
Towards a Complete Multi-agent
Pathfinding Algorithm for Large Agents

Stepan Dergachev1,2(B) and Konstantin Yakovlev1,2

1 National Research University Higher School of Economics, Moscow, Russia
sadergachev@edu.hse.ru

2 Federal Research Center for Computer Science and Control of Russian
Academy of Sciences, Moscow, Russia

yakovlev@isa.ru

Abstract. Multi-agent pathfinding (MAPF) is a challenging problem
which is hard to solve optimally even when simplifying assumptions are
adopted, e.g. planar graphs (typically – grids), discretized time, uni-
form duration of move and wait actions etc. On the other hand, MAPF
under such restrictive assumptions (also known as the Classical MAPF)
is equivalent to the so-called pebble motion problem for which non-
optimal polynomial time algorithms do exist. Recently, a body of works
emerged that investigated MAPF beyond the basic setting and, in par-
ticular, considered agents of arbitrary size and shape. Still, to the best
of our knowledge no complete algorithms for such MAPF variant exists.
In this work we attempt to narrow this gap by considering MAPF for
large agents and suggesting how this problem can be reduced to pebble
motion on (general) graphs. The crux of this reduction is the procedure
that moves away the agents away from the edge which is needed to per-
form a move action of the current agent. We consider different variants
of how this procedure can be implemented and present a variant of the
pebble motion algorithm which incorporates this procedure. Unfortu-
nately, the algorithm is still incomplete, but empirically we show that it
is able to solve much more MAPF instances (under the strict time limit)
with large agents on arbitrary non-planar graphs (roadmaps) compared
to the state-of-the-art MAPF solver – Continous Conflict-Based Search
(CCBS).

Keywords: Multi-agent systems · Coordination of multiple vehicle
systems · Multi-agent path finding · Pebble motion · Large agents

1 Introduction

Multi-agent pathfinding (MAPF) is a challenging problem with topical appli-
cations in robotics, video games etc. There exist different ways to define the
MAPF problem [8] and approaches to solve it. On the one hand, optimal and
bounded sub-potimal solvers exist for what is known as Classical MAPF, like

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 355–367, 2022.
https://doi.org/10.1007/978-3-031-19493-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19493-1_28&domain=pdf
http://orcid.org/0000-0001-8858-2831
http://orcid.org/0000-0002-4377-321X
https://doi.org/10.1007/978-3-031-19493-1_28

356 S. Dergachev and K. Yakovlev

Fig. 1. An example of the multi-agent path finding for large agents (MAPF-LA)
problem instance. It can only be solved if the synchronous moves of the agents
are allowed (as shown on the right).

the ones presented in [2,3,6,7]. On the other hand fast prioritized planners with-
out any completeness/optimality guarantees are widespread [4,11]. Finally, com-
plete, non-optimal algorithms exist, such as the ones described in [5,9], which
borrow the solving techniques from the so-called Pebble Motion on Graph (PMG)
problem. Sill, all these algorithms do no consider the size/shape of the agents.
Indeed, attempts to lift this restricting assumption are known [1,10], however
the algorithms known so-far do not guarantee completeness. This works aims at
drawing an attention to this gap and try narrowing it by adopting the PMG
algorithms to the setting with the large agents, dubbed as MAPF-LA futher on.

More specifically, we focus on one of the routines, regularly needed, in solving
MAPF-LA instances – the one that makes it possible for one agent to traverse an
edge without colliding to the other agents that prevent the transition due to their
large bodies. We elaborate on how these agents can be safely moved away so the
transition becomes valid. The suggested procedure was implemented and incor-
porated to the well-known Push and Rotate algorithm [5]. Unfortunately, the
current variant of this algorithm is still incomplete for MAPF-LA. However, as
we show in our empirical evaluation, it outperforms the stat-of-the-art competi-
tors, i.e. CCBS algorithms [1], in terms of number of solved MAPF-LA instances
under the strict time limit.

The rest of this paper is organized as follows. We considere the definitions
of MAPF-LA in Sect. 2. Section 3 describes a possible implementation of the
procedure for moving away interfering agents, and also discuss cases when the
proposed procedure is not sufficient to solve the planning problem. We report
the results of of an experimental evaluation in Sect. 4 and conclude in Sect. 5.

