
MACFE: A Meta-learning and Causality
Based Feature Engineering Framework

Ivan Reyes-Amezcua1(B), Daniel Flores-Araiza2, Gilberto Ochoa-Ruiz2,
Andres Mendez-Vazquez1, and Eduardo Rodriguez-Tello3

1 Department of Computer Science, CINVESTAV, Guadalajara, Mexico
ivan.reyes@cinvestav.mx

2 Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
3 Cinvestav - Tamaulipas, Km. 5.5 Carretera Victoria - Soto La Marina,

87130 Victoria, Tamaulipas, Mexico

Abstract. Feature engineering has become one of the most important
steps to improving model prediction performance, and producing qual-
ity datasets. However, this process requires non-trivial domain knowl-
edge which involves a time-consuming task. Thereby, automating such
processes has become an active area of research and interest in indus-
trial applications. In this paper, a novel method, called Meta-learning
and Causality Based Feature Engineering (MACFE), is proposed; our
method is based on the use of meta-learning, feature distribution encod-
ing, and causality feature selection. In MACFE, meta-learning is used
to find the best transformations, then the search is accelerated by pre-
selecting “original” features given their causal relevance. Experimental
evaluations on popular classification datasets show that MACFE can
improve the prediction performance across eight classifiers, outperforms
the current state-of-the-art methods on average by at least 6.54%, and
obtains an improvement of 2.71% over the best previous works.

Keywords: Automated feature engineering · Automated machine
learning · Causal feature selection

1 Introduction

Extracting features from raw data and transforming them into formats that
are appropriate for Machine Learning (ML) models is what is known as feature
engineering [12]. This task is usually carried out by a data scientist with good
domain knowledge and the data sources of the task at hand [19,21,33]. Generally,
feature engineering entails the daunting manual labor of designing, selecting, and
evaluating features where even a great intuition is needed [6,18]. This is due to
the fact that the performance of most machine learning algorithms heavily relies
on the training data quality. These type of datasets usually consists of a large
collection of different formats that need to be curated to be exploited by machine

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 52–65, 2022.
https://doi.org/10.1007/978-3-031-19493-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19493-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-19493-1_5

MACFE: Meta-learning and Causality Based Feature Engineering 53

learning algorithms [6]. Therefore, by using feature engineering, we can select
and obtain novel features from the raw data that would better represent the
problem.

However, most of the existing automated feature engineering proposals per-
form this task by applying the expansion-reduction method [17], which is the
process of trying a predefined set of transformation functions applied to raw
features. Then, those transformed features are selected based on the improve-
ment of model performance or some evaluation metric [21]. However, expansion-
reduction leads to an exponential growth in the space of constructed features,
which is known as the feature explosion problem [5]. In addition, extracting
novel features without a proper and systematic method can lead to an unneces-
sary increase in the dimensionality of the data, and hence a poor performance
in the learning process of the model [3]. Thus, the curse of dimensionality arises
[20], which is the potential of high-dimensional data to be more complicated to
process than low-dimensional data [8].

Fig. 1. The framework of our method. MACFE extracts meta-features from dataset D
and a frequency table for each feature x ∈ X . Then, an encoding e is generated by the
meta-features and feature distribution. Next, we search for the most similar encoding on
the Transformation Recommendation Matrix (TRM) in order to recommend a useful
transformation from it. The transformed dataset D̂ is built from the constructed novel
features and the original ones selected by the Directed Acyclic Graph (DAG) causal
model.

It is crucial to realize that there are dozens of types of machine learning
models, and each has its peculiarities and needs [19]. For instance, some models
neither work with highly correlated features nor with highly multi-collinearity.
Additionally, other models have trouble dealing with missing, noisy, or irrelevant
features. Furthermore, since data and models are so diverse, it is difficult to
generalize the practice of feature engineering across projects [33]. Thus, finding
a proper process to treat data agnostically from a specific learning algorithm can
help to choose transformations that better suit the learning process. To tackle
this issue, a possibility is to incorporate only the generated features that have
more appropriate knowledge about the data. For this, we present MACFE, a
novel meta-learning and causality approach for automated feature engineering
for classification problems using tabular data. The main contributions of this
paper are briefly described as follows:

54 I. Reyes-Amezcua et al.

– We present a causality-based method for feature selection on the original
dataset. For this, we use the mean magnitude effect of the features on the
target to rank and select a subset of them.

– We propose a novel meta-learning generation for unary, binary, and high-
order features based on non-linear transformations. This approach addresses
the feature explosion problem by only searching for feature transformations
that were found useful in past experiences.

