1 

#2 

#B …
 

…
 

…
 

…
 

…
 

…
 

50 

: forward path 
: error calcula�on 

: backward path… 

… 

… 

Fig. 9 The training pipeline of a DNN model using DFA 

L layers requires .(2L + B + 1) [16, 17] cycles for processing a batch of inputs with 
a size of  B. Specifically, within a batch, the forward computation for the first input 
requires L cycles, while the backward computation requires .L+1 cycles. Then there 
will be .(B − 1) cycles until the end of batch. Finally, there is one cycle required to 
apply all weight updates within the batch. Therefore, the total number of cycles to 
process N inputs is .(N/B)(2L + B + 1). 

This work leverages DFA and is implemented in a reduced processing pipeline 
as shown in Fig. 9. Since DFA allows the errors to be propagated directly from the 
last layer to all the processing layers, the backward computation can be processed 
in parallel in one cycle using the FeFET-based PE with RNG support. The overall 
number of cycles to process N inputs is .(N/B)(L + B + 2), achieving . ∼2×
reduction in processing time. More importantly, the processing cycle discussed 
here is a logical cycle, which may require several physical cycles depending on 
the customized implementation. Though the processing time of each stage varies in 
ReRAM-based accelerators, the cycle time of the pipeline is essentially bottlenecked
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by the ADCs. Previous work [15] uses a 8-bit 1.28 giga-samples-per-second (GSps) 
ADC shared among 128 BLs in the same ReRAM crossbar, resulting in a 100 ns 
cycle time. This work employs the FeFET-based 6-bit ADC unit with a 50 ns cycle 
time, providing 2. × latency reduction for a single processing stage of the pipeline. 

4 Evaluation 

4.1 Experimental Setup 

Benchmark We evaluate the proposed design architecture using MNIST [30], 
CIFAR-10, and CIFAR-100 [31]. The networks used in our evaluation are LeNet-
5 [32] on MNIST for simple hand-written digits, AlexNet [1], and CaffeNet [33] 
on CIFAR-10/CIFAR-100 for complex classification tasks. To demonstrate the 
applicability of DFA and the proposed architecture in a broader range of applica-
tions, we also include two recommender systems, Deep Factorization Machines 
(DeepFM) [34] and Adaptative Factorization Network (AFN) [35], into our eval-
uation. Both DeepFM and AFN are evaluated on Criteo dataset [36]. All models are 
trained in TensorFlow. We summarize the typologies of the networks and evaluated 
dataset in Table 2. We quantized both the activations and weights of all CNNs with 
8 bit based on the training accuracy analysis in the following section. 

Scheme We compare the proposed design against five counterparts shown in 
Table 3. We selected Intel Xeon E5-2630 V3, 8-core CPU, an Nvidia GTX 1080 
GPU, a Xilinx Virtex7 FPGA [37], one ASIC chip Google TPU [9], and a ReRAM-
based DNN training accelerator [16]. For TPU, we employ four chips to ensure the 
high throughput required for training, but they consume more computing power. 
To support DFA training, we equip the above counterparts with the state-of-the-art 
CMOS RNG [38] for random matrix generation. The runtimes for CPU/GPU are 
measured by TensorFlow, and the energy costs are measured on real hardware. The 
FPGA numbers are scaled and calculated based on the original paper. We build an 
in-house simulator to model the performance of TPU. 

Table 2 Models under evaluation (C: convolutional layer; F: fully connected layer) 

Name Database Topology 

LeNet-5 [32] MNIST 2C,3F 

AlexNet [1] CIFAR-10 5C,3F 

CIFAR-100 

CaffeNet [33] CIFAR-10 5C,3F 

CIFAR-100 

DeepFM [34] Criteo [36] Fully connected embedding layer 

AFN [35]
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Table 3 The scheme 
comparison (normalized to 
32nm) 

Name Description Power  (W ) 

CPU Intel Xeon E5-2630 V3 85 

GPU Nvidia Tesla P100 250 

FPGA [37] Xilinx Virtex7 VX485T 40 

TPU [9] 4-chip ASIC 384 

PipeLayer [16] ReRAM PIM 168 

Table 4 Trade-off between 
resolution and accuracy 

LeNet AlexNet CaffeeNet DeepFM AFN 

Float 1 1 1 1 1 

16 bit 0.99 0.98 0.985 0.99 0.99 

8 bit  0.987 0.97 0.977 0.97 0.90 

6 bit  0.95 0.93 0.935 0.92 0.88 

4 bit  0.93 0.88 0.90 0.85 0.75 

2 bit  0.78 0.69 0.71 0.66 0.60 

For PipeLayer [16] and the proposed architecture, the DAC, S&H, S&A, 
maxpool, activation logic designs are all adopted from an existing ReRAM DNN 
accelerator [15] implemented in 32 nm process technology. We use CACTI 6.5 [39] 
at 32 nm to model energy and area for all buffers and on-chip interconnects. Other 
digital circuits (e.g., peripherals for TRNG) all are modeled and estimated using 
Cadence Virtuoso with 32 nm PTM CMOS model [40]. We adopt the SPICE model 
in [26] for FeFET simulation. The kinetic coefficient ρ is set to 0.01 (calculated 
by considering the polarization switching time ∼200 ps), and the ferroelectric layer 
thickness TFE  is set to 10.5 nm, 8.6 nm, and 6.6 nm. We build a simulator based on 
NVSim [41] to evaluate the inference throughput, power, and energy consumption 
of the ReRAM-based accelerator and the proposed FeFET-based accelerator. 

4.2 Experimental Results 

Training Accuracy To deploy DFA training onto the fix-point FeFET crossbars, 
we conducted a set of experiments to explore the trade-off between numerical 
precision and model training accuracy. We quantize both the weights and activations 
to fix-point values on the five evaluation models. We normalized the model 
accuracy to float resolution in original implementation [23] and show the results 
in Table 4. We see that DFA training with 16-bit precision exhibits negligible 
accuracy reduction among all the evaluated CNNs and recommendation systems. 
A slight (.<0.09) accuracy degradation is observed in 8-bit training. The accuracy 
of all models drops sharply when trained with less than 6-bit precision. In order 
to ensure training accuracy while reducing computing and memory requirements, 
we implement all the candidate networks in the following discussion with 8-bit 
precision.
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Fig. 10 The comparison on performance of different designs. Results are normalized to CPU 

Performance Figure 10 compares the training performance throughput among 
different designs. In general, customized DNN accelerators achieve significant 
performance speedup compared with general-purpose CPU and GPU. The main 
reason is that accelerators implement dedicated hardware and data management 
suitable for the processing patterns in DNNs, especially for large matrix–vector 
multiplications, which provides a huge potential for reducing the running time. As 
hardware resource increases, the accelerators can achieve higher performance. For 
instance, the 4-chip TPU achieves better performance compared with both GPU and 
FPGA accelerators in all the benchmarks. The proposed design achieves the best 
performance in all the benchmarks. Compared with GPU, FPGA, and TPU, our 
design achieves, respectively, 8.9×, 5.1×, and 2.7× speedup. Compared against the 
ReRAM-based accelerator, the performance is improved by 1.3×, which is mainly 
due to shortened pipeline cycle time and reduced ADC overhead. 

Power Efficiency We show the normalized power efficiency among different 
hardware platforms in Fig. 11. Although the performance of TPU is better than 
the FPGA design, its power efficiency is 5× lower than that of FPGA. As shown 
in Table 3, the power consumption of the 4-chip TPU is ∼9× higher than that 
of the FPGA design, which excludes TPU from low-power DNN applications. 
The ReRAM-based accelerator demonstrated a similar power efficiency as FPGA 
design. The proposed architecture achieves 2.2×, 11.5×, 2.5× improvement on 
power efficiency compared with FPGA, TPU, and ReRAM-based accelerators, 
respectively.
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Fig. 11 The comparison on power efficiency of different designs. Results are normalized to CPU 

5 Conclusion 

In this chapter, we review our recent research efforts on efficient DNN training 
accelerators. We investigate the potential of the emerging direct alignment feedback 
training algorithm in overcoming the limitations of current backpropagation-based 
training and identify the major challenges for deploying direct alignment feedback 
training algorithm on hardware computing systems. We then present a customized 
FeFET-based accelerator architecture consisting of a FeFET-based random number 
generator, a low-power FeFET-based analog–digital converter, and an efficient .(L+
2)-stage pipeline for training of an L-layer deep neural network. Our experimental 
results show that the proposed design is suitable for the training of a broader range 
of deep neural networks and achieves 1.3. × speedup and .2.5× improvement on 
power efficiency compared with the state-of-the-art deep neural network training 
accelerator. 
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Platform-Based Design of Embedded 
Neuromorphic Systems 

M. L. Varshika and Anup Das 

1 Introduction 

Neuromorphic computing is emerging as an attractive candidate for power-
constrained systems such as embedded devices and edge nodes. Neuromorphic 
computing operates on the design principles of the central nervous system in 
primates. It has the potential to drive the development of a more distributed, 
scalable, and efficient computing paradigm. Historically, the term neuromorphic 
computing was coined in the late ’80s to describe a type of analog computing 
hardware that mimics the architecture of a mammalian brain [69]. Initially, the 
primary goal of neuromorphic computing was to emulate the physical properties 
of neurons and synapses exploiting the physics of analog complementary metal– 
oxide–semiconductor (CMOS) electronics. This is to understand and reproduce 
the efficiency of neural computing systems. Today, neuromorphic computing 
addresses a broader range of computing systems designed using digital, mixed-
signal (analog/digital) CMOS electronics, and novel emerging non-volatile memory 
(NVM) technology elements. Yet, in all neuromorphic systems, the aim is to build 
architectures that can execute machine learning applications designed using spiking 
neural networks (SNNs). SNNs represent the third and more bio-inspired generation 
of neural networks [64]. SNNs enable powerful computations due to their spatio-
temporal information encoding capabilities [78]. SNNs can implement different 
machine learning approaches such as supervised learning [100], unsupervised 
learning [24], reinforcement learning [59], and lifelong learning [86]. 

In an SNN, neurons are connected via synapses. A neuron can be implemented 
as an integrate-and-fire (IF) logic [15], which is illustrated in Fig. 1 (left). Here, an 
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Fig. 1 A leaky-integrate-and-fire (LIF) neuron with current input .U(t) (left). The membrane 
potential over time of the neuron (middle). The spike output of the neuron representing its firing 
times (right). Each firing time represents the time instance when the membrane potential crosses 
the firing threshold 

input current spike .U(t) from a pre-synaptic neuron raises the membrane voltage of 
a post-synaptic neuron. When this voltage crosses a threshold . Vth, the IF logic emits 
a spike, which propagates to its post-synaptic neurons. Figure 1 (middle) illustrates 
the membrane voltage due to input spike trains. Moments of threshold crossing, i.e., 
the firing times, are illustrated in Fig. 1 (right). 

Over the past decades, there has been a significant amount of progress made on 
neuromorphic computing, on both the software (e.g., application and algorithm [3, 
14, 22, 27, 31, 36, 46, 82, 88, 111]) and hardware (e.g., architecture and technol-
ogy [17, 39, 43, 67, 87]) fronts. These architectures and algorithms differ from 
conventional computing paradigms for their memory and communication structures 
and computational properties. While traditional von Neumann architectures have 
one or more central processing units physically separated from the main memory, 
neuromorphic architectures exploit co-localization of memory and compute, near 
and in-memory computation [49]. Alongside to the tremendous progress in devising 
novel neuromorphic computing architectures, there have been many recent works 
that address how to map and compile (trained) SNN models for efficient execution 
in neuromorphic hardware [2, 4–8, 10–12, 23, 26, 28, 34, 40, 41, 45, 48, 52, 61– 
63, 81, 90, 91, 95, 102, 105, 110]. 

To cope with the growing complexity of neuromorphic systems, challenges 
in integrating emerging NVM technologies, and faster time-to-market pressure, 
efficient design methodologies are needed. Here, we discuss one such methodology, 
that of platform-based design. 

2 Platform-Based Design Methodology 

Platform-based design has emerged as an important design style for the electronics 
industry [35, 55, 74, 84, 85, 89]. Platform-based design separates parts of the 
system design process such that they can be independently optimized for different 
metrics such as performance, power, cost, and reliability. Platform-based design 
methodology can also be adopted for neuromorphic system design [10], where



Platform-Based Design of Embedded Neuromorphic Systems 339

Fig. 2 Illustration of the 
platform-based design 
methodology. Here, the 
hardware design space 
exploration (DSE) is 
performed independent of the 
application and mapping 
(application allocation on 
hardware) DSEs. A design 
point is obtained by pruning 
the design spaces of these 
explorations 

the software can be optimized independently from the underlying neuromorphic 
hardware platform. Figure 2 shows this design methodology for a general electronic 
system design. Here, the hardware design space is explored to generate a platform 
that satisfies the target design cost. This could include a combination of recurring 
and non-recurring design costs. Alongside the hardware development, the software 
design space is also explored. Here, the software optimization includes allocation 
of tasks of a given application to the hardware computing units for a specific design 
objective. 

As in a conventional computing system, the abstractions for a neuromorphic 
system include: (1) the application software, (2)  the  system software, and (3) the 
hardware [33, 51, 77]. In the context of neuromorphic computing, the application 
software includes applications designed using different SNN topologies such as 
multi-layer perceptron (MLP) [27], convolutional neural network (CNN) [71] and 
recurrent neural network (RNN) [31], and bio-inspired learning algorithms such 
as spike timing-dependent plasticity (STDP) [19], long-term plasticity (LTP) [25], 
and FORCE [72]. The system software includes the equivalent of a compiler 
and a runtime manager to execute SNN applications on the hardware. Finally, 
the hardware abstraction includes the platform, which consists of a neuromorphic 
hardware. 

We focus on the system software abstraction and its design space exploration. 
A key optimization objective is the performance of machine learning workloads 
on the hardware. Here, we distinguish between application-level and system-
level performance metrics. Examples of application-level metrics include accuracy, 
peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). 
System-level metrics include throughput, latency, energy, and reliability. 

A key component of the software design space exploration is to estimate/evaluate 
the system-level performance. The way to obtain the most realistic performance 
estimates is measuring it on the real hardware. However, this is often not available
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until late in the design process. An alternative is simulating the workload on a 
cycle-accurate neuromorphic simulator such as NeuroXplorer [10]. However, this 
is rather slow. Hardware prototypes on a field-programmable gate array (FPGA) are 
also a viable alternative [23]. However, the high synthesis time makes the design 
space exploration infeasible. Finally, transaction-level simulators can also be used 
to estimate system-level performance. Here, high-level abstractions are often used 
to represent the behavior of a machine learning workload. Such abstractions can 
then be simulated using a hardware architecture and mapping of the application to 
the hardware. The advantage of using such a simulator is that it is faster than a 
cycle-accurate simulator or synthesizing a prototype on FPGA. 

3 Software Design Space Exploration 

Cycle-accurate neuromorphic simulators are those that accurately model the behav-
ior of a neuromorphic system on a cycle-by-cycle basis. We focus on one such 
simulator—NeuroXplorer [10]. To understand the basics of this simulator and how it 
is used for the software design space exploration within the platform-based design 
methodology, we focus on the generic tile-based architecture of a neuromorphic 
system [83], where tiles are interconnected via a shared interconnect. A tile may 
include: (1) a neuromorphic core, which implements neuron and synapse circuitries, 
(2) peripheral logic to encode and decode spikes into address event representation 
(AER), and (3) a network interface to send and receive AER packets from the 
interconnect. Switches are placed on the interconnect to route AER packets to their 
destination tiles. 

NVM devices present an attractive option for implementing synaptic storage due 
to their demonstrated potential for low-power multi-level operations and high inte-
gration densities [13, 50, 73, 99, 104]. Recently, several NVMs are being explored 
for neuromorphic computing: Oxide-based Resistive Random Access Memory 
(ReRAM) [107], phase change memory (PCM) [108], ferroelectric RAM [1], 
and Spin-Transfer Torque Magnetic or Spin-Orbit-Torque RAM (STT- and SoT-
MRAM) [47]. Figure 3 shows a neuromorphic hardware with tiles (C) and switches 
(S). Without loss of generality, we show each tile as a crossbar, where NVM cells 
are organized in a two-dimensional grid formed using horizontal and vertical wires. 

The figure also illustrates a small example of implementing an SNN on a 
crossbar. Synaptic weights . w1 and . w2 are programmed as conductance of NVM 
cells P1 and P2, respectively. The output spike voltages, . v1 from N1 and . v2 from 
N2, inject currents into the crossbar, which are obtained by multiplying a pre-
synaptic neuron’s output spike voltage with the NVM cell’s conductance (Ohm’s 
law). Current summations along columns are performed in parallel (Kirchhoff’s 
current law), and they implement the sum .

∑
j wivi (i.e., neuron excitations). 

Figure 4 shows the detailed architecture of the NeuroXplorer. It includes an 
architecture simulator, which can be configured to simulate a specific neuromorphic 
architecture such as TrueNorth [38], Loihi [37], DYNAPs [70], and . μBrain [98].
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Fig. 3 A representative tile-based neuromorphic hardware [93] (left). Each tile is a neuromorphic 
core, which can map a few neurons and synapses. In its simplest form, a neuromorphic core can 
be implemented as a crossbar as shown in the figure. An NVM device may be connected at the 
intersection of a bitline and a wordline to store synaptic weight. The bottom-right corner illustrates 
the mapping of a 2. × 1 neural network on a crossbar 
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Fig. 4 A detailed architecture of the NeuroXplorer simulator [10]. It consists of an architecture 
simulator at the frontend and is integrated with hardware-level simulators at the backend. 
NeuroXplorer can perform both architectural DSE and technology DSE 

Internally, the architecture simulator uses models for: (1) local synapses, i.e., the 
tiles, and (2) global synapses, i.e., the shared interconnect. 

