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Preface

The Mexican International Conference on Artificial Intelligence (MICAI) is a yearly
international conference series that has been organized by the Mexican Society for Arti-
ficial Intelligence (SMIA) since 2000. MICAI is a major international artificial intelli-
gence (AI) forum and the main event in the academic life of the country’s growing AI
community.

MICAI conferences publish high-quality papers in all areas ofAI and its applications.
The proceedings of the previous MICAI events have been published by Springer in its
Lecture Notes in Artificial Intelligence (LNAI) series (volumes 1793, 2313, 2972, 3789,
4293, 4827, 5317, 5845, 6437, 6438, 7094, 7095, 7629, 7630, 8265, 8266, 8856, 8857,
9413, 9414, 10061, 10062, 10632, 10633, 11288, 11289, 11835, 12468, 12469, 13067,
and 13068). Since its foundation in 2000, the conference has both grown in popularity
and improved in quality.

The proceedings of MICAI 2022 are published in two volumes. The first volume,
Advances in Computational Intelligence (Part I), contains 34 papers structured into three
sections:

– Machine and Deep Learning
– Image Processing and Pattern Recognition
– Evolutionary and Metaheuristic Algorithms

The second volume, Advances in Computational Intelligence (Part II), contains 29
papers structured into two sections:

– Natural Language Processing
– Intelligent Applications and Robotics

The two-volume set will be of interest to researchers in all fields of artificial intelli-
gence, students specializing in related topics, and the general public interested in recent
developments in AI.

The conference received for evaluation 137 submissions fromauthors in 20 countries:
Belgium, Bolivia, Brazil, Colombia, Cuba, Ecuador, France, Ireland, Japan, Kazakhstan,
Mexico, Morocco, The Netherlands, Pakistan, Peru, Russia, Serbia, Spain, the UK and
the USA. From these submissions, 63 papers were selected for publication in these
two volumes after a peer-reviewing process carried out by the international Program
Committee, with each paper receiving a minimum of 2 reviews. The acceptance rate
was 46%.

The international Program Committee consisted of 112 experts from 14 countries:
Brazil, China, Colombia, France, Iran, Ireland, Japan, Kazakhstan, Malaysia, Mexico,
Pakistan, Portugal, Russia, and the UK.
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Three workshops were held jointly with the conference:

– WILE 2022: 15th Workshop on Intelligent Learning Environments
– HIS 2022: 15th Workshop of Hybrid Intelligent Systems
– CIAPP 2022: 4th Workshop on New Trends in Computational Intelligence and
Applications

The authors of the following papers included in this volume received the Best Paper
Awards based on the papers’ overall quality, significance, and originality of the reported
results:

– “Diachronic Neural Network Predictor of Word Animacy” by Vladimir Bochkarev,
Andrey Achkeev, Anna Shevlyakova, and Stanislav Khristoforov, Russia

– “A Novel Hybrid Endoscopic Dataset for Evaluating Machine Learning-based Pho-
tometric Image Enhancement Models” by Carlos Axel García Vega, Ricardo Abel
Espinosa Loera, Gilberto Ochoa Ruiz, Thomas Bazin, Luis Eduardo Falcón Morales,
Dominique Lamarque, and Christian Daul, Mexico/France

– “Towards an interpretable model for automatic classification of endoscopy images”
by Rogelio García-Aguirre, Luis Torres-Treviño, EvaMaría Navarro-López, and José
Alberto González-González, Mexico/UK

We want to thank all the people involved in the organization of this conference: the
authors of the papers published in these two volumes – it is their research work that
gives value to the proceedings, the reviewers for their great effort spent on reviewing
the submissions, the Track Chairs for their hard work, and the Program and Organizing
Committee members.

We are grateful to all the executive members at Tecnológico de Monterrey: David
Garza Salazar, President; Juan Pablo Murra Lascurain, Rector General; Guillermo Torre
Amione,Vice President of Research;Neil HernándezGress, Director of Research;Mario
Adrián Flores Castro, Vice President of North Region; Manuel Zertuche Guerra, Dean
of Engineering; and Luis Ricardo Salgado Garza, Director of the Computer Science
Department, for the invaluable support to MICAI and providing the infrastructure for
the keynote talks, tutorials, and workshops.

We are also grateful to the personnel of Tecnológico de Monterrey for their warm
hospitality and hard work, as well as for their active participation in the organization
of this conference. We greatly appreciate the generous sponsorship provided by the
Monterrey government via the Tourism Office.

We deeply grateful to the conference staff and to allmembers of the Local Organizing
Committee headed by José Carlos Ortiz Bayliss. We gratefully acknowledge the support
received from the following project: FI-NEXT, Europe – CONACYT Project 274451.

The entire submission, reviewing, and selection process, as well as preparation of
the proceedings, was supported by the EasyChair system (www.easychair.org). Last but

https://easychair.org/
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not least, we are grateful to Springer for their patience and help in the preparation of
these volumes.

October 2022 Obdulia Pichardo Lagunas
Juan Martínez-Miranda

Bella Martínez Seis
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Abstract. The recently published Interval-valued Long-term Cognitive
Networks have shown promising results when reasoning under uncer-
tainty conditions. In these recurrent neural networks, the interval weights
are learned using a nonsynaptic backpropagation learning algorithm.
Similar to traditional propagation-based algorithms, this variant might
suffer from vanishing/exploding gradient issues. This paper proposes
three skipped learning variants that do not use the backpropagation pro-
cess to deliver the error signal to intermediate abstract layers (iterations
in the recurrent neural network). The numerical simulations using 35
synthetic datasets confirm that the skipped variants work as well as the
nonsynaptic backpropagation algorithm.

Keywords: Interval-valued Long-term Cognitive Networks · Interval
sets · Nonsynaptic learning

1 Introduction

In the last years, several neural reasoning models based on Fuzzy Cognitive
Maps (FCMs) [8] have been proposed. The need for models having improved
approximation capabilities was concluded in the theoretical analysis presented
by Concepción et al. [3]. Short-Term Cognitive Networks (STCNs) [14] is one of
these models that attained superior predictive power by removing the constraint
that weights should be confined to [−1, 1] interval.
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Despite the improvements compared with traditional FCM models, STCNs
often struggle to establish long-term dependencies. Long-term Cognitive Net-
works (LTCNs) [13] tried to overcome this issue by using a long-term reasoning
mechanism. In principle, LTCNs allow learning longer dependencies with the aid
of a nonsynaptic backpropagation learning algorithm.

The low simulation errors of LTCNs and their ability to retain the network
interpretability have motivated the inclusion of mechanisms to deal with the
uncertainty that may be present in the knowledge provided by human experts.
The Long-term Grey Cognitive Networks (LTGCNs) [12] emerged as a partial
solution to this issue. Even when the domain experts can express the weights
using interval grey numbers in this model, the reasoning and learning processes
are performed after whitening the interval grey numbers. In other words, neither
the reasoning nor the learning steps fully handle the uncertainty. In contrast, the
Interval-valued Long-term Cognitive Networks (IVLTCNs) [5] deal with complex
systems involving uncertainty through a structure expressing the activation val-
ues and weights as interval grey numbers. The model neither imposes restrictions
on the weights nor performs a whitenization process. A nonsynaptic backprop-
agation (IV-NSBP) is used to adjust the learnable parameters considering the
uncertainty in the network without affecting the model’s performance and retain-
ing the knowledge provided by experts.

Unfortunately, the IV-NSBP method might suffer from vanishing/exploding
gradient issues, a difficult task when training recurrent neural networks [2]. This
paper presents three skipped IV-NSBP learning algorithms that attempt to cir-
cumvent these issues. The skipped variants modify the IV-NSBP algorithm by
using different weights during the forward pass and backward pass in the training
phase. Moreover, only two parameters associated with the generalized sigmoid
transfer function are adjusted. It should be stated that our nonsynaptic versions
are based on the algorithms presented in [11]. The simulation results show that
by performing a skipping operation, we can bring the error signal directly from
the output layer to any intermediate iteration (hidden abstract layer) without
the need for the backpropagation process.

The outline of this paper is as follows. Section 2 briefly describes the IVLTCN
model and the original IV-NSBP learning algorithm, while Sect. 3 introduces
the skipped IV-NSBP variants proposed in this paper. In Sect. 4, the numerical
simulations using synthetic datasets and the ensuing discussion of results are
presented. Section 5 concludes the paper.

2 Interval-valued Long-term Cognitive Networks

The recently proposed IVLTCN model [5] is a recurrent neural network to deal
with uncertainty evidenced with interval grey numbers. In this knowledge-based
reasoning system, weights and the neuron’s activation values are expressed as
interval-valued grey numbers. Each problem variable is mapped into a grey neu-
ral concept, thus explicit hidden neurons are not allowed. The iterative reasoning
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process of the IVLTCN model is formalized below:

a
±(t+1)
i (k) = f

±(t+1)
i

⎛
⎝

M∑
j=1

w±
jia

±(t)
j (k)

⎞
⎠ (1)

where

f
±(t)
i (x) = L±

i +
U±

i − L±
i

1 + e−λ
±(t)
i (x−h

±(t)
i )

(2)

stands for the grey transfer function associated with the i-th neuron in the t-th
iteration, M is the number of grey neurons, and a

±(t+1)
i (k) represents the grey

activation value for a given initial condition k. Moreover, w±
ji is the grey weight

connecting two neurons, while λ
±(t)
i and h

±(t)
i are the parameters of the grey

sigmoid function. The λ
±(t)
i parameter is the function slope and h

±(t)
i stand for

the sigmoid offset. These parameters will be adjusted during the nonsynaptic
learning phase, similar to a standard backpropagation algorithm [16] [15].

The parameters L±
i and U±

i are two white numbers that denote the lower
and upper limits for the activation value of each neuron. These parameters are
not optimized during the learning phase. Instead, they should be configured by
experts taking into account the problem domain.

The IVLTCN model takes from LTCNs model [13] the structure and learn-
ing algorithm, and from the Grey System Theory (GST) [4] the grey arithmetic
operations to perform the neural reasoning process. According to GST, an inter-
val grey number can be denoted as a± ∈ [a−, a+] | a− � a+ where (a+) is the
upper limit and (a−) is the lower limit [17]. If the grey number a± only has an
upper limit, then it is denoted by a± ∈ (−∞, a+]. If the grey number only has
a lower limit, then it is denoted by a± ∈ [a−,+∞). If both limits are unknown,
then a± ∈ (−∞,+∞) is a black number. Finally, it is said that the number is
white if both limits have the same value [10], that is to say, a− = a+.

Let a± and b± be two interval grey numbers. The arithmetic operations for
these numbers are formalized as follows:

a± + b± ∈ [a− + b−, a+ + b+] (3)

a± − b± ∈ [a− − b+, a+ − b−] (4)

a± × b± ∈ [min{a− × b−, a+ × b+, a− × b+, a+ × b−},

max{a− × b−, a+ × b+, a− × b+, a+ × b−}]
(5)

a±

b± ∈ [min{a−

b− ,
a+

b+
,
a−

b+
,
a+

b− },max{a−

b− ,
a+

b+
,
a−

b+
,
a+

b− }]

| b−, b+ �= 0
(6)

(a±)x ∈ [min{(a−)x, (a+)x},max{(a−)x, (a+)x}]

= [(a−)x, (a+)x].
(7)
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Next, it will be describe the IV-NSBP learning algorithm [5], which is devoted
to fine-tuning λ

±(t)
i and h

±(t)
i in Eq. (2). The first step in that regard is to

formalize the error function as follows:

E± =
M∑
i=1

(y±
i (k) − a

±(t)
i )2

2
(8)

where y±
i (k) is the value of the i-th variable for the k-th instance.

After computing ∂E±/∂a
±(t)
i (k) (see details in [5]), the partial derivative of

the global error with respect to the target parameters can be calculated. Let
Θ

±(t)
i = {λ

±(t)
i , h

±(t)
i } denote the set of grey parameters to be adjusted by the

i-th neuron in the t-th iteration. The partial derivative of the global error with
respect to the target parameters are computed as follows:

∂E±

∂θ
±(t)
i ∈ Θ

±(t)
i

=
∂E±
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i (k)

× ∂a
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such that
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i
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Equation (12) update the sigmoid function parameters associated to each
neural processing entity in the t-th abstract layer. The momentum is represented
by β and η is the learning rates,

∇θ
±(t)
i ∈ Θ

±(t)
i = β

(
∇θ

±(t)
i ∈ Θ

±(t)
i

)
− η × ∂E±

∂θ
±(t)
i ∈ Θ

±(t)
i

. (12)

The parameters’ update was done using grey arithmetic operations instead
of the standard vector-wise operations. This is required because the gradient
vector is composed of grey numbers.

3 Skipped Nonsynaptic Backpropagation

In this section, we modify three versions of the nonsynaptic learning variants:
Random Nonsynaptic Backpropagation (R-NSBP), Skipped Nonsynaptic Back-
propagation (S-NSBP), and Random-Skipped Nonsynaptic Backpropagation
(RS-NSBP) published in [11]. Those variants emerged because the NSBP back-
propagation learning algorithm could fail when dealing with very long depen-
dencies since the error signal reaching the first abstract layers might be weak
[11]. Therefore, their authors proposed three strategies to modify the NSBP’s
backward step and prevent the network from stopping its learning. The nonsy-
naptic learning variants are based on the idea that employing the same weights
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during the forward and backward passes is not necessary to train a recurrent
neural network. The results reported in [9] and [1] support this idea. The differ-
ence among the variants is given by the approach used to compute the partial
derivatives of the error for the activation values of the abstract hidden neurons.
This research proposed three versions that bring the advantage of being prepared
to work in uncertain environments. Besides, the inference process in these new
learning algorithms is done without a whitenization process in any way, and the
learnable parameters to be optimized are just two; λ

±(t)
i and h

±(t)
i .

3.1 Interval-value Random NSBP Algorithm, IVR-NSBP

Our first version is based on the Random NSBP (R-NSBP) introduced at [11]
where the weight matrix in the backward pass is replaced with a matrix com-
prised of normally distributed random numbers. Equations (13) and (14) shows
how to compute partial derivative of the total error with respect to the neu-
ron’s activation value in the current iteration, for the R-NSBP and the method
proposed in this subsection IVR-NSBP;

∂E
∂a

(t)
i

=
M∑

j=1

∂E
∂a

(t+1)
j

× ∂a
(t+1)
j

∂ā
(t+1)
j

× w̄ij . (13)

∂E±

∂a
±(t)
i

=
M∑

j=1

∂E±

∂a
±(t+1)
j

× ∂a
±(t+1)
j

∂ā
±(t+1)
j

× w̄±
ij . (14)

where w̄±
ij is the Gaussian random number generated with the following proba-

bility distribution function:

f(x|μ±
ij , σ

2) =
1√

2πσ2
∗ e− (x−μ

±
ij

)2

2σ2 (15)

where μ±
ij = w̄±

ij denotes the mean and σ2 = 0.2 represents the variance. The
random weights can be forced to share the same sign as the weights defined
during the network construction step. On the other hand, weights in the forward
pass and the nonsynaptic parameters are employed as indicated in the original
NSBP learning algorithm.

3.2 Interval-value Skipped NSBP Algorithm, IVS-NSBP

The second proposal is a method named Interval-value Skipped NSBP algorithm
(IVS-NSBP), as its predecessor S-NSBP [11] uses deep learning channel to deliver
the error signal directly to the current abstract hidden layer. The partial deriva-
tive of the global error concerning the neuron’s output in the contemporary
abstract layer can be computed by the Eq. (16) in the method S-NSBP and by
Eq. (17) in IVS-NSBP.

∂E
∂a

(t)
i

=
M∑

j=1

−(yj(k) − a
(T )
j ) × wij . (16)
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∂E±

∂a
±(t)
i

=
M∑

j=1

−(y±
j (k) − a

±(T )
j ) × w±

ij . (17)

One of the points in favor of this variant is that the skipping operations
reduce the algorithm’s computational border since the effort of computing the
error signal does not escalate with the number of IVLTCN iterations.

3.3 Interval-value Random-Skipped NSBP Algorithm, IVRS-NSBP

The Interval-value Random-Skipped NSBP algorithm (IVRS-NSBP) is a method
that allows skipping operations while use random Gaussian numbers with mean
μ±

ij = w±
ij and σ2 = 0.2. The IVRS-NSBP is based on the RS-NSBP [11]. A

slight variance was adopted to avoid weight in the deep learning channel being
too different from those used during the forward pass. This idea is formalizes by
the Eq. (18) in the method RS-NSBP and Eq. (19) for IVRS-NSBP.

∂E
∂a

(t)
i

=
M∑

j=1

−(yj(k) − a
(T )
j ) × w̄ij (18)

∂E±

∂a
±(t)
i

=
M∑

j=1

−(y±
j (k) − a

±(T )
j ) × w̄±

ij (19)

In essence, the three variants are different from the ones proposed at [11]
because now the map can handle a higher level of uncertainty due to perform
of the inference process being in a range of grey numbers and without any
whitenization process. Also, just two learnable parameters associated with the
generalized sigmoid transfer function are adjusted.

4 Numerical Simulations

This section presents an experimental study to evaluate the performance of the
proposed nonsynaptic learning algorithms (IVR-NSBP, IVS-NSBP and IVRS-
NSBP). To the simulations, it was used 35 synthetic datasets taken from the
UCI machine learning repository1 with a number of attributes that ranges from
3 to 22, and the number of instances goes from 106 to 625. The datasets have
been modified as indicated [11] and [5] to simulate uncertainty environments.

Equation (20) shows how to estimate white weights from the numeric features
in a dataset comprised of K instances,

wji =
K

∑
k xi(k)xj(k) − ∑

k xi(k)
∑

k xj(k)
K(

∑
k xj(k)2) − (

∑
k xj(k))2

(20)

where xi(k) is the white value of the i-th variable for the k-th instance. As
a second step, it can be transform them into grey weights such that w±

ji =
[wji − ξ, wji + ξ], where ξ ≤ 0 is the uncertainty threshold.
1 http://www.ics.uci.edu/∼mlearn/MLRepository.html.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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4.1 Effect of Uncertainty Level on the Internal Size

The first experiment analyzes the relationship between the uncertainty added
to the data and the size of the grey intervals produced by grey neurons (for all
neurons in each iteration steps). The following equation is used to compute the
average size of the prediction intervals in an IVLTCN model,

S(N (k)) =
1

TM

T∑
t=1

M∑
i=1

|a+(t)
i (k) − a

−(t)
i (k)| (21)

where N (k) represent the IVLTCN model using the k-th initial activation vector
(intance), a

−(t)
i (k) and a

+(t)
i (k) denote the rigtht and left activation value of the

i-th neuron in the current iteration, respectively.
Figure 1 shows the average interval size values across the 35 grey datasets. As

we can observe in these simulations, there is a proportional relationship between
the size of intervals and the amount of uncertainty (defined by the threshold
parameter used to build the grey weights).

Fig. 1. Average interval size for different uncertainty levels.

Another interesting observation is that the intervals determined by the pro-
posed nonsynaptic learning variants are smaller than those obtained by the orig-
inal IV-NSBP algorithm. However, this does not imply that these learning algo-
rithms produce more accurate models.

4.2 Assessing the Prediction Accuracy

In this subsection, it is compare the IV-NSBP learning algorithms in terms of
the Grey Mean Squared Error (MSE±). This performance metric is defined in
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terms of grey numbers and formalized as follows:

MSE±(X,Y ) =
1

MK

∑
x∈X,y∈Y

M∑
i=1

(a±(T )
i (x) − y±

i )2 (22)

where X represents the set of predicted intervals and Y is the set of original
intervals, a

±(T )
i (x) denotes the response of the i-th neural concept in the last

iteration (i.e., the abstract output layer) for the corrupted pattern x ∈ X. More-
over, T is the number of iterations and can be equal to the maximum number
of variables to be predicted in a pattern.

The configuration of the stochastic descendent gradient is as follows: momen-
tum is set to 0.8, the learning rate is set to 0.004, and the number of epochs is
set to 200. Figure 2 illustrates the median MSE± by each variant.

Fig. 2. Average interval simulation errors computed using different IVNSBP learning
algorithms for different uncertainty levels.

The simulation results in Fig. 2 show a slight increase in the simulation errors
as the uncertainty (thresholds) increases. These numbers do not reach high val-
ues because they do not exceed 0.15. It was verified the directly proportional
relationship between the uncertainty and the MSE± values.

The authors in [11] found that the methods implementing the skipping oper-
ation performed slightly better than the NSBP algorithm. The best MSE val-
ues computed by each one of those variants are as follows: NSBP = 0.0569, R-
NSBP = 0.0582, S-NSBP = 0.0558 and RS-NSBP = 0.0556.

Following this line of experimental study, Fig. 3 shows the lowest simulation
error computed by each nonsynaptic learning variant: (a) IV-NSBP, (b) IVR-
NSBP, (c) IVS-NSBP, and (d) IVRS-NSBP for different uncertainty level. The
MSE± calculated with the variants proposed in this paper are as good and
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sometimes better (threshold = 0.05) than those obtained in the previous variants.
Only when ξ ≥ 0.20, we can observe a tendency for the error intervals to increase,
which is to be expected.

As we can see in Fig. 3, the IVS-NSBP learning algorithm yields the best
results. Another interesting conclusion is that the MSE± values obtained for
uncertainty levels of 0.05 and 0.10 are lower than those obtained by the nonsy-
naptic learning variants proposed in [11].

Friedman test was used [6] to determine whether the performance differ-
ences are statistically significant or not. The p-values are 2.15E−01, 3.23E−01,
8.73E−01 and 3.42E−02, respectively, for a confidence interval is 95%. The
Wilcoxon signed-rank test is used to perform pairwise comparisons. The p-values
for the four uncertainty levels are displayed in Tables 1, 2, 3 and 4, using the
IV-NSBP algorithm as the control method. Besides, we report the p-values com-
puted by the Holm post-hoc procedure [7], the negative ranks (R−), the positive
ranks (R+), and whether the null hypothesis H0 is rejected or not.

Table 1. Pairwise analysis for ξ = 0.05

Algorithm p-value R− R+ Holm H0

IVR-NSBP 1.36E−01 13 22 2.72E−01 Fail to reject

IVS-NSBP 4.92E−01 16 19 4.92E−01 Fail to reject

IVRS-NSBP 7.97E−02 11 24 2.39E−01 Fail to reject

Table 2. Pairwise analysis for ξ = 0.10

Algorithm p-value R− R+ Holm H0

IVR-NSBP 5.74E−02 14 21 1.72E−01 Fail to reject

IVS-NSBP 6.58E−01 15 20 6.58E−01 Fail to reject

IVRS-NSBP 2.52E−01 16 19 5.03E−01 Fail to reject

Tables 1, 2, 3 and 4 show that there are no significant differences between the
algorithms. However, the rankings indicate that, as the uncertainty increases, the
IVS-NSBP method performs slightly better than the other learning algorithms.
This result agrees with the conclusions in [11], thus verifying that backprop-
agating the error signal through the inner (abstract) layers is an expendable
operation to deliver the error to the first hidden layer.
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(a) (b)

(c) (d)

Fig. 3. Simulation errors for the LTCN model (colored dots) and the IVLTCN model
(intervals) for different uncertainty levels. The learning algorithms are (a) IV-NSBP,
(b) IVR-NSBP, (c) IVS-NSBP, and (d) IVRS- NSBP.

Table 3. Pairwise analysis for ξ = 0.15

Algorithm p-value R− R+ Holm H0

IVR-NSBP 8.06E−01 16 19 1.00E+00 Fail to reject

IVS-NSBP 6.58E−01 14 21 1.00E+00 Fail to reject

IVRS-NSBP 8.83E−01 20 15 1.00E+00 Fail to reject

Table 4. Pairwise analysis for ξ = 0.20

Algorithm p-value R− R+ Holm H0

IVR-NSBP 5.53E−02 14 21 1.11E−01 Fail to reject

IVS-NSBP 2.18E−02 9 26 6.55E−02 Fail to reject

IVRS-NSBP 6.42E−02 15 20 1.11E−01 Fail to reject
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5 Conclusions

This paper presented three learning algorithm variants for training the IVLTCN
model, which operates with interval numbers. The median of the errors com-
puted by these three variants (IVR-NSBP, IVS-NSBP, and IVRS-NSBP) does
not exceed 0.15. Therefore, the proposals have an effectiveness of more than 85%
of the cases in uncertain environments. In the comparative analysis between the
best results of the predecessor models and our proposals, it is observed that the
performance of the new variants was similar or slightly better. In other words, the
simulation errors were as low as those obtained by the predecessor models and
sometimes lower. It is worth highlighting that this result has a more significant
impact because it was achieved in uncertainty environments (less information in
the datasets) which shows that the new variants are as powerful as their pre-
decessors. More importantly, the experiments confirmed that backpropagating
the error signal through the abstract layers described by interval weights is not
needed to train the network effectively.

It would be interesting to complement this research with new experimental
studies such as the determination of the dispersion of λ

±(t)
i and h

±(t)
i , parameters

adjusted during the Nonsynaptic Backpropagation algorithms and considered
key parameters on the algorithm’s approximation ability. Also the model could
be applied in real case studies, for example, in analyzing the incidence of features
that determine the level of service at intersections without traffic lights. Usually,
these studies are very tedious because of the field and cabinet work needed to
collect the accurate values of the main factors. So getting a tool that handles
data sets with uncertainty and allows valid conclusions to be drawn will shorten
the measurement times of the variables and can form the basis for more in-depth
traffic studies, with the same reliability as traditional procedures and incredible
speed.
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11. Nápoles, G., Grau, I., Concepción, L., Salgueiro, Y.: On the performance of the
nonsynaptic backpropagation for training long-term cognitive networks. In: 11th
International Conference of Pattern Recognition Systems (ICPRS 2021), vol. 2021,
pp. 25–30 (2021). https://doi.org/10.1049/icp.2021.1434
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Abstract. As in many NLP tasks, stance classification - the computa-
tional task of inferring attitudes towards a given target topic from text
- often relies on supervised methods and annotated corpora. However,
given the costs associated with corpus annotation, and the need to pro-
vide stance labels for every target of interest, cross-target methods (that
is, the use of an existing corpus of stance towards a particular target to
classify stance towards a different, previously unseen target), are of great
interest. Based on these observations, in the present work we address
the issue of cross-target stance classification with the aid of an existing
domain adaptation method based on BERT in combination with adver-
sarial learning and knowledge distillation, and which has been shown
to be successful in the related tasks of cross-domain sentiment analysis
and cross-domain author profiling. To this end, we envisage a number of
experiments to compare cross-target stance classification between target
pairs with different degrees of semantic relatedness, and examine how
much loss is observed from single-target to cross-target stance classifica-
tion settings, and attempt to identify possible ways forward.

Keywords: Natural language processing · Stance classification ·
Cross-target stance · Domain adaptation

1 Introduction

Stance classification [1,10] is the computational task of inferring attitudes (e.g.,
for/against) towards a particular target (e.g., an individual, a piece of legisla-
tion etc.) that may or may not be explicitly mentioned in the text. For instance,
‘killing animals is unacceptable’ may represent a stance in favour of veganism,
or against a particular individual who kills animals etc. The task bears some
resemblance to sentiment analysis, but stance (for/against) and sentiment (pos-
itive/negative) do not necessarily correlate [1].

Stance classifier models are usually built by making use of supervised machine
learning methods that rely upon labelled training data. As in other text clas-
sification tasks of this kind, best results are usually observed in single-target
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settings, that is, when both train and test documents discuss the same topic
of interest. Thus, for instance, single-target stance classification would normally
consist of building a classifier from stances in favour and against, e.g., a target
president, and would subsequently use the model to classify previously unseen
stances towards the same individual.

From a machine learning perspective, single-target settings will arguably
obtain optimal results but, in many practical situations, training data about
the intended target may be simply unavailable. In these cases, a possible alter-
native to (often costly) corpus annotation is to consider a cross-target setting,
that is, building a model from data about a certain target for which a labelled
corpus happens to be available (e.g., stances towards president A), and then
using it to classify stances towards a different target (e.g., president B, or pre-
sumably even a more semantically-distant target, such as a political activist, a
country, a product etc.)

If compared to single-target settings, cross-target settings may of course con-
vey a certain degree of accuracy loss, but the appeal of circumventing the need
for corpus annotation (for every possible topic of interest) remains strong in the
field [3,4,7,12,25,26].

Of particular interest to the present work, [18] has introduced a domain
adaptation method based on pre-trained BERT language models [6] in combina-
tion with adversarial learning and knowledge distillation [9] called BERT-AAD.
The method has been shown to obtain positive results in cross-domain senti-
ment analysis and, more recently, also in cross-domain author profiling [5], that
is, the task of predicting an author’s demographics (e.g., gender, age, person-
ality etc.) based on text that he/she has written [20–22]. However, it remains
unclear whether this method may also be useful for stance classification, which
is arguably closer to a text inference task [1].

To shed light on this issue, the present work extends previous studies in cross-
domain sentiment analysis and author profiling by applying BERT-AAD [18],
possibly for the first time, to stance classification. To this end, we introduce
a novel multi-topic corpus of tweets labelled with stance information in the
Portuguese language, and we envisage a number of experiments to compare
cross-target stance classification between target pairs with different degrees of
semantic relatedness. In doing so, our main objective is to examine how much
loss is observed from single-target to cross-target stance classification settings,
and to identify possible ways forward.

2 Background

Existing work in stance classification has grown considerable as a result of the
SemEval-2016 shared task 6 [13], which introduced supervised (task A) and
unsupervised (task B) challenges, and an accompanying dataset labelled with
stance information (for, against, and none) towards five topics (Atheism, Climate
Change, Feminist Movement, Hillary Clinton, and Abortion Legalisation.) An
additional, unlabelled topic (Donald Trump) was taken as test data for task B
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which, although not particularly focused on cross-target stance classification,
was modelled in this way by some of the participant systems that attempted to
circumvent the lack of labelled test data (about Donald Trump) by using data
about the other targets. Section 2.1 describes some of these studies, and more
recent approaches to cross-target stance classification. Section 2.2 focuses on the
cross-domain sentiment analysis method in [18] that will be taken as the basis
for the present work.

2.1 Cross-target Stance Classification

The work in [4] presents a cross-target stance classification approach that uses
a feature extraction method based on auto-encoders. To this end, the encoder
takes as an input a bag-of-words representation of the 50k most frequent words
in the corpus, performs dimensionality reduction and then recreates the original
embeddings. Stance classification proper (using Hillary Clinton train data and
Donald Trump test data from Semeval-2016 task B) is performed by using logistic
regression.

The work in [24] was also a participant system at SemEval-2016 task B,
introducing a cross-target stance classification approach based on support vector
machines (SVMs) and a range of lexical and syntactic features. First, the model
identifies whether the input text conveys any stance at all and, if so, determines
its polarity (for/against) by measuring the similarity between a test instance
(about Trump) and other topics.

The work in [7] introduces a similar two-step model to classify stance in texts.
The first step consists of detecting subjectivity, i.e., whether the text contains
any stance at all. The second step, applicable only to non-neutral texts, predicts
stance polarity. Classification is performed with the aid of SVMs and engineered
features (e.g., sentiment, word and char n-grams, presence of target keywords in
the text, among others). The models used for cross-target stance detection are
trained using all available data from other topics in the SemEval-2016 corpus,
and are shown to outperform previous participant systems in task B.

The work in [25] presents a deep neural network with attention mechanism
for cross-target stance classification. The model architecture consists of two bidi-
rectional LSTM networks (BiLSTMs) to encode the contextual information in
the input sentence and target, an attention mechanism to focus on common
aspects shared by source and target domains, and the final prediction layer. The
model outperforms the best participant systems from previous SemEval-2016.

The work in [8] approaches the cross-target stance detection task by intro-
ducing a recurring neural network based on LSTM cells with a double atten-
tion mechanism (called ‘target’ attention and ‘target towards’ attention, respec-
tively.) The model consists of a hierarchical architecture in which the first level
encodes words, and the second level encodes the relevance of each sentence in
the text. First level outputs are individually fed into a pooling layer and then to
the second level. The model outperforms a number of existing baseline systems
applied to the SemEval-2016 Task B data.
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The work in [26] introduces a cross-target stance classification model com-
prising two main components, namely, a semantic-emotion graph (SE-graph)
and a graph convolution network. The SE-graph component encodes semantics-
related and emotion-related lexicons and incorporates external knowledge at the
word and concept levels. Graph nodes represent either a word or an emotion
tag, and edges represent the co-occurrence of two nodes. The convolution net-
work encodes the graph structure to generate a representation of the connections
between words or emotion tags. These two components are used in a knowledge-
aware memory unit (KAMU) that extends a BiLSTM model and encodes the
sentence, and which uses a second BiLSTM network to encode topic information.
Results suggest that the model obtains SOTA accuracy for most target topics
from the SemEval-2016 corpus.

The work in [2] addressed the cross-target stance detection task from a zero-
shot perspective, that is, without training examples about any particular target.
The work introduces a dataset called VAST and a model to perform zero-shot
stance detection called Topic-Grouped Attention (TGA). This consists of a con-
textual conditional embedding layer followed by topic-grouped attention using
generalised representations, and a feed-forward network. The conditional embed-
ding layer is composed by two encoders that use BERT to generate representa-
tions for both topic and text. The TGA module uses scaled dot-product attention
to compute the importance of each topic token.

Based on the same dataset and also focused on zero-shot settings to address
the cross-target stance detection task, the work in [3] introduces TOAD (TOpic-
ADversarial network). This consists of four main components. First, there is a
topic-oriented document encoder, which encodes both text and topic using BiL-
STM and Attention mechanisms. The second component, called topic-invariant
transformation, performs domain adaptation to generate topic-invariant repre-
sentations without removing stance cues. The third component is a stance clas-
sifier consisting of a two-layer feed-forward network. Finally, the fourth com-
ponent is a topic discriminator, which predicts the topic of the input sentence.
This module is used alongside topic-invariant transformation to train the domain
adaptation model.

Finally, in [12] a neural model based on a knowledge graph and BERT is used
to address the cross-target stance classification. The architecture is composed of
a BERT encoder to generate both topic and text representations, and which
is followed by a knowledge graph encoding with a form of Graph Convolution
Network (GCN). The graph is taken to represent common sense knowledge, in
which nodes represent concepts found in the document and the edges represent
the relations between them.

2.2 Domain Adaptation Using BERT

The work in [18] introduces a domain adaptation method called BERT-AAD,
which combines BERT pre-trained models and adversarial discriminative domain
adaptation (ADDA) [23] for cross-domain sentiment analysis.
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ADDA consists of mapping source and target domains into a space of
shared features as an adversarial framework (comprising discriminative mod-
elling, untied weight sharing, and GAN-based loss) as a means to transfers
knowledge from a larger (teacher) model to a smaller (student) one.

Given the logits predictions zS and zT made by a student and teacher mod-
els, and a degree of knowledge transfer t, knowledge distillation (KD) seeks to
minimise the following objective function [9,18]:

t2 x
∑

k

−softmax(zTk /t) x log(softmax(zSk /t)) (1)

The combination of ADDA and KD (named as AAD in [18]) is motivated by
the observation that, in the case of BERT, using ADDA alone would amount
to random classification due to the overly large number of model parameters.
The combined BERT-AAD approach, by contrasts, operates as a regularisation
method that preserves the knowledge acquired from the source domain, and
enables the output model to adapt to the target domain without overfitting.

3 Materials and Method

BERT-AAD [18] has been shown to obtain results that are close to in-domain
classification in both cross-domain sentiment analysis and also in cross-domain
author age and gender classification [5]. In the present work, we will extend
these studies by turning to the issue of cross-target stance classification. More
specifically, we envisage a number of experiments intended to investigate to
which extent BERT-AAD is suitable for cross-target stance classification, and
how its results compare to those observed in single-target settings. We notice,
however, that since cross-target settings are unlikely to outperform the single-
target settings, the focus of the present work is on minimising the accuracy
loss observed from single- to cross-target settings in a novel multi-target stance
corpus.

3.1 Corpus

Although a number of data sets for stance classification in our language of inter-
est - Portuguese - have been developed in previous work [16,17,19], these do
not focus on cross-target settings. For that reason, we created a novel corpus
of Portuguese Twitter data labelled with binary (for/against) stance informa-
tion towards six targets that are popular topics of hyperpartisan discourse on
Brazilian social media.

The corpus, hereby called UstanceBR r1, is organised in three polarised topic
categories, each of them comprising a target generally favoured by more conser-
vative individuals, and another target of more liberal leaning as follows.

– Presidents: Bolsonaro, Lula
– Covid-19: Hydroxychloroquine, Sinovac vaccine
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Table 1. Corpus descriptive statistics.

Target Against For Overall (A+F) Words Avg words

Bolsonaro 5,603 4,119 9,722 233,799 24.05

Lula 4,601 3,814 8,415 213,684 25.39

Hydroxychloroquine 4,007 4,018 8,025 228,617 28.49

Sinovac 4,061 3,945 8,006 227,310 28.39

Church 3,553 3,600 7,153 172,530 24.12

Globo TV 3,451 2,698 6,149 110,586 17.98

Overall 25,276 22,194 47,470 1,186,526 25.00

– Institutions: Church, Globo TV network

Table 1 presents the descriptive statistics for the six datasets.
The three target pairs were chosen so as to represent different degrees of sim-

ilarity for the purpose of cross-target stance classification. The Presidents target
pair is arguably the more closely related of the three, at least in the sense that
many of the arguments used for/against one particular president tend to be appli-
cable to another as well. For instance, ‘X proposed a bad economic plan’ works
equally well as a stance against any president X. By contrast, the two Covid-
19-related targets are only moderately close (e.g., ‘X is a well-known Malaria
medicine’ is only applicable to Hydroxychloroquine), and the Institutions target
pair is arguably the least related of the three. Arguments used for/against church
(e.g., social work, freedom of expression etc.) are generally distinct from those
that would be applicable to a TV network (e.g., editorial standards, broadcast
quality etc.)

3.2 Classifier Models

We consider a number of cross-target stance classifiers that take as an input a
dataset from a train domain (e.g., Bolsonaro) and attempt to perform stance
classification on a different test domain. In doing so, rather than attempting
every possible combination of target pairs, we shall focus on cross-target learning
between more closely related targets (e.g., Bolsonaro-Lula) for brevity.

Our main approach, hereby called CT.AAD, is a straightforward adapta-
tion of the AAD sentiment analysis method in [18] to stance classification. This
consists of a BERT model that has been fine-tuned to the underlying (stance
classification) task, and subsequently combined with the adversarial adaptation
with distillation method discussed in Sect. 2.2.

As baseline alternatives to CT.AAD, we will consider a general architecture
that leverages a BERT pre-trained language model as a token embedding gen-
erator with no fine-tuning. More specifically, we concatenate the last four layers
of the language model - making a 3072-dimension vector - to represent each
input token. This representation is taken as an input to a LSTM network with
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multi-head self-attention, and followed by a dense layer activated by a softmax
function to generate the final class predictions.

By varying the way in which train and test data are used in our experiments,
the general LSTM architecture gives rise to three baseline systems of interest.
These are summarised as follows.

Single-target uses train and test data about the same target, and is intended
as our main (and strongest) baseline system.

CT.Base uses train data from each individual source domain and test data
from a different (target) domain, and it is intended to represent a standard
LSTM-BERT approach to cross-target stance classification.

Finally, CT.Replace is a cross-target strategy similar to CT.Base, but in
which keywords describing the source target (e.g., Lula) were replaced by their
counterparts (e.g., Bolsonaro) in the target domain before actual training. Thus,
for instance, given the task of classifying a stance towards Lula using training
data about Bolsonaro, a source sentence as in ‘I’m outraged after Bolsonaro’s
speech’ would be converted into ‘I’m outraged after Lula’s speech’, the underly-
ing assumption being that replacements of this kind may narrow the gap between
source and target domains, at least when these are sufficiently close (as it may
be the case of our Presidents dataset), but perhaps less so in the case of more
distant pairs (e.g., church and TV network.)

4 Results

Table 2 summarises single- and cross-target stance classification F1 results for
the six text targets under consideration. The best cross-target strategy for each
target is highlighted, and the bottom line shows the F1 loss observed between
Single-target and the best cross-target results. Recall that cross-target models
were built using only their counterpart target as training data. For instance,
Bolsonaro cross-target stance classification uses data from the Lula dataset, and
vice-versa.

Table 2. Single-target (top row) versus best cross-target (CT rows) stance classification
F1 results.

Strategy Presidents Covid-19 Institutions

Bolsonaro Lula Hydroxy Sinovac Globo TV Church

Single-target (ST) 0.83 0.83 0.83 0.84 0.86 0.85

CT.Base 0.59 0.57 0.47 0.47 0.69 0.77

CT.Replace 0.59 0.57 0.58 0.62 0.27 0.30

CT.AAD 0.62 0.59 0.41 0.35 0.79 0.76

(ST - CT.AAD) loss 0.21 0.24 0.25 0.22 0.07 0.08

As expected, results from Table 2 show that none of the cross-target alterna-
tives are able to outperform Single-target classification. Moreover, we notice that
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CT.AAD outperforms the other cross-target alternatives in only three tasks, and
it performs particularly poorly in the intermediate, partially related Covid-19
target pair.

Interestingly, however, F1 losses from Single-target to CT.AAD are gener-
ally similar for the first two target pairs (i.e., within the -0.21 to -0.25 range),
whereas for the third pair (Institutions) CT.AAD results are much closer to
Single-target. This may in principle seem counter-intuitive as the Institutions
target pair is arguably the least semantically related of the three and, as a
result, less knowledge transfer should be expected between these two targets if
compared to, say, the Presidents target pair. One possible explanation for this
outcome may be related to the observation that the two more closely-related
target pairs (Presidents and Covid-19) are also more polarised in the sense that
being for/against one president or medicine often means the opposite if consid-
ering the second president or medicine. For instance, an argument in favour of
a given president will almost always represent an argument against his politi-
cal opponent. Thus, we hypothesise that topic polarisation, which is arguably
less pronounced in the Institutions target pair, may have hindered the present
domain adaptation methods to a certain extent, although more research on this
issue is clearly needed. For the use of polarised political information in stance
classification, we refer to, e.g., [11].

5 Final Remarks

The present work has addressed the issue of cross-target stance classification by
introducing a novel stance corpus in the Portuguese language, and by investigat-
ing the use of an existing sentiment analysis domain adaptation method based
on BERT in combination with adversarial learning and knowledge distillation.
Our experiments compared cross-target stance classification between target pairs
with different degrees of semantic relatedness, and examined how much loss is
observed from single-target to cross-target stance classification settings.

Our current findings suggest that the use of the domain adaptation method
for cross-target stance classification is partially successful, but results vary con-
siderably depending on which target pair is considered. Perhaps surprisingly,
best results were not those obtained by the more closely related target pairs
(e.g., presidents), which suggests that other variables play a role in cross-target
learning. Among these, topic polarisation (i.e., when being in favour of target A
implies being against target B) may have limited the opportunities for knowl-
edge transfer. A more detailed study along these lines is left as future work. We
notice also that the present task may benefit from pronoun resolution [14,15],
which is also left as future work.

The present dataset - called UstanceBR r1 - is freely available for research
purposes1.

1 https://drive.google.com/drive/folders/1Mj22A9jCeaTcyp7FX9RLHJjMQ-
II5bQ2?usp=sharing.

https://drive.google.com/drive/folders/1Mj22A9jCeaTcyp7FX9RLHJjMQ-II5bQ2?usp=sharing
https://drive.google.com/drive/folders/1Mj22A9jCeaTcyp7FX9RLHJjMQ-II5bQ2?usp=sharing
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Abstract. The retinal vessel network studied through fundus images contributes
to the diagnosis of multiple diseases not only found in the eye. The segmenta-
tion of this system may help the specialized task of analyzing these images by
assisting in the quantification of morphological characteristics. Due to its rele-
vance, several Deep Learning-based architectures have been tested for tackling
this problem automatically. However, the impact of loss function selection on the
segmentation of the intricate retinal blood vessel system hasn’t been systemat-
ically evaluated. In this work, we present the comparison of the loss functions
Binary Cross Entropy, Dice, Tversky, and Combo loss using the deep learning
architectures (i.e. U-Net, Attention U-Net, and Nested UNet) with the DRIVE
dataset. Their performance is assessed using four metrics: the AUC, the mean
squared error, the dice score, and the Hausdorff distance. The models were trained
with the same number of parameters and epochs. Using dice score and AUC, the
best combination was SA-UNet with Combo loss, which had an average of 0.9442
and 0.809 respectively. The best average of Hausdorff distance and mean square
error were obtained using the Nested U-Net with the Dice loss function, which
had an average of 6.32 and 0.0241 respectively. The results showed that there is
a significant difference in the selection of loss function.

Keywords: Segmentation · Retinal vessels · Deep learning · Loss functions

1 Introduction

Analyzing eye fundus images is relevant for the identification of not only eye diseases
but also systemic diseases, since the retina is susceptible to changes in the blood cir-
culation in the brain [2]. The study of retinal vessel structure is conducted through
non-invasive techniques. In particular, the characterization and segmentation of retinal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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images are relevant for evaluating and assisting in the identification of cardiovascular
diseases, hypertension, strokes, and retinopathies [12]. Diabetic retinopathy is present
in 80% to 85% of the patients who have had diabetes for more than 10 years [15] and
the gold standard for detecting it is through fundus imaging [10].

The examination of the images obtained by this means and the assessment of mor-
phological changes in this structure is a specialized and operator-dependent task. As a
consequence of the process of projecting the 3-D semi-transparent retinal tissue into a
2-D imaging plane [2], the evaluation of the image faces various challenges. Quantifica-
tion of the structure analysis of the vessels (i.e., symmetry, width, length), to understand
the pathological changes produced, is made through image processing and segmenta-
tion of the vessels [6]. Manual segmentation of these vessels is a time-consuming and
subjective task and therefore tools for automating this process are necessary to aid in
the diagnostic process. Even though the images obtained have a high resolution, the
contrast of the background and the blood vessels are similar to each other, making the
task of segmentation and identification difficult [3].

The segmentation of the retinal vascular network has been addressed using deep
learning with several architectures. There are multiple works based on the U-Net struc-
ture: SA-UNet [6], Attention-UNet [13], Generative Adversarial Networks [16], among
others. Attention modules have been added to the principal architectures since this
mechanism tells the optimization process in which features to put more focus during
the CNN weight updates [19], which may help in the segmentation of intricate patterns
such as the vessel network.

Besides the variety of architectures that exist for segmentation, the learning algo-
rithm is instigated by the loss function, which should be selected depending on the
objective [7]. For evaluating segmentation results, there also exist multiple metrics that
need to be selected considering the purpose and sensitivity of each one. The impact in
the segmentation and evaluation of the quality by choosing loss functions and metrics
is a challenge in deep learning segmentation applications.

In this paper, we explore recent architectural strides (i.e., U-Net, Attention U-Net,
SA-UNet, and Nested U-Nets) for segmentation to evaluate their performance in the
segmentation of retinal irrigation structures. Although comparisons have been made
between the performance of architectures in retinal vessel segmentation [9,16], the
effect of loss function selection and its impact on the evaluation metric hasn’t been
reported in the literature to the best of our knowledge.

To conduct our experiments, we used the Digital Retinal Images for Vessel Extrac-
tion (DRIVE) [17] dataset and we explored several modern deep learning-based seg-
mentation methods. The four deep learning-based models were trained in similar con-
ditions with four loss functions, four metrics were used for assessing the results. The
pipeline of the experiments is shown in Fig. 1. In this study, we compare the loss func-
tion using different metrics with four models that are U-Net structure-based, some of
them also present attention modules.

The rest of this paper is organized as follows. In Sect. 2, we discuss previous studies
related to segmentation and specialized works in retinal vessel segmentation. Section 3
contains the description of the dataset, loss functions, metrics, and experimentation
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details. The results are presented in Sect. 4. The conclusion and future work are pre-
sented in the Sect. 6.

2 State of the Art

The segmentation of retinal vessel structures aims to identify and distinguish the retina’s
vasculature from other anatomical structures that form the background of the image
[1]. Although there have been improvements and developments in these tasks in recent
years, robust segmentation still faces challenges such as the small number of available
datasets for training, most of them having 50 images at most. Misclassification of ves-
sels as background is related to the high imbalance problem found in these images, as
typically only 10% are classified as vessels [9].

Fig. 1. Pipeline for our experiments. Four models were trained using four loss functions, giving
a result of 16 images for each test image. The results were assessed using four segmentation
metrics.

The segmentation methods that have been used for these type of images can be
grouped into three groups, based on the classification dine by Abdulsahib et al. [1].
In the first group, there are the rule-based methods, which were the first approaches
used for this problem. These methods are fully unsupervised, meaning that they don’t
require any annotations. The second group includes machine learning (ML) techniques,
which are usually supervised methods; the feature extraction of the fundus image is
done manually. Lastly, we consider separately a sub-group from ML techniques, which
are the Deep Learning methods, due to their large impact and variety of architectures
for segmentation. In such approaches, the biggest advantage is that the features from
the images are automatically extracted and combined [4]. This last group is the focus
of this study.

2.1 Rule-Based Methods

A filtering approach is the kernel-based methods, which are constructed on the basis
of the retinal vessel’s intensity distribution. These methods are capable of detecting the
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boundaries of vessels [1]. There are examples of this method applied to retinal vessel
segmentation [8]. The vessel tracking method uses seed points to detect vessel ridges.
However, such methods require a high level of pre-processing to enhance the sizes and
orientation of the vessels. Another conventionally used method are the mathematical
morphological operations, which are associated with the shapes found in the features
of an image instead of the intensities in the pixels [1]. The advantage of these methods
is that they don’t require any form of labeling. However, their performance does not
usually surpass the supervised methods [4].

2.2 Machine Learning Methods

ML-based methods require a manual extraction of local descriptors from the images
that are then followed by a classifier. They have shown a better performance than the
conventional methods previously mentioned [5]. An example of these algorithms is
the k-nearest neighbors classifier (KNN) where the features obtained from the DRIVE
dataset are classified [17]. There are also examples of super vector machine (SVM)
classifiers, an example is a semi-supervised approach using fully and weakly labeled
[20]. The limitations of these methods are that due to the lack of automatic feature
extraction, they lack the capability of generalization [4].

2.3 Deep Learning Methods

Since the emergence of Convolutional Neural Networks (CNN) multiple architectures
have been developed and applied to segmentation and other tasks related to computer
vision. Their success in outperforming previous methods stems from the capability of
such architectures to automatically learn features from raw data [5].

There exist multiple types of CNN architectures. In this work, we will focus on
deep learning architectures created specifically for medical image segmentation, as it is
the case of U-Net [14] and its variants. The architecture has convolutional layers and is
formed by a encoder that does the down sampling of the image using a max pooling.
Then, the feature maps are up sampled in the decoder. Both stages of the architecture
are communicated through skip connections to solve the degradation problem in deep
neural networks. This architecture outperformed previous methods for multiple types
of medical images. Due to its relevance in segmentation, this model is the base for the
deep learning models selected in this study.

From the U-Net architecture, there are multiple variants derived from it. An example
is the Nested U-Net or U-Net ++ [21]. This model is also formed by an encoder and
a decoder network. The difference is that the skip connections are formed of a series
of nested dense convolutional blocks. The number of convolutional layers in the skip
connection depends on the pyramid levels.

Variations in the segmentation architectures have been created by incorporating
attention modules [6,13,19]. These modules help focus on the important features and
ignore the rest by improving the representation of interest and helping where to center
[19]. An example of the integration of an attention gate is the Attention U-Net [13]. The
module is located at each level of the skip connections, filtering the features and allow-
ing the coefficients to be local, improving the performance against the global gating.
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Another example of attention modules applied to a U-Net is the Spatial Attention U-
Net (SA-UNet) [6], which uses a spatial attention module located between the encoder
a the decoder. Additionally, this architecture adds dropout convolutional blocks.

Although the segmentation of retinal vessels has improved through the development
of deep learning-based architectures, there is still a lack of comparative studies on how
the decision of a metric, loss function, and model affects the segmentation. Therefore, in
this work we compare them to understand how it affects the behavior of the segmented
vessels, which can be thin, intricate, and with similar contrast to the background.

3 Data and Methods

The technical contribution of this work is the evaluation of the impact of four loss
functions with four metrics on the retinal vessel segmentation using U-Net, SA-UNet,
Attention U-Net, and Nested U-Net architectures. The experiments comprise a total
of 16 segmentation comparisons. These experiments are summarized in Fig. 1. The
methodology followed is detailed in the following section.

3.1 Dataset

The images used in this work come from a retinal vessel segmentation dataset: the Dig-
ital Retinal Images for Vessel Extraction (DRIVE) [17] dataset. It contains 40 images,
of which 7 are abnormal pathology cases. We use the version with data augmentation
that includes random rotation, Gaussian noise, color jittering, and flips (horizontal, ver-
tical, and diagonal) from the SA-UNet paper [6]. This increased the number of training
images from 20 to 256 images. An example of the DRIVE dataset is the shown in
Fig. 2; there is the fundus image and the binary ground truth with the labels of the blood
vessels.

(a) Test image (b) Ground truth

Fig. 2. Sample images for the DRIVE dataset [17].
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3.2 Segmentation Metrics

To evaluate the quality of the segmentation, there are numerous metrics that can be used
depending on the data and the segmentation task [18]. For the first part of our experi-
ments (loss function comparison), we used the following metrics: the Dice coefficient,
the area under the ROC curve (AUC), means square error, and Hausdorff distance (HD).

The Dice coefficient computes the pair-wise overlap between the segmentation and
ground truth divided by the common pixels between them:

DICE =
2|Segmenation ∩ Ground Truth|
|Segmenation| + |Ground Truth| (1)

The Receiver Operating Characteristic (ROC) curve is the plot of the true posi-
tive rate (TPR) and the false positive rate (FPR). The area under the curve (AUC) was
designed as a measure of accuracy. In the case of retinal vessels, segmentation evalu-
ates the accurately classified as background and vessels. The mean square error (MSE)
averages the difference between the ground truth and the predicted pixel. The Hausdorff
distance is a spatial-based metric measured in voxel size, which quantifies the distance
between the ground truth and the segmentation.

3.3 Loss Functions

The loss functions help us in the mathematical representation of our segmentation
objectives in deep learning to make it more accurate and faster [7]. In this sense, it
is expected that different loss functions will yield different segmentation results. There-
fore, four loss functions were evaluated for this study: Dice, Tversky, Binary Cross
Entropy, and Combo loss.

The Dice loss function is based on the dice coefficient explained in the previous
section (Eq. 1), which minimizes the similarity between the ground truth and the seg-
mentation results. The Tversky loss is based on the Dice loss and achieves a better
balance between precision and recall, emphasizing the false negatives, by reshaping the
dice loss [11]. The Binary Cross Entropy loss measures the dissimilarity between two
probability distributions. The Combo loss is a weighted summation between the Dice
loss and a variation of the cross-entropy; this brings together the advantages from both
losses [7].

3.4 Deep Learning Architectures

We tested four deep learning architectures for our experiments, comparing various loss
functions and multiple metrics, as described above. The selected models are all based on
the U-Net based architecture, originally proposed by Ronneberger et al. [14], this model
is considered for the comparison. We selected the Spatial Attention U-Net (SA-UNet)
proposed by Guo et al. [6]. This architecture adds a spatial attention module between
the encoder and decoder. It also integrates dropout convolutional blocks for reducing the
overfitting Attention UNet proposed by Oktay et al. [13] was also selected; it adds an
Attention Gate between the union of the skip connection and the decoder. The UNet++
is a nested UNet architecture where the encoder and decoder are connected through a
series of nested dense convolutional blocks [21] is the last model selected.
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3.5 Training

The four models were trained using equal parameters and circumstances. The SA-UNet
model was trained using an implementation from the authors made in Keras [6]. The
Nested UNet implementation PyTorch made by its authors was used [21], they also
made an implementation for U-Net and Attention U-Net in PyTorch which was also
used. The code implementation was taken from the official github cite found in the
papers cited. The models were trained for 100 epochs, the weights that had the best
validation score were the ones saved. The training was done using the Nvidia DGX
workstation, two GPUs were used for each model except for Nested U-Nets where four
GPUs were needed. The batch size was 4 and a learning rate was 0.001.

4 Results

In previous works, there were limitations presented in the segmentation of retinal blood
vessels due to the class imbalance, similar contrast between vessels and background,
and limited labeled datasets. The impact of loss function selection and metrics hasn’t

Fig. 3. Visual comparison of the segmentation results obtained by the U-Net, Attention U-Net,
SA-UNet, and Nested UNet models using four loss functions (i.e., BCE, Dice, Tversky and
Combo, respectively)
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been compared using multiple models. Throughout experiments, we expect to under-
stand the influence of this selection on the quality of the segmentation of the vessel
structure.

The 16 segmentations results can be seen in Fig. 3. The figure shows the same test
image for the multiple combinations. The original images showed in Fig. 2a with their
respective ground truth. The combination results are shown with different loss functions
(i.e. BCE, Dice, Tversky, and Combo, respectively) and models (i.e. U-Net, SA-UNet,
Attention U-Net, and Nested U-Net) respectively.

A summary of the quantitative results of the models, employing the four discussed
loss functions and the performance of the model under the four discussed metrics of
the experiments is shown in Table 1. The table displays the average metric for each
experiment. The symbol ↑ represents that the metric is better when is bigger, while a ↓
symbol means that is better when is close to 0. The numbers in bold indicate the loss
function that had the best performance for each metric. We can see that although they
were trained for the same number of epochs, the metrics differ depending on the loss
function. For the discussion that follows, the models are going to be first analyzed indi-
vidually, then against each other and finally, the loss functions performance is studied.

Table 1. Results using multiple loss functions and metrics (average) for U-Net based architec-
tures.

Loss function AUC ↑ MSE ↓ Hausdorff
distance ↓

Dice score ↑ AUC ↑ MSE ↓ Hausdorff
distance ↓

Dice score ↑

U-Net SA-UNet

Dice 0.9387 0.0250 6.4304 0.7667 0.9431 0.0565 9.3039 0.7327

Tversky 0.9117 0.0260 6.5534 0.6776 0.9442 0.0692 10.1913 0.6951

BCE 0.8911 0.0286 6.7546 0.6276 0.9197 0.1339 21.0970 0.5470

Combo 0.9373 0.0259 6.4871 0.7668 0.9335 0.0355 7.9129 0.809

Attention U-Net Nested U-Net

Dice 0.9392 0.0251 6.4251 0.7695 0.9318 0.0242 6.3211 0.7345

Tversky 0.9094 0.0261 6.5723 0.6708 0.8917 0.0279 6.7341 0.6434

BCE 0.9047 0.264 6.522 0.6470 0.8863 0.0288 6.7185 0.6212

Combo 0.9391 0.0259 6.4342 0.7731 0.9344 0.0251 6.4174 0.7659

If we would base the performance on only one metric, we could ignore the overall
performance. For the U-Net model, which is the base architecture, the best average
score for AUC, MSE, and HD had it the dice loss function. For the case of the Dice
Score, the dice and combo loss had similar performance with a difference of 0.0001. In
this case, if we had only used the dice score for evaluating the results, we could have
concluded that the best performance had it the combo loss (see Fig. 3).

For the SA-UNet in the case of AUC, the loss function that had the best performance
was the Tversky loss. However, looking at the other metrics, the Combo loss had the
best performance for the rest of the metrics of interest.

For the segmentations obtained in this model, we can observe (Fig. 3) that for BCE
loss there is the presence of noise and in the Tversky loss the limit of the fundus and
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the black background is also segmented. These details may be associated with a need
of more epochs of training.

5 Discussion

The performance of the Attention U-Net had the best results for the dice loss func-
tion using the AUC and MSE, while using the HD and dice score, the best one was
performed by the combo loss. By observing the segmentations (Fig. 3) the one that seg-
mented most fine vessels was the combo loss.

The Nested UNet presented the best performance with the dice loss function with
the metrics that need to be minimized (HD and MSE). The combo loss obtained better
results for the metrics that need to be maximized (AUC and dice score). This model
was the one that required the most computational resources (4 GPUs instead of 2).

For comparing the segmentation results against models (UNet, SA-UNet, Attention
UNet, and Nested UNets), the outcomes were evaluated using the Dice score ↑. The
summary of the results can be seen in the boxplots from Fig. 4, where the distribution
of the dice score for each loss function and model is shown. The SA-UNet is the one
that had the best dice score results by using the combo loss since it had the highest
average and the most compact results, meaning that they are less variable.

The model that had the worst performance using the dice score is also the SA-UNet,
but using the BCE function. If we consider the average of the rest of the metrics in Table
1 (AUC, MSE, and HD) we may have different results. The highest average for AUC
was also obtained by the SA-UNet using the Tversky loss. The smallest HD and MSE
average were obtained by the Nested UNets using the dice loss.

In the performance comparison by loss functions in the dice score, it is observed
in the boxplot (Fig. 4) that the combo and dice loss results (dark and light blue) have
the highest and most compact results, its average is above 0.7. The average of the dice
score for the binary cross entropy loss (orange) was above 0.6, except in the case of the
SA-UNet. For the case of the Tversky loss function, the average is also above 0.6 for
the four models. Considering only averages from other metrics, the performance of the
binary cross entropy loss didn’t have the highest average in any of the cases.

To determine whether the results between each type of loss function were signifi-
cantly different, a post-hoc Tukey test was performed using an alpha of 0.05, between
the segmentation dice score results of the four architectures. The test does a pairwise
mean comparison between the loss functions. The results are shown in a graph (Fig. 5).
This test helps us determine whether the loss function selection indeed is significantly
different.

The graph (Fig. 5) shows the dice score mean differences between the loss function
and has a confidence interval of 95%. The dotted line represents 0 difference between
them. The loss functions that had the greatest difference were the Tversky and the
Combo loss. Of the six comparisons, the only ones that were not significantly different
were the Dice and Combo loss function comparison. This may be associated with the
fact that the Combo loss also uses the dice score in its formula.
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Fig. 4. Results from Deep Learning based architectures dice score comparison

Fig. 5. Results of Tukey post-hoc statistical tests for the segmentation results against dice score
for each loss function.

6 Conclusion and Future Work

Considering the overall performance of the metrics, the best loss function was the
Combo. The conclusion could have been different if it had only been determined by
one metric. Therefore, the combination of the loss function and metric needs to be con-
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sidered. For the Deep Learning-based architecture comparison, although they all were
UNet based they had different results, which were also reflected in the statistical tests.
For the Dice score, the SA-Unet had better performance, however using other metrics
such as the mean square error, the best model was the Nested U-Net, this shows the
sensitivity of the metrics and how it should be globally evaluated.

With the epochs trained, each model had vessels that weren’t correctly segmented,
especially the most fine ones. This could be improved with more epochs of training for
each model. There is still areas of opportunities for improving the segmentation. The
feedback from an ophthalmologist can help in understanding the implications of these
omissions. We observed that there was a significant impact on the selection of the loss
function, this was reflected in the average of each metric, which was proved by a Tukey
test.

For future work and a better understanding of the impact on retinal vessel segmen-
tation, a comparison between other types of segmentation deep learning architectures
should be done. The use of other retinal vessels segmentation datasets could also bring
more comprehensive studies. In this study, it was shown that the selection of loss func-
tion has repercussions in the segmentation of retinal vessels, and for performing an
intrinsic evaluation multiple metrics should be considered.

Acknowledgments. The authors wish to thank the AI Hub and the CIIOT at ITESM for their
support for carrying the experiments reported in this paper in their NVIDIA’s DGX computer.
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Abstract. The combination of the Internet of Things and Machine
Learning has promoted the development of new technological approaches
such as Edge Computing and Tiny Machine Learning. The contribution
of this paper is the implementation of the Hypersphere Neural Network
using the NodeMCU board and the Esp8266 microcontroller for energy
consumption monitoring. The energy consumption monitoring consists
of recognising the device operating with an IoT device. We use our IoT
device for evaluating the performance of the embedded implementation
of the Hypersphere Neural Network. The implementation of the Hyper-
sphere Neural Network is carried out from the geometric algebra and
conformal geometric algebra viewpoints. The idea behind the design and
implementation of the Hypersphere Neural Network is to estimate hyper-
spheres which produce non-linear decision boundaries and separate the
pattern classes. Our approach achieves 99.7% and 99.4% of classification
success rate for training and validation stages respectively using a simple
Hypersphere Neural Network topology.

Keywords: Energy consumption · Geometric algebra · Tiny machine
learning

1 Introduction

The Internet of Things (IoT) is a technological paradigm which is changing
our life style. Nowadays, IoT devices have capabilities to readily transmit and
receive data from anywhere in the world at any time [1]. The large amount of
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data collected by IoT devices through sensors has enabled a wide number of
applications in industry, business, cities, offices and houses [2,3].

The number of IoT devices connected to the cloud is growing at an amazing
rate, and by the end of 2025 it is expected to be greater than 50 billion [4,5].
Therefore, a very high volume of data is being stored, processed and analysed in
the cloud. Currently, IoT devices present several problems related to bandwidth
issues [6]. Recently, scientists have developed new technological paradigms such
as the Edge computing and Tiny Machine Learning (TinyML), which incorporate
efficient implementations of algorithms in the IoT devices to process the collected
data [6,7]. These technological paradigms have incorporated artificial intelligence
to recognise patterns and enable IoT devices to control certain variables through
actuators [8]. The combination of technological paradigms provides reduction of
latency and bandwidth use as well as smart task automation [4,6].

Recently, the IoT and machine learning paradigms have prompted the devel-
opment of a wide number of applications for the intelligent automation of tasks in
industries and homes [3,9]. It is estimated that these IoT solutions can mitigate
significantly the effects of the climate change crisis, since it is possible to moni-
tor several variables related to the efficient use of resources, such as energy and
water. The contribution of this paper is the monitoring in real time the energy
consumption of appliances using an embedded implementation of a Hypersphere
Neural Network (HNN) in a programmable smart IoT device.

The implementation of the HNN is carried out in two stages: one offline and
one online. The first (offline) stage consists of training the HNN using the energy
consumption patterns in order to recognise which type of appliance is operating
as well as some consumption patterns. The main issue of this stage is to deter-
mine a simple topology for an efficient implementation in the Esp8266 microcon-
troller of the IoT device. The second (online) stage is the implementation of the
HNN in the microcontroller of the smart IoT device using conformal geometric
algebra calculations [10,11]. The conformal geometric algebra provides us with a
better geometric understanding to obtain the HNN topology and perform simple
calculations to implement a non-linear associator to estimate the hyperspheres.
Recently, geometric algebra and conformal geometric algebra have prompted the
development of new artificial neural network models which can operate with non-
linear associators and produce nonlinear decision boundaries using hyperconics
for classification tasks and function approximation [12–14].

The rest of the paper is organized in five sections. In Sect. 2, we provide
an overview of conformal geometric algebra and the inner product to recognise
when a point is inside or outside hypersphere. In Sect. 3, we give a detailed
implementation of the HNN. In Sect. 4, we describe the IoT architecture for an
energy consumption monitoring system. In Sect. 5, we describe the experiments
and discuss our results. Finally, conclusions and future work are discussed in
Sect. 6.
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2 Geometric Algebra

The heart of geometric algebra is the geometric product, which is defined as the
sum of the inner and outer products of vectors. The geometric product of two
vectors a,b ∈ R

n is defined by:

ab = a • b + a ∧ b. (1)

The symbol • denotes the inner/scalar product [11]. The outer product is the
operation denoted by the symbol ∧. The properties of the outer product are:
antisymmetry, scaling, distributivity and associativity. The product a∧b is called
a bivector. The bivector a ∧ b can be visualized as the parallelogram formed by
a and b. The orientation of b ∧ a will be the opposite to that of a ∧ b, due to the
antisymmetry property. Therefore, the outer product is not commutative. The
outer product is generalizable in higher dimensions, since it is associative. For
instance, the outer product (a ∧ b) ∧ c gives a trivector which can be visualized
as a parallelepiped. In particular, the outer product of k linearly independent
vectors is called a k − blade and can be written as:

A<k> = a1 ∧ a2 ∧ ...ak =:
k∧

i=1

ai. (2)

The grade < k > of a blade is simply the number of vectors included in the
outer product. A k-vector is a finite linear combination of k-blades. The set of
all k-vectors is a vector space denoted by

∧k
R

n, of dimension
(
n
k

)
= n!

(n−k)!k! . If
{e1, ..., en} ⊂ R

n is an orthonormal basis for R
n, then the set of k-blades

{ei1 ∧ ... ∧ eik | ii1, ..., ik ∈ {1, ..., n} and i1 < i2 < ... < ik} (3)

forms a vector space basis for
∧k

R
n. The geometric algebra Cln = Cl(Rn) is

the space of all linear combinations of blades of arbitrary grade, so that

Cln =
0∧
R

n ⊕
1∧
R

n ⊕
2∧
R

n ⊕ ... ⊕
n∧
R

n, (4)

where
∧0

R
n = R,

∧1
R

n = R
n. Thus, the dimension of the Geometric Algebra

Cl(Rn) is
n∑

k=0

(
n

k

)
= 2n. (5)

A vector space basis of the Geometric Algebra Cln is given by the union of all
the bases of the multivector spaces of every grade. The element I = e1∧ ...∧en is
called the pseudoscalar. For example, the Geometric Algebra Cl of 3-dimensional
space R

3 has 23 = 8 basis blades.

1︸︷︷︸
scalar

, e1, e2, e3︸ ︷︷ ︸
vectors

, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1︸ ︷︷ ︸
bivectores

, e1 ∧ e2 ∧ e3 ≡ I︸ ︷︷ ︸
trivector

. (6)



Embedded Implementation of the Hypersphere 41

2.1 Conformal Geometric Algebra

The conformal model provides a way to deal with Euclidean Geometry in a higher
dimensional space. Let e0, e1, ..., en, e∞ be a basis of Rn+2. We will consider the
Euclidean points x = x1e1 + x2e2+, ..., xnen ∈ R

n to be mapped to points in
R

n+1,1 according into the following conformal transformation:

P(x) = (x1e1 + x2e2 + ... + xnen) +
1
2
x2e∞ + e0, (7)

where R
n+1,1 is a (n + 2)-dimensional real vector space that includes the

Euclidean space R
n and has two more independent directions generated by two

basic vectors e0 and e∞ [11]. Furthermore, it is endowed with a scalar product
of vectors satisfying: ei • ej = 1, for i = j, ei • ej = 0, for i �= j, ei • e∞ = 0,
for i = 1, ..., n, ei • e0 = 0, for i = 1, ..., n, e∞ • e0 = -1, and e2∞ = e20 = 0. Note
that the Euclidean points x ∈ R

n are now mapped into points of the null cone
in R

n+1,1. The vectors e0 and e∞ represent the origin and a point at infinity
respectively. The number x2 is:

x2 =
n∑

i=1

x2
i . (8)

A hypersphere in R
n is determined by its center c ∈ R

n and its radius r ∈ R. Its
conformal representation is the point:

S(c, r) = P(c) − 1
2
r2e∞. (9)

The representation of the sphere s in Outer Product Null Space notation (OPNS)
in R

n, can be written with the help of n + 1 conformal points that lie on it.

s∗ =
n+1∧

i=1

P(xi). (10)

A hyper-plane Θ in R
n is represented by:

Θ(n, δ) = n + δe∞, (11)

where n is the normal vector to the hyper-plane in R
n and δ > 0 is its oriented

distance (with respect to n) to the origin. A hyper-plane in R
n can be defined

by n points belonging to it, thus, in the conformal model is represented by the
outer product of the n image conformal points plus the vector e∞.

Θ∗ =

(
n∧

i=1

Pi

)
+ e∞. (12)
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Point Inside or Outside a Hypersphere

The inner product between a point P(x) and a hypersphere S(c, ρ) can be used
to decide whether a point is inside or outside of the hypersphere,

S(c, r) • P(x) =
n∑

i=1

(ci)(xi) − 1
2

(
c2 − r2

) − 1
2

(
n∑

i=1

(xiei)2
)

=
n∑

i=1

(ci)(xi) − 1
2

(
c2

) − 1
2

(
r2

) − 1
2

(
x2

)

=
1
2
(r2) − 1

2

(
c2 − 2

n∑

i=1

(ci)(xi) − x2

)

=
1
2
(r2) − 1

2
(c − x)2

=
1
2

(
r2 − (c − x)2

)

(13)

where

S(c, r) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

i=1

ciei

︸ ︷︷ ︸
c

+
1
2

⎛

⎜⎜⎜⎜⎝

n∑

i=1

(ciei)2

︸ ︷︷ ︸
c2

−r2

⎞

⎟⎟⎟⎟⎠
e∞ + e0

︸ ︷︷ ︸
S(c,r)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

P(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

i=1

xiei

︸ ︷︷ ︸
x

+
1
2

n∑

i=1

(xiei)2

︸ ︷︷ ︸
x2

e∞ + e0

︸ ︷︷ ︸
P(x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

The sign of the result indicates the location of the point x with respect to
the hypersphere:

– P(x) • S(c, r) = 0 : x is on the hypersphere,
– Sign(P(x) • S(c, r)) > 0 : x is inside the hypersphere,
– Sign(P(x) • S(c, r)) < 0 : x is outside the hypersphere.

Figure 1 illustrates how the scalar product in the conformal space can be used
to identify when a point is inside or outside a hypersphere.
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3 Hypersphere Neural Network Topology

The Hypersphere Neural Network (HNN) includes the Hypersphere Neuron (HN)
which produces spherical decision boundaries for classification of classes as is
presented in Fig. 1. Therefore the computation complexity is similar to the tra-
ditional neuron that estimates hyperplanes. In total, the number of parameters
for the HNN is given as follows:

α = nh(n + 2)︸ ︷︷ ︸
β1

+no(nh + 1)︸ ︷︷ ︸
β2

, (16)

where nh is the number of neurons in the hidden layer, no is the number of
neurons in the output layer, n is the dimension of the input, β1 is the number
of parameters in the hidden layer and β2 is the number of parameters in the
output layer. In terms of conformal geometric algebra, the output oi of the HN
for the i-th neuron in the hidden layer and output layer is computed using the
sigmoid function G

G(x) =
1

1 + exp(−λx)
as follows

oi =
1

1 + exp(−λ[S(c, r) • P(x)])
(17)

in order to recognize when a input P(x) (conformal point) is inside our outside
a hypersphere S(c, r).

c r

Sign(P(x2) • S(c, r)) > 0

Sign(P(x1) • S(c, r)) < 0

P(x3) • S(c, r) = 0

Outside the hypersphere

Inside the hypersphere

On the hypersphere

Hypersphere center

Fig. 1. Decision region produced by the Hyperspherical Neuron (HN).

The parameter λ represents the slope of the sigmoid function. The number
computed in Eq. (17) can be positive or negative, depending on the relative
position of the input with respect to hypersphere. Figure 6 shows the topology
of the HNN. The input signals x = [x1, x2, x3, ...xq] are propagated through the
network from left to right. The input vector x is mapped to conformal space. The
symbols o1, ..., ok, ..., op denote the output vector o from the hidden layer to the
output layer. The output scalar of the output layer is described by y = y1, ..., yq.
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4 IoT Architecture for Energy Consumption Monitoring

The proposal of this paper is based on the NodeMCU board and Arduino.
The board is mainly used for the IoT and provides important advantages for
the development of smart IoT devices since it is an open-source firmware and
development kit [15]. In addition, the low-cost of the NodeMCU has increased
its popularity for developing IoT devices in a wide number of applications.
The NodeMCU board provides all the features of the Esp8266 microchip. The
Esp8266 has a WiFi connection at 2.4 GHz, with a protocol 802.11 b/g/n. It has
4 MB of flash memory, 80 MHz of the system clock, 80 kB of RAM. NodeMCU
operates with 3.3 V [16].

Figure 2 presents the IoT device which is used to collect the energy con-
sumption data. The Hypersphere Neural Network is implemented in this IoT
device. Figure 3 presents an overview of the IoT architecture of the proposal.
The advantages of the IoT platform is the use of open source frameworks such
as Hypertext Preprocesor (PHP), MySQL database and Hypertext Markup Lan-
guage (HTML). In [3], the IoT platform and the design of the IoT device was
presented. The platform allows us to control the IoT device remotely either using
a smartphone (Android App) or using a personal computer (Web Application).

Fig. 2. IoT Device for energy consumption monitoring. a) Figure on left side presents
the IoT device operating with a computer laptop. b) Figure on right side presents the
IoT device used in this paper.

The project was divided in two stages: a) On-line stage and b) Off-line stage.
Figure 4 shows the steps to perform both stages. The Off-line stage was developed
in MATLAB. In this stage, we collect the energy consumption data and the
feature vectors are selected to be used to train the HNN. The values of a feature
vector are obtained by the next equations:

E =
N∑

i=1

y2
i , (18)
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Fig. 3. An overview of the IoT architecture.

Fig. 4. Implementation of the embedded implementation of the HNN.
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M = y[N
2 ], (19)

μ =
1
N

N∑

i=0

yi, (20)

P =
1
N

N∑

i=1

y2
i , (21)

m =
1
N

N−1∑

i=1

(
yi+1 − yi

ti+1 − ti

)
, (22)

where y = y1, y2, y3, ..., yn, is the energy consumption signal. We use 30 values to
calculate the features. We evaluate four classes of devices: a) a laptop computer,
b) a tv, c) a projector and d) a fridge. The dataset is available in [17,18]. For
the sake of convenience, the feature vectors are normalised in the domain (0, 1).
Figure 5 presents the feature vectors for each class. Note that, the dimension of
each feature vector is 5.

Features

Va
lu
es

Laptop
TV
Projector
Fridge

Fig. 5. Four classes of feature vectors.

5 Experiments and Results

We use the Spherical Evolutionary Algorithm (SEA) for training the HNN [19].
The goal of the training is to find the vector (or parameters) that determines an
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optimal approximation to the target outputs. The parameters are encoded in a
vector that represents a solution as in Fig. 6, which shows a topology diagram of
the HNN and the form to encode the vector of parameters of the neural network
model for its implementation in NodeMCU board.

The experimental setup is the following:

– the dimension of the input patterns is 5;
– the parameters of the HNN were initialised in the domain [−1,+1];
– the number of neurons in the hidden layer was varied from 1 to 6;
– the population for the evolutionary algorithm is set to 30 individuals;
– the stop criteria of the training occurs when the evolutionary algorithm

reaches an error of 1e−4 or 30000 fitness function evaluations (FFEs);
– the objective function is based on the mean square error (MSE).

We use 300 input feature vectors for the training of the HNN. The classifica-
tion task consists of recognising the appliance or device which is operating. The
dataset is balanced according to number of classes. We use 75 input features for
each class. Table 1 presents the results of the HNN over 30 independent runs
for recognising the class of device which is operating with the IoT device. For
each independent run, the input patterns are randomly selected to set the data
training set and validation set. Note that for one neuron in the hidden layer, the
HNN does not obtain competitive results for the classification task. However,
we select a topology with two neurons in the hidden layer since it achieves a
good classification rate for the training and validation stages. In addition its
implementation requires a low number of parameters (11 parameters) which can
be computed in the NodeMCU board.

5.1 NodeMCU Performance

Online-stage consist of implementing the topology of HNN with two neuron in
the hidden layer in the NodeMCU. The implementation of the HNN is carried out
with Arduino. The performance of the board is obtained using the ESP8266WiFi
library. This library contains multiple functions for obtaining several parameters
such as free memory and CPU frequency. The execution time (microseconds, mil-
liseconds or seconds) is obtained using micros function. The micros() function
returns the number of microseconds which is the time it takes to execute the pro-
gram. The feature vectors are calculated in real time as well as the classification
of classes using the HNN.

Due to the hardware computing power, we are careful with the implemen-
tation of the HNN. The memory is the main limitation, because the board has
only 80 kB of RAM memory, this memory is for global and local variables. The
algorithms are implemented using the dynamic memory approach. The imple-
mentation of this proposal consumes approximately 50% of the RAM memory.
Table 2 shows the execution time and used memory for the classification process
using HNN.

According to Table 2, the classification of feature vectors is performed in 1 s
overall. At the end of each phase of classification process, the memory is erased
in order to free up memory space and avoid a memory overflow error.
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Fig. 6. Hypersphere neural network topology, encoded parameters of neural network
model for its implementation in NodeMCU board.
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Table 1. Results of training HNN with different topologies

Topology MSE

Average of Number
of Generations
α = nh(n+2)+no(nh+1)

Training Validation

5 − 1 − 2
1000
α = 11

Mean
Median
Standard Deviation
Min
Max
Classification Rate

6.7803e − 01
6.7773e − 01
1.6271e − 02
6.4868e − 01
7.1265e − 01
24.9867%

6.6713e − 01
6.6240e − 01
7.5115e − 02
4.9739e − 01
8.2233e − 01
25.0000%

5 − 2 − 2
913
α = 20

Mean
Median
Standard Deviation
Min
Max
Classification Rate

8.1045e − 03
8.0910e − 04
1.4035e − 02
7.3124e − 05
4.8381e − 02
99.7067%

2.0411e − 02
7.1176e − 04
4.3083e − 02
1.2739e − 07
1.6001e − 01
99.4000%

5 − 3 − 2
927
α = 29

Mean
Median
Standard Deviation
Min
Max
Classification Rate

6.0612e − 03
8.6611e − 04
8.5903e − 03
3.5789e − 05
3.5630e − 02
99.7733%

2.0138e − 02
1.4670e − 03
4.6482e − 02
3.8859e − 17
1.9003e − 01
99.4000%

5 − 4 − 2
937
α = 38

Mean
Median
Standard Deviation
Min
Max
Classification Rate

5.6213e − 03
2.3429e − 03
7.6705e − 03
6.6380e − 05
3.2969e − 02
99.7733%

2.5034e − 02
2.3048e − 03
4.6842e − 02
1.0019e − 05
1.6067e − 01
99.3333%

5 − 5 − 2
934
α = 47

Mean
Median
Standard Deviation
Min
Max
Classification Rate

3.6645e − 03
5.9240e − 04
5.0322e − 03
5.4979e − 05
1.8664e − 02
99.8133%

1.1437e − 02
1.2887e − 03
2.8705e − 02
2.1070e − 05
1.4313e − 01
99.4667%

5 − 6 − 2
940
α = 56

Mean
Median
Standard Deviation
Min
Max
Classification Rate

5.8423e − 03
1.1646e − 03
1.2901e − 02
5.2692e − 05
7.0273e − 02
99.6000%

2.0315e − 02
1.5817e − 03
3.8192e − 02
1.5683e − 05
1.6210e − 01
99.2000%

Table 2. Required execution time and use of memory of the NodeMCU for the energy
consumption monitoring.

Phases for classification process Execution time
seconds

NodeMCU memory

Data collection process 1.0072e + 00 45.7633 %

Calculation of the features Vector 9.8333e − 04 45.7633 %

Pre-processing of feature vectors 9.1250e − 05 45.9684 %

Classification task with HNN 5.8825e − 04 45.9684 %

Total 1.0089e + 00
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6 Conclusions

The implementation of the HNN for energy consumption monitoring has been
presented in this paper. The implementation of HNN is based on a non-linear
associator whose design is obtained from geometric algebra and conformal geo-
metric algebra approaches. The implementation is carried out into two stages:
a) Off-line and b) On-line. The training of the HNN is performed using an evolu-
tionary algorithm. The HNN is implemented in the Esp8266 microcontroller for
energy consumption monitoring after the off-line stage. Our approach achieves
competitive results, obtaining on average 99.7% and 99.4% classification rates
for training and validation respectively using a simple topology. Our approach
presents a good performance using only two neurons in the hidden layer. There-
fore, we implement the HNN using only 20 parameters to recognise the device
operating in our IoT device. Our embedded implementation approach in the
NodeMCU board presents a good performance for processing the data in real
time. On average, only 45.7% of the board’s memory is used. The recognition of
devices operating in the IoT device is performed in seconds.
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2. López-Alfaro, G.A., et al.: Mobile robot for object detection using an iot system. In:
2020 IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC), vol. 4, pp. 1–6 (2020)
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I., Cortez-González, J.: Prediction of microbial growth via the hyperconic neural
network approach. Chemical Engineering Research and Design (2022)

14. Serrano-Rubio, J.P., Herrera-Guzmán, R., Hernández-Aguirre, A.: Hyperconic
multilayer perceptron for function approximation. In: IECON 2015–41st Annual
Conference of the IEEE Industrial Electronics Society, pp. 004702–004707 (2015)

15. Team, N.: Nodemcu-an opensource firmware based on esp8266 wifi-soc (2014).
https://www.nodemcu.com

16. Systems, E.: Esp8266 overview (2022). https://www.espressif.com/en/products
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Abstract. Feature engineering has become one of the most important
steps to improving model prediction performance, and producing qual-
ity datasets. However, this process requires non-trivial domain knowl-
edge which involves a time-consuming task. Thereby, automating such
processes has become an active area of research and interest in indus-
trial applications. In this paper, a novel method, called Meta-learning
and Causality Based Feature Engineering (MACFE), is proposed; our
method is based on the use of meta-learning, feature distribution encod-
ing, and causality feature selection. In MACFE, meta-learning is used
to find the best transformations, then the search is accelerated by pre-
selecting “original” features given their causal relevance. Experimental
evaluations on popular classification datasets show that MACFE can
improve the prediction performance across eight classifiers, outperforms
the current state-of-the-art methods on average by at least 6.54%, and
obtains an improvement of 2.71% over the best previous works.

Keywords: Automated feature engineering · Automated machine
learning · Causal feature selection

1 Introduction

Extracting features from raw data and transforming them into formats that
are appropriate for Machine Learning (ML) models is what is known as feature
engineering [12]. This task is usually carried out by a data scientist with good
domain knowledge and the data sources of the task at hand [19,21,33]. Generally,
feature engineering entails the daunting manual labor of designing, selecting, and
evaluating features where even a great intuition is needed [6,18]. This is due to
the fact that the performance of most machine learning algorithms heavily relies
on the training data quality. These type of datasets usually consists of a large
collection of different formats that need to be curated to be exploited by machine
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learning algorithms [6]. Therefore, by using feature engineering, we can select
and obtain novel features from the raw data that would better represent the
problem.

However, most of the existing automated feature engineering proposals per-
form this task by applying the expansion-reduction method [17], which is the
process of trying a predefined set of transformation functions applied to raw
features. Then, those transformed features are selected based on the improve-
ment of model performance or some evaluation metric [21]. However, expansion-
reduction leads to an exponential growth in the space of constructed features,
which is known as the feature explosion problem [5]. In addition, extracting
novel features without a proper and systematic method can lead to an unneces-
sary increase in the dimensionality of the data, and hence a poor performance
in the learning process of the model [3]. Thus, the curse of dimensionality arises
[20], which is the potential of high-dimensional data to be more complicated to
process than low-dimensional data [8].

Fig. 1. The framework of our method. MACFE extracts meta-features from dataset D
and a frequency table for each feature x ∈ X . Then, an encoding e is generated by the
meta-features and feature distribution. Next, we search for the most similar encoding on
the Transformation Recommendation Matrix (TRM ) in order to recommend a useful
transformation from it. The transformed dataset D̂ is built from the constructed novel
features and the original ones selected by the Directed Acyclic Graph (DAG) causal
model.

It is crucial to realize that there are dozens of types of machine learning
models, and each has its peculiarities and needs [19]. For instance, some models
neither work with highly correlated features nor with highly multi-collinearity.
Additionally, other models have trouble dealing with missing, noisy, or irrelevant
features. Furthermore, since data and models are so diverse, it is difficult to
generalize the practice of feature engineering across projects [33]. Thus, finding
a proper process to treat data agnostically from a specific learning algorithm can
help to choose transformations that better suit the learning process. To tackle
this issue, a possibility is to incorporate only the generated features that have
more appropriate knowledge about the data. For this, we present MACFE, a
novel meta-learning and causality approach for automated feature engineering
for classification problems using tabular data. The main contributions of this
paper are briefly described as follows:
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– We present a causality-based method for feature selection on the original
dataset. For this, we use the mean magnitude effect of the features on the
target to rank and select a subset of them.

– We propose a novel meta-learning generation for unary, binary, and high-
order features based on non-linear transformations. This approach addresses
the feature explosion problem by only searching for feature transformations
that were found useful in past experiences.

In order to evaluate the proposed method, we designed a series of experiments
on fourteen popular public classification datasets with relatively small dimen-
sions to evaluate the feature generation and selection performance of MACFE.
The results are obtained from eight machine learning models: Logistic Regression
(LR), K-Nearest Neighbors (KNN), Lineal Support Vector Machine (SVC-L),
Polynomial Support Vector Machine (SVC-P), Random Forest (RF), AdaBoost
(AB), Multi-layer Perceptron (MLP) and Decision Tree (DT). As illustrated
in Fig. 1, our approach is divided into three phases. In the first one, the fea-
ture selection is carried out by using a Structural Causal Model (SCM) [22] for
choosing the most promising features. Then, we move to a meta-learning phase
(the second one), where meta-features are extracted from datasets and feature
distributions to create encodings for each attribute. Then, we lookup for feature
transformation on similar previously engineered datasets. Finally, in the third
phase, we evaluate the engineered features among eight machine learning models
and obtain the mean accuracy of stratified 5-Fold Cross Validation in order to
assess the quality of the feature engineering method. Experimental results show
that our proposal is effective in surpassing the scores of state-of-the-art feature
engineering methods by achieving a mean accuracy of 81.83% across the fourteen
testing datasets and the eight machine learning models evaluated.

The rest of this paper is organized as follows. In Sect. 2, we review the state
of the art in automated feature engineering. In Sect. 3, we elaborate on the need
for automated methods like ours. In Sect. 4, we introduce our proposed method
MACFE, whereas Sect. 5, we show in detail our evaluation results, and finally,
in Sect. 6 the conclusions drawn in this research work are given.

2 Related Work

In recent years, many automated feature engineering methods have been pro-
posed using different methodologies. For instance, Data Science Machine (DSM)
[14] is an automated feature engineering approach for structured and relational
data. DSM proposed a Deep Feature Synthesis (DFS) method, which searches for
relations and transformations across features in databases. They include a depth
hyper-parameter d for setting the maximum composition, which recursively enu-
merates all possible transformations. In addition, DSM generates a large novel
feature space, which is reduced by using Singular Value Decomposition (SVD)
based feature selection. However, DSM is only suitable for relational data and
it could take high computational times due to all the transformation functions
used for processing all the original feature sets.
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The data-driven approach presented in FCTree [9], creates novel features
from sequential transformations of the original space by employing decision trees
and then selecting the best features with the aid of information gain. The method
in [25], known as the TFC framework, presents an iterative feature generation
algorithm. The method applies feature transformation across all the features,
and then it selects the best features based on information gain. Nevertheless,
the generated feature space grows in a combinatorial way, leading to feature
explosion. AutoFeat [13] and AutoLearn [16] are also data-driven methods. They
can generate large transformations of features, selecting useful features by using
regularized regression models for each pair of features. However, these methods
require training a regression model, which can be time-consuming. Also, they
both suffer from the feature explosion problem. Label based Regression (LbR)
[30] is another method for generating novel features by using Ridge Regression
and Kernel Ridge Regression. This method selects features based on the Distance
Correlation Coefficient and the Maximum Information Coefficient (MIC) for each
feature pair, which leads to discriminate features that are useful in combination
with others.

2.1 Meta-learning for Feature Engineering

Recently, meta-learning has been proposed as a means of improving the quality
of the generated features [21]. Meta-data can be simply defined as data about
data [31]. For this work, meta-features are used to characterize and identify fea-
tures with attributes in the context of meta-learning [1,4,10,28]. Some examples
of meta-features are: a) General, such as the number of samples, features or
classes, etc. b) Statistical like standard deviation, correlation coefficients, etc.
c) Information-theoretic such as entropy, mutual information, noise ratio, etc.
d) Model-based describes some characteristics of models such as Decision Trees,
Bayesian Networks, SVMs, etc.

ExploreKit [15] is an example of a method that uses meta-learning for rank-
ing and selecting the most promising generated features. ExploreKit does this
by applying all possible transformations on features, suffering from the fea-
ture explosion problem. Furthermore, Learning Feature Engineering (LFE) is
an approach that also uses meta-learning for recommending useful features for
classification problems. The transformation recommender in LFE is based on
the construction of a meta-feature vector based on the feature values associ-
ated with a class label. However, LFE can recommend only unary and binary
transformations, lacking high-order transformations.

2.2 Causality Feature Selection

Classical feature selection approaches to leverage the correlations between fea-
tures and class variables but lack taking advantage of the causal relationships
between them. In contrast, knowing the causal relationship implies the under-
lying mechanism of a dataset [32], and thus causal variables are expected to be
persistent across different settings or environments.



