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Abstract. Credit Risk Assessment estimates the probability of loss due
to a borrower’s failure to repay a loan or credit. Therefore, one of the
principal challenges of financial institutions is to lower the losses gen-
erated by leading financial resources to possible default clients. Current
models for Credit Risk Assessment used by the industry are based on
Logistic regression (LR), thanks to their operational efficiency and inter-
pretability. However, Deep Learning (DL) Algorithms have become more
attractive than conventional Machine Learning due to their best general
accuracy. However, Models for Credit Risk Assessment based on DL have
a problem because their complexity makes them difficult for humans to
interpret. Additionally, international regulations for financial institutions
require that models be interpretable. In this work, we propose the use of
a model based on Convolutional Neural Networks (CNN) and SHapley
Additive exPlanations (SHAP) to generate a more accurate and explain-
able model than LR models. In order to demonstrate its efficacy, we
use four datasets commonly used to benchmark classification algorithms
for credit scoring. The results show that the method proposed is more
accurate than LR for large datasets (more than 5900 samples), with an
improvement in accuracy up to 12.3%.

Keywords: Credit risk assessment · DeepInsight · Explainability ·
CNN

1 Introduction

Even though Logistic Regression (LR) is one of the most common algorithms
used in the financial industry [4], different studies have demonstrated that it is
not the most accurate estimation for credit risk classification. A reference to this
is two benchmarking studies published by Baesen [2,3] that demonstrate that
for the category of individual classifier, Deep Learners are more accurate than
LR.

Despite better accuracy of Deep Learners, Financial Institutions use LR for
credit scoring due to their Operational efficiency (simplicity), and Interpretabil-
ity (transparency) in predictions [11]. These two points, and statistical accuracy
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form part of the five key characteristics of a successful credit risk mode defined
for Baesen [4], shown in Table 1. However, due to the complex nature of Deep
Learners, they are considered as Black Box Model(BBM), which refers to com-
plex models that are not straightforwardly interpretable by humans [25], making
them unviable for the use of financial institutions due to International regula-
tions [7]. However, the application of interpretability methods permits us to give
transparency to DL models.

In this work, we propose an explainable Deep Learning model based on a
2D Convolutional Neural Network (CNN) for credit risk classification. The use
of CNN for credit risk is not new. However, Our approach uses DeepInsight
[31], a methodology proposed by Alok Sharma et al., to transform tabular data
into a 2D representation as input for CNN. The classification accuracy of the
DeepInsight combined with CNN showed a better performance than Decision
Tree (DT), LR, and RF for large datasets (more than 5900 samples), as shown in
the results of our paper. Additionally, the use of SHapley Additive exPlanations
(SHAP) to explain the model’s prediction gives us an explainable and more
accurate model than the LR model for credit risk classification.

Table 1. Key characteristics of successful credit risk model [4]

Characteristic Description

Statistical accuracy Refers to the power of prediction of a model to generalize well
and avoid overfitting to the historical data.

Interpretability A model needs to be interpretable. In other words, the model
gives enough information to an expert to understand why the
model takes those decisions.

Operational efficiency This point refers to the time needed for the model to evaluate
whether a customer is a defaulter. Operational efficiency also
includes the following tasks:

- Collection and preprocessing of data
- Evaluation of the model
- monitor and back-test
- Reestimate

Economical cost Developing and implementing models have a cost for the
organizations. The total cost of all tasks and resources needed
is the economical cost of the model. The cost of tasks men-
tioned in the operational efficiency plus cost of resources like:

- Software cost
- Human and Computing resources

Regulatory compliance A model construction needs to comply with all applicable
regulations and legislation. Basel, for example, specifies
what information can or cannot be used. Other regulations
like privacy and/or discrimination should be respected
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The rest of the paper is organized as follows. In Sect. 2 we present the moti-
vation for this work, while Sect. 3 discusses the state of the art of Credit risk
assessment. In Sect. 4 we introduce the proposed method and in Sect. 5 we pro-
vide details about the implementation and experiments made in order to obtain
the best model, as well as the comparison with previous models. Finally, in
Sect. 6 we summarize our work and discuss some perspectives for future work.

2 Motivation

Why is credit risk so important? First, it is a matter of common knowledge
that any economy, no matter how advanced, cannot develop in the absence of
credit [5]. On other hand, a relaxed credit policy can become the core of a global
financial crisis like 2007–2009.

