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Preface

The International SemanticWebConference (ISWC) has established itself down through
the years as the premier international forum for the SemanticWeb andKnowledgeGraph
community, discussing and presenting the latest advances in fundamental research,
innovative technology, and applications concerning semantics, data, and theWeb. ISWC
brings together researchers, practitioners, and industry specialists to discuss, advance,
and shape the future of semantic technologies.

It is my honor to introduce the proceedings of ISWC 2022 and to be the general
chair for the 21st edition of this conference. It has also been a rewarding experience
working with the team of chairs and organizers that all together played a key role in
driving the conference and leading it to success. My gratitude and acknowledgment
also go to the Senior Program Committee (SPC), to the 475 Program Committee (PC)
members, and the 66 additional reviewers who produced over 1,139 peer reviews, thus
making it possible for ISWC 2022 to keep the excellent reputation as a premier scientific
conference.

The original plan for ISWC 2022 was to run it as a hybrid event in Hangzhou,
China, thus providing the research community the opportunity to meet in person again
(after two virtual conference editions), while taking into account possible COVID-19
restrictions, traveling issues due to limited funds, visa problems, and so forth. Unfor-
tunately, due to the increasing COVID-19 restrictions in China, which also prevented
travel within China, we had to switch ISWC 2022 to a fully virtual event.

The conference runs for five days, offering a rich program spanning different tracks
(Research, Resources, In-Use, and Industry Tracks), Workshops and Tutorials, Posters,
Demos, and Lightning Talks, a Doctoral Consortium, Challenges, and Panels. In collabo-
rationwith the SemanticWebScienceAssociation (SWSA), this yearwe also agreed on a
new policy regarding submissions with plagiarized content: authors of such submissions
will be banned from submitting to ISWC for two years.

ISWC 2022 received 335 submissions, authored by 1,363 distinct authors from 35
different countries, with China, Germany, the USA, France, and Italy featuring promi-
nently in the submissions list. The final program was the result of a very rigorous and
constructive reviewprocess, supported also by detailed guidelines for reviewers thatwere
set up and made publicly available for this conference edition. The review process for
papers submitted to the Research, Resources, and In-Use Tracks also encompassed the
new Objection and Response phase (that replaced the Rebuttal phase usually adopted),
aiming at reducing workload on authors and reviewers, while providing an opportu-
nity for author feedback in two exceptional cases: a) highlighting clear factual errors in
reviews regarding the content of the submission and b) responding to explicit questions
from reviewers. ISWC 2022 further emphasized reproducibility, being a key aspect of
scientific research. For this purpose a detailed policy for supplemental materials and
reproducibility was made publicly available. It required authors to add a statement, at
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the end of the submission, covering all of the resources necessary to reproduce or verify
the results presented in the paper. These resources may include datasets, queries, code,
proofs of results, configuration details, hyperparameters, etc., depending on the contribu-
tions of the paper. The statement is aimed at facilitating the independent reproducibility
or verification of the results presented, pointing to where supplemental material can be
found. Reviewers were asked to evaluate the statement in terms of its ability to ensure
reproducibility of the paper results as well as availability (also for the foreseeable future)
of resources. Additionally, to facilitate reproducibility and give peer reviewers a char-
acterization of a submission by juxtaposing it with related approaches, authors were
encouraged to optionally accompany their submission with a comparison in the Open
Research Knowledge Graph (ORKG)1.

These proceedings collect together accepted papers from the ISWC 2022 Research,
Resources, and In-Use Tracks, while accepted papers in the Industry Track, Poster and
Demos Track, Doctoral Consortium, and the various accepted workshops and Semantic
Web challenges have been published as CEUR Workshop Proceedings2.

The Research Track this year was chaired by Aidan Hogan and Uli Sattler. The track
solicits submissions on novel research contributions that further advance the Semantic
Web, and received a total of 156 full paper submissions.As in previous years, we received
submissions with a range of contributions which can be classified in the following four
categories. Firstly, papers on classic reasoning and query answering over ontologies of
various shapes (e.g., RDF(S)/OWL, SHACL, SPARQL, and variations or extensions of
these), as well as non-standard tasks like repair, explanation, and database mappings.
Following the trend of past years, we also received a number of papers on embeddings
of ontologies/knowledge graphs, in particular various forms of graph neural networks,
and their usage in a range of applications, including zero/few shot learning, image/object
classification, and various NLP tasks. Another category of papers focuses on specific
knowledge graph tasks like link or type prediction and entity alignment. Finally, we
received a small number of surveys of the state of affairs, e.g. on LOD availability and
structural patterns in ontologies. Instrumental to shaping the final program were the 214
Program Committee members who provided reviews, and the 27 Senior Program Com-
mittee members who helped oversee the reviewing process and drafted meta-reviews.
A total of 46 external reviewers, solicited by PC members, contributed valuable addi-
tional reviews to the process. Following the precedent of previous editions of ISWC, the
Research Track was double blind. All papers received three to four reviews. Ultimately,
30/156 papers were accepted, giving an acceptance rate of 19.2%, which is comparable
with recent years of the ISWC Research Track.

The Resources Track, chaired by Maria Keet and Valentina Presutti, promoted the
sharing of resources that support, enable, or utilize Semantic Web research, and in
particular datasets, ontologies, software, and benchmarks. This track received 60 papers
for review. Each paper was subject to a rigorous single-blind review process involving at
least three reviewers, and on average four, and discussions among reviewers as well as

1 https://orkg.org/.
2 http://ceur-ws.org/.

https://orkg.org/
http://ceur-ws.org/
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an Objections and Response phase. The main review criteria focus on impact (novelty of
the resource), reusability, the design and technical quality, and availability. Eventually,
11 papers were accepted. The Resources Track was aided by seven SPC and 54 PC
members, and nine additional reviewers.

The In-Use Track this year was chaired by João Paulo A. Almeida and Hideaki
Takeda. This track provides a forum to explore the benefits and challenges of applying
Semantic Web and Knowledge Graph technologies in concrete, practical use cases, in
contexts ranging from industry to government and society. In total, seven full paperswere
accepted for the In-Use Track, selected out of 23 full papers sent for peer review (30.43%
acceptance rate). All submissions were thoroughly reviewed in a single-blind process by
three Program Committee members. Submissions were assessed in terms of novelty (of
the proposed use case or solution), uptake by the target user group, and demonstrated or
potential impact, as well as overall soundness and quality. An Objection and Response
phase was also implemented this year in line with the other tracks of the conference.
Overall, 41 PC members and two additional reviewers participated in a rigorous review
process.

These proceedings also include abstracts of the talks given by three excellent keynote
speakers, Markus Krötzsch, Francesca Rossi, and Ilaria Capua, that ISWC 2022 was
delighted to host.MarkusKrötzsch, prominentmember of the SemanticWeb andKnowl-
edge Graph community, gave the talk on “Data, Ontologies, Rules, and the Return of
the Blank Node”, presenting his view on how the unification of data and ontology may
present an opportunity to the Semantic Web, and how recent results in rule-based rea-
soning may provide a basis for overcoming related challenges. Francesca Rossi, leading
academic and industrial researcher in Artificial Intelligence (AI), gave the talk titled “AI
Ethics in the Semantic Web”, presenting the main issues around AI ethics, some of the
proposed solutions, and the relevance of some AI ethics issues to the Semantic Web.
Ilaria Capua, virologist widely recognized internationally and pioneering genetic data
sharing to improve pandemic preparedness, gave the talk on “Circular Health”, present-
ing her view of health as a circular model and illustrating how this circular approach
could be data driven and implemented by using the Sustainable Development Goals
roadmap.

The Industry Track, this year chaired by Anna Lisa Gentile and Petar Ristoski,
covers all aspects of innovative commercial or industrial-strength Semantic Technolo-
gies and Knowledge Graphs in order to showcase the state of adoption. This track
received 15 papers for review, of which eight were accepted (53.3% acceptance rate)
following a single-blind review process. The 18 members of the Program Committee
assessed each submission in terms of qualitative and quantitative business value, as well
as the innovative aspects, impact, and lessons learned of applying Knowledge Graph
and Semantic Technologies in the application domain.

The Workshop and Tutorial Track was chaired by Marta Sabou and Raghava
Mutharaju. In total, 11workshopswere part of the conference program covering research
topics related to ontology engineering (ontology design patterns and ontology match-
ing), data management topics (data evolution and preservation as well as storing, query-
ing, and managing data at Web scale), interaction with users and synergies with other
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technology fields, in particular deep learning. A number of workshops also focused on
applications of Semantic Web technologies such as Wikidata, knowledge graph summa-
rization, linked open science, managing legal documents andmanaging musical heritage
with knowledge graphs. Three workshops (on legal document management, knowledge
graphs summarization and musical heritage knowledge graphs) were offered for the
first time, bringing new topics in addition to the topics investigated by the other estab-
lished workshops. Six tutorials offered conference attendees the opportunity to further
expand their knowledge on core technical topics such as reasoning, schema discovery,
and knowledge-aware zero-shot learning or on topics related to exciting application
domains such as autonomous driving and managing earth observation data.

The Semantic Web Challenges Track, chaired by Catia Pesquita and Daniele
Dell’Aglio, proposed five challenges to help create and consolidate communities that
foster research by developing solutions. Each challenge offered common environments
to compare and contrast systems in various settings and tasks. The topics covered include
federated query answering, neuro-symbolic reasoning, question answering, knowledge
graph construction from language models, and tabular data to knowledge graph match-
ing. Three challenges were re-editions of events proposed in the past (Semantic Answer
Type, Entity, andRelation Linking Task; Semantic Reasoning Evaluation Challenge; and
Semantic Web Challenge on Tabular Data to Knowledge Graph Matching) continuing
their activity of driving and consolidating research trends within the SemanticWeb. Two
new challenges (Bio2RDF and Kibio federated query in Life Science Challenge and
Knowledge Base Construction from Pre-trained Language Models) were introduced as
part of the program, with a high potential to follow the successful path of the others and
get a stable presence in future ISWC editions.

The Posters, Demos and Lightning Talks Track was chaired by Anastasia Dimou and
Armin Haller. This track complements the paper tracks of the conference by offering an
opportunity to present late-breaking research results, on-going projects, and speculative
or innovative work in progress. Specifically, the Posters, Demos and Lightning Talks
Track encourages presenters and participants to submit papers which have the potential
to spark discussions about thework, forming an input for the futurework of the presenters
while offering participants an effective way to broaden their knowledge of emerging
research trends and to network with other researchers. This track received 52 papers for
review, ofwhich 26were accepted (50%acceptance rate).Among the accepted papers, 12
were poster papers and 14were demopapers. The 55members of the ProgramCommittee
were involved in a single-blind review process and assessed each submission based on
relevance to the Semantic Web, originality, potential significance, topicality, and clarity.

Another important tradition of ISWC is the Doctoral Consortium (DC) which gives
PhD students the opportunity to present their research ideas and initial results and to
receive constructive feedback from senior members of the community. This year’s DC
was chaired by Oshani Seneviratne and Olaf Hartig, and received 10 submissions. Each
submission was reviewed by four members of a Program Committee that consisted of
22 members in total. Based on the reviews, that were managed in agreement with a
single-blind review process, six submissions were accepted to be published in the DC
proceedings and the students of these submissions were invited to present their ideas



Preface ix

and work during the DC sessions of the conference, where they received further feed-
back from senior conference attendees. The DC also hosted a career-advising session,
consisting of senior researchers providing career advice with an open Q&A session.

The conference program also included two panel discussions with invited panelists
from industry and academia. The first panel was led and moderated by Pascal Hitzler.
It was on the topic “Is the deep learning hype good or bad for the Semantic Web?”,
following the observation that deep learning methods are currently having significant
impact on Semantic Web research, perhaps sometimes even leading to a neglect of
important topics because they cannot be tackled readily with deep learning approaches.
The second panel was led and moderated by Steffen Staab. This panel asked academic
and industrial researchers the question “Knowledge Graphs for The Physical World—
What isMissing?”. Indeed, applications like smart homes, autonomous driving, robotics,
or digital twins may benefit from explicit knowledge about the physical world and for
this purpose must integrate a wealth of data sources; however, the academic progress
appears to be slow, while existing standards seem not to fully meet industry needs.

Any conference cannot be run properly without the precious support of sponsors. As
such I would like to express my gratitude to Matteo Palmonari, Guilin Qi, and Francois
Scharffe for the great efforts they made to engage sponsors and promote the conference.
At the same time my thanks go to all sponsors (listed below and on the conference
website) that believed in ISWC 2022 and gave it very important financial support that
allowed also the provision of grants to students and researchers who could not have
otherwise registered for the conference. In this regard I would also like to mention
ORKG which contributed with some additional student grants. A special thank goes to
the Diamond and Platinum sponsors, and to Springer for additionally supporting the
conference awards.

I would like to thank Pierre Monnin and Giuseppe Pirrò for their very diligent work
in setting up the ISWC 2022 proceedings and also for making possible the capturing and
publicly sharing of the conference data in a reusable and open format.

ISWC 2022 news and updates have been constantly spread within the Semantic Web
and Knowledge Graph community and beyond. This has been possible thanks to the
incessant commitment of Neha Keshan, publicity and job fair chair, and Wen Zhang,
Web presence chair.

The uncertainty that ISWC 2022 had to face and that successive change of the
conference format impacted particularly the local organization team that nevertheless
worked diligently to ensure the best conference setting. I am grateful to the local chair,
Huajun Chen, and to Wen Zhang and the rest of the team for the careful management of
all conference activities.

Finally,my special thanks gooncemore to thewhole organizing committee, that is the
family of all chairs that shared with me this complicated but wonderful journey to finally
delivering the ISWC 2022 conference, and to the Semantic Web Science Association
(SWSA) for the valuable support to this year’s conference and for the constant and
continuous presence in ISWC’s 21 year history.
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Circular Health

Ilaria Capua

One Health Center of Excellence, University of Florida,
Gainesville, Florida, USA
icapua@ufl.edu

Pandemics are unique and transformational events as they shake lives by exposing
the vulnerability of Homo sapiens to previously unknown pathogens, which become
widespread as most human beings on the planet will become infected. But Covid-19
has done much more than this. It has exposed us to another type of vulnerability – the
vulnerability of the systems we operate in. It has also opened our eyes to the harsh
reality that we live in a closed system, in which we are entirely interconnected and
interdependent with other creatures on planet earth. This awareness has paved the
way to acknowledge that as a society we should embrace the One Health [1] approach
which recognizes the links between the health of humans, animals, and the environment.

Covid 19 has also shown us that such a major health crisis has multiple drivers and
ramifications that include social [2], economic [3], and digital [4] drivers that have caused
the pandemic to unravel in the way it did. In addition Covid 19 is the most measured
event in history and oceans of big data have been generated during this event.

Since the turn of the millenniumwe have been experiencing several other challenges
which concern our closed system and affect our health, for instance the climate [5] and
food [6] crises. For example, we are aware of the devastating effect of rising temperatures
on the health of our oceans, on the loss of biodiversity and on the migration of humans
and animals. We are also well aware that the planet’s demographics will require more
food to feed a world population expected to reach 9.7bn by 2050 [7] and at the same
time we have committed to diminishing greenhouse gas emissions to reduce pollution
and CO2 footprint.

Following the conceptual blueprint ofCircular Economy [8] andCircularAgriculture
[9], this could be the right time to expand our approach to health to a circularmodelwhich
encompasses the intricate and novel links between human health and the health of this
closed system. This circular approach would be data driven and could be implemented
by using the Sustainable Development Goals (SDGs) roadmap as an accelerator of
convergence for health. All the 17 goals have ties to the health of humans, animals,
plants, and the environment, and it would seem reasonable to prioritize certain activities
and capitalize on existing guidelines and commitments.

The novelty of the Circular Health approach is to use post-Covid-19 renewed health
priorities to promote the convergence of health-related issues which can be achieved
within the Sustainable Development Goals framework. In this way it will be possible
to advance urgent health priorities within an existing framework which aims at sustain-
ability and at advancing health as an essential resource within a closed system, which
needs to be regenerated and addressed in its complexity.
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Abstract. The Semantic Web has long been characterised by the parallel
development of machine-readable data and ontological models. Inspired
by very different backgrounds – Web data exchange and mathematical
logic – the two worlds have sometimes be perceived as complementary,
even conflicting. But the general trend towards knowledge graphs made
such discussions irrelevant, andmodern knowledgemodels, such asWiki-
data, often combine instance and schema data side by side. In my invited
talk, I will explain how this unification of data and ontology may present
an opportunity to the Semantic Web, and discuss how recent results in
rule-based reasoning may provide a basis for overcoming related chal-
lenges. This involves some interesting insights about the expressive power
that is conferred by extending rules with value invention – the ability to
create fresh blank nodes. Besides the theoretical effects of this addition,
we can also demonstrate concrete practical uses of this expressive power.

Ontologies have come a long way. In the past two decades of Semantic Web research,
the community has re-invented itself several times. The first golden era of “ontology”
saw the heydays of upper-level ontologies, design methodologies, and the birth and rise
of the first OWL standard. Remarkable accomplishments of engineering and applied
logic kept pushing what was possible. Meanwhile, “data” prepared for its comeback,
with Linked Data, the first DBpedia releases, and of course SPARQL drawing our atten-
tion and resonating with the newly discovered appeal of Big Data (a marketing term
both decried and revered by the data management community). New hybrids of data
and ontology emerged, from ontology-based data access to the renewed data-centred
modeling approaches of RDF constraint languages (eventually resulting in the unequal
siblings ShaCL and ShEx). The new era of knowledge graphs finally saw the break-
through of Semantic Web concepts: Google turned from mere document retrieval to
question answering, the majority ofWeb pages now carry machine-readable annotations
in shared vocabularies, and tens of thousands ofWikipedia editors construct a structured
world model in Wikidata.

And where did this leave ontology? Considering today’s large knowledge graphs
with little or no OWL usage, we might wonder whether we lost it along the way. Indeed,
this would seem to fit the zeitgeist. With the celebrated successes of machine learning,
it seems that end-to-end AI has replaced our once-treasured shared Conceptualization.
Only a short-sighted observer, however, could mistake this for a sign that (linked) data
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has finally triumphed over (formal) ontology. Unfazed by the animosities of the past,
we see that any such AI-induced end of ontology would also be the end of semantic
data: in a world where any string of symbols is “machine-readable”, the Semantic Web
endeavour looses its meaning and relevance. Fortunately, such worries are unfounded,
as data-driven AI longs for meaning and seeks (but so far fails to find) a method for
explaining itself – for establishing a shared understanding with its human users.

Did we then falsely abandon ontology in favour of mere data? I do not think so.
Instead, what we see in practice rather seems to be a marriage of data and ontology.
Syntactically, this is no news to us, with OWL relying on an RDF syntax from its
very beginnings. However, conceptually, we have often drawn clear boundaries between
ontology (schema) and data (instances), where the former must adhere to strict formal
standards and total consistency, while the latter is entitled to noise and incoherence. In
modern knowledge graphs, such asWikidata, both worlds are one [14]. Indeed, when we
see a Wikidata statement like “elephant – has part(s) – elephant’s trunk” it is hard not to
read this “triple” as a mereological description of all instances of the class elephant. At
the same time, such statements can be subject to all the complications associated with
other data, from noise to context-dependent validity.

We are not well prepared for this messy new world. Where we used to have W3C-
standardised ontology languages and specialised tools to deal with them, we now have
noisy fusions of schema and instance data, sometimes with new user-invented expressive
features that further blur the line between data and ontology (as in theWikidata statement
“universe – has part(s) of the class – astronomical object”). In the wild, we therefore find
makeshift queries and ad-hoc tools where our SemanticWeb forebears had planned for a
neatly constructed layer cake. The challenge for staying relevant therefore is to combine
the flexibility and robustness of custom scripts with the declarativity and reliability of
an ontological reasoner.

One possible answer to this call is to turn to rules. Statements with an “if-then”
structure have a natural place in both computation and logic, and many species of rule
languages can be found within this fertile middle ground. The simplest (in syntax and
semantics) is Datalog [1], where rules merely “materialise” query results by adding
inferred relations between existing objects. Recursion adds power to this simple idea. It is
easy to see the appeal of this approach: rules are simple “instructions” for data completion
and transformation; they are fully declarative (implementation-independent); they are
well-suited for handling complex relationships in knowledge graphs.

And rules can capture ontologies. Thiswas known for a long time for someontologies
that could directly be rewritten as rules, most prominently the OWL RL profile [13].
The original idea was to turn ontologies into sets of rules, rather than allowing us to
interpret part of the data as ontological information, which is then processed by rules.
However, we can also define a set of (Datalog) rules that “implements” a complete
OWL RL reasoner for input ontologies given as plain data (e.g., as RDF encoding of the
OWL statements). A similar feat can be accomplished for the OWL EL profile although
this ontology language cannot be rewritten in Datalog [10]. These approaches show
that rules have the potential of capturing ontological semantics while at the same time
being user-definable and therefore able to adapt to new forms and features in ways that
a classical OWL reasoner could not.
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However, this approach soon meets its limits, as can be seen by applying a small
amount of complexity theory. Datalog can be evaluated in polynomial time with respect
to the size of the input data, so if the input data is our ontological knowledge, we can
only solve polynomial ontology reasoning tasks. But beyond lightweight profiles like
RL and EL, ontological reasoning is not known for its low computational complexity:
OWL 2DLmakes it to a frighteningN2ExpTime-completeness. It might seem that rules,
after all, can only do simple manipulations but are no use for such heavy lifting.

This is indeed true for Datalog, but it turns out that small extensions suffice to
overcome all limits and capture a much larger class of computations. All we need to
do is to allow rules to infer the existence of new objects. This so-called value invention
leads us to existential rules. As recently discovered, even the known (and implemented)
decidable fragments of this language are powerful enough to express every decidable
computation that only relies on positive information (since we have no negation here)
[2]. A huge leap from Datalog’s polynomial time.

Interestingly, the “invented values” that are at the heart of this leap in expressive
power are, in Semantic Web terms, nothing but blank nodes – the least appreciated type
of RDF term, which has long been “considered harmful” in data publishing. This critique
in publishing still holds up, but at the same time, blank nodes reveal their virtues when
modelling computation. Indeed, the ability to build new structures from such elements is
an important ingredient to the expressive power of existential rules. The other important
ingredient, as it turns out, is the ability to re-use such blank nodes once theywere created.
It is this facility that allows even highly complicated computations to come to an end,
instead of creating new values forever. The interplay between recursive rule application
and the possible re-use of blank nodes is complex and issues such as termination [5],
minimisation [9, 11], and negation [6] are studied in current research.

As often, the encodings used to demonstrate such high expressive powers in theory
papers [2] are not practical, yet they assure us that existential rules could be used to
express even the most complicated ontological inference procedures over a knowledge
graph. More applied works have shown that one can really solve some very hard (non-
polynomial) tasks in this way [4, 8]. Moreover, even beyond its computational benefits,
value invention provides us with a crucial facility for adding new auxiliary elements to
knowledge graphs,which can be required, e.g., to encode contextual information (such as
temporal validity) in RDF graphs [7, 12]. In spite of the long history of existential rules
in data exchange research (where they are known as tuple-generating dependencies),
this capability of rules to perform complex data transformations is hardly explored in
knowledge graphs yet. For example, a set of a few dozen existential rules suffices to
convert the RDF encoding of an OWL EL ontology into a set of normalised ontology
axioms that share common sub-expressions.3

All of this has already been implemented, e.g., using the existential rule engine VLog
[3]. Nevertheless, the vision of replacing our reliable (but largely decommissioned)
tooling of ontological reasoning by a more flexible, rule-based inference mechanism is
still far from being realised. Prime challenges remain usability (for designing rule-based
computations), scalability to knowledge graph sizes, and the ability of handling noise

3 Practical Uses of Existential Rules in Knowledge Representation: tutorial at ECAI 2022;
instructions and examples at https://iccl.inf.tu-dresden.de/web/Rules_Tutorial_2020/en.

https://iccl.inf.tu-dresden.de/web/Rules_Tutorial_2020/en
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and context-dependent inferences. In addition, the new ecosystem will need explanation
and debugging services, and approaches for adding in other modes of computation that
are relevant on knowledge graphs (e.g., based on graph embeddings, network analysis,
or graph neural networks). The Semantic Web community will be needed to help invent
and analyse the necessary tools and methods, but also to provide their expertise on
building good knowledge models that ensure interoperability (of machines) and shared
understanding (among humans).

Acknowledgements. The research reported here was partly supported by DFG
in project 389792660 (TRR 248, Center for Perspicuous Systems4), by the BMBF
under project ScaDS.AI5, by BMBF and DAAD in project 57616814 (SECAI: School
of Embedded and Composite AI6), and by the Center for Advancing Electronics
Dresden7(cfaed).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. AddisonWesley (1994)
2. Bourgaux, C., Carral, D., Krötzsch, M., Rudolph, S., Thomazo, M.: Capturing
homomorphism-closed decidable queries with existential rules. In: Bienvenu, M.,
Lakemeyer, G., Erdem, E. (eds.) Proceedings of the 18th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2021), pp. 141–150
(2021)

3. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog:
a rule engine for knowledge graphs. In: ISWC 2019. LNCS, vol. 11779, pp. 19–35.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_2

4. Carral, D., Dragoste, I., Krötzsch, M., Lewe, C.: Chasing sets: how to use existen-
tial rules for expressive reasoning. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI 2019), pp. 1624–1631 (2019). ijcai.org

5. Carral, D., Larroque, L., Mugnier, M., Thomazo, M.: Normalisations of existential
rules: Not so innocuous! In: Proceedings of the 19th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2022) (2022)

6. Ellmauthaler, S., Krötzsch, M., Mennicke, S.: Answering queries with negation over
existential rules. In: Proceedings of the 36th AAAI Conf. on Artificial Intelligence,
AAAI 2022, pp. 5626–5633. AAAI Press (2022)

7. Erxleben, F., Günther,M., Krötzsch,M.,Mendez, J., Vrandečić, D.: Introducingwiki-
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AI Ethics in the Semantic Web
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Abstract.AI is going to bring hugebenefits in termsof scientific progress,
humanwellbeing, economic value, and the possibility of finding solutions
to major social and environmental problems. Supported by AI, we will
be able to make more grounded decisions and to focus on the main values
and goals of a decision process rather than on routine and repetitive tasks.
However, such a powerful technology also raises some concerns, related
for example to the black-box nature of some AI approaches, the possible
discriminatory decisions that AI algorithms may recommend, and the
accountability and responsibility when an AI system is involved in an
undesirable outcome. Also, since many successful AI techniques rely on
huge amounts of data, it is important to know how data are handled by
AI systems and by those who produce them. These concerns are among
the obstacles that hold AI back or that cause worry for current AI users,
adopters, and policy makers. Without answers to these questions, many
will not trust AI, and therefore will not fully adopt it nor get its positive
impact. In this talk I will present the main issues around AI ethics, some
of the proposed technical and non-technical solutions, as well as practical
actions and regulations being defined for AI development, deployment,
and use. I will also highlight the relevance of some AI ethics issues to the
Semantic Web.
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Introducing Semantic Information
for Numerical Attribute Prediction

over Knowledge Graphs

Bingcong Xue1, Yanzeng Li1,2, and Lei Zou1,2(B)

1 Peking University, Beijing, China
{xuebingcong,zoulei}@pku.edu.cn, liyanzeng@stu.pku.edu.cn

2 Beijing Institute for General Artificial Intelligence (BIGAI), Beijing, China

Abstract. Knowledge graph (KG) completion has been long studied on
link prediction task to infer missing relations, while literals are paid less
attention due to the non-discrete and rich-semantic challenges. Numeri-
cal attributes such as height, age and birthday are different from other
literals that they can be calculated and estimated, thus have huge poten-
tial to be predicted and play important roles in a series of tasks. However,
only a few researches have made preliminary attempts to predict numer-
ical attributes on KGs with the help of the structural information or the
development of embedding techniques. In this paper, we re-examine the
numerical attribute prediction task over KGs, and introduce several novel
methods to explore and utilize the rich semantic knowledge of language
models (LMs) for this task. An effective combination strategy is also pro-
posed to take full advantage of both structural and semantic information.
Extensive experiments are conducted to show the great effectiveness of
both the semantic methods and the combination strategy.

Keywords: Numerical attribute prediction · Knowledge graph
completion · Language model · Ensemble learning

1 Introduction

Knowledge graphs (KGs) store structural data typically in the form of (sub-
ject, predicate, object) triples, and have become the backbone of various AI
applications such as information retrieval, question answering and recommender
systems. Some well known encyclopedia KGs include DBpedia [21], Yago [29]
and Wikidata [43], devoting to covering as much factual knowledge as possible.
As incompleteness is inherent in all KGs and largely restricts the effectiveness,
knowledge graph completion is becoming a topic of extensive research, among
which link prediction is the most concerned task and knowledge graph embed-
ding (KGE) methods play an important role.

The core idea behind KGE techniques is to map nodes and edges of KGs into
a low dimensional space. The learned representation can then be used to find
missing links between entities in link prediction as well as other reasoning tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-031-19433-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19433-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-19433-7_1
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Fig. 1. A small part of a KG, where circles stand for entities and rectangles are literals.
The colored text is to describe the different types of literals and the red ones are missing.
(Color figure online)

According to the different mapping functions, they are roughly classified into
tensor decomposition models, geometric models, and deep learning models [35].
Embedding-based methods have shown great potential in efficiently mining and
analyzing on large-scale graphs, and are becoming the mainstream for knowledge
graph completion task.

However, relationships among entities are not the only elements in KGs
and knowledge graph completion should not be confined to just relations. For
instance, various types of literal attributes also exist with rich semantics, and
face the same incomplete issue. An example is depicted in Fig. 1, where an entity
has not only relations with other entities, but also literal attributes in the form
of text, numeric, image, etc., and all of them may be missing. In this paper, we
focus on the prediction of numerical attributes over knowledge graphs, which we
believe is valuable and potential but challenging as well. The motivations and
intuitions are elaborated below.

1.1 Motivation

In this subsection we want to clarify our motivation by answering two questions:
(1) why it is necessary to predict missing numerical attributes, and (2) why it is
potential to do such a task.

1.1.1 Why do we want to predict numerical attributes? The importance of
numerical attribute prediction lies in at least three aspects. Firstly, numerical
attributes are widespread in KGs [39] to enrich entity characteristics from differ-
ent perspectives, especially in cases of product graphs [5] and Internet of Things
[12]. Like relational triplets to be completed in link prediction task, the prediction
of numerical attributes itself is part of knowledge graph completion and qual-
ity management [51]. Secondly, though embedding methods have shown great
potential in many reasoning tasks, traditional KGE techniques consider only
relational edges and largely suffer from the sparsity problem. Introducing vari-
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ous literals is a powerful way to alleviate sparsity [13] and many recent researches
[11,20,39,48] have shown the effectiveness to incorporate numerical attributes
into the process of embedding learning. But the same incomplete problem of
numerical attributes will limit the application [19]. Last but not least, numer-
ical values can serve as the prediction targets in a chunk of standard machine
learning tasks to distinguish the performance of relation representation [39], as
well as language models [2,36] recently.

1.1.2 Why can numerical attributes be predicted? Different from other literals,
numerical value shows the uniqueness in its ability to be compared and calcu-
lated. It is usually meaningless to approximate attribute values like an actor’s
name or portrait, though [32] did some attempt to decode multimodal objects
with auxiliary reference inputs. But numerical attributes can be estimated even
if they are not explicitly mentioned [8]. The prediction can be derived from two
sources: one is the relational structure and correlation of the graph, e.g., two
entities with spouse relation tend to have similar ages, and the other is various
language models that hopefully capture and store numerical and common sense
in the large-scale pre-training processes. It is our basic foothold that both the
explicit structural and the implicit semantic information can produce a marked
effect and experiments in Sect. 4 have demonstrated this hypothesis.

1.2 Challenges and Opportunities

Numerical attributes are much more difficult to be predicted compared with
relations. Unlike the in-KG entities that are within a limited set, the values of
numerical attributes are typically non-discrete, leading to the fact that if we
try to encode the values into vectors for the inference, we are very likely to
face a serious sparsity problem. As [39] says, the literal attributes seem to cast
KGs out of its comfort zone of a bounded space. Besides, rich semantics and
dependencies are hidden in the literal values that we cannot treat them as simple
relational triples. And the numerical characteristics require extra calculation and
comparison capabilities. If we just reduce the literals into identifiers as entity
nodes, most of the information will be lost [46].

But at the same time, there are many opportunities. On the one hand, the
continuous development of knowledge graph embedding techniques has shown
impressive capacity for different reasoning tasks. And on the other hand, pre-
trained language models (PLMs) are proved to have the potential to serve as
alternative knowledge bases [31,33]. And efforts on numerical reasoning in the
field of natural language processing [41,52] further enhance their ability to cap-
ture and store numerical and common sense knowledge. Both the structural
information behind KGs and the implicit knowledge in PLMs are promising to
play a role and the integration of these two kinds of resources is in the ascendant.
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1.3 Contributions

In this paper, we re-examine the less-explored numerical attribute prediction
task over knowledge graphs and introduce semantic information for it. The main
contributions are summarized as follows:

– We provide several novel strategies to capture the implicit knowledge behind
pre-trained language models for numerical attribute prediction over KGs. To
the best of our knowledge, we are the first to do such a transfer from text
to graph. Compared to traditional structural methods, this line of techniques
are able to capture the semantics behind literals and keep stable in zero-shot
scenes, which can serve as a powerful supplement.

– After an in-depth analysis on the applicability of graph- and semantic-based
methods, we design an effective combination strategy to make full use of both
structural and semantic information, where base models are automatically
selected for different prediction targets to achieve the best performance.

– Based on rich experimental results, we demonstrate the great effectiveness of
both the semantic methods and the combination strategy. Extensive ablation
studies are also conducted to show the impact of different components.

2 Preliminaries

2.1 Problem Formalization

In this subsection, we formalize the numerical attribute prediction task over KGs
by first defining several key terms.

Definition 1. Knowledge Graph, denoted as G = (E,P,L), is a collection
of structured facts typically in the form of (subject, predicate, object) triples
⊆ E × P × (E

⋃
L), where E is a set of entities, P a set of predicates and L

a set of literals. A fact whose object ∈ E is called a relational fact, and the
corresponding predicate is called a relation, while a fact with a literal object is
called an attributive fact whose predicate is known as an attribute.

Definition 2. Types of Literals are first presented in [13]. Like those depicted
in Fig. 1, they generally fall under four kinds: (1) text literals of short text
like names and labels, and long text such as comments and descriptions, all of
which may be expressed in multiple languages; (2) numeric literals that are
encoded as integers, float and so on, e.g., height and date; (3) discrete types
like occupation and class, which can also be regarded as entities in some KGs,
and (4) other modalities including images, videos and etc.

Definition 3. Numerical Attributes are a specific type of attributes whose
objects are numeric literals, or in other words, numbers. They can enrich entity
features in terms of quantity (like height and population), time (like birthday)
and identification (like phone number and zip code).
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Problem Definition. The task of numerical attribute prediction over KGs is
first explored in [39] and formalized in [19]. Compared with link prediction that
is to complete a missing entity for a given relation and a corresponding entity,
numerical attribute prediction aims to predict the numeric value of a given entity
and a given attribute. The non-discrete numerical values make it intuitively more
suitable to be regarded as a regression rather than a classification problem. The
task is under the context of knowledge graphs, i.e., a KG composed of a set
of relational and attributive facts is given. To avoid the interference of various
types of literals, the attributive facts here are limited to numerical ones. And
nominal attributes [40] like the identifications are filtered out as it is typically
meaningless to predict such numeric identifiers but only brings noise.

More formally, given a group of relational facts and numerical attributive
facts, the task is to predict the missing numerical attribute values for a batch of
entities, where the attributes are appointed and limited to non-nominal ones.

2.2 Existing Graph-Based Methods

Three preliminary jobs [1,19,39] have been done to predict numerical attributes
over KGs and they are all based solely on graph structures. We summarize these
graph-based methods below.

GLOBAL and LOCAL are two natural baselines formalized in [19]. For
each type of attribute, GLOBAL predicts the missing values by the average (or
median) of all the known ones, for example, all missing values of population will
be predicted equally as the average (or median) of all the known population
values in a given KG. And similarly, LOCAL considers the average (or median)
of the same known attributes in only the neighbor nodes, and thus could get
different predictions for different entities.

MRAP [1] is based on the hypothesis that a numerical attribute of entity
ea can be estimated according to ea’s other attributes as well as the attributes
of ea’s surrounding entities. For instance, the birth year of a man seems to
have some correlations with his death year as well as his wife’s birth year. The
correlations are modeled as regression weights iteratively estimated from the
known structures, which can also be seen as a message passing scheme.

The prediction of non-discrete attributes can also be regarded as a standard
regression task, where regression classifiers are trained for each attribute with
some input features of the entities. The learned representations of KGE models
can play a role here, and we use KGE-reg to stand for such a method with the
learned entity embeddings serving as the features, similar to those proposed in
[19,39]. The details of different KGE features are talked in Sect. 4.

3 Our Methods

3.1 Limitations of Existing Methods

Existing graph-based methods mainly depend on the interaction of the rela-
tional structures of the graph, as well as the correlations among attributes.
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They ignore the semantics behind numerical values and are usually incapable of
handling unseen and isolated entities. GLOBAL treats all entities equally and
generally cannot obtain valuable results; LOCAL distinguishes entities based on
the neighborhood structures but the simple aggregation strategy is likely to be
disturbed by irrelevant noise. MRAP considers the complex interactions among
various attributes and relations, which is prone to sparsity and skewness when
there is a surge in the predicates number. And the message passing scheme is
unfriendly to isolated entities. KGE-reg benefits from the development of var-
ious KGE methods. However, these embedding techniques are quite sensitive
to the large hyper-parameter space and training strategies [4]. Though some
works have published their training results, they are not always available and
retraining is needed for new datasets. Also, we cannot expect to obtain good
prediction results for those unseen entities during the training processes. And
intuitively, not all attributes can be inferred solely from the graph structures,
like the population of a country, which demands for some common sense and
memory.

3.2 Semantic-Based Methods

We believe different types of language models, such as Bert [9], have captured and
stored rich knowledge during the large-scale pre-training processes, which have
been demonstrated in various natural language processing tasks. We propose
semantic-based methods here to introduce the implicit semantic information
of PLMs to predict missing attributes. And to better use them for our scene,
we should solve two main problems: (1) how to apply them to the context of
graphs, and (2) how to fully extract and utilize the implicit semantic knowledge,
especially about the numerics.

Transfer for Graphs. For the first problem, we use a simple but general way
to transform KG triples into meaningful texts. For a relational fact (s, p, o) in
a knowledge graph, the relation predicate is converted to a natural language
segment by published paraphrase dictionaries [50] or by simple heuristic rules
(e.g., the predicate happenedOnDate is split to happened on date). Entities are
changed from their identifications to names, and sometimes to descriptions for
more semantics. Similar way runs on attributive facts, except that literal values
are reserved as what they are.

Two Paradigms. For the second problem, we propose two different paradigms.
The first one refers to one of the classical pre-training tasks called masked lan-
guage modeling, also known as a fill-mask task. That is to say, we can change
an attributive triple to be predicted into a sentence as mentioned above, leaving
the missing numerical value as a masked token, which is then input to a pre-
trained language model to predict a masked word. The output word is restricted
to the numerical vocabulary of the model here. It actually degenerates the non-
discrete numerical prediction task into a classification problem on finite digital
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Fig. 2. Methods used in this work. The left four are based on graphs, and the right
two on semantics, all of which can serve as the input to get the combination results.

tokens, and the models have no idea with the numbers, but to be tested on the
implicit memory and classification abilities. And to enhance the performance of
the models on specific domain tasks, fine-tuning and prompt [23] are two help-
ful learning techniques. The former injects domain knowledge into the model
parameters, and the latter into the probe missions, which are exactly the input
sentences in our task. The term MLM is used throughout this paper to refer
to such a prediction method like cloze test, and MLM-tuning and MLM-prompt
are for the two enhancement technologies respectively.

The second paradigm similar to KGE-reg, which we call PLM-reg, also
trains attribute-specific regression classifiers for different attributes. And the
difference lies in the input features, which are obtained with the help of the
encoding abilities of pre-trained language models for rich semantics. We have
attempted to input entity names and descriptions into PLMs and received dif-
ferent results, see the experimental parts for more details.

Semantic-based methods are hopeful to obtain valuable results for any input
entity. And with the rapid and continuous development of language models,
the ability to capture numerical semantics and predict missing values of such
methods can keep growing. But all the results tend to be influenced by the
paraphrasing patterns and we actually don’t know exactly what the PLMs really
know. Morever, MLM is limited to a fixed vocabulary and PLM-reg needs some
extra resources like entity names and descriptions.

3.3 Combination Strategy

Both the graph- and semantic-based methods have some strengths and weak-
nesses. And a combination procedure is capable to achieve better results, where
both the explicit structural and the implicit semantic knowledge are working.

As depicted in Fig. 2, we now have four graph-based methods and two
semantic-based methods, which can be regarded as different base learners in
the idea of ensemble learning [10]. Different models may be good at different
numerical attributes, and when we put them together, the advantages of various
methods can be brought into full play. We propose three combination strate-
gies Mean, Median and Best respectively. In the Mean and Median strategies,
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Table 1. Statistics of the datasets.

# Ent # Rel # Rel fact # Attr # Attr fact # Train # Valid # Test

FB15K 14,951 1,345 592,213 116 29,395 23,516 2,939 2,940

YAGO15K 15,404 32 122,886 7 23,532a 18,825 2,353 2,354
a There are 48,406 numerical facts at https://github.com/mniepert/mmkb for YAGO15K,
and 23,532 are the actually left ones after removing duplicates.

Table 2. Quantities of the focused attributes following [1,19]. The upper block includes
numerical attributes about time and the lower one contains all others. A dash (-)
indicates that the corresponding attribute is not in the dataset.

FB15K YAGO15K

# Train # Valid # Test # Train # Valid # Test

date of birth 3,528 425 475 6,555 826 837

date of death 988 117 115 1,490 163 169

film release 1,479 204 184 - - -

organization founded 988 126 123 - - -

location founded 737 103 83 - - -

date created - - - 5,244 693 651

date destroyed - - - 425 55 58

date happened - - - 311 41 36

latitude 2,545 317 349 2,401 279 309

longitude 2,614 292 302 2,399 296 294

area 1,741 204 221 - - -

population 1,532 199 199 - - -

height 2,309 305 257 - - -

weight 182 20 24 - - -

the combination results are obtained as the mean and median predictions of all
base models. As for the Best strategy, each attribute will choose the prediction
results of the best model for it, which is measured based on the validation results.
These are all model-level combination strategies, and we leave more fine-grained
schemes in the future work.

4 Experiments

4.1 Experimental Setup

Datasets. We use two benchmark datasets: FB15K and YAGO15K, where the
relational and numerical triples are all from MMKG [24]. We randomly divide
the numerical facts into an 80/10/10 split of train/valid/test and the statistics
are shown in Table 1. We follow [1,19] to focus on 11 and 7 major attributes of
FB15K and YAGO15K respectively and the quantities are listed in Table 2.

https://github.com/mniepert/mmkb
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Metrics. We adopt three evaluation metrics widely used in similar tasks to
assess the performance: MAE (Mean Absolute Error), RMSE (Root Mean Square
Error) and R2 (R Squared), which are defined as follows:

MAE(y, ŷ) =
1
n

n∑

i=1

|yi − ŷi| (1)

RMSE(y, ŷ) =

√
√
√
√ 1

n

n∑

i=1

(yi − ŷi)2 (2)

R2(y, ŷ) = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2

(3)

where n is the sample size, yi the ground truth of the i-th sample, ŷi the pred-
icated one and y the mean of all y values. The metrics are calculated on each
type of attribute, and when evaluated on the whole, we introduce the calcula-
tion thought of micro- and macro- from the F1 metric, where the former gives
the same weight to each sample and the latter to each category. MAE and
RMSE reflect the deviation degree from the predictions to the true values, where
smaller scores mean better. R2 represents the proportion of variance that has
been explained by the independent variables in the model and is a measure of
how well unseen samples are likely to be predicted. The best possible score for
R2 is 1.0 and negative values imply the model fits much worse.

Implementation Details. As shown in Fig. 2, the methods to be compared
generally fall under three headings: graph-based, semantic-based, and combina-
tion ways. For all the methods, the performances are evaluated on the test set and
the validation set is used for hyper-parameters and model selection. The imple-
mentations of GLOBAL, LOCAL and MRAP methods refer to MRAP1. For
both KGE-reg and PLM-reg, we choose three classical regression models, namely
linear, ridge and lasso, from scikit-learn [28], with the complexity parameter α
among [0.1, 1.0, 10.0]. We use the published KGE embeddings from LibKGE [4]
and PLM models from Transformers [47], where TransE2 and bert-base-uncased3

are the default respectively and more other models are experimented in Sect. 4.3.
The fine-tuning parameters of MLM-tuning are set by reference to [2], with a
batch-size of 32 for 10 epochs and two learning rates {3e−5, 1e−2}, and we found
empirically that more epochs would not bring further improvement. Besides,
the name and description texts of FB15K entities are from DKRL [49], and the
lack resources for YAGO15K are supplemented by aligning to FB15K entities
according to the published sameAs links4. Experiments are all conducted on a

1 https://github.com/bayrameda/MrAP.
2 http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-transe.pt.
3 https://huggingface.co/bert-base-uncased.
4 https://github.com/nle-ml/mmkb/blob/master/YAGO15K/.

https://github.com/bayrameda/MrAP
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-transe.pt
https://huggingface.co/bert-base-uncased
https://github.com/nle-ml/mmkb/blob/master/YAGO15K/
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Linux machine with two NVIDIA Tesla P100 GPUs. We make all our datasets
and implementations publicly available5.

Table 3. Main results of different methods. For each dataset, the three blocks top to
bottom contain graph-based, semantic-based and combination methods respectively.
Best results in each block are underlined and the best ones of all methods are in
boldface. Text in parentheses behind PLM-reg indicates the type of inputs to PLMs.

Methods micro- macro-

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑
FB15Ka GLOBAL 35.7281 85.5691 −0.0031 46.8625 114.6660 −0.0061

LOCAL 21.8207 90.9444 0.3755 37.5387 138.3979 0.1270

MRAP 17.5514 81.9242 −6.9458 30.9281 118.6432 −5.9687

KGE-reg 28.2156 70.6051 0.4492 41.4302 99.8194 0.3773

MLM 312.6412 698.1551 −772.3746 265.0596 625.1898 −502.4600

MLM-tuning 32.1816 78.7322 −0.3053 35.4254 94.1896 −0.1929

PLM-reg (name) 28.6963 73.3825 0.2947 40.9169 101.8967 0.2481

PLM-reg (desc) 22.5595 55.8076 0.6072 33.3209 80.5485 0.5647

Combination Mean 19.8698 54.3243 0.3508 29.4875 78.9829 0.3188

Combination Median 16.0400 51.4285 0.6591 26.1637 76.7629 0.5729

Combination Best 12.7935 53.0444 0.6267 21.3944 78.9087 0.5717

YAGO15K GLOBAL 49.5822 102.8896 −0.0045 49.0409 100.5088 −0.0157

LOCAL 56.4510 123.1791 0.1312 47.9265 104.5093 0.1999

MRAP 31.5875 86.7825 0.4539 33.1130 89.2587 0.0045

KGE-reg 36.9135 87.7188 0.3423 37.6362 86.6269 0.3398

MLM 187.0013 496.7505 −749.3612 217.3499 563.1464 −821.1300

MLM-tuning 36.8188 93.1231 0.0596 34.2217 80.9421 0.1579

PLM-reg (name) 37.9548 89.5944 0.2997 37.2637 88.0866 0.3060

PLM-reg (desc) 32.4495 81.3838 0.4894 33.1313 80.0946 0.4755

Combination Mean 28.8185 76.3485 0.5699 28.4325 68.3501 0.6087

Combination Median 26.2166 79.9005 0.5445 25.2935 75.1677 0.5937

Combination Best 25.2432 82.8491 0.5218 21.1966 69.3299 0.6584
a Experiments show that the results of two attributes, area and population, vary largely
with others. To have a better overview here, we omit these two attributes in the micro-
and macro- metrics. And the detailed results can be found in Sect. 4.4.

4.2 Main Results

Table 3 reports the results of different methods for the two datasets, from which
we can get the following observations. Firstly, for graph-based methods, MRAP
and KGE-reg generally outperform GLOBAL and LOCAL in almost all metrics,
showing the learning processes for both the interaction weights and the graph
embeddings have capture valuable information for numerical attribute predic-
tion. MRAP performs quite good on the MAE metrics, but when it comes to
RMSE and R2, it often loses to KGE-reg.
5 https://github.com/xbc0112/NumericalPrediction.

https://github.com/xbc0112/NumericalPrediction


Numerical Attribute Prediction over Knowledge Graphs 13

Secondly, we can observe that, PLM-reg with entity descriptions consistently
achieves the best results on both datasets and all metrics in semantic-based
methods. And it also has comparable or better performances with the optimal
results of graph-based methods, demonstrating the huge potential of language
models for this task. The advantages will be more prominent in zero-shot scenes,
since the PLMs can output stable results for any input, while other means are
vulnerable to unseen or isolated entities. It is not surprising that the pure MLM
performs much worse than all other methods, where it makes use of nothing but
the memory of the model to classify on a limited numeric vocabulary, having
no idea with the numbers as well as the input dataset. But we also find that
when we just fine-tune the PLMs with the known attributes, the performances
are significantly improved to be comparable with KGE-reg, which again proves
that the PLMs are quite helpful and appropriate ways to extract the implicit
knowledge matter much. Morever, in the implementation of PLM-reg, using
descriptions brings a further performance improvement compared with the entity
names, which conforms to the basic cognition that PLMs are good at capturing
information from contextual texts and longer descriptions function better.

Table 4. Ablation results on KGE models for KGE-reg.

Link Prediction FB15K YAGO15K

MRR↑ Hits@1↑ Hits@10↑ micro-MAE↓ macro-MAE↓ micro-MAE↓ macro-MAE↓
Random - - - 36.3266 48.4124 49.6527 49.6824

TransE 0.313 0.221 0.497 28.2156 41.4302 36.9135 37.6362

RESCAL 0.356 0.263 0.541 28.4982 41.7494 38.7561 41.5883

ComplEx 0.348 0.253 0.536 26.4450 37.9365 38.5046 39.2547

RotatE 0.333 0.240 0.522 25.5822 36.7313 36.3934 37.7898

Finally, the experimental results fully reflect the great advantages of the
combination methods. The combinations are conducted by excluding the three
austere baselines (GLOBAL, LOCAL and MLM) and the Best selection strategy
is measured on the MAE metrics. From Table 3 we can see that all of the three
combination strategies greatly improve the performances on all metrics, and
the Best strategy is generally the top performer, with the MAE a 20+% and a
30+% improvement on micro- and macro- metrics respectively. And similarly, if
we choose the best model according to the RMSE or R2, we could get further
improvements on these metrics as well.

In general, the main results have demonstrated that the semantic-based
methods are quite promising to predict numerical attributes over KGs and effec-
tive combination strategies making use of both structural and semantic knowl-
edge can significantly improve the performances, which confirm our original moti-
vation and the efficacy of our methods.
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4.3 Ablation Study

In this subsection we conduct several ablation studies to explore the impact that
the different variants of each module have on the performances, including KGE
models, language models, fine-tuning parameters and description texts.

Ablation on KGE Models. Four popular KGE techniques in link prediction
are chosen here for KGE-reg, namely, TransE [3], RESCAL [27], ComplEx [42]
and RotatE [38]. We use the published models for FB15K from LibKGE and
YAGO15K entities are mapped by the SameAs links. The official link prediction
results from LibKGE as well as our KGE-reg results for two datasets are listed
in Table 4, where we use Random to represent the method with random embed-
dings. From Table 4 we can see that the results of link prediction and numerical
attribute prediction vary among different models and datasets. Though RESCAL
performs best on link prediction, its performance on our task is off. At the same
time, TransE and RotatE have some satisfactory results on numerical attribute
predication but they are inconsistent on the two datasets. This indicates that
KGE models may also lose some useful information when just focusing on cer-
tain tasks and capabilities, and numeric prediction can serve as an additional
assessment, as we have talked in Sect. 1.1.1.

Table 5. Ablation results on language models for MLM.

b-base b-large r-base r-large x-base x-large numBert

FB15K micro-MAE↓ 312.64 106.87 593.10 730.29 889.76 320.48 1,158.64

macro-MAE↓ 265.06 101.81 853.13 802.97 947.71 416.67 968.25

YAGO15K micro-MAE↓ 187.00 180.26 820.10 1,048.00 1,387.61 688.65 1,069.85

macro-MAE↓ 217.35 134.10 896.16 1,035.58 1,321.77 473.88 944.27

Table 6. Ablation results on fine-tuning parameters for MLM-tuning.

FB15K YAGO15K

micro-MAE↓ macro-MAE↓ micro-MAE↓ macro-MAE↓
No tuning 312.6412 265.0596 187.0013 217.3499

lr=3e−5 32.1816 35.4254 36.8188 34.2217

lr=1e−2 1,008.2838 1,081.8034 1,454.5918 1,408.1344

Table 7. Ablation results on multilingual description texts for PLM-reg. (E, F, G are
English, French and German for short.)

E F G E+F E+G F+G E+F+G

micro-MAE↓ 22.4099 25.5759 26.0673 22.4126 21.7161 24.5054 22.1151

macro-MAE↓ 33.5482 35.8706 37.5044 32.9257 32.2438 35.4397 32.6784
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Ablation on Language Models. We explore the MLM results with var-
ious pre-trained language models here, including bert-base/large-uncased [9],
roberta-base/large [25], xlm-roberta-base/large [7], and numBert [52]. As shown
in Table 5, bert-large-uncased performs best on the two datasets, but the results
are still far from satisfactory. And other carefully decorated variants of Bert
even produce much worse results, which again illustrates that a pure MLM is
not suitable for this task at all.

Ablation on Fine-Tuning Parameters. The impact of fine-tuning param-
eters (specifically learning rate here) is shown in Table 6. We can see that
fine-tuning pre-trained language models with appropriate parameters will sig-
nificantly improve the numerical prediction results, but on the contrary, poor
configurations may bring negative effects. This reveals an inherent defect of
PLM-tuning that the parameters can be difficult to choose.

Table 8. Fine-grained MAE results of five methods and the chosen model according to
the Best strategy on FB15K. The numbers in bold indicate the best among all methods.

MRAP KGE-reg MLM-tuning PLM-reg(name) PLM-reg(desc) Best Model

date of birth 13.7524 27.0335 17.8177 28.0877 25.0356 MRAP

date of death 14.1559 67.0116 22.8152 59.8208 46.8587 MRAP

film release 5.5087 5.0874 14.3519 11.8329 4.9622 PLM-reg (desc)

organization founded 73.7679 55.7411 39.5332 46.5200 46.9082 PLM-reg (desc)

location founded 152.4245 172.2755 100.1074 172.2287 144.9887 MLM-tuning

latitude 2.2707 9.7633 5.9728 8.8821 5.6201 MRAP

longitude 4.8890 25.1610 106.7638 29.9472 16.2546 MRAP

area 3.01e+6 2.37e+6 5.77e+5 1.80e+6 1.54e+6 MLM-tuning

population 1.05e+7 2.22e+7 4.43e+6 8.52e+6 1.57e+7 MLM-tuning

height 0.4836 0.1916 0.1263 0.1967 0.1881 MLM-tuning

weight 11.1000 10.6064 11.3400 10.7358 9.0717 PLM-reg (desc)

Ablation on Description Texts. Gesese et al. [14] have explored the benefits
of multilingual descriptions for link prediction, and here we use their trilin-
gual datasets as well as the combinations for PLM-reg (desc) on FB15K. The
results are listed in Table 7, by which we can generally conclude that combining
multilingual descriptions as the input for PLM-reg is promising to improve the
performance but the improvement is not quite significant.

4.4 Case Study

We now start a fine-grained analysis on the performances of the methods over
different attributes. The MAE results on FB15K of the five models used in the
combination method are listed in Table 8, where the last column is the chosen
model of the Best strategy. We can observe that the chosen model for each
attribute except organization founded exactly has the best performance among
the methods, showing the effectiveness of the selection strategy. By looking into
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the bold numbers and the best models, it appears that only three methods,
i.e., MRAP, MLM-tuning, and PLM-reg (desc), are actually dominant in some
attributes and play a role in the combination process, where only the first one
is graph-based and the others are semantic-based. This can serve as additional
evidence to demonstrate the potential of the semantic methods from the fine-
grained aspect.

And a more interesting finding comes when we analyze the relations asso-
ciated with each attribute. We find that the attributes benefit most from the
graph-based methods, such as latitude and longitude, typically have strong rela-
tions making the value derivation from the graph structures possible. A practical
example is that many entities with latitude often have the relation isLocatedIn
with other entities that they typically have similar latitude values. While other
attributes, like the height of a person, intuitively have little to do with the graph
structures, but are probably contained in the common sense knowledge behind
the language models, as people’s heights are actually in a small range. This
observation partly explains why both structural and semantic information can
play a role in the numerical attribute prediction task. And on the other hand, it
inspires that we may obtain useful rules from the performance differences of the
two paradigms. For instance, we may get an inference rule that if A is located in
B, then A’s latitude is similar to B here. Rule discovery is an important research
problem and we will explore it further in the future.

5 Related Work

Numerical Attributes on Knowledge Graphs. Up to now, three works in
total have paid attention to predicting numerical attributes over KGs. Tay et
al. [39] use the learned embeddings of relational representation approaches as
features to train attribute-specific regression models. It is the first to treat non-
discrete numeric values as a prediction target and evaluate the performance of
different models by the task of attribute value prediction. They also design a
novel multi-task neural network to jointly learn from relational and numerical
attribute information and experiments show that these two kinds of informa-
tion are complementary to each other. The work [19] formalizes the numerical
attribute prediction problem with the Global and Local baselines, and leverages
knowledge graph embedding vectors in a linear regression model to get a better
performance. And recently MRAP [1], a multi-relational attribute propagation
algorithm in the message passing scheme, is proposed to impute missing numer-
ical values by the learned regression model depending on the graph structure
and known attributes. These works are pioneers for numerical attribute predic-
tion over KGs and are regarded as baselines in our experiments. However, all of
them focus only on the graph structures and ignore rich semantic information
under numeric attributes or external resources like PLMs, and thus have a poor
performance, especially in cases of unseen and isolated entities.

Another research line concerns the use of numerical attributes for represen-
tation learning [11,20,48]. For example, LiteralE [20] extends existing latent
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feature models with learnable parameters to incorporate numeric literals into
entity embeddings, and gets performance gains in several link prediction bench-
marks. These works show the utility of numerical attributes for KGE techniques,
which facilitate one of our motivations to predict missing numerics.

Numerical Reasoning in Text Context. Several research topics about
numerical prediction and reasoning are thriving in the field of natural language
processing in recent days. One line parallel with our task is to predict missing
numbers in the context of text. An early work [16] adopts Word2vec embeddings
[26] of entity names as input features to regression models for number prediction.
Recent empirical investigations [2,37] devote to explore the effectiveness of dif-
ferent combinations of various encoders and regression models. Masked numeral
predication task is also used to evaluate language models’ ability to capture
and memorize numerical knowledge [36,52]. These methods can not be directly
applied to numerical prediction over KGs and some effective ways are needed to
realize the transfer, which is one of our contributions.

Some probing work has noticed the limitations of existing pre-trained lan-
guage models on numerical reasoning [34,44] and then several attempts follow to
inject such skills into the models by different pre-training or fine-tuning patterns,
such as numBert [52], genBert [15] and numGPT [17], which can be regarded
as substitutions of the basic Bert model and hopeful to further improve the
performance of our method.

PLM and KG. As two major sources of knowledge playing significant roles in a
series of AI applications, pre-trained language models and knowledge graphs are
recently considered to be complementary to each other and can sometimes work
together. On the one hand, pre-trained language models have shown potential
to serve as substitute for explicit knowledge bases [31,33] or improve the per-
formance of knowledge representation [53]. And on the other hand, some work
[6,30] tries to integrate structured knowledge of KGs into current language mod-
els for better interpretability. Combining both explicit and implicit knowledge
also shows advantages in tasks like recommender systems [22] and graph comple-
tion [18,45]. We are the first to explore such intergation on numerical attribute
prediction and experimental results demonstrate the effectiveness of our combi-
nation strategy.

6 Conclusion and Future Work

In this paper, we focus on the prediction of numerical attributes over knowl-
edge graphs and devote to introducing semantic information for it. Several novel
semantic methods as well as effective combination strategies are proposed, and
extensive experiments have shown that both the explicit structural knowledge
and the implicit semantic information can help the prediction and an effective
combination is of great potential.
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Several interesting directions are left for the future. First, we plan to take
a deep look at the paraphrase method when converting KG triples into texts,
and attempt other paradigms for the use of PLMs, such as prompt. Second, fine-
grained combination strategies and the value of numerical attributes on other
tasks can be further explored. Last but not least, rule discovery by the compare
between PLM and KG seems quite promising.

Supplemental Material Statement: Source code, datasets and results are all avail-
able at https://github.com/xbc0112/NumericalPrediction.
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Abstract. Recently, increasing efforts are put into learning continual represen-
tations for symbolic knowledge bases (KBs). However, these approaches either
only embed the data-level knowledge (ABox) or suffer from inherent limitations
when dealing with concept-level knowledge (TBox), i.e., they cannot faithfully
model the logical structure present in the KBs. We present BoxEL, a geometric
KB embedding approach that allows for better capturing the logical structure (i.e.,
ABox and TBox axioms) in the description logic EL++. BoxEL models concepts
in a KB as axis-parallel boxes that are suitable for modeling concept intersec-
tion, entities as points inside boxes, and relations between concepts/entities as
affine transformations. We show theoretical guarantees (soundness) of BoxEL
for preserving logical structure. Namely, the learned model of BoxEL embedding
with loss 0 is a (logical) model of the KB. Experimental results on (plausible)
subsumption reasonings and a real-world application–protein-protein prediction
show that BoxEL outperforms traditional knowledge graph embedding methods
as well as state-of-the-art EL++ embedding approaches.

Keywords: Ontologies · Knowledge graph embeddings · Semantic web

1 Introduction

Knowledge bases (KBs) provide a conceptualization of objects and their relationships,
which are of great importance in many applications like biomedical and intelligent
systems [5,25]. KBs are often expressed using description logics (DLs) [3], a family
of languages allowing for expressing domain knowledge via logical statements (a.k.a
axioms). These logical statements are divided into two parts: 1) an ABox consisting
of assertions over instances, i.e., factual statements like isFatherOf(John,Peter); 2) a
TBox consisting of logical statements constraining concepts, e.g., Parent � Person.
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Fig. 1. Two counterexamples of ball embedding and its relational transformation. (a) Ball embed-
ding cannot express concept equivalence Parent�Male ≡ Father with intersection operator. (b)
The translation cannot model relation (e.g. isChildOf) between Person and Parent when they
should have different volumes. These two issues can be solved by box embedding and modelling
relation as affine transformation among boxes, respectively.

KBs not only provide clear semantics in the application domains but also enable
(classic) reasoners [13,30] to perform logical inference, i.e., making implicit knowl-
edge explicit. Existing reasoners are highly optimized and scalable but they are limited
to only computing classical logical entailment but not designed to perform inductive
(analogical) reasoning and cannot handle noisy data. Embedding based methods, which
map the objects in the KBs into a low dimensional vector space while keeping the simi-
larity, have been proposed to complement the classical reasoners and shown remarkable
empirical performances on performing (non-classical) analogical reasonings.

Most KB embeddings methods [33] focus on embedding data-level knowledge in
ABoxes, a.k.a., knowledge graph embeddings (KGEs). However, KGEs cannot pre-
serve concept-level knowledge expressed in TBoxes. Recently, embedding methods for
KBs expressed in DLs have been explored. Prominent examples include EL++ [15]
that supports conjunction and full existential quantification, and ALC [23] that further
supports logical negation. We focus on EL++, an underlying formalism of the OWL2
EL profile of the Web Ontology Language [10], which has been used in expressing vari-
ous biomedical ontologies [5,25]. For embedding EL++ KBs, several approaches such
as Onto2Vec [28] and OPA2Vec [29] have been proposed. These approaches require
annotation data and do not model logical structure explicitly. Geometric representa-
tions, in which the objects are associated with geometric objects such as balls [15] and
convex cones [23], provide a high expressiveness on embedding logical properties. For
EL++ KBs, ELEm [15] represents concepts as open n-balls and relations as simple
translations. Although effective, ELEm suffers from several major limitations:

– Balls are not closed under intersection and cannot faithfully represent concept inter-
sections. For example, the intersection of two concepts Parent � Male, that is sup-
posed to represent Father, is not a ball (see Fig. 1 (a)). Therefore, the concept equiv-
alence Parent � Male ≡ Father cannot be captured in the embedding space.

– The relational embedding with simple translation causes issues for embedding con-
cepts with varying sizes. For example, Fig. 1 (b) illustrates the embeddings of the
axiom ∃isChildOf.Person � Parent assuming the existence of another axiom
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Parent � Person. In this case, it is impossible to translate the larger concept
Person into the smaller one Parent,1 as it does not allow for scaling the size.

– ELEm does not distinguish between entities in ABox and concepts in TBox, but
rather regards ABox axioms as special cases of TBox axioms. This simplification
cannot fully express the logical structure, e.g., an entity must have minimal volume.

To overcome these limitations, we consider modeling concepts in the KB as boxes
(i.e., axis-aligned hyperrectangles), encoding entities as points inside the boxes that they
should belong to, and the relations as the affine transformation between boxes and/or
points. Figure 1 (a) shows that the box embedding has closed form of intersection and
the affine transformation (Fig. 1 (b)) can naturally capture the cases that are not possi-
ble in ELEm. In this way, we present BoxEL for embedding EL++ KBs, in which the
interpretation functions of EL++ theories in the KB can be represented by the geomet-
ric transformations between boxes/points. We formulate BoxEL as an optimization task
by designing and minimizing various loss terms defined for each logical statement in
the KB. We show theoretical guarantee (soundness) of BoxEL in the sense that if the
loss of BoxEL embedding is 0, then the trained model is a (logical) model of the KB.
Experiments on (plausible) subsumption reasoning over three ontologies and predicting
protein-protein interactions show that BoxEL outperforms previous approaches.

2 Related Work

Knowledge graph embeddings (KGEs) have been developed for different tasks. Early
works, which focus on link prediction, embed both entities and relations as vectors in
a vector space to model the relationships between entities [4,7,31]. Prominent exam-
ples include additive (or translational) family [4,18,34] and multiplicative (or bilinear)
family [19,22,35]. Such techniques only embed the data-level part of KBs and work rel-
atively well for the link prediction tasks. However, KGEs demonstrate limitations when
being used to learn the representation of background knowledge such as ontologies of
logical rules [9,23], as well as complex logical query [26,27].

Inspired by the theory of conceptual spaces [8], several methods have been proposed
to embed concepts as convex regions in vector spaces [11], including balls [15] and
convex cones [23]. Such conceptual/geometric methods nicely model the set-theoretic
semantics that can be used to capture logical rules of knowledge graphs [1], transitive
closure in graphs [32] and logical query for multi-hop question answering [26].

Among embeddings for complex concept descriptions, boxes have some conceptual
advantages, but they have not been exploited for representing ontologies yet. BoxE [1]
does embed some logical rules but mostly focus on embedding the relational patterns in
ABoxes. In contrast, our approach BoxEL focuses on EL++ that has a larger TBox and
provides soundness guarantees. BoxEL is closely related to ELEm [15], but instead of
using ball embedding and translation, we consider box embedding and affine transfor-
mation that have various inherent advantages as discussed before. Another difference of

1 Under the translation setting, the embeddings will simply become Parent ≡ Person, which is
obviously not what we want as we can express Parent �≡ Person with EL++ by propositions
like Children � Parent � ⊥, Children � Person and Children(a).
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our method is that we use a different encoding that distinguishes between entities and
concepts. Furthermore, we take advantage of the volume of boxes for disjointedness
representation, resulting in a more natural encoding of the disjointedness of concepts,
i.e., two concepts are disjoint iff their intersection has zero volume.

3 Description Logic EL++

Table 1. Syntax and semantic of EL++ (role inclu-
sions and concrete domains are omitted).

Name Syntax Semantics
Constructors Top concept � ΔI

Bottom concept ⊥ ∅
Nominal {a} {aI}
Conjunction C � D CI ∩ DI

Existential restriction ∃r.C
{
x ∈ ΔI | ∃y ∈ ΔI

(x, y) ∈ rI ∧ y ∈ CI}

ABox Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

TBox Concept inclusion C � D CI ⊆ DI

We consider the DL EL++ that
underlies multiple biomedical KBs
like GALEN [25] and the Gene
Ontology [5]. Formally, the syntax
of EL++ is built up from a set NI

of individual names, NC of concept
names and NR of role names (also
called relations) using the construc-
tors shown in Table 1, whereNI ,NC

and NR are pairwise disjoint.
The semantics of EL++ is

defined by interpretations I = (ΔI , ·I), where the domain ΔI is a non-empty set
and ·I is a mapping that associates every individual with an element in ΔI , every con-
cept name with a subset of ΔI , and every relation name with a relation over ΔI × ΔI .
An interpretation is satisfied if it satisfies the corresponding semantic conditions. The
syntax and the corresponding semantics (i.e., interpretation of concept expressions) of
EL++ are summarized in Table 1.

An EL++ KB (A, T ) consists of an ABox A and a TBox T . The ABox is a set
of concept assertions (C(a)) and role assertions (r(a, b)), where C is a concept, r is a
relation, and a, b are individuals. The TBox is a set of concept inclusions of the form
C � D. Intuitively, the ABox contains instance-level information (e.g.Person(John)),
isFatherOf(John,Peter)), while the TBox contains information about concepts (e.g.
Parent � Person ). Every EL++ KB can be transformed such that every TBox state-
ment has the form C1 � D, C1 � C2 � D, C1 � ∃r.C2, ∃r.C1 � D, where C1, C2,D
can be the top concept, concept names or nominals and D can also be the bottom con-
cept [2]. The normalized KB can be computed in linear time by introducing new concept
names for complex concept expressions and is a conservative extension of the original
KB, i.e., every model of the normalized KB is a model of the original KB and every
model of the original KB can be extended to be a model of the normalized KB [2].

4 BoxEL for Embedding EL++ Knowledge Bases

In this section, we first present the geometric construction process of EL++ with box
embedding and affine transformation, followed by a discussion of the geometric inter-
pretation. Afterward, we describe the BoxEL embedding by introducing proper loss
function for each ABox and TBox axiom. Finally, an optimization method is described
for the training of BoxEL.
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4.1 Geometric Construction

We consider a KB (A, T ) consisting of an ABox A and a TBox T where T has been
normalized as explained before. Our goal is to associate entities (or individuals) with
points and concepts with boxes in Rn such that the axioms in the KB are respected.

To this end, we consider two functions mw,Mw parameterized by a parameter vec-
tor w that has to be learned. Conceptually, we consider points as boxes of volume 0.
This will be helpful later to encode the meaning of axioms for points and boxes in a
uniform way. Intuitively, mw : NI ∪ NC → R

n maps individual and concept names to
the lower left corner and Mw : NI ∪ NC → R

n maps them to the upper right corner
of the box that represents them. For individuals a ∈ NI , we have mw(a) = Mw(a), so
that it is sufficient to store only one of them. The box associated with C is defined as

Boxw(C) = {x ∈ R
n | mw(C) ≤ x ≤ Mw(C)}, (1)

where the inequality is defined component-wise.
Note that boxes are closed under intersection, which allows us to compute the vol-

ume of the intersection of boxes. The lower corner of the box Boxw(C) ∩ Boxw(D)
is max(mw(C),mw(D)) and the upper corner is min (Mw(C),Mw(D)), where min-
imum and maximum are taken component-wise. The volume of boxes can be used to
encode axioms in a very concise way. However, as we will describe later, one problem is
that points have volume 0. This does not allow distinguishing empty boxes from points.
To show that our encoding correctly captures the logical meaning of axioms, we will
consider a modified volume that assigns a non-zero volume to points and some empty
boxes. The (modified) volume of a box is defined as

MVol(Boxw(C)) =
n∏

i=1

max(0,Mw(C)i − mw(C)i + ε), (2)

where ε > 0 is a small constant. A point now has volume εn. Some empty boxes can
actually have arbitrarily large modified volume. For example the 2D-box with lower
corner (0, 0) and upper corner (− ε

2 , N) has volume ε·N
2 . While this is not meaningful

geometrically, it does not cause any problems for our encoding because we only want
to ensure that boxes with zero volume are empty (and not points). In practice, we will
use softplus volume as approximation (see Sect. 4.5).

We associate every role name r ∈ Nr with an affine transformation denoted by
T r

w(x) = Dr
wx+br

w, where Dr
w is an (n×n) diagonal matrix with non-negative entries

and br
w ∈ R

n is a vector. In a special case where all diagonal entries of Dr
w are -1,

T r
w(x) captures translations. Note that relations have been represented by translation

vectors analogous to TransE in [15]. However, this necessarily means that the concept
associated with the range of a role has the same size as its domain. This does not seem
very intuitive, in particular, for N-to-one relationships like has nationality or lives in
that map many objects to the same object. Note that T r

w(Boxw(C)) = {T r
w(x) | x ∈

Boxw(C)} is the box with lower corner T r
w(mw(C)) and upper corner T r

w(Mw(C)). To
show this, note that mw(C) < Mw(C) implies Dr

wmw(C) ≤ Dr
wMw(C) because Dr

w

is a diagonal matrix with non-negative entries. Hence, T r
w(mw(C)) = Dr

wmw(C) +
br
w ≤ Dr

wMw(C) + br
w = T r

w(Mw(C)). For mw(C) ≥ Mw(C), both Boxw(C) and
T r

w(Boxw(C)) are empty.
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Fig. 2. The geometric interpretation of logical statements in ABox (left) and TBox (right)
expressed by DL EL++ with BoxEL embeddings. The concepts are represented by boxes, enti-
ties are represented by points and relations are represented by affine transformations. Tr and T−1

r

denote the transformation function of relation r and its inverse function, respectively.

Overall, we have the following parameters:

– for every individual name a ∈ NI , we have n parameters for the vector mw(a)
(since mw(a) = Mw(A), we have to store only one of mw and Mw),

– for every concept name C ∈ NC , we have 2n parameters for the vectors mw(C)
and Mw(C),

– for every role name r ∈ Nr, we have 2n parameters. n parameters for the diagonal
elements of Dr

w and n parameters for the components of br
w.

As we explained informally before, w summarizes all parameters. The overall number
of parameters in w is n · (|NI | + 2 · |NC | + 2 · |Nr|).

4.2 Geometric Interpretation

The next step is to encode the axioms in our KB. However, we do not want to do this
in an arbitrary fashion, but, ideally, in a way that gives us some analytical guarantees.
[15] made an interesting first step by showing that their encoding is sound. In order
to understand soundness, it is important to know that the parameters of the embedding
are learnt by minimizing a loss function that contains a loss term for every axiom.
Soundness then means that if the loss function yields 0, then the KB is satisfiable.
Recall that satisfiability means that there is an interpretation that satisfies all axioms
in the KB. Ideally, we should be able to construct such an interpretation directly from
our embedding. This is indeed what the authors in [15] did. The idea is that points
in the vector space make up the domain of the interpretation, the points that lie in
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regions associated with concepts correspond to the interpretation of this concept and
the interpretation of roles correspond to translations between points like in TransE. In
our context, geometric interpretation can be defined as follows.

Definition 1 (Geometric Interpretation). Given a parameter vector w representing
an EL++ embedding, the corresponding geometric interpretation Iw = (ΔIw , ·Iw) is
defined as follows:

1. ΔIw = R
n,

2. for every concept name C ∈ NC , CIw = Boxw(C),
3. for every role r ∈ NR, rIw = {(x, y) ∈ ΔIw × ΔIw | T r

w(x) = y},
4. for every individual name a ∈ NI , aIw = mw(a).

Wewill now encode the axioms by designing one loss term for every axiom in a normal-
ized EL++ KB, such that the axiom is satisfied by the geometric interpretation when
the loss is 0. All proofs of propositions are attached in the supplementary material.

4.3 ABox Embedding

ABox contains concept assertions and role assertions. We introduce the following two
loss terms that respect the geometric interpretations.

Concept Assertion. Geometrically, a concept assertion C(a) asserts that the point
mw(a) is inside the box Boxw(C) (see Fig. 2 (a)). This can be expressed by demanding
mw(C) ≤ mw(a) ≤ Mw(C) for every component. The loss LC(a)(w) is defined by

LC(a)(w) =
n∑

i=1

‖max(0,mw(a)i − Mw(C)i)‖2 +
n∑

i=1

‖max(0,mw(C)i − mw(a)i)‖2 .

Role Assertion. Geometrically, a role assertion r(a, b) means that the point mw(a)
should be mapped to mw(b) by the transformation T r

w (see Fig. 2 (b)). That is, we
should have T r

w(mw(a)) = mw(b). We define a loss term

Lr(a,b)(w) = ‖T r
w(mw(a)) − mw(b)‖2 . (3)

It is clear from the definition that when the loss terms are 0, the axioms are satisfied in
their geometric interpretation.

Proposition 1. We have

1. If LC(a)(w) = 0, then Iw |= C(a),
2. If Lr(a,b)(w) = 0, then Iw |= r(a, b).

4.4 TBox Embedding

For the TBox, we define loss terms for the four cases in the normalized KB. Before
doing so, we define an auxiliary function that will be used inside these loss terms.
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Definition 2 (Disjoint measurement). Given two boxes B1, B2, the disjoint measure-
ment can be defined by the (modified) volumes of B1 and the intersection box B1 ∩ B2,

Disjoint(B1, B2) = 1 − MVol(B1 ∩ B2)
MVol(B1)

. (4)

We have the following guarantees.

Lemma 1. 1. 0 ≤ Disjoint(B1, B2) ≤ 1,
2. Disjoint(B1, B2) = 0 implies B1 ⊆ B2,
3. Disjoint(B1, B2) = 1 implies B1 ∩ B2 = ∅.

NF1: Atomic Subsumption. An axiom of the form C � D geometrically means that
Boxw(C) ⊆ Boxw(D) (see Fig. 2 (c)). If D �= ⊥, we consider the loss term

LC�D(w) = Disjoint(Boxw(C),Boxw(D)). (5)

For the case D = ⊥ where C is not a nominal, e.g., C � ⊥, we define the loss term

LC�⊥(w) = max(0,Mw(C)0 − mw(C)0 + ε). (6)

If C is a nominal, the axiom is inconsistent and our model can just return an error.

Proposition 2. If LC�D(w) = 0, then Iw |= C � D, where we exclude the inconsis-
tent case C = {a},D = ⊥.

NF2: Conjunct Subsumption. An axiom of the formC�D � E means thatBox(C)∩
Box(D) ⊆ Box(E) (see Fig. 2 (d)). Since Box(C) ∩ Box(D) is a box again, we can
use the same idea as for NF1. For the case E �= ⊥, we define the loss term as

LC�D�E(w) = Disjoint(Boxw(C) ∩ Boxw(D),Boxw(E)). (7)

For E = ⊥, the axiom states that C and D must be disjoint. The disjointedness can
be interpreted as the volume of the intersection of the associated boxes being 0 (see
Fig. 2 (e)). However, just using the volume as a loss term may not work well because a
minimization algorithm may minimize the volume of the boxes instead of the volume
of their intersections. Therefore, we normalize the loss term by dividing by the volume
of the boxes. Given by

LC�D�⊥(w) =
MVol(Boxw(C) ∩ Boxw(D))

MVol(Boxw(C)) +MVol(Boxw(D))
. (8)

Proposition 3. If LC�D�E(w) = 0, then Iw |= C � D � E, where we exclude the
inconsistent case a � a � ⊥ (that is, C = D = {a}, E = ⊥).

NF3: Right Existential. Next, we consider axioms of the form C � ∃r.D. Note that
∃r.D describes those entities that are in relation r with an entity fromD. Geometrically,
those are points that are mapped to points in Boxw(D) by the affine transformation
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corresponding to r.C � ∃r.D then means that every point inBoxw(C)must be mapped
to a point in Boxw(D), that is the mapping of Boxw(C) is contained in Boxw(D) (see
Fig. 2 (f)). Therefore, the encoding comes again down to encoding a subset relationship
as before. The only difference to the first normal form is that Boxw(C)must be mapped
by the affine transformation T r

w. These considerations lead to the following loss term

LC�∃r.D(w) = Disjoint(T r
w(Boxw(C)),Boxw(D)). (9)

Proposition 4. If LC�∃r.D(w) = 0, then Iw |= C � ∃r.D.

NF4: Left Existential. Axioms of the form ∃r.C � D can be treated symmetrically to
the previous case (see Fig. 2 (f)). We only consider the case D �= ⊥ and define the loss

L∃r.C�D(w) = Disjoint(T−r
w (Boxw(C)),Boxw(D)), (10)

where T−r
w is the inverse function of T r

w that is defined by T−r
w (x) = D−r

w x − D−r
w br

w,
where D−r

w is obtained from Dr
w by replacing all diagonal elements with their recipro-

cal. Strictly speaking, the inverse only exists if all diagonal entries of Dr
w are non-zero.

However, we assume that the entries that occur in a loss term of the form L∃r.C�D(w)
remain non-zero in practice when we learn them iteratively.

Proposition 5. If L∃r.C�D(w) = 0, then Iw |= ∃r.C � D.

4.5 Optimization

Softplus Approximation. For optimization, while the computation of the volume of
boxes is straightforward, using a precise hard volume is known to cause problems when
learning the parameters using gradient descent algorithms, e.g. there is no training
signal (gradient flow) when box embeddings that should overlap but become disjoint
[6,17,24]. To mitigate the problem, we approximate the volume of boxes by the soft-
plus volume [24] due to its simplicity.

SVol (Boxw (C)) =

n∏

i=1

Softplust
(
Mw (C)i − mw (C)i

)
(11)

where t is a temperature parameter. The softplus function is defined as softplust(x) =
t log

(
1 + ex/t

)
, which can be regarded as a smoothed version of the ReLu function

(max{0, x}) used for calculating the volume of hard boxes. In practice, the softplus
volume is used to replace the modified volume in Eq. (2) as it empirically resolves the
same issue that point has zero volume.

Regularization. We add a regularization term in Eq. (12) to all non-empty boxes to
encourage that the boxes lie in the unit box [0, 1]n.

λ =
n∑

i=1

max(0,Mw(C)i − 1 + ε) + max(0,−mw(C)i − ε) (12)

In practice, this also avoids numerical stability issues. For example, to minimize a loss
term, a box that should have a fixed volume could become very slim, i.e. some side
lengths be extremely large while others become extremely small.
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Negative Sampling. In principle, the embeddings can be optimized without negatives.
However, we empirically find that the embeddings will be highly overlapped without
negative sampling. e.g. for role assertion r(a, b), a and b will simply become the same
point. We generate negative samples for the role assertion r(a, b) by randomly replac-
ing one of the head or tail entity. Finally, we sum up all the loss terms, and learn the
embeddings by minimizing the loss with Adam optimizer [14].

5 Empirical Evaluation

5.1 A Proof-of-Concept Example

We begin by first validating the model in modeling a toy ontology–family domain [15],
which is described by the following axioms:2

Male � Person Female � Person
Father � Male Mother � Female
Father � Parent Mother � Parent

Female � Male � ⊥ Female � Parent � Mother
Male � Parent � Father ∃hasChild.Person � Parent

Parent � Person Parent � ∃ hasChild.Person
Father(Alex) Father(Bob)
Mother(Marie) Mother(Alice)

We set the dimension to 2 to visualize the embeddings. Figure 3 shows that the
generated embeddings accurately encode all of the axioms. In particular, the embed-
dings of Father and Mother align well with the conjunction Parent � Male and
Parent � Female, respectively, which is impossible to be achieved by ELEm.

5.2 Subsumption Reasoning

Fig. 3.BoxEL embeddings in the family domain.

We evaluate the effectiveness of BoxEL
on (plausible) subsumption reasoning
(also known as ontology completion).
The problem is to predict whether a con-
cept is subsumed by another one. For
each subsumption pair C � D, the scor-
ing function can be defined by

P (C � D) =
MVol(Box(C) ∩ Box(D))

MVol(Box(C))
.

(13)
Note that such subsumption relations are
not necessary to be (logically) entailed
by the input KB, e.g., a subsumption relation can be plausibly inferred by P (C � D) =

2 Compared with the example given in [15], we add additional concept assertion statements that
distinguish entities and concepts:.
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Table 2. Summary of classes, relations and
axioms in different ontologies. NFi repre-
sents the ith normal form.

Ontology GO GALEN ANATOMY

Classes 45895 24353 106363

Relations 9 1010 157

NF1 85480 28890 122142

NF2 12131 13595 2121

NF3 20324 28118 152289

NF4 12129 13597 2143

Disjoint 30 0 184

Table 3. The accuracies (for which the pre-
diction is true if and only if the subclass
box is exactly inside the superclass box)
achieved by the embeddings of different
approaches in terms of geometric interpre-
tation of the classes in various ontologies.

ELEm EmEL++ BoxEL

GO 0.250 0.415 0.489

GALEN 0.480 0.345 0.788

ANATOMY 0.069 0.215 0.453

Table 4. The ranking based measures of embedding models for sumbsumtion reasoning on the
testing set. ∗ denotes the results from [20].

Dataset Metric TransE∗ TransH∗ DistMult∗ ELEm EmEL++ BoxEL

GO Hits@10 0.00 0.00 0.00 0.09 0.10 0.03

Hits@100 0.00 0.00 0.00 0.16 0.22 0.08

AUC 0.53 0.44 0.50 0.70 0.76 0.81

Mean Rank - - - 13719 11050 8980

GALEN Hits@10 0.00 0.00 0.00 0.07 0.10 0.02

Hits@100 0.00 0.00 0.00 0.14 0.17 0.03

AUC 0.54 0.48 0.51 0.64 0.65 0.85

Mean Rank - - - 8321 8407 3584

ANATOMY Hits@10 0.00 0.00 0.00 0.18 0.18 0.03

Hits@100 0.01 0.00 0.00 0.38 0.40 0.04

AUC 0.53 0.44 0.49 0.73 0.76 0.91

Mean Rank - - - 28564 24421 10266

0.9, allowing for non-classical plausible reasoning. While the subsumption reasoning
does not need negatives, we add an additional regularization term for non-subsumption
axiom. In particular, for each atomic subsumption axiom C � D, we generate a non-
subsumption axiom C �� D′ or C ′ �� D by randomly replacing one of the concepts C
and D. Note that this does not produce regular negative samples as the generated con-
cepts pair does not have to be disjoint. Thus, the loss term for non-subsumption axiom
cannot be simply defined by LC ��D′ = 1 − LC�D′ . Instead, we define the loss term as
LC ��D′ = φ(1 − LC�D′) by multiplying a small positive constant φ that encourages
splitting the non-subsumption concepts while does not encourage them to be disjoint.
If φ = 1, the loss would encourage the non-subsumption concepts to be disjoint. We
empirically show that φ = 1 produces worse performance as we do not want non-
subsumption concepts to be disjoint.
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Datasets. We use three biomedical ontologies as our benchmark. 1) Gene Ontology
(GO) [12] integrates the representation of genes and their functions across all species.
2) GALEN [25] is a clinical ontology. 3) Anatomy [21] is a ontology that represents
linkages of different phenotypes to genes. Table 2 summarizes the statistical information
of these datasets. The subclass relations are split into training set (70%), validation set
(20%) and testing set (10%), respectively.

Evaluation Protocol. Two strategies can be used to measure the effectiveness of the
embeddings. 1) Ranking based measures rank the probability of C subsumed by all
concepts. We evaluate and report four ranking based measures. Hits@10, Hits@100
describe the fraction of true cases that appear in the first 10 and 100 test cases of the
sorted rank list, respectively. Mean rank computes the arithmetic mean over all indi-
vidual ranks (i.e. MR = 1

|I|
∑

rank∈I rank, where rank is the individual rank), while
AUC computes the area under the ROC curve. 2) Accuracy based measure is a stricter
criterion, for which the prediction is true if and only if the subclass box is exactly inside
the superclass box (even not allowing the subclass box slightly outside the superclass
box). We use this measure as it evaluates the performance of embeddings on retaining
the underlying characteristics of ontology in vector space. We only compare ELEm and
EmEL++ as KGE baselines fail in this setting (KGEs cannot preserve the ontology).

Implementation Details. The ontology is normalized into standard normal forms,
which comprise a set of axioms that can be used as the positive samples. Similar to pre-
vious works [15], we perform normalization using the OWL APIs and the APIs offered
by the jCel reasoner [18]. The hyperparameter for negative sampling is set to φ = 0.05.
For ELEm and EmEL++, the embedding size is searched from n = [50, 100, 200] and
margin parameter is searched from γ = [−0.1, 0, 0.1]. Since box embedding has double
the number of parameters of ELEm and EmEL++, we search the embedding size from
n = [25, 50, 100] for BoxEL. We summarize the best performing hyperparameters in
our supplemental material. All experiments are evaluated with 10 random seeds and the
mean results are reported for numerical comparisons.

Baselines. We compare the state-of-the-art EL++ embeddings (ELEm) [15], the first
geometric embeddings of EL++, as well as the extension EmEL++ [20] that addition-
ally considers the role inclusion and role chain embedding, as our major baselines. For
comparison with classical methods, we also include the reported results of three classi-
cal KGEs in [20], including TransE [4], TransH [34] and DistMult [35].

Results. Table 4 summarizes the ranking based measures of embedding models. We
first observe that both ELEm and EmEL++ perform much better than the three stan-
dard KGEs (TransE, TransH, and DistMult) on all three datasets, especially on hits@k
for which KGEs fail, showcasing the limitation of KGEs and the benefits of geometric
embeddings on encoding logic structures. EmEL++ performs slightly better than ELEm
on all three datasets. Overall, our model BoxEL outperforms ELEm and EmEL++. In
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particular, we find that for Mean Rank and AUC, our model achieves significant per-
formance gains on all three datasets. Note that Mean Rank and AUC have theoretical
advantages over hits@k because hits@k is sensitive to any model performance changes
while Mean Rank and AUC reflect the average performance, demonstrating that BoxEL
achieves better average performance. Table 4 shows the accuracies of different embed-
dings in terms of the geometric interpretation of the classes in various ontologies. It
clearly demonstrates that BoxEL outperforms ELEm and EmEL++ by a large mar-
gin, showcasing that BoxEL preserves the underlying ontology characteristics in vector
space better than ELEm and EmEL++ that use ball embeddings.

Table 5. Prediction performance on protein-protein interaction (yeast).

Method Raw
hits@10

Filtered
hits@10

Raw
hits@100

Filtered
hits@100

Raw mean
Rank

Filtered mean
rank

Raw AUC Filtered
AUC

TransE 0.06 0.13 0.32 0.40 1125 1075 0.82 0.83

BoxE 0.08 0.14 0.36 0.43 633 620 0.85 0.85

SimResnik 0.09 0.17 0.38 0.48 758 707 0.86 0.87

SimLin 0.08 0.15 0.33 0.41 875 825 0.8 0.85

ELEm 0.08 0.17 0.44 0.62 451 394 0.92 0.93

EmEL++ 0.08 0.16 0.45 0.63 451 397 0.90 0.91

Onto2Vec 0.08 0.15 0.35 0.48 641 588 0.79 0.80

OPA2Vec 0.06 0.13 0.39 0.58 523 467 0.87 0.88

BoxEL 0.09 0.20 0.52 0.73 423 379 0.93 0.94

Table 6. Prediction performance on protein-protein interaction (human).

Method Raw
hits@10

Filtered
hits@10

Raw
hits@100

Filtered
hits@100

Raw mean
rank

Filtered mean
rank

Raw AUC Filtered
AUC

TransE 0.05 0.11 0.24 0.29 3960 3891 0.78 0.79

BoxE 0.05 0.10 0.26 0.32 2121 2091 0.87 0.87

SimResnik 0.05 0.09 0.25 0.30 1934 1864 0.88 0.89

SimLin 0.04 0.08 0.20 0.23 2288 2219 0.86 0.87

ELEm 0.01 0.02 0.22 0.26 1680 1638 0.90 0.90

EmEL++ 0.01 0.03 0.23 0.26 1671 1638 0.90 0.91

Onto2Vec 0.05 0.08 0.24 0.31 2435 2391 0.77 0.77

OPA2Vec 0.03 0.07 0.23 0.26 1810 1768 0.86 0.88

BoxEL (Ours) 0.07 0.10 0.42 0.63 1574 1530 0.93 0.93

5.3 Protein-Protein Interactions

Dataset. We use a biomedical knowledge graph built by [15] from Gene Ontol-
ogy (TBox) and STRING database (ABox) to conduct this task. Gene Ontology con-
tains information about the functions of proteins, while STRING database consists of
the protein-protein interactions. We use the protein-protein interaction data of yeast
and human organisms, respectively. For each pair of proteins (P1, P2) that exists in
STRING, we add a role assertion interacts(P1, P2). If protein P is associated with
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the function F , we add a membership axiom {P} � ∃hasFunction.F , the member-
ship assertion can be regarded as a special case of NF3, in which P is a point (i.e.
zero-volume box). The interaction pairs of proteins are split into training (80%), testing
(10%) and validation (10%) sets. To perform prediction for each protein pair (P1, P2),
we predict whether the role assertion interacts(P1, P2) hold. This can be measured by
Eq. (14).

P (interacts(P1, P2)) =
∥
∥
∥T interacts

w (mw(P1)) − mw(P2)
∥
∥
∥
2
. (14)

where T interacts
w is the affine transformation function for relation interacts. For each

positive interaction pair interacts(P1, P2), we generate a corrupted negative sample by
randomly replacing one of the head and tail proteins.

Baselines. We consider ELEm [15] and EmEL++ [20] as our two major baselines as
they have been shown outperforming the traditional KGEs. We also report the result
of Onto2Vec [28] that treats logical axioms as a text corpus and OPA2Vec [29] that
combines logical axioms with annotation properties. Besides, we report the results of
two semantic similarity measures: Resnik’s similarity and Lin’s similarity in [15]. For
KGEs, we compare TransE [4]) and BoxE [1]. We report the hits@10, hits@100, mean
rank and AUC (area under the ROC curve) as explained before for numerical compar-
ison. Both raw ranking measures and filtered ranking measures that ignore the triples
that are already known to be true in the training stage are reported. Baseline results are
taken from the standard benchmark developed by [16].3

Table 7. The performance of BoxEL with
affine transformation (AffineBoxEL) and
BoxEL with translation (TransBoxEL) on
yeast protein-protein interaction.

Method EmEL TransBoxEL AffineBoxEL

Raw Filtered Raw Filtered Raw Filtered

Hits@10 0.08 0.17 0.04 0.18 0.09 0.20

Hits@100 0.44 0.62 0.54 0.68 0.52 0.73

Mean rank 451 394 445 390 423 379

AUC 0.92 0.93 0.93 0.93 0.93 0.94

Table 8. The performance of BoxEL with
point entity embedding and box entity
embedding on yeast protein-protein interac-
tion dataset.

Method EmEL BoxEL (boxes) BoxEL (points)

Raw Filtered Raw Filtered Raw Filtered

Hits@10 0.08 0.17 0.09 0.19 0.09 0.20

Hits@100 0.44 0.62 0.48 0.68 0.52 0.73

Mean rank 451 394 450 388 423 379

AUC 0.92 0.93 0.92 0.93 0.93 0.94

Overall Results. Table 5 and Table 6 summarize the performance of protein-protein
prediction in yeast and human organisms, respectively. We first observe that similar-
ity based methods (SimResnik and SimLin) roughly outperform TransE, showcasing
the limitation of classical knowledge graph embeddings. BoxE roughly outperforms
TransE as it does encode some logical properties. The geometric methods ELEm and
EmEL++ fail on the hits@10 measures and does not show significant performance
gains on the hits@100 measures in human dataset. However, ELEm and EmEL++ out-
perform TransE, BoxE and similarity based methods on Mean Rank and AUC by a

3 https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.

https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
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large margin, especially for the Mean Rank, showcasing the expressiveness of geomet-
ric embeddings. Onto2Vec and OPA2Vec achieve relatively better results than TransE
and similarity based methods, but cannot compete ELEm and EmEL++. We conjecture
that this is due to the fact that they mostly consider annotation information but cannot
encode the logical structure explicitly. Our method, BoxEL consistently outperforms
all methods in hits@100, Mean Rank and AUC in both datasets, except the competitive
results of hits@10, showcasing the better expressiveness of BoxEL.

5.4 Ablation Studies

Transformation vs Translation. To study the contributions of using boxes for
modeling concepts and using affine transformation for modeling relations, we con-
duct an ablation study by comparing relation embeddings with affine transformation
(AffineBoxEL) and translation (TransBoxEL). The only difference of TransBox to the
AffineBox is that TransBox does not associate a scaling factor for each relation. Table 7
clearly shows that TransBoxEL outperforms EmEL++, showcasing the benefits of box
modeling compared with ball modeling. While AffineBoxEL further improves Trans-
BoxEL, demonstrating the advantages of affine transformation. Hence, we could con-
clude that both of our proposed entity and relation embedding components boost the
performance.

Entities as Points vs Boxes. As mentioned before, distinguishing entities and concepts
by identifying entities as points has better theoretical properties. Here, we study how
this distinction influences the performance. For this purpose, we eliminate the ABox
axioms by replacing each individual with a singleton class and rewriting relation asser-
tions r(a, b) and concept assertions C(a) as {a} � ∃r.{b} and {a} � C, respectively.
In this case, we only have TBox embeddings and the entities are embedded as regu-
lar boxes. Table 8 shows that for hits@k, there is marginal significant improvement of
point entity embedding over boxes entity embedding, however, point entity embedding
consistently outperforms box entity embedding on Mean Rank and AUC, showcasing
the benefits of distinguishing entities and concepts.

6 Conclusion

This paper proposes BoxEL, a geometric KB embedding method that explicitly models
the logical structure expressed by the theories of EL++. Different from the standard
KGEs that simply ignore the analytical guarantees, BoxEL provides soundness guar-
antee for the underlying logical structure by incorporating background knowledge into
machine learning tasks, offering a more reliable and logic-preserved fashion for KB
reasoning. The empirical results further demonstrate that BoxEL outperforms previous
KGEs and EL++ embedding approaches on subsumption reasoning over three ontolo-
gies and predicting protein-protein interactions in a real-world biomedical KB.
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Supplemental Material Statement: Source code and datasets are available for reproduc-
ing the results.4 Full proofs of propositions and lemmas are available in a long version
of the paper.5
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Abstract. Document-level relation extraction (RE) aims to identify the
relations between entities throughout an entire document. It needs com-
plex reasoning skills to synthesize various knowledge such as coreferences
and commonsense. Large-scale knowledge graphs (KGs) contain a wealth
of real-world facts, and can provide valuable knowledge to document-level
RE. In this paper, we propose an entity knowledge injection framework
to enhance current document-level RE models. Specifically, we intro-
duce coreference distillation to inject coreference knowledge, endowing
an RE model with the more general capability of coreference reasoning.
We also employ representation reconciliation to inject factual knowledge
and aggregate KG representations and document representations into
a unified space. The experiments on two benchmark datasets validate
the generalization of our entity knowledge injection framework and the
consistent improvement to several document-level RE models.

Keywords: Relation extraction · Knowledge injection · Knowledge
graph

1 Introduction

Relation extraction (RE) aims to recognize the semantic relations between enti-
ties in texts, which is beneficial to a variety of AI applications such as language
understanding and knowledge graph (KG) construction. Early methods [5,34,36]
mainly cope with sentence-level RE, which detects the relations in a single sen-
tence. However, a large number of relations span across multiple sentences [32],
which calls for document-level RE in recent years. Compared with sentence-level
RE, document-level RE is more challenging. It needs the RE models to conduct
complex reasoning, e.g., coreference reasoning, factual reasoning and logical rea-
soning, throughout an entire document.

Figure 1 shows a real example. A document-level RE model is asked to find
the relations between three named entities IBM Research Brazil, São Paulo and
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Fig. 1. An example of document-level RE excerpted from [32]

South America. From S1, IBM Research Brazil is located in South America may
be first recognized by the model. Then, with the help of coreference knowledge
that connects the pronoun It in S2 to IBM Research Brazil in S1, the model
can recognize that IBM Research Brazil is located in São Paulo. Since the model
may not know the exact types of entities, only with the aid of extra knowledge
in KGs like São Paulo is a city and South America is a continent, then it can
confidently determine that the relation between them is continent rather than
others. The entire reasoning process demands the document-level RE model to
synthesize various knowledge and have powerful reasoning capabilities.

Recent years have witnessed that large-scale KGs, e.g., Wikidata [26] and
DBpedia [1], become a valuable asset in information extraction [2,4,12,19–
21,25]. A KG contains a collection of real-world facts, in which a fact is struc-
tured in the form of a triple (entity, property, value). Property can be either an
attribute or a relation, and value can be either a literal for attribute triple or an
entity for relation triple. Particularly for the RE task, the works in [2,8,21,25]
exploit one or very few attribute and relation triples (e.g., rdfs:label) in KGs to
enhance their models. Furthermore, they overlook the heterogeneity between KG
representations and document representations, and aggregate them in a simple
way like vector concatenation.

In this paper, we propose a novel entity knowledge injection framework to
enhance existing document-level RE models. Specifically, we introduce a general
knowledge injection layer between the encoding layer and the prediction layer of
popular RE models. Based on it, we focus on injecting various entity knowledge
from KGs into the document-level RE models. We tackle two key challenges:

First, how to inject coreference knowledge into document-level RE models?
Coreference resolution plays a vital role in RE. However, the coreferences derived
from coreference resolution tools and aliases in KGs may contain errors. If we
directly import them into an RE model as strong guidance information, such as
the edges in a document graph [15], it is likely to bring a downside effect. There-
fore, we present coreference distillation to distill knowledge from the coreferences
and inject it into an RE model, so that the model can ultimately acquire gener-
alized coreference knowledge.

Second, how to inject factual knowledge into document-level RE models? KG
contains a wealth of facts related to entities, which we want to exploit for RE.
However, the representations of entities in a KG and the text representations of
a document are learned in two different spaces, which demand to be reconciled
together. We present representation reconciliation to fuse KG representations
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and document representations into a unified space, endowing the RE model
with the factual knowledge of entities.

In summary, our main contributions in this paper are twofold:

– We define a general knowledge injection framework KIRE and design various
knowledge injection tasks for document-level RE, such as coreference distil-
lation for coreference knowledge and representation reconciliation for factual
knowledge. These knowledge injection and RE tasks are optimized together
by multi-task learning. (Sections 3 and 4)

– We perform the experiments on two benchmark datasets DocRED [32] and
DWIE [33] for document-level RE. The result comparison between seven RE
models and the models after knowledge injection validates the generalization
and stable improvement of our framework. (Section 5)

2 Related Work

Document-Level RE. Document-level RE has attracted vast attention in the
past few years. A considerable number of studies have been conducted, which
can be generally divided into graph-based models [11,13,15,24,27,31,35] as well
as sequence-based models [7,18,28,30,38]. Graph-based models build document
graphs to capture the semantic information in a document, and design various
neural networks to carry out inference on the built document graphs. DISCREX
[15] models words in a document as nodes and intra/inter-sentential dependen-
cies as edges. Following this idea, Peng et al. [13] make use of graph LSTM
while BRAN [24] employs Transformer to encode document graphs. Recently,
LSR [11], GAIN [35] and GLRE [27] define more sophisticated document graphs
to reserve more dependency information in a document.

Sequence-based models adopt neural encoders like BERT to implicitly cap-
ture dependencies in a document, instead of explicitly building document graphs.
Wang et al. [28] use BERT to encode a document and design a two-step pipeline,
which predicts whether a relation exists between two entities first, and then pre-
dicts the specific relation types. HIN [18] also makes use of BERT but design
a hierarchical model that integrates the inference information from the entity,
sentence and document levels. Huang et al. [7] extract three types of paths which
indicate how the head and tail entities can be possibly related in the context,
and predict the relations based on the extracted evidence sentences. ATLOP
[38] proposes localized context pooling to transfer attentions from pre-trained
language models and adaptive thresholding to resolve the multi-label and multi-
entity problem. SSAN [30] modifies the attention mechanism in BERT to model
the coreference and co-occurrence structures between entities, to better capture
the semantic information in the context.

In this paper, our focus is injecting knowledge into these document-level RE
models. Our entity knowledge injection framework KIRE is applicable to various
models as long as they fall into our framework formulation.
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Knowledge Injection. A few works have studied how to inject external knowl-
edge such as a KG into the RE task for performance improvement. RESIDE
[21] uses entity types and aliases while BERTEM+TM [4] only uses entity types.
They both consider very limited features of entities. RECON [2] proposes sepa-
rate models to encode attribute triples and relation triples in a KG and obtain
corresponding attribute context embeddings and relation context embeddings,
which are combined into sentence embeddings. KB-both [25] utilizes entity rep-
resentations learned from either hyperlinked text documents (Wikipedia) or
a KG (Wikidata) to raise the information extraction performance including
document-level RE. Different from all above, we integrate more types of knowl-
edge including coreferences, attributes and relations symbiotically with more
effective knowledge injection methods to address the document-level RE task.

Additionally, a few studies [10,29,37] explicitly exploit incorporating knowl-
edge from various sources such as encyclopedia knowledge, commonsense knowl-
edge and linguistic knowledge into pre-trained language models with different
injection strategies to improve the performance of language models in down-
stream tasks. However, the goal of these studies is orthogonal to this paper.

3 Framework Formulation

According to [18,32,38], we formulate the document-level RE task as a multiple
binary classification problem. Given a document annotated with entities and
their corresponding textual mentions, the task aims to predict the relations for
each entity pair in the document, where a relation is either a predefined type
(e.g., country) or N/A for no relation. Note that there may be more than one
relation for an entity pair.

A basic neural network model [32] for document-level RE contains an encod-
ing layer and a prediction layer. The encoding layer encodes an input document
to obtain the context-sensitive representations of tokens (words) in it, and the
prediction layer generates entity representations and predicts relations using the
entity representations. In this paper, we add a knowledge injection layer between
the encoding layer and the prediction layer, and many document-level RE models
such as [27,32,38] can be used as the basic model.

We regard a KG as the knowledge source for injection. A KG is defined as a
7-tuple G = (U,R,A, V,X, Y,C), where U,R,A and V denote the sets of entities,
relations, attributes and literal values, respectively. X ⊆ U × R × U denotes the
set of relation triples, Y ⊆ U × A × V denotes the set of attribute triples, and
C denotes the set of coreference triples derived from G. By the alias information
(e.g., skos:altLabel) in G, any two aliases of an entity can constitute one coref-
erence triple (ms,mt, pcr), where ms,mt are two alias mentions and pcr is the
coreference probability. We employ off-the-shelf coreference resolution models to
find more coreference knowledge for pronouns (e.g., it and he), possessives (e.g.,
herself ), noun phrases (e.g., this work), etc., in the document. pcr is set to the
resolution confidence. Due to the main scope of this paper, we follow [10,37] and
reuse entity linking tools to link the entities in the document to those in the KG.
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Fig. 2. Architecture of the knowledge injection layer

Framework. Given a document D = {w1, . . . , wJ}, where wj denotes the jth

token in D, and a KG G, the framework of document-level RE with entity knowl-
edge injection is

H = [hw1 , . . . ,hwJ
] = Encode(D),

H′ = KnowledgeInject(D,H,G),
z = Predict(H′),

(1)

where hwj
denotes the hidden representation of wj , and z denotes the prediction

probability distribution of relations. �

4 Knowledge Injection

The architecture of the proposed knowledge injection framework KIRE is
depicted in Fig. 2, which accepts the document D, the hidden representation
H of D and the relevant KG G as input. It injects the entity knowledge from the
coreference triples, attribute triples and relation triples into an RE model, and
outputs the final hidden representation H′.

Specifically, we inject the coreference triples into the basic document-level
RE model with coreference distillation and context exchanging. Apart from this,
the attribute triples are semantically encoded with AutoEncoder [16], and the
encoded results are then reused to initialize the representations of relation triples.
We use a relational graph attention network (R-GAT) [3] to encode the relation
triples and generate the KG representations of entities. Finally, the KG repre-
sentations of entities and the token representations that have been enhanced by
coreference knowledge are aggregated by representation reconciliation. Details
are described in the following subsections.
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4.1 Coreference Encoding

This module leverages coreference triples to exchange the contextual information
between aliases, and thus the representations of alias mentions can be closer.

Coreference Distillation. A simple method is to model the coreference triples
as a new type of edges in the document graph and reuse graph-based models
[11,13,24]. However, such a method cannot be generalized to the sequence-based
models since they do not construct document graphs. Furthermore, the accuracy
of existing coreference resolution tools is still far from perfect, even they are
trained on large corpora. To alleviate error accumulation, it is inappropriate to
directly add the edges as strong guidance information in the RE models.

Knowledge distillation [6,19], as a model compression technique and a solu-
tion to integrate external knowledge into a target model, has been used in a wide
range of NLP tasks. In this paper, we leverage the idea of knowledge distilla-
tion and propose coreference distillation to inject coreference triples into the RE
models. Our main idea is to leverage a pre-trained coreference resolution model
which has been trained on a large coreference dataset as the teacher model,
and then force the student model (i.e., the RE model) to generate a prediction
probability distribution that approximates the teacher model on the coreference
triples. Finally, the student model learns the coreference knowledge and gener-
alization ability in the teacher model. Formally, for a coreference triple (ms,mt,
pcr), its coreference probability generated by the teacher model is defined as

Ptea(ms,mt) = pcr. (2)

The student model generates the coreference probability with a multi-layer
perceptron (MLP):

Pstu(ms,mt) = MLP
([

ms;mt;Δ(ψ(ms,mt))
])

, (3)

where ms and mt denote the hidden representations of alias mentions ms and
mt, respectively, which are calculated by averaging the hidden representations
of tokens in ms and mt, that is, ms = avgwj∈ms

(hwj
),mt = avgwj∈mt

(hwj
).

“;” is the concatenation operation, and ψ(ms,mt) denotes the shortest distance
between ms,mt in the document. We divide the distance into {1, 2, . . . , 2β} bins,
and associate each bin with a trainable distance vector. Δ(·) associates each ψ to
the distance vector of relevant bin. Empirically, aliases with different distances
should have different impacts on each other. Therefore, we propose trainable
distance vectors to model and utilize such difference.

We enforce the student model to learn from the teacher model using the
following coreference loss:

Lcr =
∑

(ms,mt)∈C

KL
(
Ptea(ms,mt) ‖ Pstu(ms,mt)

)
, (4)

where KL(·) is the Kullback-Leibler divergence.
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Context Exchanging. Based on the learned coreference knowledge, we further
enable each alias mention to interact with its most similar counterpart, so as
to exchange the semantic information between them. Specifically, given an alias
mention ms, we update its hidden representation through ms = ms+mt∗ , where
t∗ = argmaxt

{
Pstu(ms,mt) | (ms,mt) ∈ C

}
. In this way, the representations of

the pronouns in particular can be enriched via their referents.
Finally, we obtain the token representations enhanced by coreference knowl-

edge through the representations of alias mentions (if exists):

h′
wj

=
{

ms, if wj ∈ ms

hwj
, otherwise . (5)

In coreference encoding, the MLP contains dMLP(2dtoken + ddist) + 2dtoken
parameters, where dMLP, dtoken, ddist are the dimensions of MLP hidden layers,
token representations and trainable distance vectors, respectively.