56 I. Reyes-Amezcua et al.

Hence, basing the feature engineering on relevant causally related features
to the class of interest ideally should provide a more rich and robust output of
engineered features. Consequently, if we work only with causally related variables
to the target variable, independently of the type of relationship, it should be
possible to be learned by an ML model, which additionally implies it facilitates,
at some level, the efficacy of applying feature engineering to causally related
variables.

3 Problem Definition

Let D = {X,Y } be a dataset of input-output pairs, X a collection of n features
{x1,x2, ...,xn}, and m labels Y = {y1, ..., ym}. A machine learning algorithm
L (e.g. SVM, Logistic Regression, or Random Forest), and an evaluation metric
E (e.g. accuracy, F1-score).

We refer to a transformation t ∈ T as a function t(x) that takes a feature as
an argument, and maps it to a transformed feature output x̂ ∈ X′. Where T is
our set of transformations {t1, t2, ..., tk} that can be unary or binary, depending
on the number of given arguments. Here, a high-order transformation is a com-
position of unary and binary transformations. Over each feature it is possible to
define a series of non-linear transformations, ti : xi → x̂i that allow to extract
as much intra and inter information from the “original” data. The goal of feature
engineering is thus to transform X into X′ by applying T such that X′ max-
imizes the evaluation metric E of a machine learning algorithm L. The search
for new transformed features and their combinations grows exponentially, and
the feature explosion problem arises. MACFE, our proposed feature engineering
approach, was devised to help mitigate this problem by employing meta-features
to guide the search for transformations on features.

3.1 Meta-learning and Meta-features

A formal definition of meta-features was proposed in [28], in which meta-features
are a set of q values extracted from a dataset D by a function f .

f(D) = σ(μ(D,hμ), hσ), (1)

where f : D �→ Rq is the extraction of q values from dataset D, μ : D �→ Rq′

is a characterization measure, σ : Rq′ �→ Rq can be a summarization function
such as: mean, minimum, maximum, etc. Moreover, hμ and hσ are hyperparam-
eters for μ and σ, respectively. Thus, the function f is built by measuring some
characteristic from D by μ, and a summarizing function defined by σ.

Here, meta-features describe features using meta-data. An example is the
mean or median, as they are features that provide extra information about the
underlying data distribution. In particular, the core of this work is meta-learning
applied to the identification of data through meta-features.
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4 Proposed Approach

In the following sections, we describe the dataset preprocessing along with the
construction of the meta-feature vector and encodings for features. Also, we
present the training of our method including the Meta-learning and Causal Selec-
tion phases.

4.1 Datasets

Preprocessing. MACFE is guided by meta-feature learning based on past
experience to create novel features. Our method is trained with M random
datasets Dtrain = {D1, D2, ..., DM } collected from Open ML [29], which have
a structured format and a classification task related to the data. First, the pre-
processing and cleaning of data are performed for each dataset by removing non-
numerical features and imputing missing values with the feature mean. Next, a
meta-feature extractor is used to obtain meta-data about the datasets. Let mf
be a meta-feature vector composed by the main characteristics of a given dataset
Di ∈ Dtrain . Thus, a meta-feature vector for a dataset Di is defined as:

mf = [mf1,mf2, ...,mfp], (2)

where each mfi is a meta-feature value extracted from the data, and p is the
size of the extracted meta-features.

However, describing datasets by mapping their main characteristics can be
a challenging task. A full set of estimators and metrics can be extracted from
a dataset, e.g., the number of classes or instances in a dataset can be a meta-
feature value from such a dataset. For this, we use the approach of [24] to perform
the automatic meta-feature extraction process. The extraction of meta-features
is divided into five categories proposed by Rivolli et al. [28]: simple or gen-
eral, statistical, information-theoretic and model-based, and landmarking. In
order to automate the process of extracting meta-features from datasets, we
use the framework Meta-feature Extractor (MFE) [1] for each training datasets
Di ∈ Dtrain , which implements the standard meta-feature extraction described
above.

Next, we treat each feature x ∈ Di as follows:

1. We create a frequency table with a fixed number of buckets or bins b, for each
feature x

2. A range r is calculated on the feature values given by the upper and lower
bounds of the feature.

3. We generate s disjoint sets or bins b with uniform width w. Thus, each bin
range bi is a bucket in which values that are in the bin range lie. Each bi

range starts with the lower bound of x plus i times the width w, and ends
with the lower bound of x plus i + 1 times the width w.

4. Finally, each frequency table or histogram is normalized in the range [0,1].
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Thus, we obtain an encoding e ∈ R1×η for each feature x ∈ Di , composed
by the meta-feature vector mf of the dataset and the feature distribution as
follows:

e = [mf1,mf2, . . . , mfp, b0, b1, ...bs−1] (3)

4.2 Model Training

Meta-learning Phase. The meta-learning phase is described as follows. The
unary, binary, and scaling feature transformations t ∈ T are applied to the
original features X. Then, an evaluation is performed on both original features
and the generated features t(X). For this, we use the Maximal Information
Coefficient (MIC) [27], which measures the strength of the linear or non-linear
relationships between two variables. MIC generates values between 0 and 1,
where 0 means statistical independence and 1 stands for a noiseless statistical
relationship between variables. Thus, we get the set of selected transformations
Tsel for each original feature in x ∈ X with the maximum score as follows:

Tsel = argmax
t∈T

gt

(
MIC(t(x)) − MIC(x)

)
. (4)

Finally, the selected transformations t ∈ Tsel are stored in the Transformation
Recommendation Matrix (TRM) for each x ∈ Dtrain represented by its cor-
responding encoding e. Thus, TRM is represented as follows (Fig. 2).

TRM =

⎡
⎢⎣
e1,1 e1,2 · · · e1,η t1
...

...
. . .

...
...

eN,1 eN,2 · · · eN,η tN

⎤
⎥⎦

Fig. 2. TRM Matrix, where the ith row in the matrix is the feature x ∈ Dtrain ,
and the jth column is the encoding value of e (Eq. 3). N is the size of all the features
in Dtrain , and η is the size of encoding e composed by the meta-feature vector mf
(Eq. 2) and feature histogram. The last column stands for the transformations t ∈ T
with the resulting highest MIC score for the given features (Eq. 4).

In Algorithm 1 the training procedure to learn the most appropriated unary
Tun and binary Tbin transformations is presented. This process is done for
each feature in a given dataset D. Similarly, high-order transformations are
built by combining several unary or binary transformations one after the other
(Algorithm 2).
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Algorithm 1. Training TRM

Input: Structured Dataset D
Output: TRM
D = preprocess(D)
for each xi ∈ D do

ei = encode feature(xi )
for each t ∈ Tun do

x̂i = t(xi )
s.append(MIC(x̂i ) − MIC(xi ))

end for
ttop = argmax(s)
TRM .append(ei , ttop)
for each xj ∈ D|j > i do

ej = encode feature(xj )
for each t ∈ Tbin do

x̂i ,j = t(xi ,xj )
si = MIC(x̂i ,j ) − MIC(xi )
sj = MIC(x̂i ,j ) − MIC(xj )
if si > 0 and sj > 0 then

TRM .append(ei , ej , t)
end if

end for
end for

end for

Algorithm 2. Data Transformation
Input: D, d, s
Output: D̂
D̂ = preprocess(D)
D̂ = causal selection(D̂, s)
for 1 to d do

for each xi ∈ D̂ do
ei = encode feature(xi )
tun = Similarity(TRM , ei )
x̂i = tun(xi )
D̂.append(x̂i )
for each xj ∈ D̂, xi �= xj do

ej = encode feature(xj )
tbin=Similarity(TRM ,ei ,ej )
ˆxi,j = tbin(xi ,xj )

D̂.append( ˆxi,j )
end for

end for
end for
eD̂ = encode dataset(D̂)
tscaler = Similarity(TRM , eD̂)

D̂ = tscaler(D̂)

The order value of the transformation function is related to the number
of times a feature is processed by a transformation, e.g., an input feature x1

is given as an argument of the log function, so f1(x1) = log(x1). Then, the
resulting feature is combined with another feature x2, lets say a multiplication,
thus, f2(f1(x1),x2) = mult(log(x1),x2). Finally, the output feature is given to
the unary function square. Thus, the final transformed feature x̂ has an order
of 3, and can be seen as follows:

x̂ = f3(f2(f1(x1),x2)) = square(mult(log(x1),x2))) (5)

Hence, we look for the underlying information about data through the extraction
of more complex features. This gives us the capability of creating novel features
from raw features that apparently do not have any predictive power, but in
combination with high-order functions can have suitable predictive power for
some machine learning models.

Causal Feature Selection Phase. Once the TRM is trained, MACFE is
ready to recommend useful transformations for new datasets and features. For
this, we start selecting the most promising original features, a causality-based
feature selection is performed on the features. A DAG Classifier is trained to dis-
cover a causal graph from data. For this, we use the implementation of CausalNex
[2]. This graph underlies the causal relationship between features and a target
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variable. The mean identified causal magnitude effect of the features on the
target is used to rank the features. Then, a given threshold hyperparameter s
determines the top k selected features. The resulting subset of selected features
are processed to obtain an encoding e (Eq. 3).

Then, for a given feature encoding e, we search for a transformation in TRM
by retrieving the most similar feature encoding using the cosine distance as a
similarity measure. We benefit from this measure for ranking the most similar
feature-vectors in the range 1.0 for identical feature-vectors and 0.0 for orthogo-
nal feature-vectors [26]. Next, the most similar feature transformation is applied
to the feature. The process is followed by the binary transformations and iter-
ating over the features in the dataset (Algorithm 2). Furthermore, a depth d
hyper-parameter is set to look for the maximum transformation order across
unary and binary functions. Lastly, for the Scaling transformations we refer to
those transformations on features that change the scale on a standard range.
Many machine learning algorithms struggle to find patterns in data when fea-
tures are not on the same scale. For this, having scaled features can help gradient
descent to converge faster towards a minimum.

We scale features as follows. For a given feature x ∈ X, the following scaling
functions can be applied. Normalization, also called Min-Max Scaler, is a method
that scales each feature value to the range [0,1]. Standardization, this method
scales each feature value so that the mean is 0 and the standard deviation is 1.
Robust Scaler, this scaler is useful when the input feature has a lot of outliers.
The Robust Scaling is done by calculating the median (50th percentile), and also
the 25th and 75th percentiles. Then, each feature value is subtracted from the
median, and divided by the Interquartile Range (IQR). In order to learn and
recommend which scaler is appropriate for a given dataset, we follow a series of
data testings. First, we test the features to know the proportion of outliers. If this
proportion is larger than a certain threshold γ, then a Robust Scaler is applied
to the features. Secondly, if the data follows a normal distribution, then we use
a Standard Scaler. In particular, we use a Shapiro-Wilk test [11] to evaluate the
normality of data. Then, if the test value is greater than 0.05 we consider the
data is normally distributed. Finally, if none of the above tests is true about
the data, then we use a Min-Max Scaler on the features. The resulting scaling
method is saved in TRM according to the dataset encoding.

5 Experimental Results

For the evaluation of MACFE, first, we describe the evaluation details, such as
the case study datasets and learning algorithms. Next, we briefly describe each
of the implementation details of the classifiers and evaluation methods. Finally, a
comparison with previous work is done and a discussion is presented by analyzing
the characteristics of datasets and algorithms where MACFE is convenient.
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5.1 Evaluation Details

Table 1. Statistics of 14 case study datasets

ID Dataset Source Labels Features Instances

1 Pima Diabetes UCI ML 2 8 768

2 Sonar UCI ML 2 60 208

3 Ionosphere UCI ML 2 34 351

4 Haberman UCI ML 2 3 306

5 Fertility UCI ML 2 9 100

6 Wine UCI ML 3 13 178

7 E.coli UCI ML 8 7 336

8 Abalone UCI ML 29 7 4177

9 Dermatology UCI ML 4 34 366

10 Libras UCI ML 15 90 360

11 Optical UCI ML 10 64 5620

12 Waveform OpenML 3 21 5000

13 Fourier OpenML 10 76 2000

14 Pixel OpenML 10 240 2000

The evaluation of MACFE as an automated feature engineering method is
performed on a set of fourteen classification datasets and eight machine learning
algorithms commonly cited in the literature [15,16,30]. These datasets are from
different areas, such as medical, physical, life, and computer science. In addition,
these datasets are publicly available in the UCI ML Repository [7] and OpenML
Repository [29]. The main statistics of these datasets are shown in Table 1.

5.2 Implementation Details

For our experiments, we tested the following learning algorithms: Logistic
Regression (LR), K-Nearest Neighbors (KNN), Linear Support Vector Machine
(SVC-L), Polynomial Support Vector Machine (SVC-P) and Random Forest
(RF), AdaBoost (AB), Multi-layer Perceptron (MLP) and Decision Tree (DT).
The scoring method for the evaluations is the mean accuracy of stratified 5-Fold
Cross Validation on each dataset. Same as the state-of-the-art methodology for
scoring. Each algorithm is used with scikit-learn [23] default parameters. This is
because our objective is to enhance the accuracy of a model by improving the
data through our automated feature engineering process, MACFE.

5.3 Comparison with Previous Works

The comparison of our proposal takes into account the same scenario conditions
of the results presented in recent feature engineering proposals such as TFC [25],
FCTree [9], ExploreKit [15], AutoLearn [16] and LbR [30]. In Table 2 are shown
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Table 2. Mean accuracy results in 5-fold cross validation among original datasets
(ORIG) and consulted state-of-the-art (TFC [25], FCTree [9], ExploreKit [15],
AutoLearn (AL) [16], LbR [30]) and MACFE (ours). The best performing approach is
shown in bold, each dataset is shown with its corresponding ID from Table 1.

D. ID CLF ORIG TFC [25] FCT [9] EK [15] AL [16] LbR [30] MACFE D. ID CLF ORIG TFC [25] FCT [9] EK [15] AL [16] LbR [30] MACFE

1 KNN 71.48 72.42 73.52 73.6 68.36 72.13 75.12 2 KNN 78.35 81.48 82.70 82.4 83.19 83.33 81.27

LR 76.55 75.92 76.52 73.9 74.99 71.86 77.47 LR 77.42 78.12 78.72 78.7 79.00 90.47 86.05

SVM-L 65.23 62.71 72.52 73.7 74.85 75.22 77.34 SVM-L 73.54 74.54 75.75 76.1 77.30 90.47 86.06

SVM-P 64.89 65.71 70.52 72.6 76.32 78.32 78.12 SVM-P 53.36 58.41 66.44 33.6 81.71 80.95 86.57

RF 75.37 72.42 73.52 74.0 73.05 72.47 78.12 RF 73.55 81.00 82.54 47.4 77.87 76.19 85.62

AB 74.34 74.08 74.08 74.3 72.52 73.01 76.29 AB 80.74 80.00 81.04 54.0 78.83 85.71 83.69

NN 64.32 64.12 64.22 67.3 72.39 72.50 77.86 NN 80.30 81.07 82.00 82.4 84.09 85.71 88.03

DT 72.38 70.23 70.46 70.9 71.05 71.12 71.74 DT 75.01 74.23 74.52 75.0 75.02 83.33 75.53

3 KNN 84.31 84.66 84.87 86.0 83.46 92.95 89.74 4 KNN 71.89 70.00 71.28 72.3 68.68 70.36 76.14

LR 87.44 87.26 87.39 87.7 87.95 95.77 93.44 LR 74.19 72.07 73.96 74.5 76.16 76.50 74.51

SVM-L 87.44 86.71 87.78 88.0 84.30 90.14 92.58 SVM-L 74.18 73.97 74.18 75.4 75.82 76.01 73.53

SVM-P 64.10 70.16 71.45 72.6 74.63 78.87 93.72 SVM-P 74.18 73.98 74.81 75.1 75.52 75.52 74.51

RF 93.15 91.65 93.16 94.0 92.30 91.54 95.44 RF 68.63 68.91 69.07 70.0 65.34 70.17 72.22

AB 92.02 90.94 90.12 90.3 92.43 90.14 94.01 AB 70.25 71.19 71.57 72.2 69.93 73.05 71.89

NN 93.14 92.45 92.13 93.6 92.29 97.18 92.58 NN 73.19 69.02 71.19 72.2 70.91 75.02 76.13

DT 88.32 87.12 88.04 88.1 88.59 88.73 94.87 DT 66.65 66.09 66.79 67.2 66.34 67.74 73.86

5 KNN 85.00 86.00 86.00 87.0 87.00 88.00 88.95 6 KNN 67.93 74.89 79.93 83.4 93.84 95.49 97.22

LR 88.00 88.00 89.00 88.0 87.00 88.00 89.95 LR 95.52 96.89 97.24 95.1 98.30 99.44 98.87

SVM-L 85.00 87.00 88.00 87.0 87.00 87.00 89.95 SVM-L 83.03 88.14 89.94 90.8 98.31 98.87 98.32

SVM-P 88.00 87.00 87.00 88.0 88.00 88.00 88.89 SVM-P 96.65 96.68 96.65 92.1 92.68 94.74 99.43

RF 82.00 87.00 87.00 90.0 84.00 88.00 89.89 RF 96.07 96.68 97.12 90.0 97.20 98.89 97.19

AB 79.00 83.00 84.00 83.0 79.00 85.00 87.84 AB 85.82 88.12 91.23 62.8 84.71 83.03 89.27

NN 88.00 88.00 88.00 88.0 85.00 88.00 90.00 NN 42.73 46.23 49.56 64.6 97.19 98.87 98.32

DT 80.00 84.00 84.00 85.0 85.00 88.00 87.89 DT 91.57 91.79 92.01 92.5 93.22 93.37 95.49

7 KNN 86.59 88.42 87.56 88.4 84.82 85.39 87.81 8 KNN 23.27 21.64 22.60 23.1 22.71 21.69 22.62

LR 75.88 78.23 79.24 82.8 87.19 87.19 87.73 LR 24.61 23.69 23.60 24.8 26.50 25.25 26.84

SVM-L 85.71 85.71 85.71 86.3 86.30 86.80 88.87 SVM-L 25.71 25.64 25.72 25.7 26.07 25.23 26.57

SVM-P 56.54 59.32 62.14 72.3 80.33 81.59 93.72 SVM-P 19.46 17.64 22.12 21.4 23.77 23.98 26.33

RF 82.73 83.46 83.76 85.1 86.59 84.80 95.44 RF 22.91 18.78 23.02 23.2 22.21 24.15 25.52

AB 62.47 63.54 64.37 65.8 65.75 63.06 93.44 AB 20.61 19.10 19.97 21.1 20.61 21.01 21.45

NN 78.28 80.37 81.97 83.7 86.90 86.89 92.30 NN 27.53 26.32 26.41 27.1 27.81 26.40 28.27

DT 79.74 76.32 77.67 80.3 76.40 82.11 94.87 DT 19.27 19.00 19.13 19.3 19.41 19.42 20.13

9 KNN 89.11 90.46 92.89 91.0 96.09 96.66 97.82 10 KNN 70.00 71.00 71.18 73.7 69.44 70.27 75.28

LR 97.21 97.76 97.97 97.6 98.61 97.77 97.81 LR 60.27 64.68 67.12 71.7 70.00 68.88 79.72

SVM-L 97.21 96.02 96.27 96.3 96.92 98.32 97.54 SVM-L 68.61 69.88 70.83 70.4 67.22 68.61 82.22

SVM-P 94.41 94.00 94.12 92.0 93.56 98.04 95.90 SVM-P 2.22 36.68 47.97 47.8 49.44 50.13 85.83

RF 96.92 96.45 96.61 95.5 95.81 98.04 98.09 RF 71.94 72.12 73.07 77.6 70.22 72.50 86.11

AB 54.13 57.12 61.00 57.3 54.96 54.13 75.67 AB 8.05 10.12 13.11 16.9 18.05 14.57 15.28

NN 98.04 97.13 97.22 97.7 98.22 97.77 98.09 NN 71.66 72.35 74.24 75.7 78.33 85.56 83.06

DT 95.24 95.06 94.96 95.4 94.68 96.08 96.45 DT 62.50 62.64 63.12 63.7 65.55 65.27 73.06

11 KNN 98.77 97.20 98.02 98.0 97.03 99.03 98.74 12 KNN 82.48 81.28 82.00 82.1 81.14 81.54 81.44

LR 96.49 96.40 96.40 97.0 95.83 94.82 97.88 LR 86.58 86.72 87.18 86.9 85.12 87.14 86.90

SVM-L 94.89 94.12 95.17 95.1 94.01 94.71 98.49 SVM-L 86.90 84.54 86.23 86.9 84.40 87.18 86.66

SVM-P 99.09 99.03 99.03 99.1 96.20 99.21 99.06 SVM-P 81.70 81.62 82.54 80.4 85.42 86.18 83.84

RF 96.38 96.36 96.91 97.3 96.57 92.68 98.26 RF 82.10 81.45 82.04 82.1 81.12 80.90 86.12

AB 68.65 67.62 68.35 69.7 73.78 75.46 68.17 AB 83.62 82.54 82.84 83.0 83.78 83.04 83.34

NN 98.02 95.62 95.37 96.5 96.93 96.77 98.33 NN 85.84 82.31 3.10 84.7 83.72 83.94 86.26

DT 89.90 88.00 88.46 90.4 90.41 87.42 91.10 DT 75.04 72.46 73.00 73.2 73.06 76.60 78.72

13 KNN 83.85 82.17 83.82 84.0 83.55 82.17 82.85 14 KNN 97.75 98.12 97.23 98.0 97.95 97.45 97.75

LR 79.45 79.97 80.00 82.2 83.15 84.03 82.20 LR 94.35 94.22 94.28 95.5 95.75 94.95 96.75

SVM-L 81.45 81.15 82.86 82.5 83.05 83.05 84.40 SVM-L 92.90 92.57 93.26 94.3 94.27 93.45 97.70

SVM-P 8.70 42.25 57.97 66.7 82.30 81.10 85.10 SVM-P 98.35 98.22 98.66 98.7 97.25 98.66 98.10

RF 79.90 78.90 79.16 80.8 79.31 81.85 84.45 RF 95.50 94.26 95.12 96.5 94.20 95.50 97.60

AB 48.65 46.66 49.29 50.0 50.40 48.65 43.75 AB 54.05 54.00 54.86 55.3 55.60 54.05 65.10

NN 81.90 82.34 83.12 83.4 85.50 86.90 83.40 NN 97.15 97.15 97.15 97.2 97.15 97.90 97.20

DT 74.00 74.00 74.00 74.1 74.35 74.50 75.40 DT 87.30 86.12 86.78 86.6 87.65 87.90 88.55

the scores achieved by our proposal compared against the scores obtained by
other approaches in the state-of-the-art. The best scores are shown in bold, each
dataset is represented by its ID defined in Table 1. The improvement among
algorithms and datasets is notable: as shown in Fig. 3 we achieve an average
accuracy of 81.83% across all tested datasets and classifiers, outperforming TFC,
FCT, ExploreKit, AutoLearn (AL), LbR, by 6.54%, 5.99%, 5.63%, 3.95%, and
2.71%, respectively.



MACFE: Meta-learning and Causality Based Feature Engineering 63

Fig. 3. Mean accuracy of state-of-the-art methods and MACFE (ours) across fourteen
case study datasets and eight machine learning models.

5.4 Discussion

The transformation recommendation procedure of this method is agnostic of
the learning algorithm. But, some transformations can be more appropriate for
a certain algorithm. Therefore, MACFE achieves 100% of efficacy in terms of
improving at least one model for each dataset. The depth hyperparameter d
of MACFE can generate different orders of complex features to improve the
model performance. A high value in d can result in too complex novel features,
thus the algorithm cannot learn from the data. In contrast, a small value of the
hyperparameter s can lead to a small subset of the original features, thus not
finding good relationships between features. Hence, it is recommended a grid
search to find the optimal values of hyperparameters.

6 Conclusions and Future Work

In this paper, we presented a causality-based feature selection to reduce the
feature space search for feature transformations. Also, a meta-learning-based
method for automated feature construction, on which the number of transfor-
mations executed on features depends on the number of useful transformations
found on historical past similar features. In particular, this method has the
capability of constructing novel features from raw data that are informative and
useful for a learning algorithm. Hence, MACFE can automatically create fea-
tures by applying selected transformations to the data, either unary, binary, or
high-order, instead of applying all possible combinations of those. Hence, the
feature explosion problem is minimized. However, MACFE has a fixed set of
unary, binary, and scaling transformations. In future work, we intend to increase
this set by adding more transformation functions, leading to the construction of
more informative features from raw features. In addition, the causal selection of
features could be improved, since it is applied equally to all datasets but dif-
ferent datasets can be expected to satisfy different causal assumptions, which
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produces different levels of efficacy when selecting the features to be engineered.
To improve this, better methods of general causal discovery are needed.

Acknowledgments. The authors wish to thank the CINVESTAV, the AI Hub, and
the CIIOT at ITESM, for their support and the use of the DGX for running the
experiments in this paper.
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Abstract. Time series forecasting has been a topic of special inter-
est due to its applications in Finance, Physics, Environmental Sciences
and many other fields. In this article, we propose two classical-quantum
hybrid architectures for time series forecasting with a multilayered struc-
ture inspired by the multilayer perceptron (MLP): a Quantum Neu-
ral Network (QNN) and a Hybrid-Quantum Neural Network (HQNN).
These architectures incorporate quantum variational circuits with spe-
cific encoding schemes and the optimization is carried out by a classi-
cal computer. The performance of the proposed hybrid models is evalu-
ated in four forecasting problems: Mackey-Glass time series and USD-to-
euro currency exchange rate forecasting (univariate time series) as well
as Lorenz attractor and prediction of the Box-Jenkins (Gas Furnace)
time series (multivariate time series). The experiments were conducted
by using the built-in Pennylane simulator lighting.qubit and Pytorch.
Finally, these architectures, compared to the MLP, CNN and LSTM show
a competitive performance with a similar number of trainable parame-
ters.

Keywords: Quantum machine learning · Time series forecasting ·
Quantum neural networks

1 Introduction

A time series is a series of data ordered in time. There are two types of time
series: multivariate time series and univariate time series [4]. The former involves
multiple dependent variables whereas in the latter there is only one dependent
variable. Time series forecasting aims to find the dependency between the past
values and the future values of the time series. Time series has been an active
research topic and can be found in areas of special interest such as economy,
finance, and physical sciences [6,23].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 66–82, 2022.
https://doi.org/10.1007/978-3-031-19493-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19493-1_6&domain=pdf
http://orcid.org/0000-0002-2660-1520
http://orcid.org/0000-0003-3435-9241
https://doi.org/10.1007/978-3-031-19493-1_6


Time Series Forecasting with Quantum Machine Learning Architectures 67

In the last few years, machine learning has become quite popular in a wide
range of areas including time series forecasting. Specifically, there have been
many attempts to use Artificial Neural Networks (ANNs) as an alternative to
traditional statistical methods due to the fact that they are universal function
approximators [31]. Additionally, Machine Learning models have been compared
to traditional statistical methods, showing that neural networks are generally
more accurate, and in specific situations, they improve significantly the accuracy
of time series data prediction [9,15,18]. Specifically, Recurrent Neural Networks
(RNNs) are widely used to solve time series forecasting due to their success
in modeling sequential data [14]. Long Short-Term Memory Networks (LSTM)
aim to solve the vanishing gradient problem of standard RNNs and are capable
of learning long-term dependencies, which makes them very efficient for time
series forecasting [10]. Quantum versions of RNNs and LSTM are proposed in
[5,11]. On the other hand, a Convolutional Neural Network (CNN) is a class
of ANN mainly used for computer vision and image processing tasks. Recently,
CNNs have been applied for time series forecasting with very promising results
[3,24,30]. A quantum version of CNN is introduced in [13] and has been applied
in image classification [2,17,27].

On the other hand, Quantum Computing promises improvements in solving
complex problems that the most powerful supercomputers cannot solve. Thus,
Quantum Machine Learning (QML) has emerged as a tool to find patterns in
data [8,16]. Specifically, Variational Quantum Circuits (VQCs) have emerged as
a quantum counterpart of Neural Networks [21]. VQCs have begun to be used
as a possible alternative to Deep Learning and are known in the literature as
Quantum Neural Network or Quantum Circuit Learning (QCL). In this frame-
work entangling operations are used to create multilayered structures, similar to
Deep Learning. Furthermore, QCL is a classical-quantum hybrid algorithm that
can perform supervised learning tasks [21]. In QCL, the output is computed by
a quantum circuit whereas the update of parameters is performed by a classical
computer. Since quantum circuits admit a universal model [7], quantum hybrid
architectures become attractive for time series forecasting.

Classical models inspired by quantum computing have been proposed for
predicting chaotic time series produced by a Lorentz system with competitive
results when compared with classical neural networks [28,29]. On the other hand,
quantum models have been proposed and evaluated with univariate time series
showing to be on par with existing classical models [19,25,26]. In [19] stock
prices using a quantum reservoir computer are predicted. Models based on a
quantum optimization algorithm are proposed in [25,26]. In [26] a new neutro-
sophic set based time series forecasting model is presented, where a quantum
optimization algorithm is used to improve the accuracy. The model is verified
and validated with datasets of the university enrollment of Alabama (USA),
Taiwan futures exchange (TAIFEX) index and Taiwan Stock Exchange Corpo-
ration (TSEC) weighted index. In [25] a fuzzy-quantum time series forecasting
model (FQTSFM) is introduced. The FQTSFM is tested with three different
datasets, namely the daily average temperatures of Taipei, TAIFEX index and
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TSEC weighted index. Otherwise, QML is applied for finance in [12], where a
parameterized quantum circuit (PQC) is used for forecasting time series signals
with simulated quantum forward propagation.

In this paper the contribution is threefold:

– A Quantum Neural Network (QNN) for time series forecasting that consists of
a multilayered VQC is proposed, where the number of qubits is set according
to the size of the regressor vector.

– A Hybrid-Quantum Neural Network (HQNN) for time series forecasting is
presented, where two or more dressed quantum circuits (quantum circuits
sandwiched between two classical layers) are concatenated in order to con-
struct a multilayered architecture.

– The range of applicability of previous quantum models [19,25,26] is extended
by including not only univariate but also multivariate time series forecasting.

From the variety of experiments performed in this work, it is possible to con-
clude that these hybrid models show a competitive performance when compared
to MLP, CNN and LSTM in univariate and multivariate time series forecasting.

The rest of the paper is organized as follows. The basics of quantum comput-
ing are covered in Sect. 2. In Sect. 3, the problem to be solved is established. The
proposed architectures are formalized in Sect. 4. The experimental setups and
results are presented in Sect. 5. Finally, the conclusions are presented in Sect. 6.

2 Preliminaries

We begin by introducing basic concepts of quantum computing before presenting
our contribution. In this section we use the notation introduced in [20].

2.1 The Qubit

The qubit is the basic unit of information in quantum computing. A qubit is a
two-state quantum mechanical system. This means that while a classical bit can
be 0 or 1, a qubit can also exist in what we call a superposition state, which is a
linear combination of the states |0〉 and |1〉. This property is the main difference
between the bit and the qubit [22]. Mathematically, we can represent a qubit
as a two-dimensional complex vector in which the basis vectors are the allowed
states |0〉 and |1〉. These vectors are given by |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. Then a

superposition state is written as

|Ψ〉 = α |0〉 + β |1〉 , (1)

where α and β are complex numbers that satisfy the normalization condition:
|α|2+ |β|2 = 1. We can construct multi-qubit states through the tensor product.
For example, the state |01〉 = |0〉 ⊗ |1〉 represents a two-qubit system where the
first and second qubit are in the state |0〉 and |1〉, respectively.

The state of the qubits could be modified through unitary operations (quan-
tum gates) to perform a computation. Quantum circuits are used for this pur-
pose. The final state of a quantum circuit is the measurement of the qubits in a
given basis.
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2.2 Quantum Circuits

A quantum circuit is a model of quantum computation that consists of a sequence
of quantum operations (quantum gates) applied to quantum data (multi-qubit
states). A quantum gate is a unitary operator which can be described as a
unitary matrix. Then, if we have a set of unitary operators {Ui}k

i=1, we can
mathematically represent the state |Ψ〉 prepared by the quantum circuit as

|Ψ〉 =
k∏

i=1

Ui |0〉⊗n
, (2)

where |0〉⊗n is an initial n-qubit state. The graphical representation of Eq. 2 is
shown in Fig. 1.

· · ·

· · ·

· · ·

|0〉

U1 U2 Uk

|0〉
...

...

|0〉

Fig. 1. Graphical depiction of the quantum circuit of
∏k

i=1 Ui |0〉⊗n

The quantum gates can act on one (single-qubit gate) or several qubits
(multiple-qubit gates). The quantum NOT gate can be represented with the
Pauli-X matrix. The NOT operator acts on a single qubit, and it is equivalent
to a NOT classical gate. Hence, we have: UNOT |0〉 = |1〉 and UNOT |1〉 = |0〉.
Since the other Pauli matrices are unitary, they are also used as single-qubit
gates. The action of the Pauli Y and Z gates is a rotation around the Y-axis and
Z-axis respectively of the Bloch sphere by π radians. Quantum gates can also be
parametrised. The main parametrised gates are the Pauli rotations: Rx = e−i θ

2 X ,
Ry = e−i θ

2 Y and Rz = e−i θ
2 Z , which rotate the Bloch vector about the x, y and

z axes by an angle θ.
The quantum gate that allows us to create superposition states is known as

Hadamard gate. It acts on a single qubit and maps the basis states {|0〉, |1〉} into
the superposition states

{
|0〉+|1〉√

2
, |0〉+|1〉√

2

}
. Another important quantum gate is

the CNOT gate and acts on a qubit in the following way: |a, b〉 → |a, b ⊕ a〉.
Mathematically serial operations are represented by a matrix product start-

ing with the first operation on the left followed by subsequent operations moving
to the right. On the other hand, when quantum operations are performed in par-
allel, we need to compute the tensor product.
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2.3 Variational Quantum Circuits

A Variational Quantum Circuit (VQC) is a quantum circuit with adjustable
parameters which are optimized in a classical computer. VQCs can be used as a
quantum version of classical feed-forward neural networks [1,21].

A VQC consists of three parts:

– Embedding circuit: The classical data x = (x1, ..., xN ) is encoded into a
quantum state by applying a x-parameterized unitary operator Uin(x) to an
initial quantum state |0〉⊗n:

E : x → |Ψin(x)〉 = Uin(x) |0〉⊗n
. (3)

In other words, E maps the classical input from a classical vector space to
a Hilbert space. A common choice of Uin(x) is to apply a Pauli rotation
gate (e.g., a Pauli-Y rotation gate), for each input feature in x as follows:
Uin(x) = Ry(x1) ⊗ · · · ⊗ Ry(xN ) = ⊗N

i=1Ry(xi).
– Parameterized circuit: A parameterized circuit of depth q is equivalent to

the hidden layers of the ANNs and is a concatenation of quantum layers:

U = Lq ◦ · · · L2 ◦ L1, (4)

where U is a unitary operator. A quantum layer L consists of single-qubit
operations followed by entangling operations (multi-qubit operations).

– Measurement: To obtain the output vector y, the expectation values of
the n observables ŷ = [ŷ1, ..., ŷn] are measured. The observable ŷi is a tensor
product of n operators as follows:

ŷ1 = B ⊗ I ⊗ I... ⊗ I

ŷ2 = I ⊗ B ⊗ I... ⊗ I

...
ŷn = I ⊗ I ⊗ I... ⊗ B

where I is the identity operator and B is a Hermitian operator that could
be different for each observable. Usually, B is chosen as the Pauli-Z operator.
This operation is defined as a measurement layer:

M : |Ψout〉 → y = 〈Ψout|ŷ |Ψout〉 , (5)

where |Ψout〉 is the transformed qubit state. M is a map from a quantum
state to a classical vector.

Finally, the full quantum network is given by

Q = M ◦ U ◦ E . (6)
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|0〉

Uin(x) U(θ)
|0〉

...

|0〉

Fig. 2. Illustration of a variational quantum circuit. The input x is encoded into a
quantum state by the embedding circuit. U(θ) is the parameterized circuit with the
trainable parameters θ of the network. A quantum measurement is made on the first
qubit.

3 Problem Statement

A time series is a sequence of observations of the values that one (univariate
time series) or more variables (multivariate time series) take over time, where
the time interval between observations is constant. For a time series of size N ,
the main problem is to predict x(t + Δt) based on the input:

x = (x(t + Δt − P ), ..., x(t + Δt − 2), x(t + Δt − 1)), (7)

where P < N . In other words, the objective is to predict x(t+Δt) using P past
values building the forecasting model x̂(t + Δt) = f(x). This problem can be
approached as a supervised learning problem.

The supervised learning scheme applied to time series will have as input the
regressor vector x given by Eq. 7 and the corresponding teacher data will be
given by the future values x(t + Δt).

4 Quantum Machine Learning Architectures for Time
Series Forecasting

In this section, the two proposed architectures for time series forecasting are
described.

4.1 Quantum Neural Network

As we mentioned earlier, one way to construct a quantum counterpart of neural
networks is in terms of VQCs. A general structure of a VQC is shown in Fig. 2.
Thus, the output is obtained from a quantum device (quantum circuit) whereas
the optimization of parameters θ is performed by a classical device (classical
computer). To this end, the regressor vector x is encoded into a quantum state
as in Eq. 3, where the number of qubits n is equal to the P past values.



72 M. A. Rivera-Ruiz et al.

Thus, selecting the Pauli-Y rotation gate, the input quantum state can be
expressed as:

|Ψin(x)〉 =
n⊗

j=1

RY (πxj)|0〉
⊗

n. (8)

The output state |Ψout(x,θ)〉 can be obtained by applying a θ-parametrized
unitary U(θ) to the input quantum state:

|Ψout(x,θ)〉 = U(θ)|Ψin(x)〉. (9)

The θ-parametrized unitary U(θ) consists of l layers. The k-th layer is chosen
to be

L(k)(θk) = Uent

n⊗

j=1

RZ(θZ
j,k)RY (θY

j,k)RX(θX
j,k), (10)

where the entangling gate Uent is composed of CNOT gates. Consequently, U(θ)
can be expressed in compact form as follows:

U(θ) = L(D)(θD)L(D−1)(θD−1) · · · L(2)(θ2)L(1)(θ1). (11)

The proposed VQC is shown in Fig. 3.
Then, in the simplest case of one-step-ahead forecasting models, the esti-

mated output x̂(t + Δt) can be expressed as the following expectation value:

x̂(t + Δt) = 〈Ψout|B|Ψout〉, (12)

were B is some chosen observable. The loss function L corresponds to the con-
ventional squared loss

L =|| x(t + Δt) − x̂(t + Δt) ||2, (13)

due to the fact that time series forecasting is approached as a regression problem.

4.2 Hybrid Quantum Neural Network

In the previous subsection, we used a VQC as a model for time series forecasting
with a multilayered structure. However, one of its limitations is that the number
of features depend on the number of qubits, contrary to classical feed-forward
neural networks, where we can freely choose the number of features of each layer.
One way of overcoming this constraint is by sandwiching the VQC between two
classical layers as shown in Fig. 4. This solution is formalized by introducing the
concept of Dressed Quantum Circuit (DQC) [20]. The general form of a DQC is
given by:

Q̃nin→nout = Lnq→nout ◦ Qnq→nq
◦ Lnin→nq

, (14)

where Ln→n′ is a classical layer with n input and n′ output variables. Qnq→nq
is

the quantum circuit given by Eq. (6). The classical layer Lnq→nout is responsible
of the pre-processing of the inputs of the VQC whereas Lnin→nq

performs the
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|Ψin〉

Rx(θX0,k) Ry(θY0,k) Rz(θZ0,k)

Uent ×D

. . .

Rx(θX1,k) Ry(θY1,k) Rz(θZ1,k)

...
...

...
...

...
...

Rx(θXn−1,k) Ry(θYn−1,k) Rz(θZn−1,k)

Fig. 3. VQC used for the proposed model. |Ψin〉 is the input state prepared by the
input gate Uin(x). D denotes the depth of the circuit. The Uent gate is composed of
CNOT gates.

post-processing of the outputs of the VQC [20]. Since both classical layers con-
tain trainable parameters, the pre-processing of inputs and the post-processing of
outputs of the VQC are optimized during the training process. The main advan-
tage of a DQC is that nin and nout (the number of input and output variables)
are independent of the number of qubits of the VQC.

Inspired by the Classical Deep Neural Networks we propose a multilayered
hybrid classical-quantum neural network (HQNN):

HQNN = Q̃nd−1→nd
◦ · · · Q̃n1→n2 ◦ Q̃n0→n1 , (15)

where d denotes the depth of the HQNN.
In this work, a two-layer HQNN is applied to time series forecasting:

HQNN = Q̃n1→n2 ◦ Q̃n0→n1 , (16)

where n0 is equal to the number of variables of the regressor vector. In the case
of one-step ahead forecasting n2 = 1. We use the same structure for the DQC
of each layer. Then, the encoding and variational layers of the l-th layer of the
HQNN are given by:

El(x) =
n⊗

j=1

RY (tanh (xj,l)) |0〉⊗n, (17)

Ul (θ) : |x〉 −→ |y〉 = Uent

n⊗

j=1

RZ(θZ
j,l)RY (θY

j,l)RX(θX
j,l), (18)

where Uent is composed of CNOT gates. In the measurement layer we take the
expectation value of the Pauli-Z operator of each qubit.
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Fig. 4. Illustration of a dressed quantum circuit. It is built with a VQC between two
classical layers. The k-th output from the classical pre-processing layer is denoted by
hk.

5 Results and Discussion

In this section, we evaluate the performance of the proposed quantum machine
learning architectures by applying the models to four standard problems:
Mackey-Glass time series, Lorenz attractor, prediction of the Box-Jenkins time
series and USD-to-euro currency exchange rate forecasting.

The experiments performed in this research are conducted by using the built-
in Pennylane simulator lighting.qubit and Pytorch. Additionally, for the purpose
of a fair comparison, the same optimizers, learning rates and number of epochs
(100 for all cases) are applied to the MLP, CNN, LSTM and the proposed models.
In addition, the time series data is scaled within the range [0, 1] using the min-
max normalization formula.

The SGD optimizer is used in the Lorenz attractor problem with a learning
rate of 0.001. In the case of Mackey-Glass and USD-to-euro currency exchange,
the Adam Optimizer is used with a learning rate of 0.001. In the case of the Box-
Jenkins problem, the Adam Optimizer is used with a learning rate of 0.0005.

The depth of the QNN and the number of qubits used in the HQNN are
equal to 5 and 3 in the Mackey-Glass time series problem, 7 and 4 for the
Lorenz attractor, 10 and 2 in the Box-Jenkins time series and finally, 4 and 3 in
the USD to Euro currency exchange rate forecasting.

The CNN model consists of a 1D convolutional layer and two fully connected
layers. After the 1D convolutional layer, a 1D max-pooling layer is applied. The
ReLU activation function is used in the convolutional layer and the first fully-
connected layer. In the case of the Lorenz attractor problem, the number of
output channels of the convolutional layer and the number of units in the first
fully connected layer is equal to 8 and 16, respectively, and in the rest of the
time series datasets, equal to 4 and 8. The LSTM model has a hidden state size
equal to 5 in the Lorenz attractor problem and equal to 3 in the rest of the time
series datasets.

The performance results of the proposed models in terms of RMSE, MAE
and MAPE are summarized in Tables 1, 2, 3 and 4.
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Mackey-Glass Time Series. Mackey-Glass time series data are derived from
the following differential equation:

ẋ =
αx(t − τ)

1 + xγ(t − τ)
− βx(t), (19)

where τ is the time-delay parameter. When τ � 17 Eq. (19) shows the chaotic
phenomenon. To obtain its numerical solution, the Runge-Kutta method is
applied with the initial condition x(0) = 1.2 and integration step equal to 0.1.
The parameters α, β and γ are equal to 0.2, 0.1 and 10, respectively. We use
1000 simulation data points to build our model, which are described as follows:

[x(t − 18), x(t − 12), x(t − 6), x(t);x(t + 6)] , (20)

where t = 19, 20, ..., 1017, 1018. The first 500 points are selected as the training
data and the rest as the testing data. The vector x = (x(t − 18), x(t − 12), x(t −
6), x(t)) is selected as the input vector and the last variable x(t + 6) as the
output variable of the model. Figures 5a and 6a show the comparison between
the original and forecasted outputs of both models QNN as well as HQNN for
the training and validation phases. Additionally, the Fig. 7a shows the MSE
loss curves of the HQNN, QNN, MLP, CNN and LSTM. When comparing the
QNN and MLP, the QNN shows a superior performance. We can observe an
improvement of about 34% in RMSE, 33% in MAE, and 33% in MAPE. On the
other hand, the MLP shows a better performance than the HQNN, improving
the RMSE, MAE and MAPE by approximately 3%, 12% and 1%, respectively.
Additionally, the QNN outperforms the LSTM. We can observe an improvement
of about 27% in RMSE, 18% in MAE and 20% in MAPE.

Table 1. Comparison results among the proposed models, MLP, CNN and LSTM for
Mackey-Glass time series prediction.

Network Parameters RMSE MAE MAPE

QNN 60 0.01360 0.0114 0.01319
HQNN 68 0.02117 0.01726 0.01992
MLP (4,5,6,1) 68 0.02047 0.01697 0.01963
CNN 65 0.04586 0.03419 0.04159
LSTM 76 0.01866 0.01395 0.01659

Lorenz Time Series. The Lorenz equations are given by

ẋ =σ(y − x),
ẏ = − y − zx + ρx,

ż = − βz + xy. (21)

Let σ = 10, ρ = 28 and β = 8/3. We get its numerical solutions by using the
Euler method to obtain the time series dataset by taking the initial conditions:
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(a) Mackey-Glass time series.
(b) Lorenz attractor time series for the
variable x.

(c) Lorenz attractor time series for the
variable y.

(d) Lorenz attractor time series for the
variable z.

(e) Box-Jenkins Gas Furnace Data. (f) Exchange Rate USD/EUR.

Fig. 5. Actual and forecasted outputs using the QNN.

x(0) = 0, y(0) = −0.01 and z(0) = 9. The vector x = [x(t), y(t), z(t)] is chosen
as the input vector and the three variables x(t + 1), y(t + 1), z(t + 1) are the
output variables, where t = 1, ..., 1000. The first 500 points are used during the
training phase and the rest in the testing phase.

For the QNN we use a different unitary input gate:

Uin =
n−1⊗

j=0

RY (cos−1(x2
j ))RZ(sin−1(xj)). (22)

To get the output variables, we take the following expectation values:

x̂(t + 1) =〈Ψout|X ⊗ I ⊗ I|Ψout〉,
ŷ(t + 1) =〈Ψout|I ⊗ Y ⊗ I|Ψout〉,
ẑ(t + 1) =〈Ψout|I ⊗ I ⊗ Z|Ψout〉. (23)
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Figures 5b–5d and 6b–6d show the comparison between the original and fore-
casted outputs of both models QNN as well as HQNN for x(t+ 1), y(t+ 1) and
z(t+1) in the training and validation phases. In addition, the Fig. 7b shows the
MSE loss curves of the HQNN, QNN, MLP, CNN and LSTM. When compar-
ing the QNN, HQNN and MLP, the HQNN shows the worst performance when
predicting y(t+ 1) and z(t+ 1) despite the fact that this model has more train-
able parameters. When forecasting x(t+1) the HQNN slightly outperformed the
MLP, improving the RMSE and MAE by about 7% and 3%, respectively. On
the other hand, when forecasting x(t + 1), the QNN noticeably outperformed
the MLP. We can observe an improvement of approximately 97% in RMSE, 75%
in MAE, and 77% in MAPE. Similarly, for y(t+1), the QNN outperformed the
MLP, improving the RMSE, MAE and MAPE by about 51%, 52% and 81%,
respectively. However, when predicting z(t + 1), the MLP is superior to the
QNN, improving the RMSE by around 14%, the MAE by about 27% and the
MAPE by approximately 26%. Additionally, the QNN outperformed the CNN
in predicting x(t + 1), y(t + 1) and z(t + 1). When comparing the QNN and
the LSTM, the QNN shows a superior performance in predicting x(t + 1) and
y(t+ 1). However, when predicting z(t+ 1), the LSTM is superior to the QNN,
improving the RMSE by around 5%, the MAE by about 15% and the MAPE by
approximately 28%.

Box-Jenkins Gas Furnace Data. The Box-Jenkins gas furnace time series
is widely used in the literature. To obtain this times series, the carbon dioxide
concentration (CO2) is measured in the gases product of a combustion process
of a methane-air mixture. Every 9 s a record is taken by keeping the gas flow rate
constant and methane rate changing randomly. Thus, in this work, the following
prediction model is chosen:

[ν(t − 4), y(t − 1); y(t)] t = 5, ..., 296 (24)

where ν(t) is the methane gas flow, and y(t) is the CO2 concentration in the
output gases. The first 200 points are selected as the training data, and the rest
as the testing data.

The comparison between the measured and forecasted outputs for the train-
ing and validation phases is shown in Figs. 5e and 6e. Furthermore, the Fig. 7c
shows the MSE loss curves of the HQNN, QNN, MLP, CNN and LSTM. We
can observe that the HQNN model provided better results than the QNN and
MLP. The HQNN outperformed the MLP by approximately 8% in RMSE and
4% in both MAE as well as MAPE. Similarly, the HQNN is superior to the QNN,
improving the RMSE by approximately 57% and the MAE and MAPE by about
51%. In addition, the HQNN outperformed the CNN, improving the RMSE by
approximately 13% and the MAE and MAPE by about 12%. However, the LSTM
slightly outperformed the HQNN, improving the MAE by approximately 8% and
the RMSE and MAPE by about 7%.
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Table 2. Comparison results among the proposed models, MLP, CNN and LSTM for
the Lorenz attractor.

Network Parameters RMSE MAE MAPE

QNN 63 0.065382 0.37843 0.12376
0.91871 0.65624 0.13911
1.10889 0.94987 0.04039

HQNN 194 1.9695 1.44324 0.55534
3.16348 2.24749 1.12748
2.25607 1.72386 0.07503

MLP (3,12,9,3) 195 2.11768 1.48587 0.52687
1.87211 1.35788 0.72274
0.9579 0.69229 0.02976

CNN 227 2.04956 1.44207 0.40423
2.71476 2.10219 0.85086
2.48987 1.62512 0.0626

LSTM 178 1.95701 1.53737 0.52913
3.22944 2.13337 1.18607
1.05513 0.81134 0.02923

Exchange Rate USD/EUR. The data about exchange rate USD/EUR are
retrieved from the site http://fx.sauder.ubc.ca/data.html. Data are gathered
for the period from 01/01/2020 until 08/07/2021 with daily step. We use 376
simulation data points to build the model:

[x(t − 4), x(t − 3), x(t − 2), x(t − 1), x(t);x(t + 1)], (25)

where t = 5, ..., 380. The first 300 data points are used in the training phase and
the remaining data in the testing phase.

Figures 5f and 6f show the comparison between the original and forecasted out-
puts of both models QNN as well as HQNN for the training and validation phases.
Additionally, theFig. 7dshowstheMSEloss curvesof theHQNN,QNN,MLP,CNN
and LSTM. When comparing the QNN, HQNN and MLP, the QNN shows the best
performance of the threemodels.TheQNNoutperformed theMLP.Wecanobserve
an improvement of around 39% in RMSE, MAE, and MAPE. Similarly, the HQNN
shows a better performance than theMLP, improving theRMSEby about 35% and
bothMAEaswell asMAPEby approximately 36%. In addition, both theQNNand
the HQNN outperformed the CNN and LSTM models. When comparing the QNN
and CNN, the QNN showed an improvement of approximately 23% in RMSE and
22% in MAE as well as MAPE.

Table 3. Comparison results among the proposed models, MLP, CNN and LSTM for
Box Jenkins time series prediction.

Network Parameters RMSE MAE MAPE

QNN 60 1.62488 0.97698 0.01733

HQNN 58 0.69741 0.47627 0.00851

MLP (2,6,5,1) 59 0.75594 0.49578 0.00885

CNN 65 0.80361 0.54213 0.00968

LSTM 76 0.64989 0.43938 0.00788

http://fx.sauder.ubc.ca/data.html
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Table 4. Comparison results among the proposed models, MLP, CNN and LSTM for
USD-to-euro currency exchange rate forecasting.

Network Parameters RMSE MAE MAPE

QNN 60 0.00281 0.00215 0.00258

HQNN 64 0.00298 0.00224 0.00269

MLP (5,6,3,1) 61 0.00458 0.00352 0.00422

CNN 65 0.00364 0.00274 0.0033

LSTM 76 0.00432 0.00323 0.00388

(a) Mackey-Glass time series.
(b) Lorenz attractor time series for the
variable x.

(c) Lorenz attractor time series for the
variable y.

(d) Lorenz attractor time series for the
variable z.

(e) Box-Jenkins Gas Furnace Data. (f) Exchange Rate USD/EUR.

Fig. 6. Actual and forecasted outputs using the HQNN.
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(a) Mackey-Glass time series. (b) Lorenz time series.

(c) Box-Jenkins Gas Furnace Data. (d) Exchange Rate USD/EUR.

Fig. 7. MSE loss curves of the HQNN, QNN, MLP, CNN and LSTM.

6 Conclusions

Two classical-quantum hybrid machine learning architectures with a multilayered
structure inspired by the MLP are proposed. In order to evaluate the prediction
performance of the models, two univariate time series, Mackey-Glass time series
and USD-to-euro currency exchange rate forecasting, as well as two multivariate
time series, the Lorenz attractor and prediction of the Box-Jenkins (Gas Furnace)
time series are used. The results are competitive compared with those obtained
with the MLP, CNN and LSTM with a similar number of trainable parameters,
opening the possibility of further exploring how to improve classical models
by incorporating quantum computing elements. Additionally, we established a
strategy to use quantum architectures in time series forecasting. Future work
would focus on exploring more complex hybrid quantum-classical architectures
with different embedding circuits and their application to real-world time series
data.

Acknowledgment. The authors wish to thank CINVESTAV for the financial support
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Abstract. Credit Risk Assessment estimates the probability of loss due
to a borrower’s failure to repay a loan or credit. Therefore, one of the
principal challenges of financial institutions is to lower the losses gen-
erated by leading financial resources to possible default clients. Current
models for Credit Risk Assessment used by the industry are based on
Logistic regression (LR), thanks to their operational efficiency and inter-
pretability. However, Deep Learning (DL) Algorithms have become more
attractive than conventional Machine Learning due to their best general
accuracy. However, Models for Credit Risk Assessment based on DL have
a problem because their complexity makes them difficult for humans to
interpret. Additionally, international regulations for financial institutions
require that models be interpretable. In this work, we propose the use of
a model based on Convolutional Neural Networks (CNN) and SHapley
Additive exPlanations (SHAP) to generate a more accurate and explain-
able model than LR models. In order to demonstrate its efficacy, we
use four datasets commonly used to benchmark classification algorithms
for credit scoring. The results show that the method proposed is more
accurate than LR for large datasets (more than 5900 samples), with an
improvement in accuracy up to 12.3%.

Keywords: Credit risk assessment · DeepInsight · Explainability ·
CNN

1 Introduction

Even though Logistic Regression (LR) is one of the most common algorithms
used in the financial industry [4], different studies have demonstrated that it is
not the most accurate estimation for credit risk classification. A reference to this
is two benchmarking studies published by Baesen [2,3] that demonstrate that
for the category of individual classifier, Deep Learners are more accurate than
LR.

Despite better accuracy of Deep Learners, Financial Institutions use LR for
credit scoring due to their Operational efficiency (simplicity), and Interpretabil-
ity (transparency) in predictions [11]. These two points, and statistical accuracy
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 83–96, 2022.
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form part of the five key characteristics of a successful credit risk mode defined
for Baesen [4], shown in Table 1. However, due to the complex nature of Deep
Learners, they are considered as Black Box Model(BBM), which refers to com-
plex models that are not straightforwardly interpretable by humans [25], making
them unviable for the use of financial institutions due to International regula-
tions [7]. However, the application of interpretability methods permits us to give
transparency to DL models.

In this work, we propose an explainable Deep Learning model based on a
2D Convolutional Neural Network (CNN) for credit risk classification. The use
of CNN for credit risk is not new. However, Our approach uses DeepInsight
[31], a methodology proposed by Alok Sharma et al., to transform tabular data
into a 2D representation as input for CNN. The classification accuracy of the
DeepInsight combined with CNN showed a better performance than Decision
Tree (DT), LR, and RF for large datasets (more than 5900 samples), as shown in
the results of our paper. Additionally, the use of SHapley Additive exPlanations
(SHAP) to explain the model’s prediction gives us an explainable and more
accurate model than the LR model for credit risk classification.

Table 1. Key characteristics of successful credit risk model [4]

Characteristic Description

Statistical accuracy Refers to the power of prediction of a model to generalize well
and avoid overfitting to the historical data.

Interpretability A model needs to be interpretable. In other words, the model
gives enough information to an expert to understand why the
model takes those decisions.

Operational efficiency This point refers to the time needed for the model to evaluate
whether a customer is a defaulter. Operational efficiency also
includes the following tasks:

- Collection and preprocessing of data
- Evaluation of the model
- monitor and back-test
- Reestimate

Economical cost Developing and implementing models have a cost for the
organizations. The total cost of all tasks and resources needed
is the economical cost of the model. The cost of tasks men-
tioned in the operational efficiency plus cost of resources like:

- Software cost
- Human and Computing resources

Regulatory compliance A model construction needs to comply with all applicable
regulations and legislation. Basel, for example, specifies
what information can or cannot be used. Other regulations
like privacy and/or discrimination should be respected
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The rest of the paper is organized as follows. In Sect. 2 we present the moti-
vation for this work, while Sect. 3 discusses the state of the art of Credit risk
assessment. In Sect. 4 we introduce the proposed method and in Sect. 5 we pro-
vide details about the implementation and experiments made in order to obtain
the best model, as well as the comparison with previous models. Finally, in
Sect. 6 we summarize our work and discuss some perspectives for future work.

2 Motivation

Why is credit risk so important? First, it is a matter of common knowledge
that any economy, no matter how advanced, cannot develop in the absence of
credit [5]. On other hand, a relaxed credit policy can become the core of a global
financial crisis like 2007–2009.

The credit cycle begins with credit being easily accessible to customers, and
they can borrow and spend more. In the same way, enterprises can borrow and
make more significant investments. More consumption and investment create
jobs and lead to income and profit growth. However, all economic expansion
induced by credit ends when critical economic sectors become incapable of paying
off their debts [17]. When the credit cycle is broken, there is a strong possibility
of crisis (Fig. 1).

Fig. 1. Credit cycle [15]

The production of accurate credit risk tools for financial institutions allows
them to make better decisions about granting credits. A reasonable administra-
tion of credit is an essential part of the growth of almost all economies. Economic
growth is the most powerful instrument for reducing poverty and improving the
quality of people’s life. Growth can generate virtuous circles of prosperity and
opportunity [12]. In conclusion, the research of credit risk topics profoundly
impacts the world and people’s lives.
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3 Related Work

Durand [13] gave the bases for statistical credit risk scoring about 80 years ago.
Nowadays, thanks to the evolution of statistical classification techniques, com-
putational power, and easy access to sizable and reliable data, financial institu-
tions use the statistical approach for credit risk management [4]. Many different
classification models have been developed to address the credit scoring prob-
lem during the past few decades. Logistic Regression [6] and Random Forest [4]
are the most widely-used model for credit scoring. However, more sophisticated
machine learning techniques like Support Vector Machine (SVM) and Artificial
Neural Networks (ANN) are also widely applied to credit scoring. Furthermore,
ensemble methods that combine the advantage of various single classifiers get
good scores like HCES-Bag with the best score in benchmark scoring published
by Lessmann and Baesens [3].

Different empirical studies have compared the performance of different classi-
fication models for credit scoring. For example, West [33] compares ANN against
traditional machine learning techniques. The result showed that ANN has better
performance than LR. On the other hand, Cuicui et al. designed a Deep Belief
Network (DBN) for credit classification and compared it against SVM, LR, and
Multilayer Perceptron on the credit default swaps dataset [23]. The result showed
that DBN yields the best performance.

Convolutional Neural Network (CNN) is a representative technique in DL; it
first appeared in the work of Yann Lecun et al., designed to handle the variability
of data in 2D shape [19]. The impressive achievements of CNN in different areas,
including but not limited to Natural Language Processing (NLP) and Computer
Vision, attract the attention of industry and academia [21]. Moreover, in the last
few years, attracted by the classification ability of CNN, some studies have begun
to apply CNN to managing credit risk. Bing Zhu, Wenchuan Yang, and Huaxuan
Wang propose a model named “Relief-CCN” [37] that combines CNN and Relief
algorithm. The results demonstrate a better performance against LR and RF
with the dataset from a Chinese consumer finance company. On the other hand,
Xolani Dastale and Turga Gelik [10] propose another CNN model for credit
scoring getting better performance than traditional Machine learning methods.
However, the last two models change the tabular data into a 2D representation
for the CNN input discretizing the data and generating a representation with
only ones or zeros in the values with possible data loss.

4 Proposed Approach

Credit risk classification is a data mining problem, thinking about this, we
propose a process based on CRoss-Industry Standard Process for Data Min-
ing (CRISP-DM) which is a process model for data mining [9]. Our proposal
is a modification in the last step, called implementation on CRISP-DM, and
changed by Interpretability where the generation of local and global explana-
tions are generated, as shown in Fig. 2.
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Fig. 2. Proposed model phases based on CRISP-DM

However, all the steps of CRISP-DM are essential, we will focus on the steps
of Data preparation (especially on the task of Format data), Modeling, and an
extra step called Interpretability defined for us after the evaluation step where
we make the explanations of the generated mode.

4.1 Data Preparation

Format data [9] is part of the data preparation phase, which refers to all activities
needed to transform the initial raw data into the data used as input for Machine
Learning algorithms. The data used for financial institutions are generally in
tabular [4] form (data displayed in columns or tables). However, The proposed
2D CCN requires image data representation.

DeepInsight [31] transforms the tabular data with a sequence of steps. First, it
generates a feature vector transposing the dataset. Second, it maps each feature
into a 2D space using t-SNE. Third, for efficiency, DeepInsight finds the small
rectangle area that covers all points to be horizontal framed. Fourth, based on
the dimensions of the final image defined for the user DeepInsight make a process
of framing and mapping each feature. Finally, each instance is represented using
the general feature image generated in the last step modifying the values of each

Fig. 3. Illustration of the DeepInsight [31] methodology to transform a feature vector
to image pixels.
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feature for the normalized value of the instance features values, which can be
seen as a greyscale image; the Fig. 3 shows the transformation process.

4.2 Modeling

Convolutional Neural Network is one of the most used deep learning architectures
for image processing [36]. The basic structure of CNN is shown in Fig. 4. There
are two particular types of layers in CNN called the convolutional layer and the
pooling layer. The convolutional layer is the basic building block of CNN [26].
It contains a set of learnable filters that slide over the image to extract features.
The pooling layer reduces the spatial size representation and the number of
parameters giving more efficiency and control overfitting.

Convolutional neural networks differ from traditional neural networks by
replacing general matrix multiplication with convolutional, reducing the weights
in the network, and allowing the import of an image directly. Additionally, The
convolution layer has several main features, two of which are local perception
and parameter sharing. Local perception refers to the high relevance of image
parts that are close compared to the low relevance of the distant parts [35]. On
the other hand, parameter sharing learn one set of parameters throughout the
whole process instead of learning different parameter sets at each location [37].
These features help to improve the efficiency of the network.

Fig. 4. The basic structure of CNN.

4.3 Interpretability

Miller defines interpretability as the degree to which a human can understand
the cause of a decision [24]. The interpretability of a Machine Learning model is
inversely related to its complexity. CCN is considered a Black Box Model (BBM)
that refers to complex models that are not straightforwardly interpretable to
humans [27]. However, different methods exist to explain BBM, like SHapley
Additive exPlanations (SHAP) [22] used in this paper to generate the local and
global explanations.
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SHAP was proposed by Lundberg and Lee is a unified approach to inter-
preting model predictions. SHAP is a method to explain individual predictions
based on the calculation of Shapley Values [22]. However, SHAP can give us a
global explanation of a model based on the average of absolute Shapley values
per feature of a random subset of dataset samples.

Shapley Values (SV) proposed by Shapley is a method based on coalitional
game theory (or cooperative game theory) [30]. SV explains a prediction assum-
ing that each feature value of a sample is a “player” in a game where the pre-
diction is the goal. In other words, SV is the average marginal contribution of a
feature value across all possible coalitions.

A linear model prediction is an explainable model because we can see how a
feature affects the prediction.

f̂ (x) = β0 +
p∑

j=1

βjxj

where x is the instance that we want to calculate the contributions. Each xj is
a feature value, with j = 1, . . . , p. βj is the weight of feature j.

The contribution φj of the j-th feature on the prediction f̂ is:

φj

(
f̂
)

= βjxj − E (βjXj) = βjxj − βjE (Xj)

The mean effect of feature j is E (βjXj), and the contribution of j-th feature
is the difference between the feature effect minus the average effect. If we sum
all the contributions, we get the following result:

p∑

j=1

φj

(
f̂
)

=
p∑

j=1

βjxj − E (βjXj)

=

⎛

⎝β0 +
p∑

j=1

βjxj

⎞

⎠ −
⎛

⎝β0 +
p∑

j=1

E (βjXj)

⎞

⎠

= f̂ (x) − E
(
f̂ (X)

)

The result is the predicted value for the instance x minus the average pre-
dicted value. To do the same to different models other than linear is necessary
to compute feature contribution for a single prediction.

To get the Shapley value of a feature value, we need to calculate the con-
tribution made to the result, weighted and summed over all combinations [25].
Then, the Shapley value is defined via a value function for players contained in
set S:
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φj (val) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p − |S| − 1)!
p!

(val (S ∪ {xj}) − val (S)) (1)

where S is a subset of model features, p is the number of features and x is the
vector of feature values. The result is the contribution of feature j for all feature
coalitions.

The exact solution to get the Shapley value requires the evaluation of all
coalitions of feature values with and without the j − th feature. However, the
exact solution becomes problematic for more than a few features because the
number of possible coalitions exponentially increases with each added feature.
Therefore, Strumbelj et al. (2014) [32] propose an approximation with the use
of Monte-Carlo sampling:

φ̂j =
1
M

M∑

m=1

(
f̂

(
xm
+j

) − f̂
(
xm

−j

))

where f̂
(
xm
+j

)
is the prediction for the instance x, with a random number of

feature values taken from another instance z taken a random, except for the
value of feature j, the f̂

(
xm

−j

)
is equal to f̂

(
xm
+j

)
, with the difference that the

value of j feature is taken from z. The procedure to approximate the Shapley
value is explained next:

Algorithm 1 Shapley value approximation
Input: Instance of interest x, data matrix X, feature index j, ML model f, and the

number of iterations M.
Output: Shapley value of j-th feature

for 1 to M do
Get random instance z from matrix X
Generate a random permutation o of features
Order the instance x: xo =

(
x(1), ..., x(j), ..., xp

)

Order the instance z: zo =
(
z(1), ..., z(j), ..., zp

)

Generate two new instances
x+j =

(
x(1), ..., x(j−1), x(j), z(j+1), ..., z(p)

)

x−j =
(
x(1), ..., x(j−1), z(j), z(j+1), ..., z(p)

)

Compute MC: φm
j = f̂ (x+j) − f̂ (x−j)

end for
return the Shapley value as the average: φj (x) = 1

M

∑M
m=1 φm

j
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SHAP uses Shapley values to make explanations of BBM. However, SHAP
proposes different kernel-based estimation approaches for Shapley values inspired
by local surrogate models. KernelSHAP [22] is a model-agnostic based on LIME
and Shapley values. On the other hand, TreeSHAP and DeepSHAP are model-
specific, the first is an efficient estimation approach for tree-based models and
the second for Deep learning models.

SHAP Feature Importance (FI) is one of the global interpretations based on
aggregations of Shapley values. SHAP FI order features importance based on
the absolute value of Shapley values per feature across the data [25]:

Ij =
1
n

n∑

i=1

∣∣∣φ(i)
j

∣∣∣

After, SHAP order features by decreasing importance. For example, Fig. 5
shows the SHAP FI for a pre-trained CNN for the lending club dataset.

After training the CNN models and judging their performances, we use SHAP
to generate local and global explanations of the model. For example, SHAP can
generate local explanations of tabular data and images but not the same for
the global explanation of images. Additionally, explanations of images are given
for the SHAP values of pixels based on the predictions of the trained model,
which is not easy to understand for humans an example is shown in Fig. 6.
Nevertheless, thanks to DeepInsight, we have the mapping between each pixel
and feature. It allows us to return SHAP values to tabular form that generates
more interpretable local and global explanations (Fig. 7).

Fig. 5. SHAP Global explanation of first eight important features measured as the
mean absolute Shapley values for Lending club dataset
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Fig. 6. (left) Example of SHAP local explanation for a Multi-class ResNet50 on Ima-
geNet [29]. (middle) Example of SHAP local explanation of credit image generated
from tabular data transformed using DeepInsight. (right) Example of feature matrix
generated using DeepInsight.

Fig. 7. (left) Example of SHAP local explanation for DeepInsight credit image.
(right) Example of SHAP local explanation for DeepInsight credit image after con-
version to tabular form.

5 Experimental Results

The datasets used in this thesis is about four datasets provided for financial and
academic institutions widely used in research of credit scoring. All the datasets
are different in almost all their characteristics like the number of samples and
features. A resume of the characteristics of the dataset are shown in Table 2:

Table 2. Datasets

Datasets

Australian [28] German [18] HMEQ [4] LC 2007–2014 [20]

# Samples 690 1,000 5,960 466,285

# non default 307 700 4,771 415,317

# default 383 300 1,189 50,968

# features 14 20 13 75

Categorical 8 13 2 22

Continuous 6 7 11 53
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Since the data contained in the four datasets may contain redundant fea-
tures that can increase computation and affect the performance, for numerical
and categorical features, we use ANOVA and Chi-Squared, respectively [8]. Addi-
tionally, when features with high correlation exist, SHAP generates redundant
local and global explanations with features with the same SHAP values. Then
eliminating high correlated features is need it.

For each dataset, we use cross-validation with ten stratified folds. The train-
ing set was used to find the optimal parameter of the CNN model. The metrics of
the test set were used to assess the performance of the CNN model. Table 3 shows
the optimal architecture of our CNN model for Australian, German, HMEQ, and
Lending club datasets, respectively.

To compare the performance of our model, we use different studies that use
the same datasets. Additionally, we train base models with LR and RF to com-
pare the results. For each dataset, we calculate Accuracy and Area Under the
Receiver Operating Characteristics (AUROC). Accuracy is not the best metric
for the evaluation of models of credit risk classification. However, many stud-
ies only use Accuracy for evaluation. Therefore, Table 4 compares the Accuracy
against each model and dataset. On the other hand, a better metric than Accu-
racy for credit risk classification is AUROC; in Table 5, we compare the AUROC
for the different studies containing this information and our results.

Table 3. CNN Architecture: Parameters and architectures of the CNN model in (a)
Australian dataset epochs = 500, (b) German dataset epochs = 50, (c) HMEQ dataset
epochs = 1000, and (d) Lending club dataset epochs = 50. Legend: Conv (Convolutional
Layer), PL (Pooling Layer), FC (Fully Connected Layer).

Layer Parameters and Architecture Layer Parameters and Architecture

Input Input shape: k=8, d=8, c=1 Input Input shape: k=20, d=20, c=1

Conv1 Fil: 64, Kernel: 3x3, Str=1,Pad=1 Conv1 Fil:128, Kernel: 3x3, Str=1,Pad=1

PL1 type: max, size 2x2 PL1 type: max, size 2x2

Conv2 Fil:128, Kernel: 3x3, Str=1, Pad=1 Conv2 Fil:256, Kernel: 3x3, Str=1,Pad=1

PL2 type: max, size 2x2 PL2 type: max, size 2x2

FC1 neurons:128 FC1 neurons:128

FC2 neurons: 2, activation: softmax FC2 neurons:64

Act. F. ReLU FC3 neurons: 2, activation: softmax

Act. F. ReLU

a b

Layer Parameters and Architecture Layer Parameters and Architecture

Input Input shape: k=8, d=8, c=1 Input Input shape: k=20, d=20, c=1

Conv1 Fil: 64, Kernel: 3x3, Str=1,Pad=1 Conv1 Fil:128, Kernel: 3x3, Str=1,Pad=1

PL1 type: max, size 2x2 PL1 type: max, size 2x2

Conv2 Fil:128, Kernel: 3x3, Str=1, Pad=1 Conv2 Fil:256, Kernel: 3x3, Str=1,Pad=1

PL2 type: max, size 2x2 PL2 type: max, size 2x2

FC1 neurons:128 FC1 neurons:128

FC2 neurons: 2, activation: softmax FC2 neurons: 2, activation: softmax

Act. F. ReLU Act. F. ReLU

c d
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Table 4. Accuracy comparison against datasets and models

Source Year Algorithm Australian German HMEQ LC 2007–2014

[16] 2016 MLP 0.860 0.750 – –

[1] 2016 ENSEMBLE 0.880 0.780 – –

[34] 2017 ENSEMBLE 0.880 0.770 – –

[14] 2018 ENSEMBLE 0.930 0.860 – –

[10] 2021 CNN 0.880 0.950 0.820 –

Base 2022 LR 0.871 0.761 0.803 0.945

Base 2022 RF 0.869 0.771 0.810 0.874

Our 2022 CNN-DeepInsight 0.844 0.734 0.926 0.991

Table 5. AUROC comparison against datasets and models

Source Year Algorithm Australian German HMEQ LC 2007-2014

[1] 2016 ENSEMBLE 0.940 0.802 – –

[10] 2021 CNN 0.800 0.960 0.830 –

Base 2022 LR 0.931 0.790 0.631 0.952

Base 2022 RF 0.870 0.803 0.872 0.937

Our 2022 CNN-DeepInsight 0.897 0.738 0.907 0.995

6 Conclusions

In this paper, tabular datasets were converted into images using DeepInsight.
The images were used to train 2D CNN. The performance of the trained CNN
was compared with literature results and base models trained by us using LR
and RF for reference. We found that the trained CNN performed better than the
literature results, and our base models based on LR and RF when the dataset
size was greater than 5,900 samples, getting results that surpassed the Accuracy
and AUROC of the second-best model with up to 0.106 and 0.046, respectively.

Additionally, thanks to the mapping generated for DeepInsight when the
images were created, we can return SHAP values based on predictions of trained
models to the tabular form, allowing us to generate local and global explanations.
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Abstract. Many challenging reinforcement learning (RL) problems
require designing a distribution of tasks that can be applied to train
effective policies. This distribution of tasks can be specified by the cur-
riculum. A curriculum is meant to improve the results of learning and
accelerate it. We introduce Success Induced Task Prioritization (SITP),
a framework for automatic curriculum learning, where a task sequence is
created based on the success rate of each task. In this setting, each task
is an algorithmically created environment instance with a unique config-
uration. The algorithm selects the order of tasks that provide the fastest
learning for agents. The probability of selecting any of the tasks for the
next stage of learning is determined by evaluating its performance score
in previous stages. Experiments were carried out in the Partially Observ-
able Grid Environment for Multiple Agents (POGEMA) and Procgen
benchmark. We demonstrate that SITP matches or surpasses the results
of other curriculum design methods. Our method can be implemented
with handful of minor modifications to any standard RL framework and
provides useful prioritization with minimal computational overhead.

Keywords: Reinforcement learning · Curriculum learning ·
Multi-agent reinforcement learning · Multi-agent pathfinding · Deep
learning

1 Introduction

In numerous complex Reinforcement Learning (RL) problems, the agent must
master a number of tasks. That number of tasks may be explicitly defined by
the environment authors or may be implicit. E.g. in case then the environment
is procedurally generated, and the agent is given only a few world instances
in which it can learn. The proper order can, on the one hand, speed up the
agent’s learning process, and on the other hand, prevent him from catastrophic
forgetting. Training using task sequencing order is called curriculum learning [1].
More formally, the curriculum learning is a method of optimization of the order
in which experience is accumulated by the agent, so as to improve performance
or training speed on a set of final tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 97–107, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19493-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-19493-1_8


98 M. Nesterova et al.

Fig. 1. Overview of SITP method. The probability of selecting task i depends on how
much earlier the mean Success Rate (SR) increased after training on task i, k times.

There are many ways of creating a curriculum. One of the possible ways of
constructing a curriculum is to arrange the tasks by difficulty. The second option
is to choose a sequence of tasks according to a certain distribution, using addi-
tional information received during training [2,3]. The third option is to create a
teacher, whose goal is to gradually increase the complexity of the tasks, while
the teacher itself learns to create them [4]. For example, the teacher can gener-
ate obstacles on the map [5]. It is also possible to create an implicit curriculum
based on competition or interaction between agents [2,3].

In this paper, we introduce Success Induced Task Prioritization (SITP)1,
illustrated in Fig. 1, a new method for task sequencing. The main concept for
this method is a binary metric, Success Rate (SR), which shows whether the
task was completed on the episode or not. During training, the method updates
scores estimating each task’s learning potential, basing on mean SR for this task.
Then this method selects the next training task from a distribution derived from
a normalization procedure over these task scores. Our method also does not
apply any external, predefined ordering of tasks by difficulty or other criteria,
but instead derives task scores dynamically during training based on SR. It is
assumed that tasks which get the highest rate of selection are the ones on which
the agents learn the fastest, or that those tasks are the hardest to complete.

We consider the SITP method in the application for the Multi-agent
Pathfinding (MAPF) problem, which is based on POGEMA environment [6].
The MAPF problem is that several agents must go from their starting posi-
tions to the goals without colliding with obstacles or other agents. In this prob-
lem domain, SR is defined as an indicator of whether all agents have reached

1 Our code is available at https://github.com/cds-mipt/sitp.

https://github.com/cds-mipt/sitp
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their goals or not. We argue that such simple information is enough to improve
learning results. Moreover, we provide additional experiments with a well-known
Procgen benchmark [7], showing the applicability of the SITP approach to a wide
class of RL problems.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of related works. Section 3 describes the background behind RL.
Section 4 introduces SITP method. Section 5 is devoted for experimental study
of presented method and comparison with other approaches. In the conclusion
we discuss obtained results.

2 Related Work

The central problem of creating a curriculum is the definition of a sequence of
tasks or the generation of tasks automatically (without human intervention).
Several papers address the last one, showing that it is possible to generate a cur-
riculum automatically by confronting several agents [1,8]. A similar idea assumes
the sequential interaction of two agents [9], where one sets the task, and the other
solves it.

Separately, one can consider the methods that create the curriculum for a
set of already known tasks. The Prioritized Level Replay (PLR) [2] provides a
curriculum scheme automatically using additional information collected during
training. The main idea is to define a priority for each task using some scoring
scheme. The authors propose to accumulate L1 General Advantage Estimation
(GAE) during training for each task and sample new ones based on that scores.
This score shows whether it is promising to train on this task in the future. On
the other hand, the Teacher-Student Curriculum Learning (TSCL) [3] provides
several ways to estimate the prospects of a task using the learning progress curve.
Despite the method’s conceptual simplicity, there may be difficulties with the
formation of a set of tasks or the choice of a metric for that tasks.

The tasks could be created in process of training an additional agent, as in the
self-play algorithm [9]. This algorithm is focused on two kinds of environments:
reversible environments and environments that can be reset. An automatic learn-
ing program is created based on the interaction of two agents: Alice and Bob.
Alice will “propose” the task by doing a sequence of actions and then Bob must
undo or repeat them, respectively. Authors argue that this way of creating a
training program is effective in different types of environments.

3 Background

The reinforcement learning problem is to train an agent (or several agents) how
to act in a certain environment so as to maximize some scalar reward signal.
The process of interaction between the agent and the environment is modeled by
the partially observable Markov decision process (POMDP), which is a variant
of the (plain) Markov decision process (MDP). Partially Observable Markov
Decision Process (POMDP) is a tuple 〈S, A,O, T , p, r, I, po, γ〉, where: S – set
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of states of the environment, A – set of available actions, O – set of observations,
T : S ×A → S – transition function, p(s′|s, a) – probability of transition to state
s′ from state s under the action a, r : S × A → R – reward function, I : S → O
– observation function, po(o|s′, a) – probability to get observation o if the state
transitioned to s′ under the action a, γ ∈ [0, 1] – discount factor. At each timestep
t, the agent chooses its action at based on the policy π(a|s) : A × S → [0, 1] and
receives the reward rt. The goal of the agent is to learn an optimal policy π∗,
which maximizes the expected return.

In this paper we apply the Proximal Policy Optimization (PPO) [10] algo-
rithm to find that policy. PPO has proven itself as a highly robust approach for
many tasks, including multi-agent scenarios [11], large-scale training [12], and
even fine-tuning other policies [13]. PPO is a variation of advantage actor-critic,
which leans on clipping in the objective function to penalize the new policy for
getting far from the old one.

4 Success Induced Task Prioritization

In this section, we present Success Induced Task Prioritization (SITP), an algo-
rithm for selecting the next task for learning by prioritizing tasks basing on pre-
vious learning results. SITP assumes that a finite set of N tasks T = [T1, . . . , TN ]
is defined in the environment. A task is an algorithmically created environment
instance with unique configuration. Task configuration is a broad term, several
instances of the environment, united by one common property, can be located
inside the same task. We assume that if the agent learns tasks in a certain order,
then this will contribute to improve results of learning and accelerate it.

A curriculum C is a directed acyclic graph that establishes a partial order
in which tasks should be trained [1]. Linear sequence is the simplest and most
common structure for a curriculum. A curriculum can be created online, where
the task order is determined dynamically based on the agent’s learning progress.

An important feature of our algorithm is the application of the success rate
(SR). SR is a binary score that is utilized to measure the success of training
on a single episode. There are several ways to set the metric. For example, if
the environment has a specific goal that the agent must achieve, then SR = 1
if this goal is achieved, 0 otherwise. If there is no specific goal, then SR can
be determined using the reward for the episode (in case the reward is bigger
than a certain threshold, then SR = 1, otherwise 0). The concept of a mean
SR is introduced to evaluate the effectiveness of an agent. Mean SR shows the
percentage of successfully completed episodes.

We assume that with proper task sequencing the speed of learning and success
rate could be increased. The target task is the task on which mean SR is meant
to improve. In cases where more than one task is being considered to be the
target task, the curriculum is supposed to improve the mean SR of all of them.
All of the methods described below are meant to be used for multiple target
tasks.
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Assume, N tasks T = [T1, . . . , TN ] and number of iterations M of the algo-
rithm are given. Let Ti be a task, Si a score, obtained as a result of training
on this task, pi a probability of the task being selected on the next training
iteration:

pi =
exp(Si)

N∑

j=1

exp(Sj)
, i = 1, N. (1)

In such a way, probability distribution p = [p1, . . . , pN ] is constructed. It
gives priority to tasks depending on scores S = [S1, . . . , SN ]. Initially the tasks
are sequenced with equal probability. General idea of our method illustrated in
Fig. 1 and specified in Algorithm 1.
Algorithm 1: Training loop with SITP
Input : Tasks T , N – number of tasks
Initialize agents learning algorithm
Initialize probability distribution p ← [ 1N , . . . , 1

N ]
Initialize scores S
for t = 1, . . . , M do

Choose task Ti based on p
Train agents using task Ti based on the evaluation method and
observe score

Update score S[i] ← score
Update probability distribution p

end

Depending on the way of evaluating S, different variations of an algorithm
are possible. SITP is based on the idea that if one of the tasks increases mean
SR more than others, then this task is better to be leaning on. We presume that
on such task SR will keep increasing. In the same manner, forgetting of the task
is taken into account. If mean SR is decreasing on a certain task, then this task
should be run again. In such a way, evaluation of Si depends on the absolute
value of mean SR’s change. The bigger the effect on mean SR from the Ti task,
the bigger the chance of it being selected. Thus, at first the task Ti is selected,
basing on probability distribution p. Then the agents learn and Si scores for Ti

tasks are evaluated. Agents train for k episodes on the selected task Ti, get a SR
for each episode, and then mean SR is calculated. SRi

old- mean SR of previous
learning stage on Ti task. Initially SRi

old equals 0. The mean SR changes during
the training of agents by Δi = |SRi

new − SRi
old|. A moving average also should

be used for smoothing out short-term fluctuations. The final score is calculated:

Si = αSi + (1 − α)|SRi
new − SRi

old|,

where α is smoothing coefficient. Additionally, a condition is established that if
SRi

new exceeds a certain threshold max_SR, then it is considered that agents
are good enough at solving this problem and it should be chosen less frequently.
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This is controlled by the min_score number. The procedure for constructing
the estimate Si is shown in Algorithm 2.
Algorithm 2: Task sampling estimation using SITP
Input : Ti – selected task, k – number of episodes, SRi

old – mean SR for
the previous stage, max_SR – the maximum mean SR, when
this mean SR is reached, then the task should be selected less
frequently, min_score – the number by which the task is
selected less frequently, α – smoothing coefficient.

Output: Score Si for Ti, SRi
old

Initialize SR for k episodes C ← [0, . . . , 0]
if first stage for Ti then

Initialize SRi
old ← 0

end
for τ = 1, . . . , k do

Train agents using task Ti and observe SR score
C[τ ] ← SR

end
SRi

new ← mean(C)
Si ← αSi + (1 − α)|SRi

new − SRi
old|

SRi
old ← SRi

new

if SRi
new > max_SR then

Si ← min_score
end

5 Experiments

In this section, we present an empirical evaluation of SITP approach. First, we
describe the POGEMA environment and show a motivational example with a
simple experiment with two tasks. For that experiment, we provide a comparison
with the TSCL algorithm and a baseline (uniform sampling of the tasks). Second,
we present the results on a number of complex multi-agent pathfinding maps.
Finally, we evaluate our approach using Procgen-Benchmark, comparing it with
the state-of-the-art curriculum learning technique – PLR.

5.1 Motivational Experiment in POGEMA Environment

The POGEMA environment [6] is a framework for simulating multi-agent
pathfinding problems in partially observable scenarios. Consider n homogeneous
agents, navigating the shared map. The task of each agent is to reach the given
goal position (grid cell) from the start point in less than m steps. The environ-
ment allows both to create maps procedurally and to add existing ones. The
environment is multi-agent, thus we consider that the episode ended successfully
only in the case when each agent reached its goal. We will refer to this metric
as Cooperative Success Rate (CSR).
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Fig. 2. Easy (a) – easy (obstacle density
5%) and (b) hard (obstacle density 30%)
Pogema configuration for 8× 8 map.

Even a single task in this domain
combines many maps of the same dis-
tribution. An example task is a set of
maps with size 8 × 8, 16 agents, and
random positions of obstacles with
density 30%, start and goal points.
We compare SITP with TSCL [3],
where the scoring function will take
into account the slope of the CSR
curve. We use a PPO implementation
from Sample Factory paper [14]. The
hyperparameters were tuned ones on
procedurally generated maps without
curriculum learning. We use the same
network architecture as in [15,16].

The first experiment was based on two small tasks, the difference between
which was in the complexity of the maps (different density of obstacles). The
tasks are shown in Fig. 2. The results are summarized in Fig. 3. They show that
this method quickly learns using the easy task and then selects mostly only the
difficult one. SITP outperforms other methods of selecting training levels (TSCL
and baseline) in terms of general mean CSR.

Fig. 3. The first experiment is trained on two tasks: easy (8× 8 map, 8 agents, density
5%) and hard (8× 8 map, 8 agents, density 30%). (a) General mean CSR of each
method. (b) Percentage of learning on a hard task. The baseline usage of that map
is 0.5, since maps are sampled uniformly. The results are averaged over 10 runs. The
shaded area denotes standard deviation.
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5.2 Large-Scale Experiment in POGEMA Environment

The second experiment was held on ten large tasks with 64 agents. Tasks contain
maps of different formats: procedurally generated ones (e.g. maps with random
obstacles), maps from videogames, maps of warehouses, and indoor maps (e.g.
rooms). We select two procedurally generated configurations: random-64-64-05,
random-64-64-3, and 8 maps from MovingAI dataset [17]: den009d, den204d,
den308d, den312d, den998d , room-64-64-8, warehouse-1, warehouse-2.

Fig. 4. Example of three tasks with a fixed obstacle position and with a random posi-
tion of the start and goal points.

Figure 4 shows three examples of the maps: warehouse is a room where the
obstacles are of the same shape and the distance between them is one cell, room64
are 64 rooms of size 7 × 7 with at least one exit, den998d is a map of a house
with obstacles from the videogame. The agent’s goal point is generated in such
a way so that the agent could always reach it from its starting point (ignoring
possible collisions with other agents). Figure 5 shows the superiority of learning
results SITP compared to baseline and better results than the TSCL approach.
Note that SITP gives a significant increase in mean CSR on hard maps, while
mean CSR on easy maps for SITP and baseline are comparable.
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Fig. 5. Training agents on 10 tasks. (a) General mean CSR of SITP and baseline.
(b) Mean CSR for the most difficult procedurally generated task (64 × 64 map, den-
sity 30%). The results are averaged over 6 runs. The shaded area denotes standard
deviation.

5.3 Procgen Benchmark

We train and test SITP on 4 environments in the Procgen Benchmark at sim-
ple difficulty levels and make direct comparisons with PLR [2], in which the
probability of choosing a task is formed using L1 GAE collected along the last
trajectory τ sampled on that level. The learning potential of a task is calcu-
lated using the scoring function based on the GAE magnitude (L1 value loss):

score =
1
T

∑T
t=0 |Rt − Vt|. We reproduce experiments settings from PLR paper

and train the agent for 25M total steps on 200 fixed levels, using PPO imple-
mentation from that paper. We measure episodic test returns for each game
throughout the training.

For environments in the Procgen Benchmark, SR is specified by a fixed
threshold SRmin depending on the total reward per episode such that if
reward > SRmin then SR = 1, otherwise SR = 0. SRmin is manually selected
based on the following rule: the threshold must be greater than the maximum
mean episode return per training for baseline, or approximately equal to the
maximum mean episode return per training for PLR.

In contrast to multi-agent experiments (for which every episode was a new
configuration), for Procgen environment we compare agents using evaluation
on the test tasks. The results are summarized in Fig. 6. The fixed threshold
was chosen (using expert knowledge) as follows: bigfish (SRmin = 10), leaper
(SRmin = 8), plunder (SRmin = 12), miner (SRmin = 10). We show that SITP,
based on the SR, achieves comparable training results with PLR approach. At
the same time, PLR higly depends on the implementation of algorithm, and
requires additional computations for algorithms differ from Advantage Actor-
Critic family.
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Fig. 6. Mean episodic test returns over 10 runs of each method for four environments
(bigfish, plunder, leaper and miner). The shaded area denotes standard deviation.

6 Conclusion

In the paper, we investigated the problem of automated curriculum generation
for reinforcement learning and introduced Success Induced Task Prioritization
(SITP) algorithm, that estimates the learning potential on a task using Success
Rate (SR). The SITP can be easily integrated into environments for which a
success rate metric is already defined. But also we demonstrated that the SR
score can be used in any kind of environments where the reward function is dense
and more complicated.

We showed that SITP improves the efficiency of task sampling in the
POGEMA and Procgen Benchmark environments. SITP shows comparable
results with the leading curriculum learning methods: TSCL and PLR. Our
method does not directly interact with the agent’s learning algorithm, it only
needs information about the SR after each episode. The future directions of the
research includes experiments with other environments. i.e. robotic tasks.
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Abstract. Currently, Unmanned Aerial Vehicles (UAVs) or Drones have
been presented as new tools for terrain exploration in multiple applica-
tions and objectives. UAV exploration has challenges in how the vehicle
scans the environment, which must be fast, safe, and complete. This
paper presents some mobility models previously developed for chaotic
exploration with multiple UAVs, called cooperative exploration. The
main mobility model uses pheromone dispersion based on the Ant Colony
Optimization (ACO) algorithm. In addition, we propose some modifica-
tions to these models by introducing the Hopfield Chaotic Neural Net-
work dynamics to generate the chaotic behavior and improve the area
coverage performance. Likewise, we present simulation results exploring
an area size of 50 m × 50 m with 2 UAVs.

