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Abstract. Most structured data today is still stored in relational databases, which
makes it important to provide a translation between relational and semantic data.
A relational to RDF mapping, such as R2RML [13], provides a way to view exist-
ing relational data in the RDF data model through declarative mappings. While
relational to RDF mapping translates relational instance data to RDF, it does not
specify any translation of existing relational constraints such as primary and for-
eign key constraints. Since the introduction of R2RML, interest in RDF constraint
languages has increased and SHACL [15] has been standardised. This raises the
question of which SHACL constraints are guaranteed to be valid on a dataset
produced by a relational to RDF mapping. For arbitrary SQL constraints and
relational to RDF mappings, this is a hard problem, but we introduce a number
of restrictions on the mappings that allow us to introduce a constraint rewriting
for relational to RDF mappings that faithfully transfers SQL integrity constraints
to SHACL constraints. We define and prove two fundamental properties, namely
maximal semantics preservation and monotonicity.

1 Introduction

In relational database theory, one can restrict data to a set of relations that are considered
to be useful to applications at hand by imposing relevant integrity constraints upon
them, i.e., the semantics properties, also known as data dependencies, that the data in
the database must obey. However, such integrity constraints of relational data are not
explicit when mapped into RDF. A relational to RDF (R2R) mapping outputs an RDF
graph that no longer contains the integrity constraints information. To overcome the
problem, one can restore the semantic properties of R2R transformed data by using a
semantics preserving constraint rewriting [7,23,26] that maps the integrity constraints
of relational data into a well-behaved constraint formalism, which provides a closed-
world description for the mapped RDF graph. The integrity constraints of the dataset
that is being stored or represented in the RDF graph are a critical piece of information in
practice, both to detect problems in the RDF dataset and provide data quality guarantees
for RDF data exchange and interoperability.

In this paper, we study constraint rewriting for R2R mapping to make it more faith-
ful by transforming the integrity constraints, such as primary and foreign keys, unique
and not null integrity constraints as well as data types, from SQL database to RDF
graph. In an attempt to transfer such integrity constraints of relational data, such as key
constraints and functional dependency in direct mapping [2] to a larger perspective of
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relational constraints [1, Sect. 10] in more expressive ontology-based mapping [18] of
relational data, into OWL DL axioms [20] as well as Epistemic DL axioms [14], the
problem has recently been studied in [7,23] and [10,11,21] respectively. However, for
our work, we follow the constraint rewriting technique proposed in [26] that explicitly
transforms integrity constraints of SQL database into integrity constraints on the RDF
graph, expressed in SHACL [15] as opposed to OWL/Epistemic DL axioms. Contrary
to OWL, SHACL, the Shapes Constraint Language recommended by W3C since 2017,
has a closed world semantics and uses the unique name assumption, which makes it a
more suitable candidate than OWL for expressing as well as detecting the violations of
integrity constraints on an RDF graph.

For arbitrary SQL constraints and relational to RDF mappings, constraint rewriting
is a hard problem. For simplicity, we restrict ourselves to (a) the most common SQL
constraints, namely keys, uniqueness and not null constraints, and (2) simple R2R map-
pings (Definition 4), which are restricted in such a way that the resulting RDF is struc-
turally close enough to the source that it remains possible to analyse the propagation of
source constraints to the target. Thus, once the SHACL descriptions of the mapped RDF
graph are available, they can be used to validate that the facts in the graph are compatible
with the constraints of the relational source and the mapping, using the SHACL valida-
tion engine. However, R2R mappings are also known for their mapping inconsistency
and redundancy anomalies [9,16], thus one-to-one semantics correspondence such as
semantics preservation proposed in [26, Defn. 6] and [23, Defn. 12] between the rela-
tional and the mapped RDF data can not be established in general [23,26, Prop. 1]. One
of the prominent reasons behind such flaws is that R2R mappings often imply SHACL
constraints that satisfy the mapped RDF graph with respect to database constraints even
if the key constraints are violated in the source database, which can not be easily fixed
as the mappings rely on the values of database keys to produce RDF terms [26, Exam. 4
and 5]. We can thus not hope for semantic equivalence between the SQL and SHACL
constraints. In this work we instead define a notion of maximal semantics preservation
to express that any additional SHACL constraints are either implied by the generated
ones, or not implied by the SQL constraints.

Example 1. Consider the following database instance D with schemas that describes
students and their enrollment in courses being offered by a university:

create table course (C_id varchar primary key, Title varchar unique);

create table student (S_id integer primary key, Name varchar, Code

varchar not null foreign key references course(C_id));

S_id Name Code

011 Ida CS40

012 CS20

C_id Title

CS40 Logic

CS20 Database

CS50 Data Eng

FK

In general, an R2R mapping is an assertion of the form Q −→ ψ that transforms a set of
tuples projected by SQL query Q, called source query, over a relational source D into
a set of RDF triples defined by graph triple patterns ψ. Assume an R2R mapping M to
retrieve students and their enrollment in the university’s courses,

Select S_id from student −→ 〈iri1(S_id), rdf:type, Student〉.
Select C_id from course −→ 〈iri2(C_id), rdf:type, Course〉.

Select S_id, C_id from student, course −→ 〈iri1(S_id), enrolledFor, iri2(C_id)〉.
where student.Code = course.C_id
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where iri1 and iri2 are injective functions that construct iris for students and courses
from their respective id’s. The mapping M yields the following RDF graph G (on the
left) from the database instanceD:

〈iri1(011), rdf:type, Student〉.
〈iri1(012), rdf:type, Student〉.
〈iri2(CS40), rdf:type, Course〉.
〈iri2(CS20), rdf:type, Course〉.
〈iri2(CS50), rdf:type, Course〉.
〈iri1(011), enrolledFor, iri2(CS40)〉.
〈iri1(012), enrolledFor, iri2(CS20)〉.

:Student a sh:NodeShape, rdfs:Class;

sh:property [ sh:path :enrolledFor;

sh:maxCount 1; sh:minCount 1;

sh:nodeKind sh:IRI; sh:class :Course ].