In order to evaluate the proposed method, we designed a series of experiments
on fourteen popular public classification datasets with relatively small dimen-
sions to evaluate the feature generation and selection performance of MACFE.
The results are obtained from eight machine learning models: Logistic Regression
(LR), K-Nearest Neighbors (KNN), Lineal Support Vector Machine (SVC-L),
Polynomial Support Vector Machine (SVC-P), Random Forest (RF), AdaBoost
(AB), Multi-layer Perceptron (MLP) and Decision Tree (DT). As illustrated
in Fig. 1, our approach is divided into three phases. In the first one, the fea-
ture selection is carried out by using a Structural Causal Model (SCM) [22] for
choosing the most promising features. Then, we move to a meta-learning phase
(the second one), where meta-features are extracted from datasets and feature
distributions to create encodings for each attribute. Then, we lookup for feature
transformation on similar previously engineered datasets. Finally, in the third
phase, we evaluate the engineered features among eight machine learning models
and obtain the mean accuracy of stratified 5-Fold Cross Validation in order to
assess the quality of the feature engineering method. Experimental results show
that our proposal is effective in surpassing the scores of state-of-the-art feature
engineering methods by achieving a mean accuracy of 81.83% across the fourteen
testing datasets and the eight machine learning models evaluated.

The rest of this paper is organized as follows. In Sect. 2, we review the state
of the art in automated feature engineering. In Sect. 3, we elaborate on the need
for automated methods like ours. In Sect. 4, we introduce our proposed method
MACFE, whereas Sect. 5, we show in detail our evaluation results, and finally,
in Sect. 6 the conclusions drawn in this research work are given.

2 Related Work

In recent years, many automated feature engineering methods have been pro-
posed using different methodologies. For instance, Data Science Machine (DSM)
[14] is an automated feature engineering approach for structured and relational
data. DSM proposed a Deep Feature Synthesis (DFS) method, which searches for
relations and transformations across features in databases. They include a depth
hyper-parameter d for setting the maximum composition, which recursively enu-
merates all possible transformations. In addition, DSM generates a large novel
feature space, which is reduced by using Singular Value Decomposition (SVD)
based feature selection. However, DSM is only suitable for relational data and
it could take high computational times due to all the transformation functions
used for processing all the original feature sets.

MACFE: Meta-learning and Causality Based Feature Engineering 55

The data-driven approach presented in FCTree [9], creates novel features
from sequential transformations of the original space by employing decision trees
and then selecting the best features with the aid of information gain. The method
in [25], known as the TFC framework, presents an iterative feature generation
algorithm. The method applies feature transformation across all the features,
and then it selects the best features based on information gain. Nevertheless,
the generated feature space grows in a combinatorial way, leading to feature
explosion. AutoFeat [13] and AutoLearn [16] are also data-driven methods. They
can generate large transformations of features, selecting useful features by using
regularized regression models for each pair of features. However, these methods
require training a regression model, which can be time-consuming. Also, they
both suffer from the feature explosion problem. Label based Regression (LbR)
[30] is another method for generating novel features by using Ridge Regression
and Kernel Ridge Regression. This method selects features based on the Distance
Correlation Coefficient and the Maximum Information Coefficient (MIC) for each
feature pair, which leads to discriminate features that are useful in combination
with others.

2.1 Meta-learning for Feature Engineering

Recently, meta-learning has been proposed as a means of improving the quality
of the generated features [21]. Meta-data can be simply defined as data about
data [31]. For this work, meta-features are used to characterize and identify fea-
tures with attributes in the context of meta-learning [1,4,10,28]. Some examples
of meta-features are: a) General, such as the number of samples, features or
classes, etc. b) Statistical like standard deviation, correlation coefficients, etc.
c) Information-theoretic such as entropy, mutual information, noise ratio, etc.
d) Model-based describes some characteristics of models such as Decision Trees,
Bayesian Networks, SVMs, etc.

ExploreKit [15] is an example of a method that uses meta-learning for rank-
ing and selecting the most promising generated features. ExploreKit does this
by applying all possible transformations on features, suffering from the fea-
ture explosion problem. Furthermore, Learning Feature Engineering (LFE) is
an approach that also uses meta-learning for recommending useful features for
classification problems. The transformation recommender in LFE is based on
the construction of a meta-feature vector based on the feature values associ-
ated with a class label. However, LFE can recommend only unary and binary
transformations, lacking high-order transformations.

2.2 Causality Feature Selection

Classical feature selection approaches to leverage the correlations between fea-
tures and class variables but lack taking advantage of the causal relationships
between them. In contrast, knowing the causal relationship implies the under-
lying mechanism of a dataset [32], and thus causal variables are expected to be
persistent across different settings or environments.

56 I. Reyes-Amezcua et al.

Hence, basing the feature engineering on relevant causally related features
to the class of interest ideally should provide a more rich and robust output of
engineered features. Consequently, if we work only with causally related variables
to the target variable, independently of the type of relationship, it should be
possible to be learned by an ML model, which additionally implies it facilitates,
at some level, the efficacy of applying feature engineering to causally related
variables.

3 Problem Definition

Let D = {X,Y } be a dataset of input-output pairs, X a collection of n features
{x1,x2, ...,xn}, and m labels Y = {y1, ..., ym}. A machine learning algorithm
L (e.g. SVM, Logistic Regression, or Random Forest), and an evaluation metric
E (e.g. accuracy, F1-score).

