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Abstract. The recently published Interval-valued Long-term Cognitive
Networks have shown promising results when reasoning under uncer-
tainty conditions. In these recurrent neural networks, the interval weights
are learned using a nonsynaptic backpropagation learning algorithm.
Similar to traditional propagation-based algorithms, this variant might
suffer from vanishing/exploding gradient issues. This paper proposes
three skipped learning variants that do not use the backpropagation pro-
cess to deliver the error signal to intermediate abstract layers (iterations
in the recurrent neural network). The numerical simulations using 35
synthetic datasets confirm that the skipped variants work as well as the
nonsynaptic backpropagation algorithm.

Keywords: Interval-valued Long-term Cognitive Networks · Interval
sets · Nonsynaptic learning

1 Introduction

In the last years, several neural reasoning models based on Fuzzy Cognitive
Maps (FCMs) [8] have been proposed. The need for models having improved
approximation capabilities was concluded in the theoretical analysis presented
by Concepción et al. [3]. Short-Term Cognitive Networks (STCNs) [14] is one of
these models that attained superior predictive power by removing the constraint
that weights should be confined to [−1, 1] interval.
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Despite the improvements compared with traditional FCM models, STCNs
often struggle to establish long-term dependencies. Long-term Cognitive Net-
works (LTCNs) [13] tried to overcome this issue by using a long-term reasoning
mechanism. In principle, LTCNs allow learning longer dependencies with the aid
of a nonsynaptic backpropagation learning algorithm.

The low simulation errors of LTCNs and their ability to retain the network
interpretability have motivated the inclusion of mechanisms to deal with the
uncertainty that may be present in the knowledge provided by human experts.
The Long-term Grey Cognitive Networks (LTGCNs) [12] emerged as a partial
solution to this issue. Even when the domain experts can express the weights
using interval grey numbers in this model, the reasoning and learning processes
are performed after whitening the interval grey numbers. In other words, neither
the reasoning nor the learning steps fully handle the uncertainty. In contrast, the
Interval-valued Long-term Cognitive Networks (IVLTCNs) [5] deal with complex
systems involving uncertainty through a structure expressing the activation val-
ues and weights as interval grey numbers. The model neither imposes restrictions
on the weights nor performs a whitenization process. A nonsynaptic backprop-
agation (IV-NSBP) is used to adjust the learnable parameters considering the
uncertainty in the network without affecting the model’s performance and retain-
ing the knowledge provided by experts.

Unfortunately, the IV-NSBP method might suffer from vanishing/exploding
gradient issues, a difficult task when training recurrent neural networks [2]. This
paper presents three skipped IV-NSBP learning algorithms that attempt to cir-
cumvent these issues. The skipped variants modify the IV-NSBP algorithm by
using different weights during the forward pass and backward pass in the training
phase. Moreover, only two parameters associated with the generalized sigmoid
transfer function are adjusted. It should be stated that our nonsynaptic versions
are based on the algorithms presented in [11]. The simulation results show that
by performing a skipping operation, we can bring the error signal directly from
the output layer to any intermediate iteration (hidden abstract layer) without
the need for the backpropagation process.

The outline of this paper is as follows. Section 2 briefly describes the IVLTCN
model and the original IV-NSBP learning algorithm, while Sect. 3 introduces
the skipped IV-NSBP variants proposed in this paper. In Sect. 4, the numerical
simulations using synthetic datasets and the ensuing discussion of results are
presented. Section 5 concludes the paper.

2 Interval-valued Long-term Cognitive Networks

The recently proposed IVLTCN model [5] is a recurrent neural network to deal
with uncertainty evidenced with interval grey numbers. In this knowledge-based
reasoning system, weights and the neuron’s activation values are expressed as
interval-valued grey numbers. Each problem variable is mapped into a grey neu-
ral concept, thus explicit hidden neurons are not allowed. The iterative reasoning
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process of the IVLTCN model is formalized below:
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stands for the grey transfer function associated with the i-th neuron in the t-th
iteration, M is the number of grey neurons, and a

±(t+1)
i (k) represents the grey

activation value for a given initial condition k. Moreover, w±
ji is the grey weight

connecting two neurons, while λ
±(t)
i and h

±(t)
i are the parameters of the grey

sigmoid function. The λ
±(t)
i parameter is the function slope and h

±(t)
i stand for

the sigmoid offset. These parameters will be adjusted during the nonsynaptic
learning phase, similar to a standard backpropagation algorithm [16] [15].

The parameters L±
i and U±

i are two white numbers that denote the lower
and upper limits for the activation value of each neuron. These parameters are
not optimized during the learning phase. Instead, they should be configured by
experts taking into account the problem domain.