Keywords: Neural network · Chaotic · Drones · UAV · Exploration ·
Coverage

1 Introduction

The way to explore the terrain is essential to ensure that it is completely cov-
ered in the shortest possible time and without jeopardizing the security of the
explorer or the environment. Other features vary according to the application
or the objective of the exploration task, such as a complete, autonomous, and
unpredictable exploration. There are various techniques and methodologies to
meet these or other characteristics, and a particular approach is to take advan-
tage of the properties of dynamic systems with chaotic behavior used in various
applications such as cryptography, communications, random number generators,
and activation functions in neural networks, among others. These applications
have proven that chaotic systems are unpredictable, random, and sensitive. Tak-
ing advantage of these properties can benefit the exploration process and help
meet the objectives of that task.
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With the development of technologies and robotics, there are more and more
new tools for multiple applications related to terrain exploration and autonomous
robots. The primary investigations of these applications are focused on mili-
tary [6,18]. Industrial, [19,23]. Civil subjects [3,16]. And search and rescue in
natural disasters [20], exploration and reconnaissance of remote environments
[12,14], etc. In particular, UAVs can travel at relatively high speed and explore
an area in less time than mobile robots. Most of these have cameras, sensors, and
communication systems that provide essential environmental information. These
characteristics improve performance in many applications [18]. However, UAVs
have a reduced flight time depending on their battery, they cannot carry huge
loads, and the flight depends on weather conditions. Recent research addresses
these issues and decides whether to optimize cost, time, distance, or energy.

Maximizing the coverage area in an application with UAVs depends on how to
explore the terrain. The main characteristics are that the exploration is complete,
autonomous, and unpredictable. This unpredictability is an essential feature in
applications such as surveillance, patrol, and search. Furthermore, it is an intrin-
sic characteristic of chaotic systems, which are very sensitive to initial conditions
and used in applications requiring unpredictable and random behavior. These
characteristics are necessary for terrain exploration tasks [18,25].

This paper presents some previously developed mobility models for coopera-
tive exploration with UAVs. These mobility models are Random Walk Mobility
Model (RWMM), Chaotic Rössler Mobility Model (CROMM), and Chaotic Ant
Colony Optimization for Coverage (CACOC) Mobility Model. We propose to
modify the dynamic system of the mobility models by changing the probability
distribution in the actions of the UAVs. This modification consists of introducing
the Hopfield Chaotic Neural Network model to replace the Rössler chaotic sys-
tem and seek to improve the performance in the coverage of the explored area.
We present simulation results of an area size of 50m×50m with 2 UAVs, we pro-
gram the mobility models in Python, and the dynamics of the UAVs trajectories
are simulated in the CoppeliaSim Simulator.

This document is organized as follows: Sect. 2 presents some investigations
related to chaotic exploration. Section 3 describes the mobility models used for
the exploration. Section 4 describes the metrics used to evaluate the results.
Section 5 shows the simulation results. Finally, Sect. 6 summarizes the conclu-
sions and future work.

2 Related Work

The authors of [9] start their research looking for chaotic behavior in a mobile
robot. To achieve this behavior, they extend the equations of the mobile robot
model by integrating Arnold’s chaotic equation. Making the mobile robot have
chaotic movements to explore an environment. In [2] they used this method
to integrate chaotic behavior, where the authors propose a cooperation scheme
between multiple mobile robots with chaotic behavior for cooperative explo-
ration of an environment. This N-robot scheme is composed of a master robot
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that integrates the Chen and Lorenz chaotic systems in discrete-time, and the
other robots are synchronized to the master using an Extended Kalman Filter
to estimate the chaotic motion.

Continuing with the work of [2], the authors of [8] use the same cooperation
scheme between multiple mobile robots. However, in this work, the authors mod-
ify the synchronization process, which consists of extending the mathematical
model of the mobile robot again and adding the error dynamics between the
master and slave systems. As in [2], one robot fulfills the master function, and
the rest will be the slave systems synchronized to the chaotic behavior of the
master robot.

Another chaotic exploration approach is proposed in [24] and [25], where the
authors use a two-scrolls chaotic system and a logistic map as the source for a
Pseudo-Random Bit Generator (PRBG). In this PRBG, the time series of the
chaotic system is threshold encoded to obtain a bit sequence. The values of these
bits are actions for the mobile robot (forward, right, left, standstill). Notably,
in [25], the authors propose to use a PRBG for each wheel of the mobile robot.
Each PRBG has different initial conditions and parameters, i.e., different bit
sequences are generated for the two independent wheels of the robot.

Based on the method proposed in [9], the authors of [10] propose to use the
Chua multi-scroll chaotic oscillator integrated with the model of a mobile robot,
making the robot angle depend on the chaotic states of the oscillator, which
can vary the number of scrolls and improve scanning performance. However, a
disadvantage of these schemes is that the explorer can concentrate its trajectories
around a point of oscillation, a higher number of scrolls improves this behavior,
but it can considerably increase the computational load of the system.

The previous papers do not use drones or UAVs as explorers. However, the
mentioned techniques could be applied to UAVs for terrain exploration. On the
other hand, some research focuses on using UAVs as explorers, e.g., in [13] and
[14], the authors study various mobility models to operate unmanned aerial
vehicles (UAVs) as a swarm system that scouts a given area. In these mobility
models, the classic random walks (Random Walk), a mobility model based on
the Rössler system (CROMM), and the mobility model based on the Ant Colony
Optimization algorithm (ACO) combined with chaotic dynamics of the Rössler
system. This algorithm is called CACOC (Chaotic Ant Colony Optimization
for Coverage). Subsequently, the authors continue their investigation in [15] by
plating a colony of 10 UAVs to explore an area with the CACOC mobility model.

The CACOC mobility algorithm is based on an evolutionary algorithm
(ACO) in which several parameters affect its performance, so in [17], the authors
face the problem of parameterizing and optimizing 3 of the CACOC mobility
model parameters, improving performance depending on the area or number of
UAVs in the swarm. The parameters defined in this article are the number of
pheromones left by each vehicle (τa), the pheromone radius (τr), and the max-
imum detection distance of pheromones (τd). These parameters are optimized
using a Genetic Algorithm (GA) and two Cooperative Coevolutionary Genetic
Algorithms (CCGA). In the GA, they design the value of the operators and
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propose the fitness function to maximize the area explored by the UAV. The
first CCGA is a configuration of an independent GA for each UAV, where each
GA focuses on optimizing the parameters of its UAV. The second CCGA has
a shared population that randomly samples individuals from the previous GA
populations.

Similarly, in [18], the authors use the Cooperative Coevolutionary Genetic
Algorithms (CCGA) optimization scheme proposed in [17] to optimize the
CROMM mobility model. In this paper, they propose to have explorers of dif-
ferent types, Unmanned Aerial Vehicles (UAV), Unmanned Ground Vehicles
(UGV), and Unmanned Marine Vehicles (UMV) to have a multi-swarm with the
mobility model called CROMM-MS. Some vehicles act as predators and others as
prey, and both are optimized to improve vehicle parameters, the search capacity
of predators, and the evasion capacity of prey. In addition, the authors modify
the optimization algorithm by adding a population called "Hall of Fame" that
contains the best individuals. From there, 30 are randomly taken, and the cur-
rent individual is evaluated against these 30 opponents. After each generation,
the "Hall of Fame" is updated with the best individual.

In [7], the authors return to the Pseudo-Random Bit Generators (PRBG)
approach to obtain the chaotic movements of a UAV exploring a terrain. There
they propose a chaotic map generating a time series encoded with 4 bits in each
iteration, 3 bits are instructions for the UAV (up, up-right, right, down-right,
down, down-left, left, and up-left), the instructions that leave the work area are
discarded, and the UAV waits for a new instruction.

3 UAV Mobility Models

Several mobility models for terrain exploration with UAVs like those mentioned
in the previous section have different advantages and disadvantages. This section
describes the mobility models used in this paper.

Random Walk Mobility Model (RWMM). The RWMM is introduced in
[5]. It is based on a Markov process, in which the following explorer action
depends on the previous action and a random value between 0 and 1, called ρ.
Table 1 shows the probability of an action, where the turns are 45◦ relative to
the current direction of the UAV, and Algorithm 1 describes the mobility model
based on Random Walk.

Table 1. Action table for the RWMM [5]

Probability of action
Last action Turn left Ahead Turn right

Ahead 10% 80% 10%

Turn left 70% 30% 0%

Turn right 0% 30% 70%



112 J. D. Díaz-Muñoz et al.

Algorithm 1. RWMM.
1: Initialize UAV
2: Initialize parameters for RWMM
3: current_state = "Ahead"
4: loop
5: ρ = random()
6: current_state = action(ρ, current_state) {See Table 1}
7: move according to current_state
8: end loop

Chaotic Rössler Mobility Model (CROMM). For the CROMM mobil-
ity model, the authors in [14] propose a methodology to use the dynamics of
chaotic systems. This methodology consists of the value of the action probabil-
ity ρ obtained from the chaotic system, specifically from the first-return map
or Poincaré map (ρn). In this case, the authors use the Rössler chaotic system
described by (1), Fig. 1a shows the chaotic attractor of this system. The first-
return map (Fig. 1b) is constructed from the normalized points that cross the
Poincaré section (2).

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

(1)

where x, y, and z are the states, and a, b and c are the system’s parameters.

Pn = {(yn, zn) | xn = 0, ẋn > 0} (2)

Finally, with the action probability value (Fig. 1b), the next movement of the
UAV is established according to the Algorithm 2, which describes the Chaotic
Rössler system mobility model (CROMM).

Fig. 1. Simulation results of the Rössler system using fourth-order Runge-Kutta with
step size Δt = 0.1, initial conditions x0 = −0.75, y0 = z0 = 0, and parameters
a = 0.1775, b = 0.215, c = 5.995. (1a) Chaotic attractor (y, −x). (1b) First-return map
of the chaotic attractor with Poincaré section (2).



Cooperative Chaotic Exploration with UAVs 113

Algorithm 2. CROMM.
1: Initialize UAV
2: Initialize parameters for CROMM
3: current_state = "Ahead"
4: Evaluate Rössler’s system and obtain the first-return map
5: Calculate ρn from first-return map
6: loop
7: ρ = next value of ρn

8: if ρ < 1/3 then
9: current_state = "Turn right"

10: else if 1/3 ≤ ρ < 2/3 then
11: current_state = "Turn left"
12: else
13: current_state = "Ahead"
14: end if
15: move according to current_state
16: end loop

Chaotic Ant Colony Optimization for Coverage (CACOC) Mobility
Model. The CACOC mobility model proposed in [13] and [14] is based on the
concept of pheromone dispersion used by the ACO and applied in one of the
mobility models proposed in [5]. This dispersion consists of the UAV leaving
a finite amount of pheromones in its trajectory. In addition, the UAV detects
these pheromones. The probability of action is affected according to the num-
ber of pheromones detected to avoid going to previously visited points, i.e.,
pheromones indicate recently visited points. However, the pheromones evaporate
overtime when the maximum pheromones are deposited. Algorithm 3 describes

Algorithm 3. CACOC.
1: Initialize UAV
2: Initialize parameters for CACOC
3: current_state = "Ahead"
4: Evaluate Rössler’s system and obtain the first-return map
5: Calculate ρn from first-return map
6: loop
7: ρ = next value of ρn

8: if totalph = 0 then
9: current_state = CROMM

10: else
11: if ρ < PR then
12: current_state = "Turn right"
13: else if PR ≤ ρ < PR + PL then
14: current_state = "Turn left"
15: else
16: current_state = "Ahead"
17: end if
18: end if
19: move according to current_state
20: end loop
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the CACOC mobility model, the probability of action (PR, PL, and PA) accord-
ing to the number of pheromones detected in the three directions of move-
ment (right, left, and ahead), and the total number of pheromones detected
(total = right + left + ahead). Thus, the direction with more pheromones
detected has a lower probability of the following action. On the other hand,
if the UAV does not detect pheromones, the action is given by the Algorithm 2
CROMM.

Chaotic Hopfield Mobility Model (CHOMM) and Chaotic Hopfield
Ant Colony Optimization for Coverage (CHACOC) Mobility Model.
The methodology proposed in [14] for the CROMM mobility model can be used
with other dynamical systems that provide a different probability distribution
from the first-return map or from a different encoding of the time series of the
chaotic system. We test a Neural Network model proposed by Hopfield in [4] and
used for image encryption in [21] and [1]. The Hopfield Chaotic Neuron Network
is described by (3), the chaotic attractor of this system is shown in Fig. 2a and
its respective first-return map in Fig. 2b constructed from the normalized points
that cross the Poincare section (6).

ẋ = −x + W1,1f(x) + W1,2f(y) + W1,3f(z)
ẏ = −y + W2,1f(x) + W2,2f(y) + W2,3f(z)
ż = −z + W3,1f(x) + W3,2f(y) + W3,3f(z)

(3)

where x, y, and z are the neuronal states, f(•) is the neuronal activation function
(4), and W is the neural connection weight matrix (5).

f(x) = tanh(x)
f(y) = tanh(y)
f(z) = tanh(z)

(4)

W =

⎛
⎝

2 −1.2 0
1.9997 1.71 1.15
−4.75 0 1.1

⎞
⎠ (5)

Pn = {(yn, zn) | xn = 0.2, ẋn > 0} (6)

In the case of the CHOMM, the next movement of the UAV is established
according to Table 2 and the probability distribution ρn of Fig. 2b. Also, the
turns are 45◦ relative to the current direction of the UAV. Algorithm 4 describes
the Chaotic Hopfield Mobility Model (CHOMM).

In the case of CHACOC, we used the pheromone dispersion methodology
combined with the Hopfield Chaotic Neural Network (3) and the probability
distribution of Fig. 2b. Table 3 shows the probability of action according to the
number of pheromones detected in the three directions of movement (right, left,
and ahead), where PR, PL, and PA are the probability of action in the three
directions. Again, if the UAV does not detect pheromones, the action is given by
the Algorithm 4 CHOMM. Algorithm 5 describes the CHACOC mobility model.
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Fig. 2. Simulation results of the Hopfield system using fourth-order Runge-Kutta with
step size Δt = 0.565, initial conditions x0 = 0.2, y0 = −0.2929, and z0 = −3.4720. (2a)
Chaotic attractor (y, −x). (2b) First-return map of the chaotic attractor with Poincaré
section (6).

Table 2. Action table for the CHOMM

Turn right Turn left Ahead

if ρn < 1/3 if 1/3 ≤ ρn < 2/3 if 2/3 ≤ ρn

Algorithm 4. CHOMM.
1: Initialize UAV
2: Initialize parameters for CHOMM
3: current_state = "Ahead"
4: Evaluate Hopfield’s system and obtain the first-return map
5: Calculate ρn from first-return map
6: loop
7: ρ = next value of ρn

8: current_state = action(ρ) {See Table 2}
9: move according to current_state

10: end loop

Table 3. Action table for the CHACOC

Turn right Turn left Ahead

PR = total−right
2×total

PL = total−left
2×total

PA = total−ahead
2×total

if ρn < PR if PR ≤ ρn < PR + PL if PR + PL ≤ ρn

4 Metrics

The primary metric used is the coverage rate of the explored area. This metric
quantifies the percentage of the area that was explored by the UAVs, indicating
the performance of the exploration and is given by (7), where %C is the coverage
rate, Ncell is the total number of cells in the area (the area is divided into
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Algorithm 5. CHACOC.
1: Initialize UAV
2: Initialize parameters for CHACOC
3: current_state = "Ahead"
4: Evaluate Hopfield’s system and obtain the first-return map
5: Calculate ρn from first-return map
6: loop
7: ρ = next value of ρn

8: if totalph = 0 then
9: current_state = CHOMM {See Table 2}

10: else
11: current_state = action(ρ,PR,PL,PA) {See Table 3}
12: end if
13: move according to current_state
14: end loop

1m× 1m cells, i.e., 2500 cells), cell(i) is an array that stores 1 if cell i was
scanned and 0 if it was not.

%C = 1
Ncell

Ncell∑
i=1

I(i),

I(i) =
{
1 if i is covered
0 if i is not covered

(7)

In addition, coverage fairness is used to quantify whether the cells are scanned
equally and regularly. Ideally, the scanning of each cell has a uniform probability
distribution. Fairness is calculated as the standard deviation of the number of
times each cell is scanned and is given by (8), i.e., a lower fairness value indicates
better performance than a higher value.

fairness =

√√√√ 1
Ncell

Ncell∑
i=1

|nexp(i)− uexp|2 (8)

where Ncell is the total number of cells in the area, nexp(i) is the number of
times cell i is scanned, and uexp is the mean of nexp. Finally, since the mobility
models are executed several times, some tests are made, such as the mean and
the standard deviation of the results.

Furthermore, we use the Lyapunov exponents and the Kaplan-Yorke frac-
tal dimension to quantify the chaos of the systems and observe the difference
between them. Lyapunov exponents are asymptotic measures that character-
ize the contraction or growth rate of small perturbations on the solutions of a
dynamical system, providing a quantitative measure of the sensitivity of a sys-
tem to small changes in its initial conditions [22]. A positive Lyapunov exponent
means an expansion characteristic of the dynamical system. This characteris-
tic indicates the system’s sensitivity to the variation of the initial conditions,
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i.e., a positive Lyapunov exponent indicates the presence of chaos in dynami-
cal systems [11]. On the other hand, the dimension of an attractor is the lower
bound on the number of state variables needed to describe the steady-state
behavior of a dynamic system. Non-chaotic systems have an integer dimension,
but chaotic systems have a non-integer or fractal dimension. The Kaplan-Yorke
fractal dimension (9) calculates the dimension of a chaotic attractor from the
Lyapunov exponents [11].

DKY = j +
λ1 + · · ·+ λj

|λj+1| (9)

5 Results

The simulation tests correspond to an area size of 50m × 50m with 2 UAVs.
Each mobility model is executed ten times with 10000 steps or actions, and
the chaotic systems have the initial conditions (ε + 0.01(#UAV )), where ε is
a random seed between −0.5 and 0.5, and #UAV is 1 for the first UAV and
2 for the second, ensuring that in each execution the trajectories are different.
Mobility models are programmed in Python and send the instructions to the
CoppeliaSim Simulator (Fig. 3), where the dynamics of the UAVs are simulated
with a scanning speed of 1m/s, and to avoid a collision, the UAVs fly at a
different height. In addition, the pheromone-based mobility models (CACOC and
CHACOC) are executed with the parameters parameterized in [17], i.e., τa = 74,
τr = 1.5, and τd = 4. We use the TISEAN Software to evaluate the Lyapunov
exponents and the Kaplan-Yorke fractal dimension of the time series of chaotic
systems (series of 200000 points). Table 4 shows the results of both metrics,
and both chaotic systems have a Kaplan-Yorke dimension with similar and non-
integer values indicating the presence of chaos. In the case of the Lyapunov
exponents, both systems have positive exponents. However, the Hopfield Chaotic
Neural Network has a higher exponent, i.e., it is more sensitive to changes in the
initial conditions. This sensitivity makes the trajectories have a more significant

Fig. 3. CoppeliaSim Simulator screenshot of the 2 UAVs.
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Table 4. Results of the Lyapunov exponents and Kaplan-Yorke dimension.

Chaotic system Lyapunov exponents Kaplan-Yorke dimension

Rössler 6.727013e−3 1.742690e−5 −1.090885e−1 2.061825

Hopfield 64.14496e−3 −5.019493e−2 −2.639096e−1 2.052859

variation in each execution. Figure 4a shows the results of the percentage of
coverage of the explored area. There it is observed that the mobility model
based on the dispersion of pheromones with the Hopfield system (CHACOC)
has a better performance in the exploration than the other models, followed
by the CHOMM and CACOC models. So the change in the action probability
distribution significantly influences the exploration performance. Table 5 shows
the results of the tests (mean and standard deviation) of the coverage rate. There
it is observed that the mobility models that use the Hopfield Chaotic Neural
Network have better results, even without using the dispersion of pheromones.

Fig. 4. Results of the different mobility models. (4a) Coverage results. (4b) Fairness
results.

The performance improvement is also evidenced in the number of times that
the UAVs visit a point, quantified with fairness Fig. 4b. There it is observed that
with the CHACOC the UAVs pass more uniformly through each of the points
visited and proportionally a smaller number of times through the same point.

In Fig. 5, the trajectories of the UAVs are observed during four stages of the
exploration with the CHACOC mobility model. In the initial stage (1000 steps),
the UAVs have traveled about 40% of the area, and it is observed that the tra-
jectories cross little. In the second stage (4000 steps), the coverage exceeds 80%,
and the trajectories are more overlapping. Finally, in the following two stages
(7000 and 10000 steps), the coverage is greater than 95%, and the unexplored
area is low.
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Table 5. Results of the tests of the different mobility models.

Test Value
Mobility model Mean (%) Std Value Max (%)

RWMM 85.8533 0.04875 89.40

CROMM 92.8400 0.00667 93.76

CACOC 95.0267 0.00435 95.64

CHOMM 96.5733 0.00603 97.20

CHACOC 98.9333 0.00132 99.12

Fig. 5. Trajectory results (UAV #1: red line, UAV #2: blue line) with the CHACOC
in different number of steps. (a): 1000 steps, (b): 4000 steps, (c): 7000 steps, (d):
10000 steps. (Color figure online)

6 Conclusions

All the mobility models used provide a percentage of successful coverage and
exceed 90%, except the RWMM. However, changing the action probability dis-
tribution with the Hopfield Chaotic Neural Network improves scanning perfor-
mance, even without pheromone dispersion. This improvement is because the
first-return map points reflect the chaotic behavior of the system and do not
have an even distribution as in the map of the CROMM and CACOC mod-
els. Hence, the importance of selecting the Poincaré section is evident to obtain
different distributions of probability of action.

The dispersion of pheromones has a more significant influence on the fair-
ness of the coverage and the variability of exploration between executions. These
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results are reflected in Fig. 4b and Table 5, where the standard deviation between
each execution is lower for CACOC and CHACOC models. These results reflect
run-to-run reliability when using pheromone dispersion and reduce the uncer-
tainty that the scan will complete if the initial system conditions change.

An essential factor is that the computational effort is reduced when using
the Hopfield Chaotic Neural Network since to obtain the 10000 steps of the tra-
jectories, 625000 points of the time series must be calculated for the mobility
models with the Rössler system and 125000 for mobility models with the Hop-
field Chaotic Neural Network, i.e., a reduction of 80%. This reduction could be
increased if the Poincaré section is modified or if another encoding represents
the chaotic behavior.

A limitation found in these types of mobility models is that the movements of
the UAVs are limited to a couple of angles, which can mean sudden movements
that increase energy consumption, and the UAVs cannot complete the explo-
ration due to battery depletion, which is one of the biggest challenges of these
systems. This problem can be addressed by reducing the scan angles or intro-
ducing control strategies that allow the UAV to be optimally guided through
chaotic trajectories. On the other hand, the exploration is not in 3 dimensions,
and the UAVs do not change their height during the exploration process.

Future work can explore different Poincaré sections and especially other
encodings to represent chaotic behavior instead of the first-return map. It is
essential to add 3-dimensional displacement to the exploration and modify the
height of the UAVs since this characteristic is an advantage in the exploration
processes. It is also necessary to add an obstacle avoidance system to achieve
this. On the other hand, reduce the angles of action of the UAVs or implement
control strategies to improve the system’s efficiency by avoiding sudden move-
ments. These implementations are necessary and have several challenges.
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Abstract. Clustering is an important optimization problem which is at
the core of many data mining and machine learning applications. Evolu-
tionary multiobjective clustering algorithms optimize multiple partition
quality criteria simultaneously, producing a set of trade-off solutions in
a single execution. How can a final solution be selected from this set
of candidate trade-offs? Decision making is concerned with such a task,
acknowledging that obtaining a single solution may represent the ulti-
mate goal in practice. Given the limitations of current techniques, we
explore a novel approach to decision making: tackling this task as a
supervised learning problem. Our approach attempts to learn from the
decision-making process in example (training) problems, with the aim of
later applying the learned model to lead the identification of final solu-
tions in new applications. In this paper, we present preliminary results
on the evaluation of this proposal. Our experiments include comparisons
with respect to a set of decision-making approaches from the literature
and consider a collection of synthetic clustering problems with diverse
characteristics. The results obtained are promising, highlighting the rele-
vance of devising alternative decision-making strategies, the effectiveness
of our proposal, and motivating further research on this matter.

Keywords: Decision making · Clustering · Multiobjective
optimization · Evolutionary algorithms · Evolutionary multiobjective
clustering

1 Introduction

The clustering task is concerned with finding the best possible partitioning for a
given group of elements. The resulting subgroups, called clusters, are expected to
reflect the similarity between these elements, bringing together those with similar
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Fig. 1. Example PFA produced by algorithm Δ-MOCK [8].

characteristics and at the same time separating those which are less alike. From
this definition it is possible to highlight the intrinsic multiobjective nature of
this optimization problem, a nature which was recognized since the pioneering
work of Delattre and Hansen [6]. It was not until more recently, however, when
the first applications of evolutionary multiobjective algorithms in this particular
context were reported [2,9–11], that the multiobjective approach to clustering
popularized, motivating numerous research efforts [1,18].

Evolutionary multiobjective algorithms allow us to fully exploit the bene-
fits of a multiobjective formulation of the clustering problem. They are able to
optimize multiple, complementary criteria to evaluate partition quality simulta-
neously. This is particularly relevant, as individual criteria often lack the ability
to capture all desirable aspects of a solution and their effectiveness is problem-
dependent (i.e., it depends on the compatibility of the criterion with the specific
characteristics of the data under consideration). A multiobjective formulation
thus provides us with a more flexible definition of solution quality, offering an
increased robustness against changing problem characteristics. Moreover, due to
their population-based optimization strategy, evolutionary multiobjective algo-
rithms are capable of approximating the Pareto front, generating a set of trade-off
(mutually nondominated) solutions within a single algorithm execution.

To illustrate this, consider the Pareto front approximation (PFA) shown in
Fig. 1, which was obtained using the recently proposed algorithm Δ-MOCK [8].
This algorithm uses two specific clustering criteria as objective functions (both
to be minimized): intra-cluster variance (VAR), which favors the homogeneity
or compactness of the clusters; and connectivity (CNN), which promotes that
neighboring elements are grouped together regardless of how similar they are.
These criteria are in conflict with each other, not only because of the contrary
(but equally important) goals they pursue, but also because of the opposing
biases they exert with respect to the number of clusters, k: improving VAR
tends to increase k, whereas improving CNN has the opposite effect, as can be
seen from the figure. Hence, the simultaneous optimization of VAR and CNN
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produces a set of candidate partitions, representing different trade-offs between
these criteria and exhibiting a potentially diverse range of values for k.

Having access to such a variety of potential solutions can certainly be useful.
As Fig. 1 exemplifies, frequently the correct partitioning of the data is closely
resembled by one of the trade-offs in the PFA, a solution which may be difficult
to discover through the (single-objective) optimization of the individual criteria.
Furthermore, the value of k is commonly unknown in advance, emphasizing the
relevance of obtaining a range of choices regarding this parameter. Nevertheless,
in a practical scenario, the delivery of a single, final solution is usually required.
Decision making (DM) is the last step in the evolutionary multiobjective clus-
tering (EMC) process, concerned with the identification of such a final solution
from the initially produced PFA (it is noteworthy that DM is not particular
to the clustering domain, but rather it extends to the broader area of multiob-
jective optimization). Despite its importance, no conclusive approach exists to
automate DM (in the EMC context), as we analyze in the next section.

In this paper, we explore an alternative approach to DM: machine learning-
based decision making (MLDM). It tackles DM as a learning problem, training a
model based on examples and later exploiting it to guide DM in new scenarios.
Our preliminary evaluation of this proposal considers a diverse collection of
datasets and comparisons against several DM methods from the literature.

This paper is structured as follows. First, Sect. 2 reviews the relevant litera-
ture, discussing limitations of current DM approaches. Then, Sect. 3 introduces
our MLDM strategy. Section 4 presents our experiments and results. Finally,
Sect. 5 concludes and discusses directions for future work.

2 Related Work

Three categories of DM methods can be distinguished in the EMC literature.
The first category follows a conceptually simple approach: using an additional
criterion as a tiebreaker. That is, a criterion different from those used as objec-
tives is considered to discriminate between the otherwise incomparable mem-
bers of the PFA. The Silhouette index is a popular choice, appearing as the DM
criterion in several studies [3,7,13,16]. Other alternatives include the Davies-
Bouldin, SD, Dunn, S_Dbw, I, and Calinski-Harabasz indices, which have been
used for DM purposes by different authors [2,7,14,20]. Despite the simplicity
of this approach, the use of a single criterion to guide DM entails the same
disadvantage of single-objective clustering (as discussed in Sect. 1): the effec-
tiveness of the criterion chosen will be problem-dependent. In view of this, some
authors have considered criteria combinations; for example, a linear combination
of the Calinski-Harabasz, Davies-Bouldin, and Silhouette indices was explored
recently [25]. However, it might be difficult (and, once again, problem-dependent)
to find the right balance (weighting) between the criteria being combined.

The second category includes strategies that focus on the shape of the PFA.
These strategies adhere to a common assumption in multiobjective optimization:
that the knee regions of the Pareto front offer the most promising trade-offs and
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may correspond to the preferences of a decision maker [5]. A clear representative
of this category is algorithm MOCK [9] (predecessor of Δ-MOCK [8], discussed
earlier). MOCK’s strategy identifies the PFA member that maximizes the dis-
tance to some control fronts (generated by clustering random data), which is
assumed to be at a knee of the PFA and picked as the final solution. Other
approaches have been presented as less computationally demanding alternatives
to MOCK’s strategy. For example, it has been proposed to simply select the
solution with the lowest sum of objective values [23], assuming minimization.
Another proposal reduces the cardinality of the PFA and then selects the most
knee-like solution by inspecting the angles defined by neighboring PFA mem-
bers [15]. Unfortunately, though, these assumptions regarding the regions of the
PFA that should be favored, which are reasonable in the general area of multiob-
jective optimization, do not necessarily hold in the more specific case of EMC. If
one of the objectives contributes significantly more (it is more compatible) than
others to solving the problem, the best solution choices are expected to be near
the corresponding extreme of the PFA rather than at central, trade-off regions.

Instead of selecting a solution from the PFA, methods in the last cate-
gory generate a partition anew, representing a consensus among PFA members.
In [19], for instance, the authors employ three different ensemble clustering tech-
niques (proposed in [24]) to integrate the nondominated solutions obtained by
their EMC method. One of them, the meta-clustering algorithm [24], has also
been used to generate a final solution in the context of MOCK [21]. An interest-
ing approach combines a consensus strategy with the use of a classifier [17]. First,
part of the elements are assigned to clusters whenever an agreement is observed
for the majority of PFA members. Such initial clusters are used to train a clas-
sifier, which then helps define the cluster assignment of the remaining elements.
The ensemble techniques reported in [12] have recently been exploited to gener-
ate a range of consensus partitions from those in the PFA, where a final decision
is made by means of additional clustering criteria (methods in the first cate-
gory) [25]. For some of the above consensus-based strategies, it is unclear if they
can be used to integrate partitions with varying values of k (as in the PFAs con-
sidered here). However, the main limitation of the methods in this category is the
assumption that all PFA members are equally reliable. As discussed before, some
of the optimization criteria may become incompatible when dealing with specific
problems; consequently, considering solutions that excel for such incompatible
criteria may be equivalent to including noise in the final consensus.

The above discussion exhibits the complexity of DM under the peculiarities
of EMC. Limitations derived from inherent assumptions of existing methods
have prevented the development of a definitive approach to tackle this challenge,
highlighting the need for exploring alternative solution methodologies.

3 Machine Learning-Based Decision Making

The approach proposed in this paper is based on the core idea of considering
DM as a supervised learning problem, in this way letting the learning mechanism
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to capture the complexities of this task as a means to address the limitations
of current techniques. As can be seen later from the results, this framework is
promising, providing competitive results in a wide range of datasets.

Fig. 2. Learning stage of MLDM.

3.1 Description of the Proposed Decision-Making Strategy

As a supervised learning technique, the aim of MLDM is to build a model from
several DM example cases, so the model can be further applied to cases with
unknown settings, in order to identify the best partition available in a PFA.

It is necessary to perform a learning stage first, following the steps depicted
in Fig. 2. The outcome of this stage is a regression model, which will be used at
a subsequent stage to predict the quality of each partition in a given PFA (as
we explain later). The input is a set of sample problems, datasets with a known
cluster structure, to make supervised learning possible. Each problem is fed into
an EMC algorithm, which will produce PFAs. Given the stochastic nature of
these algorithms, several runs are required so we will end up with several PFAs
per dataset, which will serve the purposes of training the predictive model.

It is possible to assess the quality of the partitions in the PFAs by using
an indicator which compares them to the (known) correct solution. Such an
indicator is an external clustering criterion. The value of this indicator is then
considered as the response variable of the model. Now, regarding the explanatory
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variables required for training, a set of attributes are extracted for each partition,
so the model can predict partition quality based on those attributes.

The complementary part of MLDM, illustrated in Fig. 3, is the application
stage. Here, a new problem with unknown correct partition (as in a real-world
scenario) is presented, to which the EMC method is applied to obtain a PFA.
Each candidate partition in the PFA needs to be characterized by the same
set of attributes adopted during training. Attributes are used by the regression
model for quality prediction, information which will enable the discrimination
among PFA members. Thus, model predictions are effectively used to break ties:
candidates in the PFA are the best trade-offs obtained by the EMC method,
but they are also equally good (i.e., they are nondominated with respect to each
other). DM actually takes place in the last step, when the partition with the best
quality, as estimated by the regression model, is selected as the final solution.

Fig. 3. Application stage of MLDM.

3.2 Definition of Main Design Components

In the previous description of our proposal there are several components men-
tioned, not as particular instances, but as generic mechanisms instead. This is
indeed the case, MLDM is proposed as a generic framework that can be imple-
mented with a variety of algorithmic choices, for example, to adapt it to a par-
ticular context, specifications of the user, or limitations of the infrastructure.



Machine Learning-Based Decision Making in EMC 129

However, in order to perform the experiments and validate our proposal, such
choices are made in this paper trying to reflect the current state-of-the-art, by
selecting representative approaches. Our specific choices are listed below:

1. EMC algorithm. The algorithm chosen is Δ-MOCK [8], firstly because it is
a more recent variant of MOCK [9], which is a representative algorithm, but
also because it adopts the same (or equivalent) optimization criteria as several
other algorithms from the literature, namely, VAR and CNN.

2. Attribute extraction. There are no precedents in the literature, to the best
of our knowledge, of choosing a set of attributes to characterize different
partitions in a PFA obtained by an EMC method. An important share of the
effort in this work was invested in selecting a diverse set of attributes, so the
PFAs can be properly characterized and relevant information is provided to
the model. Our selection of attributes is further discussed in Sect. 3.3.

3. Partition quality criterion. This component is necessary for assessing the qual-
ity of candidate partitions. The adjusted Rand index (ARI) indicator [22] has
been chosen. ARI allows us to compare how similar a candidate solution is
with respect to the correct partition of the data, mapping this similarity to
a value between 0 and 1. A greater value means more similar partitions. By
using this indicator as the response variable, and the set of attributes as the
explanatory variables, it is possible to proceed with the modeling.

4. Supervised learning approach. The approach used for constructing the model
is random forest [4], mainly because it is practical and robust, specially in
high-dimensional settings and scenarios with mixed-type attributes (scenario
considered here), with successful applications in a wide variety of domains.

3.3 Characterization of Pareto Front Approximations

To train the regression model, it is imperative to define a set of attributes to
characterize the solutions in the PFA, so that the model can learn to associate
these attributes with the adopted measure of solution quality. We use a total
of 55 attributes in this study. Due to space restrictions, a description of each of
these attributes is not included in this paper, but below we summarize the five
categories defined to organize them and provide some examples:

1. Attributes describing PFA members individually. The 11 attributes in this
category consider aspects of the PFA members at the individual level. Exam-
ples of these attributes include the objective values of a given solution, the
specific sub-range of the x-axis and y-axis where it locates, and its distance
with respect to the ideal and nadir points (as approximated by the PFA).

2. Attributes describing the partition that PFA members represent. Each point
in the PFA encodes a clustering solution. The four attributes in this category
refer to aspects of such solution: the value of k and the quality of the partition,
as measured by the Silhouette, Davies-Bouldin, and Dunn indices.

3. Attributes depending on other PFA members. This category includes a total
of 16 attributes, which describe a given PFA member in relation to other



130 A. L. Sánchez-Martínez et al.

candidate members of the PFA. Some of the attributes in this category are:
whether or not the PFA member is a vertex of the convex hull of the PFA,
the specific contribution of the PFA member to the hypervolume indicator,
and the angle that forms with respect to neighboring PFA members.

4. Attributes describing the PFA as a whole. This category encompasses 22
attributes that refer to global aspects of the PFA, such as: the cardinality
of the PFA, the computed value for the hypervolume indicator, and the area,
perimeter and total number of vertices of convex hull of the PFA.

5. Attributes describing the clustering problem. This last category involves only
two attributes, both referring to the specific clustering problem (dataset)
under consideration: its size (number of elements) and dimensionality.

Fig. 4. Illustration of 20 (out of the 40) synthetic problems used in our experiments.

4 Experiments and Results

In this section, we present the results of our preliminary evaluation of the pro-
posed MLDM technique. First, our experimental conditions are described in
Sect. 4.1, including the clustering problems, reference approaches, and perfor-
mance assessment measures considered. Then, Sects. 4.2 and 4.3 present the
results for separate experiments considering scenarios of different difficulty.
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4.1 Evaluation Setup

We consider 40 clustering problems, some of them illustrated in Fig. 4. All these
problems are synthetic and low-dimensional, which allows us to draw conclusions
that relate performance to the observable characteristics of the data. The size
of each dataset (N) and the correct value of k is provided in Tables 1 and 2.

Four reference DM approaches from the EMC literature are included in our
evaluation. The first three are clustering criteria commonly used for decision-
making purposes (see Sect. 2): the Silhouette (SIL), Davies-Bouldin (DB), and
Dunn (DUNN) indices. The remaining method is that implemented by MOCK,
based on the identification of the knee of the PFA. In addition, the best and
worst solutions available in the PFA are considered as baselines (denoted BEST
and WORST), which represent upper and lower bounds on performance.

Fig. 5. Results for Scenario 1 are shown in terms of prediction performance, RMSE
measure (left), and in terms of decision-making performance, ARI measure (right).

Two performance measures are used. The first one is the root-mean-square
error (RMSE), which we use to assess prediction performance, i.e., to quantify
the differences between the quality values predicted by the regression model and
the real (measured) quality of the solutions in the PFA. To assess DM perfor-
mance, we focus on the quality of the final solutions selected by the methods
evaluated, as given by the ARI indicator. Whereas RMSE is to be minimized,
ARI is to be maximized. Finally, we use the Mann-Whitney U test, considering
a significance level of α = 0.05 and Bonferroni correction, to determine the sta-
tistical significance of the differences observed between the methods compared.

4.2 Scenario 1: Unknown PFAs for Known Problems

The first scenario considers the selection of final solutions from new (previously
unseen) PFAs. However, other example PFAs, independently produced for the
same clustering problems, were included in the training set and may present
similar characteristics to the ones reserved for testing (these conditions make
this scenario less difficult when compared to that considered in Sect. 4.3). We
generated 40 independent PFAs for each of our 40 synthetic problems. The first



132 A. L. Sánchez-Martínez et al.

20 PFAs were included in the training set, and the other 20 to the testing set.
Thus, both of these sets contain 800 PFAs, each including approximately 100
solution samples. We performed 20 repetitions of the full process of training
(including cross-validated hyperparameter tuning) and testing in order to com-
pute relevant statistics. A summary of the results obtained is presented in Fig. 5,
whilst detailed results for the individual problems are provided in Table 1.

Table 1. Results for Scenario 1, presented separately for the 40 datasets and evaluated
in terms of the median ARI of the final solutions selected. The best result for each
problem is highlighted. Results for references SIL, DB, DUNN, and MOCK are marked
• whenever a statistically significant difference is observed with respect to MLDM.

Dataset N k BEST WORST SIL DB DUNN MOCK MLDM

atom 800 2 1.000 0.524 0.545 • 1.000 1.000 0.563 • 1.000
blobs1 1000 5 1.000 0.522 0.997 0.532 • 0.614 • 1.000 0.999
blobs2 1000 5 0.990 0.374 0.975 • 0.662 • 0.374 • 0.990 0.990
blobs3 1000 10 0.996 0.047 0.996 0.750 • 0.808 • 0.808 • 0.996
chainlink 1000 2 1.000 0.085 0.145 • 0.687 • 1.000 0.253 • 1.000
circles1 1000 2 1.000 0.070 0.189 • 1.000 1.000 0.671 • 1.000
circles2 1000 2 0.695 0.000 0.145 • 0.327 • 0.000 • 0.623 • 0.695
data_4_3 400 4 1.000 0.255 1.000 0.580 • 1.000 1.000 1.000
data_5_2 250 5 0.914 0.000 0.914 0.204 • 0.000 • 0.914 0.914
data_6_2 300 6 1.000 0.332 1.000 0.725 • 1.000 0.983 • 1.000
data_9_2 900 9 0.735 0.000 0.731 • 0.144 • 0.000 • 0.720 0.714
flame 240 2 0.967 0.000 0.485 • 0.950 • 0.000 • 0.696 • 0.967
flamesize5 1240 6 0.963 0.000 0.489 • 0.209 • 0.000 • 0.489 • 0.956
fourty 1000 40 1.000 0.880 1.000 0.880 • 1.000 0.926 • 1.000
inside 600 2 1.000 0.093 0.587 • 1.000 1.000 0.590 • 1.000
long1 1000 2 1.000 0.107 0.375 • 1.000 1.000 0.514 • 1.000
long2 1000 2 1.000 0.100 0.292 • 1.000 1.000 0.687 • 1.000
long4 4000 8 0.960 0.000 0.589 • 0.837 • 0.000 • 0.485 • 0.944
longsquare 900 6 0.995 0.275 0.275 • 0.567 • 0.275 • 0.332 • 0.992
moons3 1000 2 0.996 0.000 0.191 • 0.854 • 0.000 • 0.303 • 0.992
moons5 1000 2 0.984 0.000 0.338 • 0.984 0.000 • 0.340 • 0.984
multidist 3012 11 0.745 0.398 0.603 • 0.398 • 0.398 • 0.447 • 0.713
orange 400 2 1.000 0.079 1.000 1.000 1.000 0.796 • 1.000
part2 417 2 1.000 0.168 0.296 • 1.000 1.000 0.783 • 1.000
r15 600 15 0.991 0.264 0.991 0.706 • 0.264 • 0.991 0.989
sizes1 1000 4 0.958 0.000 0.958 0.239 • 0.000 • 0.958 0.958
sizes3 1000 4 0.974 0.000 0.974 • 0.001 • 0.000 • 0.974 0.973
sizes5 1000 4 0.965 0.000 0.956 0.113 • 0.000 • 0.954 0.954
smile1 1000 4 1.000 0.671 0.740 • 1.000 1.000 0.831 • 1.000
spiral 1000 2 1.000 0.105 0.106 • 0.532 • 1.000 0.830 • 1.000
spiralsdata52 562 8 0.728 0.000 0.277 • 0.649 • 0.000 • 0.277 • 0.704
spiralsdata92 1212 12 0.694 0.000 0.106 • 0.601 • 0.000 • 0.106 • 0.673
spiralsizes5 2000 6 0.986 0.000 0.685 • 0.780 • 0.000 • 0.780 • 0.985
spiralsquare 1500 6 0.999 0.261 0.290 • 0.641 • 0.800 • 0.894 • 0.998
square1 1000 4 0.976 0.000 0.976 0.489 • 0.000 • 0.976 0.976
square2 1000 4 0.906 0.000 0.901 0.462 • 0.000 • 0.901 0.901
triangle1 1000 4 1.000 0.271 1.000 0.299 • 1.000 0.982 • 1.000
triangle2 1000 4 0.980 0.000 0.980 0.244 • 0.000 • 0.980 0.980
twenty 1000 20 1.000 0.702 1.000 0.708 • 1.000 1.000 1.000
twodiamonds 800 2 0.998 0.000 0.998 0.250 • 0.000 • 0.995 0.995

Overall 0.995 0.073 0.697 • 0.674 • 0.275 • 0.808 • 0.993

Focusing first on prediction performance (left side of Fig. 5), we can see that,
as expected, our method obtains higher RMSE values when predicting the quality



Machine Learning-Based Decision Making in EMC 133

of solutions in the testing PFAs (in comparison to those obtained for the training
PFAs, which are shown as a reference). The RMSE values scored are still very
low in the majority of the cases, being this a satisfactory result.

Turning our attention to the most important aspect of this evaluation,
decision-making performance (right side of Fig. 5 and Table 1), we can confirm
the suitability of the proposed MLDM strategy. MLDM is seen to outperform
methods SIL, DB, DUNN, and MOCK, with statistically significant differences
observed for most of the problems considered. It is possible to note that MLDM
identifies high-quality final solutions, which report comparable ARI values to
those of the best solutions available in the PFA (as indicated by baseline BEST).

4.3 Scenario 2: PFAs for Completely Unknown Problems

The second scenario also tests the ability of MLDM to select final solutions from
completely unknown PFAs. In this case, however, no example PFAs are included
in the training set for the specific problems used for testing (representing there-
fore a more difficult scenario than the one considered before). For each of our
40 datasets, we computed 20 PFAs independently. In contrast to the previous
experiment, only 39 of these problems were used for training the model at any
given time, whereas the remaining problem was reserved for testing purposes
(resulting in 780 and 20 PFAs in the train and test sets, respectively, each con-
taining around 100 solutions). We repeated the training and testing process so
that each problem was considered exactly once for testing. As before, we ran
each of these experiment configurations 20 times to compute relevant statistics.
The results of these experiments are reported in Fig. 6 and Table 2.

Fig. 6. Results for Scenario 2 are shown in terms of prediction performance, RMSE
measure (left), and in terms of decision-making performance, ARI measure (right).

Figure 6 (left side) reveals that the more challenging conditions of this sce-
nario caused a decrease in MLDM’s prediction performance. This is evidenced
by the higher RMSE values scored for testing PFAs in comparison to those
obtained during the previous experiment. Although this has certainly affected
decision-making performance, as interpreted from the lower ARI values obtained
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with respect to the previous scenario (right side of the figure), the model’s pre-
dictions are still sufficiently informative so as to allow MLDM to achieve highly
competitive results, outperforming (in average) all four contestant methods.

Analyzing the results of Table 2, it is possible to identify three problems
for which our method reports a notably low performance (namely, circles2,
data_9_2, and spiralsdata92). Besides the fact that these problems are chal-
lenging on their own (see the lower ARI values of baseline BEST for these par-
ticular problems), it might be the case that their specific characteristics are not
well represented in the training set, which would evidently lead to a low perfor-
mance of MLDM (supervised learning approaches depend on the availability of

Table 2. Results for Scenario 2, presented separately for the 40 datasets and evaluated
in terms of the median ARI of the final solutions selected. The best result for each
problem is highlighted. Results for references SIL, DB, DUNN and MOCK are marked
• whenever a statistically significant difference is observed with respect to MLDM.

Dataset N k BEST WORST SIL DB DUNN MOCK MLDM

atom 800 2 1.000 0.528 0.548 • 1.000 1.000 0.563 • 1.000
blobs1 1000 5 1.000 0.503 0.997 • 0.526 • 0.614 • 1.000 • 0.963
blobs2 1000 5 0.990 0.374 0.975 • 0.590 • 0.374 • 0.990 • 0.985
blobs3 1000 10 0.996 0.047 0.996 • 0.787 • 0.808 • 0.808 • 0.984
chainlink 1000 2 1.000 0.086 0.144 • 0.687 • 1.000 0.256 • 1.000
circles1 1000 2 1.000 0.070 0.173 • 1.000 • 1.000 • 0.697 0.697
circles2 1000 2 0.692 0.000 0.136 • 0.327 • 0.000 • 0.624 • 0.160
data_4_3 400 4 1.000 0.246 1.000 0.507 • 1.000 1.000 1.000
data_5_2 250 5 0.914 0.000 0.914 • 0.204 • 0.000 • 0.914 • 0.447
data_6_2 300 6 1.000 0.320 1.000 • 0.750 • 1.000 • 1.000 • 0.967
data_9_2 900 9 0.747 0.000 0.737 • 0.144 • 0.000 • 0.735 • 0.145
flame 240 2 0.967 0.000 0.479 0.950 • 0.000 • 0.489 0.484
flamesize5 1240 6 0.963 0.000 0.489 • 0.487 • 0.000 • 0.489 • 0.815
fourty 1000 40 1.000 0.891 1.000 • 0.891 • 1.000 • 0.926 • 0.999
inside 600 2 1.000 0.094 0.577 • 1.000 1.000 0.589 • 1.000
long1 1000 2 1.000 0.104 0.375 • 1.000 1.000 0.516 • 1.000
long2 1000 2 1.000 0.099 0.291 • 1.000 1.000 0.686 • 1.000
long4 4000 8 0.953 0.000 0.589 • 0.817 0.000 • 0.485 • 0.817
longsquare 900 6 0.995 0.275 0.275 • 0.567 • 0.275 • 0.332 • 0.870
moons3 1000 2 0.996 0.000 0.209 • 0.854 • 0.000 • 0.996 0.988
moons5 1000 2 0.984 0.000 0.334 • 0.782 • 0.000 • 0.339 • 0.960
multidist 3012 11 0.715 0.398 0.600 • 0.398 • 0.398 • 0.447 • 0.634
orange 400 2 1.000 0.081 1.000 • 1.000 • 1.000 • 0.796 • 0.995
part2 417 2 1.000 0.155 0.290 • 1.000 1.000 0.783 • 1.000
r15 600 15 0.991 0.264 0.991 • 0.697 • 0.264 • 0.991 • 0.862
sizes1 1000 4 0.958 0.000 0.958 0.000 • 0.000 • 0.958 0.958
sizes3 1000 4 0.974 0.000 0.974 • 0.176 • 0.000 • 0.974 0.971
sizes5 1000 4 0.967 0.000 0.960 • 0.125 • 0.000 • 0.950 0.953
smile1 1000 4 1.000 0.677 0.739 • 1.000 • 1.000 • 0.812 • 0.999
spiral 1000 2 1.000 0.097 0.101 • 0.532 • 1.000 • 0.829 • 0.998
spiralsdata52 562 8 0.720 0.000 0.277 • 0.649 • 0.000 • 0.277 • 0.617
spiralsdata92 1212 12 0.701 0.000 0.106 • 0.584 • 0.000 • 0.106 • 0.101
spiralsizes5 2000 6 0.986 0.000 0.687 • 0.785 • 0.000 • 0.780 • 0.981
spiralsquare 1500 6 0.999 0.260 0.291 • 0.644 • 0.800 0.894 • 0.800
square1 1000 4 0.976 0.000 0.976 0.489 • 0.000 • 0.976 0.976
square2 1000 4 0.911 0.000 0.910 0.453 • 0.000 • 0.910 0.909
triangle1 1000 4 1.000 0.272 1.000 • 0.325 • 1.000 • 0.982 • 0.889
triangle2 1000 4 0.980 0.000 0.979 • 0.246 • 0.000 • 0.980 • 0.967
twenty 1000 20 1.000 0.706 1.000 • 0.716 • 1.000 • 1.000 • 0.987
twodiamonds 800 2 0.995 0.000 0.995 • 0.242 • 0.000 • 0.995 • 0.975

Overall 0.995 0.074 0.699 • 0.679 • 0.275 • 0.808 • 0.967
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representative training samples). Due to their inherent limitations under partic-
ular conditions, as discussed earlier in Sect. 2, approaches SIL, DB, DUNN, and
MOCK score competitive results in many cases but notably fail in many others
(which is evidenced also by the wide distribution of ARI values these approaches
show in Fig. 6). In general, MLDM exhibits an increased robustness against the
variety of characteristics that our collection of datasets involves.

5 Concluding Remarks

Decision making (DM) is a challenging task in the particular context of evolu-
tionary multiobjective clustering (EMC). Given the limitations of exiting DM
techniques, we have explored an alternative approach to carry out this task. In
particular, we have demonstrated that DM can be address as a learning prob-
lem, in such a way that knowledge available regarding the DM process on some
example problems can be exploited to accomplish this task in new scenarios.

Our proposal, machine learning-based decision making (MLDM), was evalu-
ated and compared with respect to several references from the literature, consid-
ering distinct experimental conditions and a collection of problems with diverse
characteristics. The preliminary results reported in this paper are encourag-
ing: MLDM has consistently exhibited a superior performance in comparison
with the adopted references. More importantly, our proposal has shown a better
robustness against changing problem features, highlighting the suitability of the
learning-based approach to capture the complexities of the DM process.

The findings of this study motivate future research efforts, which will mainly
focus on the improvement of the proposed technique. Potential improvements
may arise from the analysis of the set of attributes used for the characteriza-
tion of the approximation solution sets. Such an analysis should consider the
identification of possible redundancies, the potential impacts of dimensionality
reduction, as well as the definition of new attributes which can contribute to
capture more precisely the peculiarities of DM in the EMC domain.

References

1. Abu Khurma, R., Aljarah, I.: A review of multiobjective evolutionary algorithms
for data clustering problems. In: Aljarah, I., Faris, H., Mirjalili, S. (eds.) Evolu-
tionary Data Clustering: Algorithms and Applications. AIS, pp. 177–199. Springer,
Singapore (2021). https://doi.org/10.1007/978-981-33-4191-3_8

2. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic cluster-
ing for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote
Sens. 45(5), 1506–1511 (2007). https://doi.org/10.1109/TGRS.2007.892604

3. Bandyopadhyay, S., Mukhopadhyay, A., Maulik, U.: An improved algorithm for
clustering gene expression data. Bioinformatics 23(21), 2859 (2007)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their

implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204
(2011). https://doi.org/10.1080/0305215X.2010.548863

https://doi.org/10.1007/978-981-33-4191-3_8
https://doi.org/10.1109/TGRS.2007.892604
https://doi.org/10.1080/0305215X.2010.548863


136 A. L. Sánchez-Martínez et al.

6. Delattre, M., Hansen, P.: Bicriterion cluster analysis. IEEE Trans. Pattern Anal.
Mach. Intell. PAMI-2(4), 277–291 (1980). https://doi.org/10.1109/TPAMI.1980.
4767027

7. Garcia-Piquer, A., Sancho-Asensio, A., Fornells, A., Golobardes, E., Corral, G.,
Teixidó-Navarro, F.: Toward high performance solution retrieval in multiobjective
clustering. Inf. Sci. 320, 12–25 (2015). https://doi.org/10.1016/j.ins.2015.04.041

8. Garza-Fabre, M., Handl, J., Knowles, J.: An improved and more scalable evolu-
tionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 22(4),
515–535 (2018). https://doi.org/10.1109/TEVC.2017.2726341

9. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering.
IEEE Trans. Evol. Comput. 11(1), 56–76 (2007). https://doi.org/10.1109/TEVC.
2006.877146

10. Handl, J., Knowles, J.: Evolutionary multiobjective clustering. In: Yao, X., et al.
(eds.) PPSN 2004. LNCS, vol. 3242, pp. 1081–1091. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30217-9_109

11. Handl, J., Knowles, J.: Exploiting the trade-off — the benefits of multiple objec-
tives in data clustering. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler,
E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 547–560. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31880-4_38

12. Huang, D., Wang, C.D., Lai, J.H.: Locally weighted ensemble clustering. IEEE
Trans. Cybernet. 48, 1460–1473 (2018). https://doi.org/10.1109/TCYB.2017.
2702343

13. José-García, A., Handl, J., Gómez-Flores, W., Garza-Fabre, M.: An evolution-
ary many-objective approach to multiview clustering using feature and relational
data. Appl. Soft Comput. 108, 107425 (2021). https://doi.org/10.1016/j.asoc.2021.
107425

14. Liu, Y., Özyer, T., Barker, K.: Integrating multi-objective genetic algorithm and
validity analysis for locating and ranking alternative clustering. Informatica (Slove-
nia) 29, 33–40 (2005)

15. Matake, N., Hiroyasu, T., Miki, M., Senda, T.: Multiobjective clustering with auto-
matic k-determination for large-scale data. In: Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 861–868, GECCO 2007.
Association for Computing Machinery, London (2007). https://doi.org/10.1145/
1276958.1277126

16. Maulik, U., Bandyopadhyay, S., Mukhopadhyay, A.: Multiobjective Genetic
Algorithm-Based Fuzzy Clustering, pp. 89–121. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-16615-0_5

17. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multiobjective genetic
algorithm-based fuzzy clustering of categorical attributes. IEEE Trans. Evol. Com-
put. 13(5), 991–1005 (2009)

18. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: A survey of multiobjective
evolutionary clustering. ACM Comput. Surv. 47(4), 61:1–61:46 (2015). https://
doi.org/10.1145/2742642

19. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S.: Multiobjective genetic clus-
tering with ensemble among pareto front solutions: application to MRI brain image
segmentation. In: 2009 Seventh International Conference on Advances in Pattern
Recognition, pp. 236–239 (2009). https://doi.org/10.1109/ICAPR.2009.51

20. Özyer, T., Liu, Y., Alhajj, R., Barker, K.: Multi-objective genetic algorithm based
clustering approach and its application to gene expression data. In: Yakhno, T.
(ed.) ADVIS 2004. LNCS, vol. 3261, pp. 451–461. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30198-1_46

https://doi.org/10.1109/TPAMI.1980.4767027
https://doi.org/10.1109/TPAMI.1980.4767027
https://doi.org/10.1016/j.ins.2015.04.041
https://doi.org/10.1109/TEVC.2017.2726341
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1007/978-3-540-30217-9_109
https://doi.org/10.1007/978-3-540-31880-4_38
https://doi.org/10.1109/TCYB.2017.2702343
https://doi.org/10.1109/TCYB.2017.2702343
https://doi.org/10.1016/j.asoc.2021.107425
https://doi.org/10.1016/j.asoc.2021.107425
https://doi.org/10.1145/1276958.1277126
https://doi.org/10.1145/1276958.1277126
https://doi.org/10.1007/978-3-642-16615-0_5
https://doi.org/10.1145/2742642
https://doi.org/10.1145/2742642
https://doi.org/10.1109/ICAPR.2009.51
https://doi.org/10.1007/978-3-540-30198-1_46


Machine Learning-Based Decision Making in EMC 137

21. Qian, X., Zhang, X., Jiao, L., Ma, W.: Unsupervised texture image segmenta-
tion using multiobjective evolutionary clustering ensemble algorithm. In: IEEE
Congress on Evolutionary Computation, pp. 3561–3567 (2008). https://doi.org/
10.1109/CEC.2008.4631279

22. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)

23. Shirakawa, S., Nagao, T.: Evolutionary image segmentation based on multiobjec-
tive clustering. In: IEEE Congress on Evolutionary Computation, pp. 2466–2473
(2009). https://doi.org/10.1109/CEC.2009.4983250

24. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003). https://doi.
org/10.1162/153244303321897735

25. Zhu, S., Xu, L., Goodman, E.D.: Evolutionary multi-objective automatic clustering
enhanced with quality metrics and ensemble strategy. Knowl.-Based Syst. 188,
105018 (2020). https://doi.org/10.1016/J.KNOSYS.2019.105018

https://doi.org/10.1109/CEC.2008.4631279
https://doi.org/10.1109/CEC.2008.4631279
https://doi.org/10.1109/CEC.2009.4983250
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1162/153244303321897735
https://doi.org/10.1016/J.KNOSYS.2019.105018


RBF Neural Network Based
on FT-Windows for Auto-Tunning PID

Controller

O. F. Garcia Castro1, L. E. Ramos Velasco1(B), M. A. Vega Navarrete1,
R. Garcia Rodriguez1, C. R. Domínguez Mayorga1, E. Escamilla Hernández2,

and L. N. Oliva Moreno3

1 Postgraduate Program of Aerospace Engineering, Metropolitan Polytechnic
University of Hidalgo, Mexico City, Mexico

{213220003,lramos,mvega,rogarcia,cdominguez}@upmh.edu.mx
2 ESIME Culhuacan, National Polytechnic Institute, Mexico City, Mexico

eescamillah@ipn.mx
3 UPIIH Hidalgo, National Polytechnic Institute, Hidalgo, Mexico

loliva@ipn.mx

Abstract. The weighted function windows are used in many areas as
signal analysis and application systems. In addition, the weighted func-
tions are broad uses in filter design where different windows allow to
choose different filter characteristics. The most common individual win-
dow types are rectangular, Hanning, Flat Top, and Keiser-Bessel. This
paper presents the Flat-Top Windows (FTW) applied to control systems
where the FTW are used as activation functions on a radial basis neu-
ral network (RBF). Contrary to the "traditional" FT weighted function
windows, where time windows limit the information, this paper proposes
new ones that, including new parameters, allow translation and dilation
of the window. Additionally, these new parameters are updated using
a gradient descent algorithm. The new FTW is applied to the Quanser
helicopter control where the RBF neural network is used for: a) the
input-output identification of the system and b) auto-tuning PID con-
trollers. Numerical simulation results are presented to show the system’s
performance under different conditions.

Keywords: FT windows · RBF neural network · Autotuning PID
controller · Helicopter model

1 Introduction

Technology advance has produced that any real-world signal to be processed
digitally in many ways. Thus, from analyzing a few signals earlier to massive
and simultaneous datasets today, the signal converted methods to digital form
are fundamentals. One way used is to split into discrete blocks continuous signals,
which allows analyzing each one separately. So, to study each discrete block, the
community of signal processing has proposed many functions called windows
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Fig. 1. Some windows functions

function as rectangular, Hanning, Flat Top, and Keiser-Bessel [1,2]. The windows
function can be defined as a mathematical expression with zero value outside the
chosen interval, see Fig. 1. The windows function is defined as: a) the frequency
characteristic of a window is a continuous spectrum, b) the main lobe centered
at each frequency component of the time-domain signal, and c) several side lobes
approaching zero. One of the significant applications of the windows functions is
to minimize the undesirable effects related to spectral leakage. Recently, Reljin
[3] has presented the new windows functions, called Extremely Flat-Top, where
the main lobe and high side-lobe attenuation were generated. Moreover, the
new windows functions exhibit faster decaying side lobes than parent windows.
Finally, the efficiency of windows in the high-accuracy harmonic analysis was
demonstrated through computer simulations in [2].

Advances in the last years on machine learning [4–8], particularly in Deep
Learning, non-traditional activation functions have been proposed as Rectified
Linear Units, ReLU, Exponential Linear Unit, ELU, Scaled Exponential Linear
Unit, SELU, Gaussian Error Linear Unit, GELU, and Inverse Square Root Lin-
ear Unit ISRLU. Unlike traditional literature, this paper focuses on studying
the performance of the Flap-Top Window (FTW) as a part of the neural net-
work applied to control systems. As a first evaluation, awaiting test for machine
learning algorithms, the proposed FTW are used as an activation function with
two new parameters that allow translation and dilation of the signal, which is
responsible for improving the non-linear mapping. Specifically, FTW is applied
to control the 2 DOF Quanser helicopter model. Assuming that the model sys-
tem is unknown, an auto-tuning FTW-IIR PID control scheme is proposed. The
RBF neural network, with an infinite impulse response filter (IIR), is used simul-
taneously to tunning the PID feedback gains and the input-output identification.
In addition, a gradient descent algorithm to update the parameters of the neural
network is used. Finally, numerical simulations on LabVIEW 2013 to control the
pitch and yaw axes of the Quanser helicopter are presented. To the best author’s
knowledge, this is the first time that any windows functions are applied as part
of the neural network to control a dynamic system.

The paper is organized as follows: in Sect. 2 brief background on Flat Top
Windows is presented, and in Sect. 3 the FTW-IIR PID algorithm is applied on
the 2DOF helicopter. Next, numerical simulation results are shown in Sect. 4.
Finally, some conclusions are given in the Sect. 5.
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2 Flat-Top Windows for Learning

Different classes of FTW have been reported in the signal processing literature,
where some applications are the filter design and parameter estimations, to men-
tion a few, [1,2]. Let the FTW described by the sum of weighted cosine terms
as [2,3]:

ψ(λ) =
Q∑

j=0

(−1)jaj cos
(
2

π

Λ
jλ

)
, λ = 0, 1, ...,Λ − 1. (1)

where the weighting coefficients in Eq (1) are normalized according to

Q∑

j=0

aj = 1. (2)

In this paper we are employed a FTW given in [3], but we modify it in its
argument by adding the time parameter τ(k, q, s) = (k − q)/s where k is related
to the instant at which the operation is performed, q and s represent the translate
and the dilation of the windows, respectively. Such that Eq (1) can be re-written
as

ψ(τ) =
Q∑

j=0

aj cos (Gjτ) (3)

where aj and G represent constant coefficients given by the designer. The Eq
(3) will be called “mother” FTW. Behind this change, the goal is to provide
capacities of translation and dilation to the FT windows useful for many appli-
cations as control systems. Thus, representing Eq (3) as a linear combination of
its translations and dilations, it is possible to define a set of new windows, called
“daughters” FTW, as

ψi(τi) = FT(τi) =
Q∑

j=0

aj cos (Gjτi), τi(k, qi, si) =
k − qi

si
(4)
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Fig. 2. RBF artificial neural network where FT windows are the activation function
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As in previous work [9,10] for each value of i a new window is generated
that serves as an activation function in a neural network RBF, see Fig. 2. That
is, each activation function is defined as a finite series of cosines weighted by
a coefficient aj given by the designer such that it satisfies condition of the Eq
(2). Finally, in this paper the parameters q and s, refer to the translation and
dilation, respectively; are adjusted according to the task by the gradient descent
algorithm.

3 Applied FTW for Control Quanser Helicopter

The FTW-IIR PID control scheme is composed of four blocks: i) The plant block,
which consists of a 2 DOF helicopter model, represented by linear differential
equations, ii) Identification block (FTW-IIR), the input-output identification of
the helicopter is carried out, iii) the feedback auto-tuning block, and iv) discrete
PID controllers evaluation block, see Fig. 3. Now a detailed description of each
of the blocks is presented.

yr(k)
−

+
iv) Controllers

(PIDs)
i) Plant

(Helicopter) y(k)

iii) Autotunning
(Gains)

+
−

v(k)

ε(k) u(k)

p(k) i(k) d(k)

Γ̂(k)

ŷ(k)
e(k)

ii) Identification
(FTW-IIR)

Fig. 3. FTW-IIR PID control scheme for the 2 DOF Quanser helicopter.

i) Plant (helicopter). The dynamics that describes the behavior of the heli-
copter model is given by two coupled transfer functions, [11]:

Hθθ(s) =
yθ(s)
Vθ(s)

=
2.361

s2 + 9.26s
, Hφθ(s) =

yφ(s)
Vθ(s)

=
0.2402

s2 + 3.487
(5)

Hθφ(s) =
yθ(s)
Vφ(s)

=
0.07871

s2 + 9.26s
, Hφφ(s) =

yφ(s)
Vφ(s)

=
0.7895

s2 + 3.487
(6)

where yθ and yφ are the model outputs for each axis of motion, while Vθ and Vφ

are the voltages for the motors of each axis. The physical model, the free body
diagram and the coupling of the model are shown in Fig. 4.

Additionally, the helicopter has a block where the electrical interpretation of
the control signal is performed u = [uθ, uφ]T, that is, the mechanical-electrical
relationship that is given by the following expressions

Vθ = 0.4899uθ − 0.7387uφ, Vφ = 0.0793uφ − 0.7387uθ. (7)

where uθ and uφ are the signals from each PID controller. Some helicopter param-
eters are shown in Table 1.
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∑

∑

Hθθ(s)

Hφθ(s)

Hφφ(s)

Hφθ(s)

yθ(s)Vθ(s)

yφ(s)

Vφ(s)

Fig. 4. Models and diagrams of the 2 DOF Quanser helicopter

Table 1. Parameters of the 2 DOF Quanser helicopter [11]

Parameters Definition Value

Kpp Torque constant of yaw propeller 0.2040 N N m/V
Kpy Torque constant yaw propeller acting on pitch axis 0.0068 N N m/V
Kyy Torque constant from yaw propeller on yaw axis 0.0720 N N m/V
Kyp Torque constant pitch propeller acting on yaw axis 0.0219 N N m/V
Vθ Voltage at pitch motor ±24 V
Vφ Voltage at yaw motor ±15 V

ii) FTW-IIR Identification. In this block, the input-output dynamics of
the system are identified and its structure is composed of a radial-based neural
network [12] whose activation functions are FTW, see Fig. 5. Similarly, in Fig. 6
is shown the internal configuration of the infinite impulse response filter (IIR),
where ŷθ and ŷφ are the positions of the helicopter. It should be noted that
these filters “prune” the neurons that have little contribution to the identification
process, and with it, an input-output structure is obtained [10].

∑

∑

ψ1

ψ2

ψJ

...

uθ

uφ

wθ1

wθ2

wθJ

wφ1

wφ2

wφJ

IIRθ
zθ(k)

ŷθ(k)

IIRφ
zφ(k)

ŷφ(k)

v(k)

Fig. 5. FTW neural network diagram with IIR filters

From Fig. 5, the output of the FTW-IIR ŷ(k) = [ŷθ, ŷφ, ]T is defined as

ŷ(k) = Γ̂ (k) + DŶ(k)v(k) (8)
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∑
z−1· · ·z−1z−1z[n]

z−1 · · · z−1 z−1

y[n]

c0

c1
cM−1

cM

d1
dN−1

dN

∑
v[n]

Fig. 6. Structure of the IIR filter where M and N represent the number of feed-forward
coefficients and feedback coefficients, respectively.

where v(k) = [v(k), v(k)]T is the persistent excitation signal of the filters, the
matrices Ŷ, D ∈ R

2×N are given as

Ŷ(k) =
[
ŷθ(k − 1) ŷθ(k − 2) · · · ŷθ(k − N)
ŷφ(k − 1) ŷφ(k − 2) · · · ŷφ(k − N)

]
, D =

[
dθ1, dθ2, · · · , dθN

dφ1, dφ2, · · · , dφN

]
. (9)

The matrices Ŷ, D are used to store the positions estimated in previous calcu-
lations and the feed-forward coefficients for the IIR filters. The parameter Γ̂ (k)
is obtained with

Γ̂ (k) = [Γ̂θ, Γ̂φ]T = Cz(k) (10)

where the output of the neural network z(k) is given by

z(k) = uT(k)W(k)ψT(k) (11)

with u = [uθ, uφ]T is the control signal, q = [q1, q2, · · · , qJ ]T is the translation
parameter, s = [s1, s2, · · · , sJ ]T is the dilation parameter, ψ = [ψ1, ψ2, · · · , ψJ ]T

with ψ1 the daughter FTW, while the matrices of the synaptic weights W ∈
R

2×J and the feedback coefficients C ∈ R
2×M are defined as:

W =
[
wθ1, wθ2, · · · , wθJ

wφ1, wφ2, · · · , wφJ

]
, C =

[
cθ0, cθ1, · · · , cθM

cφ0, cφ1, · · · , cφM

]
. (12)

Based on the Eq (4), the i-th “daughter” FTW and its the derivative, choosen
Q = 5, are given as

ψi(τi) = FTf
i (k, τ) =

5∑

j=0

aj cos (Gjτ) (13)

∂ψi(τi)
∂τi

= dFTf
i (k, τi) =

5∑

j=1

−Gjaj sin (Gjτi). (14)

where i = 1, 2, ..., j, j is the number of “daughters” FTW or the number of
neurons in the network, f represents one of the member FT family, the value G
is defined by the designer, and the values aj are taken from Table 2. For further
details on the methodology to select the parameters aj , see [2].
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Table 2. Coefficients Describing Flat-Top Windows.

Window Window Coefficients
a0 a1 a2 a3 a4 a5

FT1 0.13996 0.27964 0.26715 0.20212 0.09288 0.01824

FT2 0.18810 0.36923 0.28701 0.13076 0.02487 0

FT3 0.20142 0.39291 0.28504 0.10708 0.01352 0

FT4 0.20978 0.40753 0.28117 0.09247 0.00904 0

FT5 0.21375 0.41424 0.27860 0.08592 0.00746 0

The parameters update equation is defined as

λ(k + 1) = λ(k) + μλΔλ(k), Δλ(k) = − ∂E
∂λ(k)

(15)

where λ can be any of the parameters C, D, W, q y s, μλ learning rate,
E(k) = 1

2

∑
t [et(k)]2 the cost function to minimize with et(k) = yt(k) − ŷt(k)

the estimation error, for yt the output of the system and ŷt the estimated output
of the neural network for t = θ, φ. Applying the gradient descent algorithm to
minimize the cost function E(k), we have that Δλ(k) = −∂E/∂λ(k) for each
parameters is defined as

∂E
∂W(k)

= u(k)eT(k)C(k)ψT
a (τ) = UIe(Cψa)T (16)

∂E
∂q(k)

= −e(k)u(k)CT(k)ψb = U(If (Cψb)
T) (17)

∂E
∂s(k)

= τ
∂E

∂q(k)
=

∂E
∂q(k)

� τ (18)

∂E
∂C(k)

= −u(k)eT(k)z(k − M) = UIezT (19)

∂E
∂D(k)

= −v(k)eT(k)ŷ(k − N) = vIe(ŷψa)T (20)

where U = uθ(k) + uφ(k), Ie = diag{eθ(k), eφ(k)}, If = [eθ(k), eφ(k)]T, τ =
[τ1, τ2, · · · , τJ ], and

ψa =

⎡

⎢⎢⎢⎣

ψ1(τ1) ψ2(τ2) · · · ψJ(τJ )
ψ1(τ1 − 1) ψ2(τ2 − 1) · · · ψJ(τJ − 1)

... · · · . . .
...

ψ1(τ1 − M) ψ2(τ2 − M) · · · ψJ (τJ − M)

⎤

⎥⎥⎥⎦ , ψb =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ψ1(τ1)
∂s1

· · · ∂ψJ(τJ )
∂sJ

∂ψ1(τ1 − 1)
∂s1

· · · ∂ψJ(τJ − 1)
∂sJ

...
. . .

...
∂ψ1(τ1 − M)

∂s1
· · · ∂ψJ(τJ − M)

∂sJ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

For programming purposes, the third representation of each of the equations
(16)-(20) was used, where � represents the Hadamard operator1. The conver-
gence identification proof is given in [14].
1 Let the vectors a, b, c ∈ R

n×1 where cx = ax · bx with x ∈ {1, 2, ..., n} [13].
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iii) Auto Tuning of Proportional, Integral and Derivative Gains. This
block is responsible for adjusting the gains of the controller p(k) = [pθ, pφ]T,
i(k) = [iθ, iφ]T y d(k) = [dθ, dφ]T, which is done as follows, respectively [10]

p(k) = p(k − 1) + μpe(k)Γ̂ (k)[ε(k) − ε(k − 1)] (22)

i(k) = i(k − 1) + μie(k)Γ̂ (k)ε(k) (23)

d(k) = d(k − 1) + μde(k)Γ̂ (k)[ε(k) − 2ε(k − 1) + ε(k − 2)] (24)

where μ is the learning rate, Γ̂ (k) is the directive of the neural network given by
(10), the signal ε(k) is the tracking error which is defined as ε(t) = yr(t) − y(t)
with yref (t) as the reference signal and y(t) as the output signal.

iv) PID Controllers. In this block, the control signal is generated u(k) =
[uθ, uφ]T which causes the output of the system to vary y(k) in order to approx-
imate the reference signal yr(k). This stage only needs the gains values p(k),
i(k) y d(k) as well as the tracking error ε(k). Then the control signal u in the
instant k + 1 is given by [10]:

u(k + 1) = u(k) + p(k)[ε(k) − ε(k − 1)] + i(k)[ε(k)]
+ d(k)[ε(k) − 2ε(k − 1) + ε(k − 2)]. (25)

4 Numerical Simulation Results

The numerical simulations were made using LabVIEW 2013. The simulation’s
goal is that the pitch yθ and yaw yφ angles of the Quanser helicopter follow the
desired trajectories yrθ

and yrφ
, respectively, defined as

yrθ
=

⎧
⎪⎪⎨

⎪⎪⎩

28 sin (πk/250), 0 ≤ k < 2.5
30, 2.5 ≤ k < 5.0
−30, 5.0 ≤ k < 7.5
12 sin (πk/250) + 4 sin (πk/320) + 8 sin (πk/100), 7.5 ≤ k < 10

(26)

and
yrφ

=
{

120 sin (2πk/1000), 0 ≤ k < 5
100 sin (2πk/1000) + 20 sin (2πk/100), 5 ≤ k < 10 . (27)

4.1 Classical PID

As a first step, a classical PID controller is implemented Figs. 7 and 8. Notice that
classic PID control cannot adequately follow the desired trajectories, as shown
in Fig. 7. Additionally, Fig. 8 shows how the control signals remain bounded.
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Fig. 7. Classical PID: Performances of yθ Vs. yrθ , and yφ vs. yrφ , respectively; and
tracking errors εθ, εφ. The feedback gains used for pitch and yaw are p = 10, i = 4,
d = 5, and p = 10, i = 1.75, d = 7, respectively.
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Fig. 8. Classical PID: Control signals V θ and V φ.

4.2 FTW-IIR PID

Firstly, a pre-training is performance to obtain the initial values of the neural
network parameters, see Table 3.

Table 3. Proposed values for FTW-IIR PID controller

Parameter Value Parameter Value Parameter Value

Neurons, J 3 μW 3.80×10−8 μp [1.00, 0.90]
Feed-back, M 3 μq 3.80×10−8 μi [0.80, 0.60]
Feed-forward, N 2 μs 3.80×10−8 μd [0.75, 0.80]

μC 5.15×10−8 p(k) [2.90 × 10−2, 9.04 × 10−3]
μD 5.90×10−5 i(k) [1.58 × 10−2, 1.10 × 10−2]
v(k) 3.36×10−2 d(k) [1.45 × 10−2, 5.50 × 10−3]

In order to determine the best performance of each FT window a com-
parative tracking errors study is carried out using Root Mean Square Error,
RMSE =

√
1

Tk

∑Tk

k=1[et(k)]2, where Tk is the number of samples, see Table 4.

Notice that the best performance is given by FT1 for the yaw angle, while there
is no noticeable difference between the RMSE obtained for the pitch axis.
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Table 4. Comparative tracking errors using RMSE.

Window
RMSE FT1 FT2 FT3 FT4 FT5

Pitch, θ 3.89435 3.70977 3.70456 3.71065 3.75005
Yae, φ 5.23799 7.89246 7.83571 7.94127 7.21623

The numerical simulation results, using the FT1 windows, is show in Fig. 9
considering that φ(0) = −30◦, φ(0) = −20◦. Notice that after few seconds the θ
and φ angles follow rapidly the desired trajectories yrθ y yrφ, respectively. Addi-
tionally, in Figs. 10 to 11 is show the behavior of the FTW-IIR PID parameters
controller. As can be seen from Fig. 9, the tracking error εθ presents variations
just at the moments when the desired trajectory yrθ

changes abruptly. However,
in the case of the reference signal yrφ

, which is smooth, the tracking error εφ

does not present abrupt changes.
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Fig. 9. FTW-IIR PID: Performances of yθ Vs. yrθ, and yφ vs. yrφ, respectively; and
tracking errors εθ, εφ.
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Fig. 11. Performance of the neuronal network parameters: dilation q, translation s,
and synaptic weights w for the pitch θ and yaw φ angles.

The control signals performance is shown in Fig. 12. It is shown that the
control signal V(k) is within the specified range for the motors shown in Table 1.
In addition, the feedback gains performance for pitch and yaw in Fig. 13. Finally,
the constant G = 3/16 was selected by trial and error.
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Fig. 12. FTW-IIR PID: Control signals V θ and V φ.
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5 Conclusions

The paper presents a Flat-Top Window (FTW) applied to control systems.
Unlike the traditional use of the FTW in signal processing, the FTW has two
parameters that allow the translation and dilation of the window. This paper
uses the FTW as an RBF neural network activation function. Numerical simu-
lation results are presented to control a 2 DOF Quanser Helicopter model.

Although the performance of the FTW as an activation function shows good
performance, more studies are needed for complex systems such as non-linear
systems or MIMO systems. Additionally, evaluating the FTW in the deep learn-
ing algorithms requires special studies.
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Abstract. EEG-based brain-computer interfaces are systems aiming to
integrate disabled people into their environments. Nevertheless, their
control could not be intuitive or depend on an active external stimulator
to generate the responses for interacting with it. Targeting the second
issue, a novel paradigm is explored in this paper, which depends on a
passive stimulus by measuring the EEG responses of a subject to the pri-
mary colors (red, green, and blue). Particularly, we assess if a compact
and feature-extraction-independent deep learning method (EEGNet) can
effectively learn from these EEG responses. Our outcomes outperformed
previous works focused on a dataset composed of EEG signals belong-
ing to 7 subjects while seeing and imagining three primary colors. The
method reaches an accuracy of 45% for exposed colors, 43% for imagined
colors, and 35% for the six classes. Last, the experiments suggest that
EEGNet learned to discover patterns in the EEG signals recorded for
imagined and exposed colors, and for the six classes, too.

Keywords: Deep learning-based classification · Color recognition ·
Imagined color recognition · EEGNet · Brain-Computer Interface (BCI)

1 Introduction

Currently, electroencephalography (EEG) offers a relatively low-cost and high-
temporal resolution option for measuring the brain activity of a person compared
to other techniques such as Functional near-infrared spectroscopy (fNIRS), func-
tional magnetic resonance imaging (FMRI), magnetoencephalography (MEG)
among others. This activity is used for different purposes, the most common
ones are for clinical diagnostic and control of interfaces. Among the second ones
lie the Brain-Computer interfaces, which are systems that exploit people’s elec-
trical brain activity to provide a new non-muscular channel to transmit messages
and/or commands to the external world [1].
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The question about how to transmit the messages and commands with the
EEG raises from the above-mentioned definition. This can be answered with the
concept of neuroparadigm, being the most commonly used: the motor imagery,
the p300 signals, and steady-state visual evoked potentials (SSVEPs). Despite
all of them have interesting outcomes, the first one is not intuitive and few
commands can be generated, whereas the second and third ones depend on an
active external stimulator. In a P300 BCI, the stimulator system must help to
produce the p300 peak about 300 ms after the appearance/flashing of the desired
output. Whereas in SSVEP-based BCI, the stimulator system must blink all the
commands but at different frequencies.

Aiming to avoid the use of an active stimulator and take advantage of pas-
sive stimulators already present in our daily life such as color-based cues (traf-
fic lights, access door cues, etc.), recent works have analyzed the use of EEG
responses to primary colors (a color-based BCI) as a novel neuroparadigm for
BCI control. The outcomes got for these works are interesting but preliminary
as it will be shown in Sect. 2.

As it is described in [2], color is a perceptual experience of a subject while
seeing an object but not a characteristic of this. This experience depends on
how the brain processes the information of light reflected from the object (hav-
ing a different composition of wavelengths). Nevertheless, the color processing
is fast enough to allow us to make decisions in real-life scenarios and it is a
natural response to the environment without requiring any preparation such as
motor imagery or an ad-hoc-stimulator like in P300 and SSVEPs-Based BCI,
which would make it suitable for controlling a BCI. Based on this and the per-
formances got for conventional algorithms (see Sect. 2), we hypothesize that a
deep learning algorithm, EEGNet, can discriminate between EEG responses to
primary colors (red, green, and blue) exposure, reaching outcomes that outper-
form previous works. Our hypothesis is based on the fact that EEGNet is an
EEG-oriented deep learning method that has achieved outstanding outcomes in
the most common neuroparadigms [3] used in BCI such as P300, error-related
negativity responses (ERN), movement-related cortical potentials (MRCP), and
sensory-motor rhythms (SMR).

The remaining sections are organized as follows. In Sect. 2, the related works
are described. Later on, in Sect. 3 and Sect. 4 the main characteristics of the
dataset and the deep-learning method analyzed are described. Then, in Sect. 5,
the experiments and results are presented and discussed in detail. Finally, in
Sect. 6, we show the paper’s conclusions and present the future directions for
improving the EEG-based color recognition.

2 Related Works

As far as we know, the first work that aimed to recognize the EEG responses
to primary colors (red, green, and blue), and the imagination of these colors
was described in [4]. They recorded an interesting dataset composed of the sig-
nals belonging to 7 subjects while seeing one of the primary colors at a time.
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Due to its relevance for our research and comparison purposes, further details
of this dataset will be provided in Sect. 3. As to the feature extraction and clas-
sification stages, the authors proposed a novel method based on Event-Related
Spectral Perturbation (ERSP) and support vector machines (SVM). Unfortu-
nately, the classification outcomes were over-estimated because global ERSPs
were computed for each color, allowing the model to know information used in
the training stage during the testing stage. In addition to that, a supervised
stage of artifact removal was required, which resulted in a non-fully automated
method for color classification.

Using a 14-channel Emotiv Epoc with a sampling rate 128 Hz, the EEG
responses to the imaginations of 5 colors including primary ones were analyzed
in [5]. The colors shown to 10 subjects were red, green, blue, yellow, and white.
A method based on event-related potentials (ERP) along with artificial neural
networks (ANN) was applied to the data. Even though the method got an average
accuracy of about 65% for the 10 subjects, this only processed 10 epochs per
color. Another interesting analysis based on a 30-channels fNIRS device was
described in [6]. Also, this device had an optode configuration with 15 sources
and 15 detectors. The three primary colors were exposed to 14 subjects (aged
22–34 years). For the classification stage, linear discriminant analysis (LDA)
was applied to reach an accuracy of up to 74.07% for one of the subjects and
an average of 55.29% for all subjects (using Peak-Skewness fts.). Unfortunately,
fNIRS-based BCIs are still slower than EEG-based ones, which is explained by
the changes in the oxygenated and deoxygenated hemoglobins (HbO and HbR)
that can be measured with fNIRS.

Using the dataset recorded in [4], the works proposed in [7–9] got outstanding
performances of about 90% when a binary classification between gray color and
primary colors was considered. However, the works [7,10] also showed the diffi-
culty of the effective recognition of the 3 primary colors from the EEG activity.
The first one [7] got an average accuracy of 37% for 7 subjects after applying a
strategy based on EMD-based features for feature extraction and random forest
for classification. Whereas the second one [10] presented a comprehensive study
of the feasibility of recognizing both exposed and imagined colors from EEG sig-
nals. Four classifiers (naive Bayes (NB), random forest (RF), SVM, and KNN)
were trained with temporal and frequency features(based on discrete wavelet
transform) and then tested for classifying the colors following three classifica-
tion schemes: recognition of all the exposed and imagined colors (6 classes),
classification of exposed and imagined colors (2 classes), and recognizing the
three imagined colors and the three exposed colors by separate (3 classes). The
average outcomes for the 7 subjects were 30.48% for the six classes (26.11% dis-
carding alpha rhythms), 87.44% when imagined and exposed colors are treated
as a binary problem (82.46% discarding alpha rhythms) and 37.64% for exposed
colors and 35.9% (34.72% discarding alpha rhythms) for imagined colors.

In Table 1 is shown a summary of the related works on the exposed and
imagined color recognition. We can observe that only typical machine learning
has been studied. Also, the most works have attempted to classify EEG signals.
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On the other hand, since the emerge of the first work in this area, many progress
has done in the field of machine learning such as deep learning methods. Also,
a more strict scheme of data management aiming to avoid any over-estimation
of the outcomes is required. Besides, all the methods presented require of a
feature extraction method. For these reasons, the question, if a novel compact
deep learning method –EEGNet– can outperform the initial outcomes in the
recognition of color-related tasks.

This method has the advantage of not relying on a separate feature extrac-
tion method and has shown good performances in other conventional BCI neu-
roparadigms [3].

Table 1. Summary of the related works for exposed and imagined color classification.
Stage directions: Neuro - neurophysiological signal, chan - number of channels, fs -
frequency sampling, and subj - number of subjects, R -red, G - green, B - blue, Y -
yellow and W - white.

Work Neuro Chan (fs) Subj Epochs Colors Classification

Rasheed [2] EEG 4
(256 Hz)

7 360 3 (R, G, B) SVM (84–97% for
exposed colors and
64–76% for imagined
colors )a

Liu & Hong [6] fNIRS 30
(1.81 Hz)

14 27 3 (R, G, B) LDA (55.29%)

Yu & Sim [5] EEG 14
(128 Hz)

10 50 5 (R,G,B,W,Y) ANN (61.5% using only
F4 for color
imagination)

Åsley et al. [7] EEG 4
(256 Hz)

7 180 3 (R, G, B) RF (37% for exposed
colors)

Torres-Garćıa &
Molinas [10]

EEG 4
(256 Hz)

7 360 3 (R, G, B) RF (37.64% for exposed
colors) and SVM (35.9%
for imaginated colors)

a Unfortunately, these outcomes were overestimated as described in this section.

3 Dataset

For our experiments, we will analyze and process the dataset recorded in [4].
This dataset is composed of the EEG signals belonging to 7 male subjects (aged
20–30) while they observed and imagined three colors (red, green, and blue).
For recording the signals, a g.tec’s g.MOBIlab+ portable device with frequency
sampling 256 Hz. referenced to the right ear lobe and grounded at AFz was used.
These signals come from the following four channels: P3, P4, O1, and O2.

Figure 1 shows an abstraction of the experimental protocol used to record the
EEG signals. This process is repeated 30 times resulting in 60 epochs for each
exposed color, and 60 epochs per imagined color. All epochs last 3 s (768 data
points). Summing up, the dataset is composed of 180 epochs (instances) of the
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exposed colors and 180 epochs for imagined colors per subject. It is important
to highlight that once the stimulator program randomly chose a color, this was
then shown in full-screen mode. Further details about the experiment can be
consulted in [4].

Imagined color 
keeping eyes closed

Imagined color 
keeping eyes closed

random
color

previously 
shown
color

same
color

same
colorgray color

with voice
prompt

gray 
color

gray 
color

gray color
with voice

prompt

3 sec                3 sec               3 sec                    3 sec               3 sec                3 sec                3 sec                 3 sec

Fig. 1. Experiment protocol for recording the EEG signals (Adapted from [2]) (Color
figure online)

3.1 Preprocessing

Although EEGNet usually does not require any preprocessing of the EEG signals,
we applied an automatic strategy of artifact removal (proposed in [11]) based on
independent component analysis (ICA) and the computing of the Hurst expo-
nent. With this strategy, those independent components with Hurst exponents
in the range 0.58–0.69 are discarded due to these are more likely to be related
to eye blinks and heartbeats [11]. Later on, the EEG signals are reconstructed
from the remaining components and those epochs with no useful components
are gotten rid of the dataset. In this work, we applied ICA for computing for 4
independent components (equal to the number of channels).

4 EEGNet

Keeping in mind the assessment of our hypothesis, we will analyze the EEG-
Net performance for the task of color recognition from EEG signals. EEGNet
was proposed in [3], which is a compact convolutional neural network oriented
to EEG-based BCI tasks, aiming to avoid the dependence between the kind of
feature extraction method and the BCI neuroparadigm. Also, this deep learn-
ing method can be trained with small datasets and can produce features with
neurophysiological interpretation (See [3]).

Briefly, the EEGNet inputs are the EEG signals without any transformation.
Then frequency filters are learned by applying a temporal convolution. Later on,
frequency-specific spatial filters are learned by applying a depthwise convolution
and taking as inputs the feature maps individually computed as outputs in the
previous stage. After that, a combination of depthwise convolution and pointwise
convolution are grouped into a separable convolution looking for learning both a
temporal summary of the feature maps individually and how to mix the feature
maps optimally. The readers interested in more details about this method can
consult [3].
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5 Experiments and Results

For the next experiments, the dataset is organized in three ways to test our
hypothesis, which looks at if a deep-learning-based classification method, EEG-
Net, can learn from the EEG responses to color-related activities (color expo-
sure and imagination of colors). Furthermore, accuracy is the measure selected
for assessing EEGNet performance due to the dataset is balanced and will be
obtained after 10-fold cross-validation for each subject.

On the other hand, all experiments were run in a server HP APOLLO
6500 10th gen, using 1 node with 84 cores (Intel(R) Xeon® Gold 6248 CPU
@ 2.50 GHz), and 256 GB RAM. The GPU used for the DL algorithm was an
NVIDIA Tesla V100 32 GB SXM2. Whereas, the relevant software was, OS Red
Hat Enterprise Linux Server release 7.8, CUDA 10.2, and Python 3.7.6.

5.1 Classification of Exposed Colors

In the next experiment, we analyzed the epochs recorded during the exposure
to the three primary colors, aiming to assess the feasibility of color recognition.
This is the most relevant activity looking for implementing a color-based BCI.
Because this task is more natural compared to the imagination of colors (keeping
eyes closed). Besides, for EEGNet assessment, we used the 180 epochs regarding
the color exposure responses (60 epochs per color) and the chance level is 33%.