We refer to a transformation t ∈ T as a function t(x) that takes a feature as
an argument, and maps it to a transformed feature output x̂ ∈ X′. Where T is
our set of transformations {t1, t2, ..., tk} that can be unary or binary, depending
on the number of given arguments. Here, a high-order transformation is a com-
position of unary and binary transformations. Over each feature it is possible to
define a series of non-linear transformations, ti : xi → x̂i that allow to extract
as much intra and inter information from the “original” data. The goal of feature
engineering is thus to transform X into X′ by applying T such that X′ max-
imizes the evaluation metric E of a machine learning algorithm L. The search
for new transformed features and their combinations grows exponentially, and
the feature explosion problem arises. MACFE, our proposed feature engineering
approach, was devised to help mitigate this problem by employing meta-features
to guide the search for transformations on features.

3.1 Meta-learning and Meta-features

A formal definition of meta-features was proposed in [28], in which meta-features
are a set of q values extracted from a dataset D by a function f .

f(D) = σ(μ(D,hμ), hσ), (1)

where f : D �→ Rq is the extraction of q values from dataset D, μ : D �→ Rq′

is a characterization measure, σ : Rq′ �→ Rq can be a summarization function
such as: mean, minimum, maximum, etc. Moreover, hμ and hσ are hyperparam-
eters for μ and σ, respectively. Thus, the function f is built by measuring some
characteristic from D by μ, and a summarizing function defined by σ.

Here, meta-features describe features using meta-data. An example is the
mean or median, as they are features that provide extra information about the
underlying data distribution. In particular, the core of this work is meta-learning
applied to the identification of data through meta-features.

MACFE: Meta-learning and Causality Based Feature Engineering 57

4 Proposed Approach

In the following sections, we describe the dataset preprocessing along with the
construction of the meta-feature vector and encodings for features. Also, we
present the training of our method including the Meta-learning and Causal Selec-
tion phases.

4.1 Datasets

Preprocessing. MACFE is guided by meta-feature learning based on past
experience to create novel features. Our method is trained with M random
datasets Dtrain = {D1, D2, ..., DM } collected from Open ML [29], which have
a structured format and a classification task related to the data. First, the pre-
processing and cleaning of data are performed for each dataset by removing non-
numerical features and imputing missing values with the feature mean. Next, a
meta-feature extractor is used to obtain meta-data about the datasets. Let mf
be a meta-feature vector composed by the main characteristics of a given dataset
Di ∈ Dtrain . Thus, a meta-feature vector for a dataset Di is defined as:

mf = [mf1,mf2, ...,mfp], (2)

where each mfi is a meta-feature value extracted from the data, and p is the
size of the extracted meta-features.

However, describing datasets by mapping their main characteristics can be
a challenging task. A full set of estimators and metrics can be extracted from
a dataset, e.g., the number of classes or instances in a dataset can be a meta-
feature value from such a dataset. For this, we use the approach of [24] to perform
the automatic meta-feature extraction process. The extraction of meta-features
is divided into five categories proposed by Rivolli et al. [28]: simple or gen-
eral, statistical, information-theoretic and model-based, and landmarking. In
order to automate the process of extracting meta-features from datasets, we
use the framework Meta-feature Extractor (MFE) [1] for each training datasets
Di ∈ Dtrain , which implements the standard meta-feature extraction described
above.

Next, we treat each feature x ∈ Di as follows:

1. We create a frequency table with a fixed number of buckets or bins b, for each
feature x

2. A range r is calculated on the feature values given by the upper and lower
bounds of the feature.

3. We generate s disjoint sets or bins b with uniform width w. Thus, each bin
range bi is a bucket in which values that are in the bin range lie. Each bi

range starts with the lower bound of x plus i times the width w, and ends
with the lower bound of x plus i + 1 times the width w.

4. Finally, each frequency table or histogram is normalized in the range [0,1].

58 I. Reyes-Amezcua et al.

Thus, we obtain an encoding e ∈ R1×η for each feature x ∈ Di , composed
by the meta-feature vector mf of the dataset and the feature distribution as
follows:

e = [mf1,mf2, . . . , mfp, b0, b1, ...bs−1] (3)

4.2 Model Training

Meta-learning Phase. The meta-learning phase is described as follows. The
unary, binary, and scaling feature transformations t ∈ T are applied to the
original features X. Then, an evaluation is performed on both original features
and the generated features t(X). For this, we use the Maximal Information
Coefficient (MIC) [27], which measures the strength of the linear or non-linear
relationships between two variables. MIC generates values between 0 and 1,
where 0 means statistical independence and 1 stands for a noiseless statistical
relationship between variables. Thus, we get the set of selected transformations
Tsel for each original feature in x ∈ X with the maximum score as follows:

Tsel = argmax
t∈T

gt

(
MIC(t(x)) − MIC(x)

)
. (4)

Finally, the selected transformations t ∈ Tsel are stored in the Transformation
Recommendation Matrix (TRM) for each x ∈ Dtrain represented by its cor-
responding encoding e. Thus, TRM is represented as follows (Fig. 2).

TRM =

⎡
⎢⎣
e1,1 e1,2 · · · e1,η t1
...

...
. . .

...
...

eN,1 eN,2 · · · eN,η tN

⎤
⎥⎦

Fig. 2. TRM Matrix, where the ith row in the matrix is the feature x ∈ Dtrain ,
and the jth column is the encoding value of e (Eq. 3). N is the size of all the features
in Dtrain , and η is the size of encoding e composed by the meta-feature vector mf
(Eq. 2) and feature histogram. The last column stands for the transformations t ∈ T
with the resulting highest MIC score for the given features (Eq. 4).