:Course a sh:NodeShape, rdfs:Class;

sh:property [ sh:path [sh:inversePath

:enrolledFor];

sh:nodeKind sh:IRI; sh:class :Student ].

Next, consider a SHACL document S (on the right), which consists of node shapes
:Student and :Course with implicit target class1 that define the constraints, intuitively,
all students must be enrolled for exactly one course, and all courses must be enrolled by
zero or more students. Now observe that the document S not only validates the graph
G but also guarantee the validation of every RDF graphs that can be generated via
mappings M from any valid instance D of the schemas in Example 1, i.e., semantics
preservation. Moreover, any further restrictions on the property paths of S, such as all
courses must be enrolled by at least one students, would easily be violated, meaning
that a valid database instanceD can be found such that mapped RDF graphs would not
validate the document S. Thus, we say that S is a maximally implied set of SHACL
shapes for the given relational source and the mappings M. For proof details, we refer
the readers to the extended version [28].

Example 1 illustrates that an assessment of R2R mapping is necessary to guaran-
tee whether the integrity constraints of relational data are maximally propagated via
mappings to the RDF. We thus take the process of R2R transformation into account
and define constraint rewriting as a function from constraints in SQL database to the
sets of SHACL shapes over RDF graph. We first introduce two fundamental proper-
ties of constraint rewriting, namely maximal semantics preservation and monotonicity.
Finally, we show that our proposed constraint rewriting is both maximal semantics pre-
serving and monotone, even in the most general and practical scenario where relational
databases contain null values. A constraint rewriting for R2R mappings is monotonic
if it assures that the result of constraint rewriting that is already computed no longer
requires alteration after the addition of new mappings.

2 Preliminaries

In this section, we fix notions and notations fundamental to the definition of R2R map-
ping, and SHACL constraints [15].

1 https://www.w3.org/TR/shacl/#implicit-targetClass.

https://www.w3.org/TR/shacl/#implicit-targetClass
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Databases. Let Δ be a countably infinite set of constants, including the reserved sym-
bol null. A relational schema R is a finite set of relation names, known as relation
schemas. We associate with each relation schema R ∈ R a finite, non-empty set of
named attributes, denoted by att(R). An instance D of R assigns each relation schema
R ∈ R a finite set of tuples RD, where each tuple t ∈ RD is a function that assigns to
each attribute in att(R) a value from domain Δ.

We write X as shorthand for a non-empty set {x1, . . . , xn} of attributes for n ≥ 1, and
x ∈ X to say that x is one of the elements of the set. |X| = n denotes the cardinality of
the set. We further write X �R to denote that X is a non-empty subset of att(R). We write
t(x) to denote the restriction of a tuple t ∈ RD to an attribute x ∈ att(R), which can be
extended to a set X � R, i.e., t(X). Finally, we define a relational database as a pair of
R andD, where R is a relational schema andD is a database instance of R. The active
domain ΓD of a database is the set of constants appearing inD, i.e., ΓD ⊆ Δ \ {null}.

SQL Constraints. We consider declarations of the SQL: (a) primary (PK) and foreign
(FK) keys, (b) not null (NN) and unique (UNQ) integrity, and (c) data types, constraints
on the relational schema R. We write Σ for the set of SQL constraints. NN, UNQ and PK
constraints on a relational schema R are expressions of the form NN(X,R), UNQ(X,R)
and PK(X,R), resp., for any X � R such that R ∈ R. An instanceD of R satisfies:

� NN(X,R) if for every t ∈ RD and x ∈ X, t(x) 	= null.
� UNQ(X,R) if for every t, t′ ∈ RD, if t(x) = t′(x) 	= null for every x ∈ X then t = t′.
� PK(X,R) if: (a) for every t ∈ RD and x ∈ X, t(x) 	= null, and (b) for every t, t′ ∈ RD,

if t(X) = t′(X) then t = t′.

An FK constraint on R is an expression of the form FK(X,R,Y, S ) for any X � R and
Y �S with |X| = |Y | and R, S ∈ R. An instanceD of R satisfies FK(X,R,Y, S ) if for every
t ∈ RD: either (a) t(x) = null for some x ∈ X, or (b) there exists a tuple t′ ∈ SD such
that t(X) = t′(Y). Next, to handle SQL data types, let the domain of an SQL data type
ν be a subset Δν ⊆ Δ. An SQL data type declaration on R is an expression of the form
Type(x, ν,R) for every x ∈ att(R) such that R ∈ R, where ν is an SQL data type. An
instance D of R satisfies Type(x, ν,R) for an attribute x ∈ att(R), if t(x) ∈ Δν for every
t ∈ RD.

A relational schema R with source constraints Σ consists of the relational schema R
and a set Σ of SQL constraints on R, such that UNQ(Y,R) ∈ Σ for all FK(X,R,Y, S ) ∈ Σ,
as usual in all SQL implementations. W.l.o.g., we also assume that for every X � R:
(a) if PK(X,R) ∈ Σ, then UNQ(X,R) ∈ Σ and NN(X,R) ∈ Σ, (b) if NN(X,R) ∈ Σ, then
NN(x,R) ∈ Σ for every x ∈ X and (c) if NN(x,R) ∈ Σ for every x ∈ X, then NN(X,R) ∈ Σ.
Finally, given a relational schema R with constraints Σ, and an instanceD of R, we call
D a legal instance of R with Σ, denoted byD |= Σ, ifD satisfies all constraints in Σ.