2 Problem Statement

Consider a tuple (W, G, r,K, start, goal), where W ⊂ R2 is a metric workspace
where K agents are operating. Each agent is modeled as a disk of radius r > 0.
G = (V,E) is a graph embedded in the workspace, i.e. each vertex v ∈ V is
associated with a point in W. Edges correspond to the transitions between the

Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents 357

Fig. 2. An illustration of three cases that can occur when agents should be
moved away from the edge along which the current agent needs to transit

locations. It is assumed that when moving along the edge the agent follows a
straight-line segment connecting the corresponding vertices. start : K → V is
a function that specifies the initial locations of the agents, goal is the similar
function specifying the target locations.

A set of K distinct graph vertices S = (s1, ..., sK), si ∈ V , ∀i, j : si �= sj forms
a state. Here si is a position of the ith agent. A state is valid iff dist(si, sj) ≥ 2r,
where dist stands for the Euclidean distance. In other words the state is valid
if the bodies of the agents do not overlap. In this work we adopt an assumption
that the distance between any two vertices of G is greater than 2r. This infers
that any state, as defined above, is valid.

A transition is formally a function π(S, S′) → {0, 1}, where π = 1 stands for
the valid transition and π = 0 for the invalid one. Informally, transition corre-
sponds to the movement of (some) agents between the locations in the workspace
via the edges of the given graph. Conceptually, two possible assumptions regard-
ing the transitions can be made:

– general: synchronous moves of the agents are allowed, i.e. more than one agent
can change its location as a result of the transition

– restrictive: only one agent can change its location, while the rest stay at the
same vertices

In this work we follow the second assumption. In such case for a transition
π(S, S′) to be valid the following conditions should be met. First, the moving
agent i may move only using one of the outgoing edges, i.e. (si, s

′
i) ∈ E. Second,

the move should be collision-free, i.e. ∀j �= i : segdist(e, sj) > 2r, where segdist
is the distance between the segment, defined by the edge e, and the vertex sj .

The problem of multi-agent pathfing for large agents (MAPF-LA) is now
formulated as follows. Given (W, G, r,K, start, goal) find the sequence of states
(S0, S1, ..., Sn) s.t. ∀si ∈ S0 : si = start(i), ∀si ∈ Sn : si = goal(i), ∀i = 0, ...n−1
a valid transition π(Si, Si+1) exists. In other words, the problem is to find the
sequence of moves for the agents that transfer them from their start locations
to their goal locations, while avoiding the collisions.

358 S. Dergachev and K. Yakovlev

Fig. 3. Illustration of execution of PushToEmpty procedure. (a) The green
agent must move along the edge (v1, v2), but the red agent interferes with it.
(b) First of all, we mark all edges that are interfered with by the vertex v2 as
untraversable and find all interfering with (v1, v2) vertices. (c) Single empty and
non-interfering with (v1, v2) vertex v6 to which there is a path not through v1 or
v2 remain on the graph. (d) After all, pushing the red and blue agents along the
path between v3 and v6. Thus, the green agent can move along the edge (v1, v2)
(Color figure online)

Example. An illustrative example of the considered problem is depicted in Fig. 1.
Here the graph G consists of 5 vertices and 4 edges. The start and goal locations
of the 3 agents are specified on the left part of the figure. Basically, each agent
has to transfer to the adjacent vertex. However, under the considered assumption
that only one agent moves at a time, the instance is not solvable. Meanwhile,
if synchronous moves are allowed the problem is trivially solved via a single
transition in which the agents simultaneously move to the adjacent vertices (as
shown on the right). This highlights how defining the transition influence the
possibility to find a solution. This is similar to the pebble motion on graphs
problem, in which different assumptions regarding cycle-moves and chains-moves
can be adopted, see [12] for details.