In Algorithm 1 the training procedure to learn the most appropriated unary
Tun and binary Tbin transformations is presented. This process is done for
each feature in a given dataset D. Similarly, high-order transformations are
built by combining several unary or binary transformations one after the other
(Algorithm 2).

MACFE: Meta-learning and Causality Based Feature Engineering 59

Algorithm 1. Training TRM

Input: Structured Dataset D
Output: TRM
D = preprocess(D)
for each xi ∈ D do

ei = encode feature(xi)
for each t ∈ Tun do

x̂i = t(xi)
s.append(MIC(x̂i) − MIC(xi))

end for
ttop = argmax(s)
TRM .append(ei , ttop)
for each xj ∈ D|j > i do

ej = encode feature(xj)
for each t ∈ Tbin do

x̂i ,j = t(xi ,xj)
si = MIC(x̂i ,j) − MIC(xi)
sj = MIC(x̂i ,j) − MIC(xj)
if si > 0 and sj > 0 then

TRM .append(ei , ej , t)
end if

end for
end for

end for

Algorithm 2. Data Transformation
Input: D, d, s
Output: D̂
D̂ = preprocess(D)
D̂ = causal selection(D̂, s)
for 1 to d do

for each xi ∈ D̂ do
ei = encode feature(xi)
tun = Similarity(TRM , ei)
x̂i = tun(xi)
D̂.append(x̂i)
for each xj ∈ D̂, xi �= xj do

ej = encode feature(xj)
tbin=Similarity(TRM ,ei ,ej)
ˆxi,j = tbin(xi ,xj)

D̂.append(ˆxi,j)
end for

end for
end for
eD̂ = encode dataset(D̂)
tscaler = Similarity(TRM , eD̂)

D̂ = tscaler(D̂)

The order value of the transformation function is related to the number
of times a feature is processed by a transformation, e.g., an input feature x1

is given as an argument of the log function, so f1(x1) = log(x1). Then, the
resulting feature is combined with another feature x2, lets say a multiplication,
thus, f2(f1(x1),x2) = mult(log(x1),x2). Finally, the output feature is given to
the unary function square. Thus, the final transformed feature x̂ has an order
of 3, and can be seen as follows:

x̂ = f3(f2(f1(x1),x2)) = square(mult(log(x1),x2))) (5)

Hence, we look for the underlying information about data through the extraction
of more complex features. This gives us the capability of creating novel features
from raw features that apparently do not have any predictive power, but in
combination with high-order functions can have suitable predictive power for
some machine learning models.

Causal Feature Selection Phase. Once the TRM is trained, MACFE is
ready to recommend useful transformations for new datasets and features. For
this, we start selecting the most promising original features, a causality-based
feature selection is performed on the features. A DAG Classifier is trained to dis-
cover a causal graph from data. For this, we use the implementation of CausalNex
[2]. This graph underlies the causal relationship between features and a target

60 I. Reyes-Amezcua et al.

variable. The mean identified causal magnitude effect of the features on the
target is used to rank the features. Then, a given threshold hyperparameter s
determines the top k selected features. The resulting subset of selected features
are processed to obtain an encoding e (Eq. 3).

Then, for a given feature encoding e, we search for a transformation in TRM
by retrieving the most similar feature encoding using the cosine distance as a
similarity measure. We benefit from this measure for ranking the most similar
feature-vectors in the range 1.0 for identical feature-vectors and 0.0 for orthogo-
nal feature-vectors [26]. Next, the most similar feature transformation is applied
to the feature. The process is followed by the binary transformations and iter-
ating over the features in the dataset (Algorithm 2). Furthermore, a depth d
hyper-parameter is set to look for the maximum transformation order across
unary and binary functions. Lastly, for the Scaling transformations we refer to
those transformations on features that change the scale on a standard range.
Many machine learning algorithms struggle to find patterns in data when fea-
tures are not on the same scale. For this, having scaled features can help gradient
descent to converge faster towards a minimum.

We scale features as follows. For a given feature x ∈ X, the following scaling
functions can be applied. Normalization, also called Min-Max Scaler, is a method
that scales each feature value to the range [0,1]. Standardization, this method
scales each feature value so that the mean is 0 and the standard deviation is 1.
Robust Scaler, this scaler is useful when the input feature has a lot of outliers.
The Robust Scaling is done by calculating the median (50th percentile), and also
the 25th and 75th percentiles. Then, each feature value is subtracted from the
median, and divided by the Interquartile Range (IQR). In order to learn and
recommend which scaler is appropriate for a given dataset, we follow a series of
data testings. First, we test the features to know the proportion of outliers. If this
proportion is larger than a certain threshold γ, then a Robust Scaler is applied
to the features. Secondly, if the data follows a normal distribution, then we use
a Standard Scaler. In particular, we use a Shapiro-Wilk test [11] to evaluate the
normality of data. Then, if the test value is greater than 0.05 we consider the
data is normally distributed. Finally, if none of the above tests is true about
the data, then we use a Min-Max Scaler on the features. The resulting scaling
method is saved in TRM according to the dataset encoding.