Queries. Assume relational algebra with Selection σ¬isNull, Projection π, Equi Join
��equality, Right Outer Join �� equality, Left Outer Join ��equality and Full Outer Join

� equality operations as query language that corresponds to a sub-class of basic frag-
ment of SQL standard. We use notationσ¬isNull for the select condition ‘IS NOT NULL’
over an attribute as in SQL, which can be extended to a set of attributes. Assume that
R is a relational schema,D is an instance of R and Q is a relational algebra expression
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over R. Then att(Q), the set of attributes of Q, is recursively defined as follows, where
we write X � Q to denote that X is a non-empty subset of att(Q):

1. If Q = R such that R ∈ R, then att(Q) = att(R).
2. If Q′ is a relational algebra expression over R, X � Q′ and Q = σ¬isNull(X)(Q′), i.e.,
σ¬isNull(x1)∧ ...∧¬isNull(xn)(Q

′), then att(Q) = att(Q′).
3. If Q′ is a relational algebra expression over R, X �Q′ and Q = πX(Q′), then att(Q) =

X.
4. Let Q1,Q2 be relational algebra expressions over R such that X �Q1 and Y �Q2 have

compatible data types. If Q = Q1 OPX=Y Q2 s.t.OP ∈ {��,�� , ��, 
� }, then att(Q) =
att(Q1) ∪ att(Q2).

The evaluation of Q overD, a set of tuples denoted by QD, is recursively defined as
follows,

1. If Q = R such that R ∈ R, then QD = RD.
2. If Q′ is a relational algebra expression over R, X � Q′ and Q = σ¬isNull(X)(Q′), then

QD = {t ∈ Q′D | t(x) 	= null for every x ∈ X}.
3. If Q′ is a relational algebra expression over R, X �Q′ and Q = πX(Q′) then, for every

t ∈ QD there exists t′ ∈ Q′D such that t(X) = t′(X).
4. Let Q1,Q2 be relational algebra expressions over R such that X �Q1 and Y �Q2 have

compatible data types.
a. If Q = Q1 ��X=Y Q2 then for every t ∈ QD: (i) there exist t1 ∈ Q1

D and t2 ∈ Q2
D

s.t. t(x) = t1(x) = t2(y) 	= null for every x ∈ X and y ∈ Y , (ii) t(u) = t1(u) for
every u ∈ (att(Q1)\att(Q2)), and (iii) t(v) = t2(v) for every v ∈ (att(Q2)\att(Q1)).

b. If Q = Q1 ��X=Y Q2 then for every t ∈ QD: either (i) there exist t1 ∈ Q1
D and

t2 ∈ Q2
D s.t. t(x) = t1(x) = t2(y) 	= null for every x ∈ X and y ∈ Y , t(u) = t1(u)

for every u ∈ (att(Q1) \att(Q2)) and t(v) = t2(v) for every v ∈ (att(Q2) \att(Q1)),
or (ii) there exist t1 ∈ Q1

D s.t. t(u) = t1(u) for every u ∈ (att(Q1) \ att(Q2)) and
t(v) = null for every v ∈ (att(Q2) \ att(Q1)).

c. If Q = Q1 �� X=Y Q2 then for every t ∈ QD: either (i) there exist t1 ∈ Q1
D and

t2 ∈ Q2
D s.t. t(x) = t1(x) = t2(y) 	= null for every x ∈ X and y ∈ Y , t(u) = t1(u)

for every u ∈ (att(Q1) \att(Q2)) and t(v) = t2(v) for every v ∈ (att(Q2) \att(Q1)),
or (ii) there exist t2 ∈ Q2

D s.t. t(v) = t2(v) for every v ∈ (att(Q2) \ att(Q1)) and
t(u) = null for every u ∈ (att(Q1) \ att(Q2)).

d. If Q = Q1 
� X=Y Q2 then QD = Qa
D ∪ Qb

D s.t.Qa = Q1 ��X=Y Q2 and Qb =

Q1 �� X=Y Q2.

Henceforth, we denote by SP the relational expression containing only select-project
relational operations, and SPJ the relational expression containing select-project-
(outer)join relational operations, respectively.

Definition 1. Let Q be a relational expression over a relational schemaR. Then, we say
that the Q is a valid query if and only if there exist foreign key references between
every two sets of attributes participating in an equality join condition in the Q.

RDF Graphs. Assume that I,B and L are countably infinite disjoint sets of Interna-
tionalized Resource Identifiers (IRIs), Blank nodes and Literals, respectively. The set of
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RDF terms T is I ∪ L ∪ B. A well-defined RDF triple is defined as a triple 〈s, p, o〉
where s ∈ I ∪ B is called the subject, p ∈ I is called the predicate and o ∈ T is called
the object. An RDF graph G ⊆ (I ∪ B) × I × T is a finite subset of RDF triples.

Definition 2. The set of nodes of an RDF graph G is the set of subjects and objects of
triples in the graph, i.e., {s, o | 〈s, p, o〉 ∈ G}.

Assume a countably infinite set V of variables disjoint from T . A triple pattern is
defined as a triple in (I∪B∪V)× (I∪V)× (T ∪V). A basic graph pattern (BGP) is a
finite set of triple patterns. The schema sch(ψ) of a triple pattern ψ is the RDF property
and class predicates [17] from the ψ.

Mappings. Formally, we adopt R2R mapping [6,22] that generate RDF triples from the
active domain of a database ΓD. Assume countably infinite and disjoint sets F and T

of iri-template and typing functions respectively, with each function α ∈ F ∪ T has an
associated arity n > 0. W.l.o.g., we assume that functions F ∪ T are injective, and map
only null to null.

Definition 3. We specify R2R-mapping M, from relational database-to-RDF, parti-
tioned into three disjoint sets:MC,MP andMU such that

i. MC is a set of data-to-RDF concept mappings, each one of the form

QX −→ 〈f(X), rdf:type,C〉,

where
a. QX is a source query Q over R with X � Q,
b. f ∈ F and C is an RDF concept.

ii. MP is a set of data-to-RDF object property mappings, each one of the form

QX,Y −→ 〈f(X), P, f′(Y)〉,

where
a. QX,Y is a source query Q over R with X,Y � Q,
b. f, f′ ∈ F and P is an RDF object property.

iii. MU is a set of data-to-RDF datatype property mappings, each one of the form

QX,Y −→ 〈f(X),U, t(Y)〉,

where
a. QX,Y is a source query Q over R with X,Y � Q,
b. f ∈ F, t ∈ T and U is an RDF datatype property.