The credit cycle begins with credit being easily accessible to customers, and
they can borrow and spend more. In the same way, enterprises can borrow and
make more significant investments. More consumption and investment create
jobs and lead to income and profit growth. However, all economic expansion
induced by credit ends when critical economic sectors become incapable of paying
off their debts [17]. When the credit cycle is broken, there is a strong possibility
of crisis (Fig. 1).

Fig. 1. Credit cycle [15]

The production of accurate credit risk tools for financial institutions allows
them to make better decisions about granting credits. A reasonable administra-
tion of credit is an essential part of the growth of almost all economies. Economic
growth is the most powerful instrument for reducing poverty and improving the
quality of people’s life. Growth can generate virtuous circles of prosperity and
opportunity [12]. In conclusion, the research of credit risk topics profoundly
impacts the world and people’s lives.
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3 Related Work

Durand [13] gave the bases for statistical credit risk scoring about 80 years ago.
Nowadays, thanks to the evolution of statistical classification techniques, com-
putational power, and easy access to sizable and reliable data, financial institu-
tions use the statistical approach for credit risk management [4]. Many different
classification models have been developed to address the credit scoring prob-
lem during the past few decades. Logistic Regression [6] and Random Forest [4]
are the most widely-used model for credit scoring. However, more sophisticated
machine learning techniques like Support Vector Machine (SVM) and Artificial
Neural Networks (ANN) are also widely applied to credit scoring. Furthermore,
ensemble methods that combine the advantage of various single classifiers get
good scores like HCES-Bag with the best score in benchmark scoring published
by Lessmann and Baesens [3].

Different empirical studies have compared the performance of different classi-
fication models for credit scoring. For example, West [33] compares ANN against
traditional machine learning techniques. The result showed that ANN has better
performance than LR. On the other hand, Cuicui et al. designed a Deep Belief
Network (DBN) for credit classification and compared it against SVM, LR, and
Multilayer Perceptron on the credit default swaps dataset [23]. The result showed
that DBN yields the best performance.

Convolutional Neural Network (CNN) is a representative technique in DL; it
first appeared in the work of Yann Lecun et al., designed to handle the variability
of data in 2D shape [19]. The impressive achievements of CNN in different areas,
including but not limited to Natural Language Processing (NLP) and Computer
Vision, attract the attention of industry and academia [21]. Moreover, in the last
few years, attracted by the classification ability of CNN, some studies have begun
to apply CNN to managing credit risk. Bing Zhu, Wenchuan Yang, and Huaxuan
Wang propose a model named “Relief-CCN” [37] that combines CNN and Relief
algorithm. The results demonstrate a better performance against LR and RF
with the dataset from a Chinese consumer finance company. On the other hand,
Xolani Dastale and Turga Gelik [10] propose another CNN model for credit
scoring getting better performance than traditional Machine learning methods.
However, the last two models change the tabular data into a 2D representation
for the CNN input discretizing the data and generating a representation with
only ones or zeros in the values with possible data loss.

4 Proposed Approach

Credit risk classification is a data mining problem, thinking about this, we
propose a process based on CRoss-Industry Standard Process for Data Min-
ing (CRISP-DM) which is a process model for data mining [9]. Our proposal
is a modification in the last step, called implementation on CRISP-DM, and
changed by Interpretability where the generation of local and global explana-
tions are generated, as shown in Fig. 2.
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Fig. 2. Proposed model phases based on CRISP-DM

However, all the steps of CRISP-DM are essential, we will focus on the steps
of Data preparation (especially on the task of Format data), Modeling, and an
extra step called Interpretability defined for us after the evaluation step where
we make the explanations of the generated mode.

4.1 Data Preparation

Format data [9] is part of the data preparation phase, which refers to all activities
needed to transform the initial raw data into the data used as input for Machine
Learning algorithms. The data used for financial institutions are generally in
tabular [4] form (data displayed in columns or tables). However, The proposed
2D CCN requires image data representation.