5 Experimental Results

For the evaluation of MACFE, first, we describe the evaluation details, such as
the case study datasets and learning algorithms. Next, we briefly describe each
of the implementation details of the classifiers and evaluation methods. Finally, a
comparison with previous work is done and a discussion is presented by analyzing
the characteristics of datasets and algorithms where MACFE is convenient.

MACFE: Meta-learning and Causality Based Feature Engineering 61

5.1 Evaluation Details

Table 1. Statistics of 14 case study datasets

ID Dataset Source Labels Features Instances

1 Pima Diabetes UCI ML 2 8 768

2 Sonar UCI ML 2 60 208

3 Ionosphere UCI ML 2 34 351

4 Haberman UCI ML 2 3 306

5 Fertility UCI ML 2 9 100

6 Wine UCI ML 3 13 178

7 E.coli UCI ML 8 7 336

8 Abalone UCI ML 29 7 4177

9 Dermatology UCI ML 4 34 366

10 Libras UCI ML 15 90 360

11 Optical UCI ML 10 64 5620

12 Waveform OpenML 3 21 5000

13 Fourier OpenML 10 76 2000

14 Pixel OpenML 10 240 2000

The evaluation of MACFE as an automated feature engineering method is
performed on a set of fourteen classification datasets and eight machine learning
algorithms commonly cited in the literature [15,16,30]. These datasets are from
different areas, such as medical, physical, life, and computer science. In addition,
these datasets are publicly available in the UCI ML Repository [7] and OpenML
Repository [29]. The main statistics of these datasets are shown in Table 1.

5.2 Implementation Details

For our experiments, we tested the following learning algorithms: Logistic
Regression (LR), K-Nearest Neighbors (KNN), Linear Support Vector Machine
(SVC-L), Polynomial Support Vector Machine (SVC-P) and Random Forest
(RF), AdaBoost (AB), Multi-layer Perceptron (MLP) and Decision Tree (DT).
The scoring method for the evaluations is the mean accuracy of stratified 5-Fold
Cross Validation on each dataset. Same as the state-of-the-art methodology for
scoring. Each algorithm is used with scikit-learn [23] default parameters. This is
because our objective is to enhance the accuracy of a model by improving the
data through our automated feature engineering process, MACFE.

5.3 Comparison with Previous Works

The comparison of our proposal takes into account the same scenario conditions
of the results presented in recent feature engineering proposals such as TFC [25],
FCTree [9], ExploreKit [15], AutoLearn [16] and LbR [30]. In Table 2 are shown

62 I. Reyes-Amezcua et al.

Table 2. Mean accuracy results in 5-fold cross validation among original datasets
(ORIG) and consulted state-of-the-art (TFC [25], FCTree [9], ExploreKit [15],
AutoLearn (AL) [16], LbR [30]) and MACFE (ours). The best performing approach is
shown in bold, each dataset is shown with its corresponding ID from Table 1.

D. ID CLF ORIG TFC [25] FCT [9] EK [15] AL [16] LbR [30] MACFE D. ID CLF ORIG TFC [25] FCT [9] EK [15] AL [16] LbR [30] MACFE