Let m be a mapping Q −→ ψ of a triple pattern ψ, as in Definition 3. The source
query Q is the body(m) of m, whereas the triple pattern ψ is the head(m). The schema
sch(M) of a mapping setM is the union of sch(head(m)) of each m ∈ M. For any two
mapping setsM andM′ defined over a relational schema R with source constraint Σ,
we writeM′ ⊆ M, if for every mapping definition m, if m ∈ M′ then m ∈ M.
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Definition 4. Let QC, QP and QU be the source queries of mappings of an RDF concept
C, object property P and datatype property U, respectively. Then, we say that a mapping
setM (according to Definition 3) is a simple mapping if: (a)M contains exactly one
mapping definition per concept C, object property P and datatype property U predicates
in sch(M); (b) each QP is a valid SPJ query with one join operation, (c) each QU is
an SP query, d) if C and C′ are the concepts whose instances are subject and object of
an object property P, then the QC and QC′ are either equal to QP or SP queries with
a projected set of attributes whose (tuple) values are mapped to instances of C and C′,
and (e) if C is the concept whose instances are the subject of a datatype property U,
then QC is either equal to QU or an SP query with a projected set of attributes whose
(tuple) values are mapped into the instances of C.

Example 2. Consider the mapping of object property ‘EnrolledFor’ in Example 1.
Instances of concepts ‘Student’ and ‘Course’ are mapped to subject and object of
the property ‘EnrolledFor’, respectively. Then, according to simple mapping in Def-
inition 4, the source queries used in the mappings of those ‘Student’ and ‘Course’
concepts must be either the exact same source query used in the mapping of the prop-
erty ‘EnrolledFor’ or the SP source queries as in Example 1. Thus, a distinct simple
mapping could be defined for the same purpose that maps RDF concepts ‘Student’
and ‘Course’ using the same SPJ source query QP,

QP ::= Select S_id, C_id from student, course

where student.Code = course.C_id

as used in the mapping of object property ‘EnrolledFor’ as follows:

QP −→ 〈iri1(S_id), rdf:type, Student〉.
QP −→ 〈iri2(C_id), rdf:type, Course〉.
QP −→ 〈iri1(S_id), enrolledFor, iri2(C_id)〉.

Let t ∈ QD be a tuple of constants, and let f(X) be a term such that f ∈ F and X � Q.
Then, f(t(X)) is a ground term of f(X) obtained by substituting occurrence of every
x ∈ X with t(x).

Definition 5. LetMC∪MP∪MU be an R2R mapping setM defined over a relational
schema R, and D an instance of R. Then, we call the set of well-defined RDF triple
assertionsM(D), i.e.,

M(D) = {〈f(t(X)), rdf:type,C〉 | {Q −→ 〈f(X), rdf:type,C〉} ∈ MC, X � Qand t ∈ QD}
∪ {〈f(t(X)), P, f′(t(Y))〉 | {Q −→ 〈f(X), P, f′(Y)〉} ∈ MP, X,Y � Q and t ∈ QD}
∪ {〈f(t(X)),U, t(t(Y))〉 | {Q −→ 〈f(X),U, t(Y)〉} ∈ MU , X,Y � Q and t ∈ QD},

the RDF graph projected by the mapping setM and the instanceD.

We recall that R2R mappings in Definition 3 generate RDF triples from the active
domain of a database ΓD, i.e., null cannot appear in the output RDF triples. Therefore,
in this paper, we explicitly consider that (a) mappings M is simple, and (b) w.l.o.g.,
source query Q of each mapping inM contains σ¬isNull(X) and σ¬isNull(Y) filters over
every projected set of X,Y � att(Q).
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SHACL. Our formal treatment of the core constraints of SHACL [15] is based on the
approach of Corman et al. [12]. Each SHACL constraint is a set of conditions, usually
referred to as shape, defined as a triple 〈s, τs, φs〉 consisting of a shape IRI s, a target
definition τs, and a constraint definition φs. The τs and φs are expressions that determine
for every RDF graph G and node n of G, whether n is a target of the shape, G |= τs(n),
respectively, whether n satisfies the constraint, G |= φs(n). All shapes generated by our
transformation have an ‘implicit target class,’ which means that s is also the IRI of a
class and G |= τ(n) iff n is a SHACL instance of class s.2 For the purpose of our work,
the constraint φs is an expression defined according to the following grammar:

φ ::= φ ∧ φ | ≥n P±. α | ≤n P±. α | �C P± (1)

α ::= � | � | ¬� | C | ¬C

where � stands for truth, � is an XML schema datatype, C and P are an RDF concept
and property names respectively, the superscript ± stands for a property or its inverse,
n ∈ N, ¬ for negation, (≥n P±.α) means ‘must have at least n P±-successor verifying α’
for any n ∈ N and (�C P±) means ‘all values of P±-successor must be unique3 among
instances of conceptC’. As syntactic sugar, we use (=n P±.α) for (≥n P±.α)∧(≤n P±.α),
(�C P±.α) for (≤1 P±.α) ∧ (�C P±) and (�C P±.α) for (=1 P±.α) ∧ (�C P±).

A SHACL document is a set of SHACL shapes. An RDF graph G validates against
a shape 〈s, τs, φs〉 if for every nodes n of G, if G |= τs(n) then G |= φs(n). An RDF
graph G validates against a SHACL document S, written G |= S , iff G validates against
all shapes in S. The schema sch(s) of a SHACL shape s is the set of RDF concept and
property predicates [17] used in the target τs and constraint φs definition. The schema
sch(S ) of a SHACL document S is the union of sch(s) of every shape s ∈ S .

3 Constraint Rewriting: Definition and Properties

Our goal is to generate a set of SHACL constraints that is as strong as possible while
being guaranteed to hold for all RDF graphs resulting from valid database instances.
LetM be a mapping set defined over a relational schema R with source constraints Σ.

Definition 6. A SHACL document S is an Σ-implied set of shapes with respect toM,
written as Σ |=M S , if for every instanceD of R:

D |= Σ →M(D) |= S .