3 Suggested Approach

3.1 Preliminaries

The problem considered in this work, multi-agent pathfinding for large agents
(MAPF-LA), is similar to the pebble motion on graphs (PMG) problem [12].
However the crucial differences exist, that prevent the straightforward applica-
tion of the known methods to solve PMG for the considered formulation. Gener-
ally, two core differences between the MAPF-LA and PMG are as follows. First,
in PMG every placement of pebbles (agents) on distinct graph vertices by defi-
nition form a valid state. In MAPF-LA this is not the case, however we adopted
a (restrictive) assumption that the vertices of the given graph are located 2r
distance units away from each other. Thus every placement of (large) agents on
disjoint vertices also result in the valid state.

Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents 359

Fig. 4. Illustration of execution of PushAlongPath procedure

Second, in PMG for a transition of one agent to be valid it is only required
that the source vertex is free. In MAPF-LA this is not enough as the target
vertex of the move can be free, but the moving agent, say a, may collide with
the other agents while traversing an edge, as these agents stay too close to the
edge itself. Such agents can be referred to as the interfering agents w.r.t. to
the given edge e = (vfrom, vto). Thus, in order to reduce (our formulation of)
MAPF-LA to PMG the following problem should be solved. Given a valid state
S and an agent a that needs to traverse the edge e = (vfrom, vto) find a sequence
of the valid transitions (π0, ..., πk, ..., πm) that results in the state S′, where the
agent a is located at vto and all other agents occupy the same vertices as in
S. Here the transition πk corresponds to the move of the agent a, while the
other transitions are moves of the other agents which are made, first, in order
to remove the interfiring agents so the move through e is possible, and, second,
move all agents (except a) back their vertices.

Lets denote the procedure that solves the described problem as move-la.
Next we elaborate on how this procedure can be constructed. Generally, after
move-la is defined, one can use one of the PMG algorithms to solve MAPF-
LA. E.g., in this work we use Push and Rotate algorithm [5], however other
choices are possible.

3.2 Moving Along an Edge

A possible implementation of the move-la procedure consist of the three follow-
ing steps. The first step is the sequential removal of every agent a′ from every
vertex v′ that interfere with the move along e. This can be done via finding
a path (for each interfering agent) to an unoccupied vertex and, then, sequen-
tially moving the agent along this path (push operation). The second step is to
move the a along the e. The third step is to return every a′ to its initial vertex.
However, this should be done in such a way that agent a remains at vto. We
identify three different cases that may arise while removing an interfering agent
a′ (Fig. 2).

In the first case, a path to some empty vertex can be found for agent a′ that
does not go through the vertices vfrom and vto, as well as through the edges
for which vertices vto are interfering. Thus, agent a′ can be pushed along such
a path, and the resulting sequence of moves can be reversed at the end of the
move-la operation to return agent a′ to the initial position. An example of
such a case is shown in Fig. 2a, where the green agent needs to move along the
(v1, v2). To do this, it is enough to move the blue agent to vertex v5, and after
passing the green agent, return the blue one to v3

360 S. Dergachev and K. Yakovlev

Fig. 5. Illustration of execution of PushThroughVFrom procedure. (a) The
green agent must move along the edge (v1, v2), but the red agent on the v5
vertex interferes with it. There are no paths between v5 and non-interfering
vertices, that do not pass through v1. So, it is necessary to move the green
agent at one of the neighboring vertices so that the red agent can pass (b) After
that, it is necessary to move the interfering agent from its position using the
PushAlongPath procedure (c) Next, the green agent can return to its original
position v1 (d) Thus, the green agent can move along the edge (v1, v2) (Color
figure online)

In the second case, the path of a′ can go through the vertex vfrom, but not
through the edges for which vertices vto are interfering. However, for this, it
is necessary to first push agent a from vertex vfrom.Then we need to push a′

to some non-interfering vertex. After the pushing of agent a′ completes, agent
a must be returned. The sequence of moves obtained in this way can be also
reversed to return all agents to their positions, except for some actions that
must be ignored when carrying out the reverse operation.

For the green agent on Fig. 2b, which illustrates the second case, to make
the required move, it must first go to vertex v5. After that, the blue agent will
be able to go to vertex v4, and the green agent can return to v1 and move to
v2. Finally, the resulting solution can be reversed after deleting the moves of the
green agent.