1 KNN 71.48 72.42 73.52 73.6 68.36 72.13 75.12 2 KNN 78.35 81.48 82.70 82.4 83.19 83.33 81.27

LR 76.55 75.92 76.52 73.9 74.99 71.86 77.47 LR 77.42 78.12 78.72 78.7 79.00 90.47 86.05

SVM-L 65.23 62.71 72.52 73.7 74.85 75.22 77.34 SVM-L 73.54 74.54 75.75 76.1 77.30 90.47 86.06

SVM-P 64.89 65.71 70.52 72.6 76.32 78.32 78.12 SVM-P 53.36 58.41 66.44 33.6 81.71 80.95 86.57

RF 75.37 72.42 73.52 74.0 73.05 72.47 78.12 RF 73.55 81.00 82.54 47.4 77.87 76.19 85.62

AB 74.34 74.08 74.08 74.3 72.52 73.01 76.29 AB 80.74 80.00 81.04 54.0 78.83 85.71 83.69

NN 64.32 64.12 64.22 67.3 72.39 72.50 77.86 NN 80.30 81.07 82.00 82.4 84.09 85.71 88.03

DT 72.38 70.23 70.46 70.9 71.05 71.12 71.74 DT 75.01 74.23 74.52 75.0 75.02 83.33 75.53

3 KNN 84.31 84.66 84.87 86.0 83.46 92.95 89.74 4 KNN 71.89 70.00 71.28 72.3 68.68 70.36 76.14

LR 87.44 87.26 87.39 87.7 87.95 95.77 93.44 LR 74.19 72.07 73.96 74.5 76.16 76.50 74.51

SVM-L 87.44 86.71 87.78 88.0 84.30 90.14 92.58 SVM-L 74.18 73.97 74.18 75.4 75.82 76.01 73.53

SVM-P 64.10 70.16 71.45 72.6 74.63 78.87 93.72 SVM-P 74.18 73.98 74.81 75.1 75.52 75.52 74.51

RF 93.15 91.65 93.16 94.0 92.30 91.54 95.44 RF 68.63 68.91 69.07 70.0 65.34 70.17 72.22

AB 92.02 90.94 90.12 90.3 92.43 90.14 94.01 AB 70.25 71.19 71.57 72.2 69.93 73.05 71.89

NN 93.14 92.45 92.13 93.6 92.29 97.18 92.58 NN 73.19 69.02 71.19 72.2 70.91 75.02 76.13

DT 88.32 87.12 88.04 88.1 88.59 88.73 94.87 DT 66.65 66.09 66.79 67.2 66.34 67.74 73.86

5 KNN 85.00 86.00 86.00 87.0 87.00 88.00 88.95 6 KNN 67.93 74.89 79.93 83.4 93.84 95.49 97.22

LR 88.00 88.00 89.00 88.0 87.00 88.00 89.95 LR 95.52 96.89 97.24 95.1 98.30 99.44 98.87

SVM-L 85.00 87.00 88.00 87.0 87.00 87.00 89.95 SVM-L 83.03 88.14 89.94 90.8 98.31 98.87 98.32

SVM-P 88.00 87.00 87.00 88.0 88.00 88.00 88.89 SVM-P 96.65 96.68 96.65 92.1 92.68 94.74 99.43

RF 82.00 87.00 87.00 90.0 84.00 88.00 89.89 RF 96.07 96.68 97.12 90.0 97.20 98.89 97.19

AB 79.00 83.00 84.00 83.0 79.00 85.00 87.84 AB 85.82 88.12 91.23 62.8 84.71 83.03 89.27

NN 88.00 88.00 88.00 88.0 85.00 88.00 90.00 NN 42.73 46.23 49.56 64.6 97.19 98.87 98.32

DT 80.00 84.00 84.00 85.0 85.00 88.00 87.89 DT 91.57 91.79 92.01 92.5 93.22 93.37 95.49

7 KNN 86.59 88.42 87.56 88.4 84.82 85.39 87.81 8 KNN 23.27 21.64 22.60 23.1 22.71 21.69 22.62

LR 75.88 78.23 79.24 82.8 87.19 87.19 87.73 LR 24.61 23.69 23.60 24.8 26.50 25.25 26.84

SVM-L 85.71 85.71 85.71 86.3 86.30 86.80 88.87 SVM-L 25.71 25.64 25.72 25.7 26.07 25.23 26.57

SVM-P 56.54 59.32 62.14 72.3 80.33 81.59 93.72 SVM-P 19.46 17.64 22.12 21.4 23.77 23.98 26.33

RF 82.73 83.46 83.76 85.1 86.59 84.80 95.44 RF 22.91 18.78 23.02 23.2 22.21 24.15 25.52

AB 62.47 63.54 64.37 65.8 65.75 63.06 93.44 AB 20.61 19.10 19.97 21.1 20.61 21.01 21.45

NN 78.28 80.37 81.97 83.7 86.90 86.89 92.30 NN 27.53 26.32 26.41 27.1 27.81 26.40 28.27

DT 79.74 76.32 77.67 80.3 76.40 82.11 94.87 DT 19.27 19.00 19.13 19.3 19.41 19.42 20.13

9 KNN 89.11 90.46 92.89 91.0 96.09 96.66 97.82 10 KNN 70.00 71.00 71.18 73.7 69.44 70.27 75.28

LR 97.21 97.76 97.97 97.6 98.61 97.77 97.81 LR 60.27 64.68 67.12 71.7 70.00 68.88 79.72

SVM-L 97.21 96.02 96.27 96.3 96.92 98.32 97.54 SVM-L 68.61 69.88 70.83 70.4 67.22 68.61 82.22

SVM-P 94.41 94.00 94.12 92.0 93.56 98.04 95.90 SVM-P 2.22 36.68 47.97 47.8 49.44 50.13 85.83

RF 96.92 96.45 96.61 95.5 95.81 98.04 98.09 RF 71.94 72.12 73.07 77.6 70.22 72.50 86.11

AB 54.13 57.12 61.00 57.3 54.96 54.13 75.67 AB 8.05 10.12 13.11 16.9 18.05 14.57 15.28

NN 98.04 97.13 97.22 97.7 98.22 97.77 98.09 NN 71.66 72.35 74.24 75.7 78.33 85.56 83.06

DT 95.24 95.06 94.96 95.4 94.68 96.08 96.45 DT 62.50 62.64 63.12 63.7 65.55 65.27 73.06

11 KNN 98.77 97.20 98.02 98.0 97.03 99.03 98.74 12 KNN 82.48 81.28 82.00 82.1 81.14 81.54 81.44

LR 96.49 96.40 96.40 97.0 95.83 94.82 97.88 LR 86.58 86.72 87.18 86.9 85.12 87.14 86.90

SVM-L 94.89 94.12 95.17 95.1 94.01 94.71 98.49 SVM-L 86.90 84.54 86.23 86.9 84.40 87.18 86.66

SVM-P 99.09 99.03 99.03 99.1 96.20 99.21 99.06 SVM-P 81.70 81.62 82.54 80.4 85.42 86.18 83.84

RF 96.38 96.36 96.91 97.3 96.57 92.68 98.26 RF 82.10 81.45 82.04 82.1 81.12 80.90 86.12