Definition 7. Let Σ |=M S . Then, we say that S is a maximally Σ-implied set of shapes
with respect toM, written as Σ |=∗M S , if for every Σ |=M S ′ s.t. sch(S ′) ⊆ sch(M) and
every RDF graph G :

G |= S → G |= S ′.

We now formalise a constraint rewriting and some desirable properties. Let S be the
set of all SHACL shapes and Q be the set of all pairs (M, Σ) such thatM is a mapping
set defined over a relational schema R with source constraints Σ.
2 https://www.w3.org/TR/shacl/#implicit-targetClass.
3 dash:uniqueValueForClassConstraintComponent from http://datashapes.org.

https://www.w3.org/TR/shacl/#implicit-targetClass
http://datashapes.org
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Definition 8 (Constraint rewriting). A constraint rewriting is a function T : Q →
P(S).

We next introduce central properties of a constraint rewriting T .

Definition 9 (Semantics preservation). A constraint rewritingT is semantics preserv-
ing if for every mapping setM and every source constraints Σ:

Σ |=M T (M, Σ).

Definition 10 (Maximal semantics preservation). A constraint rewriting T is max-
imal semantics preserving if for every mapping set M and every source constraints
Σ:

Σ |=∗M T (M, Σ).

Definition 11 (Monotonicity). A constraint rewriting T is monotone if for any map-
ping sets M′ ⊆ M defined over a relational schema R with source constraint Σ and
every RDF graph G:

G |= T (M, Σ)→ G |= T (M′, Σ).

4 View Constraint: Definitions

As introduced in Sect. 2, R2R mapping relies on database views based on a source
query to compute RDF terms from the database values. As a first step of our constraint
transformation, we have to analyse the propagation of database constraints to these
views.

Let R be a relational schema with source constraints Σ, and R ∈ R. The constraint Σ
restricted to the set of att(R), denoted by Σ |R, is the set of constraints such that for every
constraint σ ∈ Σ on any X �R, there is σ ∈ Σ |R. For example, if FK(X,R,Y, S ) ∈ Σ (resp.,
FK(Y, S , X,R) ∈ Σ) on any X �R, then there is FK(X,R,Y, S ) ∈ Σ |R (resp., FK(Y, S , X,R) ∈
Σ |R).

Definition 12. Let Q be a relational expression over a relational schema R with source
constraints Σ. Then, the set Σ propagated to the set of att(Q), denoted by Σ |Q, is recur-
sively defined as follows,

a. If Q = R such that R ∈ R, then Σ |Q = Σ |R.
b. Q = σ¬isNull(X)(Q′) where X � Q′, then Σ |Q = Σ |Q′ .
c. If Q = πX(Q′) where X � Q′ then Σ |Q = {PK(Y,R), UNQ(Y,R), NN(Y,R), FK(Y,R,Z, S ),

FK(Z, S ,Y,R) ∈ Σ |Q′ | Y ⊆ X and R, S ∈ R}.
d. If Q = Q1 OPX=Y Q2 where X � Q1 and Y � Q2 have compatible data types, and

OP ∈ {��,�� , ��, 
� }, then Σ |Q = Σ |Q1 ∪ Σ |Q2 .

SQL constraints are not well suited to direct translation to SHACL, so we introduce
an intermediate representation similar to functional dependencies. Let R be a relation
name with X,Y �R. Then, we write a functional dependency as an expression of the form
FDX→Y , i.e., meaning X �R functionally determines Y �R. Relational data dependencies,
such as functional, multi-value and others, are originally defined on databases without
null [3,5]. However, we need notions of data dependencies that also apply to databases
with null, such as in [4], which we define as follows:
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Definition 13. Let Q be a source query over a relational schema R with source con-
straints Σ, R ∈ R a relation name and D an arbitrary instance of R. Let V be the pair
(QD, Σ |Q) of projected view QD and propagated constraints Σ |Q. Then, for any X,Y �Q,

a. V |= FPX→Y if for every t, t′ ∈ QD, if t(X) = t′(X) then t(Y) = t′(Y).
b. V |= UFX→Y if QD |= FPX→Y and QD |= FPY→X.
c. V |= FDX→Y if QD |= FPX→Y and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. V |= UFDX→Y if QD |= FDX→Y and QD |= FDY→X.

Henceforth, we will keep the SQL notations intuitively simple in examples, i.e., we
write NN(X) ∈ Σ |X�R instead of NN(X,R) ∈ Σ |X�R for the propagated NN(X,R) ∈ Σ to
Σ |X�R.

Example 3. Following Example 1, assume a mapping set M with fS and fC iri-
templates and a typing function tν4 as follows:

a. πS_id,Nameσ¬isNull(S_id)∧¬isNull(Name)(student) −→ 〈fS(S_id), hasName, tν(Name)〉.
b. πC_id,Titleσ¬isNull(C_id)∧¬isNull(Title)(course) −→ 〈fC(C_id), hasTitle, tν(Title)〉.

Let Q1 = πS_id,Nameσ¬isNull(S_id)∧¬isNull(Name)(student), and V1 = (Q1
D, Σ |Q1 ). Then,

• att(Q1) = {S_id,Name} and Σ |att(Q1) = {PK(S_id), UNQ(S_id), NN(S_id), Type(S_id, ν),
Type(Name, ν)}, i.e., from assumption in Sect. 2, if PK(S_id) then UNQ(S_id) and NN(S_id).

• V1 |= FPS_id→Name since for every t, t′ ∈ Q1
D, if t(S_id) = t′(S_id) then t(Name) = t′(Name).

Filter σ¬isNull(Name) excludes tuples from Q1
D that contains null for the Name ∈ att(Q1).

Similarly, let Q2 = πC_id, Titleσ¬isNull(C_id)∧¬isNull(Title)(course), and V2 =

(Q2
D, Σ |Q2 ). Then,

• att(Q2) = {C_id, Title} and Σ |att(Q2) = {PK(C_id), UNQ(C_id), NN(C_id), Type(C_id, ν),
UNQ(Title), Type(Title, ν), FK(Code, student, C_id, course)}

• V2 |= FPC_id→Title since for any t, t′ ∈ Q2
D, if t(C_id) = t′(C_id) then t(Title) = t′(Title).