4.2 Knowledge Graph Encoding

This module aims to encode the attribute triples and the relation triples to
generate the KG representations of entities.

Attribute Triple Encoding. A KG defines a set of common attributes,
e.g., rdfs:label and schema:description, to describe its entities. We encode the
attribute triples in the KG and generate the attribute representations for cor-
responding entities. For each attribute triple of an entity, we concatenate the
attribute name a and attribute value v into a token sequence q = [a; v] = (w1, . . . ,
wM ). In order to cope with the out-of-vocabulary problem, we define a lookup
function to convert each token to a token embedding:

LP(wj) =
{
WordEmb(wj), if wj has word emb.
CharEmb(wj), otherwise , (6)

where WordEmb(·) returns the word embedding in GloVe, and CharEmb(·) offers
the average of character embeddings pre-trained with Skip-gram. Our method
can work with other word or character embeddings easily.

Next, we leverage AutoEncoder to encode a sequence of token embeddings
into an attribute triple embedding in an unsupervised way:

q = AutoEncoder
([

LP(w1); . . . ;LP(wM )
])

, (7)

where AutoEncoder is pre-trained on the attribute triples. We conduct self-
supervised training, and both encoder and decoder of AutoEncoder use BiLSTM.
AutoEncoder has good capacity for feature extraction and compression. In our
model, the input of AutoEncoder is a concatenation vector of an entity and its
attributes. The reconstruction loss of AutoEncoder can help extract a better
compressed feature representation while preserving the attribute knowledge.
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Finally, we stack all attribute triple embeddings of an entity into a one-
dimensional CNN to obtain the attribute representation of the entity:

h0
ei

= MaxPooling
(
CNN1D(‖j qj)

)
, (8)

where ‖ denotes the stack operation, and h0
ei

is the attribute representation of
entity ei, which would be used as the input representation for relation triple
encoding below. Here, we choose CNN since the convolutional layer is a good
feature extractor to learn high-level representations from value embeddings while
reducing the dimension of output representations. Furthermore, we use the 1D
convolution kernel as its invariance to the order of attribute embeddings.

Relation Triple Encoding. The relation triples present in the form of an
entity-relation graph structure, and the topology and relation types are the key
to encode such knowledge. Based on the attribute representations of entities,
we employ a R-GAT [3] with K layers to convolute the entity-relation graph.
R-GAT incorporates relation types using different embeddings and calculates
attention scores on all adjacent nodes based on entity embeddings and relation
embeddings. Specifically, the node forward-pass update for the (k +1)th layer is

e(k,b)
ij = W(k,b)T

out
[
W(k,b)

in h(k)
i ;W(k,b)

in h(k)
j ;M(rij)

]
,

α
(k,b)
ij =

exp
(
LeakyReLU(e(k,b)

ij )
)

∑
l∈Ui

exp
(
LeakyReLU(e(k,b)

il )
) ,

h(k+1)
i =

1
B

B∑
b=1

σ
( ∑

l∈Ui

α
(k,b)
il W(k,b)

in h(k)
l

)
,

(9)

where W(k,b)
in and W(k,b)

out denote two trainable parameters of the bth attention
head (1 ≤ b ≤ B) at the kth layer. h(k)

i and h(k)
j are the node representations of

entities ei and ej at the kth layer, respectively. M is a trainable mapping matrix
corresponding to the relation types in the KG. rij is the relation type between ei

and ej . LeakyReLU(·) and σ(·) are the activation functions. Ui is the neighbor
set of ei. In this way, the entity representations are updated via their all adjacent
entity embeddings and relation embeddings at the previous layer.

We refer to the representations of entities after graph convolution as the KG
representations of entities, which encode the knowledge in both attribute triples
and relation triples. We simply denote the KG representation of entity ei by hei

.
In the KG encoding, the attribute encoding has dAutoNmaxNkernel(d2kernel+1)

parameters, where dAuto is the output dimension of AutoEncoder, Nmax is the
maximum number of attributes that an entity has, Nkernel is the number of
kernels, and dkernel is the kernel size of CNN. The R-GAT network in the relation
triple encoding contains 2(Nlayer−1)Nheadd

2
RGAT+dRGATdent parameters, where

Nlayer is the number of layers in R-GAT, Nhead is the number of attention heads
at each layer of R-GAT, dRGAT is the hidden dimension of R-GAT hidden layers,
and dent is the dimension of entity representations.
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4.3 Representation Reconciliation

The token representations and the KG representations of entities capture dif-
ferent knowledge in independent semantic spaces. Following ERNIE [37] and
K-BERT [10], we employ a representation reconciliation module to exchange the
knowledge from entities in the KG with their linked tokens in the document.

The representation reconciliation module consists of N -stacked aggregators.
For the nth (1 ≤ n ≤ N) aggregator, given the token representations {hn−1

w1
, . . . ,

hn−1
wJ

} and the KG representations of entities {hn−1
e1

, . . . ,hn−1
eI

} from the pre-
ceding aggregator, the fusion phase is formulated as

h̃ =

{
σ(W̃(n)

w h̃(n)
wj + W̃(n)

e h̃(n)
ei + b̃(n)), if wj , ei align

σ(W̃(n)
w h̃(n)

wj + b̃(n)), otherwise
, (10)

where h̃(n)
wj , h̃(n)

ei are the token representation and KG representation after the
multi-head self-attention [22], respectively. W̃(n)

w ,W̃(n)
e , b̃(n) are three trainable

parameters. The information in the two semantic spaces is mutually integrated.
Then, the reconstruction phase leverages h̃ to refine the output representa-

tions of each token and entity in the aligned token-entity pairs:

h(n)
wj

= σ(W(n)
w h̃ + b(n)

w ),

h(n)
ei

= σ(W(n)
e h̃ + b(n)

e ).
(11)

Here, the aligned token representations and entity representations are updated
and enhanced by the integrated information. Note that the representations of
entities without aligned tokens would not be updated.

Finally, we obtain the token representation sequence {hN
w1

, . . . ,hN
wJ

} from the
last aggregator, which would constitute H′ and be fed to the prediction layer.

To supervise the above process, we employ a token-entity alignment task.
For each aligned token-entity pair (wj , ei), we predict the aligned KG entity
ei based on the token wj . We only ask the model to predict entities within a
given entity candidate set. By default, all linked entities in the document form
the candidate set. For the token sequence {w1, . . . , wJ} and the corresponding
candidate entities {e1, . . . , eI}, the token-entity alignment loss is

Lkg =
J∑

j=1

I∑
i=1

f∗
j,i ∗ P (ei |wj), (12)

where f∗
j,i ∈ {0, 1} is the true alignment label between wj and ei, and P (ei |wj) =

exp
(
Linear(h(N)

wj
)·hei

)
∑I

l=1 exp
(
Linear(h

(N)
wj

)·hel

) returns the probability that ei can be predicted by wj .

We optimize the RE loss, coreference loss and token-entity alignment loss
with multi-task learning. The final loss is

L = α1 · Lre + α2 · Lcr + α3 · Lkg, (13)

where α1, α2 and α3 are the weight hyperparameters.



48 X. Wang et al.

Table 1. Dataset statistics. Inst. denotes relation instances excluding N/A relation.

Datasets #Doc #Rel #Inst #N/A Inst

DocRED Training set 3,053 96 38,269 1,163,035
Validation set 1,000 96 12,332 385,263
Test set 1,000 96 12,842 379,316

DWIE Training set 544 66 13,524 492,057
Validation set 137 66 3,488 121,750
Test set 96 66 2,453 78,995

In the representation reconciliation, for each aggregator, the multi-head self-
attention networks contain 4d2token+4d2ent parameters, the fusion phase contains
dout(Ntoken+Nalign)+Ntoken parameters, and the reconstruction phase contains
2Nalign(dout + 1) parameters, where dout is the output dimension of multi-head
self-attention networks, Ntoken is the number of tokens, and Nalign is the number
of aligned token-entity pairs. Therefore, the parameters of representation recon-
ciliation are Nagg

[
4d2token+4d2ent+dout(Ntoken+Nalign)+Ntoken+2Nalign(dout+

1)
]
, where Nagg is the number of aggregators.

Model Complexity. The total parameter number of KIRE is dMLP(2dtoken +
ddist)+2dtoken+dAutoNmax(d2kernel+1)+2(Nlayer−1)Nheadd

2
RGAT+dRGATdent+

Nagg
[
4d2token + 4d2ent + dout(Ntoken + Nalign) + Ntoken + 2Nalign(dout + 1)

]
.

5 Experiments and Results

We develop KIRE with PyTorch 1.7.1, and test on an X86 server with two Xeon
Gold 5117 CPUs, 250 GB memory, two Titan RTX GPUs and Ubuntu 18.04.

5.1 Experiment Setup

Datasets. We select two benchmark datasets in our experiments: (1) DocRED
[32] is a crowdsourced dataset for document-level RE. The relation labels in its
test set are not public. (2) DWIE [33] is a new dataset for document-level multi-
task information extraction. We use the data relevant to RE only. Since DWIE
does not have the validation set, we randomly split its training set into 80% for
training and 20% for validation. Table 1 lists the statistical data.

Knowledge Graph. We select Wikidata (2020–12-01) as our KG due to its
coverage and popularity [2,21]. The numbers of its relation and attribute triples
are 506,809,195 and 729,798,070, respectively. To prevent the test leakage, we
filter out all the relation triples with entity pairs to be labeled in the test sets.
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Evaluation Metrics. We measure F1-score (F1) and Ignore F1-score (Ign F1)
in our experiments. We repeat five times using the same hyperparameters but
different random seeds, and report the means and standard deviations.

Implementation Details. To achieve good generalization, we do not carry out
excessive feature engineering on Wikidata. Numerical attributes are regarded as
texts, and their semantics are captured by the word embeddings [14]. We employ
NeuralCoref 4.0 as our coreference resolution tool and also use the annotations
provided in DocRED and DWIE. We use a two-stage method for training, which
first trains a basic RE model and then fine-tunes this model to train the knowl-
edge injection layer. The training procedure is optimized with Adam. Moreover,
to compare fairly, the basic RE model and its corresponding KIRE adopt the
same hyperparameter values. We set the batch size to 4 and the learning rate to
0.0005. We use three R-GAT layers and two aggregators. Moreover, α1, α2, α3

are 1, 0.01 and 0.01, respectively. The dimension of hidden layers in MLP is 256,
the dimensions of GloVe and Skip-gram are 100, and the dimension of hidden
layers in AutoEncoder is 50. See the source code for more details.

Table 2. Comparison of result improvement on baseline models

Models DocRED DWIE
Validation set Test set Validation set Test set
Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1

CNN 43.91± 0.02 45.99± 0.05 42.61± 0.06 44.80± 0.08 38.21± 0.04 49.09± 0.06 40.06± 0.08 51.21± 0.13

+ KIRE 46.18± 0.04 48.21± 0.06 45.24± 0.05 47.27± 0.08 39.68± 0.05 50.49± 0.09 42.09± 0.04 53.16± 0.08

+ RESIDE 45.03± 0.06 47.12± 0.08 43.79± 0.05 45.96± 0.09 39.24± 0.04 50.13± 0.07 41.31± 0.06 52.47± 0.11

+ RECON 45.57± 0.04 47.64± 0.07 44.53± 0.07 46.68± 0.10 39.42± 0.03 50.34± 0.06 41.73± 0.07 52.74± 0.09

+ KB-graph 45.49± 0.03 47.58± 0.08 44.46± 0.06 46.61± 0.09 39.34± 0.06 50.26± 0.09 41.65± 0.08 52.63± 0.12

LSTM 48.49± 0.05 50.41± 0.07 47.41± 0.04 49.47± 0.10 52.79± 0.03 63.61± 0.08 54.87± 0.07 65.17± 0.14

+ KIRE 50.41± 0.03 52.49± 0.06 49.55± 0.06 51.72± 0.09 54.11± 0.04 64.86± 0.08 56.74± 0.05 66.91± 0.07

+ RESIDE 49.58± 0.04 51.49± 0.08 48.52± 0.06 50.51± 0.09 53.87± 0.02 64.56± 0.06 55.96± 0.06 66.29± 0.12

+ RECON 50.03± 0.03 51.98± 0.08 49.07± 0.07 51.12± 0.12 53.98± 0.03 64.69± 0.07 56.35± 0.04 66.51± 0.08

+ KB-graph 49.94± 0.04 51.89± 0.07 48.98± 0.05 51.04± 0.09 53.91± 0.05 64.61± 0.08 56.27± 0.06 66.43± 0.09

BiLSTM 48.51± 0.04 50.54± 0.08 47.58± 0.05 49.66± 0.11 53.95± 0.05 63.96± 0.07 54.91± 0.09 65.39± 0.11

+ KIRE 50.46± 0.02 52.65± 0.05 49.69± 0.04 51.98± 0.07 55.86± 0.05 65.77± 0.09 56.88± 0.05 67.02± 0.08

+ RESIDE 49.64± 0.03 51.59± 0.06 48.62± 0.04 50.71± 0.10 55.04± 0.06 65.01± 0.09 56.16± 0.05 66.47± 0.12

+ RECON 49.97± 0.04 52.06± 0.07 49.14± 0.06 51.32± 0.09 55.42± 0.04 65.38± 0.08 56.51± 0.06 66.63± 0.09

+ KB-graph 49.89± 0.03 51.98± 0.07 49.05± 0.05 51.26± 0.08 55.35± 0.03 65.31± 0.09 56.42± 0.07 66.55± 0.11

Context-aware 49.79± 0.03 51.84± 0.04 48.73± 0.07 50.91± 0.12 54.68± 0.04 64.29± 0.06 56.53± 0.07 65.91± 0.09

+ KIRE 51.07± 0.03 53.25± 0.07 50.43± 0.05 52.75± 0.10 56.58± 0.03 65.62± 0.07 58.41± 0.04 67.37± 0.08

+ RESIDE 50.43± 0.04 52.59± 0.07 49.58± 0.05 51.86± 0.09 55.74± 0.03 65.11± 0.07 57.64± 0.05 66.78± 0.08

+ RECON 50.78± 0.03 52.89± 0.06 49.97± 0.04 52.27± 0.08 56.12± 0.05 65.48± 0.08 58.02± 0.06 66.94± 0.10

+ KB-graph 50.69± 0.05 52.81± 0.07 49.88± 0.06 52.19± 0.11 56.03± 0.04 65.39± 0.09 57.94± 0.05 66.89± 0.11

5.2 Main Results

Improvement on Baseline Models. To validate the effectiveness and versatil-
ity of KIRE, we pick four baseline models in [32]. The first three models directly
employ CNN, LSTM and BiLSTM to encode documents, while the fourth model
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is called context-aware, which leverages the attention mechanism with BiLSTM.
These four models are native to the DocRED dataset and widely chosen as the
competitors in many RE studies [7,11,18,27,28,30,35,38].

Table 2 depicts the result improvement, and we observe that: (1) KIRE con-
sistently improves the performance of all baselines on DocRED and DWIE, which
demonstrates the good generalization of KIRE. Small standard deviations also
tells the good stability of KIRE. (2) KIRE obtains a significant improvement of
Ign F1/F1 up to 2.63/2.47 on DocRED and 2.03/1.95 on DWIE, respectively.
This is mainly because the ways that the baseline models encode a document
are too simple to capture some part of important contextual information in the
document. External knowledge from KIRE makes up for this part, and therefore
effectively improves the model performance. (3) CNN performs poorly, because
the text order is important for RE while CNN cannot process such order well.

Table 3. Result improvement on state-of-the-art models

Models DocRED DWIE
Validation set Test set Validation set Test set
Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1

ATLOP 59.25± 0.03 61.14± 0.07 58.32± 0.05 60.44± 0.08 69.12± 0.04 76.32± 0.09 73.85± 0.08 80.38± 0.12

+ KIRE 59.58± 0.04 61.45± 0.09 59.35± 0.06 61.39± 0.11 69.75± 0.05 76.75± 0.08 74.43± 0.07 80.73± 0.15

SSAN 56.68± 0.03 58.95± 0.04 56.06± 0.05 58.41± 0.06 51.80± 0.05 62.87± 0.10 57.49± 0.09 67.77± 0.12

+ KIRE 57.29± 0.05 59.31± 0.06 56.31± 0.06 58.65± 0.08 52.67± 0.06 63.64± 0.10 60.57± 0.09 69.58± 0.12

GLRE 56.57± 0.06 58.43± 0.09 55.40± 0.07 57.40± 0.13 63.11± 0.03 71.21± 0.06 62.95± 0.05 72.24± 0.09

+ KIRE 57.31± 0.05 59.45± 0.10 56.54± 0.09 58.49± 0.14 65.17± 0.05 71.68± 0.09 64.32± 0.06 73.35± 0.11

Comparison with Existing Knowledge Injection Models. We choose
three recent models: RESIDE [21], RECON [2] and KB-graph [25], which inject
extra knowledge into RE models. Specifically, we use KB-graph instead of the
full version KB-both since it selects Wikipedia as another knowledge source,
which is unfair to other models. To compare fairly, we only adopt the knowledge
injection modules of the above models to enhance the token representations in
the documents, and the representations are used by the baseline RE models to
predict the relation labels.

Table 2 presents the comparison results, and we obtain several findings: (1)
KIRE is consistently superior to RESIDE, RECON and KB-graph with an
improvement of Ign F1/F1 up to 0.71/0.66 on DocRED and 0.39/0.43 on DWIE,
respectively. Given that the test sets contain (ten) thousand relation instances,
we think that the improvement makes sense. For example, on the validation
set of DocRED, KIRE can correctly predict an average of 478 more instances
than the second best method RECON. Such improvement brought by KIRE
attributes to that KIRE absorbs more knowledge like coreferences and fuses the
knowledge better. (2) The improvement brought by RESIDE is the lowest since it
only injects limited knowledge like entity types and relation aliases. RECON and
KB-graph explore more knowledge from the KG, but they still ignore the corefer-
ence knowledge. Besides, the methods that they employ to integrate knowledge
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are representation average or concatenation, which may lose part of semantic
information in the injected knowledge.

Improvement on State-of-the-Art Models. We employ two sequence-based
models, ATLOP [38] and SSAN [30], as well as a graph-based model, GLRE [27],
due to their good performance and open source. Enhancing these models is
very challenging, since they have already explored various information in the
documents and achieved state-of-the-art results. Due to the limit of GPU RAM,
we use the BERT-base versions of ATLOP, SSAN and GLRE and re-run them
according to the hyperparameters reported in their papers and source code.

The result improvement is shown in Table 3, and we have several findings: (1)
For the two sequence-based models, KIRE obtains an improvement of Ign F1/F1
up to 1.03/0.95 on DocRED and 3.08/1.81 on DWIE, respectively. This mainly
attributes to the fact that the extra knowledge injected by KIRE can effectively
help the models identify and capture more interactions between entity pairs
especially across sentences. (2) For the graph-based model, KIRE obtains an
improvement of Ign F1/F1 up to 1.14/1.09 on DocRED and 1.37/1.11, respec-
tively. This is largely due to the fact that the extra knowledge injected by KIRE
can enrich the representations of mention nodes and entity nodes in the docu-
ment graphs for more accurate reasoning between entity pairs especially of longer
distance. (3) This also verifies that our knowledge injection framework can be
generalized to a broad range of document-level RE models.

5.3 Detailed Analysis

Ablation Study. We conduct an ablation study on the four baseline models.
For “w/o distill”, we disable the coreference distillation module and directly use
the original coreferences as the injected knowledge. For “w/o attr.”, we initial-
ize the relation triple representations by max pooling the word embeddings of
entity labels. For “w/o rel.”, we directly adopt the attribute representations of
entities as KG representations. For “w/o KG”, we disable the whole KG encoding
module. Additionally, we replace KIRE with three simple variants for knowledge
injection. For “w/rep. avg”, we average the hidden representations of alias men-
tions, and the token representations are averaged with KG representations of
entities. For “w/rep. concat”, we concatenate the representations of alias men-
tions, and the KG representations of entities are concatenated after the aligned
token representations. For “w/MLP”, we leverage two MLP layers to fuse the
representations of alias mentions and the KG representations of entities with
the aligned token representations, respectively.

From Fig. 3, we can see that: (1) Ign F1/F1-scores reduce when we disable
any modules, showing their contributions. (2) The changes caused by removing
one type of knowledge are not obvious, mainly due to the crossovers among the
three types of knowledge in the information space. (3) The results decline if we
disable the coreference distillation, due to the coreference errors in the injected
knowledge. (4) If we remove the KG encoding, the results drop drastically, as
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the baseline models cannot generate extra relation and attribute knowledge. (5)
Compared to the three variants, the larger increase brought by KIRE validates
the effectiveness of coreference distillation and representation reconciliation.

Influence of Mention Number. We measure the effectiveness of KIRE w.r.t.
average mention number for each entity pair. For DocRED, we evaluate it on the
validation set. The results are shown in Table 4. We observe that KIRE gains
higher performance for the entity pairs with more mentions, in particular when
the average mention number > 3. This is because KIRE injects knowledge into
the RE models by updating the token representations of entity mentions, which
has a greater impact on the entities with more mentions.

Comparison with Alternative Graph Encoders. We compare R-GAT with
GCN [9], GAT [23] and R-GCN [17]. We remove the coreference encoding and
attribute triple encoding to eliminate their interference. From Fig. 4, the per-
formance of R-GCN and R-GAT is better than GCN and GAT, as they can
capture the relation information in the entity-relation graphs. The results of
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Fig. 3. Results of ablation study

Table 4. Results w.r.t. average mention number

Models DocRED DWIE
1 (1, 3] > 3 1 (1, 3] > 3

Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1 Ign F1 F1

CNN 42.24 44.27 44.42 46.45 45.38 47.35 39.35 50.44 40.81 51.96 41.94 53.05
+ KIRE ↑1.64 ↑1.75 ↑2.71 ↑2.89 ↑3.21 ↑3.43 ↑1.52 ↑1.49 ↑2.35 ↑2.32 ↑2.95 ↑2.98

LSTM 47.39 49.35 48.59 50.53 50.09 52.08 54.14 64.41 55.97 66.14 57.21 67.55
+ KIRE ↑1.76 ↑1.87 ↑2.65 ↑2.82 ↑3.37 ↑3.51 ↑1.31 ↑1.26 ↑1.87 ↑1.89 ↑2.35 ↑2.29

BiLSTM 47.35 49.32 48.61 50.54 50.21 52.28 54.07 64.61 56.01 66.25 57.30 67.79
+ KIRE ↑1.83 ↑1.95 ↑2.73 ↑2.91 ↑3.31 ↑3.43 ↑1.49 ↑1.12 ↑1.91 ↑1.86 ↑2.34 ↑2.16

Context-aware 48.33 50.19 49.63 51.64 51.10 53.34 55.98 65.16 58.02 67.01 58.72 68.41
+ KIRE ↑1.43 ↑1.56 ↑2.35 ↑2.47 ↑2.87 ↑2.98 ↑1.35 ↑0.91 ↑1.92 ↑1.57 ↑2.32 ↑1.95
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Fig. 4. Result comparison of graph encoders

GAT are greater than GCN, as GAT can selectively aggregate the neighboring
information by self-attention. Similarly, R-GAT slightly outperforms R-GCN.

Case Study. We depict two successful cases and a failed case in Table 5. We
still use CNN, LSTM, BiLSTM and Context-aware as baselines.

Table 5. Case study. Target entities and related entities are colored.

[S1] The Waterloo Moraine ... was created as a moraine in the Regional
Municipality of Waterloo, in Ontario, Canada.

[S2] It covers ... and some parts of the townships of Wellesley and North Dumfries.
Case 1 Gold: P131 Baseline models: N/A + KIRE: P131
[S1] The news that British’s Prince Harry is engaged to his partner Meghan Markle has

attracted widespread attention from England, America and around the world.
[S10] Markle’s parents Thomas Markle and Doria Ragland said in a statement: ...

Case 2 Gold: citizen_of Baseline models: N/A + KIRE: citizen_of
[S1] Robert Kingsbury Huntington ... was a naval aircrewman and member of Torpedo

Squadron 8 (or VT-8).
[S2] He was radioman/gunner to Ensign George Gay’s TBD Devastator aircraft ...
[S4] Born in Los Angeles ... he was enlisted in the United States Navy 21 Apr. 1941.

Case 3 Gold: P241 Baseline models: N/A + KIRE: N/A

– Case 1. To identify the relation between North Dumfries in S2 and Regional
Municipality of Waterloo in S1, we use the extra knowledge (Regional Munic-
ipality of Waterloo, instance of, regional municipality of Ontario) and the
coreference of It and The Waterloo Moraine from NeuralCoref to correctly
infer the relation P131 (located in the administrative territorial entity).

– Case 2. With the aid of the extra knowledge (Meghan Markle, country of
citizenship, United States of America) and the coreference of Meghan Markle
and Markle from NeuralCoref, we successfully detect the relation citizen_of
between Thomas Markle in S10 and America in S1.
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– Case 3. To recognize the relation between Ensign George Gay in S2 and
the United States Navy in S4, we require a bridge entity Robert Kingsbury
Huntington. Through the coreference of Robert and He from NeuralCoref, we
identify that Robert and George are comrades. Then from S4, we find out
that Robert is enlisted in the US Navy. According to this reasoning chain, we
can see that the relation between George and the US Navy is P241 (military
branch). KIRE fails to run such complex reasoning involving three sentences.

6 Conclusion

In this paper, we propose KIRE, an entity knowledge injection framework for
enhancing document-level RE. Coreference knowledge is injected by coreference
distillation, while factual knowledge is injected and fused with document repre-
sentations via representation reconciliation. Our experiments validate the gen-
eralization and the stable performance increase of KIRE to various RE models.
For future work, we plan to exploit other knowledge injection frameworks and
integrate more knowledge sources.

Supplemental Material Statement: Source code for KIRE is available from Github
at https://github.com/nju-websoft/KIRE. Datasets are available from [32,33].
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Abstract. Time-efficient solutions for querying RDF knowledge graphs depend
on indexing structures with low response times to answer SPARQL queries
rapidly. Hypertries—an indexing structure we recently developed for tensor-
based triple stores—have achieved significant runtime improvements over several
mainstream storage solutions for RDF knowledge graphs. However, the space
footprint of this novel data structure is still often larger than that of many main-
stream solutions. In this work, we detail means to reduce the memory footprint of
hypertries and thereby further speed up query processing in hypertrie-based RDF
storage solutions. Our approach relies on three strategies: (1) the elimination of
duplicate nodes via hashing, (2) the compression of non-branching paths, and (3)
the storage of single-entry leaf nodes in their parent nodes. We evaluate these
strategies by comparing them with baseline hypertries as well as popular triple
stores such as Virtuoso, Fuseki, GraphDB, Blazegraph and gStore. We rely on
four datasets/benchmark generators in our evaluation: SWDF, DBpedia, WatDiv,
and WikiData. Our results suggest that our modifications significantly reduce the
memory footprint of hypertries by up to 70% while leading to a relative improve-
ment of up to 39% with respect to average Queries per Second and up to 740%
with respect to Query Mixes per Hour.

1 Introduction

The hypertrie [6], a monolithic indexing data structure based on tries, is designed to
support the efficient evaluation of basic graph patterns (BGPs) in SPARQL. While
the access order for the positions of the tuples in tries is fixed, a hypertrie allows to
iterate or resolve tuple positions in arbitrary order. In previous work [6] we showed
that hypertries of depth 3 are both time- and memory-efficient when combined with a
worst-case optimal join (WCOJ) based on the Einstein summation algorithm. With the
benchmarking of our implementation, dubbed TENTRIS, we also showed that hypertries
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outperform mainstream triple stores significantly on both synthetic and real-world
benchmarks when combined with WCOJs. We analyzed the space requirements of
hypertries on four RDF datasets: Semantic Web Dog Food (SWDF), DBpedia 2015-10,
WatDiv, and Wikidata (see Sect. 5 for details on the datasets) revealing the following
limitations of the current implementation: (1) The hypertries contain a high proportion
of duplicate nodes, i.e. between 72% (SWDF) and 84% (WatDiv) (see baseline vs. hash
identifiers in Fig. 1)

Two main conclusions can be derived from this analysis. First, the duplicate nodes
lead to an unnecessarily high memory footprint. The addition of deduplication to hyper-
tries could hence yield an improved data structure with lower memory requirements.
Second, the high number of single-entry nodes might lead to both unnecessary memory
consumption and suboptimal query runtimes. A modification of the data structure to
accommodate single-entry nodes effectively has the potential to improve both memory
footprint and query runtimes.

1. Hash-Based identifiers (h): We modify the hypertrie to use hashes of nodes as
primary keys. Hence, we store nodes with the same entries exactly once, thus elimi-
nating duplicates.

2. Single-Entry node (s): Single-entry nodes store the sub-hypertries of which they
are the root node directly, thus saving space and eventually eliminating child nodes.

3. In-Place storage (i): Boolean-valued single-entry nodes are eliminated completely.

b h s hs hsi

0

200K

400K

600K

800K

Fu
ll
no

de
co
un

t SWDF

b h s hs hsi

0

500M

1B

DBpedia

b h s hs hsi

0

500M

1B

1.5B

WatDiv

b h s hs hsi

Hypertrie version

0

2B

4B

6B

8B

Wikidata

Fig. 1. Full node counts of different hypertrie versions on four datasets. The hypertrie versions are
identified by their features: baseline (b), single-entry node (s), hash identifiers (h), and in-place
storage of height-1 single-entry nodes (i).

The number of full nodes required by our optimizations is shown in Fig. 1. By apply-
ing all three techniques, the number of stored nodes is reduced by 82–90% (SWDF,
WatDiv), and the memory consumption is reduced by 58–70% (SWDF, WatDiv), while
the number of queries answered per second increases by up to four orders of magnitude
on single queries.

The rest of this paper is structured as follows. First, we discuss related work in
Sect. 2. In Sect. 3, we specify notations and conventions, introduce relevant concepts
and describe the baseline hypertrie. We present our optimizations of the hypertrie in
Sect. 4 and evaluate our optimized hypertries in Sect. 5. Finally, we conclude in Sect. 6.
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2 Related Work

Many query engines for RDF graphs have been proposed in recent years [1,3,6,9–
11,16,17,20,22]. Different engines deploy different mixes of indices and have different
query execution approaches partly dependent on their indices. A common approach
among SPARQL engines is to build multiple full indices in different collation orders
such as Fuseki [10], Virtuoso [9], Blazegraph [20], and GraphDB [17]. Some systems
build additional partial indices on aggregates such as RDF-3X [16], or cache data for
frequent joins such as gStore [22] for star joins. Building more indexes provides more
flexibility in reordering joins to support faster query execution, while fewer indexes
accelerate updates and require less memory.

When it comes to worst-case optimal joins (WCOJs) [5], classical indexing reaches
its limits as indices for all collation orders are required. A system that takes this app-
roach is Fuseki-LTJ [11], which implements the WCOJ algorithm Leapfrog TrieJoin
(LTJ) [21] within a Fuseki triple store with indices in all collation orders. Recent works
also propose optimized data structures that provide more concise indices with support
for WCOJs. Qdags [15] provide support for WCOJs based on an extension of quad
trees. Redundancy in the quad tree is reduced by implementing it as a directed acyclic
graph (DAG) and reusing equivalent subtrees. A Circle [3] stores Burrows-Wheeler-
transformed ID triples in bent wavelet trees along with an additional index to encode
the triples of an RDF graph. Both Qdag and Circle are succinct data structures that must
be built at once and do not support updates. In their evaluation of Circle, Arroyuelo et
al. showed that Qdag and Circle are very space efficient, and that Fuseki-LTJ and Circle
answer queries faster than state-of-the-art triple stores such as Virtuoso and Blazegraph
with respect to average and median response times. The Qdag performed considerably
worse in the query benchmarks than all other systems tested.

The idea for single-entry node and in-place storage is based on path compression, a
common technique to reduce the number of nodes required to encode a tree by storing
non-branching paths in a single node. It was first introduced by Morrison in PATRICIA
trees [14]. Using hashing for deduplication, like in the proposed hypertrie context for
hypertrie nodes (see Sect. 4.1 for details) is inspired by previous works on pervasive
computing [13]. The hypertrie that we strive to optimize in this paper is, like the Qdag,
internally represented as a DAG. As with the Qdag, the DAG nature of the hypertrie
reduces the space requirement from factorial to exponential by the tuple length. The
reduction is accomplished by eliminating duplicates among equal subtrees.

3 Background

In this section, we briefly introduce the notation and conventions used in the rest of this
paper. In particular, we give a brief overview of relevant aspects of RDF, SPARQL, and
tensors. We also provide an overview of the formal specification of hypertries. More
details can be found in [6].
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Fig. 2. Example RDF graph. Integer indices for RDF resources are provided in parentheses behind
the string identifier.

3.1 Notation and Conventions

The conventions in this paragraph stem from [6]. Let N be the set of the natural numbers
including 0. We use In := {i ∈ N | 1 ≤ i ≤ n} as a shorthand for the set of natural
numbers from 1 to n. The domain of a function f is denoted dom (f) while cod (f)
stands for the target (also called codomain) of f . A function which maps x1 to y1 and
x2 to y2 is denoted by [x1→y1, x2→y2]. Sequences with a fixed order are delimited by
angle brackets, e.g., l = 〈a, b, c〉. Their elements are accessible via subscript, e.g., l1 =
a. The number of times an element e is contained in any bag or sequence C is denoted by
count (e, C); for example, count (a, 〈a, a, b, c〉) = 2. We denote the Cartesian product
of S with itself i times with Si = S × S × . . . S

︸ ︷︷ ︸

i

. We use the term word to describe a

processor word, e.g. a 64-bit data chunk when using the x86-64 instruction set.

3.2 RDF and SPARQL

An RDF statement is a triple 〈s, p, o〉 and represents an edge s
p−→ o in an RDF graph

g. s, p and o are called RDF resources. An RDF graph can be regarded as a set of RDF
statements. The set of all resources of a graph g is given by r(g). An example of an
RDF graph is given in Fig. 2. The graph contains, among others, the RDF statement
〈:Alice, foaf:knows, :Bob〉.

A triple pattern (TP) Q is a triple that has variables or RDF resources as entries,
e.g., 〈?x, foaf:knows, ?y〉. Matching a triple pattern Q with a statement t results in a
set of zero or one solution mappings. If Q and t have exactly the same resources in
the same positions, then matching Q to t results in a solution mapping which maps
the variables of Q to the terms of t in the same positions. For example, imagine
Q = 〈?x, foaf:knows, ?y〉 and t = 〈:Alice, foaf:knows, :Bob〉. Then Q(t) = {[?x →
:Alice, ?x→ :Bob]}. Otherwise, the set of solutions is empty, i.e., Q(t) = ∅. The result
of matching a triple pattern Q against an RDF graph g is

Q(g) =
⋃

t∈g

Q(t), (1)

i.e., the union of the matches of all triples t in g with Q. A list of triple patterns is called
a basic graph pattern (BGP). The result of applying a BGP to an RDF graph g is the
natural join of the solutions of its triple patterns.
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Similar to previous works [4,6,16], we only consider the subset of SPARQL where
a query is considered to consist of a BGP, a projection and a modifier (i.e., DISTINCT)
that specifies whether the evaluation of Q follows bag or set semantics.

3.3 Tensors and RDF

Similar to [6], we use tensors that can be represented as finite multi-dimensional arrays.
We consider a tensor of rank-n as an n-dimensional array K1 × · · · × Kn → N with
K1 = · · · = Kn ⊂ N. Tuples from the tensor’s co-domain k ∈ K are called keys. The
entries k1, . . . ,kn of a key k are dubbed key parts. The array notation T [k] = v is used
to express that T stores for key k value v.

The representation of g as a tensor, dubbed RDF tensor or adjacency tensor T , is a
rank-3 tensor over N which encodes g. Let id : r(g) → I|r(g)|+1 be an index function.
The function maps each term of g—of which there are |r(g)|—to a fixed value in I|r(g)|.
All unbound variables in solution mappings are mapped to |r(g)|+1. For all statements
〈s, p, o〉 ∈ g, the value of T [id(s), id(p), id(o)] is 1. All other values of T are 0. For
example, T [5, 9, 7] = 1 for the example graph shown in Fig. 2, while T [5, 9, 6] = 0.

Matching a triple pattern Q against a graph g is equivalent to slicing the tensor
representation of g with a slice key s(Q) corresponding to Q. The length of s(Q) is
equal to the order of the tensor to which it is applied. Said slice key has a key part or a
place holder, denoted “:” (no quotes), in every position. Slicing g with s(Q) results in
a lower-order tensor that retains only entries where the key parts of the slice key match
with the key parts of the tensor entries. For example, the slice key for the TP Q =
〈?x, foaf:knows, ?y〉 executed against the example graph in Fig. 2 is 〈:, 8, :〉. Applying
the TP Q to g is homomorphic to applying the slice key s(t) to the tensor representation
of g.

To define a tensor representation for sets or bags of solutions, we first define an
arbitrary but fixed ordering function order for variables (e.g., any alphanumeric order-
ing). A tensor representation T ′ of a set or bag of solutions is a tensor of rank equal
to the number of projection variables in the query. The index for accessing entries of
T ′ corresponds to order. For example, given the TP Q = 〈?x, foaf:knows, ?y〉 with the
projection variables ?x and ?y, T ′ would be a matrix with ?x as the first dimension and
?y as the second dimension. After applying Q to the graph in Fig. 2, we would get a
tensor T ′ with T ′[2, 5] = 1 and T ′[5, 2] = 0.

The Einstein summation [8,18] is an operation with variable arity. With this oper-
ation, the natural joins between the TPs of a BGP and variable projection can be com-
bined into a single expression that takes the tensor representations of the TPs as input.

The execution of a SPARQL query on an RDF graph g is mapped to operations on
tensors as follows. For each triple pattern, the RDF tensor T is sliced with the corre-
sponding slice key. The slices are used as operands to an Einstein summation. Each
slice is subscripted with the variables of the corresponding triple pattern. The result is
subscripted with the projected variables. A ring with addition and multiplication is used
to evaluate the Einstein summations. For example, evaluating the query with the BGP
〈〈?x, foaf:knows, ?y〉, 〈?y, rdf:type, :Pet〉〉 and a projection to ?x on the RDF graph g
from Fig. 2 is equivalent to calculating

∑

x T [:, 8, :]x,y · T [:, 9, 7]y , where T is the RDF
graph of g.
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3.4 Hypertrie

A hypertrie is a tensor data structure that maps strings of fixed length d over an alphabet
A to some value space V [6]. It is implemented as a directed acyclic graph to store
tensors sparsely by storing only non-zero entries. Formally, [6, p.62] defines a hypertrie
as follows:

Definition 1 (Hypertrie). Let H(d,A,E) with d ≥ 0 be the set of all hypertries
with depth d, alphabet A, and values E. If A and E are clear from the context, we
use H(d). We set H(0) = E per definition. A hypertrie h ∈ H(1) has an associated

partial function c
(h)
1 : A � E that specifies outgoing edges by mapping edge labels to

children. For h′ ∈ H(n), n > 1, partial functions c
(h′)
p : A � H(d − 1), p ∈ In are

defined. Function c
(h′)
p specifies the edges for resolving the part equivalent to depth p

in a trie by mapping edge labels to children. For a hypertrie h, z(h) is the size of the
set or mapping it encodes.

An example of a hypertrie encoding the RDF tensor of the graph in Fig. 2 is given in
Fig. 3 with the baseline hypertrie.

To retrieve the value for a tensor key, we start at the root node. If the current node is
from H(0), it is the value and we are done. Otherwise, we select a key part from the key
at an arbitrary position p. If cp maps the selected key part, we descend to mapped sub-
hypertrie, remove the selected key part from the key and repeat the retrieval recursively
on the sub-hypertrie with the shortened key. Otherwise, the value is 0.

Hypertries are designed to satisfy four conditions: (R1) memory efficiency, (R2)
efficient slicing, (R3) slicing in any order of dimensions, and (R4) efficient iteration
through slices. [6] Furthermore, note that every hypertrie is uniquely identified by the
set of tuples it encodes.

Implementation. We refer to the original implementation of the hypertrie [6] as baseline
implementation. The baseline hypertrie is implemented in C++. The lifetime of hyper-
trie nodes is managed by reference-counting memory pointers which free the memory
of a node when it is no longer referenced. For nodes with height d > 1, the edge
mappings cp∈Id

are stored in one hash table each. A node h′ that is accessible from
the root hypertrie h via different paths with equal slices is stored only once. Its par-
ent nodes store a reference to the same physical instance of h′. For example, the slices
h[3, :, :][:, 4] and h[:, :, 4][3, :] of a depth-3 hypertrie result in the same node. Nodes of
depth d = 1 store the leaf edges in a hash set.

Hypertries were introduced as a tensor data structure for the tensor-based triple
store TENTRIS. [6] In the following, we briefly describe the implementation of TEN-
TRIS, which is later used to evaluate the improvements to the hypertrie presented in
this paper. Consider an RDF graph g. A depth-3 Boolean-valued hypertrie is used by
TENTRIS to store RDF triples encoded as integer triples. Therefore, the RDF resources
r(g) are stored as heap-allocated strings. The integer identifier of a resource is its mem-
ory address. We write id(e) to denote the identifier of a resource e. id is implemented
using a hash table while its inverse id−1 is applied by resolving the ID as memory
address. Solutions of triple patterns are represented by pointers to sub-hypertrie nodes.
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Joins and projection are implemented with Einstein summation based on a worst-case
optimal join algorithm.

4 Approach

In this section, we introduce three optimizations to the hypertrie. First, we eliminate
duplicate nodes by identifying nodes with a hash. In a second step, we further reduce
the memory footprint of hypertries by devising a more compact representation for nodes
that encode only a single entry. Finally, we eliminate the separate storage of single-entry
leaf nodes completely.

4.1 Hash-Based Identifiers

Our analysis of Fig. 1 suggests that equal sub-hypertries are often stored multiple times.
To eliminate this redundancy, we first introduce a hashing scheme for hypertries that can
be updated incrementally. Based thereupon, we introduce the hypertrie context, which
keeps track of existing hypertrie nodes and implements a hash-based deduplication.

Hashing Hypertries. Let j be an order-dependent hashing scheme1 for integer tuples.
We define the hash i of a Boolean-valued hypertrie h as the result of applying j to the
entries of h and aggregating them with XOR:

i(h) :=
⊕

k∈dom(h)

j(k) (2)

Since XOR is self-inverse, commutative, and associative, the hash can be incrementally
updated by i(h) ⊕ j(k) when a key k is added or removed. Rather than rehashing and
combining all entries again in O(z(h)), the incremental update of the hash can be done
in constant time. The hashing scheme can easily be extended to hypertries that store
non-Boolean values by appending the value to the key before j is applied.

Hypertrie Context. The goal of a hypertrie context is to ensure that hypertrie nodes
are stored only once, regardless of how often they are referenced. We now describe the
design requirements for hypertrie contexts, provide a formal definition, and conclude
with implementation considerations.

1 In our implementation, we use the hash functions from https://github.com/martinus/robin-
hood-hashing since preliminary experiments showed that they performed well and had no
collisions on the datasets from Sect. 5.

https://github.com/martinus/robin-hood-hashing
https://github.com/martinus/robin-hood-hashing
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In their baseline implementation, hypertrie nodes are retrievable by their path from
the root of the hypertrie only. Information pertaining to the location of a node in mem-
ory is only available within its parent nodes. Consequently, only nodes with equivalent
paths, i.e., with equal slice keys, are deduplicated in the baseline implementation. Equal
hypertries with different slice keys are stored independently of each other. Hypertrie
contexts eliminate these possible redundancies by storing hypertrie nodes by their hash
and tracking how often nodes are referenced. The parent nodes are modified to refer-
ence their child nodes using hashes instead of memory pointers. Identifying hypertrie
nodes by their hashes ensures that there are no duplicates.

A hypertrie can be contained or primarily contained in a hypertrie context hc. All
nodes managed by a hypertrie context are contained therein. A hypertrie is said to be
primarily contained in a hypertrie context hc iff it was stored explicitly in said context.
For example, the root node of a hypertrie used for storing a given graph is commonly
primarily contained in a hypertrie context. If a hypertrie h is primarily contained in a
hypertrie context hc, then all sub-hypertries of h are contained in hc.

Adding a new primarily contained hypertrie or changing an existing hypertrie may
alter the set of hypertries contained in a hypertrie context. To efficiently decide whether
a node is still needed after a change, the hypertrie context tracks how often each node is
referred to. Nodes that are no longer referenced after a change are removed. In hypertrie
contexts, hypertries are considered to reference their sub-hypertries by hash.2

Formally, we define a hypertrie context as follows:

Definition 2 (Hypertrie Context). Let A be an alphabet, E a set of values, and d ∈ N

the maximal depth of the hypertries that are to be stored.
We denote the set of hypertries

⋃

t≤d H(t, A,E) asΛ0.Λ0 without empty hypertries
{h ∈ Λ0 | z(h) �= 0} is denoted Λ.

A hypertrie context C for hypertries from Λ0 is defined by a triple (P,m, r) where

– P is a bag of elements from Λ0,
– m : Z � Λ maps hashes to non-empty hypertries which are P or are sub-hypertries
of one of P ’s elements, and

– r : Λ → N ∪ 0 assigns a reference count to non-empty hypertries.

We define two relations between hypertrie context and hypertries:

– Hypertries p ∈ P are primarily contained in C, denoted as p ∈ C.
– Hypertries h ∈ cod(m) are contained in C, denoted as h ∈ C.

For a hypertrie h ∈ Λ, r(h) is calculated from sum of the count of h in P and the
number of references to h from hypertrie h′ ∈ C:

r(h) := count(h, P ) +
∑

h′∈C
p∈Id

count(h, cod(c(h
′)

p )). (3)

2 The outgoing edges c(h)p in Definition 1 are considered to map hashes of hypertries instead of
hypertries.
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4.2 Single-Entry Node

Central properties of a hypertrie are that slicing in any dimension can be carried out
efficiently (see R2 and R3 in Sect. 3.4) and that non-zero slices can be iterated efficiently
(see R4 in Sect. 3.4). In the implementation of hypertrie node described so far (in the
following: full node), this is achieved by maintaining one hash table of non-zero slices
for each dimension. The main observation behind this optimization is that R2–R4 also
hold for a hypertrie node that represents only a single entry if the hypertrie node stores
only the entry itself. We dub such a node single-entry node (SEN). A similar technique
is used in radix trees [12] to store non-branching paths in a condensed fashion.

For slicing, it is sufficient to match the slice key against the single entry of the node.
Thus, the result may have zero or one non-zero entry (see R2, R3). There is exactly one
non-zero slice in each dimension. Iteration of the non-zero slices is now trivial (see R4).

SEN are—when applicable—always more memory efficient than full nodes.3 Com-
pared to a full node h, an SEN eliminates memory overhead in three ways. (1) It does
not maintain hash tables c

(h)
p for edges to child nodes. (2) Child nodes do not need to

be stored, unless they are also needed by other nodes. (3) The node size z(h) does not
need to be stored explicitly since it is always 1.

Formally, we define an SEN as follows:

Definition 3 (Single-Entry Hypertrie). Let H, d, A and E be given as in Definition
1. Further, consider h ∈ H(d), which stores for key 〈k1, . . . ,kn〉, the value v. If h
encodes exactly one entry (z(h) = 1), h is defined as 〈〈k1, . . . ,kn〉, v〉 and is called a

single-entry node (SEN). Children mapping functions c
(h)
p are not defined for h.

SEN can be used without limitations in a hypertrie context.

4.3 In-Place Storage

Our third optimization is to store certain nodes exactly where a reference to them would
be stored otherwise. While the aforementioned optimizations can be used for hypertries
with all value types (e.g., Boolean, integer, float), the optimization in this section is only
applicable to Boolean-valued hypertries.

The payload of a binary-valued (note that our tensors only contain 0 s and 1 s)
height-1 SEN is a single key part (1 word). It takes the same amount of memory as
the hash that identifies the hypertrie (1 word) and which is stored in its parent nodes’
children mappings to reference it. Therefore, the payload of a height-1 SEN fits into the
place of its reference.

We use this property to reduce the total storage required: The payload of child
height-1 SENs—their key part—is stored in place of their reference in the children
mappings of their parent nodes. To encode if a hash or a key part is stored, a bit in the

3 Consider a hypertrie h with a single entry z(h) = 1 and depth d ≥ 1. A hash table that
maps a key part requires more memory than just a single key part. Hence, the d child mapping
hash tables of a full hypertrie node encoding h require more memory than the d key parts of
the entry stored in an SEN encoding h. Consequently, an SEN node is always more memory
efficient than a full node.
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Fig. 4. Storage efficiency and loading speed of TENTRIS, with different hypertrie versions, and
of other triple stores on four datasets. If loading a dataset with a triple store failed, the plot says
n/a. The triple stores are TENTRIS (T-*) where * indicates the hypertrie version (see Fig. 1),
Blazegraph (B), Fuseki (F), Fuseki-LTJ (Fl), GraphDB (G), gStore (S), and Virtuoso (V).

same fixed position of both key part and hash is reserved and used as a type tagging bit,
e.g., the most significant bit. As in-place stored height-1 SEN are not heap-allocated,
reference counting is not necessary. The memory is released properly when the hash
table is destructed.

4.4 Example

An exemplary comparison of a baseline hypertrie and a hypertrie context containing
one primary hypertrie with all three proposed optimizations is given in Fig. 3.

5 Evaluation

We implemented our optimizations within the TENTRIS framework. The goal of our
evaluation was twofold: first, we assessed the index sizes and index generation times
with four datasets of up to 5.5 B triples. In a second experiment, we evaluated the query
performance of the triple stores in a stress test. Throughout our evaluation, we com-
pared the original version of TENTRIS, dubbed TENTRIS-b, our extension of TENTRIS

with hash identifiers (h) and single entry nodes (s), dubbed TENTRIS-hs, TENTRIS-
hs extended with the in-place storage (i) optimization, dubbed TENTRIS-hsi, and the
six popular triple stores, i.e., Blazegraph 2.1.6 Release Candidate, Fuseki 4.4.0, Fuseki-
LTJ—a Fuseki that uses a worst-case optimal join algorithm—4, GraphDB 9.5.1, gStore
0.85, and Virtuoso 7.2.6.1. We chose popular triple stores which provide a standard

4 Fuseki-LTJ is based on Apache Jena Fuseki 3.9.0.
5 We used the modified version from [6] that fixes the SPARQL endpoint and sets a query

timeout.
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HTTP SPARQL interface, support at least the same subset of SPARQL as TENTRIS and
are freely available for benchmarking. We did not include Qdag or Ring because they
do not provide a SPARQL HTTP endpoint and do not support projections. We used
the datasets Semantic Web Dog Food (SWDF) (372 K triples), the English DBpedia
version 2015-10 (681 M triples) and WatDiv [2] (1 B triples) and their respective query
lists from [6]. We added Wikidata trusty from 2020-11-11 (5.5 B triples) as another
large real-world dataset and generated queries with FEASIBLE [19] from Wikidata
query logs. As in [6], FEASIBLE was configured to generate SELECT queries with
BGPs and DISTINCT as an optional solution modifier. All experiments were executed
on a server with an AMD EPYC 7742, 1 TB RAM and two 3 TB NVMe SSDs in RAID
0 running Debian 10 and OpenJDK 11.0.14.

5.1 Index Size and Loading Time

Storage requirements for indices and index building speeds are reported in Fig. 4. The
index sizes of the TENTRIS versions were measured with cgmemtime’s6”Recursive
and acc. high-water RSS+CACHE”. For all other triple stores, the total size of the index
files after loading was used. cgmemtime’s ”Child wall” was used to measure the time
for loading the datasets.

Two triple stores were not able to load the Wikidata dataset: gStore failed due to a
limit on the number of usable RDF Resources and TENTRIS-b ran out of memory.

For all datasets, each additional hypertrie optimization improves the storage effi-
ciency of TENTRIS further: Compared to TENTRIS-b, the optimizations h, hs and hsi
take 36–64%, 55–68% and 58–70% less memory respectively. This comes at the cost of
decreased index build throughput for TENTRIS-h and TENTRIS-hs by 11–36% and for
TENTRIS-his by 2–28%. For the Wikidata dataset, the index sizes of TENTRIS-h, TEN-
TRIS-hs and TENTRIS-hsi are reduced by at least 21%, 39% and 42%7, respectively.
Compared to TENTRIS-h, the single entry nodes (s) in TENTRIS-hs save 16–30% with
almost no effect on the index building speed. The in-place storage of single-entry leaf
nodes (i) in TENTRIS-hsi saves memory, (another 1–7%) compared to TENTRIS-hs, and
speeds up the index building (2–57%) on all datasets. For the small to medium-sized
datasets SWDF, DBpedia, and WatDiv, the index building is slightly faster by 2–7%; for
the large dataset, Wikidata, the margin is considerably larger with 56% improvement.

The index sizes of all TENTRIS versions scale similarly to other triple stores. The
TENTRIS-hsi indices are similar in size to the indices produced by other triple stores.
Compared to the smallest index for each dataset, TENTRIS-hsi uses 1.14 to 4.24 times
more space. The loading time of TENTRIS-hsi is close to the mean of the non-TENTRIS

triple stores.

6 https://github.com/gsauthof/cgmemtime.
7 In comparison to 1TB RAM because TENTRIS-b ran out memory during loading.

https://github.com/gsauthof/cgmemtime
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Fig. 5. Performance metrics of query stress tests on four benchmarks for TENTRIS, with different
hypertrie versions, and for other triple stores. For triple store abbreviations see Fig. 4. First row
shows Boxplots and scatterplots for Queries per Second (QpS). Only successful query executions
are considered and aggregated by mean into a single scatter. The boxes indicate the first quartile,
median, and third quartile with 1.5 times the interquartile range wiskers. Black dots mark outliers
and crosses the means. Second row shows shows Query Mixes per Hour (QMpH). Failed queries
are rated with the timeout duration of 180 s. The third row shows the percentage of queries
that failed. If no number is provided, no queries failed. If experiments were not executed for a
combination of triple store and benchmark, the plot says n/a.

5.2 Querying Stress Test

Our evaluation setup for query stress tests was similar to that used in [6]. The results
are shown in Fig. 5. The experiments were executed using the benchmark execution
framework IGUANA v3.2.1 [7]. For each benchmark, the query mix was executed 30
times on each triple store and the timeout for a single query execution was set to 3 min.
We report the performance using Queries per Second (QpS), Query Mixes per Hour
(QMpH) and the proportion of failed queries. For QpS, only query executions that were
successful and finished before the timeout are considered. The reported QpS value of
a query on a dataset and triple store is the mean of the single measurements. Failed
queries are penalized with the timeout duration for QMpH. We chose to report both
QMpH and QpS to get a more fine-grained view of the performance. While QpS is
more robust against outliers, QMpH can be strongly influenced by long-running and
failed queries.
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The baseline version of TENTRIS, TENTRIS-b, already performs better than all
non-TENTRIS triple stores w.r.t. QpS and QMpH on the SWDF and DBpedia bench-
marks but not on the WatDiv benchmark. Here, gStore and Blazegraph outperform
TENTRIS-b by a factor of 1.6 and 3.5 with respect to QMpH. TENTRIS-h, TEN-
TRIS-hs and TENTRIS-hsi all outperform TENTRIS-b and all other triple stores on all
datasets with respect to average QpS (avgQpS) and QMpH. For the small real-world
dataset SWDF, all TENTRIS versions answered queries with similar avgQpS ranging
from 3935 (TENTRIS-b) to 4088 (TENTRIS-hsi, +4%). The same holds true for the
larger real-world dataset DBpedia, with avgQpS ranging from 4753 (TENTRIS-b) to
4825 (TENTRIS-hsi, +1.5%). With respect to QMpH, the optimized TENTRIS ver-
sions clearly outperform TENTRIS-b by 11%(TENTRIS-h), 14% (TENTRIS-hs) and 20%
(TENTRIS-hsi) on the SWDF dataset, and even by 15%, 31% and 71% on the DBpe-
dia dataset. On the synthetic dataset WatDiv, the optimized TENTRIS versions show
notable speedups on both metrics, avgQpS and QMpH. AvgQpS is increased from 698
by TENTRIS-h to 946 (+35%), by TENTRIS-hs, to 931 (+33%), by TENTRIS-hs and to
972 (+39%) by TENTRIS-hsi. QMpH is 5.2, 6.6 and 7.4 times higher with TENTRIS-h,
TENTRIS-hs and TENTRIS-hsi, respectively, than with TENTRIS-b.

On Wikidata, measurements are available only for the TENTRIS versions h, hs and
hsi due to TENTRIS-b not being able to load the dataset. TENTRIS-hsi is again slightly
faster than TENTRIS-hs, with 1009 (hs) and 1021 (+1%, hsi) avgQpS, and 3.13 (hs)
and 3.45 (+9%, hsi) QMpH. TENTRIS-h is with 989 avgQpS and 2.99 QMpH slightly
slower than the more optimized versions.

When compared to the fastest non-TENTRIS triple store on each metric and dataset,
TENTRIS-hsi is 3–3.7 times faster with respect to avgQpS and 1.7–2.1 times faster
with respect to QMpH. None of the TENTRIS versions had failed queries during execu-
tion. On the DBpedia dataset, Fuseki and gStore failed on about 1% of the queries. On
the Wikidata dataset, all non-TENTRIS triples stores that succeeded to load the dataset
failed on some queries.

5.3 Discussion

The evaluation shows that applying all three optimizations (hsi) is in all aspects supe-
rior to applying only the first two optimizations (h, hs). Thus, we will consider only
TENTRIS-hsi in the following. The proposed optimizations of the hypertrie improve the
storage efficiency by 70% and the query performance with respect to avgQpS by large
margins of up to four orders of magnitude. These improvements come at the cost of
slightly longer index building times of at most 28%. The optimization of the storage
efficiency is clearly attributable to the reduced number of nodes, as shown in Fig. 1. For
the improved query performance, definite attribution is difficult. We worked out two
main factors we believe are reasonable to assume as the cause: First, information that
was stored in a node and its subnodes in the baseline version is in the optimized version
more often stored in a single node. This way, the optimizations single-entry node (s)
and in-place storage (i) cause fewer CPU cache misses and fewer resolves of memory
addresses, resulting in faster execution. Second, key parts are not necessarily stored
in a hash table anymore. Whenever a key part is read from a single-entry node (s) or
in-place stored node (i), the optimized version saves one hash table lookup compared
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to the baseline version. On the other side, additional hash table lookups are required
to retrieve nodes by their hash identifiers during query evaluation. We minimize this
overhead by handling nodes by their memory address during evaluation after they were
looked up by their hash first. The memory overhead for storing these handles is negli-
gible as typically only a few are required at the same time.

For triple stores, there is always a trade-off between storage efficiency, index build
time, and query performance. In particular, less compressed indices can typically be
built faster. Building multiple indices takes longer but multiple indices allow for more
optimized query plans. The baseline hypertrie clearly attributed significant weight to
good query performance, with average index building time and above average stor-
age requirement. The optimized hypertrie trades a slightly little worse index building
time for better query performance and much-improved storage efficiency. The result is
a triple store with superior query performance, average storage requirement, and still
average index building time. Given the predominantly positive changes in trade-offs,
we consider the proposed optimizations a substantial improvement.

6 Conclusion and Outlook

We presented a memory-optimized version of the hypertrie data structure. The three
optimizations of hypertries that we developed and evaluated improved both the mem-
ory footprint and query performance of hypertries. A clear but small trade-off of our
approaches is the slightly longer index building time they require.

The new storage scheme for hypertrie opens up several new avenues for future
improvements. The persistence of optimized hypertrie nodes is easier to achieve due to
the switch from memory pointers to hashes. Furthermore, the hash identifiable hyper-
trie nodes provide the building bricks to distribute a hypertrie over multiple nodes in
a network. For TENTRIS, the introduction of the hypertrie context opens up the pos-
sibility to store the hypertries of multiple RDF graphs in a single context and thereby
automatically deduplicate common sub-hypertries. Especially for similar graphs, this
optimization has the potential to improve storage efficiency substantially.

Supplementary Material Statement: Source code for our system; a script to recreate the
full experimental setup, including all datasets, queries, triple stores, configurations and
scripts to run the experiments; and the raw data and scripts for generating the images
are available from: https://tentris.dice-research.org/iswc2022.
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22. Zou, L., Özsu, M.T., Chen, L., Shen, X., Huang, R., Zhao, D.: Gstore: a graph-based sparql
query engine. VLDB J. 23(4), 565–590 (2014). https://doi.org/10.1007/s00778-013-0337-7

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://graphdb.ontotext.com/documentation/free/storage.html#storage-literal-index
http://graphdb.ontotext.com/documentation/free/storage.html#storage-literal-index
https://doi.org/10.1007/978-3-319-25007-6_4
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1007/s00778-013-0337-7
http://creativecommons.org/licenses/by/4.0/


Towards Neural Network Interpretability
Using Commonsense Knowledge Graphs

Youmna Ismaeil1,2(B), Daria Stepanova1, Trung-Kien Tran1,
Piyapat Saranrittichai1, Csaba Domokos1, and Hendrik Blockeel2

1 Bosch Center for Artificial Intelligence, Renningen, Germany
{youmna.ismaeil,daria.stepanova,trung-kien.tran,piyapat.saranrittichai,

csaba.domokos}@de.bosch.com
2 KU Leuven, Leuven, Belgium

{youmna.ismaeil,hendrik.blockeel}@kuleuven.be

Abstract. Convolutional neural networks (CNNs) classify images by
learning intermediate representations of the input throughout many lay-
ers. In recent work, latent representations of CNNs have been aligned
with semantic concepts. However, for generating such alignments, the
majority of existing methods predominantly rely on large amounts of
labeled data, which is hard to acquire in practice. In this work, we address
this limitation by presenting a framework for mapping hidden units from
CNNs to semantic attributes of classes extracted from external common-
sense knowledge repositories. We empirically demonstrate the effective-
ness of our framework on copy-paste adversarial image classification and
generalized zero-shot learning tasks.

Keywords: Interpretability · Image classification · Knowledge graphs

1 Introduction

Convolutional neural networks (CNNs) are well-known for their capacity to learn
different powerful representations of the input in their successive layers. It is
also well-known that they process images in a way that is not always intuitive
to humans [11]. The lack of interpretability of CNNs is clearly undesirable, espe-
cially in safety-critical applications such as medical diagnosis or autonomous
driving. This has led to an increased interest in methods that make the behavior
of a trained CNN more interpretable by trying to assign human-understandable
concepts (e.g., face) to the neurons in the intermediate layers, often without
explicit supervision [2,6,16,18,23,29].

An important class of methods [2,16,25] proposes to align neurons with class
attributes by using images in which segments are labeled. More specifically, one
tries to find out which neurons are activated by particular image segments and, in
that manner, associate these neurons with the label of the segment. For instance,
if, over multiple images, a particular neuron tends to be active for the image
segments labeled with table, one could argue that this neuron recognizes tables,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 74–90, 2022.
https://doi.org/10.1007/978-3-031-19433-7_5
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Fig. 1. The goal of our work is to assign meaning to neurons using semantic properties
of classes from a knowledge graph.

and neurons in later layers essentially use this high-level information to decide
whether the image shows, e.g., an office. However, an important limitation of
such methods is that during training they require fine-grained semantic labels of
the images that are often not readily available and can be expensive to construct.

In this paper, we provide an alternative. Instead of using semantically labeled
images, we assume that external knowledge extracted from a knowledge graph
(KG) is available that contains symbolic descriptions of objects. Extensive KGs
of this kind exist. For example, ConceptNet [26] or WebChild [27] store seman-
tic (including visual) information about concepts (e.g., offices contain tables,
kitchens contain ovens, etc.) acquired using crowd sourcing or information
extraction from the Web. We develop methods that exploit such KGs by linking
the class label of images to typical visible attributes of this class, and then trying
to correlate neuron activation with these attributes. For example, if a particular
neuron tends to be active for pictures of offices and kitchens, but not for pictures
of bathrooms, and the KG states that offices and kitchens tend to contain tables
while bathrooms do not, then this may be an indication that the neuron reflects
the presence of a table (see Fig. 1).

We demonstrate experimentally that the methods we propose successfully
interpret neurons to the extent that they enable zero-shot learning of new classes
with comparable performance to existing methods, but with the advantage of
interpreting neurons in human-understandable terms. In the zero-shot learning
setting, a model is expected to classify images from classes it has never encoun-
tered during training. Earlier works in this direction that likewise make use of
external knowledge about classes [17,20] propose to exploit such knowledge dur-
ing training. While natural, these methods typically assume that prior to train-
ing, the knowledge of both seen and unseen classes is available. This implies
that whenever the source of knowledge (e.g., KG) is updated with information
about new unseen classes, training needs to be done completely from scratch,
which might be undesirable. Removing knowledge about unseen classes during



76 Y. Ismaeil et al.

Data correctly 
classified by 2. Neuron-

attribute
alignment

1. Data 
modeling

(o1, table), 
(o3, bath),

...

Neuron-attribute 
pairs

o1

o2

o3

bathroom I1
I2
I3
I4
I5
I6

bathroom
bathroom
bathroom
kitchen
kitchen
kitchen

bathroom
has

bath
has

sinktable
hashas
Knowledge Graph

CNN
Input

Outputkitchen

kitchen

Transaction database

Images o1 o2 o3 bathroomkitchen bath sink table
I1 0 0 1 1 0 1 1 0
I2 0 0 1 1 0 1 1 0
I3 1 1 1 0 1 0 1 0
I4 1 0 0 0 1 0 1 1
I5 1 1 0 0 1 0 1 1
I6 1 0 0 0 1 0 1 1

Neurons Classes Attributes

Fig. 2. Workflow of the proposed framework.

training makes the respective methods less effective (see Sect. 5). In contrast,
our approach is advantageous in that we require the knowledge about unseen
classes to be present in the KG only at the inference phase.

Our main contributions are summarized as follows:

– We propose a framework for mapping neurons in a fully connected layer of a
CNN to attributes of classes from an external knowledge graph.

– On the task of copy-paste adversarial classification [16], we show that KGs
indeed contain important semantic attributes of classes, which are helpful for
CNNs.

– We experimentally demonstrate the usefulness of our framework for zero-
shot learning and show how it can be effectively exploited for retrieving class
predictions using reasoning over multiple networks.

2 Preliminaries

Image Classification CNN. Assuming a set of object classes C, for a given
(RGB) image I : Ω → R

3, where Ω denotes the pixel space, we consider a func-
tion f : (Ω → R

3) → C for a parameter vector w. The function f , providing
image classification, is defined as an L-layer convolutional neural network (CNN),
namely f(I) = arg maxk∈C (softmax(fL ◦ · · · ◦ f2 ◦ f1(I))k), where fl defines the
lth layer of the network.

Knowledge Graphs. We will assume a knowledge graph (KG) encoding rela-
tions between object classes and attributes. Let V and P denote a set of
entities (a.k.a. constants) and so-called predicates, respectively. A KG G ⊆
V × P × V represents collections of factual information encoded by triplets
〈subject , predicate, object〉. More formally, G = {〈s, p, o〉 | s, o ∈ V and p ∈ P}1.
In this work, we focus on commonsense KGs (CSKG), that is, KGs that describe
visual and physical properties of object classes (e.g., 〈bathroom, has, bath〉,
〈kitchen, has, table〉). Examples of such knowledge graphs include, e.g., Concept-
Net [26] or WebChild [27].
1 Alternatively, a KG G = (V, {Ep ⊆ V × V}p∈P) can be viewed as a directed super-

graph (i.e. a composition of directed graphs Gp = (V, Ep), ∀p ∈ P, where the edges
are labeled by the predicates p.
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Fig. 3. Illustration of neuron-attribute alignments, where dashed lines show correla-
tions between items in D. (a), (b) present invalid alignments; (c), (d) reflect desirable
alignments.

Association Rules. Association rules are widely used in the context of data
mining. We will use association rules to model relations between neurons and
attributes. First, we define a transaction database D = {(i,X ) | i ∈ U and X ⊆
I}, where I stands for a set of items, and U is a set of IDs. A transaction (i,X )
has a (unique) ID i and X ⊆ I denoting an itemset. Furthermore, we introduce
the support of an itemset X in a given transaction database D, which is the
frequency of transactions in D containing the itemset X :

supp(X ) = |{(i,X ′) ∈ D | X ⊆ X ′)}| / |D| .

We consider bi-directional association rules, which are expressions of the
form X ⇔ Y, where X ,Y ⊆ I. Association rules can be ranked relying on
certain interestingness metrics [1]. In this work, we focus on Jaccard index (a.k.a.
intersection over union), which for a given association rule X ⇔ Y computes the
ratio of co-occurrences to all occurrences of X and Y in the transaction dataset:2

J(X ⇔ Y) =
supp(X ∪ Y)

supp(X ) + supp(Y) − supp(X ∪ Y)
. (1)

3 Generating Neuron-Attribute Alignments

Our goal is to interpret neurons’ behavior3 in human-interpretable terms. In this
paper, we consider image classification as an application. In contrast to existing
methods [2,16], we aim at developing a framework that can be qualitatively and
quantitatively evaluated and that is not limited by the availability of semantically
labeled data.

2 We also write J(X ,Y) for conciseness.
3 A neuron can also be understood as an element of the vector of activation output

for a given layer.



78 Y. Ismaeil et al.

We propose to interpret neurons’ behavior in terms of the semantic properties
(a.k.a. attributes, encoded by a set A) from pre-constructed KGs, which store
human knowledge about classes from C. To this end, we aim at answering the
following key questions:

Q1. Do the extracted alignments comply with the behavior of the CNN from
which they were extracted?

Q2. Do networks learn in terms of attributes defined by the knowledge graph?
Q3. Beyond explainability, how can we utilize the extracted explanations?

Framework Overview. First, we present our framework, depicted in Fig. 2,
for aligning individual neurons with high-level attributes from a KG.

Let us consider a neural network f trained for image classification on a labeled
image dataset T = {(I, c) | I : Ω → R

3 and c ∈ C}. Moreover, assume we are
given a knowledge graph G = {〈c, p, a〉 | c ∈ C and a ∈ A} storing semantic
properties (a.k.a. attributes) A of classes from C, where the predicate p reflects
a visual property, e.g., hasColor , hasShape, hasPart . While any kind of relation
can be used in this context, we select those that likely provide visual attributes
because naturally they are more effective for vision tasks than other relations
such as capableOf , isA, etc.

We aim at aligning the neurons with the nodes a ∈ A from the KG G. While,
in principle, any set of neurons can be interpreted by our framework, we propose
to specifically focus on the neurons from fully-connected layers, since these are
known to reflect high-level abstract visual features [22]. Therefore, we consider
a layer fl : Rm → R

n, x 
→ σ(Wx + b), where m and n stand for the fan-in
and fan-out, respectively, for the given layer indexed by l and σ : Rn → R

n

is an activation function. For fl(x) =
[
o1 o2 . . . on

]�, we will use the notation
o1, o2, . . . , on for the individual neurons.

In the first step of our framework, we model the input data as a transaction
database (Sect. 3.1). We then compute the neuron-attribute alignments using
data mining-based methods (Sect. 3.2). The output of our framework is a set of
neuron-attribute pairs ρ of the form (o, a), where o is an individual neuron of
f , and a ∈ A is an entity in G corresponding to an attribute of a class in C. In
Sect. 4 and Sect. 5, we empirically provide answers to Q1–Q3.

3.1 Data Modeling

Suppose we are given a dataset S = {(I, c) | f(I) = c} ⊆ T of images
that are correctly classified by f . Given the neural network f , and the set
N = {o1, . . . , on} of individual neurons from the target layer fl we proceed
with constructing the transaction dataset D with items I = C ∪ N ∪ A. For
every (I, c) ∈ S, D stores a transaction (i,Xi), where i is the unique ID of the
image I, and Xi ⊆ {c} ∪ N ∪ A. For a ∈ A, we have that a ∈ Xi iff 〈c, p, a〉 ∈ G,
that is, the class of the image c and all of its attributes from the KG are in Xi.

Intuitively, for every neuron o ∈ N , it holds that o ∈ Xi iff o has high value
before softmax when I is passed through f . To detect neurons from N with high
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value, the continuous values of the neurons are simply thresholded to a binary
value vo ∈ {0, 1}. This can be done a priori (e.g., for post-ReLU activations) or
by dynamically thresholding above neuron-specific percentile [16,24]. This way,
for each image Ii ∈ S we identify a set of neurons from N with high activation
value for the given image, and collect them into Xi.

3.2 Neuron-Attribute Alignment

We then rely on the constructed transaction data D to compute the alignments
between neurons and attributes, i.e., items in N and those in A, respectively.
We propose methods for computing such alignments that we describe next.

Direct Method. Intuitively, a neuron o is correlated with an attribute a if
the following two conditions hold: 1) it is highly probable that the attribute a is
visually present in an image given that the neuron o is active for it; 2) it is highly
probable that the neuron o is active, given that the attribute a is visually present
in the image. Note that we cannot straightly compute the respective probabilities
since the images are not explicitly labeled with the attributes. Therefore, instead,
we estimate such probabilities by relying on the assumption that an attribute a
is likely visible in an image I belonging to the class c if 〈c, p, a〉 ∈ G.

The first method that we propose (referred to as direct) is to directly con-
struct the target alignments by identifying correlated pairs (o, a), where o ∈ N ,
and a ∈ A, such that J (o, a) ≥ θ for a predefined threshold θ. The computed
pairs are collected into the set ρ.

Example 1. Given D from Fig. 2 and θ = 0.7, we have J(o1, sink) = 4/6,
J(o1, table) = 3/4 and J(o3, bath) = 2/3, J(o3, sink) = 3/6. Thus, we obtain
only (o1, table) as the resulting alignment.

Constrained Method. While natural, the main drawback of the above direct
method is that it only considers correlated pairs of neurons and attributes but
ignores the knowledge about classes, like both bathrooms and kitchens have
sinks, while offices and bedrooms do not. This information is important, espe-
cially when the dataset is unbalanced, to ensure that all meaningful alignments
are computed.

Example 2. Reconsider Example 1. Looking closer at D, one can observe that
o1 is highly correlated with the class kitchen, as it is active for all images of this
class. Similarly, o3 is highly correlated with the class bathroom. Since bath is
the attribute which is relevant only for the class bathroom but not for kitchen,
it would be expected that (o3 , bath) is also included in the resulting set of align-
ments along with (o1 , table). Decreasing the threshold θ to a lower value (e.g.,
0.65) would resolve this, but would also lead to (o1 , sink) being in the result,
which is counter-intuitive, since sink is an attribute which is relevant both for
bathroom and kitchen, but o1 is active only for images of the latter class.
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Intuitively, an alignment is deemed meaningless if it fits into the cases (a) or
(b) depicted in Fig. 3 (more formally defined via constrains below). An alignment
in Fig. 3 (a) is undesirable, because we consider the neuron’s activity as a sign
of the existence or absence of the attribute in the input image. Consequently, if
a neuron is active frequently for images of only one particular class, it might be
a sign that this neuron is triggered by some attribute that only belongs to this
class but not shared with other classes. Similarly, following Fig. 3 (b), if a neuron
is active frequently for images of a set of classes, then it might be an indication
that it is triggered by attributes that are shared among these classes.

For example, if o is aligned with the sink, then we expect o with high prob-
ability to be active for images of classes that typically contain sink (e.g., bath-
rooms and kitchens), but not those that do not have sink (e.g., bedrooms and
offices). To alleviate the threshold’s rigidity in the direct method, we establish
formal constraints that allow us to filter out those and only those alignments
that become completely meaningless when the class information is taken into
account. The respective constraints are presented below:

(1) if |{ci ∈ C | 〈ci, p, a〉 ∈ G}| ≥ 2, and |{cj ∈ C | 〈cj , p, a〉 ∈ G and J(o, cj) ≥
β}| < 2, then (o, a) is an invalid alignment (see Fig. 3 (a)).

(2) if 〈ci, p, a〉 ∈ G, for all cj ∈ C \ {ci}, 〈cj , p, a〉 �∈ G and |{cj ∈ C \
{ci} | J(o, cj) ≥ β}| ≥ k − 1, then (o, a) is an invalid alignment, where
2 ≤ k ≤ |C| is a parameter (see Fig. 3 (b) for k = 2).

Intuitively, the first constraint (1) states that if at least two classes have an
attribute a, but only less than two out of them are correlated with the neuron
o, then the alignment (o, a) is invalid. The second constraint (2) reflects that if
a is relevant for a single class only, and the number of other classes correlated
with o is larger than k, then (o, a) is invalid.

In the constrained-k method, after computing the alignments relying on the
Jaccard similarity for a given threshold θ, we post-process the results by remov-
ing alignments that violate the above constraints. The constrained-k method is
illustrated by the following example.

Example 3. We have 〈ci, has, sink〉 ∈ G for ci ∈ {kitchen, bathroom} in Exam-
ple 1, i.e., sink is an attribute that is relevant for at least two classes. Moreover,
for β = θ, we have J(o1, kitchen) > β, but J(o1, bathroom) < β, namely, the
neuron o1 is only frequently active for images of kitchen, but rarely for those of
bathroom. Hence, based on the constraint (1), we remove (o1, sink) from the list
of alignments computed by the direct method. Analogously, (o3, sink) is removed.

4 Evaluation and Applications

We now discuss various strategies for evaluating the computed neuron-attribute
alignments as well possible applications, where they can be useful.
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Copy-Paste Adversarial Examples. Adversarial images are images that are
intentionally perturbed to confuse and deceive visual models. Changes to the
image can be made in different ways, one of which is by copying patches from
images of one class and pasting them into images of another class. Images with
this type of perturbation are known as copy-paste adversarial images (as defined
in [3]). Our hypothesis is that, if the network learns in terms of the attributes
used in our work for interpreting neurons, then copying an image patch of an
attribute relevant only for single class and pasting it into an image from another
class should result in confusing the CNN to predict the class of the given image
as the one to which the patch belongs. An example of a copy-paste adversarial
image can be obtained by copying the image patch representing the bed from
a bedroom image and pasting it into a bathroom image. Intuitively, if passing
the bathroom image with a bed through a CNN trained on images of bathrooms
and bedrooms results in confusing the network to classify the input image as a
bedroom, then one can confirm that the network learns in terms of the attributes
associated with the classes. We exploit the copy-paste adversarial images to in
Sect. 5 to address (Q1) and Q2.

Towards addressing (Q3), next we propose applications, in which the com-
puted neuron-attribute alignments could be useful.

Zero-Shot Learning. The first application concerns zero-shot learning, i.e., a
popular task in image classification, in which images of new (i.e., unseen) classes
that do not exist in the training set need to be classified. For that, we develop an
image classifier from the obtained neuron-attribute alignments. More specifically,
given an image I of an unseen class, the trained network f , the pre-computed
neuron-attribute pairs ρ = {(o, a) | o ∈ N , a ∈ A}, as well as the KG G storing
the semantic information about the (un)seen classes, our goal is to derive the
most likely class to which the target image I belongs. First, we pass I through
f , and collect the set of activated neurons among o ∈ N . We then exploit the
neuron-attribute pairs ρ to retrieve the list of attributes, with which the active
neurons are aligned, i.e., AI = {a ∈ A | (o, a) ∈ ρ and o is active by I in f}.
Finally, relying on G, the classes c ∈ C are ranked based on the following scoring
function:

Score(c)=
∑

a∈AI

wa / |{a : 〈c, p, a〉∈G}| (2)

where wa is the ratio of neurons activated by the given image that are aligned
with the attribute a to the total number of neurons activated by the image. The
more active neurons are aligned with an attribute a, the more certain we are
that a exists in the image and subsequently the greater is wa. The candidate
classes are ranked based on the formula from Eq. 2 and the top-ranked class is
selected as the final prediction. Intuitively, the proposed technique referred to
as attribute-based classifier allows one to reduce the image classification task to
reasoning over the KG. The attribute-based classifier acts as an evaluator of the
extracted alignments; if it gives high classification accuracy, then the extracted
alignments reflect what the network learns.
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Fig. 4. The figure illustrates how to combine knowledge acquired by two networks. The
aggregate alignments are later employed to reason about images from unseen classes.

Reasoning over Multiple Networks. The described attribute-based classifier
can also be exploited in the setting, where multiple neural networks trained on
non-intersecting sets of classes are used to solve tasks that are outside their
initial scope (i.e., classify images into classes unseen by either of the networks).
The systematic way of combining knowledge extracted from multiple networks
is beneficial, as it allows one to avoid massive retraining on a larger number of
classes while preserving high accuracy of predictions.

The procedure for attribute-based zero-shot classification can be naturally
extended to handle several networks. First, we collect activated neurons for
a given image from a number of networks, and then use the neuron-attribute
alignments pre-computed for each network separately to detect attributes in the
image. Finally, we merge the acquired knowledge using KG to make a decision
regarding the most likely class of the image exactly in the same way as described
above.

Example 4. Consider two convolutional neural networks f1 and f2 trained
on the classes C1 = {livingRoom, classroom} and C2 = {gym, bathroom},
respectively. Assume that the classes from C1 have the following attributes
A1 = {table, chair , desk}, while those from C2 contain the set of attributes
A2 = {mat , sink , towel}. Combining the knowledge acquired by the two net-
works would allow us to classify images into a new class, e.g., kitchen, which
contains the set of attributes A3 = {table, sink} that were seen separately by
the respective networks (see Fig. 4).

5 Experiments

We evaluate the proposed method for aligning neurons of a network with
attributes of classes from a knowledge graph by empirically analyzing (Q1)-
(Q3) from Sect. 3.
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5.1 Experimental Setup

Datasets. We consider the popular MITScenes [19] and AwA2 [28] datasets,
and use ConceptNet [26] knowledge graph as a knowledge source.

MITScenes: We have selected images from the MIT scene dataset [19] belonging
to classes whose visual properties are well covered in ConceptNet, which resulted
in 10,475 images labelled with 15 classes. We use 3,840 images from 10 classes
for training. For testing the performance on seen classes, we have 2,320 images
belonging to the same 10 classes. For testing on the unseen classes, we have
4,675 images from the remaining 5 classes. On average, for each class, we get
645 images.

AwA2: We also consider a subset of the AwA2 [28] dataset, in which the semantic
information about image classes is well covered in the KG. We get 17,746 images
spread across 20 classes. For training, we have 7,842 images from 15 classes. For
testing on seen classes, we have 5,229 images belonging to the same 15 classes.
For testing on unseen classes, we have 4,675 images from the remaining 5 classes.

ConceptNet KG: The AwA2 and MITScenes datasets come with attributes
already; however, their coverage is rather low ( 7.2 attributes per class at most).
Our goal is to demonstrate the usefulness of commonsense KGs as sources for
acquiring further class knowledge. For that, we have extracted attributes from
a popular commonsense KG, ConceptNet [26]. For MITScenes, we collect the
attributes connected to the classes via the inverse of atLocation relation (e.g.,
〈table, atLocation, kitchen〉). In total, we get 1,680 attributes which on average
amounts to 112 attributes per class. For AwA2, we use the predicate has to get
3,352 attributes, which yields 167 attributes per class on average.

CNN Training. We adopt ResNet50 [12] pre-trained on ImageNet [7] as the
backbone, which in some experiments is fine-tuned on the considered datasets,
while in others trained from scratch as described separately in each subsection.
We replaced the fully connected layer before the last one in ResNet50 with a
fully connected layer that has 2,048 neurons, which we aim at aligning with the
attributes from ConceptNet.

Baselines. We compare our direct (dir) and constrained (con) methods (with
fine-tuned parameters θ and β) for the attribute-based classification against the
state-of-the-art methods that likewise make use of KGs (but do not map neu-
rons to the KG entities), namely Dense Graph Propagation method (DGP) [14],
Attentive Zero-Shot Learning method (AZSL-D) [10], and ZSL-KG [17]. AZYL-
D and ZSL-KG rely on DGP, which is a framework that proposes a dense con-
nection scheme of a knowledge graph to optimize the knowledge propagation
between distant nodes in shallow networks such as graph convolution networks.

We run the methods proposed in [10] and [17], ensuring that no semantic
information about unseen classes in the KG is used during training.
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Fig. 5. Copy-paste adversarial examples: art studio with an island attribute relevant
only for kitchen (left) and office with a rug relevant to classes bedroom and office.

Table 1. Class samples of adversarial copy-paste examples.

Original class Inserted attribute Resulting class

Dining room Wall with doors Corridor

Classroom Shower Bathroom

Office Bed Bedroom

Kitchen Furniture Office

Living room Painting Art Studio

Evaluation Metrics. We use the standard hit@1 metric, which reflects the
percentage of test images for which the method returned the correct class pre-
diction in the top-1.

5.2 Copy-Paste Adversarial Examples

To answer (Q1)-(Q2), following [16] we first generate the copy-paste adversar-
ial examples using the MITScenes dataset, which comes with labeled seman-
tic segments, as follows. Out of all labels, we select those (set A) which are
present in ConceptNet. Then, for each class c ∈ C, we construct the set
Ac = {a | 〈c, p, a〉 ∈ A and ∀c′ ∈ C, 〈c′, p, a〉 �∈ G}. For every pair of images
I, I ′ from the test set belonging to different classes c and c′ respectively, we
insert the visualization of a randomly selected attribute a ∈ Ac′ from the image
I ′ into the image I, and label it with c′. For example, given an image I of an art
studio and I ′ of a kitchen, as a copy-paste adversarial example, we generate an
image I with the kitchen island from I ′ inserted into I (see Fig. 5 for illustra-
tion). The resulting image is labeled as a kitchen. The attributes to be inserted
for every class are chosen randomly while making sure that they exist visually
in at least one image (see Table 1 for class and attribute examples).
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Table 2. Results for copy-paste adversarial classification on the MITScenes dataset.
The alignment score is the percentage of images on which the attribute-based classifier
(i.e., con-all, con-2 ) made the same prediction as ResNet50.

Method hit@1(%) Alignment(%)

ResNet50 78.2 –

con-all 82.3 96.14

con-2 82.1 96.64

This way, we obtain 2,320 adversarial copy-paste examples. We then ana-
lyze whether the considered CNN ResNet50 and our attribute-based classifier
described in Sect. 4 misclassify the adversarial images relying on the inserted
attribute. For instance, in the above example, we expect the network to misclassify
the art studio as a kitchen.To perform such an evaluation,we pass every copy-paste
adversarial example through the network and compute the hit@1 score.

The results are presented in Table 2. High misclassification and alignment
scores demonstrate that the KG attributes that distinguish classes from each
other are indeed important for classification [5].

We have also repeated the same experiment on examples, constructed by
inserting attributes relevant for multiple classes into the image (e.g., inserting a
kitchen door into the art studio). We observe that in this case, the misclassifica-
tion score in hit@1 drops to around 2% for ResNet50. This witnesses that not all
parts of an image are equally important for the network to make decisions, but
only those that are distinguishing a given class from others based on the KG.

5.3 Zero-Shot Learning Task

To answer (Q1) and (Q3), we compare the introduced methods for attribute-
based classification to the baselines AZSL-D [10], ZSL-KG [20], and DGP [14]
with respect to their performance on the zero-shot learning task.

For this task, we trained ResNet50 on 10 classes of the MITScene dataset.
We then used the trained network to compute the neuron-attribute alignment
pairs for the classes from the training set. The other 5 classes are used for testing.

Since the knowledge graph stores the semantic information about both seen
and unseen classes, we effectively exploit this knowledge along with the neuron-
attribute alignments computed by our methods to classify the images from the
unseen classes as described in Sect. 4. Importantly, the attributes of unseen
classes are only used at the inference phase, but not during training.

Table 3 presents the results for the zero-shot learning tasks for MITScenes
and AwA2 datasets, respectively. Importantly, we report the performance both
when using the attributes based on the semantic labels that accompany the
datasets, as well as those from the ConceptNet KG.4 For the MITScenes dataset,
4 We also experimented with the WebChild [27] KG, but the results for ConceptNet

are more promising.
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Table 3. Zero-shot learning results on MITScenes and AwA2.

Attribute
source

Method Unseen
hit@1

Seen
hit@1

MITScenes AZSL-D 8.26 8.33

– DGP 19.87 9.73

– ZSL-KG 9.31 11.14

Labels direct 20.0 9.4

con-2 20.0 19.1

con-all 23.8 30.4

Concept Net direct 31.7 10.2

con-2 38.4 50.0

con-all 37.6 50.8

AwA2 AZSL-D 23.9 6.5

– DGP 24.1 6.6

– ZSL-KG 9.38 14.18

Labels direct 29.2 12.0

con-2 38.6 41.5

con-all 24.6 23.4

Concept Net direct 32.7 9.5

con-2 40.2 47.6

con-all 23.1 19.1

the attribute-based classifier that exploits attributes from ConceptNet outper-
forms all baselines including the attribute-based classifier that makes use of
the labels coming with the dataset. This is due to the fact that, among visual
attributes, the KG also provides a set of non-visual attributes that help in link-
ing semantically similar classes via alignments. Moreover, the attribute labels
coming from the dataset are shared among different classes, which leaves only a
few attributes discriminatively describing each class.

Example Alignments. We present the alignments computed by our method
for the considered datasets in Fig. 7. One can observe that the alignments indeed
contain attributes visually relevant to the respective images.

5.4 Reasoning over Multiple Networks

We analyze the usefulness of the neuron-attribute alignments for the task of joint
reasoning over multiple networks without having to retrain or fine-tune them.

In this experiment we trained from scratch two ResNet50 networks net1 and
net2, on AwA2 as follows. net1 was trained for 15 epochs on 8 classes, and net2
for 15 epochs on the other 7 classes. Moreover, we trained another network net
on all 15 classes for 16 epochs. We get for net1 a test accuracy on seen classes
of 74.2%, for net2 of 86.4%, and for net 80.5%. For the test set, we have images
from 5 unseen classes.
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Fig. 6. Zero-shot learning using neuron-attribute alignments over multiple networks
on AwA2 (left) and MITScenes (right).

Fig. 7. Examples of neuron-attribute pairs computed by our method.

Figure 6 shows the results of the presented methods for reasoning over knowl-
edge learned by multiple networks. For AwA2 dataset, the attribute-based clas-
sifier that jointly considers neuron-attribute alignments from both net1 and net2
outperforms the attribute-based classifiers constructed separately for net1, net2
and net respectively. For the MITScenes dataset, a similar trend is observed with
the exception that the attribute-based classifier constructed relying on net2 sig-
nificantly outperforms the one based on net1 and has comparable performance
to other classifiers. This is due to the fact that net1 (resp. net2) was trained on
classes with many (resp. few) attributes in common with the unseen classes.

6 Related Work

Recently, there has been an increasing interest in understanding what deep learn-
ing models learn. Our work extends the earlier proposals on explaining individual
neurons in deep representations [2,6,9,16,25]. However, in contrast to existing
work, we do not rely on large amounts of training data, but instead exploit exter-
nal knowledge graphs. In [25], semantic knowledge (in the form of ontologies)
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has also been considered for interpreting CNNs by generating explanations, yet
this method again makes use of labeled and segmented images, unlike we do.

Our approach for aligning neurons and KG attributes is in the spirit of [8,
13], where data mining has been exploited for interpreting neural networks or
forming concepts based solely on neurons, but KGs have not been considered
in this context. Recently, many works have motivated the exploitation of KGs
for enhancing the performance of image classifiers, e.g., [10,14,17,20] (see [4] for
an overview). The direction of explaining the behavior of CNNs with semantic
technologies has been also discussed as a valuable research stream in several
works [15,21]. However, to the best of our knowledge, no concrete proposals for
aligning individual neurons with KG entities exist to date.

Several works have considered graph neural networks (GNNs) for zero-shot
learning [10,14,17,20]. These methods make use of graph-structured external
knowledge, in which each class is represented by a single node and each inter-
class link is represented by an edge. Given the external knowledge graph, its
embedding representation is first computed using a GNN, and then exploited
for the zero-shot learning task.

Some techniques [10,14] utilize convolutional layers with an additional dense
connection layer to propagate features to distant nodes within the same net-
work. The work [10] further introduced weighted aggregation as a method for
emphasizing more significant neighboring nodes for class nodes. A key differ-
ence between these approaches and our work is that they do not aim at aligning
neurons with KG entities like we do. Additionally, they explicitly include KG-
based information about unseen classes during training, whereas we only exploit
this knowledge at the inference phase. We observed that when knowledge about
unseen classes is omitted from the information used for training, the performance
of AZSL-D [10], DGP [17], and ZSL-KG [20] drops significantly (see Table 3).

7 Conclusion

This paper proposes a framework for aligning neurons of a neural network to
attributes defined by external commonsense knowledge graphs. These alignments
not only make NNs more interpretable (see Fig. 7 for examples), but are also
useful in various applications, such as zero-shot classification (using multiple
networks). Our framework does not require the knowledge about unseen classes
to be used during training, but rather exploits it at inference stages. Our results
demonstrate that commonsense KGs contain distinctive attributes relying on
which CNNs tend to perform classification. This demonstrates the importance
and usefulness of commonsense KGs for computer vision tasks.

Although we relied on ConceptNet KG in the experiments, our work is cer-
tainly not bound to it, and other KGs (or combinations of them) can likewise
be exploited. We believe that our method has a broader impact, as it offers an
interesting perspective for reducing machine learning tasks to those of reasoning
over KGs.
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Abstract. The reproducibility crisis is an ongoing problem that affects
data-driven science to a big extent. The highly connected decentral Web
of Ontologies represents the backbone for semantic data and the Linked
Open Data Cloud and provides terminological context information cru-
cial for the usage and interpretation of the data, which in turn is key for
the reproducibility of research results making use of it.

In this paper, we identify, analyze, and quantify reproducibility issues
related to capturing terminological context (e.g. caused by unavailable
ontologies) and delineate the impact on the reproducibility crisis in the
Linked Open Data Cloud. Our examinations are backed by a frequent
and ongoing monitoring of online available vocabularies and ontologies
that results in the DBpedia Archivo dataset. We also show the extent to
which the reproducibility crisis can be countered with the aid of ontol-
ogy archiving in DBpedia Archivo and the Linked Open Vocabularies
platforms.

1 Introduction

The reproducibility crisis is an ongoing problem in science [2] that has a big
impact on data centric disciplines as well [11,12,17]. Cockburn et al. and
Miyakawa emphasize the importance of the availability of data and materials for
research to be reproducible [5,15]. The Linked Open Data (LOD) cloud provides
a huge amount of data relevant for data science. The semantic web architecture,
as technological foundation for the LOD cloud and major driver for collecting and
publishing globally interlinked knowledge, consists of instance data and termino-
logical data. The terminological data is captured by vocabularies and ontologies
that make up a common point of reference for the instance data. Reuse of terms
across different ontologies and their formalization are crucial patterns for data
engineering on the Web of Data and a major aspect to foster interoperability
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and data exchange. Accessing that ontological and terminological context infor-
mation is crucial for the interpretation and use of the instance data. Often this
context also formalizes implicit knowledge (e.g. subclass relationships) that is
not explicitly materialized in the data itself.

Moreover, accessibility is one key aspect of the FAIR data principles [21]
which also explicitly require the use of FAIR ontologies for FAIR (meta)data.
Given the the best practice to reuse and derive from existing terms in ontology
development, this typically leads to a recursive problem. If an ontology A, that
is (re)used by an ontology B, becomes unavailable and therefore looses its FAIR-
ness, then as a result B also looses its FAIRness. Subsequently, accessibility and
reliability of vocabularies and ontologies are fundamental requirements for such
a decentralized (FAIR) data architecture. Thus we argue that the reproducibility
of research based on or utilizing LOD is influenced to a significant extent by the
accessibility of the referenced vocabularies.

However, the accessibility of vocabularies and ontologies is subject to con-
stant evolution and unavailability (link rot, “HTTP error 404”). Stakeholders,
like Ontology Users, Ontology Engineers, and Ontology Researchers are affected
by the unavailability of ontologies in their work to varying degrees. Ontology
Users apply the terminology in their knowledge graphs and applications and are
interested in having a consistently and permanently working application. Ontol-
ogy Engineers create new ontologies by reusing existing terminology and are
interested in the reliability of the ontologies they are reusing, as well as in the
reliability of their own ontologies. Ontology Researchers retrieve data from the
LOD cloud (typically according to schematic criteria, perform analyses or bench-
marks using the data and ontologies; they are interested in the reproducibility
and reliability of their results over a long period of time. Common to all of these
stakeholders is, the demand for the availability of pre-existing ontologies and
their own contribution in the future.

Based on these abstract requirements, we pursue four main research questions
in this paper to further understand the reproducibility crisis on the LOD cloud
with a focus on the ontological context.

RQ1 How does the reproducibility crisis look like in the Linked Open Data cloud
in terms of accessing the ontological context?

RQ2 How big is (a) the problem of vocabulary and ontology accessibility issues
and (b) the impact on the reproducibility crisis in the Linked Open Data
cloud?

RQ3 How much of the terminology used in the Linked Open Data cloud is and
is not (a) accessible in a formal way (i.e. RDFS/OWL ontologies or SKOS
concept schemes) such that it can be automatically preserved, and (b)
how much is preserved already.

RQ4 Can archiving contribute as a countermeasure to the accessibility issues of
ontologies.

The contribution of this paper is subdivided into the following steps. We pro-
vide an analysis of the aspects contributing to the reproducibility crisis on the
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Linked Open Data cloud. These aspects are then quantified with the aid of DBpe-
dia Archivo (a unified online ontology interface and open augmented ontology
archive). In this way we can depict the impact of the reproducibility crisis on the
Linked Open Data cloud. Finally, based on the quantification, a categorization of
the impacted vocabularies can be performed to indicate counter-measures, such
as the automatic preservation, which leads to an evaluation of two archiving
approaches to tackle the impact of the reproducibility crisis.

The remainder of the paper is structured as follows: Sect. 2 gives an overview
what material and methods were used while Sect. 3 presents the results. In Sect. 4
we describe related work and Sect. 5 concludes the results and gives an overview
over possible future work.

2 Material and Methods

In the following section we describe the tools and their methods which we selected
for the analysis setup to answer the research questions. To perform the analysis,
we were in need of unified access to, on the one hand a vast amount of ontologies
published in the Web of Ontologies, and on the other hand datasets of the
LOD cloud. We used the DBpedia Archivo Ontology archive and Linked Open
Vocabularies for the former and LOD-a-lot for the latter, which are described in
more detail in the next subsections.

The high level perspective on the analysis method is, that we analyze termi-
nology reproducibility aspects on instance data using LOD-a-lot, and accessibil-
ity issues of ontologies in general using Archivo‘s accessibility statistics to get
an impression of the dimension of the reproducibility crisis. We create an index
on the terms contained in Archivo & LOV and another index on the terms in
LOD-a-lot, that could in general be subject to accessibility issues. By joining
the index information, it is possible to determine the minimal number of terms
where accessibility issues can be countered by archiving (reproducibility sup-
port). In the term index for LOD-a-lot we incorporate frequency (triple) count
information, to study the effects also weighted by term adoption. In contrast, we
integrate information about the accessibility rate for every term in the Archivo
index based the ontology that defines it. In a final step, we measure the effective-
ness or impact of this theoretical reproducibility support of DBpedia Archivo by
calculating the amount of LOD data (number of triples) that fall into different
reliability classes. To complete the picture, we use Archivo‘s crawling engine in
a sandboxed experiment to preserve terms that are not covered by Archivo and
report on issues preventing an inclusion but also the potential of ontologies that
could be included in the future.

2.1 DBpedia Archivo - Augmented Ontology Archive

DBpedia Archivo’s initial vision was to create a fully automated, persistent ontol-
ogy archive that can serve as a backbone for the Semantic Web [8] and to serve
as a convenient and stable interface for ontology consumers [9].
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Launched in May 2020, Archivo has meanwhile become one of the most
exhaustive and recent ontology archives, providing alternative, persistent, and
unified access to over 1,600 ontologies1 in more than 5,000 versions. The daily
checks for new ontology versions and automated tests monitor the evolution
and accessibility of a huge portion of the ontologies used in the LOD cloud and
allow to get a picture of the state of affairs on a global scale. As of Septem-
ber 2021 growth has not reached a plateau, yet and it is steadily growing at a
pace of around 12.6 ontologies per week (6 month average, see Fig. 1) [10]. While
more than 1440 ontologies were archived automatically via web-scale discovery
mechanisms, Archivo also performed over 160 successful ontology inclusions sug-
gested by the community (i.e. submitting the ontology URL manually at https://
archivo.dbpedia.org/add). This fact and around 90 ontology downloads on an
average day (plus 640 daily downloads from major bots) show that Archivo is
already being adopted by the community.

2.2 Archivo Ontology Discovery and Monitoring

Fig. 1. Development of ontology archive growth, divided by discovery source (State of
November 22nd 2021).

Archivo implements four generic approaches to discover RDFS & OWL2

ontologies and SKOS3 schemes to be archived. First, it queries already existing
ontology repositories and catalogs (currently Linked Open Vocabularies [19] and
prefix.cc). Second, it performs a vocabulary usage analysis of all RDF assets on
the DBpedia Databus4 utilizing VoID Mods that analyse the usage of classes and
properties in the datasets. Moreover, it discovers (transitive) dependencies and
imports ontologies from previous iterations of Archivo crawls. Finally, users can

1 https://archivo.dbpedia.org/list.
2 https://www.w3.org/TR/owl-overview/.
3 https://www.w3.org/TR/skos-reference/.
4 https://databus.dbpedia.org/.

https://archivo.dbpedia.org/add
https://archivo.dbpedia.org/add
https://archivo.dbpedia.org/list
https://www.w3.org/TR/owl-overview/
https://www.w3.org/TR/skos-reference/
https://databus.dbpedia.org/
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request missing ontologies to be included in the automated runs via a Web inter-
face. These approaches allow Archivo to have a good coverage of meaningful and
relevant ontologies of the Semantic Web, while preventing the upload of incor-
rect ontologies (ontology hijacking or spamming) by users. However, in order to
ensure this, Archivo uses a strict technical definition of an ontology: it requires
an RDF file that types the resolvable ontology (document) identifier with either
owl:Ontology or skos:ConceptScheme. Note, that this requirement does not
exclude RDFS ontologies, since these can be declared as an owl:Ontology but
use plain RDFS semantics (a prominent example is the RDFS vocabulary itself).

2.3 Linked Open Vocabularies (LOV)

Linked Open Vocabularies [19] is a very prominent semi-automatically curated
catalog of vocabularies that hosts snapshots of ontologies and provides an index
to search for terms and vocabularies. New vocabularies are discovered by analyz-
ing (re)use of terms from archived ontologies and can be suggested by users, but
are subject to manual review and approval procedures. LOV provides an API5

for easy access to the archived ontologies. Note, that the definition of an ontol-
ogy slightly differs and that while Archivo uses the list of ontology identifiers
in the LOV catalog, it performs its own automated crawling, access, versioning,
monitoring, and approval strategies. As a consequence, there is no full overlap
in terms of archived ontologies between the two approaches.

2.4 LOD Vocabulary Usage

In order to gain insight into the vocabulary usage of the Linked Open Data cloud,
we utilized the LOD-a-lot HDT dump [4]. It contains more than 28.36 billion
triples, 3.17 billion distinct objects, 3.21 billion distinct subjects, and 1,168,932
properties. Over 650,000 datasets are integrated summing up to 524 GB of
compressed HDT [7] data. This dump data was crawled and cleaned by LOD-
Laundromat [3]. A list of properties was retrieved by filtering the triples for
predicates; a list of classes was retrieved by collecting all IRIs that occur in the
object position of an rdf:type assertion.

3 Analysis

3.1 Ontology Accessibility Study

While it may be quite inconvenient if vocabularies are temporarily unavailable
due to server failures, this unavailability leads to anomalies when using datasets
built on top of them (e.g. varying or incomplete query results due to temporarily
missing subclass axioms). Moreover, completely unreachable ontologies (e.g. due
to publishers losing control over the domain) that are likely to be never accessible
again, impede the reproducibility of existing work based on it significantly. In
5 https://lov.linkeddata.es/dataset/lov/api.

https://lov.linkeddata.es/dataset/lov/api
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Fig. 2. Fraction of inaccessible ontologies per crawl from March to November 2021.

this first study we want to quantify how many ontologies are affected and how
severely they are affected by unavailabilities.

Since Archivo runs multiple checks on every included ontology to potentially
fetch new updates, three times a day, the Archivo logs6 can be used to measure
downtimes and outages of these ontologies. An outage occurs if a HTTP-HEAD
request or the subsequent HTTP-GET request returns a status code ≥ 400 or
reaches a timeout (Archivo waits 30 s for a response), the host name can not
be resolved via the DNS, or if the RDF document is available but does not
conform to the respective RDF syntax (i.e. if any error occurs when parsing the
document7).

Figure 2 shows the outages in relation to the total number of included ontolo-
gies for the period of roughly eight months (240 days, from March 23rd to Novem-
ber 18th, 2021). While in average the total outage ratio is around 10%, four areas
stand out, as denoted in the diagram:

a. April 12th - May 10th: the vocabularies hosted on the domain vocab.deri.ie
were temporarily brought online but since then were unavailable again due
to Linked Data configuration failures

b. June 11th - June 22nd and August 13th - September 14th: The Archivo
crawling monitor had issues

c. October 29th - November 11th: A lot of vocabularies from purl.org were
not available, but the problem was fixed eventually

Table 1 lists statistics of the downtimes of ontologies, measured over the same
time period as Fig. 2. But unlike Fig. 2 it is aggregated per day and not per
Archivo-Crawl, i.e. an ontology is considered as “down” for a particular day if
it was inaccessible at least for one of the three crawling attempts that day. We
6 See https://github.com/dbpedia/archivo/tree/master/paper-supplement/iswc2022.
7 For this purpose Archivo uses the RaptorRDF library: https://librdf.org/raptor/.

https://github.com/dbpedia/archivo/tree/master/paper-supplement/iswc2022
https://librdf.org/raptor/
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excluded the days with crawling gaps from areas b1 and b2 as there is no reliable
accessibility data (in total 29 days were excluded). The rows represent statisti-
cal values, i.e. minimum, first quartile, median, third quartile, maximum, aver-
age, and total ontology count. The columns stand for certain subsets of Archivo
ontologies: All onts stand for the complete set of evaluated ontologies, all failing
stands for all ontologies that fail at least once and temp. failing is the group of
ontologies failing at least once, but excluding the vocabularies that fail over the
whole monitoring period. The other four columns group the temporarily fail-
ing ontologies by downtime fractions, i.e. [0.01,5)% is the set of all ontologies
being inaccessible 0.01% (included) up to 5% (excluded) of the time since their
addition to Archivo.

Table 1. The distribution of downtimes of Archivo ontologies. Columns 1 to 3 group
ontologies into failure classes. Columns 4 to 7 break down the temporarily failing
ontologies into downtime intervals.

Failure classes Temp. failing classes

All onts All failing Temp. failing [0.01,5)% [5,25)% [25,75)% [75,100)%

Min 0.00% 0.50% 0.50% 0.50% 5.15% 26.87% 75.12%

Q1 0.00% 1.00% 1.00% 0.50% 6.47% 32.84% 88.56%

Med 0.50% 4.98% 3.72% 1.00% 7.46% 36.32% 88.56%

Q3 5.97% 12.19% 7.96% 1.99% 10.45% 69.40% 89.90%

Max 100.00% 100.00% 99.00% 4.98% 24.88% 74.62% 99.00%

Avg 10.64% 19.67% 12.20% 1.59% 9.17% 47.27% 88.90%

# 1439 775 709 394 224 51 40

% all 100.00% 53.86% 49.27% 27.38% 15.57% 3.54% 2.78%

% tmp – – 100.00% 55.57% 31.59% 7.19% 5.64%

Of all ontologies included during the evaluation (1439), Archivo detected
no outages for 664 (∼46%) ontologies, showing that at least roughly a half of
the ontologies are quite well maintained. On the other hand, 66 (∼5%) were
inaccessible at every day Archivo crawled, which renders a huge problem for
datasets depending on them. At least some of them are completely unmaintained
and will likely continue to be inaccessible in the future. The rest (709) was
inaccessible at least once (but not the whole time) in the time interval. Column 4
to 7 in Table 1 break down these temporarily inaccessible ontologies into smaller
bits: more than half of them (∼56%) fall into the lowest category of outages
(max. ∼5% downtime), with an average of 1.59% unavailability. Only 40 (∼6%)
of the temporarily failing ontologies are in the worst category (inaccessible for
more than 75% of measurement).

Overall, as it can be seen in Fig. 2 and Table 1, there is a total average of
10% downtime for all ontologies. This shows the clear need for a backup in form
of an archive for ontologies, keeping track of older versions, and making backups
of inaccessible ontologies easily accessible for reproducibility.
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Table 2. LOD vocabulary term/namespace share.

Filter step Properties Classes

Terms t. fract. Triple fract. Terms t. fract. Triple fract.

NONE 1,168,933 100.00% 100.00% 833,232 100.00% 100.00%

http(s) based 1,163,128 99.50% 100.00% 831,955 99.85% 99.99%

w/o dbr 1,090,550 93.29% 99.36% 785,351 94.25% 99.86%

w/o freebase 1,077,753 92.20% 99.08% 774,755 92.98% 99.57%

w/o dbp 145,820 12.47% 95.50% – – –

w/o DBpYago – – – 291,818 35.02% 98.19%

w/o Wikidata 142,424 12.18% 95.05% 291,555 34.99% 94.28%

w/o RDF-Seq 109,945 9.41% 94.35% – – –

min 10 triples 52,721 4.51% 94.35% 145,870 17.51% 94.27%

3.2 LOD Term Usage Analysis

In a first step, we analyzed the used terminology of the LOD cloud based on
LOD-a-lot. We retrieved in total 1,168,933 terms that were used as predicate
identifier and 833,232 class identifiers used within instance type assertions (see
Table 2).

Although the LOD-a-lot data was subject to LOD-Laundromat cleaning pro-
cedures [3], we discovered more than 5,000 irretrievable identifiers that were
using a namespace that was not http(s) based. Typical representatives were
unexpanded namespace prefixes, file URI schemes, or URN schemes. We con-
sider these types of identifiers as a burden for reproducibility since it is not
possible to automatically retrieve the semantics via Linked Data principles. For-
tunately, these identifiers make up only less than half a percent of all terms and
are neglectable when it comes to the amount of filtered LOD triples affected.

During further investigation of the LOD term lists, we identified more terms
and namespaces that affect a meaningful outcome of the coverage study and
which we subsequently excluded in cascaded filtering steps and comment poten-
tial implication of these properties on the reproducibility. Table 2 reports how
many terms remain after each filtering step, as well as the remaining fraction
compared to the distinct number of terms and triples respectively.

A well-known error is to use DBpedia entity resource identifiers (namespace
prefix dbr) as a class reference, but surprisingly also as property identifier. These
triples are semantically incorrect and are therefore excluded. In the next step,
we additionally exclude Freebase identifiers, because these can be considered
as unreproducible, since Freebase did not publish an ontology. Furthermore the
project is deprecated and does not serve Linked Data anymore. We discovered
more prominent terms that are not captured systematically in an ontology. A
huge fraction (almost 80%) for property terms originates from the DBpedia
property (dbp) namespaces that are produced by the DBpedia Generic extrac-
tion [13] for each language version. These properties represent the raw value
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of Wikipedia infobox parameters and therefore have no RDF or OWL seman-
tics. The meaning can change over time and depend on the entity type, which
significantly affects reproducibility. So-called DBpedia-YAGO class identifiers
proxy the YAGO ontology but are neither captured in the DBpedia ontology
nor resolvable via Linked Data. This leads to reproducibility problems for more
than 57% of the class terms but less than 1.5% for the type statements. We
also pruned almost 4% of the Wikidata class assertions since Wikidata’s class
hierarchy is not expressed using the common OWL/RDFS axioms and multiple
namespaces do not resolve via Linked Data (as of December 2021). As a conse-
quence, in total, at least 87% of property and at least 65% of class terms have
issues in capturing the terminology context and semantics in an automatically
reproducible way. Fortunately, this only affects less than 6% of the data.