The system software component is what facilitates the design space exploration. 
It consists of two steps—clustering and mapping. An SNN application typically 
consists of many neurons and synapses, well beyond the capacity of a single core. 
Therefore, the application must first be partitioned into clusters, where each cluster 
consists of a subset of neurons and synapses of the application. Recently, several 
graph-based SNN partitioning approaches are proposed. Most of these are based on
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the Kernighan–Lin Graph Partitioning algorithm [54], minimizing the inter-cluster 
spike communication. Once clusters are generated from an application, they are 
mapped to different cores of the hardware. Mapping of a cluster to a core involves 
allocating pre-synaptic neurons to the input of the core, post-synaptic neurons to the 
output of the core, and programming the synaptic weights connecting a pre- to a 
post-synaptic neuron as the conductance of an NVM cell in the core. 

In the following, we discuss how the system software component is incorporated 
inside a design space exploration (DSE) framework to perform system-level perfor-
mance, energy, and reliability optimizations. 

3.1 Performance-Oriented DSE 

The problem of mapping neuron clusters to the neuromorphic architecture shares 
some similarity with the task mapping problem in multiprocessors, which has been 
investigated extensively in the past [20, 29, 30, 32, 53, 68, 75, 76, 89]. However, the 
difference is that while high latency of the hardware can impact the application’s 
execution time (i.e., its real-time properties) in the case of multiprocessor systems, 
high latency for neuromorphic architectures can create distortion (change) of its 
inter-spike interval (ISI) and spike disorder, leading to additional impact on the 
application’s accuracy. 

In fact, when clusters are mapped to cores, inter-cluster spike communications 
are mapped on to the shared interconnect of the hardware. Considering a mesh-
based two-dimensional interconnect architecture, the average latency experienced 
by spikes on the interconnect is 

.L =
Ns∑

i=1

[(hi − 1) ∗ lw + hi ∗ ls]/Ns, (1) 

where . Ns is the total number of spikes on the shared interconnect, . hi is the number 
of hops a spike traverses between the source and destination, . lw is the interconnect 
segment delay, and . ls is the delay of the hop. 

To analyze the impact of latency on application performance, Fig. 5 shows the 
accuracy numbers achieved via an ad hoc mapping of the clusters to the cores. 
Compared to an accuracy of 86% obtained through software-based simulations, the 
accuracy on the .6 × 6 neuromorphic hardware (36 crossbars with 25 neurons per 
crossbar) is only 66.7%—a loss of .≈ 20%. This loss is due to the latency on the 
hardware, which delays some spikes more than others. 

Figure 6 summarizes how the latency, ISI distortion, spike disorder increase 
as we increase the size of the neuromorphic architecture. We observe that as we 
increase the number of crossbars in the hardware, latency, ISI, and spike disorder 
increase. This is because with an increase in the number of crossbars, spike traffic on 
the shared interconnect increases, which increases the congestion and delays some
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Fig. 5 Handwritten-digit recognition accuracy on different neuromorphic hardware configura-
tions. This accuracy is lower than the 86% accuracy obtained via software simulation 

Fig. 6 Latency, inter-spike interval (ISI) distortion, and spike disorder for five neuromorphic 
hardware configurations, normalized with respect to the baseline configuration of . 2 × 2

spikes more than others. When we use a hardware with 36 small crossbars arranged 
in a .6 × 6 mesh, we observe a significant increase of latency (average 3.2x), ISI 
distortion (average 6x), and spike disorder (average 1.5x) compared to the baseline 
configuration of using 4 large crossbars. 

In our recent work [6], we propose SpiNeMap to place cluster to cores mini-
mizing the average spike latency on the interconnect. SpiNeMap operates in two 
steps. In Step 1 (SpiNeCluster), we use a heuristic-based clustering algorithm to 
partition SNNs into local and global synapses, with local synapses mapped within 
crossbars, and global synapses to the shared interconnect. SpiNeCluster minimizes 
spikes on the shared interconnect, reducing spike congestion and ISI distortion. In 
Step 2 (SpiNePlacer), we use an instance of the particle swarm optimization (PSO) 
to place clusters on physical crossbars within the tiles in the hardware, optimizing 
energy consumption and spike latency on the shared interconnect. 

Figure 7 shows the spike latency of SpiNeMap normalized to a baseline 
mechanism for ten workloads. These workloads are defined in [6]. The baseline 
mechanism randomly places clusters to cores without considering spike latency on 
the shared interconnect.
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Fig. 7 Spike latency of SpiNeMap, normalized to baseline. High spike latency leads to larger 
inter-spike interval distortion, which directly impacts the latency 

Fig. 8 (a) A phase change memory (PCM) cell designed using chalcogenide material that can 
be either in amorphous or in crystalline state, and (b) current needed for SET (amorphous to 
crystalline transition), RESET (crystalline to amorphous transition), and read (identify the state) 
operations 

3.2 Energy-Oriented DSE 

There are several sources of energy consumption in an NVM-based neuromorphic 
hardware. In [102], we have formulated the detailed energy consumption in a 
neuromorphic hardware considering phase-change memory (PCM), an emerging 
memory technology that has shown significant potential as synapse in a neuromor-
phic hardware [18]. To introduce this technology, Fig. 8a illustrates a chalcogenide 
semiconductor alloy that is used to build a PCM cell. The amorphous phase (logic 
“0”) has higher resistance than its crystalline phase (logic “1”). When used in these 
two stable states, a PCM cell can implement a binary synapse. However, with precise 
control of the crystallization process, a PCM cell can be programmed in a partially 
crystallized state. This way, the PCM cell can implement a multi-bit synapse. 

A phase change in a PCM cell is induced via Joule’s heating by injecting current 
into the resistor-chalcogenide junction and heating the chalcogenide alloy. Figure 8b 
shows the different current values needed to program and read in a PCM device. 
Therefore, depending on whether a PCM device in a crossbar is programmed to SET
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state, RESET state, or one of the intermediate states, different amount of energy will 
be required to propagate a spike through the device. 

We formulate the spike energy through a PCM synaptic device in a crossbar as 

.esynapse = I 2prog · tspk ·
(

RON + 1

w

)

, (2) 

where . w is the conductance of the PCM cell, .Iprog is the programming current, . tspk

is the spike duration (typically in ms), and .RON is the ON resistance of the access 
transistor connecting the PCM cell to the bitline and wordline in a crossbar. 

Inside a crossbar, the programming current (.Iprog) can vary considerably due 
to bitline and wordline parasitics. With technology scaling, the value of parasitic 
resistances along the bitline and wordline of a current path increases [42]. The 
unit wordline (bitline) parasitic resistance ranges from approximately .2.5� (. 1�) 
at 65nm node to .10� (.3.8�) at 16nm node. The values of these unit parasitic 
resistances are expected to scale further reaching .≈ 25� at 5nm node [42]. This 
increase in the value of unit parasitic resistance increases the voltage drop, which 
increases the current variation in a crossbar. Figure 9 shows the current variation 
in a 128. ×128 PCM crossbar. We observe that the programming current is higher 

Fig. 9 Current map in a 128. ×128 crossbar. There are fewer parasitics on the current path at the 
bottom-left corner of the crossbar. So the IR drop is lower and, therefore, the current is higher. 
There are more parasitics on the current path at the top-right corner. So, the IR drop is higher and, 
therefore, the current is lower. Overall, current varies within a crossbar
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Fig. 10 Total energy distributed into spike propagation energy, which is the energy consumed in 
propagating spikes via the synaptic cells of a crossbar, and communication energy, which is the 
energy consumed in propagating spikes via the shared interconnect 

for spikes propagating through a synaptic cell located at the bottom-left corner than 
through a synaptic cell located at the top-right corner. 

Spike propagation energy, together with the energy needed to communicate 
spikes over the interconnect, can then be used to compute the total energy. There-
fore, that energy consumption depends on: (1) how an SNN model is partitioned 
into clusters (determines the number of neurons and synapses in each cluster), (2) 
how the clusters are mapped to the cores (determines the hop distances), and 3) how 
the neurons and synapses of a cluster are placed inside each core (determines the 
propagation current, .Iprog). 

Using the total energy formulation, Fig. 10 shows the distribution of the two 
energy components—core energy (.Espk) and communication energy (.Ecomm) for  
ten different workloads. Description to these workloads can be found in [102]. 

We observe that the energy distribution is workload-dependent. For some work-
loads such as W6, W7, and W10, the communication energy dominates the total 
energy consumption. For other workloads such as W5, the core energy dominates 
the total energy consumption. 

Figure 11 shows our framework to perform energy-aware DSE. The left sub-
figure shows a neuromorphic system comprising of the application layer, the system 
software layer, and the hardware layer. The application layer at the top consists of 
the user space to run machine learning applications. In this illustration, we show 
the execution of AlexNet for ImageNet classification. The hardware layer at the 
bottom consists of the neuromorphic hardware such as TrueNorth [38], Loihi [37], 
and DYNAPs [70]. At the middle is the system software layer, which interacts with 
both the application and hardware layers. The system software performs energy 
optimization using the iterative approach shown to the right. 

The workflow of the system software involves clustering a machine learning 
application to generate clustered SNN graph. Next, the clusters are mapped to the 
tiles of the hardware using a mapping approach. Finally, the clusters are placed to 
crossbars using the placement step. Although the clustering step could potentially be 
incorporated inside the iterative loop, we placed it outside to limit the complexity 
of the design space exploration. In fact, clustering of applications is an NP-hard 
problem as shown in SpiNeMap [6]. Our clustering approach uses the graph 
partitioning algorithm of SpiNeMap, minimizing: (1) inter-cluster communication 
(similar to SpiNeMap) and (2) maximizing cluster utilization (similar to Decom-
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Fig. 11 Our energy-aware system software for neuromorphic hardware. A typical hardware is 
represented as three-layer architecture (left), with the application at the top, the system software 
at the middle, and the hardware at the bottom. The hardware layer may have DYNAPs [70], 
Loihi [37], or TrueNorth [38] hardware. The system software is elaborated to the right. An SNN-
based application is first partitioned to for clusters that can be mapped to cores. Next, using an 
iterative approach, the mapping is refined over time to achieve a desired objective 

Fig. 12 Total energy normalized to SpiNeMap [6]. The proposed platform-based design is able to 
reduce the total energy consumption significantly using the iterative mapping approach 

posedSNN [9]). The iterative approach is based on a Hill Climbing heuristic, which 
is described in [102]. 

Figure 12 reports the total energy consumption for each workload for the 
proposed energy-aware DSE normalized to SpiNeMap. The workloads are defined 
in [102]. We observe that the proposed DSE reduces energy consumption by 20%. 

3.3 Reliability-Oriented DSE 

Using NVMs such as PCM as synaptic devices in a crossbar leads to several 
reliability issues due to high temperature and current requirements for these devices.
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Fig. 13 Iterative approach to calculating the self-heating temperature of a PCM cell during 
amorphization. The PCM cell is initially programmed in its crystalline state. Then a current 
is injected, which triggers a raise in the temperature. Through Joule’s heating, the PCM cell 
transitions to its amorphous state 

Here, we show how design space explorations can be performed to improve 
reliability of NVMs in a neuromorphic hardware. 

In our recent work [103], we use the phenomenological endurance model [97] to  
compute the endurance of a PCM cell as a function of its self-heating temperature 
obtained during amorphization of its crystalline state. Figure 13 shows the iterative 
approach to compute this self-heating temperature (.TSH ) [109]. 

At start of the amorphization process, the temperature of a PCM cell is equal 
to the ambient temperature Tamb. Subsequently, the PCM temperature is computed 
iteratively as follows. For a given crystalline fraction VC of the GST material within 
the cell, the thermal conductivity k is computed using the TC Module, and PCM 
resistance RPCM  using the PCMR Module. The thermal conductivity is used to 
compute the heat dissipation Wd using the HD Module, while the PCM resistance 
is used to compute the Joule heating in the GST Wj for the programming current 
Iprog using the JH Module. The self-heating temperature TSH is computed inside 
the SH Module using the Joule heating and the heat dissipation. Finally, the self-
heating temperature is used to compute the crystallization fraction Vc using the CF 
Module. The iterative process terminates when the GST is amorphized, i.e., Vc = 0. 
We now describe these steps: 

• Crystallization Fraction (CF) Module: CF represents the fraction of solid 
in a GST during the application of a reset current. Vc is computed using the 
Johnson–Mehl–Avrami (JMA) equation as 

.Vc = exp

[

−α × (TSH − Tamb)

Tm

× t

]

, (3) 

where t is the time, Tm = 810K is the melting temperature of the GST 
material [66, 109], Tamb is the ambient temperature computed using [101], and 
α = 2.25 is a fitting constant [66, 109]. 

• Thermal Conductivity (TC) Module: TC of the GST is computed as [60] 

.k = (ka − kc) × Vc + ka, (4)
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where ka = 0.002WK−1cm−1 for amorphous GST, and kc = 0.005WK−1cm−1 for 
crystalline GST [66, 109]. 

• PCM Resistance (PCMR) Module: The effective resistance of the PCM cell 
is given by 

.RPCM = Rset + (1 − Vc) × (Rreset − Rset ), (5) 

where Rset = 10K� in the crystalline state of the GST and Rreset = 200K� in the 
amorphous state. 

• Heat Dissipation (HD)Module: Assuming heat is dispersed to the surrounding 
along the thickness of the PCM cell, HD is computed as [58] 

.Wd = kV

l2
(TSH − Tamb), (6) 

where l = 120 nm is the thickness and V = 4×10−14cm3 is the volume of GST [66, 
109]. 

• Joule Heating (JH) Module: The heat generation in a PCM cell due to the 
programming current Iprog is 

.Wj = I 2prog × RPCM. (7) 

• Self-heating (SH) Module: The SH temperature of a PCM cell is computed by 
solving an ordinary differential equation as [109] 

.TSH = I 2progRPCMl2

kV
−

[

1 − exp

(

− kt

l2C

)]

+ Tamb, (8) 

where C = 1.25JK−1cm−3 is the heat capacity of the GST [66, 109]. 

The endurance of a PCM cell is computed as [97] 

.Endurance ≈ tf

ts
, (9) 

where tf and ts are, respectively, the failure time and the switching time. In this 
model, to switch memory state of a PCM cell, an ion (electron) must travel a distance 
d across insulating matrix (the gate oxide) upon application of the programming 
current Iprog , which results in the write voltage V across the cell. Assuming 
thermally activated motion of an ion with activation energy Us and local self-heating 
thermal temperature TSH , the switching speed can be approximated as 

.ts = d

vs

≈ 2d

f a
exp

(
Us

kBTSH

)

exp

(

− qV

2kBTSH

a

d

)

, (10) 

where d = 10nm, a = 0.2nm, f = 1013Hz, and Us = 2eV [97].
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The failure time is computed considering that the endurance failure mechanism 
is due to thermally activated motion of ions (electrons) across the same distance d 
but with higher activation energy UF , so that the average time to failure is 

.tf = d

vf

≈ 2d

f a
exp

(
Uf

kBTSH

)

exp

(

− qV

2kBTSH

a

d

)

, (11) 

where Uf = 3ev [97]. 
The endurance, which is the ratio of average failure time and switching time, is 

given by 

.Endurance ≈ tf

ts
≈ exp

(
γ

TSH

)

, (12) 

where γ = 1000 is a fitting parameter [97]. 
Figure 14 plots the temperature and endurance maps of a 128. ×128 crossbar at 

65nm process node with Tamb = 298K. The PCM cells at the bottom-left corner have 
higher self-heating temperature than at the top-right corner. This asymmetry in the 
self-heating temperature creates a wide distribution of endurance, ranging from 106 

cycles for PCM cells at the bottom-left corner to 1010 cycles at the top-right corner. 
These endurance values are consistent with the values reported for recent PCM chips 
from IBM [16]. 

Figure 15 shows a high-level overview of the proposed design space exploration, 
consisting of three abstraction layers—the application layer, system software 

Fig. 14 Temperature and endurance map of a 128. ×128 crossbar at 65nm process node with 
the ambient temperature Tamb set to 298K. Temperature varies widely within a 
crossbar (a). Bottom-left corner is at higher temperature than the top-right corner 
due to difference in the parasitic elements. This thermal variation leads to endurance 
variation within the crossbar (b)
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Fig. 15 High-level overview of the reliability (endurance)-aware design space exploration. A 
machine learning application is first analyzed using PyCARL [2] to exact workload information. 
This is then used to cluster the workload. Following this, clusters are mapped to tiles, and synapses 
within a cluster are placed to the NVM cells of crossbar. Device characterization data are used to 
do these mappings 

layer, and hardware layer. A machine learning application is first simulated using 
PyCARL [2], which uses CARLsim [21] for training and testing of SNNs. PyCARL 
estimates spike times and synaptic strength on every connection in an SNN. 
This constitutes the workload of the machine learning application. The proposed 
framework maps and places neurons and synapses of a workload to crossbars 
of a neuromorphic hardware, improving the effective lifetime. To this end, a 
machine learning workload is first analyzed to generate clusters of neurons and 
synapses, where each cluster can fit on a crossbar. It uses the Kernighan–Lin Graph 
Partitioning algorithm of SpiNeMap [6] to partition an SNN workload, minimizing 
the spike latency. Next, it uses an instance of PSO to map the clusters to the cores 
of a hardware, maximizing the minimum effective lifetime of PCM devices in each 
core’s crossbar. Synapses of a cluster are implemented on PCM using a synapse-to-
memristor mapping, ensuring that those with higher activation are mapped to PCM 
cells with higher endurance, and vice versa. 

Figure 16 compares the effective endurance lifetime obtained using the proposed 
DSE compared to SpiNeMap for 10 workloads. These workloads are described 
in [103]. We observe that the effective inference lifetime of the proposed framework 
is higher than SpiNeMap by an average 3.5x. 

Limited write endurance is not the only reliability issue in a PCM crossbar. In 
our recent works [8, 92–94], we show that elevated voltages and currents needed to 
operate PCM cause aging of CMOS-based transistors in each neuron and synapse 
circuit in the hardware, drifting the transistor’s parameters from their nominal 
values. Aggressive device scaling increases power density and temperature, which 
accelerates the aging, challenging the reliable operation of neuromorphic systems. 