• V2 |= FPTitle→C_id since for any t, t′ ∈ Q2
D, if t(Title) = t′(Title) then t(C_id) = t′(C_id).

• V2 |= UFC_id→Title since Q2
D |= FPC_id→Title and Q2

D |= FPTitle→C_id.

5 Source to View Constraint Implication

The next step is to determine which of the data dependencies from Definition 13 hold
for the view defined by the source queries, i.e., they are implied by the propagated SQL
constraints.

Let Q be a source query over a relational schema R with source constraints Σ.
Then, we say that Σ implies a data dependency σX→Y s.t. σ ∈ {UFD,FD,UFP,FP} on
X,Y � Q, denoted by ΣQ � σX→Y , if V |= σX→Y for every legal instance D of R, where
V = (QD, Σ |Q) is the pair of projected view QD and propagated constraints Σ |Q. We
now concentrate on SP source queries.

4 tν specify XML Schema datatype of RDF literal tν(d) corresponding to the SQL data type ν of
the database constant d ∈ Δν, e.g., tν is an xsd:string IRI term if ν is varchar SQL data type.
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Lemma 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propa-
gated to set of att(Q). Then, for any X,Y � Q,

a. ΣQ � FPX→Y if UNQ(X,R) ∈ Σ |Q.
b. ΣQ � UFX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q.
c. ΣQ � FDX→Y if UNQ(X,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. ΣQ � UFDX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.

Corollary 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propa-
gated to set of att(Q). Then, for any X,Y � Q,

a. ΣQ � UFDX→Y → ΣQ � FDX→Y and ΣQ � FDX→Y → ΣQ � FPX→Y

b. ΣQ � UFDX→Y → ΣQ � UFX→Y and ΣQ � UFX→Y → ΣQ � FPX→Y

We next concentrate on SPJ source queries. An SPJ source query Q over a relational
schema R with source constraints Σ is a relational algebra expression of the form,

Q := πX,Yσ¬isNull(X)∧¬isNull(Y)(R1 OPU=V R2),

where R1,R2 ∈ R are relation names with X,U � R1 and Y,V � R2, |U | = |V | and OP ∈
{��, ��,�� , 
� }. Since mapping in Definition 3 generates RDF triples from the active
domain ΓD ⊆ Δ \ {null} of the database, w.l.o.g., we equivalently express the stated
SPJ source query Q, that yields the same set of RDF triples as the original Q, as follows,

πX,Yσ¬isNull(X)∧¬isNull(Y)(σ¬isNull(X)∧¬isNull(U)(R1) OPU=V σ¬isNull(V)∧¬isNull(Y)(R2)).

Note that the SPJ query Q is valid if and only if FK(U,R1,V,R2) ∈ Σ |Q or
FK(V,R2,U,R1) ∈ Σ |Q, see Definition 1. Henceforth, we use symbol →∗ to express
dependency in the opposite direction of foreign key reference, i.e., we write FDX→∗Y
to state functional dependency from X � Q to Y � Q if FK(Y,R2, X,R1) ∈ Σ |Q or
FK(V,R2,U,R1) ∈ Σ |Q s.t. X,U � R1 and Y,V � R2.

Lemma 2. Let R be a relational schema with source constraints Σ, and let Q be an
SPJ source query over R,

Q := πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 OPU=V Q2)

s.t. Q1 and Q2 are SP expressions over R1 ∈ R and R2 ∈ R with X,U � Q1 and Y,V � Q2

respectively, OP ∈ {��, ��,�� , 
� } and FK(U,R1,V,R2) ∈ Σ |Q. Then, for any X,Y � Q :

a. ΣQ � σX→Y if ΣQ1 � σX→U and ΣQ2 � σV→Y s.t. σ ∈ {UFD,FD,UF}.
b. ΣQ � σX→Y if ΣQ1 � UFDX→U and ΣQ2 � σV→Y s.t. σ ∈ {FD,UF}.
c. ΣQ � σX→Y if ΣQ1 � σX→U s.t. σ ∈ {FD,UF} and ΣQ2 � UFDV→Y .
d. ΣQ � FPX→Y if ΣQ1 � FDX→U and ΣQ2 � UFV→Y .
e. ΣQ � FPX→Y if ΣQ1 � UFX→U and ΣQ2 � FDV→Y .
f. ΣQ � FPX→Y if ΣQ1 � FPX→U.
g. ΣQ � FPX→Y if ΣQ1 � σX→U and ΣQ2 � FPV→Y s.t. σ ∈ {UFD,FD,UF}.
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h. ΣQ � σY→∗X if ΣQ1 � σU→X and ΣQ2 � σY→V s.t. σ ∈ {UFD,UF}.
i. ΣQ � FPY→∗X if ΣQ1 � σU→X s.t. σ ∈ {UFD,FD,FP} and ΣQ2 � UFY→V .
j. ΣQ � σY→∗X if ΣQ1 � σU→X s.t. σ ∈ {FD,UF,FP} and ΣQ2 � UFDY→V .

On the correctness of Lemma 2, e.g., assume the case (f). Then, UNQ(V,R2) ∈ Σ |Q2 since
FK(U,R1,V,R2) ∈ Σ |Q. Thus, ΣQ2 � σV→Y s.t. σ ∈ {UFD,FD,UF,FP} is the set of all
possible constraints implication. Hence, the case (f) of Lemma 2 covers the following
possible cases of constraints implication:

• ΣQ � FPX→Y if ΣQ1 � FPX→U and ΣQ2 � σV→Y s.t. σ ∈ {UFD,FD,UF,FP}.

Further, by applying similar arguments and the implication rules stated in Corollary 1
to the rest of cases in Lemma 2, the correctness proof of the Lemma can be enumerated.