Table 2. Percent accuracy and standard deviations obtained for EEGNet for recogni-
tion of the three exposed colors

Subject EEGNet SVM [10]

Acc ±std Acc ±std

S1 45 12 35.52 11.1

S2 39 9 38.5 10.1

S3 52 13 45.56 8.2

S4 31 11 33.33 9.1

S5 57 9 43.33 7.8

S6 47 15 27.78 12

S7 44 10 39.44 9.2

Avg 45 11 37.64 9.6

The EEGNet results for classifying the 3 classes can be seen in Table 2. For
almost all the subjects except S4, the method can find differences between the
EEG responses to color exposures. The best outcomes were gotten for subjects
S5 and S3 and the worst ones for S4 and S2. These results are consistent with
[10] due to the subject S4 obtained the worst performances for 3 out of the four
classifiers analyzed (except for Naive Bayes).
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On the other hand, the global accuracy for the 7 subjects is also above the
chance level but in this case for (3 classes), reaching an accuracy of 45%. This sug-
gests that a deep-learning-based classification method makes color recognition
from EEG signals feasible. Last, it is important to highlight that the EEGNet
global performance (45%) outperforms previous works: 37.64% in [10] and 41%
in [7]1.

5.2 Classification of Imagined Colors

In the next experiments, we also assessed the pertinence of recognizing the three
imagined colors from EEG signals. Also, another motivation of this experimen-
tation is to compare our results with one of the previous works ([10]). For the
outcomes a set of 180 epochs were analyzed, 60 per imagined color. Which set
the chance level at 33%.

The accuracies and the standard deviations are shown in Table 3. For all
subjects, a global average accuracy of 43% was reached, which is slightly lower
than the recognition of the exposed colors but is higher than the global accuracy
of 35.9% got using SVM in [10].

Table 3. Percent accuracy and SDs obtained for EEGNet for recognition of the three
imagined colors

Subject EEGNet SVM [10]

Acc ±std Acc ±std

S1 54 12 31.11 8.8

S2 42 17 36.86 10.2

S3 39 17 36.11 9.9

S4 34 9 33.89 12.4

S5 44 9 37.78 13.3

S6 43 12 37.78 10.4

S7 45 13 37.78 9.7

Avg 43 13 35.9 11

Since the alpha rhythms are increased when a person keeps his/her eyes
closed, we also evaluated if the outcomes could be reached because of this fact.
Then, we applied a stop band filter at the alpha band (8–12 Hz) aiming to
assess the impact of this rhythm on the outcomes. A relatively similar idea will
be evaluated in Subsect. 5.3 due to color imagination is carried out keeping the
eyes closed.

Table 4 shows the performances after alpha rhythms removal. Despite a decre-
ment in the performance can be observed compared to the results in Table 3, this

1 The individual accuracies for each subject were not available in this work.
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is also higher than the previous work. Specifically, the global accuracies for EEG-
Net and the previous work are 40% and 34.72% [10] (using NB), respectively.

Table 4. Percent accuracy and SDs obtained for EEGNet for recognition of the three
imagined colors discarding alpha rhythms

Subject EEGNet NB [10]

Acc ±std Acc ±std

S1 45 18 37.78 17.5

S2 48 14 35.82 16.4

S3 32 9 38.89 10.5

S4 37 8 30.56 8

S5 34 10 34.44 9

S6 42 11 32.78 7.6

S7 39 13 32.78 8.5

Avg 40 12 34.72 11.1

5.3 Simultaneous Classification of Imagined and Exposed Colors

This experiment aims to test if the deep-learning method chosen for this task,
EEGNet, can simultaneously distinguish between the EEG responses to imagined
and exposed colors. It means EEGNet must discover patterns for the six classes
(red, green, blue, and their imaginations) and the chance level is 16%. In this
section, we processed the whole dataset composed of 360 instances per subject
having 60 epochs of each class.

EEGNet average accuracies and standard deviations are shown in Table 5.
For all subjects, the average performances are above the chance level. Therefore,
these outcomes suggest that there is a difference between each of the exposed
and imagined colors that allows EEGNet to distinguish between the classes.
Also, the average accuracy of 35% outperforms the previous work using RF [10]
with an average accuracy of 30.48%.

Since the phenomenon described in Subsect. 5.2 related to eyes closed, a
question arises about if the method takes advantage of the increase in alpha
rhythms, or if these rhythms decrease the classification performances.

Table 6 shows the performances obtained by EEGNet. The accuracies are also
above the chance level for 6 classes for all subjects. Furthermore, the global aver-
age accuracies for all subjects discarding or not the alpha rhythms are almost
equal (see Table 5 and Table 6). Therefore, this suggests that the difference found
is not related to the condition of eyes closed, which was carried out when col-
ors were imagined. Furthermore, the average accuracy of 34% outperforms the
previous work using SVM [10] whose average accuracy was 26.11%.



158 A. A. Torres-Garćıa et al.

Table 5. Percent accuracy and standard deviations obtained for EEGNet for the simul-
taneous recognition of exposed and imagined colors (6 classes)

Subject EEGNet RF [10]

Acc ±std Acc ±std

S1 38 13 30.12 7.8

S2 39 8 27.65 3.54

S3 39 10 37.78 5.27

S4 29 6 27.78 3.93

S5 31 7 30 4.1

S6 34 9 27.22 7.5

S7 39 9 32.78 9.15

Avg 35 9 30.48 5.9

Table 6. Percent accuracy and standard deviations obtained for EEGNet for the
simultaneous recognition of exposed and imagined colors (6 classes) discarding alpha
rhythms

Subject EEGNet SVM [10]

Acc ±std Acc ±std

S1 33 7 23.44 8.93

S2 32 7 27.1 5.09

S3 32 5 28.89 7.2

S4 30 11 22.22 2.62

S5 32 5 32.22 8.9

S6 39 11 20.83 5.44

S7 39 9 28.06 7.11

Avg 34 8 26.11 6.47

6 Conclusions and Future Work

Throughout this paper, we analyzed if a deep-learning-based classification
method (EEGNet) can distinguish between EEG responses to color-related tasks,
which were the exposure to primary colors (red, green, and blue), imagined
colors, and both simultaneously. We tested this hypothesis in the dataset col-
lected in [2]. Our experimentation suggests that EEGNet can discover patterns
in the EEG signals regardless of the kind of scheme of classification studied (See
Tables 5, 2 and 3).

Another interesting finding was that the method throughput showed inde-
pendence of the fact that alpha rhythms are increased when a person keeps
his/her eyes closed (see Tables 6 and 4). Last happened when the epochs of
imagined colors were recorded. For this reason, the classification of the six avail-
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able classes (imagined and exposed colors) and the imagined colors were also
analyzed with an additional stage of stop-band filtering discarding any effect of
the alpha rhythms.

Using the dataset selected, EEGNet outperformed previous works in the
classification of all the kinds of color-related tasks, reaching the following average
accuracies for the 7 subjects: 45% for the 3 exposed colors, 43% (40% without
alpha rhythms) for the imagined colors, and 35% (34% without alpha rhythms)
for the recognition of the 3 exposed colors and their imaginations (6 classes
at total). Furthermore, after applying sign tests2 for all the tables shown, the
method got statistically significant outcomes for the recognition of imagined
colors (Z = 2.2678, p < 0.024, α = .05) and the simultaneous classification of
the six classes (Z = 2.2678, p < 0.024, α = .05).

Although there are three classification tables in which the method did not
show a statistically significant difference compared to previous work, the current
algorithm has the advantage of being a method that does not depend on both
the neuroparadigm and the feature extraction method. Therefore, this fact is
agreed with previous outcomes obtained for EEGNet in other neuroparadigms [3]
making it a suitable method for processing and analyzing novel neuroparadigms
such as color recognition.

Despite the outstanding outcomes got in the present study, the problem of
recognition of color-related tasks from EEG signals is still open, considering this
is the core of an effective implementation of a color-based BCI. Accordingly, a
tuning of EEGNet hyper-parameters along with a comprehensive study on its
intermediate layers could be desirable targeting both an improvement in the
classification performances and any clue that can help to bring light to the area
of color-based BCI, respectively. Also, an optimal selection of the length and
the beginning and end of the analysis window could help to improve the present
results.

In future work, we could assess if the model can find any difference between
the exposed color and its imagination. Also, we will extend our study to a larger
dataset keeping in mind the augmentation of the number of subjects. Besides,
an interesting question that arises is if a specific color can be identified when
several of them are shown simultaneously.
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9. Torres-Garćıa, A.A., Moctezuma, L.A., Molinas, M.: Assessing the impact of idle
state type on the identification of RGB color exposure for BCI. In: Proceedings of
the 13th International Joint Conference on Biomedical Engineering Systems and
Technologies (Biostec), Valletta, Malta, pp. 24–26 (2020)
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Abstract. Data Stream Mining has become a research topic of greater
interest in recent years. Its goal is to extract knowledge and hidden
patterns from continuous data streams. In e-learning systems, a large
amount of data is generated from the interaction of the student with the
system in the form of data streams, which nature or distribution changes
over time. Data Stream Mining techniques are able to incrementally ana-
lyze this kind of data, by creating models that adapt their structure on
the fly. In this context, an interesting feature to model is the academic
performance of students. In this paper, a methodology for dynamic stu-
dent modeling using Data Stream Mining classifiers is proposed. For this,
the Students’ Academic Performance database, available on Kaggle, was
used. Six Data Stream Mining classifiers were implemented in MOA.
For the evaluation, the prequential error method, the Kappa statistic,
and the execution time were used. The results obtained show that the
Naive Bayes classifier generated the best results in terms of accuracy and
execution times.

Keywords: Data stream · Data stream mining · Classification ·
Student profiling · Student modeling · Educational data mining

1 Introduction

Data Stream Mining (DSM) has become a research topic of greater interest in
recent years. Its objective is to extract knowledge and hidden patterns from
continuous data streams (data that are generated continuously over time) [17].

In recent decades, student modeling has attracted increased interest as a
research topic. In online learning; for example, through e-learning systems (ELS)
a large amount of data is generated in the form of continuous streams, from the
interaction of the student with the ELS, over time that require to be analyzed on
the fly so it becomes more challenging to create or personalized student models
to predict student characteristics such as academic performance [9]. Particularly,
a student model summarizes multiple characteristics of students, whether static
(gender, place of birth, etc.) or dynamic (cognitive skills, emotions, etc.), drawn
from various data sources to represent a profile [14].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Generally, educational data have been studied as stationary data using Edu-
cational Data Mining (EDM), which is a specific area of Data Mining (DM)
techniques [22]. According to [10], EDM refers to the use of machine learning
algorithms to model student behaviors so that predictive models can be used for
monitoring, analysis, prediction, intervention, tutoring, personalization, feed-
back, adaptation, and recommendation purposes. For instance, EDM classifica-
tion, regression, and clustering techniques are commonly used to model Students’
Academic Performance (SAP).

The most popular technique for predicting SAP is classification [24]. The
most commonly used classifiers include: Decision Tree (DT), Artificial Neural
Networks (ANN), and Naive Bayes (NB) [1]. Recent studies have incorporated
other techniques such as Recurrent Neural Network (RNN) [18]. However, given
the dynamic nature of some characteristics that reflect student behavior, and can
be continuously monitored and collected in the form of data streams through
ELS, it is convenient to use other modeling techniques that reflect this behavior
and allow for assessments of students on the fly [9,20].

In this paper, a methodology to model students dynamically by implement-
ing DSM classifiers is proposed. The central idea is to classify students on the fly
based on their academic performance, using as predictive variables characteris-
tics of students that can be retrieved and monitored from ELS. For this, the SAP
database, available in Kaggle, was used. Six DSM classifiers were implemented
in MOA (Massive Online Analisys) framework: Naive Bayes, Hoeffding Tree,
Hoeffding Adaptative Tree, OzaBag, OzaBagADWIN, and Adaptative Random
Forest.

The outline of the study is organized as follows: In Sect. 2, a brief review of
related work is presented. In Sect. 3, our proposed methodology for dynamic stu-
dent modeling is discussed. Section 4 shows the experiments and results. Section 5
sets out the discussion. Finally, Sect. 6 summarizes conclusions and future work.

2 Related Work

In ELS, where educational content is provided, student activities and their inter-
actions with the system such as reading, downloading or uploading material, par-
ticipating in discussion forums, etc., are continuously monitored and collected
through logs. These data streams form a valuable source of information about
students’ learning and behaviors, which could be used to optimize the learning
process [23].

In the work [1], a model of prediction of SAP based on classification tech-
niques is proposed considering characteristics of student behavior related to their
interaction with an ELS called Kalboard 360. The authors used the ANN, NB,
and DT classifiers. They obtained good classification results with behavioral fea-
tures comparing with the results when removing behavioral features, they proved
the strong relationship between student’s academic achievement and the learner
behavior in the classroom. The accuracy enhancement when using behavioral
features obtained 28% with ANN, 22%with NB, and 6% with DT. Subsequently,
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[2] performed a study similar to the previous one, but increasing the number of
observations and the variables to be analyzed. In addition, they applied Bag-
ging, Boosting, and Random Forest (RF) methods to improve the accuracy of
classifiers. Their results showed that Boosting method outperform other ensem-
bles methods. Using boosting, the accuracy of DT was improved from 75.8% to
77.7% and with NB model the accuracy increased from 67.7% to 72.2%.

Nevertheless, there are few works that address this research topic from a
dynamic approach; for example, [20] presented a methodology to efficiently
model students according to their behavior during a self-assessment process.
Its approach formed and reviewed students’ models on the fly, using three DSM
classification techniques: HT, OzaBag, and Perceptron. In the results obtained,
when the window size was 100 and the predicted classes were three, OzaBag
was slightly more accurate (80%) than HT (79%) and Perceptron (70%). On the
other hand, when the predicted classes were two, Perceptron achieved its highest
accuracy (83%) compared to the HT (82%) and OzaBag which predicted with
82% of accuracy.

In [9], a case study on EDM is presented involving the application of RF and
Adaptive Random Forest (ARF) classifiers. In the classification performance for
the binary classification, RF was highly accurate, 90.5%. On the other hand,
when considering the multiclass classification, the classification performance
decrease and RF obtained 64.57% of accuracy. In its results demonstrated the
effectiveness of the method to correctly classify student outcomes when process-
ing educational data as data streams.

In the same way, the authors [16] focused their work on emotion recognition
in e-learning using students’ multimodal data streams, comparing several DSM
classifiers for emotion recognition using multimodal physiological signal streams:
NB, HT, OzaBag ML, OzaBag ADWIN ML, OzaBoost, OzaBoost ADWIN,
SGD, and Perceptron. The HT achieved 66.8 % accuracy with an evaluation
time of 7.44 s, but Oza Bag ADWIN ML obtained an accuracy of 66.9 %, in
36.88 s for the classification. From this, they conclude that HT was an effective
one because it achieved significant with less evaluation time. But this was not
significant enough for emotion recognition from multimodal physiological data
streaming in e-Learning scenario.

According to the previous review, it is necessary to propose a methodology to
classify students on the fly based on their academic performance, using features
of students that can be retrieved and monitored from ELS.

3 Proposed Methodology

In traditional data mining, the data set can be read many times, runs with unlim-
ited time and memory, and produces fairly accurate results. On the other hand,
in DSM constraints, such as bounded memory, single pass, real-time response,
and concept drift detection must be satisfied so that approximate results can be
produced. Figure 1 shows the design of the proposed methodology for dynamic
student modeling using DSM classifiers. The methodology includes five phases:
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Data acquisition, preprocessing, DSM classification, evaluation, and student
class characterization. The result of the inference provides the student’s class
based on their academic performance.

Fig. 1. Methodology for dynamic student modeling using DSM.

3.1 Overview

Getting started requires the acquisition of student data that can be automati-
cally generated as a result of student interaction with ELS or other electronic
platforms. Afterwards, a preprocessing of the data is carried out, this is clean-
ing, transformation and selection of characteristics with greater contribution to
the classification process. Then the selected DSM classification algorithms are
implemented that perform the incremental learning process, that is, instance by
instance. Subsequently, classifiers are evaluated using the Predictive Sequential
(prequential) error, the Kappa statistic, and the execution time of each classifier.
Finally, the best classification model is chosen, the student’s class is predicted
based on their academic performance (low, medium, high) and their character-
istics are described.

In this work, DSM classifiers are used under an incremental learning approach
where the model gradually evolves to adapt to changes in incoming data and
eliminates the effects of outdated data. We use different DSM classifiers described
in [6]. Naive Bayes (NB) performs the classic Bayesian prediction while making
a naive assumption that all inputs are independent. NB is a simple, low-cost
computational classifier algorithm. Hoeffding Tree (HT) or Very Fast Decision
Tree (VFDT) classifier, is an incremental decision tree induction algorithm that
at any time is capable of learning from massive data streams, assuming that the
examples of distribution generation do not change over time. Hoeffding Adaptive
Tree (HAT), a new method that evolves from Hoeffding Window Tree, adaptively
learns from data streams that change over time without the need for a fixed
sliding window size [5].

OzaBag (OZB) proposed in [19], is an online incremental Bagging metaclassi-
fier for data streams that simulates the process of sampling bootstrap replicates
from training data in a data stream context. The probability that any individ-
ual example will be chosen for a replica is determined by a binomial distribution
and tends to a Poisson distribution. OzaBagADWIN (OZBADW) [4], Bagging’s
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incremental metaclassifier with ADWIN. ADWIN is a change detector and esti-
mator that solves in a well-specified way the problem of tracking the average of
a stream of bits or real-value numbers.

Adaptive Random Forest (ARF) is an adaptation of Random Forest (RF)
that includes an effective resampling method in the configuration of streams and
adaptive operators that can cope with different types of Concept drift, without
further hyperparameter adjustments. Concept drift refers to the change in the
relationships between input and output data over time [12].

4 Experiments and Results

The experiments were conducted on a DELL Laptop with 8 GB of RAM, Intel(R)
Core (TM) i5-10300H CPU @ 2.50GHz. Weka was used for preprocessing (version
3.9.6) [13]. The data exploration and graphical analysis were done with R Project
[21] (version 4.1.2). MOA Release 2021.07 was used for the implementation of
the classifiers [7].

4.1 Data and Preprocessing

The SAP database described in [2] and available in en Kaggle was used [3].
Designed to predict SAP at the end of the semester in three classes (low, medium,
high), see Table 1. According to [15] this dataset is widely used in EDM research,
consisting of 480 student logs and 16 characteristics classified into: Demographic
(N, G, PB, and RE), academic background (SID, GID, SCID, S, T, and SA),
parental participation (PA and PSS), and student behavior in ELS (DG, VR,
RH, and AV).

The data cleansing stage was not performed because the dataset has no miss-
ing data. In the transformation of the data, since the predictive variables have
different types (categorical and numerical) and measurement scales (nominal,
ordinal, and ratio), a discretization of the numerical variables (at 5 intervals)
was performed in Weka using a filter not supervised by attributes.

Subsequently, two processes were used for the selection of characteristics:
First, in R Project, Polychoric Correlation Coefficent (PCC) were obtained
between each of the predictive variables (dichotomic or ordinal) and the Class.
PCC is a technique that allows to estimate the correlation between pairs of ordi-
nal variables or the interaction between dichotomic and ordinal variables, taking
values between –1 and 1 [11].

As can be seen in the Table 2, the negative PCC between the SA and Class
variables with a PCC=–0.86 stands out, which means that the absence of the
student negatively affects the SAP. Similarly, VR (0.75), RH (0.71), AV (0.61),
PASS (0.58), and RE (0.54) are positively highlighted with the Class variable.
The first three are characteristics that reflect the students’ behavior during inter-
action with the ELS Kalboard 360 and indicate that, as the students’ level of
interaction with ELS increases, their SAP level improves. It is also relevant to
include variables on the participation of parents in the learning process.
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Table 1. Student features and their types of data, categories or values.

Features Code Type of data Categories or values

Nationality N Nominal Egypt, Iran, Iraq, Jordan, KW, Lebanon, Lybia, Morocco,
Palestine, SaudiArabia, Syria, Tunis, USA, Venezuela

Place of Birth PB Nominal Egypt, Iran, Iraq, Jordan, KW, Lebanon, Lybia, Morocco,
Palestine, SaudiArabia, Syria, Tunis, USA, Venezuela

Gender G Nominal Female or male

Parent responsible RE Nominal Father or mum

Educational Stages SID Ordinal Lower level, middle school, and high school

Grade Levels GID Ordinal G-02, G-04, G-05, G-06, G-07, G-08, G-09, G-10, G-11,
G-12

Section ID SCID Nominal A, B, C

Semester S Ordinal First or second

Topic T Nominal Arabic, Biology, Chemistry, English, French, Geology,
History, IT, Math, Quran, Science, Spanish

Student Absence SA Ordinal Above-7, Under-7

Answering Survey PA Nominal Yes or not

School Satisfaction PSS Ordinal Good, Bad

Discussion groups DG Numerical 0–100

Visited resources VR Numerical 0–100

Raised hand RH Numerical 0–100

View announcements AV Numerical 0–100

Class Class Ordinal Lower (0–69), Medium (70–89), High (90–100)

Second, in Weka, a supervised attribute filter was applied that allows you to
combine several search and evaluation methods. The parameters that Weka has
defined by default were used (CfsSubsetEval-P1-E1, BestFirst-D1-N5), resulting
in 7 relevant characteristics G, RE, SA, PAS, RH, VR, and AV. Six variables
match with those previously identified as relevant. Therefore, it was decided
to include only these variables for the study, excluding the Gender variable.
Finally, for the classification process the variables VR, RH, and AV were taken
on a continuous scale and their values were normalized in a range [0, 1].

Table 2. PCC Predictor variables versus Class variable.

VR RH AV PAS RE PSS G DG S SID GID SA

0.75 0.71 0.61 0.58 0.54 0.51 0.37 0.37 0.17 0.11 0.06 -0.87

4.2 Classification and Evaluation

Six DSM classifiers were used for the experiments. In the implementation of HT
and HAT, Naive Bayes Adaptive (NBA) was employed as a prediction mechanism
used in the sheets, and for the splits, the criterion of gain of information. For the
metaclassifiers, it was selected as a basic classifier HT or VFDT. The values of
the parameters defined by default in MOA were used. Tables 3 and 4 summarize
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the results of the average performance of the classification models, in terms of
percentage accuracy, percentage of the Kappa statistic, and execution time in
seconds. For the six classifiers, three sizes of sliding window were used (w = 5,
w = 10, and w = 20). Moreover, two sample sizes were adapted to perform the
prequential evaluation (n = 1 and n = 10).

As seen in Table 3, when the evaluation was performed for each instance
(n = 1) and w = 5, ARF obtained the highest levels of accuracy (69.17%), but
at a higher cost in terms of time (9.98 s). Followed by HAT with an accuracy of
68.33% with a shorter runtime (0.03 s). Likewise, with w = 10, ARF obtained the
highest accuracy (68.81%) at a higher execution time than the others (9.78 s),
followed by HAT accuracy (67.78 %) whose execution was carried out in a shorter
time (0.03 s). In turn, when using w = 20, the results were similar in accuracy
and time, ARF (68.43% and 9.82 s) followed by HAT (67.6% and 0.03 s). In
contrast, OZB and OZBADW in all cases obtained the lowest performance in
terms of accuracy. Another relevant result was that, regardless of the classifier
used, as the size of the window increases, the percentage of accuracy decreases.
Finally, the best results were obtained with ARF (w = 5).

Table 3. Results of the comparison of DSM classifiers, n = 1.

Parameters Classifier NB HT HAT OZB OZBADW ARF

w = 5 Accuracy (%) 67.71 67.29 68.33 66.67 66.67 69.17

Kappa (%) 44.79 43.79 44.97 42.53 42.52 44.14

Time (s) 0.03 0.02 0.02 0.51 0.54 9.98

w = 10 Accuracy (%) 67.37 66.94 67.98 66.36 66.36 68.81

Kappa (%) 47.08 46.09 47.31 44.89 44.89 47.49

Time (s) 0.04 0.03 0.03 0.51 0.55 9.78

w = 20 Accuracy (%) 67.07 66.56 67.6 66.07 66.07 68.43

Kappa (%) 46.95 45.73 47.15 44.65 44.65 47.64

Time (s) 0.04 0.02 0.03 0.51 0.56 9.82

As seen in Table 4, when the evaluation was performed for (n = 10) and
w = 5, NB get the highest levels of accuracy (70.83%) at a low cost in terms of
time (0.02 s), followed by HT (70.42%), and HAT (70.42%), in both with equal
execution time (0.02 s). On the other hand, when w = 10, the results changed,
ARF obtained the highest accuracy (69.58%) with a longer execution time than
the other classifiers (1.2 s), followed by HAT accuracy (68.75%) executed in a
shorter time (0.02 s). Finally, when using w = 20 the results resemble the pre-
vious experiment in accuracy and time, ARF (69.58% and 1.14 s) followed by
HAT (68.75% and 0 s). In contrast, OZB and OZBADW in all cases obtained
the lowest performance in terms of accuracy. Furthermore, for the ARF classifier
by increasing the window size from w = 5 to w = 10, the average percentage
of accuracy obtained remained stable. In summary, in this experiment the best
results were obtained in NB (w = 5).
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Table 4. Results of the comparison of DSM classifiers, n = 10.

Parameters Classifier NB HT HAT OZB OZBADW ARF

w = 5 Accuracy (%) 70.83 70.42 70.42 70 70 69.17

Kappa (%) 49.97 47.89 46.25 45.09 45.09 43.58

Time (s) 0.02 0.02 0.02 0.06 0.06 1.16

w = 10 Accuracy (%) 68.12 67.71 68.75 67.08 67.08 69.58

Kappa (%) 46.26 45.15 46.76 43.92 43.92 47.39

Time (s) 0 0.02 0.02 0.07 0.06 1.2

w = 20 Accuracy (%) 68.12 67.71 68.75 67.08 67.08 69.58

Kappa (%) 46.26 45.15 46.76 43.92 43.92 47.39

Time (s) 0 0.02 0 0.05 0.07 1.14

The evaluation method used was prequential that allows to monitor the evo-
lution of the classifiers and evaluates the performance of the models by testing
each example and then using it to train in sequence. In addition, the Kappa
statistic measures the performance of stream classifiers by matching the predic-
tion with the true class. A Kappa value equal to 1 means total agreement.
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Fig. 2. Evolution of the accuracy measurement for DSM classifiers.
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Fig. 3. Evolution of the Kappa statistic for DSM classifiers.

Figures 2, 3, and 4, show the evolution of the measurements obtained for the
classifiers under study (n = 10, w = 5). NB stood out with the best results in
terms of accuracy. As observed in Fig. 3, the evolution of the performance of
the classifiers was similar and variable, they had some coincidences in the low
accuracy when classifying certain instances.
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Fig. 4. Evolution of the execution time of DSM classifiers.

4.3 Student Class Characterization

Taking the predictions of NB (w = 5, n = 10), a visual representation of the
dynamic modeling of the students was made. A Biplot was developed from
Multiple correspondence analysis (MCA). Regarding the specific characteris-
tics of the model and the three predicted classes, it was found that: High SAP
(Class Pred H): Students are characterized by high levels of participation in ELS,
that is, they frequently see advertisements, raise their hands, and visit resources
(AV, V R,RH > 66); they have records of absences of less than 7 d, their tutor is
their mother figure, who reflects a level of participation when answering surveys
(Fig. 5, quadrant III). Medium SAP (Class Pred M): Students have average lev-
els of participation, that is, they see ads, raise their hands, and visit resources in
an interval of (33 < AV, V R,RH ≤ 66) in ELS; they have records of absences of
less than 7 d, their mother figure is their tutor, who reflects a level of participa-
tion in answering surveys (Fig. 5, quadrants I and II). Low SAP (Class Pred L):
Students have low participation levels (0 ≤ AV, V R,RH ≤ 33), i.e. rarely see
ads, raise their hands, and visit ELS resources; they have records of absences
greater than 7 d, their tutor is their father figure, who does not reflect a level of
participation by not answering surveys (Fig. 5, quadrant IV).
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Fig. 5. Biplot of dynamic student modeling from NB (w = 5 and n = 10).

5 Discussion

Throughout this study we have found that the implementation of DSM classifiers
can be used to model SAP when data are available that result from student
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interaction with an ELS. In this paper, when the evaluation of DSM classifiers
was performed for n = 1 and w = 5, ARF obtained the highest levels of accuracy
(69.17%), but at a higher cost in terms of time (9.98 s). Additionally, regardless
of the classifier used, as the size of the window increases, the percentage of
accuracy decreases. Otherwise, when the evaluation was performed for n = 10
and w = 5, NB get the highest levels of accuracy (70.83%) at a low cost in terms
of time (0.02 s), followed by HT (70.42%), and HAT (70.42%), in both with equal
execution time (0.02 s). For the ARF classifier by increasing the window size, the
average percentage of accuracy obtained also increases slightly.

Compared to the work of [2], where they analyzed the same database, the
proposal in this paper involves creating a model with a smaller number of pre-
dictive variables (parsimonious). With 6 features (SA, VR, RH, AV, PAS, RE),
NB (n = 10, w = 5) obtained better results in terms of accuracy with 70.83%
compared to its traditional NB model and Bagging NB. Although our values
obtained from accuracy are not very high, they are encouraging as alternative
ways can be sought to improve results.

In DSM one of the requirements is to work with large amounts of data [8]. In
this study, we do not use a large database. However, we found that educational
data coming from ELS can be modeled using DSM classification techniques to
create student profiles. The advantage of using these incremental learning mod-
els is that they are able to make predictions on the fly, that is, they can be
used to evaluate SAP during its course journey to detect in a timely manner
underperforming students and provide timely support.

6 Conclusions and Future Work

Modeling student characteristics dynamically is a task that is of great interest
to researchers and has a significant contribution to the educational field. In ELS
a large amounts of data streams are generated that require analysis on the fly
to identify students in critical circumstances that can be supported to improve
their academic performance.

In this research work, a methodology to model students dynamically using
DSM classifiers is proposed. Six classifiers were implemented: NB, HT, HAT,
OZB, OZBADW, and ARF. According to the experiments performed, when
the evaluation of the DSM classifiers was executed with n = 1, regardless of
the size of the window (5,10,20), ARF obtained the highest levels of accuracy
(69.17%) but at a higher cost in terms of time (9.98 s). On the other hand, when
the evaluation was performed for n = 10 and the window size was 5, the best
classifier to model SAP was NB (n = 10, w = 5) with 70.83% accuracy, 49.97%
of the Kappa statistic and a time of 0.02 s.

Regarding the specific characteristics of the dynamic model it was found
that: In High SAP, students frequently see advertisements, raise their hands,
visit resources, they have records of absences of less than 7 d and, their tutor is
their mother figure. In medium SAP students have average levels of participation,
they see ads, raise their hands, and visit resources in an interval of (33, 66] in
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ELS and, their tutor is their mother figure too. In low SAP students rarely see
ads, raise their hands, and visit ELS resources; they have records of absences
greater than 7 d and, their tutor is their father figure.

Future work is intended to use other larger educational databases that have
other dynamic variables that can be retrieved from different academic platforms
or ELS to improve the accuracy levels of the classifiers, as well as to use other
methods for modeling such as clustering of data streams.
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Abstract. Categorical attributes are present in datasets used in machine
learning (ML) tasks. SincemostMLalgorithmsonlyacceptnumeric inputs,
categorical instances must be converted to numbers. There are different
encoding techniques to accomplish this task. During this conversion, it is
important to preserve the underlying pattern in the dataset. Otherwise,
theremaybea lossof informationthatcannegativelyaffecttheperformance
ofsupervisedlearningalgorithms.Inthispaper,wepresentanencodingtech-
niquebasedonfindingthosenumbersorcodesthatpreservetherelationship
between the categorical attribute and the other variables of the dataset.
We solved six supervised classification problems using the proposed tech-
nique with five different ML algorithms. Additionally, we compare the per-
formance of the proposed technique with other ten encoding techniques.
We found that the proposed technique outperforms the most commonly
used encoding techniques for certain trained ML algorithms. On average,
CESAMMO remained within the top 5 techniques in terms of performance
of the 12 encoders tested.

Keywords: Categorical encoding · Machine learning · Data
preprocessing

1 Introduction

Most machine learning (ML) algorithms require that all independent variables
be numeric. There are, however, some exceptions. As mentioned in [1], algo-
rithms for tree-based models and naive Bayes can naturally handle numeric
or categorical inputs. Although these 2 models can directly handle categorical
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data in theory, during their implementation with the most used libraries (e.g.
Scikit-learn, XGBoost), categorical instances need to be converted to a numeric
value. Many techniques allow us to use categorical variables in ML algorithms.
Choosing the proper technique does affect the model’s performance.

Categorical encoding techniques can be classified into two groups: unsuper-
vised or supervised. In the group of unsupervised techniques, the two most com-
monly used, due to their simplicity, are the following:

1) Ordinal or label encoding. Convert each unique category value (or
instance) to an integer value. The use of this technique is appropriate when the
categorical instances have a natural order (also named ordinal). For example,
the variable “level of satisfaction” with instances: “Not at all Satisfied,” “Partly
Satisfied,” “Satisfied,” “More than Satisfied,” “Very Satisfied,” could be con-
verted to an interval scale from 1 to 5. However, when the categorical variable
does not have a natural order (also known as nominal, examples are: “coun-
try” and “marital status”), it is not recommended to use the ordinal encoder.
As explained in [2], when applying ordinal encoding on nominal data, it can
be expected to perform poorly because it introduces an artificial order among
categorical variables. For example, when it is directly used in neural networks
optimized with stochastic gradient descent, the larger label values will contribute
more to gradients used to update weights. This does not make sense because the
integer values are assigned arbitrarily to the categorical instances.

2) One-hot encoding. A categorical variable with k possible instances is
encoded as a feature vector of length k. This technique suits better for nominal
data and is relatively easy to implement. However, it does not capture similar-
ities between distinct categorical values, since it assigns orthogonal vectors to
each instance. According to [3], the disadvantages of this technique are: 1) It
could be computationally inefficient, 2) It does not adapt to growing categories,
3) It is not feasible for anything other than linear models, and 4) It requires
large-scale distributed optimization with huge datasets.

In the supervised group, the most used encoding techniques are target
encoder [4] and catboost encoder [5]. These two techniques have been shown
to outperform other encoding techniques [6–8], particularly when data contain
high-cardinality categorical attributes. Nevertheless, all target-based techniques
have the problem of target leakage: it uses information about the target. Because
of such target leakage, models tend to overfit the training data, which results in
unreliable validation and lower performances during the test stage. To overcome
this drawback, these techniques require a regularization hyperparameter.

Regardless of the technique used, the main point in replacing categorical
values with numbers is maintaining the data’s underlying pattern. Otherwise,
the risk of losing information can negatively affect the performance of ML algo-
rithms. We denote Pattern Preserving Codes (PPCs) as those numerical val-
ues that keep the intrinsic relationship between the categorical attribute and
the other variables in the data. For a clearer explanation, consider a set of
n−dimensional tuples (say U) whose cardinality is m. Assume there are n
unknown functions of n − 1 variables each, which we denote with:
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fk(v1, ..., vk−1, vk); k = 1, ..., n (1)

Let us also assume that there is a method that allows us to approximate fk
(from the tuples) with Fk. Denote the resulting n functions of n−1 independent
variables with Fi , thus

Fk ≈ fk(v1, ..., vk−1, vk); k = 1, ..., n (2)

The difference between fk and Fk will be denoted with ek such that, for attribute
k and the m tuples in the dataset.

ek = abs(fki − Fki); i = 1, ...,m (3)

The PPCs are the ones that minimize ek for all k. This is so because only
those codes which retain the relationships between variable k and the remaining
n− 1 variables AND do this for ALL variables in the ensemble will preserve the
whole set of relations (i.e. patterns) present in the database.

There exist encoding techniques that attempt to find these PPCs. One of
them is CENG: Categorical Encoding with Neural Networks and Genetic Algo-
rithms [9]. However, this approach is computationally very costly and, to boost
its efficiency, it ought to be tackled in ensembles of multiple CPUs.

To avoid the high computational costs associated with CENG, in [10] a
new algorithm called CESAMO was designed. CESAMO stands for Categorical
Encoding by Statistical Applied Modeling. It relies on statistical and numerical
considerations making the application of neural networks and genetics algorithms
unnecessary while achieving analogous results. CESAMO assigns PPCs to each
and all the instances of every class (category) which will preserve the patterns
present for a given dataset. Essentially, CESAMO samples multiple numerical
codes randomly, these codes are evaluated in an approximation function, which
yields an error. Those codes that produced the smallest error are the PPCs.

In this work, we propose a modification to the original CESAMO algorithm
(which we shall call CESAMMO). It consists of finding those codes that take
into consideration the relationship between the categorical attribute and all the
other variables of the dataset. In other words, we make the algorithm multivari-
able. The details of this modification are explained in more detail in the general
methodology section. We evaluate CESAMMO with 5 ML models in 6 classifica-
tion problems. In addition, we compare its performance with 10 other encoding
techniques.

The rest of the paper is organized as follows: In Sect. 2 we detail the
implementation of the CESAMMO encoding technique. In Sect. 3 we present
the experimental results obtained from the comparative framework. Finally, in
Sect. 4 our conclusions are presented.

2 General Methodology

The main goal of this work is to measure the performance of the CESAMO
and CESAMMO and to compare these results with other encoding techniques.
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CESAMO implements a mathematical model (whose theoretical justification is
given in what follows) considering high-order polynomial relations. It consists of
a universal polynomial approximation:

y = c0 + c1x + c3x
3 + c5x

5 + c7x
7 + c9x

9 + c11x
11 (4)

The CESAMO algorithm samples candidate codes from the data. The codes
that achieve the smallest error in the approximation function are considered to
be the ones preserving the behavioral patterns embedded in the dataset (i.e. the
PPCs). In order to do this CESAMO ought to solve two basic problems:

1. How to define the function which will preserve the patterns.
2. How to determine the number of codes to sample.

In [11] it was shown that any continuous function can be approximated with a
linear combination of monomials which consists of a constant plus a set of terms
of odd degree. The coefficients c in Eq. 4 may be found in several ways. The
so-called Ascent Algorithm [12] was utilized in the original version of CESAMO
but the gradient descent algorithm is an efficient alternative.

Regarding (b), it is known that, independently of the distribution of the
errors, the distribution of the means of the errors will become Gaussian. Once
the distribution becomes Gaussian, it has achieved statistical stability, in the
sense that further sampling of the candidate codes will not significantly modify
the characterization of the population. In essence, therefore, what CESAMO
proposes is to sample enough codes to guarantee the statistical stability of the
values calculated in the approximation function. The codes corresponding to the
best approximation will be those inserted in the dataset. Furthermore, CESAMO
relies on a double level sampling: only pairs of variables are considered in Eq. 4
and every pair is, in itself, sampling the multivariate space. Details of the original
CESAMO algorithm can be reviewed at [10].

Since CESAMO performs bi-variate sampling identifying the codes that yield
the smallest error as a function of one secondary (randomly selected) variable,
only the relationship between the categorical attribute and the second variable
is preserved in each and every sample. The random selection of the secondary
variable results in the “double level” sampling alluded to above. To circumvent
this possible loss of information, we proposed CESAMMO. In it, we assume that
PPCs are those numerical codes that yield the least average error when evaluated
in Eq. 4 with all the other variables present in the dataset. In Fig. 1 we show the
flow chart of CESAMMO.

The CESAMMO algorithm can be summarized as:
1: Select a categorical attribute.
2: Randomly select possible candidate codes.
3: Randomly select a secondary variable.
4: Apply a polynomial approx. function between the cat. variable and the

selected secondary variable, and store the resulting error in an array (A1).
5: Check if the size of array A1 is greater than 30. If true, proceed to step 6.

Else: repeat step 3.
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Fig. 1. Flowchart diagram of CESAMMO algorithm.

6: Calculate the average of array A1. Store the result in an array (A2).
7: Check if the size of array A2 is greater than 30. If true: proceed to step 8.

Else: repeat step 2.
8: Calculate the average of array A2, and store it in an array (A3).
9: Check if the size of array A3 is greater than 30. If true: proceed to step 10.

Else: repeat step 2.
10: Determine, via Chi-squared test [13], if the distribution of the errors’ average

in array A3 is Gaussian.
11: Check if the errors’ avg. distribution is Gaussian. If true: proceed to step 12.

else: repeat step 2.
12: The PPCs are those codes that yield the smallest errors.

The core modification of CESAMO may be found in steps 5, 6 and 7. We
assume that by taking the average of the errors between the categorical attribute
and all other variables in the training dataset, the PPCs will maintain the under-
lying pattern of the entire training dataset without appealing to the tacit double-
level sampling considered above. This should, in principle, improve the perfor-
mance of the ML models.

Regarding choosing a sample size of 30 in steps 5, 7, and 9, it is a rule
of thumb based on the central limit theorem where sample distribution will
approach normal distribution regardless of the population distribution as the
sample size increases. This does not mean that 30 is a perfect size, but rather
that it is the minimum needed for rendering normal sampling distributions of
means independently of whether the sample itself is normal [14].

Once the modification to CESAMO has been implemented, the next step is to
quantify its performance. For this purpose, we will use an available comparative
framework of categorical encoding techniques [15]. This framework consists of
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six supervised classification problems taken from the Kaggle platform. In addi-
tion, it compares 10 categorical encoders with 5 ML algorithms. The categorical
encoding techniques compared are Ordinal, One-Hot, Sum, Helmert, Backward
Difference, Target, M-Estimate, Leave One Out, James Stein, and CatBoost. All
of them are implemented with the Category Encoders library of Scikit- learn-
contrib [16]. On the other hand, the classification problems were solved with
the next ML algorithms: Logistic Regression, Gaussian Näıve-Bayes, Support
Vector, Multilayer Perceptron, and XGBoost.

3 Experimental Results

We solved 6 classification problems with 5 distinct ML models. For each model,
12 different encoding techniques were implemented (including CESAMO and
CESAMMO), and the accuracy of each combination Model-Encoder was mea-
sured. Accuracy was calculated by dividing the number of correct predictions
by the total number of predictions. Tables 1, 2, 3, 4, 5, and 6 show the results
obtained. The columns contain the following information:

– Model : The trained ML algorithm with which the problem was solved.
– CESAMO Acc: The accuracy that got CESAMO
– CESAMMO Acc: The accuracy that got CESAMMO
– Encoder with the best acc: contains the name of the encoding technique that

got the highest accuracy.
– Best Acc value: the numerical value of the highest accuracy obtained by the

best encoder.
– Abs(CMMO, Best Enc.): shows the absolute difference between CESAMMO

and the encoding technique with the highest accuracy.

To clarify the results, inTable 1, thefirst rowcouldbe readas:“When solving the
titanicproblem,using theNaive-Bayes classifier, theCESAMOencoder got anaccu-
racyof0.7486.Likewise,theCESAMMOencoderyieldsanaccuracyof0.7795.Onthe
otherhand,theencodingtechniquethatachievedthebestaccuracyfortheNäıve-Bayes
model was theTarget encoder, with a value of 0.7968. Finally, the absolute difference
betweenCESAMMO’saccuracyand thebest encoderwas:0.0173”.Theprevious for-
mat applies to Tables 1, 2, 3, 4, 5, and 6.

Table 1. Results from the Titanic dataset.

Model CESAMO acc. CESAMMO acc. Best encoder acc. Best acc. value Abs(CMMO,

Best Enc.)

G. Naive Bayes 0.7486 0.7795 Target 0.7968 0.0173

Perceptron mult. 0.8118 0.8089 Backward diff. 0.8271 0.0182

Logistic reg. 0.8174 0.8146 Backward diff. 0.8215 0.0069

SVM 0.8315 0.8174 CESAMO 0.8315 0.0141

XGBoost 0.8272 0.823 Backward diff. 0.8283 0.0053
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For the case of the ‘Titanic’ dataset, it can be observed in Table 1 that,
for 4 of the 5 models, CESAMO’s performance was better than CESAMMO’s.
Other than that, for the SVM model, CESAMO outperformed all other encoding
techniques.

Table 2. Results from the Adult dataset.

Model CESAMO acc. CESAMMO acc. Best encoder acc. Best acc. value Abs

(CMMO,

Best Enc.)

G. Naive Bayes 0.806 0.8035 James Stein 0.8336 0.0301

Perceptron mult. 0.8522 0.8521 James Stein 0.8589 0.0068

Logistic reg. 0.8329 0.8353 One-Hot 0.8528 0.0175

SVM 0.8476 0.8474 Target 0.8547 0.0073

XGBoost 0.8655 0.8634 Sum 0.8727 0.0093

In the case of the ‘Adult’ problem (Table 2), CESAMO and CESAMMO
behave similarly (the difference was after the 3rd decimal).

Table 3. Results from the Credit dataset.

Model CESAMO acc. CESAMMO acc. Best encoder acc. Best acc. value Abs(CMMO,

Best Enc.)

G. Naive Bayes 0.131 0.1304 James Stein 0.1373 0.0069

Perceptron mult. 0.8778 0.8814 Leave one out 0.8914 0.01

Logistic reg. 0.915 0.916 Ordinal 0.9161 0.0001

SVM 0.9176 0.9176 CESAMMO 0.9176 0.0

XGBoost 0.9174 0.9176 Leave one out 0.9176 0.0

In the ‘Credit’ problem (Table 3), CESAMMO outperforms CESAMO in
2 models: the Multilayer Perceptron and the Logistic Regression. Moreover,
CESAMMO got the highest performance given the SVM model.

Table 4. Results from the ‘Employee’ dataset.

Model CESAMO acc. CESAMMO acc. Best encoder acc. Best acc. value Abs(CMMO,

Best Enc.)

G. Naive Bayes 0.9395 0.9418 CESAMMO 0.9418 0.0

Perceptron mult. 0.9409 0.9422 Leave one out 0.9431 0.0009

Logistic reg. 0.9418 0.9418 Leave one out 0.9437 0.0019

SVM 0.9418 0.9418 CatBoost 0.944 0.0022

XGBoost 0.9421 0.9418 Ordinal 0.9455 0.0037

Similarly, for the ‘Employee’ dataset (Table 4), CESAMMO obtained a higher
accuracy than CESAMO in two models: Gaussian Naive-Bayes and the Multi-
layer Perceptron. Furthermore, CESAMMO got the highest performance across
all the other encoding techniques with the model G. Naive-Bayes.
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Table 5. Results from the ‘Car auction’ dataset.

Model CESAMO acc. CESAMMO acc. Best encoder acc. Best acc. value Abs(CMMO,

Best Enc.)

G. Naive Bayes 0.7045 0.6951 MEstimate 0.8254 0.1303

Perceptron mult. 0.8983 0.8974 Ordinal 0.8989 0.0015

Logistic reg. 0.8941 0.8853 CatBoost 0.8952 0.0099

SVM 0.898 0.8949 Leave one out 0.8992 0.0043

XGBoost 0.9 0.8996 CESAMO 0.9 0.0004

In the ‘Car auction’ dataset (Table 5), there was not a significant differ-
ence between CESAMO and CESAMMO. However, CESAMO outperformed
the other given encoders for the XGBoost model.

Table 6. Results from the ‘Telco churn’ dataset.

Model CESAMO acc. CESAMMO acc. Best encoder acc Best acc. value Abs(CMMO,

Best Enc.)

G. Naive Bayes 0.5582 0.7219 MEstimate 0.7378 0.0159

Perceptron mult. 0.7886 0.782 Backward diff. 0.7985 0.0165

Logistic reg. 0.7927 0.798 Backward diff. 0.8001 0.0021

SVM 0.7897 0.7961 Target 0.7993 0.0032

XGBoost 0.8016 0.7991 CESAMO 0.8016 0.0025

Finally, for the ‘Telco churn’ dataset, CESAMMO outperformed CESAMO
in two models (the Gaussian Naive-Bayes and SVM). The highest accuracy
obtained by the XGBoot model was given by CESAMO.

In the implementation of CESAMMO it was observed that, since it calculates
the average of at least 30 errors for a single candidate code (which implies apply-
ing the approximation function), it increases the execution time of the algorithm
compared to CESAMO. It is important to take this into account if the dataset
has multiple categorical and high cardinality attributes.

4 Conclusions

In this paper, we evaluated two categorical encoders based on statistical applied
modeling. The evaluation consisted of solving 6 classification problems, com-
bining 5 ML algorithms with 12 encoding techniques (including CESAMO
and CESAMMO), resulting in 60 model-encoder combinations. CESAMO and
CESAMMO when applied to the Support Vector Machine and the XGBoost
models, outperform other combinations.

It was expected that the multivariable consideration would improve the per-
formance of CESAMO. However, there were problems for which CESAMMO was
better than CESAMO. In all other cases, the opposite occurred. CESAMMO
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and CESAMO behaved similarly. One possible explanation is that a categori-
cal attribute is not necessarily related to all the other variables in the dataset.
Therefore, a possibly nonexistent relationship is being explored; it is more likely
that a categorical attribute is related to a single variable in the entire dataset.
Although this univariate relationship may be found in both versions, CESAMO
achieves this more efficiently.

Making an average of the rating between all possible model-encoder combi-
nations for the 6 solved classification problems, we found that both CESAMO
and CESAMMO are, on average, among the 5 techniques with the highest per-
formance out of the 12 encoding techniques tested. This is shown in Table 7.
(consider that 1 is the best rating, and 12 the last place).

Table 7. Average rating of CESAMMO and CESAMO for the 6 classification problems

Problem AVG ranking for CESAMMO

(out of 12)

AVG ranking for CESAMO

(out of 12)

Employee 2.6 3

Auction 3.6 3.4

Credit 3.8 4.8

Telco churn 3.8 4.2

Titanic 7.8 5.2

Adult 9.2 9.2

Overall ranking 5.1 4.9

Finally, as with most other challenges in ML, it is difficult to know a priori
which will be the absolute best encoding technique for a particular problem. It is
convenient to try out various types of encoders to find the absolute best for the
problem to solve. Both CESAMO and CESAMMO represent good candidates
to take into account.
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regression. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Cor-
reia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1365, pp. 146–155. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72657-7 14

9. Kuri-Morales, A.F.: Categorical encoding with neural networks and genetic algo-
rithms. In: WSEAS Proceedings of the 6th International Conference on Applied
Informatics and. Computing Theory, pp. 167–175 (2015)

10. Kuri-Morales, A.: Pattern discovery in mixed data bases. In: Mart́ınez-Trinidad,
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Abstract. Heart failure disease affects 26 million people worldwide and
it has a lower survival rate than breast or prostate cancer. An early
diagnostic of the disease is very important for prevention and possible
treatment. In this work, we propose using machine learning models to
predict the probability of developing a heart failure disease in a patient.
We compare two machine learning models over a public dataset of risk
factors and patients’ clinical features. After a comparative analysis, we
find that a logistic regression model can predict 87% of the cases on
the data base. After that, we implement an easy web application for
heart failure disease prediction. We anticipate that applying this model
hospitals will be able to reduce their patient admission due to heart
failure disease and patients will be able to reduce their risk and avoid all
the implicit costs.

Keywords: Heart failure disease · Machine learning · Logistic
regression · Random forest · Prevention

1 Introduction

Heart failure is a condition in which the heart is unable to pump blood efficiently
to the entire body [7]. Although their symptoms are less serious than a heart
attack, it is still a life threatening disease. It is a worldwide disease that affects
approximately 26 million people with a lower survival rate than breast or prostate
cancer [7]. In addition, the majority of the patients admitted to the hospital
die within 5 years of admission. Even though heart failure is more common in
advanced age people, there are countries where this disease has been detected in
people that are 55 years or younger and it is predicted that the population with
this condition will increase in the next few years [7].

In the same way, there is an economic impact in the healthcare systems as
a consequence of this disease. In developed countries, heart failure represents
around 1% to 4% of the hospital’s total admission [7]. However, these numbers
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are underestimated as heart failure may be recorded as a secondary diagnosis.
The expense of caring for heart failure is around 1% to 3% of the total cost in
North America, Western Europe, and Latin America [1]. This cost increases in
some places, as there is usually a recurrence of heart failure and admission in
less than a year [2].

Machine learning has been widely explored in the context of heart failure
estimation. Literature reports different approaches based on a combination of
predictors [1,6,8] and the stages of the disease [2]. As shown in the literature, it is
hard to find an accurate model for predicting heart failure. Thus, it is important
to try with different predictors or features and a combination of models to find
more accurate solutions.

In this work, we propose a machine learning model to determine the prob-
ability that a person might develop heart failure in order to take preventive
actions to reduce these probabilities and, at the same time, the costs implied by
the treatment. For this, we use a public dataset of risk factors and the probabil-
ity of developing heart failure. Two machine learning models were trained and
validated. At last, the best model was implemented in an easy web application.

We consider that using machine learning techniques as predictive models will
be useful to identify the patients that are more likely to develop heart failure
based on different features such as chest pain type, cholesterol, age, sex, resting
electrocardiogram results, chest pain during exercise, and increments in heart
rate.

The rest of the paper is as follows. Section 2 describes the related work.
Section 3 presents our proposal and Sect. 4 defines the experimentation setup.
Section 5 presents the results and the application. Finally, Sect. 6 concludes the
paper.

2 Related Work

There are several works related to heart failure prediction. In Rahimi et al. [8],
the authors describe that the best approach to this problem requires a com-
bination of several predictors using a multivariate model in order to improve
the accuracy by using one single predictor. For this assessment, 64 models were
analyzed, 43 predicted death, 10 predicted hospitalization, and 11 death or hos-
pitalization. One of the main conclusions was that the models developed for
death prediction were more accurate than the others. In general the median of
features used in the evaluated models was less than 10. Another report, devel-
oped by Akshay et al. [2], focused on predicting the re-hospitalization of heart
failure patients and not in propensity of developing heart failure. The authors
mentioned that it is hard to assemble a model for this. There are physiological
indicators, however, the patient quality of life is a very important predictor of
the admission rate. In the same way, the phases from first admission, transition
to home and readmission, make risk factors behave differently.

The approach, made by Lane et al. [6], is based on the prediction of sudden
cardiac death. The work mentioned that an implantable cardioverter-defribillator
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is a very effective method of reducing mortality, however, it is a very expensive
device. As there are more patients with this condition, the challenge is in identi-
fying patients with heart failure with significant risk. Still, they are working on
tests for better predictions. They conclude that prevention strategies are required
and are being refined. In the work developed by Adler et al. [1], the authors
describe a boosted decision tree algorithm to discriminate between high and low
risk patients using demographic and physiological features like blood pressure,
white blood cell count, platelets, etc. For this model age was not included in
order to detect other silent predictors and also elderly people were excluded. It
is a very good approach on using machine learning to predict heart failure.

In contrast with the literature, for our proposal, we use different descriptive
features based on demographics, test results, and regular symptoms that are
common in patients that suffer from heart failure disease. We use a logistic
regression as a baseline and compare it with a random forest in order to look
for the best accurate model. Finally, we developed a user friendly application
that could be helpful in determining if a patient has a high or low probability
to develop heart failure.

3 Description of the Proposal

3.1 Data

For this analysis we downloaded an open dataset from Kaggle [3]. This data set
contains 918 observations from different patients and 11 clinical characteristics
in order to see if they have heart disease or not. The risk factors obtained are
the following:

– Age: age in years of the patient.
– Sex: sex of the patient.
– ChestPainType: chest pain type of the patient. The types are divided into

Typical Angina, Atypical Angina, Non-Anginal Pain and Asymptomatic.
– RestingBP: resting blood pressure.
– Cholesterol: serum cholesterol level.
– FastingBS: fasting blood sugar. If it is > 120 mg/dl or otherwise.
– RestingECG: resting electrocardiogram results. If it is Normal, with ST-T

wave abnormality or probable or definite left ventricular hypertrophy by
Estes’ criteria.

– MaxHR: maximum heart rate achieved. Between 60 and 202.
– ExerciseAngina: if there is an exercise-induced angina.
– Oldpeak: if there is an abnormality in the electrocardiogram.
– ST Slope: the slope of the peak exercise ST segment. The values are for:

upsloping, Flat or downsloping.
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3.2 Exploratory Data Analysis (EDA)

In order to get a better understanding of our data, we did an exploratory data
analysis. First, we did a frequency analysis for the categorical variables grouped
by our target variable HeartDisease to get better insight of the behavior of our
data; second, for the numeric variables we did a descriptive analysis to look for
the distribution and magnitude also we obtained the distribution plots; third, we
did a two variable analysis through a pair plot (Fig. 1), to look for the relationship
between the numeric variables and the target variable; last, we did a correlation
analysis to look for those variables with a high relationship among them.

Fig. 1. Pair plot of heart disease variables.

3.3 Machine Learning Workflow

The machine learning workflow is shown on Fig. 2. It comprises of data collection,
train-test split, data pre-processing, training the model, testing the model, model
evaluation, and application implementation. Details are following.
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Fig. 2. Machine learning workflow adopted in this work.

Pre-processing Strategy. In the EDA there were no missing values detected
and the target variable HeartDisease was found to be well balanced. However,
one hot encoding is applied to the categorical variables: Sex, ChestPainType,
RestingECG, ExerciseAngina, and ST Slope, also columns are renamed in order
to maintain the interpretability of the variables. For the features MaxHR, Choles-
terol, RestingBP and Age, we found different scales for the values, so the strategy
is to do a standardization after splitting the data set into train and test samples.

Model Approach. We use logistic regression as the baseline model. Logistic
regression [4] is a generalized linear model that is very simple for interpretation
and because of that, it is widely used in different areas. In addition, we use
a random forest classification model [5]. It is a very robust model that uses a
bagging strategy for training, that allows to obtain a better performance during
the training process. We decided to use these two models since they have a well-
known performance on classification problems, they are easy to deploy, and they
have good results without demanding too much computational resources. The
implementation was done in Python.

Grid Search. In order to get the best models, the hyper-parameters were tuned
using the grid search technique. The results are shown on Table 1.
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Table 1. Hyper-parameter values used in grid search.

Logistic regression

Solver newton-cg, lbfgs, liblinear

Penalty none, l1, elasticnet

Random Forest

Criterion gini, entropy, log loss

Bootstrap True, False

Max depth 3, 6, 9, 12, 15, none

Max features auto, sqrt, log2

N estimators 20, 40, 60, 80, 100

The best hyper-parameters for each model found are the following. For logis-
tic regression: Solver–liblinear and Penalty–l1. For random forest: Criterion–
entropy, Bootstrap–True, Max depth–12, Max features–auto, and N estimators–
40.

4 Experimentation

In order to train and test our models, we split the data using 70% for training
and 30% for testing. We implemented the stratified k-fold cross-validation with
k = 5. The folds of the models are shown on Table 2.

Table 2. Cross validation fold results for best models

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Logistic regression 86.8% 84.2% 82.6% 86.3% 75.9%

Random forest 85.3% 83.1% 82.0% 84.1% 78.6%

We use the following evaluation metrics to compare both models: accu-
racy (1), precision (2), recall (3), and F1-score (4); where, TP, TN, FP, and FN
represent true positive, true negative, false positive, and false negative, respec-
tively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(4)

5 Results and Discussion

The results of the performance for both models on train data are shown in
Table 3, while the evaluation metrics on test data are summarized in Table 4.
From the latter, it can be observed that random forest is slightly better than
logistic regression in terms of accuracy (88%) and F1-score (89%); but contrast-
ing the results from train and test data, random forest might be over-fitted.
Thus, we consider logistic regression to be the best model found so far.

Table 3. Evaluation metrics for both models on train data.

Model Accuracy Precision Recall F1-score

Logistic regression 86% 86% 89% 88%

Random forest 100% 99% 100% 100%

Table 4. Evaluation metrics for both models on test data.

Model Accuracy Precision Recall F1-score

Logistic regression 87% 84% 93% 88%

Random forest 88% 84% 94% 89%

5.1 Application

In order to make the model accessible to people that are not familiar with code or
machine learning, we developed an application using the Python library Gradio.
Through a user friendly interface, it receives as inputs the patient’s medical
variables required by the model and returns whether the patient is prone to
develop heart failure disease based on those inputs. The user friendly interface
is as shown in Fig. 3. In this application, we implemented the logistic regression
model as the core of the inference step. The web application can be public
accessed here: https://huggingface.co/spaces/VictorMG/heart failure.

5.2 Discussion

The main advantages of our proposed work comprise the analysis of two well-
known machine learning models that were built and trained under grid search
and cross validation techniques, making a fair comparison among them; some
features are different from the literature; and also the implementation of an easy
application that uses the best model found as the core of it. We also identify some

https://huggingface.co/spaces/VictorMG/heart_failure
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Fig. 3. User friendly application developed for the heart failure disease prediction.

limitations in our work, such as the number of machine learning models tested
are limited; a more in-deep exploratory analysis of the features is required; and
it might be ethnic bias under the data used. However, this work showed that
machine learning techniques as predictive models might be useful to identify
patients that are more likely to develop heart failures. This would be beneficial
as a tool for prevention and acceleration of patient’s treatment.

6 Conclusions

Based on a data set containing clinical features of many patients, the main
objective of this work was to develop a prediction model to determine whether
a person was prone to develop heart failure disease. Using machine learning
techniques, we developed a logistic regression model, after prepossessing our
data and after comparing the model results versus a random forest model. After
a comparative analysis, we chose the logistic regression model as our final model.
We also developed an application to make the model useful for any person who
wishes to make a prediction based on the clinical features.

For future work, we would like to test the model on other populations in order
to see if there is an ethnic bias, also to refine the model including a time variable
that could give us an estimation of the time before a patient develops heart
failure disease. Another implementation would be to include in the application
the prevention instructions a patient must follow if the model predicts a high
probability of developing heart failure disease, as well as, the estimated costs.
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Abstract. The effects of climate change create climatic temporal imbalances that
favor the development of hydrometeorological phenomena and cause socioeco-
nomic damage when they occur. In the absence of Early Warning Systems and
dedicated monitoring stations, the effectiveness of a Convolutional Neural Net-
work model is tested to interpret and label dataset on the climatic conditions of
theMisantla’s river basin and its surroundings, regarding to the flood hazard level.
Aiming to classify rainfall events in the region using dataset collected through 3
weather stations around the region: northern zone of Veracruz, Mexico, specif-
ically the municipality of Misantla. Neural networks can maximize the use of
dataset collected by weather stations, providing a safer environment in the event
of floods, and having a positive effect on the preservation of human activity. The
dataset provided allows to label data as ‘GREEN’, ‘YELLOW’ and ‘RED’ with
more than 95% accuracy, performing better when working with a large number
of validation data, but also shows a slowdown during the integration of larger
training data sets.

Keywords: Convolutional Neural Network · Precipitation · Early warning
system · Flood risk determination · Flood labeling

1 Introduction

The effects of climate change have caused an imbalance in climatic temporality, favour-
ing the development of hydrometeorological phenomena, causing socio-economic
havoc as they occur [4,10]. In addition, technological developments make it possible
to implement weather classification models to alert the population to possible disasters,
such as floods [14].

The Misantla river basin, has been affected by the aforementioned imbalance, an
example of which, was its overflow when it was affected by hurricane “Roxane” in
October 1995, causing extensive damage to a population of approximately 8,000 inhab-
itants [4]. The lack of adequate monitoring of the variables that cause the river to over-
flow made it impossible to mitigate its impact on the city of Misantla. In the absence of
an Early Warning System (EWS) and dedicated monitoring stations, the population is
left at the mercy of inclement weather.

Therefore, the use of a model based on Convolutional Neural Networks (CNN) is
explored,a model that is able to interpret and label the dataset on the climatic conditions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 192–203, 2022.
https://doi.org/10.1007/978-3-031-19493-1_16
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of the Misantla river basin and its surroundings, with respect to the present flood hazard
level. This model functions as a EWS system supported by data from climate stations
established at key points around the Misantla river basin.

The remainder of the article is divided as follows: in Sect. 2, information on differ-
ent CNN applications in the field of flood prevention and weather forecasting can be
seen. Section 3, contains the description of the dataset used, its processing and architec-
ture 3.3 used to produce the results in Sect. 4 and their discussion 4.2. Finally, Sect. 5
presents conclusions and future work.

2 Related Work

This section describes related Convolutional Neural Network (CNN) work for weather
forecasting, water body flow monitoring, flood warning and other elements. Larraondo
et al. [13] demonstrate how CNNs can be used to interpret the output of Numerical
Weather Prediction (NWP) automatically to generate local forecasts. aiming to prove
that these models can capture part of the mental and intuitive process that human fore-
casters follow when interpreting numerical weather data.

Chen et al. [2] employ 3-Dimensional CNN and 2-Dimensional CNN as a method
to better understand the spatial relationships of typhoon formation features. Fu et al.
[6], apply a 1-Dimensional CNN in conjunction with Bi-directional Long Short-Term
Memory in weather prediction because of the effectiveness of CNNs in extracting fea-
tures and capturing short period connections between datasets.

Donahue et al [5], implement CNN as the basis of an Long-term Recurrent Convo-
lutional Networks for its rapid progress on visual recognition problems, as well as its
application to time-varying inputs and outputs.

Shi et al. [17], integrate convolutional layers in conjunction with an Fully Connected
Long Short-Term Memory network to generate short-term precipitation forecasts as if
it were a long-term spatio-temporal forecasting problem.

Zhang et al. [22], proposes deep architecture using a bidirectional 3-Dimensional
CNN and Convolutional Long Short-Term Memory to transform video into a 2-D map-
ping of learning and classification features.

Han et al. [7], employs a CNN, converts the short-term forecasting problem into a
binary classification problem and exploits the advantage of CNNs in its global pattern
learning to demonstrate its superiority compared to other Machine Learning methods in
short-term forecasting.

Pally, Jaku Rabinder Rakshit [16], developed a new python package called “Flood-
ImageClassifier” including various CNNs architectures to classify and detect objects
within the collected flood images, embeded in a smartly designed pipeline to train a
large number of images and calculate flood water levels and inundation areas which
can be used to identify flood depth, severity, and risk.

Nobuaki Kimura et al. [12], combine knowledge transfer and CNNs for time series
flood predictions. Its application has a margin of error of less than 10 percent with
respect to variation with water level.

Syed Kabir et al. [11] create a CNN model for fast real-time flood estimation and
prediction, contrasting it with an Support Vector Machine model and showing the supe-
riority of the former. Supported by data collected over a 10-year period (2005–2015).
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Cho et al. [3] propose a model based on CNN classification to determine flood
risk. This model is suggested as an initial study to determine time-optimal evacuation
actions.

S. Smys et al. [18] through the use of Internet of Things (IoT) sensors that collect
data and store it in the cloud, applies a CNN-based model that predicts the inflow of
water into dams and lakes in order to prevent flash floods during rainfall events.

ChenChen et al. [1] offer a CNN deep learning-supported model for flood prediction
in a watershed, with data collected over 10 years, via IoT devices.

Dostdar Hussain et al. [9] study a time series approach with CNN in the prediction of
water flow in a river, comparing it with an Extreme Learning Machines (ELM) model.

Kou-Lin Hsu et al. [8] describe a system, which utilizes the computational strength
and flexibility of an adaptive Artificial Neural Network model to estimate rainfall rates
using infrared satellite imagery and ground-surface information.

Mhara [15], presents a two-layer CNN-based model, using 10 years of history for
flood prediction in a catchment, considering temporal, geographical and trend charac-
teristics. The model is intended to be used for water level monitoring through IoT and
flood disaster prevention.

Zhang, C. et al. [21], offer the“Tiny-RainNet” model for short-term rainfall fore-
casting (nowcasting) in a period between 1 and 2 h, combining CNN and Bi-directional
Long Short-Term Memory. The model takes into account the influence of spatio-
temporal meteorological conditions, thus avoiding the cumulative error presented in
conventional models.

WWang, Y. et al [19], apply two CNN-based models for flood susceptibility map-
ping that consider 13 flood triggers and demonstrates a higher accuracy of both models
compared to an Support Vector Machine model. These models are intended to be used
to assist in flood damage mitigation and management.

3 Methodology

3.1 Weather Stations

To collect weather data of Misantla municipality , in Veracruz, Mexico, three weather
stations were deployed each in a specific location around Misantla. The deployment
areas were selected considering principal points of rain runoff and the hydrological
region “RH 27-Ae”, where Misantla belongs.

The installed stations are three “ambient weather ws-2902a” liked to a wire-
less internet connection and powered by two AA batteries respectively, capable to
gather indoor and outdoor data, creating each an online dataset available in https://
ambientweather.net/ using the respective user and password to which the equipment is
linked (Table 1).

3.2 Dataset

The dataset used, contains 10907 different inputs collected by the 3 weather stations
over the past 2 years.

https://ambientweather.net/
https://ambientweather.net/
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Table 1.Weather stations location table.

Station Location Coordinates

1 ITSM, Misantla, Veracruz, Mexico 725699N, 2207381E

2 Tenochtitlan, Veracruz, Mexico 718167N, 2191478E

3 Salvador Diaz Mirón, Veracruz, Mexico 723452N, 2187739E

Each input registered in the dataset is associated with a specific label regarding
the flood warning that kind of record represents, “GREEN” labeled records mean “No
risk of flood”, “YELLOW” labeled records mean “Possible risk of flood” and “RED”
labeled records mean “Imminent flood in the area”. The dataset contains 3909 records
labeled as “GREEN”, 3501 records labeled as “YELLOW” and 3498 records labeled as
“RED”. Values in the dataset are used as listed in 2:

Table 2. Dataset data description

# Value Description

1 Simple date Format “DD/MM/YYYY” is converted into integer values calculating the number of days between a given date and 1/1/1900.

2 Hour Counts the whole hours passed in the current day.

3 Day Registers the current day number.

4 Month Registers the current month number.

5 Outdoor temperature Logs air temperature in exteriors, expressed in degrees Celsius.

6 Hourly rain Records millimeters of rain per hour, in the current hour.

7 Event rain Tracks millimeters of rain between intervals lower than an hour.
For instance, if 71mm of rain are registered first and followed by 100mm
of rain in less than an hour, both are part of the same “Event Rain” interval.

8 Hourly rain Records millimeters of rain per hour, in the current hour.

9 Daily rain Counts millimeters of rain per day, in the current day, since midnight (00:00).

10 Weekly rain Shows the amount of precipitation that has accumulated in the calendar week total,
and resets on Sunday morning at midnight.

11 Monthly rain Records millimeters of precipitation in the calendar month total, and resets on the first day of the Month.

12 Total rain Is defined as the running total since station was powered up.

13 Outdoor humidity Is the ratio of the current absolute humidity to the highest possible absolute humidity.

14 Solar radiation Measures in Watts per square meter( W/m2), radiant energy emitted by the sun
from a nuclear fusion reaction that creates electromagnetic energy.

15 Label Replaces titles like “GREEN”, “YELLOW” and “RED” for numerical values 2, 0 and 1, respectively

The data cleansing process consists of the conversion of collected information into
actionable numerical formats, converting values such as date, day, time and labels into
standardized numerical values available for experimentation, in the dataset cleansing,
incomplete records are erased, records that report “null” values due to the lack of data
recorded by the weather stations, or periods in which the system reported data out of
place because it was undergoing maintenance in an air-conditioned area.

For example, if the weather station required a battery change, or if a bird struck
the weather station so hard it required fixing a sensor. The data collected during the
maintenance hour reports null values in “Outdoor Temperature”, “Outdoor Humidity”
and “Solar Radiation”, due to the lack of any listed field like the previous mentioned.
The whole row is discarded.
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Table 3. Dataset Sample

Simple date Hour Day Month Outdoor temperature
(◦C)

Hourly rain
(mm/hr)

Event rain
(mm)

Daily rain
(mm)

Weekly rain
(mm)

Monthly rain
(mm)

Total rain
(mm)

Outdoor humidity
(%)

Solar radiation
(W/m2)

Label

44706 23 24 5 24 0 0 0 1.8 60.7 278.2 81 0 GREEN

44705.81 19 24 5 25.5 0 0 0 1.8 60.7 278.2 84 21.6 GREEN

44705.8 19 24 5 25.8 0 0 0 1.8 60.7 278.2 84 30.3 GREEN

44705.8 19 24 5 25.8 0 0 0 1.8 60.7 278.2 84 38.2 GREEN

44690.63 15 9 5 33.7 2175 171 171 172.8 231.7 449.2 63 655.5 YELLOW

44690.63 15 9 5 33.5 2176 196 196 197.8 256.7 474.2 62 672.4 YELLOW

44690.63 15 9 5 33.5 2177 220 220 221.8 280.7 498.2 64 666.2 YELLOW

44650.75 18 30 3 28.3 0 265 265 266.8 325.7 543.2 54 22.9 RED

44650.75 17 30 3 28.4 0 266 266 267.8 326.7 544.2 52 26.4 RED

44650.74 17 30 3 28.5 0 257 257 258.8 317.7 535.2 52 29 RED

From the values registered in Table 3, flood predictions are heavily based on “Event
Rain”, “Outdoor Humidity” and “Outdoor Temperature” since the millimeters of water
registered keep increasing in a rain event, the “Outdoor Temperature” marks how fast
water can evaporate in the area and “Outdoor Humidity” establishes the water evapora-
tion ratio. The other values in the dataset are provided to the machine in order to find a
correlation between all the different values without evaluate them isolated.

3.3 CNN Architecture

A CNN usually takes a tensor of order 3 as input [20], the input dataset goes through a
set of processing, called layers, which may be grouping, convolution or normalization,
as well as fully connected or loss layers.

Fig. 1. Abstract description of CNN structure

Figure 1 illustrates layer by layer how the dataset passes through a CNN, starting with
the input layer x1for processing in the tensor w1. The output of the first layer is x2,
which also acts as input for the processing of the second layer. This processing contin-
ues until all the layers of the CNN have been completed, providing an output in xL. The
last layer is a loss layer. Let us assume that t is the corresponding target value for the
input x1, then a cost or loss function can be used to measure the discrepancy between
the forecast xL of CNN and the target t.

In the conducted experiment, a Google Collab Instance was used with the following
specs:

– GPU: Tesla P100-PCIE-16GB
– CPU: Intel(R) Xeon(R) CPU @ 2.00GHz
– Socket(s): 1
– Core(s) per socket: 1
– Thread(s) per core: 2
– L3 cache: 39424K
– RAM: 13GB
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– DISK SPACE: 100GB Free Space

The algorithm was run using Python 3.6 including the following libraries:

– tensorflow
– numpy
– pandas
– sklearn

The CNN was fully connected, implementing a Sequential model, “sparse categorical
crossentropy” as loss function, “Nadam” as Optimizer, initializing with an input layer
of 13 values, 10 layers of linear rectification (ReLU) and an output layer of 3 values,
training in sets of 600 entries at a time and 20 epochs. The number of convolutions is
specified in Table 4:

Table 4. CNN layer data

Layer # Convolutions Activation

1 169 ReLU

2 169 ReLU

3 36 ReLU

4 49 ReLU

5 64 ReLU

6 64 ReLU

7 49 ReLU

8 36 ReLU

9 169 ReLU

10 169 ReLU

The experiment was conducted 3 times, each one dividing the current dataset in
different proportions (Table 5):

Table 5. Dataset segmentation values

Experiment # Train data % Test data %

1 70 30

2 60 40

3 80 20
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4 Experiments and Results

The aim of this experiment is to test different distributions of a dataset for a better clas-
sification of rainfall events in Misantla, Veracruz, using a dataset of weather data from
strategically installed weather stations in the surrounding area. Assessing the effective-
ness of CNN models taking part in the process of interpreting numerical climate data,
similar to human interpretation.

4.1 Validation

The following are the results of experiments carried out with a data rate of: 60% training
data and 40% test data (Figs. 2 and 3).

Fig. 2. Confusion matrix 60/40
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Fig. 3. ROC test 60/40

70% training data and 30% test data (Figs. 4 and 5).

Fig. 4. Confusion matrix 70/30
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Fig. 5. ROC test 70/30

80% training data and 20% test data (Figs. 6 and 7).

Fig. 6. Confusion matrix 80/20



Classification of Flood Warnings Applying a Convolutional Neural Network 201

Fig. 7. ROC test 80/20

4.2 Discussion

The dataset provided performs better when working with a large number of validation
data, but also shows a slowdown during the integration of larger training data sets.

It is understood that the system achieves adequate training and testing with a dataset
ratio of 60/40 without disconnection between cells preparing it for a better integration
with a validation subset, in contrast the number of labels mismatched increases in case
of changing training and testing ratios. Furthermore, there is a difference in data accu-
racy between the three labels “GREEN”, “YELLOW” and “RED”, which seems to be
related to the number of elements provided for each label, with the highest number of
data provided by “GREEN” labeling, followed by “YELLOW” labeling and the lowest
number by “RED” labeling.

Using Convolutional Neural Networks in a ’nowcasting’ phenomenon as Flood
forecasting, that is strongly dependent on recorded rainfall events, and real time moni-
toring allows to take advantage of variables that have little to negligible influence on its
prediction and develop properly trained EarlyWarning Systems capable to use real-time
inputs as a validation subset and keep track of possible incoming floods.

5 Conclusions and Future Work

Convolutional Neural networks are capable of monitor data collected by weather sta-
tions and identify inputs as possible flood warnings like a person could, removing the
need of continuous human intervention, as well as the fast computing, prediction and
response to flood warnings, providing a safe environment in the event of floods and
having a positive effect on the preservation of human activity. Implementations of this
nature offer opportunities for action in areas far from large cities or those that are in the
process of development. Future applications include:
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– Estimate duration of rainfall events
– Estimate water levels of recorded rainfall events
– Estimating water levels of predicted rainfall events
– Determining flood action intervals
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Abstract. Digital transformation after the pandemic is a must if a com-
pany wants to survive in a highly competitive environment. Machine
Learning (ML) applications are no strangers to Digital Transformations,
and banks are looking for ways to improve efficiency by means of sim-
ilar technologies. In this work, we propose a machine learning model
for predicting the credit default using the LendingClub public dataset.
The accepted loans include data ranging from 2007 to 2017. For this
purpose, we implement support vector machines and logistic regression
models. The results showed that support vector machines is a high accu-
rate model (93%) for predicting the credit default.

Keywords: Credit default · Machine learning · Support vector
classifier · Regression

1 Introduction

Today, we have witnessed the significant and rapid growth of machine learning,
not only in banks, but in different industries ranging from streaming platforms
to wholesale foods. Digital transformation after the pandemic is a must if a com-
pany wants to survive in a highly competitive environment. Machine Learning
(ML) applications are no strangers to Digital Transformations, and banks are
looking for ways to improve efficiency by means of similar technologies. With
that being said, why is it important to spend some time revisiting credit default
risk if banks are already doing it? Our world has changed after the pandemic
and so did the banks. “The need to mitigate the risk of an increase in non-
performing loans, due to COVID-19, calls for investments in automated credit
decision-making that combined with the deployment of transactional behavioural
data will allow for enhanced risk management and lead to improved credit deci-
sions.” [2]. This means, data automation is now a strategic target that will require
jobs, resources and educated project proposals. Our motivation derives from the
conjunction between the urgent need for automated decisions and talent needed
to provide sufficient support.

Last but not least, there is a growing interest in fostering cooperation among
policymakers to ease the constraints on collecting, storing and analysing big data.
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Numbers support the latter, “Central banks’ interest in big data and machine
learning has increased over the last years: around 80% of central banks discuss
the topic of big data formally within their institution, up from 30% in 2015” [6].

In this work, we aim to predict if a certain user will default based on infor-
mation provided for helping improving the loan methodology/pipeline. The data
use in this work comes from a compilation of LendingClub records [1]. Then,
the work follows an end-to-end path starting from pre-processing, feature engi-
neering, modeling and evaluation through results given. Through a grid search
method, we select the best configuration for both the support vector machines
and the regression models. Our work, rather than focusing on what is the best
option from collectively exhaustive testing, it shows a basic path to analyse credit
default with ML.

The rest of the paper is as follows. Section 2 explores related works and
research on credit risk in peer-to-peer lending. Then, Sect. 3 presents the method-
ology followed in the work. Section 4 shows the results. Lastly, Sect. 5 concludes
the paper.

2 Related Work

As Osei Salomey, et al. [4] state in their work, there is a shortage of credit risk
datasets, available to the public, this has been a big challenge in the domain of
finance. A good way to tackle this problem is to share more resources to help
researchers with their studies. We looked at well explained paper “Accuracies
of some Learning or Scoring Models for Credit Risk Measurement” [4] in which
the authors used techniques such as Multi-layer Perceptons and Convolutional
Neural Networks. They used label encoders and metrics such as confusion matrix,
accuracy and f1-score.

We found more complexities while studying credit default. As Mohammad
Mubasil describes in his work “Credit Risk Analysis in Peer to Peer Lending
Data set: Lending Club” [3], the market started to gain traction through the
financial crisis of 2008 and as the economy improved so did the number of loans.
The latter, means there is an exceptional time frame in credit default. Mubasil
makes use of Decision Tree and Random Forest techniques.

3 Methodology

For our modeling of credit default, we consider two different ML techniques:
(i) support vector machines (SVM) and (ii) logistic regression. Our methodol-
ogy comprises five main steps: data pre-processing, feature extraction, feature
selection, building models, and model evaluation, as shown in Fig. 1

3.1 Data Preparation

We use ten years of data, to somehow shadow the effect of 2008 crisis, from
the Lending Club dataset [1]. The data goes from 2007 to 2017. It has around
100 thousand observations, 150 variables and one target column “loan-status”.
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Fig. 1. Workflow for the credit default adapted from the Lending Club pipeline [1].

After downloading the data set, we found the first column was an index with
no particular value, so we dropped the column in the first place. After that we
looked at each column description to get a general idea of which variables are
considered during the procedure the Club executed before lending money.

Then, we looked at the values of the target column, as shown in the excerpt of
Table 1. In this case, the possible values of the loan status are shown in Table 2.
Most of the observations fall in the Charge-Off and Fully-Paid classifications. The
other options indicate the payment period is on-going so those status options
are ignored in our analysis and data preparation. Then, we assigned 1 to those
values containing “Charge-Off” and 0 to the “Fully Paid” loans.

Table 1. Examples of feature description, adapted from [1].

ID Feature Description

0 acc now delinq Number of accounts borrower has

1 acc open past 24mths Number of trades opened in past 24 months.

2 addr state The state provided by the borrower in the loan

3 all util Balance to credit limit on all trades

4 annual inc The self-reported annual income provided

...

148 settlement amount The loan amount of the borrower to pay

149 settlement percentage Percentage payoff

150 settlement term Months to pay
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Table 2. Target variable “Loan Status”.

ID Status code Observations

1 Fully Paid 69,982

2 Charged Off 16,156

3 Current 12,726

4 Late 31 to 120 days 730

5 In Grace Period 264

6 Late 16 to 30 139

7 Default 3

With this, we proceeded to use the describe method in our data-set to get an
idea of how numeric variables behave and the number of values the categorical
variables have. Sometimes, columns have data contained in other columns, we
deleted redundant sections from our input. We choose not only those variables
with high correlation to our target, but also those variables that fundamentally
made sense to the problem domain. Let’s say we look closely at Home Ownership,
FICO and Employment Tenure, those variables, although categorical, make a lot
of sense to predict a possible default. A home owner that has a good FICO grade
and a long employment history makes a good candidate for loans; we can infer
they know how to manage payments versus their personal finance. This is why
we included some of professional experience and the way banks work to better
select the set of variables to work with. Finally, we ended up with a clean data-set
of 10 features and 1 target, as shown in Table 3.

Table 3. Clean dataset.

ID Column name Data type

1 GEO Category

2 Grade Category

3 Home Ownership Category

4 Initial List Status Category

5 Purpose Category

6 Term Category

7 Verification Category

8 Employment Length Category

9 Last FICO range CFloat

10 Total Recovered Principal Float

11 Interest Rate Float

Target Charged Off Category
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We encoded the categorical variables using the one-hot encoding method.
For the target variable, we use a binary encoding. After that, we standardized
the numerical variables.

3.2 Building Models

We choose two models for our ML proposal, support vector machines and logistic
regression.

Support Vector Machines (SVM). The goal of this model is to find a hyper-
plane in an N-dimensional space (N - the number of features) that neatly clas-
sifies the data points. To separate two classes of data points, there are many
possible hyper-planes that could be chosen. A plane must be found that has
the maximum margin, that is, the maximum distance between the data points
of both classes. Maximizing the margin distance provides some reinforcement
so that future data points can be classified with more confidence [7]. For our
experimentation, we use a radial basis function kernel.

Logistic Regression. This model is a type of regression used to model situa-
tions where growth or decline accelerates rapidly at first and then slows down
over time. Logistic regression is useful when you want to predict the presence or
absence of a feature or outcome based on the values of a set of predictors. It is
similar to a linear regression model, but it is adapted for models in which the
dependent variable is dichotomous [5]. L2 regularization is used in our experi-
mentation.

For training purposes, we split the data into 70% for training and 30% for
testing. We used grid search for finding suitable hyper-parameters of the SVM.
After that, a 5-fold cross validation technique was conducted in both models.

3.3 Model Evaluation

We evaluate the performance of the supervised models using four metrics: accu-
racy (1), precision (2), recall (3), and F1-score (4); where, TP are the true
positive, TN are the true negative, FP are the false positive, and FN are the
false negative.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)



ML Techniques in Credit Default Prediction 209

F -score = 2 × precision× recall

precision + recall
(4)

Accuracy measures the total number of true positives in the whole testing
data; precision is the ratio of the true positives and true negatives, and the total
number of samples; recall is the ratio of true positives to all positives in the
ground truth; and F1-score metric uses a combination of precision and recall.
High F1-score means high precision as well as high recall.

4 Results and Discussion

We conducted the experiments described above. Table 4 and Table 5 summa-
rize the results from both the SVM and the logistic regression models. Results
reported are the mean values of the metrics.

Table 4. Performance of the SVM model.

Score Precision Recall F-score Support

Label 0 0.94 0.91 0.93 4861

Label 1 0.91 0.94 0.93 4833

Accuracy – – 0.93 9694

Macro avg 0.93 0.93 0.93 9694

Weighted avg 0.93 0.93 0.93 9694

Table 5. Performance of the logistic regression model.

Score Precision Recall F-score Support

Label 0 0.92 0.92 0.92 4861

Label 1 0.92 0.92 0.92 4833

Accuracy – – 0.92 9694

Macro avg 0.92 0.92 0.92 9694

Weighted avg 0.92 0.92 0.92 9694

The SVM model got an accuracy of 93%, while the logistic regression got an
accuracy of 92%. Similar results were found in terms of the F-score. To validate
the results, Fig. 2 and Fig. 3 show the confusion matrices of both models SVM
and logistic regression, respectively.
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Fig. 2. Confusion matrix of the SVM model.

Fig. 3. Confusion matrix of the logistic regression model.

In this work, we consider SVM as the best model in terms of the F-score and
the accuracy. The SVM model can predict the loan status as part of the credit
risk measurement. In comparison with the state of the art, our work uses SVM for
predicting the credit default, and not neural networks [4]. However, the current
work is a preliminary workflow for predicting credit default. We consider there
is room for more investigation before implementing it. For example, more robust
experimentation is required and other features might be taken into account.
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5 Conclusions

This work, we presented a machine learning model for predicting the credit
default and helping improving the loan methodology/pipeline. For this, we
adopted the ML workflow that comprises data pre-processing, feature extrac-
tion, feature selection, building models, and model evaluation steps.

In the end, our results showed good accuracy and acceptable confusion matri-
ces. In this work, we only implemented SVM and logistic regression techniques,
but using other alternatives could be of interest and then compare their perfor-
mance amongst the models.

Finally, we highlight the importance of implementing ML in data analysis
activities, because it helps make decisions in a more objective and customized
way.
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Abstract. Intermittency of solar radiation over earth surface due to cloud pres-
ence poses a great challenge for power production at photovoltaic fields. Pre-
diction of cloud kinetics may help to deal with variations of energy production
and their compensation to satisfy electricity demand. Nowadays, there are huge
amounts of satellite information available about clouds at most regions of the
world. That information could be useful to characterize cloud kinetics and to
calculate solar radiation ahead of time. In this paper, we propose two methods
to predict cloud kinetics by using artificial neural networks (ANN) and satellite
images. First method is mainly graphical and uses a convolutional ANN to predict
the cloud satellite image at time k + 1 from the set of previous n cloud satellite
images. Then, the cloud position vector, that represents the predicted image, is
obtained. Second method is mainly numerical and uses a dense ANN to directly
predict the cloud position vector at time k+ 1 from the set of previous m position
vectors of satellite images. The predicted cloud position vectors are compared
to the real ones when the corresponding satellite image becomes available. Time
series of predicted cloud position and velocity vectors are compared through the
RMSE index to quantify the precision of predictions. We find that even though
both methods offer a short-term forecasting with good accuracy, the method using
dense ANN provides more accurate results though its performance should be
checked under less simplified assumptions.

Keywords: Cloud kinetics · Convolutional ANN · Dense ANN · Satellite
images · Kinetics forecasting · Cloud forecasting

1 Introduction

Solar energy is one of the most commonly available renewable energies that has found
widespread use for electric power generation in all sorts of applications (i.e., industrial,
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commercial, residential) in both urban and rural areas, connected to the electric grid or
isolated from it, in large photovoltaic (PV) fields or just a few panels [1]. The amount
of PV power generation is very sensitive to the atmosphere composition in the place
where the panels are located. Solar radiation reaching the surface of PV panels varies
continuously and randomly due to reflection, scattering, and absorption by airmolecules,
aerosols, clouds, and dust [2]. Clouds block most of direct radiation and constitute the
major cause of intermittency of solar radiation, and therefore of uncontrolled increases
or decreases of PV power generation [3].

The unavoidable intermittency of solar radiation poses great challenges to power
generation such as: a) Maintaining electricity supply and system stability, b) Managing
power generation cost effectively, and c) Lowering CO2 emissions from nonrenewable
sources [4]. Maintaining electricity supply during normal operation in the presence
of intermittency affects reliability and flexibility of power system operation with loss
of system inertia [5]. Achieving cost effectivity in the presence of intermittency may
require flexible fuel-burning generation, importing electricity from other power systems,
addition of electricity storage means, and variation of load demand patterns [6]. Dealing
with lack of generation because of intermittency requires flexible operation of fossil-
fueled generation, which will increase CO2 emissions instead [7].

Knowledge of short-term variations of solar radiation at specific locations is essen-
tial for profitable, reliable, and sustainable operation of PV power plants of any size.
The variability of solar PV power is mostly due to the instantaneous crossing of clouds
across the PV power plant at timescales as short as 1, 5, or 10 min [8]. The effective-
ness of solutions to compensate the effects of solar radiation intermittency on the power
output of PV plants and on the operation of power systems largely depends on the accu-
racy of forecasting solar radiation. Even more, since cloudiness is the major cause of
intermittency, predicting the behavior of solar radiation can be approached as a problem
of predicting the movement of clouds [9, 10]. This relationship has inspired research
projects about modeling and predicting solar radiation based on cloud behavior over
specific areas of interest on earth’s surface, e.g., the area around large PV plants. Many
projects rely on cloud image processing as an appropriate way to find out the character-
istics of cloud movement. Major approaches include processing geostation-ary satellite
images [11, 12] and ground-based sky images [13].

Earliest attempts to analyze cloud motion from satellite images were done at the
time the first geostationary operational environmental satellites (GOES) were launched
[14, 15]. Calculation of cloud motion vectors (CMV) became an important asset of
meteorological information at national fore-cast centers all around the globe. The Max-
imum Cross Correlation (MCC) method was developed to analytically determine CMV
by application of the Fast Fourier Transform to determine the cross-correlation coeffi-
cients of cloud features (edges, bright, etc.) from a pair of consecutive pictures from
geosynchronous satellites [16]. Additionally, to the fact that the MCC method is com-
putationally intensive, it may produce many spurious velocity vectors. Nevertheless,
thereafter numerous studies were carried out to improve calculation of CMV from dis-
placements of cloud features observed in the infrared or visible band of satellite imagery
[17].
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The use of artificial neural networks (ANN) for solving image correspondence and
object trackingproblems is amore recent development [18, 19]. Later, theHopfieldneural
networkwas applied for cloud tracking [20]. Since CMV are computed by extracting and
tracking cloud features, enhanced feature extraction improved CMV computation per-
formance. The deep convolutional neural network (CNN) [21] was proved able to extract
and utilize image features effectively. Methods based on deep CNN were introduced to
perform cloud detection [22], cloud classification [23] and satellite video processing [24]
in more recent years. Despite deep CNN performed brilliantly with spatial data, it could
not deal with temporal data [25], which is a major factor for cloud motion forecasting.
Conversely, recurrent neural networks (RNN) are well suited to learn complex relation-
ships in the time domain and have become the standard for time series forecasting [26].
Nevertheless, simple RNN are not able to backpropagate the error signal for long-term
learning. To solve this problem, Long Short-Term Memory (LSTM) neural networks
[27] were proposed. LSTM has become widely used in the solar power forecasting field
[28, 29].

