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4 Université de Lorraine and CNRS, CRAN UMR 7039, 2 avenue de la Forêt de

Haye, 54518 Vandœuvre-Lés-Nancy Cedex, France
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Abstract. Endoscopy is the most widely used medical technique for can-
cer and polyp detection inside hollow organs. However, images acquired by
an endoscope are frequently affected by illumination artefacts due to the
enlightenment source orientation. There exist two major issues when the
endoscope’s light source pose suddenly changes: overexposed and underex-
posed tissue areas are produced. These two scenarios can result in misdiag-
nosis due to the lack of information in the affected zones or hamper the per-
formance of various computer vision methods (e.g., SLAM, structure from
motion, optical flow) used during the non invasive examination. The aim
of this work is two-fold: i) to introduce a new synthetically generated data-
set generated by a generative adversarial techniques and ii) and to explore
both shallow based and deep learning-based image-enhancement methods
in overexposed and underexposed lighting conditions. Best quantitative
results (i.e., metric based results), were obtained by the deep learning-
based LMSPEC method, besides a running time around 7.6 fps.

Data available at: https://data.mendeley.com/datasets/3j3tmghw
33/1.
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1 Introduction

1.1 Medical Context

Endoscopy is the most effective and common used examination tool to prevent
colon cancer by screening for lesions. This technique is used to examine the
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human colon through a flexible tube called endoscope, while a camera attached
at the tip gathers visual information in real-time. Additionally to the camera, a
point light provides the lighting source during the surgery.

On the other hand, Minimally Invasive Surgery (MIS) is a type of endoscopic
procedure that is increasingly becoming a mainstream medical procedure, over-
taking traditional surgical operations and treatments. Such endoscopic interven-
tion entails a less traumatic experience and less pain for the patient, quicker
recovery after surgery and shortened hospital stays [9].

Both endoscopic examinations and MIS procedures require a great deal of
expertise from the surgeon or specialist and demand complicated training and
certifications. Despite of this, there is ample evidence in the literature that during
the vast majority of endoscopic examinations, a great deal of regions of interest
are missed [13], which poses a serious problem, as they might contain suspicious
regions or other lesions such as polyps. Moreover, such issues make the inspection
by the physician a strenuous and time consuming task. In general, these problems
stem from how rapidly the lighting conditions in the endoscopic video can change
from frame to frame (see Fig. 1). In fact, a highly non-linear illumination response
produces endoscopic frames which are highly lit in some sections (overexposed)
and poorly lit (underexposed) in other areas.

Additionally to affecting strongly the efficiency in the lesion detection by the
doctor, the highly changing illumination conditions in endoscopic settings also
hampers the performance of AI-based tools that are being increasingly developed
for Computer-aided Detection (CADe) and Computer-aided Diagnosis (CADx)
applications and in MIS and laparoscopy, among other areas of research, as we
will discuss next.

Fig. 1. Light condition changes in sequential video frames. Frame 1 shows a normal
condition. Later frames show poor conditions while light points to the closest object.

1.2 Motivation for Our Proposal

In recent years computer vision (CV) has been playing significant role in endo-
scopic explorations aided by novel deep learning (DL) techniques, which give
computers the visual and temporal learning abilities to understand complex sur-
gical procedures in hollow organs [9]. The integration of such techniques is cur-
rently being investigated also for laparoscopy and MIS applications (i.e., such as
instrument tracking, endoscopic view enhancement and suspicious lesion track-
ing [9]). Among these applications, 3D reconstruction seems to be a promising
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solution for the poor depth perception which prevents the full-fledged adoption
of the above-mentioned techniques in MIS and Robotic-assisted surgery (RAS).

However, as with other applications of computer vision in endoscopy, proper
illumination conditions is an aspect of utmost importance for attaining a high
performance in applications such a CADx and such reconstruction methods. In
the latter case, the techniques traditionally employed for recovering 3D informa-
tion, such as Simultaneous Localization and Mapping (SLAM) [7], Structure for
Motion (SfM) and Optical Flow (OF) [15], work poorly on endoscopic images.
This is due to strong photo-metric variations caused by moving light sources,
moist surfaces, occlusions as well as reflections for surgical instruments that
provoke underexposed and overexposed video frames [13].