Example 4. Following Examples 1 and 4, assume an R2R mapping:

Q −→ 〈fS(S_id), enrolledFor, fC(C_id)〉,

where Q is a source query πS_id,C_idσ¬isNull(S_id)∧¬isNull(C_id)(Q1 ��Code=C_id Q2) such
that Q1 = σ¬isNull(S_id)∧¬isNull(Code)(student) and Q2 = σ¬isNull(C_id)(course).
Then,

a. for SP expression Q1 :
• att(Q1) = {S_id,Code} and {UNQ(S_id), NN(S_id), NN(Code)} ⊆ Σ |Q1 fromDef-
inition 12.
• ΣQ1 � FDS_id→Code from the case (c) of Lemma 1

b. for SP expression Q2 :
• att(Q2) = {C_id} and {UNQ(C_id), NN(C_id)} ⊆ Σ |Q2 from Definition 12.
• ΣQ2 � UFDC_id→C_id from the case (d) of Lemma 1

c. finally, for SPJ expression Q:
• att(Q) = {S_id, C_id}
• FK(Code, student, C_id, course) ∈ Σ |Q1 ∩ Σ |Q2 , i.e., Q is a valid SPJ query.
• ΣQ � FDS_id→C_id from case (c) of Lemma 2, since

i. ΣQ1 � FDS_id→Code, and
ii. ΣQ2 � FDC_id→C_id from Σ � UFDC_id→C_id → Σ � FDC_id→C_id following

the case (a) of Corollary 1

6 The Constraint Rewriting

We now introduce a constraint rewriting Γ for a simple mapping M (Definition 4),
and prove the properties defined in Sect. 3. The constraint rewriting Γ in Definition 15
transforms the view constraints implied by the relational source Σ (as introduced in
Sects. 4 and 5) into sets of SHACL shapes. Since the semantic equivalence of generated
SHACL constraints to the source constraints Σ also depends on the combination of
source queries used in mappings of RDF triples, we first introduce the classification
functions ι and κ to distinguish between the various cases that can occur.

Let fC and fC′ be iri mapping templates for the respective RDF concepts C and
C′, and let t be an iri typing template. Let QC , QP and QU be the source queries of
mapping Definition 3 of an RDF concept C, object property P and datatype property U,
respectively.
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Definition 14. Let M be a simple mapping with RDF predicates C,C′, P,U ∈
sch(M). Let ι and κ be classification functions that take a triple pattern of the form
〈fC(X), P, fC′(Y)〉 and 〈fC(X),U, t(Y)〉 respectively, and the mapping set M as input,
and classifies the groups of the respective source queries (QC ,QP,QC′ ) and (QC ,QU)
as follows,

ι(〈fC(X), P, fC′ (Y)〉,M) =

{
A if QC 	= QP

B otherwise.
and κ(〈fC(X),U, t(Y)〉,M) =

{
A if QC 	= QU

B otherwise.

Let Q be a source query over a relational schema R with source constraint Σ. Then,
we write ΣQ � σX�Y s.t. σ ∈ {UFD,FD,UF,FP} to express the dependency that is either
ΣQ � σX→Y or ΣQ � σX→∗Y on X,Y � Q.

Definition 15 (Constraint rewriting Γ). Let M be a simple mapping defined over
a relational schema R with source constraint Σ, and let ι and κ be the classification
functions. Then, the constraint rewriting Γ(M, Σ) of Σ w.r.t. M is a set of SHACL
shapes that for each RDF concept C with mapping QX −→ 〈fC(X), rdf:type,C〉,
contains 〈C, τC , φC〉 with an implicit targetClass τC and conjunctive set of constraints
φC =

∧
1≤i≤3Φi, where

1. for mapping m of each object property P such as QX,Y −→ 〈fC(X), P, fC′(Y)〉,

Φ1 =

{
(≤0 P.¬C′) ∧ (≥0 P.C′) ∧ (

∧
ΣQ�σ λ1(σ)) if ι(head(m),M) = A

(≤0 P.¬C′) ∧ (≥1 P.C′) ∧ (
∧
ΣQ�σ λ2(σ)) if ι(head(m),M) = B

where

λ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(�C P.C′) if σ = UFDX→Y

(=1 P.C′) if σ = FDX→Y

(�C P.C′) if σ = UFX�Y

(≤1 P.C′) if σ = FPX�Y

and λ2(σ) =

{
(�C P.C′) if σ = UFX�Y

(=1 P.C′) if σ = FPX�Y

2. for mapping m of each object property P such as QX,Y −→ 〈fC′(X), P, fC(Y)〉,

Φ2 =

{
(≤0 P−.¬C′) ∧ (≥0 P−.C′) ∧ (

∧
ΣQ�σ δ1(σ)) if ι(head(m),M) = A

(≤0 P−.¬C′) ∧ (≥1 P−.C′) ∧ (
∧
ΣQ�σ δ2(σ)) if ι(head(m),M) = B

where

δ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(�C P−.C′) if σ = UFDX→Y

(=1 P−.C′) if σ = FDX→Y

(�C P−.C′) if σ = UFX�Y

(≤1 P−.C′) if σ = FPX�Y

and δ2(σ) =

{
(�C P−.C′) if σ = UFX�Y

(=1 P−.C′) if σ = FPX�Y

3. for mapping m of each datatype property U such as QX,Y −→ 〈fC(X),U, t(Y)〉,

Φ3 =

{
(≤0 U.¬t) ∧ (≥0 U. t) ∧ (

∧
ΣQ�σ μ1(σ)) if ι(head(m),M) = A

(≤0 U.¬t) ∧ (≥1 U. t) ∧ (
∧
ΣQ�σ μ2(σ)) if ι(head(m),M) = B

where

μ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(�C U. t) if σ = UFDX→Y

(=1 U. t) if σ = FDX→Y

(�C U. t) if σ = UFX�Y

(≤1 U. t) if σ = FPX�Y

and μ2(σ) =

{
(�C U. t) if σ = UFX�Y

(=1 U. t) if σ = FPX�Y
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Observe that in Definition 15, the first constraint components, such as (≤0 P±.¬C′)
and (≤0 U.¬t) in the definitions of Φi, are implied by the restriction on the mapping
set M, i.e., by the fact that M contains exactly one mapping defining per object and
datatype property predicates. The second constraint components, such as (≥0 P±.¬C′)
or (≥1 P±.¬C′) and (≥0 U.¬t) or (≥1 U.¬t), in the Φi are implied by the combination
of ι- and κ-classifications. Finally, the third constraints components