Additional 30 thousand rdfs:ContainerMembershipPropertys (e.g. used in
RDF sequences) can be excluded, since the semantics is specified in the RDF
standard, and this infinite set of properties is not materialized in the RDF(S)
ontology. From these over 109 thousand property terms and 291 thousand class
terms, we further filtered out all terms that had less than 10 occurrences in LOD.
We consider these terms as noise/errors and removing them has an impact of
less than 0.01% of ignored triples but cuts more than half the amount of terms
from the previous filter step.

The remaining 4.51% resp. 17.51% of terms occur following Zipf’s Law in
around 94% of the LOD statements, which ensures that the reduced list of terms
still accurately represents a huge and relevant portion of LOD data.

3.3 Reproducibility Support and Archiving Impact Study

Based on the filtered term list we can evaluate how many terms are captured in
Archivo and LOV and the amount of LOD data that can be supported in terms
of a more robust reproducibility. We loaded the latest ontology snapshot of every
ontology contained in Archivo as of April 19th 2022 into a SPARQL endpoint to
verify if a term is defined in one of the archived ontologies. The same was done
with all archived ontologies of the LOV repository of that time by using its API
to fetch the latest version of each vocabulary.

We define a class as any subject that is typed as rdfs:Class or as a class
that is rdfs:subClassOf of rdfs:Class. Note that owl:Class is a subclass of
rdfs:Class and therefore OWL classes are included as well. The properties were
retrieved in a similar manner, only with the type being either rdf:Property or
any subclass of it8. These terms were then mapped to the frequency counts per
term measured in Sect. 3.2.

The results can be seen in Table 3 for properties and Table 4 for classes.
Out of the 52,721 property terms, 8.25% (4,350) were archived by Archivo and
9.23% by LOV, which in turn increases the reproducibility robustness for over
44% (almost 12 billion triples) respectively 52% for LOV out of the 26.76 billion
triples. In contrast, more than 80% (2.52 billion out of 3.13 billion triples) and

8 See the Supplemental Material section at the end of the paper for further details.
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74% of the type statements can be supported by Archivo resp. LOV. However,
the support boost for individual class terms is on a similar level compared to
property terms with approximately 10.82% (15,786 terms) in the case of Archivo
but significantly lower with 2.41% in the case of LOV.

Although these numbers indicate that with LOV and Archivo the repro-
ducibility of at least half of the LOD data is given, the effectiveness or impact
of archiving as countermeasure is still unclear. All of these covered triples could
have an ontological context defined in ontologies that are very reliable, such
that the effect of archiving would be negligible at the current stage. In order to
study RQ4, we therefore join the term frequency with the ontology accessibility
monitoring information (as described in Sect. 2.2) of the ontology that defines
the term. Figure 3 shows the impact of archiving ontologies by breaking down
the fraction of triples that are covered by Archivo into the different accessibility
categories of the ontology where the term is defined. The categories correspond
with the ones in Table 1, Note that no data exists about the accessibility over
time for ontologies only contained in LOV since the monitoring is a feature of
Archivo. As a result this breakdown is only possible for terms that are covered by
Archivo. We found that over 54% of these triples have their context in ontologies
that did not show any problems in the monitoring time span (cf. Fig 2). However,
from the remaining 46%, 15% would lack reproducibility without archiving, since
the ontological context is permanently failing. The remaining 31% have tempo-
rary failures. These break down into 17% failing very often (75%–99.99% failure
downtime), 2% often (25%–74.99%), 9% that fail sometimes (5%–24.99%), and
3% that fail rarely (0.01%–4.99%).

Table 3. LOD Property term coverage and reproducibility support of Archivo and
LOV.

Archivo LOV

Count Rep. factor Count Rep. factor

Terms covered 4,350 8.25% 4,865 9.23%

Studied terms 52,721 – 52,721 –

Triples covered 11,950,908,409 44.66% 14,025,673,856 52.41%

Studied triples 26,760,669,318 – 26,760,669,318 –

3.4 Archiving Potential and Barriers

Although Table 3 and Table 4 show that the fully automated ontology discovery,
archiving, and evaluation of Archivo achieves all in all a similar performance for
covering LOD terms compared to LOV, we wanted to study what major failure
categories prevent an automatic retrieval and archiving of the corresponding
ontologies (by Archivo) and whether there is a potential of ontologies that were
not discovered yet but could be included. Therefore, we used the term list of
the coverage study as input for the discovery and crawling mechanism in an
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Table 4. LOD Class term coverage and reproducibility support of Archivo and LOV.

Archivo LOV

Count Rep. factor Count Rep. factor

Terms covered 17,362 11.90% 3,516 2.41%

Studied terms 145,870 – 145,870 –

Triples covered 2,516,568,507 80.38% 2,322,889,414 74.19%

Studied triples 3,130,912,310 – 3,130,912,310 –

Fig. 3. Archivo Archiving Impact: Breakdown of LOD triples covered by Archivo, into
the failure rate of the ontology defining the property/class term.

isolated, temporary Archivo instance. Table 6 and Table 5 show the results. In
these tables, multiple reasons are given for ontologies not being accessible to
Archivo. The percentage refers to the total number of terms resp. triples noted
in Table 4/3. A minor reason for the outage for both classes and properties is
that the crawling robot was not allowed to fetch the ontology. While this says
nothing about the actual availability of the ontology, it completely prevents the
ontology to be archived by Archivo and therefore no stable backup is provided.
The by far most prominent reason for retrieval failure was the inaccessibility
of any valid RDF at the term IRI. This could be due to link rot, server issues,
losing control over the domain of the ontology, or providing unparseable RDF.
This is the case for roughly 84% of uncovered properties and 59% of uncovered
classes. If any RDF was discovered, the most common error was the missing
ontology declaration statement, meaning the retrieved RDF document was not
recognizable as an ontology and it does also not link to one. Interestingly, the
share for this reason is far higher for classes (38%) than for properties (3%).
Rather minor reasons were an error in the linked data deployment (the wrong
identifier typed as ontology, or other errors in the RDF) or the ontology is
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contained in Archivo, but the term is not defined (usual typos in identifiers
or deprecated terms). The last row denotes terms for which an ontology could
be found and which could be archived permanently without problems, so these
terms may be covered by Archivo in the future.

Table 5. Distribution of reasons for inaccessibility of properties not covered by Archivo.
The percentage is based on the total number of terms/triples listed in Table 3.

# of terms % terms # of triples % triples

Total terms 48,371 91.75% 14,809,760,909 55.34%

Robots disallowed 2,336 4.43% 707,758,083 2.64%

No valid RDF accessible 40,851 77.49% 13,584,634,580 50.76%

Not linked to ontology/not recognizable 1,630 3.09% 112,504,895 0.42%

Ontology LD deployment error 729 1.38% 5,174,428 0.02%

Ontology in Archivo but term not defined 1,208 2.29% 300,318,286 1.12%

Coverable in the future 1,617 3.07% 99,370,637 0.37%

Table 6. Distribution of reasons for inaccessibility of classes not covered by Archivo.
The percentage is based on the total number of terms/triples listed in Table 4.

# of terms % terms # of triples % triples

Total terms 128,508 88.10% 614,343,803 19.62%

Robots disallowed 1,894 1.30% 33,102,294 1.06%

No valid RDF accessible 76,409 52.38% 523,303,990 16.71%

Not linked to ontology/not recognizable 48,914 33.53% 5,093,624 0.16%

Ontology LD deployment error 280 0.19% 318,618 0.01%

Ontology in Archivo but term not defined 304 0.21% 29,854,614 0.95%

Coverable in the future 707 0.48% 22,670,663 0.72%

4 Related Work

Related and previous work can be grouped into three areas: archiving or mir-
roring of LOD-related data, data availability monitoring, and LOD evolution
analysis studies.

Linked Open Vocabularies [19] (as described in Sect. 2.3) is a well-known,
extensive cross-domain catalog for ontologies. There are also further efforts to
host, archive, version, index, or catalog ontologies and vocabularies like OBO-
Foundry [18] and BioPortal [20]. For an in-depth comparison of these approaches
we refer the reader to [9].
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LOD Laundromat [3] is a tool that crawls and cleans data from the LOD
cloud. However, as of December 2021, the service http://lodlaundromat.org did
not provide any access to the cleaned files anymore for several months and the
GitHub page states that it is closed for maintenance since July 2021. Fortunately,
a subset of the data is available in LOD-a-lot [4], that has been used for this
analysis.

OpenLink’s LOD Cloud Cache data space9 is a SPARQL endpoint that
gives access to data for a selected subset of the LOD cloud.

The LOD Cloud10 website is a LOD metadata catalog which is also mon-
itoring LOD datasets. The service provides a history for a set of accessibility
crawls and the evolution of the catalog. Moreover, there is an effort to preserve
LOD data on the IPFS filesystem [16]. The type of data being preserved on IPFS
varies from dataset to dataset, ranging from metadata (e.g. VoID summary) to
RDF snippets for example entities, but most importantly also ontologies and
vocabularies.

The LODStats system11 [6] lists 9,960 datasets that are monitored with
regard to their accessibility and reports comprehensive statistics about its con-
tent. The statistics comprise the access methods to datasets, number of triples,
issues when processing the datasets, the usage of classes, properties, datatypes,
vocabularies, namespaces and many more. The datasets listed sum up to over
192 million triples, almost 50 thousand properties and 3,480 classes. The service
provides insights into the accessibility and structure of the analyzed datasets,
and also on the overall linked data cloud and the usage of the ontologies. How-
ever, the statistics shown on the website have some inconsistencies (e.g. almost
50 thousand properties overall are reported and the list shows only 32,634) and
the project seems not active anymore, since the last update is reported over 6
years ago (as of July 2022). The fact that LOD-a-lot provides more data and
access to the triples itself to calculate our own terminology usage statistics, were
reasons why we picked LOD-a-lot.

A very simple LOD monitoring service is LODservatory12, which reports
the availability and service status of SPARQL interfaces of a list of endpoints
(including ones from the LOD cloud) every hour. The Dynamic Linked Data
Observatory (Dyldo) project [14] performs weekly crawls on Linked Open
Data. Based on an IRI seed list it crawls and archives RDF data, subsequently
all discovered IRIs are used to perform another crawl, finally the retrieved RDF
data, HTTP headers, and redirections are persisted. This process captures also
terms from ontologies or could even persist entire ontologies. However, there are
no guarantees on completeness for terms and ontologies. Nevertheless, the avail-
ability and functioning of the Linked Data mechanisms for particular namespaces
can be analyzed over time.

9 http://vos.openlinksw.com/owiki/wiki/VOS/VirtuosoLODSampleTutorial.
10 https://lod-cloud.net.
11 https://lodstats.aksw.org/.
12 https://github.com/SmartDataAnalytics/lodservatory.

http://lodlaundromat.org
http://vos.openlinksw.com/owiki/wiki/VOS/VirtuosoLODSampleTutorial
https://lod-cloud.net
https://lodstats.aksw.org/
https://github.com/SmartDataAnalytics/lodservatory
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An analysis on the evolution of vocabulary terms and their impact on the
LOD Cloud has been carried out in [1]. The authors investigated to which extent
changes in vocabularies were adopted in the evolution of three datasets (the Bil-
lion Triples Challenge datasets, the Dynamic Linked Data Observatory dataset,
and Wikidata). The results show that the frequency of term changes was rather
low, but a huge portion of deprecated terms was still used in the datasets.

To the best of our knowledge, this work is the first effort that specifically
studies the accessibility of a huge corpus of ontologies for a longer period of time
while also trying to analyze the potential impact of preserving this vocabularies
for the LOD cloud to get a better picture of the state of affairs in terms of
reproducibility of ontological context.

5 Discussion, Conclusion and Future Work

To conclude, we would like to summarize the results in terms of our research
questions. Initially, we gathered reproducibility problems (RQ1) by looking at
the namespaces, that are rooted in data or terminology representation itself:
term identifiers were not using the HTTP protocol or not formalized with the
standards RDFS, OWL or SKOS, formalization was not accessible as dump, or
the dump file was not delivered or announced in a way to be accessed via Linked
Data when resolving the term and ontology identifiers. Moreover, we discovered
a huge portion of proxy identifiers. While it sounds alarming that these issues
affected around 88% of the property and 65% of class terms used in LOD-a-lot,
it fortunately affected less than 5% of the LOD-a-lot data. We excluded this
portion of data from further being used in the studies, since the data or the
ontological context modeling needs to be fixed in the first place, in order to be
considered a meaningful amount of Linked Open Data.

In RQ2 we measured the problem from two angles. In RQ2a we were looking
at the ontologies and in RQ2b at the data affected by the problem through their
use of the ontologies. In terms of RQ2a we found that, while 46% of the Archivo-
backed ontologies were fully reliable, 5% were permanently inaccessible. 3% of the
ontologies were effectively inaccessible (more than 75% downtime) and around
4% were very unreliable (25–75% downtime). For the portion of LOD data, for
which the Archivo-backed ontologies provide ontological context, we measured
w.r.t. RQ2b that 46% of the statements are affected by accessability failures of
ontologies. 15% of that data is affected by permanently failing ontologies, and
17% by the basically inaccessible ontologies. As a result 32% of data is impacted
by ontologies with very severe accessability issues that make up a fraction of 8%
of the backed ontologies. Surprisingly in contrast to that, the ontologies that are
failing rarely (56%) only affected 3% of the data.

Based on the reduced and filtered LOD terms list, that excluded terms where
we spotted general issues that affect the accessibility and reproducibility before-
hand, we found with regard to RQ3b that only 8 to 9% of the property terms
are covered, whereas for class terms around 12% are covered by Archivo and 2%
by LOV. With the help of the Archivo crawling engine, we measured for over
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77% of the property terms and over 52% of class terms that no RDF file could
be retrieved (RQ3a). For around 3% of the property terms that are currently
not covered by Archivo, we are optimistic that their ontologies can be preserved
in future work by feeding them into the discovery mechanism. Additionally, 34%
of the class terms are currently inaccessible to Archivo due to its strict pro-
tocol requirements. In the future, heuristics and more sophisticated crawling
approaches could help here to also include these.

Fortunately in terms of RQ4, having these single digit fractions of terms
preserved, covers a significant large amount of LOD triples. Around 50% of
the statements are currently having a backup in Archivo or LOV. In the case
of Archivo w.r.t. ontology properties for at least 44% of the LOD data and
even 80% w.r.t. type assertions. Even more than half of the statements have
reproducibility support by LOV for the property. For this portion of backed
triples, we have shown that 46% were affected by accessability issues. When the
percentages as shown in Fig. 3 are set into relation to the entire amount of LOD
triples in the experiment (i.e. are divided by 2, since roughly half of the triples are
covered), this translates into a rough estimate that Archivo could have provided
failover for up to 23% of the statements, if data would have been requested at
the time of inaccessibility. Subsequently, for roughly 15

2 % + 17
2 % = 16% of the

LOD triples we effectively consider archiving as an important countermeasure
since the ontological context would be not accessible for at least 75% of the time.

We conclude that the archiving approaches presented in this paper provide
a foundation to work against the reproducibility crisis. As an approach that
builds on top of Archivo and to counter the reproducibility crisis in the future,
we plan to implement a transparent proxy tool for reasoners and other semantic
tools, that allows reliable and deterministic repeatability and reproducibility of
experiments referencing or accessing ontologies (ontology terms), by retrieving
the correct, persistent ontology snapshot via Archivo. This approach would allow
to fetch data via the original URL, but independent of the data that is actually
returned when dereferencing it. Instead, the proxy could serve ontology versions
that existed at a specific time span (like a time machine or wayback machine) or
could serve as fail-over system if the current deployment of the ontology suffers
from availability issues.

Supplemental Material Availability: Source code, scripts, queries and tables
are available online. Please refer to https://purl.org/paper/iswc2022/archivo/
material for further information and guidance.
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Abstract. Contrastive learning has emerged as a powerful tool for graph repre-
sentation learning. However, most contrastive learning methods learn features
of graphs with fixed coarse-grained scale, which might underestimate either
local or global information. To capture more hierarchical and richer represen-
tation, we propose a novel Hierarchical Contrastive Learning (HCL) framework
that explicitly learns graph representation in a hierarchical manner. Specifically,
HCL includes two key components: a novel adaptive Learning to Pool (L2Pool)
method to construct more reasonable multi-scale graph topology for more com-
prehensive contrastive objective, a novel multi-channel pseudo-siamese network
to further enable more expressive learning of mutual information within each
scale. Comprehensive experimental results show HCL achieves competitive per-
formance on 12 datasets involving node classification, node clustering and graph
classification. In addition, the visualization of learned representation reveals that
HCL successfully captures meaningful characteristics of graphs.

Keywords: Data mining · Graph learning · Contrastive learning

1 Introduction

Graph representation learning has recently attracted increasing research attention,
because of broader demands on exploiting ubiquitous non-Euclidean graph data across
various domains, including social networks, physics, and bioinformatics [13]. Along
with the rapid development of graph neural networks (GNNs) [13,18], GNNs have
been reported as a powerful tool for learning expressive representation for various
graph-related tasks. However, supervised training of GNNs usually requires faithful
and labour-intensive annotations and relies on domain expert knowledge, which hin-
ders GNNs from being adopted in practical applications.

Self-supervised learning has emerged as a powerful tool to alleviate the need for
large labelled data. Among them, contrastive learning has recently achieved promising
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results [14]. Contrastive learning techniques are used to train an encoder that builds
discriminative representations by comparing positive and negative samples to maximize
the mutual information (MI) [23].

Although the graph contrastive learningGCLmethods have achieved significant suc-
cess, they suffer all or partially from the following limitations. First, most contrastive
learning methods like DGI [37], GCA [48], and GRACE [47], learn features of graphs
with fixed fine-grained scale, which might underestimate either local or global informa-
tion. However, each graph has multi-scale intrinsic structures, including the grouping
of nodes into motifs, the further grouping of motifs into sub-graphs as well as the spa-
tial layout of sub-graphs in the topology space. Such multi-scale intrinsic structures are
more flexible and informative, and can provide important clues for graph representation
learning. In most cases, a single level contrastive objective could merely capture limited
characteristics of graphs [37,47,48]. Second, considering that existing GCL methods
heavily rely on negative samples to avoid representation collapse, To alleviate this lim-
itation, Grill et al. [11] propose the Bootstrap Your Own Latent (BYOL) framework to
perform unsupervised representation learning on images by leveraging the bootstrapping
mechanism with Siamese networks [5]. However, Siamese networks have not been well
extended to graph domain yet. We argue that bootstrapping graphs with a multi-channel
scheme would enable graph encoders to capture more powerful representation.

To address the aforementioned limitations, we propose a novel Hierarchical Con-
trastive Learning (HCL) framework, HCL constructs a cross-scale contrastive learn-
ing mechanism to learn hierarchical graph representation in an unsupervised manner.
More specifically, the two key components of HCL including: (i) a Learning to Pool
(L2Pool) method with topology-enhanced self-attention to recursively construct a series
of coarser graphs during multi-scale contrastive learning and (ii) a contrastive objective
term that preserves the mutual information with expressive multi-channel networks. The
simple yet powerful framework can be optimized in an end-to-end manner to capture
more comprehensive graph features for downstream tasks. To summarize, this work
makes the following major contributions:

– We propose a novel Hierarchical Contrastive Learning (HCL) framework to learn
graph representation by taking advantage of hierarchical MI maximization across
scales and bootstrapping multi-channel contrastiveness across networks.

– We proposed a novel L2Pool method to form fine to coarse-grained graph and con-
trastive objective across scales, which explicitly preserves information concealed in
the hierarchical topology of the graph.

– Extensive experiments indicate that HCL achieves superior or comparable results on
various real-world 12 benchmarks involving both node-level and graph-level tasks.
Moreover, visualization of nodes representation further reveals that HCL can capture
more intrinsic patterns underlying the graph structures.

2 Related Works

2.1 Unsupervised Graph Learning

Traditional graph unsupervised learning methods are mainly based on graph kernel [25].
Compared to graph kernel, contrastive learning methods can learn explicit embedding,
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Fig. 1. Framework of the proposed Hierarchical Contrastive Learning (HCL) for graph represen-
tation.

and achieve better performance, which are the current state-of-the-art for unsupervised
node and graph classification tasks [14,29]. Generally, current contrastive graph learn-
ing employs a node-node contrast [29,48] or node-graph contrast [14,37] to maximize
the mutual information at single level. For example, DGI [37] employs the idea of Deep
InfoMax [15] and consider both patch and global information during the discrimination.
MVGRL [14] introduces augmented views to graph contrastive learning and optimizes
the DGI-like objectives. Besides, GRACE [47], InfoGraph [35] and SUBG-CON [16],
further extend the idea of graph MI maximization and conduct the discrimination across
the node, sub-graph and graph. PHD [22] using graph-graph contrast reports impressive
performances on graph classification, but not for the node-level tasks. Nevertheless,
most of them contrast graphs with fixed scales, which might underestimate either local
or global information. To address these issues, our HCL explicitly formulates multi-
scale contrastive learning on graphs and enables capturing more comprehensive features
for downstream tasks.

2.2 Multi-scale Graph Pooling

Early graph pooling methods use naive summarization to pool all the nodes [9], and
usually fail to capture graph topology. Recently, multi-scale pooling methods have been
proposed to address the limitations. Among them, graph-coarsening pooling methods
like DiffPool [43] and StructPool [45] consider pooling as a node clustering prob-
lem, but the high computational complexity of these methods prevents them from
being applied to large graphs. On the other hand, the node-selection pooling methods
like gPool [7] and SAGPool [21] preserve representative nodes based on their impor-
tance, but tend to lose the original graph structures. Compared to previous works, the
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proposed HCL has two main differences: 1) Apart from the common late fusion of
features, HCL uses L2Pool and Pseudo-siamese network to intermediately aggregate
richer contrastive objectives across scales, where the embeddings at various scales in
each network layer are fused to enable richer contrasting in a hierarchical manner. 2)
The proposed L2Pool module is trained given an explicit optimization for node selec-
tion with topology-enhanced Transformer-style attention, hence effectively coarsen the
original graph structure.

3 Methodology

3.1 Overview

The goal of HCL is to provide a framework to construct a multi-scale contrastive
scheme that incorporate inherent hierarchical structures of the data to generate expres-
sive graph representation. In this section, we introduce HCL and its main components
in Fig. 1. First, given an input graph G(X,A) with node features, X ∈ R

N×d, A
is the adjacency matrix. We first generate positive (green) and negative (red) sam-
ples by attribute shuffling [37]. Specifically, We perform the row-wise shuffling on
the feature matrix X , so the negative graph consists of the same nodes as the origi-
nal graph, but they are located in different places in the graph, and therefore receive
different contextual information. Second, for the positive branch above and the neg-
ative branch below, we both learn graph representations at multiple scales. We first
employ a graph propagation layer on the input graph to initially embed the original
scale of graph as G0(X0,A0) with X0 = X, A0 = A, where the graph propagation
layer is implemented as a multi-channel pseudo-siamese network, with each channel
using a graph convolution layer of the same structure but different weights [18]. We
then recursively apply L2Pool for S times to obtain a series of coarser scales of graph
G1(X1,A1), . . . , GS(XS ,AS) where |Xs| > |Xs′ | for ∀ 1 ≤ s < s′ ≤ S. Thirdly,
we learn the parameters through optimizing the fused multi-scale and multi-channel
contrastive loss function. During the inference, we take the graph adjacency as inputs
for downstream tasks.

To train our model end-to-end and learn multi-scale representation for downstream
tasks, we jointly leverage cross-scale contrastive loss. Specifically, the overall objective
function is defined as:

L = L0 +
k∑

k′=1

((
k∏

k′=1

αpk′ ) ∗ Lpk′ ) , (1)

where L0 is the contrastive loss at the first scale with all nodes, k is the total number of
pool layers besides L0. The αpk′ is the pooling ratio of k′ − th pooling scale, e.g., 0.9,
etc. Then, Lpk′ is contrastive loss at k′ − th pooling scale.

3.2 Multi-scale Contrasting with L2Pool

In this section, in order to create graph contrasting at multiple scales, we propose a
novel Learning to Pool method, namely L2Pool, to enable coarsening graph data and
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Fig. 2.An illustration of the proposed L2Pool using Transformer-style self-attention and topology
information to select representative nodes and to coarsen into a graph hierarchy for cross-scale
contrastive learning.

contrasting information interchange across scales explicitly. L2Pool adaptively creates
graph representations at multiple scales, by selecting a subset of nodes to form a new
but smaller graph with topology-enhanced attention.

As shown in Fig. 2, we implement a Transformer-style multi-head (MH) attention
mechanism. While MH self-attention is superior to trivial pooling methods such as sum
or mean, as it considers global dependencies among nodes. Moreover, note that for each
node, the self-attention only calculates the semantic similarity between current node and
other nodes, without considering the structural information of a graph reflected on the
nodes and the relation between node pairs. To tackle this limitation, we define a novel
multi-head attention enhanced with topological structure from GCNII [4]. Specifically,
GCNII is a GCN model with two effective techniques: Initial residual and Identity
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mapping, GCNII relieves the problem of over-smoothing thus enables deeper networks.
The input of the attention function (Att) consists of queryQ ∈ R

nq×dk , keyK ∈ R
n×dk

and value V ∈ R
n×dv , where nq is the number of query vectors, n is the number of

input nodes, dk is the dimension of the key vector, and dv is the dimension of the
value vector. Then we compute the dot product of the query with all keys, to put more
weights on the relevant values, namely nodes, as follows: Att(Q,K, V ) = σ(QKT )V ,
where σ is an activation function. The output of the multi-head attention function can be
formulated as:

MH(Q, K, V ) = [O1, ..., Oh]W
o,

Oi = Att(QWQ
i , KWK

i , V WV
i ),

= Att(QWQ
i , KWK

i ,GCNIIVi (H, A)),

(2)

where the learning parameter matrices corresponding to Q, K and V are WQ
i ∈

R
dk×dk , WK

i ∈ R
dk×dk , and WV

i ∈ R
dv×dv respectively. Also, the output projection

matrix is WO ∈ R
dv×dmodel , where dmodel is the output dimension for the multi-head

attention function.
More specifically, we construct V using GCNII, to explicitly leverage the global

structure and capture the interaction between nodes according to their structural depen-
dencies. The multi-head self-attention enhanced by graph topology is defined as:

GCNII(H, A) = σ(((1 − α)AH + αH0)((1 − β)In + βW )),

Att(Q, K,GCNII(H, A)) = softmax(
QKT

√
dk

)GCNII(H, A),
(3)

where α and β are hyperparameters and In is the identity matrix. Formally, given node
embeddings H ∈ R

n×d with their adjacency information A, we construct the value
V using a 4-layer GCNII, to explicitly leverage the graph topology information (the
equation for a single layer GCNII is given in above Eq. 3).

Specifically, we named the learnable score function as L2Pool at layer l, and select
the high scored nodes i(l+1) ∈ R

nl+1 , to drop the unnecessary nodes, denoted as fol-
lows:

y(l) = L2Pool(Att,H(l), A(l)); i(l+1) = topk(y
(l)), (4)

where topk function samples the top k nodes by dropping nodes with low scores y(l) ∈
R

nl . In this way, HCL could preserve as much information as possible from the graph
hierarchy and contrast in a multi-scale manner.

3.3 In-scale Bootstrapping Pseudo-Siamese Network

In HCL, we introduce a Pseudo-Siamese architecture to form the basic bootstrapping
contrastiveness with multi-channel. Generally, the siamese network contains two identi-
cal subnetworks has been proved to be a common structure in unsupervised visual repre-
sentation learning [5], but not been well extended to graph domain yet. Hence, we make
a Pseudo-Siamese network with non-weight-sharing branches for multi-channel con-
trastive learning, which provides more flexibility and capacity than a restricted siamese
network.
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Inspired by above contrastive scheme, we train the GNN-encoder fGNN to max-
imize the mutual information (MI) between node (fine-grain) representations, i.e.,
H = fGNN (X,A), and a global representation (summary of all representations).
This encourages the encoder to prefer the information that is shared across all nodes.
Since maximizing the precise value of mutual information is intractable, thus, a Jensen-
Shannon MI estimator is often used [15,26], which maximizes MI’s lower bound.
The Jensen-Shannon-based estimator acts like a standard binary cross-entropy (BCE)
loss, whose objective maximizes the expected log-ratio of the samples from the joint
distribution (positive examples) and the product of marginal distributions (negative
examples). The positive examples are pairings of s with hi of the real input graph
G = (X,A), but the negatives are pairings of s with h̃i, which are obtained from a
fake/generated input graph G̃ = (X̃, Ã) with H̃ = fGNN (X̃, Ã). Then, a discrimina-
tor D1 : RF ′ × R

F ′ → R is used to assign higher scores to the positive examples than
the negatives, as in [15,26]. The Jensen-Shannon-based BCE objective with weighted
sum of multi-channels across networks in k − th pooling scale is expressed as:

Lpk =

N∑

u=1

E(X ,A )

[
logDpk(h

(1)
u + h(2)

u ∗ δpk , s)
]

+

N∑

v=1

E(X̃ ,Ã )

[
log

(
1 − Dpk(h̃

(1)
v + h̃(2)

v ∗ δpk , s)
)]

,

(5)

with A ∈ R
N×N and X ∈ R

N×F , for simplicity. h(1)
u and h

(2)
u represent the embed-

ding of the first channel and the second channel of the pseudo siamese network, respec-
tively. We use the average function over all node features to obtain the entire graph
representation, s = READOUT(Xpk

) is the summary vector represents the embed-
ding of k−th pooled graph. δpk

is the weighted sum parameter between multi-channels
in the k − th pooling scale. This approach effectively maximizes mutual information
between summary vector s and h

(1)
u + h

(2)
u ∗ δpk

in every pooling layer.

4 Experiments

In this section, we describe the experiments conducted to demonstrate the efficacy of
proposed HCL for graph representation tasks. The experiments aim to answer the fol-
lowing five research questions:

– RQ1. How does HCL perform in node-level graph representation tasks?
– RQ2. How does HCL perform in graph-level representation tasks?
– RQ3. How does the hierarchical mutual information maximization mechanism
improve the performance of HCL?

– RQ4. How do the difference parameter settings influence the performance of HCL?
– RQ5. Does HCL capture meaningful patterns and provide insightful representation?
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Table 1. The statistics of the datasets.

Dataset Graphs Nodes Edges Features Classes

Node-level Cora 1 2,708 5,429 1,433 7

Citeseer 1 3,327 4,732 3,703 6

Pubmed 1 19,717 44,338 500 3

Amazon-C 1 13,752 245,861 767 10

Amazon-P 1 7,650 119,081 745 8

Coauthor-CS 1 18,333 81,894 6,805 15

Coauthor-Phy 1 34,493 247,962 8,415 5

Graph-level IMDB-B 1,000 19.77 193.06 − 2

IMDB-M 1,500 13.00 65.93 − 3

PTC-MR 344 14.29 14.69 − 2

MUTAG 188 17.93 19.79 − 2

Reddit-B 2,000 508.52 497.75 − 2

4.1 Datasets and Experimental Setup

Datasets. We evaluate the quality of learned node and graph embeddings on down-
stream tasks. According to the tasks, seven of them are utilized for node-level tasks,
include node classification and clustering, while five of them are for graph-level classi-
fication task. Statistics of datasets used are shown in Table 1. For node classification,
we adopt 3 citation networks including Cora, Citeseer, Pubmed [31], and 4 co-purchase
and co-author networks including Amazon-Computers, Amazon-Photo, Coauthor-CS
and Coauthor-Phy [32]. For node clustering, we adopt three benchmark datasets: Cora,
Citeseer and Pubmed [31]. For graph classification, we use another five common
datasets: MUTAG, PTC-MR [3], IMDB-B, IMDB-M and REDDIT-B [41].

Experimental Setup. We initialize the parameters using Xavier initialization [10] and
train the model using Adam optimizer with an initial learning rate of 0.001 and an
NVIDIA V100 GPU with 16G memory. For multi-channel configuration, the weight
sum parameter δ is learned between -1 and 1. To have fair comparisons, we set the size
of the hidden dimension of both node and graph representations to 512. Specifically,
HCL has set up a total of 3 recursive pooling scales of 0.9-0.8-0.7, which preserves
90%(0.9), 72%(0.9*0.8) to 50.4%(0.9*0.8*0.7) nodes from the original graph, respec-
tively. In the construction of multi-scale graphs, L2Pool is implemented with 4 attention
heads and a 4-layer GCNII. 1) For node classification tasks, we follow DGI [37] to
use same GCN encoder for all methods, and report the mean classification accuracy
with standard deviation on the test nodes after 50 runs of training followed by a linear
model. On citation networks, we use the same training/validation/testing splits as [42]
for training the classifier according to the node representations. Specifically, we use 20
labelled nodes per class as the training set, 20 nodes per class as the validation set, and
the rest as the testing set. On co-purchase and co-author networks, we use 30 labelled
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nodes per class as the training set, 30 nodes per class as the validation set, and the rest as
the testing set. For a fair comparison, the performances of all the methods are obtained
on the same splits. The mean classification accuracy with standard deviation on the test
nodes after 50 runs of training is reported. 2) For node clustering tasks, we employ
k-means on the obtained node representations, the clustering results averaged over 50
runs in terms of NMI and ARI are reported. 3) For graph classification tasks, we
follow InfoGraph [35] to fairly evaluate the performances of HCL. The graph embed-
ding was obtained by averaging all embedding of nodes in the graph. The mean 10-
fold cross validation accuracy with standard deviation after 5 runs followed by a linear
SVM is reported. We follow InfoGraph to choose the number of GCN layers, number of
epochs, batch size, and the C parameter of the SVM from [2, 4, 8, 12], [10, 20, 40, 100],
[32, 64, 128, 256], and [10−3, 10−2, ..., 102, 103], respectively. The parameters of clas-
sifiers are independently tuned using cross validation on training folds of data, and the
best average classification accuracy is reported for each method.

Table 2.Node classification accuracies (%) for supervised and unsupervised methods on different
datasets. The best performance is highlighted in bold. The previous best performance is under-
lined. The Input column highlights the data available to each model during the model training
process (X:features, A:adjacency matrix, D:diffusion matrix, Y:labels). * denotes model using
Diffusion instead of Adjacency matrix as input. OOM indicates Out-Of-Memory on a 16GB
GPU. Some results without standard deviations are directly taken from [14].

Method Input Cora Citeseer Pubmed Amazon-C Amazon-P Coauthor CS Coauthor Phy

MLP X,Y 58.2 ± 2.1 59.1 ± 2.3 70.0 ± 2.1 44.9 ± 5.8 69.6 ± 3.8 88.3 ± 0.7 88.9 ± 1.1

LogReg X,A,Y 57.1 ± 2.3 61.0 ± 2.2 64.1 ± 3.1 64.1 ± 5.7 73.0 ± 6.5 86.4 ± 0.9 86.7 ± 1.5

LP A,Y 68.0 45.3 63.0 70.8 ± 0.0 67.8 ± 0.0 74.3 ± 0.0 90.2 ± 0.5

Chebyshev X,A,Y 81.2 69.8 74.4 62.6 ± 0.0 74.3 ± 0.0 91.5 ± 0.0 92.1 ± 0.3

GCN X,A,Y 81.5 70.3 79.0 76.3 ± 0.5 87.3 ± 1.0 91.8 ± 0.1 92.6 ± 0.7

GAT X,A,Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 79.3 ± 1.1 86.2 ± 1.5 90.5 ± 0.7 91.3 ± 0.6

SGC X,A,Y 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0 74.4 ± 0.1 86.4 ± 0.0 91.0 ± 0.0 90.2 ± 0.4

MoNet X,A,Y 81.3 ± 1.3 71.2 ± 2.0 78.6 ± 2.3 83.5 ± 2.2 91.2 ± 1.3 90.8 ± 0.6 92.5 ± 0.9

DGI X,A 81.7 ± 0.6 71.5 ± 0.7 76.9 ± 0.5 75.9 ± 0.6 83.1 ± 0.5 90.0 ± 0.3 91.3 ± 0.4

GMI X,A 80.9 ± 0.7 71.1 ± 0.2 78.0 ± 1.0 76.8 ± 0.1 85.1 ± 0.1 91.0 ± 0.0 OOM

GRACE X,A 80.0 ± 0.4 71.7 ± 0.6 79.5 ± 1.1 71.8 ± 0.4 81.8 ± 1.0 90.1 ± 0.8 92.3 ± 0.6

SUBG-CON X,A 82.5 ± 0.3 70.9 ± 0.3 73.13 ± 0.5 OOM OOM OOM OOM

GCA X,A 80.5 ± 0.5 71.3 ± 0.4 78.6 ± 0.6 80.8 ± 0.4 87.1 ± 1.0 91.3 ± 0.4 93.1 ± 0.3

MVGRL X,A 82.0 ± 0.7 70.7 ± 0.7 74.0 ± 0.3 76.2 ± 0.6 84.1 ± 0.3 83.6 ± 0.3 87.1 ± 0.2

HCL(Ours) X,A 82.5 ± 0.6 72.0 ± 0.5 79.2 ± 0.6 84.0 ± 0.7 87.5 ± 0.4 91.1 ± 0.4 93.3 ± 0.5

GCA* X,D 81.8 ± 0.8 72.0 ± 0.5 81.2 ± 0.7 81.5 ± 0.9 87.0 ± 1.2 91.6 ± 0.7 93.0 ± 0.5

MVGRL* X,D 82.8 ± 1.0 72.7 ± 0.5 79.6 ± 0.8 82.9 ± 0.9 86.9 ± 0.5 91.0 ± 0.6 93.2 ± 1.0

HCL(Ours)* X,D 83.7 ± 0.7 73.3 ± 0.4 81.8 ± 0.7 83.4 ± 0.5 87.3 ± 0.4 91.7 ± 0.3 93.5 ± 0.4
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4.2 Evaluation on Node-Level Tasks (RQ1)

Node Classification. To evaluate node classification under the linear evaluation pro-
tocol, we compare results of our HCL with recent unsupervised models in Table 2,
including DGI [37], GMI [29], MVGRL [14], GRACE [47], GCA [48]and SubG-
CON [16]. Moreover, we also compare our results with supervised models includ-
ing MLP, Logistic Regression(LogReg), label propagation (LP) [46], Chebyshev [6],
GCN, GAT [36], SGC [39] and mixture model networks (MoNet) [24]. The results
show that our HCL achieves superior performances with respect to previous unsuper-
vised models. For example, on Amazon-C dataset, we achieve 84.0% accuracy, which
is a 3.1% relative improvement over previous state-of-the-art. Furthermore, inspired by
MVGRL [14], employing Diffusion matrices other than Adjacency matrices has been
shown to improve GNNs performance [19]. We also conducted experiments of HCL
with Diffusion matrices D as input. Noting that, HCL with X and diffusion matrix
D as input further yields even better performances than that of (X,A). HCL also out-
performs both GCA and MVGRL using diffusion matrix in the same settings, which
further denotes the superiority of HCL.

Node Clustering. To evaluate performance on node clustering task, we compare our
HCL with models reported including: variational GAE (VGAE) [17], marginalized
GAE (MGAE) [38], adversarially regularized GAE (ARGA) and VGAE (ARVGA)
[27], GALA [28] and MVGRL [14]. The results in Table 3 suggest that our model
achieves superior or comparable performance on NMI and ARI scores across most
of the benchmarks. Besides, the improvements are more significant in terms of ARI
compared to those of NMI. The results encourage that unsupervised clustering task
prefers the representation containing the important and semantic feature due to the lack
of supervised information. Meanwhile, HCL boosts the supervised classification with
a larger margin, by adequately exploiting the labels and graph inherent characteristics.
Thus, HCL tends to capture faithful and comprehensive information of the graph by
enhancing the scheme of message passing.

4.3 Evaluation on Graph-Level Tasks (RQ2)

Besides node-level tasks, we further evaluate the performances of HCL and other
baselines on graph classification under the linear evaluation protocol and answer the
research question RQ2.

Graph Classifications. (1) We compare our results with five graph kernel methods
including shortest path kernel (SP) [2], Graphlet kernel (GK) [34], Weisfeiler-Lehman
sub-tree kernel (WL) [33], deep graph kernel (DGK) [41], and multi-scale Laplacian
kernel (MLG) [20] reported in [35]. (2) We also compare with five supervised GNNs
reported in [40] including GraphSAGE [13], GCN, GAT, and two variants of GIN: GIN-
0 and GIN-ε. (3) Moreover, We compare the results with other unsupervised methods
including random walk [8], node2vec [12], sub2vec [1], graph2vec [25], InfoGraph
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Table 3. Performance on node clustering task reported in normalized MI (NMI) and adjusted
rand index (ARI) measures. The best performance is highlighted in bold.

Method Cora Citeseer Pubmed

NMI ARI NMI ARI NMI ARI

K-means 0.321 0.230 0.305 0.279 0.001 0.002

Spectral 0.127 0.031 0.056 0.010 0.042 0.002

BigClam 0.007 0.001 0.036 0.007 0.006 0.003

GraphEncoder 0.109 0.006 0.033 0.010 0.209 0.184

DeepWalk 0.327 0.243 0.088 0.092 0.279 0.299

GAE 0.429 0.347 0.176 0.124 0.277 0.279

VGAE 0.436 0.346 0.156 0.093 0.229 0.213

MGAE 0.511 0.445 0.412 0.414 0.282 0.248

ARGA 0.449 0.352 0.350 0.341 0.276 0.291

ARVGA 0.450 0.374 0.261 0.245 0.117 0.078

GALA 0.577 0.531 0.441 0.446 0.327 0.321

MVGRL 0.572 0.495 0.469 0.449 0.322 0.296

HCL(Ours) 0.586 0.536 0.472 0.447 0.332 0.329

[35] , GCC [30], GraphCL [44] and MVGRL [14]. The results shown in Table 4 sug-
gest that HCL achieves superior results with respect to unsupervised models. For exam-
ple, on REDDIT-B, HCL achieves 91.9% accuracy, i.e., a 2.7% relative improvement
over previous state-of-the-art. When compared to supervised baselines individually, our
model outperforms GCN and GAT models in 3 out of 5 datasets, e.g., a 10.0% relative
improvement over GAT on IMDB-M dataset.

Noting that HCL achieve superior and competitive performance on both node-level
and graph-level tasks using a unified framework, unlike previous unsupervised models
[35,37], we do not devise a specialized encoder for each task.

4.4 Components Analysis and Ablation of HCL (RQ3 and RQ4)

Due to computation complexity, we conduct the ablation studies of proposed HCL on
node classification of Cora and Citeseer datasets. All the experiment details are the
same as mentioned in Sect. 4.1. for fair comparison.

Effect of Multi-scale and Multi-channel Contrastiveness (RQ3). To validate the
effectiveness of the two contrastive components (Multi-scale, Multi-channel), We use
HCL with/without multi-channel and multi-scale to denote the ablated model with one
of the key components removed. The experiments on Cora and Citeseer presented
in Table 5 show that HCL with both components yielded best performance, which
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Table 4. Mean 10-fold cross validation accuracies (%) on graph classification task. The best
performance is highlighted in bold.

Method MUTAG PTC-MR IMDB-B IMDB-M REDDIT-B

KERNEL SP 85.2 ± 2.4 58.2 ± 2.4 55.6 ± 0.2 38.0 ± 0.3 64.1 ± 0.1

GK 81.7 ± 2.1 57.3 ± 1.4 65.9 ± 1.0 43.9 ± 0.4 77.3 ± 0.2

WL 80.7 ± 3.0 58.0 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 68.8 ± 0.4

DGK 87.4 ± 2.7 60.1 ± 2.6 67.0 ± 0.6 44.6 ± 0.5 78.0 ± 0.4

MLG 87.9 ± 1.6 63.3 ± 1.5 66.6 ± 0.3 41.2 ± 0.0 −
SUPERVISED GraphSAGE 85.1 ± 7.6 63.9 ± 7.7 72.3 ± 5.3 50.9 ± 2.2 OOM

GCN 85.6 ± 5.8 64.2 ± 4.3 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0

GIN-0 89.4 ± 5.6 64.6 ± 7.0 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5

GIN-ε 89.0 ± 6.0 63.7 ± 8.2 74.3 ± 5.1 52.1 ± 3.6 92.2 ± 2.3

GAT 89.4 ± 6.1 66.7 ± 5.1 70.5 ± 2.3 47.8 ± 3.1 85.2 ± 3.3

UNSUPERVISED random walk 83.7 ± 1.5 57.9 ± 1.3 50.7 ± 0.3 34.7 ± 0.2 OOM

node2vec 72.6 ± 10.2 58.6 ± 8.0 OOM OOM OOM

sub2vec 61.1 ± 15.8 60.0 ± 6.4 55.3 ± 1.5 36.7 ± 0.8 71.5 ± 0.4

graph2vec 83.2 ± 9.6 60.2 ± 6.9 71.1 ± 0.5 50.4 ± 0.9 75.8 ± 1.0

Infograph 89.0 ± 1.1 61.7 ± 1.4 73.0 ± 0.9 49.7 ± 0.5 82.5 ± 1.4

GCC 86.4 ± 0.5 58.4 ± 1.2 – – 88.4 ± 0.3

GraphCL 86.8 ± 1.3 OOM 71.1 ± 0.4 OOM 89.5 ± 0.8

MVGRL 89.7 ± 1.1 62.5 ± 1.7 74.2 ± 0.7 51.2 ± 0.5 84.5 ± 0.6

HCL(Ours) 89.2 ± 1.2 63.1 ± 1.4 74.3 ± 0.6 52.0 ± 0.6 91.9 ± 0.7

Table 5. Ablation study of main components in HCL on Cora and Citeseer.

Multi-scale Multi-channel Cora Citeseer

HCL � � 83.7 ± 0.6 73.3 ± 0.4

HCL � - 83.4 ± 0.7 72.9 ± 0.5

HCL - � 83.0 ± 0.9 72.4 ± 0.7

demonstrates the effectiveness of our two contrastive schemes. Specifically, the relative
improvements are fair to be prominent as: multi-scale & multi-channel, multi-scale,
multi-channel are 2.2%, 1.8% and 1.3% on Cora, 2.1%, 1.5% and 0.8% on Citeseer,
respectively ( HCL without multi-scale and multi-channel can be considered as DGI
with Diffusion matrices as input, it yielded only 81.9 on Cora and 71.8 on Citeseer).
These improvements can be attributed to the comprehensive multi-scale and multi-
channel contrastive learning scheme, which takes the advantage of more flexible con-
trastiveness and more sufficient feature exploration.

Effect of Pooling Settings (RQ4). To validate whether the multi-scale representation
is useful at each of its scales in HCL, we conduct experiments on different scale set-
tings. In the above part of Table 6, the experimental results suggested that removing
scales decreased the graph learning performances. Each scale benefits from more mul-
tiplex self-supervision signals and empowered them to regularize each other. Moreover,
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we validate the advantages of the proposed L2Pool method on node classification task.
We investigate three implementations for graph pooling methods: the proposed L2Pool,
previous methods gPool [7] and SAGPool [21]. As shown in the below part of Table 6,
the experiments indicate that L2Pool yields superior performance, demonstrating more
effective and proper scoring functions of adaptive L2Pool enables constructing more
reasonable multi-scale graphs, via reducing the size of a graph while maintaining essen-
tial properties.

Table 6. Ablation study of pooling scales and methods in HCL.

Pooling-settings Cora Citeseer

HCL (4 scales: 1.0-0.9-0.8-0.7) 83.7 ± 0.6 73.3 ± 0.4

HCL (3 scales: 1.0-0.9-0.8) 83.5 ± 0.8 73.0 ± 0.6

HCL (2 scales: 1.0-0.9) 83.2 ± 0.7 72.8 ± 0.5

HCL (1 scales: 1.0) 83.0 ± 0.9 72.4 ± 0.7

HCLL2Pool 83.7 ± 0.6 73.3 ± 0.4

HCLgPool 83.1 ± 0.7 72.5 ± 0.3

HCLSAGPool 82.6 ± 0.8 72.2 ± 0.5

4.5 Further Analysis of Explainable Representation Visualization (RQ5)

In this subsection, we further investigate the power of HCL to provide insightful inter-
pretations and produce representation with prominent patterns in different graphs and
answer research question RQ5. As shown in Fig. 3, we visualize the node embeddings
of Cora, Citeseer and Pubmed calculated by different baselines via the t-SNE algo-
rithm. Our HCL exhibits a relatively more compact and discernible clustering than
other baselines, like DGI [37], MVGRL [44] and GraphCL [44]. It suggests that the
hierarchical contrastive learning scheme of HCL captures more meaningful and inter-
pretable clusters, which provides high-quality representations for the downstream tasks.
To our knowledge, most previous methods neglected to capture the hierarchical struc-
ture, hindered by operating on a fixed-size scale. HCL is the first to explicitly integrate
the hierarchical node-graph contrastive objectives in multiple-granularity, demonstrat-
ing superiority over previous methods.
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Fig. 3. t-SNE visualization of representation learned from different methods on Cora, Citeseer
and Pubmed datasets.

5 Conclusions

In this work, we proposed a novel Hierarchical Contrastive Learning (HCL) framework
for graph to explore more multiplex self-supervision signals and empowered them to
regularize each other. Extensive experiments suggest that (i) HCL outperforms most
state-of-the-art unsupervised learning methods on node classification, node clustering
and graph classification tasks; (ii) the proposed L2Pool methods yield more reasonable
graph hierarchy with learnable topology-enhanced multi-head attention scores; (iii) the
nested contrastive objective across multi-scale and multi-channel leads to better perfor-
mances. Therefore, HCL paves the way to a potential direction for unsupervised graph
learning objective and superior architecture design. In particular, the composite multi-
scale and multi-channel contrastive objective bridges the gap between prior contrasting
and hierarchical representation learning objectives, hence introduces a more sufficient
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and effective graph mining. In the future, the proposed HCL framework could be effec-
tively integrated with more GNN models and applied on more graph learning tasks, to
explore richer feature interaction for intrinsic informative pattern capturing.
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networks. In: International Conference on Learning Representations (2018)
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Abstract. The importance of taking individual, potentially conflicting perspec-
tives into account when dealing with knowledge has been widely recognised.
Many existing ontology management approaches fully merge knowledge per-
spectives, which may require weakening in order to maintain consistency; others
represent the distinct views in an entirely detached way.

As an alternative, we propose Standpoint Logic, a simple, yet versatile multi-
modal logic “add-on” for existing KR languages intended for the integrated rep-
resentation of domain knowledge relative to diverse, possibly conflicting stand-
points, which can be hierarchically organised, combined, and put in relation with
each other.

Starting from the generic framework of First-Order Standpoint Logic (FOSL),
we subsequently focus our attention on the fragment of sentential formulas, for
which we provide a polytime translation into the standpoint-free version. This
result yields decidability and favourable complexities for a variety of highly
expressive decidable fragments of first-order logic. Using some elaborate encod-
ing tricks, we then establish a similar translation for the very expressive description
logic SROIQbs underlying the OWL 2 DL ontology language. By virtue of this
result, existing highly optimised OWL reasoners can be used to provide practical
reasoning support for ontology languages extended by standpoint modelling.

Keywords: knowledge integration · ontology alignment · conflict management

1 Introduction

Artefacts of contemporary knowledge representation (ontologies, knowledge bases, or
knowledge graphs) serve as means to conceptualise specific domains, with varying
degrees of expressivity ranging from simple classifications and database schemas to fully
axiomatised theories. Inevitably, such specifications reflect the individual points of view
of their creators (be it on a personal or an institutional level) along with other contex-
tual aspects, and they may also differ in modelling design decisions, such as the choice
of conceptual granularity or specific ways of axiomatising information. This semantic
heterogeneity is bound to pose significant challenges whenever the interoperability of
independently developed knowledge specifications is required.

This paper proposes a way to address the interoperability challenge while at the
same time preserving the varying perspectives of the original sources. This is partic-
ularly important in scenarios that require the simultaneous consideration of multiple,
potentially contradictory, viewpoints.
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Example 1. A broad range of conceptualisations and definitions for the notion of forest
have been specified for different purposes, giving rise to diverging or even contradic-
tory statements regarding forest distributions. Consider a knowledge integration scenario
involving two sources adopting a land cover (LC) and a land use (LU) perspective on
forestry. LC characterises a forest as a “forest ecosystem” with a minimum area (F1)
where a forest ecosystem is specified as an ecosystem with a certain ratio of tree canopy
cover (F2). LU defines a forest with regard to the purpose for which an area of land is
put to use by humans, i.e. a forest is a maximally connected area with “forest use” (F3).1

Both sources LC and LU agree that forests subsume broadleaf, needleleaf and trop-
ical forests (F4), and they both adhere to the Basic Formal Ontology (BFO, [1]), an
upper-level ontology that formalises general terms, stipulating for instance that land and
ecosystem are disjoint categories (F5). Using standard description logic notation and
providing “perspective annotations” by means of correspondingly labelled box operators
borrowed from multi-modal logic, the above setting might be formalised as follows:

(F1) �LC[Forest ≡ ForestEcosystem � ∃hasLand.Area≥0.5ha]
(F2) �LC[ForestEcosystem ≡ Ecosystem � TreeCanopy≥20%]
(F3) �LU[Forest ≡ ForestlandUse � MCON] ∧ �∗[ForestlandUse � Land]
(F4) �LC∪LU[(BroadleafForest � NeedleleafForest � TropicalForest) � Forest]
(F5) (LC � BFO) ∧ (LU � BFO) ∧ �BFO[Land � Ecosystem � ⊥]

In the case of Example 1, ecosystem and land are disjoint categories according to
the overarching BFO (F5), yet forests are defined as ecosystems according to LC (F1)
and as lands according to LU (F3). These kinds of disagreements result in well-reported
challenges in the area of Ontology Integration [6,21] and make ontology merging a
non-trivial task, often involving a certain knowledge loss or weakening in order to avoid
incoherence and inconsistency [22,28]. In Example 1, to merge LU and LC, there are
two typical options to resolve the issue: (Opt-Weak) one may give up on the disjointness
axiom (F5), or (Opt-Dup) one could duplicate all the conflicting predicates [20], in this
case not only Forest (into Forest LC and Forest LU), but also the forest subclasses
in (F4): BroadleafForest, NeedleleafForest and TropicalForest. In contrast,
we advocate a multi-perspective approach that can represent and reason with many
– possibly conflicting – standpoints, instead of focusing on combining and merging
different sources into a single conflict-free conceptual model.

Standpoint logic [8] is a formalism inspired by the theory of supervaluationism [7]
and rooted in modal logic that supports the coexistence of multiple standpoints and
the establishment of alignments between them, by extending the base language with
labelled modal operators. Propositions �LC φ and ♦LC φ express information relative to
the standpoint LC and read, respectively: “according to LC, it is unequivocal/conceivable
that φ”. In the semantics, standpoints are represented by sets of precisifications,2 such
that �LC φ and ♦LC φ hold if φ is true in all/some of the precisifications in LC.

The logical statements (F1)–(F5), which formalise Example 1 by means of a stand-
point-enhanced description logic, are not inconsistent, so all axioms can be jointly

1 “Forest use” areas may qualify for logging and mining concessions as well as be further
classified into, e.g. agricultural or recreational land use.

2 Precisifications are analogous to the worlds of frameworks with possible-worlds semantics.
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represented. Let us now illustrate the use of standpoint logic for reasoning with the
individual perspectives. First, assume the following (globally agreed) facts about three
instances, an ecosystem e, a parcel of land l, and a city c:

(F6) ForestEcosystem(e) hasLand(e, l) ForestlandUse(l)
(F7) Area≥0.5ha(l) MCON(l) in(l, c) City(c)

It is clear from (F1) that according to LC, e is a forest, written as �LC[Forest(e)],
since it is a forest ecosystem (F6) with an area larger than 0.5ha (F7). On the other hand,
it is clear from (F3) that according to LU, l is a forest, �LU[Forest(l)], since it has a for-
est land use (F6) and it is a maximally connected area (F7). More interestingly, we can
also obtain joint inferences: assuming the (generally accepted) background knowledge
expressed by hasLand ◦ in � in, we can infer

�LC∪LU[(City � ∃in−.Forest)(c)],

which means that “according to both LC and LU there is some forest in City c.” This
holds for LU since l is a forest and is in c (F7); and it holds for LC because e is a forest
in the land l, which is in turn in c.

In contrast to the options of the ontology merging approach, using standpoint
logic prevents the multiplication (and corresponding “semantic detachment”) of pred-
icates from (Opt-Dup). It also avoids unintended consequences arising when knowledge
sources are weakened just enough to maintain satisfiability: In the corresponding (Opt-
Weak) scenario, after merging the knowledge sources of LU and LC and removing (F5),
we can consistently infer Forest(e) from the standpoint-free versions of (F1), (F6) and
(F7) and Forest(l) from (F3), (F6) and (F7), similar to the standpoint framework. But
on top of that, reapplying (F1) and (F3) also yields “e is a forest, and its land l is also a
forest and an ecosystem, and has some other associated land, bigger than 0.5ha” through
the following derivable assertions:

Forest(e) hasLand(e, l) Forest(l) ForestEcosystem(l) ∃hasLand.Area≥0.5ha(l)

This illustrates how, beyond the problem of inconsistency, naively merging different
models of a domain may lead to erroneous reasoning. In fact, other non-clashing dif-
ferences between the forest definitions (F1) and (F3) respond to relevant nuances that
relate to each standpoint and should also not be naively merged. For instance, from the
land cover perspective (F1), there is no spatial connectedness requirement, since there
are “mosaic forest ecosystems” where the landscape displays forest patches that are
sufficiently close to constitute a single ecosystem. On the other hand, for LU, there is
no minimum tree canopy (F3), since a temporarily cleared area still has a “forest use”.

Standpoint logic preserves the independence of the perspectives and escapes global
inconsistency – without weakening the sources or duplicating entities – because its
model theory (cf. Section 2.1) requires consistency only within standpoints and precisi-
fications. Notwithstanding, it allows for the specification of structures of standpoints
and alignments between them. Natural reasoning tasks over such multi-standpoint spec-
ifications include gathering unequivocal or undisputed knowledge, determining knowl-
edge that is relative to a standpoint or a set of them, and contrasting the knowledge that
can be inferred from different standpoints.
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Let us get an idea of the expressivity of the proposed logic. In spite of its simple
syntax, the language is remarkably versatile; it allows for specifying knowledge relative
(a) to a standpoint, e.g. (F1), (b) to the global standpoint, denoted by ∗, e.g. (F3), and (c)
to set-theoretic combinations of standpoints, e.g. (F4). Additional language features can
be defined in terms of the former: ILCφ, which means that, “according to LC, it is inher-
ently indeterminate whether φ” can be defined by ILCφ := ♦LC φ ∧ ♦LC¬φ. The sharper
operator � is used to establish hierarchies of standpoints and constraints on the struc-
ture of precisifications, e.g. (F5), and can be defined via s1 � s2 := �s1\s2 [	 � ⊥].
Intuitively, s1 � s2 expresses that standpoint s1 inherits the propositions of s2, by virtue
of “s1 ⊆ s2” holding for the corresponding sets of precisifications. This type of state-
ment comes handy to “import” background knowledge from some ontology, such as the
foundational ontology BFO in our example. In combination, these modelling features
allow for expressing further constraints useful for knowledge integration scenarios, e.g.,

(F8) ∗ � (LC ∪ LU) ∧ ♦LC[� � �] ∧ ♦LU[� � �],

where the first conjunct allows us to specify that no interpretations beyond the stand-
points of interest are under consideration, by stating that the universal standpoint is a
subset of the union of LC and LU. The other two conjuncts enforce the non-emptiness of
the standpoints of interest, LC and LU, ensuring that each standpoint by itself is coherent.
To illustrate a use case, consider the statement ♦∗[Forest(f) ∧ ¬MCON(f)], expressing
that it is conceivable that f is a non-spatially-connected forest. From this, we can infer
together with (F8) and the unfulfilled requirement of connectedness of LU (F3), that f
must be conceivable for LC instead, and thus f must be a forest ecosystem (F1):

♦LC[ForestEcosystem(f) ∧ (∃hasLand.Area≥0.5ha)(f)]

Gómez Álvarez and Rudolph [8] have introduced the standpoint framework over a
propositional base logic. While they showed favourable complexity results (standard rea-
soning tasks are NP-complete just like for plain propositional logic), the framework is not
expressive enough for knowledge integration scenarios employing contemporary ontol-
ogy languages. In this paper, we widen the scope by (1) introducing the very general
framework of first-order standpoint logic (FOSL) and (2) allowing for more modelling
flexibility on the side of standpoint descriptions by introducing support for set-theoretical
combinations of standpoints (Section 2). We provide the syntax and semantics of this
generic framework, before focusing on the identification of FOSL fragments with ben-
eficial computational properties. To this end, we define the sentential fragment, which
imposes restrictions on the use of standpoint operators and guarantees a small model
property (Section 2.2). Tailored to this case, we introduce a polynomial satisfiability-
preserving translation (Section 2.3) that does not affect membership in diverse decidable
fragments of FO. This allows us to immediately obtain decidability and tight complexity
bounds for the standpoint versions of diverse FO fragments (e.g. the 2-variable counting
fragment, the guarded negation fragment and the triguarded fragment) (Section 3). In
addition, it provides a way to leverage off-the-shelf reasoners for practical reasoning in
standpoint versions of popular ontology languages. We demonstrate this by extending
our results to a standpoint logic based on the description logic SROIQbs, a semantic
fragment of FO closely related to the OWL 2 DL ontology language (Section 4). Finally,
we revisit our example to discuss and illustrate properties of our proposal (Section 5).
An extended version of this paper including proofs is available as a technical report [30].

https://arxiv.org/abs/2206.06793
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2 First-Order Standpoint Logic

In this section we introduce the general framework of first order standpoint logic
(FOSL) as well as its sentential fragment and establish model theoretic and computa-
tional properties. In addition to establishing various worthwhile decidability and com-
plexity results, this approach also provides us with a clearer view on the underlying
principles of our arguments, while avoiding distractions brought about by some pecu-
liarities of expressive ontology languages, which we will address separately later on.

2.1 FOSL Syntax and Semantics

Definition 1. The syntax of first-order standpoint logic (SFO) is based on a signature
〈P, C,S〉, consisting of predicate symbols P (each associated with an arity n ∈ N),
constant symbols C and standpoint symbols S, usually denoted with s, s′, as well as a
set V of variables, typically denoted with x, y, . . . (possibly annotated). These four sets
are assumed to be countably infinite and pairwise disjoint. The set T of terms contains
all constants and variables, that is, T = C ∪ V .

The set ES of standpoint expressions is defined as follows:

e1, e2 ::= ∗ | s | e1 ∪ e2 | e1 ∩ e2 | e1 \ e2

The set SFO of FOSL formulas is then given by

φ, ψ ::= P(t1, . . . , tk) | ¬φ | φ ∧ ψ | ∀xφ | �e φ,

where P ∈ P is an k-ary predicate symbol, t1, . . . , tk ∈ T are terms, x ∈ V , and e ∈ ES .

For a formula φ, we denote the set of all of its subformulas by Sub(φ). The size of a
formula is |φ| := |Sub(φ)|. The connectives and operators t, f , φ ∨ ψ, φ → ψ, ∃xφ,
and ♦e φ are introduced as syntactic macros as usual. As further useful syntactic sugar,
we introduce sharpening statements e1 � e2 to denote �e1\e2 f , the indeterminacy
operator via Ieφ := ♦e φ ∧ ♦e ¬φ, and the determinacy operator via Deφ := ¬Ieφ.

Definition 2. Given a signature 〈P, C,S〉, a first-order standpoint structure M is a
tuple 〈Δ,Π, σ, γ〉 where:

– Δ is a non-empty set, the domain of M;
– Π is the non-empty set of precisifications;
– σ is a function mapping each standpoint symbol from S to a set of precisifications

(i.e., a subset of Π);
– γ is a function mapping each precisification from Π to an ordinary first-order struc-

ture I over the domain Δ, whose interpretation function ·I maps:
• each predicate symbol P∈ P of arity k to an k-ary relation PI ⊆Δk,
• each constant symbol a∈ C to a domain element aI ∈ Δ.

Moreover, for any two π1, π2 ∈ Π and every a ∈ C we require aγ(π1) = aγ(π2).

Note that all first-order structures in all precisifications implicitly share the same inter-
pretation domain Δ given by the overarching first-order standpoint structure M, that is,
we adopt the constant domain assumption.3 Moreover, the last condition of Definition 2

3 This is not a substantial restriction, as other variants – expanding domains, varying domains
– can be emulated using constant domains [29, Theorem 6].
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also enforces rigid constants, that is, constants denote the same objects in different
standpoints (while clearly their properties could differ).

Definition 3. LetM = 〈Δ,Π, σ, γ〉 be a first-order standpoint structure for the signa-
ture 〈P, C,S〉 andV be a set of variables. A variable assignment is a function v : V → Δ
mapping variables to domain elements. Given a variable assignment v, we denote by
v{x�→δ} the function mapping x to δ ∈ Δ and any other variable y to v(y).

An interpretation function ·I and a variable assignment specify how to interpret
terms by domain elements: We let tI,v = v(x) if t = x ∈ V , and tI,v = aI if t = a ∈ C.

To interpret standpoint expressions, we lift σ from S to all of ES by letting σ(∗) = Π
and σ(e1 
� e2) = σ(e1) 
� σ(e2) for 
� ∈ {∪,∩, \}

The satisfaction relation for formulas is defined in the usual way via structural
induction. In what follows, let π ∈ Π and let v : V → Δ be a variable assignment;
we now establish the definition of the satisfaction relation |= for first-order standpoint
logic using pointed first-order standpoint structures:

M,π,v |= P(t1, . . . , tk) iff (tγ(π),v1 , . . . , t
γ(π),v
k ) ∈ Pγ(π)

M,π,v |= ¬φ iffM,π,v �|= φ

M,π,v |= φ ∧ ψ iffM,π,v |= φ and M, π, v |= ψ

M,π,v |= ∀xφ iffM,π,v{x�→δ} |= φ for all δ ∈Δ

M,π,v |= �e φ iffM,π′, v |= φ for all π′ ∈ σ(e)
M,π |= φ iffM,π,v |= φ for all v : V → Δ

M |= φ iffM,π |= φ for all π ∈ Π

As usual,M is amodel for a formula φ iffM |= φ. As an aside, note that the modal-logic
nature of FOSL may become more evident upon realizing that an alternative definition of
its semantics via Kripke structures can be given (with �e interpreted in the standard way)
by assigning every e ∈ ES the accessibility relation {(π, π′) | π, π′ ∈ Π,π′ ∈ σ(e)}.

Later in this paper, we will consider cases where the number of precisifications is
fixed. Thus, we conclude this section by a corresponding definition.

Definition 4. For a natural number n ∈ N, a FOSL formula φ is n-satisfiable iff it has
a model 〈Δ,Π, σ, γ〉 with |Π| = n.

2.2 Small Model Property of Sentential Formulas

One interesting aspect of standpoint logic is that its simplified Kripke semantics brings
about convenient model-theoretic properties that do not hold for arbitrary (multi-)modal
logics. For propositional standpoint logic, it is known that standard reasoning tasks (such
as checking satisfiability) are NP-complete [8], in contrast to PSPACE-completeness in
related systems such as K45n, KD45n and S5n. This result is in fact linked to a small
model property, according to which every satisfiable formula has a model with a “small”
number of precisifications. This beneficial property only holds in the single-modal K45,
KD45 and S5 [23] but applies to the multi-modal propositional standpoint logic because
of its stronger modal interaction. Fortunately, it can also be shown to carry over to some
fragments of FOSL and to the use of standpoint expressions. In particular, in this section,
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we will show that if we restrict the language to those formulas with no free variables in
subformulas of the form �eφ, then we can indeed guarantee that every satisfiable FOSL
formula has a model whose number of precisifications is linear in the size of the formula.

Definition 5. Let φ be a formula of FOSL. We say that φ is sentential iff for all subfor-
mulas of φ of the form �eψ, all variables occurring in ψ are bound by a quantifier.

Theorem 1. A sentential FOSL formula φ is satisfiable iff it has a model with at most |φ|
precisifications. That is, for sentential FOSL, satisfiability and |φ|-satisfiability coincide.

In the following, it will be convenient to assume that formulas are in standpoint
standard normal form (SSNF), where no modal operator �e occurs inside the scope of
another. Any FOSL formula φ can be transformed into SSNF in polynomial time.

2.3 Translation to Plain First-Order Logic

In this section, we present a translation Transn mapping any FOSL formula φ to a
plain FO formula Transn(φ) such that n-satisfiability of φ coincides with satisfiabil-
ity of Transn(φ). The translation will make explicit use of a fixed, finite set Πn of
precisifications with |Πn| = n.

Our translationwillmapanyφ intoa formulaof (standpoint-free)first-order logic.The
basic idea is to “emulate” standpoint structures 〈Δ,Πn, σ, γ〉 in plain first-order struc-
tures over Δ by means of a “superposition” of all γ(π), which requires to introduce n
“copies” of the original set of predicates. To this end, we define our first-order vocabulary
by VFO(P, C,S,Πn) = 〈P ′, C〉 where P ′ contains

– for each predicate P ∈ P and precisification π ∈ Πn, a predicate of the form Pπ of
the same arity as P, intuitively expressing that Pπ should capture Pγ(π);

– for each standpoint constant s ∈ S and every precisification π ∈ Πn, a nullary
predicate of the form sπ , intuitively expressing that π ∈ σ(s).

The top-level translation is then defined to set:

Transn(φ) =
∧

π∈Πn
transn(π, φ) ∧

∧
π∈Πn

∗π,

where transn is inductively defined by

transn(π, P(t1, . . . , tk)) = Pπ(t1, . . . , tk)

transn(π, ¬ψ) = ¬transn(π, ψ)

transn(π, ψ1 ∧ ψ2) = transn(π, ψ1)∧ transn(π, ψ2)

transn(π, ∀xψ) = ∀x(transn(π, ψ))

transn(π
′, �e ψ) =

∧
π∈Πn

(transE (π, e) → transn(π, ψ))

Therein, transE implements the semantics of standpoint expressions, providing for each
expression e ∈ ES a propositional formula transE(π, e) over {sπ | π ∈ Πn} as follows:

transE(π, s) = sπ

transE(π, e1 ∪ e2) = transE (π, e1) ∨ transE (π, e2)

transE(π, e1 ∩ e2) = transE (π, e1) ∧ transE (π, e2)

transE(π, e1 \ e2) = transE (π, e1) ∧ ¬transE(π, e2)
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A routine inspection of the translation ensures that it can be done in polynomial
time and its output is of polynomial size, provided it is applied to formulas in SSNF.

Theorem 2. A formula φ is n-satisfiable in FOSL if and only if the formula Transn(φ)
is satisfiable in first-order logic.

In fact, Theorem 2 provides us with a recipe for a satisfiability-preserving trans-
lation for any formula that comes with a “small model guarantee”, whenever a bound
on the number of precisifications can be computed upfront. In particular, leveraging
Theorem 1, we obtain the following corollary.

Corollary 1. A formula φ is satisfiable in sentential first-order standpoint logic if and
only if the formula Trans|φ|(φ) is satisfiable in first-order logic.

3 Expressive Decidable FOSL Fragments

We note that even for the sentential version, first-order standpoint logic is still a gener-
alization of plain first-order logic, whence reasoning in it is undecidable. Therefore, we
will next look into some popular decidable FO fragments and establish decidability and
complexity results for reasoning in their sentential standpoint versions.

Definition 6. Let F denote some FO fragment. Then the logic sentential Standpoint-F ,
denoted S[F ], contains the sentential FOSL formulas φ where:

– all variables inside φ are bound by some quantifier,
– for every subformula ψ ∈ Sub(SSNF(φ)) preceded by a quantifier, ψ ∈ F holds.

FragmentF is standpoint-friendly iff every φ ∈ S[F ] satisfiesTrans|φ|(SSNF(φ)) ∈ F .

Lemma 1. Let F be a standpoint-friendly fragment of FOL. Then the following hold:

1. Satisfiability for S[F ] is decidable if and only if it is for F .
2. If the satisfiability problem in F is at least NP-hard, then the satisfiability problem

in S[F ] is of the same complexity as in F .

It turns out that many popular formalisms are standpoint-friendly. For propositional
logic (PL), this is straightforward: quantifiers and variables are absent altogether, which
is also the reason why sentential Standpoint-PL and proper Standpoint-PL coincide.
Thus, Lemma 1 yields an alternative argument for the NP-completeness of the latter,
which was established previously [8].

On the expressive end of the logical spectrum, it is worthwhile to inspect fragments
of FO that are still decidable (as a minimal requirement for the feasibility of automated
reasoning). In fact, standpoint-friendliness can be established by structural induction
for many of those. Notable examples are:

– the counting 2-variable fragment C2 [10,24], which subsumes many description
logics and serves as a mathematical backbone for related complexity results,

– the guarded negation fragment GNFO [2,3], which encompasses both the popular
guarded fragment as well as the ubiquitous class of (unions of) conjunctive queries
also known as existential positive FO, and
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– the triguarded fragment TGF [14,27] (a more recent formalism subsuming both the
two-variable and the guarded fragment without equality).

Intuitively, standpoint-friendliness for all these (and presumably many more) fragments
follows from the fact that they are closed under Boolean combinations of sentences
and that the transformation does not affect the structure of quantified formulas. We
therefore immediately obtain that these four popular decidable fragments of FOL allow
for accommodating standpoints without any increase in complexity.

Corollary 2. The sentential FOSL fragmentsS[PL] (=SPL),S[C2],S[GNFO], andS[TGF]

are all decidable and the complexity of their satisfiability problem is complete for NP,
NEXPTIME, 2EXPTIME, and N2EXPTIME, respectively.

As an aside, we note that all these results remain valid when considering finite satis-
fiability (i.e., restricting to models with finite Δ), because for all considered fragments,
companion results for the finite-model case exist and the equisatisfiability argument for
our translation preserves (finiteness of) Δ.

4 Sentential Standpoint-SROIQbs

We next present the highly expressive yet decidable logic (Sentential) Standpoint-
SROIQbs, which adds the feature of standpoint-aware modelling to SROIQbs, a
description logic (DL) obtained from the well-known DLSROIQ [13] by a gentle exten-
sion of its expressivity, allowing safe Boolean role expressions over simple roles [26].4

The SROIQ family serves as the logical foundation of popular ontology languages
like OWL 2 DL. In view of the fact that SROIQbs is a semantic fragment of FO, we
can leverage the previously established results and present a satisfiability-preserving
polynomial translation from Standpoint-SROIQbs into plain SROIQbs knowledge
bases. On the theoretical side, this will directly provide us with favourable and tight
complexity results for reasoning in Standpoint-SROIQbs. On the practical side, this
paves the way towards practical reasoning in “Standpoint-OWL”, since it allows us to
use highly optimised OWL 2 DL reasoners off the shelf.

4.1 SROIQbs: Syntax and Semantics

Let C, P1, and P2 be finite, mutually disjoint sets called individual names, concept
names and role names, respectively. P2 is subdivided into simple role names Ps

2 and
non-simple role names Pns

2 , the latter containing the universal role u and being strictly
ordered by some strict order ≺. In the original definition of SROIQbs, simplicity of
roles and ≺ are not given a priori, but meant to be implicitly determined by the set of
axioms. Our choice to fix them explicitly upfront simplifies the presentation without
restricting expressivity. Then, the set Rs of simple role expressions is defined by

r1, r2 ::= s | s− | r1 ∪ r2 | r1 ∩ r2 | r1 \ r2,

with s∈ Ps
2, while the set of (arbitrary) role expressions is R=Rs ∪ Pns

2 . The order ≺
4 Focusing on the mildly strongerSROIQbs instead of the more mainstreamSROIQallows for

a more coherent and economic presentation, without giving up the good computational properties
and the availability of optimised algorithms and tools.
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Table 1. SROIQbs role, concept expressions and axioms. C ≡ D abbreviates C � D, D � C.

Name Syntax Semantics

inverse role s− {(δ, δ′) ∈ Δ × Δ | (δ′, δ) ∈ sI}
role union r1 ∪ r2 rI

1 ∪ rI
2

role intersection r1 ∩ r2 rI
1 ∪ rI

2

role difference r1 \ r2 rI
1 \ rI

2

universal role u ΔI × ΔI

nominal {a} {aI}
top � ΔI

bottom ⊥ ∅
negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

univ. restriction ∀r.C {δ | ∀y.(δ, δ′) ∈ rI → δ′ ∈ CI}
exist. restriction ∃r.C {δ | ∃y.(δ, δ′) ∈ rI ∧ δ′ ∈ CI}
Self concept ∃r.Self {δ | (δ, δ) ∈ rI}
qualified number �n r.C {δ | #{δ′ ∈ CI | (δ, δ′) ∈ rI} ≤ n}

restrictions �n r.C {δ | #{δ′ ∈ CI | (δ, δ′) ∈ rI} ≥ n}

Name Syntax Semantics

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

equality a
.
= b aI = bI

inequality a � .= b aI �= bI

general concept C � D CI ⊆ DI

inclusion (GCI)

role inclusion r1◦ . . . ◦rn � r rI
1 ◦ . . . ◦rI

n ⊆ rI

axioms r1◦ . . . ◦rn◦r� r rI
1 ◦ . . . ◦rI

n◦rI ⊆ rI

(RIAs) r◦r1◦ . . . ◦rn � r rI◦rI
1 ◦ . . . ◦rI

n ⊆ rI

r◦r� r rI◦rI ⊆ rI

In RIAs, r ∈ Pns
2 , while ri ∈ R and ri ≺ r for all

i ∈ {1, . . . , n}.

is then extended to R by making all elements of Rs ≺-minimal. The syntax of concept
expressions is given by

C, D ::= A | {a} | � | ⊥ | ¬C | C 
 D | C 
 D | ∀r.C | ∃r.C | ∃r′.Self | �n r′.C | �n r′.C,

with A ∈ P1, a ∈ C, r ∈ R, r′ ∈ Rs, and n ∈ N. We note that any concept expression
can be put in negation normal form, where negation only occurs in front of concept
names, nominals, or Self concepts. The different types of SROIQbs sentences (called
axioms) are given in Table 1.5

Similar toFOL, thesemanticsofSROIQbs isdefinedvia interpretationsI = (Δ, ·I)
composed of a non-empty set Δ called the domain of I and a function ·I mapping indi-
vidual names to elements of Δ, concept names to subsets of Δ, and role names to subsets
of Δ × Δ. This mapping is extended to role and concept expressions and finally used to
define satisfaction of axioms (see Table 1).

4.2 Standpoint-SROIQbs

The set S[SROIQbs] of sentential Standpoint-SROIQbs sentences is now defined induc-
tively as follows:

– if Ax is a SROIQbs axiom then Ax ∈ S[SROIQbs],
– if φ, ψ ∈ S[SROIQbs] then ¬φ, as well as φ ∧ ψ and φ ∨ψ are in S[SROIQbs],
– if φ ∈ S[SROIQbs] and e ∈ ES then �e φ ∈ S[SROIQbs] and ♦e φ ∈ S[SROIQbs].

The semantics of sentential Standpoint-SROIQbs is defined in the obvious way,
by “plugging” the semantics of SROIQbs axioms into the semantics of S[FO]. We say
a S[SROIQbs] sentence φ is in negation normal form (NNF), if negation occurs only inside
or directly in front of SROIQbs axioms; obviously every Standpoint-SROIQbs sen-
tence can be efficiently transformed into an equivalent one in NNF.

5 The original definition of SROIQ contained more axioms (role transitivity, (a)symmetry,
(ir)reflexivity and disjointness), but these are syntactic sugar in our setting.
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4.3 Coping with Peculiarities of SROIQbs

In the following, we will provide a polynomial translation, mapping any S[SROIQbs]

sentence φ to an equisatisfiable set of SROIQbs axioms. This translation is very much
in the spirit of the one presented for sentential FOSL, however, SROIQbs comes with
diverse syntactic impediments that we need to circumvent. Thus, before presenting the
translation, we will briefly discuss these issues and how to solve them.

First, SROIQbs does not provide nullary predicates (i.e., propositional symbols).
As a surrogate, we use concept expressions of the form ∀u.A which have the pleasant
property of holding either for all domain individuals or for none. Second, SROIQbs

does not directly allow for arbitrary Boolean combinations of axioms. For all non-RIA
axioms, a more or less straightforward equivalent encoding is possible using nominals
and the universal role; for instance the expression ¬[r(a, b)]∨ [A � B] can be converted
into 	 � ¬∃u.({a} � ∃r.{b}) � ∀u.(¬A � B).

Dealing with RIAs requires auxiliary vocabulary; for negated RIAs, we introduce
a fresh nominal, say {x}, to mark the end of a “violating” role chain, so ¬[s ◦ s � r]
essentially becomes 	 � ∃u.

(
(∃s.∃s.{x}) � (¬∃r.{x})

)
.

Unnegated RIAs are even trickier. There is no way of converting them into GCIs, so
we have to keep them, but we attach an additional “guard”, which allows us to disable
them whenever necessary. This guard can then be triggered from within a GCI. For an
example, consider the expression [t ◦ t′ � r] ∨ [t′ ◦ t � r]. Then, introducing fresh
“guard roles” s1 and s2, we assert the three axioms 	 � (∀u.∃s1.Self )�(∀u.∃s2.Self )
as well as s1 ◦ t ◦ t′ � r and s2 ◦ t′ ◦ t � r. With this arrangement, the first axiom
will ensure that all domain elements carry an s1-loop or all domain elements carry
an s2-loop. Depending on that choice, the corresponding RIA in the second line will
behave like its original, unguarded version, while the other one may be entirely disabled.

The introduced strategy for handling positive RIAs has a downside: due to the
restricted shapes of RIAs (governed by ≺), axioms of the shape r ◦ r � r (expressing
transitivity) cannot be endowed with guards. In order to overcome this nuisance, every
nonsimple role r has to be accompanied by a subrole r, which acts as a “lower approx-
imation” of r and – whenever r is defined transitive – “feeds into” r via tail recursion.
This way of reformulating r ◦ r � r allows to attach the wanted guard, but requires
adjustments in some axioms that mention r.

4.4 Translation into Plain SROIQbs

We now assume a given S[SROIQbs] sentence φ, w.l.o.g. in NNF, and provide the formal
definition of the translation. As before, we fix Π|φ| and let our translation’s vocabulary
V[SROIQbs](φ) consist of all individual names inside φ, plus, for each π ∈ Π|φ|, the
following symbols: (a) a concept name Aπ for each A ∈ P1; (b) a simple role name
sπ for each s∈ Ps

2; (c) non-simple role names rπ and rπ for each r∈ Pns
2 \{u}; (d) a

simple role name sπ
ρ for each unnegated RIA ρ inside φ; (e) a fresh constant name aπ

ρ

for each negated RIA ρ inside φ; (f) a concept name Msπ for each s ∈ S. Thereby, the
non-simple role names inherit their ordering ≺ from Pns

2 and we also let rπ ≺ rπ for
each r∈ Pns

2 \{u}.
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The translation Trans(φ) of φ is then a set of SROIQ axioms defined as follows:
First, Trans(φ) contains the RIA rπ � rπ for every r∈ Pns

2 \{u} and each π ∈ Π|φ|.
Second, for every unnegated RIA ρ inside φ and each π ∈ Π|φ|, Trans(φ) contains the
RIA BGπ(ρ), with BGπ defined by

r1◦...◦rn � r �→ s
π
ρ◦rπ

1 ◦...◦rπ
n � r

π r1◦...◦rn◦r� r �→ s
π
ρ ◦rπ

1 ◦...◦rπ
n◦rπ � r

π

r◦r1◦...◦rn � r �→ r
π ◦rπ

1 ◦...◦rπ
n◦sπ

ρ � r
π

r◦r� r �→ s
π
ρ ◦rπ◦rπ � r

π,

whereby the role expression rπ is obtained from r by substituting every role name s
with sπ (except u, which remains unaltered). Third and last, Trans(φ) contains the
GCI

	 �
�

π∈Π|φ|
trans(π, φ) �

�
π∈Π|φ|

∀u.M∗
π

where, by inductive definition,

trans(π,Ax) = trans+(π,Ax)

trans(π, ¬Ax) = trans−(π,Ax)

trans(π, ψ1 ∧ ψ2) = trans(π, ψ1) � trans(π, ψ2)

trans(π, ψ1 ∨ ψ2) = trans(π, ψ1) � trans(π, ψ2)

trans(π′, �e ψ) =
�

π∈Π|φ|
(¬transE(π, e) � trans(π, ψ))

trans(π′, ♦e ψ) =
⊔

π∈Π|φ|
(transE(π, e) � trans(π, ψ))

We next present the translation of unnegated and negated SROIQ axioms (ρ stands
for an RIA r1◦...◦rm � r):

trans+(π, ρ) = ∀u.∃sπ
ρ .Self trans−(π, ρ) = ∃u.((∀rπ.¬{aπ

ρ }) � (∃rπ
1...∃rπ

m.{aπ
ρ }))

trans+(π, C  D) = ∀u.(¬C 
 D)π trans−(π, C  D) = ∃u.(C � ¬D)π

trans+(π, C(a)) = ∃u.({a} � Cπ
)

trans−(π, C(a)) = ∃u.({a} � (¬C)π
)

trans+(π, r(a, b)) = ∃u.({a} � ∃rπ .{b})
trans−(π, r(a, b)) = ∃u.({a} � ∀rπ.¬{b})

trans+(π, a
.
= b) = ∃u.({a} � {b})

trans−(π, a
.
= b) = ∃u.({a} � ¬{b})

Therein, for any role expression r, we let r denote r if r = r is a non-simple role name,
and otherwise r = r. Moreover, Cπ denotes the concept expression that is obtained
from C by transforming it into negation normal form, replacing concept names A with
Aπ and role expressions r by rπ , and replacing every ∃r for non-simple r with ∃r.

As before, transE implements the semantics of standpoint expressions, but now
adjusted to the new framework: each expression e ∈ ES is transformed into a concept
expression transE(π, e) over the vocabulary

{
Msπ |s ∈ S, π ∈Π|φ|

}
as follows:

transE(π, s) = ∀u.Msπ
transE(π, e1 ∪ e2) = transE(π, e1) � transE(π, e2)

transE(π, e1 ∩ e2) = transE(π, e1) � transE(π, e2)

transE(π, e1 \ e2) = transE(π, e1) � ¬transE(π, e2)

With all definitions in place, we obtain the desired result.

Theorem 3. Given φ ∈ S[SROIQbs], the setTrans(φ) (i) is a valid SROIQbs knowledge
base, (ii) is equisatisfiable with φ, (iii) is of polynomial size wrt. φ, and (iv) can be
computed in polynomial time.
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5 Example in the Forestry Domain

We consider an extension of Example 1 in Sentential Standpoint-SROIQbs to illustrate
the main reasoning tasks in more detail. The following additional axiom specifies that
forest land use and urban land use are disjoint subclasses of land (F9).

(F9) �∗[ForestlandUse�UrbanLandUse� Land ∧ ForestlandUse�UrbanLandUse� ⊥]

Now, let us see how, through inferences in S[SROIQbs], we can gather unequivocal
knowledge (Uneq), obtain knowledge that is relative to a standpoint (Rel), and contrast
the knowledge that can be inferred from different standpoints (Cont). For unequivocal
knowledge (Uneq), we can infer unambiguously that forests are no urban-use lands:

�∗[Forest  ¬UrbanLandUse]

This holds because each precisification must comply with LC or LU (F8), and we have
�LC[Forest � ¬UrbanLandUse] from (F1) and (F5), and �LU[Forest � ¬UrbanLandUse]
from (F3) and (F9). Regarding relative (Rel) and contrasting (Cont) knowledge, if we
now wanted to query our knowledge base for instances of forest, we would obtain

�LC[Forest(e)] ∧ �LC[¬Forest(l)] I∗[Forest(e)] ∧ I∗[Forest(l)]

The first deduced formula contains knowledge relative to LC, showing its stance on
whether the instances constitute a forest, which happens to be conclusive in both cases.
The second formula states the global indeterminacy of both l’s and e’s membership to
the concept Forest. This stems from the disagreement between the interpretations LC
and LU, whose overall incompatibility (�LC∩LU[	 � ⊥]) can also be inferred.

Finally, it is worth looking at the limitations of the sentential fragment of Standpoint
SROIQbs. In a non-sentential setting, where modalities can be used at the concept
level, “complex alignments” or bridges can be established between concepts according
to possibly many standpoints. For instance, one can write

�LU[Forest] � �LC[∃hasLand−.Forest] � �∗[Cleared]

to express that the areas classified as forest according to LU belong to a forest according
to LC or have been cleared (in which case LC does not recognise them as forest). It is an
objective of future work of ours to study decidable fragments for which the restrictions
on the use of modalities are relaxed to express such kinds of axioms.

6 Related Work
A variety of formal representation systems have been proposed to model perspectives in
rather diverse areas of research and with heterogeneous nomenclatures. Standpoint logic
bears some similarities to context logic in the style proposed by McCarthy and Buvac
[19], which has also been applied in a description logic setting [15]. This tradition treats
contexts as “first-class citizens” of the logic, i.e., full-fledged formal objects over which
one can express first-order properties. In contrast, standpoint logic is suitable when a
formalisation of the contexts involved is unfeasible, or when the interest resides in the
content of the standpoints rather than the context in which they occur.

Another related notion is that of ontology views, where some works consider poten-
tially conflicting viewpoints [11,12,25]. Ribiére and Dieng [25] and Heman et al. [11,12]
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implement the intuition of “viewpoints” via ad-hoc extensions of the syntax and se-
mantics of description logics, in a style similar to the work on contextuality by Bensli-
mane et al. [4]. Gorshkov et al. [9] implement them using named graphs. Instead, the
standpoint approach extends the base language with modalities and provides a Kripke-
style semantics for it. This leads to a simpler, more recognisable and more expressive
framework that supports, for instance, hierarchies and combinations of standpoints, infer-
ences of partial truths, the preservation of consistency with the established alignments
and inferences about the standpoints themselves. On a technical level, first-order stand-
point logic can be seen as a many-dimensional (multi-)modal logic [16], whence results
from that area apply to our setting. In particular, the search for non-trivial fragments
of first-order modal logics that are still decidable and even practically relevant is an
important endeavour, for which we believe that standpoint logic can play useful role.

Finally, in the area of ontology modularity, different formalisms such as DDL bridge
rules [5] andε-connections [17,18] have been proposed to specify the interaction between
independent knowledge sources. These can be related to the present framework in that
they provide mechanisms to establish links between conceptual models that do not need
to be entirely coherent with each other. Yet the motivation is inherently different: while
the standpoint framework focuses on integrating possibly overlapping knowledge into a
global source (while preserving “standpoint-provenance” and thus enabling a peaceful
coexistence of conflicting information), DDL bridge rules and ε-connections have been
devised to establish a certain synchronisation between modules that are and will remain
separate. DDL bridge rules could, however, be simulated within a standpoint framework.

7 Conclusions and Future Work

The diversity of human world views along with the semantic heterogeneity of natural
language are at the heart of well-recognised knowledge interoperability challenges. As
an alternative to the common strategy of merging, we proposed the use of a logical
formalism based on the notion of standpoint that is suitable for knowledge representa-
tion and reasoning with sets of possibly conflicting characterisations of a domain.

Using first-order logic as an expressive underlying language, we proposed a multi-
modal framework by means of which different agents can establish their individual
standpoints (which typically involves specifying constraints and relations), but which
also allows for combining standpoints and establishing alignments between them. Rea-
soning tasks over such multi-standpoint specifications include gathering unequivocal
knowledge, determining knowledge that is relative to a standpoint or a set of them, and
contrasting the knowledge that can be inferred from different standpoints.

Remarkably, the simplified Kripke semantics allows us to establish a small model
property for the sentential fragment of FOSL. This result gave rise to a polynomial,
satisfiability-preserving translation into the base logic, which also maintains member-
ship in diverse decidable fragments, immediately implying that for a range of logics,
reasoning in their standpoint-enhanced versions does not increase their computational
complexity. This indicates that the framework can be applied to ontology alignment,
concept negotiation, and knowledge aggregation with inference systems built on top of
existing, highly optimised off-the-shelf reasoners.
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Future work includes the study of the complexity of FOSL fragments allowing the
presence of free variables within the scope of modalities. Note however that in the
general case of FOSL, this leads to the loss of the small model property.

Example 2. Consider the following (non-sentential) FOSL sentence, axiomatising
”better” (Btt) to be interpreted as a non-well-founded strict linear order and requiring
for every domain element x (of infinitely many) the existence of some precisification
where x is the (one and only) “best”:

∀xyz
(
(Btt(x, y) ∧ Btt(y, z)) → Btt(x, z)

) ∧ ∀xy¬(Btt(x, y) ∧ Btt(y, x)) ∧
∀xy

(
x �= y → (Btt(x, y) ∨ Btt(y, x))

) ∧ ∀x∃yBtt(x, y) ∧ ∀x ♦∗¬∃yBtt(y, x)

Obviously, this sentence is satisfiable, but only in a model with infinitely many precisi-
fications; that is, the small model property is violated in the worst possible way.

On the other hand, it is desirable from a modelling perspective to allow for some
interplay between FO quantifiers and standpoint modalities. E.g., the non-sentential
FOSL sentence ∀x1 · · · xk

(
P(x1, . . . , xk) → �∗ P(x1, . . . , xk)

)
expresses the rigidity

of a predicate P, thereby “synchronising” it over all precisifications.
Consequently, we will study how by imposing syntactic restrictions, we can guarantee

the existence of small (or at least reasonably-sized) models for non-sentential standpoint
formulas. Results in the field of many-dimensional modal logics [16] show that reasoning
is decidable for diverse fragments of first-order modal logic such as themonodic fragment
(wheremodalitiesoccuronly in frontof formulaswithatmostonefreevariable).However,
Example 2 already shows (by virtue of being within the monodic fragment) that we cannot
hope for a small model property even for this slight extension of the sentential fragment.
A detailed analysis of these issues as they apply to the simplified semantics of standpoint
logic is the object of current work.

Additionally, we intend to implement the proposed translations and perform exper-
iments to test the performance of the standpoint framework in scenarios of Knowledge
Integration. While sentential standpoints can be added at no extra cost in complexity
for the discussed fragments in this paper, we intend to run experiments to assess the
runtime impact on large knowledge bases with off-the-shelf reasoners.

As another important topic toward the deployment of our framework, we will look
into conceptual modelling aspects. Reviewing documented recurrent scenarios and pat-
terns in the area of knowledge integration, we intend to establish guiding principles for
conveniently encoding those by using novel strategies possible with structures of stand-
points. Examples for such scenarios include the disambiguation of knowledge sources
by using combinations of standpoints, and the establishment of bridge-like rules for
alignment. For the latter we will investigate their relationship to similar constructs from
other frameworks such as ε-connections, distributed description logics, and others.

Supplemental Material Statement: Proofs can be found in the extended version [30].
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8. Gómez Álvarez, L., Rudolph, S.: Standpoint logic: Multi-perspective knowledge representa-

tion. In: Neuhaus, F., Brodaric, B. (eds.) Procs. of the 12th Int. Conf. on Formal Ontology in
Information Systems. FAIA, vol. 344, pp. 3–17. IOS Press (2021)

9. Gorshkov, S., Kralin, S., Miroshnichenko, M.: Multi-viewpoint ontologies for decision-
making support. In: Ngonga Ngomo, A.C., Křemen, P. (eds.) Knowledge Engineering and
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Abstract. Current deep learning methods for object recognition are
purely data-driven and require a large number of training samples to
achieve good results. Due to their sole dependence on image data, these
methods tend to fail when confronted with new environments where even
small deviations occur. Human perception, however, has proven to be
significantly more robust to such distribution shifts. It is assumed that
their ability to deal with unknown scenarios is based on extensive incor-
poration of contextual knowledge. Context can be based either on object
co-occurrences in a scene or on memory of experience. In accordance
with the human visual cortex which uses context to form different object
representations for a seen image, we propose an approach that enhances
deep learning methods by using external contextual knowledge encoded
in a knowledge graph. Therefore, we extract different contextual views
from a generic knowledge graph, transform the views into vector space
and infuse it into a DNN. We conduct a series of experiments to inves-
tigate the impact of different contextual views on the learned object
representations for the same image dataset. The experimental results
provide evidence that the contextual views influence the image represen-
tations in the DNN differently and therefore lead to different predictions
for the same images. We also show that context helps to strengthen the
robustness of object recognition models for out-of-distribution images,
usually occurring in transfer learning tasks or real-world scenarios.

Keywords: Neuro-symbolic · Knowledge graph · Contextual learning

1 Introduction

How humans perceive the real world is strongly dependent on the context [1,30].
Especially, in situations with poor quality of visual input, for instance caused by
large distances, or short capturing times, context appears to play a major role
in improving the reliability of recognition [43]. Perception is not only influenced
by co-occurring objects or visual features in the same image, but also by expe-
rience and memory [39]. There is evidence that humans perceive similar images
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(a) Duck or rabbit? [26] (b) Young lady or old woman? [2].

Fig. 1. The mental representation for ambiguous images can change based on the
context, although the perceived image is still the same.

differently considering the given context [11]. A famous example are ambiguous
figures as shown in Fig. 1.

Depending on the context, i.e. if it is Easter or Christmas [10], Fig. 1a can
be either a duck or a rabbit. Likewise, influenced by own-age social biases [37],
Fig. 1b can be either a young lady or an old woman. Humans categorize images
based on various types of context. Known categories are based on visual features
or semantic concepts [6], but may also be based on other information such as
attributes describing their function. Accordingly, neuroscience has shown that
the human brain encodes visual input into individual contextual object represen-
tations [16,18,49], namely visual, taxonomical, and functional [33]. Concretely,
in a visual context, images of a drum and a barrel have a high similarity, as they
share similar visual features. In a taxonomical context, a drum would be similar
to a violin, as they both are musical instruments. And in a functional context,
the drum would be similar to a hammer, since the same action of hitting can be
performed with both objects [8].

Whereas there is much evidence that intelligent machines should also repre-
sent information in contextualized embeddings, deep neural networks (DNNs)
form their object representations based only on the feature distribution of the
image dataset [9,56]. Therefore, they fail if the objects are placed in an incon-
gruent context that was not present in previous seen images [5].

For the scope of this work we investigate the following research questions:

• RQ1 - Can context provided in form of a KG influence learning image rep-
resentations of a DNN, the final accuracy, and the image predictions?

• RQ2 - Can context help to avoid critical errors in domain changing scenarios
where DNNs fail?

To enable standard DNNs to build contextual object representations, we
provide the context using a knowledge graph (KG) and its corresponding knowl-
edge graph embedding (hKG). Similar to the process in the human brain, we
conduct experiments with three different types of contexts, namely visual con-
text, taxonomical context, and functional context 3. We provide two versions
of knowledge infusion into a DNN and compare the induction of different con-
textual models in depth by quantitatively investigating their learned contextual
embedding spaces using class-related cosine similarities. In addition we evaluate
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our approach quantitatively by comparing their final accuracy on object recog-
nition tasks on source and target domains and provide insights and challenges.
The structure of this paper is organized as follows: Sect. 6 outlines related work.
In Sect. 3.1 we introduce the three different types of context and an option to
model these views in a contextual knowledge graph. Section 3 shows two ways
of infusing context into a visual DNN. In Sect. 4 we conduct experiments on
seven image datasets in two transfer learning scenarios. In Sect. 5 we answer the
research questions and summarize the main insights of our approach.

2 Preliminaries

Contextual Image Representations in the Brain. Cognitive and neuroscience
research has recently begun to investigate the relationship between viewed
objects and the corresponding fMRI scan activities of the human brain. It is
assumed that the primate visual system is organized into two separate process-
ing pathways in the visual cortex, namely, the dorsal pathway and the ventral
pathway. While the dorsal pathway is responsible for the spatial recognition
of objects as well as actions and manipulations such as grasping, the ventral
pathway is responsible for recognizing the type of object based on its form or
motion [52]. Bonner et al. [7] recently showed that the sensory coding of objects
in the ventral cortex of the human brain is related to statistical embeddings
of object or word co-occurrences. Moreover, these object representations poten-
tially reflect a number of different properties, which together are considered to
form an object concept [33]. It can be learned based on the context in which the
object is seen. For example, an object concept may include the visual features,
its taxonomy, or the function of the object [18,49].

Image Representations in the DNN. Recent work has shown that while the
performance of humans, monkeys, and DNNs is quite similar for object-level
confusions, the image-level performance does not match between different
domains [49]. In contrast to visual object representations in the brain, which
also include high level contextual knowledge of concepts and their functions,
image representations of DNNs only depend on the statistical co-occurrence of
visual features and a specific task. We consider the context extracted from the
dataset as dataset bias. Even in balanced datasets, i.e., datasets containing the
same number of images for each class, there still exists imbalance due to overlap
of features between different classes. For instance, it must be taken into account
that a cat and a dog have similar visual features and that in composite datasets
certain classes can have different meta-information for the images, such as illu-
mination, perspective or sensor resolution. This dataset bias leads to predefined
neighborhoods in the visual embedding space, as well as predefined similarities
between distinct classes. In a DNN, an encoder network E(·) maps images x to
a visual embedding hv = E(x) ∈ R

dE , where the activations of the final pool-
ing layer and thus the representation layer have a dimensionality dE , where dE

depends on the encoder network itself.
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Fig. 2. Our approach to learn contextual image representations consists of two main
parts: 1) the contextual view extraction; and 2) the contextual view infusion.

Contextual Representations in the KG. A knowledge graph is a graph of data
aiming to accumulate and convey real-world knowledge, where entities are repre-
sented by nodes and relationships between entities are represented by edges [21].
We define a generic knowledge graph (GKG) as a graph of data that relates
different classes of a dataset based on defined contextual properties. These con-
textual properties can be both learned and manually curated. They bring in
prior knowledge about classes, even those that may not necessarily be present
in the image dataset, and thus place them in contextual relationships with each
other. A KG comprises a set of triples G = H,R, T , where H represents enti-
ties, T ⊆ E × L denotes entities or literal values and R, is a set of relationships
connecting H and T .

3 Learning Contextual Image Representations

The framework, as shown in Fig. 2 consists of two main parts: 1) the contex-
tual view extraction, where task relevant knowledge is extracted from a generic
knowledge graph; and 2) the contextual view infusion, where the contextual view
is infused into the DNN.

3.1 Contextual View Extraction

A knowledge graph can represent prior knowledge encoded with rich semantics
in a graph structure. A GKG encapsulating n contextual views:

GKG ⊇ {GKG1, GKG2, ..., GKGn}

is a collection of heterogeneous knowledge sources, where each contextual view
defines specific relationships between encoded classes. However, for a particular
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Fig. 3. Context can occur in various ways. Aligned to insights of how humans perceive
the world, we present three contextual views of a generic knowledge graph, namely the
visual, taxonomical, and functional view.

task only a specific part of a GKG can be relevant. Thus, a subgraph containing
a single contextual view:

GKGview = query(GKG; view)

or a combination of views is extracted from a GKG. Since object recognition
models are deployed in the real world that differs from their training domain, it
is necessary to encode prior knowledge that is not present in the dataset.

Based on image representations in our brain and on how humans tend to
classify objects, we introduce three distinct types of contextual views as shown
in Fig. 3. The first contextual view is based on visual, the second view is based
on taxonomical, and the third view is based on functional properties.

Visual Context. The visual view (GKGv) describes high-level visual properties
of the classes, for instance properties describing color, shape, or texture. These
properties may or may not be present in the image data set. For example if all
horses in the dataset are white, we want to encode that horses can also occur in
different colors.

Taxonomical Context. The taxonomical view (GKGt) describes class relation-
ships based on hierarchical schemes. A taxonomy is built by experts and can con-
tain categories based on concepts from biology, living place, feeding method, etc.
For instance, a biological taxonomy separate animals from vehicles and divides
them into further subcategories.

Functional Context. The functional view (GKGf ) contains properties describing
the function of a class. It is known that tools are categorized in the human brain
based on their function [33]. In that sense properties as hit, rub, or drill would
determine the category of a given tool. However, to broaden the scope, additional
functional properties such as noise, transport, or smell can be introduced.
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Fig. 4. Contextual view infusion. The contextual object recognition model (DNN)
is trained in two different ways: a) using the KG as a trainer, where KGEu uses
no supervision of the image data; or b) using the KG as a peer, where KGEs uses
supervision of the image data. Images x are fed into the DNN, producing hv(KGEview)

which is compared with hKGEview using the KG-based contrastive loss. In a second
step, a gaussian process (GP) or linear layer is trained to predict the class labels y of
x based on the trained hv(KGEview).

3.2 Contextual View Infusion

When transferring the knowledge from the GKGview using a knowledge graph
embedding method (KGE) into a knowledge graph embedding:

hKGEview = KGE(GKGview)

graph based relationships are transferred into spatial relationships. Intuitively,
a different context leads to a different representation in the vector space, where
hKGEview reflects all relationships that are modelled in GKGview.

As illustrated in Fig. 4, we present two different ways of learning a visual
context embedding hv(GKGview) following Monka et al. [34]. The first one is
DNNKGEview

u
, which uses the knowledge graph as a trainer [35] and thus

learns hKGEview
u

without any supervision of image data. The second version
is DNNKGEview

s
, which uses the knowledge graph as a peer and thus learns

hv(KGEview
s ) and hKGEview

s
jointly with additional supervision of image data.

Both versions use the contrastive loss to align the image embedding
hv(KGEview) of the images x and the DNN with the knowledge graph embed-
ding hKGEview of the label information. A batch consists of N augmented train-
ing samples. The KG-based contrastive loss is constructed using the individual
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anchor losses as given by:

LKGEview =
N∑

i=1

LKGEview,i.

Within a batch, an anchor image i ∈ {1...2N} is selected that corresponds
to a specific class label yi, where yi points to its knowledge graph embedding
hKGEview,i. Positive images j are all images of the batch that correspond to the
same class label as the anchor i. The numerator in the loss function computes
a similarity score between hKGEview,i and the image embeddings hv(KGEview),j .
The denominator computes the similarity score between hKGEview,i and the
image embeddings hv(KGE),k of all images of the other classes in the batch. As a
similarity score, we choose the cosine similarity, which however can be replaced
by others. 1k �=i ∈ {0, 1} is an indicator function that returns 1 iff k �= i evaluates
as true, and τ > 0 is a predefined scalar temperature parameter.

LKGEview,i = −1
2Ny i

−1

∑2N
j=1 1i�=j · 1yi=yj

· log
exp (hKGEview,i·hv(KGEview),j/τ)

∑2N
k=1 1i�=k exp (hKGEview,i·hv(KGEview),k/τ)

Prediction. To predict the class labels of unknown images it is common to train
a linear layer (LL) or to use a gaussian process (GP ) on top of hv(KGEview). For
GP , we run the whole training dataset through the trained DNN and calculate
the mean and covariance matrices for all the classes in hv(KGEview). GP and
LL, both calculate decision boundaries in hv(KGEview) for all the classes of the
dataset. At inference, where the goal is to predict the class label of an unknown
image, GP or LL assign probabilities if an image belongs to a specific class. The
maximal probability is chosen to be the final prediction.

4 Experiments

The goal of our empirical investigations is to provide an answer to RQ1 and
RQ2. Therefore we conduct experiments with seven datasets in the two specific
domain generalization settings, Cifar10 and Mini-ImageNet. For both experi-
ments, we build separate GKGs that include three different contextual views,
the visual (GKGv), the taxonomical (GKGt), and the functional (GKGf ) view,
respectively. Based on the framework in Sect. 3, we use GKGview to learn a con-
textual DNN in combination with image data. We evaluate and compare both
versions of our approach, DNNKGEview

u
and DNNKGEview

s
.

4.1 Implementation Details

For both experiments, we use a similar implementation of our approach. From
the GKG, we extract various GKGviews using respective SPARQL queries. A
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ResNet-18 architecture is used as a DNN-backend, with a 128-dimensional MLP
as the head. We train all configurations using an ADAM optimizer, a learning
rate of 0.001, no weight decay, and a cosine annealing scheduler with a learn-
ing decay rate of 0.1. The images are augmented via random cropping, random
horizontal flipping, color jittering, random grayscaling, and resizing to 32× 32
pixels. All models are trained for 500 epochs. For a) DNNKGEu

view we trans-
form GKGview into vector space using a graph auto encoder (GAE) [28], which
we denote as the DNNGAEview model. Our GAE comprises two convolutional
layers, with a hidden layer dimension of 128. We train the GAE using an ADAM
optimizer with a learning rate of 0.01 for 500 epochs. For b) DNNKGEview

s
, a

graph attention network (GAT) [45] is trained in combination with the image
data, denoted as the DNNGATview model. The GAT consists of two GAT-layers
with 256 hidden dimensions, 8 heads, and an output dimension of 128. Training
is performed via the same KG-based contrastive loss from the images in addition
to the GKGview input. We optimize the GAT using an ADAM optimizer with
a learning rate of 0.001 and no weight decay.

4.2 Experiments on Cifar10

Dataset settings. The source domain Cifar10 [29] consists of 6000 32 × 32 color
images for each of the 10 classes, namely airplane, bird, automobile, cat, deer,
dog, horse, frog, ship, and truck. The target domain Stl10 [14] includes 500
96× 96 color images for each of the 10 classes, namely airplane, bird, automobile,
cat, deer, dog, horse, monkey, ship, and truck.

Knowledge graph construction. We build a GKG that includes the previously
discussed three types of context, as shown in Fig. 3. GKGv contains visual prop-
erties like: hasBackground : air, forest, water; hasColor : black, blue, brown; has-
Part : eyes, legs, wings; hasShape: rectangular, ellipsoid, cross; hasSize: large,
medium, small; or hasTexture: dotted, striped, uniform. GKGt contains a tax-
onomy of the classes using the type-relation. For example, the class Horse is-a
Mammal and is-an Animal or the class Ship is-a Water-vehicle and is-a Vehi-
cle. GKGf defines the function of the class, e.g. properties like: hasMovement :
drive, fly, swim; hasSound : bark, meow, vroom; hasSpeed : fast, medium, slow;
hasWeight : heavy, light, middle. Our GKG contains in total 34 classes, 16 object
properties, and 65 individuals. Please note that our GKG is only an example
and we are aware that there are unlimited possibilities of how and what type of
knowledge can be modeled in a knowledge graph.