As a matter of fact, 3D reconstruction techniques rest on the constraint of
brightness constancy [15]. This constraint assumes that the values in intensity
of the pixels remain constant or with a few variations, which usually holds in
applications in natural imagery (i.e., photography) [1] or autonomous driving
[8]. However, in endoscopic procedures, as Fig. 1 shows, the brightness constancy
assumption does not hold due to the numerous illuminations variations when the
camera and light move through the organs.

Therefore, the use of image enhancement techniques for pre-processing such
images is a mandatory step to carry out a robust 3D reconstruction [18] and to
develop reliable and robust CADe/CADx tools.

1.3 Contributions and Organization of the Article

Over the decades, multiple image enhancement techniques have been explored
for illumination adaptation, exposure correction and high-dynamic-range tone
mapping in several applications, to cite a few. Nevertheless, most of the proposed
methods for exposure correction have been designed to deal either with low-light
high-light settings separately, due to the different characteristics of these enhanc-
ing tasks in different areas. In enhancing endoscopic images, these methods have
presented a general lack of robustness due to the fact that in endoscopy images
both problems (under/over exposure) are present simultaneously.

Additionally, as we will discuss next, most of the machine learning based
approaches to IE require large amounts of paired-data images (i.e., corrupted and
non-corrupted ground truth images) for training and testing purposes. However,
to the best of our knowledge, such a large database does not exist for testing
image enhancement algorithms in endoscopic images.

Therefore, in order to mitigate the problems related to large variations in
illumination in endoscopic interventions, in this paper we present novel synthetic
dataset for testing and evaluating endoscopic image enhancement methods. In
order to attain this goal, of our proposal consists of the following contributions:

– 1. We introduce a novel dataset containing synthetically generated over and
under exposure frames, in tandem with their respective ground truth images.
We believe that this dataset can serve as a cornerstone for testing well
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known IE methods and provide a baseline for future developments in ML
for endoscopy and in DL-based image enhancement methods.

– 2. We perform a thorough evaluation of traditional and DL-based image
enhancement (IE) methods in order to highlight the importance of the ground
truth data and the scarcity of bidirectional (under/over exposure) methods.

The rest of this paper is organized as follows. In Sect. 3 we present the
datasets from which the raw data was obtained, besides the methodology utilized
for creating the synthetic dataset and both traditional and DL-based methods
for enhancing the synthetic data. In Sect. 4 we provide a thorough description of
the data preparation and training setup for our experiments. Also, we present a
brief context about metrics implemented and their respective results. Finally, in
Sect. 5, we give our conclusion and an ideas for future work.

2 State of the Art

Mainly, image enhancement consists of two main domains i) spatial domain that
involves direct manipulation of pixels, and ii) frequency domain that involves
Fourier transformation of the input image [22]. IE methods improve the percep-
tion of the image using spatial domain, frequency domain and a combination
of both methods in order to output a modified image on its contrast, hue, or
brightness.

These methods have been approached using either traditional or deep learn-
ing techniques. Some examples of the traditional methods group on the spa-
tial domain are Histogram Equalization (HE) [19], Dehazing-based methods [17]
and curve adjustment approaches [11]. Another category of image enhancement
approaches are those based on Retinex theory, which decompose the images in
reflection and illumination components [22]; examples of these methods are Sin-
gle Scale Retinex (SSR) [16] and multi-scale Retinex (MSR) [16]. These methods
suffer from a limitation in model capacity for the decomposition and it is difficult
to implement successfully in endoscopy scenarios due to the challenging lighting
changes.

Recently, deep learning based methods have been explored for achieving
more accurate and real-time image enhancement procedures with successful
results. However, most the works in the literature have been oriented to the low-
light image enhancement such as deep-learning networks based on the Retinex
assumption, which combines Retinex assumption with the Convolutional Neural
Networks (CNN) [22].

Furthermore, although these methods have shown great promise in natural
images, many of them cannot be directly applied to endoscopic images or videos.
First of all, most of the existing methods can either enhance either under-or
over-exposed images but not both. For instance, Deep UPE [20], or the work
presented in [25,26] are examples of methods that can be applied successfully in
under-exposed natural images, whereas just a few methods have been explored
to correct both under-exposed and over-exposed images. Recently, Afifi et al.
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[1] proposed a novel deep learning based technique to enhance images in both
directions under- and over-exposure in a supervised manner.