AB 68.65 67.62 68.35 69.7 73.78 75.46 68.17 AB 83.62 82.54 82.84 83.0 83.78 83.04 83.34

NN 98.02 95.62 95.37 96.5 96.93 96.77 98.33 NN 85.84 82.31 3.10 84.7 83.72 83.94 86.26

DT 89.90 88.00 88.46 90.4 90.41 87.42 91.10 DT 75.04 72.46 73.00 73.2 73.06 76.60 78.72

13 KNN 83.85 82.17 83.82 84.0 83.55 82.17 82.85 14 KNN 97.75 98.12 97.23 98.0 97.95 97.45 97.75

LR 79.45 79.97 80.00 82.2 83.15 84.03 82.20 LR 94.35 94.22 94.28 95.5 95.75 94.95 96.75

SVM-L 81.45 81.15 82.86 82.5 83.05 83.05 84.40 SVM-L 92.90 92.57 93.26 94.3 94.27 93.45 97.70

SVM-P 8.70 42.25 57.97 66.7 82.30 81.10 85.10 SVM-P 98.35 98.22 98.66 98.7 97.25 98.66 98.10

RF 79.90 78.90 79.16 80.8 79.31 81.85 84.45 RF 95.50 94.26 95.12 96.5 94.20 95.50 97.60

AB 48.65 46.66 49.29 50.0 50.40 48.65 43.75 AB 54.05 54.00 54.86 55.3 55.60 54.05 65.10

NN 81.90 82.34 83.12 83.4 85.50 86.90 83.40 NN 97.15 97.15 97.15 97.2 97.15 97.90 97.20

DT 74.00 74.00 74.00 74.1 74.35 74.50 75.40 DT 87.30 86.12 86.78 86.6 87.65 87.90 88.55

the scores achieved by our proposal compared against the scores obtained by
other approaches in the state-of-the-art. The best scores are shown in bold, each
dataset is represented by its ID defined in Table 1. The improvement among
algorithms and datasets is notable: as shown in Fig. 3 we achieve an average
accuracy of 81.83% across all tested datasets and classifiers, outperforming TFC,
FCT, ExploreKit, AutoLearn (AL), LbR, by 6.54%, 5.99%, 5.63%, 3.95%, and
2.71%, respectively.

MACFE: Meta-learning and Causality Based Feature Engineering 63

Fig. 3. Mean accuracy of state-of-the-art methods and MACFE (ours) across fourteen
case study datasets and eight machine learning models.

5.4 Discussion

The transformation recommendation procedure of this method is agnostic of
the learning algorithm. But, some transformations can be more appropriate for
a certain algorithm. Therefore, MACFE achieves 100% of efficacy in terms of
improving at least one model for each dataset. The depth hyperparameter d
of MACFE can generate different orders of complex features to improve the
model performance. A high value in d can result in too complex novel features,
thus the algorithm cannot learn from the data. In contrast, a small value of the
hyperparameter s can lead to a small subset of the original features, thus not
finding good relationships between features. Hence, it is recommended a grid
search to find the optimal values of hyperparameters.

6 Conclusions and Future Work

In this paper, we presented a causality-based feature selection to reduce the
feature space search for feature transformations. Also, a meta-learning-based
method for automated feature construction, on which the number of transfor-
mations executed on features depends on the number of useful transformations
found on historical past similar features. In particular, this method has the
capability of constructing novel features from raw data that are informative and
useful for a learning algorithm. Hence, MACFE can automatically create fea-
tures by applying selected transformations to the data, either unary, binary, or
high-order, instead of applying all possible combinations of those. Hence, the
feature explosion problem is minimized. However, MACFE has a fixed set of
unary, binary, and scaling transformations. In future work, we intend to increase
this set by adding more transformation functions, leading to the construction of
more informative features from raw features. In addition, the causal selection of
features could be improved, since it is applied equally to all datasets but dif-
ferent datasets can be expected to satisfy different causal assumptions, which

64 I. Reyes-Amezcua et al.

produces different levels of efficacy when selecting the features to be engineered.
To improve this, better methods of general causal discovery are needed.

Acknowledgments. The authors wish to thank the CINVESTAV, the AI Hub, and
the CIIOT at ITESM, for their support and the use of the DGX for running the
experiments in this paper.