∧
ΣQ�σ f (σ) s.t.

f ∈ λi ∪ δi ∪ μi for 1 ≤ i ≤ 2 are implied by the source constraint Σ w.r.t.M.
The constraint definition φC := (≤0 P±.¬C′) requires all nodes n′ in the graph that

are reachable from a node n s.t. 〈n, rdf:type,C〉 via property path P± to have a typing
triple s.t. 〈n′, rdf:type,C′〉, which is exactly what we needed for the mapped object
property paths P± in the RDF graph given the restriction that setM contains exactly
one mapping definitions per object property predicates. Thus, to extend the constraint
rewriting Γ Definition in 15 beyond the simple mappingM, the rewriting Γmust: (i) not
generate constraint components such as (≤0 P±.¬C′) and (≤0 U.¬t) when there exist
more than one mapping definition per object P and datatype U properties, respectively,
in the set M, (ii) accommodate classification of all possible combinations of sources
queries in the definitions of ι and κ, and (iii) revise the definitions of λi, δi and μi for
additional consequences of Σ-implications w.r.t. the extendedM.

We now state the properties of the constraint Γ rewriting. Theorem 1 is a soundness
statement that guarantees that all constraints produced by Γ will be validated by the
RDF graph mapped from any valid database instance.

Theorem 1. The constraint rewriting Γ is semantics preserving.

Theorem 2 expresses the completeness of Γ, i.e., every SHACL constraint expressible
with the schema sch(M) of the mappings, and that is implied by Σ is implied by the
generated shapes Γ(M, Σ). This does not hold in general for SHACL constraints on
predicates not in sch(M). Finally, Theorem 3 expresses that adding mappings will never
invalidate generated constraints.

Theorem 2. The constraint rewriting Γ is maximal semantics preserving.

Theorem 3. The constraint rewriting Γ is monotone.

7 Discussion

We have presented a constraint rewriting Γ for simple R2R mapping that is useful in the
context of relational to RDF data transformation [13,19,23] and data integration [22,
31]. Observe that simple R2R mappings can express a comprehensive catalog of useful
mapping patterns studied in [8,24,25]. Simplifying simple R2R mapping further yields
direct mapping [2] since that requires additional restrictions on Definition 4; therefore,
the results for our constraint rewriting for simple mappings also seamlessly holds for
direct mapping [2,23,27]. In future work, we believe that it would interesting to extend
our constraint rewriting Γ in two different directions: (a) for arbitrary R2R mappings,
e.g., admitting the full relational algebra or arbitrary SPJ expressions as the source
query in mapping Definition 3, and (b) for a broader class of relational constraints such
as (disjunctive) tuple and equality generating dependencies [1].
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There are several approaches that map relational schemas and constraints to RDFS
and OWL/Epistemic DL axioms since, with an appropriate closed world semantics,
OWL can express integrity constraints. In particular, we first refer the reader to the
implications of constraints in ontology-based data access platform under different
names, such as protection and faithfulness in [10,11], which is equivalent to relational
constraints-to-OWL, i.e., to check whether the mapped RDF of every source dataset
satisfying the source constraints can be extended to a model of the mapped DL-LiteA
axioms, and OWL-to-relational constraints, i.e., opposite of former, constraints impli-
cation in [21]. Even though these proposals for combining OWL/Epistemic DL axioms
with integrity constraints have some promising results for target constraints specifica-
tion in the OBDA setting, there has been no unanimity on the correct semantics.

The problem of direct mapping of source schemas and constraints into RDFS/OWL
axioms has been studied in [7,23]. Sequeda et al. [23] attempted to capture the database
constraints on the RDF graph resulting from direct mapping using OWL. However, the
bootstrapped OWL axioms did not trigger the unsatisfiability of the directly mapped
graph whenever keys are violated in the source database unless the database instance is
explicitly encoded in the constraint rewriting. Further, Sequeda et al. [23, Theorem 3]
established that the desirable monotonicity property of direct mapping is an obstacle to
obtain a semantics preserving OWL axioms even if the database instance is explicitly
encoded in the constraint rewriting. To accomplish the desired one-to-one semantics
correspondence between legal relational data and RDF graph satisfying OWL axioms,
Calvanese et al. [7] further extended the direct mapping of relational schemas into
DL-LiteRDFS with disjointness - as constraints over mapped RDF graphs.

Finally, Thapa et al. [26] have studied the problem of translating database con-
straints into SHACL, instead of OWL/Epistemic DL, giving a direct transformation
from SQL constraints to SHACL, preserving their semantics when source key con-
straints are satisfied [26, Theorem 2]. The present work improves on this by a) not being
restricted to direct mappings, and b) lifting the requirement on satisfied key constraints.

8 Conclusion

In this paper, we study the problem of constraint rewriting for relational to RDF data
transformation based on the central property of maximal semantics preservation. We
translate standard SQL database constraints to shapes in the SHACL constraint lan-
guage for RDF graphs. We show that our proposed rewriting Γ for the simple relational
to RDF mappings satisfies the central properties of a constraint rewriting.

We believe that the propose constraint rewriting constitutes a core component of
R2R mapping tools for the crucial task of constructing and maintaining a quality-
assured RDF graph with SHACL constraints. The SHACL description of the generated
RDF graph provides a data quality guarantee for data exchange, interoperability and
query optimization. Hence, an important direction for future work will be the imple-
mentation and practical evaluation of our rewriting for relational to RDF data transfor-
mation and query optimization [30] in an ontology-based data access platform [29,31].
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