One important aging mechanism at scaled technology nodes is the bias tem-
perature instability (BTI). This is a failure mechanism in a CMOS device where 
positive charges are trapped at the oxide–semiconductor boundary underneath the
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Fig. 16 Effective lifetime for the evaluated applications. The effective lifetime is defined as 
the number of inference operations that can be successfully performed between two successive 
reprogramming of the synaptic cells in a crossbar [79, 80, 96] 

Fig. 17 Demonstration of threshold voltage degradation of a CMOS transistor due to bias 
temperature instability (BTI) aging. When a stress voltage is applied, the CMOS transistor 
parameters drift from their nominal values, thereby shifting the threshold voltage. Upon removal 
of the stress voltage, the threshold voltage recovers partially. The amount of unrecovered threshold 
voltage depends on the time duration for which the transistor is exposed to the stress voltage 

gate [44]. BTI manifests as: (1) decrease in drain current and transconductance and 
(2) increase in off current and threshold voltage. 

Recent works such as [44, 56, 57, 106] suggest that BTI is the collective response 
of two independent defects—the as-grown hole traps (AHTs) and generated defects 
(GDs). AHTs and a small proportion of GDs can be recovered by annealing at high 
temperatures if the BTI stress voltage is removed (de-stress). Figure 17 illustrates 
the stress and recovery of the threshold voltage of a CMOS transistor on application 
of  a high (Vspk) and a low voltage (Vidle). We observe that both stress and recovery 
depend on the time of exposure to the corresponding voltage level. This implies that 
when a neuron is idle, the BTI aging of the neuron recovers from stress. 

Figure 18 shows the shift in threshold voltage of a NMOS transistor in a neuron 
for continuous usage with a constant firing rate of 50Hz. 

BTI aging can also be incorporated in the design space exploration with the 
objective of improving the lifetime. 

Figure 19 reports the mean time to failure (MTTF) of the proposed reliability-
oriented design space exploration normalized to SpiNeMap for 10 workloads, which 
are described in [93]. We observe that the average MTTF is 18% higher using the 
reliability-oriented exploration.
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Fig. 18 Simulation of the long-term impact of BTI aging on the threshold voltage. If CMOS 
transistors are continuously exposed to the stress voltage, the threshold voltage shift can be as high 
as 10% after 2 years of operation. A significant portion of this drift (indicated by GD) cannot be 
recovered even after removing the stress voltage 

Fig. 19 MTTF normalized to SpiNeMap (higher is better) 

Fig. 20 Mapping explorations for one of the workloads 

4 Summary 

To summarize, we show that the system software framework of a neuromorphic 
hardware can be fine-tuned to improve performance, energy, and reliability without 
requiring any changes to the underlying hardware or its interface. These optimiza-
tion objectives can also be combined. For instance, Fig. 20 shows the normalized 
effective endurance lifetime and the normalized energy of the mappings explored 
using the PSO algorithm of [103] for one of the workloads. The figure shows the 
mappings that are Pareto optimal with respect to endurance lifetime and energy. 

Therefore, software-based optimizations can be performed orthogonal to any 
hardware- and technology-oriented optimization, e.g., [65]. We conclude that 
through platform-based design, the system software can proceed independently
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of the hardware. Later in the design stage when the hardware platform becomes 
ready, the hardware and software optimization mechanisms can work independently 
toward achieving system-wide performance, energy, and reliability goals. 

References 

1. Arimoto, Y., Ishiwara, H.: Current Status of Ferroelectric Random-Access Memory. Mrs 
Bulletin (2004) 

2. Balaji, A., Adiraju, P., Kashyap, H.J., Das, A., Krichmar, J.L., Dutt, N.D., Catthoor, F.: 
PyCARL: A PyNN interface for hardware-software co-simulation of spiking neural network. 
In: IJCNN (2020) 

3. Balaji, A., Corradi, F., Das, A., Pande, S., Schaafsma, S., Catthoor, F.: Power-accuracy trade-
offs for heartbeat classification on neural networks hardware. In: JOLPE (2018) 

4. Balaji, A., Das, A.: A framework for the analysis of throughput-constraints of SNNs on 
neuromorphic hardware. In: ISVLSI (2019) 

5. Balaji, A., Das, A.: Compiling spiking neural networks to mitigate neuromorphic hardware 
constraints. In: IGSC Workshops (2020) 

6. Balaji, A., Das, A., Wu, Y., Huynh, K., Dell’anna, F.G., Indiveri, G., Krichmar, J.L., 
Dutt, N.D., Schaafsma, S., Catthoor, F.: Mapping spiking neural networks to neuromorphic 
hardware. In: TVLSI (2020) 

7. Balaji, A., Marty, T., Das, A., Catthoor, F.: Run-time mapping of spiking neural networks to 
neuromorphic hardware. In: JSPS (2020) 

8. Balaji, A., Song, S., Das, A., Dutt, N., Krichmar, J., Kandasamy, N., Catthoor, F.: A 
framework to explore workload-specific performance and lifetime trade-offs in neuromorphic 
computing. In: CAL (2019) 

9. Balaji, A., Song, S., Das, A., Krichmar, J., Dutt, N., Shackleford, J., Kandasamy, N., Catthoor, 
F.: Enabling resource-aware mapping of spiking neural networks via spatial decomposition. 
In: ESL (2020) 

10. Balaji, A., Song, S., Titirsha, T., Das, A., Krichmar, J., Dutt, N., Shackleford, J., Kandasamy, 
N., Catthoor, F.: NeuroXplorer 1.0: An extensible framework for architectural exploration 
with spiking neural networks. In: ICONS (2021) 

11. Balaji, A., Ullah, S., Das, A., Kumar, A.: Design methodology for embedded approximate 
artificial neural networks. In: GLSVLSI (2019) 

12. Balaji, A., Wu, Y., Das, A., Catthoor, F., Schaafsma, S.: Exploration of segmented bus as 
scalable global interconnect for neuromorphic computing. In: GLSVLSI (2019) 

13. Bez, R., Pirovano, A.: Non-volatile memory technologies: emerging concepts and new 
materials. Materials Science in Semiconductor Processing (2004) 

14. Bohte, S.M., Kok, J.N., La Poutré, J.A.: SpikeProp: Backpropagation for networks of spiking 
neurons. In: ESANN (2000) 

15. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic 
input. Biological Cybernetics (2006) 

16. Burr, G.W., Brightsky, M.J., Sebastian, A., Cheng, H.Y., Wu, J.Y., Kim, S., Sosa, N.E., 
Papandreou, N., Lung, H.L., Pozidis, H., et al.: Recent progress in phase-change memory 
technology. In: JETCAS (2016) 

17. Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M., 
Narayanan, P., Fumarola, A., Sanches, L.L., Boybat, I., Le Gallo, M., Moon, K., Woo, J., 
Hwang, H., Leblebici, Y.: Neuromorphic computing using non-volatile memory. Adv. Phys. 
X (2017) 

18. Burr, G.W., Shelby, R.M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M., 
Narayanan, P., Fumarola, A., et al.: Neuromorphic computing using non-volatile memory. 
Adv. Phys. X (2017)



Platform-Based Design of Embedded Neuromorphic Systems 355

19. Caporale, N., Dan, Y.: Spike timing–dependent plasticity: a hebbian learning rule. Annu. Rev. 
Neurosci. (2008) 

20. Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G., Meyr, 
H., Isshiki, T., Kunieda, H.: MAPS: An integrated framework for MPSoC application 
parallelization. In: Design Automation Conference (DAC), pp. 754–759 (2008) 

21. Chou, T., Kashyap, H., Xing, J., Listopad, S., Rounds, E., Beyeler, M., Dutt, N., Krichmar, 
J.: CARLsim 4: An open source library for large scale, biologically detailed spiking neural 
network simulation using heterogeneous clusters. In: IJCNN (2018) 

22. Corradi, F., Pande, S., Stuijt, J., Qiao, N., Schaafsma, S., Indiveri, G., Catthoor, F.: Ecg-based 
heartbeat classification in neuromorphic hardware. In: 2019 International Joint Conference 
on Neural Networks (IJCNN), pp. 1–8. IEEE (2019) 

23. Curzel, S., Agostini, N.B., Song, S., Dagli, I., Limaye, A., Tan, C., Minutoli, M., Castellana, 
V.G., Amatya, V., Manzano, J., et al.: Automated generation of integrated digital and spiking 
neuromorphic machine learning accelerators. In: ICCAD (2021) 

24. Dan, Y., Poo, M.m.: Spike timing-dependent plasticity of neural circuits. Neuron 44(1) (2004) 
25. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and 

mechanisms. Learning & Memory (2003) 
26. Das, A.: Real-time scheduling of machine learning operations on heterogeneous neuromor-

phic SoC. In: MEMOCODE (2022) 
27. Das, A., Catthoor, F., Schaafsma, S.: Heartbeat classification in wearables using multi-layer 

perceptron and time-frequency joint distribution of ECG. In: CHASE (2018) 
28. Das, A., Kumar, A.: Dataflow-based mapping of spiking neural networks on neuromorphic 

hardware. In: GLSVLSI (2018) 
29. Das, A., Kumar, A., Veeravalli, B.: Energy-aware communication and remapping of tasks 

for reliable multimedia multiprocessor systems. In: International Conference on Parallel and 
Distributed Systems (ICPADS), pp. 564–571. IEEE (2012) 

30. Das, A., Kumar, A., Veeravalli, B.: Fault-tolerant network interface for spatial division 
multiplexing based Network-on-Chip. In: ReCoSoC (2012) 

31. Das, A., Pradhapan, P., Groenendaal, W., Adiraju, P., Rajan, R., Catthoor, F., Schaafsma, S., 
Krichmar, J., Dutt, N., Van Hoof, C.: Unsupervised heart-rate estimation in wearables with 
Liquid states and a probabilistic readout. Neural Networks (2018) 

32. Das, A., Singh, A.K., Kumar, A.: Energy-aware dynamic reconfiguration of communication-
centric applications for reliable MPSoCs. In: ReCoSoC (2013) 

33. Das, A., Walker, M.J., Hansson, A., Al-Hashimi, B.M., Merrett, G.V.: Hardware-software 
interaction for run-time power optimization: A case study of embedded linux on multicore 
smartphones. In: ISLPED (2015) 

34. Das, A., Wu, Y., Huynh, K., Dell’Anna, F., Catthoor, F., Schaafsma, S.: Mapping of local and 
global synapses on spiking neuromorphic hardware. In: DATE (2018) 

35. Das, A.K., Kumar, A., Veeravalli, B., Catthoor, F.: Reliable and Energy Efficient Streaming 
Multiprocessor Systems. Springer (2018) 

36. Davies, M.: Benchmarks for progress in neuromorphic computing. Nat. Mach. Intell. (2019) 
37. Davies, M., Srinivasa, N., Lin, T.H., et al.: Loihi: A neuromorphic manycore processor with 

on-chip learning. IEEE Micro (2018) 
38. Debole, M.V., Taba, B., Amir, A., et al.: TrueNorth: Accelerating from zero to 64 million 

neurons in 10 years. Computer (2019) 
39. Esser, S.K., Appuswamy, R., Merolla, P., Arthur, J.V., Modha, D.S.: Backpropagation for 

energy-efficient neuromorphic computing. NeurIPS (2015) 
40. Fang, H., Mei, Z., Shrestha, A., Zhao, Z., Li, Y., Qiu, Q.: Encoding, model, and architecture: 

systematic optimization for spiking neural network in FPGAs. In: ICCAD (2020) 
41. Fang, H., Taylor, B., Li, Z., Mei, Z., Li, H.H., Qiu, Q.: Neuromorphic algorithm-hardware 

codesign for temporal pattern learning. In: DAC (2021) 
42. Fouda, M.E., Eltawil, A.M., Kurdahi, F.: Modeling and analysis of passive switching crossbar 

arrays. In: TCAS I (2017) 
43. Furber, S.: Large-scale neuromorphic computing systems. In: JNE (2016)



356 M. L. Varshika and A. Das

44. Gao, R., Ji, Z., Manut, A.B., Zhang, J.F., Franco, J., Hatta, S.W.M., Zhang, W.D., Kaczer, 
B., Linten, D., Groeseneken, G.: NBTI-Generated defects in nanoscaled devices: Fast 
characterization methodology and modeling. In: TED (2017). https://doi.org/10.1109/TED. 
2017.2742700 

45. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based 
neuromorphic computing system: A case study. In: TNNLS (2014) 

46. Hu, Y., Tang, H., Pan, G.: Spiking deep residual networks. In: TNNLS (2018) 
47. Huai, Y., et al.: Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects. 

AAPPS Bulletin (2008) 
48. Huynh, P.K., Varshika, M.L., Paul, A., Isik, M., Balaji, A., Das, A.: Implementing spiking 

neural networks on neuromorphic architectures: A review. arXiv (2022) 
49. Indiveri, G., Liu, S.C.: Memory and information processing in neuromorphic systems. Proc. 

IEEE 103(8), 1379–1397 (2015) 
50. Jeong, H., Shi, L.: Memristor devices for neural networks. J. Phys. D Appl. Phys. (2018) 
51. Jerraya, A.A., Bouchhima, A., Pétrot, F.: Programming models and HW-SW interfaces 

abstraction for multi-processor SoC. In: DAC (2006) 
52. Ji, Y., Zhang, Y., Li, S., Chi, P., Jiang, C., Qu, P., Xie, Y., Chen, W.: NEUTRAMS: Neural 

network transformation and co-design under neuromorphic hardware constraints. In: MICRO 
(2016) 

53. Jiashu, L., Das, A., Kumar, A.: A design flow for partially reconfigurable heterogeneous 
multi-processor platforms. In: IEEE International Symposium on Rapid System Prototyping 
(RSP), pp. 170–176 (2012) 

54. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. 
Tech. J. (1970) 

55. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.: System-level design: 
Orthogonalization of concerns and platform-based design. In: TCAD (2000) 

56. Kraak, D., Agbo, I., Taouil, M., Hamdioui, S., Weckx, P., Cosemans, S., Catthoor, F.: 
Degradation analysis of high performance 14nm FinFET SRAM. In: DATE (2018). https:// 
doi.org/10.23919/DATE.2018.8342003 

57. Kraak, D., Taouil, M., Agbo, I., Hamdioui, S., Weckx, P., Cosemans, S., Catthoor, F.: 
Parametric and Functional Degradation Analysis of Complete 14-nm FinFET SRAM. In: 
TVLSI (2019). https://doi.org/10.1109/TVLSI.2019.2902881 

58. Kwong, K.C., Li, L., He, J., Chan, M.: Verilog-A model for phase change memory simulation. 
In: ICSICT (2008) 

59. Lee, K., Kwon, D.S.: Synaptic plasticity model of a spiking neural network for reinforcement 
learning. Neurocomputing (2008) 

60. Liao, Y.B., Lin, J.T., et al.: Temperature-based phase change memory model for pulsing 
scheme assessment. In: ICICDT (V) (2008) 

61. Lin, C.K., Wild, A., Chinya, G.N., Lin, T.H., Davies, M., Wang, H.: Mapping spiking neural 
networks onto a manycore neuromorphic architecture. In: PLDI (2018) 

62. Liu, C., Yan, B., Yang, C., Song, L., Li, Z., Liu, B., Chen, Y., Li, H., Wu, Q., Jiang, H.: A 
spiking neuromorphic design with resistive crossbar. In: DAC (2015) 

63. Liu, X., Wen, W., Qian, X., Li, H., Chen, Y.: Neu-NoC: A high-efficient interconnection 
network for accelerated neuromorphic systems. In: ASP-DAC (2018) 

64. Maass, W.: Networks of spiking neurons: The third generation of neural network models. 
Neural Networks (1997) 

65. Mallik, A., Garbin, D., Fantini, A., Rodopoulos, D., Degraeve, R., Stuijt, J., Das, A., 
Schaafsma, S., Debacker, P., Donadio, G., et al.: Design-technology co-optimization for 
OxRRAM-based synaptic processing unit. In: VLSIT (2017) 

66. Marcolini, G., Giovanardi, F., Rudan, M., Buscemi, F., Piccinini, E., Brunetti, R., Cappelli, 
A.: Modeling the dynamic self-heating of PCM. In: ESSDERC (2013) 
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Light Speed Machine Learning Inference 
on the Edge 

Febin P. Sunny, Asif Mirza, Mahdi Nikdast, and Sudeep Pasricha 

1 Introduction 

Over the last decade, machine learning (ML) applications have become increasingly 
prevalent, with many emerging applications, such as autonomous transportation, 
medical prognosis, real-time speech translation, network anomaly detection, and 
audio/video synthesis. This prevalence is fueled by the emergence of sophisticated 
and powerful machine learning models over the past decade, such as deep neural 
networks (DNNs) and convolutional neural networks (CNNs). More sophisticated 
CNN models usually warrant deeper models with higher connectivity, which in 
turn increase the compute power and the memory requirement necessary to train 
and deploy them. Such increasing complexity also necessitates that the underlying 
hardware platforms consistently deliver better performance while satisfying strict 
power requirements. This endeavor to achieve high performance per watt has driven 
hardware architects to design custom accelerators for deep learning, e.g., Google’s 
TPU [1] and Intel’s Movidius [2], with much higher performance per watt than 
CPUs and GPUs. The performance-per-watt requirement still remains a challenge 
in resource-constrained environments, where computational power, energy expen-
diture, and available memory are often limited, such as many embedded devices. 
Binarized neural networks (BNNs) [3, 4] can reduce memory and computational 
requirements of DNN and CNN models while offering competitive accuracies with 
full precision models. As such, they are a possible solution to the performance 
requirement challenge, when executed on custom accelerators. 
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Exploring more efficient hardware accelerator platforms is another potential 
solution to reduce performance per watt for neural-network processing. Con-
ventional electronic accelerator platforms face fundamental limits in the post-
Moore era where the high costs and diminishing performance improvements 
with semiconductor-technology scaling prevent significant improvements in future 
product generations [5]. Moving data in accelerators is a well-known bottleneck 
in these accelerators, due to the bandwidth and latency limitations of electronic 
interconnects, which puts limits on achievable performance and energy savings [6]. 
A solution to the data-movement bottleneck has presented itself in the form of 
silicon photonics technology, which enables ultra-high bandwidth, low-latency, and 
energy-efficient communication [7–30]. CMOS-compatible optical interconnects 
have already replaced metallic ones for light speed data transmission at almost every 
level of computing and are now actively being considered for chip-scale integration 
[8]. Recent research work has also shown that it is also possible to use optical 
components to efficiently perform computation, e.g., matrix-vector multiplication 
[31–33]. Due to the emergence of both chip-scale optical communication and 
computation, it is now possible to conceive photonic integrated circuits (PICs) 
that offer low latency and energy-efficient optical domain data transport and 
computation. 