References

1. Alcobaça, E., et al.: MFE: towards reproducible meta-feature extraction. J. Mach.
Learn. Res. 21(111), 1–5 (2020)

2. Beaumont, P., et al.: CausalNex (2021). https://github.com/quantumblacklabs/
causalnex

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. J. ACM (JACM) 36(4), 929–965 (1989)

4. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications
to Data Mining. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
73263-1

5. Chen, X., et al.: Neural feature search: a neural architecture for automated feature
engineering. In: 2019 IEEE International Conference on Data Mining (ICDM), pp.
71–80. IEEE (2019)

6. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

8. Duda, R.O., Hart, P.E., et al.: Pattern Classification. Wiley (2006)
9. Fan, W., et al.: Generalized and heuristic-free feature construction for improved

accuracy. In: Proceedings of the 2010 SIAM International Conference on Data
Mining, pp. 629–640. SIAM (2010)

10. Filchenkov, A., Pendryak, A.: Datasets meta-feature description for recommending
feature selection algorithm. In: 2015 Artificial Intelligence and Natural Language
and Information Extraction, Social Media and Web Search FRUCT Conference
(AINL-ISMW FRUCT), pp. 11–18. IEEE (2015)

11. Hanusz, Z., Tarasinska, J., Zielinski, W.: Shapiro-Wilk test with known mean.
REVSTAT-Stat. J. 14(1), 89–100 (2016)

12. Heaton, J.: An empirical analysis of feature engineering for predictive modeling.
In: SoutheastCon 2016, pp. 1–6. IEEE (2016)

13. Horn, F., Pack, R., Rieger, M.: The autofeat Python library for automated feature
engineering and selection. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019.
CCIS, vol. 1167, pp. 111–120. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-43823-4 10

14. Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: towards automating
data science endeavors. In: 2015 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pp. 1–10. IEEE (2015)

15. Katz, G., Shin, E.C.R., Song, D.: ExploreKit: automatic feature generation and
selection. In: 2016 IEEE 16th International Conference on Data Mining (ICDM),
pp. 979–984. IEEE (2016)

16. Kaul, A., Maheshwary, S., Pudi, V.: AutoLearn-automated feature generation and
selection. In: 2017 IEEE International Conference on Data Mining (ICDM), pp.
217–226. IEEE (2017)

https://github.com/quantumblacklabs/causalnex
https://github.com/quantumblacklabs/causalnex
https://doi.org/10.1007/978-3-540-73263-1
https://doi.org/10.1007/978-3-540-73263-1
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-030-43823-4_10
https://doi.org/10.1007/978-3-030-43823-4_10

MACFE: Meta-learning and Causality Based Feature Engineering 65

17. Khurana, U., Samulowitz, H., Turaga, D.: Feature engineering for predictive mod-
eling using reinforcement learning. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

18. Khurana, U., Turaga, D., Samulowitz, H., Parthasrathy, S.: Cognito: automated
feature engineering for supervised learning. In: 2016 IEEE 16th International Con-
ference on Data Mining Workshops (ICDMW), pp. 1304–1307. IEEE (2016)

19. Kuhn, M., Johnson, K.: Feature Engineering and Selection: A Practical Approach
for Predictive Models. CRC Press, Boca Raton (2019)

20. Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Not. AMS 52(11), 1320–
1328 (2005)

21. Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E.B., Turaga, D.S.: Learning
feature engineering for classification. In: IJCAI, pp. 2529–2535 (2017)

22. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge Uni-
versity Press, Cambridge (2009)

23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

24. Pinto, F., Soares, C., Mendes-Moreira, J.: Towards automatic generation of
metafeatures. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang,
R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 215–226. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31753-3 18

25. Piramuthu, S., Sikora, R.T.: Iterative feature construction for improving inductive
learning algorithms. Expert Syst. Appl. 36(2), 3401–3406 (2009)

26. Qian, G., Sural, S., Gu, Y., Pramanik, S.: Similarity between Euclidean and cosine
angle distance for nearest neighbor queries. In: Proceedings of the 2004 ACM
Symposium on Applied, pp. 1232–1237 (2004)

27. Reshef, D.N., et al.: Detecting novel associations in large data sets. Science
334(6062), 1518–1524 (2011)

28. Rivolli, A., Garcia, L.P., Soares, C., Vanschoren, J., de Carvalho, A.C.: Towards
reproducible empirical research in meta-learning. arXiv preprint arXiv:1808.10406,
pp. 32–52 (2018)

29. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

30. Wang, M., Ding, Z., Pan, M.: LbR: a new regression architecture for automated
feature engineering. In: 2020 International Conference on Data Mining Workshops
(ICDMW), pp. 432–439. IEEE (2020)

31. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann 578, 1 (2005)

32. Yu, K., et al.: Causality-based feature selection: methods and evaluations. ACM
Comput. Surv. (CSUR) 53(5), 1–36 (2020)

33. Zheng, A., Casari, A.: Feature Engineering for Machine Learning: Principles and
Techniques for Data Scientists. O’Reilly Media, Inc. (2018)

https://doi.org/10.1007/978-3-319-31753-3_18
http://arxiv.org/abs/1808.10406

	MACFE: A Meta-learning and Causality Based Feature Engineering Framework
	1 Introduction
	2 Related Work
	2.1 Meta-learning for Feature Engineering
	2.2 Causality Feature Selection

	3 Problem Definition
	3.1 Meta-learning and Meta-features

	4 Proposed Approach
	4.1 Datasets
	4.2 Model Training

	5 Experimental Results
	5.1 Evaluation Details
	5.2 Implementation Details
	5.3 Comparison with Previous Works
	5.4 Discussion

	6 Conclusions and Future Work
	References