The research in this paper is concerned with the use of cloud kinetics (i.e., cloud
position and velocity) to calculate solar radiation ahead of time to find out the variations
of PV power generation due to solar intermittency caused by clouds crossing a specific
area of earth surface. It takes advantage of the availability of satellite images at short
timescales portraying the presence of clouds over the area of interest to calculate cloud
kinetics, instead of deriving cloud velocity from an array of solar radiationmeasurements
[30]. We introduce the definition of the position and velocity of cloud motion in terms of
vectors in a Cartesian plane defined by a satellite image of the clouds in a specific area,
andwe explore twomethods to predict cloud kinetics by usingArtificialNeuralNetworks
(ANNs). Section 2 provides the background of the techniques involved in this research
including the processing of satellite images for cloud kinetics, the basis of convolutional
and dense artificial neural networks for image and vector forecasting and, quantification
of forecasting accuracy by means of forecasting errors and error indexes. Section 3
presents the results of cloud kinetics forecasting using both approaches, convolutional
and dense ANNs. Prediction errors are calculated against the real images when they
become available, and the prediction performance is obtained through the RMSE error
index of the time series of cloud kinetics. Finally, in Sect. 4, a fewmeaningful conclusions
are drawn, and future research work is pointed out.

2 Methodology

As mentioned before, this work aims to forecast cloud kinetics by using ANN and
satellite images. In this section, we describe the methodology to achieve it. First, we
describe the conversion of satellite images into pixeled images to be more easily used
for forecasting. Second,we introduce the tools fromMachineLearning, namelyANNs, to
forecast cloud kinetics. Finally, we explain the calculation of forecasting errors and error
indexes considering the real satellite images to quantify the performance of prediction.
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2.1 Processing of Satellite Images for Cloud Kinetics

First step to forecast cloud kinetics is to process satellite images in order to detect clouds
from the NOAA satellite image archive [31], i.e. separate cloudy from clear sky. In order
to achieve this, GOES-R developed a Clear Sky Mask algorithm [32]. This algorithm
determines the presence of clouds by converting a satellite image in the form of a binary
cloud mask that identifies pixels as clear or cloudy sky as shown in Fig. 1. Figure 1a
shows a satellite image in the infrared band 13, 10.3µm, which is considered clean since
it is less sensitive to water vapor. The binary cloud mask assigns to every pixel a one
or zero, yellow or purple color, depending on the presence or absence of cloudiness, as
shown in Fig. 1b. Thus, the binary cloud mask value CMV is a dimensionless quantity,

CMV =
{

0 clear sky
1 cloudy sky

, (1)

assigned to every pixel with approximately 2 km resolution.

Fig. 1. Example of cloud detection in satellite images for an image in band 13, (a), and the
resulting figure as generated by the GOES-R Clear Sky Mask algorithm, (b).

For the sake of simplicity, and to prove our methodology, we focus on a small image
formed by 11×11 pixelswhich correspond to a surface of 22×22 km2.An important step
is to define the position of a cloud in the considered image. We define a representative
position of a cloud in an image by the cloud centroid of the image. In this approximation,
we consider that the cloud density is constant, and that the clouds scattered across the sky
can be simplified by the corresponding projection on a 2D horizontal plane.We compute
a center of mass for each image using the values provided by the cloud binary mask, i.e.
a cloudy pixel gets a CMV as defined in Eq. (1). Then, we compute the clouds centroid
for each image to calculate its kinetics. The cloud centroid for an image is defined by
C = (

Cx,Cy
)
and each component is computed as

Cx =
∑11

i=1
∑11

j=1CMV iji∑11
i=1

∑11
j=1CMV ij

(2)

Cy =
∑11

j=1
∑11

i=1CMV ijj∑11
j=1

∑11
i=1CMV ij

(3)
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where the indexes i and j correspond to the x and y coordinates respectively, and CMV ij

corresponds to the cloud mask value CVM at a pixel located at position (i, j) as shown
in Fig. 2.

Fig. 2. Grid image example of an 11 × 11 pixel image. Yellow, purple, pixels correspond to
cloud presence, absence, with a CMV = 1 or 0, respectively.

With this procedure we obtain a representative position of the cloudC for each image
of our sequence, and by considering two adjacent images we can define a representative
velocity of the clouds V at a given time k defined by

V t = �C

�T
= Ck − Ck−1

5min
(4)

Next step to forecast cloud kinetics is to use this information as inputs for Machine
Learning tools and compare their performance.

2.2 Neural Networks for Forecasting

In the last years, several types of artificial neural networks (ANN) have been developed,
which main inspiration is the brain’s structure and functionality [33, 34]. For instance,
some types of ANNs are built to use numerical data as input/output of the net, which
we refer to as numerical-data approach. On the other hand, there are other kinds of
ANNs designed to operate with images, which we refer to as image-data approach. As
a first step towards the analysis of cloud kinetics using ANN, we use both approaches
to forecast the cloud’s centroid position and compare the goodness of the prediction as
well as their advantages and disadvantages. In order to achieve this, and for the sake of
simplicity, we use the simplest ANNs for the numerical-data and image-data approaches.

The simplest ANN is the so-called dense neural network (DNN) and it works with
numerical-data set. It basically consists of linked layers of neurons, perceptrons, that
map the input to the output data and its deepness is given by the number of hidden layers
as shown in Fig. 3(a). A perceptron consists of a function that takes two inputs, multiplies
them by a weight and a bias value and passes the result through an activation function to
obtain the desired result. To obtain the best result the weight is adjusted by training the
net using an algorithm. If the algorithm uses the input data to calculate the output, then
it is called a feed-forward ANN, whereas if the training algorithm uses the output data
to better adjust the weight and compute the final data it is called backpropagation ANN.
The activation function of the model is very important since it provides the non-linear
relation between inputs and outputs and is selected according to the data range. The
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main activation functions are the ReLu, Softmax, tanH and Sigmoid functions and are
used according to the ANN application.

An ANN model that has been successfully used to deal with image-data sets is the
Convolutional Neural Network (CNN) or ConvNet [35, 36]. The CNN main feature is
the usage of a convolution process and is specifically designed to process data images.
There are several types of CNNs and, depending on the application, each type is built
with different layers being the convolutional layer the core building block. The input,
which is an image, is represented by a tensor given by (number of inputs)× (input height)
× (input width)× (input channels). When the image goes through a convolutional layer,
it becomes a feature map given by (number of inputs)× (feature map height)× (feature
map width) × (feature map channels). Thus, convolutional layers convolve the input
and pass the result to the next layer. This kind of ANNs is ideal for data with a grid-like
topology such as images. CNNs can contain other layers such as a pooling layer, that
decreases the size of the convolved featured map, and/or a fully connected layer, with a
similar architecture of a DNN. There aremany types of CNNs and the layers contained in
their architecture depend on the specific application. For the purposes of this preliminary
work, we use a CNN formed only by convolutional layers as shown in Fig. 3b.

Fig. 3. Basic architectures of (a) dense neural network and (b) convolutional neural network.

In recent years, CNNs have been successfully used for image classification, object
detection and image prediction. On the other hand, DNN have been widely used for
numerical-data prediction. The CNN’s inputs are mainly spatial data, such as images,
of fixed size, while the DNN’s input is a sequence of numerical data which size may
vary. As mentioned, we use both approaches, numerical-data and image-data, for cloud
kinetics forecasting. Our input data consists of a sequence of satellite images processed
by the Clear Sky Mask algorithm every 5min as shown in Fig. 4. A centroid C_i is
computed for every image corresponding at time t according to Eqs. (2) and (3).

Then, in one approach, we use the sequential series of centroids, associated to the
satellite images, as input of a DNN to predict the centroid of an image at a future time
step, as shown in Fig. 5a. In the other approach, we use the graphical information,
corresponding to the processed satellite images, as inputs to the CNN to forecast an
image containing the cloud information at a future time step, as shown in Fig. 5b. Then,
we compute the associated centroid position of the forecasted image to contrast it with
the predicted centroid position of the numerical-data approach.
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Fig. 4. Example of sequence of processed satellite images generated byClear SkyMask algorithm
used as input data and their associated centroids.

Fig. 5. (a) Numerical-data and (b) image-data approaches for cloud kinetics forecasting using
satellite images.

2.3 Forecasting Errors and Indexes

In order to quantify the accuracy prediction, we use forecasting errors and indexes. In
general, for a given variable u, the prediction error at a given time t = k�T , where �T
is the sampling period, is defined as

erru(t = k�T ) = upredicted (t = k�T ) − umeasured (t = k�T ), (5)

or simply

erru,k = |upk − umk |, (6)

where upk and u
m
k are the k-th data of the predicted and measured values, respectively, of

the variable u at t = k�T for k = 1, 2, . . . ,K . There are several used indexes to grade
the goodness of a prediction such as Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), etc.

In this work, we are interested in calculating the errors for the forecasted position
of the cloud centroid and the related velocity. One common way to do this is by using

the RMSE index [37, 38]. Let Cp
k = (Cp

xk ,C
p
yk) and Cm

k = (Cm
xk ,C

m
yk) be the predicted

and measured position vectors, respectively, of the cloud’s centroid in the (x, y) plane of
the surface of the satellite image. The RMSE index for the forecasted centroids for the
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sequence of satellite images at times k = 1, 2, …, K is

RMSEC =
√

1

K

∑K

k=1
(Cp

xk − Cm
xk)

2 + (Cp
yk − Cm

yk)
2
. (7)

Likewise, theRMSEfor the forecasted velocity of the cloud centroidVp
k = (Vp

xk ,V
p
yk)

is

RMSEV =
√

1

K

∑K

k=1
(Vp

xk − Vm
xk)

2 + (Vp
yk − Vm

yk)
2

(8)

where Vm
k = (Vm

xk ,V
m
yk) and Vp

k = (Vp
xk ,V

p
yk) are the measured and predicted velocity

vectors calculated from the measured and predicted centroids as defined in Eq. (4).

3 Results

3.1 Forecasting Cloud Kinetics

The training data set is composed of 8000 time series. The time series consist of 5
images, taken every 5 min, four for the inputs and one image for the output. The satellite
images were taken in 625 locations at a latitude of 20.6 in Yucatan peninsula. We select
these locations since they count with good solar resource, good cloudiness in the rainy
season and ahomogeneous topology,whichprovides a uniformenvironment toworkwith
clouds.Weconsider the simplest dense and convolutional neural networks for the purpose
of comparison analysis and program them ANNs in Python. Several architectures were
explored providing similar results. Next, we describe the most successful we employ.

The dense neural network inputs are four vectors with components in the x-y plane
corresponding to the cloud’s centroid position at times tn−3, tn−2, tn−1, tn. The input layer
consists of two neurons corresponding to the x and y coordinate of the centroid. The
information goes through a flatten layer which converts the input set of four 2D vectors
into an array of 8 components. It counts with 4 hidden layers as shown in Fig. 6a. The
first three hidden layers have 15 neurons and the last one two neurons. Finally, the output
layer infers the predicted vector of the cloud centroid’s position at a future step in time
tn+1, namely 5 min ahead of time.

The convolutional neural network inputs are the four processed satellite images of
11×11 pixels. TheCNN is built with 4 convolutional layers. The first three convolutional
layers are built of 15 neurons, and the last one of 2 neurons. Finally, the output layer
infers the predicted image of 11× 11 pixels as shown in Fig. 6b.

A representative set of the evolution of cloud’s centroids is shown in Fig. 7. In Fig. 7a
we plot the cloud’s centroid positions for the real values and the measured ones using
the CNN and the DNN approaches. The horizontal plane represents the x− y plane and
the vertical axis corresponds to time. The blue line corresponds to the measured values
and the orange and green lines correspond to the DNN and CNN respectively. Then,
Fig. 7b corresponds to the evolution in the x direction, or projection in the x − t plane,
whereas Fig. 7c shows the dynamics in the y direction, i.e. in the y − t plane.
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Fig. 6. Structure of forecasting ANNs. DNN and CNN are described in Fig. (a) and (b)
respectively.

Fig. 7. Cloud centroids forecasting for one step of time ahead. (a) Evolution of cloud centroids
positions in the x-y plane. Dynamics of the cloud centroids in the x and y planes are shown in
figures (b) and (c) respectively.

As it is graphically shown, both approaches provide similar outcomes resulting in
a good forecasting for one step ahead of time, namely 5 min ahead of time. In order to
obtain a measure of the goodness of the forecasting with both techniques we compute
the errors and indexes in the next subsection.

3.2 Performance Evaluation of Forecasting

In this section, we compute the forecasting error for the centroids position in each
direction using Eq. (6). Prediction errors in every direction are shown in Table 1. As
noted, both approaches provide very similar results, being the numerical-data approach,
or the DNN, the one with smallest error.

Moreover, in Table 2, we compute the RMSE index for the cloud centroids posi-
tions, according to Eq. (7), to quantify the goodness of the accuracy prediction in both
approaches. Once again, the numerical-data approach, DNNs, provide a smaller error
index than the image-data approach, CNNs.

Cloud centroids velocities were also calculated using Eq. (4) in order to obtain the
cloud kinetics. The RMSE index for the forecasted velocities were also computed using
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Table 1. Prediction errors in the x and y components of the clouds’ centroid position for each
forecasting approach.

Numerical-data approach Image-data approach

x− direction [km] 1.09 1.18

y− direction [km] 1.19 1.21

Eq. (8) and shown in Table 2. Once again, we notice that the numerical-data approach
provides a smaller forecasting error.

Table 2. Prediction errors in the x and y components of the clouds’ centroid, and their velocities,
for each forecasting approach.

RMSE Temporal approach Spatial approach

Cloud centroids positions [km] 3.02 3.55

Cloud centroids velocities [km/h] 36.38 43.13

Therefore, our work shows that for cloud kinetics forecasting the simplified method
of calculating a cloud centroid representative of the clouds in an image and then use a
DNN to forecast the cloud position at short-term provides better accuracy results than
using image-data together with CNN.

4 Discussion and Conclusion

With this work, we are undertaking the development of simple, yet effective, methodolo-
gies based on Artificial Intelligence and aerospace techniques to predict cloud kinetics
as a first attempt to deal with the intermittency of solar energy to compensate for electric-
ity production. In general, the problem of weather prediction, including cloud kinetics,
is very complex and clever simplifications should be made to arrive to practical and
valuable solutions. In this work, we use two widely available ANN to process satellite
images. On the one hand, CNN are used to directly process satellite pictures of large
areas of earth surface, where clouds can be easily identified. In this method digitized
land images are inputs to the CNN, which produces a new image with the prediction
of the evolving cloud. Then, cloud kinetics are calculated to compare against those of
the actual image. On the other hand, DNN are used to directly predict cloud kinetics
from cloud kinetics numerical inputs. Then, the predicted cloud kinetics are compared
against the actual cloud kinetics. Prediction errors and indexes are calculated for both
approaches to quantify the prediction performance of both methodologies.

Intuitively, one would expect that an image-data approach for image forecasting
would provide amore accurate result than a numerical-data approach, since the graphical
method’s input, which is an image, contains more information. However, it seems that
for the purposes of this preliminary work, calculating the center of mass, centroid, of
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the cloudiness in the image, and forecasting it, provides the necessary information to
obtain a good result. In order to reinforce this conclusion, onemust consider using bigger
images with more pixels. On the other hand, this conclusion may not be any more valid
if the forecasting horizon becomes larger. So far, this result is valid for 11 × 11 pixel
images for 5 min ahead forecasting. It would be interesting to find out the maximum
size of the image and the maximum forecasting horizon for which this result still holds.
Moreover, the fact that the numerical approach provides better results than the graphical
one with less computer power is an advantage that should be consider as a bonus.

As future work, more classes of ANN should be used. An ad hoc one is the Recurrent
Neural Network (RNN) which relies on feedback from its inputs and outputs to improve
its outputs [39], they are considered to have “memory”. One type of RNN which is very
promising for these problems is the Long Short-Term Memory (LSTM) [40], which we
are currently working with it.

Another method to solve the problem could be with finite element analysis, but we
consider that the preliminary results found for the proposed numerical-data approach
are promising for cloud kinetics forecasting.

This paper is product of a research project to forecast solar radiation using satellite
images from the Collage Space Program of the National Autonomous University of
Mexico. Future work includes the improvement of the forecast of the clouds position
and their velocity to predict solar radiation [41]. In order to improve thiswork, we can use
correction techniques for the parallax effect in the satellite vision and the computation
of the clouds shadow position on earth surface [42] since this information is extremely
important to precisely estimate PV power generation for a given surface and to anticipate
intermittency and take action to diminish its effects. Therefore, one should rescue that
the image-based approach yields good results in the right track to estimate PV power
generation. Besides, a pixelated cloud image always determines unique cloud position
and velocity vectors, but the inverse is not true.

Acknowledgments. This work arises from the project “Predicción del recurso solar usando imá-
genes satelitales para impulsar el desarrollo sostenible en comunidades aisladas con energía ase-
quible y no contaminante” approved in the Proyecto Espacial Universitario (PEU) from UNAM.
The authors wish to thank the PEU program for their support in the elaboration and publication
of this work. M.B. also thanks CONACYT for her “Investigadora por México Research Position”
with ID 71557.
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Abstract. Both synaptic plasticity rules (the so-called Hebbian rules)
and Convolutional Neural Networks are based on or inspired by well-
established models of Computational Neuroscience about mammal
vision. There are some theoretical advantages associated with these
frameworks, including online learning in Hebbian Learning. In the case
of Convolutional Neural Networks, such advantages have been translated
into remarkable results in image classification in the last decade. Never-
theless, such success is not shared in Hebbian Learning. In this paper,
we explore the hypothesis of the necessity of a wider dataset for the
classification of mono-instantiated objects, this is, objects that can be
represented in a single cluster in the feature space. By using 15 mono-
instantiated classes, the Adam optimizer reaches the maximum accuracy
with fewer examples but using more epochs. In comparison, Hebbian rule
BCM demands more examples but keeps using real-time learning. This
result is a positive answer to the principal hypothesis and enlights how
Hebbian learning can find a niche in the mainstream of Deep Learning.

1 Introduction

Research conducted in the last century about vision neurobiology has allowed us
to understand how this process occurs at a computational level, which eventually
has led to the formulation of models of artificial neural networks with great
capacities to reach high accuracy in the classification of large image datasets
(Krizhevsky et al. 2012), which supposes an empirical confirmation about the
validity of the development.

At this structural level, the work of Hubel and Wiesel (1962,1959) revealed
the existence of neurons in the Primary Visual Cortex that process even more
complex stimuli, inducing the idea of hierarchical and localist processing, which
finally led to the so-called Hierarchical Model of vision (Van Essen and Maunsell
1983; Riesenhuber and Poggio 1999), which have received experimental con-
firmation about how visual pattern recognition emerges from Primary Visual
Cortex (V1) to the Infratemporal Cortex, where complex patterns such as faces
are recognized (Desimone et al. 1984; Rolls 1984).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Pichardo Lagunas et al. (Eds.): MICAI 2022, LNAI 13612, pp. 225–238, 2022.
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Recent evidence has questioned the hierarchical nature of visual information
processing (Herzog and Clarke 2014), however, this model leaded to the formula-
tion of the Neocognitron (Fukushima 1988), and some of these ideas appeared in
the proposal of Convolutional Neural Networks (ConvNets) (LeCun et al. 1998),
which could manage to achieve groundbreaking results in vision-related tasks
(Krizhevsky et al. 2012; He et al. 2015), and despite the formulation of Vision
Transformers, there is still the state-of-art solution in tasks with high-resolution
images (Han et al. 2022).

Since the paper of LeCun et al. (1998), ConvNets use gradient-based param-
eter optimization and backpropagation. Nevertheless, some authors are skeptical
of the idea of backpropagation in the brain (Tavanaei et al. 2019) while others
assert that a similar process happens in the brain (Lillicrap et al. 2020). Instead
of gradient-based learning, empirical evidence supports Hebbian learning.

The Hebbian rule was first formulated in 1949, but it did not receive experi-
mental evidence until the 1960 decade, with the discovery of Long-Term Poten-
tiation (Lømo 1966; Bliss and Lømo 1973). Since then, new mathematical for-
mulations have been proposed such as the Oja rule (Oja 1982), the Bienenstock-
Cooper-Munro (BCM) rule (Bienenstock et al. 1982) and the Spiking Time-
Dependent Plasticity (STPD) rules Markram et al. (1997).

The Hebbian-based rules have been implemented in artificial neural networks,
especially in Spiking Neural Networks (see Related work). However, the neural
networks with Hebbian learning have not shown better results than traditional
optimization schemes, except in simplified cases such as in Aguilar Canto and
Brito-Loeza (2021), which are hard to scale to a higher number of variables. In
the same paper, the authors propose several reasons why a more biologically
inspired model does not reach or surpass the accuracy of the gradient-based
approaches, including the following points:

1. The models of synaptic plasticity are insufficient.
2. Backpropagation and gradient ascent are consistent with biology.
3. The model of neural activity is too simple.
4. Other factors such as evolution play a bigger role.
5. The tested neural architecture is inappropriate.

In this work, we considered an additional factor: the human brain receives a
great quantity of data to operate. For example, instead of receiving a single image
of a specific object, it uses several close representations of the same object from
different angles due to the movement of the head, body, and the object itself.
In this manner, it receives many frames of the object instead of a single image.
Therefore, it suggests that Hebbian learning demands larger datasets to reach a
comparable performance with the gradient-based optimizers.

This paper structurates as follows: Sect. 2 is devoted to Related work; in
Sect. 3 we present the Methodology and the corresponding empirical design;
finally Results and Conclusions are presented in Sects. 4 and 5, respectively.
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2 Related Work

The implementation of Hebbian Learning in artificial neural networks is not
recent (see for example Wallis (1996) or even the Perceptron Learning Rule
(Rosenblatt 1958) can be somehow considered part of the Hebbian Learning).
However, not only until recent years have some authors started to consider apply-
ing Hebbian rules in Convolutional Networks or similar approaches, probably as
a consequence of the hype of Deep Learning. We can classify the proposal into
three clusters:

1. Spiking Neural Networks (SNNs) with convolutional layers or similar.
2. Conventional networks with hybrid learning.
3. Conventional networks with Hebbian Learning.

Subsection 2.1 is devoted to points 1 and so on. By “conventional networks”
we will refer to the Non-Spiking Neural Networks. In Table 1, we present a
summary of the State-of-Art.

Table 1. Summary of the recent proposals related to Hebbian-based rules in Vision-
related tasks.

SNNs Conventional networks

Hybrid Pure Hebb

STDP: Cao et al. (2015); Kher-

adpisheh et al. (2018); Liu and

Yue (2016); Kheradpisheh et

al. (2018).

Adaptative Hebbian Learning:

Wadhwa and Madhow (2016)

Non-convolutional: Keck et al.

(2012); Holca-Lamarre et al.

(2017)

Pre-defined kernels: Kherad-

pisheh et al. (2018); Masquelier

and Thorpe (2007); Tavanaei et

al. (2019); Zhao et al. (2014)

SVM final layer: layer:Wadhwa

and Madhow (2016); Bahroun

et al. (2017); Bahroun and

Soltoggio (2017)

Trainable kernels: Tavanaei et

al. (2016 2018)

Competitive Hebbian

Learning: Lagani et al.

(2021a,2021b,2021c 2022)

Hybrid approach: Panda and

Roy (2016)

Transfer Learning: Magotra

and Kim (2019), (2020), (2021)

BCM: Huang et al. (2021) Online Learning: Bahroun

et al. (2017); Bahroun and

Soltoggio (2017); Aguilar

Canto (2020)

Neuromodulation: Magotra

and Kim (2021); Miconi et al.

(2018); Miconi (2021); Pogodin

et al. (2021)

Neuromodulation: Holca-

Lamarre et al. (2017)

2.1 Spiking Neural Networks with Hebbian Learning and Similar
Approaches

Spiking Neural Networks are a more biologically inspired model of artificial neu-
ral networks, and thus, most authors of this approach attempt to use biologi-
cally plausible learning rules, which include Hebbian Learning, or even combined
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methods such as backpropagation with Hebbian rules (Burbank 2015). As a con-
sequence, the usage of synaptic plasticity rules is more diverse than in conven-
tional networks. Nevertheless, despite these advantages, conventional networks
still show better results for most tasks, even if this gap has been shortening in
recent years (Tavanaei et al. 2019).

In the case of STDP, there are some implementations in SNNs such as in Cao
et al. (2015); Kheradpisheh et al. (2018) or SNNs with a hierarchical model of
vision (Liu and Yue 2016). In some cases, the convolutional kernels are directly
designed instead of being trainable, which is the case of operators such as the
Difference of Gaussians in the first layer (Kheradpisheh et al. 2016 2018; Masque-
lier and Thorpe 2007; Tavanaei et al. 2019; Zhao et al. 2014). Likewise, there are
spiking networks with trainable parameters in convolutional layers (Tavanaei et
al. 2016 2018). In some particular cases, SNNs have achieved similar accuracy
than in conventional approaches, which is the case of the work of Panda and Roy
(2016), although it depends on backpropagation. Outside STPD, other learning
rules such as BCM have been implemented, such as in neuromorphic hardware
with memristors (Huang et al. 2021).

2.2 Conventional Networks with Hybrid Learning

The usage of non-spiking convolutional networks with Hebbian learning first
appeared in papers such as Wadhwa and Madhow (2016), where the authors
implement Adaptative and Discriminative Hebbian Learning with a final clas-
sification with Support Vector Machines (SVM). Since then, several articles
appeared with Hebbian Learning in convolutional layers with a final SVM clas-
sification or a combination of gradient-based optimizers with Hebbian learning.
The first case is represented by (Bahroun et al. 2017; Bahroun and Soltoggio
2017), where the authors used a hierarchical model similar to the ConvNets.

In the case of networks with Hebbian Learning and gradient-based optimizers,
Amato et al. (2019) implemented Competitive Hebbian Learning with Stochas-
tic Gradient Descent in different layers, reaching better results when Hebbian
Learning is implemented in final or initial layers. In the same line, appeared arti-
cles such as Lagani et al. (2021b) or Lagani et al. (2021a 2022), with the usage
of soft-Winner-Takes-All algorithm and Hebbian Principal Component Analysis.
Competitive Hebbian Learning is implemented in Lagani et al. (2021c)

In Magotra and Kim (2019), the authors propose the usage of transfer learning
with the gradient-based methods, but it does not consider online learning such as
in (Bahroun et al. 2017;Bahroun andSoltoggio 2017). Following this line, appeared
paperssuchasMagotraandKim(2020)andMagotraandKim(2021),whichincorpo-
ratesamodelofneuromodulationbydopamine.Anothermodelofneuromodulation
is the backpropamina (Miconi et al. 2018 2020). Another proposal for incorporating
Hebbian learning in ConvNets is given by Pogodin et al. (2021).

In the previous proposals, we have presents different recent advances related to
Hebbian learning inConvolutional-likenetworks.Thestartingpointof this research
correspondstothepaperofAguilarCanto(2020).Previously,wehavementionedthe
possibility of combining Hebbian Learning with gradient-based optimizers (Amato
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et al. 2019), applying Transfer Learning of gradient-based methods (Magotra and
Kim 2019), and implementing online learning (Bahroun et al. 2017; Bahroun and
Soltoggio 2017).Amato et al. (2019) suggests usingHebbianLearning in final or ini-
tial layers and gradient descent in intermediate layers. Despite biological plausibil-
ity inducingus to considerHebbianLearning, there are other computational advan-
tages of theHebbianapproach.Oneof themost important of these advantages is the
online learningproperty,sharedinmostHebbianrules,whichiscommonlylostwhen
gradient-based optimizers are introduced.

One solution for the problem of balancing online learning with acceptable
evaluation metrics relies on using pre-trained convolutional layers with backprop-
agation and using the last classification layer as re-trainable, in a Transfer Learn-
ing scheme. In this manner, since convolutional layers are already pre-trained,
new categories can be added training the last layer with Hebbian Learning. One
advantage of this process consists in keeping the online learning property while
reaching similar accuracy to gradient-based approaches.

Even when Hebbian Learning is not mentioned, Yeo et al. (2020) used a sim-
ilar framework by implementing the pre-trained convolutional network DeepLab
v2 to perform semantic segmentation and use the feature vectors to classify them
by using an algorithm to the Basic Hebb Rule.

2.3 Conventional Networks with Pure Hebbian Learning

Neural networks with exclusively Hebbian Learning are scarce, although some
slight changes can turn previous solutions into a purely Hebbian Learning imple-
mentation, such as substituting the SVM layer with Hebbian Learning. In the
case of non-convolutional architectures, there are some proposals such as the
work of Keck et al. (2012) and in particular, Holca-Lamarre et al. (2017), where
used dopamine and acetylcholine models to reduce the classification error, which
is achieved.

2.4 Difference of This Proposal with Previous Works

In the Related work, we review two types of neural networks used in the litera-
ture: SNNs and conventional. In the first case, STDP is generally implemented
whereas in the conventional networks is more common to see Adaptative or
Competitive Hebbian Learning, while STDP or BCM rules are less used.

Conventional networks can still be used as biologically inspired models, since
their output can be represented as a continuous version of the spiking activity,
following the firing rate model example Dayan and Abbott (2001). In compar-
ison, there still exists a gap between the spiking and conventional approach to
neural networks. In 2016, for instance, Panda and Roy (2016) (a spiking pro-
posal with backpropagation) achieved 99.1 % of classification accuracy in MNIST
whereas Wadhwa and Madhow (2016) (a non-spiking approach with Hebbian
Learning) reached 99.3 %. Even though this difference might not be updated or
significant, it represents an example of how conventional approaches might still
be useful.
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As stated, the introduction of Hebbian rules such as BCM is scarce. In addi-
tion, there are a few examples where Hebbian Learning can reach the metrics of
gradient-based optimizers. This knowledge gap in the state-of-art must be filled,
or at least, explain what might be needed to reach or surpass the extant solu-
tions. In this paper, we studied the role of the number of examples in a flexible
custom dataset to allow the addition of data points to test the hypothesis about
what might be the problems related to Hebbian Learning.

3 Methodology

As established previously, this work is based on the preliminary paper of Aguilar
Canto (2020) as starting point to evaluate Hebbian Learning in Convolutional
Neural Networks. In Aguilar-Canto and Calvo (2022), the authors observed some
of the usages of BCM learning advantages over other plasticity rules, including
the lack of necessity of using balanced data. We will describe the experimen-
tal design in this section and the theoretical foundations of the implemented
algorithms.

3.1 BCM Learning Rule

A common computational problem observed in Basic Hebb and Covariance learn-
ing rules relies on the unbounded growth of the weights. If these weights are not
regulated, it can lead to undesired and biased results. In addition, there is strong
evidence that “weights” in biological neural networks are bounded (Dayan and
Abbott 2001). In 1982, two solutions appeared: Oja (1982) rule and Bienenstock-
Cooper-Munro or BCM learning rule (Bienenstock et al. 1982). The first rule
adds a dynamic penalizer to the weight growth. On the other hand, the BCM
rule introduces a dynamical threshold θ which determines if the synaptic activity
would be depressive or potentiative. Mathematically, it is formulated with the
coupled differential equations (1)-(2):

τw
dw
dt

= yx(y − θy), (1)

τθ
dθy

dt
= y2 − θy, (2)

where 1
τw

is the learning rate, y is the activity of the post-synaptic neuron, x
represents the vector of activity of pre-synaptic neurons, w is the weight vector,
θy is the threshold of the neuron with activity y, whereas τθ is a constant that
regulates the weight change.
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3.2 Empirical Design

The principal hypothesis of this paper is the following:

(1) BCM (Hebbian) learning rule requires more data to reach gradient-
based optimizers’ accuracy in mono-instantiated. image classification.

The term “mono-instantiated” refers to the class of objects that can be repre-
sented in a single cluster in the feature space. In human vision, mono-instantiated
objects do not appear in two visually different shapes. Since ConvNets are com-
putational models of vision, two objects with different shapes are probably rep-
resented in different clusters in the feature space.

For example, the blue cotton facemasks and KN95 white facemasks are visu-
ally different image clusters and might be represented in different places in the
feature space. To check this idea, we can visualize the first three entries of the
feature vectors, which is the output of the penultimate layer of a ConvNet (Xcep-
tion in this case, with an output of 2048 variables). Figure 1 depicts four classes,
two of them are two instances of the same class of facemasks. We can observe
that the class of blue facemasks and KN95 are grouped in different clusters.

Fig. 1. Depiction of three variables of the feature vectors extracted for images of 4
classes. 2 of the classes (labels 0 and 1) represent two instances of images of facemasks.
Classes 2 and 3 represent other objects. The axis represents the values of the variables
of the feature vectors.

As anticipated, to verify the hypothesis, we used the proposed architecture
in Aguilar Canto (2020), which is a pre-trained convolutional neural network
to perform feature extraction and a final Hebbian classification layer (Fig. 2).
Following the results of the paper, we used the pre-trained network Xception
(Chollet 2017).
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u v

CNN

STT’Salt shaker’

Fig. 2. Schematic representation of the architecture used in Aguilar Canto (2020) and
adapted to this task. A convolutional neural network (CNN) performs feature extrac-
tion and outputs the vector u, whereas a supervised layer v implements Hebbian Learn-
ing and receives inputs of a Speech-to-Text system as labels.

The training design in this case differed from offline datasets. In these exper-
iments, we presented an object to the webcam and the labels by voice (using
the Apple’s default Speech-to-Text). While voice recognition is not part of the
presented problem, it provides a human-machine interface in real-time. Instead
of one processed frame by introduced label, we use five frames to increase the
available data. A total of 15 object categories are presented, which are the fol-
lowing: banana, salt shaker, sock, facemask, sauce, oximeter, case, thermometer,
hat, medicine, glasses, marker, scissors, card, and a shoe. All experiments were
implemented in a specific device: MacBook Pro 2012, with the operative system
MacOS Catalina 10.15.6 and intregated webcam as an input.

3.3 Evaluation

In order to evaluate the proposal, we implemented the metric accuracy by using
225 testing examples equally distributed among the 15 classes. All feature vectors
were stored to perform a principal comparison with Adam optimizer (Kingma
and Ba 2015), one of the most used in neural networks. This optimizer was
included in a neural network with one layer, using the same architecture as the
Hebbian layer. Finally, we evaluated the execution time with other optimizers.

4 Results

BCM learning rule required a total of 450 examples to achieve 100 % of accu-
racy in the testing set (see Fig. 3). In comparison, Adam required 225 images to
achieve a perfect classification accuracy. This represents an empirical confirma-
tion of hypothesis (1).

On the other hand, this empirical design only considered a few classes. It
would be undesired to need an intractable number of cases for larger datasets,
for instance, 1000 categories such as Imagenet. Figure 4 depicts the number of



The Role of the Number of Examples in Convolutional Neural Networks 233

100 200 300 400
0

0.2

0.4

0.6

0.8

1

Number of examples

A
cc
ur
ac
y

Accuracy according to the number of examples

BCM
Adam-5 epc
Adam-1 epc

Fig. 3. Accuracy improvement according to the provided number of examples. The red
line stands for the accuracy of the Adam optimizer with five epochs, the green line
represents the accuracy of Adam with one epoch, whereas the blue line stands for the
accuracy of the BCM learning rule. (Color figure online)
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classes (K). The red line stands for Adam with 5 epochs, the green line represents
Adam with a single epoch, whereas the blue line stands for the BCM learning rule.
(Color figure online)



234 F. Aguilar-Canto and H. Calvo

examples needed to reach the maximum accuracy in the testing set according to
the number of classes. In the case of BCM, the distribution of the data points is
linear (Rainbow test, p = 0.3447310), therefore, the complexity of the number
of examples needed by the number of classes might be linear. By using linear
regression, we estimate 41.58784X − 156.92568 as the best fit line (X represents
the number of classes). Thus, in the case of X = 1000 classes, we can estimate
41431 as the number of required examples.

4.1 Comparison with Gradient-Based Optimizers

Even though the database used is relatively small and we only focus on mono-
instantiated images, this work contributes evidence about the importance of the
number of examples for the correct usage of Hebbian rules such as BCM. In this
case, the results are directly compared with gradient-based optimizers, which are
the most widely used in neural networks. Since all the selected optimizers were
able to classify all the samples in the testing set, we perform the comparison
with the execution time to verify that the usage of Hebbian learning is indeed
more efficient. The tested optimizers were Adam, RMSprop, Stochastic Gradi-
ent Descent, Nesterov Adam, Follow The Regularized Leader (McMahan et al.
2013), Adadelta, Adagrad, and Adamax. Table 2 summarizes the comparison
in execution time with common gradient-based optimizers. As we can see, the
BCM learning rule is about 2 million times more efficient than all gradient-based
optimizers.

Table 2. Comparison of execution time (in seconds) with different gradient-based
optimizers using one epoch and the BCM rule.

BCM Adam RMSprop SGD NAdam FTRL Adadelta Adagrad Adamax

9.536 × 10−7 1.704 1.742 3.166 2.678 2.129 3.685 2.107 3.852

5 Conclusions

This paper presents an evaluation of a Convolutional Neural Network with Heb-
bian Learning, which has the advantage of online learning of image classification.
Such advantage can be exploited in different applications, such as the case of
transfer learning without requiring any previous knowledge in programming since
it only requires presenting an image and telling the label.

Despite Adam converges faster, the fact that a larger but tractable dataset
allows BCM to reach the accuracy of Adam is, in general terms, a hopeful indica-
tor, since BCM can perform real-time learning, without demanding to store data.
In addition, a time-based comparison yields a much better scenario for Hebbian-
based rules. Moreover, we estimated that the distribution of required examples
to reach the highest accuracy by the number of classes is linear. Therefore, it is
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possible to escalate the addition of new classes. For instance, we estimate that
for 1000 classes we will demand 41431 examples. Nevertheless, although these
estimations are helpful, with a higher number of classes transfer learning might
not work at all, even with gradient-based optimizers.

Finally, the training procedure differs from the usual scheme of data collec-
tion and learning with the dataset. In the Hebbian case, the learning process
begins with data collection instead of using a fixed dataset, as implemented in
Aguilar Canto (2020). This study suggests that better results can be achieved
with Hebbian learning if the learning procedure is online. One explanation of this
observation is that in this online process, the experimenter shows the appropri-
ate examples to maximize data diversity and reduce classification errors. While
it can introduce a bias, it seems that the experimenter plays a role in the learn-
ing process. If this procedure is more closely related to the learning process that
humans experiment with, it might also be useful for machines.

5.1 Further Research

For now, we have presented a relatively small and somehow ideal case by pre-
senting mono-instantiated classes. For multi-instantiated classes, since it presents
multiple clusters, it seems convenient to add another layer of unsupervised clas-
sification, which can be performed with Hebbian rules (such as the Kohonen
self-organizing maps). However, training an additional layer might demand even
more data, although such data might not be labeled. Moreover, other ideas such
as the inclusion of neurotransmitters models can help to reduce the number of
required resources in terms of time and number of examples.
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Abstract. Detecting human gestures is important in many areas for humans. The
creation of new technologies and methods to simplify the creation of such sensors
is important for their rapid and cheap implementation in new applications. We
used a Convolutional Neural Network for the visual recognition of a hand or
a wand signal and tested it by switching on/off a normal lamp. By taking the
difference between two contiguous images from a single video file and processing
them to get one filtered image as the CNN input, we simplified the collection of
samples to train the neural network. In this way, the images can be small enough
to considerably speed up the system throughput. We added a redundancy layer
to increase the robustness of the system to confusing signals and obtained 100%
accuracy. We also achieved good system performance under different lighting
conditions without specifically training the neural network for this.

Keywords: Smart switch · Static gesture detector · CNN for computer vision

1 Introduction

The fact that nowadays the human interaction with some devices can occur in various
ways makes it possible for disabled people to operate these devices too. Here we explain
how, through a Convolutional Neural Network (CNN), we achieved an efficient gesture
recognition system to switch on/off a normal lamp without the need to talk, touch or
using a cell phone and without the need of an internet connection.

The so-called smart lights have as their main feature that they can be controlled
remotely, for instance, with a motion sensor. Magic lights have, additionally, advanced
features like controlling brightness, color, temperature, timer and more. Smart lights
can be controlled from a cell phone app, by touching them, with a clap or with voice.
However, there are people who are hearing impaired, who can’t communicate orally or
people who can’t clap their hands for some reason and those who have difficulty for
moving or for handling a cell phone.

Inclusion of disabled people is a current trend. With our proposed solution, the user
can switch on/off a normal lamp with a hand (or some other body part) signal or with
some object (a wand for instance), which offers an alternative to people unable to use
the other options. Furthermore, our solution can be used by anyone else too.
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The main contributions of this work are: the simplified method we use to train the
CNN, the high throughput of the resulting system, its perfect effectiveness and its very
high efficiency.

The structure of the paper is as follows. In Sect. 2 we mention recent works related
to gesture recognition in the computer vision area. In Sect. 3 we describe the applied
methodology for gesture recognition and lamp switch control. Section 4 has the results,
and Sect. 5 has our conclusions.

2 Background

Gesture recognition techniques can be divided into vision-based and sensor-based tech-
niques. Different kinds of gesture recognition systems are applied to many real appli-
cations that use human-machine interface [1]. CNNs are one of the most widely used
deep learning architectures in computer vision [2]. Image classification is the basis for
computer vision tasks such as localization, detection and segmentation. These tasks
have many applications in practice. Convolutional layers in CNNs are used to extract the
image features and, once extracted and passed through a pooling (subsampling) layer, a
Fully Connected Feed Forward Network is fed to obtain the desired outputs [2, 3].

Within the computer vision area, gesture recognition is an important research area
in HCI systems [4, 5]. Vision-based hand gesture recognition systems are widely used
in communication through hand sign language [4, 5, 6, 7] and other human-computer
interaction systems, like the one reviewed in [8].

Gesture recognition systems can also be divided into static or dynamic. With static
recognition, only one input image is required to be processed, while dynamic recognition
requires processing image sequences andmore complex gesture recognition approaches.
Hence, static recognition has a lower computational cost [7]. Here we use a CNN for
the recognition of a hand signal or a wand signal to switch on/off a normal lamp. With
our approach, we perform a semi-static gesture recognition by taking two images from
a video stream and process them to get one reduced image as the CNN input. With this,
we simplified the acquisition to training data for the CNN. In addition, the processed
image that we get can be small enough to improve the system performance.

3 Applied Methodology for Gesture Recognition and Lamp
on/off Control

We used a camera as a gesture sensor. We feed the CNN input with processed camera
images, and the CNN output was connected to a normal lamp through a USB device.
This configuration is shown in Fig. 1.
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Fig. 1. System configuration overview

3.1 Actuator

We used a single bulb table lamp with its own switch. We cut the cable of the lamp
and connected it with a USB relay that can be controlled from the computer. The lamp
switch was kept in the on position since the current flow is controlled by the relay.

3.2 The Sensor and Image Processing

Images were obtained with a digital camera. We obtained the camera information and
process it with the OpenCV library for Python. An image is represented as a matrix of
pixels. Each pixel of an image is represented as a three-dimensional array: horizontal,
vertical and color brightness for green, red and blue.

If we used all the information provided by the camera to train the CNN, we would
have over-fitting, which would cause the system to fail with slight conditions changes
such as background, brightness or moving the camera. So, in order to avoid over-fitting
and to obtain information that is easier to process for the CNN, we simplified the camera
images with the procedure described below and illustrated in Fig. 2.

Fig. 2. Image processing

• Thefirst step of the image processing is to take two imageswith a small-time difference
between the shots, as it is shown in Fig. 2. a).
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• For the second step, each pixel of the image in Fig. 2. b) is obtained with the absolute
value of the difference between the two images in Fig. 2. a).When the absolute value of
this difference is large (>20), then the difference is significant, that is, it is information
indicating that there was movement, while small values represent noise. In Fig. 2. b)
it can be seen that there is a lot of noise, that is, unwanted additional information.

• In the third step, we discard the noise by subtracting 20 units of color brightness to
each pixel in image of Fig. 2. b), that is, we subtract 20 from the green level, 20
from the red level and 20 from the blue level. Thus, the very small differences were
converted into gray tones (negative numbers become numbers close to 255, the highest
brightness) and we obtained an image that only shows the significant differences, as
it is shown in Fig. 2. c).

With this procedure there is no need to have a high-resolution image to detect signif-
icant information so we were able to reduce the image size to a 360× 180 pixel matrix,
which sped up both its processing and the CNN training.

3.3 Controller: Convolutional Neural Network

The CNN operates on a computer which has the lamp connected via USB. The matrix
of the image, processed according to the procedure of Sect. 3.1, is the input of the CNN.

As it can be seen in Fig. 1, the CNN has two mutually exclusive outputs: (a) turn the
lamp on/off and (b) do nothing. A positive signal in output (a) indicates a trigger action
(turn on/off the light), and a positive signal in output (b) means that there should be no
trigger action. With two outputs we get a more robust training because a positive signal
in the output (a) must be reinforced with a negative signal in output (b) and vice versa.

Convolutional Neural Network Configuration
The convolutional layer of a CNN is the one that takes the most computational effort. It
has a set of featuremapswith neurons arranged in it. The parameters of this layer are a set
of filters [2]. By applying filters to an image, a discrete convolution between the image
and the filter is carried out. This means that the image is scanned by sections. A direct
multiplication of each section by a matrix (the filter) is made and these results are added.
The scalar addition corresponds to a pixel of the filtered image. With each applied filter,
different features are extracted from the image. As it can be seen in Fig. 3, we used three
convolutional layers in our CNN. We applied 30 filters on each convolutional layer and,
with a max pooling layer after each convolutional layer, the resolution of the 30 filtered

Fig. 3. CNN configuration with tensorflow.
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images was reduced (see Fig. 4). After that, with the flattening layer, we obtained the
input vector to a fully connected Feed Forward Neural Network of two layers with two
outputs, one for the positive detection signals and one for the negative ones.

Fig. 4. CNN layer dimensions and their number of parameter in tensorflow.

Supervised Training
The CNN learns from two sets of training images, one of the sets contains the images
that must be detected as positive signals to turn on/off the light while the other is a set
of images with negative signals. The training images were obtained from two videos,
one with the subject moving around the room while giving a positive signal and another
one in which the subject does not make any signal. This conditioned the CNN to operate
mainly with the distances from the person to the camera with which it was trained, but
it can also be trained to work with different distances.

We ran 6 training iterations (epochs) of the Adam optimizer with the parameters
recommended by [9] 50 times back to back, randomizing starting points every time and
choosing the best resulting configuration. Training and validation accuracies during the
training process can be seen in Fig. 5.

Implementation Details
The experiments were performed on a single PC with Windows 10 Pro 21H1, an AMD
Ryzen 7 1700 8 core CPU@ 3.50 GHz, 16 GB in RAM, and an NVIDIA GeForce GTX
1660SUPERGPUwith 1408CUDAcores and 6GBofGDDR6RAM.The architectures
were implemented in Keras [10] with Tensorflow 1.14.0 [11] as a backend called from
the Python 3.9.4 interpreter.

Additional Processing at the Controller
To increase the robustness of the system, which is the effectiveness that the user experi-
ences, a controller was introduced that records the last 10 network outputs. As shown in
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Fig. 5. Neural network effectiveness during the training process (two different cases). It shows
training accuracy and validation accuracy.

Fig. 6 a), 1 means a positive signal, that is, an indication to turn the light on/off. If few
positive signals are registered, then they are ignored and the on/off action will only be
performed when 6 or more positive signals out of the 10 are registered as shown in Fig. 6
b). This allows the system to be robust against confusing signals and inter-signal noise.
After a successful detection of a trigger, a 2 s idle time is forced to prevent consecutive
triggers with a single gesture.

a) Only two positives b) Six positives 

Fig. 6. Necessary conditions to toggle the switch. There must be at least 6 positive signal
detections in the last 10 outputs.

4 Results

The user can control a lamp by a pointing signal, either with a hand, or an object such
as a wand. This allows users with different abilities to use the system.

As it is shown in Fig. 7, the system is resilient to confusing signals. In Fig. 7 a) the
lamp turns on with a clear signal, while in Fig. 7 b) the lamp does not change state with
a confusing signal.
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Fig. 7. The system is robust to confusing signals.

In images of Fig. 8 it is shown that the change in the lamp state can be triggered by
a hand or a wand signal (if trained accordingly).

Fig. 8. The change in the lamp state can be triggered by a hand or a wand signal.

The accuracy obtained while training was 97.8% but it improved to 100% when
the additional processing at the controller was used. For a classification system to be
considered to work in real time, it should return a response in less than 300 ms after the
execution of the gesture finishes [12]. The neural network can produce 30 outputs per
second. To collect at least 6 positive outputs, it takes 0.2 s.

5 Conclusions

CNNs can solve very complex problems due to their high generalization capabilities,
this makes them very useful for performing image recognition tasks. Taking advantage
of the ability of a CNN to detect gestures, we used a digital camera, a CNN and a relay
with usb connection to control a normal lamp.

We implemented a system that works with very small images (360 × 180) and
obtained real-time processing with high recognition precision.

“A typical disadvantage of traditional static gesture recognition methods is that they
are not robust to the recognition performance under complex background and lighting
conditions” [6]. With our approach, the non-moving background almost vanishes after
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the images are processed and it is also clearly separated from the true signal, which
filters out different lighting conditions as well. Even at night and with the light off the
system works well.

Another obtained advantage is that the low resolution of the images processed as in
Sect. 3.1, allows our CNN to work well with different users, since it does not take into
account the face features or the person’s complexion.

Machine learning systems can be applied to intelligently automate simple home
functions, resulting in improved accessibility of these functions. With our developed
system we a user can turn a lamp on and off without having to activate a switch, and
without using the voice, clapping or a cell phone. This results especially favorable for
disabled people.

The next step will be to use an Arduino device instead of a computer and extend it to
control different accessories, appliances and even some parts of a house such as doors
and windows. Another extension is to include multiple gestures detection.
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Abstract. Deep learning has shown great promise in diverse areas
of computer vision, such as image classification, object detection and
semantic segmentation, among many others. However, as it has been
repeatedly demonstrated, deep learning methods trained on a dataset
do not generalize well to datasets from other domains or even to similar
datasets, due to data distribution shifts. In this work, we propose the use
of a meta-learning based few-shot learning approach to alleviate these
problems. In order to demonstrate its efficacy, we use two datasets of
kidney stones samples acquired with different endoscopes and different
acquisition conditions. The results show how such methods are indeed
capable of handling domain-shifts by attaining an accuracy of 74.38%
and 88.52% in the 5-way 5-shot and 5-way 20-shot settings respectively.
Instead, in the same dataset, traditional Deep Learning (DL) methods
attain only an cross-domain accuracy of 45%.

Keywords: Deep learning · Computer vision · Kidney stones

1 Introduction

Progresses made in Artificial Intelligence (AI) in recent years have shown out-
standing results that compare or surpass human capabilities in a set of prob-
lems such as natural language processing, smart agriculture, object recognition,
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healthcare and medical applications, among others. Such AI-based models have
been possible due to the existence of large scale labeled datasets enabling the
extraction of profound knowledge about the data. However, it has been demon-
strated that if the same models are deployed in slightly different operating con-
ditions (i.e., medical imaging applications) such AI methods are in fact very
fragile and exhibit very poor generalization properties [21].

These variations in performance stem from changes in acquisition devices
and/or the operating conditions in clinical settings, which can hamper the adop-
tion of AI-based CAD tools in many applications. To make matters worse, most
DL methods in the state of the art still require humongous amounts of data to be
trained, which is not realistic in most of the medical application domains. There-
fore, in recent years, the meta-learning and Few-Shot Learning (FSL) paradigms
have emerged as a means to cope with this training data scarcity problem and
furthermore, to make models more capable of generalization with less computing
effort and incremental learning capabilities [12].

In this work, we propose a novel meta learning-based Few-Shot Learning
approach for image classification to assess the generalization of a trained model
in two different kidney stones datasets. Our method is based on the following
two core ideas: i) The use of a pre-trained model that learns representations
through self-supervised learning can enhance the features generalization and ii)
a meta-learning stage can be used to further fine-tune the model for specific
domains in order to improve its performance. The advantage of our method is
that, compared to other DL approaches to classify kidney stones, it can better
generalize to other data distributions and obtain good results without the need of
manual data augmentation. In order to validate our proposal, we make use of two
datasets of kidney stones acquired using endoscopes of two different vendors and
of different technical characteristics and under different acquisition conditions
(in-vivo, ex-vivo). As illustrated in Fig. 1 our approach is divided in three stages.
First, in the pre-training phase, we use a self-supervised model for the embedding
network. Then, we proceed to a meta-learning stage, where we fine-tune our
model. Lastly, we evaluate the model with the two kidney stones datasets and
obtain the corresponding metrics and features visualization, which are of great
help to better assess the generalization capabilities of the model.

The rest of the paper is organized as follows. In Sect. 2 we present the medical
motivation for this work, while Sect. 3 discusses the state of the art of FSL. In
Sect. 4 we introduce the proposed method and in Sect. 5 we provide details about
the implementation and experiments done to find the best model, as well as the
comparison with previous models.

2 Medical Context and Motivation

In recent years, there has been an increased interest in the recognition of kid-
ney stones morphologies (i.e. crystalline type) for speeding the diagnosis and
treatment processes. The traditional (ex-vivo) approach, known in the medical
field as morpho-constitutional analysis (MCA [5,7]), relies on an inspection of
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Fig. 1. The proposed model is divided into three stages: pre-training, meta-learning
and evaluation.

the surface and section views of the images under the microscope, followed by a
SPIR analysis to determine their biochemical composition (i.e. stone type). This
analysis is essential as it provides very important information about the litho-
genesis (i.e. cause of formation) of the stone, but modern extraction techniques
increasingly rely on a technique for pulverizing the stone. This technique, known
as dusting, leads to a destruction of the morphological information of the sample
or even an alteration of its biochemical composition [10] used for diagnosis.

Therefore, specialists have sought solutions in the form of image classifica-
tion methods for categorizing kidney stone samples, first using ex-vivo images
corpuses [1,16] and later tackling the problem of endoscopy stone recognition
(ESR) [13,14]. Although the results have been encouraging (up to 98% average
precision for pure stones), some of the methodological choices make the results
far from conclusive as more complete studies are needed.

First, the majority of ML-based ESR methods make use of very small datasets
and rely heavily on patch sampling [1,13], which might introduce bias towards
certain classes (i.e. data leakage). Furthermore, most datasets reported in the
literature contain only a small fraction of the 21 identified classes of kidney
stones (up to 6 classes) which might yield overly optimistic results. Another
aspect is that most of the existing methods have been tested on images acquired
using one or at most two endoscopes types from the same hospital, which can
lead to problems such as shortcut learning, or simply the samples might not be
representative enough of the underlying distribution. This leads to a problem
increasingly reported in the literature: models trained with data from certain
acquisition devices or under certain imaging circumstances do not generalize
well to data from a different distribution [20].

In order to address some of the issues mentioned above, in this work we
explore recent developments in the DL field, namely FSL and meta-learning
strategies that are promising areas of research for training models with few sam-
ples and capable of better generalization capabilities. For validating our approach
we make use of two very distinct kidney stones datasets, containing data from
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the same classes, but different distributions (i.e., the data was acquired with
different endoscopes and under different acquisition conditions). To the best of
our knowledge, our work is of the firsts to assess the generalization capabilities
of ML models applied on endoscopic images.

3 Related Work

3.1 Few-Shot Learning

Research on FSL has received an increased attention on recent years, as it
has continuously demonstrated good results on problems with low availability
of data. Recent models for FSL adopt a meta-learning strategy, an approach
that seeks to learn discriminant features across tasks, later adapting the model
to new tasks. FSL approaches can be categorized into two main branches: 1)
metric-learning based, and 2) optimization based. The goal of metric-learning
approaches is to learn a similarity metric expected to generalize across different
tasks. There are baseline methods which have achieved important milestones
for FSL, such as Prototypical Networks [17] and Matching Networks [19]. Opti-
mization based approaches make use of a base-learner and a meta-learner, where
the meta-learner’s parameters are optimized by gradual learning across tasks to
promote a faster learning of the base-learner for each specific task. The Model-
Agnostic Meta-Learning (MAML) approach [8] was the first one to use this
strategy to parameter initialization, such that the base learner can rapidly gen-
eralize from an initial guess of parameters.

3.2 Cross-Domain FSL

Domain adaptation refers to the transfer of knowledge from one or multiple
source domains to a target domain with a different data distribution. Several
approaches have been proposed to address this issue, but most of these methods
operate in situations where the training and test sets contain the same classes.

For cross-domain FSL, where base and novel classes come from different
domains, this can introduce non-desirable variations in the performance of the
models. In [3], the authors made an analysis of different meta-learning methods
in the cross-domain setting. They proposed a cross-domain scenario which trains
on miniImageNet dataset and test with CUB dataset images. Further on, the
authors established a challenging benchmark consisting of images of diverse types
with an increasing dissimilarity degree to natural images and with various levels
of perspective distortion, semantic content and color depth. They also evaluated
the performance of existing meta-learning methods on this benchmark. These
recent works show how the cross-domain paradigm is able to enhance the results
of the base models in disjoint distributions, making cross-domain approaches
one of the corner stones of FSL research.
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3.3 Kidney Stones Classification

Different approaches have been proposed to deal with the classification of kid-
ney stones from still images, acquired through different means. For instance,
authors in [16] made use of ex-vivo images to train a Random Forest classifier,
which exploits histograms of RGB colours and local binary patterns. As a con-
tinuation of this work, they trained a DL method base on a Siamese CNN [18]
using the same dataset. Although such methods showed the potential of image-
based recognition of kidney stones, the proposed models obtained a moderate
performance of 71% and 74% on mean accuracy, respectively. The authors in [1]
improved these results by using a ResNet-101 and employing a data augmenta-
tion technique to leverage the small dataset. These previous methods have the
limitation of being tested on ex-vivo images obtained in highly controlled acqui-
sition conditions. For in-vivo images, authors in [14] used classical classifiers such
as Random Forest and kNN ensemble models obtaining an improved accuracy
of 85% over 3 kidney stone classes. Later on, [13] used CNN-based models to
further improve their results, obtaining an accuracy of over 90% on precision
and recall over 4 classes.

Although these kidney stone classification methods have yielded increasingly
good performances, they pose certain problems. First, they all require a great
deal of manual data augmentation work for creating several patches from the
images to train DL models. Second, the training and evaluation has been made
over those patches instead of the full images, which is not realistic in clinical
settings. Third, all these previous methods have shown poor generalization capa-
bilities, as they are trained with images from specific data acquisition conditions
and fail to classify when using a different acquisition method.

4 Proposed Approach

FSL is a growing research field with the challenging problem of learning from
limited data, while verifying the performance of the models on previously unseen
classes. Additional to this, FSL methods are expected to generalize well to other
data distributions. In this work, as shown in Fig. 1, we follow a two stages
paradigm (pre-training and meta-learning) to train models capable of general-
izing to a different data distribution to classify unseen kidney stones classes. In
this approach, the model is first pre-trained on a large datasets of natural images
(i.e., ImageNet) to obtain a good initial estimate of the model parameters. Then
the model is fine-tuned using a meta-learning approach with increasingly similar
datasets to the target domain. Finally, the model is tested with data coming
from a completely new distribution to assess it generalization capabilities.

4.1 Datasets

Base Datasets. The miniImageNet dataset [19] is comprised of 100 classes with
600 images per class. This dataset is widely used in the FSL literature for image
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classification [17], following the same split proposed in [19] by sampling images
of 64 classes for training, 16 classes for validation and 20 classes for testing.
Caltech-UCSD Birds-200-2011 (CUB-200-2011) is an image dataset with more
specialization in the categories, containing photos of 200 bird species.

Cross-Domain Datasets. For the cross-domain adaptation in FSL, we used
the datasets suggested by [9], comprised of images from multiple domains (i.e.,
image modalities and acquisition conditions). The first dataset is CropDiseases,
which contains 38 classes with images of plant leaves.

We split the dataset into 30 classes for training and 8 for validation. The
second dataset is EuroSAT, which contains satellite images for land use and land
cover classification. It is comprised of 10 classes that we split into 5 classes for
training and 5 for validation. The third dataset is ISIC, containing skin diseases
images for skin image analysis. It contains 7 categories, which we split by using
5 for training and 2 for testing.

Kidney Stones Datasets. We make use of two different kidney stones datasets,
obtained using two different acquisition devices (i.e., endoscopes) and under
divergent acquisition conditions and lighting environments: the first is comprised
by in-vivo images, whilst the second was created by capturing images with an
endoscope in ex-vivo conditions, see Fig. 2. For specific details of in-vivo and
ex-vivo image acquisition conditions, see [7] and [6], respectively.

The in-vivo dataset includes 156 kidney stone images acquired in-vivo (i.e.
during actual ureteroscopic interventions) and which were annotated by expert
Dr. Vincent Estrade (an urologist involved in MCA) [7]. The dataset consists of
65 cross-section images and 91 surface images from the 4 classes of kidney stones
with the highest incidence: uric acid (AU), brushite (BR), weddelite (WD) and
whewellite (WW). Some images from this dataset are shown on Fig. 2a.

The ex-vivo dataset consists of 765 kidney stones images, with 318 corre-
sponding to cross-section and 447 corresponding to surface images, from 6 of
the kidney stones categories with higher incidence: uric acid (AU), brushite
(BR), cystine (CYS), struvite (STR), weddelite (WD) and whewellite (WW)
[6]. Figure 2b show examples of images from this dataset.

(a) In-vivo images (b) Ex-vivo images

Fig. 2. Examples of kidney stone images from the (a) in-vivo and (b) ex-vivo datasets.
The categories shown are, from left to right, uric acid (AU), brushite (BR), cystine
(CYS), struvite (STR), weddelite (WD) and whewellite (WW). Surface images are on
the top row and section images are on the bottom row.
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4.2 Model Training and Design Choices

Pre-training Stage. The first approaches for FSL used a simple ConvNet back-
bone, made up of 4 convolutional blocks, as the feature extractor [17], leading to
good results that supported the promising research of these methods. Current
state-of-the-art models with high performance make use of a ResNet-12 [11] or a
wide ResNet, outperforming other models which make use of deeper embedding
networks.

This could stem from the fact that, as the tested models have access solely
to a very small amount of training samples, deeper networks are more prone
to overfitting in the supervised training setting. Therefore, an essential element
for the meta-learning process is the initial embedding network. Several state-of-
the-art methods [2,4] demonstrate that having a pre-trained network allows us
to use a deeper backbone, thus greatly improving the performance of few-shot
learning models.

Among the pre-training strategies for FSL available in the literature, a self-
supervised learning (SSL) method [2] stands out, as it has demonstrated a good
results in this task, outperforming other state-of-the-art models. We adopt this
pre-training strategy, which allows us to use a large embedding network. The SSL
stage works as follows: using the Augmented Multiscale Deep InfoMax (AMDIM)
model, it optimizes the network by looking for mutual local and global features
from different views of an instance, thus enhancing the feature’s generalization
for new tasks. This makes the trained network more transferable to different
domains and data distributions.

Meta-learning Stage. After finding an appropriate initialization via SSL, we
proceed with the meta-learning stage to learn to generalize across tasks. This
stage is divided into two phases: Meta-training and meta-testing. A Few-Shot
K-way C-shot image classification task is given K classes and C images per
class. The task-specific dataset can be formulated as D = {Dtrain,Dtest}, where
Dtrain = {(Xi, yi)}Ntrain

i=1 denotes the classes reserved for the training phase and
Dtest = {(Xi, yi)}Ntest

i=1 denotes the classes reserved for the testing phase. For
each meta-train task T , K class labels are randomly chosen from Dtrain to form
a support set and a query set. The support set, denoted by S, contains K × C
samples (K-way C-shot) and the query set, denoted by Q, contains n number
of randomly chosen samples from the K classes. The training phase uses an
episodic mechanism, where each episode E is loaded with a new random task
taken from the training data. For the meta-test, the model is tested with a new
task T constructed with classes that weren’t seen during the meta-train phase.

We follow a metric learning approach for the image classification component
of our approach. Specifically, we implemented a prototypical networks [17] model
by computing the prototypes ck as the mean of embedded support samples for
each class. For a class k, the prototype is represented by the centroid of the
support embedding features, obtained as:
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ck =
1

|Sk|
∑

(xi,yi)∈S

f(xi), (1)

The classification is performed by finding the nearest prototype for a given
embedded query point. The Euclidean distance is chosen as the distance function
to find the nearest class prototype. In the proposed method, we first apply SSL
to pre-train the large embedding network, followed by a number of meta-learning
iterations to fine-tune the model. The iterations are made by training and vali-
dating the model with different datasets, as a way to alleviate the domain shift
preventing a successful classification of kidney stones.

The datasets used for meta-training were selected because they meet the
requirement of decreasing its similarity with ImageNet based on three orthogonal
criteria: i) Existence of perspective distortion, ii) the semantic content and iii)
the color depth. The ImageNet dataset contains natural and colored images
with perspective. The CropDisease dataset contains natural and colored images
with perspective. Meanwhile, the EuroSAT dataset contains natural and colored
images but without perspective. In contrast, the ISIC dataset contains medical
and images with no perspective in color. We can place the kidney stones datasets
used for this study within the spectrum of dissimilarity as ISIC, as they contain
both medical and colored images with no perspective.

Therefore, the model gradually converges to a point in which more discrim-
inating features are learned from the fine-tuning process. This domain-specific
fine-tuning is done as follows: First, we meta-train the model with the base
datasets (MiniImageNet and CUB-200); then we specialize the model domain by
meta-training with the CropDisease, EuroSAT and ISIC datasets sequentially.
After training and validating the model, we perform the meta-testing with the
two kidney stone dataset separately. These datasets are not used in the meta-
training phase, so we can evaluate the generalization capabilities of the proposed
method.

5 Experimental Results

5.1 Implementation Details

For the training phase of our FSL model, we follow the same setting as other few-
shot learning models [17] by learning across the 5-way 1-shot and 5-way 5-shot
task settings and using 15 query samples for each class in the task. For the meta-
training phase, we randomly sampled 100 tasks over 200 epochs. We validate
each epoch with 500 randomly constructed tasks using the classes reserved for
validation. For the testing phase, we randomly constructed 200 tasks which is
enough for the little amount of data from the kidney stones datasets.

For the feature extraction backbone, we tested two different embedding net-
works, a ConvNet and an AmdimNet. Following the same approach as [17,19],
the ConvNet is built using four layers of convolutional blocks. Each block is
made up of a 3×3 convolution with 64 filters, followed by a batch normalization
and a ReLU layer. The input images are resized to 84× 84 and normalized. For
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this network, we do not apply a pre-training process due to the small scale of the
model. In the meta-learning phase, we use the Adam Optimizer with an initial
learning rate of 1×10−3 and a step size of 20. For the AmdimNet, we follow the
same setup provided by [2] consisting of the pre-training stage and meta-learning
stage. In the pre-train stage we use the Adam Optimizer with a learning rate
of 0.0002 and an embedding dimension of 1536. We resize the unlabeled input
images to a size of 128×128 pixels. In the meta-learning stage, the input images
are resized to 84 × 84 pixels and we used the SGD as optimizer with an initial
learning rate of 2 × 10−4, a step size of 20 and weight decay of 0.0005.

5.2 Training Details

Our experiments were carried out in three main steps. In the first we performed
quick tests to determine if the kidney stones classification was indeed a problem
that few-shot learning could solve. We trained the base prototypical networks
[17] on the 5-way 5-shot and 20-way 5-shot settings, and tested the models gen-
eralization on both kidney stones datasets. The results obtained in this step were
promising, with models that generalized much better than previous deep learning
methods. The second step was a round of experiments to find the best hyper-
parameters for the main model (AmdimNet). We tested a set of combinations
for the optimizer, learning rate and step size, finding that the best combination
was SGD optimizer with a learning rate of 0.0002 and step size of 20. Lastly, the
third step was to carry out experiments to find the best performing model for
the kidney stones classification. We explain the details below.

For the pre-training stage we trained two different embedding models: i)
ImageNet900 (Img900) was trained using the SSL strategy from 900 classes of
the ImageNet dataset (removing from ImageNet the 100 classes used in Mini-
ImageNet) and ii) ImageNet1k (Img1k) is trained using self-supervised learning
from the whole 1,000 classes of the ImageNet dataset without any label.

For the meta-training stage we adopted a domain-specific fine tuning to
reduce the domain shifts between the source datasets and the target of kidney
stones images. Since our testing phase is carried out with the kidney stones
datasets, the base datasets were modified to only have training and validation
classes in the following way. In MiniImageNet, we assign for training the classes
previously used for training and validation, and for validation we use the classes
previously used for testing, leading to a total of 80 classes for training and 20 for
validation (Mini80). The same split is applied to the CUB dataset, in which we
use 150 classes for training and 50 classes for validation (CUB150). We trained
over 20 different models, splitting the experiments into 6 data configurations
based on how the model would be trained. The meta-learning setting was either
by incremental learning through different datasets or by meta-learning among
all datasets at once.

Table 1 summarizes the experimental setup, comprised by the configurations
just described above. The first three rows are models pre-trained with Ima-
geNet900 and the last three configurations are models pre-trained with Ima-
geNet 1k. For model 1, we sequentially meta-trained across Mini80, followed by
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Table 1. Experimental setup with incrementally more similar datasets to the target
domain.

Pretrain Mini80 CUB150 Crop-D EuroSAT ISIC Details

Meta-training

1 ImageNet900 ✓ ✓ ✓ ✓ All datasets (except
CUB) sequentially
meta-trained

2 ImageNet900 ✓ ✓ ✓ ✓ ✓ All datasets sequen-
tially meta-trained

3 ImageNet900 ✓ ✓ ✓ ✓ ✓ All datasets meta-
trained at once

4 ImageNet1k ✓ ✓ ✓ ✓ All datasets (except
CUB) sequentially
meta-trained

5 ImageNet1k ✓ ✓ ✓ All datasets sequen-
tially meta-trained

6 ImageNet1k ✓ ✓ ✓ ✓ ✓ All datasets meta-
trained at once

CropDiseases (Crop-D), then EuroSAT and lastly ISIC. The same applies for
model 2, but adding CUB150 after meta-training with Mini80. For model 3, we
tested the following 4 settings with the idea of learning from different datasets
at once: i) Training the model first with Mini80, followed by a training with the
rest of datasets, ii) training first with Mini80, followed by CUB150, and then
the rest of datasets, iii) train with all datasets, except CUB150, at once, and iv)
training with all the datasets at once. For the last 3 models in the Table 1, we
repeated the same experiments but with the model pre-trained on ImageNet 1k
and removing Mini80 from the datasets used in meta-training, since those would
represent classes already seen in the pre-training stage.

5.3 Evaluation Results

In order to evaluate the generalization capabilities of the models trained using
the various configurations in Table 1, the architectures were tested on the two
kidney stones datasets described in Sect. 4.1.

Following the cross-domain setup described in [9], we conducted experiments
by testing the proposed model across three main few-shot tasks (i.e., 5-way 5-
shot, 5-way 20-shot and 5-way 50-shot). For the in-vivo dataset, we do not have
enough images per class to test the 5-way 50-shot setting. Thus, the experiments
with this setting are excluded for the in-vivo classification experiments.

Ablation Study Results. In order to assess how the various components of
our proposed approach affect the generalization results of the generated model,
we carried out several ablation studies, shown in Table 2. First, we validate
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Table 2. Accuracy performance of the ablation studies on our method.
∗Mini80+CropDiseases, ∗∗Mini80+CUB+All, ∗∗∗All (excluding CUB).

Model In-vivo Ex-vivo

5-shot 20-shot 5-shot 20-shot 50-shot

ProtoNet 5w5s 63.31 71.88 58.75 65.36 67.85

ProtoNet 20w5s 63.28 72.72 60.47 67.85 70.27

ImageNet 900 69.68 84.49 67.05 74.18 76.46

ImageNet 1k 70.26 84.25 66.75 74.36 77.01

ImageNet 1k-CUB-All 68.38 85.03 68.46 77.65 80.09

ImageNet 900∗ 70.61 84.53 69.45 77.72 79.87

ImageNet 900∗∗ 71.13 85.76 69.25 77.84 80.27

ImageNet 900∗∗∗ 74.38 88.13 69.56 78.20 80.54

the effectiveness of a traditional FSL approach to classify out of distribution
datasets. Specifically, we trained the baseline prototypical networks [17] on the 5-
way 5-shot and 20-way 5-shot settings. After testing both models, we obtained an
accuracy performance of over 70% in ex-vivo and in-vivo images, and the models
demonstrated an acceptable generalization as they do not exhibit an important
loss of performance (around 2%–3%) when compared on the two kidney stones
datasets.

Afterwards, we tested the performance yield by the models when only pre-
training the models, to assess whether or not there is a gain in performance when
applying the proposed meta-training strategy. After evaluating the effectiveness
of two models (Img900 and Img1k), we found that the accuracy performance
greatly increased (around 12% for the in-vivo dataset and around 7% for the ex-
vivo dataset, using the Img900 and Img1k models, respectively). Nonetheless, a
decrease in the generalization capabilities of the models can be observed, as there
is a difference of around 8% in the results for both datasets. Finally, we tested
the generalization performance after implementing the meta-learning strategies
described in Sect. 4.2.

Through these experiments, we found out that there is indeed an improve-
ment (an average of 4% for both datasets) over the model that was only pre-
trained. The improvement on accuracy is not as large as for the ProtoNet and
the pre-trained model. The difference in accuracy between the in-vivo and ex-
vivo datasets is around 8%, which is the same difference using only pre-trained
models. This means that our meta-learning approach was able to account for
the domain-shift of the model, while maintaining its generalization capabilities.

The best meta-learning-based models are shown in the last row of Table 2.
We can see that these models achieved a great performance improvement over
the basic FSL models (values of 88.13% in the in-vivo dataset and 80.54% in
the ex-vivo dataset). As we will see in the next subsection, these results are
comparable with some of the shallow models in the literature [13,14] in terms
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Table 3. Results comparison with previous work, the metrics in the ex-vivo model
were obtained by feeding it samples used to train the in-vivo model.

Model In-vivo Ex-vivo

Precision Recall F-score Precision Recall F-score

Random Forest 0.91 0.91 0.91 0.32 0.26 0.26

XGboost 0.96 0.96 0.96 0.48 0.24 0.36

AlexNet 0.92 0.92 0.92 0.49 0.42 0.45

VGG-19 0.94 0.92 0.93 0.47 0.45 0.45

Inception 0.97 0.98 0.98 0.51 0.45 0.45

ProtoNet 0.71 0.72 0.72 0.70 0.70 0.70

Ours 0.88 0.88 0.88 0.82 0.81 0.81

of performance, and still far below the results obtained by most deep learning
models. Nonetheless, the results in generalization are far more superior. Also,
while most models in the state of the art have been trained with thousands of
image patches, the results discussed here make use of a few hundred images.

Comparison with Previous Works. To verify the effectiveness of our pro-
posed method, we compare it with previous works in ESR using the same
datasets presented in Sect. 4.1. In [13] several shallow ML methods and DL
models were used to classify the images of the in-vivo dataset. We implemented
some of these models and tested their generalization capabilities by trying to
classify the same 4 classes of the in-vivo dataset but using the model trained on
ex-vivo images. Even though the classes are the same, we obtained very poor
results, showing that there is a large loss in performance (a decay of around 40%
in accuracy) when the images come from another data distribution. This issue
plagues all the methods equally, but it comes to show the fragility of the existing
traditional DL models. Most of these problems can be partially fixed by using
metric learning approaches. As it can be seen in Table 3, even the basic ProtoNet
model [17] is more appropriate at generalizing with the same performance than
the classical methods mentioned before.

Our method obtained a high performance in three metrics: precision, recall
and F1-score. Compared with some of the classical machine learning methods
(i.e., Random Forest, XGBoost), we obtained competitive results for the in-vivo
and ex-vivo datasets. Moreover, we demonstrated that our method has much
better generalization capabilities as our model exhibits a loss of 7% on accuracy,
compared with the loss of over 40% from previous works.

5.4 Discussion

To have a better understanding of how our model is behaving, we visualize the
features embeddings from the image samples from both kidney stones datasets
using UMAP [15]. We can observe that in the feature space of the in-vivo
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(a) In-vivo dataset (b) Ex-vivo dataset

Fig. 3. UMAP feature visualization of the (a) in-vivo and (b) ex-vivo datasets. The
visualizations can be used in tandem with the morpho-constitutional analysis proposed
by Daudon [5] to understand the errors done by the models.

dataset (Fig. 3a), the WD class overlaps with BR and WW, something pre-
viously reported for traditional features in [13]. In the reduced manifold of the
ex-vivo dataset (Fig. 3b), we can see that even some of the classes form distinct
clusters, classes such as BR and STR tend to lie very close to each other (a
similar trend also occurs in classification made by humans) and that overall, the
overlap of the WW class is degrading the performance of the model for ex-vivo
images. It may be the case that some classes follow a probability distribution,
which would need other metric learning method to be used during the model
training to alleviate this problem.

It must be emphasized the urologists make use of both surface and section
images to perform the classification of a given kidney stones, using Daudon’s
morpho-constitutional analysis either under a microscope or with an endoscope
[5]. The results for the shallow and DL models in Table 3 are for models trained
in both types of images.

6 Conclusions

In this paper, we conducted a study on generalization capabilities of few-shot
learning applied to two kidney stones classification. We were interested in eval-
uating the generalization capabilities of meta learning-based FSL methods in a
scarce data regime (i.e. medical applications). For this purpose, we made use of
two datasets with 4 overlapping but different data distributions: different acqui-
sition conditions, (in-vivo and ex-vivo) and endoscope (type, brand, resolution).
Where classical machine learning and deep learning models failed to generalize
when trained on one dataset and tested on the other one, our few-shot learning
method was able to obtain a high performance over of 80% in accuracy, recall
and F1-score. The difference on accuracy from the evaluation of both datasets
is of around 8% for our approach, which is much lower compared with the loss
on performance from shallow machine and deep learning models. Although we
obtained a performance lower than the previous work on the in-vivo dataset, it
is still competitive and demonstrate much better generalization capabilities.
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Abstract. Endoscopy is the most widely used medical technique for can-
cer and polyp detection inside hollow organs. However, images acquired by
an endoscope are frequently affected by illumination artefacts due to the
enlightenment source orientation. There exist two major issues when the
endoscope’s light source pose suddenly changes: overexposed and underex-
posed tissue areas are produced. These two scenarios can result in misdiag-
nosis due to the lack of information in the affected zones or hamper the per-
formance of various computer vision methods (e.g., SLAM, structure from
motion, optical flow) used during the non invasive examination. The aim
of this work is two-fold: i) to introduce a new synthetically generated data-
set generated by a generative adversarial techniques and ii) and to explore
both shallow based and deep learning-based image-enhancement methods
in overexposed and underexposed lighting conditions. Best quantitative
results (i.e., metric based results), were obtained by the deep learning-
based LMSPEC method, besides a running time around 7.6 fps.

Data available at: https://data.mendeley.com/datasets/3j3tmghw
33/1.

Keywords: Medical imaging · Image enhancement · Endoscopy

1 Introduction

1.1 Medical Context

Endoscopy is the most effective and common used examination tool to prevent
colon cancer by screening for lesions. This technique is used to examine the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-19493-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19493-1_22&domain=pdf
https://data.mendeley.com/datasets/3j3tmghw33/1
https://data.mendeley.com/datasets/3j3tmghw33/1
https://doi.org/10.1007/978-3-031-19493-1_22
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human colon through a flexible tube called endoscope, while a camera attached
at the tip gathers visual information in real-time. Additionally to the camera, a
point light provides the lighting source during the surgery.

On the other hand, Minimally Invasive Surgery (MIS) is a type of endoscopic
procedure that is increasingly becoming a mainstream medical procedure, over-
taking traditional surgical operations and treatments. Such endoscopic interven-
tion entails a less traumatic experience and less pain for the patient, quicker
recovery after surgery and shortened hospital stays [9].

Both endoscopic examinations and MIS procedures require a great deal of
expertise from the surgeon or specialist and demand complicated training and
certifications. Despite of this, there is ample evidence in the literature that during
the vast majority of endoscopic examinations, a great deal of regions of interest
are missed [13], which poses a serious problem, as they might contain suspicious
regions or other lesions such as polyps. Moreover, such issues make the inspection
by the physician a strenuous and time consuming task. In general, these problems
stem from how rapidly the lighting conditions in the endoscopic video can change
from frame to frame (see Fig. 1). In fact, a highly non-linear illumination response
produces endoscopic frames which are highly lit in some sections (overexposed)
and poorly lit (underexposed) in other areas.

Additionally to affecting strongly the efficiency in the lesion detection by the
doctor, the highly changing illumination conditions in endoscopic settings also
hampers the performance of AI-based tools that are being increasingly developed
for Computer-aided Detection (CADe) and Computer-aided Diagnosis (CADx)
applications and in MIS and laparoscopy, among other areas of research, as we
will discuss next.

Fig. 1. Light condition changes in sequential video frames. Frame 1 shows a normal
condition. Later frames show poor conditions while light points to the closest object.

1.2 Motivation for Our Proposal

In recent years computer vision (CV) has been playing significant role in endo-
scopic explorations aided by novel deep learning (DL) techniques, which give
computers the visual and temporal learning abilities to understand complex sur-
gical procedures in hollow organs [9]. The integration of such techniques is cur-
rently being investigated also for laparoscopy and MIS applications (i.e., such as
instrument tracking, endoscopic view enhancement and suspicious lesion track-
ing [9]). Among these applications, 3D reconstruction seems to be a promising
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solution for the poor depth perception which prevents the full-fledged adoption
of the above-mentioned techniques in MIS and Robotic-assisted surgery (RAS).

However, as with other applications of computer vision in endoscopy, proper
illumination conditions is an aspect of utmost importance for attaining a high
performance in applications such a CADx and such reconstruction methods. In
the latter case, the techniques traditionally employed for recovering 3D informa-
tion, such as Simultaneous Localization and Mapping (SLAM) [7], Structure for
Motion (SfM) and Optical Flow (OF) [15], work poorly on endoscopic images.
This is due to strong photo-metric variations caused by moving light sources,
moist surfaces, occlusions as well as reflections for surgical instruments that
provoke underexposed and overexposed video frames [13].

As a matter of fact, 3D reconstruction techniques rest on the constraint of
brightness constancy [15]. This constraint assumes that the values in intensity
of the pixels remain constant or with a few variations, which usually holds in
applications in natural imagery (i.e., photography) [1] or autonomous driving
[8]. However, in endoscopic procedures, as Fig. 1 shows, the brightness constancy
assumption does not hold due to the numerous illuminations variations when the
camera and light move through the organs.

Therefore, the use of image enhancement techniques for pre-processing such
images is a mandatory step to carry out a robust 3D reconstruction [18] and to
develop reliable and robust CADe/CADx tools.

1.3 Contributions and Organization of the Article

Over the decades, multiple image enhancement techniques have been explored
for illumination adaptation, exposure correction and high-dynamic-range tone
mapping in several applications, to cite a few. Nevertheless, most of the proposed
methods for exposure correction have been designed to deal either with low-light
high-light settings separately, due to the different characteristics of these enhanc-
ing tasks in different areas. In enhancing endoscopic images, these methods have
presented a general lack of robustness due to the fact that in endoscopy images
both problems (under/over exposure) are present simultaneously.

Additionally, as we will discuss next, most of the machine learning based
approaches to IE require large amounts of paired-data images (i.e., corrupted and
non-corrupted ground truth images) for training and testing purposes. However,
to the best of our knowledge, such a large database does not exist for testing
image enhancement algorithms in endoscopic images.

Therefore, in order to mitigate the problems related to large variations in
illumination in endoscopic interventions, in this paper we present novel synthetic
dataset for testing and evaluating endoscopic image enhancement methods. In
order to attain this goal, of our proposal consists of the following contributions:

– 1. We introduce a novel dataset containing synthetically generated over and
under exposure frames, in tandem with their respective ground truth images.
We believe that this dataset can serve as a cornerstone for testing well
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known IE methods and provide a baseline for future developments in ML
for endoscopy and in DL-based image enhancement methods.

– 2. We perform a thorough evaluation of traditional and DL-based image
enhancement (IE) methods in order to highlight the importance of the ground
truth data and the scarcity of bidirectional (under/over exposure) methods.

The rest of this paper is organized as follows. In Sect. 3 we present the
datasets from which the raw data was obtained, besides the methodology utilized
for creating the synthetic dataset and both traditional and DL-based methods
for enhancing the synthetic data. In Sect. 4 we provide a thorough description of
the data preparation and training setup for our experiments. Also, we present a
brief context about metrics implemented and their respective results. Finally, in
Sect. 5, we give our conclusion and an ideas for future work.

2 State of the Art

Mainly, image enhancement consists of two main domains i) spatial domain that
involves direct manipulation of pixels, and ii) frequency domain that involves
Fourier transformation of the input image [22]. IE methods improve the percep-
tion of the image using spatial domain, frequency domain and a combination
of both methods in order to output a modified image on its contrast, hue, or
brightness.

These methods have been approached using either traditional or deep learn-
ing techniques. Some examples of the traditional methods group on the spa-
tial domain are Histogram Equalization (HE) [19], Dehazing-based methods [17]
and curve adjustment approaches [11]. Another category of image enhancement
approaches are those based on Retinex theory, which decompose the images in
reflection and illumination components [22]; examples of these methods are Sin-
gle Scale Retinex (SSR) [16] and multi-scale Retinex (MSR) [16]. These methods
suffer from a limitation in model capacity for the decomposition and it is difficult
to implement successfully in endoscopy scenarios due to the challenging lighting
changes.

Recently, deep learning based methods have been explored for achieving
more accurate and real-time image enhancement procedures with successful
results. However, most the works in the literature have been oriented to the low-
light image enhancement such as deep-learning networks based on the Retinex
assumption, which combines Retinex assumption with the Convolutional Neural
Networks (CNN) [22].

Furthermore, although these methods have shown great promise in natural
images, many of them cannot be directly applied to endoscopic images or videos.
First of all, most of the existing methods can either enhance either under-or
over-exposed images but not both. For instance, Deep UPE [20], or the work
presented in [25,26] are examples of methods that can be applied successfully in
under-exposed natural images, whereas just a few methods have been explored
to correct both under-exposed and over-exposed images. Recently, Afifi et al.
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[1] proposed a novel deep learning based technique to enhance images in both
directions under- and over-exposure in a supervised manner.

Herein, we benchmark this technique against traditional methods in order
to assess our real-synthetic paired dataset and highlight the need for reliable
and standard datasets for future DL-based IE methods in endoscopic proce-
dures. Nonetheless, another requirement for developing usable IE methods in
endoscopy is related their inference time or latency. Most of the works found in
the literature take several seconds to enhance a single image, hampering their
use in real-time image processing applications such as video processing of under-
water [12], X-ray imaging [14] and restoration in video endoscopy [9]. Endoscopy
is an application area which requires dynamic and real-time image enhancement,
which additionally needs to be accurate in the sense of not introducing any arti-
facts and we believe that the work presented in [1] can serve a launching pad to
satisfy these requirements.

Figure 2 shows some examples of endoscopic video frames with some of these
examples. These dramatic changes impede the development of robust computer
vision methods for CADe and CADx among other tasks such as MIS or CIS
(computer integrated surgery). Besides, it has been demonstrated that image
enhancement pre-processing techniques can significantly boost the performance
of 3D reconstruction pipelines using endoscopic images [26].

As detecting artifacts such as under and over exposed frames is so important
for a variety of applications, and in other to improve the applicability of CADe
and CADx application endoscopy, several datasets and challenges have been
proposed [2,3]. The focus of these challenges has been to foster the development
of real-time methods for detecting artefacts such as bubbles, instruments, blood
or even some lesions, where under and overexposure play a major role, as they
are typically discarded in many automated procedures. However, many computer
vision algorithms such as SfM or SLAM require as many frames as possible for
maximizing the quality of the obtained results and as such, discarding such
frames is not an option and image enhancement is thus necessary.

An additional problem is that, to the best of our knowledge, datasets con-
taining both pairs of ground truth (clean images) and corrupted images (with
exposure errors) does not exist in for endoscopic imaging. This is in stark con-
trast to the more conventional/mainstream computational photography research
field, in which several standard datasets have been proposed and are widely used
for testing new algorithms and architectures [6,22].

Thus, in order to develop and test new image enhancement methods in
endoscopy is necessary to develop and test such dataset from the ground up.
The contribution of the work presented in herein is thus creation of such a novel
real-synthetic paired dataset. For doing so, we leverage three existing endoscopic
datasets and a Generative Adversarial Networks (GANs) approach for transfer-
ring under and over exposed over clean images. In this manner, we have both a
reference image and a corrupted images over which reference-based metrics (i.e.
SSIM) can be applied in order to assess the performance of newly developed
enhancement methods.
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(a) Without exposure error. (b) Overexposure. (c) Underexposure.

Fig. 2. Example of endoscopic frames exhibiting the types of artefacts that we are
interested on removing through image enhancement methods

3 Data and Methodology

3.1 Data

As briefly discussed above, the data for our experiments was obtained from three
different sources, none of them containing enough information for doing image
enhancement with deep learning-based methods, i.e., these are not datasets with
paired frames for applying methods where we have access to the corresponding
ground truth. The chosen datasets are: the EAD2020 Challenge dataset [2],
EAD 2.0 from EndoCV2022 Challenge dataset [3] and the HyperKvasir dataset
[5]. They were selected for our experiments as they contain single frames and
also sequential frames from several hollow organs. Figure 2 shows examples of a
normal frame (without exposure error) and two examples containing exposure
problems that were extracted from the datasets.

EAD2020 Challenge Dataset. The Endoscopy Computer Vision Challenge
(EndoCV2020) addressed two challenges both focused on finding novel methods
for detection and segmentation in the endoscopic videos: Endoscopy Artifact
Detection (EAD2020) and Endoscopy Disease Detection (EDD2020) [2] chal-
lenges. The goal of the EDD2020 sub-challenge was to develop methods for
detecting and segmenting visible diseases. For this purpose, a full dataset com-
prised of images, annotations and masks was created from video frames and
annotated by experts from various institutions. However, the nature of the chal-
lenge involves only classes related to diseases. On the other hand, EAD2020 chal-
lenge comprises a variety of endoscope positions, organs, disease/abnormality
and image artefacts. All frames were annotated by experts with 8 different
classes; in particular, two classes are of interest to our research: contrast and
saturation artefacts. These classes denote what is well-known in photography as
overexposure and underexposure errors but in specific areas on the image. From
the 2531 images, only 770 frames were labeled with underexposure (contrast)
and 249 with overexposure (saturation). Figure 2 shows two examples from the
dataset containing these two kinds of artifacts.
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EAD2.0 Dataset. Similarly to EAD2020 Challenge Dataset in Sect. 3.1,
EAD2.0 Dataset [3] consists of multi-center and diverse population sub-datasets
with tasks for detection and segmentation but focus on assessing generalizabil-
ity of algorithms. This dataset contains more sequence/video data and multi-
modality data from different centers. Particularly, the dataset consists of 24
sequences with 1106 video frames with multi-instance labels for training. How-
ever, unlike the EAD2020, EAD2.0 dataset was not labeled with any class related
to underexposure errors. In Sect. 3.2 we will explain briefly the way we filtered
out the dataset in order to have images with exposure errors.

HyperKvasir Datset. Borgli et al. in [5] presented the largest image and video
dataset of the gastrointestinal tract available in literature with 110,079 images
and 374 videos. The data was collected during real gastro- and colonoscopy
examinations. The dataset is split into labeled images (10,662) and unlabeled
images (99,417). Since this dataset had no a specific purpose, data was not
annotated, and in fact the only labels that it contains are related to the organ
type that the video frames comes from. In present work we only take the set of
labeled images.

3.2 Methodology

Given a set of raw endoscopic frames collected from the three datasets previously
mentioned, our pipeline aims to i) train an object detector to classify frames with
and without exposure errors over unlabeled datasets (see Fig. 3a), ii) manually
filter out non-informative frames, iii) train a GAN for creating synthetic frames
with exposure errors (see Fig. 3b), and iv) quantitatively and qualitatively assess
our dataset on various types of image enhancement methods: traditional algo-
rithms based on histogram equalization, models based on Retinex theory and
deep neural network architectures.

Data Preparation. We discarded non-informative frames. For instance, fully
dark, bright or blurry images, were filtered out. After this process, we ended
up with 7,064 images, 1049 from EAD2020, 654 from EAD2.0 and 5361 from
HyperKvasir. As we mentioned before, the EAD2020 dataset already contains
annotations about exposure errors of our concern, hence we trained a YOLOv4
object detector [4] with data from EAD2020 [2] and we obtained reliable results
on detecting exposure errors. Finally, the model was applied to detect those
instances in EAD2.0 [3] and HyperKvasir [5]. Therefore, as shown in Fig. 3,
the object detector acts as a frame classifier, since it outputs frames without
exposure errors, and with over and under exposure errors.