In the third case, to remove the agent from the interfering vertex, it is neces-
sary to find a path through vto (and optional through vfrom, but not through the
edge e itself), or through the edges, for which vertices vto (and optional vfrom)
are interfering. In this case, it is impossible to return the agents by a reversal,
since by the time this operation is performed, the vertex vto will be occupied by
agent a, which will lead to a collision.

In the case on Fig. 2c, the blue agent can be moved to a non-interfering vertex
only when passing through v2. Thus, after the green agent moves to v2, the blue
agent can return to its original position v3 only if the green agent misses it (e.g.,
when the blue agent leaves to v4, the green agent must go to v5 for the blue one
to return to v3).

We propose PushToEmpty and PushThroughVFrom procedures that
can be used to solve the first and the second case respectively. Let’s consider
these procedures in more detail.

Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents 361

Algorithm 1 ReversableEdgeCleaning procedure

Input: G – graph, S – current state, e = (vfrom, vto) – edge to clear,
U – blocked vertices, r – agents radius
Output:
π – resulting solution, πrev – the sequence of valid moves, which returns interfering
agents back

1: π ← [], a ← agent, that need to move by edge e, NotCleared ← {}
2: I ← interfere vertices of e, If ← unoccupied interfere vertices of e
3: for all v′ ∈ I\Ifree do
4: π′ ← [], S′ ← S
5: if PushToEmpty(G, S′, π′, v′, U ∪ {vto}, e, If , r) then
6: π ← π + π′, πrev ← πrev + π′ except moves of a
7: S ← S′, If ← If ∪ {v′}
8: else
9: NotCleared ← NotCleared ∪ {v′}

10: for all v′ ∈ NotCleared do
11: ae ← {}, π′ ← [], S′ ← S
12: π′′ ← PushThroughVfrom(G, S′, π′, v′, U , e, If , r)
13: if π′′ �= false then
14: π ← π + π′, πrev ← πrev + π′′ except moves of a
15: S ← S′, If ← If ∪ {v′}, NotCleared ← NotCleared\{v′}
16: U ← U\{vto}, πrev ← Reverse(πrev)
17: if NotCleared not empty then
18: return false
19: return π, πrev

3.3 PushToEmpty

The procedure PushToEmpty is designed to remove interfering agent a′ with-
out affecting the vertex vto and without pushing agent a′ through vfrom (Fig. 3a).
First of all, mark all edges that are interfered by the vertex vto as untraversable
(Fig. 3b). This is necessary so that when the obtained solution is reversed, there
are no conflicts with agent a who passed using the considered edge e. After that,
all possible options are considered to move agent a′ from the interfering vertex
v′. For this, a set of empty, non-interfering with e vertices is formed. For each
selected empty vertex ε, an attempt is made to find a path, avoiding using vfrom

and vto (Fig. 3c) and pushing the agent a′ along this path (using PushAlong-

Path procedure). As a result, the agent a′ from the interfering vertex is moved
so that agent a can move along the edge e (Fig. 3d).

If the path to the vertex was found, but the PushAlongPath operation
failed, then the edge, through which the operation move-la inside PushA-

longPath could not be performed, is temporarily marked as untraversable and
the path to ε has searched again. If the path to ε cannot be found, then the next
empty vertex from the list is taken. A more detailed description of the procedure
is provided in pseudocode in Appendix A.

362 S. Dergachev and K. Yakovlev

PushAlongPath. Lets consider PushAlongPath procedure. It consists of the
sequential moving of agents along path to empty vertex starting from the last
agent in the path. An important feature of this operation is that when passing a
path through empty vertices, they will remain free after the end of the operation.

Fig. 6. An example of a case where it is necessary to correctly determine the
planning order, even if there is a complete procedure for moving an agent along
an edge (Color figure online)

An illustration of this operation is shown in Fig. 4. Agents (green, red and
blue circles) must be pushed along path v1 − v6. In addition to the last vertex
v6, the path also contains intermediate empty vertices v3 and v4. The operation
starts by moving the blue agent. He goes to vertex v6. All subsequent agents
move to those vertices that were occupied by the previous ones (the red agent
moves to the vertex v5 passing through empty vertices, and the green agent
moves to the vertex v2). At the end of the operation, the first vertex of the path
is freed because the last vertex of the path becomes occupied.