Despite the benefits of utilizing photonics for computation and communication, 
there are several challenges that must be addressed before photonic accelerators 
become truly viable. One of the main obstacles that impacts the robustness 
and reliability of photonic accelerators is the sensitivity of photonic devices to 
fabrication process and thermal variations. These variations introduce undesirable 
crosstalk, optical phase shifts, frequency drifts, tuning overheads, and photodetec-
tion current mismatches, which adversely affect the reliable and robust operation 
of photonic accelerators. In order to correct the impact of variations, thermo-optic 
(TO) or electro-optic (EO) tuning circuits are often used, which have notable power 
overheads. Because of the phase-change effects, it has on photonic devices, tuning 
mechanisms may also be used to control weight/activation imprinting via microring 
resonators (MRs). But the high latency of operation (in μs range [34]) of TO tuning 
can limit the achievable throughput and parallelism in photonic accelerators. 

In this chapter, we discuss ROBIN [35], a novel optical-domain BNN accelerator 
that addresses the challenges highlighted above by optimizing electro-optic com-
ponents across the device, circuit, and architecture layers. ROBIN combines novel 
device- and circuit-level techniques to achieve more efficient fabrication-process-
variation (FPV) correction in optical devices, which helps with reducing energy and 
improving accuracy in BNNs that utilize these devices. Additionally, circuit-level 
tuning enhancements for inference latency reduction and an optimized architecture-
level design help improve performance and also energy consumption compared to 
the state-of-the-art. The novel contributions from [35] include the following:

• The design of a novel optical-domain BNN accelerator architecture that is 
robust to fabrication-process variations (FPVs) and thermal variations and utilizes
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efficient wavelength reuse and a modular structure to enable high-throughput and 
energy-efficient execution across BNN models.

• A novel integration of heterogeneous optical microring resonator (MR) devices; 
we also conduct design space exploration for these MR designs to determine 
device characteristics for efficient BNN execution.

• An enhanced tuning circuit to simultaneously support large thermal-induced 
resonance shifts and high-speed, low-loss device tuning to compensate for FPVs.

• A comprehensive comparison with state-of-the-art BNN and non-BNN accel-
erator platforms from the optical and electronic domains, to demonstrate the 
potential of our BNN accelerator platform. 

The rest of this chapter is organized as follows: Sect. 2 briefly explores the related 
works in the field of BNN acceleration. Sect. 3 gives a brief overview of noncoherent 
optical computation for photonic accelerators similar to ours. Sect. 4 provides an 
overview of BNNs and the partially binarized approach we have adopted for better 
accuracy in models. Sect. 5 describes the ROBIN architecture and our optimization 
efforts in tuning circuits, photonic devices, and photonic system level. Details of the 
experiments conducted, simulation setup, and the obtained results are provided in 
Sect. 6. Finally, Sect. 7 presents some concluding remarks. 

2 Background and Related Work 

Silicon-photonic-based DNN accelerator architectures are becoming increasingly 
prominent with significant interest from both academic and industrial research 
communities [36]. This growth in interest can be attributed to the previously 
discussed benefits of photonic acceleration over electronic acceleration. Optical 
DNN accelerator architectures can be broadly classified into two types: coherent 
architectures and noncoherent architectures. Coherent architectures use a single 
wavelength to operate and imprint weight/activation parameters onto the electrical 
field amplitude of the light wave [37, 38]. These architectures mainly use on-
chip optical interferometer devices called Mach-Zehnder interferometers (MZIs). 
For imprinting the parameters, optical phase-change mechanisms are introduced 
to MZI devices. These mechanisms use heating or carrier injection to change 
the refractive index in the MZI structure. Weighting occurs with electrical field 
amplitude attenuation proportional to the weight value, and phase modulation 
that is proportional to the sign of the weight. The weighted signals are then 
accumulated with cascaded optical combiners, through coherent interference. Here 
the term coherent refers to the physical property of the wave, where it is possible 
for waves of the same wavelength to interfere constructively or destructively. 
Noncoherent architectures, such as [32, 33, 39–41], use multiple wavelengths. These 
architectures are referred to as non-coherent architectures as they use different 
optical wavelengths, the interaction among which can be noncoherent. A large 
number of neuron operations can be represented simultaneously in noncoherent
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architectures by using wavelength-division multiplexing (WDM) or dense WDM 
(DWDM). In these architectures, parameter values are imprinted on to the signal 
amplitude directly, and to manipulate individual wavelengths, wavelength-selective 
devices such as microring resonators (MRs) or microdisks are used. The optical 
signal power is controlled, for imprinting parameter values, by controlling the 
optical loss in these devices through tuning mechanisms (Sect. 5.1). The broadcast 
and weight (B&W) protocol [42] is typically employed for setting and updating the 
weight and activation values. The ROBIN architecture we present in this chapter 
is a noncoherent architecture, i.e., it uses multiple wavelengths that are routed to 
photonic computation units in waveguides using WDM in accordance with the 
B&W protocol. The growing interest in noncoherent architectures can be attributed 
to the limitations in scalability, phase encoding noise, and phase error accumulation 
in coherent architectures [36, 43]. 

For optical DNN acceleration using noncoherent mechanics, [39] introduced a 
photonic accelerator for CNNs where all the layers of CNN models are implemented 
using connected photonic convolution units. In these units, MRs are used to tune 
wavelength amplitudes to desired kernel values. Another such work, in [40], utilizes 
microdisks instead of MRs due to the lower area and power consumption they offer. 
But microdisks use “whispering gallery mode” resonance which is inherently lossy 
due to the tunneling ray attenuation phenomenon [44], which reduces reliability 
and energy-efficiency with microdisks. There are very few works which focus on 
implementations of BNN accelerators using silicon photonics. The work in [45] 
proposed an MR-based accelerator for discretized neural network acceleration, 
with an encoding scheme to enable positive and negative product considerations. 
The authors in [46] leveraged microdisks for implementing an accelerator with 
a design similar to [40]. This work considered an accelerator for fully binarized 
neural networks, i.e., both weights and activations and considered to be single-bit 
parameters. Because of this simplification, [46] was able to utilize energy-efficient 
photonic XOR and population count operations instead of conventional multiply and 
accumulate operations. The work also made use of photonic nonvolatile memory 
and claimed operating frequencies of up to 50 GHz. All of these existing works 
on noncoherent optical-domain DNN/BNN acceleration have several shortcomings. 
They suffer from susceptibility to fabrication-process variations (FPVs) and thermal 
crosstalk, which are not addressed in these architectures. Microsecond granularity 
thermo-optic tuning latencies further can reduce the speed and efficiency of 
optical computing [34], which is also not considered when analyzing accelerator 
performance. We address these crucial shortcomings as part of our ROBIN optical-
domain BNN accelerator architecture in this work. 

In this work, we aim to ensure the robustness of the architecture against process 
and thermal variations by using MR design-space exploration and photonic tuning-
circuit optimizations, which will be further explained in Sect. 5. We also utilize the 
broadband capabilities of the key photonic device in our work, microring resonators 
(MRs), to perform batch normalization folding, which moves batch normalization 
operations from the electrical domain to the photonic domain. Section 5.3 further 
details the modular architectural design aiming at ensuring wavelength reuse, to
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reduce VCSEL usage and splitter losses and waveguide length reduction. We also 
explore how the architecture performs in the presence of FPVs and how we may 
further reduce energy consumption in terms of device tuning in this scenario, in 
Sect. 6.2. 

3 Overview of Noncoherent Optical Computation 

Noncoherent optical accelerators leverage the low-latency and energy-efficient opti-
cal computation for multiply and accumulate (MAC) operations, which consumes 
substantial computational power and incurs high latencies in electronic accelerators. 
These accelerators typically utilize the B&W protocol with multiple wavelengths. 
Figure 1a (from [47]) gives an overview of a B&W-based optical MAC unit. The 
figure depicts a recurrent MAC unit which is employed repeatedly to compute 
different layers of a neural network model. The layer parameters such as weights 
or activations can be imprinted on to the wavelengths using the MRs that are tuned 
to modify the optical signal amplitude to represent those values. The MRs are 
placed in MR banks where multiple parameters can be imprinted onto wavelengths 
simultaneously. In the MR banks, each MR is tuned to a specific optical wavelength 
and can be used to alter the amplitude of the wavelength to represent the imprinted 
parameter. There can be separate wavelengths which carry positive and negative 
parameters, as discussed in [45]; these parameters are summed using balanced 
photodetectors (BPDs), as shown in Fig. 1a. 

The output from the MAC unit is passed on to a Mach-Zehnder Modulator 
(MZM) which tunes the output from a designated laser diode (LD) to this output. 
Multiple MZMs and LDs are used to generate the outputs from multiple MAC units; 
these are collected and multiplexed using an arrayed waveguide grating (AWG)-
based optical multiplexer (MUX). The output from the MUX, now embedded 
with parameters for the next layer, is passed back into the MAC units, through 
splitters. Devices such as electro-optic modulators (not depicted) may be used to 
implement nonlinearities after the MAC operation. Unfortunately, the static nature 
of the hardware limits the size of the neural network model that can be accelerated 
using such a configuration. This configuration would also require a large number 
of splitters, which can cause increased optical losses and thus higher laser power 
requirement to compensate for the losses, as the size of an accelerator using this 
B&W configuration increases. 

MRs and other on-chip optical resonators such as microdisks are crucial compo-
nents in such noncoherent MAC configurations, as they impact the reliability and 
efficiency of the operation performed. Figure 1b depicts an MR bank and its output 
spectrum along with the free spectral range (FSR). Factors such as fabrication-
process variations (FPVs) and thermal variations which impact the MR critical 
dimensions and hence the effective refractive index (neff) of the device can cause 
a drift in the resonant wavelength (�λMR) [48]. This drift can introduce errors 
into optical computation and is thus usually corrected with TO or EO tuning
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Fig. 1 (a) A recurrent noncoherent B&W MAC-based design [47]; (b) an MR bank consisting of 
MRs with individual resonant wavelength (λi) coupled to the MRs at crossover coupling (κ) and  
the output spectrum, showing free spectral range (FSR) 

circuits. While EO offers faster tuning (~ns range) and consumes lesser power 
(~4 μm/nm), it also has a smaller tuning range [49]. TO tuning, on the other hand, 
consumes higher power (~27 mW/FSR) and has higher tuning latency (~μs range) 
[34] but offers a larger tuning range. Because of the larger correction capacity, 
TO is often preferred over EO despite its higher latency and power consumption. 
Therefore, as the number of MRs increases—when considering larger CNN or MLP 
models—the tuning power consumption also increases. This also creates increased 
wavelength requirements per waveguide and calls for longer waveguides to host



Light Speed Machine Learning Inference on the Edge 365

the MRs, causing increased laser power consumption to supply the wavelengths 
and to compensate for the propagation losses in the longer waveguides. Also, more 
MRs and more wavelengths increase optical crosstalk and also introduce thermal 
crosstalk due to the larger number of TO tuners employed. To counteract these 
challenges and ensure better weight resolution, crosstalk mitigation strategies must 
also be considered. 

To design an effective optical-domain BNN accelerator, all of these con-
siderations must be taken into account. This highlights the need for (i) better 
device optimizations to tolerate variations; (ii) efficient and low-latency tuning 
mechanisms; (iii) and a scalable architecture design, which is optimized for energy 
efficiency, area, and throughput. The work in [35] addressed all of these concerns 
for an efficient BNN accelerator implementation in the photonic domain. 

4 Binarized Neural Networks 

BNNs [3] are types of DNNs (or CNNs) where both weights and activation 
parameters only use binary values, and the binary values are utilized during both 
inference and training using backpropagation. In the light of the discussion of 
various noises in photonic accelerator architectures, it is to be noted that the binary 
nature of weights in BNNs makes them resilient to small perturbations which can 
usually lead to gross classification errors in DNNs. Inspired by the seminal work on 
efficiently training BNNs [3], recent efforts either explore how BNN accuracy can 
be improved, apply BNNs to different application domains, or explore how BNNs 
can be implemented efficiently in hardware to leverage their low computation power 
and memory requirements in resource constrained environments. 

BNNs utilize the sign function to convert real valued weights to +1 or  −1. 
But this typically leads to complications in training as the gradient for the sign 
function always results in a zero. A heuristic called straight through estimator 
(STE), introduced in [50], can be used to circumvent this issue. STEs approximate 
the gradient by bypassing the gradient of the layer, by turning it into an identity 
function. The gradient thus obtained is used for updating real valued weights, using 
standard optimization strategies such as Adam or stochastic gradient descent (SGD). 
This process is utilized for activation parameters as well. Also, the use of batch 
normalization (BN) layers in BNNs has been shown to lead to several benefits [4]. 
The gain (γ ) and bias (β) terms of the BN layer not only help condition the values 
during training, which speeds up BNN training, but also helps to improve accuracy 
in BNNs. 

Inference accuracy in BNNs can be increased by considering partially binarized 
BNNs, where selected layers have their parameters at higher precision. The last 
layer is usually not binarized to avoid severe loss in accuracy. With detailed analysis 
of the model, critical layers can be identified and can be kept at higher precision, 
for better accuracy, at the cost of increased resource (computation, memory) 
utilization. We conduct a BNN accuracy analysis to determine the appropriate
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Fig. 2 The accuracy sensitivity study conducted by varying activation parameter precision 
(number of bits). Weights are kept as binary values in all cases. The study was performed across 
four different models and their datasets (described later in Sect. 6.1) 

activation parameter precision in considered models, which is required to determine 
the digital-to-analog converter (DAC) resolution in our accelerator architecture. In 
this analysis, weight parameters were restricted to binary (1-bit) values, but the 
bit precision level of the activations was altered from 1 bit to 16 bits. During 
BNN training, we ensured that we only binarize weights during the forward and 
backward propagations but not during the parameter update step, because keeping 
good precision weights during the updates is necessary for SGD to work at all 
(as parameter changes are usually tiny during gradient descent). After training, all 
weights were in binary format, while the precision of input activations was varied. 
Figure 2 shows the results of varying activation precision across four different 
models and their datasets (described later in Sect. 6.1). We observed that the 
accuracy had notable change initially as activations bits were increased, but this 
gain in accuracy soon saturated. Based on the results, we consider binary (1-bit) 
weights with 4-bit activations and thus use 4-bit DACs in our architecture. 

5 ROBIN Architecture 

In this section, we describe the various optimization considerations at device, circuit, 
and architecture level used for designing the ROBIN architecture.
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5.1 Tuning Circuit Design 

A tuning circuit design is essential for fast and accurate operation of MRs in our 
BNN accelerator. The presence of fabrication-process variations (FPVs) can impact 
MR operations by altering their resonant wavelength (λMR) from the originally 
designed values. The errors caused by this shift can be significantly reduced by 
using an appropriate MR tuning circuit. The tuning circuit employed can be either 
thermo-optic (TO) or electro-optic (EO) tuning circuits. Thermo-optic(TO)-based 
tuning mechanisms use microheaters to change the temperature in the proximity of 
a microring resonator (MR), which then alters the effective index (neff) of the MR.  
This in turn changes the λMR of the device. Such a change in resonant wavelength 
(�λMR) can help compensate for fabrication process and thermal variations in MRs. 
The electro-optic (EO)-based tuning mechanisms in an MR is based on the depletion 
and injection of carriers on a PN diode. However, only small shifts in an MR’s 
resonant wavelength can be compensated using this mechanism (i.e., EO has a 
limited correction range). TO tuning is preferred to compensate for large shifts in 
MR’s resonant wavelength. However, one has to compromise on latency (~μs range) 
and power consumption, which is higher than for EO tuning. To reduce ROBIN’s 
reliance on TO tuning, which entails high overheads, the possibility of a hybrid 
tuning mechanism was explored. In this hybrid tuning mechanism, both TO and EO 
tuning are used to compensate for �λMR. Such a tuning method has been proposed 
earlier [51] and can be easily transferred to an optimized MR (as discussed in Sect. 
5.2) for hybrid tuning in our architecture. Such a mechanism would significantly 
reduce the overhead caused just by TO tuning. 

To reduce the power overhead of TO tuning in such a hybrid approach, we adapt 
a method called thermal eigenmode decomposition (TED), which was first proposed 
in [52] that involves collectively tuning all the MRs in an MR bank. By doing so 
we can cancel the effect of crosstalk (i.e., undesired phase shift) in MRs with much 
lower power consumption. The amount of phase crosstalk induced from one MR on 
another MR, placed adjacent to each other, can be modeled using the trend in Fig. 3 
(pink line). In this figure, as the distance between two devices (MRs) increases, the 
amount of phase crosstalk between them reduces. Correspondingly, as an example 
we calculate the tuning power compensation for an MR bank consisting of 10 MRs 
and different radii placed at a distance (d) from each other. A few important trends 
to observe from Fig. 3 are (i) as the radius of an MR increases, tuning power 
compensation for �λMR increases; (ii) without TED (collective tuning of MRs), 
the tuning power consumption is high, indicating that each MR would require more 
power to compensate for respective shifts in resonant wavelength (�λMR); (iii) 
by employing TED, we see a significant reduction in tuning power consumption: 
51% (radius of 1.5 μm) and 41% (radius of 5 μm) when MRs are placed at a 
distance of 5 and 7 μm apart from each other, respectively. Though placing MRs 
further close to each other would yield better compensation in power, one must 
take into account the placement and routing of tuning circuit for each MR in an 
MR bank. Additional power reduction can be obtained by performing device level
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Fig. 3 Tuning power compensation in a block of 10 MRs placed with and without considering 
thermal eigenmode decomposition (TED) for different MR radius. The orange line represents phase 
crosstalk ratio variation with distance between MRs 

optimizations, as designing MRs tolerant to FPVs would reduce the total power used 
to compensate for fabrication variations. 