Image-to-Image Translation. Image-to-image translation is an application
of GANs which manage to translate from one representation of an image to
another, or rather it does style transfer. For instance, a scene may be rendered
by a gray-scale image, RGB image or edge sketches [8].
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One of the contributions of the present work is to use image-to-image trans-
lation [8] to take normal endoscopic frames and transfer to style with over- and
underexposure. For implementing this task, we used the CycleGAN architecture
[27] since the main problem to tackle is the lack of paired data, thus CycleGAN
is a promising method for working with our unpaired data.

Image Enhancement. One of the concerns of this work has been to find image
enhancement methods that perform the restoration of both types of exposure
errors, since these problems are often found simultaneously in endoscopic exami-
nations. Contrary to other methods in the literature, the model proposed by Afifi
et al. [1]is capable of handling both problems in natural images with accurate

(a) Object detector for classifying frames.

(b) Pipeline for creating our real-synthetic endoscopy dataset for IE.

Fig. 3. Overall pipeline of the methodology
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results and with a very low latency and we will used as a baseline for comparison
traditional image processing algorithms as well as for future developments.

The approach proposed by the authors, known as Learning Multi-Scale Photo
Exposure Correction (LMSPEC) extracts random patches of three different sizes
(128 × 128, 256 × 256 and 512 × 512) and decomposes each patch in four-level
frequencies, i.e., it makes a Laplacian Pyramid (LP) of four levels. Then, each
level of the resulting LP is utilized as input of a set of sequential U-Net-like
sub-networks. For each patch, an L1 loss-based loss functions is proposed, aimed
to store global color information besides detail information. A discriminator
network is also for computing an adversarial loss aimed to preserve realism in
the corrected patch. In this work, we implemented a quantitative and qualitative
benchmark using i) traditional methods: RLBHE [28] and FHSABP [19] based
on histogram equalization, and LIME [10] and DUAL [24] based on Retinex
theory, and ii) DL-based method: LMSPEC [1].

3.3 Training Setup

All our models were trained and the experiments were executed on an NVIDIA
DGX-1 system with eight Tesla V100 GPUs.

YOLOv4 Setup. Frames annotated by experts provided on the EAD2020 chal-
lenge [2] allowed us to train YOLOv4 object detector (for classifying frames
without exposure errors, under- and over-exposed) with 90% for training and
10% for testing. For avoiding over-fitting, data augmentation techniques such
as rotations, splits, blurry, and hue change, were applied. The hyper-parameters
were set as follows: the number of classes were 2 (overexposure and underexpo-
sure), thus the number of filters on each convolutional layer was 30. The training
steps was set to 6000 with an initial step decay learning rate of 0.01 and divided
by factor of 10 at the 4,800 steps and 5,400 steps. The momentum was set as
0.9 and weight decay as 0.0005.

CycleGANs Setup. For the first experiment all frames with exposure errors,
i.e., 1, 296 overexposed and 1, 289 underexposed, were taken as adversarial dis-
criminators DY . On the other hand, the 4, 478 normal frames were split up into
65% for training and 35 %for testing. The hyper-parameters were set for both
experiments as follows: 150 epochs, ADAM optimizer, learning rate of 0.0002,
decay β1 of 0.5, decay β2 of 0.999, starting decay from epoch 100, cycle loss
weight λcyc of 10 and identity loss weight λid of 5.

LMSPEC Setup. We perform the same split for manage both exposure errors,
70% for training, 27% for testing and 3% for validation. We only perform experi-
ments on patches with dimensions 128×128 and 256×256. The hyper-parameters
were setup for both experiments as follows: ADAM optimizer, decay rate β1 of
0.9, decay β2 of 0.999, a learning rate of 0.0001 for the generator and 0.00001 for
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the discriminator; for patches with dimension 128 × 128 we used a mini-batch
size of 32, 40 epochs and at epoch 20 the learning rate was decayed by factor
of 0.5. For patches with dimension 256 × 256 we used a mini-batch size of 8, 30
epochs and each 10 epochs the learning rate was decayed by the same factor; the
adversarial loss was activated only for patches with dimensions 256 × 256 after
15 epochs.

3.4 Metrics

One of the drawbacks of implementing a framework like ours, which is based
in GANs and synthetic datasets, is that there are not other works to compare
against our results. Therefore, for evaluating our image enhancement results we
make use of well-known of reference-based metrics, thus the need for a paired
dataset with ground truth images. For instance, in [23] P. Welander et al. per-
formed a perceptual study for evaluating the realism on the resulting synthetic
images. Unlike them, herein we performed a perceptual study for evaluating the
quality of the generated images. First of all, we use the Structure Similarity Index
(SSIM) for filtering out similar frames, whereas the Main Square Error (MSE)
on the gray-scale domain was used for filtering out very darkened/brightened
frames, or for discarding frames without changes on light conditions after the
GAN style transfer.

On the other hand, for evaluating our image enhancement experiments we
implemented a statistical analysis, ground truth dependent evaluation. We used
the Mean Squared Error (MSE) to evaluate the pixel-wise average squared errors
in the image. We also make use of the Peak Signal-to-Noise Ratio (PSNR) and
of Structural Similarity Index Metric (SSIM) [21] for evaluating quantitatively
the quality of the enhanced images results.

4 Experiments and Results

We implemented three main experiments. i) we created a frames classifier by
training and testing YOLOv4 object detector, ii) we created a paired real-
synthetic dataset by training and testing CycleGANs, and iii) we utilized our
dataset for exposure correction with traditional methods, and training and test-
ing LMSPEC to highlight the importance of a paired data.

4.1 Results

After implementing the CycleGAN model, we obtained 1,564 frames for each
type of exposure error. However, some frames were not useful or sufficiently
informative, thus we carried out a statistical analyses based on the MSE and
SSIM metrics which were used to establish boundaries that separate informa-
tive from non-informative frames. For our dataset, the range for the SSIM was
between 0.6 ≤ SSIM < 0.9; on the other hand, the value of the MSE over
gray-scale levels boundaries was 100 < MSE < 1, 500 for overexposure and
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100 < MSE < 750 for underexposure errors. After this procedure, we finally
obtained a dataset with 985 underexposed and 1,231 overexposed paired frames,
that is both ground truth and corrupted images.

Table 1 reports the quantitative results of each method applied to our dataset,
in which numbers in bold were the best results for each metric. As it can be
inferred from the table, LMSPEC achieves a very competitive performance for
both types of exposure errors in terms of noise removal and the preservation of
the structure of the image.

Table 1. Results for full reference-based quality experiments.

Method Overexposure Underexposure Inference time

MSE↓ PSNR↑ SSIM↑ MSE↓ PSNR↑ SSIM↑
LIME 0.048 8.566 0.597 0.054 17.331 0.699 44.0236

DUAL 0.043 0.907 0.726 0.053 20.012 0.708 30.9965

FHSABP 0.036 16.021 0.631 0.034 18.195 0.633 0.2953

RLBHE 0.051 19.425 0.746 0.055 21.053 0.723 0.2996

LMSPEC 0.046 24.061 0.812 0.964 23.863 0.793 0.1316

(a) Overexposure.

(b) Underexposure.

Fig. 4. Reference-based PSNR and SSIM evaluation results.
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On the other hand, Fig. 4 shows distribution and density of the computed
metrics (in the form of box and plots) obtained for every applied enhanced
method. It turns out that LMSPEC got higher values for both compared metrics,
and the results tend to be more robust as they show very low variance. Figure 5
shows qualitatively results of enhancement with all methods.

This qualitative comparison is very much required as by comparing methods
in terms of MSE might suggest that the Retinex Theory-based DUAL method
perform as well as LMSPEC. However, as it can be observed in Fig. 5, this is
far from the truth, as a comparison between the 4th and 7th columns shows:
DUAL is in general not able to remove overexposure artefacts, and in some cases
it makes the problem worse.

Fig. 5. Results of our methods: first column real images, second column GANs-made
synthetic images with exposure error, and third column the image corrected. First pair
of rows, we show two overexposed cases, and second pair underexposed cases.

Another advantage of LMSPEC over DUAL and other more traditional meth-
ods pertains the processing or inference time. As it can be observed in Table 1,
more traditional methods require very long processing times (44 and 30 s in aver-
age for image for LIME and DUAL, respectively) whereas LMSPEC requires
0.13 s, attaining a very good performance (around 7.6fps).

Limitations. The implementation of GANs for creating the synthetic data with
exposure errors implies stochastic results, therefore this methodology does not
allow us to control the level of darkening or lightening on the output images, as
well as the regions where these errors are induced.
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5 Conclusion and Future Work

In this paper we have proposed a pipeline for generating a novel dataset which
aim is to provide a baseline for comparing image enhancement methods. The
dataset was built leveraging images from other publicly available datasets for
finding suitable uncorrupted and under and over exposed images using an object
detector. This intermediate dataset in the used for transferring the desired arti-
facts into the uncorrupted images, effectively enabling us to create a paired
dataset that can be used for reference-based testing purposes. After a filtering
process, this dataset was validated by expert endoscopists in our team.

However, some of the synthetic images still present drawbacks such as noise,
color changes and other types distortions. We consider that a longer training,
in tandem with a larger dataset or data augmentation techniques would allevi-
ate this issue. Nonetheless, we demonstrate that this dataset is versatile enough
for testing traditional and more advanced image enhancement methods such as
LMSPEC. As our results suggest, this method has shown remarkable results,
but further tests and improvements are necessary to make it useful for endo-
scopic settings. For instance, the model can introduce some artifacts in some
images; this aspect needs to be properly characterized and taken into account
for designing novel loss functions (i.e. perceptual loss) that preserve color and
texture more effectively. Secondly, there are some areas of improvement in order
to make this model to be able to run in real time (i.e., 24 FPS).
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Abstract. Prostate cancer is the second-most frequently diagnosed can-
cer and the sixth leading cause of cancer death in males worldwide. The
main problem that specialists face during the diagnosis of prostate cancer
is the localization of Regions of Interest (ROI) containing a tumor tissue.
Currently, the segmentation of this ROI in most cases is carried out man-
ually by expert doctors, but the procedure is plagued with low detection
rates (of about 27–44%) or over-diagnosis in some patients. Therefore,
several research works have tackled the challenge of automatically seg-
menting and extracting features of the ROI from magnetic resonance
images, as this process can greatly facilitate many diagnostic and thera-
peutic applications. However, the lack of clear prostate boundaries, the
heterogeneity inherent to the prostate tissue, and the variety of prostate
shapes makes this process very difficult to automate.In this work, six
deep learning models were trained and analyzed with a dataset of MRI
images obtained from the Centre Hospitalaire de Dijon and Universitat
Politecnica de Catalunya. We carried out a comparison of multiple deep
learning models (i.e. U-Net, Attention U-Net, Dense-UNet, Attention
Dense-UNet, R2U-Net, and Attention R2U-Net) using categorical cross-
entropy loss function. The analysis was performed using three metrics
commonly used for image segmentation: Dice score, Jaccard index, and
mean squared error. The model that give us the best result segmenting
all the zones was R2U-Net, which achieved 0.869, 0.782, and 0.00013 for
Dice, Jaccard and mean squared error, respectively.
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1 Introduction

Prostate cancer (PCa) is the second leading cause of cancer deaths in the world
and nowadays one of eight men are diagnosed with this disease in their lifetime
[1]. There are some risk factors, such as the age above 50 years, family history,
obesity, ethnicity that must be considered during the diagnosis process, and it is
noteworthy that the survival rate for regional PCa is almost 100% when detected
in early stages. In stark contrast, the survival rate when the cancer is spread to
other parts of the body is of only 30% [2].

Magnetic Resonance Imaging (MRI) has been established as the best med-
ical image tool for the detection, localization and staging of PCa, due to their
high resolution, excellent spontaneous contrast of soft tissues, and the possibil-
ity of multi-planar and multi-parametric scanning [3]. Although MRI has been
traditionally used for staging PCa, we will focus on PCa detection trough ROI
segmented from MR images.

The use of image segmentation of MR images for PCa detection and char-
acterisation can in fact help in determining the tissue volume, aiding as well
in the localization the cancerous tissue in the ROI [4]. Thus, an accurate and
consistent segmentation is crucial in PCa. Although prostate segmentation is a
relatively old problem and some methods have been proposed in the past using
conventional image processing pipelines, nowadays, the most common and tra-
ditional method to identify and delimit prostate gland and prostate regions of
interest (central zone, peripheral zone, transition zone) is performed manually
by radiologists [5].

This non-automated process has been proven to be time-consuming and, due
to the subjectivity of the task and different interpretations from multiple spe-
cialists, it is highly operator dependant and difficult to reproduce [6]. Therefore,
automating this process for the segmentation of prostate gland and regions of
interest, in addition to saving time for radiologists, can be used as a learning
tool for others and have consistency in contouring [7].

In recent years, the automatic segmentation of the prostate has been pro-
moted with the use of deep learning techniques. These methods, called convo-
lutional neural networks (CNNs) have generated results that outperform tra-
ditional methods due to their ability to learn complex features and perform an
accurate classification of pixels, resulting in segmentation [8]. Several works have
addressed the problem of prostate segmentation using deep learning, such is the
case of the popular U-Net [9] model, which is the base of many recent works in
literature: MultiResU-Net [10], Dense-UNet [11], Attention U-Net [12], among
others. Although good results have been obtained by the authors of these mod-
els, there is a lack of datasets with enough information to segment the prostate
and all of its ROI correctly.

In this paper, we explore six recent deep learning methods (i.e. U-Net, Atten-
tion U-Net, Dense-UNet, Attention Dense-UNet, Recurrent Residual Convolu-
tional Neural Network based on U-Net (R2U-Net), and Attention R2U-Net archi-
tectures.) to segment the prostate and evaluate their performance in this task.
Even though a comparison of metrics to evaluate the performance between these
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models have been performed in other works, most of them only evaluate between
the whole prostate gland or two principal zones: CZ, and PZ.

The dataset we used to perform our experiments the Centre Hospitalaire de
Dijon and consists of 16 patients, with a total of 205 images with their corre-
sponding annotations that were validated by a collaboration of experts using a
dedicated software tool [13]. The deep learning models studied and compared
were trained in the same conditions, using categorical cross-entropy loss func-
tion and three metrics to measure their performance. In this work, we make a
thorough comparison between six models, including five U-Net based models and
original U-Net, using multiple loss functions and the same metrics for evaluation.
The pipeline of our experiments is shown in Fig. 1.

Fig. 1. Pipeline of experiments. Six models were trained with 16 patients (205 images)
using categorical cross-entropy loss function. As a result, an image with four segmented
zones was obtained for each test image on all models. The resulting images were eval-
uated using three segmentation metrics.

This paper has five sections including this introduction. Section 2 is divided
in two subsections where we mentioned the motivation of doing this study, and
also, discuss previous works related to prostate segmentation, focusing on deep
learning methods. Section 3 is divided in four subsections, where we described
the dataset, deep learning architectures, metrics, loss functions, and details for
training and testing. In Sect. 4 the results of the experiments are discussed in
detail. The conclusion and future work are in Sect. 5.

2 Motivation and State of the Art

2.1 Motivation for Segmenting Prostate Zones

In accordance with Sun et al. [14], analyzing multiparametric MRI (mpMRI)
images is a technique used in patients with possible PCa, which can be performed
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before a transrectal ultrasound (TRUS) or after a negative TRUS. In the case
of a potential cancerous tissue, it can also be analyzed by MRI guided biopsy or
MRI-US guided biopsy, which both of them have shown higher accuracy than
only using TRUS [14]. For patients who have been correctly diagnosed with PCa,
morphology and localization are features that can be extracted from mpMRI
images. An accurate localization of tumor can be carried out by mpMRI, chiefly
those in anterior zone that TRUS may miss [15]. Also, mpMRI has shown a high
accuracy defining tumor volume, which is a risk factor [14].

Therefore, segmentation of MRI images is crucial to define the prostate
boundaries (including zones) and exclude other nearby organs that are not of
interest at the moment [14]. As commented before, there are manual and auto-
mated methods to do it and the most common used is manual.

This manual method has several limitations that can affect in the analysis
of PCa detection, such as time consumption, subjective results, variability, etc.,
and, for that reason, automated techniques are currently the main discussion
in research [5].The difficulty in the segmentation process is due to the complex
nature of medical images and the presence of non-linear features in most of them
[16].

More precisely, the segmentation output can be affected by: intensity inho-
mogeneity, closeness in gray level of different soft tissue, partial volume effect,
or presence of artifacts [16], which are not easy to fix or homogenize between
acquisition or among patients and are highly operator dependant as well.

Another issue in image segmentation pertains validation fot the results by
several specialists following a reproducible method. New automated methods
have tried to overcome these limitations, and there are some examples such as
U-net [9] network architecture which is dedicated to segment biomedical images,
but it has some drawbacks [5].

2.2 Related Work

Machine Learning Methods. Several traditional methods in the literature
for prostate zones segmentation have been proposed. They can be classified as
atlas-based models, deformable models, and feature-based ML methods [17].
Atlas-based models consist in a collection of multiple images segmented manu-
ally by experts, which are used as a reference for new segmentation in images
of other patients [17]. A study of Klein et al. [18] in 2007, proposed a model
based in MR atlas images, they registered the target image in a non-rigidly way
using a similarity measure, to use the same measure to select the best ones,
and obtain the segmentation by averaging the selected deformed segmentation.
They obtained a median Dice similarity coefficient (DSC) of 0.82 evaluating their
model in 22 images [18].

Deformable models is another technique that has been used in the literature
to get an accurate prostate segmentation, this models are based in mathematical,
geometrical, and physical theories to constrain and guide a curve to delineate
an object’s border [19]. Liu et al. [20] in 200 proposed a deformable model using
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level set in MRI data, the model was tested in images from 10 patients and they
obtained a DSC score of 0.81.

Another methods were introduced in order to get a more precise results of
segmentation in medical devices such as: k-means clustering, thresholding, active
contour methods, among others. Those techniques have shown good results in
image segmentation. However, in the last years, the field of Deep Learning (DL)
has growth exponentially in medical imaging, particularly in the segmentation
process [21].

Deep Learning Based Methods. In medical imaging, deep-learning tech-
niques have been improving the analysis, such as image segmentation, image
registration, image fusion, image annotation, CADx, lesion detection, and micro-
scopic image analysis [22]. In recent years, new DL models for image segmenta-
tion have been developed, specially focused on the biomedical area.

One of the best known models in the literature is U-Net, which is a CNN com-
posed of a series of four convolution and max-pooling operations which reduce
the dimension of the input image, followed by four convolution and up-sampling
operations [9].

There are some works that use U-Net to get an automatic segmentation of
the prostate. Zhu et al. [23] proposed a deeply-supervised CNN to segment the
whole prostate gland, based on the structure of U-Net getting a mean DSC of
0.885. Also, Zabihollahy et al. [24] designed a model composed by two U-Net
architectures to segment the prostate gland, as well as, its CZ and PZ in MRI
T2-weighted images and ADC maps, obtaining a mean DSC score of 0.92, 0.91,
0.86, respectively. Also, Clark et al. [25] presented a new architecture based on
U-Net and inception model to segment the prostate and transition zones using
diffusion-weighted MR images, they obtained a mean DSC of 0.93 and 0.88,
respectively. Rundo et al. [26] proposed a novel architecture called USE-Net,
which incorporates Squeeze-and-Excitation into U-Net; they achieved a segmen-
tation of the prostate zones outperforming most of the state-of-the-art results in
peripheral zone segmentation. In another work, Runo et al. [27] analyzed some
CNN models with datasets from different institutions using only T2-weighted
MR images and concluded that U-Net outperforms other methods in the state
of the art. More recently, Aldoj et al. [5] proposed a novel model based on U-Net
and DenseNet and did a segmentation of prostate zones in 3D MR images with
three variations of their architecture, they obtained a mean DSC for the whole
gland, CZ, and PZ of 0.92, 0.89, and 0.78, respectively.

In 2018, Oktay et al. [12] proposed a novel attention gates to incorporate it
into the existing U-Net model. The intention of using attention blocks is that, in
an automatic way, the model learns to focus on the specific target structures, and
ignore the rest of them on the image. In Attention U-Net model, the attention
gates highlight the salient features from the skip connections between the encoder
and decoder [12]. These attention gates modules have been implemented in other
architectures such as Attention Dense-UNet [28], Spatial Attention U-Net [29],
Attention R2U-Net, among others.
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Although automatic prostate segmentation has improved during the last
years, there is still work to do in segmentation of specific prostate zones such
as CZ, PZ, and TZ. An accurate segmentation of these zones, as well as, of
tumor (TUM) of different sizes and shapes, could lead in early detection of
prostate cancer. Therefore in this work, we compared some models from the
literature using categorical cross-entropy as loss function with a dataset of only
T2-weighted images. We analyzed the segmentation of the prostate zones using
different metrics to choose the best DL architecture.

3 Data and Methods

The technical contribution of this work is the evaluation of the impact of categor-
ical cross-entropy as a loss function with three metrics on the prostate segmen-
tation using U-Net, Attention U-Net, Recurrent Residual Convolutional Neu-
ral Network based on U-Net (R2U-Net), Attention R2U-Net, Dense-UNet, and
Attention Dense-UNet architectures. A total of 6 segmentation processes with a
maximum of four zones per image are compared in this work. A visual summary
of the experiments carried out is shown in Fig. 1. In this section the data and
methodology followed is described and explained.

3.1 Dataset

The dataset of images used in this work were provided by PhD. Christian Mata
from UPC in Barcelona in collaboration with DIJON hospital in France. The
examinations used in our study contained three-dimensional T2-weighted fast
spin-echo (TR/TE/ETL: 3600 ms/143 ms/109, slice thickness: 1.25 mm) images
acquired with sub-millimetric pixel resolution in an oblique axial plane. The
institutional committee on human research approved the study, with a waiver
for the requirement for written consent, because MRI was included in the workup
procedure for all patients referred for brachytherapy or radiotherapy.

(a) Original T2-MRI prostate image (b) Masks of prostate zones

Fig. 2. Sample image and mask of the dataset.
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In addition to the images, a manual segmentation of each with four regions
of interest (CZ, PZ, TZ, and TUMOR) was provided and this process was cau-
tiously validated by multiple professional radiologists and experts using a dedi-
cated software tool [13]. The format of the T2-weighted scans from the dataset
are DICOM, with their correspondent annotations in format CSV of the prostate
zones.

The ground truth masks were created from the CSV data files in a resolution
of 256× 256 pixels. Also, DICOM files were transformed to images of the same
resolution after a data augmentation process was carried out. As is common
with medical images, due to the difficulty of obtaining good images to work with
them, a biomedical image augmentation algorithm [30] was performed. This
process help us to increase the number of training images, and consisted of 16
geometrical transformations such as: rotations, zoom, translations, among others
variations. At the end, the total number of images with their corresponding
masks were 3485. An example from the dataset is shown in Fig. 2; in the image
there is an original T2-MRI image of the prostate and the mask of the zones
generated from the data file provided.

3.2 Deep Learning Architectures

As mentioned in Sect. 2, there are several deep learning architectures used for
image segmentation in the literature. In this work, we focused on five models
based in the U-Net architecture originally proposed by Ronnerberget et al. [9],
and this one was also considered for comparison.

One of the architectures used in this work is Attention U-Net by Oktay et al.
[12], which incorporates Attention Gates (AGs) into the standard U-Net archi-
tecture to highlight salient features that are passed through the skip connections.
This is performed right before the concatenation operation to merge only rele-
vant activations [12]. AGs progressively suppress feature responses in irrelevant
background regions without the requirement to crop a regions of interest between
networks [12].

Also, Dense-UNet proposed by Wu et al. [11] was selected for the comparison
in this work, which consists of a network that combines the U-Net architecture
with dense concatenation to reduce resolution loss. The network consists of a
right side of the architecture with a dense downsampling path, and the left side
with a dense upsampling path, also, it incorporates some skip connection chan-
nels to connect the paths.

Other model tested was R2U-Net presented by Zahangir et al. [31] consists of
a recurrent residual convolutional neural network which has been demonstrated
that outperforms classical U-Net due to the benefit of feature accumulation
inside the model in training and testing processes, among other novel features
proposed.

Attention Dense-Unet proposed by Li et al. [28], is an integration of Atten-
tion modules and the model Dense-UNet, and has been demonstrated in the
literature to outperforms Dense-UNet, thus we decided to include it in the com-
parison. Finally, we did an integration of Attention U-Net [32] and R2U-Net [31]
architectures called Attention R2U-Net to get a combination of the benefits of
both models and compare the performance of the segmentation tasks.



Comparison of Automatic Prostate Zones Segmentation Models 289

3.3 Segmentation Metrics

There are several metrics used for image segmentation in the literature [33] and
the selection of metrics for evaluation depends on the data and segmentation
task. Therefore, the metrics we have selected to be used on this work aiming to
get a robust comparison between the segmentation architectures and loss func-
tions are Dice Similarity Coefficient (DSC), Jaccard Index (JAC), and Mean
Square Error (MSE).

As are trying to segment multiple prostate zones, it is necessary to use the
appropriate metrics, as mentioned by Taha et al. [33], the use of Jaccard index
and DSC is appropriate in this case. The Jaccard Index, also known as Inter-
section Over Union (IOU), is a segmentation metric based on overlap and it
is defined as the intersection between ground-truths and predictions divided by
their union (see Eq. 1). DSC is the most used metric based for calculating the
overlap between the ground-truth and predicted images divided by the com-
mon pixels between them, and it can be defined as shown in Eq. 2. The last
metric is Mean Square Error (MSE), which averages the difference between the
ground-truths and predicted segmentation.

JAC =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth| (1)

DSC =
2|Prediction ∩ Ground Truth|
|Prediction| + |Ground Truth| (2)

3.4 Loss Functions

The choice of a loss function is extremely important for any deep learning archi-
tecture, due to the fact that it guides the learning process of the algorithm. That
is to say, it makes the algorithm to be more accurate, faster and reproducible
during the training process. Also, a correct selection of loss function can reduce
or mitigate the problem of overfitting in the model. Herein, we evaluated the
models with Categorical Cross-Entropy (CCE), which is a common loss function
used in multi-class segmentation, and it is designed to quantify the difference
between two probability distributions [34].

3.5 Training

All the models in this work were trained using equal parameters and settings;
the five tested models were implemented using Keras. The U-Net model was
implemented using an adapted code for multiclass segmentation provided by Sha,
Y. [35]. The implementation of Dense-UNet made by Wu et al. [11] was used in
this work. For the Attention U-Net, R2U-Net, and Attention R2U-Net, the codes
implementations were taken from a Github repository [36] and transformed to
be used with Keras. Finally, Attention Dense-UNet architecture was designed
combining Dense-UNet and Attention U-Net implementation.
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The training process for each model was performed using 90% of images, 100
epochs, a batch size of 6, and a learning rate of 0.0001. All the training was done
using a NVIDIA DGX workstation, using two V100 GPUs for each model. At
the end, the trained weights were saved for future testing and prediction.

4 Results

As mentioned above, previous works in the literature have shown great promise
in prostate segmentation. However, most of them have focused solely on spe-
cific zones. Segmenting the gland or only CZ and PZ, is a more common task
due to its boundaries being more delimited than zones such as TZ and Tumor,
where the size and shape presents more variability between patients and images.
Therefore, comparing multiple deep learning architectures dedicated for medical
image segmentation with a dataset with images and masks of all the zones of
the prostate represents an interesting contribution.

In what follows, we will perform a comparison of the obtained results both
quantitatively (through the selected metrics) and qualitatively (by comparing
various sample images and their corresponding GT) to assess the performance
of studied models.

Table 1. Results using multiple deep learning models and metrics (average) for Cate-
gorical Cross-Entropy Loss.

Model Metrics

DSC ↑ JAC ↑ MSE ↓
U-Net 0.731 0.635 0.0021

Attention U-Net 0.839 0.741 0.0016

Dense-UNet 0.830 0.725 0.0018

Attention Dense-UNet 0.844 0.747 0.0016

R2U-Net 0.869 0.782 0.0013

Attention R2U-Net 0.864 0.775 0.0014

4.1 Quantitative Results

Table 1 shows a summary of the five models performance measured under the
metrics mentioned before. A (↑) or lower (↓) symbol indicates whether these
metrics have to be maximized or minimized for obtaining a better model, whereas
the values correspond to the mean metric between the prostate zones and test
images. The bold values represent the model that achieved the best metric score
within all of them.

Although all the models analyzed in this work are U-Net based, with our
dataset this base architecture had the worst results in metrics performance.
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After incorporating attention modules to U-Net, the performance increased in
0.108, 0.106, and 0.05 for the DSC, JAC, and MSE metrics, respectively. On
the other hand, Dense-UNet model achieved lower metric values before integrat-
ing attention gates. After integrating attention, the performance obtained by
Attention Dense-UNet was the best.

Analyzing all the results in Table 1, it is can be inferred that R2U-Net is the
model with the highest performance in Dice and Jaccard metrics (although a
lowest value for MSE was obtained). The gain in performance between R2U-Net
and the base U-Net model is around 13.8%, 14.7%, and 0.0008 for DSC, JAC,
and MSE, respectively. Nonetheless, the architecture of R2U-Net with Attention
modules obtained almost the same values in the test set, with a difference of only
0.004, 0.007 and 0.0001, respectively.

However, the two last models require more computational resources (and
inference time). The difference in performance can be explained by the use of
attention blocks, which requires extra parameters, possibly leading to overfit-
ting. Nevertheless, due to the little discrepancy between the metrics in these
two architectures, it could be difficult to notice the gap in a visual comparison
with images. For comparing the segmentation performance of the models for
each zone (CZ, PZ, TZ, and TUMOR), we selected the Jaccard Index metric (↑)
for evaluation due to the noticeable difference between the different classes. A
summary of the results is shown in a box-plot (see Fig. 3), where each color rep-
resents a different model, and each point is the result of the Jaccard performance
in a tested image.

Fig. 3. Comparison of Jaccard Index per each class between Deep Learning Architec-
tures. Each predicted segmentation is represented by a colored dot to visualize the
variation in the results of the models.
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As is shown in Fig. 3, the performance of the models varies according to the
prostate zone segmented. The zone with the best Jaccard index, aside from the
background, was the CZ, where all of the models performed similarly, with low
variance between them. However, the best model was R2U-Net with a JAC value
of 0.84, and the worst performance in this zone was U-Net base model.

For the segmentation of the peripheral zone, all the models behaved similarly,
but they exhibited lower values for the metrics of interest in average. Although
the other 2 zones were segmented with high values of JAC, it can be seen on
Fig. 3 that the variance in this zone is higher than in CZ, yielding much lower
values in some models such as U-Net and Dense-UNet. In this zone, the models
with lower variance and higher mean score are R2U-Net and Attention R2U-Net
with a mean JAC index of 0.763 and 0.751, respectively.

The Transition zone (TZ) was the one with worst segmentation performance
of all the models, with high variances and an average JAC index below 0.57,
achieved by the best architecture, R2U-Net. The variance and poor performance
in this region can be explained by overall lack of ground truth masks of this zone
in the training data, as well as the relatively small size of the zone compared to
others. This zone is difficult to segment even for radiologists, so it is commonly
taken as part of CZ or PZ. The above-mentioned problems could be solved by
including more patients, with better delimited TZ masks to our dataset. Finally,
the tumor was the last region analyzed, with less dispersion of points for all the
models, but there was still variance for a few sample images. As in the previous
zones, the best models for the tumor class were R2U-Net and Attention R2U-
Net, with an average JAC index of 0.74 and 0.71, respectively. U-Net and Dense-
UNet were the worst models; however, the implementation of attention modules
improved the performance of those models by 11.6% and 39.3%, respectively.

4.2 Qualitative Results

Figure 4 presents a qualitative comparison for the tested models against the
ground truth. We have selected three examples for assessing which models per-
form the best in different scenarios. The images were selected based on the JAC
values obtained by R2U-Net (our best performing model) with the idea of show-
ing the mos representative examples of the worst case image (first column), the
image with the average JAC value in the dataset (center column) and the best
segmented image in the entire test set (third column). The first row shows the
input image, while the second depicts the GT mask, and each subsequent row
displays the generated segmentation for each input image

As expected, the R2U-Net produces very good results for all the zones in
a great share of the examples, but it struggles with the tumor zone and the
transition zone, as the quantitative results suggested. Surprisingly, the U-Net
model, which was the worst one, had acceptable results in images with only two
or three zones to be segmented, as well as, Dense U-Net model.
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Fig. 4. Comparison of the worst, average and best images (obtained from R2U-Net)
predicted by the worst, average, and best architectures analyzed in this work.

5 Conclusion and Future Work

After the analysis between all the models using the same conditions, the best
architecture to segment prostate and its zones was R2U-Net. The segmentation
of all the zones in any T2-weighted MR image is not easy, and in many cases there
is not possible to delimit the boundaries of transition zone, even for experts.

This could be one of the reasons this zone is so difficult to segment for all
the tested models. Even though all the models are U-Net based, there were
differences in performance between them during segmentation tasks. The incor-
poration of attention gates in the U-Net and Dense-UNet architectures yielded
better average metrics values, but this was not the case for Attention R2U-Net
architecture. This could be due to the huge increase in the number of parameters
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in the A-R2U-Net model, which led to overfitting sooner that other models. Nev-
ertheless, the difference between Attention R2U-Net and only R2U-Net metrics
in average is not significant, but due to the resources and time consumption, we
decided that the best model for training is R2U-Net.

It is well-known that the segmentation of prostate zones is a difficult task,
even for radiologists, but it is possible to achieve good results using an automatic
model with a verified dataset and the correct selection and implementation of
a deep learning architecture for training. In this study, we concluded that the
best option is R2U-Net, however there is still work to do in some zones such as
TZ and Tumor, where it is desired to get higher dice score and Jaccard index.
In order to achieve that, as a future work, we should train models with a larger
dataset, as well as trying different loss functions focused on imbalanced datasets,
which can also reduce the variance in our results.
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Abstract. Deep learning strategies have become the mainstream for
computer-assisted diagnosis tools development since they outperform
other machine learning techniques. However, these systems can not reach
their full potential since the lack of understanding of their operation
and questionable generalizability provokes mistrust from the users, lim-
iting their application. In this paper, we generate a Convolutional Neural
Network (CNN) using a genetic algorithm for hyperparameter optimiza-
tion. Our CNN has state-of-the-art classification performance, delivering
higher evaluation metrics than other recent papers that use AI models
to classify images from the same dataset. We provide visual explana-
tions of the classifications made by our model implementing Grad-CAM
and analyze the behavior of our model on misclassifications using this
technique.

Keywords: Interpretability · Convolutional Neural Networks ·
Endoscopy images

1 Introduction

We are living the third artificial intelligence (AI) boom [5,20]. Areas such as
computer vision (CV) and natural language processing (NLP) have undergone
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considerable progress due to the deep learning (DL) schemes developed during
the last decade. Referring to CV, Deep Neural Networks (DNN) have exceeded
human performance in many applications [2], including medical image classifica-
tion [1]. Nevertheless, DNNs are far from perfect. Numerous studies have stated
their concerns about the relevance of the existing DL models in real-world appli-
cations. The focal limitations found for these systems are their interpretability
scarcity [2,9,15,19] (often referred to as the”black box” condition [10,20,24])
and questionable generalizability [2,19,25,27].

In medicine, image-intensive specialties have benefitted from AI systems [14].
For the particular matter of endoscopy, numerous publications describe the cur-
rent state of the applications and expectations of AI for this field [1,3,4,7,16].
Nevertheless, DL systems are usually unsuitable for clinical application due to
the previously stated limitations of these systems (interpretability scarcity and
questionable generalizability). As DL models become more and more present
for critical applications (such as medicine), model interpretability has been sug-
gested as a solution for the black box condition. Nevertheless, many papers
lack a definition of interpretability [12]. For that matter, Lipton [12] stated that
interpretability is not a monolithic concept but reflects several distinct ideas.

We take the following definition: the interpretability of an AI system refers to
the possibility for a human to understand the relation between the system’s pre-
dictions and the information used to make those predictions [21]. In that sense,
for AI applications in medical image classification, the interpretability purpose
is not to understand every part of an AI system but to have enough informa-
tion for the assigned work [21]. Hence, the radiology field requires task-specific
interpretability solutions with clinically oriented validations [21]. Following that
idea, Reyes et al. [21] concluded that saliency maps can be integrated easily into
the radiology workflow because they work at the voxel level; hence, these visual-
ization maps can be fused or merged with patient images and computer-generated
results.

In this work, we aim to explore the capabilities of the current AI tools to
develop a system for automatic endoscopy image classification with the potential
of having a clinical application. To that end, we construct an optimized Convolu-
tional Neural Network (CNN) using a framework [6] based on genetic algorithms
that perform hyperparameter optimization to increase the CNN classification
performance as the model generalizability. Then, as an interpretability method,
we apply the Grad-CAM technique [22] to the network to generate heat map-
like images that aid the visualization of the relevant zones in the input images
for the classification using the optimized CNN. We use the KVASIR dataset of
endoscopy images to develop the optimized CNN and test the interpretability
method. The classification performance of our optimized CNN is state-of-the-art,
and the visualizations using the Grad-CAM technique can locate the regions rel-
evant for the correct classifications.
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2 Related Work

2.1 Classification of Endoscopy Images

Several studies are using AI to analyze endoscopic images. A great deal of these
focuses on a specific gastrointestinal finding, such as polyp detection and segmen-
tation (e.g., [23]), gastric cancer detection and diagnosis (e.g., [13]), diagnosis
and detection of Helicobacter Pylori infection (e.g., [28]), among others. The
publication in 2017 of the KVASIR dataset [18], consisting of 8000 images of
different GI findings in images of upper endoscopy, made possible the develop-
ment of a new generation of algorithms for endoscopic image classification. These
studies aim to achieve a general classification of the different GI findings that
can appear during endoscopy instead of concentrating on a particular suffering
or symptom. For a detailed review of papers using AI to classify images of the
gastrointestinal tract, refer to Jha et al. [9].

2.2 Interpretability

Interpretability is a critical research topic for AI due to the rise of DL approaches
during the last years [21]. There are different kinds of interpretability methods,
and this area is continually growing. Nevertheless, numerous interpretability
methods have not yet reached the radiology AI systems [21].

In this paper, we focus on providing visual explanations (often refer as
saliency maps), which is the typical form of explainability in medical image
analysis [26]. Saliency maps are often gradient-based techniques [26], which foun-
dation is the assumption that the magnitude of the gradients correlates with the
contribution of voxels to a model’s prediction [21]. For an overview of methods
for interpretability of DL for medical image analysis, refer to van der Velden et
al. [26].

3 Methods and Implementation

3.1 Dataset

For our approach development and evaluation, we used the KVASIR dataset
[18], which consists of 8000 images of the gastrointestinal tract insides. This
dataset includes anatomical landmarks, pathological findings, procedures, and
normal findings. All the images in this dataset belong to one of the following
classes: dyed lifted polyps, dyed resection margins, esophagitis, normal cecum,
normal pylorus, normal z-line, polyps, and ulcerative colitis. We divided the
dataset into three partitions: training, validation, and test. Each partition has
4800, 2000, and 1200 images, respectively.
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3.2 Optimized CNN

We performed hyperparameter optimization on off-the-shelf CNNs based on the
genetic algorithm presented in [6]. This approach automatically generates CNNs
for image classification. The algorithm performs in parallel the training of the
CNNs using gradient-based optimization and hyperparameter optimization with
a genetic algorithm. The two optimization procedures have different optimization
targets and use distinct partitions of the dataset to promote the generalizability
of the resulting models. The hyperparameters of the resulted CNN are listed in
Table 1.

Table 1. Hyperparameters of the resulting CNN using the approach described in [6].

Resulted hyperparameters

aγ bγ cγ aδ bδ cδ Architecture Loss function Optimizer

0.0867 6.1762 0.5883 0.5547 2.9659 0.6659 ResNext-50 32× 4d Logit penalty AdaMax

The hyperparameters aγ , bγ , and cγ control the magnitude of the learning
rate as a function of the training epoch and the total number of epochs. Similarly,
aδ, bδ, and cδ control the trainable layers of the CNN during training. The CNN
architecture is the base CNN model. The loss function and optimizer are the
hyperparameters used for the training using gradient-based optimization.

3.3 Grad-CAM

We used the Grad-CAM technique [22] to produce visual explanations of the
classifications made by our CNN. This method is based on the fact that deeper
layers in CNNs specialize in higher-level visual features and that convolutional
layers maintain the spatial information of the input data [22].

Grad-CAM uses the gradients of the logit (of the class that is desired to
know the Grad-CAM) with respect to the activations of the last convolutional
layer [22]. Then, these gradients are global-average-pooled over the height and
width [22]. These values function as weights that denote the importance of the
feature maps in the last layer with respect to the given logit [22]. Then the linear
combination of the weighted activations of the last layer is calculated. Finally,
these values pass though a ReLU activation function to eliminate the negative
values [22]. This is because the Grad-CAM focuses on elucidating the regions
in the image that evoke a positive value for the given class’s logit, and negative
values of the weighted activations are assumed to represent regions in the input
data that promote a positive value for the logits of other classes [22].

4 Results

4.1 Experimental Settings

The experiments were carried out using the following hardware specifications:
AMD Ryzen 5 3400G CPU, one NVIDIA GeForce GTX 1660 Ti GPU, 16 GB
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RAM, and 476 GB system memory. All the algorithms were implemented in
Python 3.8.5, using the environment Spyder 4.1.5 and Pytorch 1.7.1 for the
CNN modules and gradient-based optimization algorithms.

4.2 Optimized CNN Classification Performance

The Optimized CNN resulted of the implementation of the method described in
Sect. 3.2 is a ResNext-50 32 × 4d. We evaluated the classification performance of
the optimized CNN using the standar evaluation metrics: recall (REC), speci-
ficity (SPEC), accuracy (ACC), precision (PREC), Matthews correlation coef-
ficient (MCC), and F1 value (F1).

REC =
TP

TP + FN
(1)

SPEC =
TN

TN + FP
(2)

PREC =
TP

TP + FP
(3)

ACC =
TP + TN

TP + FP + TN + FN
(4)

MCC =
(TP × TN) − (FP × FN)√

ρ
(5)

with ρ = (TP + FN)(TN + FP )(TP + FP )(TN + FN)

F1 = 2 × PREC × REC

PREC + REC
(6)

In the above, TP, TN, FP and, FN stand for true positive, true negative, false
positive and, false negative, respectively. Table 2 shows the evaluation metrics
of the optmized CNN using the three partitions of the dataset. Figure 1 shows
the confusion matrix of the optimized CNN using the test partition. Figure 2
shows the evaluation metrics of the optimized CNN using the test partition
as recommended in [25] to facilitate the visualization of the CNN classification
performance.

Table 2. Evaluation metrics of the optimized CNN using the test set.

Data partition ACC REC SPEC PREC F1 MCC

Train 0.9962 0.9850 0.9978 0.9850 0.9850 0.9828

Validation 0.9853 0.9415 0.9916 0.9415 0.9415 0.9331

Test 0.9860 0.9441 0.9920 0.9441 0.9442 0.9362
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4.3 Visual Explanations Using Grad-CAM

Using the Grad-CAM technique and image processing, we generated heat map-
like images to aid the visualization of the zones in the input images that evoke
the CNN classification output. Figure 3 shows an example of the heat map-like
images for a correctly classified image per class in the dataset.

We can also construct these heat map-like images to analyze the misclassi-
fication made by the optimized CNN. Figure 4 shows examples of misclassified
images and compares the heat map-like of the input images for the output logitt
of the wrong prediction and the output logit of the true class.

Fig. 1. Confusion matrix of the optimized CNN using the test partition. The classes’
codes are: 0-dyed lifted polyps, 1-dyed resection margins, 2-esophagitis, 3-normal
cecum, 4-normal pylorus, 5-normal z-line, 6-polyps, and 7-ulcerative colitis.

Fig. 2. Evaluation metrics of the optimized CNN using the test partition.
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Fig. 3. Examples of every class correctly classified using the optimized CNN and its
corresponding Grad-CAM: “a” correspons to the original image, “b” is the Grad-CAM
rezied to match “a”, and “c” is the superimpossed Grad-CAM “b” over “a”.

5 Discussion and Conclusions

The classification performance of our optimized CNN is state-of-the-art. Table 3
shows the evaluation metrics of other recent papers using AI models to classify
images of the same dataset.

The work presented by Hicks et al. [8] also used a CNN to classify the
KVASIR dataset images and the Grad-CAM technique for visualization. The
main difference between that paper and ours is the method used to develop the
CNN. Hicks et al. [8] used a VGG-19 with no reported methodology to choose
the other hyperparameters. Instead, we performed hyperparameter optimiza-
tion based on genetic algorithms with the specific aim of improving the model
classification performance and generalizability [6], taking into account that high
classification performance is always desired, and the lack of generalization is cur-
rently one focal limitation for the adoption of these kind of systems into clinical
practice.
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Fig. 4. Examples of misclassifications. The subscript a is for the original images super-
imposed with the Grad-CAM of the true class, and the subscript b is for the original
images superimposed with the Grad-CAM of the predicted class. In parenthesis is the
output logit for the given class. The classes’ codes are: 0-dyed lifted polyps, 1-dyed
resection margins, 2-esophagitis, 3-normal cecum, 4-normal pylorus, 5-normal z-line,
6-polyps, and 7-ulcerative colitis.
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Table 3. Evaluation metrics of recent studies using the KVASIR dataset.

Study Year ACC REC SPEC PREC F1 MCC FPS

Lafraxo et al. [11] 2020 0.9680 0.8770 — 0.874 0.876 — —

Ozturk et al. [17] 2020 0.9790 0.9232 0.9910 0.9446 0.9264 — —

Our optimized CNN 2022 0.9860 0.9441 0.9920 0.9441 0.9442 0.9362 35.5

Table 4. Evaluation metrics of studies that use a CNN to classify images of the
KVASIR dataset and use a visualization technique for interpretability.

Study Year ACC REC SPEC PREC F1 MCC FPS

Hicks et al. [8] 2018 0.9440 0.7980 0.7530 0.9680 0.7780 0.7780 —

Our optimized CNN 2022 0.9860 0.9441 0.9920 0.9441 0.9442 0.9362 35.5

Hicks et al. [8] used the visualizations generated with the Grad-CAM to
find properties in the input images that were evoking misclassifications. Then,
with this information, they used a preprocessing designed to correct the CNN
behavior on the misclassified images, achieving a significant improvement in
the CNN classification performance, proving that the visualizations generated
using Grad-CAM can help understand both the areas in an image that evoke
a specific classification and posible misbehaviors of the model. Table 4 provides
a comparison of the highest evaluation metrics achieved by Hicks et al. [8] and
ours.

From the confusion matrix of our optimized CNN (Fig. 1), we can observe
that the majority of misclassification involve an anatomical landmark (normal z-
line) and a pathological finding (esophagitis), and the misclassification examples
shown in Fig. 4 illustrated that the CNN is focusing in different regions of the
images for the classification of that two classes. Also, both classes have a positive
logit in the examples of misclassification shown in Fig. 4. That means that the
CNN determines that the image belongs to both classes, but the current opera-
tion mode of the CNN is to classify the image only in the class with the highest
logit. Since the z-line is in the esophagus and the esophagitis is a pathology of
it. It would be interesting to have a gastroenterologist assess if the misclassified
images between these two classes, in fact, have both findings (esophagitis and
normal z-line), as the positive logits suggest.

In this work, we used the existing techniques in the literature to develop
a system for endoscopy image classification with interpretability criteria. Our
optimized CNN has state-of-the-art classification performance, delivering higher
evaluation metrics than other recent papers that use AI models to classify images
from the same dataset. The visualizations constructed using the Grad-CAM
provide information on the regions that evoke a given output logit. However, it
is important to collaborate with physicians to fully understand the implications
of the visualizations. In future work, we can explore other approaches, such as
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Prototype-based interpretation to provide explanations by example or adopt a
holistic approach, combining different forms of explanation.
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Abstract. Reversible image authentication (RIA) involves a data hid-
ing process in which watermarks are imperceptibly embedded into an
image to protect it against tampering attacks. If a marked image is not
tampered, then watermarks can be erased from the marked image and
the original cover image is obtained without distortion. Watermarks can
be enhanced with recovery information for reconstruction of tampered
image regions. However, due to embedding capacity limitations, recovery
information must be strategically selected to obtain better image recon-
struction quality. To address this issue, a very deep super resolution
(VDSR) network is used in the reconstruction phase of the proposed
scheme. Sparse signal representations of downscaled image blocks are
obtained to apply compressed sensing theory and obtain the reference
values used as recovery information. Experimental results indicate that
our scheme outperforms previous state-of-the-art methods in terms of
reconstructed images quality while reducing time complexity in sparse
signal approximation phase as a result of dealing with downscaled image
blocks.

Keywords: Very deep super resolution · Reversible data hiding ·
Tampering detection · Compressed sensing

1 Introduction

Information security applications have gained an increased attention in recent
years as a result of new technology development and the Internet. Image authen-
tication has become an essential tool for protecting digital image authenticity
and integrity against manipulations. Different approaches such as digital signa-
tures [8], perceptual hashing [12] or digital watermarking can be identified in the
literature to address this issue. Among these approaches, digital watermarking
techniques figure out by their potential capabilities [10]. First, watermarks travel
into the cover media in which they are embedded, then, no additional infor-
mation is transmitted or stored. Second, watermarks are imperceptible, thus,
hidden information goes unnoticed by the attackers. Finally, watermarks can be
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designed to be distorted with minimal modifications, making them suitable for
tampering detection and localization applications. However, most watermark-
ing methods are irreversible. Consequently, embedded distortion remains in the
marked image permanently.

Reversible image authentication methods address the above mentioned issues.
RIA methods use reversible data hiding techniques [18] such as compression,
histogram shifting modifications (HS) or prediction error expansion (PEE) to
strategically incorporate watermarks into a cover image. After embedding pro-
cess, a marked image is obtained. Then, when it is required, watermarks are
extracted to authenticate the marked image content. However, if a marked image
is not attacked, embedded watermarks can be eliminated from it to remove all
introduced distortion, obtaining the corresponding original cover image.

Prior RIA works employ fragile watermarks to detect and localize tam-
pering attacks. In [20], images blocks are marked with authentication codes
(AC) obtained with a seeded pseudo-random number generator. Watermarks are
embedded in every block by applying histogram shifting and predictive coding
techniques. Tampering detection accuracy is improved in [22] by embedding sim-
ilar AC into the coefficients of low frequency discrete wavelet transform (DWT).
In [17], a RIA method is proposed to reduce detection errors when an equal image
brightness modification is applied in marked images. Then, some block features
are used to obtain their respective hash values and build the watermarks. In [30],
a tampering detection improvement is achieved by selecting optimal block sizes
to embed the AC generated with a hash function.

Recently, RIA schemes with reconstruction capabilities have been studied in
the literature. Earlier works approximate the damaged image regions by storing
recovery information in a third party service. In this way, two dual watermark-
ing schemes were proposed in [14,27]. Short watermarks, created with AC, are
embedded into the cover image while long watermarks with recovery information
are registered into an intellectual property rights (IPR) database. The recovery
information can be retrieved when authentication fails to approximate the tam-
pered regions. However, using third party services could be unpractical in most
applications. To address this issue, a RIA method with blind reconstruction is
proposed in [13]. Compressed sensing theory is applied to obtain a reduced set
of reference values, which are embedded into the same image for reconstruction
purposes. In order to improve the reconstruction results, sparse signal modifi-
cations were analyzed in [21]. High frequency coefficients from discrete cosine
transform (DCT) were omitted in sparse signal representations achieving better
reconstruction results, specially when tampered areas were increased.

Although previous blind reconstruction methods have shown an acceptable
performance, they still deal with large sparse signal representations. Conse-
quently, reconstruction phase is not fully exploited. To overcome this issue, this
work introduces a very deep super resolution [19] based RIA scheme. Water-
marks are created with reference values obtained from downscaled image blocks
using compressed sensing theory. In the reconstruction phase of the scheme,
tampered blocks are approximated using the reference values extracted from
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untampered blocks to created a reconstructed dowscaled block. VDSR network
is used to upscale each reconstructed block and create the reconstructed image.
The obtained results indicate that the proposed scheme overcomes state-of-the-
art methods when images are reconstructed in terms of two image quality metrics
while runtime is significantly reduced as a result of reconstructing smaller sparse
signal vectors.

The rest of this paper is organized as follows. Section 2 briefly explains
two techniques used in the scheme: compressed sensing and VDSR network.
Section 3 describes the proposed RIA scheme. Obtained results are drawn in
Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Preliminaries

2.1 Compressed Sensing

Compressed sensing (CS) is an innovative technique used to sample sparse sig-
nals at sub-Nyquist rates and then approximate or perfectly reconstruct them
under certain conditions [5,11]. CS has recently attracted significant research
interest due to its potential applications in digital signal processing [3,4] includ-
ing image processing [16], medical imaging [23,24], video processing [25], wireless
communications [9], etc.

One of the principal premises concerning CS theory is signal sparsity, as many
signals can be concisely represented in a proper basis [6]. A signal x ∈ R

n is k-
sparse when only k of its components are nonzero values, where k � n. CS allows
the reconstruction of the sparse signal x from a reduced set of measurements
denoted as y ∈ R

m, with m � n, which are obtained by random projections.
The measurements acquisition is performed with the help of a measurement
matrix Φ ∈ R

m×n, whose elements are independent and identically distributed
(i.i.d) using a random distribution such as Gaussian, Bernoulli, etc. The reduced
set of measurements is obtained with Eq. 1.

y = Φx (1)

As m � n, the undetermined linear system of equations (1) contains more
unknowns than equations and has an infinite number of solutions. However,
reconstruction algorithms take advantage of signal sparsity to find an optimal
solution to this problem. Basis pursuit (BP) [7] is a linear programming algo-
rithm that formulates the problem as a convex optimization problem in which
a signal x̃ is estimated by minimizing its �1-norm, subjected to y = Φx̃. Never-
theless, its computational cost and implementation complexity are high.

Orthogonal matching pursuit (OMP) is a much faster, easier to implement,
and yet effective algorithm used to reconstruct sparse signals [26]. OMP is a
greedy algorithm that iterates to look for those columns in Φ that participate
in the measurements y. In each iteration, OMP picks a new active column of
Φ based on the correlation with the current signal residuals and estimates the
objective signal x by performing least squares method. Running OMP algorithm
implies a computational complexity of O(knm), which is in function of the sparse
signal dimensions.
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… +

Fig. 1. VDSR network architecture.

2.2 VDSR Network

Single image super resolution (SISR) is an ill-posed problem in which a high
resolution image is pretended to be approximated from one low resolution image
[29]. Among a variety of proposed techniques, very deep super resolution network
(VDSR) [19] is one of the most effective approaches as it achieves state-of-the-art
performance, producing excellent quality images.

VDSR network approximates a high-resolution (HR) image from a given low-
resolution (LR) image by cascading small filters many times in a deep network
structure of 20 layers. Figure 1 illustrates the deep neural network architecture.
First, input LR image is interpolated as ILR. Then, ILR image is passed N -1
times through convolution and ReLu layers followed by a N -th convolution layer
to predict a residual image. Finally, the residual image is added to the ILR image
to obtain a HR image. In every convolution layer, except the first and last ones,
VDSR employs filters of size 3 × 3 × 64. Then, image details are predicted as a
residual image instead predicting the HR image directly.

For a given dataset with n sample pairs of interpolated and high-resolution
images, denoted as {ILR(i),HR(i)}ni=1, VDSR network aims to learn a model f

to predict values ĤR = f(ILR), where ĤR is the approximation of the objective
image HR. In this way, a residual image is obtained as R = HR − ILR. VDSR
takes advantage of the similarity between ILR and HR images, as low frequency
detail is preserved. Then, most residual image values are likely to be zero or near
to zero. Consequently, VDSR minimizes the next loss function:

1
2
‖R − f(ILR)‖2 (2)

where R is the residual target image, ILR is the interpolated low resolution
image and f is the network prediction. The final super resolution result is
obtained as:

ĤR = f(ILR) + ILR (3)

Finally, VDSR is trained by optimizing the the regression objective with mini-
batch gradient descent based on backpropagation with momentum parameter set
to 0.9.

The proposed scheme incorporates VDSR network in reconstruction phase
to upscale recovered blocks corresponding to tampered image regions with good
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quality. By incorporating VDSR, smaller signal representations can be operated
without compromising reconstructed images quality. Additionally, sparse signal
approximations are performed faster as smaller sparse vectors are managed, alle-
viating OMP algorithm.

3 Proposed Scheme

This section details the proposed RIA scheme, which is divided in five stages.
First two stages: watermark creation and watermark embedding, are used to
protect images, see Fig. 2. The remaining three stages: watermark extraction,
tampering detection and image reconstruction, are used to authenticate and
repair the tampered images, see Fig. 3.

Watermark creation 

Watermark embedding 

Fig. 2. Watermark creation and embedding phases.

3.1 Watermark Creation

The watermark creation phase receives a cover image Ic and constructs the
watermarks required for authentication and reconstruction of tampered image
regions. First, the cover image Ic of size L1 × L2 is partitioned into 32 × 32
non-overlapping blocks. The total number of image pixels is L = L1 × L2, then
nb blocks are obtained in this phase, where nb = L/1, 024. Every block Bk is
downscaled by a scale factor of 0.5 using bicubic interpolation. In this way, the
downscaled blocks are now of size 16 × 16. Next, each downscaled block B↓

k is
used as input to the DCT transform, obtaining the corresponding set of DCT
coefficients with Eq. 4.

Dk = DCT (B↓
k − 128) (4)
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where B↓
k is the kth downscaled block of pixels, Dk is the corresponding block

of DCT coefficients and 1 ≤ k ≤ nb.
The obtained blocks are scrambled and divided into groups of size 16, then,

a total number of ng = nb/16 groups are obtained. Next, a one-dimensional
coefficients sequence Cg is created using the blocks of the same group. Each
block Dk of size 16 × 16 is reshaped to a one dimensional array of size 256 and
gathered with the arrays of the same group as

Cg = [Dk1(1), ...,Dk1(256),Dk2(1), ...Dk2(256), ...,

Dk16(1), ...,Dk16(256)]T
(5)

Now, a threshold Td is defined to omit some high-frequency DCT coefficients
from Cg, using the following formula:

Cgs(i) =

{
0, if |Cg(i)| ≤ Td

Cg(i), if |Cg(i)| > Td

(6)

Threshold Td modifies the signal sparsity level, i.e., when Td is increased,
more coefficients are omitted from Cg. Next, Cgs is permuted using a key K1.

Compressed sensing is conducted to obtain a reduced set of measurements
using a predefined measurement matrix M ∈ R

800×4,094, whose elements are
pseudo-randomly generated as independent samples from a normal distribution
with zero mean and variance one. In this work, M is obtained using the instruc-
tion M = randn(800, 4096) in MATLAB software. Then, 800 references values
per group are obtained using Eq. 7.

[r(1), r(2), ..., r(800)]T = M · Cgs (7)

Next, each reference value is quantified using Eq. 8.

r′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

127, if r ≥ g128

u, if gu ≤ r < gu+1

−u − 1, if − gu+1 ≤ r < −gu

−128, if r < −g128

(8)
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where gu is the monotonic function defined in [13,21] as

gu = u2/90 + u/3, u = 0, 1, 2, ..., 128 (9)

When all reference values are quantified, a permutation is applied using a key
K2. Next, reference values are divided into nb sets of size 50. As each quantified
reference value can be represented using only 8 bits, each set is represented by
a total of 400 bits.

A watermark Wk is created for each block Bk by appending a 10-bits authen-
tication code to the previously computed reference values. Authentication bits
are obtained with SHA-256 hash function using as input the binary pixel values
of the block Bk, the position index of Bk in Ic and the corresponding set of
binary quantified reference values. Finally, Wk is permuted using a key K3.

3.2 Watermark Embedding

In this phase, each watermark Wk of 410 bits is embedded into the corresponding
block Bk by adapting the reversible data hiding method proposed in [28]. Com-
panding technique is applied to compress and expand larger IWT coefficients of
high-frequency sub-bands, where watermark bits are embedded.

To avoid overflow/underflow problems Bk undergoes a block pre-processing
phase in which grayscale values 0 and 1 are incremented by one unit meanwhile
grayscale values 255 and 254 are decremented by one unit. Let Bhk

be the
modified block corresponding to Bk, to preserve reversibility, a recovery sequence
Rs is created by scanning Bhk

. We scan each Bhk
block from left to right and

top to bottom, when grayscale values 2 or 253 are found, we compare the value
in the same position of Bk, if values match, a bit 0 is appended to Rs, otherwise,
a bit 1 is appended. This sequence is used in a block post-processing stage after
watermark extraction to recover original grayscale values of the corresponding
block Bk. Accordingly, Rs is embedded as control information of the scheme
after all watermark bits are embedded.

Next, IWT is applied to the block Bhk
to obtain LL, LH, HL and HH sub-

bands. High-frequency sub-bands (i.e., LH, HL and HH) are selected to embed
the watermark bits as most of their coefficients are small in magnitude. Com-
panding technique requires compression and expansion functions. Compression
function is used to compress some large coefficients. Compression allows coeffi-
cients modification to incorporate watermark bits, thus every coefficient c of LH,
HL and HH sub-bands is compressed using the following piecewise function:

ĉ =

{
c, if |c| < Tc

sign(c) · (� |c|−Tc

2 �) + Tc, if |c| ≥ Tc

(10)
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where ĉ is the compressed coefficient and Tc is a user predefined threshold. It can
be inferred from above formula that when |c| ≥ Tc, an error sequence e must be
recorded and embedded as part of control information of the scheme. Original
coefficients are recovered using Eqs. 11 and 12, respectively.

ce =

{
ĉ, if |ĉ| < Tc

sign(ĉ) · (2|ĉ| − Tc), if |ĉ| ≥ Tc

(11)

c = ce + e (12)

Once all coefficients are compressed, every compressed coefficient ĉ can be
marked with one watermark bit b ∈ {0, 1}. Assuming that ĉ is represented in
binary form as b1b2...bl, the watermark bit is appended after the least significant
bit (LSB) of this representation, thus the marked coefficient is ĉw = b1b2...blb.
A marked coefficient can be obtained using Eq. 13.

ĉw = 2ĉ + b (13)

After all watermark bits are embedded, inverse IWT is applied to obtain the
marked block Bwk

. This process is repeated for the nb blocks and watermarks
to obtain the marked image Iw.

Watermark extraction 

Tampering detection

Image reconstruction

Fig. 3. Watermark extraction, tampering detection and image reconstruction phases.
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3.3 Watermark Extraction

In the watermark extraction side, a marked image I ′
w is received and the inverse

process is applied to obtain the watermark bits and recover original image pixel
values.

First, I ′
w is divided into nonoverlapping blocks of size 32 × 32. Next, IWT is

applied over B′
wk

to obtain the four IWT sub-bands. The corresponding water-
mark bits W ′

k embedded in each block B′
wk

are extracted from the coefficients
of high-frequency sub-bands, i.e., LH, HL and HH.

A bit b′ is obtained from the LSB of each marked coefficient ĉ′
w, that is to

say b′ = LSB(ĉ′
w). The compressed coefficient value is recovered using Eq. 14.

ĉ′ =
ĉ′
w − b′

2
(14)

After all bits are extracted, we obtain the watermark bits W ′
k, recovery

sequence R′
s and errors e′. Now, compressed coefficients are expanded using

Eqs. 11 and 12. Next, inverse IWT is applied to obtain block pixels B′
hk

. Finally,
original pixel values are recovered using R′

s to obtain B′
k.

3.4 Tampering Detection

Tampering attacks are detected by authenticating every block B′
k following the

next steps.
Step 1: Apply the inverse permutation to the extracted watermark bits

W ′
k using the key K3. Watermark is divided into two parts, first 400 bits are

regarded as extracted reference values r′
e and the remaining part of 10 bits are

the extracted authentication code bits a′
e.

Step 2: Compute a new authentication code an of 10 bits with SHA-256 hash
function. The input to the hash function is made up by the binary values of B′

k,
the position index of B′

k in the image and the extracted reference values r′
e.

Step 3: Compare the authentication code an with the extracted authentica-
tion code bits a′

e. If block B′
k was not tampered, then an and a′

e will match,
otherwise will be different and B′

k is labeled as a tampered block.

3.5 Image Reconstruction

If tampering detection phase is successfully passed, i.e., no tampered blocks are
detected, then original cover image has already been obtained. However, if there
are blocks judged as tampered, a content approximation phase is applied as it
is explained below.

First, the original value of each quantified reference value r̂e extracted from
intact blocks is estimated using Eq. 15.

r′ =

{
0.5(gr̂e + g(r̂e+1)), if 0 ≤ r̂e ≤ 127
0.5(−g−r̂e − g−r̂e−1), if − 128 ≤ r̂e ≤ −1

(15)
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Estimated reference values r′ are inversely permuted using the key K2. Notice
that reference values extracted from intact blocks of a corresponding group can
be obtained as

[r(λ1), r(λ2), ..., r(λN )]T = M (E) · Cgs (16)

where N ≤ 800 and M (E) is created using the rows of M corresponding to each
r(λ). Equation 16 can be rewritten as

[r(λ1), r(λ2), ..., r(λN )]T = M (E,I) · CgsI + M (E,T ) · CgsT (17)

where CgsI and CgsT are the part of Cgs corresponding to the intact and tam-
pered blocks respectively. M (E,I) and M (E,T ) are the parts of M (E) created
with the columns corresponding to CgsI and CgsT , respectively. By replacing
r(λ) with the estimated reference values r′(λ), next equation is obtained

M (E,T ) · CgsT = [r′(λ1), r′(λ2), ..., r′(λN )]T − M (E,I) · CgsI (18)

In Eq. 18, only the vector of coefficients CgsT is unknown. Most of their
coefficients are zero or near to zero, i.e., it is a sparse vector. Thus CgsT can
be reconstructed using a sparse signal reconstruction algorithm. We use the
orthogonal matching pursuit (OMP) algorithm [26] to reconstruct the sparse
signal.

Next, inverse permutation is applied over reconstructed vector C ′
gs using K1.

After that, vectors are reshaped into blocks of size 16 × 16. Then, inverse DCT
transformation is applied over the obtained block B↓′

k and a constant value of
128 is added to every block value. Finally, the obtained block is upscaled by a
scale factor of 2 with VDSR network to obtain an approximated block B↑′

k of
size 32 × 32. Once all tampered blocks are approximated, a reconstructed image
Ir is obtained.

4 Experimental Results

In this section, we evaluate the performance of the proposed RIA scheme. All the
experiments were carried out on a computer with an AMD RyzenTM 9 3900X
12-Core CPU @ 3.8 GHz, 32 GB of RAM memory and a single NVIDIA RTXTM

3080 GPU, running Windows 11 64-bit operating system. The proposed scheme
was implemented on MATLAB R2022a software, using the image processing,
wavelet, parallel computing, deep learning, and statistics and machine learning
toolboxes.

VDSR network was trained using 616 natural images of the IAPR TC-12
dataset [15]. Additionally, data augmentation was applied over the training data
using rotation and reflection prepossessing. Images were divided into blocks of
size 32× 32 to obtain a total of 39, 424 sample pairs of interpolated and residual
image blocks. The proposed watermark creation phase downscale the original
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blocks by a scale factor of 0.5, then, VDSR was trained with a single scale factor
of 2, in such a way that each block is upscaled to its original dimensions.

The proposed scheme was evaluated using 135 grayscale benchmark images as
in [21]. A total of 35 images were collected from the signal and image processing
institute (SIPI) dataset [1] and the remaining images were obtained from break
our watermarking system (BOWS-2) dataset [2]. Common tampering attacks
were applied into the marked images to evaluate the scheme performance in
terms of watermark imperceptibility, tampering detection accuracy and tam-
pering reconstruction. PSNR and SSIM metrics were used to provide objective
results about the similarity between the original images and the marked, tam-
pered and reconstructed images, respectively.

Table 1. Marked images quality in terms of PSNR and SSIM.

Image Airplane Lena Jellybeans Bear Snow Sea Mountain House

PSNR 36.03 36.53 43.37 35.65 39.26 41.71 37.75 41.29

SSIM 0.97 0.96 0.99 0.95 0.97 0.98 0.96 0.98

4.1 Imperceptibility Results

Marked images quality depends on threshold Tc. When Tc is increased less coef-
ficients are compressed, then, watermark bits produce considerable distortion in
embedding process. On the other hand, when Tc is decreased, more coefficients
are compressed, generating less distortion, however, recovery error sequence e
is enlarged as more companding error must be hidden in order to preserve
reversibility. For this reason, threshold Tc was established to the minimum value
for which all watermark bits were successfully embedded into all images. In such
manner, Tc was set to 15.

An image quality assessment was carried out to evaluate watermarks imper-
ceptibility. PSNR and SSIM metrics are used to compare each original cover
image Ic with its respective marked image Iw. A PSNR average of 39.33 dB ±
3.73 dB and a SSIM average of 0.97 ± 0.01 were obtained for the 135 test images.
The obtained results indicate that the proposed scheme provides adequate water-
mark imperceptibility as a PSNR value over 35 dB implies an acceptable value. A
comparison among original and marked images over Airplane, Lena, Jellybeans,
Bear, Mountain, Snow, Sea and House images is provided in Fig. 4(a) and (b).
When cover images are compared with their corresponding marked images, no
visual degradation can be perceived, this is because all marked images achieved
PSNR values above 35 dB. Table 1 specifies the obtained objective results in
terms of PSNR and SSIM for the eight images.
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Fig. 4. Tampering detection and reconstruction results. (a) Original cover images Ic.
(b) Marked images Iw. (c) Tampered images I ′

w attacked with copy-move, cut-paste
and erase-fill attacks. (d) Authenticated images. (e) Reconstructed images Ir.
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4.2 Tampering Detection and Reconstruction Results

Marked images were tested against tampering attacks, which are classified in
three categories: copy-move, cut-paste and erase fill. Copy-move attack creates
and integrates a new object in the image scene by cloning an existing object.
Cut-paste attack adds a new object from an external image to the attacked
image. Copy-move and cut-paste attacks are also known as splicing attack,
new objects can undergo geometric transformations such as scaling or rotation.
Erase-fill attack modifies an image scene by eliminating objects with the help of
some image background or texture information. Attacked images are displayed
in Fig. 4(c). Tampered images were attacked at 4.30, 12.5, 10.55, 8.59, 7.81, 2.34,
23.43 and 4.69%, respectively. Attacked images obtained PSNR values of 27.27,
25.21, 20.38, 23.04, 18.96, 38.22, 17.01 and 28.86 dB, correspondingly.

After marked images were tampered, authentication phase was applied for
tampering detection purposes. Accuracy metric was used to evaluate tamper-
ing detection results. In the experiments, all blocks were correctly classified into
tampered and non-tampered blocks, obtaining an accuracy value of 1. This is
because the proposed scheme embeds 10-bit authentication codes, which mis-
match the authentication bits extracted from tampered blocks with a probability
of 1−2−10. Authenticated images revealing tampered image blocks are displayed
in Fig. 4(d).

After damaged image regions are localized, each tampered block is approx-
imated in the sparse signal reconstruction phase using OMP algorithm. Refer-
ence values retrieved from untampered blocks are used as input to the algorithm.
Afterwards, for each tampered block a downscaled approximated block is pro-
duced. Finally, VDSR network is used to upscale the approximated blocks and
build the recovered image Ir. Reconstructed images are listed in Fig. 4(e). It
can be noticed that each reconstructed image Ir is almost identical to its corre-
sponding original cover image Ic, even when more aggressive attacks are applied.
Reconstructed images accomplished PNSR values of 43.12, 42.51, 41.82, 40.84,
44.68, 48.54, 33.99 and 46.24 dB, respectively. Based on the achieved results
it can be inferred that the proposed scheme is able to restore damaged image
regions with excellent quality.

4.3 Reconstruction Performance According to Signal Sparsity

In [21], it is stated that sparse signal enhancement can be applied to improve
sparse signal approximations. Consequently, the proposed scheme was evalu-
ated under modified sparse signal levels by testing various Td values. Figure 5
illustrates the existing relationship between sparse signal representations and
different Td values over all test images. It can be observed that a small Td value
already impacts sparse signal levels. For example, when Td is set to 10, an aver-
age of 84% ± 8% coefficients are set to zero value using Eq. 6. When Td is
increased, a larger number of coefficients are set to zero, enhancing sparse signal
levels. Finally, when Td is set to zero, original coefficients are preserved as no
modifications are applied.
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Fig. 5. Sparsity average results for different Td values over all test images.

A reconstruction assessment was carried out by simulating several attacks
over the 135 images. Images were tampered at different attack percentages, i.e.,
5%, 12.5%, 25% and 50%. Watermarks were embedded using different Td val-
ues. Each reconstructed image Ir was compared with its corresponding cover
image Ic using PSNR and SSIM metrics. Figure 6 shows the obtained results in
terms of PSNR (a) and SSIM (b) averages for the 135 test images. It can be
observed that when images are attacked at 5% better reconstruction results can
be achieved with a smaller Td value. However, when the attacked area percent-
age is increased, a larger Td value furnishes better reconstructed images. For
example, when images were attacked at 50%, best reconstructed images were
obtained with a Td value set to 42, accomplishing a PSNR average of 31.80 ±
3.9 dB, which overcomes the PSNR average of reconstructed images with no
coefficient modifications, i.e., 28.62 ± 4.5 dB.

Fig. 6. Reconstruction results in terms of PSNR and SSIM averages for different Td

values.
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4.4 Performance Comparison with Other RIA Schemes

This section provides a comparison among our scheme and relevant state-of-the
art works. The comparison is limited to reversible authentication schemes that
provide both, blind image authentication and blind reconstruction of damaged
regions. In this concern, schemes proposed in [17,20,22,30] are discarded as a
content approximation phase is not included. Then, when tampered regions are
detected, they are not able to approximate the damaged regions. The schemes
proposed in [14,27], provide blind tampering detection and include an approxi-
mation phase, which depends on the extraction of long watermarks stored into
an IPR database. Consequently, these schemes are not totally blind. The schemes
proposed in [13,21] provide blind tampering detection and blind reconstruction
phases.

Table 2. Reconstruction comparison in terms of PSNR and SSIM values.

Tampered area Tampered image Restored image [13] Restored image [21] Restored image proposed

Td = 20 Td = 50 Td = 0

Image Percentage PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM PSNR(dB) SSIM

Airplane 02.34% 33.06 0.97 36.95 0.99 40.66 0.99 40.46 0.99 42.68 0.99

04.30% 27.27 0.96 35.04 0.97 37.57 0.98 37.73 0.98 43.12 0.99

50.00% 5.98 0.48 21.97 0.62 22.91 0.66 23.91 0.70 25.57 0.74

Lena 03.91% 29.46 0.94 45.01 0.99 46.99 0.99 45.14 0.99 46.39 0.99

12.50% 25.21 0.92 41.96 0.97 44.21 0.98 42.04 0.98 42.51 0.98

50.00% 9.64 0.49 24.11 0.65 24.95 0.69 26.92 0.78 26.88 0.75

Jellybean 07.81% 21.01 0.96 40.37 0.97 44.67 0.98 43.07 0.98 45.09 0.98

10.55% 20.38 0.95 36.64 0.96 38.84 0.97 38.97 0.97 41.82 0.98

50.00% 6.29 0.49 34.89 0.89 36.95 0.93 36.26 0.91 36.12 0.92

Bear 08.59% 23.04 0.92 37.05 0.96 40.61 0.98 38.70 0.97 40.84 0.98

15.63% 19.88 0.88 33.41 0.92 35.91 0.94 36.70 0.95 36.44 0.95

50.00% 8.55 0.47 25.77 0.64 27.05 0.68 31.07 0.81 27.95 0.72

Snow 07.81% 18.96 0.93 43.53 0.98 43.66 0.98 43.00 0.97 44.68 0.98

12.50% 20.69 0.94 35.19 0.94 36.60 0.96 36.46 0.96 39.93 0.97

50.00% 6.99 0.48 29.74 0.76 31.34 0.82 35.10 0.92 32.88 0.86

Sea 02.34% 38.22 0.98 47.32 0.99 48.84 0.99 44.18 0.99 48.54 0.99

06.64% 30.35 0.96 48.04 0.99 48.00 0.98 46.81 0.99 46.70 0.99

50.00% 7.66 0.48 35.28 0.88 38.91 0.94 38.84 0.95 37.49 0.92

Mountain 07.81% 20.60 0.96 36.43 0.96 38.78 0.97 38.23 0.97 41.04 0.98

23.43% 17.01 0.87 29.94 0.85 31.20 0.87 33.47 0.91 33.99 0.91

50.00% 6.56 0.49 25.26 0.65 27.78 0.70 30.70 0.82 28.30 0.78

House 04.69% 26.86 0.97 46.67 0.99 48.51 0.99 43.71 0.99 46.24 0.99

17.97% 20.33 0.91 38.72 0.96 40.59 0.97 39.47 0.96 40.20 0.97

50.00% 7.45 0.49 33.02 0.87 33.22 0.85 37.22 0.93 34.79 0.88

A reconstruction comparison among [13,21] and our scheme is provided in
Table 2. Several tampering attacks were applied over eight images. Our scheme
was tested with a Td value set to zero while [21] was tested with Td values set to
20 and 50. It can be observed that our scheme clearly outperforms [13] achieving
PSNR improvements of up to 8 dB. On the other hand, the proposed scheme
overcomes [21] in most cases, obtaining an average improvement of 0.89 ± 1.86
dB when Td is set to 20 and 0.92 ± 2.26 dB when Td is set to 50. However,
our reconstruction results can be improved for aggressive attacks by establish-
ing a larger Td value, as it was explained in previous experiments. To illustrate
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Fig. 7. Reconstruction results comparison for an aggressive attack in Lena image. (a)
Original image. (b) Tampered image. (c) Reconstructed image [13]. (d) Reconstructed
image [21] with Td = 50. (e) Reconstructed image OMP+VDSR with Td = 0 and (f)
Reconstructed image OMP+VDSR with Td = 42.

that, Fig. 7 provides a reconstruction comparison after Lena image was attacked
at 50%, see Fig. 7(b). Figure 7(c) shows the reconstructed image obtained by
[13], with a PSNR value of 24.11 dB. Figure 7(d) shows the reconstructed image
obtained with [21], which was reported as the best reconstruction result pro-
duced with Td = 50. A PSNR value of 26.92 dB. was obtained for this image.
Figure 7(e), shows the reconstructed image obtained with the proposed scheme
with no coefficient modifications, i.e., Td = 0. The obtained PSNR was 26.88
dB, which already improves the result of [13] and has a similar result compared
with [21]. However, when Td is increased to 42, a better result is achieved, see
Fig. 7(f), obtaining a PSNR value of 29.77 dB, which improves the results of [13]
and [21]. According to Fig. 6(a) and (b) a similar behavior is presented over all
test images.

The obtained results show that by downscaling image blocks in the water-
mark creation phase, better approximations can be achieved in reconstruction
phase, even if no coefficients are modified. Notice that runtime is also improved
as sparse signal representations are significantly reduced. For example, [13] and
[21] employ sparse signal vectors of size 16, 384, a much larger number of signal
coefficients compared with the 4, 096 coefficients used in the proposed scheme.
As a result, OMP algorithm approximates a sparse signal in less time. This is
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possible due to VDSR network is employed to upscale the approximated blocks
with good quality in the reconstruction phase of the proposed scheme. Table 3
provides a comparison among discussed RIA schemes in terms of features and
sparse signal reconstruction time. An average computation time in seconds is
reported over 100 reconstruction simulations of tampered images attacked at
50%. It can be observed that the proposed scheme achieves the lowest recon-
struction time when compared against the other schemes.

Table 3. Comparison among RIA schemes with reconstruction.

[27] [14] [13] [21] Proposed

Blind authen-

tication

� � � � �

Blind recon-

struction

– – � � �

Embedding

technique

HS PEE PEE Companding Companding

Embedding

domain

DWT Spatial Spatial IWT IWT

Watermarks Short + Long Short + Long AC + Ref. values AC + Ref. values AC + Ref. values

Signal sparsity

enhancement

– – – � �

Reconstruction

strategy

CS CS CS CS CS + VDSR

Sparse signal

size

– – 16, 384 16, 384 4, 096

Reconstruction

time (s)

– – 7.20 ± 0.03 8.87 ± 0.20 2.56 ± 0.04

Attacked area

at 50%

5 Conclusions

Tampering detection and reconstruction of tampered image-regions with good
quality are complex tasks in reversible image authentication field, as reversibility
requirement limits the amount of information that can be embedded into cover
images to perform blind reconstruction. In this work, we introduce a recon-
struction approach based on very deep super resolution network. In this way,
watermarks are created by obtaining reference values from sparse signal repre-
sentations of downscaled image blocks using compressed sensing. Watermarks
are complemented with authentication codes for tampering detection purposes
and embedded into IWT coefficients using companding technique. If the marked
image is not attacked, then, all watermark bits can be deleted from the marked
image and the original cover image is obtained. However, if the marked image is
tampered, watermarks are extracted to detect damaged blocks and approximate
their content using OMP algorithm. Finally, approximated blocks are upscale
with VDSR network.
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Several experiments were conducted over 135 images to validate the proposed
scheme. The obtained results indicate that the proposed scheme not only achieves
better reconstruction results, but also significantly reduces runtime as smaller
sparse signal representations are approximated in the reconstruction phase com-
pared with state-of-the-art methods.

Acknowledgments. This work was supported by the National Council of Science
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Abstract. Colorectal cancer cases have been increasing at an alarming
rate each year, imposing a healthcare burden worldwide. Multiple efforts
have been made to treat this malignancy. However, early screening has
been the most promising solution. Optical endoscopy is the primary diag-
nosis and treatment tool for these malignancies. Even though its success,
the endoscopic process represents a challenge due to noisy data, a lim-
ited field of view and the presence of multiple artefacts. In this work,
we present a comparison between two real-time deep learning frame-
works trained to detect artefacts in endoscopic data. Both networks are
trained using different data augmentation techniques to analyze their
effect when the models are evaluated using data coming from a different
distribution. We evaluated these models using the mean average precision
(mAP) evaluation metric at a different intersection over union values.
Both models outperformed state-of-the-art methods that were evaluated
using the same dataset. Also, the use of data augmentation techniques
showed an overall improvement in terms of mAP when compared to the
case in which no augmentation was applied.

Keywords: Deep learning · Object detection · YOLO · YOLACT ·
Endoscopic artifact detection

1 Introduction

Colorectal cancer incidence has been increasing in the last years, imposing a
healthcare burden globally. It represents the third most common type of cancer
and the second most lethal one around the world [18]. Even though multiple
efforts had been made to treat this pathology, early detection has been found
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to be the most promising solution. Nowadays, optical endoscopy is the primary
tool used for diagnosing and managing gastrointestinal (GI) malignancies [16].
This technique is based on the use of an endoscope, which is a flexible medical
device that combines fiber-optics and charge-coupled devices for illumination
and imaging of the interior of otherwise inaccessible sites [11].

The multiple applications and challenges of optical endoscopy has caught the
attention of the research community, which has developed several methods to
process and automatically analyze the video signal produced by the endoscopic
camera [13] for various purposes. Some of the most outstanding applications
have been focused on disease detection in real-time, e.g., polyp, ulcer, bleeding
zones, or cancer.

This application is of particular interest within the research and medical com-
munity because an endoscopic procedure is tiring, time-consuming and subject
to the experience of the clinician. Although these recent advances in endoscopic
medical imaging have enable the access to high quality videos of the GI tract
and could unleash a plethora of applications, many challenges still remain. For
instance, during the endoscopic procedure, gastroenterologists need to move the
endoscope around the GI track and to manipulate the folds of tissue in order
to analyze a wider surface, in order to avoid missing important regions or sus-
picious lesions. To complicate matters further, issues like limited field-of-view,
extreme lighting conditions, lack of depth information and difficulty in manipu-
lating operating instruments demand strenuous amounts of effort from the sur-
geons, whereas the characteristics of the endoscopic interventions involve very
complex dynamics which might produce undesired artefacts in the endoscopic
videos [1].

Therefore, endoscopy as a field at large has seen an increased interest in
applying artificial intelligence tools and methods for assisting in various CADe
and CADx applications. In particular, given the rich visual information pro-
vided by the endoscope, has led to the development of a plethora of computer
vision (CV) techniques, such as object detection and localisation or instance
segmentation methods [17] specifically tailored to certain tasks such as disease
detection and instrument tracking. These systems are expected to be a crucial
component in tasks ranging from surgical navigation, skill analysis and compli-
cation prediction during surgeries, as well as other computer integrated surgery
(CIS) applications [12]. Nonetheless, as mentioned above, such computer vision
tools are often deployed in difficult operational scenarios in which the presence
of bleeding, over or under exposed frames, smoke, reflection and other types of
artifacts are oftentimes unavoidable [3]. The net effect of these issues increases
the missed detection rates in endoscopic surveillance, limiting the overall robust-
ness of CV algorithms, hampering the adoption of AI-based tools in this context
[1]. Moreover, real-time deployment of such tools is of tremendous value and one
of the major requirement for it to be applied in clinical settings.

In this regard, recent years have seen a significant increase in the number
of CV contests geared towards endoscopy for different purposes. In particular,
the Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing ini-
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tiative launched to address some of the most pressing problems hampering the
development of robust computer aided detection and diagnosis clinical endoscopy
systems [1]. This challenge mainly focus on detecting multi-class artefacts and
subtle precancerous precursors and cancer abnormalities [1] present in the endo-
scopic video signal.

Even though continuous efforts had been made to tackle this robustness chal-
lenge, we consider that still there is not a robust yet real-time object detector
that would enable major computer vision applications in endoscopic video sig-
nals. Multiple approaches have been proposed to tackle the robustness challenge
with the use of ensemble methods, however, these methods apply at least one
two-stage model, increasing inference time [1,5]. In this paper, we perform a com-
parison between two real-time methods, YOLO and YOLACT, and we present
a comparison between both of them.

The rest of this paper is organized as follows. Section 2 surveys recent study
of state-of-the-art methods that have made use of the EAD datasets and dis-
cusses their limitations. Section 3 describes the EndoCV2020 challenge and the
Endoscopy artefact detection sub-challenge 2020 dataset. In Sect. 4, we explain
the methods used in this study. Section 5 includes the experimental design. In
Sect. 6, we cover the obtained results. Finally, Sect. 7 recovers the conclusions
generated by the authors.

2 Related Work

Object detectors can be classified into single-stage and multi-stage architectures.
Single-stage methods, such as YOLO [15] or MobileNet [8], are faster than multi-
stage detectors because they only require a single pass on the data and they also
incorporate anchor boxes to detect multiple objects on the same image grid
[1]. However, one drawback of one-stage detectors against multi-stage methods
relies on the robustness of their detections. Multi-stage approaches use a region
proposal networks to find regions of interest in which an object could probably
be found and then apply a classifier to further refine the search in order to get
the final outputs [1].

Several studies can be found in literature proposing multiple methods for the
detection of artefacts in endoscopic images [1]. One proposal by Zhang & Xe,
extended Faster R-CNN into a multi-stage cascade R-CNN framework combined
with FPN which is intended to train bounding-box regressors that could improve
the intersection over union between predictions and ground truth boxes [20].
Kirthika & Sargunam trained and evaluated YOLOv4 using the Endoscopy arti-
fact detection dataset of 2019 and applying traditional data augmentation tech-
niques, such as manual random flipping and stretching to increase the dataset
size [10].

Some of the best performing methods in the Endoscopy artefact detection
challenge of 2020 use an ensemble of multiple object detection architectures.
An ensemble of Faster R-CNN (two-stage), Cascade R-CNN(two-stage), and
RetinaNet(single-stage) with a class-agnostic NMS before the ensemble was pre-
sented on [14]. Another approach following an ensemble of three detectors: Faster
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Fig. 1. Sample of artefacts. Eight sample images from EAD2020 with their corre-
sponding ground truth bounding boxes: specularity (red), saturation (green), artifact
(blue), blur (pink), contrast (yellow), bubbles (cyan), instrument (white), and blood
(brown) (Color figure online)

R-CNN with ResNext101 + FPN, RetinaNet with ResNet101 + FPN, and Faster
R-CNN with ResNext101 + DC5, was studied on [9]. An implementation using
Hyper Task Cascade and Cascade R-CNN using ResNext1010 as the feature
extractor with FPN for multi-scale feature representation was developed by Chen
et.al, which also performed random flip, normalization and resizing of the images
as data augmentation techniques [6]. All these methods were evaluated on non-
publicly available testing data, as part of the official challenge.

The approach on [19], uses single-stage detector Efficient-Det with Efficient-
Net backbone and proposes a pruning-based mechanism. In this work, the
authors compared the intensity profiles of each predicted instance from the detec-
tion model with the pre-computed mean profile of that particular instance. Their
experiments were conducted on the Endoscopy Artifact Detection 2020 dataset,
using the single frame dataset for training and validation - 80% training and
20% validation - and the sequential frame as the testing set.

3 EndoCV2020 Challenge

The EndoCV challenge is a crowd-sourcing initiative that aims to address the
main problems faced in clinical endoscopy. EndoCV2020 challenge consists of
two sub-challenges: Endoscopy artefact detection and segmentation (EAD2020)
and Endoscopy disease detection and segmentation (EDD2020). The datasets for
both sub-challenges include multi-center, multi-modal, multi-organ, and multi-
class artefacts. EAD2020 is an extended sub-challenge of the EAD2019, that
includes both frame and sequence data with an addition of almost 1,000 frames
and 41,832 annotations [1].
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3.1 Endoscopy Artefact Detection

The EAD2020 sub-challenge consists of diverse endoscopic video frames collected
from seven different institutions around the world, it includes three imaging
modalities and five different human organs. Frames were annotated by clini-
cal experts for detection of eight different artefact classes. These classes are
named: specularity, saturation, artefacts, blur, contrast, bubbles, instrument and
blood. Figure 1 shows five sample images with their corresponding ground truth
bounding boxes with the following class-color label: specularity (red), saturation
(green), artifact (blue), blur (pink), contrast (yellow), bubbles (cyan), instru-
ment (white), and blood (brown).

This dataset is classified into two categories: single frames and sequence video
data. Single frames data consist of 2,299 frames while sequence video data has
233 frames obtained from video recordings. A total of 2,532 frames with 31,069
bounding boxes were released for the detection task. The distribution of class
occurrences is described in the graph chart found in Fig. 2. Specularity, artefact,
and bubbles are the classes with higher occurrences; while blur, instrument and
blood are the classes with less occurrences [1].

Fig. 2. Statistics of EAD2020. Class distribution of the Endoscopy Artefact Detec-
tion 2020 sub-challenge. Specularity, artefact, and bubbles are the more recurrent
classes, while blood, instrument and blood are the less recurrent ones.

4 Methods

In this study, two real-time methods -YOLOv4 [2] and YOLACT [4]- are trained
with the single frames dataset and evaluated over the sequence video dataset.
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Both detectors are trained with three data augmentation techniques: photomet-
ric, geometric and geophotometric. The evaluation of such methods is performed
in terms of mean average precision at different intersection over union thresholds.

YOLO is a unified single convolutional network that simultaneously predicts
multiple bounding boxes and class probabilities for those boxes [15]. The authors
frame object detection as a regression problem, which results in an extremely
fast model. Figure 3 describes the building blocks of YOLOv4, in which the
backbone, neck, and head of the detector are described. Its backbone consists of
CSPDarknet53, which was defined as the feature extractor based on theoretical
justification and numerous experiments. The backbone is followed by SPP and
PANeth path-aggregation as the neck of the model, which were used for increas-
ing the receptive field and aggregating parameters from different backbone levels.
Its head is conformed by the head of YOLOv3 architecture [2].

This version of YOLO also apply Bag-of-freebies (BoF) and Bag-of-specials
(BoS) for the backbone and the detector training stage. The Bag-of-freebies for
the backbone includes certain techniques that boost the learning of the algo-
rithm during the training stage, the authors include: CutMix and mosaic data
augmentation, dropblock regularization, and class label smoothing techniques.
Whereas, the Bag-of-specials for the backbone covers: Mish activation, cross-
stage partial connections, and multi-input weighted residual connections. For

Fig. 3. YOLOv4 architecture. The architecture of YOLOv4 is composed of
CSPDarknet-53 as the feature backbone, followed by SPP module and Path Aggre-
gation Network as the neck of this architecture. The head of YOLOv3 conforms the
dense network used for doing object detection.
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the detector, the BoF uses: CIou-loss, CmBN, dropblock regularization, mosaic
data augmentation, self-adversarial training, eliminate grid sensitivity, cosine
annealing scheduler, optimal hyper-parameters,and random training shapes. The
BoS in the detector applies: Mish activation, SPP-block, SAM-block, PAN path-
aggregation block, and DIoU-NMS [2]. The main advantages of this method are
speed, global reasoning considering the entire image to implicitly encode contex-
tual information, and its ability to generalize representation of objects [2].