Evaluation. To evaluate our approach we first investigate the learned embed-
dings, if and how semantic relationships from GKGview are reflected in
hGKGview . Second, we compare the individual class accuracies to see how these
relationships influence the final object recognition. Figure 5 shows an analysis: a)
the visual view; b) the taxonomical view; and c) the functional view. For every
cell in hGAEview we calculate the cosine similarity between the corresponding
nodes, i.e. the classes of the image dataset, and for hv(GAEview) we calculate
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a) Visual b) Taxonomical c) Functional d) Generic

Cifar10

Stl10

Fig. 5. We compare hGAEview and hv(GAEview) based on: a) the visual view; b) the
taxonomical view; c) the functional view; and d) the full generic KG. To investigate how
the semantic relationships are reflected in the embeddings, we illustrate the individual
cosine similarities between the classes of the Cifar10 and the Stl10 dataset.

the class-means of the image representations. Since the goal is to learn con-
textual image classifiers, we investigate if context is transferred to hGKGview

and hv(GKGview), respectively. It can be seen that semantic relationships pro-
vided by the GKGview are reflected in hGAEview . In hGAEv , the airplane has
the highest similarity to the truck and the bird, in hGAEt , the airplane has the
highest similarity to the ship, in hGAEf , the airplane has the highest similarity
to the automobile, and hGAE the airplane has a high similarity to all vehicles.
Further, one notices that taxonomical and generic hGAE have two main distinc-
tive groups in the embedding space. In hGAEt and hGAE vehicles and animals
have a high inter-cluster, but a small intra-cluster variance. For hv(GAEview),
we observe that similarities in the GKGview and hGAEview are only partially
reflected. All hv(GAEview) seem to have a similar underlying pattern of the class
distribution, with minor differences. We think that implicit relations between
class features interfere with the similarities given by hGAE and the GKG. Fur-
ther we retrieve different distributions for either Cifar10 or Stl10. This behaviour
can be explained by the distribution shift between source and target domain.
While the network attempts to separate classes in the training domain Cifar10,
this separation is less successful in the testing domain Stl10.
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Table 1. Comparison of the individual class accuracies for the Cifar10 dataset as
training domain and the Stl10 dataset as testing domain. We compare the contextual
view trained DNNs against their baseline SupSSL.

(a) Results on Cifar10

Cifar10 Airplane Auto Bird Cat Deer Dog Frog Horse Ship Truck All

SupSSL 95.1 97.0 91.8 83.9 92.9 85.7 96.0 93.5 96.8 95.9 92.9

ΔDNNGAEv −1.2 0.5 −2.6 −0.2 2.3 −0.8 −0.2 −1.1 −0.5 −0.9 −0.5

ΔDNNGAEt −0.9 −0.6 −1.2 −30.8 −29.8 −0.2 −2.2 −1.6 −1.5 −1.3 −7.0

ΔDNNGAEf 1.0 0.2 −1.1 1.9 0.1 0.6 0.7 1.2 −0.1 −0.4 0.4

ΔDNNGAE −0.7 0.0 −2.3 0.4 0.6 −0.6 −1.1 0.0 0.3 −1.8 −0.5

ΔDNNGATv −0.6 −0.3 0.2 0.3 0.1 −1.0 0.3 0.9 0.7 −0.8 −0.0

ΔDNNGAT t −0.9 0.0 −1.7 1.8 0.1 1.0 0.4 0.5 −0.1 0.3 0.1

ΔDNNGATf −0.4 0.5 −3.0 1.7 1.5 −0.4 0.4 0.8 0.4 −0.1 0.1

ΔDNNGAT −1.0 0.3 −1.8 1.2 −0.3 2.0 −0.5 1.7 0.0 0.7 0.2

(b) Results on Stl10

Stl10 Airplane Auto Bird Cat Deer Dog Frog Horse Ship Truck All

SupSSL 85.4 86.9 82.4 56.6 91.5 60.5 − 76.5 84.5 74.1 77.6

ΔDNNGAEv 1.0 0.2 −2.6 3.4 1.2 −4.5 − −4.8 −0.6 3.9 −0.3

ΔDNNGAEt 2.4 −1.0 −1.5 −10.1 −32.9 0.2 − −0.5 −1.6 −1.6 −5.2

ΔDNNGAEf 1.9 −0.8 −1.3 1.4 −2.4 −0.5 − 3.4 0.9 3.3 0.7

ΔDNNGAE 0.4 0.5 −1.9 1.8 −1.5 2.6 − −1.4 −0.6 2.1 0.2

ΔDNNGATv 0.5 −0.9 2.6 −0.6 −0.1 0.5 − 0.5 1.0 0.0 0.4

ΔDNNGAT t 1.0 −2.1 −0.5 1.9 −0.4 0.8 − 0.5 1.6 3.0 0.6

ΔDNNGATf 2.7 −0.3 −1.5 −0.7 −1.0 −2.6 − 0.0 0.4 1.8 −0.1

ΔDNNGAT −1.6 −1.0 −2.6 −2.2 −1.2 2.8 − 3.1 1.2 4.3 0.3

In Table 1 we compare the final object recognition accuracy of the contex-
tual DNNs, compared to their baseline SupSSL. SupSSL is the same model
trained with the supervised contrastive loss [27] and without auxiliary context.
We observe that for different contextual infusions the overall accuracy is not sig-
nificantly impacted. For Cifar10 ΔDNNGAEt with −7.0 is the worst performing
model, whereas ΔDNNGAEf with 0.4 is the best performing model. We marked
the best performing model for every class in bold. It can be seen that for every
class a different contextual model is outperforming the others. It also shows that
context influences the focus a DNN puts on predicting a specific class. Table 1b
shows the relative accuracies of the contextual models on the Stl10 dataset. Note
that the models are only trained on Cifar10 data. The goal of that domain gen-
eralization scenario is to test the robustness of the models. When evaluated on
the target domain, it can be observed that almost in every contextual model
the relative accuracy is increased compared to the baseline with no contextual
knowledge. In scenarios where the domain changes, we observe strange phenom-
ena occurring such that the model with the second worst performance DNN t

GAE

for the class Aircraft of the Cifar10 dataset is the model with the second best
performance for Aircraft on Stl10. However, for most of the classes, we see a
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a) Visual b) Taxonomical c) Functional d) Generic

Fig. 6. We compare hGAEview and hv(GAEview), as well as hGATview and hv(GATview)

based on, a) the visual view, b) the taxonomical view, c) the functional view, and d)
the full generic KG. To investigate how the semantic relationships are reflected in the
embeddings, we illustrate the individual cosine similarities between the classes of the
Mini-ImageNet dataset.

trend that the best performing model for a class in Cifar10 tends to perform
also better on the target domain.

4.3 Experiments on Mini-ImageNet

Dataset settings. We use Mini-ImageNet, a subset of the ImageNet dataset, as
our training domain. It contains 100 classes, each having 600 images of size 84
× 84. As testing domain we use ImageNetV2 [40] comprising 10 new test images
per class, ImageNet-Sketch [46] with 50 images per class, ImageNet-R [19], which
has 150 images in the style of art, cartoons, deviantart, and ImageNet-A [20]
with 7.500 unmodified real-world examples.

Knowledge Graph Construction. Our GKG is build using the three contextual
views as depicted in Fig. 3. GKGv contains visual properties, e.g. hasColor :
black, blue, brown; hasTexture: dotted, striped, uniform; hasSize: large, medium-
large, small; and hasShape: ellipsoid, quadratic, rectangular. GKGt contains a
taxonomy of the classes using the type-relation. Following DBpedia [3], the class
Malamute is-a Dog, is-a Mammal, is-an Animal, is-an Eukaryote, and is-a Species.
GKGf defines the function of a class with properties like: hasSpeed : fast, static,
slow; hasWeight : heavy, light, middle; or hasTransportation: goods, none, people.
Our GKG contains in total 166 classes, 14 object properties, and 183 individuals.

Evaluation. Due to the difficulty of deeply investigating 100× 100 class similari-
ties, we provide a qualitative overview of the embedding spaces. Figure 6 shows a
qualitative comparison of hKGEview and hv(KGEview) of a) the visual view; b) the
taxonomical view; c) the functional view; and d) the generic knowledge graph.
Complementing the experiment in Sect. 4.2, we illustrate the class similarities
of hGAT and hv(GAT ) learned using image data as supervision. Interestingly, it
can be observed that the similarities in hGAT and hGAE follow a similar pat-
tern, but hGAE seems to have a stronger contrast. However, when investigating
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Table 2. Comparison of the contextual view models and their SupSSL baseline on
the Mini-ImageNet and its derivatives, Mini-ImageNet (Mini), ImageNetV2 (V2),
ImageNet-Sketch (Sketch), ImageNet-R (R), and ImageNet-A (A).

ImageNet Mini V2 Sketch R A

SupSSL 58.6 43.0 20.3 4.3 1.2

ΔDNNGAEv −0.3 0.0 −0.6 0.2 −0.2

ΔDNNGAEt −19.6 −13.7 −8.8 −2.8 0.0

ΔDNNGAEf −5.2 −3.3 −2.3 −0.7 0.3

ΔDNNGAE 0.8 1.6 −0.6 −0.1 −0.1

ΔDNNGATv 0.9 2.3 0.2 0.0 0.3

ΔDNNGAT t 1.3 0.6 0.1 0.1 0.0

ΔDNNGATf 0.4 0.4 0.0 −0.1 −0.1

ΔDNNGAT 0.5 0.6 0.1 0.0 0.0

SupSSL
GAE Visual

GAE Taxonomical
GAE Functional

GAE Generic
GAT Visual

GAT Taxonomical
GAT Functional

GAT Generic

Fig. 7. Contextual Predictions of DNNGAE (GAE) and DNNGAT (GAT ) and their
contextual view on Mini-ImageNet. The contextual view influences the image repre-
sentation and therefore the final prediction for the same input image.

the learned image representations in hv(GAT ) it is hard to spot the differences
between the individual contextual models.

As depicted in Table 2 DNN t
GAE and DNNf

GAE are outperformed by the
baseline SupSSL and the other models with different contextual views by a
large margin. In contrast to the Cifar10 experiment where the least performing
model is only 8% worse than the baseline, in Mini-ImageNet the worst is around
34%. Further, we see that DNNGAT t does not suffer from constraints given by
GKGt. This finding confirms our assumption that a joint training can soften the
constraints of the GKG.

Similar to the example of ambiguous figures in Fig. 1, our approach enables
DNNs to interpret the same image in various ways using contextual views given
by a knowledge graph. The results in Fig. 7 show that for out of distribution
images the contextual views play a major role for giving reasonable predictions.
The idea is that some class confusions are not that critical as others. In that
sense, for some tasks it is uncritical to confuse a goose with a house finch as they
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are both part of the bird family, however confusing a music instrument (oboe),
with a dog (malamute) could lead to problems. We also see that DNNGAE

(GAE) and DNNGAT (GAT ) do not necessarily predict the same image based on
the given context. We believe that further research is needed w.r.t. investigating
how to best incorporate context in combination with image data.

5 Discussion and Insights

With our work, we provided a method to infuse context in form of GKGview into
DNNs for visual object recognition. However, knowledge infusion is not straight-
forward, as problems of machine learning, such as hyper-parameter selection,
weight initialization, or dataset dependence, strongly influence the learned rep-
resentations. Regarding RQ1 - Can context provided in form of a KG influence
learning image representations of a DNN, the final accuracy, and the image pre-
dictions? - we list the insights obtained from our investigations:

– GKGview defines class-relationships. We showed that various contextual
views can be extracted from a GKG and that different views lead to different
relationships between classes of the dataset.

– hKGEview needs to reflect GKGview. The embedding method itself also
influences the hKGEview and the performance of the final prediction model.
Context can get lost when transferring GKGview into hKGEview . Hard con-
straints either in GKGview or produced by the KGE-method, e.g. to represent
dissimilar classes in hKGEview together, can drastically reduce the prediction
accuracy.

– hGAEview is only partially reflected in hv(GAEview). Since data-driven
approaches have a strong dependence on the dataset distribution, hGAEview

only influences hv(GAEview) to form a hybrid representation. We see that data
augmentation weakens the dataset bias and helps to align hv(GAEview) with
hGAEview .

– Joint training reduces the impact of GKG. Both the learned hv(KGEs)

and the achieved accuracy values are only slightly affected by the induced
GKG. Neither the qualitative evaluation of hv(KGEs) nor the quantitative
evaluation based on accuracy show any significant contextual changes.

– Context shifts the focus on learning specific classes. We assume that
the context constraints the DNN and its hypothesis space. It is known that
DNNs tend to memorize spurious correlations that can lead to catastrophic
errors in the real world. We think that the task of our contextual models is
to prevent exactly these errors. In our experiments, we showed that specific
contextual models performed better on specific classes. We assume that con-
text can shift the overall interest of a DNN to predict a certain class.
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– Context rather influences individual image predictions. Similar to
the proposed motivation of how humans interpret ambiguous figures we see
context influencing the prediction of difficult or undefinable images in the
dataset. Regarding RQ2 - Can context help to avoid critical errors in domain
changing scenarios where DNNs fail?

– Context makes more robust against domain changes.

It can be seen that almost every contextual model increases its relative accu-
racy compared to the baseline when evaluated on the target domain. Moreover,
contextual models that performed better on the source dataset tend to perform
better if domain change occurs. We argue that GKGview regularizes the strong
dependency on the source domain and thus increases the performance on the
target domain.

6 Related Work

Contextual information has always been of great interest for improving computer
vision systems. We structure related work into implicit-contextual visual models,
explicit-contextual visual models, and contextual knowledge graph embeddings.

Implicit-Contextual Visual Models. Contextualize relationships between visual
features that occur in the image itself. They are used for object priming, where
the context defines a prior on the detection parameters [43] or for object
detection and segmentation, where boosting is used to relate objects in an
image [44]. Wu et al. [51] improved object recognition by processing object
regions and context regions in parallel. To overcome the drawback of small recep-
tive fields from standard CNNs, extensions that incorporate visual features from
far image regions [24,25] or alternative architectures, such as vision transformers
(ViTs) [53] have been established recently. Moreover, Gao et al. [17] proposed
that all modern DNNs are part of the implicit-contextual models since they
aggregate contextual information over image regions.

Explicit-Contextual Visual Models. Use higher level information like object co-
occurrences or semantic concept relationships. They induce additional contex-
tual information that is either not in the dataset or cannot be automatically
extracted by the DNN [22]. To create explicit context based on object relations,
most methods use scene graphs which describe a scene based on symbolic repre-
sentations of entities and their spatial and semantic relations. Scene graphs have
been applied to the task of collective or group activity recognition [13,15], object
recognition [55,56], object detection [12,32] and visual question answering [42].
Label graphs [23] apply fine-grained labels to an image and are used to improve
object recognition and reasoning over object relationships [4]. Semantic scene
graphs extend scene graphs by textual descriptions and fine-grained labels of a
scene [31]. Context-aware zero-shot learning for object recognition [54] or com-
positional zero-shot learning methods [36] add observed visual primitive states
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(e.g. old, cute) to objects (e.g. car, dog) to build an embedding space based on
visual context. However, scene correlations need to be addressed very carefully,
as implicit-contextual models can heavily depend on learned contextual relation-
ships that are only valid for a specific dataset configuration. Therefore, work was
already done to decorrelate objects and their visual features to improve model
generalization [41].

Contextual Knowledge Graph Embeddings. Whereas our approach extracts the
contextual views in a previous step before the actual knowledge graph embed-
ding, there exist works that create contextualized KG embeddings based on the
full KG. Werner et al. [50] introduced a KG embedding over temporal contextu-
alized KG facts. Their recurrent transformer enables to transform global KGEs
into contextual embeddings, given the situation-specific factors of the relation
and the subjective history of the entity. Ning et al. [38] proposed a lightweight
framework for the usage of context within standard embedding methods. Wang
et al. [47] presented a deep contextualized knowledge graph embedding method
that learns representations of entities and relations from constructed contex-
tual entity-relation chains. Wang et al. [48] introduced the contextualized KG
embedding method (CoKE). They propose to take the contextual nature of KGs
into account, by learning dynamic, flexible, and fully contextualized entity and
relation embeddings.

7 Conclusion and Future Work

In this work, we proposed a framework for context-driven visual object recog-
nition based on knowledge graphs. We qualitatively and quantitatively investi-
gated how different contextual views, as well as their embedding and their infu-
sion method, influence the learned DNN. Further, we have seen that contextual
models tend to have a minor impact on the final accuracy, but a major impact
on how individual classes or images are represented and predicted. In particu-
lar, for out of distribution data, where data-driven approaches suffer from less
knowledge, contextual image representations help to constrain the hypothesis
space, leading to more reasonable predictions. However, there are still challenges
to be faced. We conducted intensive research about a possible context infusion
approach and emerging challenges. On the one hand, we have the implementa-
tion of the infusion method, which itself heavily depends on modeling choices,
weight initialization, as well as network and hyper-parameter selection. On the
other hand, there is a strong dependence on the image data, which originally
comes with an initial dataset bias. This dataset bias limits the ability to influence
image data representations and thus predictions influenced by prior knowledge.
However, our work showed that with deeper investigations of all the influencing
parameters knowledge-infused learning is a promising approach to build context-
driven and future intelligent systems.
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Abstract. When cooking, it can sometimes be desirable to substitute
ingredients for purposes such as avoiding allergens, replacing a miss-
ing ingredient, or exploring new flavors. More generally, the problem of
substituting entities used in procedural instructions is challenging as it
requires an understanding of how entities and actions in the instructions
interact to produce the final result. To support the task of automatically
identifying viable substitutions, we introduce a methodology to (1) parse
instructions, using NLP tools and domain-specific ontologies, to gener-
ate flow graph representations, (2) train a novel embedding model which
captures flow and interaction of entities in each step of the instructions,
and (3) utilize the embeddings to identify plausible substitutions. Our
embedding strategy aggregates nodes and dynamically computes inter-
mediate results within the flow graphs, which requires learning embed-
dings for fewer nodes than typical graph embedding models. Our rule-
based flow graph generation method shows comparable performance to
machine learning-based work, while our embedding model outperforms
baselines on a link-prediction task for ingredients in recipes.

Keywords: Procedural instructions · Cooking recipes · Information
extraction · Ingredient substitution · Knowledge graph embedding

1 Introduction

Procedural instructions are a valuable source of information which provide
descriptions of how to carry out a task or achieve some goal. Such instructions
are typically presented in a stepwise fashion, breaking down the overarching task
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into a series of individual steps. A prime example of this is a cooking recipe,
which specifies a set of ingredients along with a number of steps describing how
to combine and modify those ingredients to form the final dish.

When performing tasks that are described by such instructions, it is possi-
ble to modify the instructions to complete the task in a slightly different way
while producing similar results. In cooking, this can be observed when people
substitute ingredients in the recipe – many ingredients exist that can be replaced
and result in a dish that is “close enough” to the original. However, it can be
difficult to determine which modifications of the instructions are valid because
it requires an understanding of the entities involved with the instructions, the
actions taking place, and the outcomes produced by different actions.

Fig. 1. A running example recipe and its flow graph. Intermediate nodes are labeled
as A, B, etc. for convenience.

Gaining a comprehensive understanding about the entities and actions in
procedural instructions presents a major challenge. Instructions often are not
well structured or specific, as they rely on common sense. For example, given the
instructions “(1) Place bacon in a skillet (2) Cook over medium heat”, we infer
that the instructions are telling us to cook the bacon that we just placed in the
skillet. Correctly parsing these steps might also involve background knowledge,
such as alternative names for similar entities (e.g., pan and skillet). Furthermore,
steps are not necessarily completed sequentially, which requires us to identify
branching instructions and co-references of similar entities from earlier steps.

One method that can help provide the structure necessary to represent this
information and identify viable substitutions is to form a flow graph of the
instructions. A flow graph can represent the instructions as a rooted, directed
acyclic graph, with the root node representing the final result of the instructions
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(e.g., the dish produced by a recipe), leaf nodes representing the entities (e.g.,
the ingredients and equipment), and edges capturing the actions taking place
to produce intermediate results (e.g., mixing flour and water to form a batter).
Representing the procedural instructions in this form can then be utilized to
further identify which modifications can be made to the instructions.

A running example recipe is illustrated in Fig. 1. We can see several steps
that specify how to use the ingredients, as well as equipment such as the skillet
and bowl, to make the recipe. The recipe’s corresponding flow graph captures
these ingredient and equipment entities as leaf nodes, and their usages – i.e.,
verbs such as “cook” and “drain” – are captured as edges.

In order to form such flow graphs from procedural text, it can also be ben-
eficial to incorporate domain-specific information sources. For example, ontolo-
gies can provide authoritative knowledge about entities that has been manually
curated by domain experts. This knowledge in turn can inform the information
extraction process and augment the resulting flow graph.

In this paper, we present the EaT-PIM (Embedding and Transforming Pro-
cedural Instructions for Modification) methodology to extract information from
domain-specific instructions – specifically, cooking recipes – to convert them into
flow graphs. We then present an approach to learn embeddings for entities and
actions that occur in the flow graphs such that we can use the embeddings to
identify plausible modifications that can be made to the instructions. Intuitively,
our approach aims to learn embeddings that capture the flow of entities and
actions from the flow graph, which in turn can be used to dynamically compute
the output of a recipe after performing an ingredient substitution.

Our contributions are as follows: (1) Present a rule-based method to generate
flow graphs from instruction text, leveraging domain ontologies and dependency
parsing tools. (2) Introduce a novel graph embedding strategy for flow graphs,
which aggregates nodes to better capture instruction steps and dynamically cal-
culates intermediate results. Our method requires learning embeddings for signif-
icantly fewer nodes compared to baseline graph embedding models while show-
ing top performance at a link prediction task for cooking recipes. (3) Present a
method to identify plausible entity substitutions in flow graphs using our embed-
ding calculation approach. Further, this method can handle new combinations
of entities and actions without additional training.

2 Problem Formulation

Here, we give a brief overview of our main problem formulation and definitions.
While this work focuses specifically on recipes, the approach can be extended to
procedural instructions in different domains in a similar manner.

2.1 Recipe Modeling

A recipe R contains two pieces of information – a list of steps in natural language,
SR, and the set of ingredients used in the recipe, IR. SR = [Si|i = 1..n] is a list of



164 S. S. Shirai and H. Kim

individual sentences, ordered sequentially as in recipe steps. Each ingredient Ij ∈
IR is a distinct ingredient defined by the recipe. We represent the ingredients and
recipes following Resource Description Framework (RDF) standards to enable
better integration with ontology and knowledge graph resources.

2.2 Flow Graph Representation

A key property of procedural instructions is that the main task of the instructions
is to create an output entity through some combination and transformation of
input entities. A recipe takes raw ingredients, applies transformations (such as
cutting) to them, and combines them to form the final dish. Transformation
that are applied may change properties of the original inputs (such as “diced
tomatoes”), and the instructions provide us with a trace of how such intermediate
results were formed. As such, it is sensible to consider representing instructions
as a “flow” that captures how input items are processed through the instructions.

Our goal is to parse the instructions with the set of ingredients contained in
R to form a flow graph. For this work, we define a flow graph as follows:

Definition 1. A flow graph is an RDF graph of triples (h,r,t), denoting a
relation r from entity h to entity t, with the following properties: (1) the graph
contains no cycles; (2) the graph has a single output node that is reachable by
all other nodes; (3) all incoming relations to a node have the same label; and (4)
all domain-specific entities have no incoming relations.

In our definition, we distinguish domain-specific entities as equipment or
ingredients that are specified in the recipe text. All such entities act as leaf
nodes in the flow graphs. Other nodes in the flow graph, which have incoming
relations, are denoted as intermediate nodes. In turn, the relations in the flow
graphs correspond to the actions taking place in the recipe instructions, and their
connections and directions indicate how the entities and intermediate nodes are
being processed through the flow graph.

Example 1. Consider our running example in Fig. 1. This flow graph contains
no cycles and has a single output node G. All incoming relations to intermediate
nodes also share the same label. Lastly, all entities corresponding to ingredients
or cooking equipment are leaf nodes. We also can observe how the edge labels
correspond to actions taking place in the recipe.

Our use of the terminology “flow graph” resembles that of some prior works
[7,15,27], but we make several distinctions surrounding what information is cap-
tured and how it is represented. Our requirement that entities must be leaves
in flow graphs is not shared by previous definitions. Additionally, prior mod-
els do not have restrictions that incoming edges must have the same label, and
intermediate results (as we model in our flow graph definition) are not modeled.

We also note the omission of several details from our example recipe’s instruc-
tions. For example, the details to cook the bacon “over medium high heat” and
“until crispy” are omitted in our flow graph. For the scope of this work, we
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chose to focus on capturing and using the core information about actions and
entities while dropping additional qualitative modifiers. Another point of omis-
sion is information about what role each entity plays in an action, as in how the
bacon is being placed into the skillet. For the scope of this work, we simplify
this information to only capture which entities were involved in the action. In
these omissions, we opted to favor simplification of the flow graph at the cost of
semantic accuracy due to the difficulty of correctly parsing the instructions.

Lastly, we omit information from sentences that are unrelated to cooking
the actual recipe. Whenever ingredients that weren’t included in the recipe’s
ingredient list occurred, we considered it extraneous information.

3 Flow Graph Generation from Instructions

To construct flow graphs, we make use of natural language processing (NLP)
tools, a part-of-speech (PoS) tagger and dependency parser, as well as ontologies
to provide knowledge about domain-specific entities. After using such tools to
extract relations between entities and actions from each step in the recipe, the
steps are combined together to form a flow graph. We note that our data and
methods focus only on handling English recipe texts.

3.1 Parsing Instruction Text

The first step we apply is to perform dependency parsing and PoS tagging over
each sentence in the recipe’s instructions. Our goal is to find verbs and their
associated nouns; these verbs are the actions taking place in the instructions.
In our experiments, we perform this step using spaCy’s [9] pretrained language
models. An example of the dependency tree that is produced by spaCy can be
seen in Fig. 2. Based on both the PoS and dependency tags produced by spaCy,
we devised a rule-based method1 to connect nouns and verbs occurring in each
sentence to serve as the foundation for forming the recipe’s flow graph.

Fig. 2. An example dependency tree produced for a sentence using spaCy.

After processing each step in the recipe, we are left with a list of information
pertaining to verbs and nouns that are directly interacting with each other in
each step of the recipe. For example, from the example sentence in Fig. 2, we
extract two tuples of verb-noun relations – (“place”, “bacon”), and (“place”,
1 We refer to Sect. 1 in our supplemental material for further details on this process.
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“large deep skillet”). The dependency relation between each verb and noun is
retained for use in forming the flow graph. We discarded prepositions as well as
adverbs to omit some details as noted in the previous section.

Correcting Parses: We found that parsing errors would occur frequently for
sentences that were particularly terse or used implicit subjects (e.g., “Brown beef
in the pot.”). Such sentences have the subject (i.e., the person cooking the recipe)
omitted, as is typical with many imperative sentences, and were ambiguous in
how they should be parsed (e.g., “brown” may be a verb or an adjective).

We expect each sentence in the instructions to provide some meaningful
action to perform, so in cases where no verb is found, we re-run the dependency
parse with an augmented version of the sentence. Instructions are often presented
as imperative sentences, and in English the imperative mood is typically (1)
in the present tense and (2) in the second person. Based on this knowledge,
in practice we found that simply adding a subject – the word “you” – to the
beginning of the sentence resolved many such errors. For example, “you brown
beef in the pot.” resulted in correctly tagging “brown” as a verb.

Filtering. To better focus on modeling objects that are relevant to the instruc-
tions, we can use a domain-specific ontology to filter out extraneous information.
In our experiments we use FoodOn [3], an ontology containing information about
thousands of different foods and their relations, and filter out entities. We do this
by matching noun-phrases from recipe texts to FoodOn classes based on their
class labels, alternative names, and synonyms. We convert all noun-phrases and
class names into one-hot vectors, weighted by TF-IDF measures, and calculate
their cosine similarity to determine matches. In cases where a sufficiently high-
confidence match was not found, we consider the noun irrelevant for our task
and discard the information. We also retain links between ingredients in flow
graphs and FoodOn classes for later use to train embeddings.

3.2 Forming Flow Graphs

After parsing instructions, we have a list of tuples containing verbs, nouns, and
their relations in each step. We proceed to form a flow graph of the overall recipe
by forming small graphs for the content of each step and then connecting the
graphs for each step together into a single flow graph.

Fig. 3. Examples illustrating how two entities can form a single output (left) and how
multiple verbs are applied sequentially to an entity (right).
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First, to form minimal graphs from each step, we use verb-noun relations
that were detected from the dependency parser. The verb is used as the edge
label to connect the nouns to an output node. In cases where multiple verbs
were used in the step, we assume that the noun and intermediate node content
in the step are connected sequentially (as they occur in the step’s sentence). An
example of this step can be seen in Fig. 3.

Using the minimal graphs from each step in the instructions, we move on to
connect each step together to form the overall flow graph. We consider 3 cases:
(1) a step includes a reference to an entity that has been used in a previous step;
(2) a step’s dependency parse includes a verb with no direct subject or object;
and (3) a step follows sequentially from the previous step.

Case 1: In the first case, we check for noun occurrences in each step to see
if the same ingredient is being used. If such a situation exists, we connect the
two steps together by adding an edge from the output of the earlier step to the
first intermediate node in the later step. We check each step in order, prioritizing
earlier steps when adding connections. An example demonstrating how two steps
would be connected in this kind of case can be seen in Fig. 4.

Fig. 4. An illustration connecting two steps in the running example together.

Case 2: For the second case, we use dependency relations between words that
were obtained from the dependency parser. If the step includes a verb but has
no relations to a direct subject or direct object, we infer that the verb is acting
on the output of the previous step. An example of this situation can be seen in
the first two steps of our running example, as “(1) Place bacon in a large, deep
skillet”, “(2) Cook over medium high heat until crispy”. We can infer that the
second step means we must cook the bacon – in the dependency parse result,
“cook’ in step 2 contains no direct subject or object.

Case 3: If either of the previous two cases do not apply, we simply connect steps
together sequentially. In this case, the output node of each step is connected to
the first intermediate node in the next step. The edge for this connection copies
the same label as other incoming edges for that intermediate node, since we
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can assume that the output of the step is having the same actions applied as
other entities in that step. Sequential connections have been shown to be a good
baseline for creating flow graphs in the domain of cooking [10].

Recipe-Specific Cases: Another consideration for a recipe’s flow graph is that
we expect to see all of the ingredients specified by the recipe. While this some-
times is trivial, there are often cases where ingredients are referred to by alternate
names within the recipe steps or as a group of ingredients (e.g., instructions to
“add herbs” rather than individually listing out each herb). In cases where not all
relevant ingredients from the recipe have been included, we identify leaf nodes in
the flow graph that are most similar to the missing ingredients. We used a mea-
sure of semantic similarity, wpath [31], over FoodOn’s ingredient class hierarchy
to determine which node is the most similar.

We also must consider a recipe-specific special case for phrases such as “all
ingredients” and “remaining ingredients.” These phrases occur fairly often in
recipes written by non-experts and rely on the assumption that we know all
ingredients in the recipe ahead of time. They also rely on sequential knowledge
about which ingredients have already been used in the recipe. When either of
these cases occur, we check the flow graph for all instances of ingredient usage
in prior steps and add new edges for any ingredients that have not been used
yet as the “remaining” ingredients.

4 Flow Graph Embedding

A key motivation for using flow graphs in our work is to enable us to view actions
that take place in the instructions as transformations on the input nodes. This
perspective is similar that of common translational knowledge graph embed-
ding (KGE) techniques, such as TransE [2]. Given a triplet (h,r,t), such KGE
methods model t to be the result of applying some transformation r on h. In
TransE, embeddings are learned such that h + r ≈ t given h, r, t ∈ R

k. In this
way, the relation r is used as a transformation on the entity h to produce the
result entity t. Extending this idea to our flow graphs, our aim is to model our
relations – i.e., actions such as “cook” or “crumble” – as transformations on the
input ingredients to produce output intermediate nodes.

However, our flow graphs for procedural instructions are not well suited to
directly apply KGEs that are trained over triplets of data. While KGE models
view each triple independently as indicating a single factual statement, in our
flow graphs all of the incoming nodes contribute to the output. Additionally,
standard KGE model training over triples would require us to learn embeddings
for all intermediate nodes, which is undesirable for our case as the number of
unique intermediate nodes rapidly increases with the number of flow graphs.

4.1 Embedding Strategy

To address the aforementioned issues, we incorporate the idea of performing
aggregation on incoming nodes in the flow graph. This aggregation should serve
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to provide additional context when training embeddings such that all ingredients
involved in a recipe’s step are considered while training. Additionally, we address
the issue of handling intermediate nodes by calculating the output of applying
transformations (based on relation embeddings) to entity embeddings during
each training step. Figure 5 illustrates how entity embeddings are aggregated and
calculated (calculations past node C are omitted for brevity). The aggregation is
performed by taking the mean of the input nodes, while the output is calculated
similar to TransE’s h + r = t formulation. Leveraging the fact that all incoming
edge labels in our flow graphs are the same for a given intermediate node, each
aggregation is treated as a single “head” entity in the KGE model’s (h, r, t)
triplet, and the embeddings for intermediate nodes are calculated on the fly.

Fig. 5. An illustration of how we aggregate input nodes, within the dotted lines, and
apply the embedding of the action to produce intermediate nodes.

Distance: We define the distance metric used during each training step in
our model in a recursive fashion by defining a “triplet” (hR, rR, tR), where
hR, rR, tR ∈ R

k, for each recipe R. Our goal during training is to minimize
the distance |hR + rR − tR|, following from the distance formulation of TransE
which minimizes the distance |h + r − t|.

Given a flow graph FR, let Iv denote the set of nodes with incoming edges to
node v and lv denote the label for incoming edges to node v. For the flow graph
FR and its output node vo, we can then define hR as the output of Algorithm 1.
For the given recipe, rR = rlvo is then defined as the last action that takes place
in the recipe, and tR = hvo

is the embedding of the recipe’s output node.

Example 2. Applying Algorithm 1 to our running example recipe, the output
node vo=G. The incoming nodes IG = [F ], so we can calculate the recipe’s
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embedding as hR = Aggregate([RecursiveAgg(F )]). Stepping through the pro-
cedure for RecursiveAgg, we will reach line 5 where Recursive Agg is called
again on the incoming nodes to F, IF = [E, Tomato]. Tomato is a leaf node, while
E will once again enter a recursive call which we omit for brevity. Back to node F,
in line 6 we will use node F’s incoming edge “:mix in” and its embedding r:mix in,
and return hR = r:mix in+ Aggregate(mean([hTomato, RecursiveAgg(E)])).
This value is then used with the output node’s incoming edge, r:serve, to calculate
hR + r:serve as this recipe’s calculated output embedding value.

Training Objectives: The distance between the recipe’s calculated “triplet”
(hR, rR, tR) is then computed as distR = |hR + rR − tR|. Following standard
training for KGE models using this distance metric, the loss is optimized as
Lp = − log σ(γ − distR), where γ is a fixed margin and σ is the sigmoid function.

Algorithm 1. Flow Graph Output Embedding Calculation Pseudocode
Input A flow graph’s output node vo, incoming nodes I, incoming edge labels l
Output Calculated head vector hR ∈ R

k

1: function RecursiveAgg(v)
2: if v.isLeafNode then
3: return hv

4: else
5: inNodes = [RecursiveAgg(vj) for vj ∈ Iv]
6: return Aggregate(inNodes) + rlv
7: end if
8: end function
9: function Aggregate(EmbeddingList)
10: return mean(EmbeddingList)
11: end function
12: hR = Aggregate([RecursiveAgg(vj) for vj ∈ Ivo ])

We additionally follow best practices for training KGE models by utilizing
negative sampling. For a given recipe R, negative sampling is performed for an
incorrect tail entity tR′ �= tR and an incorrect “head” flow graph hR′ �= hR. tR′

entity points to another randomly selected recipe output, and hR′ is constructed
by randomly replacing input nodes in R’s flow graph. k negative samples were
collected for each training step, and the negative sampling loss was calculated for
the negative head and tail samples as Ln = − 1

k

∑k
1 log σ(|hR + rR − tR′ | − γ) −

1
k

∑k
1 log σ(|hR′ + rR − tR| − γ). The total loss is calculated as L = Lp + Ln.

By using our recursive aggregation strategy, we can calculate embeddings for
intermediate nodes rather than learning them explicitly. The only nodes in our
flow graph data that we learn embeddings for are the ingredient leaf nodes and
the recipe’s final output node vo.

In order to incorporate external domain-specific knowledge, we also include
triples from FoodOn to perform training. We connect classes from FoodOn to
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ingredients in our recipe dataset, identified during the flow graph generation
stage, and perform normal training of the TransE model over this data.

4.2 Replacement Techniques

Once our entity embeddings h ∈ R
k and relation embeddings r ∈ R

k have been
trained, we can apply the same aggregation techniques used during training
– to calculate the “output” embedding, transforming the inputs – to perform
modification and substitution of entities in a recipe.

Given a recipe’s flow graph FR, our model will have learned an embedding
for the recipe’s final output, hvo

. Additionally, we can use the entity and relation
embeddings for the nodes and edges in FR to calculate the recipe’s output as
well (once again following from the intuition that the embeddings hR+rR = tR).
The original recipe’s learned output node embedding, hvo

, and the calculated
output embedding of the original recipe’s flow graph, tR, can be used to identify
plausible substitutions of ingredients by replacing nodes in FR and calculating
a new output embedding.

Fig. 6. Substituting “Bacon” with “Pork Sausage” in our running example recipe.

For an ingredient node v ∈ FR that we wish to replace, we simply can swap
v with a new node vs as seen in Fig. 6. We also replace all edges in FR to
which v was connected. Then, following the procedure from Algorithm 1, we can
calculate a new output embedding for the flow graph with a node substitution
as tR′ . To determine whether the substitution seems “good” or not, we can then
compare the cosine similarity of the newly calculated embedding tR′ with the
original learned embedding hvo

or the original calculated embedding tR. This
process can then be repeated over a number of substitute ingredient options to
produce a ranking of which substitute is the “best” based on how similar the
newly calculated result is to the original.

A result of our embedding and substitution strategy is that it is robust in
its ability to handle previously unseen recipes. Assuming that embeddings have
been learned for the relevant ingredients and actions, the output embedding
for a new recipe’s flow graph is dynamically calculated and would require no
additional training. A completely novel recipe can therefore have an embedding
representing its output, which in turn allows us to perform our substitution
strategy.
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5 Evaluation

5.1 Flow Graph Generation

We evaluate the quality of our flow graph generation method by comparing
against a dataset of recipe annotations and flow graphs published by Yamakata
et al. [27]. However, the level of detail, included concepts, and formulation of their
flow graphs differs from that of our work. We therefore performed preprocessing,
which included adjusting the graph’s connections so that actions were edges
rather than nodes.2 After performing our preprocessing step, we evaluate F-
measure by comparing edges in our generated graph versus the ground truth.

5.2 Embedding Flow Graphs

To evaluate the quality of our embeddings, we frame our problem as a knowledge
graph completion task for individual flow graphs. Given a recipe flow graph and
the learned embedding for its output node, we remove a single ingredient and
then rank the ingredient that is most likely to fit in to the flow graph. Following
our ingredient substitution procedure from Sect. 4.2, candidate ingredients are
used as “substitutions” to calculate recipe output embeddings, and their similar-
ity to the expected embedding of the recipe is used to rank ingredients. Our goal
for this experiment is to demonstrate that our EaT-PIM method can effectively
re-identify a missing ingredient from a recipe, which in turn would suggest that
we might be able to identify plausible substitutions by selecting ingredients that
are similar to the “missing” ingredient being replaced.

Dataset: We conduct our experiments using recipe data from Food.com [14].
We randomly selected a subset of the data consisting of 20,000 recipes, which
included 6,142 distinct ingredients. We generated flow graphs for each recipe,
and this data was further split into training, validation, and test data using a
70%, 15%, 15% split. Embeddings were trained using data from the training set
as well as data from FoodOn [3], which similarly was split for training.

Baselines: Our first baseline uses a simplified problem setup, which omits the
flow graph data and instead ranked missing ingredients based on ingredient co-
occurrence in recipes (denoted COOC). The sum of co-occurrence probabilities
between a candidate ingredient of all ingredients in a target recipe was used to
produce a score, which was then used to rank the missing ingredient.

Our next set of baselines utilize standard KGE models. To enable train-
ing over triplets of data, we re-introduce explicit intermediate nodes for flow
graphs in these baselines. We train two translational distance models, TransE
[2] and RotatE [22], which are well suited for modeling compositional relations.
We contrast these with two semantic matching models, DistMult [29] and Com-
plEx [23], which are better suited for modeling symmetric and antisymmetric
2 We refer to Sect. 2 in our supplemental material for details on the preprocessing.
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relations. RotatE and ComplEx also learn embeddings in complex vector space.
These four baselines were trained using embedding sizes of 200, 300, and 400
dimensions, and the best results are reported. Lastly, we train a graph neural
network (GNN)-based embedding model from [17] (denoted GNN (Nathani et
al.)), which uses a Graph Attention Network [24] together with a convolutional
layer [18] to perform link prediction. For each model, we perform link prediction
for intermediate nodes connected to input ingredient and rank the missing ingre-
dient to calculate performance. This ranking is performed in a filtered setting –
i.e., the ranking is not penalized if a true triple is highly ranked.

For our final baseline, we introduce an additional TransE-based baseline that
is trained in a similar manner to EaT-PIM (denoted TransE (flow graph path)).
Rather than explicitly learning embeddings for intermediate nodes, this model
is trained by using the path of edges between ingredients and the recipe output.
This model differs from EaT-PIM in that no node aggregation is performed.

5.3 Results

Flow Graph Generation: EaT-PIM’s methods to convert recipe texts to flow
graphs yielded a precision of 0.638, recall of 0.566, and F1 score of 0.600 when
comparing them to the ground-truth graphs. To give a rough comparison (albeit
for a slightly different task3), the original results reported by Yamakata et al.
[28] indicate an F1 of 0.433 for their full pipeline. Considering that our methods
did not require any annotated training data, our results appear competitive with
those presented in the original dataset publication.

Embedding Flow Graphs: Table 1 displays the mean reciprocal rank (MRR),
HITS@3, HITS@5, and HITS@10 for our EaT-PIM method and the baselines.
MRR is calculated as the average of 1/rankt, where rankt is the rank of the true
entity t for each datapoint. HITS@K is calculated as the proportion of inputs
for which the correct entity t is within the top K ranks.

Table 1. Results for ranking missing ingredients in recipe flow graphs.

Model MRR HITS@3 HITS@5 HITS@10

COOC 0.132 0.138 0.189 0.281

DistMult 0.012 0.012 0.015 0.021

ComplEx 0.017 0.018 0.023 0.032

RotatE 0.118 0.120 0.163 0.242

TransE 0.151 0.158 0.211 0.301

GNN (Nathani et al.) 0.068 0.068 0.88 0.124

TransE (flow graph path) 0.172 0.177 0.206 0.254

EaT-PIM (ours) 0.286 0.355 0.437 0.520

3 Further details are discussed in Sect. 2 of our supplemental material.
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EaT-PIM is able to outperform the baselines by a large margin for the task
of re-identifying missing ingredients from recipes. Surprisingly, we find that the
basic TransE model shows the best performance among our standard KGE base-
lines, followed by RotatE. The ability for these two models to capture compo-
sitional relations shows a stark contrast in performance compared to DistMult
and ComplEx, which appear to be poorly suited for our task.

The TransE (flow graph path) baseline shows the second best performance.
Compared to the standard TransE model, performing training and predictions
based on the entire path from the ingredient to recipe output appears to have
provided minor benefits. Our approach to perform aggregation improves upon
this further – when applying the embedding trained through EaT-PIM to per-
form ingredient prediction only based on the path from the ingredient to the
recipe, the MRR increases to 0.260. This suggests that EaT-PIM’s approach to
aggregate nodes was particulary useful to learn good embeddings, while apply-
ing EaT-PIM’s substitution method to perform the link prediction granted an
additional 10% increase in performance.

Discussion: EaT-PIM’s ability to dynamically compute intermediate nodes
allows it to learn embeddings for significantly fewer entities than standard KGEs
require (40,500 entities in EaT-PIM versus 272,000 in baselines). This can be
beneficial during training, as less memory is needed to load all of the embeddings.
Additionally, EaT-PIM’s simple model is less resource intensive compared to
more advanced models such as the GNN. The GNN in our experiment required
190 MB of memory to store 50 dimensional embeddings of nodes along with the
convolutional neural network, while EaT-PIM’s 200 dimensional embeddings
only needed 30 MB. This benefit would increase further if training is performed
for more recipes, suggesting strong potential for scalability using EaT-PIM.

Table 2. Examples of top ranked substitutions in two recipes.

Recipe Target ingredient Top 3 substitutes

Pork marinate Pork Boneless pork, Rib, Pork loin roast

Mashed potatoes Red potato Dried thyme, all purpose flour, Chicken

Regarding our application of these embeddings to ingredient substitutions,
while it is challenging to evaluate due to subjectivity issues, we observe that using
EaT-PIM to rank substitutions generally produces reasonable results. Table 2
shows examples of ranking substitutions for a target ingredient in a specific
recipe. The top substitutions for “Pork” are all varieties or names of pork. On
the other hand, we observe some less desirable substitutes, such as thyme, for
“Red Potato” in our example. While work remains to improve the consistency
of substitution ranking, our methods can provide some utility by comparing
substitutions across different recipes. For example, Table 3 displays the relative
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rankings of three potato substitutes4 in different types of recipes.5 While it is
difficult to judge how correct these relative rankings are, it demonstrates that
the suitability of each ingredient varies based on the recipe at hand.

Table 3. A comparison of relative rankings of potato substitutes in three recipes.

Recipe: Mashed Potato

Substitute Ranks

1. Jicama

2. Cauliflower

3. Rutabaga

Recipe: Potato Gratin

Substitute Ranks

1. Cauliflower

2. Jicama

3. Rutabaga

Recipe: Healthy Soup

Substitute Ranks

1. Rutabaga

2. Cauliflower

3. Jicama

6 Related Work

Ingredient Substitution: Previous works on ingredient substitution have
explored methods such as rule-based substitutions in TAAABLE [5] and Intel-
limeal [21]. DIISH [20] applied a substitutability heuristic based on ingredient
co-occurrence and similarity. A major limitation of such works was that they did
not explicitly incorporate detailed information about cooking instructions.

Workflow Extraction: Extracting workflows instructions has been explored in
the domain of cooking using methods such as frame- and pattern-based extrac-
tion [19] and case-based reasoning [4]. Semantic representations of procedu-
ral knowledge were proposed in [30], including annotations of pre-conditions,
actions, and purpose. Outside of the cooking, explicit representations of proce-
dural instructions have been investigated a variety of domains [1,6,12,16]. Our
work shares some similarities to prior works in the use of ontologies to identify
relevant entities. However, we do not rely on manually constructing templates to
extract workflows, and the flow graph representation of our methods also differs.

Flow Graphs: The flow graphs modeled in our work shares similarities with
past works such as [13,15,27,28]. Many previous works using recipe flow graphs
use annotations [13,25,27], either by directly using the annotations or learning
to predict labels and relations based on a training set, while our work does not
rely on annotated data. A method demonstrated in [10] formed flow graphs in
an unsupervised fashion, but it relied on an external parser to classify words.

Knowledge Graph Embedding: Beyond the baseline models applied in our
experiments [2,22,23,29], a variety of distance metrics have been proposed for
training KGE models [26]. Such models treat triples in the graph as indepen-
dent facts, while our motivation of applying them to flow graphs would want
to consider the combination of multiple triples together to produce an output.

4 Jicama and rutabaga are often cited as healthy potato substitutes.
5 We refer to Sect. 3 in our supplemental material for details on the example recipes.
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Embedding graphs using graph neural networks (GNN), such as [8,11,24], have
also gained traction in recent years. GNNs have demonstrated the benefits of
aggregating information from neighboring nodes. Our embedding approach takes
inspiration from such methods in that we also aim to aggregate input nodes.

7 Conclusion

We present EaT-PIM, which consists of two main methods. First, EaT-PIM
converts procedural instructions into flow graphs using NLP tools and domain-
specific ontologies. Using the generated flow graphs, EaT-PIM trains an embed-
ding model using a strategy that allows us to aggregate input information and
dynamically compute intermediate node representations within flow graphs. Our
evaluations demonstrate strong performance of EaT-PIM in both generating flow
graphs and performing link prediction for ingredients in recipes. Future work
includes exploration of more intricate aggregation strategies in the embedding
and applying EaT-PIM to instructions from different domains to explore substi-
tutability for more diverse types of entities.

Supplemental Material Statement: Supplemental materials and source codes are
made available at https://github.com/boschresearch/EaT-PIM.

Acknowledgements. We would like to express our thanks to the colleagues of Bosch’s
RTC-NA, the members of RPI’s Tetherless World Constellation, and CMU’s Naoki
Otani for their feedback and reviews of this manuscript.

References

1. Agarwal, S., Atreja, S., Agarwal, V.: Extracting procedural knowledge from tech-
nical documents. ArXiv abs/2010.10156 (2020)
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Abstract. Temporal heterogeneous information network (temporal HIN) embed-
ding, aiming to represent various types of nodes of different timestamps into low-
dimensional spaces while preserving structural and semantic information, is of
vital importance in diverse real-life tasks. Researchers have made great efforts
on temporal HIN embedding in Euclidean spaces and got some considerable
achievements. However, there is always a fundamental conflict that many real-
world networks show hierarchical property and power-law distribution, and are
not isometric of Euclidean spaces. Recently, representation learning in hyperbolic
spaces has been proved to be valid for data with hierarchical and power-law struc-
ture. Inspired by this character, we propose a hyperbolic heterogeneous temporal
network embedding (H2TNE) model for temporal HINs. Specifically, we lever-
age a temporally and heterogeneously double-constrained random walk strategy
to capture the structural and semantic information, and then calculate the embed-
ding by exploiting hyperbolic distance in proximity measurement. Experimental
results show that our method has superior performance on temporal link predic-
tion and node classification compared with SOTA models.

Keywords: Temporal heterogeneous information networks · Hyperbolic
geometry · Representation learning

1 Introduction

Heterogeneous information networks (HINs), which are seen as general and simplified
knowledge graphs (KGs), are of a ubiquitous structure in various domains. HIN embed-
ding has received great attention in recent years because of its powerful representation
abilities for both structural and semantic information in real-world networks [4]. Dif-
ferent types of nodes are mapped into a low-dimension space for diverse downstream
analytic tasks, such as pattern matching, node classification and link prediction, within
lower time and space complexity [6].

Most existing HIN embedding methods focus on static networks. These methods
are designed to preserve the topological structure and contextual semantics without
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 179–195, 2022.
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Fig. 1. The degree distributions of two real-world networks Tokyo and DBLP. The coordinate
axes are logarithmic.

considering any temporal information. For example, PTE [29] embeds text data through
heterogeneous text networks. HAN [32] and MAGNN [8] are proposed to capture the
semantics involved in multiple types of nodes.

Complex real-world networks, however, are constantly evolving over time. As
a result, how to capture temporal information in dynamic networks becomes more
challenging. Many methods are proposed for temporal homogeneous networks like
CTDNE [16], while studies on temporal HIN embedding are much less. Most of exist-
ing methods for temporal HIN embedding like DHNE [36], are non-incremental learn-
ing. They are designed to deal with snapshots rather than dynamic networks which keep
changing by time. THINE [12] uses attention mechanism and metapath to capture het-
erogeneous information, and furthermore, Hawkes process is leveraged to simulate the
evolution of temporal networks.

Although these embedding models have shown great performance in many areas,
they are all built upon Euclidean spaces and their representation capacity is inher-
ently limited by the dimension of embedding space. Recently, it has been noticed that
complex real-world networks like social networks and many KGs always exhibit non-
Euclidean structures [2]. As Fig. 1 shows, we find that the degrees of nodes follow
power-law distributions in most real-world networks, in other words, indicate hyper-
bolic structures. Hyperbolic spaces are those of constant negative curvature and the
areas of disks in hyperbolic spaces grow exponentially with their radius rather than
polynomially in Euclidean spaces. Due to the exponential expansion property [15], the
representation capacity and generalization ability of hyperbolic spaces for data with
hierarchical structures or power-law distributions are potentially excellent [24]. In the
past few years, researchers have made some progress in this domain [20,33,38]. Nev-
ertheless, we find that none of them is designed for temporal HINs.

To this end, we propose H2TNE, a novel hyperbolic heterogeneous temporal net-
work embedding model. First, we leverage a temporally and heterogeneously double-
constrained random walk strategy to capture the topological structure and contextual
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semantics over time. Then defined in hyperbolic spaces, our model maximizes the prox-
imity between neighbors and minimizes it between negative samples. Moreover, we
derive how the optimization process is calculated. Experiments on several real-world
datasets show that our H2TNE outperforms SOTA methods in two advanced analytic
tasks temporal link prediction and node classification.

The contributions of this paper are summarized as follows:

– To our best knowledge, we are the first to study general temporal HIN embedding
problem in hyperbolic spaces.

– We propose a novel temporal HIN embedding model H2TNE, which leverages a
temporally and heterogeneously double-constrained randomwalk strategy to capture
the structural and semantic information, and exploits hyperbolic spaces to take full
advantage of the power-law distributions for real-world networks.

– We conduct extensive experiments and the results show our model has better perfor-
mance than several SOTA methods in node classification and link prediction tasks.

The rest of the paper is organized as follows. In Sect. 2, we make a brief but sys-
tematical review for related studies. Section 3 introduces necessary preliminaries and
Sect. 4 presents our proposed H2TNE from two key modules random walk sampling
and hyperbolic embedding. Experiments are described in Sect. 5. Finally, we conclude
our paper in Sect. 6.

2 Related Work

In this section, we systematically review the existing network embedding methods from
three aspects, including traditional network embedding models, deep network embed-
ding models and hyperbolic network embedding models.

Traditional Network Embedding Models. Network embedding aims to map nodes
to a low-dimension space without losing structure and semantics of the network. In
early researches, because of the unstructured character of networks, different sequential
sampling strategies are proposed to simplify the data processing, e.g. Deepwalk [25]
and node2vec [9]. LINE [30] learns node embeddings from the first-order and second-
order neighbors. As the researches deepen, heterogeneous and temporal information
are taken into account. Metapath2vec [7] leverages metapath-based random walks and
achieves great performance. DynamicTriad [40] preserves structural information and
evolution pattern on network snapshots by triadic closure process. Inspired of above two
models, Change2vec [1] handles the difference between two snapshots by metapaths
and triadic open/closure process.

Deep Network Embedding Models. With the development of deep learning, many
GNN-based embedding models have emerged in recent years. GCN [14] aggregates
messages from neighbors to update embeddings, and furthermore, GAT [31] introduces
attention mechanism for aggregation and is competent on inductive tasks.M2DNE [19]
describes the temporal evolution of networks in terms of microscopic and macroscopic
dynamics. DySAT [27] learns on snapshots by multi-head attention and achieves a great
performance on link prediction. SHCF [17] jointly considers sequential information
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as well as high-order heterogeneous information. THINE [12] simulates the dynamic
evolution of heterogeneous networks. LIME [23] incrementally trains on temporal HINs
and significantly lowers memory resources and computational time.

Hyperbolic Network Embedding Models. Representation learning in hyperbolic
spaces has been applied to network embedding due to the non-Euclidean structures
of real-world networks. [20] learns hierarchical features of networks in the Poincaré
ball, while [21] discovers pairwise hierarchical relations in Lorentz model. HHNE [33]
is constructed in hyperbolic spaces on account of the power-law distribution of HINs.
[18] proposes hyperbolic graph neural networks on graph classification problem, and
HGCN [3] uses hyperbolic graph convolution networks for node embedding. HAT [38]
exploits graph attention networks and devises a parallel strategy to improve the effi-
ciency. Besides, h-MDS [26] provides a precision-dimension trade-off in hyperbolic
embedding. [37] tells that hyperbolic models are more suited for sparse datasets and
greatly outperform Euclidean models when the latent dimension number is small.

All above network embedding models are either built upon Euclidean spaces, or
focused on only part of network features. In order to achieve better performance, we
propose a hyperbolic embedding model with taking both temporal and heterogeneous
information into account.

3 Preliminaries

In this section, we first define the temporal HINs and the problem of temporal HIN
embedding. Then some critical properties of hyperbolic geometry are briefly introduced.

3.1 Temporal HIN Embedding

Following [5,16,28], HINs and temporal networks are defined traditionally as:

Definition 1 (HINs). A heterogeneous information network is defined as G =
(V, E , φ, ϕ), in whichV and E are the sets of nodes and edges. Each node v ∈ V and each
edge e ∈ E are associated with mapping functions φ : V → LV and ϕ : E → LE . LV
and LE denote the sets of node and edge types respectively and satisfy |LV |+ |LE | > 2.

Especially, a KG is a natural HIN since it contains different types of objects (e.g.
subjects and objects) and links (e.g. properties) [39]. As a consequence, a general HIN
model can be applied into KGs in most cases even with extra information like times-
tamps.

Definition 2 (Temporal Networks). A temporal network is defined as G = (V, E , τ),
where V indicates the set of nodes and E indicates the set of edges. Each edge e ∈ E is
associated with the mapping function τ : E → T , which maps edges to timestamps.

It is worth noting that most existing temporal network models are designed for
intermittent network snapshots, while our work studies the continuous-time dynamic
networks. In other words, temporal networks in this paper can be seen as an edge
stream and multiple edges may be established between two nodes at different times-
tamps. Based on Definition 1 and Definition 2, we formalize the temporal HINs as
follows:
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Fig. 2. (a) The colored curvatures
�

v1v2,
�

v3v4 and
�

v5v6 indicate the distances between nodes in
the Poincaré ball. Geodesics are drawn as dashed curvatures. It’s worth noting that the distance
increases exponentially relative to Euclidean distances with the points being closer to the bound-
ary. Best viewed in color. (b) Referred from [20]. It shows an example that a tree (a network with
power-law distribution) is embedded into the Poincaré ball.

Definition 3 (Temporal HINs). A temporal HIN can be formalized as G =
(V, E , φ, ϕ, τ), in which V and E are the sets of nodes and edges. Mapping functions
φ : V → LV and ϕ : E → LE map nodes and edges into node types and edge types
separately. |LV | + |LE | > 2 is satisfied. Another mapping function τ : E → T maps
edges to timestamps.

In this paper, we aim to achieve the node embeddings of temporal HINs with consid-
eration of not only temporal dynamics but also heterogeneous semantics. The problem
is formally described as:

Problem (Temporal HIN embedding). Given a temporal HIN G = (V, E , φ, ϕ, τ),
the output is a node representation matrixX ∈ R

|V|×d. Each row ofX is an embedding
vector that corresponds to a node and d � |V| is the number of embedding dimen-
sions. The representation matrix X needs to keep the influence of edge timestamps and
node/edge types.

3.2 Hyperbolic Geometry

Next, we introduce hyperbolic spaces. The n-dimensional hyperbolic space H
n is the

unique simply connected n-dimensional complete Riemannian manifold with a con-
stant negative sectional curvature. One critical property of hyperbolic spaces is that they
expand exponentially, which means the areas of disks with radius r are of O(er). This
leads to the conclusion that data with power-law distribution is natural to be modeled
in hyperbolic spaces [15]. Although hyperbolic spaces are not isometric to Euclidean
spaces and difficult to perform operations on them consequently, there exist several
well-known equivalent models of hyperbolic spaces defined on different Euclidean
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domains, such as the Klein model, the Poincaré ball model and the half-plane model.
The Poincaré ball model is widely used because it is suitable for gradient-based opti-
mization [20]. For an n-dimensional hyperbolic space with the curvature c, the defini-
tion domain of corresponding Poincaré ball model D is the point set

D =

{
(x1, x2, . . . , xn) :

n∑
i=1

x2
i < −1

c

}
. (1)

In this paper, let c = −1 if there are no special instructions. Under this circumstance,
the Poincaré ball becomes an open unit ball. The distance between two points u and v
in the ball is

dD(u,v) = arcosh

(
1 +

2‖u − v‖2
(1 − ‖u‖2)(1 − ‖v‖2)

)
, (2)

where arcosh(x) = ln(x +
√

x2 − 1) is the inverse hyperbolic cosine function. Note
that the variation of distance is influenced by the location of u and v. When (1 −
‖u‖2) → 0 and (1 − ‖v‖2) → 0, the points are close to the boundary of Poincaré ball
and the distance between them is much larger than the case that they are closer to the
center. See Fig. 2(a) for an illustration and Fig. 2(b) gives an example for embedding a
tree-like network into the Poincaré ball.

4 Proposed Model

In this section, we describe our proposed H2TNE in details. As Fig. 3 shows,
H2TNEfirst leverages a temporally and heterogeneously double-constrained random
walk strategy [10] to capture both the topological structure and contextual semantics
over time. Then, we propose a hyperbolic model defined in Poincaré ball to calculate
the embeddings of nodes. Furthermore, we introduce how to optimize the model and
analyze the time and space complexity.

4.1 The Double-Constrained Random Walk

In temporal networks, random walk over time is a natural choice. But in real world, one
event may cause several additions of edges, and these edges share the same timestamp.
This means local structures with the same timestamp always imply strong relations and
semantics. Therefore, within the random walk going over time, a reasonable strategy
needs to allow the next hop to stay at current timestamp. So how to make the trade-off
between time going and staying becomes a challenge.

Non-decreasing temporal random walk is to run random walk process on a given
temporal network G with the non-decreasing order on timestamps. Each generated node
sequence (v1, v2, . . . , vl) conforms to the following rules:

1. For i = 2, . . . , l − 1, the timestamps between adjacent edges obey τ(vi−1, vi) ≤
τ(vi, vi+1).
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Fig. 3. The temporally and heterogeneously double-constrained random walk. Different colors
refer to different node types and the timestamps are labeled on the edges. Last hop of the random
walk is from node u to node v at timestamp t1. Best viewed in color. (Color figure online)

2. The probability of τ(vi−1, vi) = τ(vi, vi+1), which means the timestamp of next
hop equals to current timestamp, descends with the increase of hops staying at the
same timestamp.

The latter tries to ensure that the random walk goes over time, and meanwhile keeps the
possibility of staying at current timestamp. Let ti = τ(vi−1, vi), then the probability of
next hop staying at ti is:

P (τ(vi, vi+1) = ti) =

⎧⎨
⎩

stop if Nvi
(t∗i ) = ∅,

0 if ti /∈ T (Nvi
),

βn otherwise.
(3)

Here, Nv is the universal neighbor set of node v, Nv(t∗) is the set of those connected
with node v at timestamp t or later, T (Nv) denotes the timestamp set of edges between
node v and its neighbors. β ∈ [0, 1] is the initial timestamp staying probability and n
refers to the number of hops for which the random walk have been at current timestamp.
First, in case that all the edges connected to node vi are before timestamp ti, we can
only stop this random walk. Second, in case that there are no edges connected to node vi

at timestamp ti, the next hop can only be chosen from the edges after ti. Finally, if the
timestamps of edges between node vi and its neighbors contain both ti and those after
ti, we probabilistically control the next hop staying at timestamp ti with a probability
βn, and going to later timestamps otherwise. Adopting an exponential decay function
here penalizes the cases that the random walk stays at the same timestamp for too long.

Taking Fig. 3 as an example, suppose that the random walk jumps from node u to v
at timestamp t1 in the last hop and it has been at t1 for n hops. The probability of next
hop staying at t1, which means jumping to v2 or v3, is βn. Let Tv,t1 denote the set of
timestamps related to v after t1. ∀t ∈ Tv,t1 , the probability of the timestamp of next
hop being t is (1 − βn)/|Tv,t1 |.

The random walks on temporal HINs need to satisfy two constraints: one is the
non-decreasing principle for temporal information, and the other is for heterogeneous
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information. Taking node types into account, most existing methods use metapaths to
guide the random walk sampling. However, in our model, overlaying the temporal con-
straint, metapaths are too strict to ensure the random walk process going continuously.
Inspired by [13], we leverage a biased type choosing strategy based on historical walks.
Suppose that we have chosen ti to be the timestamp of next hop and currently the ran-
dom walk is staying at node vi of the node type li, then the probability of next hop still
staying at node type li is:

P (φ(vi+1) = li; ti) =

⎧⎨
⎩

0 if Nvi
(ti) ∩ Nvi

(li) = ∅,
1 if Nvi

(ti) ⊆ Nvi
(li),

αm otherwise.
(4)

Nv(t) denotes the set of neighbors which connect to node v exactly at timestamp t,
and Nv(l) refers to neighbors of the node type l. α ∈ [0, 1] is the initial node type
staying probability and m is the number of hops for which the random walk have been
at node type l. Similar to the timestamp of next hop as aforementioned, we consider the
following three cases. If any neighbors that connect to vi at timestamp ti are not of type
li, the next hop will surely go to another node type. If all neighbors of vi at timestamp ti
are of type li, the random walk can only stay at the same node type. If part of neighbors
at timestamp ti are of type li while others are not, the probability of next hop being at
type li should be αm. Similar to Eq. 3, we adopt the second exponential decay function
to avoid the random walk staying at the same node type continuously.

Back to Fig. 3, suppose that the random walk has been staying at the same node
type (in blue) for m hops. If we have chosen t2 as the timestamp of next hop, accord-
ing to Eq. 4, the probability of staying at current type is αm. Overlaying the tempo-
ral constraint, the random walk will jump to node v1 in next hop with the probability
(1 − βn)/|Tv,t1 | · αm.

With above constraints, we incrementally update the random walks when new edges
come in order to lower the complexity of our model. In addition to newly added edges,
historical random walks should also be processed appropriately. On the one hand, in
real world, relations between entities are effected by historical events so they need to be
preserved. On the other hand, their influence decreases gradually over time and recent
events have greater importance for relations among entities.

The evolution of networks is manifested in the addition and deletion of nodes and
edges. When evolution happens, nodes which directly connected to new nodes and
edges are involved, and the random walks should be updated correspondingly. We con-
sider the following four cases to incrementally update the node sequences of random
walks when new edges come:

1. Preserve uninvolved sequences. If none of nodes in a sequence is involved, we
keep the sequence unchanged.

2. Remove invalid parts of sequences. If the timestamps of front part of a sequence
are too early, we treat this part as invalid and remove it.

3. Continue involved sequences. If the last node of a sequence is involved, continue
the random walk with above strategy.

4. Reverse new random walks from new timestamps. When new edges and nodes
come, to ensure that these changes are considered, reversed random walks from new
timestamps backwards are processed.
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With all above, we have captured the temporal and heterogeneous information of
the networks and imply it into node sequences of random walks. Next, we’ll explain
how to embed these nodes into the hyperbolic space.

4.2 Hyperbolic Embedding

Defined in Poincaré ball, we exploit the hyperbolic distance in Eq. 2 to measure the
proximity between nodes and calculate their probability of co-occurrence in random
walks as following:

P (u|v) = σ (−dD(u, v)) , (5)

where σ(z) = 1
1+e−z , u|v denotes the co-occurrence of node u and v, and u and v

denote the embedding vector of node u and v. For each node u, we randomly sample
k negative nodes, each of which is denoted by n and each of whose corresponding
embedding vector is denoted by n, to speed up the training. The proximity between u
and the co-occurrent node v is expected to be higher, so the optimization goal for each
node u is:

argmax
Θ

log σ (−dD(u, v)) +
∑

n

log σ (dD(u,n)) . (6)

Summing up all nodes and enhancing the ranking, the objective function of
H2TNE is written as:

L = argmax
Θ

∑
u∈N

∑
v;u|v

log σ (−dD(u, v)) +
∑
u∈N

∑
n;neg(u)

log σ (dD(u,n))

∼ argmax
Θ

∑
u∈N

∑
v;u|v

∑
n;neg(u)

log σ (dD(u,n) − dD(u, v)) ,
(7)

where neg(u) denotes the negative samples for node u.
Optimization. Due to the Riemannian manifold structure of Poincaré ball, the opti-
mization is different from Euclidean models. Following [20], we primarily calculate
the Euclidean gradients.

In training process, the parameters Θ are updated for each step of calculation. For
l = log σ (dD(u,n) − dD(u, v)),

∂l

∂u
= (1 − σ (dD(u,n) − dD(u, v))) ·

(
∂dD(u,n)

∂u
− ∂dD(u, v)

∂u

)
,

∂l

∂v
= (1 − σ (dD(u,n) − dD(u, v))) ·

(
−∂dD(u, v)

∂v

)
,

∂l

∂n
= (1 − σ (dD(u,n) − dD(u, v))) ·

(
∂dD(u,n)

∂n

)
.

(8)
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∂dD(u,v)
∂u , ∂dD(u,v)

∂v , ∂dD(u,n)
∂u and ∂dD(u,n)

∂n is further derived:

∂dD(u, v)
∂u

=
4

δv

√
γ2

uv − 1

(
‖v‖2 − 2〈u, v〉 + 1

δ2u
u − v

δu

)
,

∂dD(u, v)
∂v

=
4

δu

√
γ2

uv − 1

(
‖u‖2 − 2〈u, v〉 + 1

δ2v
v − u

δv

)
,

∂dD(u,n)
∂u

=
4

δn

√
γ2

un − 1

(
‖n‖2 − 2〈u,n〉 + 1

δ2u
u − n

δu

)
,

∂dD(u,n)
∂n

=
4

δu

√
γ2

un − 1

(
‖u‖2 − 2〈u,n〉 + 1

δ2n
n − u

δn

)
,

(9)

where δu = 1 − ‖u‖2, δv = 1 − ‖v‖2, δn = 1 − ‖n‖2, γuv = 1 + 2
δuδv

‖u − v‖2 and
γun = 1 + 2

δuδn
‖u − n‖2.

Next, combining with Riemannian gradient, a single embedding is updated as fol-
lows:

unew ← proj

(
uold + lr

(1 − ‖uold‖2)2
4

∂l

∂u

)
,

vnew ← proj

(
vold + lr

(1 − ‖vold‖2)2
4

∂l

∂v

)
,

nnew ← proj

(
nold + lr

(1 − ‖nold‖2)2
4

∂l

∂n

)
,

(10)

in which lr is the learning rate and proj(·) is a projection function that constrains the
embeddings within the Poincaré ball:

proj(x) =
{
x/(‖x‖ + ε) if‖x‖ ≥ 1,
x otherwise.

(11)

Here ε = 10−7 is a small constant.

Time Complexity Analysis
The time complexity for random walk updating is O(|N | · Δlavg

), in which Δlavg
is

the average length of updated part in random walks. The time complexity of hyperbolic
embedding training is O(I · k · d · |N | · Δlavg

), where I is the number of iterations,
k is the number of negative samples for each node, and d is the dimension number of
embedding space.

5 Experiments and Discussions

5.1 Experimental Setup

Datasets. We make extensive experiments on four real-world datasets Enron1, DBLP2,
Tokyo [35] and MovieLens [11]. The statistics of these datasets are shown in Table 1.

1 http://www.ahschulz.de/enron-email-data/.
2 https://www.aminer.cn/citation.

http://www.ahschulz.de/enron-email-data/
https://www.aminer.cn/citation
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Table 1. Statistics of the datasets.

Datasets Enron DBLP Tokyo MovieLens

# Nodes 115 164,174 64,151 9,940

# Edges 43,160 845,485 573,703 1,000,209

# Node types 9 2 2 2

# Timestamps 20 46 555,437 25,865

Table 2. Baselines.

Methods Heterogeneous Temporal

Shallow Deepwalk [25] × ×
CTDNE [16] × √

ISGNS [22] × √

Change2vec [1]
√ √

DHNE [36]
√ √

HHNE [33]
√ ×

Deep GCN [14] × ×
GAT [31] × ×
DySAT [27] × √

LIME [23]
√ √

TGAT [34] × √

Baselines and Experimental Details. Table 2 lists eleven SOTA network embedding
methods, including six shallow models and five deep ones.

For all baselines, we take the recommended parameter settings except that the
embedding size is set to be 128. For H2TNE, we set the number of walks per node
as 10, the maximum of walk length as 80, the number of negative samples per node as
5 and initial learning rate as 0.001. For the experimental results in Sect. 5.2, we set the
values of α and β to be 0.9 and 0.3, and our method is trained on the dimensions both
16 and 128, denoted by H2TNE16 and H2TNE128, respectively.

In order to validate the effectiveness of each part in our model, we further conduct
ablation experiments on three different H2TNE variants, in which H2TNE−he denotes
ignoring heterogeneous information in random walk process, H2TNE−te denotes ignor-
ing temporal information, and H2TNE−hy denotes embedding in Euclidean spaces. For
fairness all of these three variants are evaluated with the dimension of 128.

We evaluate the performance of H2TNE for temporal link prediction and node
classification tasks on a server with 2 × Intel Xeon Gold 6226R 16C 2.90GHz CPUs, 4
× GeForce RTX 3090 GPUs and 256 GB memory. The experiments are run on Ubuntu
18.04 with CUDA 11.1.

5.2 Experimental Performance

We train the baselines shown in Table 2 in unsupervised manners on all datasets and
evaluate them by two traditional tasks, temporal link prediction and node classification.
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Table 3. Performance on temporal link prediction.

Dataset Enron Tokyo

Timestamp 10 15 20 Avg 200k 300k 400k 500k 555k Avg.

Deepwalk 0.9105 0.9199 0.9015 0.9106 0.7854 0.8695 0.8386 0.8565 0.8831 0.8466

CTDNE 0.8403 0.9269 0.9120 0.8931 0.7124 0.7621 0.7519 0.7695 0.8239 0.7640

ISGNS 0.9162 0.7392 0.7384 0.7979 0.7159 0.7315 0.6997 0.6706 0.5779 0.6791

Change2vec 0.7750 0.7796 0.7845 0.7797 0.5614 0.5266 0.5516 0.5164 0.4959 0.5304

DHNE - 0.5751 0.5774 0.5763 - 0.5057 0.5005 0.5004 0.5002 0.5017

HHNE 0.8928 0.9135 0.8992 0.9018 0.6241 0.7225 0.7802 0.8513 0.8770 0.7710

GCN 0.8847 0.8916 0.8547 0.877 0.4944 0.4052 0.3626 0.3078 0.3004 0.3741

GAT 0.9360 0.8867 0.9292 0.9173 0.6911 0.6690 0.6518 0.7328 0.7086 0.6907

DySAT - 0.7456 0.8305 0.7881 - 0.6576 0.6462 0.6473 0.6504 0.6504

LIME 0.5642 0.6296 0.5116 0.5685 0.5166 0.5144 0.5141 0.5107 0.5125 0.5137

TGAT 0.7224 0.6814 0.6799 0.6946 0.6432 0.6731 0.4647 0.6593 0.7365 0.6353

H2TNE−he 0.7886 0.9144 0.8994 0.8675 0.8753 0.8953 0.8848 0.8855 0.9008 0.8883

H2TNE−te 0.7172 0.8954 0.9044 0.8390 0.8773 0.8936 0.8839 0.8834 0.8980 0.8872

H2TNE−hy 0.9153 0.9363 0.9204 0.9240 0.7582 0.7907 0.7615 0.7779 0.8226 0.7822

H2TNE16 0.9052 0.9199 0.9060 0.9104 0.8432 0.8795 0.8702 0.8727 0.8921 0.8715

H2TNE128 0.9106 0.9233 0.9105 0.9148 0.8795 0.8977 0.8871 0.8872 0.9032 0.8910

Dataset DBLP MovieLens

Timestamp 20 30 40 46 Avg 10k 15k 20k 25k Avg.

Deepwalk 0.9290 0.8710 0.8422 0.8378 0.8700 0.8816 0.8482 0.8607 0.8310 0.8554

CTDNE 0.7381 0.5199 0.5657 0.5424 0.5915 0.3248 0.4165 0.4551 0.4577 0.4135

ISGNS 0.9321 0.8579 0.8414 0.7788 0.8526 0.8355 0.8030 0.8070 0.7771 0.8057

Change2vec 0.5482 0.5161 0.5025 0.4989 0.5164 0.8438 0.8455 0.8643 0.8446 0.8496

DHNE - 0.5177 0.5002 0.5002 0.5060 - 0.5007 0.5004 0.4995 0.5002

HHNE 0.3487 0.5956 0.6987 0.7195 0.5906 0.8683 0.8881 0.8834 0.8837 0.8809

GCN 0.6550 0.6308 0.5706 0.5878 0.6111 0.2318 0.2343 0.2491 0.1816 0.2242

GAT 0.6722 0.7472 0.6474 0.5657 0.6581 0.4960 0.2448 0.3311 0.3889 0.3652

DySAT - 0.5178 0.6046 0.6272 0.5832 - 0.7463 0.7429 0.7167 0.7353

LIME 0.5041 0.5353 0.5392 0.5385 0.5293 0.4801 0.4753 0.4764 0.4786 0.4776

TGAT 0.5091 0.6215 0.3311 0.5648 0.5066 0.4000 0.4567 0.5326 0.5161 0.4764

H2TNE−he 0.7270 0.8151 0.8376 0.8379 0.8044 0.8899 0.9276 0.9450 0.9292 0.9229

H2TNE−te 0.7681 0.6947 0.7849 0.8007 0.7621 0.6925 0.6870 0.6987 0.7156 0.6985

H2TNE−hy 0.7687 0.7989 0.7621 0.7573 0.7718 0.7448 0.5182 0.5385 0.5597 0.5903

H2TNE16 0.9302 0.8770 0.8757 0.8505 0.8834 0.9264 0.9433 0.9466 0.9377 0.9385

H2TNE128 0.9349 0.8812 0.8770 0.8582 0.8878 0.9380 0.9475 0.9555 0.9435 0.9461
∗ The best result is in bold, and the suboptimal result is underlined. The same applies to below
tables.
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Table 4. Performance on node classification.

Dataset Enron DBLP Tokyo MovieLens

Metrics Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1 Macro-f1 Micro-f1

Deepwalk 0.1832 0.3793 0.4999 0.9995 0.5208 0.9617 0.9446 0.9531

CTDNE 0.1277 0.2828 0.6552 0.9993 0.4915 0.9666 0.9862 0.9871

ISGNS 0.1084 0.3034 0.7438 0.9995 0.8501 0.9815 0.9903 0.9909

Change2vec 0.4482 0.6414 0.4997 0.9989 0.5229 0.9596 0.9415 0.9628

DHNE 0.0641 0.3448 0.4998 0.9994 0.4910 0.9648 0.4002 0.6036

HHNE 0.1497 0.2414 0.4997 0.9986 0.7953 0.9889 0.9906 0.9912

GCN 0.2957 0.4344 0.4999 0.9994 0.5280 0.9644 0.9995 0.9995

GAT 0.1824 0.2828 0.4998 0.9993 0.5723 0.9674 0.9599 0.9624

DySAT 0.0972 0.2069 0.6358 0.9977 0.9095 0.9816 0.9445 0.9478

LIME 0.0794 0.1538 0.4998 0.9955 0.4818 0.9299 0.8188 0.8317

TGAT 0.1018 0.2069 0.4998 0.9992 0.7381 0.9689 0.9459 0.9496

H2TNE−he 0.1241 0.3103 0.5907 0.9992 0.4908 0.9639 0.9866 0.9875

H2TNE−te 0.4215 0.5517 0.6199 0.9995 0.4903 0.9618 0.9880 0.9888

H2TNE−hy 0.1628 0.3172 0.8023 0.9996 0.9469 0.9928 0.8434 0.8523

H2TNE16 0.8121 0.7931 0.4999 0.9997 0.4916 0.9670 0.9873 0.9915

H2TNE128 0.6783 0.7931 0.6499 0.9996 0.4913 0.9659 0.9995 0.9995

Temporal Link Prediction. In this task, we divide Enron, DBLP, Tokyo and Movie-
Lens into 4, 5, 6 and 5 snapshots evenly according to timestamps, and for the t-th snap-
shot except the first, the models are trained on the first t− 1 snapshots and tested on the
t-th snapshot. Noting that the Poincaré ball is a conformal model, which means that the
angles in hyperbolic spaces are equal to corresponding ones in Euclidean spaces, we use
the cosine similarity to calculate the proximity between nodes for fairness to all models.
AUC is used to measure the performance in this task. The experimental results for all
snapshots are shown in Table 3. In most cases, our method has the best performance and
even 16-dimension embeddings of H2TNE are better than previous models in dimen-
sion 128. On the dense dataset Enron, our method does not outperform other Euclidean
models, suggesting that hyperbolic models are more suitable for sparse data, which is
consistent with [37]. In addition, the results of ablation models show that performance
of different variants mostly degrades. It proves that double-constrained random walk
strategy does capture the temporal and heterogeneous information and the hyperbolic
space does enhance the representation ability of our model.

Node Classification. In this task, we use 75% of node embeddings for each dataset
to train a Logistic Regression classifier and the remains are treated as the test set. The
results are evaluated by two metrics macro-f1 and micro-f1. As Table 4 shows, our
method outperforms other models in most cases. It’s worth noting that for most methods
in datasets DBLP and Tokyo, the difference between macro-f1 and micro-f1 is very
large, which is caused by the imbalance of various node types.
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Fig. 4. The influence of parameters α and β for two experimental tasks in four datasets: (a) α for
temporal link prediction, (b) α for node classification, (c) β for temporal link prediction, (d) β
for node classification. The X-axis represents values of α and β, while the Y-axis represents AUC
for temporal link prediction task and micro-f1 for node classification task. Best viewed in color.
(Color figure online)

5.3 Parameter Analysis

We also analyze the influence of parameters α and β for two experimental tasks in four
datasets. As Fig. 4 shows, no matter for temporal link prediction or node classification,
datasets with multiple types of nodes (e.g. Enron) are more affected by α while those
with fine temporal granularity (e.g. MovieLens) are more affected by β, which con-
forms to the control of random walk strategy. According to our experience, in temporal
link prediction, both α and β are expected to be a larger value except 1 because this
may lead to overly constraints and stop the random walk process too early. While in
node classification, α = 1 could keep random walks staying at the same type of nodes
and strengthen the relations among them, which is especially important in multi-class
classification tasks.

5.4 Visualizations

We further study the visualizations of all nodes. Figure 5 shows the embedding layouts,
which are projected to 2 dimensions from 128 by t-SNE, on dataset MovieLens for
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(a) Deepwalk (b) CTDNE (c) ISGNS (d) Change2vec

(e) DHNE (f) HHNE (g) GCN (h) GAT

(i) DySAT (j) LIME (k) TGAT (l) H2TNE

Fig. 5. The visualizations of all baselines and H2TNE for node classification task in MovieLens.
Different colors refer different types of nodes. Best viewed in color. (Color figure online)

eleven baselines and our proposed H2TNE. Different colors refer different types of
nodes. Obviously our method has the best capacity of discriminating different node
types compared with other models.

6 Conclusion

In this paper, we propose a hyperbolic temporal HIN embedding model H2TNE based
on the power-law distribution of real-world networks. H2TNE first leverages a tempo-
rally and heterogeneously double-constrained random walk strategy and then embeds
nodes in achieved random walks into a hyperbolic space. Extensive experimental results
prove the superior performance of our model.

Supplemental Material Statement: Section 5.1 has provided the detailed experimen-
tal hardware and software environments, parameter settings and provenances of all
datasets. Source code is available from https://github.com/TaiLvYuanLiang/H2TNE.
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Abstract. Entity alignment is a basic and vital technique in knowledge
graph (KG) integration. Over the years, research on entity alignment has
resided on the assumption that KGs are static, which neglects the nature
of growth of real-world KGs. As KGs grow, previous alignment results
face the need to be revisited while new entity alignment waits to be dis-
covered. In this paper, we propose and dive into a realistic yet unexplored
setting, referred to as continual entity alignment. To avoid retraining an
entire model on the whole KGs whenever new entities and triples come,
we present a continual alignment method for this task. It reconstructs an
entity’s representation based on entity adjacency, enabling it to generate
embeddings for new entities quickly and inductively using their existing
neighbors. It selects and replays partial pre-aligned entity pairs to train
only parts of KGs while extracting trustworthy alignment for knowledge
augmentation. As growing KGs inevitably contain non-matchable enti-
ties, different from previous works, the proposed method employs bidi-
rectional nearest neighbor matching to find new entity alignment and
update old alignment. Furthermore, we also construct new datasets by
simulating the growth of multilingual DBpedia. Extensive experiments
demonstrate that our continual alignment method is more effective than
baselines based on retraining or inductive learning.

Keywords: Knowledge graphs · Continual entity alignment ·
Representation learning

1 Introduction

Entity alignment, also known as entity matching or entity resolution [22], has been
a long-standing research topic in the Semantic Web and Database communities.
The task aims at matching the identical entities with different URIs in different
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Fig. 1. Illustration of continual entity alignment. Given two pre-aligned entity pairs
(e11, e

1
2) and (e21, e

2
2) between KG1 and KG2, we expect to find the identical counterparts

for e31 and e41. At time t, due to the incompleteness of both KGs, e31 can be falsely
matched to a wrong entity, and the expecting counterpart of e41 does not even appear
yet. At time t + 1, as new triples emerge over time, e31 and e41 gain more chance to be
correctly matched with richer supportive information.

knowledge graphs (KGs). For example, two entities http://dbpedia.org/resource/
Hangzhou and http://zh.dbpedia.org/resource/杭州 from DBpedia [13] in differ-
ent languages both refer to the same Chinese city, Hangzhou, which is the venue of
ISWC 2022 conference. Early studies [11,22] mainly explore the literal similarities
with probabilistic or semantic inference to match entities. However, these meth-
ods are hampered by the symbolic heterogeneity of different KGs, particularly the
cross-lingual KGs. To resolve this issue, recent embedding-based methods strive
to construct a unified vector space to represent different KGs, with entity embed-
dings used to infer entity similarity [24]. Furthermore, the embeddings from the
unified space built by aligning various KGs are shown to be useful for downstream
tasks, such as cross-lingual knowledge transfer and multi-lingual KG completion
[7,20]. Thus, as a backbone of knowledge fusion and transfer, embedding-based
entity alignment has received increasing attention [28,41,42].

However, existing embedding-based entity alignment methods assume an ide-
alized scenario of static KGs, neglecting many real-world difficulties like align-
ment incompleteness, KG growth, and alignment growth. In this paper, we argue
that entity alignment is not a one-time task. We propose and study a new set-
ting, i.e., continual entity alignment, between growing and incomplete KGs. Our
motivation comes from the growth and incompleteness nature of real-world KGs.
For example, the release bot of DBpedia [13] extracts about 21 billion new triples
per month [10], and Wikidata [30] releases data dumps in a weekly cycle.1 The
new entities and triples bring about new alignment to be found and provide new
clues for correcting the previous alignment. Figure 1 presents an illustration.

This real scenario poses new challenges to embedding-based entity alignment.
The first challenge is how to learn embeddings for the new entities in an effective
and efficient manner. When KGs grow, the pre-trained entity alignment model
sees new entities for the first time, as new triples bring structural changes to KGs.

1 https://dumps.wikimedia.org/wikidatawiki/entities/.

http://dbpedia.org/resource/Hangzhou
http://dbpedia.org/resource/Hangzhou
https://dumps.wikimedia.org/wikidatawiki/entities/
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To handle new entities, retraining the model from scratch is costly. Also, induc-
tive entity embedding is less adaptable to changes of structure. Thus, it requires
non-trivial updates of the pre-trained model to incorporate new entities and new
triples. The second challenge is how to capture the potential alignment of both old
and new entities. In real cases, KGs always contain unknown non-matchable enti-
ties [23], which necessitates a more reliable alignment retrieval strategy than sim-
ply ranking candidates from test sets. Furthermore, as new entities typically are
few-linked [2], capturing the potential alignment for new entities becomes more
difficult. The third challenge is how to integrate the old predicted alignment with
the new predictions. In our setting, we output alignment results each time the KGs
grow. The old and new alignment inevitably have conflicts. We need an effective
integration strategy to combine them and update the final alignment.

As the first attempt to address these challenges, we propose a continual entity
alignment method ContEA. Our key idea is to finetune the pre-trained model
to incorporate new entities and triples, meanwhile capturing the potential entity
alignment. Specifically, we use Dual-AMN [16], a prominent alignment model,
as our basal encoder. To enable it to effectively handle new entities, we design
an entity reconstruction objective, which allows the encoder to generate entity
embeddings using solely neighboring subgraphs. To retrieve alignment from the
embedding space, we propose a bidirectional nearest neighbor search strategy.
Two entities are predicted to be aligned if and only if they are the nearest
neighbors to each other. When new entities and triples emerge, ContEA finetunes
the pre-trained model according to the changed structures. To capture potential
entity alignment, we replay partial pre-known alignment to avoid knowledge
oblivion and select high-confidence predictions for knowledge augmentation.

To support the research on this new and practical task, we build three new
datasets based on the widely-used benchmark DBP15K [24], which contains
three cross-lingual datasets, i.e., ZH-EN, JA-EN and FR-EN. For each dataset,
we construct six snapshots (i.e., t = 0, 1, 2, 3, 4, 5) by adding new entities and
new triples into the preceding snapshot, to simulate KGs’ growth. We conduct
extensive experiments on our datasets. Our method outperforms strong baselines
that use retraining or inductive embedding techniques while at a lower time cost.
Our datasets and source code are publicly available to foster future research.

2 Problem Statement

We define a KG as a 3-tuple G = {E ,R, T }, where E and R denote the sets of
entities and relations, respectively. T ⊆ E ×R×E is the set of relational triples.
Given two KGs G1 = {E1,R1, T1} and G2 = {E2,R2, T2}, entity alignment aims
to identify entities in G1 and G2 that refer to the same real-world object, i.e.,
seeking a set of alignment A = {(e1, e2) ∈ Es×Et | e1 ≡ e2}, where “≡” indicates
equivalence. A small set of seed entity alignment As ⊂ A is usually provided as
anchors (i.e., training data) beforehand to help align the remaining entities.

From time to time, new triples emerge and are added into KGs, which brings
KGs’ size growth. We propose the definition of growing KGs as follows:
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Definition 1 (Growing knowledge graphs). A growing KG G is a sequence
of snapshots G = (G0,G1, . . . ,GT ), where the superscript numbers denote dif-
ferent timestamps. For any two successive timestamps Gt = {Et,Rt, T t} and
Gt+1 = {Et+1,Rt+1, T t+1}, there exist Et ⊆ Et+1, Rt = Rt+1 and T t ⊆ T t+1.

In this definition, each newly added triple in ΔT t+1 between t and t + 1
contains zero, one, or two new entities. Considering that the set of relations in
KGs is much less diverse than that of entities, we dismiss the emergence of new
relations in this paper and assume that the relations in KGs are pre-defined.

To practice entity alignment on growing KGs. We propose the task of con-
tinual entity alignment and give its definition below:

Definition 2 (Continual entity alignment). Given two growing KGs G1 and
G2, and the seed entity alignment As at time t = 0, continual entity alignment
at time t aims to find potential entity alignment At

p between Gt
1 and Gt

2 based on
the currently learned KG embeddings and alignment model.

In this definition, the size of As is constant, while At
p grows over time as

new entities may bring new entity alignment to be found. Considering that the
seed entity alignment is usually deficient and difficult to obtain [21], we do not
assume that new snapshots bring new seed alignment to augment training data.
That is to say, As of snapshot at time t > 0 is the same as that at time t = 0.

3 Methodology

In this section, we introduce the proposed continual entity alignment method
ContEA. Figure 2 depicts its framework. It consists of two modules: the
subgraph-based entity alignment module, and the embedding and alignment
update module. The following is a brief overview of them:

– In the subgraph-based entity alignment module, the input is the two KGs
at time t = 0 and the seed entity alignment across them. A graph neural
network (GNN) is employed over the two KGs to represent entities based on
their subgraph structures. The alignment learning objective is to minimize the
embedding distance of similar entities while separating dissimilar ones. Addi-
tionally, an entity reconstruction design is used to encourage entities similar
to their contexts. When the learning process is completed, the trustworthy
alignment is predicted based on bidirectional nearest neighbor search.

– At time t > 0, the embedding and alignment update module first incorpo-
rates new entities into previously learned KG embeddings. It reconstructs new
entities’ embeddings based on their neighborhood subgraphs. Then, partial
seed entity alignment and trustworthy alignment predicted in the previous
snapshot are used for finetuning the GNN model. Last, after new alignment
is predicted, we use it to update the previously-found old alignment.

We introduce the details of the two modules in the following two subsections.
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Fig. 2. Framework of the proposed continual entity alignment method ContEA.

3.1 Subgraph-Based Entity Alignment

This module is built upon a GNN that represents an entity by aggregating its
neighborhood subgraph. The key assumption behind GNN is that the entities
with similar neighborhoods appear to be close, which makes GNNs extensible
to represent new entities. Please note that we do not focus on how to develop a
powerful GNN for entity alignment, but on how to incorporate new entities and
triples in an effective and efficient manner for continual entity alignment.

Subgraph Encoder. We adopt the GNN-based encoder of Dual-AMN [16] as
our subgraph encoder for its effectiveness and simplicity. The encoder of Dual-
AMN consists of an inner-graph layer (namely Aggregator1) capturing the struc-
tural information within a single KG, and a cross-graph layer (Aggregator2) cap-
turing cross-graph matching information based on the outputs of Aggregator1.
Technically, Aggregator1 is a 2-layered relation-aware GNN, and Aggregator2 is
a proxy attention network connecting entities with a list of proxy nodes. Overall,
given an entity e, its representation after being encoded by Dual-AMN is

Encoder(e) = Aggregator2
(
Aggregator1(e,Ne), Eproxy

)
, (1)

where Aggregator1() aggregates the entity itself and its relational neighbors Ne

to generate its embedding, and Aggregator2() combines the output embeddings
with proxy nodes Eproxy to generate the final representations of entities. To save
space, we do not present the detailed techniques of Dual-AMN here. Interested
readers can refer to its original paper [16] for more details.

Entity Reconstruction. As KGs grow, the pre-trained GNN encoder encoun-
ters new entities and triples. The critical challenge is how to incorporate unseen
entities into the encoder. Randomly initializing the embeddings of new entities
could be detrimental to the previously optimized embedding space and cause
representation inconsistency. A typical assumption in embedding-based entity
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alignment is that two entities are similar if their neighborhood subgraphs are
similar (i.e., the two subgraphs have similar or pre-aligned entities). Motivated
by this, we propose a self-supervised learning objective that enables the encoder
to reconstruct an entity using its neighborhood subgraphs:

Lreconstruct =
∑

e∈E

∥
∥
∥
∥
∥
e − 1

|Ne|
∑

e′∈Ne

e′
∥
∥
∥
∥
∥

2

2

. (2)

Here, Ne denotes the set of one-hop neighbors of e. This objective minimizes
the distance between an entity and its neighbor subgraph embedding (the mean
vector of all neighbor embeddings).

Alignment Learning. Given the outputs of the encoder, alignment learning
aims to gather similar entity pairs and distance dissimilar entity pairs. The dis-
similar entity pairs is modeled by negative sampling. Following Dual-AMN [16],
we also adopt the LogSumExp function to compute the loss:

Lalign = log
[
1+

∑

(e1,e2)∈As

∑

(e1,e′
2)∈Aneg

e1

exp
(
γ(λ+sim(e1, e2)−sim(e1, e′

2))
)]

, (3)

where Aneg
e1 denotes the negative alignment generated for entity e1. γ is a scale

factor, and λ is the margin for separating the similarities of seed alignment
pairs and negative pairs. Cosine is used to compute embedding similarity, i.e.,
sim(e1, e2) = cos(Encoder(e1), Encoder(e2)). We employ the in-batch negative
generating method. Specifically, for entity e1, other entities (e.g., e′

2) in a train-
ing batch act as its negative counterparts to generate the negative pairs Aneg

e1 .
The final learning objective of subgraph-based entity alignment module L1 is a
combination of Lalign and Lreconstruct with a weight α on Lreconstruct:

L1 = Lalign + α · Lreconstruct. (4)

Trustworthy Alignment Search. After the alignment learning is complete,
we retrieve trustworthy entity alignment as predictions based on the optimized
embedding space. Previous embedding-based entity alignment methods assume
that each entity in one KG must have a counterpart in the other KG. A typical
inference process is the nearest neighbor search, i.e., it seeks

ê2 = arg min
e2∈E2

π(Encoder(e1), Encoder(e2)), (5)

where π() is a measure for alignment search, and ê2 is the predicted counterpart
for e1. However, such an “idealized” assumption may not stand in a realistic
setting as there are many no-match entities in the two KGs [23]. To resolve this
issue and improve alignment search, we propose a parameter-free strategy called
bidirectional nearest alignment search. It searches for the nearest neighbor in
one KG for the entities in the other. An alignment pair (e1, e2) is a trustworthy
alignment if and only if e2 = ê2 and e1 = ê1. Other alignment pairs are discarded.
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3.2 Embedding and Alignment Update

At time t > 0, the relational structure of KGs get changed as new triples come.
It needs to generate embeddings for new entities while capturing the structure
changes. To resolve this challenge, we propose to finetune the GNN encoder and
new entity embeddings with partial seed alignment and selected trustworthy
alignment. After finetuning, the new trustworthy entity alignment is retrieved
based on the updated model and embeddings. The new predicted alignment is
used to complete and update the old alignment discovered at time t − 1 using a
heuristic strategy.

Encoder Finetuning. We initialize the encoder with the parameters learned
in the previous module/time. Thanks to our entity reconstruction objective, the
encoder is able to initialize the embedding of a new entity e as follows:

Encoder(e) = Aggregator2
(
Aggregator1(MP(N ′

e)), Eproxy

)
, (6)

where N ′
e denotes the seen neighbors of the new entity e. MP() is mean-pooling

process to generate embedding for e using N ′
e.

Based on the output embeddings of new and existing entities, we finetune the
GNN encoder. Specifically, we freeze the inner-graph layer Aggregator1 while
make the cross-graph Aggregator2 learnable. For a single KG, the coming of
new data does not change the neighbor aggregation pattern, as a KG’s schema
stays consistent (no new relations or entity domains). But the two KGs grow
independently and asymmetrically in the proposed scenario. It is necessary to
fine-tune the matching network to make adjustments and new discoveries.

For training data, considering that the potential entity alignment is more likely
to occur near anchors [37], we replay only the affected seed entity alignment that
contains anchors involved in new triples. This helps the alignment of new entities,
which is originally difficult due to their low degrees. Also, to help align entities from
wider and more dynamic areas, we select top-m predicted trustworthy alignment
with the highest similarity scores and treat them as “new anchors”.

We finetune the GNN encoder and new entity embeddings on the obtained
affected seed alignment (ASA for short) and m selected trustworthy alignment
(TA for short). We use a weight β on the learning loss over m trustworthy
alignment to balance its importance. The final loss function L2 of finetuning is

L2 = Lalign(ASA) + α · Lreconstruct + β · Lalign(TA). (7)

Trustworthy Alignment Update. After finetuning, a new set of trustworthy
alignment can be retrieved using the updated entity embeddings and model. It
is necessary to combine it with the previously discovered trustworthy alignment
because they are gathered from different snapshots and may complement each
other to produce superior outcomes. Here, we carry out a heuristic strategy to
integrate them. We keep new trustworthy alignment which is between two new
entities. But for new ones that cause alignment conflicts [25] with the previous
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Algorithm 1: Process of ContEA
Input : Two growing KGs Gt

1 and Gt
2 at time t, prior learned knowledge K

(none for t = 0), seed alignment As, previous trustworthy alignment
TA (none for t = 0), hyperparameters α, β;

Output: Updated trustworthy alignment TA;
1 if t = 0 then
2 Training encoder on G0

1 and G0
2 using L1 loss in Eq. (4);

3 Generating TA though trustworthy alignment search;

4 else
5 Initializing embeddings and encoder parameters using K, Gt

1 and Gt
2;

6 Selecting affected As as ASA and top-m TA with highest similarity;
7 Finetuning encoder using L2 loss in Eq. (7);
8 Updating TA with new trustworthy alignment;

trustworthy alignment (i.e., an entity is aligned with different entities), we decide
to keep the alignment that has higher similarity scores. With KGs growing, the
size of trustworthy entity alignment is accumulative.

3.3 Put It All Together

Algorithm 1 describes the training and finetuning details of ContEA for continual
entity alignment. Lines 1–3 describe the process of the subgraph-based entity
alignment module at time t = 0. Lines 4–8 describe the process of embedding
and alignment updating modules at time t > 0.

4 Experiments

4.1 New Datasets for Continual Entity Alignment

Due to the lack of off-the-shelf benchmarks for proposed setting, we construct new
datasets based on DBP15K [24]. For each DBP15K’s cross-lingual entity align-
ment dataset, we use its two KGs as the first snapshots (i.e., t = 0). DBP15K
only considers entity alignment between the head entities of triples and overlooks
other entity alignment pairs. Hence, we first complete the reference entity align-
ment using the inter-language links in DBpedia2, resulting in more than 15K ref-
erence alignment pairs in the first snapshot. Then, the reference entity alignment
is divided into training, validation and test sets (i.e., As, Av and A0

p) with a ratio
of 2 : 1 : 7. We further build five snapshots to simulate KGs’ growth:

– At time t > 0, we first collect the relation triples from DBpedia that contain
entities in Gt−1

1 and Gt−1
2 . Then, among these triples we remove seen ones at

time t−1, and sample new triples from the remaining with the size of 20% of
the triples in previous snapshots. Adding the new triples into Gt−1

1 and Gt−1
2

and we create snapshots Gt
1 and Gt

2.

2 We use the infobox-based relation triples (version 2016-10) following DBP15K.
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Table 1. Statistics of the three datasets. Each consists of two growing KGs in six
snapshots from consecutive timestamps. In a snapshot, |T | is the current triple size,
and |As|, |Av|, |Ap| are the sizes of training, validation and test alignment, respectively.

DBPZH-EN DBPJA-EN DBPFR-EN

|T |ZH |T |EN |As| |Av| |Ap| |T |JA |T |EN |As| |Av| |Ap| |T |FR |T |EN |As| |Av| |Ap|
t = 0 70,414 95,142 3,623 1,811 12,682 77,214 93,484 3,750 1,875 13,127 105,998 115,722 3,727 1,863 13,048

t = 1 103,982 154,833 3,623 1,811 14,213 112,268 150,636 3,750 1,875 15,079 148,274 184,132 3,727 1,863 15,875

t = 2 137,280 213,405 3,623 1,811 16,296 147,097 207,056 3,750 1,875 18,092 191,697 251,591 3,727 1,863 20,481

t = 3 173,740 278,076 3,623 1,811 18,716 185,398 270,469 3,750 1,875 21,690 239,861 326,689 3,727 1,863 25,753

t = 4 213,814 351,659 3,623 1,811 21,473 227,852 341,432 3,750 1,875 25,656 293,376 411,528 3,727 1,863 31,564

t = 5 258,311 434,683 3,623 1,811 24,678 274,884 421,971 3,750 1,875 29,782 352,886 507,793 3,727 1,863 37,592

– Then, we complete Gt
1 and Gt

2 by adding additional relation triples from DBpe-
dia of which the head and tail entities are both in the snapshots, leading to
more than 20% growth of triple size.

– Finally, we retrieve the new entity alignment pairs brought by the newly
added entities, and add them into the test set At

p of snapshot t. The training
set As or validation set Av still follows that in the first snapshot at time
t = 0. We do not assume that the new snapshot introduces new training
data because obtaining seed alignment for emerging entities is usually more
difficult than finding seed alignment for old entities in the real world.

The detailed statistics of our dataset are present in Table 1.

4.2 Baselines

We compare ContEA with two groups of entity alignment methods.

– Retraining baselines. Since most existing embedding-based EA methods
are designed for static KGs, they need retraining each time new triples come.
Here, we choose the representative translation-based method MTransE [6],
and several state-of-the-art GNN-based methods, including GCN-Align [33],
AlignE [25], AliNet [27], KEGCN [40] and Dual-AMN [16] as our baselines.

– Inductive baselines. The only entity alignment method focusing on KGs’
growth is DINGAL [39]. We choose one of the proposed variants, DINGAL-
O, as a baseline, which can handle our scenario. Additionally, since there are
some inductive KG embedding (KGE) methods which can generate embed-
dings for new entities, we explore their combination with static methods to
tackle our task. Here, we select two representative inductive KGE methods
MEAN [8] and LAN [31] as the entity representation layer and incorporate
them with Dual-AMN. We denote the two baselines by MEAN+ and LAN+.

4.3 Experiment Settings

Evaluation Metrics. At each time t, the bidirectional nearest neighbor search
and alignment integration are used to obtain the final trustworthy alignment.
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The details are described in Sect. 3.1 and Sect. 3.2. Then, we compare the final
trustworthy alignment with gold test pairs At

p. We report the precision, recall,
and F1 scores as the evaluation metrics.

Implementation. We implement ContEA, Dual-AMN, MEAN+ and LAN+

using PyTorch. For other retraining baselines, we use the implementations in an
open-source library.3 We set the embedding dimensions to 100. The embedding
similarity metric is CSLS [12]. We use grid search on hyperparameters and early
stop to find the best performance. Specifically for ContEA, we set α = 0.1,
β = 0.1 and m = 500. More detailed hyperparameter settings can be found on
our GitHub repository. For a fair comparison, all baselines only rely on KGs’
structural information and do not use pre-trained models for initialization.

4.4 Results

General Results. We conduct experiments on the constructed datasets and
present the results in Tables 2, 3 and 4. Compared with baselines, ContEA
reaches the best performance in discovering potential entity alignment. Its F1
scores outperform the best baseline Dual-AMN by 27.1%, 19.4%, and 15.2%
averagely on six snapshots of DBPZH-EN, DBPJA-EN, and DBPFR-EN, respec-
tively. The superior performance of ContEA over retraining methods is because
ContEA can iteratively leverage the prior knowledge (e.g., previously predicted
alignment and model parameters) from the past snapshots. Also, ContEA col-
lectively obtains predicted entity alignment by integrating new and old trust-
worthy alignment rather than totally neglecting old predictions in retraining. As
for inductive baselines, MEAN+ and LAN+ perform worse than ContEA and
Dual-AMN, which indicates that straightway adding the inductive KGE layer
without adjusting the alignment network does not give satisfactory performance.
DINGAL-O also shows unsatisfactory results, because it is purely inductive and
does not update the alignment network. Besides, we can notice that the per-
formance of all methods declines over time. This is due to the expansion of the
searching space for alignment candidates, and the drop in the ratio of seed align-
ment against to-be-aligned alignment. Both of these increase the probability of
entities being mismatched.

Ablation Study. To investigate the impact of each design of ContEA, also to
give a fairer comparison between ContEA and baselines, we discard certain parts
of ContEA and present three variants as follows:

– ContEA w/o TA. In the finetuning process, we discard the selected trustwor-
thy entity alignment and only train on the affected seed alignment.

– ContEA w/o TA & ASA. We discard both the selected trustworthy alignment
and the affected seed alignment. Thus, our method requires no finetuning and
reduces to an inductive method. The entity reconstruction method generates
embeddings for new entities using their neighbors.

3 https://github.com/nju-websoft/OpenEA.

https://github.com/nju-websoft/OpenEA
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Table 2. Results of entity alignment on DBPZH-EN. NA stands for not applicable.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

Retraining MTransE .552/.178/.269 .242/.111/.152 .159/.078/.105 .094/.054/.068 .080/.041/.055 .049/.030/.037

GCN-Align .550/.249/.343 .212/.152/.177 .133/.115/.123 .096/.091/.094 .076/.075/.076 .062/.062/.062

AlignE .721/.364/.484 .382/.272/.317 .282/.222/.248 .206/.173/.188 .191/.152/.169 .127/.112/.119

AliNet .641/.358/.459 .285/.311/.297 .195/.279/.230 .146/.244/.183 .129/.232/.166 .105/.199/.128

KEGCN .664/.200/.308 .315/.129/.183 .198/.093/.127 .160/.075/.102 .136/.064/.087 .120/.052/.072

Dual-AMN .834/.596/.695 .482/.443/.462 .357/.356/.356 .285/.286/.286 .249/.254/.251 .227/.227/.227

Induct. MEAN+ .828/.576/.679 .483/.422/.450 .357/.341/.349 .267/.264/.265 .225/.226/.225 .198/.197/.198

LAN+ .827/.576/.679 .488/.426/.455 .360/.345/.352 .274/.271/.272 .231/.229/.230 .205/.199/.202

DINGAL-O .497/.195/.280 .370/.158/.222 .315/.135/.189 .251/.111/.154 .229/.093/.132 .209/.080/.116

ContEA .843/.604/.703 .555/.539/.546 .444/.473/.458 .373/.421/.396 .324/.375/.348 .291/.336/.312

w/o TA NA / NA / NA .543/.531/.537 .419/.469/.443 .357/.414/.384 .316/.371/.341 .286/.332/.307

w/o TA & ASA NA / NA / NA .543/.527/.535 .422/.463/.442 .352/.410/.379 .309/.365/.335 .278/.324/.300

Retraining NA / NA / NA .493/.455/.473 .364/.357/.361 .300/.301/.301 .265/.266/.265 .245/.240/.243

Table 3. Results of entity alignment on DBPJA-EN. NA stands for not applicable.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

Retraining MTransE .599/.200/.299 .293/.121/.172 .213/.082/.118 .151/.061/.087 .128/.046/.067 .117/.035/.054

GCN-Align .594/.279/.379 .263/.183/.216 .177/.142/.158 .140/.117/.127 .116/.099/.107 .099/.084/.091

AlignE .738/.359/.483 .433/.282/.342 .320/.218/.260 .270/.178/.214 .228/.148/.180 .193/.122/.149

AliNet .661/.364/.469 .305/.312/.308 .216/.270/.240 .167/.231/.194 .149/.215/.176 .126/.189/.151

KEGCN .663/.198/.305 .389/.153/.219 .280/.110/.157 .245/.087/.128 .200/.070/.104 .194/.063/.096

Dual-AMN .861/.606/.711 .517/.437/.474 .398/.347/.370 .348/.292/.318 .313/.251/.278 .300/.231/.261

Induct. MEAN+ .847/.571/.682 .528/.420/.468 .407/.330/.365 .330/.261/.292 .287/.221/.250 .265/.193/.223

LAN+ .845/.575/.684 .528/.424/.470 .410/.333/.368 .335/.265/.296 .296/.226/.257 .274/.200/.231

DINGAL-O .540/.227/.320 .391/.174/.241 .328/.137/.194 .271/.113/.159 .249/.092/.134 .231/.078/.116

ContEA .858/.610/.713 .586/.519/.551 .483/.440/.461 .417/.381/.398 .375/.336/.354 .344/.299/.320

w/o TA NA/NA/NA .572/.518/.544 .466/.439/.452 .398/.377/.387 .357/.332/.344 .333/.294/.312

w/o TA & ASA NA/NA/NA .580/.514/.545 .466/.436/.450 .399/.374/.386 .359/.328/.343 .331/.291/.310

Retraining NA/NA/NA .530/.449/.486 .415/.356/.383 .369/.298/.330 .349/.272/.306 .327/.244/.280

Table 4. Results of entity alignment on DBPFR-EN. NA stands for not applicable.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

P / R / F1 P / R / F1 P /R / F1 P /R / F1 P /R/ F1 P /R/ F1

Retraining MTransE .570/.188/.283 .246/.100/.142 .145/.062/.087 .108/.040/.059 .104/.032/.049 .073/.024/.036

GCN-Align .561/.262/.357 .233/.161/.190 .148/.111/.127 .113/.086/.098 .089/.066/.076 .077/.056/.065

AlignE .757/.394/.518 .399/.274/.325 .305/.202/.243 .245/.154/.189 .210/.121/.154 .195/.104/.136

AliNet .653/.361/.465 .275/.289/.282 .187/.226/.205 .144/.180/.160 .124/.155/.138 .115/.138/.126

KEGCN .716/.214/.330 .344/.125/.184 .260/.090/.134 .237/.076/.115 .201/.058/.089 .169/.045/.071

Dual-AMN .862/.629/.727 .503/.443/.471 .394/.331/.359 .351/.273/.307 .322/.237/.273 .313/.214/.254

Induct. MEAN+ .840/.585/.690 .514/.415/.459 .387/.305/.341 .314/.235/.269 .273/.191/.225 .254/.169/.203

LAN+ .845/.594/.697 .506/.410/.453 .379/.300/.335 .304/.227/.260 .269/.188/.222 .247/.162/.195

DINGAL-O .540/.224/.317 .381/.165/.231 .329/.124/.180 .258/.092/.136 .247/.073/.112 .227/.061/.096

ContEA .866/.634/.732 .569/.520/.543 .453/.421/.436 .387/.351/.369 .351/.301/.324 .325/.265/.292

w/o TA NA/NA/NA .559/.516/.537 .443/.417/.430 .379/.348/.363 .342/.299/.319 .315/.263/.287

w/o TA & ASA NA/NA/NA .548/.511/.528 .431/.413/.421 .367/.342/.354 .334/.293/.312 .311/.256/.281

Retraining NA/NA/NA .516/.437/.473 .409/.339/.370 .372/.284/.322 .348/.247/.289 .331/.224/.267

– ContEA retraining. Same as the retraining baselines, ContEA treats each
snapshot as at t = 0. Old predicted entity alignment is totally replaced by
newly predicted entity alignment rather than being integrated.
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Table 5. Recall of the alignment containing
new entities on DBPZH-EN.

t = 1 t = 2 t = 3 t = 4 t = 5

Retraining MTransE .075 .055 .032 .023 .013

GCN-Align .049 .031 .028 .014 .012

AlignE .137 .099 .067 .057 .040

AliNet .148 .149 .118 .124 .085

KEGCN .059 .046 .026 .026 .021

Dual-AMN .204 .164 .128 .113 .094

Induct. MEAN+ .170 .142 .106 .098 .078

LAN+ .167 .140 .109 .095 .076

DINGAL-O .003 .007 .007 .008 .006

ContEA .205 .167 .140 .116 .095
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Fig. 3. Size growth of predicted correct
alignment on DBPZH-EN.