Herein, we benchmark this technique against traditional methods in order
to assess our real-synthetic paired dataset and highlight the need for reliable
and standard datasets for future DL-based IE methods in endoscopic proce-
dures. Nonetheless, another requirement for developing usable IE methods in
endoscopy is related their inference time or latency. Most of the works found in
the literature take several seconds to enhance a single image, hampering their
use in real-time image processing applications such as video processing of under-
water [12], X-ray imaging [14] and restoration in video endoscopy [9]. Endoscopy
is an application area which requires dynamic and real-time image enhancement,
which additionally needs to be accurate in the sense of not introducing any arti-
facts and we believe that the work presented in [1] can serve a launching pad to
satisfy these requirements.

Figure 2 shows some examples of endoscopic video frames with some of these
examples. These dramatic changes impede the development of robust computer
vision methods for CADe and CADx among other tasks such as MIS or CIS
(computer integrated surgery). Besides, it has been demonstrated that image
enhancement pre-processing techniques can significantly boost the performance
of 3D reconstruction pipelines using endoscopic images [26].

As detecting artifacts such as under and over exposed frames is so important
for a variety of applications, and in other to improve the applicability of CADe
and CADx application endoscopy, several datasets and challenges have been
proposed [2,3]. The focus of these challenges has been to foster the development
of real-time methods for detecting artefacts such as bubbles, instruments, blood
or even some lesions, where under and overexposure play a major role, as they
are typically discarded in many automated procedures. However, many computer
vision algorithms such as SfM or SLAM require as many frames as possible for
maximizing the quality of the obtained results and as such, discarding such
frames is not an option and image enhancement is thus necessary.

An additional problem is that, to the best of our knowledge, datasets con-
taining both pairs of ground truth (clean images) and corrupted images (with
exposure errors) does not exist in for endoscopic imaging. This is in stark con-
trast to the more conventional/mainstream computational photography research
field, in which several standard datasets have been proposed and are widely used
for testing new algorithms and architectures [6,22].

Thus, in order to develop and test new image enhancement methods in
endoscopy is necessary to develop and test such dataset from the ground up.
The contribution of the work presented in herein is thus creation of such a novel
real-synthetic paired dataset. For doing so, we leverage three existing endoscopic
datasets and a Generative Adversarial Networks (GANs) approach for transfer-
ring under and over exposed over clean images. In this manner, we have both a
reference image and a corrupted images over which reference-based metrics (i.e.
SSIM) can be applied in order to assess the performance of newly developed
enhancement methods.
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(a) Without exposure error. (b) Overexposure. (c) Underexposure.

Fig. 2. Example of endoscopic frames exhibiting the types of artefacts that we are
interested on removing through image enhancement methods

3 Data and Methodology

3.1 Data

As briefly discussed above, the data for our experiments was obtained from three
different sources, none of them containing enough information for doing image
enhancement with deep learning-based methods, i.e., these are not datasets with
paired frames for applying methods where we have access to the corresponding
ground truth. The chosen datasets are: the EAD2020 Challenge dataset [2],
EAD 2.0 from EndoCV2022 Challenge dataset [3] and the HyperKvasir dataset
[5]. They were selected for our experiments as they contain single frames and
also sequential frames from several hollow organs. Figure 2 shows examples of a
normal frame (without exposure error) and two examples containing exposure
problems that were extracted from the datasets.