Fig. 4. YOLACT architecture. The building blocks of YOLACT are a feature back-
bone - ResNet-50 -, a feature pyramid network, the prediction head and the NMS (non-
maximum supression) module for the detection and generation of mask coefficients.
Protonet modules is used for the generation of prototypes. Then, a linear combination
of prototypes and mask coefficients undergoes a cropping process. Finally, a threshold
is used for generating the final output

YOLACT is a simple, fully-convolution model for real-time instance segmenta-
tion that breaks this task into two parallel subtasks: generation of a set of pro-
totype masks and prediction of per-instance mask coefficients. Instance masks
are then produced by linearly combining the prototypes with the mask coeffi-
cients. Since this process does not depend on repooling - which means that it
does not depend heavily on feature localization to produce masks - and pro-
poses Fast NMS instead of standard NMS, it produces high-quality masks while
keeping temporal stability [4]. Figure 4 shows a diagram of the building blocks
conforming the architecture of YOLACT. The input image goes through the
feature extractor, which for this study, ResNet-50 with FPN was selected. The
authors modify the FPN by not producing P2 and producing P6 and P7 as
successive 3 × 3 stride 2 convolutional layers starting from P5 and placing 3
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anchors on each with the following aspect ratios: [1, 1/2, 2] [4]. The architecture
then breaks up into two parallel tasks. The first branch, called protonet, is an
FCN that predicts a set of prototype masks from the largest feature layers of
FPN. The second branch generates mask coefficients by adding a third branch
to the prediction head of the object detector, which closely follows the design of
RetinaNet, in order to predict mask coefficients for each prototype. Unlike Reti-
naNet, the authors decide not to use focal loss, which was found not be viable
in their situation. Finally, to produce instance masks, the results of the proto-
type branch and the mask coefficient branch are linearly combined, followed by
a sigmoid non-linearity, a cropping stage in which the predicted bounding boxes
are used to crop the output masks and a threshold-based decision to generate
the final masks [4].

Data augmentation techniques are highly used to present the model with
variations of the training data in order to increase the variability of the input
training data. In this study, we propose three different categories of data augmen-
tation, which are defined as photometric - blur and hue -, geometric - horizontal
flip, vertical flip, horizontal and vertical flips, and rotations -, and geophotometric
which is a combination of the previous ones.

Evaluation metrics used in this study include intersection over union, average
precision and mean average precision.

– Intersection over union (IoU): This measure considers the area of overlap
and the area of union between two bounding boxes to evaluate the overlap
between them.

IoU =
A ∩ B

A ∪ B
(1)

This score ranges from 0 to 1, meaning no overlap and complete overlap,
respectively. It is compared against a given threshold for determining whether
or not a prediction is considered a true positive (TP) or a false positive (FP)
[7].

– Average precision (AP): It is computed by calculating the area under the
curve (AUC) of the precision-recall (PR) curve for each class at a given IoU.
Retrieving the computations for precision and recall as [7]:

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

– Mean average precision (mAP): This metric computes the average of the AP
calculated for all the classes based on different IoU thresholds [7].

mAP =
1

classes

classes∑

n=1

APn (4)
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5 Results

In this section, a brief description of the experimental setup is given, both quan-
titative and qualitative results are presented, and a comparison between them.

5.1 Experimental Setup

We implemented YOLOv4 and YOLACT using PyTorch on a single NVIDIA
Tesla P100 GPU. Both methods were trained on the single frame dataset using
different data augmentation techniques - original data, photometric, geomet-
ric, and geophotometric - and tested on sequential frames, as the out-of-sample
test set. In the training process, we resized the images of the training data to
512× 512. We trained YOLOv4 for 16,000 iterations with a batch size of 64,
starting at an initial learning rate of 0.001, weight decay was set to 0.0005, and
a momentum of 0.949. YOLACT method was trained for the same number of
iterations with a batch size of 8, an initial learning rate of 0.001, weight decay
of 0.0005, and momentum of 0.9.

Table 1. Quantitative results. Evaluation results of both methods, YOLOv4 and
YOLACT, considering mAP25, mAP50, and mAP75 evaluation metrics. Evaluation
results of other state-of-the-art methods in terms of mAP25 and mAP50

Model Data augmentation mAP25 mAP50 mAP75

EfficientDet-d0 [19] None 30.67 20.93 –

EfficientDet-d0-NMS [19] None 29.56 19.77 –

EfficientDet-d0-NMS-PDF [19] None 31.69 19.98 –

YOLOv4 None 41.3 25.5 9.1

Photometric 40.7 25.8 8.9

Geometric 45.1 27.6 8.8

Geophotometric 42.9 26.5 10.1

YOLACT None 42.3 24.4 7.5

Photometric 43.0 24.5 7.6

Geometric 44.9 26.8 9.9

Geophotometric 44.4 26.7 8.6

5.2 Quantitative Results

Both methods, YOLOv4 and YOLACT, are evaluated in terms of mean average
precision using the sequential dataset. The mAP was evaluated at three different
intersection over union thresholds: 25, 50, and 75. The evaluation results of both
methods are concentrated in Table 1 in order to analyze which model achieves
the best performance among them. Also, the results in terms of mAP25 and
mAP50 of another state-of-the-art methods evaluated over the same sequential
dataset are presented.
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5.3 Qualitative Results

Figure 5, contains sample images with their corresponding ground truth bound-
ing boxes and the predictions achieved by both methods, YOLOv4 and
YOLACT. Based on these results, YOLACT is less likely to predict small object
instances, e.g. specularities. Also, none of the proposed methods of this study
show a good performance for detecting bubbles, which are also small objects and
are one of the less recurrent classes found in the training set.

Fig. 5. Qualitative results. First row contains sample images with their correspond-
ing ground truth bounding boxes. Second row corresponds to the predictions done by
YOLOv4 detector. Third row shows the predictions done by YOLACT.

5.4 Comparative Results

Based on our experiments, the data augmentation technique that generates a
higher mAP is geometric data augmentation. This technique increases mAP25

and mAP50 of the YOLOv4 model by 3.8% and 2.1%, respectively, when com-
pared to the model trained with the original data without augmentation. The
YOLACT model shows an increase in mAP25, mAP50, and mAP75 of 2.6%,
2.4%, and 2.4%, respectively, when compared against the model trained without
augmentation techniques. Both of the methods studied in this work, YOLOv4
and YOLACT, outperform the models proposed in [19] by at least 9.01% and
3.47% in terms of mAP25 and mAP50, respectively.



Artifact Detection Using Deep Learning Techniques 337

6 Conclusions

In this study we presented a comparison between two real-time deep learning
frameworks used for detecting artefacts in endoscopic video frames, YOLOv4 and
YOLACT. Both methods were trained with three different types of data augmen-
tations techniques - photometric, geometric, and geophotometric- to evaluate the
effect of increasing the variability of the input training data. The models were
trained on the single frames dataset of the EAD2020 sub-challenge and tested on
the sequential frames dataset of the same sub-challenge. Evaluating both mod-
els and the selected data augmentation techniques give us an insight of how the
pre-processing of the training data leads to an improvement in its own perfor-
mance even when tested on a dataset coming from a different distribution. Based
on our experiments, the YOLOv4 architecture achieves a higher performance in
terms of mAP25, mAP50, and mAP75, than YOLACT and also outperforms the
EfficientDet methods presented in [19] considering mAP25 and mAP50. The data
augmentation techniques that achieves a higher improvement was the geometric
augmentation, which applies flips and rotation transformations to the training
data. As part of our future work, we will explore the implementation of another
state-of-the-art real-time method for artefact detection and we will work on the
implementation of an ensemble approach with all three methods.

Acknowledgments. The authors wish to thank the AI Hub and the CIIOT at ITESM
for their support for carrying the experiments reported in this paper in their NVIDIA’s
DGX computer.
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Abstract. White blood cells are a fundamental part of the immune
system which protect human body against infections and diseases. The
complete blood count is a routine analysis that provides doctors informa-
tion about the patients. Monitoring the immune system allows doctor to
select preventive treatments against several diseases. The complete blood
count relies in a rigorous observation of a blood sample through a micro-
scope; the accuracy of the result depends on the expertise and time of
the analyst. In this paper, a novel vision-based method using convolu-
tional neural networks for white blood cell detection and classification
is presented. The results show the proposed method is robust against
the huge number of easy negatives in object detection, as well, the high
inter-class similarity among images can be reduced for a better white
blood cell classification.

Keywords: WBC · CNN · Siamese network · Object detection ·
Image classification

1 Introduction

The blood is composed by red blood cells (RBC), white blood cells (WBC),
platelets and plasma. The 45% of the peripheral blood is composed by cells and
55% of plasma [1]. The function of RBCs is to carry oxygen to body tissues,
platelets help with blood clotting and WBCs are responsible for the immune
system [2]. WBCs are divided into five subclasses: eosinophil, lymphocyte, mono-
cyte, basophil and neutrophil [3]. The information about counts and percentages
of each type of WBC in blood is invaluable for doctors to diagnose illness in
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patients [5] such as anemia, leukemia, infectious diseases, liver diseases, bone
marrow deficiency diseases, etc. In order to evaluate the health condition of
patients, medical professional often request the Complete Blood Count (CBC).
The manual WBC count in CBC is a time consuming task which is based on the
microscopic observation of the blood smear by the analyst who can differenti-
ate the subtypes mainly based on the morphological features of the cell nucleus
and cytoplasmic matrix [2,7]; the result depends highly on the time and experi-
ence of the analyst. This manual counting is a very challenging task due WBC
datasets present a high inter class similarities, which means that types of WBC
are very similar, for example, eosinophils and neutrophils; in Fig. 1 one sample of
these two classes is presented. Automated hematology analyzer devices such as
impedance-based or flow cytometry counters have been available since the past
three decades, however, the classification of RBCs and WBCs is restricted to a
few classes, and, in addition, these machines require the use of expensive chem-
icals [8], making them very expensive, especially for low-income countries [9].

Fig. 1. Four classes of WBC are presented. Eosinophils and neutrophils are very similar;
eosinophil is a bi-lobed cell, while neutrophil is a multi-lobed one.

Researchers have proposed several approaches to for WBC classification using
computer vision (CV), machine learning (ML) and deep learning (DL). There are
two manners to classify WBC in blood smear; it can be by extracting information
from the whole image (image classification) or from image region using bounding
boxes (object detection). In this paper, a novel method for white blood cell
detection and classification is proposed. Retinanet is used for WBC detection and
siamese VGG16 architecture for classification. The proposed approach is divided
into two stages, the first one is to detect WBCs from blood smear images (object
detection); in the second stage, a WBC stratification task is performed using a
siamese VGG16 architecture (image classification). The performance evaluation
of the proposed method considers precision (P), recall (R) and F1 score. The
main contributions of this paper are the following:

– Comparison between handcrafted and CNN-based methods for white blood
cell detection and classification.

– Evaluation of the proposed method using commonly used metrics such as
Accuracy, Precision, Recall and F1-score.

– Experimentation of a novel method which combines image classification and
object detection for WBC stratification.

– Implementation of an statistical analysis in order to demonstrate siamese
networks reduce the high inter-class similarity among WBC images.
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2 Related Works

There are many studies that propose vision-based methods for white blood cell
classification. Ramesh et al. in [3] proposed to use color information and mor-
phology to classify 1930 WBCs images using linear discriminant analysis (LDA)
obtaining an overall acccuracy of 93.9%. On the other hand, Barrero et al. in [4]
developed a system to identify and classify blood cells using networks of Gaus-
sian Radial Base Functions (RBFN), achieving an average accuracy of 85.83%,
where the accuracy values for each class were of 93.4% for lymphocytes, 79.5%
for neutrophils, 97.37% for monocytes, and 73.07% for eosinophils. Huang et
al. in [13] proposed to use Otsu threshold to segment cell nuclei and texture
and to extract shape features followed by PCA in order to recognize leukocytes,
achieving 81.6% of accuracy. Another approach is proposed by Gautam et al.
in [14]. They proposed to extract morpholical features such as area, eccentric-
ity, perimeter and circularity and use Näıve Bayes classifier; authors achieved
80.88% accuracy. In another work, Rosyadi et al. in [5] concluded in their paper
that upon implementation of k-means algorithm, the most significant geometry
feature is its circularity, generating an accuracy of 67%. The methods mentioned
above are handcrafted-based approaches, which means that the features are man-
ually engineered. Some other works are focused on CNN-based techniques, for
example, Macawile et al. in [15] proposed a method to classify the 5 WBC classes
using HSV (Hue, Saturation and Value) microscopic images. On the other hand,
Sahlol et al. in [16] extracted deep features using VGGNet and using the Salp
Swarm Algorithm, these features were filtered in order to classify WBCs for
leukemia classification. Another authors, such as Liang et al. in [17] in proposed
to combine CNN and Recurrent Neural Networks (RNN) such as Inception V3,
Xception and Resnet, obtaining 90.79% accuracy.

3 Retinanet

Retinanet is a one-stage object detector which uses focal loss to address class
imbalance [10]. Negative samples contribute to achieve lower loss in training.
The main contribution of focal loss is that it is concentrated in hard sam-
ples [18]. Retinanet relies on three main tasks: feature extraction which is done
by Resnet50 [19] and Feature Pyramid Network (FPN) [20]; classification of
the detected object; and, bounding box regression. In Fig. 2 the three tasks of
Retinanet are presented. Resnet50 (Residual Neural Network) is a type of CNN
composed by 50 stacked residual blocks on top of each other to form a network.
A residual block allows layers to feed into the next layer and directly into the
layers about two or three hops forward; this helps to reduce the vanishing gradi-
ent problem during propagation. The architecture of Resnet50 used as backbone
is presented in Table 1

The FPN augments a standard convolutional network with a top-down path-
way and lateral connections in order to obtain a rich multi-scale feature pyramid
from a single resolution input image, see Fig. 2. This allows the network to detect
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Table 1. Resnet50 architecture.

Layer name Output size Configuration

Conv1 112× 112 7× 7, 64, stride 2

Conv2 x 56× 56 3× 3 maxpool, stride 2

Conv2 x 56× 56 3x([1× 1, 64][3× 3, 64][1× 1,256])

Conv3 x 28× 28 4x([1× 1, 128][3× 3, 128][1× 1,512])

Conv4 x 14× 14 6x([1× 1, 256][3× 3, 256][1× 1,1024])

Conv5 x 7× 7 3x([1× 1, 512][3× 3, 512][1× 1,2048])

FC 1× 1 Average pool, 1000-D FC, Softmax

objects at a different scale [18]. This classification subnet predicts the probabil-
ity of object presence at each spatial position for each of the A anchors and k
object classes. The architecture is a fully convolutional network (FCN) attached
to each FPN level which receives a feature map of C channels from a specific
FPN level. The regression subnet is another FCN which is attached in parallel
to the Classification Subnet. Each pyramid level is connected to his regression
model in order to compute the offset from each anchor box to a nearby ground-
truth object. Focal loss is proposed in [18] and it was designed to address the
problem of extreme imbalance between foreground and background classes dur-
ing training. Focal loss is a variation of cross entropy loss function, which is
defined as:

Fig. 2. Retinanet is composed by three main tasks, i) feature extraction is done using
the feature pyramid network backbone, ii) the classification of the detected object and
iii) the coordinates of the bounding box.

CE(p, y) =
{−log(p) ify = 1
−log(1 − p) otherwise

(1)
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where yε{±1} specifies the ground-truth class and pε[0, 1] is the predicted prob-
ability for the class with label y = 1. Let pt be defined as:

pt =
{

p ify = 1
1 − p otherwise

(2)

Equation 1 can be rewritten as:

CE(p, y) = CE(pt) = −log(pt) (3)

In order to address the class imbalance, a weighting factor αε[0, 1] is intro-
duced. The weighted equation (3) can be written as:

CE(pt) = −αtlog(pt) (4)

In most of the object detectors, the easy negatives samples comprise the
majority of the loss. Easy negatives samples are those that is very easy to classify
as negative due to the huge amount of examples presented in the image, usually
these samples correspond to the background. On the other hand, hard positives
samples are those samples that it is very difficult to detect and classify because
the amount of these examples is too low compared to easy negatives, In Fig. 3.
Thus, in object detector a class imbalance is presented.

Fig. 3. The samples inside red squares are easy negatives, from them, any useful infor-
mation is extracted. Samples inside green squares are the hard positives and provide
information about the detected object. (Color figure online)

To address this problem, a modulating factor is introduced to the loss func-
tion in order to focus on hard negatives only. The final focal loss function pro-
posed in [18] is defined as:

FL(pt) = −αt(1 − pt)γ log(pt) (5)

According to experiments, α and γ should be set 0.25 and 2, respectively [18].
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4 Siamese Network

A siamese convolutional neural network is a type of architecture that contains
two identical networks sharing their parameters (as shown in Fig. 4) and are used
to find similarities of the outputs by comparing the embedding each network
generate, in other words, siamese CNN focuses on learning semantic similarity.
It is expected that using semantic similarity learning can reduce the high inter-
class similarity among white blood cell images [11]. Specifically, the siamese
architecture relies on an image pair as inputs; this pair of images can be positive
(images of the same class) or negative (images of different classes). Each image
is processed through its corresponding branch, where each branch will generate
an image embedding, which is then fed into the contrastive loss, responsible
for similarity learning. Let be f(A) the embedding of image A and f(B) the
embedding of image B, then:

D(A,B) =

√√√√ n∑
i=1

(f(A)i − f(B)i)2 (6)

where D(.) is the euclidean distance between the n-dimensional f(A) and f(B)
image embedding. If (6) is small, it means that image A and image B are similar
and vice versa. The contrastive loss is defined as:

L =
1
2
lD2 +

1
2
(max(0,m − D))2 (7)

where l is a binary label indicating if A and B belong to the same class (l=1) or
not (l=0); m is a margin selected for dissimilarity images (m must be greater
than zero). As seen from (7), the distance between the embeddings of the same
class images must be small, and the distance between the ones obtained from
different class images must be large.

Fig. 4. Siamese network relies on two identical networks which share their parameters.
The contrastive loss function is the responsible of generate image embeddings according
to the similarity of the input image pair.
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5 Proposed Method

In this paper, a detection-classification method is proposed in order to detect and
classify white blood cells in smear images. To do so, the proposed method (shown
in Fig. 5) is divided into two stages, object detection and image classification.
The experiments were done using an artificially augmented BCCD dataset [12].

Fig. 5. The proposed method uses a one-stage object detector to determine in which
region of the image there is a WBC; the siamese architecture is the responsible for
WBC stratification.

5.1 Dataset

The dataset used was sub dataset of a variation of the BCCD dataset. The
BCDD dataset is composed by 364 images across three classes: WBC, RBC
and Platelets. The staining used in the blood cells was Gismo-right and the
images were obtained using a regular light microscope with zoom 100x. The
variation dataset is published in [12]. This dataset was generated by artificially
augmentation applying random rotations, scalings, reflections and shearings; in
addition, the white blood cells were labeled according to the corresponding class.
More specifically, this dataset contains 12,500 augmented images of blood cells,
approximately 3,000 images for each of four different white blood cells types.
The types are eosinophil, lymphocyte, monocyte and neutrophil; the ground-
truth bounding boxes were manually labeled. In this paper it was used only the
33% randomly selected of the entire dataset in order to reduce the computational
cost.

5.2 Object Detection

Retinanet was trained to extract features using Resnet50 and FPN, and then,
using two specific subnets, the coordinates and the class of the detected white
blood cell were used. The dataset used for experiments is composed by 3,865
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images of dimension 416 × 416 × 3 divided into four classes, eosinophil, neu-
trophil, monocyte and lymphocyte. The dataset was divided into three subsets,
training, validation and test, which 2,700, 778 and 387 images respectively. It was
implemented a transfer learning using the COCO weights [21] for 20 epochs and
an IoU (Intersection over Union) value of 0.5. The values of training mAP and
validation mAP were 0.9769 and 0.9743, respectively. From here, it can be seen
that the network is not overfitted. In Fig. 7, the predictions for 9 random samples
from testing set are presented; it is worth noting that Retinanet is invariant to
different geometric transformation.

5.3 Image Classification

For image classification stage, the Retinanet model was used for WBC image
cropping; these cropped images were used for similarity learning. Randomly,
positive and negative pairs were generated for feeding siamese network. The
architecture used in image classification in a siamese version is VGG16. VGG16
is a CNN considered to be one of excellent vision model architecture. This net-
work instead of having a large number of hyper parameter, they focused on
having convolutional layers of 3× 3 filter with stride 1, same padding and max
pooling layer of 2× 2 filter with stride 2. In Table 2 it is presented the different
architecture for VGG16; in this paper the type D was used.

Each VGG16 network were fine-tuned by freezing the first convolutional layer
and replacing the default dense layers by two new fully connected layer. The
siamese VGG16 was trained for 20 epochs and the results are the following:
0.0311 training loss, 0.9630 training accuracy, 0.0611 validation loss and 0.9229
validation accuracy.

5.4 Experimental Results

The result for WBC classification is shown in Table 3. The average accuracy of
the proposed network is 95%. As can be observed, the proposed method performs
well the WBC classification. It is important to note that there still exists a cer-
tain level of inter-class similarity between eusonohils and neutrophils. Monocytes
and lymphocytes have different morphological features, that is why the proposed
method can classify them well. In order to understand this, t-SNE (t-distributed
stochastic neighbor embedding) was implemented, which is a nonlinear dimen-
sionality reduction method well-suited for embedding high-dimensional data for
visualization in a low-dimensional space that allows to observe the image embed-
ding the siamese VGG16 is generating. In Fig. 6a can be observed the distribu-
tion of each image embedding. The size of each image embedding generated
by the siamese VGG16 is four, however, using t-SNE technique, is possible to
represent them in two dimensions only. Monocytes and lymphocytes are sepa-
rated by a large distance, representing the morphological similarity. However, for
eusinophils and neutrophil, the distance is small, in addition, it can be observed
some overlapping between this two classes. This is because the morphological
similarity in these two classes. In order to compare the proposed method with
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Table 2. VGG architecture.

A A-LRN B C D E

11 11 13 16 16 19

Weight Weight Weight Weight Weight Weight

Layers Layers Layers Layers Layers Layers

input (224× 224 RGB image

conv64 conv64 conv64 conv64 conv64 conv64

LRN conv64 conv64 conv64 conv64

Maxpool

conv128 conv128 conv128 conv128 conv128 conv128

conv128 conv128 conv128 conv128

maxpool

conv256 conv256 conv256 conv256 conv256 conv256

conv256 conv256 conv256 conv256 conv256 conv256

conv1-256 conv256 conv256

conv512 conv512 conv512 conv512 conv512 conv512

conv512 conv512 conv512 conv512 conv512 conv512

conv1-512 conv512 conv512

maxpool

conv512 conv512 conv512 conv512 conv512 conv512

conv512 conv512 conv3 conv512 conv512 conv512

conv1-512 conv512 conv512

conv512

maxpool

FC-4096

FC-4096

FC-1000

Softmax

standalone Retinanet, t-SNE was applied as well to the last layer of the network.
This layer has four neurons which contain the class probability of each bounding
box. The result of t-SNE is shown in Fig. 6b. It can be observed that Retinanet
is trying to classify in four classes, however, the samples are overlapped, which
makes the classification a difficult task. In Fig. 7 can be observed the classifi-
cation results of nine random samples using the proposed method. As it was
mentioned before, the object detection stage detects the location of the WBC,
while the image classification stage determines the class of the detected WBC.
As it can be seen from the results, the proposed method is capable to detect the
WBC in a blood smear image, and, using similarity learning, the classification
becomes an easier task due to the image embeddings are generated according to
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the similarity of the image pair. In spite siamese network reduces the inter-class
similarity, there are still some level in eosinophil and neutrophil classes.

Table 3. Classification results.

WBC class Precision Recall F1-Score

Eosinophil 0.88 0.93 0.91

Lymphocyte 1.00 1.00 1.00

Monocyte 1.00 1.00 1.00

Neutrophil 093 0.88 0.91

A research was performed in order to find published works that used the same
dataset in order to compare the proposed method. In the literature the work of
Liang et al. [17] was found, which is based on CNN. In that paper, authors
proposed to use a combination of CNN and RNN to classify BCCD images of
white blood cell; this comparison is presented in Table 4

Fig. 6. t-SNE visualization. a) Visualization of the distribution of each image embed-
ding generated by the Siamese VGG16. The distance between monocytes and lympho-
cytes is large, meaning this classes are not similar. Eosinophil and neutrophil are very
similar, the distance between them is small. b) Distribution of the last layer of Reti-
nanet for each bounding box detection. The image embedding are overlapped, which
makes classification a hard task.
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Fig. 7. Predictions of the proposed method on nine randomly selected images from
testing set. The bounding box coordinates is predicted by the object detection stage
and the class probability (class name and confidence appear above the bounding box)
by the image classification.

Table 4. Comparison.

Reference Method Accuracy

Gautam et al. [14] Morpholical features and Naıve Bayes classifier 88.8%

Liang et al. [17] CNN and RNN combination 90.7%

Proposed Semantic similarity learning 95%

6 Conclusions

WBCs are the responsible of the human immune system. The number of WBCs
can increase or decrease over time, however, if it exceeds the normal range, it
can provide information about several diseases. The constant monitoring of WBC
count can prevent many diseases, as well, it is possible to generate a medical pro-
file for each patient. In this paper it is proposed a method to detect and classify
white blood cell in order to play the role of an intelligent assistant to medical
staff. One of the main problems in object detection is the huge amount of easy
negatives examples; this overwhelms the loss function and leads to a false conver-
gence state of the network. Focal loss can address this problem focusing on hard
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examples only. Another problem in WBC classification, is the high inter-class
similarity that exists in eusonophil and neutrophil classes. It was demonstrated
with t-SNE technique that Retinanet does not generate good image embeddings
for image classification. Using the proposed method, the huge number of easy
negatives and the high inter-class similarity can be reduced for a better WBC
classification.
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Abstract. Multi-agent pathfinding (MAPF) is a challenging problem
which is hard to solve optimally even when simplifying assumptions are
adopted, e.g. planar graphs (typically – grids), discretized time, uni-
form duration of move and wait actions etc. On the other hand, MAPF
under such restrictive assumptions (also known as the Classical MAPF)
is equivalent to the so-called pebble motion problem for which non-
optimal polynomial time algorithms do exist. Recently, a body of works
emerged that investigated MAPF beyond the basic setting and, in par-
ticular, considered agents of arbitrary size and shape. Still, to the best
of our knowledge no complete algorithms for such MAPF variant exists.
In this work we attempt to narrow this gap by considering MAPF for
large agents and suggesting how this problem can be reduced to pebble
motion on (general) graphs. The crux of this reduction is the procedure
that moves away the agents away from the edge which is needed to per-
form a move action of the current agent. We consider different variants
of how this procedure can be implemented and present a variant of the
pebble motion algorithm which incorporates this procedure. Unfortu-
nately, the algorithm is still incomplete, but empirically we show that it
is able to solve much more MAPF instances (under the strict time limit)
with large agents on arbitrary non-planar graphs (roadmaps) compared
to the state-of-the-art MAPF solver – Continous Conflict-Based Search
(CCBS).

Keywords: Multi-agent systems · Coordination of multiple vehicle
systems · Multi-agent path finding · Pebble motion · Large agents

1 Introduction

Multi-agent pathfinding (MAPF) is a challenging problem with topical appli-
cations in robotics, video games etc. There exist different ways to define the
MAPF problem [8] and approaches to solve it. On the one hand, optimal and
bounded sub-potimal solvers exist for what is known as Classical MAPF, like
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Fig. 1. An example of the multi-agent path finding for large agents (MAPF-LA)
problem instance. It can only be solved if the synchronous moves of the agents
are allowed (as shown on the right).

the ones presented in [2,3,6,7]. On the other hand fast prioritized planners with-
out any completeness/optimality guarantees are widespread [4,11]. Finally, com-
plete, non-optimal algorithms exist, such as the ones described in [5,9], which
borrow the solving techniques from the so-called Pebble Motion on Graph (PMG)
problem. Sill, all these algorithms do no consider the size/shape of the agents.
Indeed, attempts to lift this restricting assumption are known [1,10], however
the algorithms known so-far do not guarantee completeness. This works aims at
drawing an attention to this gap and try narrowing it by adopting the PMG
algorithms to the setting with the large agents, dubbed as MAPF-LA futher on.

More specifically, we focus on one of the routines, regularly needed, in solving
MAPF-LA instances – the one that makes it possible for one agent to traverse an
edge without colliding to the other agents that prevent the transition due to their
large bodies. We elaborate on how these agents can be safely moved away so the
transition becomes valid. The suggested procedure was implemented and incor-
porated to the well-known Push and Rotate algorithm [5]. Unfortunately, the
current variant of this algorithm is still incomplete for MAPF-LA. However, as
we show in our empirical evaluation, it outperforms the stat-of-the-art competi-
tors, i.e. CCBS algorithms [1], in terms of number of solved MAPF-LA instances
under the strict time limit.

The rest of this paper is organized as follows. We considere the definitions
of MAPF-LA in Sect. 2. Section 3 describes a possible implementation of the
procedure for moving away interfering agents, and also discuss cases when the
proposed procedure is not sufficient to solve the planning problem. We report
the results of of an experimental evaluation in Sect. 4 and conclude in Sect. 5.

2 Problem Statement

Consider a tuple (W, G, r,K, start, goal), where W ⊂ R2 is a metric workspace
where K agents are operating. Each agent is modeled as a disk of radius r > 0.
G = (V,E) is a graph embedded in the workspace, i.e. each vertex v ∈ V is
associated with a point in W. Edges correspond to the transitions between the
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Fig. 2. An illustration of three cases that can occur when agents should be
moved away from the edge along which the current agent needs to transit

locations. It is assumed that when moving along the edge the agent follows a
straight-line segment connecting the corresponding vertices. start : K → V is
a function that specifies the initial locations of the agents, goal is the similar
function specifying the target locations.

A set of K distinct graph vertices S = (s1, ..., sK), si ∈ V , ∀i, j : si �= sj forms
a state. Here si is a position of the ith agent. A state is valid iff dist(si, sj) ≥ 2r,
where dist stands for the Euclidean distance. In other words the state is valid
if the bodies of the agents do not overlap. In this work we adopt an assumption
that the distance between any two vertices of G is greater than 2r. This infers
that any state, as defined above, is valid.

A transition is formally a function π(S, S′) → {0, 1}, where π = 1 stands for
the valid transition and π = 0 for the invalid one. Informally, transition corre-
sponds to the movement of (some) agents between the locations in the workspace
via the edges of the given graph. Conceptually, two possible assumptions regard-
ing the transitions can be made:

– general: synchronous moves of the agents are allowed, i.e. more than one agent
can change its location as a result of the transition

– restrictive: only one agent can change its location, while the rest stay at the
same vertices

In this work we follow the second assumption. In such case for a transition
π(S, S′) to be valid the following conditions should be met. First, the moving
agent i may move only using one of the outgoing edges, i.e. (si, s

′
i) ∈ E. Second,

the move should be collision-free, i.e. ∀j �= i : segdist(e, sj) > 2r, where segdist
is the distance between the segment, defined by the edge e, and the vertex sj .

The problem of multi-agent pathfing for large agents (MAPF-LA) is now
formulated as follows. Given (W, G, r,K, start, goal) find the sequence of states
(S0, S1, ..., Sn) s.t. ∀si ∈ S0 : si = start(i), ∀si ∈ Sn : si = goal(i), ∀i = 0, ...n−1
a valid transition π(Si, Si+1) exists. In other words, the problem is to find the
sequence of moves for the agents that transfer them from their start locations
to their goal locations, while avoiding the collisions.
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Fig. 3. Illustration of execution of PushToEmpty procedure. (a) The green
agent must move along the edge (v1, v2), but the red agent interferes with it.
(b) First of all, we mark all edges that are interfered with by the vertex v2 as
untraversable and find all interfering with (v1, v2) vertices. (c) Single empty and
non-interfering with (v1, v2) vertex v6 to which there is a path not through v1 or
v2 remain on the graph. (d) After all, pushing the red and blue agents along the
path between v3 and v6. Thus, the green agent can move along the edge (v1, v2)
(Color figure online)

Example. An illustrative example of the considered problem is depicted in Fig. 1.
Here the graph G consists of 5 vertices and 4 edges. The start and goal locations
of the 3 agents are specified on the left part of the figure. Basically, each agent
has to transfer to the adjacent vertex. However, under the considered assumption
that only one agent moves at a time, the instance is not solvable. Meanwhile,
if synchronous moves are allowed the problem is trivially solved via a single
transition in which the agents simultaneously move to the adjacent vertices (as
shown on the right). This highlights how defining the transition influence the
possibility to find a solution. This is similar to the pebble motion on graphs
problem, in which different assumptions regarding cycle-moves and chains-moves
can be adopted, see [12] for details.

3 Suggested Approach

3.1 Preliminaries

The problem considered in this work, multi-agent pathfinding for large agents
(MAPF-LA), is similar to the pebble motion on graphs (PMG) problem [12].
However the crucial differences exist, that prevent the straightforward applica-
tion of the known methods to solve PMG for the considered formulation. Gener-
ally, two core differences between the MAPF-LA and PMG are as follows. First,
in PMG every placement of pebbles (agents) on distinct graph vertices by defi-
nition form a valid state. In MAPF-LA this is not the case, however we adopted
a (restrictive) assumption that the vertices of the given graph are located 2r
distance units away from each other. Thus every placement of (large) agents on
disjoint vertices also result in the valid state.
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Fig. 4. Illustration of execution of PushAlongPath procedure

Second, in PMG for a transition of one agent to be valid it is only required
that the source vertex is free. In MAPF-LA this is not enough as the target
vertex of the move can be free, but the moving agent, say a, may collide with
the other agents while traversing an edge, as these agents stay too close to the
edge itself. Such agents can be referred to as the interfering agents w.r.t. to
the given edge e = (vfrom, vto). Thus, in order to reduce (our formulation of)
MAPF-LA to PMG the following problem should be solved. Given a valid state
S and an agent a that needs to traverse the edge e = (vfrom, vto) find a sequence
of the valid transitions (π0, ..., πk, ..., πm) that results in the state S′, where the
agent a is located at vto and all other agents occupy the same vertices as in
S. Here the transition πk corresponds to the move of the agent a, while the
other transitions are moves of the other agents which are made, first, in order
to remove the interfiring agents so the move through e is possible, and, second,
move all agents (except a) back their vertices.

Lets denote the procedure that solves the described problem as move-la.
Next we elaborate on how this procedure can be constructed. Generally, after
move-la is defined, one can use one of the PMG algorithms to solve MAPF-
LA. E.g., in this work we use Push and Rotate algorithm [5], however other
choices are possible.

3.2 Moving Along an Edge

A possible implementation of the move-la procedure consist of the three follow-
ing steps. The first step is the sequential removal of every agent a′ from every
vertex v′ that interfere with the move along e. This can be done via finding
a path (for each interfering agent) to an unoccupied vertex and, then, sequen-
tially moving the agent along this path (push operation). The second step is to
move the a along the e. The third step is to return every a′ to its initial vertex.
However, this should be done in such a way that agent a remains at vto. We
identify three different cases that may arise while removing an interfering agent
a′ (Fig. 2).

In the first case, a path to some empty vertex can be found for agent a′ that
does not go through the vertices vfrom and vto, as well as through the edges
for which vertices vto are interfering. Thus, agent a′ can be pushed along such
a path, and the resulting sequence of moves can be reversed at the end of the
move-la operation to return agent a′ to the initial position. An example of
such a case is shown in Fig. 2a, where the green agent needs to move along the
(v1, v2). To do this, it is enough to move the blue agent to vertex v5, and after
passing the green agent, return the blue one to v3
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Fig. 5. Illustration of execution of PushThroughVFrom procedure. (a) The
green agent must move along the edge (v1, v2), but the red agent on the v5
vertex interferes with it. There are no paths between v5 and non-interfering
vertices, that do not pass through v1. So, it is necessary to move the green
agent at one of the neighboring vertices so that the red agent can pass (b) After
that, it is necessary to move the interfering agent from its position using the
PushAlongPath procedure (c) Next, the green agent can return to its original
position v1 (d) Thus, the green agent can move along the edge (v1, v2) (Color
figure online)

In the second case, the path of a′ can go through the vertex vfrom, but not
through the edges for which vertices vto are interfering. However, for this, it
is necessary to first push agent a from vertex vfrom.Then we need to push a′

to some non-interfering vertex. After the pushing of agent a′ completes, agent
a must be returned. The sequence of moves obtained in this way can be also
reversed to return all agents to their positions, except for some actions that
must be ignored when carrying out the reverse operation.

For the green agent on Fig. 2b, which illustrates the second case, to make
the required move, it must first go to vertex v5. After that, the blue agent will
be able to go to vertex v4, and the green agent can return to v1 and move to
v2. Finally, the resulting solution can be reversed after deleting the moves of the
green agent.

In the third case, to remove the agent from the interfering vertex, it is neces-
sary to find a path through vto (and optional through vfrom, but not through the
edge e itself), or through the edges, for which vertices vto (and optional vfrom)
are interfering. In this case, it is impossible to return the agents by a reversal,
since by the time this operation is performed, the vertex vto will be occupied by
agent a, which will lead to a collision.

In the case on Fig. 2c, the blue agent can be moved to a non-interfering vertex
only when passing through v2. Thus, after the green agent moves to v2, the blue
agent can return to its original position v3 only if the green agent misses it (e.g.,
when the blue agent leaves to v4, the green agent must go to v5 for the blue one
to return to v3).

We propose PushToEmpty and PushThroughVFrom procedures that
can be used to solve the first and the second case respectively. Let’s consider
these procedures in more detail.
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Algorithm 1 ReversableEdgeCleaning procedure

Input: G – graph, S – current state, e = (vfrom, vto) – edge to clear,
U – blocked vertices, r – agents radius
Output:
π – resulting solution, πrev – the sequence of valid moves, which returns interfering
agents back

1: π ← [], a ← agent, that need to move by edge e, NotCleared ← {}
2: I ← interfere vertices of e, If ← unoccupied interfere vertices of e
3: for all v′ ∈ I\Ifree do
4: π′ ← [], S′ ← S
5: if PushToEmpty(G, S′, π′, v′, U ∪ {vto}, e, If , r) then
6: π ← π + π′, πrev ← πrev + π′ except moves of a
7: S ← S′, If ← If ∪ {v′}
8: else
9: NotCleared ← NotCleared ∪ {v′}

10: for all v′ ∈ NotCleared do
11: ae ← {}, π′ ← [], S′ ← S
12: π′′ ← PushThroughVfrom(G, S′, π′, v′, U , e, If , r)
13: if π′′ �= false then
14: π ← π + π′, πrev ← πrev + π′′ except moves of a
15: S ← S′, If ← If ∪ {v′}, NotCleared ← NotCleared\{v′}
16: U ← U\{vto}, πrev ← Reverse(πrev)
17: if NotCleared not empty then
18: return false
19: return π, πrev

3.3 PushToEmpty

The procedure PushToEmpty is designed to remove interfering agent a′ with-
out affecting the vertex vto and without pushing agent a′ through vfrom (Fig. 3a).
First of all, mark all edges that are interfered by the vertex vto as untraversable
(Fig. 3b). This is necessary so that when the obtained solution is reversed, there
are no conflicts with agent a who passed using the considered edge e. After that,
all possible options are considered to move agent a′ from the interfering vertex
v′. For this, a set of empty, non-interfering with e vertices is formed. For each
selected empty vertex ε, an attempt is made to find a path, avoiding using vfrom

and vto (Fig. 3c) and pushing the agent a′ along this path (using PushAlong-

Path procedure). As a result, the agent a′ from the interfering vertex is moved
so that agent a can move along the edge e (Fig. 3d).

If the path to the vertex was found, but the PushAlongPath operation
failed, then the edge, through which the operation move-la inside PushA-

longPath could not be performed, is temporarily marked as untraversable and
the path to ε has searched again. If the path to ε cannot be found, then the next
empty vertex from the list is taken. A more detailed description of the procedure
is provided in pseudocode in Appendix A.
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PushAlongPath. Lets consider PushAlongPath procedure. It consists of the
sequential moving of agents along path to empty vertex starting from the last
agent in the path. An important feature of this operation is that when passing a
path through empty vertices, they will remain free after the end of the operation.

Fig. 6. An example of a case where it is necessary to correctly determine the
planning order, even if there is a complete procedure for moving an agent along
an edge (Color figure online)

An illustration of this operation is shown in Fig. 4. Agents (green, red and
blue circles) must be pushed along path v1 − v6. In addition to the last vertex
v6, the path also contains intermediate empty vertices v3 and v4. The operation
starts by moving the blue agent. He goes to vertex v6. All subsequent agents
move to those vertices that were occupied by the previous ones (the red agent
moves to the vertex v5 passing through empty vertices, and the green agent
moves to the vertex v2). At the end of the operation, the first vertex of the path
is freed because the last vertex of the path becomes occupied.

3.4 PushThroughVFrom

To solve the second case of removing agent a′ from interfering vertex v′ we sug-
gest the PushThroughVfrom procedure. It consists of two stages. At the first
stage, agent a moves away to one of the neighbouring vertices n. If n is occupied,
the operation of clearing the vertex is performed, similar to PushToEmpty.

If the operation of clearing of n was performed successfully, or if n was initially
not occupied, then the operation move-la from vfrom to n is performed. Note
that if the edge e is marked as untraversable in the move-la operation, vertex
vto can be involved in it, since the obtained actions π′′ will not be included in the
reverse operation when the interfering agents return to their vertices. In the
case when at least one of the operations described above fails, then an attempt
is made to move agent a to another vertex n.

After the passage through vfrom is cleared, an attempt is made to move agent
a′ away from v′ also similarly to PushToEmpty. It is important to note that
when creating the path of agent a′, it is necessary to block the vertices that are
the current positions of the π′′ participants. This is necessary to guarantee the
return of agent a to the vertex vfrom using the reverse operation.

If it was possible to find a path to an empty vertex for agent a′, after which
the PushAlongPath was successful, then the obtained solution is saved and
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Fig. 7. Success rates of the suboptimal version of CCBS (CCBS W10), the
suggested approach (P&R-LA) and “naive” version of the Push and Rotate

for large agents (P&R) on two different roadmaps with varied number of agents

supplemented with reverses actions π′′ to return agent a to vertex vfrom. In
addition, the solution is saved with the exclusion of action π′′, which is necessary
for the further return of agent a′ to vertex v′. A more detailed description of the
procedure is also provided in pseudocode in Appendix A.

3.5 ReversableEdgeCleaning

The sequential resolving algorithm of the first two cases can be combined into
a single ReversableEdgeCleaning procedure (Algorithm 1), the result of
which is the removal of interfering agents possible for considered cases, as well
as a sequence of moves that will return all pushed agents to their positions after
agent a passes along edge e.

The proposed algorithm consists of two stages. At the first stage, the proce-
dure PushToEmpty is launched for each occupied vertex that interferes with
the edge e (lines 6–12). If any of these vertices cannot be freed using procedure
PushToEmpty, then they are stored in the NotCleared set (lines 12). After
that, the procedure PushThroughVfrom is executed for each element of the
NotCleared set (lines 13–19).

3.6 Discussion

It should be noted that at the moment the proposed algorithm is not complete
for MAPF for large agents problem, since it does not take into account two
significant points.

The first point refers to the third case inside move-la procedure previ-
ously mentioned in the text. In this case, the path from interfering to the non-
interfering vertex lies through the vertex vto or the edges that this vertex is
interfering with. Then there is no possibility of returning the interfering agent
to its original position by reversing its actions. Thus, agent a must let agent a′

go to its initial position v′, or another path must be found that leads agent a′

to v′.
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The second point is that may be the case that the interfering agent a′ cannot
return to the vertex v′ at the end of move-la procedure (and move-la proce-
dure fails), but still there exists a solution in which a′ can be moved from vertex
v′ and not returned there. A trivial example of such a case is shown in Fig. 6. If
the green agent has a higher priority during planning, then the blue agent cannot
be pushed from vertex v3 and returned there after moving the green agent. How-
ever, if planning starts with a blue agent, then a solution will be found. Thus, to
construct a complete algorithm for MAPF-LA it is not enough to obtain a com-
plete procedure for moving an agent along an edge. One of the possible solution
to this problem is the choice of the correct planning order, as it is done in the
Push and Rotate algorithm for solving not bi-connected instances.

4 Experimental Evaluation

We incorporated the suggested procedures to the well-known MAPF algorithm
Push and Rotate, so it can be used to solve MAPF-LA instances. We denote
it as P&R-LA. As one of the baselines we have also implemented a “naive”
version of the Push and Rotate for large agents that simply halts when trying
to move an agent along an edge with other interfering agents present. This version
is denoted as, simply, P&R. Finally, the main baseline we were comparing with
was the well-known CCBS algorithm [1] (we used the official implementation
available on Github).

We evaluated planners on two different graphs (roadmaps) which were used
in the CCBS paper: sparse and dense. The sparse roadmap contains 158 vertices
and 349 edges, while the dense one – 878 vertices and 7341 edges. Originally,
these roadmaps were automatically generated based on the den520d map from
the MovingAI MAPF benchmark set [8]. An illustration of the roadmaps is
shown in Fig. 7.

For each roadmap 25 scenarios were created, each one involving with 40
non-overlapping start and goal vertices. In each scenario, the first n start-goal
pairs were selected, and then the evaluated algorithm was launched with a time
limit of 30 s. In the experiment, the value of n varied from 2 to 40. We also set
the sub-otimality factor for CCBS to 10, which notably speeds up the search
(this feature is not described in the original paper, however is supported in the
authors’ code).

The resultant success rates, i.e. the fractions of the solved instances per fixed
number of agents, are presented in Fig. 7 (the higher - the better). As one can see,
our modification of Push and Rotate outperforms the competitors, especially
when the number of agents goes up. E.g. our algorithm managed to solve 80%
of tasks with 40 agents on the sparse roadmap, while the success rate of both
competitors was close to zero. The reason why CCBS failed almost always is
that the density of the agents, i.e. the ratio of agents’ number to the number
of graph vertices/edges is high and no easy solution is possible. This explains
why CCBS copes better with the same number of agents on the dense roadmap
– here there are much more graph vertices/edges that the algorithm can use
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to find non-conflicting plans. Notably, the reasons why our algorithm failed to
solve instances invovling large number of agents differ for different maps. In
sparse roadmap it terminated without providing a solution, while in the dense
one it was not able to finish within the time limit. Thus, we infer, that a more
efficient implementation of our method can actually provide a better success rate
on the dense map.

5 Conclusion

In this work, we have considered the problem of designing a complete algorithm
for a challenging variant of the multi-agent pathfinding problem when the size of
the agents has to be taken into account (MAPF-LA). We elaborate on one of the
core procedures such algorithm should incorporate, i.e. the procedure that clears
an edge to allow for one agent to use this edge for a safe transition. We embed our
implementation of this procedure to the well-known MAPF algorithm Push and

Rotate enabling it to solve MAPF-LA problems. The results of the empirical
evaluation provided us with the clear evidence that the resultant algorithm is
able to find solutions for non-trivial MAPF-LA instances involving dozens of
agents under the strict time limits (while its competitors often fail to do so).

Indeed, the main direction of future research is to develop a provably com-
plete algorithm for solving MAPF-LA, as the method proposed in this work is
only a step towards this goal (as it does not guarantee completeness).

A PushToEmpty and PushThroughVfrom procedures

Algorithm 2 PushToEmpty procedure
Input: G – roadmap, S – current state, π – solution, U – blocked vertices,
v′ – interfering vertex, e = (vfrom, vto) – edge to clear, r – agents radius, If – unoccupied vertices
interfering to e.

1: E ← edges for which vertex vto is interfering, G′ ← remove E from G
2: for all ε in EmptyVertices(G, S) \If do
3: while true do
4: p ← path from v′ to ε in G′ \U ∪ {vfrom})
5: if p = false then
6: break while
7: π′ ← [], S′ ← S, ef ← PushAlongPath(G′, S′, π′, p, U)
8: if ef = false then
9: π ← π + π′, S ← S′, return true
10: else
11: Remove edge ef from G′

12: return false
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Algorithm 3 PushThroughVfrom procedure

Input: G – roadmap, S – current state, π – solution, U – blocked vertices, v′ – interfering vertex,
a′ – agent from v′, e = (vfrom, vto) – edge to clear, r – agents radius, If – unoccupied vertices
interfering to e.

1: E ← edges for which vertex vto is interfering
2: for all n ∈ Neighbours(G, vfrom) \U ∪ {v′} do
3: G′ ← remove edges E from G, ef ← false, p ← true
4: if n is occupied then
5: for all ε ∈ EmptyVertices(S) \(If ∪ {vto}) do
6: ef ← false
7: while true do
8: S′ ← S, π′ ← [], p ← path from n to ε in G′ \U ∪ {vfrom, vto, v′}
9: if p = false then
10: break while
11: ef ← PushAlongPath(G′, S′, π′, p, U ∪ {vto})
12: if ef = false then
13: break for
14: Remove edge ef from G′

15: if p =false or ef �=false then
16: continue with next n
17: G′′ ← remove edge e from G, π′′ ← []
18: if not move-la(G′′, S′, π′′, vfrom, n, U , r) then
19: continue with next n
20: P ← If∪ vertices of π′′ ∪ interfere vertices of (vfrom, n)
21: U ′ ← U ∪ {vto}∪ current positions in S’ of agents from π′′

22: for all ε ∈ EmptyVertices(S) \P do
23: ef ← false
24: while True do
25: S′′ ← S′, π′′′ ← [], p ← path from v′ to ε in G′ \U ′

26: if p = false then
27: break while
28: ef ← PushAlongPath(G′, S′′, π′′′, p, U ∪ {vto})
29: if ef = false then
30: π ← π + π′ + π′′ + π′′′, remove all moves of a′ from π′′

31: π ← π + reverse(π′′), return π′ + π′′′

32: else
33: Remove edge ef from G′

34: return false
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Abstract. Conflict-Based Search (CBS) is a widely used algorithm for
solving multi-agent pathfinding (MAPF) problems optimally. The core
idea of CBS is to run hierarchical search, when, on the high level the
tree of solutions candidates is explored, and on the low-level an indi-
vidual planning for a specific agent (subject to certain constraints) is
carried out. To trade-off optimality for running time different variants
of bounded sub-optimal CBS were designed, which alter both high- and
low-level search routines of CBS. Moreover, anytime variant of CBS does
exist that applies Focal Search (FS) to the high-level of CBS – Anytime
BCBS. However, no comprehensive analysis of how well this algorithm
performs compared to the naive one, when we simply re-invoke CBS
with the decreased sub-optimality bound, was present. This work aims
at filling this gap. Moreover, we present and evaluate another anytime
version of CBS that uses FS on both levels of CBS. Empirically, we show
that its behavior is principally different from the one demonstrated by
Anytime BCBS. Finally, we compare both algorithms head-to-head and
show that using Focal Search on both levels of CBS can be beneficial in
a wide range of setups.

Keywords: MAPF · CBS · Anytime · Focal search · Bounded
sub-optimal search

1 Introduction

Multi-agent pathfinding (MAPF) is a non-trivial problem that asks to find a
set on collision-free paths for a set of mobile agents operating in the shared
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workspace. It naturally arises in robotics [22], video-games [20], automated ware-
houses [23], aircraft-towing [16], etc. One of the prominent MAPF solvers that is
getting a lot of attention in the recent years is Conflict Based Search (CBS) [19].
It is a two-level algorithm, which on the high level explores different solutions
candidates and runs an individual planning for a specific agent on the low level.

CBS is a provably optimal MAPF solver that is highly modular in a sense
that it allows modifications of its different algorithmic parts to either tweak its
performance or adapt it to different MAPF problem statements. Indeed numer-
ous enhanced modifications of CBS exists [1,7,12,14]. Still, the scalability of CBS
is limited as it is tailored to find optimal MAPF solutions. On the other hand,
practically-wise it is reasonable to trade-off optimality for lower runtime. This
led the community to developing the bounded suboptimal versions of CBS [2,15],
i.e. such modifications of CBS that given a suboptimality factor ε > 1 return a
solution whose cost does not exceed the cost of an optimal solution by a factor
of ε (the so-called ε-suboptimal solutions). While these algorithms are able to
find a solution much faster than regular CBS, it might be difficult to choose the
ε value suitable for a particular MAPF problem. This problem is known to the
community and one of the ways of solving it is designing anytime versions of
the algorithms, that gradually converge to an optimal solution via the series of
bounded-suboptimal searches while keeping track of the found solutions (so the
best available solution can be reported any time the algorithm is stopped).

We are aware of only one anytime bounded-suboptimal variant of CBS, that
was recently proposed in [5]. It combines CBS with the Focal Search [17] that
is run on the high-level of CBS, while keeping the low-level search of CBS
unchanged. In this work we will refer to this algorithm as Anytime BCBS, where
BCBS stands for the bounded-suboptimal variant of CBS that keeps the low-
level search unmodified as proposed in [2]. Anytime BCBS starts the search
provided with the user-defined initial suboptimality factor (usually set rather
high, e.g. ε = 10) and iteratively decreases it while reusing the search efforts
between the iterations. It was shown in the original paper [5] that Anytime
BCBS, indeed, converges to the very-close-to-optimal solutions under the strict
time limits. However, it was not clear how Anytime BCBS compares to the naive
sequential invocation of BCBS with the decreasing suboptimality factor without
search re-use. This is the first research question we answer in this work, and the
answer is that search re-use in Anytime BCBS is, indeed, beneficial.

Moreover, we suggest another variant of anytime MAPF solver based on
Conflict Based Search and Focal Search – the one that utilize Focal Search on
both levels of CBS. We call it Anytime ECBS, following the notation from [2].
Surprisingly, naive version of Anytime ECBS, i.e. the one that starts the search
from scratch each time when the suboptimality factor is decreased, outperforms
the version that reuses the search effort in many cases.

Finally, we compare the best version of Anytime BCBS, i.e. the one that
relies on the search re-use, to the best version of Anytime ECBS, i.e. the one that
runs the search from scratch on each iteration. Evidently, Anytime ECBS often
obtains the first solution faster and converges to the better quality solutions.
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Thus, one might infer that Anytime ECBS is a promising algorithm for the
practical applications when the bounded-suboptimal solutions for challenging
MAPF problems are sought under the strict time limits.

Fig. 1. Examples of the suboptimal and optimal MAPF solutions.

2 Problem Statement

In classical MAPF [21] one needs to find the set of collision-free paths for n
agents moving along the same graph G = (V,E) from the specified start vertices
to the goal ones. The time is discretized and at each time step an agent is
allowed to perform one of the following actions: move to the neighboring vertex
or wait in its current vertex. The duration of both actions are considered to be
of the uniform (1 time step). The individual plan for each agent is defined as
the sequence of actions that moves this agent from its start to goal. The cost of
the plan is defined by the time step the agent reaches the goal. Plans for two
agents are said to be conflict-free if the agents do not occupy any vertex and
the same time step and do not traverse the same edge in the same time step. In
other words they do not have any vertex or edge conflicts.

MAPF solution is the set of individual plans for n agents s.t. any pair of
them is conflict-free. Cost of the MAPF solution is the sum-of-costs (SOC) of
the individual plans comprising this solution. In this work we are interested
in designing anytime bounded-suboptimal MAPF algorithm. I.e. the algorithm
which is provided with i) the MAPF instance, ii) the time limit, iii) the initial
suboptimality bound ε, as an input, and is expected to initially find the ε-
suboptimal solution very fast and use the remaining time for improving this
solution, providing (when the time is up) the solution whose suboptimality bound
is less than ε.

Figure 1 provides the example of MAPF instance with two possible solutions.
Initially, if the ε value is set high, an anytime algorithm can find a suboptimal
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solution, shown at the left part of the figure. In that solution the first agent
immediately moves towards its goal node, blocking the way for the second agent,
which then has to go around the obstacle. Then an algorithm can improve the
obtained solution, finding an optimal one (shown in the right part of the figure),
where the first agent waits during one time step, allowing the second agent to
path by.

3 Background and Related Work

Conflict Based Search. Conflict-Based search (CBS) [19] is an optimal MAPF
solver which operates on two levels. The high level of the algorithm builds the
Constraints Tree (CT). Each node in this tree (CT-node) is characterized by
the set of constraints (that tell which vertices/edges particular agents should
not occupy in which time steps), the set of individual plans (consistent with
the constraints), and the cost (the sum of costs of individual plans). The root
node contains an empty set of constrains and the set of individual plans that are
likely to contain conflicts. On each step the algorithm chooses a CT-node with
the least cost and checks it for conflicts. If the chosen node has no conflicts, CBS
reports finding the optimal solution. Otherwise, the algorithm picks a conflict
and creates two successor CT-nodes whose constraints sets are extended by one
constraint in the following way. If the picked conflict was between the agents i
and j which visited the vertex (edge) v (e) at time t, then the first successor is
provided with the constraint, prohibiting i from being at v (e) at time t, and
the similar constraint but for the agent j is added to the second successor. The
individual plans of the constrained agents are then rebuilt with a low-level search
algorithm (to be discussed later) and the CT-nodes are added to the CT-tree.
CBS now proceeds to picking the next best CT-node.

Numerous extensions of CBS exist nowadays that boost its performance while
not violating the optimality guarantees. Among the most widespread techniques
are: prioritizing conflicts [19], by-passing conflicts [3], adding heuristics to high-
level [6], disjoint splitting [13] and many others. As in this work we are not
targeting optimal solutions (but rather bounded sub-optimal), these improve-
ments are not within the scope of the paper.

Low-Level Planning for CBS. The basic version of CBS uses A* [8] as the low
level planner. The search is performed in the space where each state is charac-
terized by a pair (v, t) where v is a graph vertex and t is a time step. When
expanding a search node (v, t) the successors corresponding to moving to the
adjacent vertices are added to the search tree (if transitions to them are not
prohibited by the CBS constraints). Moreover, the successor corresponding to
the wait action, i.e. (v, t + 1), is also added as well (if not prohibited by CBS
constraints).

A technique that is frequently used for the A* search operating at the low-
level of CBS is breaking ties in accordance with the Conflict avoidance table
(CAT). This structure stores the information about the number of agents which
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visit every vertex and move through every edge at any time step. Thus, when
similarly perspective nodes are encountered by A* (i.e. the ones that have the
same f -value) the algorithm picks the one that have the lowest number of con-
flicts in CAT.

Another popular low-level planner for CBS is Safe Interval Path Planning
(SIPP) [18]. It operates with the time intervals as opposed to distinct time steps
and is notably faster than A*. Recently, even more advanced variants of low-level
planning for CBS were proposed [9]. However, in our work we mainly focus on
the basic variant of the low-level search for CBS, i.e. A* with CAT, as it is more
straightforward (and widespread) to integrate it with the bounded-suboptimal
variants of CBS.

Focal Search. Focal search [17] is a variant of the A* algorithm that is tailored
to produce ε-suboptimal solutions. Besides conventional OPEN and CLOSED
lists used in A*, Focal Search uses an additional FOCAL list that contains
a subset of nodes from OPEN with f -values that differ from the minimal f -
value no more than by a factor of ε. All the nodes in FOCAL list are ordered
in accordance with a heuristic hfocal, which is not needed to be monotone or
consistent. Focal Search can be utilized within the CBS framework to obtain a
bounded-suboptimal MAPF solver as described below.

Bounded-Suboptimal Variants of CBS. Different variants of bounded-suboptimal
CBS exist. The most relevant to this work are the ones introduced in [2], i.e.
Bounded CBS (BCBS) and Enhanced CBS (ECBS).

The first variant uses the Focal Search both on high and low levels of CBS
with two separate bounds (εH , εL). On the low level BCBS uses hfocal which is
defined as the number of conflicts accumulated by the path from the start node
to the current one, which is obtained from CAT. For the the high level hfocal is
defined as the total number of conflicts in CT-nodes (other variants also possi-
ble). Contrary to BCBS, Enhanced CBS allows to specify a single suboptimality
bound ε and distribute it between high and low levels automatically. It was shown
empirically that ECBS(ε) outperforms BCBS with different combinations of εH
and εL, s.t. εH · εL = ε, and in particular BCBS(ε, 1).

More advanced variants of bounded-suboptimal CBS appeared recently [4,
15]. In this work, however, we focus on BCBS and ECBS and use them as building
blocks for Anytime CBS. Implementing Anytime CBS using the advanced vari-
ants of bounded-suboptimal CBS is an appealing direction for future research.

Anytime Variants of CBS. The easiest way of creating an anytime version for a
ε-suboptimal algorithm consists in the following naive approach. During the first
iteration a regular version of the algorithm is being run, with an initial value
of ε. After the solution is encountered, ε is decreased in such a way that this
solution does not meet it. Thus the new solution that meets the bound has to be
found, and the algorithm is restarted from scratch with this decreased value of ε.
The algorithm continues to perform such iterations with a decreasing sequence
of ε values, until it has some time left for execution or until it is able to find an
optimal solution.
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More advanced anytime variant of CBS, which is able to re-use the results
of previous iterations, was presented in [5]. It builds on the anytime modifica-
tion of Focal Search (AFS) and applies this technique to the high level of the
BCBS(ε, 1) algorithm, while keeping its low-level (A* + CAT) unchanged. We
call this algorithm Anytime BCBS. As in the naive approach, in Anytime BCBS
algorithm BCBS(ε, 1) is being run iteratively with the decreasing suboptimality
bound ε, where the new value for ε is always chosen in such a way that it is not
being met by the old solution. The difference, however is that the algorithm does
not start growing the new CT-tree from scratch but rather continues to grow the
CT-tree constructed in the previous iteration. In order to achieve that, all nodes
in the high-level FOCAL list that no longer satisfy the ε-suboptimality condi-
tion are removed from it, after which the search process resumed. Intuitively,
this saves computational effort, however the original paper on Anytime BCBS
lacks comparison with the naive approach, described above. In this work we fill
this gap and empirically show that, indeed, re-using the CT-tree for Anytime
BCBS is beneficial.

It should be noted here that numerous other (non CBS-based) anytime
MAPF planners exist nowadays. The most prominent are: MAPF-LNS [10] and
MAPF-LNS2 [11] etc. These planners, however, do not provide any theoreti-
cal guarantees on the cost of the returned solution, while we in this work are
interested in getting bounded-suboptimal solutions.

4 Anytime ECBS

As with the BCBS algorithm, one can construct the anytime version for ECBS
using the naive approach. However, we have also developed a version of the
algorithm, referred to as Anytime ECBS, which is able to reuse the results of
the previous iterations. It works as follows. The first iteration of the algorithm
invokes ECBS and obtains a ε-suboptimal solution. The only difference is that
OPENN , FOCALN and CLOSEN lists of the low level planner are saved for every
CT-node N . Further these lists will be used to efficiently rebuild the individual
agents’ trajectories between the iterations with respect to the new value of ε.
This have to be done, because, in contrast with BCBS(ε, 1), these trajectories
are also suboptimal and depend on the current value of suboptimality factor.

After decreasing the value of ε to the lower value ε′, a new search iteration
is performed. For each CT node N including already expanded CT nodes, we
update the trajectories with respect to the new value of ε′ (if necessary) using
the saved OPENN , FOCALN and CLOSEN lists. To do that, for every high-level
node N a new AFS iteration is performed: all low-level nodes which don’t meet
the new suboptimality factor, are removed from FOCALN , and the low level FS
is resumed and continued until an ε′-optimal solution is found. This procedure is
applied to CT nodes downward from the root to the leafs of CT tree. Thus, when
any CT node is updated, agents’ paths in its predecessors are already rebuilt
and added into CAT, so the new path can be constructed with minimal amount
of conflicts with other trajectories. However, it should be mentioned, that the



374 I. Ivanashev et al.

values of hfocal heuristic aren’t recalculated for the nodes, which were already
added into the OPENN , FOCALN and CLOSEN lists at the end of previous
iteration, as it would require to traverse the whole low level search tree again.
Because of that some conflicts may be created, which could be otherwise avoided,
if the trajectory was constructed from scratch. That can have negative effect on
the performance of Anytime ECBS and may be one of the potential reasons,
why it would expand more high level nodes, than the naive algorithm for some
problems. However, it is hard to tell how much influence this issue had in the
experiments, conducted in our study, as well as to fully explain the differences
in behavior between Anytime ECBS and its naive version. The reason for this is
that the sequences of CT nodes expanded by the algorithms can diverge at the
very beginning of the search and become completely different, after which it is
hard to determine, why a particular algorithm was able to find a better solution,
or finish the execution earlier.

The constraints sets in all the nodes remain the same and have to be satisfied
in the updated trajectories. It is possible that some constraints in constraint set
will become irrelevant, i.e. applying them will not help to prevent any conflicts,
because trajectories of the agents, which were involved in the conflict previously,
have already been changed.

We consider two possible strategies of dealing with such situations. Firstly,
one can remove the whole subtree of this node from the CT, and reinsert it into
the OPEN list in order to find a new conflict in the solution, which corresponds
to it. Alternatively, all nodes can be left in the CT with the same constraints.
The initial hypothesis, prompting us to apply the second strategy, was that even
irrelevant constraints can still be useful, because they are often applied for the
positions with high probability of conflict appearance and therefore they may
help to prevent some future conflicts (this hypothesis however wasn’t actually
confirmed by the experiments, and it was seen that keeping irrelevant constraints
in the constraints set, usually only worsens algorithms performance). We denote
the parameter, defining what strategy to use, as CIC (cut irrelevant conflicts):
if CIC = True the first strategy is used and if CIC = False, the second.

After all CT nodes are updated, every node contains a ε′−suboptimal solu-
tion satisfying all of the constraints in the node’s constraint set. Then the nodes
with the solution costs that do not meet the new threshold are removed from the
high-level FOCAL list. After that the search is continued until a new solution
without conflicts is found.

Example. This section shows how the CT is updated between the stages of
anytime ECBS algorithm. In the MAPF problem, shown on the Fig. 2 there are
two agents with starting nodes S1 = A2, S2 = B1 and goal nodes G1 = E4,
G2 = D5. Their initial individual trajectories, shown with dotted lines, have
cost 6 and have a conflict in the node B2 at the moment 1. If the intial value of
ε is not less than 7

6 , the first iteration of Anytime ECBS will be able to find a
valid solution in both successors of the root node, by adding one waiting action
into the agents trajectories. The whole CT, which will be constructed by the
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Fig. 2. Running example of Anytime ECBS on a simple MAPF problem.

algorithm in this case, is shown at the right top of the figure (constraints are
presented as (a, n, t) triples, meaning that agent a is prohibited from being in
node n at time t). In contrast, Anytime BCBS algorithm would have to create
more high-level nodes in the first iteration, because updated agents trajectories
would still be optimal and a new conflict would appear (e.g. the first agent
would satisfy the constraint by firstly moving to A3 and then moving down, but
it would create a conflict in the node B3).

After the end of the first iteration, ε will be replaced with new suboptimality
factor ε′ < 7

6 . Then the trajectories of agents 1 and 2 in the CT nodes 1 and 2
will be rebuild in order to satisfy the new suboptimality factor, which means,
that they will have to become optimal trajectories of length 6 (see the right
bottom of the figure). Then, similarly to the first iteration of Anytime BCBS,
algorithm would have to add new constraints to rediscover a valid solution again.

5 Empirical Evaluation

The algorithms were implemented in C++ (the code can be found at1) and
evaluated on 4 different maps taken from the well-known in the MAPF
community MovingAI benchmark [21]: empty-16-16, room-32-32-4, ware-
house-10-20-10-2-2 and den520d (for the sake of simplicity later in the article
we refer to them as Empty, Warehouse, Rooms and Den520d). These maps are
widely used to evaluate MAPF algorithms as they represent different types of
the environments as shown on Fig. 3 (empty map is not shown, obviously).

For every map the benchmark provides 25 distinct scenarios. Each scenario
is a list of (non-overlapping) start-goal locations. To obtain a MAPF instance
1 https://github.com/PathPlanning/Push-and-Rotate--CBS--PrioritizedPlanning.

https://github.com/PathPlanning/Push-and-Rotate-{}-CBS-{}-PrioritizedPlanning
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Fig. 3. Maps used for the evaluation.

Fig. 4. Changes of ε over time for different versions of Anytime BCBS algorithm.

for k agents first k start-goal pairs form the scenario are used. While evaluating
we incrementally increase the number of agents to obtain the instances of the
variable difficulty.

The experiments were run on Intel Core i5-1135G7 CPU, 2.40 GHz, 4 cores
running Windows 10 Home OS. We imposed a time limit of 90 s for solving each
instance, i.e. if an algorithm was not able to find a solution it was interrupted
and this run was counted as failure.

Evaluating Anytime BCBS. In the first series of experiments we compared three
versions of the Anytime BCBS algorithm (dubbed as ABCBS):

– ABCBS, res = 1 – the algorithm that always starts a new search from scratch,
i.e. never re-uses the previously built CT-tree;

– ABCBS, res = 2 – the algorithm that starts the search from scratch on odd
iterations, and on even iterations re-uses the previously build CT-tree;

– ABCBS, No res – the algorithm that always continues to use the previously
built CT-tree.
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Fig. 5. Comparison of different versions of Anytime BCBS on particular scenario.

The initial value of ε was set to 10 to increase the chance of finding the first
(possibly highly suboptimal) solution quickly. At each following iteration ε was
decreased in the way described in Sect. 3. Figure 4 shows how ε was changing for
certain setups (map + number of agents).

Each point corresponds to the suboptimality factor ε, for which the solution
was already found, averaged over all of the scenarios for which the algorithm was
able to find at least one solution within the given time limit. It also should be
noted that for different scenarios the completion time of the first iteration could
be different, so the x axis shows the relative time starting from that moment.

As one can see, the version of the algorithm, which is never restarted, shows
the best results out of all of the versions. This can be explained by the fact,
that the sequences of ε values are approximately the same for all versions of the
algorithm, as can be seen, for example, on Fig. 5, that shows how the value of
ε changes over time on one particular scenario. As result of that, the sizes of
CT trees at the end of every iteration are also close for different versions, and
version without restarts is able to finish every new iteration faster, compared to
the naive algorithm, since it doesn’t need to rebuild the first part of constraint
tree.

Similar comparison was also performed for Anytime ECBS algorithm. How-
ever, it turned out, that setting initial value of ε too high can actually slow the
ECBS algorithm down, because it would have to expand more nodes on the low
level. For example, the following situation can be considered. Let’s say that in
some intermediate solution in ECBS algorithm, agent i stops in its goal node
n at the moment t. Also let’s say that agent j has to go through the node n
at the moment t′ > t. Then there will always be a conflict with an agent i in
its trajectory in the node n. If the value of ε is set too high, the algorithm will
spend a lot of time, trying to avoid this conflict, and expanding a lot of low level
nodes. That makes the low level search very time consuming, which negates the
possible time saving from expanding less nodes on the high level.

Considering the observations, described above, it was decided to specifically
select a preferable initial value of ε for Anytime ECBS for every map.
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After running ECBS using different values of ε on tasks with different num-
bers of agents for all four maps, we have found that the best results were obtained
when using the ε value 2 for the maps Empty and Rooms. For the maps Warehouse
and Den520d results for all considered values of ε were very close, so the value
10 was used, as in Anytime BCBS.

Then the comparison of different Anytime ECBS versions was performed
using the selected initial values of ε. The results are provided in Fig. 6. For every
map the results for two different agent numbers are shown. It’s also should
be mentioned that for the Rooms map in 2 scenarios there were less than 110
agents provided in the data set, thus these scenarios weren’t considered for the
corresponding plot.

In addition to the Res parameter, previously described parameter CIC was
considered. That gives us 5 possible configurations of parameters (for the naive
version of the algorithm only CIC=True is possible, because all CT is removed
after every iteration). The results depicted in Fig. 6 indicate that in many cases
the naive version of Anytime ECBS algorithm allows to obtain solutions with
approximately the same or even better quality as the advanced versions. This
can be explained by the fact, that the decreasing sequences of ε values in that
algorithm can vary significantly between different versions, and the advanced
version may have to expand more high level nodes than the naive one. Alter-
natively, for some scenarios the number of nodes, expanded by the advanced
version, could be approximately the same, or even less, but the value of ε would
decrease slower.

As was mentioned above, the naive version of Anytime ECBS can potentially
get an advantage over advanced version, because in the latter algorithm values of
hfocal heuristic aren’t updated between iterations. Moreover, the performance of
Anytime ECBS can be negatively affected by keeping the irrelevant constraints
in the versions of the algorithm with CIC=False. In particular, the version of the
algorithm that never restarts (and therefore can have the least relevant values of
hfocal heuristic) and keeps the irrelevant constraints shows considerably worse
results for the maps Rooms and Empty in the tasks with high number of agents.
Although, as it was previously mentioned, it is not clear, how much influence
each of these points had, and the difference between the versions on the instances
with lower number of agents was even less noticeable.

Chart for a particular scenario on Empty map, shown on Fig. 7, indicates that
in contrast to Anytime BCBS there is almost no correlation between the decreas-
ing sequences of ε values for different versions of Anytime ECBS algorithm.

However, for two other maps – Warehouse and Den520d, advanced versions
of the algorithm show a noticeable improvement over the naive one for some of
the tasks with the higher number of agents, although there was no clear leader
between them. Nevertheless, the fact that the naive version doesn’t require addi-
tional memory consumption and is easier to implement, means that it probably
can be preferred over the other versions.

Finally, the version of Anytime BCBS algorithm without restarts was com-
pared to the naive version of Anytime ECBS algorithm. Additionally, for the
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Fig. 6. Changes of ε over time for different versions of Anytime ECBS algorithm.

Fig. 7. Comparison of different versions of Anytime EBCBS on particular scenario.

maps Empty and Rooms, where a specifically chosen value of ε was used, a ver-
sion with initial value of ε equal 10 was added to the comparison. The results
of this experiment are shown in Fig. 8. As one can see, Anytime ECBS often
finds better solutions than Anytime BCBS. This can be a result of higher flex-
ibility of ECBS algorithm: it is able to build slightly worse trajectory for one
agent, in order to avoid the creation of new conflicts, which would then allow
to make better trajectories for the other agents (although, as in the previous
cases it might be not the full explanation and might be not relevant for some
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Fig. 8. Comparison between anytime BCBS and Anytime ECBS.

of the problems). Considering that and the fact that ECBS algorithm is usually
faster than BCBS(ε, 1), i.e. the first iteration in Anytime ECBS can be finished
faster, naive version of Anytime ECBS can be preferred to the advanced version
of Anytime BCBS. The one can also note that on the Rooms map the version of
Anytime ECBS with ε equal 10 was slower, and found the initial solution later,
while for the Empty map both versions of the algorithm were able to find an
initial solution very fast, so there wasn’t much difference between them.

It should be also mentioned, that for some maps and algorithms there were
scenarios where different algorithms were not capable to find even initial solu-
tion within the timelimit. In addition to that, for some scenarios algorithms
were only able to finish one iteration, and therefore such scenarios didn’t give
any additional information about their anytime properties. Particularly, large
number of such scenarios was presented for the Anytime BCBS algorithm on
the Warehouse and Den520d maps. For example, there were only 8 scenarios for
the Warehouse map with 100 agents and only 11 for the Den520d map with 50
agents, where Anytime BCBS was able to finish more than one iteration.

6 Conclusion and Future Work

In this work we have presented a novel bounded-suboptimal anytime MAPF
solver, based on the prominent ECBS algorithm - Anytime ECBS. We empiri-
cally compared it with previously existing bounded-suboptimal anytime MAPF
solver – Anytime BCBS. Both algorithms were also compared with their naive
versions, in which the search is restarted from scratch at the beginning of every
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iteration. It was shown, that while Anytime BCBS always outperforms its naive
version, for Anytime ECBS the naive algorithm can often be preferred. However,
even the naive version of Anytime ECBS had some advantages over the Any-
time BCBS algorithm, as the former was usually able to finish the first iteration
faster, and the solutions obtained by it typically had lower costs compared to
the ones found by Anytime BCBS.

Avenues for future work may include developing novel techniques aimed at
decreasing the number of low level nodes which have to be stored in Anytime
ECBS, or investigation of how the stored information can be used to efficiently
rebuild agents paths after addition of the new constraints not only during the
process of repairing the constraint tree between the iterations of anytime algo-
rithm but also during its building (analogously to incremental search techniques).
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Abstract. The role of Boolean functions in modern cryptography has
triggered the necessity of developing methods to construct them with a-
dequate properties, such as balancedness and high non-linearity—making
them more resistant to a variety of cryptanalytic attacks. Research
into the construction of weight-wise perfectly balanced Boolean functions
using Evolutionary Algorithms is scarce but encouraging (e.g., [1]). In
this work, we first investigate the effect on an evolutionary algorithm’s
performance when relying solely on the penalty function, as opposed
to the solution repairment method. Second, we focus on the effect of
problem-specific crossover operators (e.g., those used on [2]), and partic-
ularly proposing a novel one free of solution repairs to preserve balan-
cedness. The results obtained suggest that an adequate penalty factor
and the use of specifically designed evolutionary operators is sufficient to
find Boolean functions with weight-wise perfect balancedness and high
non-linearity, as desired.

Keywords: Boolean functions · Genetic algorithms · Cryptography

1 Introduction

Boolean functions are widely used for cryptographic purposes. In order to achieve
resistance to the different cryptanalytic attacks, it is desired to find in them a
high algebraic degree, high non-linearity, differentiability and high immunity
correlation, among other characteristics. The most common attacks are to block
ciphers and stream ciphers [5]. The combination of the cryptographic proper-
ties of these functions may be in conflict. Thus, finding cryptographically strong
functions involves making a trade-off when optimising the properties. There are
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several methods to build Boolean functions, such as random searches, algebraic
constructions, heuristics, and combinations of these methods [17]. Within the
heuristic methods, evolutionary algorithms stand out, given the extensiveness
of the search space (for Boolean functions with n inputs, the search space con-
tains 22

n

functions). Moreover, heuristic constructions are more accessible to
design than algebraic methods, and lately, results of similar quality to algebraic
methods have been obtained [6]. Also, there exist several variants within evolu-
tionary algorithms. For example, Picek et al. [16] used genetic algorithms (GA),
genetic programming (GP), and Cartesian genetic programming. In addition,
they experimented with both single-objective algorithms and multi-objective
approaches.

This work will focus on the use of GA for constructing weight-wise perfectly
balanced (WPB) Boolean functions with high non-linearity. The work by Millan
et al. [12] is the first GA known to find highly nonlinear functions. Moreover, they
obtained faster and better non-linearity values as compared to a random search.
Since then, some GAs [3,13–15] have been developed to obtain balanced func-
tions with high non-linearity and low autocorrelation, using simulated annealing
and hill climbing, among other techniques. Recently, I. López-López et al. [6]
created the first memetic algorithm to generate 10-variable Boolean functions
of similar quality to those obtained with algebraic methods used to find high
non-linearity.

WPB are a new class of Boolean functions, which are used in the family of
stream ciphers known as FLIP [2,9,10]. These are globally balanced functions
and, additionally, they preserve the balance for each specific weight between 1
and n − 1, where the Boolean function has domain F

n
2 . To find WPB functions,

two fitness functions are suggested [9] described in terms of the constrained
linearity and a penalty factor. In this work, we aim to obtain WPB Boolean
functions with a high non-linearity, starting from unbalanced Boolean functions,
using the above fitness functions with a slight modification.

Our GAs are based on those proposed in [9]; however, the fitness evaluation
is carried out using fitness 2 only. Moreover, within the fitness function, the non-
linearity is evaluated as in the general case. In addition to the cases evaluated in
[9], we also consider the cases in which the search is carried out in the entirety
of the 22

n

-search-space. Consequently, we propose alternatives to the variation
operators which allow for non-balanced Boolean functions, namely, the classic
swap mutation operator is used in conjunction with the counter-based crossover
and the one-point crossover operators. Our results suggest that allowing the
GAs to explore the entirety of the search space rather than a constrained region
is an effective method to find WPB Boolean functions with high non-linearity.
As predicted, when allowing the population to include non-feasible individuals,
the penalty is sufficient to gear the population towards the feasible space while
allowing sufficient diversity for an adequate evolution of the population. In fact,
the highest non-linearity of 112 was achieved more frequently when exploring
within the unrestricted search space using the WPB representation.
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2 Background

Let F2 be the finite field with two elements. These can be represented by {0, 1}
with addition modulo two. Also, we denote by F

n
2 the n-dimensional vector space

over F2, n ∈ N. The following definitions and theorems come from [1,7].

Definition 1. Every function with domain F
n
2 and codomain F2 is called a

Boolean function. The set of all Boolean functions is denoted as Bn.

Thus Bn := {f |f : Fn
2 → F2} and has dimension 2n as a vector space struc-

ture, and its cardinality is 22
n

.
A horizontal truth table can represent the set of images of a function f ∈ Bn

as a vector of length 2n denoted ev(f) :=
(
f(v)v∈Fn

2

)
or vertically as in Table 1.

The inputs must always be arranged in the same order, most typically ordered
lexicographically.

The function f(x) ∈ B2 defined by

f(x1, x2) = x1 ⊕ x2

is an example of a Boolean function; here ⊕ represents addition modulo two.
The set of images of f determines the vector

[0, 1, 1, 0].

Table 1. Truth table for the Boolean function f(x1, x2) = x1 ⊕ x2.

x1 x2 ev(f)

0 0 0

0 1 1

1 0 1

1 1 0

Definition 2. The support of a vector x ∈ Bn, denoted supp(x), is the set con-
taining the non-zero positions in the vector. The Hamming weight of a vector
x ∈ F

n
2 , denoted wH(x), is the number of non-zero positions in the vector.

Definition 3. The support of a Boolean function f ∈ Bn, denoted supp(f),
is the set containing the non-zero positions in its truth table. The Hamming
weight of a Boolean function f ∈ Bn, denoted wH(f), is the number of non-zero
positions in its truth table.

Definition 4. The Hamming distance between two vectors x, y, denoted
dH(x, y), is the number of positions in which their values are different. The
Hamming distance between two functions f, g, denoted dH(f, g), is the number
of positions in their truth tables in which their values are different.
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We can see that
wH(x) = |supp(x)|, dH(x, y) = wH(x ⊕ y), wH(f) = |supp(f)|, and

dH(f, g) = wH(f ⊕ g).

Definition 5. A Boolean function f ∈ Bn is balanced if its truth table has an
equal number of zeros and ones.

Hence, a Boolean function is balanced if wH(f) = 2n−1.
Taking it a step further, a Boolean function is said to be weight-wise perfectly

balanced when the truth table corresponding to inputs of a specific weight, k, is
balanced for 1 ≤ k ≤ n − 1, [9].

One way to represent Boolean functions is the Algebraic Normal Form
(A.N.F.).

Definition 6. A Boolean function f has a A.N.F. if it can be expressed as

f(x1, . . . , xn) :=
∑

u∈Fn
2

au(
n∏

i=1

xui
i ); u = (u1, . . . , un), au ∈ F2.

Note that in the previous example the function f is expressed in its A.N.F.

Definition 7. The basic Boolean functions are the affine functions defined by
the set

A := {f |f(x1, . . . , xn) = a1x1 + · · · + anxn + a0 = a · x + a0},

a = (a1, . . . , an) ∈ F
n
2 and a0 ∈ F2.

It is possible to define the non-linearity of a Boolean function, which indicates
how far a Boolean function is from the Boolean functions of algebraic degree
equal to 1.

Definition 8. The non-linearity, denoted Nf , of the Boolean function f is the
Hamming distance between f and the set of all affine functions.

It can be written in Hamming distance notation:

Nf := min
g∈A

dH(f, g).

Definition 9. Let f ∈ Bn, a ∈ F
n
2 . The Walsh-Hadamard transform of f, denoted

Wf , is defined as follows:

Wf : Fn
2 → F2, Wf (a) :=

∑

x∈Fn
2

(−1)f(x)+a·x,

where a · x is the usual dot product on F
n
2 .

It is possible to express the non-linearity in terms of the Fourier transform:
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Theorem 10. The non-linearity of the Boolean function f is

Nf = 2n−1 − 1
2

max
a∈Fn

2

|Wf (a)|.

Theorem 11 (Parseval’s equality). Let f be a boolean function. Then
∑

a∈Fn
2

[Wf (a)]2 = 22n.

Definition 12. A Boolean function is a Bent function if it achieves maximum
non-linearity.

By the Parseval equality, we know that max
a∈Fn

2

|Wf (a)|(≥ 2n/2). Then the non-

linearity of a Boolean function has an upper bound, Nf ≤ 2n−1 − 2
n
2 −1.

The only functions that achieve the equality are Bent functions because
Wf (a) = ±2n/2 for all a ∈ F

n
2 .

In particular, if f is a balanced function, then Nf ≤ 2n−1 − 2
n
2 −1 − 2, n is

an even number [18].
If f is a balanced function, then Wf (0) = 0. Hence, f can’t obtain maximum

non-linearity, conversely, Bent functions can’t be balanced. Thus, if we seek
balanced Boolean functions, these will always have a non-linearity below the
maximum.

3 Methodology

This Section discusses the details of the genetic algorithms used in the search
for WPB Boolean functions with high non-linearity, contrasting them with those
used in [9]. Firstly, the search space is considered for each instance, alongside
the corresponding encoding. Next, the variation operators are analysed, with a
particular focus on the crossover operators. Then, the fitness functions initially
proposed in [9] are revisited and the modifications proposed in this work are
explored. Finally, the Section concludes by taking a look at the experimental
settings employed for each of the experiments carried out.

3.1 Search Space

The naive way to search for the required WPB Boolean functions is to explore
the entire space of n-variable Boolean functions Bn = {f : Fn

2 → F2}. However, it
is easy to show that the size of Bn is super-exponential in n, its cardinality given
by 22

n

. Moreover, we recall that WPB Boolean functions only exist for n = 2m

[11]. Thus, the size of such spaces grows rapidly, meaning an exhaustive search
is only feasible for n = 2 or n = 4, which are too small for any applicability in
cryptography. Therefore, the case to tackled for this work, as in [9], is n = 8,
with a search space containing 22

8 ≈ 1.16 × 1077 candidate functions, which is
too large for an exhaustive approach to be considered.
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In [9], two refinements are proposed to reduce the search space. In the first
instance, Hn is defined as the set of all globally balanced Boolean functions in
F
n
2 , which has a cardinality of

(
2n

2n−1

)
, in the case of n = 8 equating to

(
256
128

) ≈
5.77 × 1076. Next, Wn is defined as the set of all WPB Boolean functions in F

n
2 ,

with a cardinality of 5.1 × 1070 for n = 8, calculated using Eq. 1.

|Wn| =
n−1∏

k=1

( (
n
k

)

1
2 · (

n
k

)
)

(1)

Initially, it seems advantageous to reduce the search space in order to focus
on other qualities of the Boolean functions, namely their non-linearity in this
case. However, extensive investigation [19] has shown that it is beneficial to
use infeasible candidates in the search during a constrained evolutionary search,
in this case suggesting that it is beneficial to have non-balanced candidates as
part of the population. Therefore, in our experiments, we consider two of the
aforementioned search spaces, Bn and Wn, to analyse how each reflects on the
performance of the genetic algorithms.

3.2 Encoding and Variation Operators

As in [9], we contemplate two encodings: the truth table representation and the
WPB representation. However, in addition to the variation operators described
in [8], we suggest an additional variation operator without repairment, thus
allowing an adequate consideration of non-feasible candidates throughout our
search. Table 2 offers a summary of the different encodings and variation opera-
tors considered as part of this work.

In the truth table representation, each individual is encoded as a vector of 2n

elements, corresponding to the truth table vector of the corresponding n-variable
Boolean function, see Table 1. With this representation, we explore within the
entire Bn search space, using classic variation operators: one-point crossover
alongside flip mutation.

On the other hand, the WPB representation consists of a list of vectors,
each vector corresponding to the truth table resulting from inputs of a given
weight. An example of an individual is given by 2. This representation allows
us to search uniquely within Wn, which can be achieved by generating vectors
with Hamming weight of half their length. Moreover, specific variation operators
are applied to maintain each vector’s balancednes, specifically those described in
[8]. As crossover operators, the map of ones and counter-based [8] operators are
used, both in conjunction with the swap-based mutation operator. In all cases,
the operators are applied independently to each vector within the list.

I = [[1, 0, 1, 0], [0, 0, 0, 1, 1, 1], [1, 1, 0, 0]] (2)

However, we also consider the case in which the WPB representation is used,
but allowing for candidate solutions to be unbalanced. This alternative requires
different variation operators. The mutation operator used in this case is now
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the classic swap operator, while the crossover is carried out using the counter-
based, as before, and the traditional one-point crossover, but applied to the list
of vectors rather than the vectors themselves.

Table 2. Summary of the encodings and variation operators used in this work, indi-
cating the name which identifies each combination considered.

Initial Pop Representation Crossover Mutation

GA-TT Unbalanced Truth table One point Flip

GA-CBC Balanced WPB Counter-based Swap-based

GA-MOOC Balanced WPB Map of ones Swap-based

GA-UB-CBC Unbalanced WPB Counter-based Swap

GA-UB-OP Unbalanced WPB One point variation Swap

3.3 Fitness Functions

The fitness function used in this paper is based on those suggested in [9]. How-
ever, the main difference is that the calculation of the non-linearity is done
using the unrestricted Walsh-Hadamard Transform. We explore this alternative
as, if successful, it would allow us to use the Fast Walsh-Hadamard Transform
in future work, making the calculation more efficient and thus allowing for its
application to larger cases.

fit(f) = δpen ·
(

min
2≤k≤2/n

{Nf}
)

− pen(f) (3)

As can be seen in Eq. 3, the fitness function has two main components, the
penalty, based on the balancedness of the function, and the non-linearity, which
is what we are trying to maximise.

The non-linearity is calculated as described in Sect. 2; thus, we focus on
the penalty component, which is directly linked to the delta coefficient of the
first component. The penalty factor evaluates whether a given function is WPB,
applying a penalty if it is not, and is calculated in the following way:

pen(f) =
n−1∑

k=1

unbk(f) (4)

In essence, pen(f) evaluates how far the truth table for each subset corre-
sponding to inputs of a given Hamming weight, k, is from being balanced. This
evaluation must be done in subsets, for we must recall that a function may be
globally balanced without being WPB. Likewise, it is essential to note that the
cases from k = 0 and k = n are not considered as those subsets always have a
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single value. In fact, when evaluating the non-linearity, the former is forced to
take a value of zero, while the latter is forced to take a value of one.

The unbalancedness of each restricted truth table, unbk(f), is given by:

unbk(f) =
∣
∣
∣
∣
#En,k

2
− wH(f(k))

∣
∣
∣
∣ (5)

where #En,k is the cardinality of the truth table corresponding to the inputs of
Hamming weight k, given by (

n

k

)

and wH(f(k)) is the Hamming weight of the restriction f(k), given by:

wH(f(k)) =
#En,k − Wf(k)(0)

2
. (6)

It is important to note that when calculating the penalty, we do, in fact,
calculate the restricted Walsh-Hadamard Transform, this is done in the same
way as stated in Sect. 2, with the sole difference that now we have a ∈ En,k,
rather than a ∈ F

n
2 , as in the usual case.

Finally, we consider the delta coefficient of the first component in Eq. 3, which
takes a value of one when the penalty component is equal to zero and a value of
zero otherwise.

3.4 Experimental Settings

All the programs used for experimentation were programmed by the authors in
Python. The programs were executed using an Ubuntu Server with an Intel Xeon
Bronze 3204 and RAM of 93 GB. The overall processing of the experiments took
three weeks.

Table 3. Outline of the configuration set up used for the GAs considered.

Pop. size Generations Tournament size pcross pmut

200 10,000 3 1 0.1

0.3

0.5

0.7

0.9

All experiments were run for Boolean functions with n = 8, using their truth
table values to uniquely represent them, as described in Sect. 3.2. A population
of 200 individuals was used in all cases, considering the case in which the pop-
ulation was constrained to WPB individuals and the case in which unbalanced
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individuals were also considered as part of the population. In all cases, parent
selection was done using 3-tournament elimination, as in [9]. The variation oper-
ators described in Sect. 3.2 were applied with crossover probability, pcross = 1
and with mutation probability pmut ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Fig. 1. Flowchart illustrating the stages of a GA. It can be seen that for the configura-
tion of each GA specific parameters need to be defined for the crossover and mutation
probabilities.

In the first three scenarios where the results for the GAs from [9] were being
reproduced, all parameters were kept the same, with the sole difference being
the alteration in the fitness function. That is to say, that the parameters for the
crossover and mutation stages, as seen in Fig. 1, are set according the specifica-
tions given in [9].