The IVLTCN model takes from LTCNs model [13] the structure and learn-
ing algorithm, and from the Grey System Theory (GST) [4] the grey arithmetic
operations to perform the neural reasoning process. According to GST, an inter-
val grey number can be denoted as a± ∈ [a−, a+] | a− � a+ where (a+) is the
upper limit and (a−) is the lower limit [17]. If the grey number a± only has an
upper limit, then it is denoted by a± ∈ (−∞, a+]. If the grey number only has
a lower limit, then it is denoted by a± ∈ [a−,+∞). If both limits are unknown,
then a± ∈ (−∞,+∞) is a black number. Finally, it is said that the number is
white if both limits have the same value [10], that is to say, a− = a+.

Let a± and b± be two interval grey numbers. The arithmetic operations for
these numbers are formalized as follows:

a± + b± ∈ [a− + b−, a+ + b+] (3)

a± − b± ∈ [a− − b+, a+ − b−] (4)

a± × b± ∈ [min{a− × b−, a+ × b+, a− × b+, a+ × b−},

max{a− × b−, a+ × b+, a− × b+, a+ × b−}]
(5)
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= [(a−)x, (a+)x].
(7)
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Next, it will be describe the IV-NSBP learning algorithm [5], which is devoted
to fine-tuning λ

±(t)
i and h

±(t)
i in Eq. (2). The first step in that regard is to

formalize the error function as follows:
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2
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where y±
i (k) is the value of the i-th variable for the k-th instance.
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the global error with respect to the target parameters can be calculated. Let
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i-th neuron in the t-th iteration. The partial derivative of the global error with
respect to the target parameters are computed as follows:
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Equation (12) update the sigmoid function parameters associated to each
neural processing entity in the t-th abstract layer. The momentum is represented
by β and η is the learning rates,

∇θ
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i ∈ Θ
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i = β

(
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i

)
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i
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The parameters’ update was done using grey arithmetic operations instead
of the standard vector-wise operations. This is required because the gradient
vector is composed of grey numbers.

3 Skipped Nonsynaptic Backpropagation

In this section, we modify three versions of the nonsynaptic learning variants:
Random Nonsynaptic Backpropagation (R-NSBP), Skipped Nonsynaptic Back-
propagation (S-NSBP), and Random-Skipped Nonsynaptic Backpropagation
(RS-NSBP) published in [11]. Those variants emerged because the NSBP back-
propagation learning algorithm could fail when dealing with very long depen-
dencies since the error signal reaching the first abstract layers might be weak
[11]. Therefore, their authors proposed three strategies to modify the NSBP’s
backward step and prevent the network from stopping its learning. The nonsy-
naptic learning variants are based on the idea that employing the same weights
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during the forward and backward passes is not necessary to train a recurrent
neural network. The results reported in [9] and [1] support this idea. The differ-
ence among the variants is given by the approach used to compute the partial
derivatives of the error for the activation values of the abstract hidden neurons.
This research proposed three versions that bring the advantage of being prepared
to work in uncertain environments. Besides, the inference process in these new
learning algorithms is done without a whitenization process in any way, and the
learnable parameters to be optimized are just two; λ

±(t)
i and h

±(t)
i .

3.1 Interval-value Random NSBP Algorithm, IVR-NSBP

Our first version is based on the Random NSBP (R-NSBP) introduced at [11]
where the weight matrix in the backward pass is replaced with a matrix com-
prised of normally distributed random numbers. Equations (13) and (14) shows
how to compute partial derivative of the total error with respect to the neu-
ron’s activation value in the current iteration, for the R-NSBP and the method
proposed in this subsection IVR-NSBP;
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where w̄±
ij is the Gaussian random number generated with the following proba-

bility distribution function:

f(x|μ±
ij , σ

2) =
1√

2πσ2
∗ e− (x−μ

±
ij

)2
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where μ±
ij = w̄±

ij denotes the mean and σ2 = 0.2 represents the variance. The
random weights can be forced to share the same sign as the weights defined
during the network construction step. On the other hand, weights in the forward
pass and the nonsynaptic parameters are employed as indicated in the original
NSBP learning algorithm.

3.2 Interval-value Skipped NSBP Algorithm, IVS-NSBP

The second proposal is a method named Interval-value Skipped NSBP algorithm
(IVS-NSBP), as its predecessor S-NSBP [11] uses deep learning channel to deliver
the error signal directly to the current abstract hidden layer. The partial deriva-
tive of the global error concerning the neuron’s output in the contemporary
abstract layer can be computed by the Eq. (16) in the method S-NSBP and by
Eq. (17) in IVS-NSBP.

∂E
∂a

(t)
i

=
M∑

j=1

−(yj(k) − a
(T )
j ) × wij . (16)
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j ) × w±
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One of the points in favor of this variant is that the skipping operations
reduce the algorithm’s computational border since the effort of computing the
error signal does not escalate with the number of IVLTCN iterations.