We show the results of three variants in Tables 2, 3 and 4. The variants
inherit the trained ContEA at t = 0 and perform respectively afterwards. We can
notice a performance drop when discarding selected trustworthy alignment. Big-
ger declines are seen if further dropping the affected seed alignment. This demon-
strates the effectiveness of both selected trustworthy alignment and affected seed
alignment replay. For ContEA retraining, though it performs much worse than
ContEA, it still outperforms all retraining baselines, including Dual-AMN, which
indicates the effectiveness of entity reconstruction.

Discovering New Alignment. Next, we present the performance of ContEA
on discovering alignment for new entities. At time t = {1, 2, 3, 4, 5}, we collect the
final predicted alignment that involves new entities, and calculate the recall value
by comparing it with the gold test alignment containing new entities. We show
the results on DBPZH-EN in Table 5. ContEA reaches the highest recall against all
baselines, which indicates the advantage of our method in discovering alignment
for new entities. We can also notice that the recalls on gold alignment about new
entities are significantly lower than those on all gold alignment. This is because
new entities tend to be sparsely-linked, which hinders the alignment models from
matching them correctly. Also, Fig. 3 illustrates the growth of the total correctly
predicted alignment of ContEA. At time t, the size of total correctly predicted
alignment is calculated as |At

p| × Recall (R in Table 2). The results show that
ContEA can find an increasing size of correct entity alignment as KGs grow,
which fulfills the proposal of continual entity alignment.

Efficiency. We compare the training efficiency of ContEA with retraining base-
lines. Note that, since inductive baselines have no training process as new triples
come, we do not include them here. We run all experiments on a server outfitted
with 512 GB memory, two Xeon Gold 6326 CPUs, and four RTX A6000 GPUs.
Figure 4 depicts the average time cost on three datasets at different snapshots.
We set the ceiling of vertical axis to 2,000 s for better presentation. We can
see that ContEA has significantly less training time, which shows a part of its
superiority in tackling the continual entity alignment task.
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Fig. 4. Time cost comparison of ContEA and retraining baselines. We report the aver-
age time cost on the three datasets.

Table 6. F1 results comparison when incorporating name attribute of entities.

DBPZH-EN DBPJA-EN DBPFR-EN

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Google Translate .550 .504 .473 .451 .434 .420 .677 .635 .617 .595 .587 .586 .749 .685 .658 .645 .636 .627

ContEA (fasttext) .709 .556 .471 .411 .367 .334 .754 .615 .521 .456 .409 .374 .780 .613 .510 .446 .404 .368

ContEA ∪ G.T .826 .645 .571 .506 .466 .441 .886 .742 .677 .637 .612 .604 .892 .740 .682 .650 .633 .623

4.5 Further Analysis

Incorporating Entity Names. Here we explore the advantage of leveraging
entities’ names. Practically, we use fasttext library to generate name embed-
dings for entities. Since the original word embedding dimension of fasttext is
300, to make the embedding space scalable, we reduce the dimension to 100 using
the official dimension reducer.4 Also, we involve Google Translate5 (G.T.) as a
competing method. For a cross-lingual dataset, we first translate entities from
two KGs into the same language (both in English or non-English), and then
calculate name similarity using Levenshtein distance, a popular measurement
in linguistics [18] and ontology matching [4]. The bidirectional nearest neighbor
search is also used later to obtain predicted trustworthy entity alignment, which
are compared with the gold test set to calculate P, R, and F1 scores. We list
the F1 results in Table 6. By utilizing name attributes, ContEA (fasttext) out-
performs ContEA with a large margin. Google Translate gives satisfactory and
robust performance over time, as powerful as expected. It performs more stably
and is less sensitive to KGs’ size, with outperforming ContEA (fasttext) on
most snapshots of the three datasets except the first snapshot.

We further explore the combination of ContEA and Google Translate. To do
so, we combine their predicted alignment when searching the nearest neighbor
from one KG to the other, then take a bidirectional intersection to get the final
combined predicted alignment. The results of this combination are shown in the
last row. We can see that their combination outperforms both Google Translate
and ContEA in almost all snapshots of three datasets. We believe that when
Google Translate fails to align an entity, ContEA can be a practical alternative.
4 https://fasttext.cc/docs/en/crawl-vectors.html.
5 https://translate.google.com/.

https://fasttext.cc/docs/en/crawl-vectors.html
https://translate.google.com/


Facing Changes: Continual Entity Alignment for Growing Knowledge Graphs 209

Table 7. Case study on previously predicted alignment getting corrected.

t = 0 t = 5

Predicted alignment Sim. Predicted alignment Sim.

DBPZH-EN
(我是歌手, Hunan Television) .204 (湖南卫视, Hunan Television) .530

(呼和浩特市, Baotou) .243 (包头市, Baotou) .541

DBPJA-EN
(スウェーデン語, Finnish language) .210 (フィンランド語, Finnish language) .316

(フランス人, Spaniards) .265 (フランス人, French people) .367

DBPFR-EN
(Révolution française, Réunion) .262 (La Réunion, Réunion) .403

(Stade de Wembley, White Hart Lane) .302 (Stade de Wembley, Wembley Stadium) .380

Case Study on Correcting Previous Alignment. Last, we present several
cases in Table 7 about the previously predicted alignment getting corrected in
later finetuning processes. We save the predicted alignment and their similarity
scores at time t = 0 and t = 5, and juxtapose two alignment pairs from each
time that involve the same entity. We manually check the list of juxtaposition
and notice that the predicted alignment at t = 0 is usually incorrect with smaller
similarity scores, while their counterparts at t = 5 are correct with higher simi-
larity scores. This indicates the ability of ContEA on self-correction. Meanwhile,
the two entities in falsely predicted alignment at t = 0 are not totally irrelevant.
For example, in the second case from the DBPFR-EN dataset, both Stade de
Wembley and White Hart Lane are Stadiums in London. In the first case from
the DBPZH-EN dataset,我是歌手 is a popular TV show made by Hunan Televi-
sion. And in the first case from the DBPJA-EN dataset, スウェーデン語 means
Swedish language (Sweden and Finland are two neighboring Nordic countries).
This gives an interesting insight on how ContEA predicts entity alignment with
slight inaccuracy.

5 Related Work

Static Entity Alignment. Most existing embedding-based entity align-
ment methods focus on static KGs. They can usually be classified into two
categories regarding the techniques of their KG encoders: translation-based
[6,14,19,25,26,43] and GNN-based [16,17,27,33–36]. The former family adopts
translation-based KG embedding (KGE) techniques [3,32] to embed entities,
and map cross-graph entities into a unified space based on pre-aligned entity
pairs. The encoder of GNN-based entity alignment methods learns a shared
neighborhood aggregator to embed entities in different KGs. They have gained
overwhelming popularity in recent years due to their strong ability to capture the
structural information using a subgraph around an entity, rather than a single
triple. For more details, there are several surveys [28,41] that comprehensively
summarize the recent advances.

Dynamic Entity Alignment. As far as we know, DINGAL [39] is the only
entity alignment method that addresses the dynamics of KGs. In its dynamic
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scenario, new triples are added into KGs as well as new pre-known alignment
provided along with these new entities. A variant of DINGAL, named DINGAL-
O, is also proposed in their work to handle a similar setting as ours where the
pre-known alignment does not grow. DINGAL-O is an inductive method that
leverages prior-learned model parameters to predict new alignment. Particularly,
they use name attributes to generate word embeddings for entity initialization.

Inductive Knowledge Graph Embedding. The study on dynamic KG
embedding has drawn lots of attention over the years. Powered by GNN, many
inductive embedding methods for KG completion are proposed to generate
embeddings for new entities. Early inductive methods either focus on semi-
inductive settings where new entities are connected to existing KG and mak-
ing inferences between new entities and existing entities [8,9,31,38], or fully-
inductive settings where new entities form independent graphs and making infer-
ences among new entities [5,29]. Later inductive method [15] intend to tackle
both settings. Meanwhile, some inductive KG embedding methods focus on spe-
cial tasks like few-shot learning [38] and hyper-relational KG completion [1].
Specifically, as the first inductive KG embedding method, MEAN [8] learns to
represent entities using their neighbors by simply mean-pooling the information
of neighboring entity-relation pairs. LAN [31] advances MEAN by incorporating
a rule-based attention and a GNN-based attention on entity-relation pairs in the
pooling process.

6 Conclusion and Future Work

In this paper, considering the growth nature of real-world KGs, we focus on an
entity alignment scenario where both graphs are growing, and address a new
task named continual entity alignment. We propose a novel method ContEA
as a solution to the task. Also, we construct three datasets to imitate the sce-
nario and conduct extensive experiments. The experimental results show the
superiority of ContEA in terms of effectiveness and efficiency against a list of
retraining and inductive baselines. For future work, there are many promising
improvements and extensions to the current proposal. Regarding the setting,
future studies can consider more complex scenarios such as the addition of new
relations, the addition of new pre-known alignment, and even the deletion of
entities and triples. As to the method, more reliable and comprehensive trust-
worthy alignment update strategies are necessary to handle intricate alignment
conflict cases.

Supplemental Material Statement: The source code, detailed hyperparameters,
and constructed datasets are available at our GitHub repository.6
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Abstract. Most structured data today is still stored in relational databases, which
makes it important to provide a translation between relational and semantic data.
A relational to RDF mapping, such as R2RML [13], provides a way to view exist-
ing relational data in the RDF data model through declarative mappings. While
relational to RDF mapping translates relational instance data to RDF, it does not
specify any translation of existing relational constraints such as primary and for-
eign key constraints. Since the introduction of R2RML, interest in RDF constraint
languages has increased and SHACL [15] has been standardised. This raises the
question of which SHACL constraints are guaranteed to be valid on a dataset
produced by a relational to RDF mapping. For arbitrary SQL constraints and
relational to RDF mappings, this is a hard problem, but we introduce a number
of restrictions on the mappings that allow us to introduce a constraint rewriting
for relational to RDF mappings that faithfully transfers SQL integrity constraints
to SHACL constraints. We define and prove two fundamental properties, namely
maximal semantics preservation and monotonicity.

1 Introduction

In relational database theory, one can restrict data to a set of relations that are considered
to be useful to applications at hand by imposing relevant integrity constraints upon
them, i.e., the semantics properties, also known as data dependencies, that the data in
the database must obey. However, such integrity constraints of relational data are not
explicit when mapped into RDF. A relational to RDF (R2R) mapping outputs an RDF
graph that no longer contains the integrity constraints information. To overcome the
problem, one can restore the semantic properties of R2R transformed data by using a
semantics preserving constraint rewriting [7,23,26] that maps the integrity constraints
of relational data into a well-behaved constraint formalism, which provides a closed-
world description for the mapped RDF graph. The integrity constraints of the dataset
that is being stored or represented in the RDF graph are a critical piece of information in
practice, both to detect problems in the RDF dataset and provide data quality guarantees
for RDF data exchange and interoperability.

In this paper, we study constraint rewriting for R2R mapping to make it more faith-
ful by transforming the integrity constraints, such as primary and foreign keys, unique
and not null integrity constraints as well as data types, from SQL database to RDF
graph. In an attempt to transfer such integrity constraints of relational data, such as key
constraints and functional dependency in direct mapping [2] to a larger perspective of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 214–230, 2022.
https://doi.org/10.1007/978-3-031-19433-7_13
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relational constraints [1, Sect. 10] in more expressive ontology-based mapping [18] of
relational data, into OWL DL axioms [20] as well as Epistemic DL axioms [14], the
problem has recently been studied in [7,23] and [10,11,21] respectively. However, for
our work, we follow the constraint rewriting technique proposed in [26] that explicitly
transforms integrity constraints of SQL database into integrity constraints on the RDF
graph, expressed in SHACL [15] as opposed to OWL/Epistemic DL axioms. Contrary
to OWL, SHACL, the Shapes Constraint Language recommended by W3C since 2017,
has a closed world semantics and uses the unique name assumption, which makes it a
more suitable candidate than OWL for expressing as well as detecting the violations of
integrity constraints on an RDF graph.

For arbitrary SQL constraints and relational to RDF mappings, constraint rewriting
is a hard problem. For simplicity, we restrict ourselves to (a) the most common SQL
constraints, namely keys, uniqueness and not null constraints, and (2) simple R2R map-
pings (Definition 4), which are restricted in such a way that the resulting RDF is struc-
turally close enough to the source that it remains possible to analyse the propagation of
source constraints to the target. Thus, once the SHACL descriptions of the mapped RDF
graph are available, they can be used to validate that the facts in the graph are compatible
with the constraints of the relational source and the mapping, using the SHACL valida-
tion engine. However, R2R mappings are also known for their mapping inconsistency
and redundancy anomalies [9,16], thus one-to-one semantics correspondence such as
semantics preservation proposed in [26, Defn. 6] and [23, Defn. 12] between the rela-
tional and the mapped RDF data can not be established in general [23,26, Prop. 1]. One
of the prominent reasons behind such flaws is that R2R mappings often imply SHACL
constraints that satisfy the mapped RDF graph with respect to database constraints even
if the key constraints are violated in the source database, which can not be easily fixed
as the mappings rely on the values of database keys to produce RDF terms [26, Exam. 4
and 5]. We can thus not hope for semantic equivalence between the SQL and SHACL
constraints. In this work we instead define a notion of maximal semantics preservation
to express that any additional SHACL constraints are either implied by the generated
ones, or not implied by the SQL constraints.

Example 1. Consider the following database instance D with schemas that describes
students and their enrollment in courses being offered by a university:

create table course (C_id varchar primary key, Title varchar unique);

create table student (S_id integer primary key, Name varchar, Code

varchar not null foreign key references course(C_id));

S_id Name Code

011 Ida CS40

012 CS20

C_id Title

CS40 Logic

CS20 Database

CS50 Data Eng

FK

In general, an R2R mapping is an assertion of the form Q −→ ψ that transforms a set of
tuples projected by SQL query Q, called source query, over a relational source D into
a set of RDF triples defined by graph triple patterns ψ. Assume an R2R mapping M to
retrieve students and their enrollment in the university’s courses,

Select S_id from student −→ 〈iri1(S_id), rdf:type, Student〉.
Select C_id from course −→ 〈iri2(C_id), rdf:type, Course〉.

Select S_id, C_id from student, course −→ 〈iri1(S_id), enrolledFor, iri2(C_id)〉.
where student.Code = course.C_id
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where iri1 and iri2 are injective functions that construct iris for students and courses
from their respective id’s. The mapping M yields the following RDF graph G (on the
left) from the database instanceD:

〈iri1(011), rdf:type, Student〉.
〈iri1(012), rdf:type, Student〉.
〈iri2(CS40), rdf:type, Course〉.
〈iri2(CS20), rdf:type, Course〉.
〈iri2(CS50), rdf:type, Course〉.
〈iri1(011), enrolledFor, iri2(CS40)〉.
〈iri1(012), enrolledFor, iri2(CS20)〉.

:Student a sh:NodeShape, rdfs:Class;

sh:property [ sh:path :enrolledFor;

sh:maxCount 1; sh:minCount 1;

sh:nodeKind sh:IRI; sh:class :Course ].

:Course a sh:NodeShape, rdfs:Class;

sh:property [ sh:path [sh:inversePath

:enrolledFor];

sh:nodeKind sh:IRI; sh:class :Student ].

Next, consider a SHACL document S (on the right), which consists of node shapes
:Student and :Course with implicit target class1 that define the constraints, intuitively,
all students must be enrolled for exactly one course, and all courses must be enrolled by
zero or more students. Now observe that the document S not only validates the graph
G but also guarantee the validation of every RDF graphs that can be generated via
mappings M from any valid instance D of the schemas in Example 1, i.e., semantics
preservation. Moreover, any further restrictions on the property paths of S, such as all
courses must be enrolled by at least one students, would easily be violated, meaning
that a valid database instanceD can be found such that mapped RDF graphs would not
validate the document S. Thus, we say that S is a maximally implied set of SHACL
shapes for the given relational source and the mappings M. For proof details, we refer
the readers to the extended version [28].

Example 1 illustrates that an assessment of R2R mapping is necessary to guaran-
tee whether the integrity constraints of relational data are maximally propagated via
mappings to the RDF. We thus take the process of R2R transformation into account
and define constraint rewriting as a function from constraints in SQL database to the
sets of SHACL shapes over RDF graph. We first introduce two fundamental proper-
ties of constraint rewriting, namely maximal semantics preservation and monotonicity.
Finally, we show that our proposed constraint rewriting is both maximal semantics pre-
serving and monotone, even in the most general and practical scenario where relational
databases contain null values. A constraint rewriting for R2R mappings is monotonic
if it assures that the result of constraint rewriting that is already computed no longer
requires alteration after the addition of new mappings.

2 Preliminaries

In this section, we fix notions and notations fundamental to the definition of R2R map-
ping, and SHACL constraints [15].

1 https://www.w3.org/TR/shacl/#implicit-targetClass.

https://www.w3.org/TR/shacl/#implicit-targetClass
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Databases. Let Δ be a countably infinite set of constants, including the reserved sym-
bol null. A relational schema R is a finite set of relation names, known as relation
schemas. We associate with each relation schema R ∈ R a finite, non-empty set of
named attributes, denoted by att(R). An instance D of R assigns each relation schema
R ∈ R a finite set of tuples RD, where each tuple t ∈ RD is a function that assigns to
each attribute in att(R) a value from domain Δ.

We write X as shorthand for a non-empty set {x1, . . . , xn} of attributes for n ≥ 1, and
x ∈ X to say that x is one of the elements of the set. |X| = n denotes the cardinality of
the set. We further write X �R to denote that X is a non-empty subset of att(R). We write
t(x) to denote the restriction of a tuple t ∈ RD to an attribute x ∈ att(R), which can be
extended to a set X � R, i.e., t(X). Finally, we define a relational database as a pair of
R andD, where R is a relational schema andD is a database instance of R. The active
domain ΓD of a database is the set of constants appearing inD, i.e., ΓD ⊆ Δ \ {null}.

SQL Constraints. We consider declarations of the SQL: (a) primary (PK) and foreign
(FK) keys, (b) not null (NN) and unique (UNQ) integrity, and (c) data types, constraints
on the relational schema R. We write Σ for the set of SQL constraints. NN, UNQ and PK
constraints on a relational schema R are expressions of the form NN(X,R), UNQ(X,R)
and PK(X,R), resp., for any X � R such that R ∈ R. An instanceD of R satisfies:

� NN(X,R) if for every t ∈ RD and x ∈ X, t(x) 	= null.
� UNQ(X,R) if for every t, t′ ∈ RD, if t(x) = t′(x) 	= null for every x ∈ X then t = t′.
� PK(X,R) if: (a) for every t ∈ RD and x ∈ X, t(x) 	= null, and (b) for every t, t′ ∈ RD,

if t(X) = t′(X) then t = t′.

An FK constraint on R is an expression of the form FK(X,R,Y, S ) for any X � R and
Y �S with |X| = |Y | and R, S ∈ R. An instanceD of R satisfies FK(X,R,Y, S ) if for every
t ∈ RD: either (a) t(x) = null for some x ∈ X, or (b) there exists a tuple t′ ∈ SD such
that t(X) = t′(Y). Next, to handle SQL data types, let the domain of an SQL data type
ν be a subset Δν ⊆ Δ. An SQL data type declaration on R is an expression of the form
Type(x, ν,R) for every x ∈ att(R) such that R ∈ R, where ν is an SQL data type. An
instance D of R satisfies Type(x, ν,R) for an attribute x ∈ att(R), if t(x) ∈ Δν for every
t ∈ RD.

A relational schema R with source constraints Σ consists of the relational schema R
and a set Σ of SQL constraints on R, such that UNQ(Y,R) ∈ Σ for all FK(X,R,Y, S ) ∈ Σ,
as usual in all SQL implementations. W.l.o.g., we also assume that for every X � R:
(a) if PK(X,R) ∈ Σ, then UNQ(X,R) ∈ Σ and NN(X,R) ∈ Σ, (b) if NN(X,R) ∈ Σ, then
NN(x,R) ∈ Σ for every x ∈ X and (c) if NN(x,R) ∈ Σ for every x ∈ X, then NN(X,R) ∈ Σ.
Finally, given a relational schema R with constraints Σ, and an instanceD of R, we call
D a legal instance of R with Σ, denoted byD |= Σ, ifD satisfies all constraints in Σ.

Queries. Assume relational algebra with Selection σ¬isNull, Projection π, Equi Join
��equality, Right Outer Join �� equality, Left Outer Join ��equality and Full Outer Join

� equality operations as query language that corresponds to a sub-class of basic frag-
ment of SQL standard. We use notationσ¬isNull for the select condition ‘IS NOT NULL’
over an attribute as in SQL, which can be extended to a set of attributes. Assume that
R is a relational schema,D is an instance of R and Q is a relational algebra expression
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over R. Then att(Q), the set of attributes of Q, is recursively defined as follows, where
we write X � Q to denote that X is a non-empty subset of att(Q):

1. If Q = R such that R ∈ R, then att(Q) = att(R).
2. If Q′ is a relational algebra expression over R, X � Q′ and Q = σ¬isNull(X)(Q′), i.e.,
σ¬isNull(x1)∧ ...∧¬isNull(xn)(Q

′), then att(Q) = att(Q′).
3. If Q′ is a relational algebra expression over R, X �Q′ and Q = πX(Q′), then att(Q) =

X.
4. Let Q1,Q2 be relational algebra expressions over R such that X �Q1 and Y �Q2 have

compatible data types. If Q = Q1 OPX=Y Q2 s.t.OP ∈ {��,�� , ��, 
� }, then att(Q) =
att(Q1) ∪ att(Q2).

The evaluation of Q overD, a set of tuples denoted by QD, is recursively defined as
follows,

1. If Q = R such that R ∈ R, then QD = RD.
2. If Q′ is a relational algebra expression over R, X � Q′ and Q = σ¬isNull(X)(Q′), then

QD = {t ∈ Q′D | t(x) 	= null for every x ∈ X}.
3. If Q′ is a relational algebra expression over R, X �Q′ and Q = πX(Q′) then, for every

t ∈ QD there exists t′ ∈ Q′D such that t(X) = t′(X).
4. Let Q1,Q2 be relational algebra expressions over R such that X �Q1 and Y �Q2 have

compatible data types.
a. If Q = Q1 ��X=Y Q2 then for every t ∈ QD: (i) there exist t1 ∈ Q1

D and t2 ∈ Q2
D

s.t. t(x) = t1(x) = t2(y) 	= null for every x ∈ X and y ∈ Y , (ii) t(u) = t1(u) for
every u ∈ (att(Q1)\att(Q2)), and (iii) t(v) = t2(v) for every v ∈ (att(Q2)\att(Q1)).

b. If Q = Q1 ��X=Y Q2 then for every t ∈ QD: either (i) there exist t1 ∈ Q1
D and

t2 ∈ Q2
D s.t. t(x) = t1(x) = t2(y) 	= null for every x ∈ X and y ∈ Y , t(u) = t1(u)

for every u ∈ (att(Q1) \att(Q2)) and t(v) = t2(v) for every v ∈ (att(Q2) \att(Q1)),
or (ii) there exist t1 ∈ Q1

D s.t. t(u) = t1(u) for every u ∈ (att(Q1) \ att(Q2)) and
t(v) = null for every v ∈ (att(Q2) \ att(Q1)).

c. If Q = Q1 �� X=Y Q2 then for every t ∈ QD: either (i) there exist t1 ∈ Q1
D and

t2 ∈ Q2
D s.t. t(x) = t1(x) = t2(y) 	= null for every x ∈ X and y ∈ Y , t(u) = t1(u)

for every u ∈ (att(Q1) \att(Q2)) and t(v) = t2(v) for every v ∈ (att(Q2) \att(Q1)),
or (ii) there exist t2 ∈ Q2

D s.t. t(v) = t2(v) for every v ∈ (att(Q2) \ att(Q1)) and
t(u) = null for every u ∈ (att(Q1) \ att(Q2)).

d. If Q = Q1 
� X=Y Q2 then QD = Qa
D ∪ Qb

D s.t.Qa = Q1 ��X=Y Q2 and Qb =

Q1 �� X=Y Q2.

Henceforth, we denote by SP the relational expression containing only select-project
relational operations, and SPJ the relational expression containing select-project-
(outer)join relational operations, respectively.

Definition 1. Let Q be a relational expression over a relational schemaR. Then, we say
that the Q is a valid query if and only if there exist foreign key references between
every two sets of attributes participating in an equality join condition in the Q.

RDF Graphs. Assume that I,B and L are countably infinite disjoint sets of Interna-
tionalized Resource Identifiers (IRIs), Blank nodes and Literals, respectively. The set of
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RDF terms T is I ∪ L ∪ B. A well-defined RDF triple is defined as a triple 〈s, p, o〉
where s ∈ I ∪ B is called the subject, p ∈ I is called the predicate and o ∈ T is called
the object. An RDF graph G ⊆ (I ∪ B) × I × T is a finite subset of RDF triples.

Definition 2. The set of nodes of an RDF graph G is the set of subjects and objects of
triples in the graph, i.e., {s, o | 〈s, p, o〉 ∈ G}.

Assume a countably infinite set V of variables disjoint from T . A triple pattern is
defined as a triple in (I∪B∪V)× (I∪V)× (T ∪V). A basic graph pattern (BGP) is a
finite set of triple patterns. The schema sch(ψ) of a triple pattern ψ is the RDF property
and class predicates [17] from the ψ.

Mappings. Formally, we adopt R2R mapping [6,22] that generate RDF triples from the
active domain of a database ΓD. Assume countably infinite and disjoint sets F and T

of iri-template and typing functions respectively, with each function α ∈ F ∪ T has an
associated arity n > 0. W.l.o.g., we assume that functions F ∪ T are injective, and map
only null to null.

Definition 3. We specify R2R-mapping M, from relational database-to-RDF, parti-
tioned into three disjoint sets:MC,MP andMU such that

i. MC is a set of data-to-RDF concept mappings, each one of the form

QX −→ 〈f(X), rdf:type,C〉,

where
a. QX is a source query Q over R with X � Q,
b. f ∈ F and C is an RDF concept.

ii. MP is a set of data-to-RDF object property mappings, each one of the form

QX,Y −→ 〈f(X), P, f′(Y)〉,

where
a. QX,Y is a source query Q over R with X,Y � Q,
b. f, f′ ∈ F and P is an RDF object property.

iii. MU is a set of data-to-RDF datatype property mappings, each one of the form

QX,Y −→ 〈f(X),U, t(Y)〉,

where
a. QX,Y is a source query Q over R with X,Y � Q,
b. f ∈ F, t ∈ T and U is an RDF datatype property.

Let m be a mapping Q −→ ψ of a triple pattern ψ, as in Definition 3. The source
query Q is the body(m) of m, whereas the triple pattern ψ is the head(m). The schema
sch(M) of a mapping setM is the union of sch(head(m)) of each m ∈ M. For any two
mapping setsM andM′ defined over a relational schema R with source constraint Σ,
we writeM′ ⊆ M, if for every mapping definition m, if m ∈ M′ then m ∈ M.
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Definition 4. Let QC, QP and QU be the source queries of mappings of an RDF concept
C, object property P and datatype property U, respectively. Then, we say that a mapping
setM (according to Definition 3) is a simple mapping if: (a)M contains exactly one
mapping definition per concept C, object property P and datatype property U predicates
in sch(M); (b) each QP is a valid SPJ query with one join operation, (c) each QU is
an SP query, d) if C and C′ are the concepts whose instances are subject and object of
an object property P, then the QC and QC′ are either equal to QP or SP queries with
a projected set of attributes whose (tuple) values are mapped to instances of C and C′,
and (e) if C is the concept whose instances are the subject of a datatype property U,
then QC is either equal to QU or an SP query with a projected set of attributes whose
(tuple) values are mapped into the instances of C.

Example 2. Consider the mapping of object property ‘EnrolledFor’ in Example 1.
Instances of concepts ‘Student’ and ‘Course’ are mapped to subject and object of
the property ‘EnrolledFor’, respectively. Then, according to simple mapping in Def-
inition 4, the source queries used in the mappings of those ‘Student’ and ‘Course’
concepts must be either the exact same source query used in the mapping of the prop-
erty ‘EnrolledFor’ or the SP source queries as in Example 1. Thus, a distinct simple
mapping could be defined for the same purpose that maps RDF concepts ‘Student’
and ‘Course’ using the same SPJ source query QP,

QP ::= Select S_id, C_id from student, course

where student.Code = course.C_id

as used in the mapping of object property ‘EnrolledFor’ as follows:

QP −→ 〈iri1(S_id), rdf:type, Student〉.
QP −→ 〈iri2(C_id), rdf:type, Course〉.
QP −→ 〈iri1(S_id), enrolledFor, iri2(C_id)〉.

Let t ∈ QD be a tuple of constants, and let f(X) be a term such that f ∈ F and X � Q.
Then, f(t(X)) is a ground term of f(X) obtained by substituting occurrence of every
x ∈ X with t(x).

Definition 5. LetMC∪MP∪MU be an R2R mapping setM defined over a relational
schema R, and D an instance of R. Then, we call the set of well-defined RDF triple
assertionsM(D), i.e.,

M(D) = {〈f(t(X)), rdf:type,C〉 | {Q −→ 〈f(X), rdf:type,C〉} ∈ MC, X � Qand t ∈ QD}
∪ {〈f(t(X)), P, f′(t(Y))〉 | {Q −→ 〈f(X), P, f′(Y)〉} ∈ MP, X,Y � Q and t ∈ QD}
∪ {〈f(t(X)),U, t(t(Y))〉 | {Q −→ 〈f(X),U, t(Y)〉} ∈ MU , X,Y � Q and t ∈ QD},

the RDF graph projected by the mapping setM and the instanceD.

We recall that R2R mappings in Definition 3 generate RDF triples from the active
domain of a database ΓD, i.e., null cannot appear in the output RDF triples. Therefore,
in this paper, we explicitly consider that (a) mappings M is simple, and (b) w.l.o.g.,
source query Q of each mapping inM contains σ¬isNull(X) and σ¬isNull(Y) filters over
every projected set of X,Y � att(Q).
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SHACL. Our formal treatment of the core constraints of SHACL [15] is based on the
approach of Corman et al. [12]. Each SHACL constraint is a set of conditions, usually
referred to as shape, defined as a triple 〈s, τs, φs〉 consisting of a shape IRI s, a target
definition τs, and a constraint definition φs. The τs and φs are expressions that determine
for every RDF graph G and node n of G, whether n is a target of the shape, G |= τs(n),
respectively, whether n satisfies the constraint, G |= φs(n). All shapes generated by our
transformation have an ‘implicit target class,’ which means that s is also the IRI of a
class and G |= τ(n) iff n is a SHACL instance of class s.2 For the purpose of our work,
the constraint φs is an expression defined according to the following grammar:

φ ::= φ ∧ φ | ≥n P±. α | ≤n P±. α | �C P± (1)

α ::= � | � | ¬� | C | ¬C

where � stands for truth, � is an XML schema datatype, C and P are an RDF concept
and property names respectively, the superscript ± stands for a property or its inverse,
n ∈ N, ¬ for negation, (≥n P±.α) means ‘must have at least n P±-successor verifying α’
for any n ∈ N and (�C P±) means ‘all values of P±-successor must be unique3 among
instances of conceptC’. As syntactic sugar, we use (=n P±.α) for (≥n P±.α)∧(≤n P±.α),
(�C P±.α) for (≤1 P±.α) ∧ (�C P±) and (�C P±.α) for (=1 P±.α) ∧ (�C P±).

A SHACL document is a set of SHACL shapes. An RDF graph G validates against
a shape 〈s, τs, φs〉 if for every nodes n of G, if G |= τs(n) then G |= φs(n). An RDF
graph G validates against a SHACL document S, written G |= S , iff G validates against
all shapes in S. The schema sch(s) of a SHACL shape s is the set of RDF concept and
property predicates [17] used in the target τs and constraint φs definition. The schema
sch(S ) of a SHACL document S is the union of sch(s) of every shape s ∈ S .

3 Constraint Rewriting: Definition and Properties

Our goal is to generate a set of SHACL constraints that is as strong as possible while
being guaranteed to hold for all RDF graphs resulting from valid database instances.
LetM be a mapping set defined over a relational schema R with source constraints Σ.

Definition 6. A SHACL document S is an Σ-implied set of shapes with respect toM,
written as Σ |=M S , if for every instanceD of R:

D |= Σ →M(D) |= S .

Definition 7. Let Σ |=M S . Then, we say that S is a maximally Σ-implied set of shapes
with respect toM, written as Σ |=∗M S , if for every Σ |=M S ′ s.t. sch(S ′) ⊆ sch(M) and
every RDF graph G :

G |= S → G |= S ′.

We now formalise a constraint rewriting and some desirable properties. Let S be the
set of all SHACL shapes and Q be the set of all pairs (M, Σ) such thatM is a mapping
set defined over a relational schema R with source constraints Σ.
2 https://www.w3.org/TR/shacl/#implicit-targetClass.
3 dash:uniqueValueForClassConstraintComponent from http://datashapes.org.

https://www.w3.org/TR/shacl/#implicit-targetClass
http://datashapes.org
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Definition 8 (Constraint rewriting). A constraint rewriting is a function T : Q →
P(S).

We next introduce central properties of a constraint rewriting T .

Definition 9 (Semantics preservation). A constraint rewritingT is semantics preserv-
ing if for every mapping setM and every source constraints Σ:

Σ |=M T (M, Σ).

Definition 10 (Maximal semantics preservation). A constraint rewriting T is max-
imal semantics preserving if for every mapping set M and every source constraints
Σ:

Σ |=∗M T (M, Σ).

Definition 11 (Monotonicity). A constraint rewriting T is monotone if for any map-
ping sets M′ ⊆ M defined over a relational schema R with source constraint Σ and
every RDF graph G:

G |= T (M, Σ)→ G |= T (M′, Σ).

4 View Constraint: Definitions

As introduced in Sect. 2, R2R mapping relies on database views based on a source
query to compute RDF terms from the database values. As a first step of our constraint
transformation, we have to analyse the propagation of database constraints to these
views.

Let R be a relational schema with source constraints Σ, and R ∈ R. The constraint Σ
restricted to the set of att(R), denoted by Σ |R, is the set of constraints such that for every
constraint σ ∈ Σ on any X �R, there is σ ∈ Σ |R. For example, if FK(X,R,Y, S ) ∈ Σ (resp.,
FK(Y, S , X,R) ∈ Σ) on any X �R, then there is FK(X,R,Y, S ) ∈ Σ |R (resp., FK(Y, S , X,R) ∈
Σ |R).

Definition 12. Let Q be a relational expression over a relational schema R with source
constraints Σ. Then, the set Σ propagated to the set of att(Q), denoted by Σ |Q, is recur-
sively defined as follows,

a. If Q = R such that R ∈ R, then Σ |Q = Σ |R.
b. Q = σ¬isNull(X)(Q′) where X � Q′, then Σ |Q = Σ |Q′ .
c. If Q = πX(Q′) where X � Q′ then Σ |Q = {PK(Y,R), UNQ(Y,R), NN(Y,R), FK(Y,R,Z, S ),

FK(Z, S ,Y,R) ∈ Σ |Q′ | Y ⊆ X and R, S ∈ R}.
d. If Q = Q1 OPX=Y Q2 where X � Q1 and Y � Q2 have compatible data types, and

OP ∈ {��,�� , ��, 
� }, then Σ |Q = Σ |Q1 ∪ Σ |Q2 .

SQL constraints are not well suited to direct translation to SHACL, so we introduce
an intermediate representation similar to functional dependencies. Let R be a relation
name with X,Y �R. Then, we write a functional dependency as an expression of the form
FDX→Y , i.e., meaning X �R functionally determines Y �R. Relational data dependencies,
such as functional, multi-value and others, are originally defined on databases without
null [3,5]. However, we need notions of data dependencies that also apply to databases
with null, such as in [4], which we define as follows:
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Definition 13. Let Q be a source query over a relational schema R with source con-
straints Σ, R ∈ R a relation name and D an arbitrary instance of R. Let V be the pair
(QD, Σ |Q) of projected view QD and propagated constraints Σ |Q. Then, for any X,Y �Q,

a. V |= FPX→Y if for every t, t′ ∈ QD, if t(X) = t′(X) then t(Y) = t′(Y).
b. V |= UFX→Y if QD |= FPX→Y and QD |= FPY→X.
c. V |= FDX→Y if QD |= FPX→Y and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. V |= UFDX→Y if QD |= FDX→Y and QD |= FDY→X.

Henceforth, we will keep the SQL notations intuitively simple in examples, i.e., we
write NN(X) ∈ Σ |X�R instead of NN(X,R) ∈ Σ |X�R for the propagated NN(X,R) ∈ Σ to
Σ |X�R.

Example 3. Following Example 1, assume a mapping set M with fS and fC iri-
templates and a typing function tν4 as follows:

a. πS_id,Nameσ¬isNull(S_id)∧¬isNull(Name)(student) −→ 〈fS(S_id), hasName, tν(Name)〉.
b. πC_id,Titleσ¬isNull(C_id)∧¬isNull(Title)(course) −→ 〈fC(C_id), hasTitle, tν(Title)〉.

Let Q1 = πS_id,Nameσ¬isNull(S_id)∧¬isNull(Name)(student), and V1 = (Q1
D, Σ |Q1 ). Then,

• att(Q1) = {S_id,Name} and Σ |att(Q1) = {PK(S_id), UNQ(S_id), NN(S_id), Type(S_id, ν),
Type(Name, ν)}, i.e., from assumption in Sect. 2, if PK(S_id) then UNQ(S_id) and NN(S_id).

• V1 |= FPS_id→Name since for every t, t′ ∈ Q1
D, if t(S_id) = t′(S_id) then t(Name) = t′(Name).

Filter σ¬isNull(Name) excludes tuples from Q1
D that contains null for the Name ∈ att(Q1).

Similarly, let Q2 = πC_id, Titleσ¬isNull(C_id)∧¬isNull(Title)(course), and V2 =

(Q2
D, Σ |Q2 ). Then,

• att(Q2) = {C_id, Title} and Σ |att(Q2) = {PK(C_id), UNQ(C_id), NN(C_id), Type(C_id, ν),
UNQ(Title), Type(Title, ν), FK(Code, student, C_id, course)}

• V2 |= FPC_id→Title since for any t, t′ ∈ Q2
D, if t(C_id) = t′(C_id) then t(Title) = t′(Title).

• V2 |= FPTitle→C_id since for any t, t′ ∈ Q2
D, if t(Title) = t′(Title) then t(C_id) = t′(C_id).

• V2 |= UFC_id→Title since Q2
D |= FPC_id→Title and Q2

D |= FPTitle→C_id.

5 Source to View Constraint Implication

The next step is to determine which of the data dependencies from Definition 13 hold
for the view defined by the source queries, i.e., they are implied by the propagated SQL
constraints.

Let Q be a source query over a relational schema R with source constraints Σ.
Then, we say that Σ implies a data dependency σX→Y s.t. σ ∈ {UFD,FD,UFP,FP} on
X,Y � Q, denoted by ΣQ � σX→Y , if V |= σX→Y for every legal instance D of R, where
V = (QD, Σ |Q) is the pair of projected view QD and propagated constraints Σ |Q. We
now concentrate on SP source queries.

4 tν specify XML Schema datatype of RDF literal tν(d) corresponding to the SQL data type ν of
the database constant d ∈ Δν, e.g., tν is an xsd:string IRI term if ν is varchar SQL data type.
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Lemma 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propa-
gated to set of att(Q). Then, for any X,Y � Q,

a. ΣQ � FPX→Y if UNQ(X,R) ∈ Σ |Q.
b. ΣQ � UFX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q.
c. ΣQ � FDX→Y if UNQ(X,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.
d. ΣQ � UFDX→Y if UNQ(X,R), UNQ(Y,R) ∈ Σ |Q and NN(X,R), NN(Y,R) ∈ Σ |Q.

Corollary 1. Let Q be a source query πX,Yσ¬isNull(X)∧¬isNull(Y)(R) over a relational
schema R with source constraints Σ, R ∈ R a relation name and Σ |Q the set Σ propa-
gated to set of att(Q). Then, for any X,Y � Q,

a. ΣQ � UFDX→Y → ΣQ � FDX→Y and ΣQ � FDX→Y → ΣQ � FPX→Y

b. ΣQ � UFDX→Y → ΣQ � UFX→Y and ΣQ � UFX→Y → ΣQ � FPX→Y

We next concentrate on SPJ source queries. An SPJ source query Q over a relational
schema R with source constraints Σ is a relational algebra expression of the form,

Q := πX,Yσ¬isNull(X)∧¬isNull(Y)(R1 OPU=V R2),

where R1,R2 ∈ R are relation names with X,U � R1 and Y,V � R2, |U | = |V | and OP ∈
{��, ��,�� , 
� }. Since mapping in Definition 3 generates RDF triples from the active
domain ΓD ⊆ Δ \ {null} of the database, w.l.o.g., we equivalently express the stated
SPJ source query Q, that yields the same set of RDF triples as the original Q, as follows,

πX,Yσ¬isNull(X)∧¬isNull(Y)(σ¬isNull(X)∧¬isNull(U)(R1) OPU=V σ¬isNull(V)∧¬isNull(Y)(R2)).

Note that the SPJ query Q is valid if and only if FK(U,R1,V,R2) ∈ Σ |Q or
FK(V,R2,U,R1) ∈ Σ |Q, see Definition 1. Henceforth, we use symbol →∗ to express
dependency in the opposite direction of foreign key reference, i.e., we write FDX→∗Y
to state functional dependency from X � Q to Y � Q if FK(Y,R2, X,R1) ∈ Σ |Q or
FK(V,R2,U,R1) ∈ Σ |Q s.t. X,U � R1 and Y,V � R2.

Lemma 2. Let R be a relational schema with source constraints Σ, and let Q be an
SPJ source query over R,

Q := πX,Yσ¬isNull(X)∧¬isNull(Y)(Q1 OPU=V Q2)

s.t. Q1 and Q2 are SP expressions over R1 ∈ R and R2 ∈ R with X,U � Q1 and Y,V � Q2

respectively, OP ∈ {��, ��,�� , 
� } and FK(U,R1,V,R2) ∈ Σ |Q. Then, for any X,Y � Q :

a. ΣQ � σX→Y if ΣQ1 � σX→U and ΣQ2 � σV→Y s.t. σ ∈ {UFD,FD,UF}.
b. ΣQ � σX→Y if ΣQ1 � UFDX→U and ΣQ2 � σV→Y s.t. σ ∈ {FD,UF}.
c. ΣQ � σX→Y if ΣQ1 � σX→U s.t. σ ∈ {FD,UF} and ΣQ2 � UFDV→Y .
d. ΣQ � FPX→Y if ΣQ1 � FDX→U and ΣQ2 � UFV→Y .
e. ΣQ � FPX→Y if ΣQ1 � UFX→U and ΣQ2 � FDV→Y .
f. ΣQ � FPX→Y if ΣQ1 � FPX→U.
g. ΣQ � FPX→Y if ΣQ1 � σX→U and ΣQ2 � FPV→Y s.t. σ ∈ {UFD,FD,UF}.
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h. ΣQ � σY→∗X if ΣQ1 � σU→X and ΣQ2 � σY→V s.t. σ ∈ {UFD,UF}.
i. ΣQ � FPY→∗X if ΣQ1 � σU→X s.t. σ ∈ {UFD,FD,FP} and ΣQ2 � UFY→V .
j. ΣQ � σY→∗X if ΣQ1 � σU→X s.t. σ ∈ {FD,UF,FP} and ΣQ2 � UFDY→V .

On the correctness of Lemma 2, e.g., assume the case (f). Then, UNQ(V,R2) ∈ Σ |Q2 since
FK(U,R1,V,R2) ∈ Σ |Q. Thus, ΣQ2 � σV→Y s.t. σ ∈ {UFD,FD,UF,FP} is the set of all
possible constraints implication. Hence, the case (f) of Lemma 2 covers the following
possible cases of constraints implication:

• ΣQ � FPX→Y if ΣQ1 � FPX→U and ΣQ2 � σV→Y s.t. σ ∈ {UFD,FD,UF,FP}.

Further, by applying similar arguments and the implication rules stated in Corollary 1
to the rest of cases in Lemma 2, the correctness proof of the Lemma can be enumerated.

Example 4. Following Examples 1 and 4, assume an R2R mapping:

Q −→ 〈fS(S_id), enrolledFor, fC(C_id)〉,

where Q is a source query πS_id,C_idσ¬isNull(S_id)∧¬isNull(C_id)(Q1 ��Code=C_id Q2) such
that Q1 = σ¬isNull(S_id)∧¬isNull(Code)(student) and Q2 = σ¬isNull(C_id)(course).
Then,

a. for SP expression Q1 :
• att(Q1) = {S_id,Code} and {UNQ(S_id), NN(S_id), NN(Code)} ⊆ Σ |Q1 fromDef-
inition 12.
• ΣQ1 � FDS_id→Code from the case (c) of Lemma 1

b. for SP expression Q2 :
• att(Q2) = {C_id} and {UNQ(C_id), NN(C_id)} ⊆ Σ |Q2 from Definition 12.
• ΣQ2 � UFDC_id→C_id from the case (d) of Lemma 1

c. finally, for SPJ expression Q:
• att(Q) = {S_id, C_id}
• FK(Code, student, C_id, course) ∈ Σ |Q1 ∩ Σ |Q2 , i.e., Q is a valid SPJ query.
• ΣQ � FDS_id→C_id from case (c) of Lemma 2, since

i. ΣQ1 � FDS_id→Code, and
ii. ΣQ2 � FDC_id→C_id from Σ � UFDC_id→C_id → Σ � FDC_id→C_id following

the case (a) of Corollary 1

6 The Constraint Rewriting

We now introduce a constraint rewriting Γ for a simple mapping M (Definition 4),
and prove the properties defined in Sect. 3. The constraint rewriting Γ in Definition 15
transforms the view constraints implied by the relational source Σ (as introduced in
Sects. 4 and 5) into sets of SHACL shapes. Since the semantic equivalence of generated
SHACL constraints to the source constraints Σ also depends on the combination of
source queries used in mappings of RDF triples, we first introduce the classification
functions ι and κ to distinguish between the various cases that can occur.

Let fC and fC′ be iri mapping templates for the respective RDF concepts C and
C′, and let t be an iri typing template. Let QC , QP and QU be the source queries of
mapping Definition 3 of an RDF concept C, object property P and datatype property U,
respectively.
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Definition 14. Let M be a simple mapping with RDF predicates C,C′, P,U ∈
sch(M). Let ι and κ be classification functions that take a triple pattern of the form
〈fC(X), P, fC′(Y)〉 and 〈fC(X),U, t(Y)〉 respectively, and the mapping set M as input,
and classifies the groups of the respective source queries (QC ,QP,QC′ ) and (QC ,QU)
as follows,

ι(〈fC(X), P, fC′ (Y)〉,M) =

{
A if QC 	= QP

B otherwise.
and κ(〈fC(X),U, t(Y)〉,M) =

{
A if QC 	= QU

B otherwise.

Let Q be a source query over a relational schema R with source constraint Σ. Then,
we write ΣQ � σX�Y s.t. σ ∈ {UFD,FD,UF,FP} to express the dependency that is either
ΣQ � σX→Y or ΣQ � σX→∗Y on X,Y � Q.

Definition 15 (Constraint rewriting Γ). Let M be a simple mapping defined over
a relational schema R with source constraint Σ, and let ι and κ be the classification
functions. Then, the constraint rewriting Γ(M, Σ) of Σ w.r.t. M is a set of SHACL
shapes that for each RDF concept C with mapping QX −→ 〈fC(X), rdf:type,C〉,
contains 〈C, τC , φC〉 with an implicit targetClass τC and conjunctive set of constraints
φC =

∧
1≤i≤3Φi, where

1. for mapping m of each object property P such as QX,Y −→ 〈fC(X), P, fC′(Y)〉,

Φ1 =

{
(≤0 P.¬C′) ∧ (≥0 P.C′) ∧ (

∧
ΣQ�σ λ1(σ)) if ι(head(m),M) = A

(≤0 P.¬C′) ∧ (≥1 P.C′) ∧ (
∧
ΣQ�σ λ2(σ)) if ι(head(m),M) = B

where

λ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(�C P.C′) if σ = UFDX→Y

(=1 P.C′) if σ = FDX→Y

(�C P.C′) if σ = UFX�Y

(≤1 P.C′) if σ = FPX�Y

and λ2(σ) =

{
(�C P.C′) if σ = UFX�Y

(=1 P.C′) if σ = FPX�Y

2. for mapping m of each object property P such as QX,Y −→ 〈fC′(X), P, fC(Y)〉,

Φ2 =

{
(≤0 P−.¬C′) ∧ (≥0 P−.C′) ∧ (

∧
ΣQ�σ δ1(σ)) if ι(head(m),M) = A

(≤0 P−.¬C′) ∧ (≥1 P−.C′) ∧ (
∧
ΣQ�σ δ2(σ)) if ι(head(m),M) = B

where

δ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(�C P−.C′) if σ = UFDX→Y

(=1 P−.C′) if σ = FDX→Y

(�C P−.C′) if σ = UFX�Y

(≤1 P−.C′) if σ = FPX�Y

and δ2(σ) =

{
(�C P−.C′) if σ = UFX�Y

(=1 P−.C′) if σ = FPX�Y

3. for mapping m of each datatype property U such as QX,Y −→ 〈fC(X),U, t(Y)〉,

Φ3 =

{
(≤0 U.¬t) ∧ (≥0 U. t) ∧ (

∧
ΣQ�σ μ1(σ)) if ι(head(m),M) = A

(≤0 U.¬t) ∧ (≥1 U. t) ∧ (
∧
ΣQ�σ μ2(σ)) if ι(head(m),M) = B

where

μ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(�C U. t) if σ = UFDX→Y

(=1 U. t) if σ = FDX→Y

(�C U. t) if σ = UFX�Y

(≤1 U. t) if σ = FPX�Y

and μ2(σ) =

{
(�C U. t) if σ = UFX�Y

(=1 U. t) if σ = FPX�Y
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Observe that in Definition 15, the first constraint components, such as (≤0 P±.¬C′)
and (≤0 U.¬t) in the definitions of Φi, are implied by the restriction on the mapping
set M, i.e., by the fact that M contains exactly one mapping defining per object and
datatype property predicates. The second constraint components, such as (≥0 P±.¬C′)
or (≥1 P±.¬C′) and (≥0 U.¬t) or (≥1 U.¬t), in the Φi are implied by the combination
of ι- and κ-classifications. Finally, the third constraints components

∧
ΣQ�σ f (σ) s.t.

f ∈ λi ∪ δi ∪ μi for 1 ≤ i ≤ 2 are implied by the source constraint Σ w.r.t.M.
The constraint definition φC := (≤0 P±.¬C′) requires all nodes n′ in the graph that

are reachable from a node n s.t. 〈n, rdf:type,C〉 via property path P± to have a typing
triple s.t. 〈n′, rdf:type,C′〉, which is exactly what we needed for the mapped object
property paths P± in the RDF graph given the restriction that setM contains exactly
one mapping definitions per object property predicates. Thus, to extend the constraint
rewriting Γ Definition in 15 beyond the simple mappingM, the rewriting Γmust: (i) not
generate constraint components such as (≤0 P±.¬C′) and (≤0 U.¬t) when there exist
more than one mapping definition per object P and datatype U properties, respectively,
in the set M, (ii) accommodate classification of all possible combinations of sources
queries in the definitions of ι and κ, and (iii) revise the definitions of λi, δi and μi for
additional consequences of Σ-implications w.r.t. the extendedM.

We now state the properties of the constraint Γ rewriting. Theorem 1 is a soundness
statement that guarantees that all constraints produced by Γ will be validated by the
RDF graph mapped from any valid database instance.

Theorem 1. The constraint rewriting Γ is semantics preserving.

Theorem 2 expresses the completeness of Γ, i.e., every SHACL constraint expressible
with the schema sch(M) of the mappings, and that is implied by Σ is implied by the
generated shapes Γ(M, Σ). This does not hold in general for SHACL constraints on
predicates not in sch(M). Finally, Theorem 3 expresses that adding mappings will never
invalidate generated constraints.

Theorem 2. The constraint rewriting Γ is maximal semantics preserving.

Theorem 3. The constraint rewriting Γ is monotone.

7 Discussion

We have presented a constraint rewriting Γ for simple R2R mapping that is useful in the
context of relational to RDF data transformation [13,19,23] and data integration [22,
31]. Observe that simple R2R mappings can express a comprehensive catalog of useful
mapping patterns studied in [8,24,25]. Simplifying simple R2R mapping further yields
direct mapping [2] since that requires additional restrictions on Definition 4; therefore,
the results for our constraint rewriting for simple mappings also seamlessly holds for
direct mapping [2,23,27]. In future work, we believe that it would interesting to extend
our constraint rewriting Γ in two different directions: (a) for arbitrary R2R mappings,
e.g., admitting the full relational algebra or arbitrary SPJ expressions as the source
query in mapping Definition 3, and (b) for a broader class of relational constraints such
as (disjunctive) tuple and equality generating dependencies [1].
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There are several approaches that map relational schemas and constraints to RDFS
and OWL/Epistemic DL axioms since, with an appropriate closed world semantics,
OWL can express integrity constraints. In particular, we first refer the reader to the
implications of constraints in ontology-based data access platform under different
names, such as protection and faithfulness in [10,11], which is equivalent to relational
constraints-to-OWL, i.e., to check whether the mapped RDF of every source dataset
satisfying the source constraints can be extended to a model of the mapped DL-LiteA
axioms, and OWL-to-relational constraints, i.e., opposite of former, constraints impli-
cation in [21]. Even though these proposals for combining OWL/Epistemic DL axioms
with integrity constraints have some promising results for target constraints specifica-
tion in the OBDA setting, there has been no unanimity on the correct semantics.

The problem of direct mapping of source schemas and constraints into RDFS/OWL
axioms has been studied in [7,23]. Sequeda et al. [23] attempted to capture the database
constraints on the RDF graph resulting from direct mapping using OWL. However, the
bootstrapped OWL axioms did not trigger the unsatisfiability of the directly mapped
graph whenever keys are violated in the source database unless the database instance is
explicitly encoded in the constraint rewriting. Further, Sequeda et al. [23, Theorem 3]
established that the desirable monotonicity property of direct mapping is an obstacle to
obtain a semantics preserving OWL axioms even if the database instance is explicitly
encoded in the constraint rewriting. To accomplish the desired one-to-one semantics
correspondence between legal relational data and RDF graph satisfying OWL axioms,
Calvanese et al. [7] further extended the direct mapping of relational schemas into
DL-LiteRDFS with disjointness - as constraints over mapped RDF graphs.

Finally, Thapa et al. [26] have studied the problem of translating database con-
straints into SHACL, instead of OWL/Epistemic DL, giving a direct transformation
from SQL constraints to SHACL, preserving their semantics when source key con-
straints are satisfied [26, Theorem 2]. The present work improves on this by a) not being
restricted to direct mappings, and b) lifting the requirement on satisfied key constraints.

8 Conclusion

In this paper, we study the problem of constraint rewriting for relational to RDF data
transformation based on the central property of maximal semantics preservation. We
translate standard SQL database constraints to shapes in the SHACL constraint lan-
guage for RDF graphs. We show that our proposed rewriting Γ for the simple relational
to RDF mappings satisfies the central properties of a constraint rewriting.

We believe that the propose constraint rewriting constitutes a core component of
R2R mapping tools for the crucial task of constructing and maintaining a quality-
assured RDF graph with SHACL constraints. The SHACL description of the generated
RDF graph provides a data quality guarantee for data exchange, interoperability and
query optimization. Hence, an important direction for future work will be the imple-
mentation and practical evaluation of our rewriting for relational to RDF data transfor-
mation and query optimization [30] in an ontology-based data access platform [29,31].
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Abstract. While satellite-based positioning systems are mainly used
in outdoor environments, various other positioning techniques exist for
different domains and use cases, including indoor or underground set-
tings. The representation of spatial data via semantic linked data is
well addressed by existing spatial ontologies. However, there is a pri-
mary focus on location data with its specific geographical context, but
a lack of solutions for describing the different types of data generated
by a positioning system and the used sampling techniques to obtain the
data. In this paper we introduce a new generic Positioning System Ontol-
ogy (POSO) that is built on top of the Semantic Sensor Network (SSN)
and Sensor, Observation, Sample, and Actuator (SOSA) ontologies. With
POSO, we provide missing concepts needed for describing a positioning
system and its output with known positioning algorithms and techniques
in mind. Thereby, we enable the improvement of hybrid positioning sys-
tems making use of multiple platforms and sensors that are described
via the presented POSO ontology.

Keywords: Positioning system ontology · Positioning techniques ·
Positioning algorithms

1 Introduction

Whether we are developing a system for indoor or outdoor navigation or sim-
ply want to track the location of an object on a table, a positioning system
that tracks the position based on one or multiple technologies and algorithms is
needed. While outdoor positioning solutions mainly rely on satellite positioning
systems such as the Global Positioning System (GPS), building-specific deploy-
ments and implementations using a wide variety of techniques [13,26] can be
used indoors.

In order to facilitate the interoperability between different positioning sys-
tems or client applications, we need a vocabulary that is generic enough to cover
various use cases. Expressing the position or movement in a geographical con-
text is already well established using ontologies and vocabularies such as the
Basic WGS84 vocabulary [3], the Location Ontology [10], GeoSPARQL [2] or
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the LinkedGeoData ontology [33]. However, positioning systems do not always
need to operate within a geographical boundary and may even provide more
contextual information that is relevant for other positioning systems that would
like to make use of the data.

Interoperability between multiple positioning systems also covers the fusion
of the data these systems provide. Work on linked data networks for IoT sen-
sors already exists [9,11], allowing raw sensor data to be accessible by multiple
platforms. Decision-level fusion of positioning data remains a lacking capabil-
ity of positioning systems due to the missing knowledge on how the location
data has been processed or obtained. The additional semantic information from
these systems is often not available to other systems, making the handover of
tracking [14] between systems difficult.

In this paper we introduce POSO, a generic positioning system ontology for
expressing the techniques, algorithms and data handled by a positioning sys-
tem. We demonstrate how POSO can be used by a positioning system and that
we can perform decision-level sensor fusion of positioning data between multi-
ple independent positioning systems when data is semantically defined based
on POSO.

2 Ontology Design

The main goal of our Positioning System Ontology (POSO) is to offer a solu-
tion that can model different positioning systems, their deployments, techniques,
algorithms and the real-time data they are providing. However, semantics on
post-processed trajectory data lies beyond the scope of POSO.

In Fig. 1 we provide a general overview of a positioning system and related
components. A positioning system is deployed at a particular location or area
that is meant to be covered. This can be a building, an area outdoors or even an
object-specific location such as a game board that does not have to be related to
any geographical boundaries. Each positioning system uses a set of algorithms
and technologies to help compute a position. Finally, with positioning systems
modelled based on POSO, we aim to track the position, orientation and other
properties of one or more entities. These properties can be anything that is of
relevance to the system and are obtained using the techniques implemented by
the positioning system. Spatial properties of a tracked entity are located within
the deployment using an optionally defined reference system.

We designed POSO with the Semantic Sensor Network Ontology (SSN) as
a top-level ontology [22] together with the Sensor, Observation, Sample and
Actuator (SOSA) ontology [23]. Combined, SOSA and SSN provide an ontology
for linking sensors, actuators, observations, samplers and the systems needed to
process this sensor data to an output. This provides a stable core ontology that
could enable the modelling of a positioning system with its deployment, the used
sensors, procedures, the entities and as well as the observable properties of those
entities. However, as these ontologies are meant to be used as core ontologies,
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Fig. 1. Basic structure of a positioning system that tracks entities

they do not offer any semantics for expressing the accuracy of individual obser-
vations, the different types of algorithms that are relevant for positioning or how
the results should be represented in order to be interoperable.

Our ontology has been designed with the common data requirements of
various positioning system technologies [13,26], datasets [37,38,41] and frame-
works [12,30,42] in mind to cover all types of systems without overcomplicating
the modelling of the data. An initial validation has further been conducted based
on the OpenHPS framework [39].

With our proposed ontology, we aim to support concepts for defining a generic
position, orientation, velocity, acceleration and the sampling of this data. We
extended the sosa:ObservableProperty to express different types of position,
orientation, velocity and acceleration. For expressing observation-based sensor
data, we use the SOSA ontology together with the QUDT ontology for express-
ing Units of Measure, Quantity Kinds, Dimensions and Data Types [16]. Each
observable property defined in POSO can also be used as a result within a
SOSA observation, with a set of predicates that express the result. This enables
expressing a fixed position of a feature of interest as shown later in Listing 6.
The proposed vocabulary should support the following three main goals:

– Sensor fusion: High- and low-level sensor fusion should be possible based
on the data [8]. High-level fusion, also called decision-level fusion, consists of
merging processed data from multiple sources, while low-level fusion is the use
of multiple sources of raw sensor data. Both fusion levels require additional
knowledge on how the data has been obtained and its quality. In the context
of high-level fusion in a positioning system, the additional semantics includes
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the accuracy as well as the techniques used to obtain the data. Using this
knowledge, other systems can prioritise the observations to be used.

– Historical data: Positioning systems make use of previous information to
predict future movement [44]. These predictions can be used to improve the
calculation of a next position. In order to support this technique, historical
positioning data should be available.

– Granularity: The position of an entity should be offered with varying ranges
of granularity without causing conflicts with the decision-level sensor fusion.
This enables use cases where observations of a minimum or maximum accu-
racy can be separated in a different triple store, further enabling access control
to these individual stores.

2.1 Positioning System

A positioning system is a system or mechanism that can determine the position of
one or multiple objects based on some sensor data. Multiple positioning systems
might track the same object either individually or simultaneously. These multiple
systems can work independently from each other or combine information from
other systems to provide an output. We identify five types of positioning systems
based on the ISO 19116:2019 standard [20]. Each positioning system extends the
ssn:System class of the SSN ontology:

– Satellite positioning system: A positioning system using satellites. Exam-
ples include the Global Positioning System, Galileo or GLONASS [17].

– Integrated positioning system: An integrated or hybrid positioning sys-
tem can be used outdoors, indoors or in any other space. Despite the fact
that many positioning systems are hybrid (e.g. Assisted GPS [7]), we explic-
itly specify it as a type in POSO to define a system that does not fall within
other more specific categories. In POSO, we define an integrated positioning
system as a system that must implement at least one sensor fusion procedure.

– Optical positioning system: A positioning system that uses optical sen-
sors to determine a position. This includes positioning systems where objects
are tracked externally (e.g. Multi-Target Multi-Camera Tracking [24]) or sys-
tems where the tracked object is the optical sensor observing the environ-
ment (e.g. Visual Simultaneous Localisation and Mapping [34]).

– Inertial positioning system: An inertial positioning system calculates the
position based on its movement and an initial reference point [15].

– Indoor positioning system: Indoor positioning covers all systems and tech-
niques that are deployed indoors as opposed to outdoor positioning where
often satellite positioning is used [26].

Being able to determine whether a position was obtained using satellites, an
inertial- or indoor positioning system enables the reasoning about the relevance
of a position sampled by one of these systems. With this additional knowledge, a
fusion technique can ignore the sampled position of a satellite positioning system
if an indoor positioning system is able to determine that the tracked object is
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inside a building. Alternatively, an inaccurate inertial positioning system may
provide useful context on the movement, rather than the position calculated
using its algorithms.

Finally, we define a location-based service (LBS) as an ssn:System to cat-
egorise services with a black-box implementation of a positioning system. An
example of such a service is the Geolocation API [29] that uses the techniques
available by the underlying hardware. Note that an LBS might specify one or
more positioning systems that it implements. In the poso-common extension dis-
cussed in Sect. 2.7, we provide a set of deployed satellite positioning systems, as
these can be used as subsystems1 in integrated positioning systems.

2.2 Positioning Algorithms and Techniques

The SOSA ontology describes a sosa:Procedure as a workflow, protocol, plan,
algorithm or computational method to make an observation, sample or change
the state of the world2. In a positioning system we identify a procedure as a
workflow that processes sensor data to an intermediate result or observation.

A positioning system can use a broad range of techniques to calculate a posi-
tion. While it might perform generic processing on raw sensor data, semantically
describing the main techniques that are involved in the processing improves the
reasoning that can be performed on the sampled data as well as its priority
for decision-level sensor fusion. To illustrate this, we provide the example of an
indoor positioning system (IPS) that uses simple QR codes for room check-ins
and an IPS at the same location site that uses Bluetooth beacons. Without
knowledge of the techniques used to determine a position, the accuracy of the
position at a given time cannot be determined reliably. While the Bluetooth posi-
tioning provides a continuous output with varying accuracy, the QR scanning
only provides a very high accuracy position when it is scanned; as the person
will be near the code to scan it.

In POSO we subdivide a procedure over multiple different main categories
that are based on the work of Liu et al. [26] and Gu et al. [13]:

– Cell identification: This covers all techniques that detect the position of an
object when it is close to an object with a known position. Existing solutions
range from radio frequency proximity to implicit position such as the act of
scanning a QR code at a known fixed location.

– Dead reckoning: The velocity of an object can be used to determine its drift
in space. This technique called dead reckoning can be a positioning system
on its own, identified as an inertial positioning system [20], but can also form
part of another technology such as Assisted GPS [7].

– Fingerprinting: Scene analysis techniques such as fingerprinting where sen-
sor data is matched to a grid of positions can be used during the setup
of the positioning system. Each scene analysis at a position is called a

1 https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem.
2 https://www.w3.org/TR/vocab-ssn/#SOSAProcedure.

https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
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fingerprint and is used during the online tracking stage to determine a
position. The sensor data will be matched to the fingerprint that most
closely resembles this data. POSO expresses a fingerprint as a subclass of
sosa:FeatureOfInterest under the term poso:Fingerprint that requires
to have a position in order to qualify as a fingerprint. This allows position-
ing systems that make use of this scene analysis to semantically describe the
system’s setup.

– Odometry: Positioning techniques that use sensor data to detect the change
in position are classified as odometry. This can be sensor data from motion
sensors, visual observations or other environmental data such as magnetic
interference [32].

– Simultaneous localisation and mapping: In simultaneous localisation
and mapping (SLAM), a sensor determines features that are tracked dur-
ing movement. By tracking these features it can determine the drift while
simultaneously using the features to construct a map of the environment [36].
SLAM can be subdivided into Visual SLAM [34] when image sensors are used
to track features as opposed to LiDAR sensors.

– Triangulation: Subdivided into angulation and lateration, triangulation cov-
ers positioning techniques that use angles or linear distance indicators to
determine a position between two or more landmarks with a known position.

– Sensor fusion: In order to specify how multiple positioning systems or sen-
sors are used together, a sensor fusion procedure category defines procedures
where observations from multiple different (sub)systems are merged. This
fusion technique can further make use of additional available context.

As an extension of POSO, the POSO-common module introduced later in
Sect. 2.7 provides several commonly used positioning algorithms and techniques.
The different positioning systems, techniques and observable properties along
with their hierarchical relation to the SOSA and SSN ontologies are illustrated
in Fig. 2. Properties that only contain fixed results without multiple observations
are also subclasses of sosa:Result defining a single result as shown in Listing 6.

2.3 Absolute and Relative Positions

Multiple definitions exist to indicate where a spatial object is located. Our deci-
sion for using the term position was based on the definitions in the English
language, as well as its uses within real-world applications:

– Place/Area: The place or area of an entity is an existing semantic definition
in many vocabularies [1]. However, it implies a space rather than a particular
point within this space.

– Pose: Often used in robotics [4] or when describing the movement of a per-
son [27], a pose contains the position and orientation of an object. In real-
world applications such as the Robotics Operation System (ROS) [30] it is
meant to indicate a position and orientation within 3D space. Not every posi-
tioning system might operate within three dimensions, in which case the pose
terminology might not be appropriate.
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Fig. 2. Positioning systems and techniques in the POSO ontology

– Location: According to the Oxford English Dictionary which defines a loca-
tion as “a place where something happens or exists; the position of something”
we concluded that a location is a semantic description of either a vague place
or accurate position. Because of this imprecision, we decided not to choose
the term location.

– Position: A position can optionally also contain an orientation. It is the ter-
minology used by most precise and generic positioning systems and location-
based services [29].

Generic positioning systems make a distinction between absolute and relative
positions [13,26]. An absolute position indicates a fixed point in space while
a relative position is relative to another object or landmark. Such a relative
position is a quantitative value relative in distance, angle or velocity, similar to
the ‘Best Practice 9’ mentioned in [35].

When working with absolute positions in a geographical coordinate system,
we make use of GeoSPARQL’s geographical position representation by the Open
Geospatial Consortium (OGC). However, for absolute positions that should not
be expressed as geometric coordinates, we use the QUDT ontology [16] to express
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Cartesian coordinates. POSO provides the concepts of poso:xAxisValue,
poso:yAxisValue and poso:zAxisValue to express a qudt:QuantityValue in
three dimensions.

Despite using simple Cartesian coordinates for a non-geographic position,
a reference frame is still required to indicate how the Cartesian coordinates
relate to each other. Similar to a reference frame in a geographical context, the
reference frame allows the 2D or 3D position to be converted to other reference
spaces such as a geographical context while still enabling the use of a positioning
system that is only meant to operate in a specific context (i.e. an engineering
reference frame as defined in ISO 19111 [21]). Defining a reference system is
already well covered in GeoSPARQL [2]. In order to define the reference system
of a sosa:Result, the poso:hasSRS or poso:hasCRS properties can be used.

For expressing a location that is covering a less specific larger 2D or 3D area,
we still request the use of an absolute position, but provide the ability to indicate
the accuracy as either a one-dimensional (i.e. distance) or polygonal coverage.

2.4 Orientation

An orientation is an important aspect of a positioning system. It does not only
offer the final state of direction after a rotation of an object or person, but is
also required by many positioning algorithms to determine a position. In a geo-
graphical context, the terminology bearing, heading, course or azimuth is used
as a one-dimensional value [19]. However, as we aim to support use cases beyond
geographical positioning and want to offer a more precise three-dimensional ori-
entation, we resorted to mathematical concepts.

The commonly used mathematical definitions of an orientation are Euler
Angles, Axis Angles and Quaternions [6]. Each mathematical definition has its
advantages for a positioning system. Euler angles offer a well-known semantic
description of a 3D rotation while still allowing the use of yaw only for expressing
the heading in a 2D scenario. In robotics, quaternions are chosen since they avoid
gimbal lock, as well as for their analytic properties.

As we aim to create a generic ontology, we have chosen to support any con-
cept that can identify the orientation around three axes. POSO provides three
extensions of the poso:Orientation class, including poso:EulerOrientation,
poso:AxisAngleOrientation and poso:QuaternionOrientation.

2.5 Velocity and Acceleration

Active positioning systems make use of an object’s velocity to determine a posi-
tion and orientation based on its momentum. This procedure called dead reck-
oning uses an entity’s last known location together with its angular and linear
velocity to determine the new position and orientation at a later timestamp.
POSO adds the concept of poso:Velocity with poso:LinearVelocity and
poso:AngularVelocity as subclasses, as well as the momentary acceleration
that is often returned by common Inertial Measurement Units (IMU).
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2.6 Observations and Accuracy

Individual observations and different levels of granularity can be expressed for
all properties. SSN-Systems [5], an extension of the SSN ontology, supports
the description of a system’s properties, capabilities and conditions. While this
enables the semantic description of the potential properties (i.e. accuracy, pre-
cision and operating environment) of a positioning system, it does not provide
information on the individual observations. For a positioning system, the spa-
tial accuracy can vary depending on the implemented procedure, the amount of
sensor data as well as the accuracy of that data.

The accuracy of any observation can be expressed via poso:hasAccuracy, a
subproperty of ssns:qualityOfObservation3 that can be applied to an obser-
vation or individual result. Alternatively, for expressing the accuracy of spatial
data (i.e. absolute or relative position) the geosparql:hasSpatialAccuracy
from the GeoSPARQL 1.1 draft [28] can be used to express a QUDT quantity
value. Further, in order to express the aimed accuracy of an observable property,
the ssns:Accuracy class can be used to indicate that the accuracy applies to
the position.

Trajectories. Creating an observation for every calculated position provides
context on historical data that can be used. Semantics of trajectories, such as
segmentation, map matching and additional post-processing context [43] lies
beyond the scope of our positioning system ontology. However, as each observa-
tion is a momentary timestamped result, they indirectly support the modelling
of a trajectory space and time path [18].

A basic overview of how a person’s speed, orientation and position in an
office deployment might be modelled is shown in Fig. 3. The green objects and
properties represent the concepts from SOSA and SSN(S), the blue objects and
properties represent the concepts from POSO and the purple objects represent
the example individuals. Note that the full POSO specification with all the
available concepts can be found in [40].

2.7 Alignment Module

The poso-common alignment module provides individual common positioning
algorithms, systems and data used in positioning systems categorised under the
classes defined in POSO. It describes seven satellite positioning systems [17];
known platforms such as IndoorAtlas4, Anyplace [12], OpenHPS [39,42],
ROS [30] and individual algorithms for common positioning techniques. With
the provided poso-common alignment module, we want to offer a foundation of
algorithms and techniques that can easily be used to describe complete posi-
tioning systems. Future work should focus on expanding these algorithms, along
with more detailed descriptions on their input and output shapes. In a hybrid

3 ssns: is the prefix for SSN-Systems [5].
4 https://www.indooratlas.com.

https://www.indooratlas.com
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Fig. 3. Example of a positioning system with a position, orientation and velocity
property

or integrated positioning system as described in Sect. 2.1, the use of these com-
mon algorithms can provide insights on what observations to use in the fusion
process.

3 Usage

In order to demonstrate the use of POSO to semantically model multiple posi-
tioning systems, we provide an example of a campus positioning system for the
indoor as well as outdoor tracking of students. Our fictional setup consists of
three individual systems; an outdoor positioning system using GPS, an indoor
positioning system using Wi-Fi fingerprinting as introduced in Sect. 2.2 and a
hybrid position system that makes use of the indoor and outdoor tracking sub-
systems by using a high-level sensor fusion technique.

We start by semantically describing the technical setup of the fictional deploy-
ment of the three positioning systems on our campus. Additional domain-specific
ontologies such as IndoorGML [25] can be used to describe the physical context
of these deployments. Throughout our examples, we make use of the prefixes
defined in Listing 1.

In Listing 2 we create an outdoor campus positioning system that uses GPS.
Indoors, we deploy a system that uses k-NN fingerprinting for Wi-Fi access
points. For the integrated positioning system on lines 15 to 18 that uses both
the outdoor and indoor system, we add the two individual systems as subsystems
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1 @prefix poso: <http://purl.org/poso/> .

2 @prefix poso-common: <http://purl.org/poso/common/> .

3 @prefix ssn: <http://www.w3.org/ns/ssn/> .

4 @prefix sosa: <http://www.w3.org/ns/sosa/> .

5 @prefix dbr: <http://dbpedia.org/resource/> .

6 @prefix geosparql: <http://www.opengis.net/ont/geosparql#> .

7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

8 @prefix qudt: <http://qudt.org/schema/qudt/> .

9 @prefix unit: <http://qudt.org/vocab/unit/> .

10 @prefix ssns: <http://www.w3.org/ns/ssn/systems/> .

11 @prefix schema: <http://schema.org/> .

Listing 1. Prefixes used in the demonstration examples

with an additional procedure on how the high-level fusion of these two systems
is performed.

1 dbr:Some_Unversity a ssn:Deployment .

2 <deployment/building_a> a poso:IndoorDeployment, geosparql:Feature ;

3 rdfs:label "Building A"@en ;

4 geosparql:hasGeometry [

5 a geosparql:Geometry ;

6 geosparql:asWKT "..."^^geosparql:wktLiteral ] .

7 <system/OPS> a poso:LocationBasedService ;

8 rdfs:label "Outdoor campus positioning"@en ;

9 ssn:hasSubSystem poso-common:GPS ;

10 ssn:hasDeployment dbr:Some_University .

11 <system/IPS> a poso:IndoorPositioningSystem ;

12 rdfs:label "Indoor campus positioning"@en ;

13 ssn:hasDeployment <deployment/building_a> ;

14 ssn:implements poso-common:KNNFingerprinting .

15 <system/CampusPositioning> a poso:IntegratedPositioningSystem ;

16 rdfs:label "Hybrid campus positioning system"@en ;

17 ssn:hasSubSystem <system/OPS>, <system/IPS> ;

18 ssn:implements poso-common:WeightedAccuracyFusion .

Listing 2. Positioning system setup

The entity that is being tracked by the campus positioning system is con-
figured in Listing 3. Each feature of interest, which we identify as our tracked
feature, has multiple observable properties. A property predicate such as the
poso:hasPosition on line 3 can be used multiple times to represent a position
with different levels of granularity. In linked data front ends with data access
control, such as Solid [31], these levels of granularity can control who is able to
access a property with a certain accuracy. By specifying the accuracy of these
properties along with possible other semantic information, the information can
be used in queries to determine which property offers the required accuracy.
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1 <me> a poso:TrackedFeature, foaf:Person ;

2 foaf:name "John Doe"@en ;

3 poso:hasPosition <me/position>, <me/approxposition> ;

4 poso:hasOrientation <me/orientation> .

5 <me/position> a poso:AbsolutePosition ;

6 rdfs:comment "Absolute position of John Doe"@en ;

7 poso:hasAccuracy <me/position/accuracy> .

8 <me/position/accuracy> a ssns:Accuracy ;

9 schema:maxValue "25.0"^^xsd:float ; schema:unitCode unit:CentiM .

Listing 3. Example setup of a tracked person and their properties

Further, in Listing 4 we show an observation created by the outdoor position-
ing system. The GPS provides a latitude and longitude that we output using the
OGC GeoSPARQL 1.1 ontology [28] as a well-known text (WKT) representation
on lines 9 to 11.

1 <position/1654350300000> a sosa:Observation ;

2 sosa:hasFeatureOfInterest <me> ;

3 sosa:observedProperty <me/position> ;

4 sosa:resultTime "2022-06-04T15:55:00+02:00"^^xsd:dateTimeStamp ;

5 poso:usedSystem <system/OPS> ;

6 sosa:hasResult [ a geosparql:Geometry ;

7 geosparql:hasSpatialAccuracy [ a qudt:QuantityValue ;

8 qudt:unit unit:CentiM ; qudt:numericValue "28"^^xsd:float ] ;

9 geosparql:asWKT """

10 <http://www.opengis.net/def/crs/OGC/1.3/CRS84>

11 Point(4.888028 50.31397)"""^^geosparql:wktLiteral ;

12 geosparql:dimension 2 ] .

Listing 4. Example observation of the outdoor positioning system

Indoors, our system outputs an absolute Cartesian 3D position as illustrated
in Listing 5. We identify that the 3D position is made inside a specific deploy-
ment on line 8, which contains information about its geometry and the reference
system used to convert the coordinates to a common reference frame used by the
campus positioning system. The technique used to obtain the result is defined
using sosa:usedProcedure while the system where this technique is used is
defined based on poso:usedSystem.

In previous example listings, we have shown how a positioning system might
model the observations of an absolute position. With the example in Listing 6
we outline how a relative distance to a wireless access point (named wap 1)
from our TrackedFeature can be expressed. Similar to an absolute position,
we can have multiple observations of the relative distance. POSO requires the
poso:isRelativeTo predicate on a relative position to indicate the feature of
interest that the position is relative to.
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1 <position/1647513000000> a sosa:Observation ;

2 sosa:hasFeatureOfInterest <me> ;

3 sosa:observedProperty <me/position> ;

4 sosa:resultTime "2022-03-17T11:30:00+01:00"^^xsd:dateTimeStamp ;

5 sosa:usedProcedure poso-common:KNNFingerprinting ;

6 poso:usedSystem <system/IPS> ;

7 sosa:hasResult [ a poso:AbsolutePosition ;

8 poso:inDeployment <deployment/building_a> ;

9 poso:hasAccuracy [ a ssns:Accuracy ;

10 schema:maxValue "25.0"^^xsd:float ;

11 schema:unitCode unit:CentiM ] ;

12 poso:xAxisValue [ a qudt:QuantityValue ;

13 qudt:unit unit:M ; qudt:numericValue "5"^^xsd:double ] ;

14 poso:yAxisValue [ a qudt:QuantityValue ;

15 qudt:unit unit:M ; qudt:numericValue "6"^^xsd:double ] ;

16 poso:zAxisValue [ a qudt:QuantityValue ;

17 qudt:unit unit:M ; qudt:numericValue "3.5"^^xsd:double ] ] .

Listing 5. Example observation of the indoor positioning system

1 <landmark/wap_1> a poso:Landmark ;

2 rdfs:label "Wireless Access Point 1"@en ;

3 poso:hasPosition [ a poso:AbsolutePosition ;

4 poso:hasAccuracy [ ... ] ;

5 poso:xAxisValue [ ... ] ;

6 poso:yAxisValue [ ... ] ;

7 poso:zAxisValue [ ... ] ] .

8 <me/position/relative/wap_1> a poso:RelativeDistance ;

9 ssn:isPropertyOf <me> ; # Relative distance from <me> ...

10 poso:isRelativeTo <landmark/wap_1> ; # to <landmark/wap_1>

11 rdfs:comment "Relative position of John Doe to WAP_1"@en .

12 <position/relative/wap_1/1646891100000> a sosa:Observation ;

13 sosa:hasFeatureOfInterest <me>, <landmark/wap_1> ;

14 sosa:observedProperty <me/position/relative/wap_1> ;

15 sosa:resultTime "2022-03-10T06:45:00+01:00"^^xsd:dateTimeStamp ;

16 poso:madeBySystem <system/IPS> ;

17 sosa:usedProcedure poso-common:LDPL ; # Log-distance path loss

18 sosa:hasResult [ a qudt:QuantityValue ;

19 qudt:unit unit:Meter ; qudt:value "3.7"^^xsd:double ] ;

20 sosa:hasResult [ a qudt:QuantityValue ;

21 qudt:unit unit:DeciB_M ; qudt:value "-82"^^xsd:integer ] .

Listing 6. Example observation of a relative position

As mentioned in the beginning of Sect. 2, each observable property can also
be used to express a fixed result that does not consist of multiple observations.
On lines 1 to 7 of Listing 6 we utilise this ability to express a fixed result to define
the fixed position of a landmark rather than creating a single observation where
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the position is defined as a result. On lines 12 to 21, we have one observation of
this observable relative distance obtained using our indoor positioning system.
The result is expressed as a distance using a path loss algorithm and the raw
signal strength expressed in decibel-milliwatts (dBm).

In order to provide a single output for the campus positioning system, we can
use the observations from the indoor and outdoor positioning systems shown in
Listing 5 and Listing 4 to compute a fused output based on the weighted accuracy
fusion procedure that our campus positioning system implements in Listing 2.
Using the knowledge about the accuracy, the systems that produced the results
and the indoor positioning system deployments, we can perform a fusion with
more context than only the self-reported accuracy of each individual subsystem.

4 Conclusions and Future Work

In this paper we introduced our new generic positioning system ontology called
POSO for describing concepts relevant to a positioning system. These concepts
include the different observable properties that can be obtained by a positioning
system, the different categories of systems and the different algorithms and tech-
niques these systems can implement to handle positioning. Further note that our
generic positioning system ontology does not only focus on common geospatial
and geographical concepts that are already described in various existing vocab-
ularies [2,10,33] but also offers a novel vocabulary for describing generic data
outputted by a positioning system. We expanded the SSN [22] and SOSA [23]
ontologies by providing common procedures and observable properties. By fur-
ther presenting the poso-common module, we illustrated how POSO can be
expanded with a set of common algorithms, existing systems and platforms.

Finally, we illustrated the usage of POSO with a scenario containing two
positioning systems and a hybrid positioning system using a high-level fusion
technique. In this demonstration, we have shown how each positioning system
might be modelled using POSO and how observational data can be expressed.

Future work will focus on adding additional positioning technique and algo-
rithm procedures, further describing the input and output that each procedure
provides. By using known input and output RDF shapes that are used in different
positioning systems, we can further classify a positioning system’s technologies
and the output they provide. While we already offer procedures obtaining map
information (i.e. Simultaneous Localisation and Mapping), we did not showcase
how the raw observations generated by such an algorithm can be created.

Supplemental Material Statement: All the sources of POSO and poso-common,
along with additional documentation5 is available on GitHub [40].

5 https://openhps.github.io/POSO/1.0/en/.

https://openhps.github.io/POSO/1.0/en/
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Abstract. Temporal knowledge graphs (TKGs) organize and manage
the dynamic relations between entities over time. Inferring missing
knowledge in TKGs, known as temporal knowledge graph completion
(TKGC), has become an important research topic. Previous models han-
dle all facts with different timestamps in an identical latent space, even
though the semantic space of the TKG changes over time. Therefore, they
are not effective to reflect the temporality of knowledge. To effectively
learn the time-aware information of TKGs, different latent spaces are
adapted for temporal snapshots at different timestamps, which yields a
novel model, i.e., Space Adaptation Network (SANe). Specifically, we
extend convolutional neural networks (CNN) to map the facts with
different timestamps into different latent spaces, which can effectively
reflect the dynamic variation of knowledge. Meanwhile, a time-aware
parameter generator is designed to explore the overlap of latent spaces,
which endows CNN with specific parameters in term of the context of
timestamps. Therefore, knowledge in adjacent time intervals is efficiently
shared to boost the performance of TKGC, which can learn the validity
of knowledge over a period of time. Extensive experiments demonstrate
that SANe achieves state-of-the-art performance on four well-established
benchmark datasets for temporal knowledge graph completion.

Keywords: Temporal knowledge graph · Temporal knowledge graph
completion · Space adaptation · Parameter generation

1 Introduction

Knowledge Graphs (KGs) [1,3] organize and manage knowledge as structured
information in the form of fact triples, which are crucial in various downstream
tasks [14,33]. In KGs, nodes represent entities, and directed edges indicate rela-
tions between entities. Notably, most KGs are inherently incomplete, which moti-
vates research on Knowledge Graph Completion (KGC). KGC aims to infer new
facts from existing facts in KGs and is important to KG field. However, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Existing methods vs. our method. (a) Entities, relations and timestamps are
learned to obtain independent representations [21,23,32,42]. (b) Temporal information
is implicit in entities or relations to generate time-aware representations of entities or
relations [13,41,44]. (c) A concise illustration of our model. Entities and relations are
adapted into specific latent spaces that are produced based on timestamps.

facts are not always time-invariant, and the validity of triples is often time-
aware. Traditional KGC methods are insensitive to temporal information, since
they intuitively assume that triples in KGs are universally true. Therefore, these
methods are not effective to predict the temporal facts.

Temporal Knowledge Graphs (TKGs), including ICEWS [5], YAGO3 [26],
Wikidata [9], etc., are introduced to organize additional temporal aspects of
facts. In TKGs, static triples are associated with timestamps, which reflect the
temporal dynamics of facts in the form of quadruples. Knowledge in a TKG can
be described by the evolution of snapshots over time. However, TKGs also suffer
from incompleteness as with static KGs. Therefore, predicting missing knowledge
with specific timestamps in TKGs, i.e., Temporal Knowledge Graph Completion
(TKGC), has gained growing interest.

Recently, a variety of models have been proposed to handle TKGC. These
models significantly outperform traditional KGC models by capturing the latent
correlation between knowledge and temporal information. Previous works learn
independent representations of entities, relations and timestamps [21,23,32,42]
as shown in Fig. 1(a), or obtain time-aware representations by integrating tem-
poral information into entities and relations [13,41,44] as shown in Fig. 1(b).
These works model variable knowledge in an identical latent space, even though
the semantic space of the TKG changes over time. Therefore, these methods
are not effective to learn the temporality of knowledge. In practice, TKGs can
be decomposed into two components, time-variability and time-stability, which
are intrinsic and critical characteristics in TKGs. Time-variability denotes the
dynamic knowledge which is varied in different snapshots. For example, the pres-
ident of USA was George W. Bush on 2009-01-01, but became Barack Obama
on 2010-01-01. On the other side, time-stability denotes the knowledge which
remains unchanged for a period time. For example, (Barack Obama, presidentOf,
USA) remains valid for a specific period from 2009-01-20 to 2017-01-20. One
of simple yet generic solution of TKGC is to encode the knowledge in different
temporal snapshots into different latent spaces, such that the time-aware infor-
mation at each snapshots can be captured effectively. Meanwhile, there is a part
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of knowledge remains unchanged during a interval. Therefore, knowledge sharing
across adjacent snapshots is also required for knowledge accumulation over time.
However, it is quite challenging to derive a latent space for each snapshot, since
the number of model parameters linearly depend on the number of timestamps.
In addition, how to efficiently gather valid knowledge from different spaces is an
important problem as well.

In response, we propose a novel model named Space Adaptation Network
(SANe) for TKGC as shown in Fig. 1(c). We establish the correlation between
latent spaces and snapshots in terms of parameter generation, i.e., a time-specific
network is produced for each snapshot, such that the facts with different times-
tamps are encoded into different spaces. Specifically, to model time-variability, a
dynamic convolutional neural network (DCNN) is proposed to deal with the enti-
ties and relations with different parameters that are specific to the corresponding
timestamps. Therefore, each temporal snapshot, i.e., knowledge graph with the
same timestamp, is processed in a specific space. Essentially, TKGC is turn into
the static KGC by handling different temporal snapshots in separate spaces.
Thereby, this solution alleviates mutual interference of the knowledge with dif-
ferent timestamps. In addition, we explore how to produce the parameters with
respect to timestamps to ensure time-stability. Thus, a time-aware parameter
generator (TaPG) is designed to constrain the overlap of latent spaces according
to the distance of timestamps, which allows adjacent snapshots to share different
but similar latent spaces. In this way, valid knowledge across multiple snapshots
within a time interval is preserved. The model is experimentally evaluated in
detail on several recent standard benchmarks and achieves state-of-the-art per-
formance compared to existing TKGC methods.

To summarize, our contributions are as follows:

– We propose a novel space adaptation network SANe for TKGC, where differ-
ent latent spaces are adapted for different temporal snapshots. To the best of
our knowledge, this is the first work to implement TKG completion from the
perspective of space adaptation.

– By constraining the overlap of different spaces in terms of time intervals, the
model strikes a balance between learning time-variability and adapting to
time-stability.

– Experimental results on four benchmark datasets with rich temporal infor-
mation demonstrate the superiority of our model1

2 Related Work

In this section, typical methods for static knowledge graph completion and tem-
poral knowledge graph completion are introduced, and research advances on
parameter generation in various fields are briefly reviewed.

Static Knowledge Graph Completion aims to infer missing facts in static
KGs. Previous works can be broadly classified into translational, bilinear, and
1 Our code will be publicly available at https://github.com/codeofpaper/SANe.

https://github.com/codeofpaper/SANe
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neural models. TransE [4] is a well-known translation-based model that regards
relations as translations from head entities to tail entities. Later, several vari-
ants such as TransH [39], TransR [24] and TransD [16] have been proposed to
improve the shortcomings of TransE. Bilinear models, such as RESCAL [29],
ComplEx [37], and TuckER [2], represent relations as linear transformations
acting on entity embeddings, and use bilinear functions to compute plausibility
scores for facts. Neural models, such as ConvE [8], InteractE [38], and RGHAT
[48], complement KGs with nonlinear neural networks and show great effec-
tiveness. The above models have achieved promising results in addressing the
incompleteness of KGs. However, they assume that the facts are static and thus
cannot model the temporality in TKGs. For example, given two quadruples
with timestamps: (Barack Obama, presidentOf, USA, 2010-01-01 ) and (Barack
Obama, presidentOf, USA, 2020-01-01 ), the time-insensitive KGC models will
output the same plausibility scores for these two quadruples. However, the sec-
ond quadruple is invalid. To exploit temporal information to further improve the
performance of KGC models, several studies have been conducted for temporal
knowledge graph completion.

Temporal Knowledge Graph Completion extends KGC to support tem-
poral information. Existing methods for temporal knowledge graph completion
generally fall into two categories. The first line of researches models entities, rela-
tions, and timestamps independently in an identical latent space. TTransE [23],
the variant of TransE [4], incorporates temporal representations into a distance-
based scoring function. TComplEx [21] is a temporal extension of ComplEx [37]
inspired by the canonical decomposition of order 4 tensors and provides a new
regularization scheme. TeLM [42] improves on TComplEx by utilizing a linear
temporal regularizer and multi-vector embeddings to perform 4th-order tensor
factorization of TKGs. ChronoR [32] is a k-dimensional rotation based model
that regards relations with timestamps as temporal rotations from head entities
to tail entities. The another line argues that temporal information should be
implicit in entities or relations, thus learning time-aware representations. ATiSE
[44] incorporates temporal information into entities/relations by using additive
time series decomposition and exploits the covariance of Gaussian distributions
to represent temporal uncertainty. DE-SimplE [13] combines the static KGC
model SimplE [19] with a diachronic embedding function that provides time-
aware representations of entities, and utilizes the same scoring function as Sim-
plE for temporal KGC. TIE [41] is a time-aware incremental embedding frame-
work that combines representation learning, experience replay, and temporal
regularization to improve model performance.

Parameter Generation has been explored in many research fields. Platan-
ios et al. [31] proposed a neural translation model with a contextual parameter
generator to generate parameters used by the encoder and decoder for the cur-
rent sentence based on the source and target languages. N3 [17] generates net-
work parameters for image classification through natural language descriptions
combined with pre-trained models. Nekvinda et al. [28] introduced a multilin-
gual speech synthesis method that uses the meta-learning concept of contextual
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parameter generation to produce natural-sounding multilingual speech. Accord-
ing to our investigation, there is also work on parameter generation for static
knowledge graph completion. CoPER [35] uses the embeddings of relations to
generate model parameters that operate on the embeddings of head entities to
allow for more complex interactions between entities and relations. ParamE [6]
uses neural network parameters as relation embeddings to make the model more
expressive and translational. However, CoPER and ParamE are time-agnostic
and thus cannot capture the temporal dependencies of facts in TKGs.

3 Methodology

A temporal knowledge graph can be represented by a set of quadruples G =
{(h, r, t, τ) |h, t ∈ E , r ∈ R, τ ∈ T }, where E , R, and T are sets of entities, rela-
tions, and timestamps, respectively. Each quadruple represents a time-dependent
fact that a head entity h connects to a tail entity t with respect to the relation r
at the timestamp τ . Given a query (h, r, ?, τ) or (?, r, t, τ), TKGC aims to predict
the missing tail entity t or head entity h based on the observed temporal facts.
For TKGC, we only focus on predicting missing facts at observed timestamps,
i.e., interpolation task [18]. The extrapolation task that predicts future facts is
not considered in this paper.

To tackle the challenges of TKGC, we propose a Space Adaptation Network
(SANe), in which snapshots with different timestamps are adapted for different
latent spaces. As shown in Fig. 2, SANe mainly consists of two modules, i.e., a
Dynamic Convolutional Neural Network (DCNN), and a Time-aware Parame-
ter Generator (TaPG). DCNN encodes entities and relations into different latent
spaces in terms of convolutional layers equipped with different parameters. These
parameters are produced by TaPG according to temporal information. TaPG
transforms the timestamps into a set of DCNN parameters, where the times-
tamps dominate the overlap of multiple latent spaces in DCNN, such that the
valid knowledge is shared across adjacent snapshots. Specifically, we denote by
the d-dimensional vectors h ∈ R

d and r ∈ R
d the head entity and relation respec-

tively. Given a query (h, r, ?, τ), DCNN f predicts the correct tail entity t based
on generated parameters from TaPG g, i.e.,

t = f(h, r; g(τ )), (1)

where g(τ ) is the set of parameters of DCNN f , i.e., θf = g(τ ).

3.1 Dynamic Convolutional Neural Network

Convolutional neural networks (CNN) have shown expressiveness in static KGC
methods [8,38], but have not been extensively explored in existing TKGC meth-
ods. We extend CNN to support TKGC by endowing CNN with specific parame-
ters associated with temporal information. DCNN f consists of several dynamic
convolutional layers and batch normalization, followed by a connected linear
layer. Dynamic convolutional layer (DCL) is the important backbone of DCNN
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Fig. 2. The framework of our model SANe. DCNN is a multi-layer convolutional neural
network for predicting missing entities, and its filter parameters are generated by TaPG
based on temporal information.

that identifies the key feature from the inputs based on a filter. It differs from
traditional convolutional layer that the parameters of DCL filter is dynamically
produced from TaPG instead of fixed. Naturally, TaPG is a tremendous parame-
ter pool and selects appropriate parameters for DCLs when dealing with different
temporal facts. DCL pads and filters the input X ∈ R

Ci×H×W to produce the
feature map X′ ∈ R

Co×H×W based on the filter ωp,τ ∈ R
Co×Ci×k×k followed by

the nonlinear activation function ReLU (i.e., Rectified Linear Unit [12]),

X′ = DCL
(
X; θωp,τ

)
= ReLU (X � ωp,τ ) , (2)

where � is the convolution operator, H and W are height and width, Co and
Ci are the size of input and output channels, and k is the kernel size. The filter
ωp,τ is produced from TaPG according to the position p of DCL in DCNN and
the timestamp τ , i.e., θωp,τ

= g(τ , p).
Multiple DCLs are stacked to handle the entities and relations in an effective

way. In particular, we first reshape the entity h and the relation r into h̃ ∈ R
H×W

and r̃ ∈ R
H×W , respectively. To enhance the heterogenous interactions between

entity h̃ and relation r̃ vectors, we perform feature permutation and checkered
reshaping operations on the concatenation X ∈ R

2H×W of h̃ and r̃ inspired
by the work [38]. Feature permutation shuffles each element in h̃ and r̃, while
checkered reshaping ensures that every two adjacent cells in X are alternately
occupied by elements in h and r. The regularized input X̃ after above operations
is fed into P DCLs to produce the feature map M.

To predict the correct tail entity, a scoring function is introduced to evaluate
the score of correlation between the query (h, r, ?, τ) and candidate tail entity
t ∈ R

d,
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ψτ (h, r, t) = Linear(flatten(M))t, (3)

where Linear(·) is a linear layer activated by ReLU and flatten(x) flattens x into
a 1-dimensional vector.

The sets of filters of DCNN {ω1,τ , · · · ωP,τ} reflect the delivery and varia-
tion of knowledge at different snapshots in consecutive time. The spaces induced
by DCNN at different timestamps should be same, overlapped or uncorrelated
when the timestamps of facts are the same, adjacent and distant. In other words,
the overlap of spaces at different timestamps constrains the range of knowledge
sharing. This property ensures that the interfere from early snapshots is alle-
viated and the missing facts in adjacent snapshots are delivered to accumulate
knowledge. Essentially, our SANe model stores the facts in multiple knowledge
bases, i.e., multiple sets of parameters, depending on the time range. Thus, it can
“index” the knowledge precisely by finding the “records” in parameters according
to different timestamps. The next section will introduce the parameter gener-
ation of DCNN to preserve the valid knowledge and forget the mistaken in a
time-aware way.

3.2 Time-Aware Parameter Generator

Usually, in the process of searching records by human, the searcher reduces the
hunting zone by gradually indexing year, month and day. For example, if a person
wants to query a record that are indexed by the timestamp, he needs to split
timestamps into year, month and day to locate it. If the record is missing at
the timestamp, the similar records around the timestamp should be returned.
Based on the observation, the filter parameters ω1,τ of the first DCL in DCNN
are required to establish a global “catalogue” of the year of τ . The catalogue
encodes high-level contextual features with an annual perspective. After that,
the second and third of DCLs predict the facts by supplementing more details
of month and day information based on the parameters ω2,τ and ω3,τ .

In this part, we introduce a time-aware parameter generator (TaPG) that
“store” the knowledge in three sets of parameters that are associated with “year-
month-day”. Specifically, we first split and embed the timestamp τ as a fixed-
length sequence −→τ = (τ1, τ2, τ3), where τ1, τ2, τ3 ∈ R

dτ are the embeddings of
year, month and day respectively. A recurrent neural network (RNN) is intro-
duced to model the sequence data −→τ that produces multiple outputs,

{o1,o2,o3} = RNN(−→τ ), (4)

oi = σ(Wosi + bo), (5)

si = σ(Usτi +Wssi−1 + bs), (6)

where Wo, Ws and Us are RNN parameters, si and oi are the hidden state and
output at step i, and σ is the nonlinear activation function.
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Fig. 3. The process of query prediction by DCNN. Queries with different timestamps
are handled by different parameters, while queries with similar timestamps partially
share model parameters.

Multiple fully connected layers {Linear1, Linear2, Linear3} are employed to
transform the outputs of RNN into a set of parameters,

g(τ) = {ωi,τ} = {Lineari(oi)}. (7)

The linear layers {Lineari} are a parameter pool, which retrieves the parameters
according to the context of timestamps. The 1-dimensional vectors produced
by {Lineari} are reshaped into tensors in R

Co×Ci×k×k, since the convolutional
operations are involved. The scale of DCNN parameters is obviously irrelevant
to the number of timestamps, which only depends on the size of the linear layers
{Lineari}.

As show in Fig. 3, the facts with the same year are dealt with the same
filters ω1,τ and thus the valid knowledge during a interval is shared across adja-
cent snapshots. Compared to the works [40,45] that construct sparse snapshots
at each timestamps explicitly, our implicit way enable the knowledge delivery
at different snapshots. Of course, the facts that have long gap of timestamps
are divided into two totally different models that avoids the interfere from
early knowledge. Therefore, TaPG enables the ability of DCNN to tackle time-
variability and time-stability in an efficient manner. Multiple spaces induced by
the parameters output from TaPG are adapted for different temporal snapshots.
The knowledge at different time is shared or separated during multiple spaces
in term of the context from TaPG.

3.3 Training and Optimization

During training process, the score ψτ (h, r, t) is applied with the logistic sigmoid
function σ (·) to obtain p = σ (ψτ (h, r, t)). p indicates the predicted probability
that the candidate tail entity t is the answer to query (h, r, ?, τ). The training
objective is to minimize the negative log-likelihood loss as follows,

L(y, p) = − 1
N

∑

i

(yi log(pi) + (1 − yi) log(1 − pi)), (8)
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Table 1. Scoring functions of SANe and several existing TKGC methods, and com-
parison of space complexity.

Model Scoring Function Space Complexity

TransE ‖h+ r − t‖ O (ned + nrd)

TTransE ‖h+ r+ τ − t‖ O (ned + nrd + nτd)

HyTE ‖Pτ (h) + Pτ (r) − Pτ (t) ‖ O (ned + nrd + nτd)

ATiSE DKL (Ph,τ − Pt,τ ,Pr,τ ) O (ned + nrd)

TeRo ‖hτ + r − tτ‖ O (ned + nrd)

SANe Linear(flatten(CNN(h, r)))t O (ned + nrd + nydτ )

where y = 1 for positive samples, i.e., (h, r, t, τ) ∈ G, otherwise y = 0. N indicates
the number of training samples.

In Table 1, we summarize the scoring functions and space complexity of sev-
eral TKGC methods. ne, nr, and nτ are the number of entities, relations, and
timestamps, respectively. d and dτ are the dimensions of feature vectors. ny is
the number of years. CNN refers to the three-layer convolutional neural network
in DCNN. In terms of space complexity, SANe is comparable to several existing
methods.

4 Experiments

In this section, four TKGC benchmark datasets are used to demonstrate the
effectiveness of SANe. The experimental setup is first explained in detail. Then,
the experimental results are discussed. Ablation studies are also conducted to
evaluate the importance of different components in SANe.

4.1 Experimental Setup

Datasets. The proposed model is evaluated on four public benchmarks,
ICEWS14 [10], ICEWS05-15 [10], YAGO11k [7], and Wikidata12k [7]. ICEWS14
and ICEWS05-15 are subsets of the Integrated Crisis Early Warning System
(ICEWS) [5] dataset, where ICEWS14 includes events that occurred in 2014, and
ICEWS05-15 includes events that occurred in the period 2005 to 2015. ICEWS
contains discrete time-annotated sociopolitical events, e.g. (Barack Obama, Make
a visit, South Korea, 2014-03-15 ). YAGO11k and Wikidata12k are subsets of
YAGO3 [26] and Wikidata [9], respectively. Facts in both YAGO11k and Wiki-
data12k contain time annotations, and each fact is formatted as a time interval.
Following Dasgupta et al. [7], facts with time intervals are discretized into mul-
tiple quadruplets with a single timestamp. Meanwhile, month and day informa-
tion is dropped, and year-level granularity is preserved. To process such datasets,
timestamps are appended with constant fabricated months and days, e.g., 2015-
00 -00. Statistics for these four benchmarks are summarized in Table 2.
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Table 2. Statistics of TKGC benchmark datasets. The unit of the time span is year.

Datasets #Entities #Relations Time span #Train #Valid #Test

ICEWS14 6,869 230 2014 72,826 8,941 8,963
ICEWS05-15 10,094 251 2005-2015 386,962 46,275 46,092
YAGO11k 10,623 10 -453-2844 16,408 2,050 2,051
Wikidata12k 12,554 24 1709-2018 32,497 4,062 4,062

Baselines. We compare with a wide selection of static and temporal KGC mod-
els: (1) static KGC models, including TransE [4], DistMult [46], ComplEx-N3 [22],
RotatE [36], and QuatE2 [47]; (2) temporal KGC models, including TTransE [23],
HyTE [7], TA-TransE [10], TA-DistMult [10], DE-SimplE [13], ATiSE [44], TeRo
[43], ChronoR [32], TimePlex [15], TComplEx [21], TeLM [42], and BoxTE [27].
Among them, ChronoR and BoxTE are not compared with SANe on YAGO11k
and Wikidata12k, because their results are unobtainable.

Evaluation Protocols. For each quadruple (h, r, t, τ) in the test set, two queries
(h, r, ?, τ) and (?, r, t, τ) are leveraged to optimize the model simultaneously.
Note that in practice, each quadruple (h, r, t, τ) is added with a reciprocal rela-
tion (t, r−1, h, τ). Thus, the query (?, r, t, τ) is replaced by (t, r−1, ?, τ). Such
operations do not result in a loss of generality [15,42]. MRR (Mean Reciprocal
Rank, the average of the reciprocal values of all computed ranks) and Hits@N
(the percentage of times that the true entity candidate appears in the top N
of ranked candidates, where N ∈ {1, 3, 10}) are reported as evaluation metrics.
Among them, MRR is an important evaluation index, which is less susceptible to
outliers [10]. Higher MRR and Hits@N indicate better model performance. All
evaluations are performed under the time-wise filtering setting widely adopted
in previous work [43,44].

Implementation Details. The proposed model is implemented using PyTorch
[30] and trained using a single NVIDIA GeForce RTX 3090 GPU. The values
of the hyperparameters are determined based on the MRR performance on each
validation set. The model parameters are initialized using Xavier initialization
[11] and optimized by the Adam optimizer [20] with a learning rate of 0.001. Dur-
ing training, 256 mini-batches are created for each epoch. The negative sampling
ratio is set to 1000, i.e., 1000 negative samples are created for each quadruple
in the training set. The embedding dimension is set to d = 200 for all datasets
except ICEWS05-15 which is set to d = 300. The number of convolution filters
is fixed to 64. The kernel size is chosen from k ∈ {3, 5, 7}.

4.2 Main Results

The MRR and Hits@N results on ICEWS dataset, i.e., ICEWS14 and ICEWS05-
15, are reported in Table 3. Some observations and analysis are listed as follows.
(1) Most of TKGC models achieve significantly better results than static KGC
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Table 3. Link prediction results on ICEWS14 and ICEWS05-15. ∗: results are taken
from [10]. †: results are taken from [43]. �: results are taken from [42]. Dashes: results
are unobtainable. Other results are taken from the original papers. The best results
are marked in bold.

Datasets ICEWS14 ICEWS05-15
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE∗ [4] .280 .094 – .637 .294 .090 – .663
DistMult∗ [46] .439 .323 – .672 .456 .337 – .691
ComplEx-N3† [22] .467 .347 .527 .716 .481 .362 .535 .729
RotatE† [36] .418 .291 .478 .690 .304 .164 .355 .595
QuatE2† [47] .471 .353 .530 .712 .482 .370 .529 .727
TTransE† [23] .255 .074 – .601 .271 .084 – .616
HyTE† [7] .297 .108 .416 .655 .316 .116 .445 .681
TA-TransE∗ [10] .275 .095 – .625 .299 .096 – .668
TA-DistMult∗ [10] .477 .363 – .686 .474 .346 – .728
DE-SimplE† [13] .526 .418 .592 .725 .513 .392 .578 .748
ATiSE [44] .545 .423 .632 .757 .533 .394 .623 .803
TeRo [43] .562 .468 .621 .732 .586 .469 .668 .795
ChronoR [32] .625 .547 .669 .773 .675 .596 .723 .820
TimePlex [15] .604 .515 – .771 .640 .545 – .818
TComplEx� [21] .610 .530 .660 .770 .660 .590 .710 .800
TeLM� [42] .625 .545 .673 .774 .678 .599 .728 .823
BoxTE [27] .613 .528 .664 .763 .667 .582 .719 .820
SANe .638 .558 .688 .782 .683 .605 .734 .823

methods. TKGC models leverage temporal information to constrain the simi-
larity of facts, such that similar facts with different timestamps are separate
efficiently. (2) SANe achieves the best performance for all metrics on link pre-
diction, which suggests the effectiveness of adapting snapshots with different
timestamps to different latent spaces. The facts are implicitly assigned to differ-
ent CNN modules, and thus each snapshot at different timestamps is handled in
term of a specific latent space. The results indicate that the parameter genera-
tion plays an important role in alleviating mutual interference of the knowledge
across snapshots with different timestamps. (3) Facts in ICEWS are transient
events, which usually happen and end in a moment. Compared to other TKGC
methods, SANe is capable of remembering and inferring instant facts by recover-
ing the CNN model from the parameter pool according to timestamps. The result
in Table 3 further certifies that SANe is more effective to enable time-variability
that inherent in TKGs.