In the two instances proposed in this work, in which the WPB representation
was used, but allowing for unbalanced individuals as part of the initial popula-
tion, the operators used varied slightly, but the parameter values remained the
same as before. The population size was kept the same at 200 individuals. Like-
wise, the 3-tournament elimination for parent selection was considered in the
same way; three individuals are randomly chosen from the population, of which
the two with highest fitness will be selected to be the parents, and the third will
be replaced with the offspring. For the crossover we considered the two crossover
operators as described in Sect. 3.2: one-point crossover at list level, and counter-
based crossover at vector level, as before. In both cases the crossover probability
was kept at pcross = 1. Regarding the mutation, we now considered the clas-
sic swap mutation operator rather than the swap-based, meaning that the bits
being swapped need not have different values. However, as in the previous cases,
we considered a mutation probability of pmut ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Table 3
summarises the parameters used for all the experiments carried out as part of
this work.

Additionally, it should be noted that each variation of the experiment was
run 30 times, evaluating 10,000 generations in each case. Moreover, the gener-
ations taken to reach the best individual were measured, recording how many
generations were needed to reach fitness values of 110 and 112, as these were the
highest fitness values reached.

4 Results

In this Section we present the results obtained from our various experiments.
In order to facilitate the understanding the GAs are denoted as GA-TT, GA-
CBC, GA-MOOC, GA-UB-CBC and GA-UB-OP, according to the specifications
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given in Table 2. Throughout this Section we make reference to the number of
generations taken to arrive to a given fitness value. However, this is equivalent to
referring to the number of evaluations carried out as in this case we only carry
out one evaluation in each generation, see Sect. 3.4.

Firstly, we consider the fitness values obtained from our experiments. In first
instance we consider GA-TT, which yielded the poorest results; when considering
10,000 generations it did not reach a fitness value higher than 108. Nonetheless, it
is worth noting that in all instances GA-TT did manage to find WPB Boolean
functions, despite starting with a population of unbalanced individuals. Now,
we consider the GAs with a search space restricted to Wn. The highest fitness
reached in the majority of the executions, regardless of the mutation probability,
was 110. This fitness value was typically reached more rapidly by GA-MOOC.
Moreover, both GAs reached a fitness value of 112 on a few occasions, as seen
in Table 4. These results are interesting, suggesting a better performance of GA-
MOOC, when using a restricted search-space.

Next, we consider the GAs using the WPB representation with an unre-
stricted search space. GA-UB-OP consistently reached a fitness of 110, only fail-
ing to reach it within the 10,000 generations being considered on six occasions,
in which cases it reached a fitness of 108. On the other hand, it also managed
to reach a fitness value of 112 on five occasions, for different mutation proba-
bilities. Overall this GA’s results had the biggest variation, although the results
remain of better quality than those of GA-TT, in general. On the other hand,
GA-UB-CBC stands out as it was able to reach the highest fitness value of 112
within 10,000 generations more frequently than the other GAs explored in this
paper, as observed in Table 4, arriving at a fitness of 110 in all other runs. The
high performance of GA-UB-CBC is not surprising, as in [9] it was also found
that the counter-based crossover operator yielded the best results.

Given the poor results obtained from GA-TT, this case will not be considered
in the ensuing analysis. We will now focus only on the cases using the WPB
representation. This result is congruous with the findings of Mariot et al. [9].

We now explore the issue of diversity within the population in more depth.
The diversity of a population is a measure of how many different individuals
are present in the population; this can be measured with respect to the fitness
values, the genotype or the phenotype, [4]. In this case we will be referring to
diversity with respect to the variety of fitness values in the population. It is
known that diversity is crucial in order to achieve an adequate evolution of the
population, else the GA is more likely to arrive at a premature convergence, in
which case the GA might get trapped in a local optimum [4].

In the experiments where the search space was restricted to Wn we found that
in the majority of runs an individual with the best fitness was already within the
population in the first generation. For this analysis 110 was taken to be the best
fitness, as this was the case in the vast majority of runs. In Table 4 we can clearly
see that in both GA-CBC and GA-MOOC we obtain a value of one generation
for the median, meaning that in at least half of the runs the best fitness was
already in the population from the start. The only exception to this was GA-
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CBC with pmut = 0.1, which had a median of 174 generations. Additionally,
Fig. 2b graphically illustrates the fast convergence towards the best individual
in the vast majority of cases, most converging within the first 600 generations,
leading to a rapid loss of diversity in the population.

Table 4. Number of generations taken for the GAs to reach fitness values of 110 and
112. Count indicates the number of executions out of 150 which successfully arrived at a
fitness value of 110 or 112—the 150 runs consider 30 runs for each mutation probability
considered. We also provide statistical values for the number of generations taken to
reach the desired fitness values to illustrate the general behaviour of each algorithm.

Algorithm 110 112

Count Mean Std Median Min Max Count Mean Std Median Min Max

GA-TT 0 – – – – – 0 – – – – –

GA-CBC 150 167.6 272.0 1 1 1639 5 3717.0 3250.1 1719 1039 9439

GA-MOOC 150 157.3 249.9 1 1 1429 7 6529.0 2789.4 7449 1939 9939

GA-UB-CBC 150 362.9 282.2 299 9 1079 11 5169.0 3688.9 7939 229 9939

GA-UB-OP 144 1443.3 434.5 1399 559 3549 5 4441.0 1782.9 5389 1269 6269

In contrast, when the entirety of Bn was considered for the search space a
minimum of 9 generations, when using the counter-based crossover, were required
to find the best individual, though it was usually a value surpassing 200, as
seen in Table 4. Figure 2a clearly illustrates that in most cases diversity was
retained for a longer period when exploring Bn fully, thus allowing a better
balance between exploration and exploitation in the GA. It is interesting to see
that, while diversity is retained longer, all instances consistently reached a fitness
of 110 within 1,200 generations, showing greater robustness in comparison with
GA-CBC, as seen in Fig. 2b. Although this was also more time consuming, the
advantage of retaining greater diversity is evidenced by the high fitness value of
112 being reached by GA-UB-CBC with greater frequency than the other GAs.

This result is of great importance as it highlights the key role that diversity
plays in order to allow the GA to adequately explore the search space. One must
recall that a GA will usually find a good solution, however it is not guaranteed
that it is the best. In Fig. 2b we see that all instances reach a good solution
in few generations, regardless of the mutation probability used. However, upon
comparing with the fitness values obtained by other GAs we realise that better
solutions may be achieved, albeit more slowly. This understanding will allow for
a more efficient exploration of the search space when larger cases are explored,
such as the case for n = 16, which, to the best of our knowledge, has not yet
been tackled.

At this time, we were unable to explore a larger problem size due to the
complexity of the problem. A quick experiment was run using GA-CBC with
a mutation probability of 0.7 to illustrate why it is not currently feasible to
consider the case n = 16. The GA was run for n ∈ {2, 4, 8}, and in each run
the time taken to complete the run was recorded. Table 5 reflects the results
obtained from this experiment, clearly illustrating the exponential growth in the
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Fig. 2. Histograms contrasting the generations taken to reach the best fitness when
exploring with different search spaces, Bn and Wn.

time required to execute the GA as the value of n grows. Using these values we
estimate that a single run for the case n = 16 would take several weeks with the
current setup.

Table 5. Time taken to run one iteration of GA-CBC for problem sizes n ∈ {2, 4, 8}.

n Mean time (s) Std

2 1.405 0.016

4 13.781 0.166

8 7982.469 766.559

5 Conclusion and Further Work

In this work we sought to further investigate the construction of WPB Boolean
functions by means of GAs, particularly focusing on the constraints of the search
space and variation operators. The interest in these functions arises due to their
role in the design of stream ciphers, such as FLIP [10]. Though the size of
the Boolean functions developed in this work is too small for real application,
the results seek to help in achieving a greater understanding of WPB Boolean
functions in general, thus allowing for suitable techniques to be developed for
functions with more variables. In this paper we focused on Boolean functions
with n = 8 as a continuation to the work done by Mariot et al. [9]. For these
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functions we considered two distinct representations, namely the classical truth
table representation and the WPB representation. While the latter representation
allows us to restrict the search-space to explore solely within Wn, we analyse
the results upon using this representation to explore Bn in its entirety, as was
originally done with the truth table representation. Moreover, we focused on a
single fitness function, which now evaluated the non-linearity of the functions
without restrictions, to test whether attempting to use the Fast Walsh-Hadamard
Transform on this problem is something we could aspire towards.

Our results show that it is in fact feasible to use the WPB representation to
explore the whole of Bn. In all iterations of our experiments, the increased size of
the search space did not prevent the GAs from finding adequate WPB Boolean
functions with high non-linearity. What’s more, our results yielded higher fitness-
values with more frequency when searching throughout the entirety of Bn, as
opposed to the restricted search space, thus evidencing the importance of pre-
serving diversity within the population when working with GAs. Additionally,
the successful change in the fitness function to evaluate non-linearity without
restriction is a very promising result as the implementation of the Fast Walsh-
Hadamard Transform could allow this approach to be applied to larger Boolean
functions.

However, there remains much work to be done going forward. As mentioned,
we hope that our findings will allow us to scale up this approach to bigger
problems, starting with n = 16. But, in order to explore the applicability of
this technique to bigger cases, we must first explore alternatives in order to
generate the initial population efficiently. An interesting path to be explored is
the possibility of exploiting the WPB representation itself during the creation of
the initial population, as it allows us to break each individual into smaller parts.
Additionally, we consider that other aspects of the WPB representation can
be further taken advantage off during the application of crossover operators at
different levels and in allowing for a more in depth understanding of the distinct
subsets within each WPB Boolean function.
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Abstract. Computer programs and their source code are commonly
available online, making it relatively easy to create new programs from
the resource available. Simple stated, methods for detecting the source
code reuse apply individual similarity measures between two source codes
(the original and the suspect) to identify a case of reuse based on a manu-
ally determined threshold; however, the relevance of each similarity mea-
sure and the selection of the correct threshold in this task has been little
explored. In this study, we propose an evolutionary approach to auto-
matically obtain the relevance of each individual similarity measure and
its threshold. Furthermore, we propose a unified method to combine the
strengths of individual similarity measures to increase retrieval accuracy.
Our experimental results provided three individual similarity systems
that outperform the original ones and a unified system that obtains the
best result.

Keywords: Source code reuse · Similarity measures · Optimization ·
Genetic algorithm

1 Introduction

Nowadays, the internet allows the dissemination and access to the knowledge
that various authors generate through their original works and products; this
knowledge is, in turn, a creative engine to produce new works. It worth noting
that reuse is a fundamental part of the creative process of any original work.
However, the reuse of works or knowledge without the author’s consent could
lead to illegal acts such as plagiarism [3]. Plagiarism can be defined as the reuse of
original works presenting them as their own without acknowledging the original
author [6].

Software development is a creative process in which authors encode their key
knowledge in source code to produce computer programs that provide services to
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users. There are different reuse schemes in software development, such as: anal-
ysis models, design and source code; specifically, these schemes may involve the
reuse of algorithms, parameter settings, libraries, code compilation, and source
code, among others [21,23]. In this sense, Davey et al. [5] claim that between
25% and 30% of source code is copied and adapted in software development.
Therefore, the reuse of the source code stand for the object of greatest interest
when performing software plagiarism.

Formally, a code fragment CF1 is a copy of another CF2 if the similarity
between them is greater than or equal to a threshold μ, that is: Similarity(CF1,
CF2) ≥ μ [18]. A Similarity Measure (SM) is a mathematical expression that
denotes the degree of relationship between two elements in which their similar-
ity depends on the attributes considered. In current standards, the similarity
between source code fragments is obtained by representing the latter as vec-
tors by using some mapping method [20]. The representation of source code
fragments can be defined according to their textual or functional characteris-
tics. Copies of fragments with textual features can be classified as follows: Type
1-(exact copy) identical codes with formatting variations and comments, Type 2-
(renamed copy) with renamed identifiers, Type 3-(near copy) with modifications
and reordering of instructions; and Type 4-(functional copy) with functional
equivalence without direct evidence [5,18].

Detecting source code reuse requires determining the identity of a suspicious
source code to discover if it shares the same functionality with other source codes,
considering that “given a suspicious element Cs within a reference collection C,
the goal is find if there is a code c ∈ C used as a copy of the Cs element” [2].

The early stages of a source code reuse system depend on the number of
similarity measures used, but in practice, a system only uses one SM.

In this study we analyze the relevance of each Individual Similarity Measure
(ISM) used in the source code reuse detection task. For this, the framework
proposed in the SOCO 2014 source code detection task is used. In addition, an
automatic search of the similarity threshold is performed.

2 Related Works

Several approaches have been proposed for the reuse source code detection that,
in general, consist of five stages: 1) split the source code in small parts, 2) then
remove or replace all unnecessary information, next 3) use some representing
method (for example, use latent semantic analysis (LSA) for representing source
codes as a vector or see the parts of the source code as strings), 4) comparing
representations with a proximity measure, and finally 5) make a decision whether
it is a case of source code reuse.

Konecki et al. [15] compare source codes as simply strings considering vari-
ous preprocessing steps, for example: source codes are splitted into functions; the
authors removed declaration of variables and function, input and output com-
mands, blank lines and spaces; the variable and function names are replaced by
a constant. The resultant lines, represented as strings, are compared to identify
reuses cases with proximity measures such as: Hamming, Levenshtein, Damerau-
Levenshtein and Jaro-Winkler distance.
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In more recently studies, the problem of cross-language codes is addressed.
For instance, Flores et al. [7] attempt to avoid using external resources to perform
a reuse detection system that do not depend of the source code language. The
claims outperform corpora-dependent models, by proposing a combination of
character 3-grams and pseudo-cognateness, when a large corpus is not available.

In the study of Flores et al. [9], they include several models to mapping
source codes into vectors and then consider them as a classifier input. These
mapping methods can extract features at different language levels. For example,
Latent Semantic Analysis (LSA) examines the similarity between word contexts
and creates a vector space that taking into account words that appear in sim-
ilar contexts. Another method that consider semantic information is Explicit
Semantic Analysis (ESA) in which source code vectors are generated based on
a reference corpus that represents the world knowledge. ESA compare a source
code against each one from the comparable collection to generate a vector of sim-
ilarities that stand for the source code. Another useful information is obtained
from cognates (COG). COG are defined as tokens of different languages that
shares common phonological or orthographic properties. This information may
detect some variations of a reused source code when the variation is not neces-
sarily the translation of the terms to another language.

Another approaches attempt to capture the writing style of the program-
mers in order to determine plagiarism, that is, the way to write of programmers
may determine whether someone else make use of their codes. Therefore, the
authors considers two type of features: stylistic and comment-based. On the one
hand, stylistic features includes the number of lines, the number of upper and
lower case letters, vocabulary size, and lexical richness among others. On the
other hand, the comment-based features consider the explanations given by the
authors on their own source codes to create a vector based on character 3-grams.
Similarity between obtained vectors is evaluated by the cosine similarity. Finally,
the authors measure the performance of each representation by establishing a
manual threshold for detecting plagiarism.

Some automatic tools have been developed to assist with the problematic of
the reuse detection of source code. JPLAG and MOSS are examples of free tools.
JPLAG [17] was developed by Guido Malpohl in 1996 which supports Java, C#,
C++, Scheme and natural language text; this system uses a variation of the
Karp-Rabin comparison algorithm developed by Wise [22]. MOSS [1] (Measure
Of Software Similarity) was developed by Alex Aiken in 1994. MOSS works with
different languages: C, C++, Java, Pascal, Ada, Lisp and Scheme; this system is
based on getting fingerprints which identifying a source code in particular way.

Most methods turn source codes into vector representations and, in turn, a
similarity measure determine a reuse source code case based on a manual deter-
mined threshold. However, although several representation methods have been
analyzed, performance and relevance of similarity measures and the threshold
selection have little explored. Therefore, this work goal is to analyze and opti-
mize different proximity measures and, in addition, automatically determine an
optimal threshold to detect reuse source code cases.
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3 Individual Similarity Measures

This section briefly describes the individual similarity measures used by source
code reuse detection systems.

3.1 Longest Common Substring (LCS) Similarity

Given a pair of source codes represented as strings of tokens (reserved words,
logical operators, identifiers, etc.), LCS similarity aligns identical tokens between
strings to obtain the longest common substring. The similarity calculation can
be performed using the length of the common string or it can be normalized
using the length of the longest original string. To find the LCS of the strings p
and q, it is necessary to find the longest common suffix for all string prefixes, as
shown in Eqs. 1 and 2.

LCSuff(p1...i, qi...j) =
{

LCSuff(p1...i−1, q1...j−1) , p(i) = q(j)
0 , p(i) �= q(j) (1)

LCS = MaxLCSuff(p1...i, qi...j) (2)

LCS similarity works well when a string is identified with a single order
among its elements, so it works well for Type 1 and 2 source code copy detection.
However, when two different strings represent the same object, as in the case
of Type 3 copies, where there is reordering of instructions or methods, the LCS
only recovers a part of the copy. To identify Type 3 copies, the sum of the longer
common substrings lengths [11,12] have been used.

3.2 Cosine Similarity

The representation of a source code is given by vectors where each token (t)
used is weighted (w) to give a relevance of the token according to the task,
like the presence or absence of the token in a source code (Boolean weighting),
or the token frequency in the source code. Cosine similarity is a measure used
to calculate the angle that is formed between two sets of terms expressed as
vectors [20]. Given two source codes p and q, to calculate the cosine distance it
is necessary to weight the terms expressed as vectors by applying Eq. 3.

coswt (p, q) =
∑|tp∪tq|

i=1 (wti,p ∗ wti,q)√∑|tp∪tq|
i=1 (wti,p)2

√∑|tp∪tq|
i=1 (wti,q)2

(3)

3.3 KR-Greedy String-Tiling (KRG-ST) Similarity

KRG-ST similarity is an algorithm proposed by Wise in 1995 [22], which consists
of finding the maximum tiling of the strings p and q, where a tiling is a set of
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tiles (T ) representing a substring of p that corresponds to a substring of q. The
JPlag system proposes to calculate the similarity by the coincidences obtained
from the KRG-ST algorithm with Eqs. 4 and 5 [17].

KRG − ST (p, q) =
2 ∗ coverage(T )

|P | + |Q| (4)

coverage(T ) =
∑

match(p,q,length∈T )

length (5)

4 Proposed Method

Our proposed method unifies ISMs into a combined measure and the decision is
made with a similarity threshold and a ranking threshold. Therefore, our method
performs an evolutionary setting that involves both the unified measure (named
Mixmetric) and similarity and ranking thresholds to make the decision on source
code reuse, see Fig. 1.

Fig. 1. Proposed assembled system for detection of source code reuse with the unifica-
tion of multiple individual measures

The unification of n ISMs into a combined measure (Mixmetric) is done
through a linear function where the similarity is expressed as a weighted sum
(Eq. 6). In Mixmetric, each individual similarity measure is assigned a weight
that indicates its relevance; therefore, the sum of all weights is 1. Given a pair
of source codes p and q, the evaluation of each ISM is performed, both (p,
q) and (q, p) within the training collection. Therefore, under an evolutionary
approach is determined the set of: weights (w) associated with measurements,
similarity threshold μ and ranking threshold β. The similarity threshold μ has
the function of recovering all the pairs that reach or exceed its value, while the
ranking threshold is responsible of selecting the β most similar pairs among the
pairs recovered by the threshold μ.

Mixmetric(p, q) =
n∑

i=1

wi ∗ si(p, q), where

n∑
i=1

wi = 1 (6)
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A reuse case is confirmed if the optimized similarity value is greater than or
equal to the similarity threshold μ (Eq. 7).

Reuse(p, q, μ) =
{

true , Mixmetric(p, q, w1...n) ≥ μ
false , in − other − case

(7)

Reuse Cases = last β elements ∈ {x|Reuse(p, q, μ) = true} (8)

Simply stated, the proposed method searches, under an evolutionary app-
roach, for the similarity threshold μ that maximizes the accuracy of the source
code reuse cases (Eq. 8). Thus, the adjustment of these parameters depends on
a training set.

For the search of parameters, we propose to use a genetic algorithm with
the following representation. In the chromosome coding process, the weights
W = w1, w2, ..., wn associated to each measure are represented by a binary chro-
mosome with five decimal places of precision, where each weight has a value
between 0 and 1. Then, to form the initial population, all chromosomes are
created randomly. To evaluate the GA population, a key step of a GA is the
fitness function. In this study, this function is defined as follows: given a pair
of codes (di, dj), the f-measure for the query di evaluates the size of the set of
codes retrieved in the first ranking (codes more similar to the query di), but if
dj does not appear in the last set, the f-measure adds the size of the set of codes
retrieved in the next ranking, until dj appears. In this way, f-measure evaluates
the ability to find relevant codes from a query.

In this way, the weights found indicate the relevance of similarity measures
as a whole and the thresholds found provide clear support for a decision-making
on source code reuse.

5 Experimentation

In this section, the experimental results on optimizing similarity measures are
shown. First, the description of the data set used for training and testing the
proposed method and its classification by scenarios is shown (Sect. 5.1. Then,
the individual similarity measures optimization is shown in Sect. 5.2. Next, the
unification of similarity measures to build the Mixmetric measure is described
in Sect. 5.3. Finally, a discussion of the results and their comparison with the
state of art is achieved.

5.1 Dataset and Related Systems Description

Due to the high frequency of cases of source code reuse, either for plagiarism
detection purposes or to search for source code in repositories, the SOCO (Detec-
tion of SOurce COde Reuse) forum arises as part of the event held at FIRE
(Forum for Information Retrieval Evaluation). In this task, it is not necessary
to show the fragments with reuse or the direction in which the reuse occurs in
pairs [10].
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The training and testing experiments were performed with the SOCO forum
corpus, which has source codes in the C and C++ (SOCO-C) languages. The
SOCO-C training set has 79 source codes, so it produces 6,241 suspiciously
viewed pairs, however, only 26 pairs are confirmed as reuse cases, which is equiv-
alent to 0.416% of all possible pairs (Table 1). Detection of reuse cases, in the
corpus, was carried out manually by three reviewers to establish reliable rele-
vance judgments.

Table 1. Characteristics of the SOCO-C training and testing set for the C/C++
language

Set Source codes Suspicious pairs (100%) Confirmed reused pairs

Train 79 6,240 26 (0.416%)
Test 19,895 395,811,024 322 (8.1× 10−5%)

The test corpus was built from the set of 19,895 codes selected in the 2012
Google Code Jam Contest, generating 395,811,024 suspects pairs. However, only
322 pairs are confirmed to be instances of reused source code, which is equiva-
lent to 8.1 × 10−5%. The test collection is divided by scenarios where each one
represents a level of complexity to identify a code (see Table 2).

The systems participating in the SOCO-C corpus are briefly described as
follows:

– UAEM [11]: This system only uses the LCS as ISM (described in Sect. 3.1)
with two decision thresholds and decision rules that must be met in both
directions.

– UAM-C [4]: This system uses 2 stages, the first one is responsible for the
extraction of three representative features of the source code through eight
ISMs. The second stage of this system is the decision making using the Tree
Forest classification algorithm.

– Baseline-1 [13]: This baseline is based on the Kalsruhe University’s JPlag
system.

– Baseline-2 [8]: Baseline based on tokens of trigrams (3-grams), where each
trigram is weighed with frequency (f) to represent the source code. The sim-
ilarity calculation is performed by measuring cosftrigram (described in Eq. 3).
The reuse decision is made through a similarity threshold of μ = 0.95%.

– Apoorv and Rajat: SOCO-C original systems without a description of the
method used.

The same evaluation metric used in the SOCO task based on the f-measure
is used to evaluate all experiments. Table 3 shows the results of the systems par-
ticipating in the SOCO-C test set, divided by scenarios, for the C programming
language corpus.
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Table 2. SOCO-C testing set divided by scenarios

Scenarios of the testing set
A1 A2 B1 B2 C1 C2

5,408 5,195 4,939 3,873 335 145

Table 3. Evaluation of the original systems with the whole collection and by scenarios
of the testing set of SOCO-C

System A1 A2 B1 B2 C1 Whole

UAEM 0.382 0.372 0.587 0.531 0.485 0.440
Baseline-2 0.294 0.255 0.326 0.323 0.429 0.295
Baseline-1 0.101 0.113 0.245 0.349 0.762 0.190
Rajat 0.110 0.106 0.236 0.146 0.066 0.129
Apoorv 0.035 0.023 0.022 0.014 0.029 0.022
UAM-C 0.010 0.009 0.024 0.019 0.800 0.013

5.2 Optimization of Individual Similarity Measures

In the first experiment, the ISMs used by the original systems (LCS, KRG-
ST, Costftrigram and Lexical) are optimized separately. In this case, the best
similarity threshold is searched with a genetic algorithm based on the training
corpus. Table 4 shows that the proposed system based on the LCS obtain the
best performance using a threshold of 0.620.

Table 4. Evaluation of the training set of our proposed system for 4 ISMs (threshold μ)

Optimized ISM (μ) Precision Recall F-measure

LCS (0.620) 0.933 0.538 0.683
Léxica (0.800) 0.667 0.538 0.596
Costftrigram (0.800) 0.667 0.538 0.596
KRG-ST (0.550) 0.778 0.269 0.400

Table 5 shows the comparison of the proposed ISM-based systems with the
original participating systems in the test set. The first column shows the name
of the original system and in parentheses the name of the ISM used. In this
case, our proposed system based on LCS similarity obtained the best perfor-
mance. It is important to mention that the proposed system based on the LCS
measure outperforms the UAEM system that uses the same individual measure.
Furthermore, our proposed systems based on the KRG-ST and Lexicon ISM out-
perform the original systems using the same measures. It is worth noting that the
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proposed system based on the KRG-ST measure exceed both baselines. In addi-
tion, the proposed ISM-based systems of Costftrigram and Lexical outperform the
Baseline-1. Only the system with the Costftrigram measure does not outperform
the original system.

Table 5. Comparison of the proposed systems with the original systems for the testing
set of SOCO-C

System Precision Recall F-measure

LCS (Proposed) 0.799 0.668 0.728
UAEM (LCS) 0.282 1.000 0.440
KRG-ST (Proposed) 0.202 0.578 0.299
Baseline-2 (Costftrigram) 0.258 0.345 0.295
Costftrigram (Proposed) 0.167 0.658 0.267
Léxica (Proposed) 0.147 0.578 0.234
Baseline-1 (KRG-ST) 0.350 0.130 0.190
Rajat 0.077 0.404 0.129
Apoorv 0.011 0.543 0.022
UAM-C (Léxica) 0.006 1.000 0.013

5.3 Unified System of Individual Similarity Measures

The ISMs are unified to build the Mixmetrix measure and are optimized with
the proposed method. Table 6 shows that the LCS measure obtained the highest
relevance with 69.3%, followed by the KRG-ST measure with 16.5%, followed by
the Lexica measure with 8.7% and, finally, the Costftrigram measure with 5%. It is
important to point out that, to the best of the authors’ knowledge, the relevance
of similarity measures to the source code reuse task had not been obtained before.
The obtained weights work with the similarity threshold of 0.490 and the ranking
threshold of 2.

Table 6. Weighting, cut-off threshold and similarity threshold found by the proposed
method for Mixme-tric with the training set

System Weighting Similarity Threshold μ Cut-off Threshold β

LCS 0.693 0.490 2
Léxica 0.087
KRG-ST 0.165
Costftrigram 0.050
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Table 7 shows the comparison of the proposed systems for the training set.
It can be seen that Mixmetric obtains the best results. This is consistent with
the hypothesis that a combined measure exceeds the individual measures on the
same data set. It is worth mentioning that the SOCO forum does not present
results for the training set.

Table 7. Evaluation of Mixmetric with the training set

System Precision Recall F-measure

Mixmetric 0.917 0.846 0.880
LCS 0.933 0.538 0.683
Léxica 0.667 0.538 0.596
Costftrigram 0.667 0.538 0.596
KRG-ST 0.778 0.269 0.400

Table 8 shows the results of the evaluation of the test set divided by scenarios.
Each scenario shows a reuse case with a different level of complexity. The results
of the proposed system Mixmetric exceeds to the original SOCO systems in all
scenarios on the test set.

Table 8. Evaluation of the proposed systems and the original systems divided by
scenarios for the testing set of SOCO-C

System Scenario
A1 A2 B1 B2 C1

Mixmetric 0.830 0.792 0.862 0.845 0.933
LCS 0.739 0.704 0.752 0.692 0.769
UAEM 0.382 0.372 0.587 0.531 0.552
KRG-ST 0.273 0.189 0.595 0.442 0.667
Baseline-2 0.294 0.255 0.326 0.323 0.333
Costftrigram 0.193 0.200 0.260 0.520 0.400
Léxica 0.265 0.240 0.251 0.368 0.571
Baseline-1 0.101 0.113 0.245 0.349 0.429
Rajat 0.110 0.106 0.236 0.146 0.066
Apoorv 0.035 0.023 0.022 0.014 0.029
UAM 0.010 0.009 0.024 0.019 0.737

Finally, all the fits (ISM weights, similarity μ and ranking β threshold) found
by the genetic algorithm, based on the training set, are evaluated on the test set.
These results can be seen in Table 9, where our proposed Mixmetric and LCS
systems take first and second place, respectively.
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Table 9. Evaluation of the proposed systems and the original systems with the SOCO-
C test set

System Precision Recall F-measure

Mixmetric 0.832 0.929 0.832
LCS 0.799 0.668 0.728
UAEM (LCS) 0.282 1.000 0.440
KRG-ST 0.202 0.578 0.299
Baseline-2 (Costftrigram) 0.258 0.345 0.295
Costftrigram 0.167 0.658 0.267
Léxica 0.147 0.578 0.234
Baseline-1 (KRG-ST) 0.350 0.130 0.190
Rajat 0.077 0.404 0.129
Apoorv 0.011 0.543 0.022
UAM-C (Léxica) 0.006 1.000 0.013

6 Conclusions

The reuse of source code is an activity that is frequently carried out in the
academic and professional sector. The relevance of improving reuse detection
systems is twofold: either to detect plagiarism or to recover code to build sys-
tems quickly. That is why the detection of source code reuse is also seen as
an information retrieval problem, since when faced with a query (a suspicious
source), the system must retrieve cases similar to the request made.

In this study, a method was proposed to determine the optimized parame-
ters of a source code reuse system based on one or multiple individual similarity
measures for source code reuse. In specific, four systems were proposed based
on the LCS, Costftrigram, KRG-ST and Lexicon individual measures. According
to the experimentation, it is verified that the system based on the LCS mea-
sure exceeds the results obtained in the previous works for SOCO-C, either by
scenario or globally.

It is worth mentioning that the proposed systems based on the LCS, KRG-
St and Lexicon similarity measure outperformed the system that used the same
measure. Additionally, all systems exceeded Baseline-1. In this sense, it is impor-
tant to remember that an individual similarity measure considers a particular
aspect to determine the similarity value between two source codes, whether focus-
ing on lexical, syntactic or semantic aspects; making it have strengths and weak-
nesses in the face of various scenarios and types of reuse. Our proposed system
unifies individual measures with the advantage that the weights and thresholds
found provide simple and clear support for decision-making in a reuse case.

In future work, it is considered to enrich Mixmetric with other measures not
used by the original systems, as well as other configurations to find coincidences
and to calculate similarities.
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Abstract. The hypervolume indicator (HV) has been subject of a lot
of research in the last few years, mainly because its maximization yields
near-optimal approximations of the Pareto optimal front of a multi-
objective optimization problem. This feature has been exploited by sev-
eral evolutionary optimizers, in spite of the considerable growth in com-
putational cost that it is involved in the computation of HV as we
increase the number of objectives. Some years ago, the Walking Fish
Group (WFG) implemented a new version of the incremental hypervol-
ume algorithm, named IWFG 1.01. This implementation is the fastest
reported to date for determining the solution that contributes the least
to the HV of a non-dominated set. Nevertheless, this new version has
gone mostly unnoticed by the research community. We believe that this
is due to an error in the source code provided by the authors of this
algorithm, which appears when coupling it to a multi-objective evolu-
tionary algorithm. In this paper, we describe this error, and we propose
a solution to fix it. Moreover, we illustrate the significant gains in perfor-
mance produced by IWFG 1.01 in many-objective optimization problems
(i.e., problems having three or more objectives), when integrated into
the S -Metric Selection Evolutionary Multi-Objective Algorithm (SMS-
EMOA).

Keywords: Hypervolume indicator · Multi-objective optimization ·
Selection mechanism

1 Introduction

The hypervolume indicator (HV) [15], also known as the Lebesgue measure or
S -metric, is one of the most preferred quality indicators (QIs) for comparing
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multi-objective optimizers. In a single value, HV captures convergence to the
Pareto optimal front as well as spread along the objective space. HV and its
variants are the only unary QIs that are known to be Pareto compliant [16] and
it has been proved that maximizing HV is equivalent to reaching the Pareto opti-
mal set [10]. For these reasons, several multi-objective evolutionary algorithms
(MOEAs) have incorporated HV in their survival selection mechanism [9].

Although the computational cost of calculating the exact HV is exponential
with the scaling of the objectives [13], the Walking Fish Group (WFG) (http://
www.wfg.csse.uwa.edu.au/hypervolume) has proposed clever implementations
where, in practice, the real performance is unrelated to this worst case complexity
[5,13,14]. Of our particular interest is the Incremental Hypervolume Algorithm
(IWFG) [5,14], designed for determining which point in a set contributes least
to HV. This algorithm uses several ideas to provide a substantial speed up. The
most recent implementation is the IWFG 1.01 [5], which was released in Novem-
ber 2015. This version reported outstanding performance for even large fronts,
being significantly faster than previous approaches in many-objective optimiza-
tion problems [3]. However, this important version has gone unnoticed by the
research community. Popular frameworks of evolutionary multi-objective opti-
mization, such as jMetal (http://jmetal.github.io/jMetal) and MOEA Frame-
work (http://moeaframework.org) do not have this update. We believe that this
omission is because of the occurrence of an error, which is triggered when inte-
grating IWFG 1.01 into an MOEA.

The main contributions of this paper are the isolation, replication and
description of this error, as well as an easy-to-implement solution to it. Further-
more, we show the potential gains in speed up of IWFG 1.01 when coupled to the
S -Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [1]
(a hypervolume-based algorithm) on some test problems of the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [8]. The rest of this paper is organized
as follows. Section 2 defines the concepts and notation used in multi-objective
optimization. Section 3 outlines the IWFG 1.01 algorithm. Section 4 provides our
contribution. Section 5 presents the validation of our proposed solution. Section 6
contains our conclusions.

2 Background

We are interested in solving Multi-Objective Optimization Problems (MOPs) of
the form:

Minimize f(x) := (f1(x), f2(x), . . . , fm(x)) (1)
subject to x ∈ X, (2)

where X ⊂ IRn is the feasible region in decision space, and Z ⊂ IRm is in
the objective space. Each decision vector x ∈ X is related to an objective vector
f(x) ∈ Z. Since objectives might be in conflict with one another, it is not possible

http://www.wfg.csse.uwa.edu.au/hypervolume
http://www.wfg.csse.uwa.edu.au/hypervolume
http://jmetal.github.io/jMetal
http://moeaframework.org
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to compare two solutions x,y ∈ X in a straightforward manner as in single-
objective optimization. As an alternative, the Pareto dominance relation must
be applied. It is said that x “dominates” y, if it stands:

x ≺ y ⇔ (∀i ∈ {1, . . . , m} , fi(x) ≤ fi(y)) ∧
(∃j ∈ {1, . . . ,m} , fj(x) < fj(y)) .

The non-dominated solutions of a set A ⊆ X are defined as:

NDS(A) := {a ∈ A : �a′ ∈ A,a′ ≺ a}. (3)

The solution to an MOP consists of finding the optimal set of non-dominated
decision vectors in all X, which cannot be improved in any objective without
worsening at least another objective. This set is known as the Pareto Optimal
Set, and its image is named the Pareto Optimal Front.

The hypervolume indicator [15] determines the size of the portion of the
objective space that is dominated by a set A of non-dominated solutions, collec-
tively and bounded by a reference point z ∈ IRm, defined as:

HV (A; z) = Λ

( ⋃
a∈A

{x | a ≺ x ≺ z}
)

, (4)

where Λ denotes the Lebesgue measure in Rm, and z should be dominated by
all members of A.

Another concept is the inclusive hypervolume of a solution p which is used to
denote the size of the part of the objective space dominated by p alone, that is:

IncHV (p; z) := HV ({p}; z). (5)

The hypervolume contribution or exclusive hypervolume of a solution p rela-
tive to a set A (denoted as ExcHV (p, A; z)) is the size of the part of the objective
space that is dominated by p but is not dominated by any element of A. Hence,
ExcHV (p, A; z) < IncHV (p; z). The exclusive hypervolume is defined as:

ExcHV (p, A; z) := HV (A ∪ {p}; z) − HV (A; z). (6)

In this work, we focus on SMS-EMOA since it is one of the most important
HV-based MOEAs [9]. SMS-EMOA is a steady-state MOEA that employs the
Pareto dominance relation as its main selection criterion and a density estimator
based on the exclusive hypervolume. At each iteration, a single solution is cre-
ated and added to a temporary population which is divided into layers, using the
non-dominated sorting algorithm [7]. If the last layer (the worst one according to
the Pareto dominance) has more than one solution, the one having the minimum
exclusive hypervolume is deleted. The identification of the minimum exclusive
hypervolume value is the core idea behind SMS-EMOA. Software frameworks
for evolutionary multi-objective optimization, such as jMetal and MOEA frame-
work implement this step using a näıve approach that iteratively calculates the
hypervolume indicator of |P | − 1 individuals, as shown in Algorithm 1.
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Algorithm 1. Naive method to determine the solution with the lowest exclusive
hypervolume.
Input: A ⊂ Z set of solutions, reference point z
Output: Solution s that contributes the least to HV (A; z)
1: t ← HV (A; z)
2: m ← ∞
3: for all a ∈ A do
4: c ← t − HV (A \ {a}; z)
5: if c < m then
6: m ← c
7: s ← a
8: end if
9: end for

10: return s

3 IWFG 1.01 Algorithm

In Algorithm 2, we reproduce the pseudocode of IWFG 1.01 [5]. This improved
version of Algorithm 1 consists of two phases: the slicing process (lines 1 to 8),
and the full computation of the exclusive hypervolume of the least-contributing
solution (lines 9 to 14). Here, head and tail are list functions.1 In the first phase,
Rank heuristic imposes the order in which objectives will be processed (in a
worsening sequence). The overall HV is then processed in “slices“ made by cuts
along the corresponding objective. Those slices related to a solution a are stored
in the list S[a] (line 3). The elements of this list are assumed to be ordered by size
from the largest to the smallest. In lines 4 and 5, the biggest slice of a solution a is
successively divided by making k − 1 cuts along the remaining objectives. These
sub-slices are reinserted into the list S[a]. In line 7, for each solution, the partial
exclusive hypervolume relative to the biggest slice is determined. In the second
phase, a greedy approach is adopted, named “best-first” queuing mechanism.
The idea is to process at each iteration the solution s with the smallest partial
HV until its list of slices has been completely processed. Moreover, instead of
using the expression (6) for calculating the exclusive hypervolume, IWFG 1.01
uses a more efficient mechanism [2]:

ExcHV (p, A; z) := HV ({p}; z) − HV (NDS(B); z), (7)

where
B := {limit(p,a) | a ∈ A}, (8)

limit(< p1, . . . , pm >,< a1, . . . , am >)
:=< worse(p1, a1), . . . ,worse(pm, am) > .

In Fig. 1, we illustrate the two different ways to compute the exclusive hyper-
volume. In this case, expression (7) calculates the HV of only two solutions,

1 For instance, head([a, b, c, d]) := a and tail([a, b, c, d]) := [b, c, d].
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Algorithm 2. Incremental Hypervolume IWFG 1.01
Input: A ⊂ Z set of solutions, reference point z, depth k ∈ IN
Output: Solution s that contributes the least to HV (A; z)
1: for all a in A do
2: Sort the objectives of a according to Rank heuristic, using the binary search
3: S[a] ← the slices for a at the top level m
4: for d = 1 to k − 1 do
5: S[a] ← slice(head(S[a]),m − d) ∪ tail(S[a])
6: end for
7: p[a] ← ExcHV (a, head(S[a]); z)
8: end for
9: s ← arg mina∈A p[a]

10: while S[s] �= [ ] do
11: p[s] ← p[s] + ExcHV (s, head(S[s]); z)
12: S[s] ← tail(S[s])
13: s ← arg mina∈A p[a]
14: end while
15: return s

whereas expression (6) considers six solutions. This computational effort reduc-
tion is because of the filtering of non-dominated solutions. With these ideas, the
IWFG 1.01 algorithm determines the exclusive hypervolume in a fraction of the
time needed to process the total HV [5].

4 Contribution

In Fig. 2(a), we reproduce a common error of Algorithm IWFG 1.01 using data
produced by an MOEA. The program receives as input the file “sample.dat”,
which contains one front delimited by #, and a reference point with five objec-
tives. As can be noticed, the component throws a fatal error causing an abnormal
termination. In this case, the segmentation fault is raised by hardware, which
has memory protection, notifying the operating system that the program iwfg
attempts to access a memory location that is not allowed.

In order to track the source of this error, we relied on the debugging
tools Valgrind (http://valgrind.org) and gdb (https://www.gnu.org/software/
gdb). We found that the problem lies in the binarySearch function of Fig. 3
since it does not contemplate the situation of identical solutions, as it is the
case for the objective vector (0.51, 0.46, 0.73, 0.00, 0.00) from our example in
Fig. 2(a). In evolutionary multi-objective optimization, these copies are known
as indifferent solutions [4, p. 244], and are occasionally present in a popula-
tion when variation operators are not applied, so the offspring become clones
of the parents. According to expression (3), indifferent solutions are considered
non-dominated to each other, so the requirement of the IWFG 1.0 to accept
only fronts with non-dominated solutions is still fulfilled. The purpose of the
function int binarySearch(POINT p,int d) is to locate the index i at which

http://valgrind.org
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
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Fig. 1. Steps for the calculation of the exclusive hypervolume of a solution p using
the naive way HV (A ∪ {p}; z) − HV (A; z) and the efficient way IncHV (p; z) −
HV (NDS(B); z), where A = {a1,a2, a3,a4,a5,a6} and B = {b1,b2,b3,b4,b5,b6}.

(a)

> cat sample . dat
#
0.00 0 .00 0 .00 0 .00 1 .00
0 .51 0 .46 0 .73 0 .00 0 .00
0 .47 0 .43 0 .46 0 .45 0 .42
0 .00 0 .47 0 .54 0 .70 0 .00
0 .51 0 .46 0 .73 0 .00 0 .00
0 .00 0 .81 0 .00 0 .58 0 .00
0 .93 0 .00 0 .36 0 .00 0 .00
#
> . / iwfg sample . dat 1 .1 1 .1

1 .1 1 .1 1 .1
Segmentation f a u l t ( core

dumped)

(b)

> . / iwfg sample . dat 1 .1 1 .1
1 .1 1 .1 1 .1

mehv (1) = 0.00
Smal l e s t : 0 .51 0 .46 0 .73 0 .00

0 .00
Total time = 0.00 ( s )

Fig. 2. Output of the IWFG 1.01 component using the functions (a) BinarySearch and
(b) ourBinarySearch.

the solution p resides in the array of memory addresses fsorted[d].points[i],
assuming that elements are already sorted by the given objective d from the high-
est to the lowest value. The ordering relation is achieved by the function int
greaterorder(&p,&q), which numerically compares two solutions. This func-
tion returns -1 if the dth objective of p is greater than the dth objective of q. In
the opposite case, it returns 1, and if they have the same value, the remainder
objectives are inspected in the same way using the order imposed by the Rank
heuristic. In the case of indifferent solutions, greaterorder returns 0.
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During the search, the error originates when the first occurrence of a repeated
solution does not match with the memory address of p. Thus, the binary search
focuses on the upper half of the array in lieu of examining adjacent elements.
So, if the solution is not found in this half, the function returns -1, which is
an invalid index. It is important to mention that the error happens only from
three objectives onwards since for two objectives the exclusive hypervolume is
computed. The binarySearch function is invoked by the Rank heuristic, which
stores the returned misinformation. The slicing process accesses the indices, at
which point the fault occurs.

1 int binarySearch (POINT p , int d) {
2 int min = 0 ;
3 int max = f s o r t e d [ d ] . nPoints 1;
4 gorder = torde r [ d ] ;
5
6 while (min <= max) {
7 int mid = (max+min ) /2 ;
8 i f (p . o b j e c t i v e s ==
9 f s o r t e d [ d ] . po in t s [ mid ] . o b j e c t i v e s )

10 return mid ;
11 else i f ( g r e a t e r o rd e r (&p ,
12 &f s o r t e d [ d ] . po in t s [ mid ] ) == 1)
13 max = mid 1 ;
14 else
15 min = mid + 1 ;
16 }
17 return 1;
18 }

Fig. 3. Source code (in ANSI C) of the original binarySearch function.

One possible solution to this issue is to include the case when greaterorder
recognizes two identical solutions. In Fig. 4, we present the source code of our
proposed correction, named ourBinarySearch. Once a duplicated objective vec-
tor is found, in lines 17 to 32, adjacent memory locations are inspected until there
is a match with the address of p. In Fig. 2(b), we show the right output of our
previous example using the proposed function. It is worth noticing that one of
the duplicated solutions is suggested for removal.

The computational complexity of binarySearch is O(m lg |P |), where m
represents the number of objectives and |P | is the number of non-dominated
solutions in the front. For ourBinarySearch is O(m(lg |P |+k)), where k denotes
the number of indifferent solutions. Here, the worst case occurs when all elements
are repeated, so the computational complexity is O(m|P |). However, this is very
unlikely, and in the average case k << |P |. Thus, the complexity of our proposed
function remains the same as the original one.
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Fig. 4. Source code (in ANSI C) of our proposed binarySearch function.

The source code of the IWFG 1.0 algorithm, as well as other algorithms, is
available at http://computacion.cs.cinvestav.mx/∼rhernandez, being the IWFG
modules thread-safe. EMO Project runs on Unix-based systems, and it is imple-
mented in ANSI C, MPI (Message Passing Interface) and Gnuplot (http://www.
gnuplot.info). As shown in Fig. 5, EMO Project is constituted by three main
parts: the applications, the EMO library, and the parallelization layer. In addi-
tion, there are two special actors: the common user and the developer. The former
can invoke predefined applications, while the second can define new problems,
implement algorithms and create more applications. The applications consist
of a set of command-line programs, which start with the prefix “emo ”, and
their purpose is to perform essential operations in evolutionary multi-objective
optimization. The EMO library is composed of a set of built-in functions and
structured data types, whereas the parallelization layer allows, among other
functionalities, the simultaneous execution of different MOEA calls over a set of
available processors using a Round-robin scheme. Interested readers are referred
to [11] for further details.

http://computacion.cs.cinvestav.mx/~rhernandez
http://www.gnuplot.info
http://www.gnuplot.info
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Fig. 5. Architecture of the evolutionary multi-objective optimization project (EMO
Project).

5 Experimental Study

We compared the performance of IWFG 1.01 versus the variant that calculates
the HV using the method described in [13], and determines the contributions
with Algorithm 1. This latter version, commonly applied in most frameworks, is
denoted here as IWFG 1.00. Both versions were coupled to SMS-EMOA. Addi-
tionally, we considered in our experiments NSGA-III [6], which was designed to
deal with many-objective optimization problems. In the survival selection mech-
anism of this optimizer, the non-dominated sorting procedure [7] is combined
with a niching strategy that requires a set of well-spread reference points in such
a way that the population is normalized and associated with the lines passing
through the reference points and the origin. Those individuals having the closest
perpendicular distance to isolated lines are chosen for the next generation.

As test problems, we adopted the DTLZ1, DTLZ2, and DTLZ7 instances [8]
with the number of decision variables of m + 4, m + 9, and m + 19, respectively.
The variation operators were Polynomial-based mutation and Simulated Binary
Crossover (SBX). For the mutation operator, its probability and distribution
index were set to 1/n and 20, respectively. For the crossover operator, these
parameters varied according to the number of objectives: for two objectives we
adopted 0.9 and 20, whereas for higher dimensionality we adopted 1.0 and 30.
In all cases, the population size was set to 100 individuals. The set of reference
points for NSGA-III was generated using the Uniform Design method [12] having
the same cardinality as the population. The maximum number of evaluations
(1 × 103) was set to 40, 60, 70, 80, 80, 90 for 2 to 7 objectives, respectively.

For the performance assessment, we relied on the hypervolume indicator using
the reference point (2, 2, . . .) for DTLZ1,2 and (2, 2, . . . , 2m + 1) for DTLZ7. In
all experiments, we performed ten independent runs. Besides, we applied two
Wilcoxon rank sum tests to the mean hypervolume indicator values in order to
determine: A) if the distributions of both variants of SMS-EMOA were identi-
cal or different (two-tailed test), and B) if SMS-EMOA IWFG 1.01 performed
better than NSGA-III (one-tailed test). Both statistical tests were contemplated
at the confidence interval of 99%. Finally, executions have been done over the
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Fig. 6. Average execution time of the MOEAs on some instances of the DTLZ bench-
mark.

GNU/Linux Xiuhcoatl Cluster of 72 nodes with 252 GB of RAM and InfiniBand
interconnection network. Each node is a 32-core AMD Opteron(TM) Processor
6274 1.36 GHz. Algorithms were implemented in the C language, compiled with
gcc 4.4.7 -O3 and parallelized with Open MPI version 3.0.0 using the command
emo task [11].

In Fig. 6, we show the average execution time of all optimizers. As expected,
the fastest algorithm was NSGA-III since its computational complexity of
O(|P |2m + m3) is much lower than that of HV-based MOEAs. In the second
place was SMS-EMOA IWFG 1.01, which spent much less computational time
than SMS-EMOA IWFG 1.00. Here, it is worth mentioning that time reduc-
tion becomes more significant as the number of objectives increases. Regarding
the quality of the solutions in terms of the hypervolume indicator (see Table 1)
both versions of SMS-EMOA produced slightly different Pareto-front approx-
imations even though we used the same random seeds. This occurs because,
during the survival selection process, several individuals may have the same HV
contribution. Thus, the choice of the methods depends on the way in which the
population is sorted. In spite of this, there is no significant difference in quality.

Although SMS-EMOA IWFG 1.01 is not the fastest state-of-the-art algo-
rithm, it achieved results which are significantly better than those generated by
NSGA-III, in all cases (see Table 1). The only exception is DTLZ7 with four
objectives in which there was a tie.
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Table 1. Median and standard deviation of the hypervolume indicator. If the p-value
of test A is greater than 0.01, then it means that the two samples of SMS-EMOA are
equivalent (denoted by =). If the p-value of test B is less or equal than 0.01, then
it means that SMS-EMOA IWFG 1.01 performs significantly better than NSGA-III
(indicated by ↑).

m SMS-EMOA SMS-EMOA NSGA-III p-value

IWFG 1.00 IWFG 1.01 Test A Test B

DTLZ1

2 3.873652e+0 1.8e-4 3.873610e+0 1.5e-4 3.865911e+0 3.2e-4 9.1e-1 = 9.1e-5 ↑
3 7.974010e+0 4.8e-5 7.974043e+0 8.3e-5 7.937169e+0 1.0e-3 7.1e-1 = 9.1e-5 ↑
4 1.599436e+1 3.1e-5 1.599437e+1 1.2e-5 1.590821e+1 2.9e-3 2.4e-1 = 8.0e-5 ↑
5 3.199857e+1 6.1e-5 3.199859e+1 5.1e-5 3.184074e+1 8.5e-3 4.9e-1 = 9.0e-5 ↑
6 6.399957e+1 2.1e-5 6.399956e+1 2.5e-5 6.368232e+1 4.4e-2 5.2e-1 = 9.0e-5 ↑
7 1.279999e+2 4.2e-5 1.279999e+2 4.8e-5 1.273449e+2 7.5e-2 6.5e-1 = 6.4e-5 ↑
DTLZ2

2 3.211015e+0 1.9e-5 3.211003e+0 2.6e-5 3.200341e+0 2.4e-4 6.5e-1 = 9.1e-5 ↑
3 7.427029e+0 5.4e-5 7.427018e+0 5.8e-5 7.317104e+0 5.8e-3 8.5e-1 = 9.1e-5 ↑
4 1.558050e+1 7.7e-5 1.558050e+1 7.7e-5 1.518218e+1 1.8e-2 1.0e+0 = 9.0e-5 ↑
5 3.168567e+1 7.6e-5 3.168567e+1 7.6e-5 3.067499e+1 3.5e-2 1.0e+0 = 9.0e-5 ↑
6 6.375871e+1 1.1e-4 6.375871e+1 1.1e-4 6.145779e+1 9.7e-2 1.0e+0 = 9.1e-5 ↑
7 1.278103e+2 1.4e-4 1.278103e+2 1.4e-4 1.215988e+2 9.0e-1 1.0e+0 = 8.4e-5 ↑
DTLZ7

2 4.418220e+0 6.5e-6 4.418217e+0 4.4e-6 4.403340e+0 2.6e-3 1.9e-1 = 8.9e-5 ↑
3 1.357868e+1 1.4e-4 1.357868e+1 1.4e-4 1.312882e+1 6.2e-2 5.2e-1 = 9.1e-5 ↑
4 3.014482e+1 4.2e+0 3.014535e+1 4.2e+0 3.194008e+1 1.4e+0 6.9e-1 = 2.9e-1

5 7.769183e+1 5.8e+0 7.769183e+1 5.8e+0 6.765668e+1 2.2e+0 5.2e-1 = 9.1e-5 ↑
6 2.057445e+2 1.0e+1 1.867199e+2 1.0e+1 1.374160e+2 6.3e+0 2.7e-1 = 9.1e-5 ↑
7 4.257511e+2 3.3e+1 4.264531e+2 2.7e+1 2.601411e+2 1.6e+1 7.2e-1 = 9.1e-5 ↑

6 Conclusions

Recently, an optimized version of the incremental hypervolume algorithm of the
Walking Fish Group (IWFG) was proposed. This algorithm determines the solu-
tion that contributes the least to the HV of a non-dominated set. However, its
use has been limited due to a bug in its implementation. We observed that this
error occurs during the slicing process, specifically in the function binarySearch,
where duplicated solutions are not considered for problems with more than two
objectives. In this paper, we have proposed a corrected version of such func-
tion, which has an average-case complexity of O(m lg |P |), where m denotes
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the number of objectives and |P | the population size. Clearly, there are other
possible solutions to this issue, such as to remove duplicated solutions before
calculating the incremental hypervolume. However, we have presented the one
that we believe is the easiest to update in the component while keeping a low
computational cost. The potential performance of the IWFG component should
be exploited by the many-objective community since it can achieve high-quality
solutions at an affordable computational cost.
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Abstract. In this work we face the Containership Stowage Problem, also referred
to asMaster Bay Planning Problem (MBPP) in the literature. MBPP is an NP-hard
combinatorial optimization problem that consists in finding the best plan to load
a set of containers into a set of available locations in the containership, subject to
several structural and operational constraints. This problem is really difficult to
solve and very import in the context of maritime port logistics. Since it is a prac-
tical decision-making problem with high complexity and challenging instances, a
hybrid hierarchical approach is developed in this paper. Our algorithmic proposal
couples a heuristic procedure with a perturbative hyperheuristic. The validation of
the proposed approach is performed by solving pseudo-randomly instances avail-
able in the literature. The computational results show the efficiency of the proposed
hybrid hierarchical algorithm when comparing with the reference results from the
literature.

Keywords: Containership Stowage Problem · Hybrid Approach · Ship Stability

1 Introduction

In this paper we tackle the containership stowage problem, also known as the Master
Bay Planning Problem (MBPP) in the literature. In general, combinatorial optimization
problems commonly arise in the context ofmaritime terminals andMBPP is one example
of them. In fact, MBPP is a highly important problem involved in the efficiency of port
operations. This is so because subsequent problems such as quay crane scheduling and
yard allocation directly depends on the containership stowage plan [1, 2].

MBPP is an NP-hard combinatorial optimization problem that is defined as follows.
LetC be the set of n containers of different types to be loaded on the ship and S be the set
ofm available locations on the containership. The problem is to assign each container to
an available location such that all the structural and operational constraints are satisfied,
and the total stowage time is minimized.
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In the case of optimizing the stowage plan for a single port, the main constraints
considered are related to the ship structure. Specifically, they are focused on the size,
type, weight, destination, and distribution of the containers to be loaded. We refer the
reader to [3] for a more detailed description of these constraints and complete definition
of the problem.

As mentioned previously, MBPP is an important problem with many constraints.
In the literature, some approaches have been investigated methods to tackle these con-
straints by means of exact and approximate optimization [1, 3–6]. Recent studies have
approached complex problems such as MBPP in a hierarchical way [6–8]. Therefore, in
this paper, we investigate an extension of a previously proposed hierarchical method in
[8], which has demonstrated finding feasible solutions considering the global ship sta-
bility of the overall stowage plan. Nevertheless, this initial experiment used in the first
phase a relaxed solution, that is, the constraints of stability were removed. This initial
solution was obtained by solving the relaxed mathematical formulation in a commer-
cial optimization software; and the second phase was intended to generate that solution
feasible through simple heuristics handled by the hyperheuristic designed with online
learning [9].

Clearly, the use of an exact method to obtain an initial solution in real-world com-
plex problems is unpractical since it is a time-consuming process, especially in large
test cases. To improve the performance of the algorithm of the literature, we hybridize a
deterministic heuristic procedure with the perturbative hyperheuristic. In this contribu-
tion a comparative study of these twohybrid hierarchical approaches on the containership
stowage problem is presented. In order to demonstrate their efficiency and performance,
a computational experiment with pseudo-randomly instances available in the literature
has been performed. Computational results demonstrate that both algorithms manage to
reach good solutions. However, the hybrid procedure with a deterministic heuristic in
the first phase is better in terms of efficiency.

This paper is organized into four parts. Section 2 describes our proposed hybrid
approach. Section 3 presents the computational experiment and results. Finally, the last
section shows the conclusions.

2 Proposed Hybrid Approach

In this sectionwe describe our hybrid hierarchical approach on the containership stowage
problem. This procedure consists of two phases (see Fig. 1). In the first phase a heuristic
procedure is executed to generate an initial solution. This procedure is based on the
computation of an upper bound from the MBPP literature. The upper bound used in this
study was the one with the best performance reported by Cruz-Reyes et al. in [10]. The
first phase is fully described in Sect. 2.1. In Sect. 2.2 we present the second phase of our
proposed approach, which consist in the perturbative hyperheuristic proposed in [8].

2.1 Initial Solution

In this section, we describe a deterministic heuristic (DH) for MBPP. This heuristic
procedure considers the balanced distribution of the containers to find feasible partial
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Fig. 1. Hybrid hierarchical approach proposed on the containership stowage problem.

plans. This Algorithm has three main stages: preprocessing (Lines 1–4), feasible assig-
nations (Lines 5–10) and stowage of unassigned containers (Line 11). In the initial stage
the preprocessing consists of splitting both the set of locations S and set of containers
C. The goal of splitting the locations is to assign the containers into the containership
locations considering the stability of the vessel (see Fig. 2). The splitting of containers is
performed taking into account their destination and type. The purpose is to minimize the
number of unsatisfied constraints. In order to satisfy the weight constraint, the contain-
ers of each subset are sorted by weight in decreasing order (Line 4), since the heaviest
containers must be loaded first.

Fig. 2. Distribution of the locations of the containership according to the quadrants [10].

The second stage of the algorithm consists in stowing containers into the container-
ship. More precisely, the procedure tries to load first the 40-feet containers and then the
20-feet containers. In both cases, the loading sequence starts with the containers whose
destinations are farther and ends with those whose destinations are closer.

When the algorithm tries to load a container, it must firstly select a quadrant. If it is
the first assignation for any type of containers (20-feet or 40-feet), the procedure selects
the first quadrant. Otherwise, it orderly searches for the next quadrant with an available
location. The 40-feet containers will be assigned to locations in even bays whereas the
20-feet containers will be assigned to locations in odd bays. Once the location has been
selected, the algorithm verifies its partial feasibility, that is, without considering the
stability. Specifically, it verifies all the constraints excluding those related to the stability
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conditions. If the assignation is unfeasible, that is, if it does not satisfy all the other
constraints apart from the stability ones, the algorithm tries to allocate the container into
a different quadrant.

Sometimes, our algorithm (DH) is not able to allocate all the containers with the
previously described procedure. In this case, all the unassigned containers are stowed
in available locations whose loading times are the highest. DH starts allocating 40-feet
containers sorted by destination in decreasing order (from the farthest to the closest)
and then allocating 20-feet containers applying the same criteria. DH is described in
Algorithm 1.

2.2 Perturbative Hyperheuristic

The perturbative hyperheuristic (HH) approach proposed in this study uses an ant colony
optimization (ACO) algorithm as a high-level metaheuristic [11] and seven low level
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heuristics, which are completely described in [8], that interact directly with the solutions
of the problem. HH minimizes the containers loading time on the ship and optimizes
the global ship stability of the overall stowage plan. Since the initial solution generated
by DH does not consider the stability conditions, the hyperheuristic makes it feasible by
performing perturbative moves.

We consider the objective function Z(x) = M (σ1(x) + σ2(x))+L(x) to evaluate the
hyperheuristic performance. The traditional objective function is expressed in terms of
the sum of the time tlc required for loading a container c in location l, such that L =∑

lctlc, ∀cεC, lεS. However, in this paper, like in [7], the objective function considers
the ship stability but also the total loading time L(x). In this function σ1(x) and σ2(x)
are the horizontal and cross equilibrium stability violation functions, respectively.M is
a coefficient, such thatM � 0, to strongly penalize, the stability violation functions, in
such a way that we give a high priority to the generation of feasible solutions.

The ant hyperheuristic process is showed in Algorithms 2–4, which is performed by
the hyperheuristic agents supplied with an initial solution S0 obtained by DH. These
agents travel through the graph G traing to improvement its solution. The set of vertices
of the graph contains the seven low level heuristics while the set of directed edges
joins to every heuristic to each other. Once obtained the initial solution, HH applies
to it a heuristic, which generates a new candidate solution. This solution is feasible if
satisfies the weight, assignment, and destination constraints of MBPP [1]. This process
is performed until a maximal number of cycles is reached. In this approach, a cycle is
the period of time between all ants beginning their paths and all ants completing their
paths. The algorithm can be divided into three stages.

In the first stage (see Algorithm 2), so-called initialization, visibility table does not
have information and all pheromone table is initialized with a low value named τ0. First,
the ants are located uniformly among the vertices of the network (line 4). After that, they
are provided with an initial solution S = S0 (line 7) and each ant applies to its copy of
S, the heuristic i (corresponding to its location) to provide an initial visibility value (line
12). Each ant adds its first heuristic i to its respective path (line 9).
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Subsequently (see Algorithm 3), the next stage is the construction process. The ants
then construct a path (sequence of heuristics) by traversing the hyperheuristic network.
The choice of the next vertex (heuristic) to be added is done probabilistically at each
construction step (line 4). Later, each ant traverses the arc to the selected vertex, and
applies the heuristic represented by that vertex to its current solution (line 5). Visibility
table is updated when all ants have completed one construction step of the path. This
updating process is done until all ants construct their paths completely.

In the update process, final stage of the algorithm HH (see Algorithm 4) the ants
evaluate their generated solution. Additionally, each ant deposits the pheromone trail on
the traveled path (line 1), that is, the sequence of low level heuristics selected for it. A
further description of the selection and update rules used in HH can be found in [8]. At
the end of each cycle all of the ants are relocated in region of the solution space where
the best solution of that cycle was found. Then, in the next cycle the ants start their paths
at the vertex of the network whose associated heuristic discovered the best solution of
the previous cycle (lines 2–7). Finally, HH returns the best solution Sg found during all
cycles.



A Hybrid Hyperheuristic Approach 429

3 Computational Experiment

In the following sections we report the conditions under the computational experiment
was conducted. Specifically, in Sect. 3.1 we describe the test cases used to assess the
performance of our hybrid hierarchical hyperheuristic approach. Section 3.2 reports the
hardware and software conditions of the experiment. Finally, in Sects. 3.3, 3.4 and 3.5
we analyze the performance of our proposed solution method against the one proposed
in the literature.

3.1 Test Cases

In order to validate our hybrid hierarchical approach, we used the dataset formed by
small-sized instances [3, 8]. Table 1 reports the containers characteristics of the consid-
ered 10 instances, showing the total number of containers, in TEU and absolute number
(n), the number of containers of types 20’ (T ) and 40’ (F), the number of containers for
three classes of weight (L: low, M : medium, H : : high) and the partition of containers
for each destination.

These instances concern a small size containership, with a maximum capacity of
240 TEU, composed of 12 odd bays, 4 rows and 5 tiers (3 in the hold and 2 in the upper
deck, respectively). Table 2 shows the loading times for the small containership. The
maximum horizontal weight tolerance (Q1) was fixed to 18% of the total weight of all
containers to load. While the maximum cross weight tolerance (Q2) was fixed to 9% of
the total weight, expressed in tons. Respecting MT, that is, the maximum stack weight
tolerance of three containers of 20’, was fixed to 45 tons and MF (the maximum stack
weight tolerance of three containers of 40’) was fixed to 66 tons.

Table 1. Containers for the set of small-sized instances.

Instance TEU n Type (n) Weight (n) Destination (n)

T F L M H D1 D2 D3

1 69 50 31 19 23 25 2 23 27 0

2 83 60 37 23 26 32 2 27 33 0

3 85 65 45 20 30 33 2 31 34 0

4 88 65 42 23 29 34 2 31 34 0

5 90 70 50 20 31 37 2 30 40 0

6 90 75 60 15 35 38 2 32 43 0

7 93 65 37 28 30 33 2 31 34 0

8 93 70 47 23 29 39 2 32 38 0

9 93 70 47 23 31 36 3 25 20 25

10 94 74 54 20 34 38 2 25 25 24
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Table 2. Loading times for the set of small-sized instances, the times are expressed in 1/100
ofminute, taken from [7].

Tier 02 Tier 04 Tier 06 Tier 82 Tier 84

Row 04 270 260 250 240 230

Row 02 260 250 240 230 220

Row 01 250 240 230 220 210

Row 03 240 230 220 210 200

3.2 Infrastructure

The computational experiment was carried out under the Microsoft Windows 7 Home
Premium Operating System. The solution method was implemented in Java (JDK 1.6)
andNetBeans 7.2 IntegratedDevelopment Environment. SolverGurobi 5.0.1. Regarding
the hardware, the proposed approach was executed on a computer with an Intel Core i5
CPU M430 at 2.27 GHz and 4 GB of RAM. Both algorithms were implemented and
executed under the same conditions to compare them fairly.

3.3 EHA Performance Measurement

EHA is a two-phase algorithm. In the first phase a partial solution, named Relaxed 0/1
LP formulation, is obtained by means of an exact method. Specifically, the solution is
generated by solving a relaxed binary linear programming formulation until the first
feasible solution is found. In this phase EHA uses the well-established commercial
optimization engine GUROBI.Moreover, the relaxed formulation is the complete binary
linear programming model proposed in [1] without considering the horizontal and cross
equilibrium constraints. In the second phase the hyperheuristic algorithm presented in
Sect. 2.2 is executed.

3.4 HHA Performance Measurement

HHA is a hybrid hierarchical algorithm consisting of two phases. Unlike the previous
procedure EHA,HHAgenerates the initial solution bymeans of the deterministic heuris-
tic DH described in Sect. 2.1. DH has empirically demonstrated a good performance on
the set of tested instances in terms of the loading percentage and computational time [10].
Like EHA, the second phase of HHA consists in executing the hyperheuristic detailed
in Sect. 2.2.

3.5 Experimental Results and Discussion

Table 3 shows the computational results obtained by EHA and HHA for the set of
instances described in Sect. 3.1. The results are presented in two main columns: one for
EHA and the other for HHA. For each algorithmic procedure, we report the objective
value of the initial solution (Obj) and the execution time spent to generate the initial
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solution (CPU Time). Additionally, we report the average objective value reported by
HH (Avg Obj), the average executing time of the second phase (Avg Time), and the
average CPU time of both phases (Tot Time). The objective values are the total loading
time and are expressed in 1/100 of a minute. Furthermore, the CPU time measured in
this research is given in seconds.

Table 3. Comparison of the performance of HHA with respect to EHA.

Inst. 

AHHAHE
Relaxed 0/1 LP 

formulation* HH DH HH 

Obj 
CPU 
Time 

Avg Obj 
Avg 
Time 

Tot 
Time 

Obj 
CPU 
Time 

Avg Obj 
Avg 
Time 

Tot 
Time 

1 11970 4.081 11996.666 7.359 11.440 12040 0.032 11961 0.392 0.424 
2 14590 23.975 14363 8.733 32.708 14340 0.000 14301 0.499 0.499 
3 15610 14.723 15544.666 9.852 24.576 15650 0.000 15578 0.514 0.514 
4 15650 19.874 15523.666 10.374 30.248 15670 0.000 15571.666 0.294 0.294 
5 16790 29.659 16743.666 9.554 39.213 16870 0.000 16746.333 0.479 0.479 
6 18000 31.245 17949.333 11.112 42.358 17930 0.000 17874.666 0.430 0.430 
7 15200 8.505 15389 10.441 18.946 15560 0.000 15469.666 0.300 0.300 
8 16760 25.651 16712 11.165 36.817 16780 0.016 16716.666 0.666 0.682 
9 16820 36.064 16746.666 14.205 50.269 16810 0.000 16745 0.696 0.696 
10 17980 40.735 17758.666 11.565 52.301 17810 0.000 17740.333 0.655 0.655 

Avg 15937 23.451 15872.733 10.436 33.888 15946 0.004 15870.433 0.492 0.497 

*It was stopped when the first feasible solution is reached by the commercial software GUROBI. 

In this research, EHA and HHA were executed 30 times for each instance. Both
approaches used the following configuration for HH (second phase). The number of
ants, the number of low-level heuristics, and the path length were set to 7. The number
of ant generations was set to 1000, τ0 = 0.009, α = 1.0, β = 2.0 and γ = ρ = 0.5.

From Table 3, we can observe that HHA and EHA have similar performances. More
precisely, EHA reached an average total loading time (Avg Obj) of 158.727 min and a
total CPU time (Tot Time) of 33.888 s. Likewise, HHA obtained an Avg Obj-value of
158.704 min and a Tot Time-value of 0.497 s. It is clear that no algorithm is better than
the other in terms of effectiveness (objective value). Nevertheless, HHA outperforms
EHA in 98.53% in efficiency (execution time).

In order to statistically validate the computational results, we conducted the well-
known Wilcoxon Rank Sum Test through the statistical computing software R. The
Wilcoxon test found a p-value of 0.002961. This means that the null hypothesis is
rejected, and hence, the differences in efficiency between EHA andHHA are statistically
significant with a confidence level of 99.99%.

As can be observed, by swapping the method to generate the initial solution in the
first phase, the effectiveness is similar, but the execution time is smaller. Therefore, HHA
is more suitable to solve instances arising in the context of the real-world.
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4 Conclusions

In this paper we faced the Containership Stowage Problem, also called the Master Bay
Planning Problem (MBPP). This is an NP-hard combinatorial optimization problem in
the context of maritime ports. In order to solve the problem, we proposed a hybrid hier-
archical approach (HHA) based on a deterministic heuristic with a perturbative hyper-
heuristic. We empirically assess our proposal by comparing its performance against a
previous work documented in the literature (EHA). The computational results showed
that HHA outperforms EHA by 98.53% in efficiency preserving the quality of the solu-
tions found. This fact was confirmed by the Wilcoxon Rank Sum Test with a confidence
level of 99.99%. Taking into account the obtained experimental results, we conclude that
our proposal is a good alternative to solve real-world instances for the tackled problem.
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Abstract. In this paper, we are introducing a mathematical model to
describe the process of unloading the whole bulk carrier ship’s raw sugar
cargo, imported by a company, to be stored in storage silos at the refin-
ery. The main point is to optimize the duration of the bulk carrier ship’s
stay at the harbor deck. First of all a mathematical formula is elabo-
rated to describe the real life process of unloading the whole bulk carrier
ship’s cargo using a set of inequalities. An algorithm is then proposed to
optimize the duration of the bulk carrier ship’s stay at the harbor deck
which is combining “branch and bound” and “tabu search” methods. The
results found are very encouraging since it was possible to minimize the
unloading delay from 10 days currently observed to 5 days as well as the
scenarios found using the mathematical model were actually applicable
in reality.

Keywords: Raw sugar unloading · Mathematical model · Branch and
bound · Tabu search

1 Introduction

This paper will summarize the study, analyzes and modeling conducted, in an
internship at a Company refinery. The subject of this internship turned about
studying and minimizing the delay of unloading the bulk carrier ship’s raw sugar
cargo at the harbor which will be transported by a fleet of trucks from the deck
to the storage silos. The analyses of the studied problem fixed as an additional
goal to suggest an optimal manner to guaranty the unloading of the whole of
the bulk carrier ship’s cargo in less than 5 days in order to avoid any penalty or
additional cost to ship charters.

The problem studied in this paper is a logistic one, and more specifically a
transport problem. This category of problem consists on organizing and opti-
mizing the tours of a fleet of vehicles. To resolve this kind of problem we can
use either an “exact method” witch allows us to find the optimal solution of
the problem, or an “approximate method” or “metaheuristic” providing us an
approximate solution in a reasonable calculation time [8,9].
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In the maritime sector, closely impacting our study case, it is essential to
respect delivery times and reduce the costs of various container handling and
transfer operations, taking into account the productivity of the harbor. Improv-
ing the performance of a harbor is often a very important issue, in particular
because of the considerable costs involved in managing it.

Following all these stakes several works has been elaborated in the field of
scheduling and optimization problems in a maritime terminal as for example,
optimization problem for loading operations of outbound containers. In this
work the scheduling problem for loading operations is formulated as a mixed
linear program model. The objective function is to minimize the make span of
loading operations by yard cranes. The mathematical model is based on various
assumptions and it includes the potential interferences and rehandle. A heuristic
method is developed for solving this problem, namely adaptive large neighbor-
hood search [7]. Another problem consists to study a combination between two
knowns problems, the first is the storage location assignment problem, and the
second is the straddle carrier scheduling problem. This approach leads to the
use of multi-objective optimization. The objective is to minimize the operating
cost. To solve the problem an adapted multi-objective tabu search algorithm is
proposed.

2 Problem Description and the Mathematical Model

2.1 Problem Description

The process of unloading raw sugar imported by the company is divided into
three crucial steps. The first one is the loading of the trucks. At this stage, the
company uses a feet of 54 to 104 trucks, with a capacity of 28 Tons each, rented
near several carriers to load in the bulk carrier ship’s cargo.

The bulk carrier ship accosts generally in a first time at deck T3/T4 where
only one crane is assigned to unload it. This phase is called “Relief Phase” and
it can last one or two days. The objective of this phase is to reduce the weight
of the vessel in order to be able to move it towards quay 36 where two cranes
can be assigned to unload it.

The crane assigned to the ship carries out the unloading of the cargo accord-
ing to the instructions of the bulk carrier vessel’s captain who makes sure that
the unloading operation will not destabilize the vessel.

The second phase consists on trucking the raw sugar from the deck to the
storage silos. In the beginning of this phase, the truck driver covers his truck
filled with raw sugar then moves towards the custom office for the control of
exit. After that, the charged truck goes towards company refinery taking a path
predefined by contract.

The last step is the unloading of the truck’s cargo into the storage silos at the
refinery. In this phase, a controller at the entrance of refinery checks the papers
provided at customs office. The truck is weighed then moves to one of the two
hoppers or directly in one of the three storage silos to discharge its cargo. The
truck must once again carry out the weighing of its tare before going back to the
harbor to start proceeding again. This process is repeated as much as the schift
is not finished.
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The analysis of the studied process shows that the company can act only
on the number of trucks assigned to the process of unloading the bulk carrier
ship’s cargo. This consideration reduces significantly complexity of the problem
in a mathematical modeling and optimization point of view. In front of these
considerations, and in order to deal with the problem in a broader horizon, it
was decided to consider the problem within a more general framework which
remains adaptable to the particular case raised by the company. It is a problem
of logistics very running for the industrialists as well for the large accounts
having great means as for the small and medium-size companies forced to manage
their expenditure as well as possible in order to guarantee good performances
and comfortable margins of benefits. The work schedule at the port follows a
particular operating mode, working by schift. The day is therefore divided into
three schifts, first schift starts from 7:00 until 14:30, second schift starts from
15:00 until 22:30 and third schift starts from 23:00 until 06:30.

2.2 Mathematical Model

There are two categories of trucks with two different capacities that constitute
the fleet used for trucking the raw sugar from the deck to the storage silos. The
objective is know how much truck is needed from each category to minimize the
time of unloading the ship’s cargo. This minimization of the unloading’s time
passes by the maximization of raw sugar’s amount discharged in a schift. First of
all, we will present the model, then we will define the variables, the parameters
and the constants of the problem.

The problem can then be modeled as follows:
Minimize
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Where

– yki : binary variable which is worth 1 if the number of trucks in the solution
is equal to i or higher than i during the schift k and 0 if not.

– xk
ij : binary variable which is worth 1 if the truck i in the schift k be longs to

the category j.
– nk

i : rotation’s number of the trucks i during the schift k.
– T charg

j : loading’s time truck of the category j during the schift k.
– T rot

jk : rotation’s time truck of the category j during the schift k.
– Qj : capacity’s truck of the category j.
– CT : total capacity of the cargo to be discharged.

Let m = 420/T charg
min , with T charg

min is the time of loading of a truck with
smallest capacity (420min=7h = duration of the schift). The objective function
minimizes the time required for the unloading of the cargo. Indeed, the mini-
mization of the time for the unloading a cargo effect automatically the duration
of the stay of the bulk carrier ship. Constraint (2) ensures the exit of a vector
full with 1 and 0 starting from a certain row, the operator used in this constraint
is defined as follows: a ⊗ b = ab+ ab.

Constraint (3) binds the existence of a truck in the solution to the possibility
of making rotations. In the other words, if the truck isn’t present in solution its
number of rotations must be null for not confuse the solution. Constraint (4)
constitute not only a stop condition of the process but is also a condition for
sizing of the fleet. Constraint (5) represents the working time of a truck that
must be less than the total time worked. The last constraint reflects the fact
that the total time worked by a schift must not exceed the time of the schift.

3 Branch and Bound and Tabu Search

To solve the problem we use two methods: the first one is the exact method
“branch and bound”, the second one is “tabu search”. In this section we will
represent this two methods and some of their applications.

3.1 Branch and Bound

The branch and bound method was first proposed by A. H. Land and A. G.
Doig in 1960 [1] for discrete programming, and has become the most commonly
used tool for solving NP-hard optimization problems [2]. The name “branch and
bound” first occurred in the work of Little et al. On the traveling salesman prob-
lem [3,4]. A branch-and-bound algorithm consists of a systematic enumeration
of candidate solutions by means of state space search: the set of candidate solu-
tions is thought of as forming a rooted tree with the full set at the root. The
algorithm explores branches of this tree, which represent subsets of the solu-
tion set. Before enumerating the candidate solutions of a branch, the branch is
checked against upper and lower estimated bounds on the optimal solution, and
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is discarded if it cannot produce a better solution than the best one found so
far by the algorithm. This approach is used for a number of NP-hard problems
like: integer programming, nonlinear programming, travelling salesman problem,
Maximum satisfiability problem and many other problems.

3.2 Tabu Search

Tabu search method, created by Fred W. Glover in 1986 [5] and formalized in
1989, [6] is a metaheuristic search method employing local search methods used
for mathematical optimization. Local searches take a potential solution to a
problem and check its immediate neighbors (that is, solutions that are similar
except for one or two minor details) in the hope of finding an improved solution.
Local search methods have a tendency to become stuck in suboptimal regions or
on plateaus where many solutions are equally fit.

Tabu search enhances the performance of local search by relaxing its basic
rule. First, at each step worsening moves can be accepted if no improving move is
available. In addition, prohibitions are introduced to discourage the search from
coming back to previously-visited solutions. The implementation of tabu search
uses memory structures that describe the visited solutions or user-provided sets
of rules [6]. If a potential solution has been previously visited within a certain
short-term period or if it has violated a rule, it is marked as “tabu” (forbidden)
so that the algorithm does not consider that possibility repeatedly.

4 Proposed Idea

The objective of this work is to find the number of trucks and the number of
schifts necessary we need to unload the content of the bulk carrier ship within
a period which doesn’t exceed 5 days. In order to achieve this objective it has
been decided to program the studied real life process of only one schift since
all the schifts are identical. At the end of the simulation, the program gives us
as output the number of schifts required to discharge the cargo in a minimum
possible time and that does not exceed 5 days as well as the number of trucks
necessary to ensure unloading. The basic idea was to use the branch and bound
method in order to have an initial solution for the tabu search algorithm, this
initial solution is the number of trucks that can be used to ensure a maximum
unloaded quantity. The tabu search gives thus the best scenario which proposes
the number of trucks of each category, their order of passage and the quantity
discharged in each schift using the consideration before. The major difficulty we
were confronted to when solving the problem was the large number of variables
involved. It was necessary to find a way to reduce the number of variables.

This reduction was made possible by the introduction of intermediate
variables:

Cj : The number of trucks of the j category required to ensure unloading.
Nj : The total number of rotations made by Cj .
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The introduction of these intermediate variables make it possible to rewrite the
constraints in the form AY ≤ b with Y is a variable vector. To code the con-
straints in the algorithm we have decided to construct the As matrix for schift
and the two vectors bs second member and cs the objective, these matrix and
vectors which serve as input of the branch and bound algorithm, represent the
constraints and the objective of the problem which are modeled under the equa-
tions. In this work, the branch and bound method was used to solve the reduced
model. First, we introduce the adapted branch and bound algorithm used in this
paper. The input of the branch and bound algorithm, which we have developed,
are As, bs and cs constructed by a function appointed “MatrixForSchift”.

After application of its algorithm, the branch and bound provides a solution
consisting of two vectors:

• Vsol vector containing the required number of trucks and the number of rota-
tion of each category.

• Qsol is the unloaded quantity by the achieved fleets in the schift.

The tabu search method is used in this work to improve and supplement the
results given by the branch and bound algorithm. The algorithm adapted to this
method allowed us to have the best scenario to unload the cargo while respecting
the constraints and realizing the objective, to be able to arrive at these results
one opted for an improvement of the tabu search this improvement is based on
the strategy of the “Best fit” that explores the entire neighborhood in order to
give the best solution. The algorithm keeps at each iteration the best solution
and no solution can be repeated. In order to construct a solution, the algorithm
calculates the time made by each combination and the quantity discharged by
this combination and retains the best distribution characterized by a maximum
unloaded capacity, number of trucks and a minimum unloading time during the
schift. It should be noted that it is not always the same distribution since in each
schift there are factors that can influence the number of trucks, the unloading
time as well as the capacity discharged. This will be seen with more details in
the results section.

Algorithm 1:
Input: Vsol, Qsol, R, Tr, Tc, Tschift;
Ensure: Vmax, Qmax, Rmax;
While there are solutions and the number tested is less than Nmax;
Qmax = GetValue(Vsol, Qsol, R, Tr, Tc, Tschift);
if(Qmax > Qsol);
Vsol = Vmax;
End if;
Vmax = GetNext(Vmax);
End while.

Algorithm 2:
Input: Ct, Q1, Q2, T1charg, T2charg, T1rot, T2rot, Vsol, Qsol, R, Tr, Tc, Tschift;
Ensure: Vmax, Qmax, Rmax;
As, bs, cs ← MatrixSchift(Ct, T1charg, T2charg, T1rot, T2rot, Q1, Q2);
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Qsol, Vsol ← BB(cs, As, bs) % Branch and bound algorithm;
Qmax, Vmax, Rmax ← TabuSearch(Vsol, Qsol, R, Tr, Tc, Tschift);

5 Results

In this paper we have treated different situations. In the first one, we have
considered that the time of works is continuous and there is no pause in the
schift no traffic jam in the path. As shown in the previous model, we consider
that the unloading process begins with a first trip, which is considered as a half
rotation, then we start calculating the rotations. According to this reconciliation
and to know the unloaded quantity, we multiply the number of truck of the fleet
by the capacity of the trucks, in order to know the unloaded quantity in the
first trip then it is added to the multiplication of the rotation’s number by the
capacity of the trucks in the fleet.

5.1 Uniform Fleet

Situation 1: No Break No Delay
In this situation, the algorithm shows that 11 trucks can do the mission. Indeed,
the company can use just 11 trucks making 79 rotations, so 79 rotations plus the
first trip of the 11 trucks allows to unload 2520 Tons in the first schift. Its the
same situation for the second schift. For the third schift, the company can use
just 7 truck which must make 83 rotations plus the first trip of the whole fleet to
ensure 2520 Tons of sugar unloaded. Situation 2: Break In this situation we
considered that there is a break in each schift. The aim of this consideration is to
restore the more realistic results. The break considered causes a decrease in the
unloaded quantity in schift which leads to an augmentation of the total unloading
duration of the bulk carrier ship. The Table 3 shows that if the 11 trucks make
73 rotations plus the first trip of the whole fleet, the quantity unloaded will be
2352 Tons in the two first schifts. For the third schift, the company can use just
7 truck which must make 77 rotations plus the first trip of the whole fleet to
ensure 2352 Tons of sugar unloaded. The Table 4 shows that the number of schift
increases from 12 to 13 schifts thus from 4 to 5 days (Tables 1 and 2).

Table 1. Results of simulation without delay and without break

Schifts Number of trucks Number of rotations Unloaded quantity in Tons

Schift 1 11 79 2520
Schift 2 11 79 2520
Schift 3 7 83 2520
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Table 2. Required number of schift

Time limit to unload the total quantity 4 days
Total number of schift 12

Table 3. Results of simulation with break

Schifts Number of trucks Number of rotations Unloaded quantity in Tons

Schift 1 11 73 2352
Schift 2 11 73 2352
Schift 3 7 77 2352

Situation 3: Break and Delay
In this part, we introduce a new factor which affects the process of unloading the
bulk carrier ship’s cargo, it is the delay due to the traffic’s problem between the
harbor and refinery specially in peak hours to talk into account of the delay’s
problems, we considered 4 peak hours distributed over day as follows: 8:30, 12:15,
13:45 et 18:00. The delay in each peak hours is simulated using the normal low.

The Table 5 shows the effect of the delay due to traffic to the performance of
unload especially in the two first schifts. The result of the last schift is unchanged
because there is no peak hour in this schift. So, the introduction of the delay
effects the duration of unloading the cargo of the bulk carrier ship. Instead of 13
schifts the operation of unloading in this situation needs 14 schifts, with 11 trucks
in the two first schifts and 7 trucks in the last schift. The quantity unloaded will
be 2100 Tons in the two first schifts if the 11 trucks make 64 rotations plus the
first trip of the whole fleet. For the third schift, the company can use just 7 truck
which must make 77 rotations plus the first trip of the whole fleet to ensure 2352
Tons of sugar unloaded. The capacity discharged during the first and the second
schifts can be improved as shown in the Table 7 below.

The Table 7 shows that if the 11 trucks make 67 rotations plus one trip
of the whole fleet, the quantity unloaded will become 2352 Tons in the two
first schifts. For the third schift, the company can use just 7 truck which must
make 77 rotations plus one trip of the whole fleet to ensure 2352 Tons of sugar
unloaded. These results show that the improvement in unloading performance
during the schifts 1 and 2 is possible by increasing the number of trucks from
11 to 17. This improvement means that the effect of the delay caused by peak
traffic is offset by the number of trucks. Improvement of the performances of
unloading by increasing the number of trucks, has been the subject of study. The

Table 4. Required number of schift

Time limit to unload the total quantity 5 days
Total number of schift 13
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Table 5. Results of simulation with break and delay

Schifts Number of trucks Number of rotations Unloaded quantity in Tons

Schift 1 11 64 2100
Schift 2 11 64 2100
Schift 3 7 77 2352

Table 6. Required number of schift

Time limit to unload the total quantity 5 days
Total number of schift 14

Table 7. Improved simulation results with pause and delay

Schifts Number of trucks Number of rotations Unloaded quantity in Tons

Schift 1 17 67 2352
Schift 2 17 67 2352
Schift 3 7 77 2352

Table 8. Required number of schift

Time limit to unload the total quantity 5 days
Total number of schift 13

graph identify the influence of the number of trucks on the unloaded quantity, it
represents the results which considered the delay as well as the break. We remark
that the unloaded quantity is stagnated from a certain number of trucks. This
conclusion is valid for all schifts. Indeed, unnecessary to increase the number of
trucks. The saturation threshold for the schift 3 is lower than those of the schift
1 and the schift 2. This finding is logical because the performances of the schift
3 isn’t impacted by the delay due to the traffic contrary to the schift 1 and 2,
for which an increase in the number of trucks can offset the effect of delay until
the stagnation threshold. The Table 9 shows that the company uses 71 trucks
during the first schift to unload a quantity of 1988 Tons, in the second schift the
company uses 63 trucks to unload 1764 Tons, the unloaded quantity in the last
schift is 1344 Tons with 48 truck. We note that in our simulation a number of 11
trucks allows to unload a quantity of 2100 Tons in front of a number of 71 trucks
for the unloading of a quantity of 1988 Tons in reality (Fig. 1 and Tables 6, 8).
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Fig. 1. Evolution of the unloaded quantity according to the number of trucks

Table 9. Results of a working day at the company

Schifts Number of trucks Unloaded quantity in Tons

Schift 1 71 1988
Schift 2 63 1764
Schift 3 48 1344

5.2 Diversified Fleet

In this part, we bring out the interest to use a diversified fleet of trucks with two
categories, the first with a capacity of 28 Tons and the second with 32 Tons.

Table 10. Simulation of diversified fleet

Schifts Number of trucks Order of passage Number of rotations Unloaded quantity in Tons

Schift 1 10 1 1 0 1 1 1 1 0 1 0 19 | 44 2248
Schift 2 10 1 1 0 1 1 1 1 0 1 0 19 | 44 2248
Schift 3 7 0 0 0 0 0 0 0 77 | 00 2352

It should be noted that the trucks in category 1 are represented by zeros and
those in category 2 by ones. The first number in the box “number of rotation”
represents the total number of turns made by the fleet of category one as well
as the second is that of category 2. According to the Table 10, if the company
use a diversified fleet with 10 trucks, 3 trucks from the first category must do
19 rotations and 7 trucks from the second category must do 44 rotations, plus
one trip of the fleet the unload quantity is 2248 Tons in the two first schifts. For
the third schift, the algorithm shows that there is no need to use a diversified
fleet, just uniform fleet with 7 trucks, with capacity is 28 Tons each, must doing
77 rotations plus one trip of the fleet and the unloaded quantity will be 2352
(Table 11).
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Table 11. Required number of schift

Time limit to unload the total quantity 5 days
Number total of schift 14

A comparison of the results in Tables 10 and 5 demonstrates the value of using
a diversified fleet as defined above. The fleet used in the simulation of Table 10
allows better unloading performance than the one obtained by the results in
Table 5, either in terms of the quantity discharged by schift or in terms of the
overall time of unloading of the vessel. It should be noted that the improvement
of the results of Table 5 carried out at the level of the simulation of Table 7 allows
performance comparable but less than that of the diversified fleet, except that
it requires 17 trucks for schifts 1 and 2 against 10 trucks only in the latter case.

6 Conclusion

The conclusions we can draw from the work carried out are the following:
Unloading the whole bulk carrier ship’s raw sugar cargo is possible within a

period of 5 days from berthing and the operation during the 3 schifts of the day
is a necessary condition for unloading the cargo of the bulk carrier within 5 days.
A fleet consisting of 11 trucks for the first and the second schift, 7 trucks for the
schift 3 is sufficient to unload the bulk carrier within the time limit allowing to
the company to avoid additional costs to shippers. The results obtained make
it possible to envisage the assignment of a different truck group for each schift
according to the dimensions proposed by the solutions. Implementation of this
provision could make systematic night schift operation on the one hand and
improve the performance and working conditions of the fleet on the other hand.
The results obtained in this paper are much better then what actually happens.
Indeed, the company unloads the entire cargo of the ship within a period that
varies between 8 and 10 days at a fleet of 64 trucks or more. Adding to this,
these results are not just numbers that are compared but they are also strategies
of controlling several factors in order to obtain the same results existing in this
paper. Finally, it is necessary to mention that the model and the resolution
developed are not only valid for the company, but also can be perfectly adapted
to the context of different companies having an activity similar to the problem
of unloading a cargo, from point A to point B via a fleet of trucks.
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