EAD2020 Challenge Dataset. The Endoscopy Computer Vision Challenge
(EndoCV2020) addressed two challenges both focused on finding novel methods
for detection and segmentation in the endoscopic videos: Endoscopy Artifact
Detection (EAD2020) and Endoscopy Disease Detection (EDD2020) [2] chal-
lenges. The goal of the EDD2020 sub-challenge was to develop methods for
detecting and segmenting visible diseases. For this purpose, a full dataset com-
prised of images, annotations and masks was created from video frames and
annotated by experts from various institutions. However, the nature of the chal-
lenge involves only classes related to diseases. On the other hand, EAD2020 chal-
lenge comprises a variety of endoscope positions, organs, disease/abnormality
and image artefacts. All frames were annotated by experts with 8 different
classes; in particular, two classes are of interest to our research: contrast and
saturation artefacts. These classes denote what is well-known in photography as
overexposure and underexposure errors but in specific areas on the image. From
the 2531 images, only 770 frames were labeled with underexposure (contrast)
and 249 with overexposure (saturation). Figure 2 shows two examples from the
dataset containing these two kinds of artifacts.
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EAD2.0 Dataset. Similarly to EAD2020 Challenge Dataset in Sect. 3.1,
EAD2.0 Dataset [3] consists of multi-center and diverse population sub-datasets
with tasks for detection and segmentation but focus on assessing generalizabil-
ity of algorithms. This dataset contains more sequence/video data and multi-
modality data from different centers. Particularly, the dataset consists of 24
sequences with 1106 video frames with multi-instance labels for training. How-
ever, unlike the EAD2020, EAD2.0 dataset was not labeled with any class related
to underexposure errors. In Sect. 3.2 we will explain briefly the way we filtered
out the dataset in order to have images with exposure errors.

HyperKvasir Datset. Borgli et al. in [5] presented the largest image and video
dataset of the gastrointestinal tract available in literature with 110,079 images
and 374 videos. The data was collected during real gastro- and colonoscopy
examinations. The dataset is split into labeled images (10,662) and unlabeled
images (99,417). Since this dataset had no a specific purpose, data was not
annotated, and in fact the only labels that it contains are related to the organ
type that the video frames comes from. In present work we only take the set of
labeled images.

3.2 Methodology

Given a set of raw endoscopic frames collected from the three datasets previously
mentioned, our pipeline aims to i) train an object detector to classify frames with
and without exposure errors over unlabeled datasets (see Fig. 3a), ii) manually
filter out non-informative frames, iii) train a GAN for creating synthetic frames
with exposure errors (see Fig. 3b), and iv) quantitatively and qualitatively assess
our dataset on various types of image enhancement methods: traditional algo-
rithms based on histogram equalization, models based on Retinex theory and
deep neural network architectures.

Data Preparation. We discarded non-informative frames. For instance, fully
dark, bright or blurry images, were filtered out. After this process, we ended
up with 7,064 images, 1049 from EAD2020, 654 from EAD2.0 and 5361 from
HyperKvasir. As we mentioned before, the EAD2020 dataset already contains
annotations about exposure errors of our concern, hence we trained a YOLOv4
object detector [4] with data from EAD2020 [2] and we obtained reliable results
on detecting exposure errors. Finally, the model was applied to detect those
instances in EAD2.0 [3] and HyperKvasir [5]. Therefore, as shown in Fig. 3,
the object detector acts as a frame classifier, since it outputs frames without
exposure errors, and with over and under exposure errors.

Image-to-Image Translation. Image-to-image translation is an application
of GANs which manage to translate from one representation of an image to
another, or rather it does style transfer. For instance, a scene may be rendered
by a gray-scale image, RGB image or edge sketches [8].
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One of the contributions of the present work is to use image-to-image trans-
lation [8] to take normal endoscopic frames and transfer to style with over- and
underexposure. For implementing this task, we used the CycleGAN architecture
[27] since the main problem to tackle is the lack of paired data, thus CycleGAN
is a promising method for working with our unpaired data.

Image Enhancement. One of the concerns of this work has been to find image
enhancement methods that perform the restoration of both types of exposure
errors, since these problems are often found simultaneously in endoscopic exami-
nations. Contrary to other methods in the literature, the model proposed by Afifi
et al. [1]is capable of handling both problems in natural images with accurate

(a) Object detector for classifying frames.

(b) Pipeline for creating our real-synthetic endoscopy dataset for IE.

Fig. 3. Overall pipeline of the methodology
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results and with a very low latency and we will used as a baseline for comparison
traditional image processing algorithms as well as for future developments.

The approach proposed by the authors, known as Learning Multi-Scale Photo
Exposure Correction (LMSPEC) extracts random patches of three different sizes
(128 × 128, 256 × 256 and 512 × 512) and decomposes each patch in four-level
frequencies, i.e., it makes a Laplacian Pyramid (LP) of four levels. Then, each
level of the resulting LP is utilized as input of a set of sequential U-Net-like
sub-networks. For each patch, an L1 loss-based loss functions is proposed, aimed
to store global color information besides detail information. A discriminator
network is also for computing an adversarial loss aimed to preserve realism in
the corrected patch. In this work, we implemented a quantitative and qualitative
benchmark using i) traditional methods: RLBHE [28] and FHSABP [19] based
on histogram equalization, and LIME [10] and DUAL [24] based on Retinex
theory, and ii) DL-based method: LMSPEC [1].