5.2 Device-Level Optimization 

We explore different MR designs to accommodate different needs in our ROBIN 
architecture such as multi-bit precision for activation values, single-bit precision for 
weight value representation, and batch normalization. 

5.2.1 Fabrication-Process Variation Resilience 

FPVs cause undesirable changes in device critical dimensions (e.g., width and 
thickness), which cause resonant wavelength shifts (�λMR). To address �λMR, 
we explore the impact of change in device parameters such as waveguide width, 
thickness, gap between input and ring waveguide, and radius using our in-house MR 
device-exploration tool. We map the behavior of different changes in the waveguide 
width, thickness, and radius in MRs due to FPVs. Figure 4a shows one of our design 
exploration results where we understand and observe the behavior of resonant 
resonant-wavelength shift slopes due to change variations in the waveguide width, 
thickness, and radius represented by orange, green, and blue lines, respectively.
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Fig. 4 (a) Resonant-wavelength shift slopes with respect to changes in waveguide width, thick-
ness, and radius and corresponding cross-over coupling (κ), when the input waveguide (w_i) is  
set to 400 nm the marked point represents our selected MR design; (b) the different MR designs 
considered in this work
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Resonant wavelength shift slope due to change in waveguide width (∂λMR/∂w) can 
be given as: 

∂λMR 

∂w 
=

∣
∣
∣
∣

(�λMR (λ, w + εW , t, R) − �λMR (λ, w − εW , t, R)) 
2εW

∣
∣
∣
∣

(1) 

In Eq. (1), εw denotes a small change in waveguide width and ΔλMR depends on 
changes in width (w), thickness (t), and radius (R). Similarly, ∂λMR/∂(t,R) can also 
be approximated. 

Figure 4a clearly shows that the impact of resonant-wavelength shift reduces 
as we increase the waveguide width, whereas the impact of thickness and radius 
variations remains constant. From the conducted experiments, �λMR is more 
sensitive to changes in waveguide width, hence the impact of �λMR reduces as the 
waveguide width is increased. We employ Lumerical MODE [53], an Eigen mode 
solver to calculate these shifts in resonant wavelengths. One can easily overcome 
higher-order mode excitation by employing adiabatic designs [53] and waveguide 
tapers [54] in MRs with wider waveguides. Such a design translates to lesser tuning-
power consumption due to FPVs. 

5.2.2 Multi-Bit Precision MRs 

As discussed in Sect. 4, increasing the number of bits used to capture activations in 
a model can boost the model accuracy in BNNs. However, we observed that there 
is not a significant accuracy boost beyond 4-bit activation values; hence, we explore 
MR designs which can achieve a resolution of 4 bits. To achieve a resolution of 4 
bits, we have to take into consideration how the optical signals from MRs impact 
each other due to crosstalk. We consider calculations from [55] to define the amount 
of noise from one MR on the other: 

φ (i, j) = δ2 

(λi−λj )
2+δ2 

, (2) 

where φ(i − j) describes the noise content from the jth MR present in the signal
from the ith MR, (λi − λj) is the difference between the resonant wavelengths
(λi, λj), and δ = λ/(2 · Q − factor). The quality factor or Q-factor is a measure
of the sharpness of the resonance relative to the central frequency of a microring
resonator (MR) that impacts the optical channel spacing, crosstalk, bandwidth, and
other factors in the MR [56]. A sharper resonance (i.e., a higher Q-factor) can 
result in increased susceptibility to noise, as even a small change in the central 
frequency of the MR (due to perturbance) can lead to large losses. This limits 
the achievable resolution of the parameters being represented. Thus, smaller Q 
factors are preferred. However, too small a Q-factor can also lead to larger device 
dimensions and higher optical crosstalk, which in turn can lead to larger losses and 
higher tuning power requirements. Q-factor in an MR is defined as follows:
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Q − factor = λMR 
FWHM , (3) 

where FWHM is the full width at half maximum of a resonance spectrum which can
be defined for an all-pass ring resonator (see Fig. 4) as follows:  

FWHM = (1−ra)λ2 
MR 

πngL
√

ra , (4) 

where r is the self-coupling coefficient and a is the single-amplitude transmission,
including both the propagation loss in the ring and the loss in the couplers; this
can be written as a = e−αL, where α is power attenuation coefficient. L is round
trip length or the circumference of the MR. In this chapter, we assume a lossless
coupler in our designed MRs, hence |κ|2 + |r|2 = 1, where κ is the cross-over
coupling coefficient. For ideal cases with zero attenuation, a ≈ 1. Based on the
above equations, the noise power component can thus be calculated as:

Pnoise = ∑(n−1)
j φ (i, j) Pin [i] (5) 

For power intensity (Pin) of 1, the resolution can be computed as: 

Resolution = 1 
max|Pnoise| , (6) 

To achieve a bit resolution of at least 4 bits, we need MRs with a Q-factor of 
≈5000 (from Eq. (6)) while being tolerant to FPVs. Q-factor is highly sensitive to 
losses and change in dimensions of MR. In order to achieve the specific Q-factor 
value, we select the following MR dimensions: input waveguide width of 400 nm 
and ring waveguide width of 760 nm and radius (RM) of 5 μm. This MR design, 
as shown in Fig. 4a (magenta line), provides improved tolerance to FPV, desirable 
Q-factor, and smaller area consumption. Such an MR design with Q-factor of 5000 
allows enough levels of distinction between bits by slightly changing intensity and 
helps easily detect optical signal at the output port satisfying the requirement for 
multi-bit precision of activation values. 

5.2.3 Single-Bit MRs 

In our architecture, we represent weight values with a single bit, and this requires 
just two levels of precision with the output signal from an MR. An MR of high Q 
factor may be used here, as we do not have to have high resolution here. Compact 
ring designs with high Q-factor have been proposed in [57, 58]. The work in [58] 
proposes an MR design with radius 1.5 μm to achieve a high Q-factor of 46,000 
without the consideration of sidewall roughness while maintaining low bending loss 
≈7 cm−1. Similarly, an adiabatic MR structure of radius 3 μm is designed in [57] 
to avoid higher order mode excitation where a high Q-factor of 27,000 is achieved. 
These works indicate that such high Q-factor rings can be designed.
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For one-bit weight representation in ROBIN, we design a ring of radius 1.5 μm, 
as shown in Fig. 4b, with input waveguide (wi) and ring waveguide (wr) width 
both set to 450 nm, to achieve a Q-factor of 25,000 that corresponds to a bit 
resolution of 1 from Eq. (6). These designs allow our architecture to save on area 
and tuning power consumption. We acknowledge that FPVs are an inevitable part 
of the fabrication process. However, since we just need to differentiate between two 
levels of operations, we do not explore for designs that are tolerant towards FPVs, 
for single-bit MRs. 

5.2.4 Broadband MRs 

Batch normalization (BN) layers can be considered essential in BNNs as they 
add complexity to the models, via the gain (γ ) and bias (β) terms of the layer. 
These terms are learned during the training process along with the normalization 
parameters of the batch mean (μ) and standard deviation (σ ). During the training 
phase, these terms are dynamic, but during inference they have static values. This 
allows for a hardware implementation of a photonic version of batch normalization 
folding, where we may tune weights as per the following equation: 

wfold = γ · W√
σ 2+ε

= Cfold·W (7) 

There is a similar equation for bias terms as well, but since BNN models benefit 
from batch normalization after every layer, these will be normalized out and hence 
can be ignored. The above constant, Cfold, is applied to every weight term and hence 
is a participant in every matrix multiplication operation, i.e.: 

Inputl+1 = f
(

Al · (wfold)l
) = Cfold· f (Al · Wl) (8) 

In Eq. (8), Inputl + 1 refers to the input to the (l + 1)th layer, f () is nonlinear 
activation function, Al is the activation of lth layer, and Wl is the weights from lth 
layer. This operation can be applied to partial sums as well, and can be implemented 
using a broadband photonic device with its gain tuned to reflect Cfold. 

For implementing the photonic batch normalization, a broadband device is 
preferred as this allows simultaneous gain tuning of all the wavelengths in the 
waveguide efficiently, both area and energy wise. Hence, the last type of MRs we 
consider are broadband MRs that are needed for batch normalization (BN) layers 
due to their relevance in BNNs. A large passband can be achieved by cascading 
several MRs and properly selecting the design parameters of MRs [59]. We explore 
such a higher order MR, or cascaded MR filter, to achieve a wide passband. The 
work presented in [60] explores a possibility for passband widths ranging from 
6.25 Ghz to a maximum of 3 Thz. This work explores different design parameters of 
a higher-order filter while evaluating different losses such as insertion, propagation, 
and coupling loss in higher order MRs. A 0.5 nm resonant wavelength shift of MR
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was reported for a fabrication error of 10 nm showing that such a design is tolerant 
to FPVs. 

A third-order MR-based switching device with radius of 2 μm shown in Fig. 4b 
fits the requirement for broadband MR. The coupling coefficients at the input ( . κ2

i ) 
is 0.53, and coupling at higher order rings is 0.2. The propagation loss of 25 dB/cm 
has been reported and insertion loss of the two elements in higher-order filter are 
4.35 dB and 0.36 dB, respectively [59]. Having such a design, one can achieve a 
flat-top passband with bandwidth width of at least 3 THz. Employing this broadband 
MR can help us apply the batch normalization parameter Cfold on all the available 
resonant wavelengths in the bank. Having a large bandwidth such as 2.5 Thz allows 
us to conveniently tune up to 20 different wavelengths. 

5.3 Architecture Design 

An overview of the ROBIN accelerator architecture is shown in Fig. 5. The  
optical device and tuning circuit optimizations from the previous subsections are 
utilized within the optical binary vector dot product (VDP) units. We use banks 
of heterogeneous MRs (described in Sect. 5.2) to imprint activation parameters, 
weights, and the BN layer constants onto optical signals. Multiple such VDP units 
are composed together to form the overall architecture, as shown in the figure, which 
is then used to accelerate a given BNN model. We utilize a photonic summation 
unit for summing the partial sum outputs from our VDPs, before passing the partial 
sums on to the electronic control unit (ECU), as shown in Fig. 5. We also rely on  
the ECU for fetching parameters from the global memory, decomposing them to 
lower dimensional vectors, distributing these vectors among the VDP units, and 
implementing nonlinear activations functions and pooling layers. We describe the 
working of the ROBIN architecture in more detail in the following subsections. 

5.3.1 Decomposing Vector Operations 

To map convolution (CONV) and fully connected (FC) layers from BNN models 
to our accelerator, we first need to decompose large vector sizes into smaller ones, 
so they can be mapped to the VDP array in our architecture. This decomposition 
approach can be explained as follows. 

In CONV layers, a filter performs convolution on a patch (e.g., 2 × 2 elements) 
of the activation matrix in a channel to generate an element of the output matrix. 
The operation can be represented as: 

KA = Y. (9) 

Assuming a 2 × 2 filter kernel and weight matrices, Eq. (9) can be rewritten as:
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Fig. 5 An overview of the ROBIN architecture, showing the electronic control unit, the photonic 
vector dot product (VDP) unit array, and the photonic summation unit, along with a detailed view 
of the VDP unit internal structure

[

k1 k2 

k3 k4

] [

a1 a2 

a3 a4

]

= k1a1 + k2a2 + k3a3 + k4a4, (10) 

Rewriting Eq. (10) as a vector dot product, we have:

[

k1 k2 k3 k4

]

· 

⎡ 

⎢ 
⎢ 
⎣ 

a1 

a2 

a3 

a4 

⎤ 

⎥ 
⎥ 
⎦ = k1a1 + k2a2 + k3a3 + k4a4, (11) 

Once we can represent the operation as a vector dot product, it is easy to see how 
it can be decomposed into partial sums. For example:

[

k1 k2
] ·

[

a1 

a2

]

= k1a1 + k2a2 = PS1, (12a)

[

k3 k4
] ·

[

a3 

a4

]

= k3a3 + k4a4 = PS2, (12b) 

PS1 + PS2 = Y. (12c) 

In FC layers, typically much larger dimension matrix-vector multiplication 
operations are performed between input activation vectors and weight matrices. 
Therefore, we have:
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A· W = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a1 

a2 
... 

an 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

·
[

w1 w2 · · ·  wn

]

, (13) 

A·W =

⎡

⎢
⎢
⎢
⎣

a1·w1 + a1·w2 + · · · + a1·wn

a2·w1 + a2·w2 + · · · + a2·wn

...

an·w1 + an·w2 + · · · + an·wn

⎤

⎥
⎥
⎥
⎦

. (14) 

In Eq. (13), a1 to an represent column vectors of activations (A), and w1 to wn 

represent row vectors of weight matrix (W). The resulting vector is a summation of 
dot products of vector elements Eq. (14). Similar to the decomposition of CONV 
operation, these can then be decomposed into lower dimensional dot products. 

5.3.2 Vector Dot Product (VDP) Unit Design 

As discussed in Sect. 5.3.1, we decompose matrix operations to lower dimensional 
vector dot product operations. These vector dot product operations are executed 
optically within our VDP units. The heterogeneous MR designs combined with 
optical circuit-level optimizations for area and power consumption are utilized to 
design VDP units (Fig. 5) suited for accelerating both CONV and FC layers without 
compromising on accelerator throughput. For representing weight values, we use 
high Q-factor, small radius single-bit MRs described in Sect. 5.2.2. The smaller 
radius contributes to lower tuning power and helps reduce propagation loss along 
the VDP waveguide. This is possible due to the binarized nature of weight matrices 
in BNNs. For activation values, we consider MRs with slightly lower Q-factor, 
for better resolution, as discussed in Sect. 5.2.1. Optical BN layer implementation 
requires simultaneously tuning all the wavelengths in the waveguide to the batch 
normalization constant, and for this, we use third order MR filters, as described in 
Sect. 5.2.3. The combination of these heterogeneous designs allows the VDP units 
to be highly energy efficient. We also make use of electronic buffering in the VDP 
units to reduce the digital to analog converter (DAC) usage. In particular, we make 
use of ping-pong buffers, which allow us to use a single DAC array to feed the 
activation devices in all the waveguides in a VDP unit. As weight values are single-
bit values, we can use simple switching circuits to essentially turn the MR tuning 
circuits on or off depending on the value of the weight parameters. 

In designing a VDP unit, there are several important parameters that must be 
carefully considered: number of higher resolution MRs for activation representation 
(NA), number of single-bit MRs for weight representation (NW), and number of 
broadband MRs (NB) for batch normalization folding implementation. Thus, the
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total number of MRs per waveguide NMR = NA + NW + NB. The number of 
required DACs is equal to NA. By the mathematical property of the dot product 
operation, NA must be equal to NW. The number of waveguides to which we 
distribute the MRs is denoted as NWG. The maximum size of the vector that 
can be represented in a VDP unit is given by NWG ∗ NA. We divide this vector 
across multiple waveguides to reduce power consumption, as this allows us to 
reuse wavelengths and reduce the overall laser power consumption, as discussed 
next, in Sect. 5.3.3. Multiple VDP units work concurrently on parameters from the 
same layer and generate partial sums simultaneously, for efficient parallelization 
and to increase the throughput of the accelerator. The total VDP unit count 
used in ROBIN is NVDP. Thus, the VDP and architecture design process can be 
considered as an optimization problem where we try to explore NVDP, NWG, NA (= 
NW), and NB values while trying to maximize throughput and minimize area and 
power consumption. We present results of this architecture exploration analysis in 
Sect. 6.3. 

5.3.3 Optical Wavelength Reuse in VDP Units 

Prior works on optical accelerator design typically considers a separate wavelength 
to represent each individual element of a vector. As the size of the vectors 
being mapped increase, this approach leads to an increase in the total number 
of lasers needed in the laser bank, which in turn increases power consumption. 
Beyond employing the decomposition approach discussed above, we also consider 
wavelength reuse per VDP unit to minimize laser power. In this approach, within 
VDP units, the vectors assigned from the electronic control unit (ECU) are further 
decomposed into smaller sized vectors for which dot products can be performed 
using MRs in parallel, in each arm of the VDP unit. By decomposing the mapped 
vectors further, same wavelengths can be reused across arms within a VDP to reduce 
the number of unique wavelengths required from the laser. Photodetectors (PDs) 
perform summation of the element-wise products to generate partial sums from 
decomposed vector dot products. The partial sums from the decomposed operations 
are then converted back to the optical domain by VCSELs (bottom right of Fig. 5), 
multiplexed into a single waveguide, and accumulated using another PD, before 
being sent for buffering. Thus, our approach leads to an increase in the number 
of PDs and splitters compared to other accelerators but significantly reduces both 
the number of MRs per waveguide and the overall laser power consumption. The 
reduction in overall power consumption is also assisted by the fact that PDs do not 
consume significant power. 

In each arm within a VDP unit, we can use a maximum of 15 MRs per bank 
for a total of 30 MRs per arm. The choice of MRs per arm considers not only the 
thermal crosstalk and layout spacing issues and the benefits of wavelength reuse 
(as discussed earlier), but also the fact that optical splitter losses become non-
negligible as the number of MRs per arm increase, which in turn increases laser 
power requirements. Thus, the selection of MRs per arm within a VDP unit must
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be carefully adjusted to balance parallelism within/across arms and laser power 
overheads. 