Table 4 shows the prediction performance over Wikipedia-based datasets, i.e.,
YAGO11k and Wikidata12k. SANe achieves superior performance over previous
methods by a large margin compared to the result on ICEWS. On MRR, a main
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Table 4. Link prediction results on YAGO11k and Wikidata12k. ∗: results are taken
from [44]. †: results are taken from [43]. �: results are taken from [42]. Dashes: results
are unobtainable. Other results are taken from the original papers. The best results
are marked in bold.

Datasets YAGO11k Wikidata12k
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE∗ [4] .100 .015 .138 .244 .178 .100 .192 .339
DistMult∗ [46] .158 .107 .161 .268 .222 .119 .238 .460
ComplEx-N3∗ [22] .167 .106 .154 .282 .233 .123 .253 .436
RotatE∗ [36] .167 .103 .167 .305 .221 .116 .236 .461
QuatE2∗

[47] .164 .107 .148 .270 .230 .125 .243 .416
TTransE† [23] .108 .020 .150 .251 .172 .096 .184 .329
HyTE† [7] .105 .015 .143 .272 .180 .098 .197 .333
TA-TransE† [10] .127 .027 .160 .326 .178 .030 .267 .429
TA-DistMult† [10] .161 .103 .171 .292 .218 .122 .232 .447
ATiSE [44] .185 .126 .189 .301 .252 .148 .288 .462
TeRo† [43] .187 .121 .197 .319 .299 .198 .329 .507
TimePlex [15] .236 .169 – .367 .334 .228 – .532
TComplEx� [21] .185 .127 .183 .307 .331 .233 .357 .539
TeLM� [42] .191 .129 .194 .321 .332 .231 .360 .542
SANe .250 .180 .266 .401 .432 .331 .483 .640

metric for the TKGC task, SANe outperforms by 6% and 29% dramatically
compared with the state-of-the-art methods across the YAGO11k and Wiki-
data12k, respectively. The facts in Wikipedia-based datasets spans a period of
hundreds of years, even around 3,000 years, while ICEWS only covers several
years. The plenty of facts usually last for a long period of time different from
ICEWS that events happen and end in a moment. The superior result of SANe
reveals the necessity of designing a more principled parameter generation app-
roach to produce multiple latent spaces that constrains the range of knowledge
sharing based on timestamp distance. Multiple sets of parameters encode the
context of timestamps that the knowledge in adjacent snapshots is delivered to
accumulate knowledge. Therefore, the valid knowledge during a period can be
preserved and shared efficiently. The models of learning independent represen-
tations [15,21,23,32,42] or incorporating timestamp into entities and relations
[7,10,13,27,43,44] suffer from the interfere across snapshots particularly when
the knowledge last for a long period. This is mainly because they handle all the
facts in an identical latent space, and thus inevitably misremember and forget
knowledge. The result in Table 4 further certifies that SANe is more effective to
enable time-stability inherent in TKGs.
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4.3 Analysis

Ablation Study. To better verify the effectiveness of the proposed model, sev-
eral variants of SANe are investigated on ICEWS14. The results are shown in
Table 5. The� is used to indicate a component used in the experiment, and the
� is used to indicate the absence of the corresponding component. The SANe
without time information means that TaPG returns a fixed set of parameters
regardless of the timestamps. Based on the SANe without time information, the
SANe without parameter generation also incorporates the temporal information
into the entities, i.e., ĥ = h � τ , where � is Hadamard product as the work
[34] does. The TaPG of SANe without time granularity produces the parameters
directly in term of timestamp τ without RNN, i.e., {Lineari(τ )}. It is found that
(1) when the time information is not used, the model achieves the worst results,
which reflects the importance of time information to SANe. (2) The parameter
generator has a great influence on the model performance, which verifies the
effectiveness of the time-aware parameter generator. (3) Decomposing times-
tamps into different time granularities is beneficial to the improvement of model
performance. (4) Even if the timestamps are not decomposed into different gran-
ularities, the model achieves better results than previous TKGC methods, which
confirms the superiority of the model.

Table 5. Results for different model variations on ICEWS14.

Time
Information

Time
Granularity

Parameter
Generation

MRR Hits@1 Hits@3 Hits@10

� � � .469 .350 .529 .703
� � � .608 .527 .656 .760
� � � .622 .536 .679 .778
� � � .630 .548 .683 .780
� � � .638 .558 .688 .782

Table 6. Generalization performance for queries with unseen timestamps on the
ICEWS14 dataset.

Metrics MRR Hits@1 Hits@3 Hits@10

DistMult [46] .410 .302 .462 .620
DE-SimplE [13] .434 .333 .492 .624
TComplEx [21] .443 .348 .492 .625
SANe .503 .394 .569 .709

Generalizing to Unseen Timestamps. Since timestamps are decomposed at
different time granularities in SANe, this allows queries with similar timestamps
to share a part of filter parameters and temporal information. Therefore, SANe
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is expected to perform well on queries with unseen timestamps. Following Goel
et al. [13], we re-split ICEWS14, taking all quadruplets except the 5th, 15th, and
25th day of each month as the training set, and using the excluded quadruplets
to randomly split into validation and test sets. The obtained results in Table 6
indicate that SANe gains almost 14% MRR improvement over TComplEx [21],
thus showing the effectiveness of our model to generalize to unseen timestamps.

Performance on Different Relations. Most of the time annotations in
YAGO11k are time intervals, and the relations between entities may change after
a period of time. We evaluate SANe on several relations (worksAt, hasWonPrize,
graduatedFrom, and isAffiliatedTo) in YAGO11k, and reproduce ATiSE [44] and
TimPlex [15] based on their given hyperparameters. These relations are usu-
ally created or disappeared between some entities at a certain point in time,
and maintained for a period of time [44]. For example, a person may switch
to another company after working for one company for a few months. SANe
is expected to perform well in such relations. The comparisons in Fig. 4 show
that SANe is superior in almost all metrics. This confirms our hypothesis that
adapting different temporal snapshots to different latent spaces via parameter
generation is beneficial for capturing the time-variability of knowledge. Likewise,

Fig. 4. Results obtained by ATiSE [44], TimePlex [15], and SANe on several relations
in YAGO11k.
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overlapping latent spaces by decomposing timestamps into different granularities
facilitates knowledge sharing across adjacent snapshots, which is beneficial for
modeling the time-stability of knowledge.

Visualization of Temporal Embeddings. Figure 5 shows a t-SNE [25] visual-
ization of the temporal embeddings learned by SANe and its variant. Figure 5(a)
visualizes the temporal embeddings learned by the variant of SANe. Timestamps
are modeled independently by the variant of SANe rather than decomposed
into different granularities. Figure 5(b) visualizes the temporal embeddings with
granularity of 1 day learned by SANe. By comparison, it can be found that
the temporal embeddings learned by SANe form good clusters in chronological
order. In general, SANe effectively preserves time series information by decom-
posing timestamps into different granularities and processed by the time series
model, which provides good geometric meanings for temporal embeddings, thus
improving the model performance.

Fig. 5. The figure illustrates the t-SNE visualization of the temporal embeddings
obtained by SANe and its variant after training on ICEWS14. Time points in different
months are represented by different colors.

5 Conclusion and Future Work

In this paper, we shed a new light on the challenges of TKGC. For the first time,
we proposed to investigate the problem of TKGC by adapting different latent
spaces for snapshots at different timestamps. Specifically, we provided a novel
model named SANe to process the entities and relations using a dynamic convo-
lutional neural network equipped with different parameters, which are produced
by TaPG according to temporal information. TaPG endowed with contextual
timestamps gathers valid knowledge from multiple sets of parameters by con-
straining the overlap of spaces. Our model is different from existing works which
learn the temporal KGs all the time in the same latent space. The experimental
results demonstrate the benefits of constructing parameter-independent model
implicitly for each temporal snapshot.
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Supplemental Material Statement: Source code to reproduce the full experimen-
tal results is already available on the Easychair system and will be published on
https://github.com/codeofpaper/SANe.
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Abstract. Several types of dependencies have been proposed for the
static analysis of existential rule ontologies, promising insights about com-
putational properties and possible practical uses of a given set of rules, e.g.,
in ontology-based query answering. Unfortunately, these dependencies are
rarely implemented, so their potential is hardly realised in practice. We
focus on two kinds of rule dependencies – positive reliances and restraints
– and design and implement optimised algorithms for their efficient com-
putation. Experiments on real-world ontologies of up to more than 100,000
rules show the scalability of our approach, which lets us realise several pre-
viously proposed applications as practical case studies. In particular, we
can analyse to what extent rule-based bottom-up approaches of reason-
ing can be guaranteed to yield redundancy-free “lean” knowledge graphs
(so-called cores) on practical ontologies.

Keywords: Existential rules · Chase algorithm · Rule dependencies ·
Acyclicity · Core stratification · Ontology-based query answering ·
Ontology reasoning

1 Introduction

Existential rules are a versatile knowledge representation language with rele-
vance in ontological reasoning [1,5,6,10], databases [11,13,15], and declarative
computing in general [3,4,9]. In various semantic web applications, existential
rule engines have been used to process knowledge graphs and ontologies, often
realising performance advantages on large data sets [2,3,7,22].

Existential rules extend Datalog with the facility for value invention,
expressed by existentially quantified variables in conclusions. This ability to refer
to “unknown” values is an important similarity to description logics (DLs) and
the DL-based ontology standard OWL, and many such ontologies can equiv-
alently be expressed in existential rules. This can be a practical approach for
ontology-based query answering [8,10]. For reasoning, many rule engines rely on
materialisation, where the input data is expanded iteratively until all rules are
satisfied (this type of computation is called chase). With existentials, this can
require adding new “anonymous” individuals – called nulls –, and the process
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may not terminate. Several acyclicity conditions define cases where termination
is ensured, and were shown to apply to many practical ontologies [10].

Nulls correspond to blank nodes in RDF, and – like bnodes in RDF [20]
– are not always desirable. Avoiding nulls entirely is not an option in chase-
based reasoning, but one can still avoid some “semantically redundant” nulls. For
example, given a fact person(alice) and a rule person(x) → ∃y. parent(x, y), the
chase would derive parent(alice, n) for a fresh null n. However, if we already know
that parent(alice, bob), then this inference is redundant and can be omitted. In
general, structures that are free of such redundancies are mathematically known
as cores. An RDF-graph that is a core is called a lean graph [16]. Unfortunately,
the computation of cores is expensive, and can in general not be afforded during
the chase. Sometimes, however, when rules satisfy a condition known as core
stratification, practical chase algorithms can also produce a core directly [17].

Interestingly, both of the previously mentioned types of conditions – acyclic-
ity and core stratification – are detected by analysing dependencies1 that indi-
cate possible semantic interactions between rules. Early works focussed on cases
where a rule ρ2 positively relies on a rule ρ1 in the sense that an application of rule
ρ1 might trigger an application of rule ρ2. They are used to detect several forms
of acyclity [1,11,21]. When adding negation, a rule might also inhibit another,
and such negative reliances are used to define semantically well-behaved frag-
ments of nonmonotonic existential rules [17,19]. A third kind of dependency are
restraints, which indicate that the application of one rule might render another
one redundant: restraints were used to define core stratified rule sets [17], and
recently also to define a semantics for queries with negation [12].

Surprisingly, given this breadth of applications, rule dependencies are hardly
supported in practice. To our knowledge, positive reliances are only computed
by the Graal toolkit [2], whereas negative reliances and restraints have no imple-
mentation at all. A possible reason is that such dependency checks are highly
intractable, typically ΣP

2 -complete, and therefore not easy to implement effi-
ciently. This is critical since their proposed uses are often related to the choice
of a rule-processing strategy, so that their computation adds to overall reasoning
time. Moreover, as opposed to many other static analyses, dependency compu-
tation is not mainly an application of algorithms that are already used in rule
reasoning. Today’s use of dependencies in optimisation and analysis therefore
falls short of expectations.

To address this problem, we design optimised algorithms for the computation
of positive reliances and restraints. We propose global optimisations, reducing
the number of relevant checks, and local optimisations, reducing the work needed
to execute a specific check. The latter include an improved search strategy that
often avoids the full exploration of exponentially many subsets of rule atoms,
which may be necessary in the worst case. The underlying ideas can also be
adapted to negative reliances and any of the modified definitions of positive
reliances found in the literature.

1 We use the term only informally, since (tuple-generating) dependencies are also a
common name for rules in databases.
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We implement our methods and conduct extensive experiments with over
200 real-world ontologies of varying sizes. Considering the effectiveness of our
optimisations, we find that local and global techniques both make important
contributions to overall performance, enabling various practical uses:

– We conduct the first analysis of the practical prevalence of core stratification
[17] using our implementation of restraints. We find this desirable property
in a significant share of ontologies from a curated repository and provide
preliminary insights on why some rule sets are not core stratified.

– Comparing the computation of all positive reliances to Graal, we see speed-
ups of more than two orders of magnitude. Our stronger definition yields an
acyclic graph of rule dependencies [1] in more cases.

– The graph of positive reliances allows for showing how to speed up the expen-
sive rule analysis algorithm MFA [10]. Compared to the MFA implementation
of VLog [7], we observe speed-ups of up to four orders of magnitude.

2 Preliminaries

We build expressions from countably infinite, mutually disjoint sets V of vari-
ables, C of constants, N of labelled nulls, and P of predicate names. Each pred-
icate name p ∈ P has an arity ar(p) ≥ 0. Terms are elements of V ∪N∪C. We
use t to denote a list t1, . . . , t|t| of terms, and similar for special types of terms.
An atom is an expression p(t) with p ∈ P, t a list of terms, and ar(p) = |t|.
Ground terms or atoms contain neither variables nor nulls. An interpretation I
is a set of atoms without variables. A database D is a finite set of ground atoms.

Syntax. An existential rule (or just rule) ρ is a formula

ρ = ∀x,y. ϕ[x,y] → ∃z. ψ[y,z], (1)

where ϕ and ψ are conjunctions of atoms using only terms from C or from
the mutually disjoint lists of variables x,y,z ⊆ V. We call ϕ the body (denoted
body(ρ)) and ψ the head (denoted head(ρ)). We may treat conjunctions of atoms
as sets, and we omit universal quantifiers in rules. We require that all variables
in y do really occur in ϕ (safety). A rule is Datalog if it has no existential
quantifiers.

Semantics. Given a set of atoms A and an interpretation I, a homomorphism
h : A → I is a function that maps the terms occurring in A to the (variable-free)
terms occurring in I, such that: (i) for all c ∈ C, h(c) = c; (ii) for all p ∈ P,
p(t) ∈ A implies p(h(t)) ∈ I, where h(t) is the list of h-images of the terms t.
If (ii) can be strengthened to an “if, and only if”, then h is strong. We apply
homomorphisms to a formula by applying them individually to all of its terms.

A match of a rule ρ in an interpretation I is a homomorphism body(ρ) → I.
A match h of ρ in I is satisfied if there is a homomorphism h′ : head(ρ) → I that
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agrees with h on all variables that occur in body and head (i.e., variables y in
(1)). Rule ρ is satisfied by I, written I |= ρ, if every match of ρ in I is satisfied.
A set of rules Σ is satisfied by I, written I |= Σ, if I |= ρ for all ρ ∈ Σ. We
write I |= D, Σ to express that I |= Σ and D ⊆ I. In this case, I is a model of
Σ and D.

Applying Rules. A rule ρ of form (1) is applicable to an interpretation I if there
is an unsatisfied match h in I (i.e., h cannot be extended to a homomorphism
ψ → I). Applying ρ for h yields the interpretation I ∪ ψ[h′(y), h′(z)], where h′

is a mapping such that h′(y) = h(y) for all y ∈ y, and for all z ∈ z, h′(z) ∈ N is
a distinct null not occurring in I. The (standard) chase is a reasoning algorithm
obtained by applying rules to a given initial database, such that all applicable
rules are eventually applied (fairness).

Core Models. A model I is a core if every homomorphism h : I → I is strong
and injective. For finite models, this is equivalent to the requirement that every
such homomorphism is an isomorphism, and this will be the only case we are
interested in for this work. Intuitively, the condition states that the model does
not contain a strictly smaller substructure that is semantically equivalent for
conjunctive query answering.

Unification. For atom sets A and B, partial function m : A → B is an atom
mapping, where dom(m) ⊆ A is the set of all atoms for which m is defined. A
substitution is a function θ : C∪V∪N → C∪V∪N, such that θ(c) = c for all c ∈
C∪N. Denote the application of θ to term t by tθ, naturally extending to atoms
and atom sets by term-wise application. The concatenation of substitutions σ
and θ is σθ where tσθ = (tσ)θ. A substitution is a unifier for atom mapping m
if for all α ∈ dom(m), αθ = (m(α))θ. A unifier μ for m is a most general unifier
(mgu) for m if for all unifiers ν of m, there is a substitution σ, such that μσ = ν.

3 Dependencies and Their Naive Computation

We first introduce the two kinds of rule dependencies that we consider: positive
reliances and restraints. Our definitions largely agree with the literature, but
there are some small differences that we comment on.

Definition 1. A rule ρ2 positively relies on a rule ρ1, written ρ1 ≺+ ρ2, if there
are interpretations Ia ⊆ Ib and a function h2 such that

(a) Ib is obtained from Ia by applying ρ1 for the match h1 extended to h′
1,

(b) h2 is an unsatisfied match for ρ2 on Ib, and
(c) h2 is not a match for ρ2 on Ia.
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Definition 1 describes a situation where an application of ρ1 immediately
enables a new application of ρ2. Condition (b) takes into account that only
unsatisfied matches can lead to rule applications in the standard chase. The same
condition is used by Krötzsch [17], whereas Baget et al. [1,2] – using what they
call piece-unifier – only require h2 to be a match. In general, weaker definitions
are not incorrect, but may lead to unnecessary dependencies.

Example 1. Consider the following ontology. We provide three axioms in DL
syntax (left-hand side) and their translation into existential rules (right-hand
side).

A 
 ∃R.B a(x) → ∃v. r(x, v) ∧ b(v) (ρ1)

R− ◦ R 
 T r(y, z1) ∧ r(y, z2) → t(z1, z2) (ρ2)

∃R−.A 
 B a(t) ∧ r(t, u) → b(u) (ρ3)

For this rule set, we find ρ1 ≺+ ρ2 by using Ia = {a(c)}, Ib = {a(c), r(c, n)},
and h2 = {y → c, z1 → n, z2 → n}. Note that ρ3 does not positively rely on ρ1
although the application of ρ1 may lead to a new match for ρ3. However, this
match is always satisfied, so condition (b) of Definition 1 is not fulfilled.

The definition of restraints considers situations where the nulls introduced
by applying rule ρ2 are at least in part rendered obsolete by a later application
of ρ1. This obsolescence is witnessed by an alternative match that specifies a
different way of satisfying the rule match of ρ2.

Definition 2. Let Ia ⊆ Ib be interpretations such that Ia was obtained by
applying the rule ρ for match h which is extended to h′. A homomorphism
hA : h′(head(ρ)) → Ib is an alternative match of h′ and ρ on Ib if

(1) hA(t) = t for all terms t in h(body(ρ)), and
(2) there is a null n in h′(head(ρ)) that does not occur in hA(h′(head(ρ))).

Now ρ1 restrains ρ2 if it creates an alternative match for it:

Definition 3. A rule ρ1 restrains a rule ρ2, written ρ1 ≺� ρ2, if there are
interpretations Ia ⊆ Ib such that

(a) Ib is obtained by applying ρ1 for match h1 extended to h′
1,

(b) Ia is obtained by applying ρ2 for match h2 extended to h′
2,

(c) there is an alternative match hA of h′
2 and ρ2 on Ib, and

(d) hA is no alternative match of h′
2 and ρ2 on Ib \ h′

1(head(ρ1)).

Our definition slightly deviates from the literature [17], where (d) made a
stronger requirement:

(d’) h2 has no alternative match h′
2(head(ρ2)) → Ib \ h′

1(head(ρ1)).



272 L. González et al.

As we will see, our modification allows for a much more efficient implementation,
but it also leads to more restraints. Since restraints overestimate potential inter-
actions during the chase anyway, all formal results of prior works are preserved.

Example 2. For the rules ρ1 = r(y, y) → ∃w. r(y, w) ∧ b(w) and ρ2 = a(x) →
∃v. r(x, v), we find ρ1 ≺� ρ2 by Definition 3, where we set Ia = {a(c), r(c, n1)},
Ib = Ia ∪ {r(c, c), r(c, n2), b(n2)}, and hA = {c → c, n1 → n2}. However, these
Ia and Ib do not satisfy the stricter condition (d’), since hB = {c → c, n1 → c}
is an alternative match, too. Indeed, when ρ2 is applicable in such a way as to
produce an alternative match w.r.t. an application of ρ1, another one must have
already existed.

Example 2 is representative of situations where (d) leads to different
restraints than (d’): the body of the restraining rule ρ1 must contain a pattern
that enforces an additional alternative match (here: r(y, y)), while not being
satisfiable by the conclusion of ρ2 (here: r(y, n1)). To satisfy the remaining con-
ditions, head(ρ1) must further produce a (distinct) alternative match. Such sit-
uations are very rare in practice, so that the benefits of (d) outweigh the loss of
generality.

Checking for positive reliances and restraints is ΣP
2 -complete. Indeed, we can

assume Ia and Ib to contain at most as many elements as there are distinct terms
in the rule, so that they can be polynomially guessed. The remaining conditions
can be checked by an NP-oracle. Hardness follows from the ΣP

2 -hardness of
deciding if a rule has an unsatisfied match [15].

The existence of alternative matches in a chase sequence indicates that the
resulting model may contain redundant nulls. Ordering the application of rules
during the chase in a way that obeys the restraint relationship (≺�) ensures
that the chase sequence does not contain any alternative matches and therefore
results in a core model [17].

Example 3. Consider again the rule set from Example 1. For the interpretation
I0 = {a(c), r(c, d)} all three rules are applicable. Disregarding ρ3 ≺� ρ1 and
applying ρ1 first results in I1 = I0∪{r(c, n), b(n)}, which leads to the alternative
match hA = {c → c, n → d} after applying ρ3. If we, on the other hand, start
with ρ3, we obtain I ′

1 = I0∪{b(d)}. Rule ρ1 is now satisfied and the computation
finishes with a core model after applying ρ2.

The ontology from Example 1 is an example of a core stratified rule set. A
set of rules is core stratified if the graph of all ≺+ ∪ ≺� edges does not have
a cycle that includes a ≺� edge. This property allows us to formulate a rule
application strategy that respects the restraint relationship as follows: Given
ρ1 ≺� ρ2, apply the restrained rule ρ2 only if neither ρ1 nor any of the rules ρ1
directly or indirectly positively relies on is applicable.

4 Computing Positive Reliances

The observation that positive reliances can be decided in ΣP
2 is based on an

algorithm that considers all possible sets Ia and Ib up to a certain size. This
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is not practical, in particular for uses where dependencies need to be computed
as part of the (performance-critical) reasoning, and we therefore develop a more
goal-oriented approach.

In the following, we consider two rules ρ1 and ρ2 of form ρi = bodyi →
∃zi. headi, with variables renamed so that no variable occurs in both rules. Let
V∀ and V∃, respectively, denote the sets of universally and existentially quanti-
fied variables in ρ1 and ρ2. A first insight is that the sets Ia and Ib of Definition 1
can be assumed to contain only atoms that correspond to atoms in ρ1 and ρ2,
with distinct universal or existential variables replaced by distinct constants or
nulls, respectively. For this replacement, we fix a substitution ω that maps each
variable in V∃ to a distinct null, and each variable in V∀ to a distinct constant
that does not occur in ρ1 or ρ2.

Algorithm 1: extend+

Input: rules ρ1, ρ2, atom mapping m
Output: true iff the atom mapping can be extended successfully

1 for i ∈ {maxidx(m) + 1, . . . , |body2|} do
2 for j ∈ {1, . . . , |head1|} do
3 m′ ← m ∪ {body2[i] �→ head1[j]ω∃}
4 if η ← unify(m′) then
5 if check+(ρ1,ρ2,m

′,η) then return true

6 return false

A second insight is that, by (c), ρ1 must produce some atoms that are relevant
for a match of ρ2, so that our algorithm can specifically search for a mapped
subset bodym

2 ⊆ body2 and a substitution η such that bodym
2 η ⊆ head1η. Note

that η represents both matches h1 and h2 from Definition 1, which is possible
since variables in ρ1 and ρ2 are disjoint. The corresponding set Ia then is (body1∪
(body2 \ bodym

2 ))ηω. Unfortunately, it does not suffice to consider singleton sets
for bodym

2 , as shown by Example 4:

Example 4. Consider the rules from Example 1. Trying to map either one of the
atoms of body(ρ2) to head(ρ1) yields an Ia = {a(c), r(c, c′)}, to which ρ1 is not
applicable. The correct Ia = {a(c)} as given in Example 1 is found by unifying
both atoms of body(ρ2) with (an instance of) head(ρ1).

Therefore, we have to analyse all subsets bodym
2 ⊆ body2 for possible matches

with head1. We start the search from singleton sets, which are successively
extended by adding atoms. A final important insight is that this search can
often be aborted early, since a candidate pair for Ia and Ib may fail Definition 1
for various reasons, and considering a larger bodym

2 is not always promising. For
example, if η is a satisfied match for ρ2 over Ib (b), then adding more atoms to
bodym

2 will never succeed.
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These ideas are implemented in Algorithms 1 (extend+) and 2 (check+),
explained next. For a substitution θ, we write θ∀ (θ∃, resp.), to denote the sub-
stitution assigning existential variables (universal variables, resp.) to themselves,
and otherwise agrees with θ.

Function extend+ iterates over extensions of a given candidate set. To spec-
ify how atoms of body2 are mapped to head1, we maintain an atom mapping
m : body2 → head1 whose domain dom(m) corresponds to the chosen bodym

2 ⊆
body2. To check for the positive reliance, we initially call extend+(ρ1,ρ2,∅). Note
that ρ1 and ρ2 can be based on the same rule (a rule can positively rely on itself);
we still use two variants that ensure disjoint variable names.

Algorithm 2: check+

Input: rules ρ1, ρ2, atom mapping m with mgu η
Output: true if a positive reliance is found for m

7 bodym
2 ← dom(m)

8 body�
2 ← {body2[j] ∈ (body2\ bodym

2 ) | j < maxidx(m)}
9 bodyr

2 ← {body2[j] ∈ (body2\ bodym
2 ) | j > maxidx(m)}

10 if body1η contains a null then return false

11 if body�
2η contains a null then return false

12 if bodyr
2η contains a null then return extend+(ρ1,ρ2,m)

13 Ia ← (body1 ∪ body�
2 ∪ bodyr

2)ηω
14 if Ia |= ∃z1. head1ηω∀ then return extend+(ρ1,ρ2,m)

15 if body2ηω ⊆ Ia then return extend+(ρ1,ρ2,m)

16 Ib ← Ia ∪ head1ηω
17 if Ib |= ∃z2. head2ηω∀ then return false
18 return true

We treat rule bodies and heads as lists of atoms, and write ϕ[i] for the ith
atom in ϕ. The expression maxidx(m) returns the largest index of an atom in
dom(m), or 0 if dom(m) = ∅. By extending m only with atoms of larger index
(L1), we ensure that each dom(m) is only considered once. We then construct
each possible extension of m (L3), where we replace existential variables by
fresh nulls in head1. In Line 4, unify(m′) is the most general unifier η of m′

or undefined if m′ cannot be unified. With variables, constants, and nulls as the
only terms, unification is an easy polynomial algorithm.

Processing continues with check+, called in Line 5 of extend+. We first
partition body2 into the matched atoms bodym

2 , and the remaining atoms to the
left body�

2 and right bodyr
2 of the maximal index of m. Only bodyr

2 can still be
considered for extending m. Six if-blocks check all conditions of Definition 1, and
true is returned if all checks succeed. When a check fails, the search is either
stopped (L10, L11, and L17) or recursively continued with an extended mapping
(L12, L14, and L15). The three checks in L10–L12 cover cases where Ia (L13)
would need to contain nulls that are freshly introduced by ρ1 only later. L10
applies, e.g., when checking ρ2 ≺+ ρ1 for ρ1, ρ2 as in Example 2, where we would
get a(n) ∈ Ia (note the swap of rule names compared to our present algorithm).
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Further extensions of m are useless for L10, since they could only lead to more
specific unifiers, and also for L11, where nulls occur in “earlier” atoms that are
not considered in extensions of m. For case L12, however, moving further atoms
from bodyr

2 to bodym
2 might be promising, so we call extend+ there.

In L14, we check if the constructed match of ρ1 on Ia is already satisfied. This
might again be fixed by extending the mapping, since doing so makes bodyr

2 and
hence Ia smaller. If we reach L15, we have established condition (a) of Definition 1.
L15 then ensures condition (c), which might again be repaired by extending the
atom mapping so as to make Ia smaller. Finally, L17 checks condition (b). If this
fails, we can abort the search: unifying more atoms of body2 with head1 will only
lead to a more specific Ib and η, for which the check would still fail.

Theorem 1. For rules ρ1 and ρ2 that (w.l.o.g.) do not share variables, ρ1 ≺+ ρ2
iff extend+(ρ1,ρ2,∅) = true.

5 Computing Restraints

We now turn our attention to the efficient computation of restraints. In spite
of the rather different definitions, many of the ideas from Sect. 4 can also be
applied here. The main observation is that the search for an alternative match
can be realised by unifying a part of head2 with head1 in a way that resembles
our unification of body2 with head1 in Sect. 4.

To realise this, we define a function extend� as a small modification of
Algorithm 1, where we simply replace body2 in L1 and L3 by head2, and check+

in L5 by check�, which is defined in Algorithm 3 and explained next.

Algorithm 3: check�

Input: rules ρ1, ρ2, atom mapping m with mgu η
Output: true if a restraint is found for m

19 headm
2 ← dom(m)

20 head�
2 ← {head2[j] ∈ (head2\ headm

2 ) | j < maxidx(m)}
21 headr

2 ← {head2[j] ∈ (head2\ headm
2 ) | j > maxidx(m)}

22 if xη ∈ N for some x ∈ V∀ then return false

23 if zη ∈ N for some z ∈ V∃ in head�
2 then return false

24 if zη ∈ N for some z ∈ V∃ in headr
2 then

25 return extend�(ρ1,ρ2,m)

26 if headm
2 contains no existential variables then

27 return extend�(ρ1,ρ2,m)

28 Ĩa ← body2η∀ω∀
29 if Ĩa |= ∃z2. head2η∀ω∀ then return false

30 Ia ← Ĩa ∪ head2η∀ω

31 Ĩb ← Ia ∪ (body1 ∪ head�
2 ∪ headr

2)ηω

32 if Ĩb |= ∃z1. head1η∀ω∀ then return extend�(ρ1,ρ2,m)

33 if head2ηω ⊆ Ĩb then return extend�(ρ1,ρ2,m)

34 return true
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We use the notation for ρ1, ρ2, ω, V∃, and V∀ as introduced in Sect. 4, and
again use atom mapping m to represent our current hypothesis for a possible
match. What is new now is that unified atoms in dom(m) can contain existen-
tially quantified variables, though existential variables in the range of m (from
head1) are still replaced by nulls as in Algorithm 1, L5. An existential variable
in head2 might therefore be unified with a constant, null, or universal variable
of head1. In the last case, where we need a unifier η with zη = xη for z ∈ V∃
and x ∈ V∀, we require that xη = zη ∈ V∀ so that η only maps to variables in
V∀. η simultaneously represents the matches h1, h2, and hA from Definition 3.

Example 5. For rules ρ1 = r(x, y) → s(x, x, y) and ρ2 = a(z) → ∃v. s(z, v, v) ∧
b(v), and mapping m = {s(z, v, v) → s(x, x, y)}, we obtain a unifier η that maps
all variables to x (we could also use y, but not the existential v). Let xω = c be the
constant that x is instantiated with. Then we can apply ρ2 to Ĩa = {a(z)ηω} =
{a(c)} with match h2 = {z → c, v → n} to get Ia = Ĩa ∪ {s(c, n, n), b(n)},
and ρ1 to Ĩb = Ia ∪ {r(c, c), b(c)} with match h1 = {x → c, y → c} to get
Ib = Ĩb ∪ {s(c, c, c)}. Note that we had to add b(c) to obtain the required
alternative match hA, which maps n to vηω = c and c to itself.

As in the example, a most general unifier η yields a candidate hA that maps
every null of the form vω∃ to vη∃ω∀. Likewise, for i ∈ {1, 2}, hi = η∀ω are
the (extended) matches, while η∀ω∀ are the body matches. The image of the
instantiated head2η∀ω under the alternative match hA is given by head2ηω. The
corresponding interpretations are Ia = body2η∀ω∀ ∪ head2η∀ω and Ib = Ia ∪
body1η∀ω∀ ∪head1η∀ω ∪ (head\dom(m))ηω, where (head2 \dom(m))ηω provides
additional atoms required for the alternative match but not in the mapped atoms
of head2. With these intuitions, Algorithm 3 can already be understood.

It remains to explain the conditions that are checked before returning true.
As before, we partition dom(m) into mapped atoms headm

2 and left and right
remainder atoms. Checks in L22–L24 ensure that the only variables mapped by
η to nulls (necessarily from head1ω∃) are existential variables in headm

2 : such
mappings are possible by hA. Extending m further is only promising if the nulls
only stem from atoms in headr

2.
Check L26 continues the search when no atoms with existentials have been

selected yet. Selecting other atoms first might be necessary by our order, but
no alternative matches can exist for such mappings (yet). Lines L29 and L32
check that the matches h1 and h2 are indeed unsatisfied. Extending m might fix
L29 by making Ĩa smaller, whereas L32 cannot be fixed. Finally, L33 ensures
condition (d) of Definition 3.

Example 6. Consider rules ρ1 = b(x, y) → r(x, y, x, y) ∧ q(x, y), ρ2 = a(u, v) →
∃w. r(u, v, w,w) ∧ r(v, u, w,w), and mapping m = {r(u, v, w,w) → r(x, y, x, y)}.
We obtain unifier η mapping all variables to a single universally quantified vari-
able, say x. We reach Ĩb = {a(c, c), r(c, c, n, n), b(c, c), r(c, c, c, c)}, based on
Ĩa = {a(c, c)} (xω = c), for which ρ1 is applicable but hA = {n → c, c → c} is
already an alternative match on Ĩb, recognized by L33.
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Theorem 2. For rules ρ1 and ρ2 that (w.l.o.g.) do not share variables, ρ1 ≺� ρ2
holds according to Definition 3 for some Ia �= Ib iff extend�(ρ1,ρ2,∅) = true.

The case Ia = Ib, which Theorem 2 leaves out, is possible [17, Example 5], but
requires a slightly different algorithm. We can adapt Algorithm 3 by restricting
to one rule, for which we map from atoms in head to atoms in headω∃. The checks
(for head2) of Algorithm 3 remain as before, but we only need to compute a single
I that plays the role of Ia and Ib. Check L33 is replaced by a new check

if head η∃ = headω∃ then return false ;
ensuring that at least one null is mapped differently in the alternative match.
With these modifications, we can show an analogous result to Theorem 2 for the
case Ia = Ib.

6 Implementation and Global Optimisations

We provide a C++ implementation of our algorithms, which also includes some
additional optimisations and methods as described next. Our prototype is build
on top of the free rule engine VLog (Release 1.3.5) [23], so that we can use its
facilities for loading rules and checking MFA (see Sect. 7). Reasoning algorithms
of VLog are not used in our code.

The algorithms of Sects. 4 and 5 use optimisations that are local to the task
of computing dependencies for a single pair of rules. The quadratic number of
potential rule pairs is often so large, however, that even the most optimised
checks lead to significant overhead. We therefore build index structures that
map predicates p to rules that use p in their body or head, respectively. For each
rule ρ1, we then check ρ1 ≺+ ρ2 only for rules ρ2 that mention some predicate
from head(ρ1) in their body, and analogously for ρ1 ≺� ρ2.

Specifically for large rule sets, we further observed that many rules share the
exact same structure up to some renaming of predicates and variables. For every
rule pair considered, we therefore create an abstraction that captures the co-
occurrence of predicates but not the concrete predicate names. This abstraction
is used as a key to cache results of prior computations that can be re-used when
encountering rule pairs with the exact same pattern of predicate names.

Besides these optimisations, we also implemented unoptimised variants of the
algorithms of Sects. 4 and 5 to be used as a base-line in experiments. Instead of
our goal-directed check-and-extend strategy, we simply iterate over all possible
mappings until a dependency is found or the search is completed.

7 Evaluation

We have evaluated our implementation regarding (1) efficiency of our optimisa-
tions and (2) utility for solving practical problems. The latter also led to the first
study of so-called core stratified real-world rule sets. Our evaluation machine is
a mid-end server (Debian Linux 9.13; Intel Xeon CPU E5-2637v4@3.50 GHz;
384 GB RAM DDR4; 960 GB SSD), but our implementation is single-threaded
and did not use more than 2 GB of RAM per individual experiments.

https://github.com/karmaresearch/vlog/releases/tag/v1.3.5
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Experimental Data. All experiments use the same corpus of rule sets, created
from real-world OWL ontologies of the Oxford Ontology Repository (http://
www.cs.ox.ac.uk/isg/ontologies/). OWL is based on a fragment of first-order
logic that overlaps with existential rules. OWL axioms that involve datatypes
were deleted; any other axiom was syntactically transformed to obtain a Horn
clause that can be written as a rule. This may fail if axioms use unsupported fea-
tures, especially those related to (positive) disjunctions and equality. We dropped
ontologies that could not fully be translated or that required no existential quan-
tifier in the translation. Thereby 201 of the overall 787 ontologies were converted
to existential rules, corresponding largely to those ontologies in the logic Horn-
SRI [18]. The corpus contains 63 small (18–1,000 rules), 90 medium (1,000–
10,000 rules), and 48 large (10,000–167,351 rules) sets. Our translation avoided
normalisation and auxiliary predicates, which would profoundly affect depen-
dencies. This also led to larger rule bodies and heads, both ranging up to 31
atoms.

Table 1. Number of rule sets achieving a given order of magnitude of speed-up for
computing ≺+ (left) and ≺� (right) from one variant to another; t.o. gives the number
of avoided timeouts

N/L
G/A
N/G
L/A

=
1

<
10

<
10
2

<
10
3

≥10
3

t.o
.

48 104 14 1 2 32

103 67 9 1 0 21

24 1 27 33 60 56

5 33 30 41 47 45

=
1

<
10

<
10
2

<
10
3

≥10
3

t.o
.

53 92 17 2 2 35

90 81 9 1 0 20

35 11 53 30 20 52

17 72 48 10 17 37

Optimisation Impact. We compare four software variants to evaluate the
utility of our proposed optimisations. Our baseline N is the unoptimised version
described in Sect. 6, while L uses the locally optimised algorithms of Sects. 4 and
5. Version G is obtained from N by enabling the global optimisations of Sect. 6,
and A combines all optimisations of L and G. For each of the four cases, we
measured the total time of determining all positive reliances and all restraints
for each rule set. A timeout of 60sec was used. The number of timeouts for each
experiment was as follows:

≺+ N L G A
80 48 24 3

≺� N L G A
87 52 35 15

To present the remaining results, we focus on speed-up, i.e., the ratio of
runtime of a less optimised variant over runtime of a more optimised one. Table 1
classifies the observed speed-ups in several scenarios by their order of magnitude.
For example, in the left table, the number 14 in line N/L and column “<102”
means that for 14 of the 201 rule sets, L was between 10–102 times faster than

http://www.cs.ox.ac.uk/isg/ontologies/
http://www.cs.ox.ac.uk/isg/ontologies/
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N. Note that G/A shows the effect of adding local optimisations to G. Column
“=1” shows cases where both variants agree, and column “t.o.” cases where the
optimisation avoided a prior timeout (the speed-up cannot be computed since
the timeout does not correspond to a time).

We conclude that both L and G can lead to significant performance gains
across a range of ontologies. Strong effects are seen against the baseline (N/L
and N/G), but also (to a slightly lesser extent) against variants with the other
optimisations (G/A and L/A). Overall, ≺� turned out to be slower than ≺+,
with the global optimisations being less effective.

Fig. 1. Positive reliance computation in Graal (top) and our system (bottom)

Acyclic Positive Reliances. For rule sets where the graph of positive reliances
is acyclic, query answering is possible with many existing rule engines [1]. To
evaluate how our work compares to the state of the art in computing this graph,
we measure the time taken by Graal to find all positive reliances and compare
them to our prototype A from above. The results are shown in Fig. 1.

Our approach consistently outperformed Graal by about one order of mag-
nitude. Overall, we can classify 178 ontologies in under 1 s, making this analysis
feasible at reasoning time. The difference in execution time is explained by our
optimisations: given two rules ρ1 and ρ2, Graal computes all (exponentially many
in the worst case) different ways to unify the head(ρ1) with body(ρ2) while our
implementation (1) stops when a positive reliance is discovered, (2) discards
atom mappings when a negative result is guaranteed, and (3) caches results of
previous computations. Recall that Graal uses a slightly weaker notion of posi-
tive reliance (cf. Sect. 3), which leads to more cycles: we find 36 acyclic sets in
Graal, but 70 such sets in our system.

Faster MFA. Model-faithful acyclicity (MFA) is an advanced analysis of rule
sets that can discover decidability of query answering in many cases, but is
2ExpTime-complete [10]. However, instead of performing this costly analysis
on the whole rule set, an equivalent result can be obtained by analysing each
strongly connected components of the ≺+-graph individually. We measure the
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times for both approaches using the MFA implementation of VLog and our
optimised variant A, with a timeout of 30min per rule set. The two variants are
denoted V (VLog MFA) and C (component-wise MFA).

Using C, 163 ontologies are classified as MFA, 33 fail MFA, and 5 cases time
out. V times out in 10 cases, but agrees on all other outcomes. C is slower in
three cases that still run in under 50 ms. The numbers of speed-ups, grouped by
order of magnitude, are as follows:

Speed-up = 1 < 10 < 102 < 103 ≥ 103

V/C 0 85 54 41 11

We conclude that our optimised reliance computation is a feasible approach
for speeding up MFA analysis.

Core Stratification. We can use our implementation to determine how com-
mon this favourable property (cf. Sect. 3) is among real-world ontologies. The
analysis was feasible for 200 rule sets in our corpus, yielding 44 core stratified
sets with up to 121,712 rules. One can improve this result by considering pieces,
minimal subsets of rule heads where each two atoms refer to a common exis-
tentially quantified variable [1]. Each rule can then equivalently be replaced by
several rules, each combining the original body with one of the pieces of the
original head. Applying this transformation to our rule sets leads to more fine-
grained dependencies that have fewer cycles over ≺�. With this modification,
75 rule sets are core stratified.

Our implementation fails in one case (ontology ID 00477), containing 167,351
rules like A(x) → ∃v. located-in(x, v) ∧ B(v), for various A and B. The required
> 28 × 109 checks, though mostly cached, take very long. In spite of many
≺�-relations, the set is core-stratified as it describes a proper meronomy.

The remaining 125 rule sets are not core stratified. To validate the outcome,
we have analysed these sets manually, and found several common reasons why
ontologies were indeed not core stratified (and therefore correctly classified in
our implementation). The following two examples explain two typical situations.

Example 7. In some cases, core stratification fails even though there is a natural
rule application order that always leads to a core. Consider the rules ρ1 = a(x) →
∃v. r(x, v) ∧ b(v), ρ2 = r(x, y) → s(y, x), and ρ3 = s(x, y) → r(y, x). This set is
not core stratified since we have ρ1 ≺+ ρ3, ρ2 ≺+ ρ3, ρ3 ≺+ ρ2, and ρ3 ≺� ρ1.
However, prioritising ρ2 and ρ3 over ρ1 (i.e., using a Datalog-first strategy [9])
always leads to a core. Indeed, the positive reliance ρ1 ≺+ ρ3 over-estimates
relevant rule applications, since no new atom produced by ρ1 can (indirectly)
lead to an application of ρ3.

Example 8. In other cases, there is indeed no data-independent strategy for rule
applications that would always lead to a core. Consider the rules ρ1 = a(x) →
∃v. r(x, v) ∧ b(v) and ρ2 = r(x, y) ∧ r(y, z) → r(x, z). Both are common in OWL
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ontologies with existential axioms and transitive roles. The rule set is not core
stratified since ρ1 ≺+ ρ2 and ρ2 ≺� ρ1.

Consider Ia = {a(1), a(2), r(1, 2)}. Applying ρ1 over Ia to all matches yields
Ib = Ia ∪{r(1, n), b(n), r(2,m), b(m)}, which makes ρ2 applicable to obtain Ic =
Ib∪{r(1,m)}. Here we have the alternative match hA = {1 → 1, 2 → 2, n → m}.

In contrast, applying ρ1 only for the match {x → 2} produces I ′
b = Ia ∪

{r(2, n), b(n)}. A subsequent application of ρ2 yields I ′
c = I ′

b ∪ {r(1, n)}, which
is a core model. Indeed, core models could often be achieved in such settings, but
require fine-grained, data-dependent strategies that cannot be found by static
analysis (concretely: we could consider r as a pre-order and apply ρ1 to the
r-greatest elements first, followed by an exhaustive application of ρ2).

Overall, our manual inspection supported the correctness of our computation
and led to interesting first insights about core stratification in practical cases.
Regarding the contribution of this work, our main conclusion of this evaluation
is that our proposed algorithms are able to solve real-world tasks that require
the computation of positive reliances and restraints over large ontologies.

8 Conclusions

We have shown that even the complex forms of dependencies that arise with exis-
tential rules can be implemented efficiently, and that doing so enables a number
of uses of practical and theoretical interest. In particular, several previously pro-
posed approaches can be made significantly faster or implemented for the first
time at all. Our methods can be adapted to cover further cases, especially the
negative reliances.

Our work opens up a path towards further uses of reliance-based analyses
in practice. Already our experiments on core stratification – though primarily
intended to evaluate the practical feasibility of our restraint algorithm – also
showed that (a) core stratification does occur in many non-trivial real-world
ontologies, whereas (b) there are also relevant cases where this criterion fails
although a rule-based core computation seems to be within reach. This could
be a starting point for refining this notion. It is also interesting to ask whether
good ontology design should, in principle, lead to specifications that naturally
produce cores, i.e., that robustly avoid redundancies. A different research path is
to ask how knowledge of dependencies can be used to speed up reasoning. Indeed,
dependencies embody characteristics of existential rule reasoning that are not
found in other rule languages, and that therefore deserve further attention.

Supplemental Material Statement. We provide full proofs in the technical report
published on arXiv [14]. Our source code, experimental data, instructions for
repeating all experiments, and our own raw measurements are available on
GitHub.

https://github.com/knowsys/2022-ISWC-reliances
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Abstract. Heterogeneous graph neural network (HGNN) has drawn
considerable research attention in recent years. Knowledge graphs con-
tain hundreds of distinct relations, showing the intrinsic property of
strong heterogeneity. However, the majority of HGNNs characterize the
heterogeneities by learning separate parameters for different types of
nodes and edges in latent space. The number of type-related parameters
will be explosively increased when HGNNs attempt to process knowl-
edge graphs, making HGNNs only applicable for graphs with fewer edge
types. In this work, to overcome such limitation, we propose a novel
heterogeneous graph neural network incorporated with hypernetworks
that generate the required parameters by modeling the general seman-
tics among relations. Specifically, we exploit hypernetworks to generate
relation-specific parameters of a convolution-based message function to
improve the model’s performance while maintaining parameter efficiency.
The empirical study on the most commonly-used knowledge base embed-
ding datasets confirms the effectiveness and efficiency of the proposed
model. Furthermore, the model parameters have been shown to be sig-
nificantly reduced (from 415M to 3M on FB15k-237 and from 13M to
4M on WN18RR).

Keywords: Knowledge graph embedding · Link prediction ·
Heterogeneous graph neural network

1 Introduction

Knowledge graphs (KGs), storing quantities of structured human knowledge
in the form of triples (subject entity, relation, object entity), have been widely
applied to many domains, such as question answering [4], recommendation sys-
tems [56], and dialog systems [29]. However, practical KGs, such as Freebase [3]
and DBpedia [26], often suffer from incompleteness. As discussed in [10], 71% of
people in Freebase have no known place of birth.
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To infer missing links in KGs, numerous knowledge graph embedding (KGE)
methods are proposed. Embedding models that represent entities and relations
in low-dimensional vector spaces, can preserve the semantics and inherent struc-
tures of KGs. The early works of this line tend to employ simple, shallow models
to learn the information contained in KGs, e.g., the translational distance mod-
els [5,51,58] and the tensor factorization-based models [35,53]. Methods such as
ConvE [8] and RSN [14] apply deep neural networks to capture more expres-
sive features. These approaches focus on capturing the semantics preserved in a
single triple without explicitly encoding the graph structures.

To better model the structural information, there has been an increasing
interest in leveraging graph neural networks (GNN) to incorporate the connec-
tivity structures of KGs into the embedding space [40]. Most recent GNN-based
models such as VR-GCN [54], CompGCN [46], and HRAN [27] first represent
entities and relations as discretized embeddings with the same dimension size.
Then, the embeddings of the connected entities and relations are combined into
mixed embeddings which are subsequently processed by a graph convolution
operation. However, relations play a critical role in knowledge graphs. For exam-
ple, the average occurrence of entities in FB15k-237 [44], a subset of Freebase,
is 37.4, while the average occurrence of relations reaches 1148. We argue that
such a mechanism learns relation embeddings in the lower-level layers of models,
which is sub-optimal for GNNs to extract the rich semantics of relations. In this
paper, we consider building a HGNN that learns relational representations in
higher-level layers of the architecture.

Although a bench of heterogeneous graph neural networks is proposed to
achieve better performance than homogeneous GNNs in many tasks [18–20],
most HGNNs are incapable of KGs. HGNNs typically define independent net-
work parameters for different types of nodes and edges, where the number of
parameters will be explosively increased with the kinds of types. Such fact lim-
its HGNNs to handle graphs with fewer edge types and is not applicable for
KGs with hundreds and even thousands of relations. For example, MAGNN [12]
is a recent HGNN model of popular metapath-based methods. Assuming we
leverage MAGNN to process a KG with 100 relations, the number of 2-order
metapaths will be 10, 000. Each metapath will be assigned separate parameters,
which results in an immense number of trainable weights. Hence, MAGNN is
suitable for datasets with serval kinds of edges, but it is not reasonable to apply
the model to KGs without alteration. Similar issues broadly exist in other HGNN
methods [18–20,50,55].

To solve the problems mentioned above, we believe that a key challenge in
designing dedicated HGNNs for KGs is how to effectively capture the high het-
erogeneity of relations while controlling the number of type-related parameters?

In this paper, we propose a novel Heterogeneous Knowledge Graph neural
Network (HKGN) incorporated with external networks called hypernetworks for
parameter generation to resolve the aforementioned challenge. In our method,
hypernetworks are effective at controlling the parameter counts through explic-
itly encoding the common information among relations. The rationale is that
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relations are not completely irrelevant, and there exist correlations among rela-
tions. Zhu et al. [58] found that there exists a low-rank structure over different
relation embeddings. Specifically, we first introduce a primary HGNN utilized
to process multiple single-relational subgraphs split from original KGs. We then
incorporate external hypernetworks [15] into the primary HGNN to obtain essen-
tial parameters for graph convolution. To encode the rich information of rela-
tions, HKGN learns multiple independent representations of relations in different
model layers. For each relation, we extend the linear transformation adopted in
the message function to a convolution neural network for capturing the expres-
sive feature combinations. To control the number of relation-specific parameters,
hypernetworks are defined as mapping functions that take relational weight vec-
tors with appropriate dimensions as input and output the corresponding param-
eters. HKGN eventually learns the abundant semantics of relations and reduces
plentiful meaningless trainable parameters.

In summary, our main contributions are as follows:

– We present HKGN - a dedicated heterogeneous graph neural network for KGs
which decouples relation embeddings as input of hypernetworks from entity
embeddings as input of primary multi-relational graph convolution network.
We leverage a relation-aware 2D convolution to promote the model’s capa-
bility in learning representative information from neighbors, while external
hypernetworks are introduced to keep parameters efficient.

– We conduct experiments on two benchmarks to evaluate the link prediction
capability of HKGN and show that HKGN obtains better performance than
state-of-the-art (SOTA) embedding models.

2 Related Work

2.1 Heterogeneous Graph Neural Network

Heterogeneous Graph Neural Networks are brought forward to handle ubiquitous
heterogeneous graphs like academic network [18], product review network [19],
and educational data [20]. HAN [50] applies node-level and semantic-level atten-
tion on metapath based graphs. HetGNN [55] aggregates node features trans-
formed based upon node types sampled by random walks. HGT [18] designs a
heterogeneous mutual transformer-like attention mechanism to propagate mes-
sages. These HGNNs outperform previous homogeneous GNNs like GCN [25]
and GAT [47] on graph data with substantial heterogeneity. However, all these
HGNNs are expected to handle heterogeneous graphs with few edge types and
are not scalable to KGs in model complexity and computational demand.

2.2 Hypernetwork

Hypernetwork is a neural network trained to generate the weights for another
network (called the primary network). Hypernetworks are first introduced for
visual tasks like DFN [21] and SRCNN [38], in which the convolutional weights
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are dynamically generated dependent on input images. HyperRNN [15] uses a
recurrent network to generate the parameters of another recurrent network.

Recently, hypernetworks have also been applied in graph neural networks.
Nachmani and Wolf [30] utilize an MLP to get the GNN’s weights. They find that
the performance of the primary GNN can be improved when the first message
and current message are combined as the input of the hypernetwork [31]. LGNN
[28] employs dense layers to obtain node-level and edge-level localized weights. In
this study, we incorporate hypernetworks into HGNNs to alleviate the problem
of the count of heterogeneous parameters increasing explosively.

2.3 Knowledge Graph Embedding

Knowledge graph embedding has received considerable attention in recent years.
Translation-based models treat relations as translations from subject entities
to object entities, such as TransE [5] and TransH [51]. Tensor factorization-
based methods regard a KG as a high-dimensional sparse tensor that can be
factorized into smaller tensors, such as RESCAL [35] and DistMult [53]. HypER
[1] proposes a hypernetwork to generate 1D relation-specific filters. CoPER [42]
is a recent approach using relation embeddings to generate parameters of two
basic models: ConvE [8] and MINERVA [7].

Graph neural network has been utilized in learning KGE, which has yielded
promising performance [40]. However, many recent GNN-based works, such as
VR-GCN [54], CompGCN [46], and KBGAT [32], learn relation embeddings in
lower-level layers of the models. We argue that such a mechanism can lead to
the limited representational power of GNNs.

3 Methodology

In this section, we elaborate on the details of the proposed HKGN. The knowl-
edge graph is a collection of triples (subject, relation, object) denoted as (s, r, o).
All triples are connected to form a heterogeneous graph denoted as G = (E ,R, T )
with E as the entity set, R as the relation set, and T as the graph edge set. Fol-
lowing [40], a corresponding inverse triple (o, r−1, s) is created with inverse rela-
tion r−1, for each (s, r, o). To ensure that entities can receive information from
themselves, we add self-connection � to each entity. In that case, the relation
set and the graph edge set are extended as

R′ = R ∪
{
r−1|r ∈ R

}
∪ {�} (1)

T ′ = T ∪ T −1 ∪ {s,�, s | s ∈ E} (2)

T −1 =
{
(o, r−1, s) | (s, r, o) ∈ T

}
(3)

Figure 1 illustrates an overview of HKGN. The architecture of HKGN follows
the encoder-decoder scheme widely adopted by GNN-based KGE models. In the
encoding phase, HKGN can be seen as an instantiation of the Message Passing
Neural Network (MPNN) [13] framework. A message function is performed to
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encode the semantics of a single edge in latent space. Then, a multi-relational
message propagation function is designed to contextualize entity embeddings
with localized neighborhood structures by aggregating messages from neigh-
bor edges. The relational parameters (also called heterogeneous parameters in
this paper) utilized in this process are all generated by external hypernetworks.
HKGN takes ConvE, one of the most generally used scoring functions, as the
decoder to infer missing triples.

Fig. 1. An overview of HKGN. HKGN consists of two modules: the hypernetworks
module used to obtain weights and the primary HGNN module utilized to process the
multi-relational knowledge graph.

3.1 Hypernetworks for HGNNs

To flexibly control the number of trainable heterogeneous parameters in HGNNs,
we evolve hypernetworks for parameter generation. A hypernetwork derived for
HGNNs is a mapping function that takes the independent weights wl

r of relation
r as input and outputs the needed parameters θl

r:

θl
r = gl(wl

r,θ
l
g) (4)

– wl
r describes the unique information about the structure of the weights spe-

cific to relation r. In this study, wl
r is just considered as vectorized represen-

tations vl
r ∈ R

dl
r . dlr is the dimension of relation vector vl

r.
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– θl
g represents the global semantics shared among relations. Let ng denote the

number of parameters defined in θl
g.

– g(·)l can be an arbitrary reasonable mapping function from relational input
vector vl

r to parameters required by HGNNs. A special case is adopting the
lookup operation, which means there will be no θl

g and the model is acting
the same as normal HGNNs.

– l denotes the generated θl
r utilized in layer l of HGNNs.

The above formulation compresses the heterogeneous parameter θl
r into the

vector vl
r. nl

p denotes the parameter counts of θl
r. Assuming a knowledge graph

with Nr relations, we can calculate a ratio q to assess the hypernetwork’s ability
in parameter reduction, omitting l for simplicity:

q =
np × Nr

dr × Nr + ng
=

np

dr + ng

Nr

(5)

The effect of hypernetworks in controlling parameter counts is more significant
with a bigger q value. Equation (5) shows that the impact of hypernetworks with
the same architecture differs for KGs with various relation amounts. Knowledge
graphs with more relations will be more likely affected by hypernetworks.

3.2 Message Construction with Hypernetworks

Keeping a separate weight matrix for each node or edge type is the most com-
monly applied mechanism for HGNNs to model the heterogeneity. For example,
R-GCN [40] uses a relation-specific linear transformation to model the rela-
tional patterns. Given an edge (s, r, o), the representation of incoming message
is learned as:

m(r,o) = Wreo (6)

where eo ∈ R
d denotes the embedding of object entity o and Wr ∈ R

d′×d is the
weight matrix assigned to r. Every element m[i] in message embedding m is the
weighted sum of all features from entity embedding eo:

m[i]
(r,o) =

d∑

j=0

W[i,j]
r e[j]o (7)

This type of transformation can implicitly lead to the restricted expressive capa-
bility of models because it has an intrinsic flaw in recognizing patterns that
original features can be combined as a whole to contribute to messages. The
importance of feature e[j]o is measured by coefficient W[i,j]

r independently of
other features to derive m[i]

(r,o), as in Eq. (7). Nevertheless, some feature combi-
nations may be prominent for relation r, and some other feature combinations
play a pivotal role in another relation r̂.

In this paper, we introduce a relational convolution layer to explore rich
feature combinations:

c(r,o) = σ(Re2D(eo) ∗ ωr) (8)
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Fig. 2. An illustration of constructing messages incorporated with hypernetworks.

where eo is reshaped into a 2D feature map and fed to a relation-aware 2D con-
volution layer with filters ωr ∈ R

f×ksize×ksize to extract more interactions. As
suggested in [8], compared with 1D convolution, one element in entity vector eo
can interact with distant elements rather than immediate elements by applying
2D convolution. The activation function σ(·) is chosen to be tanh(·). ωr inter-
acts with diverse regions in Re2D(eo) to generate different entries of c(r,o). We
notice that a range of convolution-based embedding methods like circular convo-
lution [45], inception network [52], etc., can be adopted for further performance
improvement.

To obtain embeddings with suitable dimensions for subsequent layers, a linear
transformation operation is performed on c as:

m(r,o) = Wrvec
(
c(r,o)

)
(9)

where the resultant map is flattened into the 1D vector by vector concatenation
operator vec (·) and Wr ∈ R

d′×dc

is the transformation matrix.
We have now defined convolution filters and weight matrix for each relation,

which may incur a severe over-parameterization problem. To alleviate this issue,
we exploit hypernetworks to improve the efficiency of heterogeneous parameters.
The convolution filters are generated by the hypernetwork Hyperconv:

ωr = Re3D(Mconvxr) (10)

where Mconv ∈ R
f ·ksize·ksize×dx denotes the weight matrix and xr ∈ R

dx is the
relation vector. The transformed vector Mconvxr is reshaped into the 3D tensor
ωr with the shape f × ksize × ksize. In practice, we have also experimented with
employing a multi-layer perceptron MLP (·) to get ωr. However, we found that
the simple linear projection achieves the best results, which may be contributed
to the better generalization of linear projection than MLP (·).

To limit the number of learnable parameters in Wr, we introduce another
hypernetwork Hypercomp:

Wr = <Mcomp,yr> (11)
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where <,> denotes the tensor dot product between global tensor Mcomp ∈
R

d′×dc×dy and relation weight vector yr ∈ R
dy . The message construction app-

roach applied in HKGN is depicted in Fig. 2.
In this paper, we let hypernetworks process all relation vectors in the same

procedure. Hypernetworks can be arbitrary network architectures such as con-
volution neural networks or graph neural networks [31]. More carefully designed
hypernetworks may let information flow among relations more reasonably. We
defer this for future work.

3.3 Multi-relational Message Propagation

The central entity s can be surrounded by different neighboring triples, where
the entities under the same relation are located in a single-relational graph. To
aggregate information from the neighborhood, we first split neighboring triples
into diverse single-relational subgraphs according to their relations. The same
neighbor entity o located in different single-relational subgraphs will be processed
by distinct message functions. Then we compute the new representation for each
entity in the (l+1)-th layer by accumulating message embeddings learned in the
l-th layer from single-relational graphs:

el+1
s = σ

⎛

⎝
∑

r∈R′

∑

o∈N r
s

ml
(r,o)

⎞

⎠ (12)

where N r
s is the set of neighboring entities under relation r.

To avoid mutual interference among network parameters of different GNN
layers, we employ independent hypernetworks for each HKGN layer. So far, the
parameter associated with relation r is a segmented vector:

vr = [. . . ,xl
r,y

l
r,x

l+1
r ,yl+1

r . . . , zr] (13)

where xl
r and yl

r are the input weight vectors for hypernetworks Hyperlconv and
Hyperlcomp of the l-th layer, respectively. The length of vr is agnostic to the
dimension d of entity embedding. Each segment represents the distinct role of
relation r during graph convolution and is non-interfering from each other.

zr ∈ R
dz appeared in Eq. (13) is utilized by the hypernetwork Hyperrel to

generate the target relation embedding which is later used in the scoring function
to estimate the probability of query triple < h, r, ? >:

qr = Mrelzr (14)

where Mrel ∈ R
d′×dz is the global projection matrix.

3.4 Scoring Function

To estimate the probability of query triple (h, r, t), GNN-based methods typically
employ convolution-based models as the scoring function like ConvE [8], ConvKB
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[33], CapsE [34], etc. In this work, we utilize ConvE to validate our model’s
effectiveness. As revealed by [43], the evaluation process applied in ConvE is
rigorous and fair when dealing with candidate triples with the same score. In
contrast, the biased evaluation protocol adopted in ConvKB and CapsE can lead
to inappropriate performance improvement.

Given query entity embeddings eLh , eLt and relation embedding qr, the scoring
function can be written formally as:

p = σ
(
f

(
vec

(
f(

[
eLh ;qr

]
∗ ω)

)
W

)
eLt

)
(15)

where f(·) and σ(·) are ReLU and sigmoid activation functions. eLh and qr

denote 2D reshapings of eLh and eLt . [; ] represents the concatenation operation
and W is the projection matrix. The model is trained using cross-entropy loss:

L = − 1
N

∑

i

tilog(pi) + (1 − ti)log(1 − pi) (16)

where ti is the label of triple i and pi is the corresponding score.

3.5 Training Strategy

In this study, two different training strategies are applied to the HKGN to make
a trade-off between GPU memory footprints and learning time:

1. Parallel: Performing message construction and propagation functions of mul-
tiple single-relational graphs simultaneously. In this case, all triples in the KG
will be assigned heterogeneous parameters based on their binary relations and
be processed in parallel. The strategy leads to higher memory consumption
and less training time.

2. Iterative: Processing single-relational subgraphs iteratively. Triples with one
type of relation are handled during each iteration. The strategy requires a
lower GPU memory footprint with a longer learning time.

HKGN adopts the 1-N scoring developed by ConvE [8], where all entity
embeddings will be updated by message propagation in each training step.
Though it has an expensive GPU memory requirement (as revealed in Sect. 4.6),
we find that 1-N scoring achieves better results than 1-n (10, 100, etc.) scoring.

4 Experiment

4.1 Datasets

To evaluate the performance of HKGN on link prediction task, two commonly
used benchmark datasets (FB15k-237 [44] and WN18RR [8]) are employed in this
study. FB15k-237 and WN18RR are derived from FB15k and WN18 datasets
[5], respectively, where original inverse relations are excluded to prevent the test
leakage problem. The statistics of the two datasets are summarized in Table 1.
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Table 1. Statistics of datasets.

#Entities #Relations #Training #Validation #Test

FB15k-237 14,541 237 272,115 17,535 20,466

WN18RR 40,943 11 86,835 3,034 3,134

Note that we have added new inverse relation r−1 and self-loop � relation, as
presented in Sect. 3. The “inverse relation” described here is different from that
mentioned above. Because the inverse triples are created for train/valid/test set
separately, no test leakage problem will be caused. In that case, HKGN handles
475 relations in FB15k-237 and 23 relations in WN18RR. The number of edge
types is far more than those in graphs often analyzed by HGNNs, such as IMDB
(2 edge types) [23], ACM (4 edge types) [57], and DBLP (3 edge types) [49].

4.2 Evaluation Protocol

Following the evaluation protocol applied broadly in previous works, each test
triple (h, r, t) is estimated in two different scenarios: head entity prediction
(?, r, o) and tail entity prediction (h, r, ?). The head entity prediction is per-
formed in the form of (t, r−1, ?) with the corresponding inverse relation. The
head or tail entity is replaced by every other entity e′ ∈ E , and then each candi-
date triple is assigned a predictive value by the scoring function. Subsequently,
we sort these scores in descending order to obtain the exact rank of the correct
triple in the candidates. Similar to most baselines, we report the experimental
results using the filtered setting introduced by [5], where all true triples in KG
are excluded before ranking. Three standard metrics are reported to evaluate
performance, Mean Reciprocal Rank (MRR), Mean Rank (MR), and Top 1, 3,
10 (Hits@1, Hits@3 and Hits@10).

4.3 Baselines

Many studies on learning knowledge graph embedding have emerged. To demon-
strate the effectiveness of our model, we compare it with SOTA baselines cate-
gorized as the following groups:

– Shallow KGE models with low time and space complexity, including TransE
[5], DistMult [53], and DualE [6].

– Convolution-based methods like ConvE [8], ConvR [22], HypER [1] and
CoPER [42].

– Methods utilizing graph neural networks, which include R-GCN [40], SACN
[41], VR-GCN [54], A2N [2], KBGAT [32], CompGCN [46] and HRAN [27].

4.4 Hyper-parameter Settings

We evaluate the results of hyperparameter choices on the validation splits. In
HKGN, the relation embedding size dx of xr is selected from {50, 100, 200, 300},
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dy of yr from {2, 4, 6, 8}, dz of zr from {50, 100, 200, 300}. Finally, we find that
the following choices work well on both datasets: dx = 100, dy = 2 and dz = 100.
The initial entity embedding size is chosen to be 100. The number of convolution
filters is set to 32 with kernel size 3×3. We use Adam [24] with an initial learning
rate lr = 0.001 to optimize the model up to 1200 epochs. The number of HKGN
layers L is set to 2, 1; the batch size b is set to 1024, 256 for FB15K-237 and
WN18RR, respectively.

4.5 Results of Link Prediction

Table 2. Link prediction results of HKGN and baselines on FB15k-237 and WN18RR.
Results of [�] are taken from [39], [♦] from [43]. CoPER [†] is reevaluated by using
the authors’ open-source code. Other results are taken directly from the corresponding
original papers.

Model FB15k-237 WN18RR

MRR MR Hits@N MRR MR Hits@N

1 3 10 1 3 10

TransE [�] 0.313 - 0.221 0.347 0.497 0.228 - 0.053 0.368 0.520

DistMult [�] 0.343 - 0.250 0.378 0.531 0.452 - 0.413 0.466 0.530

DualE 0.330 - 0.237 0.363 0.518 0.482 - 0.440 0.500 0.561

ConvE [�] 0.339 - 0.248 0.369 0.521 0.442 - 0.411 0.451 0.504

ConvR 0.350 - 0.261 0.385 0.528 0.475 - 0.443 0.489 0.537

HypER 0.341 250 0.252 0.376 0.520 0.465 5798 0.436 0.477 0.522

CoPER [†] 0.320 390 0.234 0.351 0.491 0.442 5315 0.418 0.450 0.487

R-GCN 0.248 - 0.153 0.258 0.414 - - - - -

SACN 0.350 - 0.260 0.390 0.540 0.470 - 0.430 0.480 0.540

VR-GCN 0.248 - 0.159 0.272 0.432 - - - - -

A2N 0.317 - 0.232 0.348 0.486 0.450 - 0.420 0.460 0.510

KBGAT [♦] 0.157 270 - - 0.331 0.412 1921 - - 0.554

CompGCN 0.355 197 0.264 0.390 0.535 0.479 3533 0.443 0.494 0.546

HRAN 0.355 156 0.263 0.390 0.541 0.479 2113 0.450 0.494 0.542

HKGN 0.365 171 0.272 0.402 0.552 0.487 2468 0.448 0.505 0.561

Table 2 summarizes the results of link prediction of HKGN and baselines.
Ruffinelli et al. [39] have recently performed extensive experiments using popular
KGE model architectures and training strategies with a wide range of hyperpa-
rameter settings. They found that many shallow models can achieve competitive
performance when trained appropriately. Here we take their reported results of
TransE, DistMult, and ConvE. Sun et al. [43] investigated the inappropriate
evaluation and test data leakage problem in KBGAT. Hence, we take the results
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of KBGAT from [43] when issues are fixed. The performance of DualE is reported
without prior type constraints. CoPER is closely related to our method. Nev-
ertheless, we find that the original model performance is just estimated in the
tail prediction task. To ensure a fair comparison, we evaluate the performance
of CoPER in head and tail prediction tasks and report the average results using
the authors’ open-source code1.

From Table 2, we observe that: (i) HKGN consistently outperforms all base-
lines on most metrics in two benchmark datasets, demonstrating the effectiveness
of our proposed method. Compared with HRAN, a recent HGNN model which
introduces a heterogeneous relation attention mechanism to aggregate neigh-
bor features, HKGN delivers better results. The improvement indicates HKGN’s
ability to model complex structures in heterogeneous KGs. (ii) HKGN outper-
forms HypER and CoPER, which also utilize hypernetworks in learning KGE,
showing that the graph structure information is beneficial for link prediction.

Table 3. Experimental results on FB15k-237 by relation category.

1-1(1.5%) 1-N(4.6%) N-1(18.6%) N-N(75.2%)

MRR CoPER 0.427 0.249 0.409 0.297

CompGCN 0.469 0.278 0.435 0.334

HKGN 0.400 0.282 0.452 0.345

Hits@10 CoPER 0.526 0.360 0.494 0.501

CompGCN 0.593 0.414 0.531 0.549

HKGN 0.591 0.416 0.562 0.561

We investigate the performance of HKGN for different relation categories on
FB15k-237. Following [51], all relations are categorized into four classes: 1-to-1,
1-to-N, N-to-1, and N-to-N. Table 3 presents the results of HKGN on different
relation categories. We reproduce CompGCN2 and CoPER based on publicly
available source codes. Table 3 shows that the HKGN performs better for 1-to-
N, N-to-1, and N-to-N relation categories, which shows that HKGN is effective
at handling complex relations. We also notice that CompGCN outperforms our
model on 1-to-1 relations. The phenomenon can be attributed to the reason
that the characteristic information of 1-to-1 relations is corrupted by noises from
other relations. It reminds us that the performance of HKGN may be boosted by
introducing residual connection [17] or gate-based structures into hypernetworks
to control the flow of information from other relations. Overall, triples with 1-
to-1 relation cover only around 1.5% of all edges in the FB15k-237 training set.
Hence, the stronger ability of HKGN in modeling complex relations makes it
more applicable to KGs.

1 https://github.com/otiliastr/coper.
2 https://github.com/malllabiisc/CompGCN.

https://github.com/otiliastr/coper
https://github.com/malllabiisc/CompGCN
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4.6 Ablation Study

Table 4 shows the results of the ablation study. Conv. denotes the relational con-
volution applied in the message function and Hyper. represents all hypernetworks
adopted in HKGN.

Table 4. Ablation study on FB15k-237 and WN18RR.

Dataset Model q value MRR Hits@1 Hits@3 Hits@10 #param.

FB15k-237 w/o Conv. 150.9 0.355 0.264 0.39 0.536 1.64M

w/o Hyper. - 0.358 0.265 0.394 0.544 415.19M

HKGN 212.3 0.365 0.272 0.402 0.552 3.40M

WN18RR w/o Conv. 7.4 0.459 0.41 0.479 0.553 4.15M

w/o Hyper. - 0.483 0.444 0.497 0.558 13.52M

HKGN 10.8 0.487 0.448 0.505 0.561 4.96M

Effect of Relational Convolution. As shown in Table 4, removing relational
convolution leads to all metrics (MRR, Hits@1, 3, and 10) degradation on FB15k-
237 and WN18RR datasets, demonstrating the effectiveness of capturing feature
combinations. We further examine how the prediction results of entities with
different degrees can be affected by the relational convolution. The entity with
a larger degree is connected to more neighbor entities, and this kind of entity is
expected to receive more semantic information from neighbors. For each entity e,
we compute the degree (indegree and outdegree) deg(e) = degin(e)+degout(e) by
counting the corresponding training triples. Figure 3 presents the average results
of Hits@10 for different sets of entities with different degree scopes. It can be
observed that HKGN achieves better performance across all degree scopes by
leveraging the relation-specific convolution. Along with the increase of degrees,
the average value of Hits@10 increases initially but declines abruptly in a high-
degree scope (e.g., deg(e) ≥ 1000 in FB15k-237 and deg(e) ≥ 100 in WN18RR).
We conjecture this is primarily due to the representative information being cov-
ered by excessive messages from too many neighbors. One solution to this prob-
lem may be neighborhood sampling functions as in [16].

Effect of Hypernetworks. The empirical results in Table 4 show that
the model eliminating hypernetworks obtains 122x (FB15k-237) and 2.7x
(WN18RR) more parameters and simultaneously worse performance than the
original HKGN. The significant parameter reduction and consistent performance
improvement indicate that hypernetworks are powerful in keeping parameters
efficient. The average training loss and MRR evaluated on the validation set
for FB15k-237 during the training process are reported in Fig. 4. Obviously, the
HKGN with hypernetworks achieves lower loss and higher MRR results. Using
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Fig. 3. Node degree study using FB15k-237 and WN18RR datasets.

hypernetworks helps reduce numerous network parameters and facilitates the
weights converging to a more optimal solution. Without hypernetworks, the num-
ber of trainable parameters in the HKGN for handling FB15k-237 has reached
415M, which is even larger than some recent pre-trained language models, includ-
ing GPT (110M) [37] and BERT (340M) [9]. Imagine we build HGNNs equipped
with more complicated graph learning mechanisms such as transformer-style
attention [18], metapath-based learning [12], and heterogeneous graph structure
learning [57] to deal with web-scale knowledge graphs like Wikidata (4k rela-
tions) [48] and DBpedia (60k relations) [26], as summarized in [11]. There will
be a blowup in the number of trainable parameters. Our experimental results
suggest that it is possible to control the parameter counts and even boost per-
formance by exploiting the underlying correlations among relations.

Fig. 4. Convergence results of HKGN and its counterpart without hypernetworks on
FB15k-237 dataset.

The statistics of the maximum GPU memory allocated and the training time
for HKGN with/without hypernetworks are shown in Table 5. The results are
reported under the experimental environment with a single NVIDIA A100 GPU,
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CUDA 11.2, and PyTorch [36] 1.8.0. With sufficient GPU memory, executing
the message functions of multiple single-relational graphs in parallel gets nearly
12x and 3.8x speedup on FB15k-237 and WN18RR. When processing single-
relational graphs iteratively, introducing hypernetworks into the HKGN does not
slow the training speed because all hypernetworks are implemented linearly. Uti-
lizing hypernetworks has a more prominent influence on GPU memory consump-
tion. When we tried to run the model without hypernetworks in a parallel way,
the procedure attempted to load 852 GB and 327 GB of memory for FB15k-237
and WN18RR, respectively, and got out of memory error. The memory consump-
tion goes far beyond the limit of our resources and can be reduced remarkably
to 21 GB (FB15k-237) and 5 GB (WN18RR) through applying hypernetworks.
Also, the HKGN (iterative) with hypernetworks reduces up to 23.8% of memory
footprint compared with its counterpart removing hypernetworks on FB15k-237.

Table 5. Statistics of the maximum GPU memory allocated (in GB) and training
time (in seconds per epoch) of HKGN with/without hypernetworks on FB15k-237 and
WN18RR datasets. OOM denotes the Out Of Memory error.

Dataset FB15k-237 (2-layer) WN18RR (1-layer)

Training strategy Models Memory Time Memory Time

Iterative HKGN 14.6 960 2.8 260

w/o Hyper. 19.2 970 2.9 260

Parallel HKGN 21.5 80 5.5 68

w/o Hyper. OOM OOM

5 Conclusion and Future Work

In this paper, we propose HKGN, a novel heterogeneous graph neural network for
learning KGE. HKGN introduces hypernetworks to alleviate the problem of the
number of heterogeneous parameters in explosive growth, which is fundamental
for the model to build a complicated convolution-based message construction
function. The developed message function effectively improves prediction accu-
racy for entities with varying node degrees. As a result, HKGN achieves new
SOTA on standard benchmark FB15k-237 and WN18RR. Experimental results
show that the proposed hypernetworks significantly reduce the parameter counts
and lead to lower GPU memory footprints. In the future, we intend to explore
more variants of hypernetworks to make information flow among relations more
reasonably. We would also like to combine hypernetworks with more advanced
heterogeneous architectures to facilitate KGE learning.
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Supplemental Material Statement: Source code for HKGN, detailed hyperpa-
rameter settings, datasets FB15k-237 and WN18RR, the data subsets divided
by relation categories and entity degrees are available from Github3.
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Abstract. Keyphrase extraction aims to identify a small set of phrases
that best describe the content of text. The automatic generation of
keyphrases has become essential for many natural language applications
such as text categorization, indexing, and summarization. In this paper,
we propose MultPAX, a multitask framework for extracting present
and absent keyphrases using pre-trained language models and knowl-
edge graphs. In particular, our framework contains three components:
first, MultPAX identifies present keyphrases from an input document.
Then, MultPAX links with external knowledge graphs to get more rel-
evant phrases. Finally, MultPAX ranks the extracted phrases based
on their semantic relatedness to the input document and return top-k
phrases as a final output. We conducted several experiments on four
benchmark datasets to evaluate the performance of MultPAX against
different state-of-the-art baselines. The evaluation results demonstrate
that our approach significantly outperforms the state-of-the-art base-
lines, with a significance t-test p < 0.041. Our source code and datasets
are public available at https://github.com/dice-group/MultPAX.

Keywords: Present keyphrase extraction · Absent keyphrase
generation · Knowledge graph · Pre-trained language models

1 Introduction

Keyphrase extraction is the process of extracting a small set of phrases that
best describe a document. This process has been leveraged for several down-
stream applications, including text summarizing, organizing, and indexing [16].
In the literature, keyphrase extraction is divided into two sub-tasks: (i) detecting
present keyphrases (PKE) that appear in a document, and (ii) generating absent
keyphrases (AKG) that do not appear in the original document, but are essential
for downstream applications (e.g., text summarization, indexing). Table 1 shows
an example of extracting present and absent keyphrases from an input text.

Existing works mostly focus on extracting present keyphrases from an input
text, including supervised learning (e.g., sequence labelling [22]), and unsuper-
vised learning (e.g., TextRank [17], YAKE [4]). By contrast, generating absent
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Table 1. Example of present and absent keyphrase extraction from Inspec dataset.
The predicted present keyphrases are in italic, and the absent ones are highlighted in
gray

keyphrases (i.e., keyphrases that do not appear in a text) is a challenging task.
According to the statistical study by [31], some benchmarking datasets (e.g.,
Inspec [9]) are missing up to 37.7% of absent keyphrases. To cope with this
challenge, few studies have been proposed. For example, [15] employed a super-
vised sequence-to-sequence model with a copy mechanism, which allows copying
important words directly from a source text, rather than decoding new words.
However, this approach requires large-scale labelled data for training the model
efficiently. In addition, the copy mechanism only generates one word at each time
step and does not consider any dependencies between the selected words [33].
Another line of work aims to utilize external sources of knowledge to generate
absent keyphrases. For example, [24] constructs a phrase bank consisting of all
keyphrases in a text corpus. The authors assumed that absent keyphrases in one
document might be found in other relevant documents. However, this approach
requires creating a domain-specific phrase bank to generate absent keyphrases.

In this paper, we aim not only to extract present keyphrases from an input
document, but also to generate absent keyphrases that are relevant and do not
appear in the document. We reduce the effort required to develop a keyphrase
model by employing pre-computed resources. In particular, we use pre-trained
language models to extract present keyphrases and knowledge graphs (KGs) to
generate absent keyphrases. Therefore, we propose an unsupervised multitask
framework (dubbed MultPAX) with the following pipeline: i) We tokenize an
input document into n-grams phrases and embed both (document and n-gram
phrases) as low-dimensional vectors into one semantic space. Then, we extract
the top-k phrases that are close to the document’s vector as candidates for
present keyphrases. ii) We then link the extracted present keyphrases to find
additional related terms (e.g., synonyms, hypernyms) from external KGs (e.g.,
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DBpedia, BabelNet). For this purpose, we developed a new version of the
MAG framework [18], which is optimized for linking keywords and extracting
related terms. iii) Finally, we rank all keyphrases (i.e., present and absent)
based on their semantic similarity to the input document. The top-k phrases
are returned as the final keyphrases output.

Additionally, we propose an improved metric for evaluating predicted
keyphrases based on their semantic-matching with ground-truth keyphrases.
Existing studies [13,15,32] consider precision, recall, and F1 based on the exact-
matching between predicted and ground-truth keyphrases, which yields reason-
able evaluation for present keyphrases that appear in text. However, in evaluating
absent keyphrases, the exact-matching demonstrated an inefficient assessment of
words that are semantically similar but are literally different [21]. As an exam-
ple, assume “Cryptocurrency” as a ground-truth keyphrase, and a keyphrase
model was able to generated “Bitcoin” as a predicted keyphrase. In this case,
the exact-matching metric ignores the semantic relatedness between both words
and considers them completely unrelated. By means of words embeddings, these
words are similar and adjacent to each other in the embedding space. In this
regard, we propose using an embedding-based F1-score to evaluate keyphrases
extraction in a more accurate semantic way.

To evaluate the performance of MultPAX, we conducted several experi-
ments on four benchmark datasets, where we study the performance of our sys-
tem against different approaches. The evaluation results show that our approach
significantly outperforms the state-of-the-art baselines with a significance t-test
p < 0.041 and F1-score up to 0.535. The main contributions in this paper can
be summarized as follows:

– We propose an unsupervised multitask framework that not only extracts
present keyphrases, but also generate absent ones.

– To the best of our knowledge, our approach is the first attempt that lever-
ages existing knowledge graphs for keyphrases generation without the need to
create keyphrases vocabularies or phrase banks.

– We introduce an embedding-based F1 evaluation that considers semantic sim-
ilarity between generated and ground-truth keyphrases rather than the exist-
ing exact-matching.

– We carried out several experiments on four benchmark datasets. The evalua-
tion results showed that our approach proved to be more accurate compared
with state-of-the-art baselines.

2 Related Work

In this section, we give an overview of the related approaches in unsupervised
keyphrase extraction and absent keyphrase generation.

2.1 Unsupervised Keyphrase Extraction

Several approaches have recently been developed for extracting keyphrases in
unsupervised setting without the need for annotated data. For example, statisti-
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cal approaches such as TF-IDF and YAKE [4] compute statistical features (e.g.,
word frequencies and co-occurrences) to find important words as candidates for
present keyphrases. Moreover, graph-based approaches like TextRank [17] con-
struct a graph representation of text, where words are represented as nodes and
their co-occurrences as edges. Thereafter, a node ranking algorithm (e.g., PageR-
ank) is used to sort words, and return top-k words as candidate keyphrases. [3]
proposed TopicRank, a graph-based approach similar to TextRank. In the first
step, candidate phrases are clustered into topics and then ranked based on with
their importance in the document.

Recent studies have demonstrated that embedding-based models can achieve
significant results in extracting keyphrases. For example, EmbedRank [2] app-
roach uses part-of-speech tags to extracts potential keyphrases from an input
document. Then, EmbedRank uses a pre-trained embedding model to repre-
sent both phrases and an input document as low-dimensional vectors. Can-
didate keyphrases are then ranked based on their Cosine similarity scores to
the document’s embedding vector. Although pre-trained language models have
shown promising performances for extracting present keyphrases, they have
failed to generate absent keyphrases from their lexical corpus. Furthermore, [13]
pointed out that embedding-based models ignore local information in a docu-
ment. Accordingly, they developed a jointly-trained model to incorporate global
and local context of a document. In the global view, their approach represented
candidate keyphrases and the input document as low-dimensional vectors into
one semantic space. After that, the similarity between each candidate keyphrase
and the document is computed. In terms of the local context, the authors built a
graph structure based on the document context, where nodes represent phrases
and edges represent similarities between them. Finally, the output keyphrases
are ranked based on this global and local information.

2.2 Absent Keyphrase Extraction

Many previous approaches have relied on sequence-to-sequence models—with
encoder-decoder architecture—to generate absent keyphrases [6]. By doing so,
sequence-to-sequence models are able to decode not only keyphrases that appear
in source text, but also those that may be absent, i.e., the ones that are not
explicitly mentioned in the text. However, additional mechanisms need to be inte-
grated to improve the generation of absent keyphrases. For example, [31] applied
a Graph Neural Network (GNN) to capture knowledge from related references
in scholarly publications. A neural topic model is employed in [28] to expand the
context of the decoding component to generate more absent keyphrases.

It is noteworthy that [32] achieved significant results in extracting keyphrases
by dividing this task into two sub-tasks: present keyphrase extraction and absent
keyphrase generation. Furthermore, the authors proposed a multitask approach
to select, guide, and generate keyphrases. In the select module, the authors used
a BiLSTM to predict whether a sentence has a keyphrase or not. Then, a guider
network is employed to utilize the attention information and memorize the pre-
dictions of the selector. Finally, this information is fed to a generator network
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to generate absent keyphrases by selecting words from both the source text and
a predefined vocabulary. In addition to these fully-supervised approaches, there
are also some unsupervised methods that achieved promising results in gener-
ating keyphrases without the need for labelled data. [24] observed that many
keyphrases absent from an input document appeared in other related docu-
ments. Therefore, they constructed a phrase bank of all keyphrases in a corpus.
Then, they identified present keyphrases in relevant documents as candidates for
absent keyphrases for the input document. In addition, they employed present
keyphrases as sliver labels to train a sequence-to-sequence model. Finally, all
keyphrases (both present and absent) were ranked based on their lexical and
semantic similarity to an input document.

3 Our Approach

In this section, we present our approach for extracting present and absent
keyphrases. Figure 1 depicts the architecture of our MultPAX framework,
including three components: i) present keyphrase extraction (PKE), ii) absent
keyphrase generation (AKG), and iii) Keyphrases Semantic Matching.

3.1 Problem Formulation

Let D be an input document with |S| sentences; each sentence s ∈ S is a sequence
of |s| tokens T = {t1, t2, · · · , t|s|}. Our goal is to build a keyphrase model that
not only extracts present keyphrases Yp = {yp1 , y

p
2 , · · · , y

p
|Yp|} but also generates

absent keyphrases Ya = {ya1 , ya2 , · · · , ya|Ya|} that are relevant to D by leveraging
knowledge graphs such as DBpedia [1] and BabelNet [19].

Following previous works [8,22], we divide the task of keyphrase extraction
into two sub-tasks: Present Keyphrase Extraction (PKE) and Absent Keyphrase
Generation (AKG). Furthermore, we define the computation of final keyphrases
as a Semantic Matching task. First, we consider PKE as a ranking problem,
where candidate phrases are extracted and then ranked based on their similari-
ties to the input document (see Sect. 3.2). Second, we formulate AKE as a linking
problem to infer relevant information from external knowledge graphs. For this
task, we employ an unsupervised entity-linker [23] that maps a present keyphrase
(Yp) to its corresponding entity in a knowledge graph (i.e., DBpedia, Babel-
Net) and then get relevant terms (e.g., from dct:subject, gold:hypernym
properties) as candidates for absent keyphrases. Finally, all keyphrases Yp ∪ Ya

are ranked based on their similarities to D, the top-k keyphrases are returned
as the final output.

3.2 Present Keyphrase Extraction (PKE)

We employ the Bert language model [7] to extract present keyphrases based
on their semantic similarity to a document. The main steps are as follows: (1)
We tokenize an input document D into n-gram phrases and annotate each token
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Fig. 1. The architecture of MultPAX framework with three components: present
keyphrase extraction, absent keyphrase generation and semantic matching

with part-of-speech tags (e.g., ADJ: adjectives, NOUN: nouns, VERB: verbs).
(2) Then, we remove stop words and keep noun phrases that consist of zero
or more adjectives followed by one or multiple nouns [27]. (3) We employ the
pre-trained language model (BERT-Encoder) to encode candidate keyphrases as
low-dimensional vectors together with the input document into one embedding
space.

A special preprocessing is applied to the input text of the BERT-Encoder as
follows: a [CLS] token is added at the beginning of each sentence, which is then
used to obtain the contextualized embeddings vector of a sentence. An additional
token [SEP] is inserted to mark the end of a sentence. Afterward, the input is
tokenized by WordPiece tokenizer [25]; each token ti is associated with three
types of embeddings: token embeddings (Eti) which represents the vocabulary
index of each token, segmentation embeddings that distinguishes between input
sentences (EA or EB), and position embeddings (Ei) to indicate the position
of each word. The output of the BERT-Encoder is the sentence’s representation
matrix H = [h0, h1, · · ·h|s|], where hi denotes the embedding vector of token ti.
Formally, the embedding vector of a sentence sj is

Hj = BERT-Encoder({t1, t2, · · · t|s|}). (1)

Pooling is an essential operation for creating sentence and document embed-
dings [5]. It is commonly used to aggregate (e.g., mean, max) multiple represen-
tations (e.g., sentences) into one embedding vector. To obtain the document’s
embeddings HD, we employ a MaxPooling layer on top of all sentences’ repre-
sentations. Formally,

HD = MaxPooling({H1,H2, · · · H|S|}). (2)
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Finally, we use Cosine distance to compute similarities between the embed-
ding vectors of candidate keyphrases Hi ∈ H|S| and the document embedding
HD. We select the top-k keyphrases as candidates for present keyphrases.

3.3 Absent Keyphrase Generation (AKG)

To obtain absent keyphrases, we first link all present keyphrases Yp to a knowl-
edge graph and get additional surface forms (i.e., strings that could be synonyms
or alternative names). We consider the DBpedia knowledge graph since it pro-
vides surface forms for a wide range of common entities. For entity linking, we
follow a similar approach to the MAG framework [18].

MAG extracts entity links using two steps: candidate generation and candi-
date disambiguation. In the candidate generation step, MAG aims to find candi-
date links (C1, . . . , Cn) for pre-marked entities in the search index [18]. To this
end, MAG uses acronyms and labels in a knowledge graph to map premarked
entity spans from the input text to candidate entities. Furthermore, MAG also
relies on the Concise Bounded Description (CBD)1 of the entities in a knowledge
graph by comparing the context of the entity spans in the input document and
the CBD of an entity in a knowledge graph [18]. We keep this candidate genera-
tion step from MAG and apply it to the extracted present keyphrases from the
PKE component. In the candidate disambiguation step, MAG generates a local
graph using a breadth-first-search method for all candidate entities on a knowl-
edge graph. Then, MAG applies the HITS ranking algorithm [11] to jointly rank
the candidate links for all entities in the local graph. HITS ranks the nodes in
a directed graph based on incoming and outgoing edges. Authorities are seen as
nodes, that carry important information, while hubs are nodes, that point to a
large amount of authority nodes. So the authority score of a node n is calculated
based on the hub score of the nodes, that have a directed edge to the node n,
while the hub score of n is calculated based on the authority score of the nodes
which are linked by n [11]. Formally, HITS calculates the authority score ap for
the node p as

ap =
∑

q:(q,p)∈G

hq. (3)

where hq is the hub-score for the node q, given that a directed edge from node q
to node p exists in the graph G. The hub-score hp for a node p is calculated as

hp =
∑

q:(q,p)∈G

aq. (4)

where aq is the authority-score for a node q, which is linked by node p [11]. aq
and hp are initialized randomly and updated iteratively until convergence.

In contrast to MAG, we not only link present keyphrases, but also extract
related terms for each linked keyphrase from a knowledge graph. Furthermore,
we extract top-ranked candidates for each entity and n nodes with the highest
1 https://www.w3.org/Submission/CBD/.

https://www.w3.org/Submission/CBD/
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authority scores in the local graph, since their surface forms could be used as
candidates for the absent keyphrases. In our approach, we use BabelNet to
find hypernyms for the present keyphrases, in addition to the surface forms from
DBpedia.

3.4 Keyphrases Semantic Matching

In the last component, we aim to identify top-k relevant keyphrases (present
and absent), we set k = {5, 10, 20} in our experiments. We regard this task as
a semantic textual similarity [14]. To match similarities between a document D
and candidate keyphrases, we embed them into one semantic space using a pre-
trained embedding model. Then we employ Cosine distance to find top-k nearest
keyphrases (Hi) to the document’s vector HD and return as final keyphrase
predictions. Formally,

Cos(Hi,HD) =
Hi · HD

||Hi|| × ||HD|| . (5)

where Hi donates the embedding vector of candidate keyphrase (present ypi or
absent yai ), and HD represents the embedding vector of the input document.

4 Experiments

We conducted our experiments to answer the following research questions:

Q1. How efficient is our approach in extracting present keyphrases compared to
the state-of-the-art approaches?

Q2. Are the existing exact-matching metrics (i.e., Precision, Recall and F 1-
score) suitable for evaluating absent keyphrases?

Q3. To what extent does each component in our framework contribute to the
overall performance?

Table 2. Statistics about the datasets (#Doc: number of documents, #Test: size of
test set, #Avg. KP: average keyphrase per document, #Ratio%: percentage of absent
keyphrase per dataset)

Dataset #Doc #Test Avg. KP Ratio%

Inspec 2k 500 7.65 37.7%
Krapivin 2.3k 460 3.03 15.3%
SemEval2010 144 100 7.15 11.3%
NUS 211 211 2.71 17.8%
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4.1 Experimental Setup

Datasets. In our experiments, we used four benchmark datasets of English
documents, namely, Inspec [9], SemEval2010 [10], Krapivin [12], and NUS [26].
Table 2 provides a statistical overview of each dataset, including the total number
of documents (#Doc.), the number of documents in the evaluation set (#Test),
average keyphrases per document (Avg. KP) and the ratio of absent keyphrases
in each dataset (Ratio%).

Baselines. We compared our approach with the following baselines for extract-
ing keyphrases:

– TextRank [17] is an unsupervised approach that constructs a graph repre-
sentation from a document, where nodes represent phrases and their edges are
computed based on lexical similarities. Further, TextRank uses the PageRank
algorithm to extract present keyphrases.

– YAKE [4] is a simple unsupervised method that extracts keywords automati-
cally based on statistical features such as words co-occurrence and frequencies.

– EmbedRank [2] is an unsupervised method that employs words embeddings
to identify relevant words to a document as candidate keyphrases. Further-
more, EmbedRank utilizes the Maximum Marginal Relevance algorithm to
increase the diversity of the extracted keyphrases.

– Supervised-CopyRNN [15] is a supervised baseline that trains a sequence-
to-sequence model with a copy mechanism on KP20K dataset [15]. We used
this approach as a baseline for present keyphrases extraction as well as absent
keyphrase generation to compare the performance of copy mechanism.

– AutoKeyGen [24] is an unsupervised approach that constructs a phrase bank
by combining keyphrases from all documents into a corpus. Then, AutoKey-
Gen considers lexical- and semantic-level similarities for selecting top candi-
date keyphrases (present and absent) for each input document.

Evaluation Metrics. We evaluated our approach using different metrics: Pre-
cision, Recall, and F 1 scores. The Precision is computed as the number of
correctly-matched keyphrases over all predicted keyphrases.

Given a list of predicted keyphrases Y = (y1, . . . , y|Y|), we select the top-
k ranked keyphrases Y:k = (y1, . . . , ymin (k,|Y|)) and compare with the top-k
ranked keyphrases in the ground-truth set. We set k = {5, 10} for present
keyphrases and k = {10, 20} for absent ones in our experiments. Following previ-
ous works [24,30], we use the Porter Stemmer from the NLTK library2 v3.7 to
compute exact-matching between the top-k predicted (Y:k) and the ground-truth
(Ygold) keyphrases. The precision of the top-k predicted keyphrases is defined as

P@k =
|Y:k ∩ Ygold|

|Y:k|
. (6)

2 https://www.nltk.org/index.html.

https://www.nltk.org/index.html
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The Recall is calculated as how many correctly-matched keyphrases among
all ground-truth keyphrases. Formally, the Recall is defined as

R@k =
|Y:k ∩ Ygold|

|Ygold
:k |

. (7)

and the F1@k-score is defined as the harmonic mean of P@k and R@k

F1@k = 2 × P@k × R@k

P@k +R@k
. (8)

Although the exact-matching metric has been used widely in the litera-
ture [13], there is still a room for improvement regarding the absent keyphrases
evaluation based on semantic similarity. Hence, we propose in Sect. 4.3 a
semantic-based matching to evaluate the performance of generated absent
keyphrases.

Hyperparameters. We performed a grid search to optimize the hyperparame-
ters of our approach. We found the following values yield the best F1-scores. In
the PKE component, we tokenized the input text into phrases of 2–4 grams.
Further, we considered the top-10 ranked phrases as candidates for present
keyphrases. The full setup of our experiments is available at the GitHub reposi-
tory.3 For the baseline methods, the hyperparameters were set according to their
original papers. In the MAG framework, we adapted the extraction of common
entities to cover a larger set of entity types. In addition, we set the other hyper-
parameters values with the standard configuration4 of the MAG framework.

Table 3. Evaluation results of present keyphrases prediction on Inspec,
SemEval2010, Krapivin, and NUS datasets. F1@k-scores are reported based on exact-
matching between the predicted and ground-truth keyphrases. Best results are
reported in bold

Model Inspec SemEval2010 Krapivin NUS
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

TextRank 0.263 0.279 0.183 0.181 0.148 0.139 0.187 0.195
YAKE 0.027 0.038 0.050 0.242 0.013 0.020 0.013 0.020
EmbedRank 0.295 0.344 0.108 0.145 0.131 0.138 0.103 0.134
Supervised-CopyRNN 0.292 0.336 0.291 0.296 0.302 0.252 0.342 0.317
AutoKeyGen 0.303 0.345 0.187 0.240 0.171 0.155 0.218 0.233
MultPAX 0.371 0.210 0.449 0.255 0.384 0.334 0.535 0.344

3 https://github.com/dice-group/MultPAX.
4 https://github.com/dice-group/AGDISTIS/blob/master/src/main/resources/

config/agdistis.properties.

https://github.com/dice-group/MultPAX
https://github.com/dice-group/AGDISTIS/blob/master/src/main/resources/config/agdistis.properties
https://github.com/dice-group/AGDISTIS/blob/master/src/main/resources/config/agdistis.properties
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Table 4. Absent keyphrases evaluation (in terms of R@10, R@20). All results
are reported based on exact-matching between the predicted and ground-truth
keyphrases, except the last row shows Recall results based on semantic-matching

Model Inspec SemEval2010 Krapivin NUS
R@10 R@20 R@10 R@20 R@10 R@20 R@10 R@20

Supervised-CopyRNN 0.051 0.068 0.049 0.057 0.116 0.142 0.078 0.10
AutoKeyGen-Bank 0.015 0.017 0.007 0.009 0.031 0.041 0.021 0.026
AutoKeyGen-Full 0.017 0.021 0.010 0.011 0.033 0.054 0.024 0.032
MultPAXexact-Matching 0.079 0.080 – – – – 0.017 0.017
MultPAXsemantic-Matching 0.696 0.584 – – – – 0.608 0.669

4.2 Present Keyphrase Evaluation (Q1)

To answer Q1, we evaluated our approach (MultPAX) vs. different baselines
in extracting present keyphrases. As shown in Table 3, MultPAX significantly
outperforms all baselines by a large margin on most datasets with a signifi-
cant t-test p < 0.041. This is due to, MultPAX employs semantic similarity
between candidate keyphrases and an input document using the state-of-the-art
pre-trained language model in semantic textual matching [29]. In contrast, Copy-
RNN [15] and AutoKeyGen [24] used sequence-to-sequence models to encode an
input document as a low-dimensional vector and decode it back into a sequence
of predicted keyphrases.

On the other hand, we find that YAKE does not perform well in detecting
present keyphrases from short texts (e.g., papers’ abstracts). Since YAKE relies
on statistical features such as words co-occurrence and frequencies, which are
efficiently computed only in long texts (e.g., full papers or news). Remarkably,
the embedding-based baseline (EmbedRank) achieves comparable results; how-
ever, it fails to generate absent keyphrases. In our approach, we extract present
keyphrases from text using contextualized embeddings and semantic matching.
These findings answer Q1; by employing pre-trained language models, we can
not only efficiently identify present keyphrases from text without labelled data,
but we also outperform the state-of-the-art approach (AutoKeyGen).

4.3 Absent Keyphrase Evaluation (Q2)

We conduct further experiments to evaluate the performance of our approach
against two baselines (namely, CopyRNN and AutoKeyGen) in generating absent
keyphrases. Following previous work [24], we use the Recall metric (R@10, R@20)
based on exact-matching for the performance evaluation as shown in Table 4.
Since we used the same experimental setup of CopyRNN and AutoKeyGen
approaches, we obtained the evaluation results from their papers [15,24].

Regarding Q2, we can clearly see that all approaches achieve poor perfor-
mances when considering exact-matching between predicted and ground-truth
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keyphrases. For example, if two keyphrases are semantically similar, e.g., “disas-
ter relief organization” and “crisis responses institute”, these keyphrases will not
be considered as a match using the existing metrics. Hence, we found that such
metrics are unsuitable for evaluating absent keyphrases. We propose an improved
evaluation metric based on the semantic-matching. Formally, let Ya be predicted
keyphrases; Ygold is ground-truth keyphrases. We first embed each keyphrase in
Ya and Ygold. Then, we use Cosine distance to compute similarities between the
embedding of each keyphrase in Y and Ygold. We set a threshold (> 0.5) for
similarities scores to consider semantic-matching between Y and Ygold. The two
last rows in Table 4 show the evaluation results of R@10 and R@20 based on
semantic-matching compared to exact-matching in absent keyphrase extraction.

The AutoKeyGen baseline demonstrates competitive performance in gener-
ating absent keyphrases on the NUS dataset. However, the generated keyphrases
by AutoKeyGen are limited to the ones from the phrase bank of each dataset.
In contrast, our approach leverages public knowledge graphs (such as DBpedia
and BabelNet) to obtain relevant phrases as candidates for absent keyphrases.

Limitation of Our Work. In our experiment, we used the MAG framework to
connect present keyphrases to DBpedia knowledge graph (see Sect. 3.3). In the
SemEval2010 and Krapivin datasets, we were unable to link present keyphrases,
due to the lack of coverage for these keyphrases in the DBpedia knowledge
graph. That is the reason for the missing values shown in the last two rows
of Table 4 for these datasets. In our future work, we plan to integrate other
knowledge graphs (e.g., YAGO and Wikidata) to extend the coverage of entity
linking in the MAG framework.

4.4 Ablation Study (Q3)

To answer Q3, we analysed the impact of each component of our framework
on the overall performance. For this purpose, we set up four variants of our
framework. The first variant MultPAX-PKE was dedicated for only extracting
present keyphrases, i.e., no absent keyphrase generation and thus no linking
with knowledge graphs. We also created two variants of MultPAX with the
purpose of evaluating the generation of absent keyphrases, namely MultPAX-
AKEDBpedia and MultPAX-AKEBabelNet. Furthermore, we configured the MAG
framework to link present keyphrases only with DBpedia in case of MultPAX-
AKEDBpedia, and only with BabelNet for MultPAX-AKEBabelNet. Finally, we
benchmarked the entire framework MultPAXFull as our fourth variant.

Table 5 reports the evaluation results of each component in terms of semantic-
matching F1@5, and F1@10 on the Inspec dataset, since it contains the highest
ratio of absent keyphrases among the benchmark datasets. We can see that
the performance of MultPAX-PKE is improved when linking with knowledge
graphs, e.g., MultPAX-AKEDBpedia outperforms MultPAX-PKE by +0.41
in F1@10. In addition, we noticed that our approach could retrieve more terms
from DBpedia than BabelNet, since DBpedia contains more semantic ontolo-
gies (approximately 3.5 millions instances) extracted from Wikipedia informa-
tion boxes. Finally, our MultPAX-Full showed an improved performance with
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F1-scores (0.911 in F1@5, 0.763 in F1@10) when incorporating both knowl-
edge graphs (i.e., DBpedia and BabelNet) compared with individual variants.
These findings conclude that each component of MultPAX contributes to the
overall performance of our framework and answers our last research question Q3.

Table 5. Ablation Study of MultPAX framework on Inspec dataset. F1@K-scores
are reported based on semantic-matching between the predicted and ground-truth
keyphrases

MultPAX-variant F1@5 F1@10

MultPAX-PKE 0.892 0.686
MultPAX-AKEBabelNet 0.907 0.701
MultPAX-AKEDBpedia 0.911 0.727
MultPAXFull 0.911 0.763

5 Conclusion

This paper presents MultPAX framework, a multitask approach for extract-
ing present and absent keyphrases, including three components: i) Present
Keyphrase Extraction, ii) Absent Keyphrases Generation, and iii) Keyphrases
Semantic Matching. In our approach, we employ a pre-trained language model
(Bert) and knowledge graphs (DBpedia and BabelNet) in keyphrase extrac-
tion. Our experiments showed that pre-trained language models are capable of
efficiently extracting present keyphrases. Furthermore, knowledge graphs proved
to be valuable resources for generating keyphrases that are absent, especially in
short text. In our future work, we plan to apply a bootstrapped approach for
keyphrase extraction from DBpedia abstracts to find more relevant terms. In
particular, we intend to apply MultPAX recursively on the abstracts of DBpe-
dia entities. In addition, we will experiment with other knowledge graphs (e.g.,
YAGO and Wikidata) to extend the coverage of entity link in the MAG frame-
work.

Supplemental Material Statement. We implemented our framework in
Python 3.7, the source code and how-to-run instructions can be found at the
GitHub repository.5 Furthermore, we used the benchmarking datasets available
in the Dropbox drive.6 For the baseline models, we used OpenNMT library7,
which enables us to benchmark different state-of-the-art baselines in our experi-
ments. In addition, we used the pre-trained embedding of Bert model, namely
all-MiniLM-L6-v2 with 384 embedding dimension from the huggingface

5 https://github.com/dice-group/MultPAX.
6 https://www.dropbox.com/s/aluvkblymjs7i3r/MULTPAX-Datasets.zip?dl=0.
7 https://github.com/memray/OpenNMT-kpg-release.

https://github.com/dice-group/MultPAX
https://www.dropbox.com/s/aluvkblymjs7i3r/MULTPAX-Datasets.zip?dl=0
https://github.com/memray/OpenNMT-kpg-release
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library8 v4.16. For the hardware requirements, we used a computing server
with 256 GB memory and Xeon(R) CPU E5-2630 v4 with 2.20GHz to run our
experiments.
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Abstract. Grounding dialogue system with external knowledge is a
promising way to improve the quality of responses. Most existing works
adopt knowledge graphs (KGs) as the external resources, paying atten-
tion to the contribution of entities in the last utterance of the dialogue for
context understanding and response generation. Nevertheless, the corre-
lations between knowledge implied in the multi-turn context and the
transition regularities between relations in KGs are under-explored. To
this end, we propose a Relation Transition aware Knowledge-Grounded
Dialogue Generation model (RT-KGD). Specifically, inspired by the
latent logic of human conversation, our model integrates dialogue-level
relation transition regularities with turn-level entity semantic informa-
tion. In this manner, the interaction between knowledge is considered to
produce abundant clues for predicting the appropriate knowledge and
generating coherent responses. The experimental results on both auto-
matic evaluation and manual evaluation indicate that our model outper-
forms state-of-the-art baselines.

Keywords: Knowledge-Grounded Dialogue · Response generation ·
Relation transition regularity

1 Introduction

Knowledge-Grounded Dialogue Generation (KGD) aims at generating an infor-
mative response based on both dialogue context and external knowledge [6,9].
Current works typically utilize structured knowledge graphs (KGs) [16,32,38] or
unstructured texts [9,36] as knowledge resources. Incorporating external knowl-
edge related to the dialogue context has proven to alleviate generating mean-
ingless and bland responses caused by traditional generative models, such as “I
don’t know” and “You are right” [11].
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Fig. 1. An illustrative example from KdConv [39]. Based on the dialogue context (a)
and the related KG (b), KGD is required to generate a response (c) guided by the
MHKT-Path (d). The bold denotes the core entities in the dialogue, and the Italic
denotes related knowledge values involved in the dialogue.

The existing works mainly focus on two aspects in KGD task: knowledge-
enhanced context understanding [2,29] and knowledge-fused response genera-
tion [13,14]. Traditional efforts [2,6,39] simply treat the relevant external knowl-
edge as the textual complementary to the dialogue context for both context
understanding and response generation, neglecting considerable structural infor-
mation in KGs. Some recent works [8,16,32] realize that the correlation between
entities plays an important role in continuing dialogue, thus propose to excavate
the valuable structural information between entities in the knowledge graph to
predict the entities that might appear in the next response. The predicted enti-
ties are further used to guide the response generation. For example, DialKG
Walker [16] treats the entities mentioned in the last utterance as the start-
ing nodes and further retrieves relevant entities from KG within two hops.
DuConv [30] pre-defines a topic goal including two entities for each dialogue,
which guides the model to start with the first entity and gradually transition to
the second one.

Despite their great contributions, there are two main drawbacks: on the one
hand, the entity-guided KGD methods [16,32] consider the entities in the dia-
logue as the only guidance knowledge for context understanding and response
generation, which neglects the importance of relations between entities in the
KG. However, the regularity behind human conversation can be summarized as
a sequence of topics, where each topic may correspond to a relation between
entities rather than a single entity in the KG. On the other hand, the existing
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KGD methods [8,16] only care about the information in the last dialogue turn for
predicting the subsequent knowledge, which is insufficient to learn how human
transfer topics across a multi-turn dialogue. Taking Fig. 1 as an example, both
badcase 1 and badcase 2 are flawed generated results based on the dialogue con-
text. Badcase 1 demonstrates that the generated response might be redundant
and incoherent without modeling multiple turns of knowledge, while badcase 2
reveals an abrupt transition in the topic since the latent relation transition path
throughout the dialogue is ignored.