3.4 PushThroughVFrom

To solve the second case of removing agent a′ from interfering vertex v′ we sug-
gest the PushThroughVfrom procedure. It consists of two stages. At the first
stage, agent a moves away to one of the neighbouring vertices n. If n is occupied,
the operation of clearing the vertex is performed, similar to PushToEmpty.

If the operation of clearing of n was performed successfully, or if n was initially
not occupied, then the operation move-la from vfrom to n is performed. Note
that if the edge e is marked as untraversable in the move-la operation, vertex
vto can be involved in it, since the obtained actions π′′ will not be included in the
reverse operation when the interfering agents return to their vertices. In the
case when at least one of the operations described above fails, then an attempt
is made to move agent a to another vertex n.

After the passage through vfrom is cleared, an attempt is made to move agent
a′ away from v′ also similarly to PushToEmpty. It is important to note that
when creating the path of agent a′, it is necessary to block the vertices that are
the current positions of the π′′ participants. This is necessary to guarantee the
return of agent a to the vertex vfrom using the reverse operation.

If it was possible to find a path to an empty vertex for agent a′, after which
the PushAlongPath was successful, then the obtained solution is saved and

Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents 363

Fig. 7. Success rates of the suboptimal version of CCBS (CCBS W10), the
suggested approach (P&R-LA) and “naive” version of the Push and Rotate

for large agents (P&R) on two different roadmaps with varied number of agents

supplemented with reverses actions π′′ to return agent a to vertex vfrom. In
addition, the solution is saved with the exclusion of action π′′, which is necessary
for the further return of agent a′ to vertex v′. A more detailed description of the
procedure is also provided in pseudocode in Appendix A.

3.5 ReversableEdgeCleaning

The sequential resolving algorithm of the first two cases can be combined into
a single ReversableEdgeCleaning procedure (Algorithm 1), the result of
which is the removal of interfering agents possible for considered cases, as well
as a sequence of moves that will return all pushed agents to their positions after
agent a passes along edge e.

The proposed algorithm consists of two stages. At the first stage, the proce-
dure PushToEmpty is launched for each occupied vertex that interferes with
the edge e (lines 6–12). If any of these vertices cannot be freed using procedure
PushToEmpty, then they are stored in the NotCleared set (lines 12). After
that, the procedure PushThroughVfrom is executed for each element of the
NotCleared set (lines 13–19).

3.6 Discussion

It should be noted that at the moment the proposed algorithm is not complete
for MAPF for large agents problem, since it does not take into account two
significant points.

The first point refers to the third case inside move-la procedure previ-
ously mentioned in the text. In this case, the path from interfering to the non-
interfering vertex lies through the vertex vto or the edges that this vertex is
interfering with. Then there is no possibility of returning the interfering agent
to its original position by reversing its actions. Thus, agent a must let agent a′

go to its initial position v′, or another path must be found that leads agent a′

to v′.

364 S. Dergachev and K. Yakovlev

The second point is that may be the case that the interfering agent a′ cannot
return to the vertex v′ at the end of move-la procedure (and move-la proce-
dure fails), but still there exists a solution in which a′ can be moved from vertex
v′ and not returned there. A trivial example of such a case is shown in Fig. 6. If
the green agent has a higher priority during planning, then the blue agent cannot
be pushed from vertex v3 and returned there after moving the green agent. How-
ever, if planning starts with a blue agent, then a solution will be found. Thus, to
construct a complete algorithm for MAPF-LA it is not enough to obtain a com-
plete procedure for moving an agent along an edge. One of the possible solution
to this problem is the choice of the correct planning order, as it is done in the
Push and Rotate algorithm for solving not bi-connected instances.