5.3.4 ROBIN Pipelining and Scheduling 

The pipeline and schedule of operations during BNN model execution on the 
ROBIN accelerator are shown in Fig. 6. The electronic control unit (ECU) for 
the accelerator communicates with the global memory and retrieves the trained 
weights for the model being accelerated. The weights are stored in SRAM-based 
buffers. Considering the vector granularity of the VDP units, latency of operation of 
the photonic core, and the parameter sizes (4-bit activation bits and binary weight 
parameters), we can calculate the memory bandwidth necessary. From our analyses 
(presented in Sect. 6.3), we found that our architecture needs a maximum bandwidth 
of 93.75 GB/s at the ECU to photonic core interface. This is a reasonable bandwidth 
assumption for an SRAM-based memory with operating frequency ≥2.5 GHz and a 
read width of 250 bits. Previous works, such as [61], have explored similar SRAM 
systems but for a much higher bandwidth requirement at 250 GB/s. The lower 
bandwidth requirement for our system can be attributed to the smaller parameter 
sizes, while the work in [61] considered 16-bit precision for the neural network 
parameters. Memory interfaces which exceed the necessary bandwidth are already 
available commercially: e.g., NVIDIA Tesla K20M GPUs have 320-bit memory 
interfaces at 2.6 GHz which can operate every half clock cycle to provide a 
bandwidth of 208 GB/s. 

These weight matrices are decomposed to lower dimensional vectors and are dis-
tributed to the VDPs by the ECU’s vector decomposition unit. The decomposition 

Fig. 6 Pipelined scheduling of operations during BNN execution on the ROBIN accelerator
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operation is described by the left-hand side of Eqs. 10, 11, and 12. As described in 
the equations, the vector decomposition unit converts matrices to vectors (row-wise 
conversion for weight matrices and column-wise conversion for activation matrices) 
and then those vectors into sub-vectors. The size of the sub-vectors depends on the 
granularity of the VDP units. The received vectors are buffered in the VDP units 
and are fed into the DAC array through a ping-pong buffer so that they can keep the 
MAC operation running continuously. The partial sums generated are passed on to 
the photonic summation unit, the output from which is passed on to the ECU. The 
ECU buffers the sums and calculates inputs that are then passed on to the next layer 
by subjecting the parameters to nonlinearities (activation functions) and performing 
other layer specific operations, like pooling. 

The model parameter buffering stage is not repeated every pipeline operation, but 
must be repeated as the parameters buffered in the buffers in ECU are depleted (i.e., 
distributed to VDP units). As such, the total time required by ROBIN to perform 
inference acceleration for a given model can be given as: 

Total time of operation = 
Tdel + �t × X + (ECU parameter buffering delay) × x, 

(15) 

where

�t = local buffer operation delay + vector distribution delay, (16) 

X = Total number of parameters in the model
Nw× NVDP

, (17) 

x = (Parameters buffered in ECU)
Nw×NVDP

. (18) 

Comparing our pipeline to the pipeline presented in the previous work on 
photonic BNN acceleration [46], we can observe the following differences: 

(i) ROBIN’s pipeline takes into consideration model parameter retrieval from 
global memory, buffering in the ECU, and how these parameters are utilized in 
the photonic core. The pipeline in [46] does not include these operations in its 
pipeline: 

(ii) ROBIN’s pipeline considers both ECU and photonic core operation, whereas 
the pipeline in [46] is photonic system centric. 

(iii) ROBIN utilizes photonic batch normalization folding which does not require 
an extra step, whereas in [46] this operation is performed electronically and 
requires a separate stage in their pipeline.
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6 Experiments and Results 

6.1 Simulation Setup 

Several simulation studies were conducted to evaluate the effectiveness of the 
ROBIN BNN accelerator. The optimized heterogeneous MR designs, the tuning 
circuit optimizations, and architectural level considerations discussed so far were 
included in our simulation considerations. 

The operation of the ROBIN architecture was simulated using a custom Python 
simulator to estimate its performance in terms of power, frames per second (FPS) 
performance, and energy consumption. For analyzing the inference accuracy across 
different activation precision and the impact of FPV noise on the inference accuracy, 
we used Tensorflow 2.3 along with Qkeras [62]. Figure 7 shows the training 
accuracy versus epoch graph of the models described in Table 1, to illustrate the 
accuracy and loss across the epochs. 

Fig. 7 The training accuracy vs epoch for the BNN models considered for (a) Sign MNIST, (b) 
CIFAR10, (c) STL10, and (d) SVHN datasets. (a) shows top-1 accuracy, while (b–d) show top-5 
accuracy
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Table 1 Models and datasets used for evaluations 

Model no. CONV layers FC Layers BN layers Parameters Datasets 

1 2 2 3 60,642 Sign MNIST 
2 6 3 6 1,546,570 CIFAR10 
3 6 3 7 13,570,186 STL10 
4 6 2 6 552,362 SVHN 

Table 2 Parameters 
considered for analysis of 
photonic accelerators 

Devices Latency Power 

EO tuning [49] 20 ns 4 μW/nm 
TO tuning [34] 4 μs 27.5 mW/FSR 
VCSEL [70] 10 ns 0.66 mW 
TIA [71] 0.15 ns 7.2 mW 
Photodetector [72] 5.8 ps 2.8 mW 
DAC [69] 0.33 ns 59.7 mW 
ADC [68] 24 ns 62 mW 

We compare ROBIN with DEAP-CNN [39] and HolyLight [40], two recent 
optical DNN accelerators from prior work, along with LightBulb [46], which is 
an optical BNN accelerator, as well as numbers reported from several electronic 
DNN and BNN accelerators. For simulating the operation of optical accelerators, 
we considered optical signal losses due to various factors: signal propagation loss 
(1 dB/cm [8]), splitter loss (0.13 dB [63]), combiner loss (0.9 dB [64]), MR through 
loss (0.02 dB [65]), MR modulation loss (0.72 dB [66]), microdisk loss (1.22 dB 
[67]), EO tuning loss (6 dB/cm [49]), and TO tuning loss (1 dB/cm [34]). We also 
considered the ADC design from [68] and the 4-bit DAC from [69] in our analyses. 
The analysis of the optical accelerators (DEAP-CNN [39], HolyLight [40], and 
LightBulb [46]) follows the modeling methodology we have adopted for ROBIN, 
where we factor in power consumption and delays associated with photonic devices 
used in these accelerators. A summary of the power and latency considerations for 
our analyses is given in Table 2. These power and latency values were used in 
our simulations and latency of operation of our architecture. In order to give better 
perspective on the architecture’s performance, a comparison for inference time on 
ROBIN and a conventional CPU is presented in Sect. 6.5. 

To calculate laser power consumption, we use the following power model: 

Plaser − Sdetector ≥ Pphoto−loss + 10 × log10Nλ, (19)

where Plaser is the laser power in dBm, Sdetector is the PD sensitivity in dBm, and
Pphoto − loss is the total loss encountered by the optical signal, due to all of the factors
discussed above.
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6.2 Fabrication-Process Variation Analysis 

FPV in optical devices is corrected using TED tuning in our architecture, as 
discussed in Sect. 5. At the system level, this tuning leads to significant power 
consumption overhead, and any avenue to further reduce tuning power consumption 
becomes important. We conduct an FPV noise injection analysis, where we inject 
noise, modeled using FPV data, into the MR devices into our ROBIN accelerator, 
during the inference phase. This experiment was conducted to (i) study the impact 
of FPV induced noise on BNN models mapped to our accelerator; (ii) determine 
how effective TED tuning is in such scenarios; and (iii) uncover any opportunities 
for further power minimization. 

To analyze the impact of FPV on the model and how TED tuning compensates 
for it, we first consider the effect of FPV on the shift in resonant wavelength (�λMR) 
in MRs. Resonant-wavelength shift in an MR can be modeled from [73] as:

�λMR = ∂λMR 
∂w σw + ∂λMR 

∂t σt + ∂λMR 
∂R σR, (20) 

where σw, t, R are the associated standard deviations for waveguide width, thickness,
and radius variations and .

∂λMR
∂(w,t,r)

is the rate of change in the MR resonant 
wavelength considering the variations in the waveguide width, thickness, and radius 
represented in Eq. (20). We generate virtual FPV maps for the accelerator layout 
with a mean (μ) of 0 and standard deviation (σ (w, t,R)) of 4.9, 1.5, and 0.75 nm 
for waveguide width, thickness, and radius, respectively. These standard deviation 
values are experimentally obtained based on real fabricated MR devices through 
our collaboration with CEA-Leti. Using these values, we are able to derive �λMR 
using Eq. (20). So, the current resonant wavelength ( .λ′

MR) of the FPV affected MR 
becomes: 

λ′
MR = λMR + �λMR, (21) 

Due to a shift in λMR, the transmission of the wavelength through the MR 
is impacted. The intensity of the wavelength at the through port is given by the 
following equation from [56]. 

T = Iout 
Iin 

= a2−2racosφ+r2 

1−2arcosφ+ra2 , (22) 

In Eq. (22), φ = βL, with L being the roundtrip length and β the propagation 
constant β = 2π /λ of the circulating mode and r2 is the self-coupling coefficient 
of an MR. A detailed analyses for the calculation of r using super mode theory is 
presented in [74]. The output intensity from the MR is important, as for noncoherent 
MAC units, the parameter values are encoded onto the signal intensity, and a change 
in expected output can be seen as perturbation or noise source.
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Fig. 8 Inference accuracy versus level of tuning applied. At 80% tuning, the inference accuracy 
saturates, rendering further tuning unnecessary, and providing an opportunity to save tuning power 

The noise injection was modeled using Eqs. (20, 22), where we consider the 
resonant-wavelength shift (�λMR) in MRs due to FPV and its impact on the 
parameters imprinted on the MRs. From our analysis using the FPV data from 
our device fabrications with CEA-Leti, and Eq. (18), we are able to obtain the 
mean and standard deviation values for �λMR in a wafer. The values calculated 
are μ = −  0.1461 nm and σ = 24.417 nm . Using these values, 50 �λMR maps 
for the accelerator were generated and then using Eq. (22) the perturbation to the 
parameters imprinted on to the devices were modeled. Noise injection to the models 
was performed at inference time using TensorFlow. 

Figure 8 shows the results of this experiment, where we explored the impact of 
FPV-induced noise in the four BNN models and the effect of TED tuning for FPV 
compensation. We expected that the better the devices were tuned, the better the 
accuracy that would be exhibited by the accelerator. But it was observed that the 
model’s accuracy can be sustained without perfectly tuning the devices. Figure 8 
shows that at 80% FPV correction through tuning, the BNN retains appreciable 
inference accuracy. Thus, there is not a significant accuracy benefit to tune beyond 
the 80% level; this allows for a 20% reduction in tuning power requirement. This 
reduction in tuning power is factored into our architecture level analysis, which is 
presented next.
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6.3 ROBIN Architecture Optimization Analysis 

In this section, we show results of our exploration of the parameters discussed in 
Sect. 5.3.2. As mentioned in Sect. 5.3.2, we try to optimize NVDP, NWG, NA, and 
NB to reduce area and power consumption while trying to obtain the best throughput 
(frames per second or FPS) possible. NB was fixed to be 1 per waveguide, allowing 
us to have up to 20 wavelengths in the same waveguide with a channel spacing 
of 1 nm, which in turn allows us to tune all the MRs simultaneously to the 
BN layer parameters. We then explored NVDP, NWG, and NA, with the goal of 
optimizing power, area, and FPS. The result of this exploration analysis is shown 
in Fig. 9 in the form of a scatter plot. From this analysis, we identified two 
configurations for ROBIN, where one is optimized for FPS/Watt, with lowest area 
and power consumption (energy optimized ROBIN or ROBIN-EO), and another with 
the best FPS but with higher area and power consumption (performance optimized 
ROBIN or ROBIN-PO). In terms of (NA, NVDP, NWG), these configurations can 
be represented as (10, 50, 10) for ROBIN-EO and (50, 200, 10) for ROBIN-PO. 
These configurations were compared against other optical and electronic DNN/BNN 
accelerator platforms, to showcase their efficiency of operation. The results for these 
comparisons with other accelerators are presented in the following section. 

Fig. 9 Scatterplot of average FPS vs. average EPB vs. area of various ROBIN configurations. 
The configuration with highest FPS/Watt (energy optimized or EO) and the one with best FPS 
(performance optimized or PO) are specified
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6.4 Comparison with State-of-the-Art Optical and Electronic 
DNN/BNN Accelerators 

We compared ROBIN-EO and ROBIN-PO against various electronic and optical 
neural network acceleration platforms. For optical DNN accelerator platforms, we 
selected DEAP-CNN [39] and HolyLight [40]. The electronic accelerator platforms 
considered are GPU (Nvidia Tesla P100), SIGMA [75], Edge TPU [76], DaDianNao 
[77], and FPGA implementation of Null Hop [78]. We also compare ROBIN against 
the best-known previous photonic BNN accelerator, LightBulb [46]. 

When compared to LightBulb, ROBIN has the following differences: 

(i) ROBIN is designed to accelerate partially binarized neural networks, as 
opposed to fully binarized neural networks as in [46], for obtaining better 
accuracies. 

(ii) ROBIN utilizes photonic batch normalization folding for faster, energy-efficient 
batch normalization layer operation whereas [46] relies on an electronic 
implementation of the batch normalization operation. 

(iii) ROBIN has various circuit- and device-level optimizations in place to coun-
teract thermal and process variations, which also ensure high-throughput and 
energy-efficient operation, whereas [46] does not take into account thermal and 
process variations and the necessary tuning latency and energy consumption 
overheads needed to counter them. 

(iv) Architecture-level optimizations in ROBIN ensure lower power consumption 
in terms of tuning and laser power; these considerations are not part of 
the architecture proposed in [46]. We also compare against electronic BNN 
accelerators FBNA [79] and FINN [80]. We used the GOPS and power 
consumption parameters from [8, 81] to simulate inference on the electronic 
platforms. 

Figure 10 shows the power comparison across the accelerators from prior work 
and the two ROBIN variants. It can be observed that ROBIN-PO has substantially 
higher power consumption than ROBIN-EO, as  ROBIN-PO is focused on FPS 
performance rather than energy conservation. ROBIN-PO has a much larger vector 
granularity per VDP unit along with substantially higher VDP unit count to 
maximize parallelism, when compared to ROBIN-EO. The larger unit count and 
the waveguide count in ROBIN-PO drive its power requirements higher. On the 
other hand, it can be observed that the energy- and area-efficient ROBIN-EO 
has comparable power consumption to that of edge and mobile electronic neural 
network accelerators. 

In Fig. 11, we compare the energy-per-bit values (EPB) across the various BNN 
accelerators considered in this work. We can observe that both the ROBIN variants 
perform significantly better than the optical accelerators in comparison. This lower 
EPB is owing to the meticulous device, circuit, and architecture level optimizations 
we have considered in our architecture, which takes into account various losses 
and delays at the architecture level and counteracts them. The heterogeneous MRs
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Fig. 10 Power consumption comparison among variants of ROBIN versus other optical acceler-
ators (DEAP-CNN, Holylight, LightBulb) and electronic accelerator platforms (P100, SIGMA, 
EdgeTPU, DaDianNao, Null Hop, FINN, and FBNA) 

Fig. 11 EPB comparison between electrical BNN accelerators, optical accelerators, and the 
ROBIN variants 

used in ROBIN provide energy and area benefits, and the utilization of TED 
for collectively tuning MRs provides further energy benefits on top of the 20% 
reduction we obtained from the analysis in Sect. 6.3. TED also allows for closer 
placement of MRs, which in turn helps reduce propagation delays. This reduction 
is also impacted by the faster inputs to DAC arrays enabled by local buffering and 
ping-pong buffers in the VDP units.
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Fig. 12 Average FPS/Watt among different accelerator platforms, visualized 

Fig. 13 FPS comparison between the ROBIN variants and the electronic BNN accelerators 

Finally, in Fig. 12 we present the average FPS/Watt comparison between the 
various accelerator platforms. Both the ROBIN variants perform well against the 
accelerator platforms to which they were compared against. ROBIN-EO outperforms 
all other platforms other than FBNA and FINN. This is owing to the extremely low 
power consumption reported by these BNN accelerators. However, the ROBIN vari-
ants display superior FPS performance with respect to these electronic accelerators, 
as can be seen in Fig. 13. 

In summary, this work showcases the effectiveness of cross-layer design of 
BNN accelerators with the emerging silicon photonics technology for energy-/area-
efficient implementations and for performance-oriented designs. Overall, we can see
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Table 3 Inference time on ROBIN-PO and Intel i7 desktop for the four models considered in 
evaluations 

Inference time (for one image) 
Model no. Parameters Datasets ROBIN-PO (μs) i7-4790 (ms) 

1 60,642 Sign MNIST 0.0218 0.16 
2 1,546,570 CIFAR10 0.28 1.75 
3 13,570,186 STL10 2.3 2.5 
4 552,362 SVHN 0.11 1.25 

that our energy-efficient design (ROBIN-EO) exhibits EPB values ~4× lower than 
electronic BNN accelerators and ~933× lower than the photonic BNN accelerator, 
while the performance-oriented design (ROBIN-PO) shows ~3× and ~25× better 
FPS than the electronic and photonic BNN accelerators, respectively. With the 
growing maturity of silicon photonic device fabrication in CMOS-compatible 
processes, it is expected that the energy costs of device tuning, losses, and laser 
power overheads will go further down, making an even stronger case for considering 
optical-domain accelerators for deep learning inference. 

6.5 Comparison to CPU-Based Inference 

To highlight the advantage of dedicated inference acceleration, we have compared 
the performance of our ROBIN architecture against a standard desktop CPU 
performing inference on these models. The CPU we have considered is an Intel i7-
4790, and we have used Tensorflow to analyze the latency for inference. The CPU, 
i7-4790, is reported to have an average power consumption of approximately 103 W. 
This power consumption is comparable to the ~90 W we report for the ROBIN-PO 
variant. The summary of observations for inference time is shown in Table 3. The  
ROBIN accelerator is observed to provide several orders of magnitude reduction in 
inference time for all the four models and datasets, compared to the Intel i7 system. 