In this paper, we propose a novel KGD model: Relation Transition aware
Knowledge-Grounded Dialogue Generation (RT-KGD), which models the knowl-
edge transition across multi-turn dialogue by integrating dialogue-level relation
transition regularities with turn-level entity semantic information. Specifically,
we obtain all the relations and entities contained in the multi-turn dialogue con-
text to construct a so-called Multi-turn Heterogeneous Knowledge Transition
Path (MHKT-Path), which can be viewed as a subgraph of the external KG inte-
grated with the sequential information of relations and entities in the multi-turn
dialogue. Based on the constructed MHKT-Path, a knowledge prediction module
is proposed to retrieve the triplets that might appear in the subsequent response
from the external KG, and they are further fused for triplet prediction. Finally,
the subsequent response is generated conditioned on both dialogue context and
the predicted triplet. As the example shown in Fig. 1, the MHKT-Path grasps
the latent conversation regularity of human beings, and the generated response
based on the proposed RT-KGD is informative and coherent with the dialogue
context.

The main contributions of this paper are concluded as follows:

– To the best of our knowledge, we are the first to incorporate the relation
transition across multi-turn dialogue into the KGD task. In this manner,
the regularity behind human conversation can be portrayed by integrating
relation transition paths and entity semantic information.

– We propose to build a Multi-turn Heterogeneous Knowledge Transition Path
(MHKT-Path) for each dialogue, which integrates the structure information
of external KG and the sequential information of knowledge with the multi-
turn dialogue. Based on MHKT-Path, our model then retrieves appropriate
knowledge from the KG to guide the next response generation.

– The experimental results on a multi-domain knowledge-driven dialogue
dataset (i.e., KdConv [39]) indicate that our model outperforms strong base-
line models in both automatic and manual evaluation.

2 Related Work

According to whether to introduce knowledge, we categorize previous dialogue
generation works into Vanilla Dialogue Generation and Knowledge-grounded
Dialogue Generation.
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Vanilla Dialogue Generation. Early dialogue systems typically employ
Sequence-to-Sequence (Seq2Seq) models to generate responses [20,21,31], which
is further improved with advanced context encoders [20,31] or more efficient
response generation methods [2,33,37]. Recently, pre-trained generative models
with the backbone of Transformer [25], such as GPT-2 [18] and BART [10],
achieve promising performance in many text generation tasks. There is increas-
ing work focusing on designing Transformer-based pre-trained dialogue mod-
els. Among them, Blender [19] enhances Transformer architecture and show
their superiority in dialogue generation. DialoGPT [35] extends GPT-2 [18] for
response generation. Besides, PLATO [3] pre-trains unified language models for
both bi-directional encoding and uni-directional decoding. Nevertheless, they
can only implicitly learn dialogue strategies and commonsense knowledge from
dialogue corpora, resulting in limited transferability to other dialogue scenes.

Knowledge-Grounded Dialogue Generation. A promising way to gener-
ate meaningful and informative responses is to utilize external knowledge to
guide the models. Generally, the external knowledge comes from textual cor-
pora [9], commonsense knowledge graphs [29,32,38], and domain knowledge
graphs [30,39]. To utilize the knowledge, [6,26] adapt the memory network [23]
to store the relevant knowledge and then generate responses conditioned on both
dialogue context and stored knowledge. Besides, [12,29] employ the posterior
distribution of knowledge to guide its prior distribution, leading to accurate
knowledge selection and high-quality generated responses. Furthermore, some
work [13,14,29] leverages copy mechanism to copy words from knowledge sources
directly and generate more informative responses. Although great progress has
been made, the structural information of KG is neglected, which might lead to
suboptimal responses.

To effectively excavate the structural information, some researchers attempt
to utilize graph neural networks on KG to obtain its structure-aware representa-
tion that is further incorporated into dialogue generation [16,32,38]. AttnIO [8]
leverages bi-direction attention flows to propagate messages from the entities
appearing in the last utterance to their neighbor entities in KG. ConceptFlow [32]
applies a graph attention mechanism to attend to appropriate concepts condi-
tioning on dialogue context for responses generation, where the concepts are
extracted from ConceptNet [22], a large-scale commonsense knowledge graph.
Unlike previous research, our RT-KGD (1) refines the dialogue-level knowledge
transition from different granularity; (2) incorporates the related knowledge
based on the whole dialogue context rather than only the last utterance.

3 Methodology

In this section, we formally define the knowledge-ground dialogue generation
task (Sect. 3.1) and then elaborate on four principal components of our RT-KGD
model. As illustrated in Fig. 2, our model first constructs the multi-turn hetero-
geneous knowledge transition path (MHKT-Path) for the given dialogue context
(Sect. 3.2) and then encodes the MHKT-Path by a knowledge encoder (Sect. 3.3).
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Fig. 2. The architecture of the proposed RT-KGD model.

Next, the predicted triplet from a knowledge prediction (Sect. 3.4) is finally
incorporated into the subsequent response, which is generated by a knowledge-
enhanced encoder-decoder (Sect. 3.5).

3.1 Task Formulation

Given a dialogue context C = {u1, u2, · · · , un−1}, where ui represents
the i-th utterance. Each ui corresponds to a knowledge triplet set Ki =
{(hi1 , ri1 , ti1), (hi2 , ri2 , ti2), · · · , (hi|Ki|

, ri|Ki|
, ti|Ki|

)} (|Ki| ≥ 0), where (h, r, t)
means that head entity h and tail entity t have a relation r, and a descrip-
tive text set Si = {si1 , si2 , · · · , si|Si|

} (|Si| ≥ 0). All knowledge triplets and
descriptive texts are from domain knowledge graph G and corpus O. The goal of
knowledge-grounded dialogue systems is to generate a proper response un based
on the dialogue context C, knowledge graph G, and knowledge corpus O.

3.2 Multi-turn Heterogeneous Knowledge Transition Path

To integrate dialogue-level relation transition regularities with turn-level entity
semantic information, we utilize the knowledge triples associated with the given
dialogue context, i.e., K = K1∪K2∪· · ·∪Kn−1, to construct the multi-turn het-
erogeneous knowledge transition path, which is called MHKT-path. As shown in
Fig. 2, MHKT-path contains two types of vertices, i.e., triplet vertices and relation
vertices. In detail, each triplet vertex represents a knowledge triplet belonging
to K, and corresponds with a relation vertex which is extracted from it. There
are four types of edges in MHKT-Path: (1) the triplet-to-triplet edge links the
triplet vertices associated in one utterance with others in the neighbor utter-
ances; (2) the paired triplet-to-relation and (3) relation-to-triplet edges denote
the bi-directional interaction between triplet vertices and their corresponding
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relation vertices; (4) the relation-to-relation edge links relation vertices with each
other only if their corresponding triplet vertices are connected. In this manner,
the knowledge transition of both turn-level triplets and dialogue-level relations
is integrated into the MHKT-Path.

3.3 Knowledge Encoder

The knowledge encoder learns the representation of the vertices in MHKT-Path.
Specifically, it contains vertex initializer and graph layers to initialize and update
the vertex representations.

Vertex Initializer. Instead of directly using the average word embeddings of
the flat texts in entities and relations, we employ a KG embedding algorithm
(i.e., TransR [15]) to initialize the representation of vertices in our MHKT-Path1:

h0
ei

= TransR(ei) (1)

where ei ∈ K denotes a KG element (e.g., entity or relation), h0
ei

means the
initialized representation of ei. TransR(·) represents the TransR KG embedding
function, learned by projecting entities from entity space to different relation
spaces and building translations between the projected entities. In this way, the
learned representation of KG elements in K contain the global KG structural
information due to their interaction in KG [4,15,34].

For relation vertex in MHKT-Path, we directly use h0
ei

as its initial represen-
tation. For triplet vertex (hi, ri, ti), we calculate its representation as:

TransR(hi) ⊕ TransR(ri) ⊕ TransR(ti) (2)

where ⊕ denotes concatenation.

Graph Layers. Graph layers are used to update the vertex representations with
the local structural information in the established MHKT-Path. Here, we employ
the Heterogeneous Graph Transformer (HGT) [7] as the graph layers since it is
aware of different types of vertices and edges. Given the MHKT-Path, the repre-
sentation of each vertex vi is updated by aggregating its neighbor information:

HGT (h�
vi

) = Aggregate
∀vsrc∈N(vi)

(
Attention(v�−1

i , v�−1
src ) · Message(v�−1

src )
)

(3)

where N(vi) is the neighbor vertices set of vi, the Aggregate(·), Attention(·),
and Message(·) are three basic operators in HGT:

– Attention(·) calculates the mutual attention of each vertex pair, where each
type of vertex and edge has a unique linear projection.

1 We also attempt to encode entities and relations based on word embedding, as
suggested by [27,28], the results underperform that of using TransR.
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– Message(·) transfers information from different types of neighbor vertices of
each vertex vi.

– Aggregate(·) integrates messages from neighbor vertices with attention
weights to the core vertex vi.

Finally, for vertex vi, we concatenate the final node representation and the
corresponding initial node representation with a simple linear projection:

hHGT
vi

= W ([h0
vi

⊕ hL
vi

]) (4)

where W is trainable parameters, L is the number of layers of HGT.

3.4 Knowledge Predictor

After obtaining the final representations of both triplet and relation vertices
in MHKT-Path, the knowledge predictor is used to predict the knowledge which
might be implied in the response. There are three parts to knowledge predic-
tion, i.e., relation prediction, relation-aware triplet prediction, and multi-label
triplet classification. Since the knowledge encoder aggregates only local neigh-
borhood information, we further employ the bi-directional gated recurrent unit
(Bi-GRU) [5] to enrich the sequential representations of relations and triplets.

In detail, we first treat the average vertices representation in dialogue order
as the input of Bi-GRU. Suppose there are m relation vertices and m triplet
vertices in turn i. The relation vertices in turn i are denoted as {ri,j}m

j=1, whose
average representation is shown as follows:

R0
i = Mean(hHGT

ri,1
, · · · , hHGT

ri,m
) (5)

Similarly, the triplet vertices in turn i are denoted as {ti,j}m
j=1 ⊂ K, whose

average representation is:

T 0
i = Mean(hHGT

ti,1 , · · · , hHGT
ti,m ) (6)

Relation Prediction. The relation prediction part is to obtain the n-th relation
hidden state hGRU

r (n) based on the previous n−1 turns relation representation.
At step t of relation prediction, Bi-GRU generates the t-th relation hidden state
as follows:

hGRU
r (t) = [hfw

r (t);hbw
r (t)]

= [
→

GRU(R0
t , h

fw
r (t − 1));

←
GRU(R0

t , h
bw
r (t − 1))]

(7)

Relation Transition Aware Triplet Prediction. Different from the relation,
we utilize Bi-GRU to obtain n−1 triplet hidden states hGRU

t (1), · · · , hGRU
t (n−1)

based on the input T 0 = T 0
1 , · · · , T 0

n−1. For the i-th triplet, its hidden state is
calculated as follows:

hGRU
t (i) = [hfw

t (i);hbw
t (i)]

= [
→

GRU(T 0
i , hfw

T (i − 1));
←

GRU(T 0
i , hbw

t (i − 1))]
(8)
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After obtaining the predicted n-th relation hidden state and n − 1 triplet
hidden states, we employ multi-head attention [25] to jointly attend to the infor-
mation from both dialogue level and turn level. Thus the predicted triplet rep-
resentation hATT

tn is calculated as follows:

αi = softmaxi

(
hGRU

rn

T
hGRU

ti

)

hATT
tn =

D

‖
d=1

n−1∑
i=1

αd
i h

GRU
ti

(9)

where D denotes the number of attention heads.

Multi-label Triplet Classification. Since there might be multiple knowledge
in the next response, the multi-label classification is adapted to map the pre-
dicted triplet representation to a label vector, where the number of labels is the
total number of triplets in the knowledge graph G.

Formally, let label l = Wl(hATT
tn ) ∈ R|K|, where Wl is a trainable parameter

and |K| is the total triplet size. The target label is denoted as y ∈ {0, 1}|K|. Then
we adapt the binary cross-entropy (BCE) loss to supervise the classification of
triplets:

LBCE = − 1
K

K∑
i=1

[
yilog(σ(li)) + (1 − yi)log(1 − σ(li))

]
(10)

where σ(·) is sigmoid function.

3.5 Knowledge-Enhanced Encoder-Decoder

We employ pre-trained BART [10] as the backbone of our KGD model, which
aims to generate the final response based on dialogue context C, predicted triplet
representation K and corresponding descriptive texts S. The input dialogue
context is formed as “[CLS]u1[SEP]u2[SEP]· · · [SEP]un−1[SEP]”, where [CLS]
and [SEP] are two special tokens to indicate the utterance boundaries. Then, the
input is automatically tokenized by the BART’s tokenizer, followed by a stack
of BART encoder layers. Next, the context-aware representation of each token
is obtained from the output of the last encoder layer of BART:

hC
1 , · · · , hC

|Cinp| = BARTenc(C) (11)

where |Cinp| indicates the number of tokens in the input sequence, BARTenc(·)
denotes the BART encoder, and hC

i is the context-aware representation of the
i-th token in the sequence.

Similarly, for the descriptive text set S = {S1, S2, · · · , Sn−1} corresponding
to the context C, each Si is encoded by the BART encoder, where the input is
formed as “[CLS]Si1[SEP]Si2[SEP]· · · [SEP]Si|Si|

”. We take the context-aware
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final representation of [CLS] as the sentence representation, and the encoded
sentence embedding of the i-th turn is obtained as follows:

hS
i = BARTenc(Si) (12)

Finally, the response is generated by the BART decoder, conditioning
on the BART-encoded dialogue context hC

1 , · · · , hC
|Cinp|, descriptive sentences

hS
1 , hS

2 , · · · , hS
|n−1| and predicted triplets hATT

tn :

G = BARTdec([hC
1 ;hC

2 · · · ;hC
|Cinp|;h

S
1 ;hS

2 ; · · · ;hS
|n−1|;h

ATT
tn ; ]) (13)

where G is the representation of generated response, BARTdec(·) denotes the
BART decoder, ; denotes the token boundaries.

Cross Entropy Loss. We guide the decoder with the ground-truth response
Y = un by computing the Cross-Entropy Loss:

LCE = − 1
|Y |

|Y |∑
t=1

log(P (Gt = Yt)) (14)

where Gt denotes the generated token at the decoding time step t, while Yt is
the t-th token of the ground-truth response. In summary, the final loss is defined
by:

Ltotal = LCE +λ · LBCE (15)

where λ denotes the coefficients of the BCE loss.

4 Experiments

4.1 Dataset

To verify our model, two requirements should be met in the datasets: (1) each
utterance is annotated with related knowledge triples, and (2) containing abun-
dant utterances in each dialogue. Therefore, we conduct our experiments on
KdConv [39], a Chinese multi-domain knowledge-driven dialogue dataset, which
contains 4.5K dialogues together with 86K utterances from three domains (i.e.,
film, music, and travel). In KdConv, each dialogue contains 19.0 turns as well as
10.1 triplets on average. For domain-specific knowledge, both structured triplets
and unstructured texts are provided. Specifically, the film, music, and travel
domain knowledge contain 89K, 56K, and 10K triplets, together with 7.3K, 4.1K,
and 1.1K descriptive sentences, respectively.



328 K. Wang et al.

4.2 Settings

Baselines: We adopt both vanilla and knowledge-grounded (indicating by
“+know”) dialogue generation models as our baselines:

– Seq2Seq [24]: An encoder-decoder model augmented with attention mecha-
nism [1].

– Seq2Seq+know [39] fuses the last hidden state of the encoder with the
knowledge vector via the attention mechanism and feeds both of them into
the Seq2Seq decoder.

– HRED [20]: A hierarchical recurrent encoder-decoder model which models
utterances and context separately with different RNNs.

– HRED+know [39] fuses the context vector with the knowledge vector and
treats the fused vector as the initial state of the HRED decoder.

– BART [10]: A pre-trained Transformer-based encoder-decoder model which
achieves state-of-the-art performance on various text generation tasks.

– BART+know incorporates both knowledge entities and relations repre-
sented by the average word embeddings of the corresponding flat texts.

– BART+know(TransR) incorporates knowledge entities and relations rep-
resented by a knowledge graph embedding algorithm (i.e., TransR [15]).

Implementation: We implement the above models with PyTorch and Hugging-
face Transformers2 libraries. In Seq2Seq and HRED baselines, we employ GRU
architecture [5] as the encoder and the decoder with 200 hidden cells. In terms of
word embeddings, we adapt Tencent AI Lab word embeddings of 200d3. When
encoding context, all models treat the concatenation of the past n−1 utterances
as the input of the encoder, while the target output of the decoder is the n-th
utterance. n is set to 8 in our experiments suggested by KdConv [39]. All models
are optimized with ADAM optimizer using an initial learning rate of 5e-5. The
mini-batch size is set to 32.

For our RT-KGD, the embedding size of entities and relations is set to 200. The
implementation of TransR is provided by OpenKE 4. The knowledge encoder is
Bi-GRU, the hidden size and the number of layers are set to 300 and 1, respec-
tively. We choose the Chinese BART 5 as the baseline pre-training language
model with the default hyper-parameter settings. When decoding the response,
the beam search size of all models is set to 5. The λ is set to 1 in Eq. 15.

4.3 Evaluation Metrics

Automatic Evaluation: Following [39], we adopt perplexity (PPL), BLEU
scores [17], and Distinct scores [11] as automatic metrics. In detail, PPL is used

2 https://github.com/huggingface/transformers.
3 https://ai.tencent.com/ailab/nlp/en/embedding.html.
4 https://github.com/thunlp/OpenKE.
5 https://huggingface.co/fnlp/bart-base-chinese.

https://github.com/huggingface/transformers
https://ai.tencent.com/ailab/nlp/en/embedding.html
https://github.com/thunlp/OpenKE
https://huggingface.co/fnlp/bart-base-chinese
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Table 1. Automatic evaluation results on KdConv Corpus. The bold indicates the
best performance. The “+know” means the models are enhanced by the knowledge
base, and the knowledge words are encoded by word embeddings. ↑ indicates higher is
better. ↓ indicates lower is better. † denotes the results reported by KdConv [39].

Model PPL ↓ BLEU-1/2/3/4 ↑ Distinct-1/2/3/4 ↑
Film

Seq2Seq 23.88† 26.97† 14.31† 8.53† 5.30† 2.32† 6.13† 10.88† 16.14†

Seq2Seq+know 25.56† 27.45† 14.51† 8.66† 5.32† 2.85† 7.98† 15.09† 23.17†

HRED 24.74† 27.03† 14.07† 8.30† 5.07† 2.55† 7.35† 14.12† 21.86†

HRED+know 26.27† 27.94† 14.69† 8.73† 5.40† 2.86† 8.08† 15.81† 24.93†

BART 2.66 28.54 19.28 14.21 11.00 2.46 14.12 25.72 36.12

BART+know 2.85 29.38 20.18 15.02 11.74 2.55 15.26 28.01 39.45

BART+know(TransR) 2.82 29.68 20.43 15.26 11.97 2.50 15.12 27.96 39.56

RT-KGD(ours) 2.86 32.11 22.21 16.68 13.18 3.05 16.34 31.36 44.68

Music

Seq2Seq 16.17† 28.89† 16.56† 10.63† 7.13† 2.52† 7.02† 12.69† 18.78†

Seq2Seq+know 17.12† 29.6† 17.26† 11.36† 7.84† 3.93† 12.35† 23.01† 34.23†

HRED 16.82† 29.92† 17.31† 11.17† 7.52† 2.71† 7.71† 14.07† 20.97†

HRED+know 17.69† 29.73† 17.51† 11.59† 8.04† 3.80† 11.70† 22.00† 33.37†

BART 2.46 31.65 23.04 18.22 15.05 2.80 13.69 24.73 34.59

BART+know 2.40 32.20 23.24 18.20 14.89 2.74 13.54 24.96 35.41

BART+know(TransR) 2.44 32.27 23.40 18.44 15.22 2.80 13.68 25.19 35.61

RT-KGD(ours) 2.47 40.75 31.26 25.56 21.64 4.18 17.38 30.05 41.05

Travel

Seq2Seq 10.44† 29.61† 20.04† 14.91† 11.74† 3.75† 11.15† 19.01† 27.16†

Seq2Seq+know 10.62† 37.04† 27.28† 22.16† 18.94† 4.25† 13.64† 24.18† 34.08†

HRED 10.90† 30.92† 20.97† 15.61† 12.30† 4.15† 12.01† 20.52† 28.74†

HRED+know 11.15† 36.87† 26.68† 21.31† 17.96† 3.98† 13.31† 24.06† 34.35†

BART 1.83 34.77 29.11 25.69 23.33 2.70 13.39 21.92 29.53

BART+know 1.67 36.19 29.83 26.04 23.41 2.59 13.31 22.01 29.69

BART+know(TransR) 1.69 36.61 30.29 26.54 23.92 2.56 13.58 22.85 30.87

RT-KGD(ours) 1.61 47.56 41.46 37.40 34.31 3.58 15.50 26.10 35.72

to evaluate whether the generation result is grammatical and fluent. BLEU-
n (n=1, 2, 3, or 4) estimates how many n-grams overlap between generated
sentences and ground truth references. Distinct-n (n=1, 2, 3, or 4) evaluates the
diversity of generated responses.

Human Evaluation: Considering the complexity of the knowledge-grounded
dialogue generation task and the limitation of automatic evaluation, it is nec-
essary to further conduct the human evaluation. Following KdConv [39], The
criteria of human evaluation include two aspects: (1) Fluency evaluates whether
the generated responses are reasonable and relevant to the given dialogue
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context. (2) Coherence measures how relevant the knowledge contained in the
generated responses and the counterpart in the ground truth responses. We ran-
domly select 100 dialogue contexts from KdConv in three domains, respectively,
and then ask five well-educated evaluators to judge the generated responses by
different models. The scoring adopts a 3-point scale.

(a) Fluency scores on film, music and travel domains, respectively

(b) Coherence scores on film, music and travel domains, respectively

Fig. 3. Human evaluation in three domains, including means and variances of the
Fluency (a) and Coherence (b). κ is the Fleiss’ kappa value.

4.4 Experimental Results

Table 1 shows the automatic evaluation results. We analyze the results from the
following perspectives:

(1) Comparison between models: Compared with all baseline models,
RT-KGD achieves the best results on most of automatic metrics in three domains,
which indicates that our knowledge-guided method is extremely effective in
improving the coherence and diversity of generated responses. Specifically, com-
pared with Seq2Seq-based and HRED-based models, our RT-KGD obtains not only
lower PPL scores but also higher BLEU-n and Distinct-n scores in three domains.
This is because we utilize the pre-trained language model to encode contexts and
generate responses, which makes use of the implicitly learned knowledge from
the pre-trained corpus. On the other hand, compared with BART-based mod-
els, our RT-KGD works better in terms of BLEU-n and Distinct-n scores, however
worse on PPL scores. Based on our manual sampling analysis of the experimental
results, the reason might be that our MHKT-Path takes the knowledge transition
into consideration. At the same time, diverse knowledge information may result
in responses that have never appeared in the corpus, thus reducing the PPL
scores.
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Moreover, it can be seen that all models with knowledge perform better
than those without knowledge in terms of BLEU-n and Distinct-n, indicating
the benefits of incorporating knowledge. However, the addition of knowledge
works worse in PPL. The reason may be that the sentence with knowledge is
less common and more difficult to understand for the model. We also observe
that all models with “know(TransR)” obtain higher BLEU-n and Distinct-n
scores than models with “know”, demonstrating that introducing of knowledge
graph embedding algorithm has a positive influence on generating high-quality
responses. It is worth noting that in the music domain, BART performs better
than BART+know in terms of Distinct-1 and Distinct-2 but worse in Distinct-3
and Distinct-4, which is due to that BART prefers to use individual words with
low frequency rather than common phrases. Furthermore, it is possible to get
a high Distinct-1 for putting together a response with entirely random words.
The same analysis comparing BART and BART+know also applies to the travel
domain.

(2) Comparison between domains: As we can see, models in the travel
domain perform better than that in film and music domains on PPL and BLEU-
k, while models in the film domain obtain higher Distinct-n scores than the same
model in music and travel domains. The reason might be that there are more
entities and relations in the film domain, which leads to more diverse knowledge
tokens but a lower similarity with the ground-truth.

4.5 Human Study

Here, we estimate three knowledge-grounded dialogue generation models which
perform better than other baselines. The experiment results are shown in Fig. 3.
As can be seen, RT-KGD outperforms other models significantly on both metrics in
all three domains, which indicates that our model can generate more human-like
responses. Moreover, the performance gap between models behaves differently
on different metrics. The fluency scores in the music domain (the middle one in
Fig. 3(a)) are increased from 1.36 (HRED+know) to 1.93 (RT-KGD), while the
coherence scores in the music domain (the middle one in Fig. 3(b)) are increased
from 1.00 (HRED+know) to 1.77 (RT-KGD). We also show Fleiss’ Kappa values of
our human study. A higher score indicates higher agreements among evaluators.
The kappa scores demonstrate a good inter-agreement among our evaluators.

4.6 Ablation Study

To analyze which components are driving the improvements, we further design
three graph variants for detailed comparison and ablation study: (1) “w/o tri”
removes the triplet vertices in MHKT-Path; (2) “w/o rel” removes the relation
vertices in MHKT-Path; (3) “w/o edge” removes the edges between the triplet
and the relation vertices in MHKT-Path.

Table 2 shows the results of ablation studies. First, we observed that models
suffer the performance drop when removing any of the components, demon-
strating the effectiveness of integrating triplets and relations. Second, the degree
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Table 2. Ablation study on KdConv. The bold and underline denote the best and the
worst performances, respectively.

Model PPL ↓ BLEU-1/2/3/4 ↑ Distinct-1/2/3/4 ↑
Film

RT-KGD(ours) 2.86 32.11 22.21 16.68 13.18 3.05 16.34 31.36 44.68

- w/o tri 2.85 30.17 20.82 15.58 12.22 2.61 15.79 29.28 41.16

- w/o rel 3.37 30.10 20.64 15.42 12.10 2.56 15.76 29.31 41.44

- w/o edge 3.35 30.13 20.76 15.52 12.22 2.53 15.79 29.42 41.68

Music

RT-KGD(ours) 2.47 40.75 31.26 25.56 21.64 4.18 17.38 30.05 41.05

- w/o tri 2.43 32.22 23.24 18.22 14.94 2.74 13.17 24.26 34.42

- w/o rel 2.49 32.53 23.66 18.67 15.44 2.85 14.12 26.28 37.22

- w/o edge 2.42 32.28 23.44 18.50 15.26 2.83 13.92 25.36 35.55

Travel

RT-KGD(ours) 1.61 47.56 41.46 37.40 34.31 3.58 15.50 26.10 35.72

- w/o tri 1.70 36.92 30.69 26.95 24.33 2.71 13.89 23.32 31.76

- w/o rel 1.84 36.98 30.59 26.74 24.06 2.64 13.63 23.01 31.17

- w/o edge 1.82 37.39 31.02 27.21 24.55 2.58 13.43 22.14 29.79

of impact increases from the film domain to the travel domain after removing
components. For example, the BLEU-n scores decrease by 1.4, 7.4, and 10.4 on
average in film, music, and travel, respectively, which shows that our MHKT-Path
plays a more significant role in the travel domain in improving the quality of
generated response. Third, the contribution of each component is not equal in
different domains. Specifically, if the triplet vertices are removed, BLEU-n and
Distinct-n scores are dramatically dropped in the music domain, indicating that
turn-level entity information is capable of enhancing knowledge comprehension.
While removing the relation vertices, BLEU-n scores declined most significantly
in film and travel domains, demonstrating the advantage of explicitly modeling
dialogue-level relation transition regularities. Lastly, without the edges between
the triplet and relation vertices, the performance of RT-KGD in all three domains
is reduced to varying degrees. This is because the edge between triplet vertices
and relation vertices effectively propagates the information between these two
vertices.

4.7 Case Study

As shown in Fig. 4, we show the responses generated by HRED+know,
BART+know(TransR) and RT-KGD. We can observe that given the context
and corresponding knowledge triplets, HRED+know tends to generate generic
or irrelevant responses, and BART+know(TransR) can generate coherent and
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Dialogue (Film) Knowledge
Head Relation Tail

Context

User1: Have you heard of Andy Lau?

Andy Lau

Occupation

Actor

User2: Of course, he is an actor, singer, lyricist and producer.
Singer
Lyricist

Producer

User1: Is he still a famous actor? Are there any representative 
works?

Representative 
Work

A World Without 
Thieves

User2: Film and television works have A World Without Thieves, 
Infernal Affairs, A Simple Life and so on. Have you seen them?

Infernal Affairs

A Simple Life

User1: Oh, I've seen A Simple Life. Do you remember who 
starred in the film?

A Simple Life Cast

Ye Dexian

Response

Ground-Truth: Starring Ye Dexian, Andy Lau, Wang Fuli, Qin 
Hailu, Huang Qiusheng, etc. Andy Lau

HRED+know: Yes, there's Leonardo DiCaprio . Do you 
remember who starred? Wang Fuli

BART+know(TransR): Of course, Bradley Cooper , Christopher 
waltz , Melissa George  and so on. They all played very well! Qin Hailu

RT-KGD(Ours): Of course, there are Ye Dexian, Andy Lau, 
Wang Fuli, Qin Hailu, Huang Qiusheng and other co stars. Have 
you heard of them?

Huang Qiusheng

Fig. 4. Example dialogue cases. The bold is the core entity under discussion. Underline
is the appropriate knowledge used in the dialogue. Italic is inconsistent with the con-
text.

informative responses but utilizes the inconsistent knowledge. While our RT-KGD
is superior to generating high-quality responses with appropriate knowledge.

5 Conclusion

In this paper, we proposed a novel KGD model: Relation Transition aware
Knowledge-Grounded Dialogue Generation (RT-KGD), which models the knowl-
edge transition across multi-turn dialogue by integrating dialogue-level relation
transition regularities with turn-level entity semantic information. Furthermore,
our RT-KGD model utilizes the predicted knowledge to generate a response given
the dialogue context. According to automatic and manual evaluation, our model
generates high-quality responses which utilize more appropriate knowledge and
are closer to the responses given by humans.

Supplemental Material Statement: The KdConv dataset and part of the baselines
in Sect. 4 are publicly available from Github6. Source codes for RT-KGD model
are available at https://github.com/tigerwww-git/RT-KGD.
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Abstract. This paper introduces an end-to-end learning framework
called LoGNet (Local and Global Triple Embedding Network) for triple-
centric tasks in knowledge graphs (KGs). LoGNet is based on graph neu-
ral networks (GNNs) and combines local and global triple embedding
information. Local triple embeddings are learned by treating triples as
sequences. Global triple embeddings are learned by operating on the fea-
ture triple line graph GL of a knowledge graph G. The nodes of GL are
the triples of G, edges are inserted according to subjects/objects shared
by triples, and node and edge features are derived from the triples of
G. LoGNet brings a refreshing triple-centric perspective in learning from
KGs and is flexible enough to adapt to various downstream tasks. We
discuss concrete use-cases in triple classification and anomalous predicate
detection. An experimental evaluation shows that LoGNet brings better
performance than the state-of-the-art.

Keywords: Knowledge graphs · Triple embeddings

1 Introduction

Knowledge Graphs (KGs) are organized as a set of facts (or triples) of the form
(s, p, o) where the predicate p represents a semantic relation holding between
the subject entity s and the object entity o. As an example, the triple (M.
Freeman, starring, Invictus) represents the fact that the actor M. Freeman was
starring in the movie Invictus. Several approaches have focused on learning
representations (aka embeddings), for both entities and predicates, in the form of
low-dimensional vectors [5] to support knowledge discovery tasks. The problem
of directly computing embeddings of entire triples has received little attention.

Related Work. We identify three main strands of related research. The first
concerns node embeddings (e.g., RDF2Vec [27], metapath2vec [12], JUST [17],
NESP [7]) and is based on first computing walks in KGs according to different
strategies and feed them into language model techniques (e.g., Word2Vec [22]).
Node embeddings can then be used in various downstream applications, includ-
ing node classification and clustering (e.g., [7,17]). The second strand has focused
on finding both entity (node) and predicate (edge) embeddings with the main
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 336–353, 2022.
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goal to perform link prediction or knowledge graph completion (e.g., TransE [4],
ComplexE [31], ConvE [11], RotatE [30]). The third strand leverages Graph
neural networks (GNNs) [28] as a model that directly adapts to graphs in a
variety of classification and prediction tasks (e.g., node-level, graph-level) and
contexts, from drug discovery to neural translation. GNNs can be used to com-
pute node, edge, and graph embeddings. We observe that the problem of directly
computing embeddings of entire triples has received little attention. One indirect
way to solve this problem would be to perform some operation (e.g., Hadamard
product, concatenation, average) on the embeddings of the subject, object, and
predicate in the triple. However, this approach is sub-optimal and fails to cap-
ture the essence of triple embeddings for two main reasons. First, it treats sub-
ject, predicate, and object (embeddings) as separate elements, disregarding that
triples are inherently sequential. The second reason is that approaches based
on entity/predicate embeddings aggregation fail to capture correlations among
entire triples. Triple2Vec [13] is the only approach we are aware of that directly
computes triple embeddings; it leverages the triple line graph GL of a knowledge
graph G where the nodes of GL are the triples of G with edges between nodes
inserted whenever the triples of G share an endpoint. Then, it uses walks com-
puted on the triple line graph fed to word2vec to compute the embeddings of
the nodes of GL that correspond to the triples of G.

Limitations of the State-of-the-Art. We identify some potential drawbacks
for Triple2Vec: (i) Triple2Vec neither considers node nor edge features that may
be derived in a KG, for instance, by looking at the semantics of predicates or node
types. Besides, turning triples to nodes via the line graph transformation only
considers topological information disregarding semantic relationships between
triples; (ii) Triple2Vec is not trained in an end-to-end fashion; embeddings learned
by Triple2Vec need to be fed to other learners (e.g., one-vs-rest logistic regressors)
for downstream tasks. This approach requires to train additional modules on an
objective unrelated to the initial task. The goal of this paper is to present an
end-to-end learning framework to compute triple embeddings.

Challenges and Contributions. To accomplish the goal mentioned above, we
address three main challenges. The first concerns how to capture triple embedding
information. To solve this challenge, we note that triples in the input knowledge
graph G have an inherently sequential nature and can be seen as three-word
sentences; each triple is a sequence of subject→predicate→object (in the for-
ward order) and object→predicate→subject (in the reverse order). We propose
to learn local triple embeddings by using bidirectional recurrent neural net-
works [9], a class of neural networks specific for sequence learning. The second
challenge concerns node and edge features. We have discussed that the state-of-
the-art Triple2Vec neither considers node nor edge features. To initialize features
one can consider, for instance, node degrees [15], random values [1] or position-
based techniques [37]. Despite various approaches, it is unclear which kind of
artificial feature initialization works best. To solve this challenge, we leverage
semantic information carried by the triples of G to initialize both node and edge
features of the GL. Specifically, the node features of GL will be the local triple
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embeddings obtained from G. The edge features are obtained by looking at the
relatedness between the triples corresponding to adjacent nodes of GL. As an
example, suppose that in the edge (ni, nj) of GL node ni and nj correspond to
the triples skpioj and skpkow in G, respectively. We can consider a 3-dimensional
feature vector where the first dimension represents the relatedness between the
predicates [29] pi and pk while the second and third dimensions are the related-
ness of the subject and object entity node types, respectively. The third challenge
concerns how to combine local, global, and neighbor triple embedding informa-
tion. To solve this challenge, we introduce the Local and Global Triple Embed-
ding Network (LoGNet), a novel learning framework based on GNNs. LoGNet’s
underlying idea is to intertwine information from G (local triple embeddings)
and GL (global triple embeddings). In LoGNet message passing and aggregation
relies on both node and edge features of the GL; LoGNet adopts a multi-channel
convolution operator that weights the contributions of neighbor nodes to the
representation of a target node. LoGNet is flexible enough for a variety of triple-
centric downstream applications by providing an appropriate loss function and
output layer.

Impact and Applications. Investigating triple-centric applications brings a
refreshing perspective to a landscape dominated by node/edge-centric appli-
cations. Triple embeddings are good support for any path-based downstream
application; here, the intuition is to embed paths as sequences of triple embed-
dings and then aggregate them. Examples are fact-checking [26] or user-item
recommendation [13]. Triple embeddings are useful in sensitive data release sce-
narios where the same predicate may not be sensitive depending on the subject
and object. Consider the triples (Joe, marriedTo, Val) and (Frank, marriedTo,
Mary) extracted from a government document. It may be the case that the
same predicate marriedTo may be considered sensitive for Val and not for Mary.
Therefore, using the same predicate embedding in a data analysis scenario may
be insufficient. In this paper, we will focus on the predicate anomaly problem
where both the subject and the object of a triple are legitimate entities, and the
potential anomaly resides in the predicate linking them [18]. Predicate anomaly
is a fundamental problem as KGs are traditionally incomplete [10] and can have
a considerable amount of incorrect triples [20]. We will show how LoGNet can be
customized to tackle this task by adopting a margin-based loss function and an
output layer, which returns a plausibility score for each triple.

Outline. We provide some preliminary definitions in Sect. 2. We outline in
Sect. 3 LoGNet, which is a generic learning framework for triple-centric tasks
in KGs. Section 4 shows how LoGNet can be adapted to solve the problem of
anomalous predicate detection from the novel perspective of triple embeddings.
In Sect. 5, we discuss an experimental evaluation. We conclude in Sect. 6.

2 Definitions and Background

A Knowledge Graph (G) is a labeled directed multigraph (VG, EG, TG) where
VG is a set of uniquely identified nodes representing entities (e.g., D. Lynch),
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EG a set of predicates (e.g., director) and TG a set of triples of the form (s,
p, o) representing directed labeled edges, where s, o ∈ VG and p ∈ EG. Often,
information in a G is organized according to an underlying schema defining,
for instance, the types of the entity nodes (e.g., Person) and domain and range
definitions for predicates stating what type of entity one should expect ad subject
and object of a triple. We denote by type(e) the set of types of an entity e.

Entity and Predicate Embeddings. KG embedding approaches focus on
learning vector representations e ∈ R

de for each entity e ∈ VG and possibly
predicate embeddings p ∈ R

dp for each predicate p ∈ EG . Typically, KG embed-
ding systems include an embedding component and a scoring component. The
former maps each entity to its corresponding embedding while the latter learns
a scoring function f : VG × EG × VG → R where f(s, p, o)defines the score of
the triple (s, p, o). Embeddings are obtained by defining a loss function (e.g.,
Logistic Loss) and solving an optimization problem where the score of a positive
triple (s, p, o) is to be higher than that of a (corrupted) negative triple. As an
example, in the popular TransE model [4], where predicates are modeled as vec-
tor translations, the scoring function is sp = d(s + p, o) where d is the euclidean
distance. Other approaches capture more refined relations (see [5] for a survey).

Graph Neural Networks. We now introduce graph neural networks in a gen-
eral form. To keep the presentation concise, we focus on undirected and unla-
beled graph. Let (VG, EG) be a graph with N=|VG| nodes vi ∈ VG, and edges
(ei, ej) ∈ EG. Given a node u the set of neighbours is denoted by N (u). We
denote by A the adjacency matrix where A ∈ R

N×N . Moreover, the matrix
H(0) ∈ R

N×D0
is the initial node feature matrix and h

(0)
i denotes the D(0)-

dimensional feature vector of node vi. A GNN can be represented as:

h
(l+1)
i = σ

( N∑

j=1

α(vi, vj) · h
(l)
j · W (l)

)
, l = 0, . . . , L − 1 (1)

where h
(l)
i is the embedding of node vi at layer l. Moreover, α=(vi, vj) ∈ R

N×N

is a weight matrix, W (l) ∈ R
D(l) × D(l+1) is the transformation matrix at

layer l, and σ is the activation function. The weight α(vi, vj) (abbreviated
as αi,j) is non-zero if the node vj is a direct neighbor of node vi, that is,
vi ∈ N (i). Different ways have been proposed when it comes to the weight
matrix α. As an example, Kipf and Welling [19] define fixed weights as α = D̃−1

or α = D̃−1ÃD−1, respectively, where Ã =A + I, and D̃ is the diagonal degree
matrix of A. More sophisticated approaches, instead of assigning fixed weight,
try to learn them via attention coefficients [32]. GATs [32] learn weights via
attentive functions of the form αi,j = α̃i,j(θ)∑

vk∈N(i) α̃i,j(θ)
; here, unnormalized atten-

tions α̃i,j(θ)(exp(ReLU(αT [Whi||Whj ])), are parametrized by θ = {α} with ||
denoting concatenation. For attention networks, the weights that are learned
αi,j ≈ α̃i,j can be evaluated only given the unnormalized neighborhood weights.



340 G. Pirrò

3 The LoGNet Framework

We now describe the design of a learning framework called LoGNet to directly
compute triple embeddings from a knowledge graph combining local and global
triple embedding information. The intuition is that local triple embeddings can
be complemented with global embeddings derived by scrutinizing the feature
triple line graph structure. This structural information is independent of node
features and can be derived solely based on the links between nodes of the
feature triple line graph. Finally, integrating local embeddings with connectivity
information is crucial to fully capture the essence of each node (triple) and thus of
its embedding [3]. LoGNet computes local embeddings obtained from the triples
of an input G. However, local embeddings do not consider triples from a global
perspective; notably, they do not consider dependencies among entire triples.
We introduce an alternative view of triple information and discuss a GNN-based
triple embedding module to cope with this issue.

3.1 Local Triple Embeddings

Triple Embedding via Aggregation. One simple way to compute triple embed-
dings is by aggregating the embeddings of the entities and predicate within.
Given a triple t= (s, p, o) ∈ G, the idea is to define a mapping function EmbL:
Agg(Emb(s), Emb(p), Emb(o)):�→ R

d, where Emb(·) is an embedding function
that maps entities or predicates into a D-dimensional vector. Emb(·) can be
instantiated with a variety of techniques such as TransE [4], RotatE [30], and
DistMul [36] that return embeddings for s, p, and o separately. As an example,
TransE to learn entity and predicate embeddings utilizes the triple implausi-
bility score s + p ≈ o while DistMul considers 〈p, s,o〉 where 〈·〉 denotes the
generalized dot product with s, p, o ∈ Rk. Hence, triple embeddings can be
obtained via an aggregation function Agg(·). Examples of aggregation include
the average, maxpool, and Hadamard product.

Triple Embedding as Sequence Encoding. The approach based on aggregation
suffers from some drawbacks. First, the usage of aggregation functions (e.g.,
mean, max) does not properly discern the contribution of each component of a
triple to the final triple embedding. Second, as the approaches implementing the
Emb(·) return an embedding for each entity and predicate in G, triples sharing
the same entity or predicate will share part of the final embedding, which does
not allow to obtain a fine-grained triple embedding representation. Third, the
approach based on aggregation mostly ignores the sequential nature of a triple,
which has a relevant role in directed graphs as KGs. Therefore, we consider
a second approach to obtain local triple representations, which treats a triple
as a directed and ordered sequence s →p → o composed of three steps (i.e.,
s, p, o). To deal with this sequence of elements, we employ Recurrent Neural
Networks and, in particular, Bidirectional Gated Recurrent Unit (BiGRU) [8].
This architecture offers performance comparable to the LSTM model [16] with
the advantage of being more computationally efficient [9].
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To fulfill our ultimate goal of learning triple embeddings, we need to con-
sider the context of a triple in terms of neighbor triples. Missing contextual
information will fail to capture potential correlation and dependencies among
entire triples. Therefore, we introduce a global triple embedding computation
mechanism in the next section.

3.2 Global Triple Embeddings

Correlation and dependencies among entire triples can be captured by looking
at triples from a global perspective, where triples become first-class citizens.

Feature Line Graph. The notion of the line graph of a graph is well-known in
graph theory [34]. Given an undirected graph G = (VG, EG), the corresponding
line graph GL is such that: (i) each node of GL represents an edge of G; (ii) two
vertices of GL are adjacent if, and only if, their corresponding edges in G have
a node in common. This notion has been extended to multigraphs and directed
graphs. The multigraph extension adds a different node in the line graph for each
edge of the original multigraph. If the graph G is directed, the corresponding line
graph GL will also be directed; its vertices are in one-to-one correspondence to the
edges of G and its edges represent two-length directed paths in G. Triple2Vec [13]
used the triple line graph of a knowledge graph. However, we note that such
a triple line graph is unlabeled, and neither nodes nor edges are endowed with
features, thus making difficult the usage of deep learning techniques at their full
potential. For example, in the absence of node features, GNNs fail to differentiate
between similar graph sub-structures within graphs [35]. A workaround would
be to consider one-hot encoding instead of features. However, this will hinder
using the model on new nodes. Other approaches could include the usage of
random values [1] or positional features [37]. However, there is no transparent
approach that works best in all scenarios. We overcome the lack of features in
GL by leveraging information from the triples of the original graph G:

1. As nodes of GL correspond to triple of G, we can consider local triple embed-
dings (see Sect. 3.1) as the initial features of the nodes of GL.

2. An edge (ni, nj) of GL links the two corresponding triples ti and tj in G. How-
ever, each of such triple implicitly includes semantic information deriving, for
instance, from the subject and object entity types or the type of predicate
linking subject and object. As an example, the triples (M. Freeman, starring,
Invictus) and (M. Damon, starring, Invictus) taken from the DBpedia knowl-
edge graph tell us that type(M. Freeman) = {Person}, type(Invictus) = {Film}
and that domain(starring) =Actor and range(starring) =Work. Our proposal is
to introduce, for each edge vi,j ∈ EL a P -dimensional feature vector vi,j ∈ R

P

where each dimension captures a different relatedness perspective between the
elements of the triples ti (corresponding to node ni ∈ VL) and tj (correspond-
ing to the node nj ∈ VL).

Therefore, we introduce a triple line graph with node and edge features that
we refer to as feature triple line graph.



342 G. Pirrò

Definition 1. (Feature Triple Line Graph). Given G = (VG, EG, TG) with
N= |TG| triples, the associated features triple line graph GL is a graph
(VL, EL,XV ,XE), where ti ∈ TG �→ ni ∈ VL and |VL|=N . There exists an edge
(i, j) ∈ EL between ni ←� ti =(s1, p1, o1)∈ TG and nj ←� tj =(s2, p2, o2) ∈ TG if
{s1, o1} ∩ {s2, o2} 
= ∅. Node features are represented by a matrix XV =N × F ,
where XV (i, j) gives the j-th entry of the F -dimensional feature vector of the
i-th node in the feature triple line graph. Edge features are represented via a
XE = N × N × P tensor; XE(i, j, p) is the p-th channel of the P -dimensional
vector of the edge (i, j).

Semantic Relatedness
(starring, stateOfOrigin)
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Fig. 1. Feature triple line graph.

Figure 1 shows an excerpt of feature triple line graph. We observe that nodes
are endowed with features in the form of local triple embeddings, that is, embed-
dings computed by only looking at the triple elements (see Sect. 3.1). As for the
edges, the figure shows a two-dimensional feature vector for each edge. The
first dimension maintains the semantic relatedness between the predicates in the
two neighbor nodes computed considering predicate co-occurrences in knowl-
edge graph triples [25]. As an example, the relatedness between starring and
stateOfOrigin is 0.54 while that between stateOfOrigin and nationality 0.71. The
second dimension considers the relatedness between the type (e.g., Actor, Movie,
Place) of entities not shared by neighbor nodes. As an example, for the node n1

(Invictus, starring, M. Freeman) and n2 (M. Freeman, stateOfOrigin, Americans)
the not shared entities are Invictus1 and Americans2 whose type in the DBpedia
KG are Film and Country, respectively. The semantic relatedness between these

1 https://dbpedia.org/page/Invictus (film).
2 https://dbpedia.org/page/Americans.

https://dbpedia.org/page/Invictus_(film)
https://dbpedia.org/page/Americans
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types is 0.53 [29]. Note that the edge feature vector can be further extended
to include additional dimensions considering, for instance, the cosine similarity
between local triple embeddings or topological information such as the differ-
ence between node degrees. Going from the knowledge graph G to a feature-rich
triple line graph GL, where triples are first-class-citizens, paves the way toward
designing learning architectures that can leverage both node features, that in
our context represent local triple embeddings obtained from G, and edge fea-
tures that capture different relatedness perspective between adjacent triples.

Triple Embeddings via Node and Edge Features. We introduced in the
previous section a novel representation of the original knowledge graph G called
feature triple line graph GL. We are now ready to show how LoGNet learns
triple embeddings by intertwining information from G and GL. LoGNet is based
on GNNs that learn node representations by recursively aggregating and trans-
forming features of neighbor nodes [15]. In particular, as edge feature vectors
in GL include D-dimensions, LoGNet performs a separate weighted convolution
operation for each dimension; the i-th feature value of dimension d is used to
weight the contributions of node neighbors on that dimension. Concerning the
general form of GNN outline in Sect. 2, we shall now make explicit the multi-
dimensional edge feature vectors present in the feature triple line graph. For
each dimension d of edge features, we consider the following formulation:

Ĥ(l,d) = σ
(
Ẽi,j,d · H(l) · W (l,d)

)
, (2)

where Ĥ(l,d) denotes the matrix of embeddings at level l on dimension d, Ẽi,j,d

is the convolution coefficient matrix, H(l) the hidden state at layer l and W (l,d)

a weight matrix. The D-dimensional information is is aggregated as follows:

H
(l+1)
i = σ

[ D⊕

d=1

(
Ĥ(l,d))W (d)

⊕
]

(3)

where
⊕

is an aggregation function (e.g., average) and W
(d)
⊕ learnable weights.

Edge Feature Aggregation. Edge features represent an important element of
innovation for LoGNet and can be seen as driving a sort of edge-centered atten-
tion mechanism. Each of the D edge features can be seen as a different attention
coefficient. Multiple ways (instantiations of the function ⊕) can be used to aggre-
gate edge features along the D dimensions. When considering aggregation based
on sum, that is, ⊕ =

∑
we obtain:

H
(l+1)
i = σ

[ D∑

d=1

(
Ĥ(l,d))·W (d)

sum

]
= σ

[ D∑

d=1

(
σ
( ∑

j∈N (i)

ei,j,d·h(l,d)
j ·W (l,d)

))
·W (d)

sum

]

We underline that the architecture of LoGNet differs from the classical GNN
models in one central respect. The GNN adjacency matrix A is either a binary
matrix denoting node adjacency (as in GAT) or a positive matrix with only
one dimension capturing edge features (as in GCN). Contrarily, the LoGNet
model builds upon a D dimensional edge feature matrix obtained by investigating
different types of relatedness between triples in the feature triple line graph.
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4 Anomalous Predicate Detection

We apply the LoGNet framework to the task of anomalous predicate detec-
tion [18]. Given a triple (s, p, o), the goal is to check whether the predicate
p correctly models the relation between the subject s and the object o. As an
example, (I’ m a looser, recordedIn, Abbey Road) would seem correct. However,
when contextualizing the triple, by looking at the neighbor triples, it is imme-
diate to see that the fact refers to the wrong entity Abbey Road; it refers to
the street and not to the recording studio Abbey Road Studio [21]. This example
shows the importance of considering both a local perspective (i.e., among the
triple elements) and a global (i.e., wrt neighbor triples) to have a more refined
assessment of the plausibility of the predicate.

Problem 1 (Anomalous Predicate Detection). Given G= (VG, EG, TG) and the
set of triple embeddings TG associated with the triples TG, our goal is to devise
a scoring function fA:(s, p, o)�→R, which give an a triple t ∈ TG assigns a plau-
sibility score to the predicate p.

This section shows how LoGNet can be adapted to tackle this problem. The
main challenge that arises concerns how to combine local and global triple repre-
sentations to find the plausibility of a predicate. We introduce a local and global
predicate plausibility score and optimize them to solve this challenge.

Local Plausibility Measure. To assess the plausibility of a predicate from a
local perspective, we can readily use any of the existing scoring functions avail-
able from knowledge graph embedding techniques [5]. By considering TransE,
the local plausibility of a triple can be measured as:

cl(s,p,o) = ‖hs + hp − ho‖2 (4)

where hs, hp, and ho are either the embeddings of the triple elements found by
the Emb(·) function or the hidden representations of the triple elements obtained
from the BiGRU. The learning model can spot anomalous predicates from a local
perspective by minimizing the above equation. Nevertheless, this approach does
not consider the context of a triple in terms of neighbor predicates, which can
fail to understand correlation and influence among triples. To this end, we also
introduce a global plausibility measure.

Global Plausibility Measure. We compare information resulting from local
triple embeddings, computed from G, and global triple embeddings, computed
from the feature triple line graph GL, to improve the overall plausibility check.
In particular, minimizing the difference between local and global plausibility can
point out anomalous predicates. More formally:

cg(s,p,o) = ‖z − h‖2 (5)

where z is the global triple embedding and h the local one.
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Joint Optimization. We define the plausibility as a linear combination of the
local and global plausibility:

c(s, p, o) = αcl + βcg (6)

where the hyper-parameter α and β with β = (1-α) weight the importance of
the two scores normalized. To optimize the model, we leverage a margin based
loss function to distinguish between positive triples and negative ones:

L =
∑

(s,p,o)∈T+
G

∑

(s’,p,o’)∈T −
G

[
θ + c(s, p, o) − c(s’, p, o’)

]
(7)

where θ > 0 is the margin hyper-parameter, T+
G is the set of positive triples, and

T−
G is the set of negative triples. At this point, with the model trained, we can

assess the anomaly of a predicate in a triple (s, p, o) as follows:

Ps(s, p, o) = c(s, p, o) (8)

5 Experiments

We now report on the evaluation and comparison with related work in two
tasks: anomalous predicate detection and triple classification. LoGNet3 has been
implemented using the DGL4 library. We used Adam as an optimizer with a fixed
batch size of 512 and initialized all model parameters via the Xavier initializer.
We conducted a grid search to set the hyper-parameters learning rate, the weight
of the plausibility scores, and the margin to their best values. All experiments
have been conducted on an RTX6000 GPU and are the average of 5 runs (95%
c.i). The goal of the evaluation is to answer the following research questions:
Q1: How does LoGNet compare to the state-of-the-art in anomalous predicate
detection? Q2: How does LoGNet compare with the state-of-the-art Triple2Vec?
Q3: What is the impact of the plausibility on the quality of triple embeddings?

Datasets. For anomalous predicate detection, we used the following datasets:
NELL [6]: it includes ∼75K entities, 200 predicates and ∼308K triples; DBPE-
DIA (DBP) [29]: it is a KG extracted from Wikipedia. This is a subset of
DBpedia with neither typing information nor literals. It includes ∼2M entities,
661 predicates and ∼1.2M triples; DBPEDIA1M (DBP1M): a subset of the
dataset in [29], which includes 1M entities. For triple classification, we consid-
ered DBLP [33]: this is a subset of the DBLP database containing information
about authors, papers, venues, and topics. Labels are provided for authors that
are assigned one among four labels (i.e., database, data mining, machine learning,
and information retrieval); Foursquare [17]: this dataset includes information
about users, places, points of interests, and timestamps. Labels are available for
points of interest that are given one among ten labels; Yago [33]: this dataset
is a subset of the Yago KG5 focused on the domain of movies. Here, labels are
available for movies assigned one or more among five available labels.
3 https://github.com/giuseppepirro/lognet.
4 https://www.dgl.ai.
5 http://yago-knowledge.org/.

https://github.com/giuseppepirro/lognet
https://www.dgl.ai
http://yago-knowledge.org/
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5.1 Q1: Anomalous Predicate Detection

We evaluate the performance of LoGNet as compared to the state-of-the-art. We
note that this paper does not aim to tackle anomalous predicate detection specif-
ically; we aim to show novel applications of triple embeddings. We considered
the following approaches: RotatE [30] and ConvE [11] node/predicate embed-
dings; KGist [2]: this approaches leverages rules to rule out incomplete and erro-
neous information in KGs; KGTtm [18]: this approach introduces a triple trust-
worthiness measure based on semantic information derived from triples along
with global information; KBAT [23]: this approach uses an attention mech-
anism to capture features of the neighborhood of entities; Triple2Vec: we fed
the triple embeddings obtained by Triple2Vec along with the labels to a one-vs
rest logistic regressor. For LoGNet, we consider a three-layer model in two vari-
ants: (i) LoGNetE where local triple embeddings were obtained by concatenating
the embeddings of the subject, predicate, and object obtained via ConvE6; (ii)
LoGNetG where local triple embeddings were obtained via BiGRU. Moreover,
we considered a 3-dimensional edge feature vector including predicate related-
ness [29], subject and object type relatedness. We used d = 128 as embedding
dimension.

Experimental Setting and Metrics. We used the NELL and DBpedia KGs.
As there is no explicit information about anomalous predicates, we assumed
that all triples available were correct and assigned them the label 1. To generate
negative examples that were given a label 0, we adopted the same method as
the state-of-the-art [18]. Given the true triple (Newton, nationality, England), a
potential negative triple is (Newton, nationality, American) rather than (Newton,
nationality, Google), which have been obtained by randomly replacing the object
of the original triple. We considered different corruption percentages, that is,
{0.05%, 1%, 2%, 3%, 5%} of the available true triples. The goal of the experi-
ments is to identify triples that include anomalous predicates. To evaluate the
performance of the systems, as done in the similar task of detecting incorrect
facts (e.g., [29]), we considered the AUC score, which is useful to express the
probability that a triple including a correct predicate receives a higher score
than a triple including an anomalous one.

Results. From the results in Table 1 we observe: (1) Triple2Vec and LoGNet con-
sistently outperform the competitors in the larger datasets (DBpedia, NELL).
As ConvE, RotatE, KBAT, we observe the worst-performing results. The pos-
sible reason for such a behavior is that these systems were originally designed
to tackle the KG completion task, different from anomalous predicate detection.
Indeed, while KG completion aims to understand which part of a triple is miss-
ing, anomalous predicate detection is concerned with understanding whether the
predicate in a triple makes sense. This underlines two aspects: (i) the need for
specific techniques to face this task; (ii) the need to define triple embedding
mechanisms alternative to those based on the aggregation of triple elements; (2)
Approaches like KGTm and KGist that were designed to detect triple anomaly
6 With RotatE and TransE we obtained inferior results.
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Table 1. Anomalous predicate detection. The best AUC values are reported in bold.

KG % Corr. ConvE RotatE KGTtm KBAT KGist T2Vec LNetE LNetG

DBP 0.05% 0.532 0.542 0.674 0.553 0.532 0.678 0.679 0.684

1% 0.526 0.534 0.671 0.550 0.534 0.675 0.680 0.691

2% 0.524 0.525 0.670 0.546 0.542 0.672 0.672 0.687

3% 0.513 0.521 0.667 0.538 0.560 0.668 0.668 0.671

5% 0.501 0.513 0.662 0.535 0.561 0.670 0.675 0.680

DBP1M 0.05% 0.543 0.567 0.687 0.561 0.547 0.6912 0.696 0.702

1% 0.536 0.560 0.671 0.560 0.541 0.687 0.690 0.696

2% 0.531 0.556 0.676 0.559 0.550 0.678 0.669 0.671

3% 0.530 0.542 0.678 0.551 0.546 0.6751 0.677 0.679

5% 0.526 0.534 0.674 0.541 0.576 0.671 0.673 0.681

NELL 0.05% 0.531 0.534 0.614 0.529 0.54 0.6214 0.621 0.631

1% 0.5301 0.532 0.623 0.546 0.543 0.6245 0.625 0.632

2% 0.523 0.521 0.638 0.543 0.542 0.641 0.631 0.647

3% 0.513 0.516 0.622 0.526 0.552 0.623 0.624 0.631

5% 0.502 0.512 0.637 0.518 0.553 0.6401 0.641 0.655

perform better than ConvE, RotatE, and KBAT. However, approaches based on
triple embeddings performed consistently better. The reason may be the usage
of the line graph construction. This novel structure plays a crucial role in bet-
ter capturing the contextual structure of a triple wrt neighbor triples compared
to learned rules or paths used by KGTtm and KGist. Moreover, the interplay
between the local triple representation, learned by treating triples as bidirec-
tional sequences, and the global triple representation provides a fine-grained
mechanism to spot predicate anomalies. We observe that in the smallest dataset
DBpedia1M, in one case Triple2Vec performs negligibly better than LoGNet; (3)
Comparing LoGNetE and LoGNetG, we observe that the latter performs consis-
tently better. The reason for this behavior is that in the first case, local triple
embeddings, representing the initial features of the nodes, are learned by aggre-
gating the embeddings of the element of a triple. Consequently, triples sharing
entities and predicates will also share portions of the local triple embeddings.
On the other hand, in LoGNetG local triple embeddings are learned not only by
considering the sequential nature of triples but also by the fact that a triple can
be read in both forward and backward directions; (4) Comparing Triple2Vec and
LoGNet both based on triple embeddings, we observe that the former performs
worse than LoGNet. Although Triple2Vec deals with triples as a whole, it can-
not spot anomalous predicate at a finer-grained level as LoGNet. This may be
because LoGNet adopts a completely different approach based on a joint learn-
ing model leveraging local and global triple representations using node and edge
features. We observe that triple embeddings offer good support for detecting
anomalous predicates. The local triple representation obtained by modeling a
triple as a sequence and the global representation constructed on the feature
triple line graph where both nodes and edges have features and the context of a
triple is obtained from neighbor triples is generally a valid alternative compared
to approaches using rules or paths.
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5.2 Q2: LoGNet vs Triple2Vec

We now shed more light on the differences between Triple2Vec and LoGNet. We
want to answer the following questions: (i) how does LoGNet perform when using
triple embeddings learned via Triple2Vec instead of local triple embeddings? (ii)
how does the semantics relatedness-based weighting mechanism of the edges of
the triple line graph used by Triple2Vec compare with LoGNet’s approach?

Experimental Setting. We considered two variants of LoGNet. The first,
denoted as LoGNetV , leverages embeddings learned by Triple2Vec instead of local
triple embeddings learned via BiGRU and still uses a 3-dimensional edge fea-
ture vector. In the second variant, denoted as LoGNetW , instead of using the
3-dimensional feature vector, we only consider the relatedness between the pred-
icates of neighbor triples (hence a 1-d feature vector).

Table 2. Variants of LoGNet.

KG % Corr. triples LoGNet LoGNetV LoGNetW

DBP 0.05% 0.6842 0.6832 0.6124

1% 0.6912 0.6879 0.6613

2% 0.6873 0.6823 0.6731

3% 0.6712 0.6689 0.6612

5% 0.6803 0.6734 0.6352

DBP1M 0.05% 0.7022 0.6987 0.6825

1% 0.6967 0.6823 0.6742

2% 0.6712 0.6711 0.6531

3% 0.6790 0.6732 0.6643

5% 0.6816 0.6789 0.6703

NELL 0.05% 0.6312 0.6235 0.6124

1% 0.6321 0.6256 0.6013

2% 0.6476 0.6342 0.6235

3% 0.6311 0.6211 0.6134

5% 0.6553 0.6478 0.6391

Results. We report in
Table 2 results for the
anomalous predicate detec-
tion task and refer to
LoGNetG as LoGNet. We
make the following obser-
vations: (1) The usage of
triple embeddings learned
by Triple2Vec instead of
local triple embeddings in
LoGNet does not bring any
tangible benefit. LoGNetV
performs slightly worse
than LoGNet in all exper-
iments. The downside of
using this approach is
that it requires paying the
training time cost for both
Triple2Vec and LoGNet. Moreover, learning triple embeddings by looking at
triples from their sequential perspective has an important role in the overall
quality of triple embeddings; (2) Using a 1-d edge feature vector downgrades the
performance of LoGNet. We also observe that LoGNetW performs worse than
Triple2Vec (Table 1). The reason for this behavior may be found in the fact that
Triple2Vec needs weights to find high-quality walks on the triple line graph that
can correctly model node neighborhoods. The GNNs setting, where neighbor
information is obtained via a message-passing scheme, brings some improve-
ment.

Results on Triple Classification. We also compared LoGNet and Triple2Vec
on the triple classification task in terms of Micro-F1 and Macro-F1 scores follow-
ing the methodology described in Triple2Vec [13]. We considered the following
competitors: metapath2vec [12], node2vec [14], and DeepWalk [24] configured
with the best parameters reported in their respective papers. As these approaches
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compute embeddings for each node only (not for predicates), a triple embedding
was obtained by using the Hadamard operator over the embeddings of the triple
endpoints as it was the best performing; ConvE [11] and RotatE [30] configured
with the best parameters reported in their respective paper and implemented.
Triple embeddings were obtained by concatenating the embeddings of the triple
endpoints and the predicate embedding. Figure 2 reports the results. We observe
that the approaches based on triple embeddings consistently outperform com-
petitors. This is especially true in the DBLP and Yago datasets. We also note
that metapath2vec performs worse than node2vec and DeepWalk, although the
former has been proposed to work on knowledge graphs. This may be explained
by the fact that the metapaths used in the experiments and previously used by
Hussein et al. [17] while being able to capture node embeddings, fail short in
capturing triple embeddings.

Fig. 2. Results on triple classification.

Moreover, for triple embeddings obtained via aggregation, we can see that
the performance is even worse than those obtained by metapath2vec, node2vec,
and Deepwalk, which did not consider the embeddings of predicates to compute
triple embeddings. This may be due to two main reasons. First, the goal of these
approaches is to learn entity and predicate embeddings for the link prediction
task. Hence, the concatenation of entity and predicate embeddings does not
correctly capture triple embeddings. Second, as these approaches compute a
single predicate and node embedding, these embeddings will be shared by all
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triples in which they appear. As an example, the embeddings of the two triples
(s, p, o) and (s, p, q) will only differ in the concatenation of the embedding of their
object. This underlines the fact that a direct way to compute triple embeddings
can capture better and discriminate the roles of the same predicate/entity in
different triples; (3) LoGNet performs better than Triple2Vec, especially in the
variant that computes local triple embeddings using the BiGRU (i.e., LoGNetG).
This may be due to three main reasons. First, the Triple2Vec’s triple embeddings
need to be fed into a one-vs-rest logistic regressor for triple classification; this
additional optimization step is not related to the original task. On the other
hand, LoGNet is directly trained to perform triple classification. Second, the
BiGRU approach may provide better local triple embeddings as it considers the
sequential nature of triples. Third, the LoGNet mechanism may be better able
to weight the importance of neighbor triples (nodes of GL) than the weighting
mechanism used by Triple2Vec based on predicate relatedness.

5.3 Q3: Ablation Study

We conducted an ablation study introducing two more variants of LoGNet: (i)
LoGNetL with only local triple embeddings and the local plausibility measure
in Eq. (6); (ii) LoGNetG with only global triple representation and the global
plausibility in Eq. (6). Table 3 reports the results.

Table 3. Ablation study.

KG % Corr. triples LoGNet LoGNetL LoGNetG

DBP 0.05% 0.6842 0.6611 0.6132

1% 0.6912 0.6712 0.6567

2% 0.6873 0.6684 0.6648

3% 0.6712 0.6701 0.6467

5% 0.6803 0.6734 0.6212

DBP1M 0.05% 0.7022 0.6911 0.6674

1% 0.6967 0.6856 0.6689

2% 0.6712 0.6687 0.6511

3% 0.6790 0.6701 0.6621

5% 0.6816 0.6745 0.6687

NELL 0.05% 0.6312 0.6256 0.6073

1% 0.6321 0.6301 0.5998

2% 0.6476 0.6412 0.6278

3% 0.6311 0.6287 0.6192

5% 0.6553 0.6493 0.6398

Results. We observe that
the local plausibility score
(LoGNetL) seems to bet-
ter capture anomalous pred-
icates in triples. This comes
as no surprise since local
triple embeddings look at
each triple from a finer-
grained perspective, effec-
tively analyzing the sequen-
tial nature of the triple and
the dependency between sub-
ject, predicate, and object
(reading the triple both for-
ward and backward). On
the other hand, LoGNetG
can only rely on triple
neighbor information aggre-
gation, which cannot look into the triple. The fully-fledged LoGNet brings a clear
improvement to the variants only considering either the local or global plausi-
bility. This underlines that it is not convenient to separate local and global
information.
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6 Conclusions and Future Work

This paper showed how to compute triple embeddings by leveraging node and
edge features derived from a KG. Our triple-centric embedding approach brings
a refreshing perspective to a landscape dominated by node/edge-centric appli-
cations. It can support a variety of applications like path-based downstream
applications where paths can be embedded as sequences of triple embeddings
or data release scenarios where the same predicate may or not be considered
sensitive depending on the subject and object like in the triples (Pat, marriedTo,
Claire) and (Frank, marriedTo, Mary). Using the same predicate embedding to
compute the embeddings of two triples may be counter-intuitive.
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4. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translat-
ing embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L.,
Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held 5–8 December 2013, Lake Tahoe,
Nevada, United States, pp. 2787–2795 (2013)

5. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

6. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 5 (2010)
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Abstract. Content gaps in knowledge graphs impact downstream appli-
cations. Semantic Web researchers have studied them mainly in rela-
tion to data quality or ontology evaluation, for instance by proposing
frameworks to capture various quality dimensions or methods to assess
these dimensions, such as completeness, accuracy, or consistency. Less
work has been done in framing these gaps in the context of user needs.
This limits our ability to design processes and tools to help knowledge
engineers tackle such gaps effectively. We propose a framework that: (i)
captures core types of content gaps, informed by a literature review on
peer-production systems; and, in the areas with such gaps, (ii) quanti-
tatively compares the imbalances in the work on the knowledge graph
with the imbalances in users’ information needs to clarify the origin of the
gaps. We operationalize the framework with gender, recency, geographic,
and socio-economic gaps, and apply it to Wikidata by comparing edit
metrics with Wikipedia pageviews between 2018 and 2021. We did not
find gender or recency gaps endogenous to Wikidata’s production. Only
exceptionally, Wikidata editors work on under-represented entities (e.g.
people from countries with lower Human Development Index) less than
they should according to the volume of requests. We hope this study will
provide a foundation for knowledge engineers to explore the causes of
content gaps and address them if and when needed.

Keywords: Knowledge graphs · Content gaps · Wikidata · Data
quality

1 Introduction

Content gaps in data sources are missed opportunities to meet information needs
and achieve greater impact. They can also create or reinforce biases, for instance
in artificial intelligence systems that rely heavily on data [27,43,49,65]. Ontolo-
gies [36] and knowledge graphs (KGs) such as Wikidata [54] show content imbal-
ances that researchers have documented as harmful.

The Semantic Web community has studied content gaps in relation to data
quality or ontology evaluation. Researchers have proposed ways to capture and
assess various quality dimensions such as completeness, accuracy, or consistency
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[21,52,76]. There are also similar approaches for ontologies [42,69]. More often
than not, these approaches deliver quantified accounts of quality, but struggle to
put them in context, e.g. what does it mean that the completeness of a dataset
has reached 80%? Is it worth aiming for more or is this a good enough result?
Studying the evolution of quality indicators can help by putting numbers in
perspective but is not enough to determine whether a dataset or ontology is fit
for use, the litmus test to which most literature in this space refers [76].

We propose a framework that (i) captures core types of content gaps,
informed by a literature review on peer-production systems; and, in the areas
with such gaps (ii) quantitatively compares the imbalances in the work on the
KG with the imbalances in users’ information needs. This is valuable to clarify
whether such gaps are endogenous to the KG and, therefore, whether they rep-
resent a fitness-for-use problem. We operationalize the framework with gender,
recency, geographic, and socio-economic gaps, and apply it to Wikidata by com-
paring contribution metrics with Wikipedia pageviews between 2018 and 2021.
We choose these gaps as they are among those that have attracted the most
interest in the literature and, at the same time, are relevant to Wikidata [56].
We collect a representative random sample of each set of instances under study
in the KG, enrich the samples with the contribution metrics and Wikipedia
pageviews, and analyse the data to answer the following research questions:

RQ1 Does the contribution to Wikidata show a gender gap that is misaligned
with information needs?

RQ2 Does the contribution to Wikidata show a recency gap that is misaligned
with information needs?

RQ3 Does the contribution to Wikidata show a geographic and socio-economic
gap that is misaligned with information needs?

We study the statistical significance and effect sizes of differences and corre-
lations based on gender, years of birth and death, population of settlements, and
several human development indicators with three different metrics of contribu-
tion and datasets about three different classes of entities (people, settlements,
and countries). We find no evidence of gender or recency gaps in the contribution
to Wikidata to a greater extent than in users’ information needs or Wikipedia,
which suggests that these gaps are exogenous to Wikidata’s production pro-
cesses. Only exceptionally, Wikidata editors work on under-represented entities
(e.g. people from countries with lower Human Development Index) less than
they should according to the volume of requests.

We hope this study will provide a foundation for knowledge engineers to
explore the causes of content gaps and address them more effectively. In applying
our framework to Wikidata, our findings also contribute towards Wikimedia’s
strategic goals to address content gaps [56] by pointing to potential biases in
contribution patterns that impact the KG’s quality.
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2 Background and Related Work

Our work sits at the intersection between KGs and online peer-production sys-
tems. Consequently, we first explore related work on the quality of Wikidata,
undertaken mainly by the Semantic Web community, and then we give an
overview of literature from related fields (CSCW, social computing, computa-
tional social sciences) that have studied the relationship between digital artefacts
(e.g. Wikipedia, OpenStreetMap) and their socio-technical ecosystems.

2.1 Wikidata Quality

Data quality is multidimensional and often conceived as the fitness for use for a
task or application [76]. Researchers have proposed ways to capture and assess
various quality dimensions, but have worked much less on framing these dimen-
sions considering the actual use of the data. [52] surveyed 28 publications until
2018 about Wikidata quality, noting a prevalence of methods and tools for data
completeness or accuracy. According to their data quality dimensions, our study
addresses completeness and timeliness.

Wikidata Completeness. There are many ways to get a sense of the com-
pleteness of a KG. [2,8] compared similar Wikidata items to spot those missing
information. [23] generated completeness assertions using rules, while [17,18,53]
annotated Wikidata with completeness metadata and reasoned about the com-
pleteness of query results. [48] interpreted metrics on the coverage of scholarly
literature on Wikidata, and [58] compared artefacts in Wikidata with other KGs.
[40] estimated the completeness of a class in relation to a schema or ontology.
[71] compared attribute completeness between different sets of items defined by
other attributes (e.g. how complete the attribute “date of birth” is comparing
between male computer scientists and female physicists), while [20] used visu-
alizations and dimensional reduction to identify and explore subsets of items
missing the same attributes. In 2019, Wikidata implemented Shape Expressions
(ShEx)12 [12,61], which allows checking the completeness of the data against a
schema. Despite these developments, incompleteness remains an issue today.

Wikidata Timeliness. As [52] noted, Wikidata allows more frequent updates
than other KGs because it is peer-produced. However, the literature on timeliness
on Wikidata is limited. [21] studied three timeliness criteria, which Wikidata
satisfied: timeliness frequency of the graph, specification of the modification
date of statements, and specification of the validity period.

Our work complements these and compares content changes with users’ infor-
mation needs to understand the topics people ask for that the KG may not cover
well enough. Furthermore, our framework allows exploring whether content gaps
are endogenous to the socio-technical environment where the KG is produced or
driven by externalities such as the requirements of the consumers of the graph.

1 https://www.mediawiki.org/wiki/Extension:EntitySchema.
2 https://www.wikidata.org/wiki/Wikidata:Schemas.

https://www.mediawiki.org/wiki/Extension:EntitySchema
https://www.wikidata.org/wiki/Wikidata:Schemas
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2.2 Content Gaps

Gaps are common in online peer production due to a multitude of reasons,
including the motivations and interests of the participants, the ways tasks are
allocated to participants and the degree to which they coordinate, as well as the
technologies they use to contribute [13,19,28,56]. Researchers have documented
several types of gaps in online peer production and explored how they come
about. For example, [56] compiled a taxonomy that distinguishes between gaps
based on characteristics of the contributing community, the users of the peer-
produced artefact, and the artefact itself. Our study only addresses the latter,
which we refer to as content gaps. The Wikimedia Foundation and the commu-
nities of Wikipedia and Wikidata have expressed concern about such gaps and
have agreed to address them as a strategic priority [44,56].

In the following, we elaborate on the three types of gaps we address in the
current implementation of our framework. We choose these as they are among
those that have attracted the most interest in the literature and, at the same
time, are relevant to Wikidata [56]. We provide an overview of prior studies of
these gaps in the context of Wikipedia and Wikidata and, to a lesser extent,
other popular systems.

RQ1: Gender Gap. The fact that Wikipedia and Wikidata cover more and bet-
ter males than females is well documented [56]. However, its causes and the ways
to mitigate it are still subject to ongoing discussions. [24] found significant gender
differences in metadata, language, and network structure that partly attributed
to the editors. In 2016, [70] concluded that Wikipedia articles about females were
slightly more notable than their male counterparts. Furthermore, [75] found a
systematic over-representation of men when comparing the labour market with
the proportions of males with Wikipedia articles, redirects, images, and men-
tions. [78] suggested that the quality of Wikidata items on females was similar
to the quality of those on males, and that Wikidata’s proportions of females
within each occupation were aligned with the professional societies’ notability
assessments. [37] found the creation of more articles on females (65.6%) than
on males on the English Wikipedia, and [38] noted that the ratios of articles
on females were rising exponentially. Finally, [74] commented that Wikipedia
editors had over-corrected the content based on gender to the point of biases
against males.

RQ2: Recency Gap. There is more content on Wikipedia and Wikidata
on more recent events [11,34,35,56,60]. This recentism3 significantly grew on
Wikipedia throughout the 2000s [34]. Breaking news, such as incidents, crises,
and deaths, quickly lead to a surge in edits [11,34,35]. Some researchers link
this to users’ information needs [56] rather than other factors endogenous to the
Wikipedia ecosystem, based on engagement data that shows that e.g. references
about recent events are more frequently hovered/clicked [51], or dates of birth in
Wikidata and the historical human population are significantly correlated [38].

3 https://en.wikipedia.org/wiki/Wikipedia:Recentism.

https://en.wikipedia.org/wiki/Wikipedia:Recentism


358 D. Abián et al.

RQ3: Geographic and Socio-Economic Gap. On a wide range of websites,
including Twitter, Flickr, Foursquare, Wikipedia, and OpenStreetMap, people
tend to document urban and artificial entities earlier, better, and more often than
rural, semi-natural, and natural entities, which are also more likely to be gen-
erated by bots rather than people interested in local topics [6,7,29,31,56]. The
literature also notes Eurocentric, US-centric, pro-Western, and pro-Global North
gaps on Wikipedia and OpenStreetMap [10,26,30,60,64]. These gaps are highly
correlated with socio-economic factors such as wealth, literacy, and human devel-
opment in general [30,38,64,81,82], so the geographic gap and socio-economic
gap partially overlap. These global gaps are reported to be greater than the
inequality in the global distribution of wealth [10], although Wikipedia editors
have reduced them over time: Europe had 20 times more geotagged Wikipedia
articles than Africa in 2010, but four times more than Africa in 2017 [25]. It is
unclear in which cases these differences in content are linked to varying users’
information needs.

3 Methods

We define a framework for quantitatively comparing the imbalances in the work
on a KG with the imbalances in users’ information needs. This allows us to
clarify whether or not the content gaps studied are particular to the KG. We
operationalize this framework for Wikidata and apply it to understand three
families of potential gaps.

3.1 Framework of Analysis

Design Considerations. We want to: (r1) measure quantitatively, to under-
stand the importance of each gap; (r2) measure imbalances introduced or main-
tained in a given period, to understand their evolution and be able to draw
conclusions specific to the period of interest; (r3) measure imbalances based on
any type of attribute, whether categorical (e.g. gender) or numerical (e.g. popula-
tion), so that the framework applies to many domains; (r4) measure information
needs in several representative languages, to avoid bias.

Dimensions and Metrics. We consider two families of metrics: proxies for the
contribution to the KG, and proxies for the information needs, against which
the former are compared. Metrics of information needs can be very diverse and
context-specific. In contrast, from a comprehensive review of the literature on
online peer production, we learned that contribution is mainly characterized and
measured in four categories, which we will refer to as CAPT : (C) contributions
(as a countable noun; e.g. edits in Wikipedia, edits and changesets in Open-
StreetMap); (A) artefacts (e.g. Wikipedia articles, Wikidata items); (P ) partic-
ipants (e.g. Wikipedians or editors in Wikipedia, mappers in OpenStreetMap);
and (T ) time. A contribution is a documented change undertaken by a partic-
ipant by applying a create, update or delete action to an artefact at a certain
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time. A participant or a unit of time can have any number of associated contri-
butions, including zero, whereas an artefact should have one or more associated
contributions. Contribution metrics can be calculated with filtering and aggre-
gation operations on CAPT entities. The most common aggregation operation
is counting CAPT entities of a certain type; the most common filtering oper-
ation, selecting a single value or CAPT entity. The number of contributions is
the most widely used contribution metric in the literature on online peer pro-
duction [3,9,14,33,46,63]. The terminology may vary, including names such as
“edit count” [4,32,39,47,57], “number of edits” [16,50,62,73,79,80], “quantity
of edits” [63], “number of revisions” [59,67,72] and “number of user activities”
[22], among others.

Measurement Criteria. We want to filter artefacts based on the attributes
of interest (e.g. gender) and obtain metrics per artefact, so we can count three
other types of CAPT entities as the simplest contribution metrics: contributions,
participants, and units of time. In several peer-production systems, most arte-
facts and participants have hardly any contributions, and most contributions are
associated with a few artefacts and participants [5,41,46,62,72]. Participants can
quickly add up large numbers of contributions by making many minor changes
in a short time. This makes contributions a noisy metric because, in these cases,
many contributions do not mean more value produced or more effort invested.
To complement the number of contributions, it is possible to count units of time
(e.g. hours, days, months) with contributions or consider the number of different
participants with contributions. We also consider metrics linking contribution
and information needs: the return on investment (ROI) ratios. We can calculate
one of these ratios for each possible combination of contribution (c) metric and
information need (n) metric by applying n/(c+1). We assume that the potential
content gaps against those artefacts with higher ROI ratios are more likely to
be misaligned with information needs.

3.2 Operationalization for Wikidata

As per (r4), we decide to use the pageviews from users (not spiders or bots) of the
Wikipedias corresponding to the top ten most spoken languages in the world in
2021 according to ethnologue.com4: English, Mandarin Chinese, Hindi, Spanish,
French, Standard Arabic, Bengali, Russian, Portuguese, and Urdu. Pageviews
are considered the “most important content consumption metric”5 on Wikipedia,
and studies and tools use it to identify “concepts with significant increase of the
interest from the public” [15]. As each Wikidata item about an entity is linked
to the titles of the Wikipedia articles about the same entity, it is possible to
automatically enrich a dataset that contains identifiers of Wikidata items with
their corresponding Wikipedia pageviews.

We choose the number of contributions, the number of days with contribu-
tions (operationalizing the number of units of time), and the number of human
4 https://www.ethnologue.com/guides/ethnologue200.
5 https://meta.wikimedia.org/wiki/Research:Page view.

https://www.ethnologue.com/guides/ethnologue200
https://meta.wikimedia.org/wiki/Research:Page_view
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Fig. 1. Random sample of Wikidata items on settlements in two charts as a function
of Wikipedia pageviews and two different contribution metrics: on the left, number
of (manual and automatic) contributions, revealing clusters of similar entities that
received the same automatic treatment (e.g. vertical line around 200 contributions);
on the right, number of human editors, which does not provide this insight but better
quantifies the actual effort invested and therefore better correlates with pageviews.

participants (operationalizing the number of participants). We consider only
human participants for the latter metric because, according to [47], bots make
around 85% of contributions to Wikidata items, but we do not discern noise
generated by bots with the other two metrics. During our exploratory analy-
sis (Fig. 1) we confirm that the combination of contribution metrics chosen is
more informative and useful to operationalize contribution than any of the met-
rics individually.

For Wikidata we should measure the contribution made over at least a few
years to avoid an excess of zeros [62]. At the same time, we seek to draw conclu-
sions about the KG’s current or most recent socio-technical context. Therefore,
we set our study period to be the four years prior to the year of analysis: from
2018 to 2021.

Despite the existence of tools that allow querying Wikidata’s edit history
[32,66], we use simple random samples (see Sect. 4) instead of full sets of
instances because: (a) the samples are sufficient to obtain conclusive results
from the statistical analysis; and (b) we enrich the data with contribution met-
rics, but also with Wikipedia pageviews, so we have to combine two metadata
sources,6 the query of which would hardly scale to the full sets of instances.7

Due to (r1), we choose hypothesis testing to confirm or reject a relationship
between contribution and information needs with statistical significance for each
potential gap studied. We quantify these relationships with the effect sizes. The
unit of analysis is not the artefact, but the combination of the artefact and the
attribute under study, as the latter may be multivalued. As per (r3), we choose
two types of tests depending on the type of attribute under study: correlations,
for numerical attributes (e.g. year of birth); and differences between groups, for
6 The APIs https://www.wikidata.org/w/api.php and https://wikimedia.org/api/

rest v1/metrics/pageviews/, respectively. See supplemental material.
7 We will extend the analysis to the full sets in future work.

https://www.wikidata.org/w/api.php
https://wikimedia.org/api/rest_v1/metrics/pageviews/
https://wikimedia.org/api/rest_v1/metrics/pageviews/
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categorical attributes (e.g. gender). To compare differences in numerical values
between groups we use Mann-Whitney U tests; to check correlations between
two numerical variables, Spearman’s rank-order correlations. We choose these
tests because they are non-parametric, are based on ranks, and do not assume
normal distributions in the data. The literature has confirmed that contribution
on peer-production websites, including Wikidata, does not follow normal dis-
tributions; instead, these distributions tend to be highly skewed, concentrated
on a few participants and artefacts [5,41,46,62,72]. Our samples also show this
property. In line with [55], we consider that a Spearman’s rank-order correlation
has a negligible strength and, therefore, we conclude that there is no correlation
between variables, when |ρ| < 0.1. Similarly, we consider that a Mann-Whitney
U test shows a negligible effect size, and conclude that there is no significant
difference between groups, when |r| < 0.1. We reject the null hypothesis when
p ≤ 0.01.

3.3 Hypotheses About Wikidata

Note that we consider three contribution metrics, so we perform groups of three
tests for comparing contribution and groups of three tests for comparing ROI
ratios. Table 1 shows all the hypotheses tested, the tests used for each of them,
and their correspondence to our research questions. For H2–H4 and H8–H11,
we consider both the set of all items and only those with links to articles in the
Wikipedias studied, and both annually (2018, 2019, 2020, and 2021) and over the
entire study period (2018–2021). For H5 and H6, we consider events as births
and as deaths. For H7, we consider both the set of all items and only those with
links to articles in the Wikipedias studied, both annually (2018, 2019, 2020, and
2021) and over the entire study period (2018–2021), and considering events as
births and as deaths.

4 Data

We generate and analyse three tabular datasets from Wikidata8: (a) 50,000 ran-
dom items on people with, where defined, sex or gender, year of birth, year
of death, occupation, and country of citizenship; (b) 50,000 random items on
human settlements with population and, where defined, coordinates, continent,
and country; and (c) all 374 items defined as instances of sovereign states.

For each item in each dataset we retrieve and include all the metrics described
in Sect. 3.2, both from 2018 to 2021 and by year. We also include the pageviews
broken down by Wikipedia and the corresponding title of the article, if any. The
pageviews are quantified as zero for each Wikipedia without an article associated
with a given item. We enrich all the datasets with the Human Development Index
(HDI) per country and its base indicators according to [45]: Life Expectancy
at birth (LE; in years); Expected Years of Schooling (EYS); Mean Years of
Schooling (MYS); and Gross National Income per capita (GNIpc; in PPP $).
8 The Python modules and SPARQL queries used to generate the datasets are available

on https://github.com/davidabian/wikidata-gaps-vs-needs.

https://github.com/davidabian/wikidata-gaps-vs-needs
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We analyse the gender and recency gaps based on the dataset about items on
people, and the geographic and socio-economic gap based on the three datasets.

Table 1. Research questions, tests used, and hypotheses tested on Wikidata.

RQ1: Gender Gap (Two-Sided Fisher’s Exact Test)

H1 The proportion of items with links to articles in the Wikipedias studied to
all items is significantly different between the set of items on males and the
set of items on females.

RQ1: Gender Gap (Mann-Whitney U Tests)

H2 (cmale > cfemale): The contribution metrics per item tend to be higher for
items on males than for items on females.

H3 (pvmale > pvfemale): The pageviews per item tend to be higher for items on
males than for items on females.

H4 (roifemale > roimale): The ROI ratios per item tend to be higher for items on
females than for items on males.

RQ2: Recency Gap (Mann-Whitney U Tests)

H5 The years of the events in items with links to articles in the Wikipedias
studied tend to be different than those in items without links to articles in
the Wikipedias studied.

RQ2: Recency Gap (Spearman’s ρ Rank-Order Correlations)

H6 The last 500 years interpreted as numbers (1522–2021) are correlated with
the proportions of Wikidata items that have the events in those years and
links to articles in the Wikipedias studied relative to the Wikidata items
that have the events in those years but no links to articles in the Wikipedias
studied.

H7 The contribution metrics, pageviews, and ROI ratios per item are correlated
with the years of the events.

RQ3: Geogr. And Socio-Economic Gap (Spearman’s ρ Rank-Order Correlations)

H8 The contribution metrics, pageviews, and ROI ratios per item on a
settlement are correlated with the average of its population values.

H9 The contribution metrics, pageviews, and ROI ratios per item on a person
are correlated with the Human Development Index of the countries of
citizenship.

H10 The contribution metrics, pageviews, and ROI ratios per item on a
settlement are correlated with the Human Development Index of its country.

H11 The contribution metrics, pageviews, and ROI ratios per item on a state are
correlated with its Human Development Index.

5 Results

In this section we present the results of the tests specified in Sect. 3.3 and Table 1,
together with contextual information such as statistics and data visualizations.
Many results of the tests based on metrics per item (H2–H4, H7–H11) are syn-
thesized in Table 2 and not repeated in text.
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5.1 RQ1: Gender Gap

– Around 36.4% of the items on males and 25.9% of the items on females had
links to articles in the Wikipedias studied.

– ROI ratios were not higher for items on females than for items on males.
– An item on a male tended to receive more contribution than an item on a

female in 2018, but this was no longer the case in 2021.

As of 30 January 2022, Wikidata had 9,608,862 items on people (instances of
Q5), most of them (79.81%, 7,668,492) with some sex or gender defined. These

Table 2. Synthesis of the results of the Mann-Whitney U tests and Spearman’s ρ rank-
order correlations for hypotheses H2–H4 and H7–H11 based on contribution metrics (c),
Wikipedia pageviews (pv), ROI ratios (roi), average of population figures in the item
(pop), the Human Development Index of the country (HDI), and its core indicators
Life Expectancy at birth (LE; in years), Expected Years of Schooling (EYS), Mean
Years of Schooling (MYS), and Gross National Income per capita (GNIpc; in PPP $).
✓ represents the acceptance of the hypothesis shown with a non-negligible effect size
(r ≥ 0.1) according to a metric; =, a conclusive result with a negligible effect size
(r < 0.1); ?, an inconclusive result (p > 0.01); +, a positive correlation (ρ ≥ 0.1); -, a
negative correlation (ρ ≤ −0.1); and 0, no correlation (|ρ| < 0.1 or p > 0.01).

RQ1: Gender Gap

items tests 2018–21 2018 2019 2020 2021

all

people

H2: cmale > cfemale ✓ = = ✓ ✓ ✓ ✓ = = = ? ? ? ? ?

H3: pvmale > pvfemale ✓ ✓ ✓ ✓ =

H4: roifemale > roimale ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

people

linked to

Wikipedia

H1: cmale > cfemale ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

H3: pvmale > pvfemale ? ? ? ? ?

H4: roifemale > roimale = = = ✓ ✓ ✓ = = = = = = = = =

RQ3: Geographic And Socio-Economic Gap (Population)

items tests 2018–21 2018 2019 2020 2021

all

settlements

H8: corr(pop, contr) + + + + + + + + + + + + + + +

H8: corr(pop, need) + + + + +

H8: corr(pop, ROI) + + + + + + + + + + + + + + +

settlements

linked to

Wikipedia

H8: corr(pop, contr) + + + + + + + + + + + + + + +

H8: corr(pop, need) + + + + +

H8: corr(pop, ROI) + + + + + + + + + + + + + + +

RQ3: Geographic And Socio-Economic Gap (HDI)

items tests 2018–21 2018 2019 2020 2021

all

people

H9: corr(HDI, contr) + + + + + 0 0 + + + + + 0 0 0

H9: corr(HDI, need) 0 0 0 0 0

H9: corr(HDI, ROI) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

people

linked to

Wikipedia

H9: corr(HDI, contr) + + + + + 0 + + + + + + 0 0 0

H9: corr(HDI, need) 0 0 0 0 0

H9: corr(HDI, ROI) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

all

settlements

H10: corr(HDI, contr) + + + + + + + + + + + + + + +

H10: corr(HDI, need) + + + + +

H10: corr(HDI, ROI) + + + + + + + + + + + + + + +

settlements

linked to

Wikipedia

H10: corr(HDI, contr) + + + + + + + + + + + + + + +

H10: corr(HDI, need) + + + + +

H10: corr(HDI, ROI) + + + + + + + + + + + + + + +

all

states

H11: corr(HDI, contr) + + + + + + 0 + + + + + + + +

H11: corr(HDI, need) + + + + +

H11: corr(HDI, ROI) + + + + + + + + + + + + + + +

states

linked to

Wikipedia

H11: corr(HDI, contr) + + + + + + 0 + + + + + + + +

H11: corr(HDI, need) + + + + +

H11: corr(HDI, ROI) + + + + + + + + + + + + + + +

RQ2: Recency Gap (Years Of Birth And Death)

items tests 2018–21 2018 2019 2020 2021

all

people

H7: corr(birth, c) 0 0 0 + 0 0 + + 0 0 0 0 0 0 0

H7: corr(birth, pv) + 0 + + +

H7: corr(birth, roi) + + + 0 0 0 + + + + + + + + +

H7: corr(death, c) + + 0 + + + + + 0 0 0 0 0 0 0

H7: corr(death, pv) + + + + +

H7: corr(death, roi) + + + + + 0 + + + + + + + + +

people

linked to

Wikipedia

H7: corr(birth, c) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H7: corr(birth, pv) + 0 + + +

H7: corr(birth, roi) + + + 0 0 0 0 0 0 + + + + + +

H7: corr(death, c) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H7: corr(death, pv) 0 0 0 0 0

H7: corr(death, roi) 0 0 0 0 0 0 0 0 0 0 0 0 + + 0

RQ3: Geographic And Socio-Economic Gap (HDI), 2018–21

items tests HDI LE EYS MYS GNIpc

all

people

H9: corr(contr, ) + + + 0 0 0 + + + + + + + + +

H9: corr(need, ) 0 - 0 0 0

H9: corr(ROI, ) 0 0 0 - - - 0 0 0 0 0 0 0 0 0

people

linked to

Wikipedia

H9: corr(contr, ) + + + + + + + + + + + + + + +

H9: corr(need, ) 0 0 0 0 0

H9: corr(ROI, ) 0 0 0 - - - 0 0 0 0 0 0 0 0 0

all

settlements

H10: corr(contr, ) + + + + + + + + + + + + + + +

H10: corr(need, ) + + + + +

H10: corr(ROI, ) + + + + + + + + + + + + + + +

settlements

linked to

Wikipedia

H10: corr(contr, ) + + + + + + + + + + + + + + +

H10: corr(need, ) + + + + +

H10: corr(ROI, ) + + + + + + + + + + + + + + +

all

states

H11: corr(contr, ) + + + + + + + + + + + + + + +

H11: corr(need, ) + + + + +

H11: corr(ROI, ) + + + + + + + + + + + + + + +

states

linked to

Wikipedia

H11: corr(contr, ) + + + + + + + + + + + + + + +

H11: corr(need, ) + + + + +

H11: corr(ROI, ) + + + + + + + + + + + + + + +
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included 5,819,674 items on males and 1,847,850 items on females, that is, 3.15
times more items on males than on females. Males and females accounted for
99.99% of all items with some sex or gender defined, with the remaining 0.01%
of the values, in order of number of occurrences, being transgender female, non-
binary, transgender male, eunuch, intersex, genderfluid, genderqueer, agender,
transgender person, cisgender female, and many others.

H1. Out of 30,231 items on males and 9,540 items on females in the sample,
10,993 (36.36%) and 2,467 (25.86%) had links to articles in the Wikipedias stud-
ied, respectively. As hypothesized, these differences were statistically significant
(Fisher’s exact test, two-sided p < .001).

H2–H4, 2018–2021, all the Items. Small effect sizes (r = 0.1) for the numbers
of human participants and pageviews.

H2–H4, 2018–2021, Items with Links to the Wikipedias Studied. None
of the hypotheses were accepted.

H2–H4, Metrics per Year, all the Items. H2 (cmale > cfemale) was only
accepted for 2018, with small effect sizes, r ∈ [0.1, 0.2]; and for 2019, with a
small effect size for the number of activity days, r = 0.1. Throughout the entire
study period there was a negative monotonic evolution of effect sizes and a pos-
itive monotonic evolution of p-values. The differences in the average values of
contribution between items on males and items on females also evolved mono-
tonically (Fig. 2), starting in 2018 with higher average values of contribution
to items on males than items on females and ending in 2021 with lower ones.
H3 (pvmale > pvfemale) was accepted for 2018, 2019, and 2020, with small effect
sizes, r = 0.1.

Fig. 2. Evolution of the average values of contribution metrics per item by gender.

H2–H4, Metrics per Year, Items with Links to the Wikipedias Studied.
H4 (roifemale > roimale) was accepted for 2018 with small effect sizes, r = 0.1.
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5.2 RQ2: Recency Gap

– People with items linked to articles in the Wikipedias studied tended to have
more recent years of birth and death than the rest of the people with items.

– The item on a person tended to have more pageviews and higher ROI ratios
associated with it the more recent the years of birth and death were.

H5. As hypothesized, there were significant differences between the years of birth
in items linked to articles in the Wikipedias studied (n = 11963,Med = 1942)
and those that were not (n = 15098,Med = 1927), two-sided p < .001, r = .13.
There were also significant differences between the years of death in items linked
to articles in the Wikipedias studied (n = 5843,Med = 1962) and those that
were not (n = 7706,Med = 1942), two-sided p < .001, r = .15.

Fig. 3. Average ROI ratios per item by decade of the event.

H6. There was no conclusive (Spearman’s ρ) rank-order correlation between
years of birth between 1522 and 2021 and the proportions of Wikidata items
with those years of birth that had links to articles in the Wikipedias studied,
ρ(493) = .10, p = .026. The correlation was conclusive and positive for id. years
of death ρ(493) = .16, p < .001.

H7, 2018–2021, all the Items. For years of birth, there were positive Spear-
man’s correlations with pageviews and ROI ratios per item, with small effect
sizes, ρ ∈ [0.1, 0.2]. For years of death, there were positive Spearman’s corre-
lations with activity days, human participants, pageviews, and ROI ratios per
item, with small effect sizes, ρ ∈ [0.1, 0.2]. See Fig. 3.

H7, 2018–2021, Items with Links to the Wikipedias Studied. For years
of birth, there were positive correlations with pageviews and ROI ratios per item.
For years of death, there were no correlations.
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H7, Metrics per Year, all the Items. Considering years of birth and Spear-
man’s correlations with contribution per item, there were one positive correlation
in 2018 and two in 2019; with pageviews per item, positive correlations in 2019,
2020, and 2021; and with ROI ratios, the three positive correlations in each of
the years 2019, 2020, and 2021. Considering years of death and Spearman’s cor-
relations with contribution per item, there were the three positive correlations in
2018 and two in 2019; with pageviews per item, positive correlations for all years;
and with ROI ratios, two positive correlations in 2018, and the three positive
correlations in each of the years 2019, 2020, and 2021.

H7, Metrics per Year, Items with Links to the Wikipedias Studied.
Considering years of birth and Spearman’s correlations, there were positive cor-
relations with pageviews per item in 2019, 2020, and 2021; and with ROI ratios,
in each of the years 2020 and 2021. Considering years of death and Spearman’s
correlations with ROI ratios, there were two positive correlations in 2021.

5.3 RQ3: Geographic and Socio-Economic Gap

– The more populated a settlement, the more contribution and pageviews, and
the higher ROI ratios.

– The higher the Human Development Index of a country or the country of a
settlement, the more contribution and pageviews, and the higher ROI ratios.

– The higher the Human Development Index of a person’s country, the more
contribution, but not the more pageviews or the higher ROI ratios.

Fig. 4. Sum of contributions to items
on settlements per area in logarithmic
scale.

Fig. 5. Population of a settlement (y-
axis, log) and the ROI ratio based
on Wikipedia pageviews and number of
human participants of the item (x-axis,
log).
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H8 (Population). For the entire period, the strength of the correlations (ρ)
was 0.31–0.37 with contribution metrics and 0.55–0.58 with pageviews and ROI
ratios (Fig. 5). Considering only those items linked to Wikipedia articles, the
correlations with pageviews showed an increasing monotonic evolution, from
0.55 in 2018 to 0.60 in 2021; and ROI ratios as well, from 0.48–0.52 in 2018 to
0.60–0.61 in 2021.

H9 (HDI, People). There were positive correlations between the Human Devel-
opment Index (HDI) of the countries of citizenship and the contribution metrics
per item considering the entire study period (2018–2021), ρ ∈ [0.1, 0.2]. All HDI
base indicators were positively correlated, except Life Expectancy at birth (LE)
when considering all items. There was no correlation between HDI and pageviews
or ROI ratios in any case. There were weak negative correlations between Life
Expectancy at birth (LE) and ROI ratios when considering only items linked
to Wikipedia articles, and between Life Expectancy at birth (LE) and both
pageviews and ROI ratios when considering all items, ρ ∈ [−0.1,−0.2].

H10 (HDI, Settlements). There were positive Spearman’s ρ rank-order cor-
relations between the Human Development Index (HDI) of the countries of set-
tlements and the contribution metrics, pageviews, and ROI ratios per item. The
strength of the correlations (ρ) was 0.4–0.5 with contribution metrics, 0.4 with
pageviews, and 0.3 with ROI ratios. When considering only items linked to
Wikipedia articles, the strength was 0.5–0.6 with contribution metrics, 0.5 with
pageviews, and 0.3 with ROI ratios. See also Fig. 4.

H11 (HDI, Countries). There were positive Spearman’s correlations between
the Human Development Index (HDI) of the countries and the contribution met-
rics, pageviews, and ROI ratios per item. For the entire period, the strength of the
correlations (ρ) was 0.31–0.51 with contribution metrics, 0.60 with pageviews,
and 0.56–0.58 with ROI ratios.

6 Discussion

From the effect sizes we found that the influence of gender, time, and socio-
economic factors on the contribution and information needs per item on a per-
son was subtle. In contrast, the influence of geographic and socio-economic fac-
tors on the contribution and information needs associated with settlements and
countries was considerable. We found no evidence of gender, recency, or urban
imbalances in the contribution to Wikidata to a greater extent than in users’
information needs or Wikipedia. This finding suggests that these content gaps
are not endogenous to Wikidata, something consistent with previous literature.
[1] documented that birth dates in DBpedia, sourced from Wikipedia, tended to
be more recent than in Wikidata; and [75] found a systematic over-representation
of males in Wikipedia compared to the labour market, whereas [78] found that
Wikidata’s representation of males was comparable to the professional societies’
notability assessments. We did find a slightly larger socio-economic gap in the
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contribution to Wikidata than in users’ information needs based on the develop-
ment indices of the countries of citizenship of the people represented in Wikidata.
This was not found in other classes of instances, such as settlements or the coun-
tries themselves. In summary, the only content gaps we found that may
be endogenous to Wikidata were subtle and related to socio-economic
aspects of the people represented, whereas famous gaps such as gen-
der and recency gaps could be explained by users’ information needs,
perhaps in conjunction with external systems adjacent to Wikidata, e.g.
Wikipedia and web search engines.

We argue that a KG’s fine granularity and structure can act as equal-
izers of content differences between traditionally over- and under-represented
groups. In Wikidata, ontological properties (e.g. about people: place of
birth/death, father, mother, etc.) leverage this fine granularity and
can be understood as placeholders for information that is needed for
the graph to be complete, making missing information more explicit, and
therefore helping to avoid gaps and biases. In contrast, it is not necessary, and
generally not aligned with Wikipedia’s policies, to create a Wikipedia article
about e.g. a female just to mention her in the article about a male. [37] already
considered that every Wikidata item on a “human without a Wikipedia arti-
cle” was a “structural item” and exemplified that “a member of royalty without
a Wikipedia article [...] is needed to make a family tree complete”. The pres-
ence of pre-established properties and constraints (e.g. ShEx [12,61], Wikidata
property constraints) with which to include the data, initially for making the
KG ontologically predictable for software agents, can also help avoid bias, as it
lets editors easily identify incompleteness at the KG entity level, and therefore
solve it.

Meeting information needs is usually the purpose of a data source, and con-
tribution is the form of resource investment through which a collaborative KG
meets these needs. Therefore, the distance between the two is relevant and
should be monitored. Nonetheless, distributing contribution solely on the basis of
recorded information needs may not necessarily be the best decision. First, with
this approach we estimate past needs and the extent to which contribution was
aligned with them, but it would be preferable to determine which contribution
will be able to meet future needs. Second, our metadata on information needs
can only reflect the needs of the people who use the metadata source, Wikipedia
in our case. However, not everyone consults Wikipedia for every information
need, nor in the same cases, nor with the same frequency; in fact, access to
Wikipedia has been banned or limited in entire countries [68,77]. Finally, not all
information needs may be equally pressing, but our framework does not make
such a distinction.
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7 Conclusions

Despite the Semantic Web community’s interest and progress in measuring and
improving the quality of KGs such as Wikidata, differences in content coverage
persist for unclear reasons. It is possible to learn more about the socio-technical
grounds of such differences by comparing the imbalances in the work on the KG
with the imbalances in information needs considering the problematic attributes
(e.g. gender). In this work we have defined a quantitative framework to achieve
this and applied it to gender, recency, and geographic and socio-economic gaps
in Wikidata. Our results suggest that, in general, these gaps are not endoge-
nous to Wikidata’s production, although exceptions are possible, e.g. based on
development indices of people’s countries of citizenship.

We plan to continue analysing content gaps in KGs. With a greater invest-
ment of resources, we will use the full sets of instances in Wikidata instead of
samples. We will analyse more attributes and classes of instances, which could
reveal or rule out more content gaps with respect to information needs. It would
also be helpful to implement software solutions to monitor possible content gaps
in KGs with the proposed approach, probably considering a shorter period.
Finally, imbalances in contribution and information needs separately are also
relevant and impact downstream applications, so monitoring them and warning
users about their existence would be beneficial, as well as completing the KGs
based on these insights.

Supplemental Material Statement: The datasets, SPARQL queries, and code are
available on https://github.com/davidabian/wikidata-gaps-vs-needs.
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Abstract. The Shapes Constraint Language (SHACL) is a recent W3C
recommendation for validating RDF graphs against shape constraints to
be checked on target nodes of the data graph. The standard also describes
the notion of validation reports for data graphs that violate given con-
straints, which aims to provide feedback on how the data graph can be
fixed to satisfy the constraints. Since the specification left it open to
SHACL processors to define such explanations, a recent work proposed
the use of explanations in the style of database repairs, where a repair
is a set of additions to or deletions from the data graph so that the
resulting graph validates against the constraints. In this paper, we study
such repairs for non-recursive SHACL, the largest fragment of SHACL
that is fully defined in the specification. We propose an algorithm to
compute repairs by encoding the explanation problem – using Answer
Set Programming (ASP) – into a logic program, the answer sets of which
correspond to (minimal) repairs. We then study a scenario where it is not
possible to simultaneously repair all the targets, which may be often the
case due to overall unsatisfiability or conflicting constraints. We intro-
duce a relaxed notion of validation, which allows to validate a (maximal)
subset of the targets and adapt the ASP translation to take into account
this relaxation. Our implementation in Clingo is – to the best of our
knowledge – the first implementation of a repair generator for SHACL.

Keywords: SHACL · Shapes Constraint Language · Database
repairs · RDF Graphs · Semantic Web

1 Introduction

Semantic Web standards provide means to represent and link heterogeneous
data sources in knowledge graphs [10], thereby potentially solving common data
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integration problems. Indeed, this approach became increasingly popular in
enterprises for the consolidation of data silos in the form of so-called enter-
prise knowledge graphs (EKG). However, in practice this flexible and expressive
approach to data integration requires powerful tools for ensuring data quality,
including ways to avoid creating invalid data and inconsistencies in the target
EKGs. To this end, the W3C proposed the Shapes Constraint Language SHACL,
in order to enable validation of RDF graphs against a set of shape constraints [1].
In this setting, the validation requirements are specified in a shapes graph (C, T )
that consists of a collection C of validation rules (constraints) and a specifica-
tion T of nodes to which various constraints should be applied. The result of
validating an RDF graph (or, data graph) G against a shapes graph (C, T ) is
a validation report, which lists the constraint violations present in G. Unfor-
tunately, validation reports, as specified in the SHACL standard, contain little
information on what steps could be made to resolve those constraint violations.
Since in many common scenarios (like the automated integration of heteroge-
neous data sources) inconsistencies appear very frequently, there is a need to
automatically identify repairs that can be applied to the data graph in order to
achieve consistency. A repair in our context is a collection of additions and dele-
tions of facts that will cause the data to be consistent with the given constraints.
Our contributions are as follows:

◦ We propose to compute repairs of a data graph by encoding the problem
into Answer Set Programming (ASP) [7]. In particular, we show how to transform
a given data graph G and a SHACL shapes graph (C, T ) into an ASP program P
such that the answer sets (or, stable models) of P can be seen as a collection of
plausible repairs of G w.r.t. the shapes graph (C, T ). Since efficient ASP solvers
exist (we use Clingo [9]), this provides a promising way to generate data repairs in
practice. The repair generation task is challenging, because a given data graph
might be repaired in many different ways. In fact, since fresh nodes could be
introduced during the repair process, an infinite number of repairs is possible.
This needs to be handled carefully and several design choices are possible.

◦ We initially present the basic encoding of the repair task into ASP. In this
encoding, the repair program tries to find a repair that satisfies all targets of the
input shapes graph. This encoding employs a particular strategy for introducing
new nodes in the data graph: when a value for a property needs to be added (e.g.
for a violated sh:minCount constraint), a fresh value is always introduced. We
argue that it is a reasonable strategy; it is also closely related to the standard
notion of Skolemization. By using some of the features of ASP, we ensure that our
repair program generates repairs that are minimal in terms of cardinality, which
means that they contain only minimal modifications for resolving constraint
violations. Our basic encoding is later extended to allow for the introduction of
fresh nodes as well as the reuse of existing or previously introduced nodes.

◦ We observe that requiring a repair to resolve violations for all specified
targets may be too strong. In the context of the basic encoding, if the data graph
has one inherently unfixable target (e.g., because of some erroneous constraint),
then the repair program will have no answer sets at all and it will provide no
guidance on how to proceed with fixing the data graph. To address this issue,
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we introduce the notion of maximal repairs, which repair the highest number of
targets that is possible to repair. We show how our encoding can be augmented to
generate repairs according to this new notion. This is done using the optimization
features of Clingo as well as rules that allow to skip some targets.

◦ We have implemented and tested these encodings using the Clingo ASP sys-
tem, which showed that our approach is promising for providing quality control
and quality improvements for RDF graphs for practical use.