3.3 Interval-value Random-Skipped NSBP Algorithm, IVRS-NSBP

The Interval-value Random-Skipped NSBP algorithm (IVRS-NSBP) is a method
that allows skipping operations while use random Gaussian numbers with mean
μ±

ij = w±
ij and σ2 = 0.2. The IVRS-NSBP is based on the RS-NSBP [11]. A

slight variance was adopted to avoid weight in the deep learning channel being
too different from those used during the forward pass. This idea is formalizes by
the Eq. (18) in the method RS-NSBP and Eq. (19) for IVRS-NSBP.
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In essence, the three variants are different from the ones proposed at [11]
because now the map can handle a higher level of uncertainty due to perform
of the inference process being in a range of grey numbers and without any
whitenization process. Also, just two learnable parameters associated with the
generalized sigmoid transfer function are adjusted.

4 Numerical Simulations

This section presents an experimental study to evaluate the performance of the
proposed nonsynaptic learning algorithms (IVR-NSBP, IVS-NSBP and IVRS-
NSBP). To the simulations, it was used 35 synthetic datasets taken from the
UCI machine learning repository1 with a number of attributes that ranges from
3 to 22, and the number of instances goes from 106 to 625. The datasets have
been modified as indicated [11] and [5] to simulate uncertainty environments.

Equation (20) shows how to estimate white weights from the numeric features
in a dataset comprised of K instances,

wji =
K

∑
k xi(k)xj(k) − ∑

k xi(k)
∑

k xj(k)
K(

∑
k xj(k)2) − (

∑
k xj(k))2

(20)

where xi(k) is the white value of the i-th variable for the k-th instance. As
a second step, it can be transform them into grey weights such that w±

ji =
[wji − ξ, wji + ξ], where ξ ≤ 0 is the uncertainty threshold.
1 http://www.ics.uci.edu/∼mlearn/MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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4.1 Effect of Uncertainty Level on the Internal Size

The first experiment analyzes the relationship between the uncertainty added
to the data and the size of the grey intervals produced by grey neurons (for all
neurons in each iteration steps). The following equation is used to compute the
average size of the prediction intervals in an IVLTCN model,

S(N (k)) =
1

TM

T∑
t=1

M∑
i=1

|a+(t)
i (k) − a

−(t)
i (k)| (21)

where N (k) represent the IVLTCN model using the k-th initial activation vector
(intance), a

−(t)
i (k) and a

+(t)
i (k) denote the rigtht and left activation value of the

i-th neuron in the current iteration, respectively.
Figure 1 shows the average interval size values across the 35 grey datasets. As

we can observe in these simulations, there is a proportional relationship between
the size of intervals and the amount of uncertainty (defined by the threshold
parameter used to build the grey weights).

Fig. 1. Average interval size for different uncertainty levels.

Another interesting observation is that the intervals determined by the pro-
posed nonsynaptic learning variants are smaller than those obtained by the orig-
inal IV-NSBP algorithm. However, this does not imply that these learning algo-
rithms produce more accurate models.

4.2 Assessing the Prediction Accuracy

In this subsection, it is compare the IV-NSBP learning algorithms in terms of
the Grey Mean Squared Error (MSE±). This performance metric is defined in
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terms of grey numbers and formalized as follows:

MSE±(X,Y ) =
1

MK

∑
x∈X,y∈Y

M∑
i=1

(a±(T )
i (x) − y±

i )2 (22)

where X represents the set of predicted intervals and Y is the set of original
intervals, a

±(T )
i (x) denotes the response of the i-th neural concept in the last

iteration (i.e., the abstract output layer) for the corrupted pattern x ∈ X. More-
over, T is the number of iterations and can be equal to the maximum number
of variables to be predicted in a pattern.

The configuration of the stochastic descendent gradient is as follows: momen-
tum is set to 0.8, the learning rate is set to 0.004, and the number of epochs is
set to 200. Figure 2 illustrates the median MSE± by each variant.

Fig. 2. Average interval simulation errors computed using different IVNSBP learning
algorithms for different uncertainty levels.

The simulation results in Fig. 2 show a slight increase in the simulation errors
as the uncertainty (thresholds) increases. These numbers do not reach high val-
ues because they do not exceed 0.15. It was verified the directly proportional
relationship between the uncertainty and the MSE± values.

The authors in [11] found that the methods implementing the skipping oper-
ation performed slightly better than the NSBP algorithm. The best MSE val-
ues computed by each one of those variants are as follows: NSBP = 0.0569, R-
NSBP = 0.0582, S-NSBP = 0.0558 and RS-NSBP = 0.0556.

Following this line of experimental study, Fig. 3 shows the lowest simulation
error computed by each nonsynaptic learning variant: (a) IV-NSBP, (b) IVR-
NSBP, (c) IVS-NSBP, and (d) IVRS-NSBP for different uncertainty level. The
MSE± calculated with the variants proposed in this paper are as good and



Skipped Nonsynaptic Backpropagation 11

sometimes better (threshold = 0.05) than those obtained in the previous variants.
Only when ξ ≥ 0.20, we can observe a tendency for the error intervals to increase,
which is to be expected.