DeepInsight [31] transforms the tabular data with a sequence of steps. First, it
generates a feature vector transposing the dataset. Second, it maps each feature
into a 2D space using t-SNE. Third, for efficiency, DeepInsight finds the small
rectangle area that covers all points to be horizontal framed. Fourth, based on
the dimensions of the final image defined for the user DeepInsight make a process
of framing and mapping each feature. Finally, each instance is represented using
the general feature image generated in the last step modifying the values of each

Fig. 3. Illustration of the DeepInsight [31] methodology to transform a feature vector
to image pixels.
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feature for the normalized value of the instance features values, which can be
seen as a greyscale image; the Fig. 3 shows the transformation process.

4.2 Modeling

Convolutional Neural Network is one of the most used deep learning architectures
for image processing [36]. The basic structure of CNN is shown in Fig. 4. There
are two particular types of layers in CNN called the convolutional layer and the
pooling layer. The convolutional layer is the basic building block of CNN [26].
It contains a set of learnable filters that slide over the image to extract features.
The pooling layer reduces the spatial size representation and the number of
parameters giving more efficiency and control overfitting.

Convolutional neural networks differ from traditional neural networks by
replacing general matrix multiplication with convolutional, reducing the weights
in the network, and allowing the import of an image directly. Additionally, The
convolution layer has several main features, two of which are local perception
and parameter sharing. Local perception refers to the high relevance of image
parts that are close compared to the low relevance of the distant parts [35]. On
the other hand, parameter sharing learn one set of parameters throughout the
whole process instead of learning different parameter sets at each location [37].
These features help to improve the efficiency of the network.

Fig. 4. The basic structure of CNN.

4.3 Interpretability

Miller defines interpretability as the degree to which a human can understand
the cause of a decision [24]. The interpretability of a Machine Learning model is
inversely related to its complexity. CCN is considered a Black Box Model (BBM)
that refers to complex models that are not straightforwardly interpretable to
humans [27]. However, different methods exist to explain BBM, like SHapley
Additive exPlanations (SHAP) [22] used in this paper to generate the local and
global explanations.
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SHAP was proposed by Lundberg and Lee is a unified approach to inter-
preting model predictions. SHAP is a method to explain individual predictions
based on the calculation of Shapley Values [22]. However, SHAP can give us a
global explanation of a model based on the average of absolute Shapley values
per feature of a random subset of dataset samples.

Shapley Values (SV) proposed by Shapley is a method based on coalitional
game theory (or cooperative game theory) [30]. SV explains a prediction assum-
ing that each feature value of a sample is a “player” in a game where the pre-
diction is the goal. In other words, SV is the average marginal contribution of a
feature value across all possible coalitions.

A linear model prediction is an explainable model because we can see how a
feature affects the prediction.

f̂ (x) = β0 +
p∑

j=1

βjxj

where x is the instance that we want to calculate the contributions. Each xj is
a feature value, with j = 1, . . . , p. βj is the weight of feature j.

The contribution φj of the j-th feature on the prediction f̂ is:

φj

(
f̂
)

= βjxj − E (βjXj) = βjxj − βjE (Xj)

The mean effect of feature j is E (βjXj), and the contribution of j-th feature
is the difference between the feature effect minus the average effect. If we sum
all the contributions, we get the following result:

p∑

j=1

φj

(
f̂
)

=
p∑

j=1

βjxj − E (βjXj)

=

⎛

⎝β0 +
p∑

j=1

βjxj

⎞

⎠ −
⎛

⎝β0 +
p∑

j=1

E (βjXj)

⎞

⎠

= f̂ (x) − E
(
f̂ (X)

)

The result is the predicted value for the instance x minus the average pre-
dicted value. To do the same to different models other than linear is necessary
to compute feature contribution for a single prediction.

To get the Shapley value of a feature value, we need to calculate the con-
tribution made to the result, weighted and summed over all combinations [25].
Then, the Shapley value is defined via a value function for players contained in
set S:
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φj (val) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p − |S| − 1)!
p!

(val (S ∪ {xj}) − val (S)) (1)

where S is a subset of model features, p is the number of features and x is the
vector of feature values. The result is the contribution of feature j for all feature
coalitions.