3.3 Training Setup

All our models were trained and the experiments were executed on an NVIDIA
DGX-1 system with eight Tesla V100 GPUs.

YOLOv4 Setup. Frames annotated by experts provided on the EAD2020 chal-
lenge [2] allowed us to train YOLOv4 object detector (for classifying frames
without exposure errors, under- and over-exposed) with 90% for training and
10% for testing. For avoiding over-fitting, data augmentation techniques such
as rotations, splits, blurry, and hue change, were applied. The hyper-parameters
were set as follows: the number of classes were 2 (overexposure and underexpo-
sure), thus the number of filters on each convolutional layer was 30. The training
steps was set to 6000 with an initial step decay learning rate of 0.01 and divided
by factor of 10 at the 4,800 steps and 5,400 steps. The momentum was set as
0.9 and weight decay as 0.0005.

CycleGANs Setup. For the first experiment all frames with exposure errors,
i.e., 1, 296 overexposed and 1, 289 underexposed, were taken as adversarial dis-
criminators DY . On the other hand, the 4, 478 normal frames were split up into
65% for training and 35 %for testing. The hyper-parameters were set for both
experiments as follows: 150 epochs, ADAM optimizer, learning rate of 0.0002,
decay β1 of 0.5, decay β2 of 0.999, starting decay from epoch 100, cycle loss
weight λcyc of 10 and identity loss weight λid of 5.

LMSPEC Setup. We perform the same split for manage both exposure errors,
70% for training, 27% for testing and 3% for validation. We only perform experi-
ments on patches with dimensions 128×128 and 256×256. The hyper-parameters
were setup for both experiments as follows: ADAM optimizer, decay rate β1 of
0.9, decay β2 of 0.999, a learning rate of 0.0001 for the generator and 0.00001 for
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the discriminator; for patches with dimension 128 × 128 we used a mini-batch
size of 32, 40 epochs and at epoch 20 the learning rate was decayed by factor
of 0.5. For patches with dimension 256 × 256 we used a mini-batch size of 8, 30
epochs and each 10 epochs the learning rate was decayed by the same factor; the
adversarial loss was activated only for patches with dimensions 256 × 256 after
15 epochs.

3.4 Metrics

One of the drawbacks of implementing a framework like ours, which is based
in GANs and synthetic datasets, is that there are not other works to compare
against our results. Therefore, for evaluating our image enhancement results we
make use of well-known of reference-based metrics, thus the need for a paired
dataset with ground truth images. For instance, in [23] P. Welander et al. per-
formed a perceptual study for evaluating the realism on the resulting synthetic
images. Unlike them, herein we performed a perceptual study for evaluating the
quality of the generated images. First of all, we use the Structure Similarity Index
(SSIM) for filtering out similar frames, whereas the Main Square Error (MSE)
on the gray-scale domain was used for filtering out very darkened/brightened
frames, or for discarding frames without changes on light conditions after the
GAN style transfer.

On the other hand, for evaluating our image enhancement experiments we
implemented a statistical analysis, ground truth dependent evaluation. We used
the Mean Squared Error (MSE) to evaluate the pixel-wise average squared errors
in the image. We also make use of the Peak Signal-to-Noise Ratio (PSNR) and
of Structural Similarity Index Metric (SSIM) [21] for evaluating quantitatively
the quality of the enhanced images results.

4 Experiments and Results

We implemented three main experiments. i) we created a frames classifier by
training and testing YOLOv4 object detector, ii) we created a paired real-
synthetic dataset by training and testing CycleGANs, and iii) we utilized our
dataset for exposure correction with traditional methods, and training and test-
ing LMSPEC to highlight the importance of a paired data.