4 Experimental Evaluation

We incorporated the suggested procedures to the well-known MAPF algorithm
Push and Rotate, so it can be used to solve MAPF-LA instances. We denote
it as P&R-LA. As one of the baselines we have also implemented a “naive”
version of the Push and Rotate for large agents that simply halts when trying
to move an agent along an edge with other interfering agents present. This version
is denoted as, simply, P&R. Finally, the main baseline we were comparing with
was the well-known CCBS algorithm [1] (we used the official implementation
available on Github).

We evaluated planners on two different graphs (roadmaps) which were used
in the CCBS paper: sparse and dense. The sparse roadmap contains 158 vertices
and 349 edges, while the dense one – 878 vertices and 7341 edges. Originally,
these roadmaps were automatically generated based on the den520d map from
the MovingAI MAPF benchmark set [8]. An illustration of the roadmaps is
shown in Fig. 7.

For each roadmap 25 scenarios were created, each one involving with 40
non-overlapping start and goal vertices. In each scenario, the first n start-goal
pairs were selected, and then the evaluated algorithm was launched with a time
limit of 30 s. In the experiment, the value of n varied from 2 to 40. We also set
the sub-otimality factor for CCBS to 10, which notably speeds up the search
(this feature is not described in the original paper, however is supported in the
authors’ code).

The resultant success rates, i.e. the fractions of the solved instances per fixed
number of agents, are presented in Fig. 7 (the higher - the better). As one can see,
our modification of Push and Rotate outperforms the competitors, especially
when the number of agents goes up. E.g. our algorithm managed to solve 80%
of tasks with 40 agents on the sparse roadmap, while the success rate of both
competitors was close to zero. The reason why CCBS failed almost always is
that the density of the agents, i.e. the ratio of agents’ number to the number
of graph vertices/edges is high and no easy solution is possible. This explains
why CCBS copes better with the same number of agents on the dense roadmap
– here there are much more graph vertices/edges that the algorithm can use

Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents 365

to find non-conflicting plans. Notably, the reasons why our algorithm failed to
solve instances invovling large number of agents differ for different maps. In
sparse roadmap it terminated without providing a solution, while in the dense
one it was not able to finish within the time limit. Thus, we infer, that a more
efficient implementation of our method can actually provide a better success rate
on the dense map.

5 Conclusion

In this work, we have considered the problem of designing a complete algorithm
for a challenging variant of the multi-agent pathfinding problem when the size of
the agents has to be taken into account (MAPF-LA). We elaborate on one of the
core procedures such algorithm should incorporate, i.e. the procedure that clears
an edge to allow for one agent to use this edge for a safe transition. We embed our
implementation of this procedure to the well-known MAPF algorithm Push and

Rotate enabling it to solve MAPF-LA problems. The results of the empirical
evaluation provided us with the clear evidence that the resultant algorithm is
able to find solutions for non-trivial MAPF-LA instances involving dozens of
agents under the strict time limits (while its competitors often fail to do so).

Indeed, the main direction of future research is to develop a provably com-
plete algorithm for solving MAPF-LA, as the method proposed in this work is
only a step towards this goal (as it does not guarantee completeness).

A PushToEmpty and PushThroughVfrom procedures

Algorithm 2 PushToEmpty procedure
Input: G – roadmap, S – current state, π – solution, U – blocked vertices,
v′ – interfering vertex, e = (vfrom, vto) – edge to clear, r – agents radius, If – unoccupied vertices
interfering to e.

1: E ← edges for which vertex vto is interfering, G′ ← remove E from G
2: for all ε in EmptyVertices(G, S) \If do
3: while true do
4: p ← path from v′ to ε in G′ \U ∪ {vfrom})
5: if p = false then
6: break while
7: π′ ← [], S′ ← S, ef ← PushAlongPath(G′, S′, π′, p, U)
8: if ef = false then
9: π ← π + π′, S ← S′, return true
10: else
11: Remove edge ef from G′

12: return false

366 S. Dergachev and K. Yakovlev

Algorithm 3 PushThroughVfrom procedure

Input: G – roadmap, S – current state, π – solution, U – blocked vertices, v′ – interfering vertex,
a′ – agent from v′, e = (vfrom, vto) – edge to clear, r – agents radius, If – unoccupied vertices
interfering to e.