The exact solution to get the Shapley value requires the evaluation of all
coalitions of feature values with and without the j − th feature. However, the
exact solution becomes problematic for more than a few features because the
number of possible coalitions exponentially increases with each added feature.
Therefore, Strumbelj et al. (2014) [32] propose an approximation with the use
of Monte-Carlo sampling:

φ̂j =
1
M

M∑

m=1

(
f̂

(
xm
+j

) − f̂
(
xm

−j

))

where f̂
(
xm
+j

)
is the prediction for the instance x, with a random number of

feature values taken from another instance z taken a random, except for the
value of feature j, the f̂

(
xm

−j

)
is equal to f̂

(
xm
+j

)
, with the difference that the

value of j feature is taken from z. The procedure to approximate the Shapley
value is explained next:

Algorithm 1 Shapley value approximation
Input: Instance of interest x, data matrix X, feature index j, ML model f, and the

number of iterations M.
Output: Shapley value of j-th feature

for 1 to M do
Get random instance z from matrix X
Generate a random permutation o of features
Order the instance x: xo =

(
x(1), ..., x(j), ..., xp

)

Order the instance z: zo =
(
z(1), ..., z(j), ..., zp

)

Generate two new instances
x+j =

(
x(1), ..., x(j−1), x(j), z(j+1), ..., z(p)

)

x−j =
(
x(1), ..., x(j−1), z(j), z(j+1), ..., z(p)

)

Compute MC: φm
j = f̂ (x+j) − f̂ (x−j)

end for
return the Shapley value as the average: φj (x) = 1

M

∑M
m=1 φm

j



Explainable Model of Credit Risk Assessment Based on CNN 91

SHAP uses Shapley values to make explanations of BBM. However, SHAP
proposes different kernel-based estimation approaches for Shapley values inspired
by local surrogate models. KernelSHAP [22] is a model-agnostic based on LIME
and Shapley values. On the other hand, TreeSHAP and DeepSHAP are model-
specific, the first is an efficient estimation approach for tree-based models and
the second for Deep learning models.

SHAP Feature Importance (FI) is one of the global interpretations based on
aggregations of Shapley values. SHAP FI order features importance based on
the absolute value of Shapley values per feature across the data [25]:

Ij =
1
n

n∑

i=1

∣∣∣φ(i)
j

∣∣∣

After, SHAP order features by decreasing importance. For example, Fig. 5
shows the SHAP FI for a pre-trained CNN for the lending club dataset.

After training the CNN models and judging their performances, we use SHAP
to generate local and global explanations of the model. For example, SHAP can
generate local explanations of tabular data and images but not the same for
the global explanation of images. Additionally, explanations of images are given
for the SHAP values of pixels based on the predictions of the trained model,
which is not easy to understand for humans an example is shown in Fig. 6.
Nevertheless, thanks to DeepInsight, we have the mapping between each pixel
and feature. It allows us to return SHAP values to tabular form that generates
more interpretable local and global explanations (Fig. 7).

Fig. 5. SHAP Global explanation of first eight important features measured as the
mean absolute Shapley values for Lending club dataset
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Fig. 6. (left) Example of SHAP local explanation for a Multi-class ResNet50 on Ima-
geNet [29]. (middle) Example of SHAP local explanation of credit image generated
from tabular data transformed using DeepInsight. (right) Example of feature matrix
generated using DeepInsight.

Fig. 7. (left) Example of SHAP local explanation for DeepInsight credit image.
(right) Example of SHAP local explanation for DeepInsight credit image after con-
version to tabular form.

5 Experimental Results

The datasets used in this thesis is about four datasets provided for financial and
academic institutions widely used in research of credit scoring. All the datasets
are different in almost all their characteristics like the number of samples and
features. A resume of the characteristics of the dataset are shown in Table 2:

Table 2. Datasets

Datasets

Australian [28] German [18] HMEQ [4] LC 2007–2014 [20]

# Samples 690 1,000 5,960 466,285

# non default 307 700 4,771 415,317

# default 383 300 1,189 50,968

# features 14 20 13 75

Categorical 8 13 2 22

Continuous 6 7 11 53



Explainable Model of Credit Risk Assessment Based on CNN 93

Since the data contained in the four datasets may contain redundant fea-
tures that can increase computation and affect the performance, for numerical
and categorical features, we use ANOVA and Chi-Squared, respectively [8]. Addi-
tionally, when features with high correlation exist, SHAP generates redundant
local and global explanations with features with the same SHAP values. Then
eliminating high correlated features is need it.

For each dataset, we use cross-validation with ten stratified folds. The train-
ing set was used to find the optimal parameter of the CNN model. The metrics of
the test set were used to assess the performance of the CNN model. Table 3 shows
the optimal architecture of our CNN model for Australian, German, HMEQ, and
Lending club datasets, respectively.