7 Conclusion 

In this chapter we proposed ROBIN, an optical-domain BNN accelerator which 
utilizes device-level, circuit-level, and architecture-level optimizations to save on 
energy and area while improving overall throughput. Through our optimization 
efforts, we identified two variants of ROBIN: ROBIN-EO, which is optimized for 
energy and area efficiency, and ROBIN-PO, which exhibits higher FPS performance, 
at the expense of greater power consumption. Our simulation analysis showed 
that ROBIN exhibits significantly better EPB performance than the various state-
of-the-art optical neural network accelerators. Owing to significantly lower power
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consumption reported by the electronic BNN accelerators considered, ROBIN vari-
ants are not able to obtain better FPS/Watt than them, but upon closer examination, 
both ROBIN variants can be seen to have better throughput than the electronic BNN 
accelerators. These results highlight the promise of our proposed ROBIN accelerator 
for accelerating BNN model execution for resource-constrained platforms. 

The work described in this chapter is focused on BNN acceleration using 
photonic systems. In this work, we considered how photonic systems can be 
used to accelerate the partially binarized networks, with weights remaining binary, 
while activations being multi-bit parameters. To improve on this work, one may 
consider employing mixed quantization in the models considered, where different 
layers have different levels of quantization for their activation parameters. This 
can enable better accuracy for the considered models. The photonic system-
and device-level optimizations discussed in this chapter are not limited to BNN 
inference accelerators. These techniques may also be considered for other non-BNN 
accelerators for DNN/CNNs as well. 
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Low-Latency, Energy-Efficient In-DRAM 
CNN Acceleration with Bit-Parallel 
Unary Computing 

Ishan G. Thakkar, Supreeth M. Shivanandamurthy, and Sayed Ahmad Salehi 

1 Introduction 

Convolutional neural networks (CNNs) have achieved remarkable progress in recent 
years, and they are being aggressively utilized in real-world applications related to 
artificial intelligence (AI) and machine learning [1, 2]. In general, CNNs mimic 
biological neural networks and utilize compute-heavy arithmetic functions such 
as multiply-accumulate (MAC), nonlinear activation, and pooling. Although these 
CNN functions are amenable to acceleration because of a high degree of compute 
parallelism, their acceleration using traditional ASIC platforms (e.g., Dadiannao 
[1], EIE [3]) is challenging because of the need to avoid the memory wall while 
accessing their large number of operands [4]. To address this problem, several prior 
works have explored processing-in-memory (PIM) designs based on the emerging 
non-volatile memory (NVM) crossbar technologies (e.g., ISAAC [2], PRIME [5], 
XNOR-RRAM [6]) as well as the traditional DRAM technology (e.g., DRISA 
[7], SCOPE [8], DRACC [9], LACC [10]). Such PIM designs strive to avoid data 
movement to consequently achieve a balance between computational efficiency and 
memory performance while processing CNNs in situ. 

However, it is challenging to support MAC operations in PIM designs. The 
NVM crossbar-based PIM designs, such as ISAAC [2] and PRIME [5], leverage the 
Kirchhoff’s law to perform MAC operations in the analog domain. However, such 
analog-computing-based accelerators require power-hungry and sluggish digital-
to-analog converters and analog-to-digital converters (DACs and ADCs), which 
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diminishes the performance and energy-efficiency benefits of such accelerators. 
Alternatively, the DRAM-based PIM designs implement in situ MAC operations 
digitally, for which they break a single MAC operation into multiple functionally 
complete memory operation cycles (MOCs) that are serially run on a single subarray 
(the smallest logical cell array in a DRAM module). Multiple such subarrays 
typically work in parallel to achieve high processing throughput. Such designs 
require a very larger number of MOCs per MAC operation. For instance, DRISA 
[7] requires up to 222 MOCs per MAC. To reduce the required number of MOCs, 
SCOPE [8], DRACC [9], and LACC [10] employ light-weight optimizations 
that simplify the implementation of MAC operations. SCOPE adopts rate-coded 
unary (stochastic) computing to implement approximate multiplication, requiring a 
reduced number of up to 25 MOCs per MAC [8]. On the other hand, DRACC [9] 
eliminates most multiply operations by employing quantized CNNs that use ternary 
weights, whereas LACC [10] employs lookup table-based multiply operations. 
Because of these optimizations, DRACC and LACC require a reduced number of 
MOCs per MAC of up to 13 and 11, respectively. This can still incur very high 
latency and energy consumption as one MOC can incur up to 49 ns latency and up 
to 4nJ energy consumption [7, 9, 11], depending on the utilized DRAM technology 
node and subarray size (bitline length). The high latency and energy values per MAC 
operation have prevented the DRAM-based PIM designs from being immediately 
adopted for CNN inference. 

In this chapter, we present a novel CNN accelerator called ATRIA. ATRIA 
employs bit-parallel rate-coded unary (stochastic) computing, which enables it to 
perform 16 MAC operations in only 2 consecutive MOCs. ATRIA is most related 
to SCOPE [8]. It significantly improves upon SCOPE in two ways. First, SCOPE 
uses rate-coded unary (stochastic) computing to perform only multiply opera-
tions, whereas it uses the conventional binary arithmetic to perform accumulate 
operations. In contrast, ATRIA performs both multiply and accumulate operations 
using bit-parallel rate-coded unary (stochastic) computing. Second, both SCOPE 
and ATRIA require expensive binary-to-stochastic (B-to-S) and stochastic-to-binary 
(S-to-B) conversions of operands, but ATRIA is better able to hide the latency 
of these conversions by successfully removing them from the critical processing 
path. Moreover, ATRIA restricts the precision errors induced due to the rate-
coded unary (stochastic)-computing-based accumulate operations by employing 
stochastic operands that are 2. × larger in size. As a result, ATRIA exhibits only 
3.5% drop in CNN inference accuracy on average compared to SCOPE. Despite 
this slight drawback, ATRIA substantially outperforms SCOPE as well as other in-
DRAM accelerators such as DRISA and LACC in terms of the latency, throughput 
[frames per second (FPS)], and efficiency (FPS/W/mm. 

2) of processing state-of-the-
art CNNs.
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2 Concept of Bit-Parallel Rate-Coded Unary (Stochastic) 
Computing 

The use of rate-coded unary (stochastic) computing simplifies the implementation of 
complex arithmetic functions, such as multiplication and accumulation, by reducing 
them to simple bit-wise logical operations [12]. To perform a multiplication of 2 N-
bit stochastic operands (A and B in Fig. 1a) in the bit-serial manner, the bit streams 
of the operands are applied to an AND gate serially, and the bit-wise output of the 
AND gate is collected for total N clock cycles to generate the multiplication output 
bit stream (C in Fig. 1a). Similarly, to perform a scaled accumulation of 4 (or more) 
N-bit stochastic operands in the bit-serial manner (A, B, C, D in Fig. 1b), the bit 
streams of the operands are applied to a MUX, whose bit-wise output is selected by 
a 2-bit (or larger) random number (RND in Fig. 1b) every clock cycle for total N 
clock cycles, to generate the output bit stream that represents a scaled accumulation 
(E in Fig. 1b). To reduce the area and static power consumption of computing, such 
bit-serial implementation of rate-coded unary (stochastic) computing compromises 
the latency of computing. 

In contrast, we observe that the latency of computing can be improved by N. ×
if the rate-coded unary (stochastic) computing can be implemented in the bit-
parallel manner. For example, if N copies of AND gates and MUX circuits are 
available (Figs. 2a and b), the N-bit outputs for the stochastic multiplication and 
scaled accumulation can be obtained in one clock cycle in the bit-parallel manner. 
In a nutshell, the idea for such bit-parallel implementation of rate-coded unary 
(stochastic) computing is to transform the input bit streams into bit vectors by 
striping them across the N copies of the AND gates and MUX circuits and then 
perform bit-wise AND and MUX operations to generate output bit vectors. For 
instance, the individual N bits . a1 to . aN , . b1 to . bN , . c1 to . cN , and . d1 and . dN of 
operands A, B, C, and D from Fig. 1b are striped across N copies of MUXs in 
Fig. 2b. As a result, the individual N bits of the scaled accumulation output E can 
be collected in a bit-parallel manner from N MUXs. For such bit-parallel scaled 
accumulation (i.e., MUX operation), total N RND signals (.RND1 to .RNDN ) are  
needed, which can be generated a priori and made available in a parallel manner 

Fig. 1 Bit-serial rate-coded unary (stochastic) computing circuits for (a) multiplication (AND 
gate), (b) scaled accumulation (MUX)
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Fig. 2 Bit-parallel rate-coded unary (stochastic) computing circuits for (a) multiplication (an 
array of AND gates), (b) scaled accumulation (an array of MUXs). Here, the individual N bits 
of operands A, B, C, and D from Fig.1 are striped across N copies of AND gates and MUXs 

(Fig. 2b). Although Fig. 2b illustrates bit-parallel scaled accumulation for only four 
input stochastic operands (A, B, C, and D), this concept can be extended for more 
or less than 4 input stochastic operands as well. 

Such bit-parallel rate-coded unary (stochastic) computing naturally fits well for 
in-DRAM processing of applications because the inherent parallelism of DRAM 
makes it fundamentally easy to provision data in the bit-parallel manner. Our 
proposed in-DRAM accelerator ATRIA employs such bit-parallel rate-coded unary 
(stochastic) computing to implement in-DRAM MAC operations for the first time 
and exploits the benefits of such implementation to substantially improve the latency 
and throughput of in-DRAM CNN processing, compared to the in-DRAM CNN 
processing accelerators from prior work. 

3 ATRIA: Overview 

Our ATRIA accelerator architecture employs an 8Gb DRAM module with 8 chips. 
Figure 3 illustrates the schematic of one such chip. Each chip has 8 banks, with 
64 subarrays per bank, and 32 mats per subarray of 256. ×256 bits size each. Each 
row in a subarray is of 8Kb size; therefore, each subarray contains total 8Kb sense 
amplifiers (S/As) and write drivers (W/Ds). Each subarray acts as a processing 
element (PE), which is defined as the smallest independent cell-array structure that
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Fig. 3 The hierarchical structure of our ATRIA accelerator chip 

can perform computing. Therefore, there are a total of 4096 PEs in ATRIA. Like the 
other in-DRAM accelerators from prior work (e.g., DRISA [7], SCOPE [8], LACC 
[10]), the PEs in ATRIA can also operate in parallel to process CNN inference 
in situ. To process CNN inference, each PE (i.e., subarray) in ATRIA employs 
a feature processing unit (FPU), as shown in Fig. 3. In addition, to orchestrate 
these in-parallel processing operations inside the PEs, ATRIA employs hierarchical 
controllers (chip, bank, and subarray controllers (CTLRs) in Fig. 3). The operation 
of these hierarchical CTLRs is described in Sect. 3.3. The structure and operation of 
each FPU in ATRIA support our concept of bit-parallel rate-coded unary (stochastic) 
computing for in situ processing of CNNs, as discussed next. 

3.1 Structure of a PE in ATRIA 

A PE of our ATRIA accelerator is basically a DRAM subarray that is integrated 
with an FPU and a subarray CTLR, as illustrated in Fig. 4. The subarray part of the 
PE is structured in the manner the conventional DRAM subarrays are organized 
[13, 14]. Therefore, in this section, we only provide details of the structure of 
the FPU. The role of the subarray CTLR is discussed in Sect. 3.3. The FPU 
consists of various hardware components that support the implementation of the 
following six functions: (i) bit-parallel stochastic multiply operation (MUL), (ii) bit-
parallel stochastic accumulate operation (ACC), (iii) binary-to-stochastic (B-to-S) 
conversion, (iv) stochastic-to-binary (S-to-B) conversion through pop counter (PC), 
(v) nonlinear activation function ReLU, and (vi) max-pooling function. To support 
bit-parallel MUL, three 8Kb rows of the subarray (Row 1, Row 2, and Row 3 in 
Fig. 4a) are reserved and operated following the triple row activation and charge-
sharing protocol of AAP memory operation cycle (MOC) from Ambit [11] (see  
Sect. 3.2). 

The hardware components that support bit-parallel ACC consist of an array 
of 512 copies of 16:1 MUXs and their associated 512 copies of 4-bit registers 
(Fig. 4a). These 4-bit registers store the pre-determined random values that enable 
the output selection (16:1) for their respective MUXs. Each MUX has 16 inputs;
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Fig. 4 Schematic of a processing element (PE) of ATRIA. (a) Schematic of a subarray and feature 
processing unit (FPU); (b) pop counter for S-to-B conversion [2]; (c) LUT for B-to-S conversion; 
(d) a 16:1 MUX and its connections with S/As as part of the FPU 

therefore, the total number of inputs for the entire array of 512 MUXs is 8Kb. 
These 8Kb MUX inputs are connected to 8Kb S/As, with 16 adjacent S/As feeding 
one MUX and vice versa (Fig. 4d). Note that the S/As in the commodity DRAMs 
typically connect to I/O logic through signal S and related control transistors (. M1
to .M16) (Fig. 4d). To facilitate connections of S/As to MUXs, ATRIA employs one 
additional inverter (INV) and 16 transistor switches (T1 to T16) per MUX, which 
can be controlled by the same signal S (Fig. 4d). An 8Kb row from the subarray can 
be read into 8Kb S/As (Fig. 4a), which can hold in total 16 stochastic bit vectors 
of 512-bit size each (16 . × 512 = 8Kb). These 16 stochastic bit vectors can be 
striped across 512 MUXs, so that each individual bit of a bit vector is fed into a 
different MUX with each MUX having all its 16 inputs from 16 different bit vectors. 
This arrangement sets up the array of MUXs to perform a 16-operand scaled ACC 
in the bit-parallel manner, following our concept of bit-parallel rate-coded unary 
(stochastic) computing discussed in Sect. 2. The detailed functioning of this array 
of MUXs for performing scaled ACC is presented in Sect. 3.2.
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In addition, to implement in-memory B-to-S conversion, each FPU in ATRIA 
employs a lookup table (Fig. 4c). Our idea of using lookup table-based B-to-S 
conversion is inspired from the design of SCOPE accelerator [8]. This enables 
ATRIA to employ the deterministic method for B-to-S conversion to eliminate 
correlation errors [8]. Moreover, each FPU in ATRIA employs an additional lookup 
table to perform ReLU (Fig. 4a). Further, it also incorporates a pop counter to 
perform in-memory S-to-B conversion (Fig. 4b), as well as logic to implement 
max-pooling function (Fig. 4a). ATRIA implements the max-pooling and ReLU 
functions in the binary domain. This mandates that the results of processing of 
every CNN layer’s parameters always go through S-to-B, ReLU, and then B-to-S 
conversions before they can activate processing of the next CNN layer. This in turn 
eliminates the undesirable propagation of precision errors (which are very common 
in rate-coded unary (stochastic) computing [12]) between the stochastic operations 
of two consecutive CNN layers (see more on errors in Sect. 4.2. The overheads 
of incorporating FPUs in ATRIA PEs are discussed in Sect. 3.4. The next section 
describes the functioning of an FPU-enabled PE of our ATRIA accelerator. 

3.2 Functioning of a PE in ATRIA 

Each PE of our ATRIA accelerator can perform all essential functions required for 
processing CNNs, such as MAC, max pooling, and ReLU. In addition, since ATRIA 
employs rate-coded unary (stochastic) computing, each PE can also perform impor-
tant functions for implementing rate-coded unary (stochastic) computing, such as 
B-to-S and S-to-B (pop count) conversions. On one hand, each PE performs B-to-
S, S-to-B (pop count), ReLU, and max-pooling functions by relaying the related 
operands along the data processing path in the FPU through the corresponding 
hardware components (Fig. 4a). To orchestrate the relaying of the operands to 
perform these functions, the PE makes use of the subarray CTLR whose functioning 
along with the functioning of other hierarchical CTLRs in ATRIA is discussed in 
Sect. 3.3. On the other hand, each PE of ATRIA can perform a MAC function 
(.FMAC) of 16 stochastic operands of 512-bit size each, by employing a series of 
total five memory operation cycles (MOCs) (similar to the AAP/AP MOC from 
[7, 11]). These MOCs engage the reserved rows Row 1, Row 2, and Row 3 (Fig. 4a) 
and the MUXs in the FPU, as discussed next. 

Figure 5 illustrates how ATRIA performs .FMAC . ATRIA performs .FMAC in two 
main steps. 

Step 1 engages the reserved subarray rows Row 1, Row 2, and Row 3 to perform 
MUL. Step 2 engages the array of MUXs to perform ACC. Before performing 
.FMAC , ATRIA first makes the involved stochastic operands available in the reserved 
subarray rows Row 1 and Row 2. For that, it performs two MOCs similar to 
RowClone [15] to copy the contents of two source rows into Row 1 and Row 2, 
respectively. Consequently, Row 1 contains 16 512-bit operands . N1 to .N16 (Fig. 5a). 
Similarly, Row 2 contains 16 512-bit operands .M1 to .M16 (Fig. 5a). In addition,
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Fig. 5 A schematic showing the operation of a PE of ATRIA to perform a 16-operand multiply-
accumulate (MAC) function (.FMAC ) 

ATRIA initializes Row 3 with “0’s” at system boot. After these initial steps, ATRIA 
schedules Step 1 of .FMAC , which employs the triple row activation and charge-
sharing-based MOC from Ambit [11] to perform bit-parallel logical AND (i.e., 
stochastic MUL) of the involved operands . N1 to .N16 and . M1 to .M16. At the end 
of the MOC for Step 1, Row 3 contains the results of bit-parallel logical AND, i.e., 
. N1 AND . M1 to .N16 AND .M16 (Fig. 5a and b). These results essentially represent the 
outcome of bit-parallel stochastic MUL, i.e., .N1M1 to .N16M16. After this, ATRIA
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schedules Step 2 of .FMAC , where it performs a MOC to read the stochastic MUL 
results from Row 3 into S/As. These results from S/As are then pushed through 
the array of 16:1 MUXs, MUX1 to MUX512. The 512-bit output of this array of 
MUXs is selected using the pre-latched random control signals RND1 to RND512. 
This 512-bit output is the stochastic scaled ACC of the input operands .N1M1 to 
.N16M16. In other words, this 512-bit output presents .FMAC = (.N1M1 + .N2M2 + . . . .