1: E ← edges for which vertex vto is interfering
2: for all n ∈ Neighbours(G, vfrom) \U ∪ {v′} do
3: G′ ← remove edges E from G, ef ← false, p ← true
4: if n is occupied then
5: for all ε ∈ EmptyVertices(S) \(If ∪ {vto}) do
6: ef ← false
7: while true do
8: S′ ← S, π′ ← [], p ← path from n to ε in G′ \U ∪ {vfrom, vto, v′}
9: if p = false then
10: break while
11: ef ← PushAlongPath(G′, S′, π′, p, U ∪ {vto})
12: if ef = false then
13: break for
14: Remove edge ef from G′

15: if p =false or ef �=false then
16: continue with next n
17: G′′ ← remove edge e from G, π′′ ← []
18: if not move-la(G′′, S′, π′′, vfrom, n, U , r) then
19: continue with next n
20: P ← If∪ vertices of π′′ ∪ interfere vertices of (vfrom, n)
21: U ′ ← U ∪ {vto}∪ current positions in S’ of agents from π′′

22: for all ε ∈ EmptyVertices(S) \P do
23: ef ← false
24: while True do
25: S′′ ← S′, π′′′ ← [], p ← path from v′ to ε in G′ \U ′

26: if p = false then
27: break while
28: ef ← PushAlongPath(G′, S′′, π′′′, p, U ∪ {vto})
29: if ef = false then
30: π ← π + π′ + π′′ + π′′′, remove all moves of a′ from π′′

31: π ← π + reverse(π′′), return π′ + π′′′

32: else
33: Remove edge ef from G′

34: return false

References

1. Andreychuk, A., Yakovlev, K., Boyarski, E., Stern, R.: Improving continuous-time
conflict based search. In: AAAI Conference on Artificial Intelligence, vol. 35, pp.
11220–11227 (2021)

2. Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In: SoCS 2014,
vol. 2014-January, pp. 19–27 (2014)

3. Boyarski, E., et al.: ICBS: Improved Conflict-Based Search Algorithm for Multi-
Agent Pathfinding. In: IJCAI 2015, pp. 740–746 (2015)

4. Čáp, M., Novák, P., Kleiner, A., Selecký, M.: Prioritized planning algorithms for
trajectory coordination of multiple mobile robots. IEEE Trans. Autom. Sci. Eng.
12(3), 835–849 (2015)

5. De Wilde, B., Ter Mors, A.W., Witteveen, C.: Push and rotate: Cooperative multi-
agent path planning. In: AAMAS 2013, vol. 1, pp. 87–94 (2013)

6. Sharon, G., Stern, R., Felner, A., Sturtevant., N.R.: Conflict-based search for opti-
mal multiagent path finding. Artif. Intell. 218, 40–66 (2015)

7. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Meta-agent conflict-based
search for optimal multi-agent path finding. SoCS 2012(1), 97–104 (2012)

Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents 367

8. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: SoCS 2019, pp. 151–158 (2019)

9. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected
graphs. In: ICRA 2009, pp. 3613–3619 (2009)

10. Walker, T.T., Sturtevant, N.R., Felner, A.: Extended increasing cost tree search
for non-unit cost domains. In: IJCAI 2018, vol. 2018-July, pp. 534–540 (2018)

11. Yakovlev, K., Andreychuk, A., Vorobyev, V.: Prioritized multi-agent path finding
for differential drive robots. In: ECMR 2019, pp. 1–6 (2019)

12. Yu, J., Rus, D.: Pebble motion on graphs with rotations: efficient feasibility tests
and planning algorithms. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen,
A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 729–746.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16595-0 42

https://doi.org/10.1007/978-3-319-16595-0_42

	Towards a Complete Multi-agent Pathfinding Algorithm for Large Agents
	1 Introduction
	2 Problem Statement
	3 Suggested Approach
	3.1 Preliminaries
	3.2 Moving Along an Edge
	3.3 PushToEmpty
	3.4 PushThroughVFrom
	3.5 ReversableEdgeCleaning
	3.6 Discussion

	4 Experimental Evaluation
	5 Conclusion
	A PushToEmpty and PushThroughVfrom procedures
	References