To compare the performance of our model, we use different studies that use
the same datasets. Additionally, we train base models with LR and RF to com-
pare the results. For each dataset, we calculate Accuracy and Area Under the
Receiver Operating Characteristics (AUROC). Accuracy is not the best metric
for the evaluation of models of credit risk classification. However, many stud-
ies only use Accuracy for evaluation. Therefore, Table 4 compares the Accuracy
against each model and dataset. On the other hand, a better metric than Accu-
racy for credit risk classification is AUROC; in Table 5, we compare the AUROC
for the different studies containing this information and our results.

Table 3. CNN Architecture: Parameters and architectures of the CNN model in (a)
Australian dataset epochs = 500, (b) German dataset epochs = 50, (c) HMEQ dataset
epochs = 1000, and (d) Lending club dataset epochs = 50. Legend: Conv (Convolutional
Layer), PL (Pooling Layer), FC (Fully Connected Layer).

Layer Parameters and Architecture Layer Parameters and Architecture

Input Input shape: k=8, d=8, c=1 Input Input shape: k=20, d=20, c=1

Conv1 Fil: 64, Kernel: 3x3, Str=1,Pad=1 Conv1 Fil:128, Kernel: 3x3, Str=1,Pad=1

PL1 type: max, size 2x2 PL1 type: max, size 2x2

Conv2 Fil:128, Kernel: 3x3, Str=1, Pad=1 Conv2 Fil:256, Kernel: 3x3, Str=1,Pad=1

PL2 type: max, size 2x2 PL2 type: max, size 2x2

FC1 neurons:128 FC1 neurons:128

FC2 neurons: 2, activation: softmax FC2 neurons:64

Act. F. ReLU FC3 neurons: 2, activation: softmax

Act. F. ReLU

a b

Layer Parameters and Architecture Layer Parameters and Architecture

Input Input shape: k=8, d=8, c=1 Input Input shape: k=20, d=20, c=1

Conv1 Fil: 64, Kernel: 3x3, Str=1,Pad=1 Conv1 Fil:128, Kernel: 3x3, Str=1,Pad=1

PL1 type: max, size 2x2 PL1 type: max, size 2x2

Conv2 Fil:128, Kernel: 3x3, Str=1, Pad=1 Conv2 Fil:256, Kernel: 3x3, Str=1,Pad=1

PL2 type: max, size 2x2 PL2 type: max, size 2x2

FC1 neurons:128 FC1 neurons:128

FC2 neurons: 2, activation: softmax FC2 neurons: 2, activation: softmax

Act. F. ReLU Act. F. ReLU

c d
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Table 4. Accuracy comparison against datasets and models

Source Year Algorithm Australian German HMEQ LC 2007–2014

[16] 2016 MLP 0.860 0.750 – –

[1] 2016 ENSEMBLE 0.880 0.780 – –

[34] 2017 ENSEMBLE 0.880 0.770 – –

[14] 2018 ENSEMBLE 0.930 0.860 – –

[10] 2021 CNN 0.880 0.950 0.820 –

Base 2022 LR 0.871 0.761 0.803 0.945

Base 2022 RF 0.869 0.771 0.810 0.874

Our 2022 CNN-DeepInsight 0.844 0.734 0.926 0.991

Table 5. AUROC comparison against datasets and models

Source Year Algorithm Australian German HMEQ LC 2007-2014

[1] 2016 ENSEMBLE 0.940 0.802 – –

[10] 2021 CNN 0.800 0.960 0.830 –

Base 2022 LR 0.931 0.790 0.631 0.952

Base 2022 RF 0.870 0.803 0.872 0.937

Our 2022 CNN-DeepInsight 0.897 0.738 0.907 0.995

6 Conclusions

In this paper, tabular datasets were converted into images using DeepInsight.
The images were used to train 2D CNN. The performance of the trained CNN
was compared with literature results and base models trained by us using LR
and RF for reference. We found that the trained CNN performed better than the
literature results, and our base models based on LR and RF when the dataset
size was greater than 5,900 samples, getting results that surpassed the Accuracy
and AUROC of the second-best model with up to 0.106 and 0.046, respectively.

Additionally, thanks to the mapping generated for DeepInsight when the
images were created, we can return SHAP values based on predictions of trained
models to the tabular form, allowing us to generate local and global explanations.
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