As we can see in Fig. 3, the IVS-NSBP learning algorithm yields the best
results. Another interesting conclusion is that the MSE± values obtained for
uncertainty levels of 0.05 and 0.10 are lower than those obtained by the nonsy-
naptic learning variants proposed in [11].

Friedman test was used [6] to determine whether the performance differ-
ences are statistically significant or not. The p-values are 2.15E−01, 3.23E−01,
8.73E−01 and 3.42E−02, respectively, for a confidence interval is 95%. The
Wilcoxon signed-rank test is used to perform pairwise comparisons. The p-values
for the four uncertainty levels are displayed in Tables 1, 2, 3 and 4, using the
IV-NSBP algorithm as the control method. Besides, we report the p-values com-
puted by the Holm post-hoc procedure [7], the negative ranks (R−), the positive
ranks (R+), and whether the null hypothesis H0 is rejected or not.

Table 1. Pairwise analysis for ξ = 0.05

Algorithm p-value R− R+ Holm H0

IVR-NSBP 1.36E−01 13 22 2.72E−01 Fail to reject

IVS-NSBP 4.92E−01 16 19 4.92E−01 Fail to reject

IVRS-NSBP 7.97E−02 11 24 2.39E−01 Fail to reject

Table 2. Pairwise analysis for ξ = 0.10

Algorithm p-value R− R+ Holm H0

IVR-NSBP 5.74E−02 14 21 1.72E−01 Fail to reject

IVS-NSBP 6.58E−01 15 20 6.58E−01 Fail to reject

IVRS-NSBP 2.52E−01 16 19 5.03E−01 Fail to reject

Tables 1, 2, 3 and 4 show that there are no significant differences between the
algorithms. However, the rankings indicate that, as the uncertainty increases, the
IVS-NSBP method performs slightly better than the other learning algorithms.
This result agrees with the conclusions in [11], thus verifying that backprop-
agating the error signal through the inner (abstract) layers is an expendable
operation to deliver the error to the first hidden layer.
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(a) (b)

(c) (d)

Fig. 3. Simulation errors for the LTCN model (colored dots) and the IVLTCN model
(intervals) for different uncertainty levels. The learning algorithms are (a) IV-NSBP,
(b) IVR-NSBP, (c) IVS-NSBP, and (d) IVRS- NSBP.

Table 3. Pairwise analysis for ξ = 0.15

Algorithm p-value R− R+ Holm H0

IVR-NSBP 8.06E−01 16 19 1.00E+00 Fail to reject

IVS-NSBP 6.58E−01 14 21 1.00E+00 Fail to reject

IVRS-NSBP 8.83E−01 20 15 1.00E+00 Fail to reject

Table 4. Pairwise analysis for ξ = 0.20

Algorithm p-value R− R+ Holm H0

IVR-NSBP 5.53E−02 14 21 1.11E−01 Fail to reject

IVS-NSBP 2.18E−02 9 26 6.55E−02 Fail to reject

IVRS-NSBP 6.42E−02 15 20 1.11E−01 Fail to reject
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5 Conclusions

This paper presented three learning algorithm variants for training the IVLTCN
model, which operates with interval numbers. The median of the errors com-
puted by these three variants (IVR-NSBP, IVS-NSBP, and IVRS-NSBP) does
not exceed 0.15. Therefore, the proposals have an effectiveness of more than 85%
of the cases in uncertain environments. In the comparative analysis between the
best results of the predecessor models and our proposals, it is observed that the
performance of the new variants was similar or slightly better. In other words, the
simulation errors were as low as those obtained by the predecessor models and
sometimes lower. It is worth highlighting that this result has a more significant
impact because it was achieved in uncertainty environments (less information in
the datasets) which shows that the new variants are as powerful as their pre-
decessors. More importantly, the experiments confirmed that backpropagating
the error signal through the abstract layers described by interval weights is not
needed to train the network effectively.

It would be interesting to complement this research with new experimental
studies such as the determination of the dispersion of λ

±(t)
i and h

±(t)
i , parameters

adjusted during the Nonsynaptic Backpropagation algorithms and considered
key parameters on the algorithm’s approximation ability. Also the model could
be applied in real case studies, for example, in analyzing the incidence of features
that determine the level of service at intersections without traffic lights. Usually,
these studies are very tedious because of the field and cabinet work needed to
collect the accurate values of the main factors. So getting a tool that handles
data sets with uncertainty and allows valid conclusions to be drawn will shorten
the measurement times of the variables and can form the basis for more in-depth
traffic studies, with the same reliability as traditional procedures and incredible
speed.
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