4.1 Results

After implementing the CycleGAN model, we obtained 1,564 frames for each
type of exposure error. However, some frames were not useful or sufficiently
informative, thus we carried out a statistical analyses based on the MSE and
SSIM metrics which were used to establish boundaries that separate informa-
tive from non-informative frames. For our dataset, the range for the SSIM was
between 0.6 ≤ SSIM < 0.9; on the other hand, the value of the MSE over
gray-scale levels boundaries was 100 < MSE < 1, 500 for overexposure and



A Novel Hybrid Endoscopic Dataset for Testing ML-Based IE Methods 277

100 < MSE < 750 for underexposure errors. After this procedure, we finally
obtained a dataset with 985 underexposed and 1,231 overexposed paired frames,
that is both ground truth and corrupted images.

Table 1 reports the quantitative results of each method applied to our dataset,
in which numbers in bold were the best results for each metric. As it can be
inferred from the table, LMSPEC achieves a very competitive performance for
both types of exposure errors in terms of noise removal and the preservation of
the structure of the image.

Table 1. Results for full reference-based quality experiments.

Method Overexposure Underexposure Inference time

MSE↓ PSNR↑ SSIM↑ MSE↓ PSNR↑ SSIM↑
LIME 0.048 8.566 0.597 0.054 17.331 0.699 44.0236

DUAL 0.043 0.907 0.726 0.053 20.012 0.708 30.9965

FHSABP 0.036 16.021 0.631 0.034 18.195 0.633 0.2953

RLBHE 0.051 19.425 0.746 0.055 21.053 0.723 0.2996

LMSPEC 0.046 24.061 0.812 0.964 23.863 0.793 0.1316

(a) Overexposure.

(b) Underexposure.

Fig. 4. Reference-based PSNR and SSIM evaluation results.
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On the other hand, Fig. 4 shows distribution and density of the computed
metrics (in the form of box and plots) obtained for every applied enhanced
method. It turns out that LMSPEC got higher values for both compared metrics,
and the results tend to be more robust as they show very low variance. Figure 5
shows qualitatively results of enhancement with all methods.

This qualitative comparison is very much required as by comparing methods
in terms of MSE might suggest that the Retinex Theory-based DUAL method
perform as well as LMSPEC. However, as it can be observed in Fig. 5, this is
far from the truth, as a comparison between the 4th and 7th columns shows:
DUAL is in general not able to remove overexposure artefacts, and in some cases
it makes the problem worse.

Fig. 5. Results of our methods: first column real images, second column GANs-made
synthetic images with exposure error, and third column the image corrected. First pair
of rows, we show two overexposed cases, and second pair underexposed cases.

Another advantage of LMSPEC over DUAL and other more traditional meth-
ods pertains the processing or inference time. As it can be observed in Table 1,
more traditional methods require very long processing times (44 and 30 s in aver-
age for image for LIME and DUAL, respectively) whereas LMSPEC requires
0.13 s, attaining a very good performance (around 7.6fps).

Limitations. The implementation of GANs for creating the synthetic data with
exposure errors implies stochastic results, therefore this methodology does not
allow us to control the level of darkening or lightening on the output images, as
well as the regions where these errors are induced.
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5 Conclusion and Future Work

In this paper we have proposed a pipeline for generating a novel dataset which
aim is to provide a baseline for comparing image enhancement methods. The
dataset was built leveraging images from other publicly available datasets for
finding suitable uncorrupted and under and over exposed images using an object
detector. This intermediate dataset in the used for transferring the desired arti-
facts into the uncorrupted images, effectively enabling us to create a paired
dataset that can be used for reference-based testing purposes. After a filtering
process, this dataset was validated by expert endoscopists in our team.

However, some of the synthetic images still present drawbacks such as noise,
color changes and other types distortions. We consider that a longer training,
in tandem with a larger dataset or data augmentation techniques would allevi-
ate this issue. Nonetheless, we demonstrate that this dataset is versatile enough
for testing traditional and more advanced image enhancement methods such as
LMSPEC. As our results suggest, this method has shown remarkable results,
but further tests and improvements are necessary to make it useful for endo-
scopic settings. For instance, the model can introduce some artifacts in some
images; this aspect needs to be properly characterized and taken into account
for designing novel loss functions (i.e. perceptual loss) that preserve color and
texture more effectively. Secondly, there are some areas of improvement in order
to make this model to be able to run in real time (i.e., 24 FPS).
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