+ .N16M16)/16 (Fig. 5a and b). ATRIA then uses one more MOC to store the result 
of this .FMAC into a row in the subarray through W/Ds. Thus, ATRIA uses only 5 
MOCs (2 MOCs for initializing Row 1 and Row 2, 1 MOC for MUL, 1 MOC for 
ACC, and 1 MOC for write back) to perform a scaled MAC function .FMAC (also 
called dot product) of 16 stochastic operands. In other words, if a MAC operation 
is conventionally defined as a MUL of two operands followed by an accumulate 
operation (i.e., A = A + .NiMi), then ATRIA uses only 5 MOCs to perform 16 MAC 
operations in parallel. However, we find from our evaluation results in Sect. 4.4 
that the use of bit-parallel rate-coded unary (stochastic) computing in ATRIA can 
increase precision errors. Nevertheless, we also find that the increased precision 
errors are worth tolerating for due to the substantial performance benefits of ATRIA. 

3.3 System Integration and Controller Design 

In this section, we describe how our ATRIA accelerator integrates with the host 
system and how the hierarchical controllers of ATRIA orchestrate the processing 
of CNNs. ATRIA integrates with the host system in the same way the conventional 
GPU- or FPGA-based accelerators do through PCIe bus. For a CNN processing 
using ATRIA, the host system stores the weighting parameters and inputs of the 
CNN in the individual PEs (subarrays) of ATRIA via direct memory access (DMA). 
We adopt the strategy from SCOPE [8], wherein the weighting parameters are 
stored in ATRIA in the stochastic format. This strategy ensures that in situ B-to-S 
conversions are required only for activation parameters, which dramatically reduces 
the number of in situ B-to-S conversions. As a result, the latency and energy of 
processing CNNs with ATRIA are dramatically reduced as well. 

After storing the inputs and weighting parameters of a CNN in PEs of ATRIA, 
the host-side ATRIA CTLR (not shown in Fig. 3) orchestrates the processing of the 
CNN in conjunction with the hierarchical ATRIA CTLRs shown in Fig. 3. The host-
side ATRIA controller generates a series of . μ operations, which are received by the 
hierarchical ATRIA CTLRs. We adopt the designs from [7] for these CTLRs. These 
CTLRs support simultaneous multi-subarray/bank activation for better parallelism. 
The first chip-level CTLR is essentially a decoder, and it also helps with inter-
bank data movement. The bank-level CTLRs decode the . μ operations, convert them 
into addresses, vector lengths, and control codes, and then send them to subarray 
CTLRs in the active subarrays. The subarray CTLR consists of address latches,
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local decoders, and counters. The address latches are essential for multi-subarray 
activation [7]. The counters are used for continuously updating addresses to local 
subarray decoders. In addition, the subarray CTLR also contains buffers to support 
communication of operands. 

Inter-bank and inter-subarray data communications in ATRIA are supported 
through the interconnects design adopted from LISA [16]. Data communications 
are carried out in binary format instead of stochastic format, which results in better 
energy efficiency [8]. Also, the inclusion of buffers in the subarray CTLRs enables 
pipelined data communications, which enables better use of resources and efficient 
hiding of long latencies, reducing the memory bottleneck to improve the throughput 
of CNN processing with ATRIA. 

3.4 Overhead Analysis 

Table 1 lists the latency, energy, and area overheads of various hardware components 
that are part of the FPUs inside the PEs of our ATRIA accelerator. These results 
are based on our logic synthesis analysis for 22nm node. We considered standard 
SRAM for LUT implementation. After accounting for the extra area overhead 
of these components from Table 1, the total area for 8Gb ATRIA accelerator 
becomes 77mm. 

2. For comparison, DRISA-1T1C-NOR [7], DRISA-3T1C [8], 
SCOPE-Vanilla [8], SCOPE-H2D [8], and LACC [10] consume 55mm. 

2, 64.6mm. 
2, 

259.4mm. 
2, 273.4mm. 

2, and 61mm. 
2 area, respectively. Thus, ATRIA consumes 

larger area than DRISA-1T1C-NOR, DRISA-3T1C, and LACC. Nevertheless, 
ATRIA still achieves substantially better area and energy efficiency compared to 
these accelerators (Sect. 4.4). Similarly, despite the S-to-B pop counter in ATRIA 
incurring a long latency of 256ns (Table 1), the performance of ATRIA does not get 
much affected, as ATRIA manages to keep this latency out of the critical processing 
path (Sect. 4.3). 

Table 1 Latency, energy, and area overhead values of various hardware components of the FPUs 
in the PEs of ATRIA 

Component Total area (mm. 2) Latency (ns) Energy per PE (pJ) 

16:1 MUXs for ACC 1.3. ×10.−3 2 10 

4-bit registers for RND storage 1.1. ×10.−5 2 15.6 

B-to-S LUT (512. ×256) 3.4 1 0.3 

S-to-B pop counter (PC) (2GHz) 2.1. ×10.−5 256 153.6 

ReLU LUT 1.2 1 0.3 

Max-pooling logic 4.1 5 940
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4 Evaluation 

4.1 Modeling and Setup for Evaluation 

We evaluate ATRIA and compare it with other in-DRAM accelerators from 
prior work such as SCOPE-Vanilla [8], SCOPE-H2D [8], DRISA-1T1C-NOR [7], 
DRISA-3T1C [7], and LACC [10]. We first evaluate the per-MAC latency, per-
MAC energy, and total area values for our considered accelerators. We divide the 
evaluation of per-MAC latency/energy into two parts: latency/energy of a multiply 
operation (MUL) and latency/energy of an accumulate operation (ACC). All our 
considered accelerators follow the AAP/AP memory operation cycle (MOC) from 
Ambit [11]. Therefore, the latency and energy values per MOC and the total number 
of MOCs per MAC are evaluated first for all considered accelerators. Different 
accelerators have different latency and energy per MOC because they employ 
different lengths of local bitlines in their subarrays. For example, DRISA [7] and 
SCOPE [8] employ shorter local bitlines with only 64 cells per bitline. In contrast, 
LACC employs 512 cells per bitline, whereas ATRIA employs 256 cells per bitline. 
Shorter bitlines typically yield lower latency per MOC [13]. We evaluate latency 
using SPICE-based [17] modeling of local bitlines. To evaluate per-MOC energy as 
well as total accelerator area, we used CACTI [18]. We developed a custom simula-
tor in Python to model the MOC-accurate transaction-level performance behavior 
of our considered accelerators, as well as to evaluate system-level performance 
metrics such as frames per second (FPS), latency, efficiency (FPS/W/mm. 

2), and 
memory bottleneck ratio. Memory bottleneck ratio is defined as the ratio of total 
stall time (time for which an accelerator needs to wait for the operands) over total 
inference processing time. We considered four state-of-the-art CNNs to evaluate 
these metrics. The quantized versions of these CNN models were trained using 
PyTorch for ImageNet dataset and 8-bit fixed precision of activation and weight 
parameters. These activation and weight parameters were extracted and provided as 
the input to our Python-based performance simulator, which also took our evaluated 
energy, latency, and area values for our considered accelerators as the input. Next, 
we present and discuss the results of our simulation-based study. 

4.2 Precision Error and Accuracy Results 

ATRIA has one caveat compared to SCOPE. The use of MUX-based bit-parallel 
stochastic accumulation in ATRIA can increase the absolute precision error (APE) 
of computing, as explained in [12]. An APE for an operation (i.e., MUL or ACC) 
is defined as the absolute difference between the expected result and the observed 
result of the operation. From [12] and [19], APE depends on the operand values, 
input size (i.e., the number of operands), and operand size (i.e., bit-stream length). 
For a MUX-based stochastic ACC with an input size of 16 (as is the case for



404 I. G. Thakkar et al.

Table 2 Average APE (. μAPE), standard deviation in APE (. σAPE) and CNN testing accuracy (A) 
for SCOPE-Vanilla, SCOPE-H2D, and ATRIA for various CNNs 

SCOPE-Vanilla SCOPE-H2D ATRIA 

CNN Benchmarks . μAPE . σAPE A(%) . μAPE . σAPE A (%)  . μAPE . σAPE A(%) 

AlexNet 0.23 0.04 93.6 0.09 0.01 96.7 0.33 0.05 92.2 

GoogleNet 0.30 0.05 87.7 0.17 0.03 88.5 0.41 0.07 87.7 

VGG16 0.35 0.05 91.9 0.21 0.03 95.1 0.53 0.09 90.2 

ResNET-50 0.26 0.04 90.1 0.12 0.02 93.6 0.47 0.08 89.8 

ATRIA), the average APE (. μAPE) can be reduced to an acceptable value in the 
range between 0.2 and 0.54, if the operand size is kept 512 bits or longer [12, 19]. 
Therefore, we increase the operand size, i.e., bit-vector length, of the bit-parallel 
stochastic operands in ATRIA to 512 bits from their full-precision length of 256 
bits (corresponds to 8-bit binary operands). The resultant . μAPE values and the 
corresponding standard deviation in APE (. σAPE) for four benchmark CNNs are 
listed in Table 2. The  . μAPE and . σAPE values in Table 2 were obtained for the 
complete set of individual APEs for all MAC results required in the respective CNNs 
when the inferences of these CNNs are implemented on ATRIA, SCOPE-Vanilla, 
and SCOPE-H2D for the ImageNet dataset. Table 2 also lists the inference accuracy 
results. As evident, ATRIA exhibits 2.9. × and 1.5. ×more . μAPE, and 3.2. × and 1.6. ×
more . σAPE than SCOPE-H2D and SCOPE-Vanilla, respectively, on average across 
the CNNs. Nevertheless, compared to SCOPE-H2D and SCOPE-Vanilla, ATRIA 
exhibits only 3.5% and 0.85% drop in inference accuracy on average across the 
CNNs, which we reason is acceptable due to the significant performance benefits of 
ATRIA, as evident from Sects. 4.3 and 4.4. 

4.3 Per-MAC Latency Results 

Table 3 lists our evaluated latency values and the number of Pes (#PEs) for ATRIA 
and other in-DRAM CNN accelerators. The latency values include values for 
MUL and ACC in the number of MOCs (#MOCs), latency per MOC in ns, as 
well as the latency values for LUT-based B-to-S conversion and pop-count (PC) 
operations (required for S-to-B conversion). From Table 3, ATRIA holds three 
crucial advantages. First, it exhibits smaller per-MAC latency over SCOPE, DRISA, 
and LACC (Table 3). This is because ATRIA performs 16 MAC operations in 
parallel. For that, ATRIA uses in total 5 MOCs (total 85ns latency with each MOC 
incurring 17ns latency) (Sect. 3.2), 2 MOCs to copy the operand rows, 1 MOC to 
perform 16 in-parallel MULs, 1 MOC to perform 16 in-parallel ACCs, and 1 MOC 
to store the MAC result. In Table 3, for ATRIA, 2 MOCs for operand row copy are 
counted in total MUL MOCs, and 1 MOC for MAC result store is counted in total 
ACC MOCs. Thus, by performing 16 MAC operations in parallel, ATRIA achieves 
shorter per-MAC latency.
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Table 3 Comparison of various accelerators with ATRIA, in terms of the number of PEs (#PEs) 
and latency of MUL, ACC, MAC, binary to stochastic conversion (B-to-S), and pop-count (PC) 
operations 

Latency values 

Various

accelerators

MUL

#MOCs 

ACC

#MOCs 

MOC 

(ns)

MAC 

(ns)

B-to-S 

(ns)

PC 

(ns) #PEs 

DRISA-3T1C [1] 200 11 8 1768 – – 32,768 

DRISA-1T1C-NOR [1] 200 22 10 2110 – – 16,384 

LACC [3] 1 10 21 231 – – 16,384 

SCOPE-Vanilla [2] 3 4 8 56 1 176 65,536 

SCOPE-H2D [2] 21 4 8 200 1 176 65,536 

ATRIA 3/16 2/16 17 5.25 1 256 4098 

Second, ATRIA can better hide the latency for PC operations, compared to 
SCOPE. This is because SCOPE utilizes full adder-based PC operations that need 
to be performed inside PEs. Therefore, despite using the as-late-as-possible (ALAP) 
scheduling algorithm, PC operations in SCOPE inevitably stall the PEs. In contrast, 
ATRIA offloads PC operations to dedicated serial counters (operating at 2GHz) per 
PE (Sects. 3.2 and 3.3). As a result, ATRIA does not need to stall PEs for PC 
operations, enabling itself to better hide PC latency. Therefore, although ATRIA 
yields higher latency per PC operation than SCOPE (Table 3), ATRIA efficiently 
hides this higher latency, not letting it affect the performance. 

Third, ATRIA exhibits smaller bottleneck ratio compared to SCOPE and DRISA 
(see Fig. 6d in Sect. 4.4). Bottleneck ratio is defined in Section IV.A. ATRIA 
achieves lower bottleneck ratio because the use of a massively large number of 
PEs in SCOPE and DRISA results in unavoidable inter-PE communication latency, 
a substantial portion of which remains on the critical processing path because of 
the inherently limited parallelism available for such inter-PE communications. In 
contrast, ATRIA is better at hiding the inter-PE communication latency, due to its 
smaller number of PEs and its LISA [16] substrate-based implementation of intra-
bank, inter-bank, and inter-PE data communications (Sect. 3.2). 

4.4 CNN Inference Performance Results 

We evaluate the performance of ATRIA and compare it with the following inDRAM 
CNN accelerators from prior work: DRISA-3T1C [7], DRISA1T1CNOR [7], 
SCOPEVanilla [8], SCOPEH2D [8], and LACC [10]. We consider four CNNs: 
VGG16 [20], AlexNet [21], ResNET_50 [22], GoogleNET [23], with the Ima-
geNet dataset. Using the setup described in Sect. 4.1, we evaluated latency, FPS, 
FPS/W/mm. 

2, and bottleneck ratio, for batch sizes of 1 and 64. Figure 6a shows
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efficiency (FPS/W/mm. 
2) results. For batch size 1, ATRIA is 18. ×, 64. ×, 98. ×, and 

50. × more efficient than DRISA-1T1C-NOR, DRISA-3T1C, SCOPE-Vanilla, and 
SCOPE-H2D, respectively, on average across CNNs. However, ATRIA is 15% 
less efficient than LACC, due to the LACC’s lower area (Sect. 3.4). Nevertheless, 
for batch size 64, ATRIA is more efficient than LACC as well. ATRIA is 136. ×, 
522. ×, 3.4. ×, 71. ×, and 95. ×more efficient than DRISA-1T1C-NOR, DRISA-3T1C, 
LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average across CNNs. 
In general, ATRIA is more efficient due to the following two reasons: (i) better 
FPS due to lower per-MAC latency (Table 3) and (ii) a reasonable average power 
consumption of 23.4W. 

Figure 6b shows CNN processing latency results normalized w.r.t. ATRIA. For 
batch size 1, ATRIA achieves 7.4. ×, 18. ×, 3.3. ×, 6.5. ×, and 4.4. × lower latency 
than DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-
H2D, respectively, on average across CNNs. Similarly, for batch size 64, ATRIA 
achieves 44. ×, 107. ×, 10. ×, 1.2. ×, and 2.6. × lower latency than DRISA-1T1C-NOR, 
DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average 
across CNNs. ATRIA achieves lower CNN processing latency because of its lower 
per-MAC latency and its ability of efficiently hiding its higher S-to-B conversion 
latency. Moreover, DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla, 
SCOPE-H2D, and ATRIA achieve 60. ×, 59. ×, 30. ×, 2. ×, 6. ×, and 10. × higher latency 
for batch size 64 than batch size 1. This is because the higher parallelism of SCOPE 
variants (more #PEs in Table 3) allows them to process larger batch size without 
saturating the latency benefits, by distributing the batch processing across multiple 
PEs. 

Figure 6c shows FPS results. For batch size 1, ATRIA has on average 7.4. ×, 18. ×, 
3.3. ×, 6.5. ×, and 4.4. × higher FPS than DRISA-1T1C-NOR, DRISA-3T1C, LACC, 
SCOPE-Vanilla, and SCOPE-H2D, respectively. For batch size 64, ATRIA has on 
average 44. ×, 107. ×, 10. ×, 1.2. ×, and 2.6. × higher FPS than DRISA-1T1C-NOR, 
DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively. ATRIA has 
higher FPS due to the combined effects of lower per-MAC latency and lower 
memory bottleneck ratio (Sect. 4.3), as discussed next. 

Finally, Fig. 6d gives memory bottleneck ratio (MBR) results. MBR for all 
accelerators reduces for batch size 64 than batch size 1 because increasing batch size 
to 64 does not substantially increase the stall time for weighting parameter accesses, 
but doing so increases CNN processing time due to the required time sharing of 
resources across multiple batch inputs, resulting in lower MBR. For batch size 64, 
ATRIA has lower MBR than all other accelerators, except for LACC. LACC has 
only 1% MBR for batch size 64, which corroborates the results from [10]. This 
is because the kernel mapping algorithm used in LACC enables better resource 
utilization. SCOPE variants have the highest MBR for both batch sizes because 
in SCOPE the latency for S-to-B conversions comes in the critical path (Sect. 4.3). 
In contrast, ATRIA is able to better hide this latency to achieve lower MBR.
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Fig. 6 (a) Efficiency (FPS/W/mm. 2), (b) latency, (c) throughput (FPS), and (d) memory bottleneck 
ratio (MBR) results for various in-DRAM accelerators across CNNs. GM means geometric mean 

5 Conclusions 

In this chapter, we presented an energy-efficient and high-throughput CNN accel-
erator called ATRIA, which utilizes the novel concept of bit-parallel rate-coded 
unary (stochastic) computing to achieve ultra-low latency for multiply-accumulate 
(MAC) operations. We mapped four benchmark CNNs on ATRIA to compare
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its performance with five state-of-the-art in-DRAM accelerators from prior work. 
The results of our analysis show that ATRIA exhibits only 3.5% drop in CNN 
inference accuracy and still achieves improvements of up to 3.2. × in frames per 
second (FPS) and up to 10. × in efficiency (FPS/W/mm. 

2), compared to the best-
performing in-DRAM accelerator from prior work. These results corroborate the 
excellent capabilities of ATRIA for accelerating the inference tasks of deep CNNs. 
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