Related Work. Our approach is inspired by previous work in the area of
databases on computing repairs for violations of database integrity constraints
(see, e.g., [5]) and reasoning about them. We adapt it for the RDF data model
and SHACL constraints. Close to our work is [11], where database repairs are
specified using disjunctive logic programs with the answer set semantics. These
repairs modify a database to achieve conformance with a set of integrity con-
straints that are applied to a relational database. The repair program uses anno-
tations to indicate which atoms should be added or deleted to satisfy the con-
straints. The program contains rules whose body identifies a violation of a con-
straint, while a disjunctive rule head describes the candidate actions (additions
and deletions of tuples) that can potentially be used to resolve the identified vio-
lation. These repair rules can interact and possibly resolve conflicting constraints,
eventually stabilizing into a minimal repair. The repair program contains con-
straints to prevent models with conflicting insertions and deletions. The so-called
interpretation rules are then used to collect the actual additions and deletions
corresponding to a possible database repair.

2 SHACL Validation and Answer Set Programming

In this section, we describe SHACL [1] and the notion of validation against RDF
graphs. For an introduction to data validation, SHACL, and its close relative
ShEx, we refer to [8]. We also describe answer set programming (ASP), which
we use to implement the repair program.

SHACL Validation. We use the abstract syntax from [2] for RDF and SHACL.
Note that in this work we focus on the fragment of SHACL ’Core Constraint
Components’ without path expressions (except for inverse roles), equality and
disjoint operators.

Data Graph. We first define data graphs1, which are RDF graphs to be validated
against shape constraints. Assume countably infinite, mutually disjoint sets N,
C, and P of nodes (or constants), class names, and property names, respectively.
A data graph G is a finite set of (ground) RDF atoms of the form B(c) and p(c, d),
where B is a class name, p is a property name, and c, d are nodes.

Syntax of SHACL. Let S be a countably infinite set of shape names, disjoint
from N, C, and P. A shape expression φ is of the form:

φ, φ′ ::= � | s | B | c | φ ∧ φ′ | ¬φ |≥n r.φ (1)

1 https://www.w3.org/TR/shacl/#data-graph.

https://www.w3.org/TR/shacl/#data-graph
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where s ∈ S, B ∈ C, c ∈ N, n is a positive integer, and r is a property p ∈ P or
an inverse property of the form p− with p ∈ P. In what follows, we may write
φ∨φ′ instead of ¬(¬φ∧¬φ′), ∃r.φ instead of ≥1 r.φ, and ≥n r instead of ≥n r.φ
if φ is �. SHACL constraints are represented in the form of (shape) constraints,
which are expressions of the form s ← φ, with s ∈ S and φ a shape expression.
A shape atom is an expression of the form s(a), with s a shape name and a a
node. A shapes graph2 is a pair (C, T ), where C is a set of shape constraints
such that each shape name occurs exactly once on the left-hand side of a shape
constraint, and T is a set of shape atoms, called target set, or simply target.

Non-recursive SHACL. We formally define non-recursive SHACL constraints as
follows: a shape name s directly refers to a shape name s′ in a set of constraints
C, if C has a constraint s ← φ such that s′ appears in φ. We say that s refers to
s′, if s directly refers to s′, or there exists a shape name s′′ such that s refers to
s′′, and s′′ directly refers to s′. A set of SHACL constraints C is non-recursive
if no shape name in C refers to itself.

Evaluation of Shape Expressions. A (shape) assignment for a data graph G
extends G with a set L of shape atoms such that a occurs in G for each s(a) ∈ L.
The evaluation of a shape expression φ over a data graph is defined in terms of
a function �·�I that maps a (complex) shape expression to a set of nodes, and
a property to a set of pairs of nodes. We refer to [3] for more details on the
evaluation of shape expressions.

SHACL Validation. There are two semantics for SHACL validation, the classical
(or supported) model semantics from [6] and the stable model semantics from [3].
Here, we only present the supported model semantics. It was shown in [3] that
both semantics coincide on non-recursive SHACL. Assume a SHACL document
(C, T ) and a data graph G. An assignment I for G is a (supported) model of C
if �φ�I = sI for all s ← φ ∈ C. The data graph G validates (C, T ) if there exists
an assignment I = G ∪ L for G such that (i) I is a model of C, and (ii) T ⊆ L.

Normal Form. To ease presentation, in the rest of the paper we focus on normal-
ized sets of SHACL constraint. That is, each SHACL constraint can have one of
the following normal forms:

(NF1) s ← � (NF2) s ← B (NF3) s ← c
(NF4) s ← s1 ∧ · · · ∧ sn (NF5) s ← ¬s′ (NF6) s ←≥n r.s′

It was shown in [3], that a set of constrains C can be transformed in polynomial
time into a set of constraints C ′ in normal form such that for every data graph
G and target T , G validates (C, T ) if and only if G validates (C ′, T ). Further,
the normalization may introduce fresh shape names, but it can easily be shown
that C ′ is non-recursive if C is non-recursive.

Example 1. Assume a shape StudentShape (left) and a data graph (right), writ-
ten in Turtle syntax:

2 https://www.w3.org/TR/shacl/#shapes-graph.

https://www.w3.org/TR/shacl/#shapes-graph
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:StudentShape a sh:NodeShape ; :Ben :enrolledIn :C1 .

sh:targetNode :Ben ;

sh:property [

sh:path :enrolledIn ;

sh:qualifiedMinCount 1 ;

sh:qualifiedValueShape [

sh:class :Course ;]] .

The shape states that each StudentShape must be enrolled in at least one course
and should be verified at node Ben. In the abstract syntax, we write the data
graph G = {enrolledIn(Ben,C1)}, the target T = {StudentShape(Ben)}, and
C contains the constraint StudentShape ← ∃enrolledIn.Course The normalized
version C ′ of C contains the constraints StudentShape ← ∃enrolledIn.s and
s ← Course, where s is a fresh shape name. Clearly, extending G by assigning the
shape name StudentShape to Ben does not satisfy the target StudentShape(Ben),
since Ben is not enrolled in any Course. Hence, G does not validate (C, T ).

Answer Set Programming. We introduce here some basic notation about
Answer Set Programming (ASP) used throughout the paper and refer to [7] for
more details on the language. We assume countably infinite, mutually disjoint
sets Preds ⊃ C∪P and Var of predicate symbols, and variables, respectively. A
term is a variable from Var or a node from N. The notion of an atom is extended
from RDF atoms here to include expressions of the form q(t1, . . . , tn), where q ∈
Preds is an n-ary predicate symbol and t1, . . . , tn are terms; an atom is ground if
its terms are nodes. A database is a set of ground atoms. An answer set program
consists of a set of rules of the form ψ ← ϕ, where ϕ may be a conjunction of
positive and negated atoms, and ψ is a (possibly empty) disjunction of atoms.
We may call ψ the head of the rule and ϕ the body of the rule. We may write a
rule h1, . . . , hn ← ϕ instead of a set of rules h1 ← ϕ, . . . , hn ← ϕ. Roughly, a rule
is satisfied by a database D in case the following holds: if there is a way to ground
the rule by instantiating all its variables such that D contains the positive atoms
in the body of the instantiated rule and does not contain the negative atoms,
then it contains some atom occurring in the head of the rule. The semantics
of answer set programs is given in terms of stable models. Intuitively, a stable
model for (D, P ), where D is a database and P a program, is a database D′ that
minimally extends D to satisfy all rules in P . We illustrate answer set programs
with an example about 3-colorability.

Example 2. Let D = {edge(a, b), edge(b, c), edge(c, a), N(a), N(b), N(c)} be a
database storing a triangle over the nodes a, b, and c, and let P be a program
with the following rules:

R(X) ∨ B(X) ∨ G(X) ← N(X) ← edge(X,Y ), R(X), R(Y )
← edge(X,Y ), B(X), B(Y ) ← edge(X,Y ), G(X), G(Y ).

P states that every node must be colored with red R, blue B, or green G and
adjacent vertices must not be colored with the same color. Clearly, there are
three possibilities to color the nodes and hence, three answer sets for (D, P )
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that minimally extend D to satisfy the rules. E.g. one stable model is M =
D ∪ {R(a), B(b), G(c)}.

To implement the repair generator we selected Clingo3, which provides additional
features, like optimization functions, that will be present in the repair rules.

3 SHACL Repairs

In this section, we introduce the notion of repairs that we use in this work,
analyze the kind of repairs that may be desirable in practice, and describe the
design choices we will consider for the repair generator we propose. For repairs,
we use the notion introduced in [2], where a repair is a set of facts that are added
or removed from the input data graph so that the resulting graph validates the
input shapes graph. We recall a slightly modified definition here.

Definition 1. A repair problem is a tuple Ψ = (G,C, T ), where G is a data
graph, and (C, T ) is a shapes graph such that G does not validate (C, T ). A
repair for Ψ is a pair (A,D) of two sets of RDF atoms, where D ⊆ G, such that
(G \ D) ∪ A validates (C, T ).

Note that the original definition of a repair problem in [2] includes a hypothesis
set H, which allows to limit the space of possible additions by imposing the
inclusion A ⊆ H. For simplicity, we do not limit the possible additions here,
i.e. in the sense of [2], we simply let H to be the set of all possible RDF atoms.

When designing a repair generator, we need to make some choices. First,
as also argued in [2], computing all possible repairs is not desirable: we natu-
rally want the repairs to modify the data graph in a minimal way, i.e. additions
and deletions that are not relevant for fixing the constraint violations should be
excluded. For instance, the repair problem (G,C, T ) in Example 1 can be solved,
among other ways, by (i) adding to G the atom Course(C1 ) (ii) by adding to
G the atoms Course(C2 ) and enrolledIn(Ben,C2), or (iii) by adding to G the
atoms Course(C1 ) and Course(C2 ). Observe that (i) is a repair that is minimal
in terms of the number of modifications that are performed, i.e. cardinality-
minimal. The repair (ii) can also be considered minimal, but in the sense of
subset-minimality: observe that neither Course(C2 ) nor enrolledIn(Ben,C2)
alone suffice to fix the constraint violation. The repair (iii) is not minimal in
either sense, because the addition of Course(C1 ) alone is sufficient to perform
the repair.

Another issue is how to repair cardinality constraints of form (NF6). To
satisfy them, we can either choose to generate new nodes, or we may try to reuse
the existing nodes of the input data graph. There are scenarios where reusing
nodes is not desired as we want to fix the violations while minimally changing
the data graph. Reusing nodes may introduce wrong information from a real-
world perspective and thus lower the quality of data. Consider the constraint

3 https://potassco.org/clingo/.

https://potassco.org/clingo/
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StudentShape ← ∃hasStudID specifying that students must have a student ID
and let the data graph have the atom hasStudID(Ben, ID1 ). To validate the
target {StudentShape(Ann)}, a meaningful repair would be to generate a new
value ID as placeholder and add hasStudID(Ann, ID) instead of reusing ID1 .
Such placeholders can be replaced in a later step by the user with meaningful
real-world values.

Unfortunately, forcing the repair generator to always introduce fresh val-
ues for cardinality constraints may sometimes leave out expected (mini-
mal) repairs and even not produce any repairs at all. Consider the con-
straint RegisteredCitizen ← ∃MainAddress.Address∧ ≤1 MainAddress, stat-
ing that registered citizens must have exactly one main address. Let G =
{MainAddress(Ann,Ad1 )} and assume we want to validate that Ann is a
RegisteredCitizen. We may attempt to satisfy the constraint by adding the atoms
MainAddress(Ann,n) and Address(n) for a fresh node n. However, then Ann
would have two main addresses, which is not allowed. The only way to fix the
violation is to reuse the node Ad1 and add Address(Ann,Ad1 ) to the initial data
graph. Also, for the repair problem from Example 1, mentioned above, by forcing
to introduce fresh values we would miss the intuitive minimal repair that simply
adds Course(C1 ). In conclusion, there are scenarios where reusing existing nodes
may be desired and even necessary. However, to preserve the quality of the data
as much as possible, we want to prioritize the introduction of fresh values when-
ever possible and reuse existing constants only when necessary. We study both
versions. More precisely, in Sect. 4, we propose a repair generator that always
introduces fresh values and in Sect. 5 we present the extended version that allows
to reuse constants, but introduces fresh values whenever possible.

4 Generating Repairs

In this section, based on existing works in databases by Bertossi et al. (see e.g.
[4] and references therein), we present an encoding of the repair problem for non-
recursive SHACL to ASP. We are especially interested in minimal repairs. To ease
presentation, we describe here the encoding for a restricted setting, where only
existential constraints of the form s ←≥1 r.s′, i.e., a special case of cardinality
constraints of form (NF6), are allowed; we label them with (NF6′). In particular,
rules will always introduce fresh values to repair existential constraints. We refer
to Sect. 5 for the extension that support unrestricted cardinality constraints of
form (NF6) and allows to reuse constants from the input.

4.1 Encoding into ASP

For a repair problem Ψ = (G,C, T ), where C is a set of non-recursive SHACL
constraints in normal form, we construct a program PΨ , such that the stable
models of (G,PΨ ) will provide repairs for Ψ . Following the standard notation
for repairs as logic programs in databases [4], to annotate atoms we will use
special constants: (i) t∗∗ intuitively states that the atom is true in the repair
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(ii) t∗ states that the atom is true in the input data graph or becomes true by
some rule (iii) t, states that the atom may need to be true and (iv) f states that
the atom may need to be false. Intuitively, the repair program implements a
top-down target-oriented approach, and starts by first making true all the shape
atoms in the target. From this on, the rules for constraints specified by the shapes
capture violations on the targets in the rule body and propose repairs in the rule
head using the annotations described above. The rules will add annotated atoms
which represent additions and deletions that can be applied to the data graph
to fix the violations. Additions and deletions can interact, eventually stabilizing
into a model that generates a (not necessarily minimal) repair.

For every constraint specified by a shape in the shapes graph, the repair
program PΨ consists of four kinds of rules:

PAnnotation consists of rules that collect existing atoms or atoms that are pro-
posed to be in the repaired data graph.

PRepair consists of rules that repair the constraints by proposing additions and
deletions of atoms.

PInterpretation consists of rules that collect all the atoms that will be in the
repaired data graph.

PConstraints consists of rules that filter out models that do not provide repairs.

We are ready to describe the repair program.

Adding the Shape Atoms in the Target as Facts. First, for each atom s(a) ∈ T ,
we add the rule s (a, t∗) ←, where s is a fresh binary relation.

PAnnotation. For each class name B and property name p occurring in G and C,
we create a new binary predicate B and ternary predicate p , respectively. We
add the following rules to PΨ :

B (X, t∗) ← B(X) p (X,Y, t∗) ← p(X,Y )
B (X, t∗) ← B (X, t) p (X,Y, t∗) ← p (X,Y, t)

PRepair. We present here the rules that participate in PRepair. For each constraint
s ← φ in C, we add specific rules that consider in the body the scenarios where
s at a certain node is suggested to be true in the repair program or false, and
propose in the head ways to make φ true or false, respectively. We note that
the presence of negation in constraints may enforce that a shape atom is false
at specific nodes. We present the repair rules for each normal form that φ can
take, that is for each type of constraint of the form (NF1) to (NF6′) and add
rules for both s (X, t∗) and s (x, f).

– If the constraint is of the form (NF1) or (NF3), then we do nothing here and
treat them later as constraints.

– If φ is a class name B, that is of form (NF2), then we use the fresh binary
predicate B and add the rules:

B (X, t) ← s (X, t∗) B (X, f) ← s (X, f)
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– If φ is of the form s1∧· · ·∧sn, that is of form (NF4), then we use fresh binary
predicates si and add the rules:

s1 (X, t∗), . . . , sn (X, t∗) ← s (X, t∗) s1 (X, f) ∨ · · · ∨ sn (X, f) ← s (X, f)

– If φ is of the form ¬s′, that is of form (NF5), we add the rules:

s′ (X, f) ← s (X, t∗) s′ (X, t∗) ← s (X, f)

(*) If φ is of the form ∃r.s′, i.e., of form (NF6′), then we have to consider the
scenarios where r is a property name p or an inverse property p−. For the case
where s is suggested to be true at X, i.e., for s (X, t∗), we add a new p-edge
from X to a fresh node and assign the node to s′. To this end, we use a function
@new(s,X, p), which maps a shape name s, a node X and a property name p
to a new unique value Y . For the case where s is suggested to be false at X,
i.e., for s (X, f), we add disjunctive rules that, for all p-edges from X to some
Y with s′ true in Y , makes one of these atoms false. We add the rules for r = p.
For r = p− the rules are analogously obtained by just swapping the variables in
the argument of p.

s′ (@new(s,X, p), t∗), p (X,@new(s,X, p), t) ← s (X, t∗)
p (X,Y, f) ∨ s′ (Y, f) ← s (X, f), p (X,Y, t∗)

PInterpretation. For every class name B and property name p occurring in the
input, we add the following rules:

B (X, t∗∗) ← B (X, t∗), not B(X, f)
p (X,Y, t∗∗) ← p (X,Y, t∗), not p(X,Y, f)

Intuitively, these rules will generate the atoms that will participate in the
repaired data graph, that is the atoms that were added to the data graph, and
those atoms from the data graph that were not deleted by the rules. PConstraints.

We add to PΨ sets of rules that will act as constraints and filter out models that
are not repairs.

(1) For each constraint of the form s ← �, i.e., of form (NF1), we add ← s (Y, f).
(2) For each constraint of the form s ← c, i.e., of form (NF3), we add the rules:

← s (X, t∗),X �= c ← s (c, f)

(3) For each class name B and property name p in the input, we add:

← B (X, t), B (x, f) ← p (X,Y, t), p (X,Y, f)

Roughly (1) and (2) ensure that models preserve constraints of type (NF1)
and (NF3) which cannot be repaired, and (3) ensures that no atom is both
inserted and deleted from G.



384 S. Ahmetaj et al.

The atoms marked with t∗∗ in a stable model of PΨ form a repaired data
graph that validates (C, T ).

Theorem 1. Assume a repair problem Ψ = (G,C, T ). For every stable model
M of (G,PΨ ), the data graph G′ validates (C, T ), where G′ is the set of all atoms
of the form B(a), p(a, b) such that B (a, t∗∗) and p (a, b, t∗∗) are in M .

We note that this theorem carries over to all the extensions and the version with
cardinality constraints and constants we propose in this paper. It is easy to see
that, since the rules are non-recursive in essence4, the number of fresh nodes that
can be introduced in a stable model is in the worst-case exponential in the size
of the input constraints. However, we do not expect to see this behavior often
in practice. We illustrate the repair program with a representative example.

Example 3. Consider the repair problem Ψ = (G,C ′, T ) from Example 1, where
C ′ is the normalized version of C. We construct the repair program ΠΨ as follows.

For PAnnotation we use fresh predicates enrolledIn and Course . The
rules for Course are Course (X, t∗) ← Course (X, t), and Course (X, t∗) ←
Course(X); the rules for enrolledIn are analogous. Intuitively, these rules
will initially add the atom enrolledIn (Ben,C1, t

∗) to the stable model.
For PRepair, we add the following rules, where F stands for the function
@new(StudentShape,X, enrolledIn).

enrolledIn (X,F, t), s (F, t∗) ← StudentShape (X, t∗).
enrolledIn (X,Y, f) ∨ s (Y, f) ← StudentShape (X, f), enrolledIn (X,Y, t∗)

Course (X, t) ← s (X, t∗)
Course (X, f) ← s (X, f)

Intuitively, these rules together with the ones in PAnnotation will add to the
stable model the atoms enrolledIn (Ben, new1, t

∗) and Course (new1, t
∗), for a

fresh node new1. For PInterpretation, we add: Course (X, t∗∗) ← Course (X, t∗),
not Course (X, f) for Course and proceed analogously for enrolledIn . For
PConstraints, we add the (constraint) rule: ← Course (X, t),Course (X,Y, f) for
Course and proceed analogously for enrolledIn . Since no atom labelled with
‘f ’ is generated by the rules, then the three atoms mentioned above will be
annotated with ‘t∗∗’ by the rules in PInterpretation.

Thus, there is one stable model with the atoms enrolledIn (Ben,C1, t
∗∗),

enrolledIn (Ben, new1, t
∗∗), and Course (new1, t

∗∗). The corresponding atoms
enrolledIn(Ben,C1), enrolledIn(Ben, new1) and Course(new1) will form the
repaired data graph G′ that validates (C ′, T ). Hence, the only repair is (A, ∅),
where A contains {enrolledIn(Ben, new1) and Course (new1)}.

Additions and Deletions. We want to represent repairs as sets of atoms that
are added to and deleted from the input data graph. To achieve this, we use two
4 Technically speaking, the repair rules above may be recursive. However, if the anno-
tation constants t, f, t∗, t∗∗ are seen as part of the predicate’s name (instead of being
a fixed value in the last position), then the rules are non-recursive.



Repairing SHACL Constraint Violations Using Answer Set Programming 385

fresh unary predicates add and del, and we add rules that “label” in a stable
model with the label add all the atoms with ‘t∗∗’ that were not in the data
graph, and label with del all the atoms from the data graph that are annotated
with ‘f ’. To this aim, for every class name B and property name p in the input,
we introduce a function symbol (with the same name) whose arguments are the
tuples of B and p, respectively. We show the rules for class names; the rules for
property names are analogous.

add(B(X)) ← B (X, t∗∗), not B(X) del(B(X)) ← B (X, f), B(X)

4.2 Generating Minimal Repairs

We are interested to generate cardinality-minimal repairs, i.e. repairs that make
the least number of changes to the original data graph. More formally, given a
repair ξ = (A,D) for Ψ , ξ is cardinality-minimal if there is no repair ξ′ = (A′,D′)
for Ψ such that |A| + |D| > |A′| + |D′|. As noted already in Sect. 3, repairs
produced by our repair program built so far may not be cardinality-minimal, and
this holds already for constraints without existential quantification. Consider the
following example.

Example 4. Let (G,C, T ) be a repair problem, where G is empty, T = {s(a)},
and C contains the constraints: s ← s1 ∨ s2, s1 ← A, and s2 ← A ∧ B, where A
and B are class names, and s, s1, s2 are shape names. To ease presentation, the
constraints are not in normal form and s1 ∨ s2 is a shortcut for ¬(¬s1 ∧ ¬s2).
Clearly, to validate the target s(a) the repair program will propose to make
s1(a) or s2(a) true. Hence, there will be two stable models: one generates a
repair that adds A(a), i.e., contains add(A(a)), and the other adds both A(a)
and, the possibly redundant fact, B(a), i.e., contains add(A(a)) and add(B(a)).

To compute cardinality-minimal repairs, which minimize the number of addi-
tions and deletions, we introduce a post-processing step for our repair program
that selects the desired stable models based on a cost function. We count the
distinct atoms for additions and deletions and add a cost off each of them. The
repair program should only return stable models that minimize this cost. More
specifically, we add the #minimize{1,W : add(W ); 1, V : del(V )} optimization
rule to PΨ , which uses a cost 1 for each addition or deletion. We can also change
the cost for additions and deletions depending on different repair scenarios, where
one could have a higher cost for additions over deletions or vice versa.

4.3 Repairing Maximal Subsets of the Target Set

In this section, we discuss the situation where it is not possible to repair all of the
target shape atoms, e.g., because of conflicting constraints in shape assignments
to these target shape atoms or because of unsatisfiable constraints. Consider for
instance the constraint s ← B ∧ ¬B, where B is a class name. Clearly, there
is no repair for any shape atom over s in the target, since there is no way to
repair the body of the constraint. Similarly, consider the constraints s1 ← B
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and s2 ← ¬B and targets s1(a) and s2(a); in this case adding B(a) violates
the second constraint and not adding it violates the first constraint. In both
scenarios, the repair program will return no stable model, and hence, no repair.
However, it still might be possible to repair a subset of the shape targets. In
practice, we want to repair as many targets as possible. To support such a
scenario, we introduce the concept of maximal repairs, which is a relaxation of
the previous notion of repairs.

Definition 2. Let Ψ = (G,C, T ) be a repair problem. A pair (A,D) of sets of
atoms is called a maximal repair for Ψ if there exists T ′ ⊆ T such that (i)
(A,D) is a repair for (G,C, T ), and (ii) there is no T ′′ ⊆ T with |T ′′| > |T ′|
and (G,C, T ′′) having some repair.

To represent this in the repair program, we add rules to non-deterministically
select a target for repairing or skip a target if the repair program cannot repair
it. This approach could be viewed similar in spirit to SHACL’s sh:deactivated
(https://www.w3.org/TR/shacl/#deactivated) directive that allows for deacti-
vating certain shapes, with the difference that we”deactivate” targets instead of
whole shapes which are automatically selected by the repair program based on
optimization criteria. To this end, for each shape atom s(a) in the input target
set T , instead of adding all s (a, t∗) as facts, we add rules to non-deterministically
select or skip repair targets. If there are no conflicting or unsatisfiable constraints,
then the stable models provide repairs for all the targets. However, if a repair of
a target shape atom is not possible, because shape constraints advise t as well
as f , then the repair program will skip this target shape atom and the stable
models will provide repairs only for the remaining shape atoms in T . We intro-
duce two predicates actualTarget and skipTarget , where actualTarget represents
a shape atom in the target that will be selected to repair, whereas skipTarget
represents a shape atom in the target that is skipped and will not be repaired.
For each s(a) in T we add the rules:

actualTarget(a, s) ∨ skipTarget(a, s) ← s(a) s (a, t∗) ← actualTarget(a, s)

We want to first repair as many target shape atoms as possible, and then min-
imize the number of additions and deletions needed for these repairs. To this
end, we add the #minimize{1@3,X, s : skipTarget(X, s)} optimization rule
to PΨ to minimize the number of skipped targets and the #minimize{1@2,W :
add(W ); 1@2, V : del(V )} rule to minimize the additions and deletion. Note that
we choose a higher priority level for minimizing the number of skipped targets
(1@3) than for minimizing additions and deletions (1@2). This rule minimizes
the skipTarget atoms and therefore maximizes the actualTarget atoms based on
the cardinality.

Example 5. Let (G,C, T ) be a repair problem, where G = {enrolledIn(Ben,C1)},
T = {StudentShape(Ben),TeacherShape(Ben)}, and C contains TeacherShape ←
∃teaches ∧ ¬StudentShape and StudentShape ← ∃enrolledIn.Course. Thus, Ben
is a target node for both StudentShape and TeacherShape. However, the first con-
straint states that a node cannot be a TeacherShape and StudentShape at the

https://www.w3.org/TR/shacl/#deactivated
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same time, which causes a contradiction when applied to Ben. This causes the
repair program to have no model. By applying the optimizations for maximal
repairs, it will result in the target selection: actualTarget(Ben,StudentShape),
and skipTarget(Ben,TeacherShape). The repair program skips the shape atom
TeacherShape(Ben), so that we at least have a repair for StudentShape. For this
repair program, this is the maximum possible number of targets. Changing the
optimization cost to skip targets allows to specify a preference among targets or
shapes, thereby adapting to different repair scenarios.

5 Extension with Cardinality Constraints and Constants

In Sect. 4, we proposed a repair program for a restricted setting with cardinality
constraints of the form s ←≥n r.s′ with n = 1. We now explain the extension
to support cardinality constraints with unrestricted n, i.e., of form (NF6). In
addition to supporting the generation of new values, we now also allow to reuse
existing constants from the input, which may even be necessary to generate some
repair. E.g., consider an empty data graph G, the set of constraints C = {s ←
∃p.s′, s′ ← c}, and the target T = {s(a)}. Since the second constraint forces the
selection of the constant c when generating a value for p, the only possible repair
for (G,C, T ) is to add the atom p(a, c). However, we prioritize picking a fresh
node over an existing one if the latter is not necessary. We construct a repair
program P ′

Ψ for a repair problem Ψ = (G,C, T ) whose stable models provide
repairs for Ψ . In particular, P ′

Ψ contains all the rules from PΨ , except for the
rules marked with (*) in PRepair, i.e., the rules for existential constraints, which
will be replaced by the rules described here.

Repairing Cardinality Constraints. If φ is of the form ≥n p.s′, that is of form
(NF6), then for repairing the case s (X, t∗) we need to insert at least n p-edges to
nodes verifying s′. We first collect all nodes from C that are part of constraints
to make sure that all necessary nodes are available to be picked for additions of
property atoms. For every node c in C, we add: const(c) ←

- For the case where s is suggested to be true at X, i.e., for s (X, t∗), we add
the following rules.

choose(s,X, p, 0) ∨ · · · ∨ choose(s,X, p, n) ← s (X, t∗) (2)
p (X,@new(s,X, p, 1..i), t) ← choose(s,X, p, i), i �= 0 (3)

0 {p (X,Y, t) : const(Y )} |const(Y )| ← s(X, t∗) (4)
n {s′(Y, t∗) : p (X,Y, t∗∗)} max(n, |const(Y )|) ← s(X, t∗) (5)

In the following, we explain the rules (2) - (5) in detail. For adding atoms over
p to satisfy ≥n p.s′, we either generate fresh nodes using the function @new or
we pick from collected constants. For generating atoms with fresh nodes, we add
a disjunctive rule (2) and use a fresh choose predicate, which is used to non-
deterministically pick a number from 0 up to n for adding atoms over p to fix the
cardinality constraint. To add the actual atoms, we add a rule (3) that produces
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this number of atoms using the @new function, which will generate a new unique
value Y for every (s,X, p, i) tuple with s a shape name, p a property name, and
i ∈ {1 . . . n}. With these two rules, we can generate as many atoms over p as
necessary to satisfy the cardinality constraint. Similarly to adding atoms with
fresh nodes, we can also pick constants from C. We add a rule (4) to pick a
number of 0 up to the maximum number of constants – using Clingo’s choice
rules, which allow to be parameterised with a lower and upper bound of elements
from the head to be chosen – which will only pick constants if either required,
because of other constraints, or needed by the cardinal by adding optimization
rules. In addition to adding atoms over p, we need to satisfy s′ on a number of
n nodes. We add a rule (5) to pick at least n, but might pick up to as many
values as there are constants, so that we can satisfy the cardinality as well as
any constraints that require specific constants. Note that an expression of the
form l {W : V } m intuitively allows to generate in the model a number between
l and m W -atoms whenever V -atoms are also true.

- For the case where s is suggested to be false at X, i.e., for s (X, f), we pick
from all atoms p(X,Y ) to either delete the atom or falsify s′ at Y . We add a
disjunctive rule to pick one or the other (but not both).

� {ψ1 ∨ ψ2} � ← s (X, f),#count{Y : p (X,Y, t∗)} = m,m > (n − 1)

where � = m − (n − 1), ψ1 is the expression p (X,Y, f) : p(X,Y ), not s′ (Y, f)
and ψ2 is s′ (Y, f) : p (X,Y, t∗), not p (X,Y, f). To make s false at X, we have
two disjunctive options that we can falsify. The first option is to falsify the p
atom. This can only be selected if s′ was not falsified at node Y . The second
option is to falsify the s′ at node Y , which in return should only be possible if
the p atom was not falsified. By picking m− (n− 1) options, we make sure that
only the maximum allowed cardinality will be in the repaired graph.

Constant Reuse Optimization. The rules above are allowed to pick from any
constants that are needed to satisfy constraints in the current model. However,
we want to pick a constant from C only if it is necessary to satisfy a constraint. To
achieve this, for every constraint of the form s ←≥n p.s′, that is of form (NF6),
we add the #minimize{1@1,X, Y : p (X,Y, t), const(Y )} optimization rule to
P ′

Ψ that minimizes the use of constants among the different minimal repairs.
We choose a lower priority level (1@1) for minimizing the use of constants after
minimizing additions and deletions with a priority (1@2) and after minimizing
the number of skipped target atoms (1@3). We first want to have minimal repairs
and then among them to pick the ones with minimal number of constants. Note
that this encoding may produce different repairs from the encoding in Sect. 3 on
the same example as illustrated below.

Consider again Example 3. The repair program P ′
Ψ will generate three repairs.

One repair will only add Course(C1). Intuitively, rule (2) adds choose(s,X, p, 0)
to the model, rule (3) and (4) will not add atoms, and rule (5) adds s (C1, t∗)
which together with the other rules treated in Example 3 add Course (C1, t), and
Course(C1, t∗∗), and hence . The second repair will add enrolledIn(Ben, new1)
in addition to Course(C1) because of picking i = 1 in rule (2), and generating a
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fresh value new1 in (3), and picking still C1 for s . The third repair will assign
new1 to s , thus resulting in the repair (A, ∅) from Example 3. The optimization
feature will return only the minimal repair that only adds Course(C1).

6 ASP Implementation

Repair Program. We developed a prototypical system for implementing SHACL
repair programs using Java programming language and the ASP system Clingo.
The prototype parses an RDF representation of a SHACL shapes graph and
a data graph and transforms them into a repair program as a set of Clingo
rules and facts. The repair program can then be executed using Clingo, which
returns the stable models with (sub)sets of repaired shape target nodes and sets
of additions and deletions as repairs for the data graph.

Unit Test Suite. To verify the implementation, we created a unit test suite with
minimal examples that covers all the supported shape expressions. We grouped
the test cases in four groups for class constraints, property constraints, value con-
straints and constraints with conflicts either within a shape or between multiple
shape assignments. Each group includes expressions with conjunction, disjunc-
tion and negation. The unit test suite consist of a total of 43 test cases.

Data Shapes Test Suite. We applied the repair program to 16 selected test cases
of the official SHACL data shapes test suite5. The selection was done based on
the supported shape expressions of the repair program. All the selected tests
were successful and repairs provided in the case of no conflicting constraints.6

7 Conclusion

We presented an approach to repair a data graph so that it conforms to a set of
SHACL constraints. We first analyze the type of repairs that may be desirable
in practice. To generate the repairs, inspired by existing work in databases, we
encode the problem into an ASP program. We provide encodings for a restricted
setting, which forces to introduce a new value to satisfy existential constraints,
and for the extended setting that allows to reuse also existing constants. The
optimizations as part of our approach were introduced with a view on practical
scenarios, where we not only want to have minimal change, but also to avoid
creating new data that is not sound from a real-world perspective. In case not
all the shape targets can be repaired, we optimize to repair as many of them as
possible. With the repair program and the ASP implementation, we have laid
the foundation for bringing repairs into practical scenarios, and thus improving
the quality of RDF graphs in practice.

5 https://w3c.github.io/data-shapes/data-shapes-test-suite/.
6 Our prototype, test suites, and statistics are available from the authors upon request.

https://w3c.github.io/data-shapes/data-shapes-test-suite/
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Future Work. Several tasks remain for future work. For the practical side, the
next step will be to select use-cases where we can apply the repairs and evaluate
the practical feasibility and explore repair quality and scalability. For the more
technical direction, we plan to extend the approach to support SHACL property
paths. Another direction is to support recursive SHACL constraints. They are
also challenging because recursion combined with the introduction of fresh nodes,
may cause non-termination of the repair process, i.e. an infinite repair might be
forced. A related direction is to extend our approach to the so-called class-based
and property-based targets. These targets bring implicit recursion to the repair
problem, even when the constraints are non-recursive as in this paper, which
makes dealing with such targets as challenging as the full recursive case.
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SHACL. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 318–
336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 19

7. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

8. Gayo, J.E.L., Prud’hommeaux, E., Boneva, I., Kontokostas, D.: Validat-
ing RDF Data. Synthesis Lectures on the Semantic Web: Theory and
Technology. Morgan & Claypool Publishers (2017). https://doi.org/10.2200/
S00786ED1V01Y201707WBE016

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot asp solving with
clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.
1017/S1471068418000054

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://doi.org/10.24963/kr.2021/2
https://doi.org/10.1145/3366423.3380229
https://doi.org/10.1145/3366423.3380229
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.2200/S00379ED1V01Y201108DTM020
https://doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.2200/S00786ED1V01Y201707WBE016
https://doi.org/10.2200/S00786ED1V01Y201707WBE016
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054


Repairing SHACL Constraint Violations Using Answer Set Programming 391

10. Hogan, A., et al.: Knowledge Graphs. Synthesis Lectures on Data, Semantics,
and Knowledge. Morgan & Claypool Publishers (2021). https://doi.org/10.2200/
S01125ED1V01Y202109DSK022

11. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: answer set pro-
grams for consistent query answering in databases. Data Knowl. Eng. 69, 545–572
(2010). https://doi.org/10.1016/j.datak.2010.01.005

https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1016/j.datak.2010.01.005


Entity Type Prediction Leveraging Graph
Walks and Entity Descriptions

Russa Biswas1,2(B) , Jan Portisch3,4 , Heiko Paulheim4 , Harald Sack1,2 ,
and Mehwish Alam1,2

1 FIZ Karlsruhe – Leibniz Institute for Infromation Infrastructure, Karlsruhe,
Germany

{russa.biswas,harald.sack,mehwish.alam}@fiz-karlsruhe.de
2 Karlsruhe Institute of Technology, Institute AIFB, Karlsruhe, Germany

3 SAP SE, Walldorf, Germany
jan.portisch@sap.com

4 Data and Web Science Group, University of Mannheim, Mannheim, Germany
{jan,heiko}@informatik.uni-mannheim.de

Abstract. The entity type information in Knowledge Graphs (KGs)
such as DBpedia, Freebase, etc. is often incomplete due to automated
generation or human curation. Entity typing is the task of assigning or
inferring the semantic type of an entity in a KG. This paper presents
GRAND, a novel approach for entity typing leveraging different graph
walk strategies in RDF2vec together with textual entity descriptions.
RDF2vec first generates graph walks and then uses a language model to
obtain embeddings for each node in the graph. This study shows that
the walk generation strategy and the embedding model have a significant
effect on the performance of the entity typing task. The proposed app-
roach outperforms the baseline approaches on the benchmark datasets
DBpedia and FIGER for entity typing in KGs for both fine-grained and
coarse-grained classes. The results show that the combination of order-
aware RDF2vec variants together with the contextual embeddings of the
textual entity descriptions achieve the best results.

Keywords: Entity type prediction · RDF2vec · Knowledge graph
embedding · Graph walks · Language models

1 Introduction

Many efforts have been made towards the automated generation of Knowledge
Graphs (KGs) from heterogeneous resources such as text or images. One such
effort is the creation of cross-domain KGs such as DBpedia [1], Wikidata [32],
Freebase [4], etc. which are either extracted automatically from structured data,
generated using heuristics, or are human-curated. This leads to incomplete infor-
mation in the KGs which can occur on factual level (e.g., missing entities and/or
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Fig. 1. Excerpt from DBpedia

relations between the entities) or on schema level (e.g., the missing entity type
information). For instance, DBpedia version 2016-10 consists of 48 subclasses
of dbo:Person; however, only 36.6% of the total number of entities belonging
to dbo:Person are assigned to its subclasses. Moreover, 307,164 entities in the
entire DBpedia 2016-10 version are assigned to owl:Thing.

To address the KG incompleteness on the factual level, a lot of mod-
els [5,6,28], etc. have been proposed. These models focus mainly on predicting
the missing entities and relations in the KGs but not the entity types. How-
ever, the entity type information in KGs plays a vital role in various Natural
Language Processing based applications such as question answering [31], rela-
tion extraction [10], recommendation, or system [33]. Following these lines, this
paper focuses on the problem of entity typing which is the task of assigning or
inferring the semantic type of an entity in a KG. Figure 1 shows an excerpt from
DBpedia where the class dbo:MusicalArtist is a subclass of dbo:Artist which is
a subclass of dbo:Person. dbo:Artist and dbo:MusicalArtist, respectively, are the
fine-grained entity types for dbr:Hans Zimmer and dbo:Artist is the missing type
information. dbo:Person is the coarse-grained type.

Recent years have witnessed a few studies on entity typing approaches
in KGs using heuristics [20] and machine learning based classification mod-
els [3,11,12,17,37]. These models predict entity types using different KG fea-
tures such as the anchor text mentions in the textual entity descriptions, rela-
tions between the entities, entity names, and Wikipedia categories. They learn
the representation of the entities from their KG structure by using translational
models [15], GCN-based models [12], neighborhood based attention models [41]
followed by the correlation between the entities and its types. These models
exploit the neighborhood information only by the entities directly connected, i.e.,
the triple information of the entities. However, the large amount of contextual
information of the entities captured in the graph walks remains unexplored. The
work presented in this paper emphasizes on modeling the KG by taking advan-
tage of the semantics of graph walks to predict the entity types with the help of
different kinds of walk generation strategies, such as classic random walks, entity
walks, and property walks. The paths generated by these graph walk strategies
are used within the RDF2vec model [27] to generate different entity represen-
tations. Additionally, the textual entity descriptions in the KGs contain rich
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semantic information which is beneficial in predicting the missing entity types.
For instance, as depicted in Fig. 1, the textual entity descriptions of the entities
clearly mentions that dbr: Christopher Nolan is a director, dbr: Hans Zimmer
is a music composer, and dbr: Inception is a film. Some of the existing baseline
models such as MuLR [38] use non-contextual Neural Language Models (NLMs),
whereas the other uses GCN model [12] on the words extracted from the entity
descriptions. Therefore, to capture the contextual information of the textual
entity description contextual NLM, is used to generate entity representations.

This paper presents a framework named GRAND (Graph Walks for
RDF2vec and Entity Descriptions), which exploits different variants of the
RDF2vec model based on different graph walk strategies together with textual
entity descriptions to predict the missing entity types in a KG. In this work,
the entity typing problem is modelled as a classification problem. A flat and a
hierarchical classification model are deployed on the top of the feature vectors
generated from the aforementioned entity representations to predict the missing
entity types. The empirical results based on the extensive experiments on two
benchmark datasets FIGER [37] and DBpedia630k [39] show that the proposed
approach is robust and outperforms the state-of-the-art (SOTA) models. Further
experiments show that GRAND performs considerably well on unseen entities.
The main contributions of this work are:

– A framework which leverages different graph walk strategies based RDF2vec
models and a contextual NLM for textual entity descriptions is proposed to
predict the missing entity types.

– A generalized classification framework consisting of three different modules
namely multi-class, multi-label, and hierarchical classification is introduced
to predict the missing entity types on different levels of granularity. It can be
easily deployed for predicting entity types on entity representations from any
KGs.

– Extensive experiments are conducted on the benchmark datasets to study
the impact of several combinations of entity representations generated from
the RDF2Vec variants and the NLM. An analysis on the weights in the clas-
sification has been conducted for analyzing which entity representations are
suitable in which entity typing situations. Furthermore, the impact of dimen-
sionality reduction of the entity representations on the local and global level
using Principle Component Analysis (PCA) is studied.

The rest of the paper is organized as follows: Sect. 2 gives an overview of the
baseline approaches. Section 3 describes the proposed methodology, followed by
experiments and results in Sect. 4. Finally, Sect. 5 provides the conclusion and
an outlook of future work.

2 Related Work

This section discusses existing literature on entity typing and categorizes them
based on their underlying methodology such as heuristics-based methods or
machine learning based methods.
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SDType [20] is a statistical heuristic model that exploits links between
instances using weighted voting. The model is based on the assumption that
certain relations occur only with particular types. SDType often does not per-
form well if two or more classes share the same sets of properties and also if
specific relations are missing for the entities.

One of the recent models, Cat2Type [3], takes into account the seman-
tics underlying the textual information in the Wikipedia categories using lan-
guage models such as BERT. In order to consider the structural information of
Wikipedia categories, a category-category network is generated which is then
fed to Node2Vec for obtaining the category embeddings. The embeddings of
both structural and textual information are combined for classifying entities
into their types. In [2], different word embedding models, trained on triples,
are leveraged together with a classification model to predict the entity types.
Therefore, contextual information is not captured. In CUTE [36], a hierarchical
classification model has been proposed which helps in cross-lingual entity typing
by exploiting category, property, and property-value pairs. Another model has
been proposed in [17] which performs type prediction using the Scalable Local
Classifier per Node (SLCN) algorithm based on a set of incoming and outgoing
relations. However, the entities with few relations are likely to be misclassified.
MuLR [38] learns multi-level representations of entities via character, word, and
entity embeddings followed by the hierarchical multi-label classification. Another
model, namely FIGMENT [37], uses a global model and a context model. The
global model predicts entity types based on the entity mentions from the corpus
and the entity names. The context model calculates a score for each context of
an entity and assigns it to a type. Therefore, it requires a large annotated cor-
pus which is a drawback of the model. In APE [11], a partially labeled attribute
entity-entity network is constructed containing structural, attribute, and type
information for entities followed by deep neural networks to learn the entity
embeddings. MRGCN [35] is a multi-modal message-passing network that learns
end-to-end from the structure of KGs as well as from multimodal node features.
In HMGCN [12], the authors propose a GCN-based model to predict the entity
types considering the relations, textual entity descriptions, and the Wikipedia
categories. ConnectE [40] and AttET [41] models find correlation between neigh-
borhood entities to predict the missing types. However, unlike GRAND, these
two models do not look for information far away from the source entity. They
work on the principal of L2 distance in their embedding space to detect the
types and therefore not compared with the proposed model. Also, in order to
employ the hidden layer as latent features for entity representation, restricted
Boltzman machines (RBMs) are used to learn a target distribution across the
usage of relations of entities [34].

3 Entity Type Prediction: GRAND Framework

An overview of the GRAND framework is illustrated in Fig. 2. Component A
represents the RDF2vec variants that use the different strategies for generating
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Fig. 2. Architecture of the GRAND framework

graph walks, i.e., classic walks, node walks, and property walks. Component B
generates the representations of the entities from the textual entity description
by using SBERT. Finally, component C shows combinations of the variants of
entity representations used for flat as well as hierarchical classification. The rest
of the section contains the explanation of the component details.

Preliminaries. We define a knowledge graph G as a labeled directed graph
G = (V, E), where E ⊆ V×R×V for a set of relations R. Vertices are subsequently
also referred to as entities and edges as predicates.

3.1 Entity Representation

RDF2vec [27] is one of the first approaches to adopt statistical language modeling
techniques to KGs. The key idea of RDF2vec is a two-step approach: first, ran-
dom walks over the graph are executed, thereby collecting sequences of entities
and relations. To employ language modeling techniques, these sequences are then
considered as sentences where each entity and relation in the sequence are treated
as words. In RDF2vec, those sentences are then processed by word2vec [18,19],
where both variants of word2vec, i.e., continuous bag of words (CBOW) and
skip-gram (SG), are possible.

One limitation of the word2vec algorithm is that it is not aware of
the word order. For instance, for a window size of 4, the sentences “John
ate a pizza” and “pizza ate a John” are equivalent. This is also the case
with RDF2vec: For instance, the statements <Severus> <loves> <Lily> and
<Lily> <loves> <Severus>, are considered equivalent even though <loves> is
not a symmetric property. To overcome this limitation, an order-aware version
of RDF2vec has been proposed [24] which has shown improved performance on
multiple machine learning datasets. This order-aware variant of RDF2vec uses a
structured word2vec model [16] which incorporates the positional information of



Entity Type Prediction Leveraging Graph Walks and Entity Descriptions 397

the words in a sentence. The main advantage of the order-aware RDF2vec model
over the classical RDF2vec model is that it respects the positional information
of the entities and relations in the random walks, thereby learning embeddings
which are better in terms of type separation.

Another type of RDF2vec extension is to explore different strategies for per-
forming graph walks. These strategies have been explored using either vari-
ants of random walks (e.g., community hops [14], walklets [21], or hierar-
chical walks [29]), or by combining different random walk strategies, as the
ontowalk2vec approach, which combines RDF2vec and node2vec walks [8]. In
this paper, the aforementioned order-aware as well as different RDF2vec graph
walk strategies [25] are leveraged to predict the missing types of the entities.

Graph Walk Generation Strategies. RDF2vec combines the notion of simi-
larity and relatedness. This can be easily observed when printing the most related
concepts for “Berlin” on DBpedia via KGvec2go [22], i.e., many people who are
related to the city are identified as politicians. However, those are not really
similar – they do not share properties with Berlin (which is a city rather than
a living being). This leads to further exploration of RDF2vec for entity typing.

In this paper, six different RDF2vec configurations are presented and evalu-
ated – stand alone as well as combinations. For the task of entity typing, three
different walk generation strategies are applied: (1) classic walks (2) entity walks,
and (3) predicate walks. Each strategy is explained below in more detail.

Classic Walks. The originally presented RDF2vec variant generates multiple
random walks for each node in the graph. A random walk of length n (where n
is an even number) is of the form

w = (w− n
2
, w− n

2 +1, ..., w0, ..., wn
2 −1, wn

2
) (1)

where wi ∈ V if i is even, and wi ∈ R if i is odd. For better readability, we
stylize wi ∈ V as ei and wi ∈ R as pi:

w = (e− n
2
, p−n

2 +1, ..., e0, ..., pn
2 −1, en

2
) (2)

Entity Walks (e-RDF2vec). An entity walk contains only entities without
any other properties. Such an approach is also known as e-RDF2vec, given by

we = (e−n
2
, e− n

2 +2, ..., e0, ..., en
2 −2, en

2
) (3)

For an entity walk, all elements are entities, i.e., wni
∈ V.

Predicate Walks (p-RDF2vec). A predicate walk contains only one entity
together with object properties known as p-RDF2vec and is defined as:

wp = (p−n
2 +1, p− n

2 +3, ..., e0, ..., pn
2 −3, pn

2 −1) (4)

The different walk strategies are visualized in component A in Fig. 1.
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Generating Entity Embeddings Using RDF2Vec Variants. An embed-
ding model is trained for each set of walks using word2vec [18,19] and position-
aware word2vec [16] (suffix oa in the following) which yields six sets of
embeddings: (1) Classic RDF2vec (2) e-RDF2vec (3) p-RDF2vec (4) Clas-
sic RDF2vecoa, (5) e-RDF2vecoa, and (6) p-RDF2vecoa. The proposed model,
GRAND, is evaluated by using the configurations presented in 3.1 on their own
as well as in a fused way. Concerning the fusion of vectors, three modes are
employed: (1) Vector concatenation, (2) Local PCA (LPCA), and (3) Global
PCA (GPCA). PCA is a technique for reducing the dimensionality of the vec-
tors with minimal loss in encoded information. It is used for identification of a
smaller number of uncorrelated variables known as principal components. The
difference between (2) and (3) is that in the case of the LPCA, a principal com-
ponent analysis is only performed for the subset of vectors that appear in the
datasets (see Sect. 4) whereas for the GPCA, one all vectors generated from the
KG using RDF2vec variants are considered. Each of these configurations can be
used as vector within GRAND (see component C in Fig. 2).

The main advantages of using different RDF2vec variants are: (i) With a
growing length of walks and training window, they can take advantage of large
entity context ranges by effectively treating every entity as being connected to all
the others in the graph – this is in contrast to the baseline models which are based
on local aggregation, i.e. they learn the representation of each entity based on its
adjacent entities in the KG [12,41]. (ii) The graph walk strategies are effective,
robust, and equitable, i.e., all relations and nodes are given equal importance
in generating the embeddings. (iii) The walk strategies put emphasis on certain
semantic aspects – namely relatedness and similarity [25]. (iv) RDF2vec is a
very scalable embedding algorithm. (v) The experimental results from [42] show
RDF2vec works better on the separability task compared to the other embedding
models. The separability task aims at measuring if embeddings from different
classes can be linearly separable and the evaluation is done on 10,000 pairs of
classes from DBpedia. (vi) Any classification algorithm can be deployed on top
of entity embeddings to predict the missing types.

3.2 Entity Description Representation

The textual descriptions of an entity provide rich semantic information.
Sentence-BERT (SBERT) [26] fine-tunes the BERT [7] model using the siamese
and triplet networks to update the weights such that the resulting sentence
embeddings are semantically meaningful and semantically similar sentences are
closely positioned in the embedding space. For one epoch, a 3-way softmax clas-
sifier objective function is used for the fine-tuning of the BERT model. In the
training phase of SBERT, two input sentences are passed through the BERT
model followed by a pooling layer namely, MEAN-strategy, and MAX-strategy.
A fixed-size representation for the input sentences are generated by this pooling
layer. Next, they are concatenated with the element-wise difference and multi-
plied with a trainable weight. The cross-entropy loss is used for optimization.
In order to encode the semantics, the twin network is fine-tuned on Semantic
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Textual Similarity data. SBERT model follows a two-step process in which it is
first trained on Wikipedia via BERT and then fine-tuned on Natural Language
Inference (NLI) data. NLI is a collection of 1,000,000 sentence pairs created by
combining The Stanford Natural Language Inference (SNLI) and Multi-Genre
NLI (MG.NLI) datasets.

In this work, the same approach is followed to extract the embedding of the
textual entity descriptions as mentioned in the evaluation of the quality of sen-
tence embeddings in [26]. Given be a textual entity description Dei denoted by a
sequence of words {W1,W2, ...,Wn}, whereWj is the jth word in the entity descrip-
tion, and ei is the corresponding entity. The entity descriptionDei is considered as
a single sequence of words which is provided as an input to the SBERT model to
get the embedding of the textual entity description EDi

. The pre-trained SBERT
model used in GRAND is the SBERT-SNLI-STS-base model which is fine tuned
on SNLI and STS datasets which outperforms the baseline models as shown in [26].
The MEAN pooling strategy is used in the pooling layer.

The main advantages of using pre-trained SBERT model are: (i) Since the
pre-trained SBERT model is fine-tuned with two different datasets, the entity
description embeddings obtained lose domain-specific knowledge and bias, and
learn task-agnostic properties of the language. (ii) Unlike static word embedding
models, such as word2vec, the contextual embedding model SBERT encodes
semantics of the words differently based on different contexts. Therefore, the
entity description embeddings capture the contextual information for the task of
entity typing unlike the baseline models [12,38] (iii) They are computationally
inexpensive as the model is pre-trained on huge amount of text and can be
easily fine-tuned based on the information available. (iv) A representation of
the entities can be obtained from the textual entity description for long-tailed
entities in the KG, i.e., entities with no or few properties. (v) A task-specific
classification model can be deployed on top of the entity description embeddings
for entity typing task as illustrated in the proposed GRAND framework.

3.3 Entity Type Prediction

GRAND consists of three different classification modules: (1) Multi-class, (2)
Multi-label, and (3) Hierarchical, that are discussion below.

Entity Representation. The aforementioned approaches generate entity
embeddings from various RDF2vec variants and from the contextual embed-
ding model SBERT, which are provided as input to the classification modules.
The input entity vectors are generated by concatenating the different vectors
generated by the embedding models as depicted in component C in Fig. 2.

Classifiers. For multi-class classification, a Fully Connected Neural Net-
work (FCNN) consisting of two dense layers with ReLU as an activation function
is deployed on the top of the entity representation. A softmax classifier with a
cross-entropy loss function is used in the last layer to calculate the probability
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of the entities belonging to different classes. Formally it is given by,

f(s)i =
esi

∑CT

j esj
, and CEloss = −

CT∑

i

tilog(f(s)i), (5)

where sj are the scores inferred for each class in CT given in Eq. 5. ti and si are
the ground truth and the score for each class in C, respectively.
In multi-label classification, an entity can belong to more than one class or
type. Therefore, a certain entity ei belonging to one class ci has no impact on
the decision of it belonging to another class cj , where ci, cj ∈ CT . A FCNN
with RELU as an activation function is used for the two dense layers. A sigmoid
function with binary cross-entropy loss is used in the last layer which sets up a
binary classification problem for each class in CT and is given by,

CEloss = −tilog(f(si)) − (1 − ti)log(1 − f(si)), (6)

where si and ti are the score and ground truth for ith class in CT .

Hierarchical Classification. can be broadly categorized into local and global
classification. The local information in local classifier can be utilized in different
ways leading to different types of local classifiers such as Local classifier Per
Node (LPN), a Local classifier Per Parent Node (LPPN) and a Local classifier
Per Level (LPL) [13]. The proposed framework GRAND uses LPL which consists
of training a flat classifier for each level of the class hierarchy. A multi-class
classifier is trained at each level of the class hierarchy is used to discriminate
among the classes at that level. The two main advantages of the LPL model are:
(i) It is computationally efficient compared to LPN for large KGs consisting of
large number of classes as LPN model would have equal number of classifiers.
The number of classifiers in LPL are restricted to the number of levels in the
class hierarchy. (ii) Since a single classifier is trained at each level, it reduces
the horizontal class prediction inconsistencies. In GRAND, a two-layered FCNN
with ReLU activation function and cross-entropy loss has been deployed at each
level of the class hierarchy. However, one of the drawbacks of LPL is that an
entity can be classified as class 1 at one level and then it can be again classified as
class 2.1 on the second level. Here, class 2.1 is not a subclass of 1 and the entity
should be classified to a subclass of 1. In order to tackle such inconsistencies, in
this work, the entity which is misclassified as 2.1 in level 2 will be typed as 1 as
its entity type as it was correctly identified in level 1.

4 Experiments and Results

This section provides details on the benchmark datasets, experimental setup,
analysis of the results obtained, and the ablation study.

Datasets. The two benchmark datasets FIGER [37] and DBpedia630k [39] are
used to evaluate the performance of the GRAND framework against the baseline
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Table 1. Statistics of the datasets

Parameters DB-1 DB-2 DB-3 FIGER

#Entities 210,000 210,000 210,000 201,933

#Entities train 105,000 105,000 105,000 101,266

#Entities test 63,000 63,000 63,000 60,447

#Entities validation 42,000 42,000 42,000 40,220

models. DBpedia630k consists of 630,000 entities and 14 non-overlapping classes
and FIGER consists of 201,933 entities with 102 classes from Freebase. The
entities of the extended DBpedia630k dataset are split equally into three parts
DB-1, DB-2, and DB-3, each containing 210,000 entities. Each DBpedia split is
divided into a train, test and validation set with 50%, 30%, and 20% of the total
entities respectively [12] as well as to 48 classes in the class hierarchy. There
are no shared entities between the train, test, and validation sets for all the
DBpedia630k splits and in FIGER. FIGER has been extended with triples from
DBpedia as explained in [3,12]. The statistics is provided in Table 1. The code,
and data are publicly available1.

Experimental Setup. The experiments are conducted on six sets of embed-
dings: (1) Classic RDF2vec, (2) e-RDF2vec, (3) p-RDF2vec, (4) Classic RDF-
2vecoa, (5) e-RDF2vecoa, and (6) p-RDF2vecoa. The walks are generated with
a depth of 8 and 500 walks per entity. Classic and OA embeddings are trained
using SG with 200 dimensions and 5 epochs. For training the order aware vari-
ants (4–6), walks from the corresponding non-order aware variants (1–3) are
reused. The training was performed using the jRDF2vec framework2 [23]. All
the classifiers are used with the batch size 64, 100 epochs, and adam optmizer.
The vectors are publicly available.3

Results. In order to evaluate the proposed approach against the baseline mod-
els, Micro-averaged F1 (Mi-F1) and Macro-averaged F1 (Ma-F1) metrics are
used along with the accuracy. Different variants of RDF2vec have been eval-
uated which serve as an ablation study. The baselines used for the experi-
ments are: CUTE [36], MuLR [38], FIGMENT [37], APE [11], HMGCN [12],
and CAT2Type [3]. The results of the proposed framework on two benchmark
datasets and their comparison with the baseline models are depicted in Table 2.
The results of GRAND as depicted in Table 2 can be obtained as follows: (i)
Coarse-grained setting: For DBpedia splits, the original dataset consisting of 14
non-overlapping classes is used. For FIGER, the number of coarse-grained classes
is 30 and they are non-overlapping as well. Since, none of the entities belong
to more than one class, multi-class classification settings have been used here.
(ii) Fine-grained setting: The original DBpedia630k dataset is expanded with

1 https://shorturl.at/abJRW.
2 https://github.com/dwslab/jRDF2Vec.
3 https://bit.ly/3besaWF.

https://shorturl.at/abJRW
https://github.com/dwslab/jRDF2Vec
https://bit.ly/3besaWF


402 R. Biswas et al.

Table 2. Results of GRAND on benchmark datasets. The best result of each mode is
printed in bold, the runner-up is underlined.

Model DB-1 DB2 DB3 FIGER

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Baselines CUTE [36] 0.679 0.702 0.681 0.713 0.685 0.717 0.743 0.782

MuLR [38] 0.748 0.771 0.757 0.784 0.752 0.775 0.776 0.812

FIGMENT [37] 0.740 0.766 0.738 0.765 0.745 0.769 0.785 0.819

APE [11] 0.758 0.784 0.761 0.785 0.760 0.782 0.722 0.756

HMGCN-no hier [12] 0.785 0.812 0.794 0.820 0.791 0.817 0.789 0.827

CAT2Type-BERT [3] 0.983 0.984 0.983 0.983 0.985 0.985 0.764 0.881

GRAND
Coarse-grained

Classic-RDF2vecoa ⊕ 0.991 0.991 0.990 0.990 0.989 0.989 0.801 0.893

s-RDF2vecoa ⊕
p-RDF2vecoa ⊕ SBERT

SBERT - only 0.972 0.972 0.97 0.97 0.97 0.97 0.648 0.844

Baselines
Fine-grained

CAT2Type-BERT [3] 0.402 0.732 0.369 0.721 0.847 0.915 0.703 0.835

CAT2Type-node2vec [3] 0.391 0.694 0.365 0.677 0.807 0.878 0.701 0.833

GRAND
Fine-grained

Classic-RDF2vecoa ⊕ 0.745 0.870 0.723 0.851 0.880 0.931 0.706 0.881

s-RDF2vecoa ⊕
p-RDF2vecoa ⊕ SBERT

Baseline
Hierarchical

HMGCN-hier [12] 0.794 0.816 0.796 0.824 0.798 0.819 0.798 0.836

GRAND
Hierarchical

classic-RDF2vecoa ⊕ 0.731 0.882 0.729 0.881 0.726 0.877 0.701 0.880

s-RDF2vecoa ⊕
p-RDF2vecoa

classic-RDF2vecoa ⊕ 0.731 0.875 0.718 0.869 0.935 0.946 0.712 0.883

s-RDF2vecoa ⊕
p-RDF2vecoa ⊕ SBERT

the DBpedia hierarchy to 37 fine-grained classes and these are non-overlapping
classes. Therefore, a multi-class classification model is used here as well. On the
other hand, the FIGER dataset consists of overlapping fine-grained classes, i.e.,
one entity can belong to multiple classes. Therefore, a multi-label classification
is used for fine-grained FIGER dataset. (iii) For Hierarchical Classification, a
classifier on each level of the hierarchy is deployed. For DBpedia splits, it is a
multi-class classification model and for FIGER it is a multi-label classification
model at each level of the hierarchy. The baseline models which use a non-
hierarchical classification such as CAT2Type [3] also use a multi-class classifi-
cation for DBpedia splits and a multi-label one for FIGER dataset. The SOTA
model for hierarchical classification HMGCN [12] uses multi-label classification
model. The results show that GRAND outperforms the SOTA model CAT2Type
with an improvement of 0.8% on Ma-F1 and 0.7% on Mi-F1 for DB-1, 0.7%
and 0.4% on both the metrics for DB-2 and DB-3 respectively for the coarse-
grained classes. The original dataset with 14 classes which do not contain the
hierarchy is used for this coarse-grained non-hierarchical variant. Furthermore,
for hierarchical classification, the proposed model significantly outperforms the
SOTA HMGCN-hier model with an increment of 6.6% for DB-1, 5.7% for DB-
2, and 12.7% for DB-3 on the Mi-F1 measure. For FIGER, the coarse-grained
approach is a multi-class classification whereas the fine-grained approach is a
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multi-label classification. GRAND achieves the best results for FIGER on the
coarse-grained approach which outperforms the baseline models. Moreover, with
the multi-label fine-grained settings it achieves comparable results with the non-
hierarchical baseline model CAT2Type and significantly outperforms the other
non-hierarchical model HMGCN. One advantage of GRAND over CAT2Type is
that it can be applied to any KGs and is not restricted to KGs containing infor-
mation on Wikipedia Categories. Table 3 and Table 4 show the experimental
results of the proposed approach for the coarse-grained and fine-grained classes
respectively with different variants of RDF2vec and their combinations. Exper-
iments using Single strategy show that all order-aware RDF2vec embeddings
significantly outperform their classic counterparts. Hence, the fusion strategies
only focus on position-aware embeddings reducing the combinatorial complexity.

Impact of RDF2vec Variants on Coarse-Grained Entity Typing. Table 3
shows the results of the experiment for coarse-grained entity typing. On the DB1
Split of the dataset, the best results for GRAND are obtained where the models
are combined, i.e., classic-RDF2vecoa ⊕p-RDF2vecoa ⊕e-RDF2vecoa (concat)
outperforms HMGCN for Ma-F1 by 0.1744 and for Mi-F1 by 0.148 and achieves
comparable results with CAT2Type. However, e-RDF2vec configurations per-
form the weakest on their own but introduces additional value when combined
with other approaches as depicted in the concat model. The best performing
configuration includes the entity embeddings. Given the data, it appears that
the PCA discards too much valuable information for DBpedia splits but not for
FIGER. Overall, it can be observed that the performance differences between p-
RDF2vec and classic-RDF2vec are minor. Nonetheless, the embeddings encode
different information which is visible when combining the embeddings. There-
fore, it can be concluded that the contextual information of the entities in form
of path captures the characteristics features of the entities. Similar observation
has been made for both DB2, DB3 split and FIGER. A detailed analysis of the
impact of different vector components is provided in Sect. 4.

Impact of RDF2vec variants on Fine-Grained Entity Typing. GRAND is
compared with the two best variants of CAT2Type namely BERT and node2vec
as shown in Table 2 and results show that the proposed model significantly out-
performs the CAT2Type model for all DBpedia splits and FIGER. In general, it
is observed for uneven class distribution the evaluation metric Ma-F1 achieves
lower values compared to Mi-F1. However, the Ma-F1 results of GRAND for
DB1 and DB2 splits are much better than that of CAT2Type. It strengthens
the fact that the representation of entities obtained using strategic graph walks
and contextual embedding of entity descriptions contain more information about
entities compared to the embeddings used in CAT2Type.

Impact of RDF2vec on Hierarchical classification. Table 5 shows the
results of the hierarchical classification of the GRAND framework on different
levels of the class hierarchy. The performance is computed for only classic-
RDF2vecoa ⊕ p-RDF2vecoa ⊕ e-RDF2vecoa since it is the highest performing
model based on experiments discussed in previous sections. The results show
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Table 5. Results of the GRAND-LPL classification model at each level

Level #classes DB1 DB2 DB3

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

1 5 0.961 0.962 0.960 0.960 0.959 0.959

2 11 0.744 0.925 0.747 0.929 0.744 0.924

3 12 0.857 0.934 0.851 0.926 0.859 0.935

4 17 0.361 0.705 0.358 0.702 0.359 0.674

higher performances on level 1 since the number of classes is lesser i.e., 5, as
compared to other levels. GRAND outperforms the baseline model HMGCN -
withHier for Mi-F1 metric as depicted in Table 2.

Impact of Textual Entity Descriptions. To analyze the impact of entity
descriptions, a multi-class classification was performed on the entity embed-
dings generated from the SBERT model. As shown in Table 2, GRAND with
only SBERT performs better than all the baseline models except CAT2Type.
Therefore, it can be concluded that contextual embeddings using SBERT pro-
vide the necessary relevant information as compared to the triple-based baseline
models.

Analysis of Vector Component Weight. In the experiments, it can be seen
that the concatenation of embeddings achieves the best result. Therefore, it is
further evaluated (1) which components are the most and the least important
for the predictions and (2) whether there is a difference in the weights given the
coarse-grained and the fine-grained prediction tasks.

Experimental Setup. In order to analyze the weights each vector component
receives in the neural network, a FCNN with one layer was trained on the com-
bination of all ordered aware RDF2vec (depicted in 1st 2 rows in coarse-grained
and 1st 2 rows in fine-grained in Table 6) and also with SBERT. It is noted that
the overall goal of this setup is to analyze how much weight each of the four
vector groups receive. Therefore, the sum of absolute weights in the network
given to each vector is calculated for the first, and the tenth epoch.

Results. The relative weights can be found in Table 6. It is observed that
the highest overall impact is independent of the dataset, achieved using the p-
RDF2vec embeddings. This is followed by the classic RDF2vec embeddings. The
least impact is achieved by the e-RDF2vec embeddings. Interestingly, a weight-
shift occurs when switching from the coarse-grained entity typing to fine-grained
entity typing, i.e., it is visible that the classic and the entity embeddings are more
important for fine-grained predictions. The results suggest that p-RDF2vec is
helpful for coarse-grained type prediction – an intuitive finding given that p-
RDF2vec encodes structural similarity. However, the more fine-grained the task
gets, the more important are the actual neighbor vertices.
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Table 6. Relative network weights of each vector component group for DB-1 split.

Dataset Epoch SBERT Classic RDF2vecoa p-RDF2vecoa e-RDF2vecoa

Coarse-grained 1 – 35.5% 44.4% 20.0%

10 – 32.9% 49.9% 17.1%

1 58.04% 14.6% 16.28% 11.08%

10 47.9% 18.5% 22.8% 10.8%

Fine-grained 1 – 35.4% 42.1% 22.5%

10 – 33.6% 46.4% 20.0%

1 56.7% 15.36% 16.84% 11.1%

10 51.19% 16.83% 19.5% 12.48%

5 Summary and Future Directions

This paper proposes a novel entity type prediction framework, named GRAND
based on RDF2vec variants and textual entity descriptions. The variants are
constructed by different walk generation strategies and a new order-aware variant
of word2vec. GRAND is evaluated on DBpedia630k and FIGER datasets. The
results show that GRAND considerably outperforms all the baseline models.
Also, given the weight analysis, further experimentation on more fine-granular
type systems – such as in YAGO [30] or CaLiGraph [9] is to be conducted.
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Abstract. We present Strabo 2, a distributed geospatial RDF store
able to process GeoSPARQL queries over massive RDF datasets. Strabo
2 is based on robust technologies, able to scale on TBs of data distributed
on hundreds of nodes. Specifically, we use the Spark framework, enhanced
with the geospatial library SEDONA, for distributed in-memory process-
ing on Hadoop clusters, and Hive for compact persistent storage of RDF
data. Strabo 2 employs a flexible design that can store and partition
thematic RDF data using different relational schemas, and spatial data
in a separate Hive table, by taking into consideration the GeoSPARQL
vocabulary. Strabo 2 is cluster friendly both memory and disk-wise,
since it compresses triples using a partial encoding technique in addition
to Parquet data file format compression schemes. GeoSPARQL queries
are translated into the Spark SQL dialect, enhanced with the spatial
functions and predicates offered by SEDONA. During this process the
system takes into consideration SEDONA’s capabilities for both spatial
selections and spatial joins, in order to apply optimizations that result
in efficient query processing. We experimentally test Strabo 2 on an
award winning Hadoop based cluster environment and exhibit Strabo
2’s excellent scalability while handling massive synthetic and real world
datasets. We also show that Strabo 2 clearly outperforms state of the
art centralized engines in a single server setup, once the dataset size
increases beyond few GBs.

1 Introduction

As the spatial information in the web of linked data has been increasing steadily
over the past decade, many systems that perform geospatial processing over RDF
graphs have been developed, mainly targeting the GeoSPARQL vocabulary and
query language, an OGC standard for representing and querying spatial infor-
mation in RDF. At the same time, as large RDF datasets become available, the
need for distributed processing of SPARQL queries has lead to the development
of many RDF query engines that rely on big data tools and technologies for stor-
ing and processing massive RDF data. Some of the most prominent approaches
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 411–427, 2022.
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rely on distributed in-memory big data frameworks, mainly Apache Spark, like
for example S2RDF [23] and PRoST [7].

However, despite the importance of the spatial dimension of these massive
datasets, to the best of our knowledge none of the distributed RDF engines sup-
ports execution of spatial queries. This leads to a lack of spatial RDF engines
able to scale to the continously increasing spatial information in the linked data
cloud. For example, the state-of-the art geospatial RDF store Strabon can only
handle up to 100GBs of point data and still be able to answer simple geospatial
queries (selections over a rectangular area) efficiently (in a few seconds). Com-
petitor systems like GraphDB perform similarly. If the complexity of geometries
in the dataset increases (i.e., we have multi-polygons), not even the aforemen-
tioned performance can be achieved for both Strabon and GraphDB.

Reviewing benchmarks with big geospatial semantic datasets [15] for mature
centralized RDF stores reveal the shortcomings of this category of systems han-
dling large datasets (range of few GBs of size). In sum, the main shortcomings
of such systems include: i) high bulk loading times, with mostly single threaded
reading, usually one file at a time, followed by single-thread re-indexing. ii) only
DBMS-based RDF stores seem to be able to marginally handle spatial selections
and spatial joins against datasets of several GBs size and this depends very much
on the DMBS tuning and iii) mostly single-threaded implementations of algo-
rithms [18] and components, leaves unexploited the potential of these systems
to vertically scale to the maximum of their potential on a regular multi-core
server-grade single node. This is even more true for open source or free versions
of these systems. Some commercial systems offer limited parallelization only in
some of their components, i.e., bulk loaders in Ontotext GraphDB Free and offer
full multi-threaded capabilities in their licensed product versions.

To address the above limitations, the main contributions of this work are:

– We present Strabo 2, the first distributed system that is able to process
GeoSPARQL queries over massive geospatial RDF datasets on Spark clusters.

– We present a flexible design that can store thematic RDF data using differ-
ent relational schemas, and spatial data in a separate Hive table, by taking
into consideration the GeoSPARQL vocabulary. We use the query translation
mechanism of Ontop-spatial in order to obtain the final set of spatial SQL
queries from the initial GeoSPARQL query.

– We optimize the translation process based on spatial joins and also use the
spatial partitioning and indexing capabilities of the Apache Sedona library in
order to achieve efficient query execution.

– We present an extensive experimental evaluation in order to examine the
scalability of the system with respect to different query characteristics, like
the spatial and thematic selectivities. We also compare the system with state
of the art centralized solutions for smaller datasets that can be ingested and
processed by single-node installations.
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2 Related Work

In this section we present related work. The examination of the capabilities and
design choices of the systems we presented were taken into consideration in the
definition of the architecture of the Strabo 2 distributed GeoSPARQL engine.

Centralized GeoSPARQL Query Processing. Strabon is one of the first sys-
tems offering GeoSPARQL support. Strabon extends the well-known RDF
store Sesame and uses the PostGIS spatially-enabled DBMS as the backend.
GraphDB1 is a semantic graph database enhanced with geospatial capabili-
ties. For its geospatial capabilities, it relies on a uSeekM implementation and
Lucene Spatial. The spatial index mechanism is controlled through an optional
GeoSPARQL plugin. Other geospatial RDF stores include: Parliament [3] which
uses a standard R-tree as its spatial index and concentrates on optimizing query
patterns (using the Topology Vocabulary extension of GeoSPARQL) while it
omits optimization for functions in the filter clause of a query, Oracle Spatial
and Graph which supports the GeoSPARQL standard and also uses an R-Tree
and Stardog, a popular knowledge graph platform that allows the use of custom
connectors in order to enable geospatial support.

A detailed comparative study of centralized geospatial RDF stores is [14],
where different systems were benchmarked and evaluated with datasets of up to
90 GB size. Strabon [19] achieves the best overall score in most scenarios, such as
the macro and scalability, whereas GraphDB2 also performed very well on bulk
loading and certain types of queries. These results motivated us to use Strabon
and GraphDB as the baseline systems for the performance comparison with the
new distributed implementation we are presenting in Sect. 3.

Apart from triple stores that store and query RDF graphs, GeoSPARQL query-
ing is also supported in the context of Ontology-Based Data Access (OBDA),
where data are stored in a spatially-enabled RDBMS, and GeoSPARQL to SQL
translation is performed by the system in order to delegate query processing to
the underlying database. Ontop-spatial [4], a geospatial extension of Ontop [6],
was the first OBDA system able to answer GeoSPARQL queries on top of geospa-
tial relational databases, performing on-the-fly GeoSPARQL-to-SQL translation
using ontologies and mappings. The aim of Ontop-spatial is to allow integrating
multiple geospatial sources, without converting, materializing and persisting orig-
inal data as RDF. More recently, support for the GeoSPARQL query language has
also been added to the main Ontop branch since version 4.13.

SPARQL Query Processing in the Cloud. The increasing size of available RDF
data has exceeded the capacity of single node systems. As a result, a large num-
ber of approaches for querying RDF graphs in the cloud rely on existing robust
and widely used distributed data processing frameworks [17]. Among these sys-
tems, in-memory distributed data processing frameworks, and especially Spark,
1 http://graphdb.ontotext.com/documentation/free/.
2 http://graphdb.ontotext.com/documentation/free/.
3 https://ontop-vkg.org/guide/releases.html# 4-1-0-february-28-2021.

http://graphdb.ontotext.com/documentation/free/
http://graphdb.ontotext.com/documentation/free/
https://ontop-vkg.org/guide/releases.html#_4-1-0-february-28-2021
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are amongst the most prominent and fast solutions for SPARQL processing. For
example S2RDF [23] uses Spark to precompute specific semi-joins, PRoST [7]
explores different storage strategies for RDF data as tabular data used by Spark,
such as a single triples table, vertical partitioning and property tables. [2] extend
the work of PRoST by examining several processing option in Spark. SPAR-
QLGX [11] compiles triple patterns of a SPARQL query into operations over
Spark’s resilient distributed datasets (RDDs). S2RDF and PRoST are the more
relevant systems to our approach, as they employ query translation in order to
transform each SPARQL query into an SQL query that is executed using the
corresponding API offered by Spark.

Parallel and Distributed Geospatial Query Processing. The first systems for dis-
tributed spatial query processing on the Hadoop ecosystem were implemented
as extensions of the MapReduce paradigm, such as SpatialHadoop [9], Hadoop-
GIS [1], and Parallel Secondo [20]. Hadoop provides a fault tolerant environ-
ment for parallel execution, but storing intermediate results to disk according
to MapReduce increases the execution time for spatial operations. Hence, the
in-memory execution model of Spark became very popular as it reduces the
execution time drastically, compared to MapReduce jobs [12]. Following this
trend, many Spark-based systems included geospatial support, most notable of
which are the systems STARK [13], GeoSpark/Sedona [26,27], Magellan [24]
and Spatial-Spark [25]. In the context of this work, we will only consider the
Spark-based systems as they reportedly achieve better performance [12,13] than
the Hadoop-based systems. Eldawy and Mokbel have presented a survey paper
and tutorial on these systems [8,10].

The above systems have also been compared regarding their functionality
in [22]. GeoSpark/Sedona is found to be the most complete system, both in terms
of functionality and performance, as it now offers support for spatial datatypes
such as points, rectangles, polygons and lines, and spatial operations such as
different kinds of spatial joins (e.g., contains, intersects, touches, overlaps) and
distance-based joins. It supports several partitioning techniques such as Equal-
grid, Hilbert, R-Tree, Voronoi and Quad-Tree. Spatial indexes like R-Tree or
Quad-Tree are provided in the Spatial Query Processing layer. Sedona’s index
can be persisted either in memory or in disk for later use from the same pro-
gram. It can be used via its Java or Scala API and also via an SQL interface that
expands Spark SQL. Finally, Sedona is currently an Apache incubating project4

and it is actively maintained and enhanced5.
Finally, to the best of our knowledge, the only system that deals with a form

of distributed spatial RDF processing is the DiStRDF system [21]. DistRDF
accepts SPARQL queries, along with a set of spatial and temporal constraints
for each query. DistRDDF does not support the GeoSPARQL language, it only
considers point geometries and the user can only express a spatial range query
for a given box or circle. In contrast, Strabo 2 accepts GeoSPARQL queries,

4 https://sedona.apache.org/.
5 https://github.com/apache/incubator-sedona/.

https://sedona.apache.org/
https://github.com/apache/incubator-sedona/
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supports different kinds of geometries, and besides spatial range queries, it
also supports spatial joins and distance-based joins queries defined in the
GeoSPARQL language.

3 The Strabo 2 System for Distributed GeoSPARQL
Processing

In this section we present the technical details of the Strabo 2 system, starting
with its architecture, which is shown in Fig. 1.
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Fig. 1. Architectural overview of Strabo 2

The system consists of two main modules: the data loader and the query
executor. The data loader is shown in the right part of Fig. 1 and is responsible
for reading and importing into a HIVE database the RDF files from the file
system. The query executor module accepts the input GeoSPARQL queries, and
it performs query translation. The result of this process is a series of Spark SQL
queries that also contain spatial functions provided by the Sedona library.

3.1 Data Loader

The Strabo 2 data loader imports RDF graphs encoded with N-Triples serial-
ization, in Text or Parquet files located in multiple folders. The tool works very
well with partitioned files (Text or Parquet) which further speeds up ingestion.
The output of the loading process is a set of tables in a Hive database.

The parameters of the data loader are the following: (i) The name of the
output Hive database. (ii) Selecting the relational schema for the thematic data.
Currently only vertical partitioning and a single triples table are supported. (iii)
Optional physical partitioning on the columns of the created tables. (iv) Using
HiveQL or Spark SQL dataframe API as the data definition language. (v) Hive
table format: Parquet is the default file format, as it is highly efficient and also
uses columnar compression, which results in decreased size. (vi) A JSON file
with common IRI namespace prefixes related to the ingested dataset.

The Common Prefixes JSON file is constructed manually per imported dataset.
This file guides the partial dictionary encoding of the IRIs at a later stage and, at
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the very least, it should contain common namespace prefixes from XML, RDF,
RDFS and GeoSPARQL vocabularies which are encountered in many datasets.
The data loader uses the common namespace prefixes in nsprefixes, it applies
partial dictionary encoding on all IRIs of thematic and spatial RDDs. This effec-
tively simulates the main part of an N-Triples to Turtle conversion with the empha-
sis being on achieving a substantial first-level compression of the ingested dataset.
After the initial parsing to Spark RDD, the data loader proceeds with the inference
of the geospatial WKT serialization predicates which are consequently persisted
to the aswktprops(value) Hive table. The process involves searching for triples
matching the triple pattern (?s rdfs:subPropertyOf geo:asWKT) and using the
matching subject ?s as a geospatial property. Finally, using the common names-
pace prefixes in nsprefixes, the data loader applies partial dictionary encoding
on all IRIs.

After the initial loading, the data loader creates the geometry linking tables,
aiming to achieve efficient spatial processing during query execution. These tables
take into consideration the GeoSPARQL vocabulary in order to store in the
same table information about the entities, the corresponding geometries and the
serialization of the geometries, so that during query execution joins between
the corresponding tables of the VP schema (or the corresponding self joins on
the single triples table) can be avoided. Also, during this step, for these tables,
the loader creates the binary geometry column from the serializations, using
the ST GeomFromText function of Sedona. The geometry linking tables are cre-
ated as follows. For each VP table that corresponds to some subproperty of
the GeoSPARQL hasGeometry property, we compute the object-subject join
with any other table that corresponds to some subroperty of the GeoSPARQL
hasSerialization property.

As an example consider the following triples, where we have omitted the
full IRIs for ease of presentation. The example comes from a sea ice mapping
using satellite images application that we have implemented using Strabo 2 in
the context of European project ExtremeEarth6. Drift ice is sea ice that is not
attached to the shoreline or any other fixed object (shoals, grounded icebergs,
etc.). Unlike fast ice, which is “fastened” to a fixed object, drift ice is carried
along by winds and sea currents, hence its name.7.

Ice1 type IceObservation . Ice1 hasCT "Drift Ice" .

Ice1 observationGeom Geo1 . Geo1 asWKT "POINT (10 10)" .

Img1 type SatelliteImage . Img1 imageGeom Geo2 .

Geo2 asWKT "POLYGON (8 8, 12 8, 12 12, 8 12, 8 8 )" .

According to the VP schema, a separate table corresponding to each distinct
predicate will be created in Hive. These are the first five tables shown in Fig. 2.
Also, in this example, the properties imageGeom and observationGeom are sub-
properties of the GeoSPARQL hasGeometry property, and the property asWKT is
a GeoSPARQL property that is subproperty of hasSerialization. As a result,

6 https://earthanalytics.eu/.
7 https://en.wikipedia.org/wiki/Drift ice.

https://earthanalytics.eu/
https://en.wikipedia.org/wiki/Drift_ice
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the geometry linking tables observationGeom-asWKT and imageGeom-asWKT will
also be created.

type
Ice1 IceObservation
Img1 SatelliteImage

hasCT
Ice1 “Drift Ice”

observationGeom
Ice1 Geo1

imageGeom
Img1 Geo2

asWKT
Geo1 “POINT (10 10)”
Geo2 “POLYGON (8 8, 12 8,

12 12, 8 12, 8 8 )”

observationGeom-asWKT
Ice1 Geo1 0111100100...

imageGeom-asWKT
Img1 Geo2 00110100100...

Fig. 2. Tables created in Hive

After data loading, during system startup, we also create in-memory spatial
indexes on the geometry columns of the geometry linking tables. Due to the fact
that clustered indexes cannot be defined when accessing Sedona from the SQL
interface, we use the Scala/RDD interface. The following code is executed for
each geometry linking table:

var spatialDf = _sqlContext.sql("SELECT entity,

geometry, binary_geometry FROM observationGeom-asWKT")

spatialDf.registerTempTable(tableStat.tName)

spatialRDD = Adapter.toSpatialRdd(spatialDf, "binary_geometry")

spatialRDD.buildIndex(IndexType.QUADTREE, false)

spatialRDD.indexedRawRDD.persist(StorageLevel.MEMORY_AND_DISK);

3.2 Query Executor

The second module of Strabo 2 is the query executor shown in the left part
of Fig. 1. The query executor accepts GeoSPARQL queries from the user, and
transforms them to a series of Spark SQL queries that access the Hive tables
(and in some cases the spatial RDD indexes) created by the loader. The spatial
operators of GeoSPARQL are translated to corresponding spatial functions and
predicates offered by the Apache Sedona library, which operates on top of the
Spark engine. The translation mechanism of the query executor depends on
the Ontop-spatial system [5]. Ontop-spatial is a system for GeoSPARQL-to-
SQL query translation over arbitrary relational schemas, through the means
of mappings defined in the W3C recommendation mapping language R2RML8,
that construct RDF terms from the database values.

In order to use Ontop-spatial for query translation in the query executor
module of Strabo 2, we had to perform several modifications and improvements
in order to use Spark as a backend and work with the RDF data stored in
Hive. First of all, as in our case the data loader stores the data according to
8 https://www.w3.org/TR/r2rml/.

https://www.w3.org/TR/r2rml/
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a specific storage schema, we had to provide mappings that reconstruct the
original RDF triple for each tuple in the Hive tables. In the normal setup of
Ontop-spatial, the user has to manually construct the mappings. In our case,
as the Hive schema is predetermined from the loader, we can avoid this process
and instead, during system startup, automatically construct the mappings for
the thematic and the geometry linking tables. As an example, consider the table
hasCT of Fig. 2 constructed from the data loader. The following mapping is
generated and provided as input to the Ontop-spatial translation mechanism:

{subject} hasCT "{object}"^^<http://www.w3.org/2001/XMLSchema#string> <-

SELECT subject, object FROM hasCT

The right-hand side of the mapping is a SQL query that can be executed by
Spark, whereas the left-hand side is a template that defines how triples should
be generated, using the output columns of the SQL query within curly brackets.
Ontop-spatial takes as input a set of such mappings and accesses the metadata of
the database in order to gather necessary information that will guide the query
translation. Again, as Spark is not compatible with the Ontop-spatial system,
we provide the specific metadata automatically, during system start-up, using
information from the Hive created tables. This information includes the tables
that reside in the database, the data types of each column and information about
primary keys. As in the case of the mappings, this information is constructed
automatically by Strabo 2.

Once Ontop-spatial has been provided with the set of mappings and the
metadata, it is ready to accept GeoSPARQL queries. The input GeoSPARQL
query is initially parsed and transformed in an intermediate form, based on logic
programs, and finally into SQL queries on the dialect of Spark SQL. During
this procedure, the spatial operators of GeoSPARQL are transformed to spa-
tial functions and predicates provided by Apache Sedona. Currently, we support
the translation of all simple features relations of GeoSPARQL, and also of the
GeoSPARQL functions, including the distance function, that corresponds to dis-
tance based joins in Sedona. In order to demonstrate query translation, consider
the following initial GeoSPARQL query:

SELECT ?img WHERE {

?observation type IceObservation .

?observation hasCT "Drift Ice"^^<http://www.w3.org/2001/XMLSchema#string> .

?observation observationGeom ?obsGeo . ?g1 geo:asWKT ?obsWKT .

?img type SatelliteImage . ?img imageGeom ?imgGeo . ?imgGeo asWKT ?imgWKT .

FILTER (geof:sfIntersects(?obsWKT, ?imgWKT)). }

This query asks for satellite images, such that the geometry of the image
intersects with the geometry of an observation that has class type drift ice.
The query uses the GeoSPARQL topological relation geof:sfIntersects with
arguments the corresponding geometries. Default query translation will produce
the following query that will be sent for execution to the Spark engine, where
function ST Intersects is defined in the Apache Sedona library:
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SELECT qview5.subject AS img

FROM type qview1, hasCT qview2, observationGeom qview3, asWKT qview4,

type qview5, imageGeom qview6, asWKT qview7

WHERE

qview1.object = ’IceObservation’ AND qview2.object = ’Drift Ice’ AND

qview1.subject = qview2.subject AND qview1.subject = qview3.subject AND

qview3.object = qview4.subject AND qview5.object = ’SatelliteImage’ AND

qview5.subject = qview6.subject AND qview6.object = qview7.subject AND

ST_Intersects(ST_GeoFromText(qview4.object),ST_GeoFromText(qview7.object))

Using Geometry Linking Tables. The default translation only uses the tables of
the VP schema. In order to obtain a more efficient query, during translation we
identify joins between subproperties of hasGeometry and hasSerialization.
According to the GeoSPARQL vocabulary, in order to access the geometry seri-
alization of an entity, the query needs to contain two triple patterns. The first
pattern relates the entity with its geometry though the hasGeometry property
(or a subproperty), and the second pattern relates the geometry with a serial-
ization through the hasSerialization property (or a subproperty). By taking
advantage of the fact that such joins between triple patterns usually occur in
GeoSPARQL queries, and having computed the corresponding geometry linking
tables during import, we can save one join if we replace the access to the two
tables, with access to the corresponding geometry linking table. In our example
query, we identify two such cases, one for the join between observationGeom
and asWKT, and the second one for the join between imageGeom and asWKT. The
optimized SQL query is shown below, and it contains two less joins from the
default translation.

SELECT qview4.subject AS img

FROM type qview1, hasCT qview2, observationGeom-asWKT qview3,

type qview4, imageGeom-asWKT qview5

WHERE

qview1.object = ’IceObservation’ AND qview2.object = ’Drift Ice’ AND

qview1.subject = qview2.subject AND qview1.subject = qview3.entity AND

qview4.object = ’SatelliteImage’ AND qview4.subject = qview5.entity AND

ST_Intersects(qview3.binary,qview5.binary)

Pushing Thematic Processing Before Spatial Joins. The query produced so far is
optimized in the sense that it avoids extra thematic joins between the geometry
related tables, but it still contains a spatial join that poses a potentially heavy
burden on the execution engine. The reason for that is that in order to perform
the spatial join, Sedona will either perform a distributed GSJoin algorithm,
where it will spatially partition the two input operands of the join, and also create
a local spatial index at each partition, or, if the datasets are small, it will perform
a broadcast join algorithm, where it will partition the larger input, and it will
replicate the smaller [27]. In any case, the spatial join will lead to data shuffling
and computationally heavy processing. Also, the Spark catalyst optimizer treats
the spatial UDF as a black box, as it does not take into consideration the cost
of the spatial partitioning and indexing, and in many cases it will not optimally
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optimize the produced query with respect to the join order of the operators.
For this reason, in Strabo 2 query translator we follow a heuristic that aims
at minimizing the size of input operands of the spatial join. Specifically, we
push thematic processing before the spatial join operators in the final produced
query. The rationale is that thematic processing on each side of the spatial
join input will limit the size of the intermediate result that has to be spatially
partitioned and indexed. In our example query, for the input that corresponds
to ice observations, we will first apply the filter that ensures that we only need
resources about ice observations, we will perform the thematic join corresponding
to the hasCT predicate and also the filter that ensures that the classification
result is drift ice. This will limit the number of geometries that need to be
processed, in contrast with a bad execution plan, where, for example, we first
partition all geometries and then perform the join corresponding to the hasCT
predicate and filter out the observations that correspond to drift ice. In order
to ensure the execution plan according to our heuristic, we identify spatial joins
during the translation process, and then we decompose the result in different
subqueries, that are sequentially sent for execution. In our example, we will first
produce two subqueries that create temporary views corresponding to the two
inputs of the spatial join, and one final query that performs the spatial join
between these two intermediate results:

CREATE TEMPORARY VIEW TEMP1 AS

SELECT qview3.binary as qview3_binary

FROM type qview1, hasCT qview2, observationGeom-asWKT qview3,

WHERE

qview1.object = ’IceObservation’ AND qview2.object = ’Drift Ice’ AND

qview1.subject = qview2.subject AND qview1.subject = qview3.entity

CREATE TEMPORARY VIEW TEMP2 AS

SELECT qview5.binary as qview5_binary, qview4.subject as qview4_subject

FROM type qview4, imageGeom-asWKT qview5

WHERE

qview4.object = ’SatelliteImage’ AND qview4.subject = qview5.entity

SELECT TEMP2.qview4_subject AS img

FROM TEMP1, TEMP2

WHERE ST_Intersects(TEMP1.qview3_binary,TEMP2.qview5_binary)

Using Persistent Spatial Indexing and Partitioning. As described in Sect. 3.1,
both thematic and spatial RDF data are stored in disk in a Hive database accord-
ing to the specified schema and the geometry linking tables of the dataset. Dur-
ing query execution, the Spark execution engine loads the necessary fragments of
thematic data in memory. Geometries have the same treatment. In case of spa-
tial selection, we have to read the geometries from the disk, build an in-memory
spatial index and/or partitioning during query execution time and discard this
index/partitioning afterwards. If the next query is again a spatial selection, this
process has to be repeated. Unfortunately, this is an inherent issue of Apache
Sedona when we access it from the SQL interface, due to the fact that clustered
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indexes cannot be defined in Spark SQL. In order to take advantage of persistent
spatial indexes and partitioning, we have implemented a hybrid translation to
both the SQL and RDD/Scala interface, that accesses the cached spatial RDDs
that have been created during import. Then, for each query, we modify the
intermediate translation that is in the form of a logic program rule, before the
final translation into SQL, by identifying spatial FILTER clauses that can be
evaluated efficiently using the spatial index, and then by replacing the atoms
corresponding to the specific spatial operation by temporary atoms that corre-
spond to the intermediate result after accessing the persistent spatial structure.
As an example, consider a query that asks for ice observations and the class
name assigned to them, such that their geometries intersect a given polygon:

SELECT ?x ?ctName

WHERE { ?x type IceObservation . ?x hasCT ?ctName .

?x hasGeometry ?geo1 . ?geo1 asWKT ?wkt .

FILTER(geof:sfIntersects(?wkt,"POLYGON((1 0,3 0,4 4,1 0))"^^geo:wktLiteral)).}

The translation result without using the spatial RDD that has been created
during import, is the following:

SELECT qview1.subject AS x, qview2.object AS ctName

FROM type qview1, hasCT qview2, observationGeom-asWKT qview3,

WHERE

qview1.object = ’IceObservation’ AND qview1.subject = qview2.subject AND

qview1.subject = qview3.entity AND

ST_Intersects(qview3.binary,POLYGON((1 0,3 0,4 4,1 0)))

By identifying the spatial filter during the transaltion, we can see that we can
use the spatialRDD for its evaluation. In order to do that, we are replacing access
to table observationGeom-asWKT with a new temporary table, that corresponds
to the result of the access to the spatial index. First, we access the spatial index
and take the result of the intersection with the given polygon, transform the
result into a dataframe and save it in the temporary table with name temp.

val rangeQueryWindow = wktReader.read("POLYGON((1 0,3 0,4 4,1 0))")

val considerBoundaryIntersection = true

val usingIndex = true

var queryResult = RangeQuery.SpatialRangeQuery(spatialRDD,

rangeQueryWindow,considerBoundaryIntersection, usingIndex)

Adapter.toDf(queryResult).createGlobalTempView("temp")

Finally, we issue the following SQL query, that accesses the temporary result
instead of the table observationGeom-asWKT:

SELECT qview1.subject AS x, qview2.object AS ctName

FROM type qview1, hasCT qview2, temp qview3,

WHERE qview1.object = ’IceObservation’

AND qview1.subject = qview2.subject AND qview1.subject = qview3.entity
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4 Experimental Results

In this section we present the experimental evaluation of Strabo 2, with three
main objectives. First, we evaluate the system as a whole, including the ability
to scale with respect to the cluster and dataset size. Second, we evaluate specific
aspects of the system, and importantly the impact of the improvements and
optimizations. Last, as Strabo 2 is the first distributed system able to handle
geospatial queries on RDF graphs, we compare the performance of Strabo 2
with that of existing centralized GeoSPARQL processing systems in a single
server environment.

4.1 Datasets and Queries

We have used the following datasets and queries: (i) Scalability Workload. This is
a real-world dataset based on Open Street Maps from the Geographica 2 bench-
mark, which features a set of increasingly larger datasets (up tom 500M triples)
and a queryset of 3 queries: 1 spatial selection (SC1) and 2 spatial joins (SC2,
SC3). (ii) PregenSynthetic Workload. This is based on the synthetic workload of
the Geographica 2 benchmark, but it has been modified so that it now uses a
distributed Spark-based generator. (iii) ExtremeEarth Workload. This is a real-
world dataset accompanied by 12 GeoSPARQL queries that were produced after
analyzing end-user needs from the use cases of the project. The queries use a
combination of spatial selections and spatial joins (including distance joins). The
dataset has a size of 32 GB in N-Triples format.

4.2 Results in Distributed Environment

The experiments were carried out in a cluster provided by CREODIAS9 con-
sisting of 53 virtual processing cores and 164 GB of RAM. The Hopsworks
platform v. 2.1.0 was used as the execution environment10 providing access
to an underlying Hadoop v. 3.2.0 installation with Spark v. 2.4.3 and Hive v.
3.0.0. Hopsworks is an open-source platform that provides an execution envi-
ronment for distributed data science and data engineering tasks and extends
Hadoop with an optimized distributed metadata architecture [16]. In the exper-
iments, we set the number of shuffle partitions in Strabo 2 (Spark parameter
spark.sql.shuffle.partitions) to be 5x the number of virtual cores in each
setting.

As a first experiment, we determined the largest possible PregenSynthetic
dataset that can be generated and imported in Strabo 2 using the aforemen-
tioned cluster, in order to stress the system given the available resources. As
a result, we have generated the dataset for scaling factor 16384 and we have
generated all the thematic tags. The size of the dataset is 156 GB in compressed
Parquet format, which corresponds to an initial size of 1.16 TB in N-Triples

9 https://creodias.eu/.
10 https://www.hopsworks.ai/.

https://creodias.eu/
https://www.hopsworks.ai/
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text format. We have also generated 72 queries with spatial selectivities of 1%,
0.1% and 0.01% and thematic selectivities corresponding to values 4096, 8192
and 16384 (a thematic selectivity with value M means that one every M entitites
is annotated with a thematic tag that has the corresponding value). We have
used 22 executors with 6120 MB of memory and 2 virtual cores per executor. The
data loader finished import in 4.5 hours. It is worth mentioning that, according
to our experiments, this size of input datasets is much larger from what central-
ized geospatial RDF stores can ingest using a setup similar to the one described
in Sect. 4.3. The total execution time for the 72 queries is 7711 seconds, which
gives an average execution time of 107 seconds per query. The queries and the
execution time for each query can be found in the supplemental material. We
have also used 12 executors with 2 virtual cores with 4096 MB memory each, in
order to execute the 12 queries from the ExtremeEarth dataset. The data loader
in this case executed the import in 34 minutes. The average execution time was
122 seconds.

In further experiments, and in order to evaluate the specific aspects and
improvements in query execution we have used the PregenSynthetic generator
to generate a dataset with scale factor 1024 and queries for spatial selectivities of
1%, 0.1% and 0.01% and thematic selectivities corresponding to values 256, 512
and 1024. As before, we generate all thematic tags. In total we have generated
72 queries. We use 4 worker nodes, each one with 2 virtual cores and 4096 MB
of memory. First, in order to evaluate the impact of the hybrid translation with
persistent spatial index and partitioning, as described in Sect. 3.2, we have exe-
cuted the 18 queries that contain a spatial selection with and without the spatial
index. The total execution time when using the persistent spatial index and par-
titioning, drops from 111 s to 54 s, leading to a reduction in execution time
of more than 50%. The exact execution times are included in the supplemental
material.

We also executed the spatial join queries using the default translation, in
order to compare it with the optimized translation that pushes the thematic
processing before spatial joins. In all cases the optimized translation was much
faster, in some cases, especially for queries with few results, more than 10x. The
reason for that is that the Spark catalyst optimizer, when it takes as input the
default translation query, it chooses to partition and index all the geometries
on the geometry linking tables for the left side of the spatial join. We have also
executed queries with thematic selectivity equal to 1. In this case the thematic
processing does not filter out any values. In this extreme scenario, the default
translation performs similarly with the optimized one.
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Fig. 3. Scalability of Strabo 2 with varying number of executors (left) and varying
dataset size (right)

Regarding the ability of the system to scale in the distributed setting, we
used the Scalability Workload and the results are presented in Fig. 3. In the left
side of the picture we have used the 500M dataset and executed the three queries
with 1, 2, 4, 8 and 16 executors. In the right side we use 8 executors with the
datasets from 100K to 500M triples. In both cases each executor had two cores
and 6600 MB of memory. In the plots we also show the ideal speedup/linear
scalability. In both experiments Strabo 2 exhibits very good behavior for both
spatial selection and spatial join queries as in both scenarios, the spatial selection
and the low selectivity join exhibit scaling very close to linear. The most difficult
query to scale is the high selectivity join where large intermediate results needs
to be saved, but even in this case the improvement as we add more executors is
substantial.

4.3 Results in Centralized Environment

In order to perform a comparison between centralized RDF stores and Strabo
2, we selected the two most competitive systems from the Geographica 2 bench-
mark, namely Strabon and GraphDB. For Strabon we used v3.3.2-SNAPSHOT
and for GraphDB v9.10.3. The test server was a Dell Inc PowerEdge R820 with
128 GB, with an Intel(R) Xeon(R) CPU E5-4603 v2 @ 2.20 GHz with 32 exe-
cution threads, running Ubuntu 18.04.6 LTS. The system also features a Post-
greSQL v12.10 installation as it is required by Strabon and was appropriately
tuned. For disk-based centralized systems we report both warm cache and cold
cache times. For GraphDB the Preload loading tool was used for all repositories.
For Strabo 2 we used Spark 2.4.5 and Hive 2.3.6. We also used all available
processing threads and we set 116 GB of memory available to Spark, although
even for the 500M dataset half of this amount was enough.

In this set of experiments we have used the Scalability Workload and the
PregenSynthetic workload. For the latter, four increasingly bigger datasets were
generated, with scaling factor N in {512, 768, 1024, 2048}. For each dataset
the corresponding query set had two thematic tags to help achieve the least
and maximum thematic selectivity and the spatial selectivity list was fixed to
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(100%, 10%, 1%). The execution results for the scalability workload are shown in
Fig. 4. From the two centralized systems, Strabon exhibits better performance. In
comparison with Strabon, Strabo 2 performs worse for the small datasets, but
once the datasets size is increased, especially for the 100M and 500M, Strabo 2
in most cases outperforms the centralized solutions. An important point is that
both centralized systems scale poorly when we increase the dataset size beyond
10M triples. As an example, even in the warm cache setting for spatial join 1,
where Strabon performs faster than Strabo 2 with execution time of 133.29 s,
we have an increase of 10x in execution time from the 100M case, whereas the
corresponding increase for Strabo 2 is 6x. Due to space limitation we omit
the full results for the PregenSynthetic workload, which are available at the
supplemental material, but the systems exhibit similar behaviour. Especially for
the dataset with scaling factor of 2048, from the total 28 queries, GraphDB had
12 timeouts and an average time of 82 and 45 seconds (cold and warm cache)
for the 16 succeeded queries, whereas Strabon and Strabo 2 had no timeouts
with average execution time of 134 and 105 seconds (cold and warm cache)
from Strabon and only 28 seconds for Strabo 2.

Fig. 4. Execution results for scalability workload

5 Conclusions and Future Work

We presented Strabo 2, the first distributed geosaptial RDF store, able to
handle massive datasets beyond the capabilities of centralized systems. Through
experimental evaluation, we showed that Strabo 2 is faster even in a single
server environment, once the dataset size reaches several GBs, by taking advan-
tage the parallel multi-threaded execution carried out by Spark. For future work
we plan to cover the GeoSPARQL RCC8 and Egenhofer topological relations
and the Query Rewrite Extension.

Supplemental Material Statement: Strabo 2 source code and exprimental
results are publicly available11. Scalability and Synthetic workloads are avail-
11 https://github.com/db-ee/Strabo-2.

https://github.com/db-ee/Strabo-2
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able at the Geographica 2 website. ExtremeEarth datasets and queries can be
found at the GitHub repository of the project12.
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Abstract. Controlled Query Evaluation (CQE) has been recently stud-
ied in the context of Semantic Web ontologies. The goal of CQE is con-
cealing some query answers so as to prevent external users from infer-
ring confidential information. In general, there exist multiple, mutually
incomparable ways of concealing answers, and previous CQE approaches
choose in advance which answers are visible and which are not. In this
paper, instead, we study a dynamic CQE method, namely, we propose to
alter the answer to the current query based on the evaluation of previous
ones. We aim at a system that, besides being able to protect confidential
data, is maximally cooperative, which intuitively means that it answers
affirmatively to as many queries as possible; it achieves this goal by
delaying answer modifications as much as possible. We also show that
the behavior we get cannot be intensionally simulated through a static
approach, independent of query history. Interestingly, for OWL 2 QL
ontologies and policy expressed through denials, query evaluation under
our semantics is first-order rewritable, and thus in AC0 in data com-
plexity. This paves the way for the development of practical algorithms,
which we also preliminarily discuss in the paper.

Keywords: Ontologies · Data protection · Description logics ·
First-order rewritability

1 Introduction

Semantic Web technologies are increasingly used to represent and link together
different sources of information coming from public organizations as well as pri-
vate citizens. This information may include sensitive knowledge, e.g. medical
records or social network activities, whose disclosure may affect the privacy of
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individuals if not adequately protected [8,16]. Furthermore, OWL 2 ontologies
allow one to infer implicit information from explicit data, which amplifies the
risk of information leakage.

One goal of confidentiality-preserving data publishing is to prevent the dis-
closure of sensitive information to unauthorized users while being as cooperative
as possible, that is, answering queries honestly whenever this does not harm con-
fidentiality. Specifically, in controlled query evaluation (CQE) [3,4] the data pro-
tection policy is declaratively specified through logical formulas and is enforced
by altering query answers through so-called censors, which either refuse to answer
some queries or lie when this is needed to protect some secrets. In general, there
exist multiple, mutually incomparable ways of concealing answers, i.e., mutually
incomparable censors. Different works have proposed static CQE methods, where
a censor is constructed (or approximated) beforehand, establishing once and for
all which queries should be answered truthfully [8,11,13,15,17]. In several cases,
such approaches are not fully cooperative, because the secure view of the data
is chosen without taking the users’ interests into account.

Conversely, following the work of Biskup and Bonatti [5], in this paper we
introduce a dynamic CQE (dynCQE) method that progressively decides whether
being truthful or lying, based on the specific stream of queries. Roughly speaking,
the dynamic CQE approach selects, at each step, as many censors as possible,
coherently with the previous answers. By doing so, it maximizes the possibility of
answering the next query honestly by choosing from the current pool of censors
those that allow to answer the query truthfully (if any).

We will prove that this method satisfies the so-called “longest honeymoon”
property, which means that, given a sequence of queries, dynCQE returns the
longest possible sequence of honest answers before lying. This property can be
supported with several arguments. First, without any specific model of the users’
intentions, the order in which queries are posed allegedly reflects their impor-
tance. Secondly, since we cannot foresee which nor how many queries are coming
in the future, answering honestly the current query (if possible) is the most
cooperative possible strategy. We will prove also that dynCQE is optimal in a
more classical sense: the set of queries honestly answered by dynCQE is always
maximal under set containment.

After introducing the dynCQE framework and formally investigating its gen-
eral properties (Sect. 3), the paper focuses on ontologies in OWL 2 QL [19], a
tractable profile of OWL 2 designed for data-intensive applications. For this set-
ting, in Sect. 4, we first show that the behavior of dynCQE cannot be simulated
by static CQE through data-independent modifications of the intensional com-
ponents of the framework, i.e., the ontology (TBox) and the formulas represent-
ing the data protection policy. It is thus necessary to devise specific techniques
to implement the dynamic approach. To this aim, we provide a tailored query
rewriting algorithm through which we show that dynCQE query processing in
OWL 2 QL is first-order rewritable, which implies that its data complexity is
in AC0 (like the evaluation of first-order sentences, i.e., SQL, queries). Towards
practical implementations, in Sect. 5, we present a first optimization of the query
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reformulation technique used to prove the first-order rewritability result, based
on the information acquired by the system during the interaction with users; we
also present a possible approximation of the approach, should the sequence of
queries become too long for our rewriting technique. A section on related work
and one on final remarks conclude the paper.

2 Preliminaries

For the technical treatment we resort to Description Logics (DLs), which are decid-
able fragments of First-Order (FO) logic underpinning the OWL 2 standard. We
introduce here the basic notions needed in this work and refer the reader to [1] for
further details. The languages of our interest are built from an alphabet Γ that con-
sists of unary predicates (a.k.a. atomic concepts), binary predicates (a.k.a. atomic
roles), constants (a.k.a. individual names), and a countably infinite supply of vari-
ables. An atom is a formula of the form A(t) or P (t1, t2), where A is an atomic con-
cept, P is an atomic role, and the terms t, t1, t2 are either variables or constants.
An atom is ground if all its terms are constants.

A DL ontology O = T ∪ A is constituted by a TBox T and an ABox A,
specifying intensional and extensional knowledge, respectively. In particular, in
this paper we assume that the ABox is a set of ground atoms. A model of an
ontology O = T ∪ A is a FO interpretation that satisfies all axioms in T and A.
O is consistent if it has at least one model, inconsistent otherwise, and entails an
FO sentence φ, denoted O |= φ, if φ is true in every model of O. Given an ABox
A and a FO sentence φ, we say that φ evaluates to true in A if the evaluation
of φ in the Herbrand model of A is true [18], otherwise we say that φ evaluates
to false in A. In the paper, we often refer to the set of ground atoms entailed
by T ∪ A, which we denote with clT (A).

In this work, we focus on ontologies expressed in DL-LiteR [9], which is the
logical counterpart of OWL 2 QL [19]. In this DL, a role R is an atomic role
P or its inverse P−, whereas a concept B takes the form A, ∃P , or ∃P−. The
concepts ∃P and ∃P− denote the domain and the range of a role P , respectively.
A DL-LiteR TBox T is a set of positive inclusions of the form B1 � B2 or
R1 � R2, and negative inclusions of the form B1 � ¬B2 or R1 � ¬R2.

By conj(�x) we mean a conjunction α1∧ . . .∧αn of atoms where �x indicates all
the variables occurring in it. Then, a Boolean Conjunctive Query (BCQ) is an
existentially quantified conjunction of atoms ∃�x(conj(�x)) and a Boolean Union
of Conjunctive Queries (BUCQ) is a disjunction q1∨. . .∨qn of BCQs. Sometimes
we write q ∈ q′ to indicate that the BCQ q is one of the BCQs of the BUCQ q′.
Note that a ground atom can be seen as a BCQ with no variables, and that a
BCQ is a BUCQ with only one disjunct.

Given a BCQ q, Atoms(q) is the set of atoms occurring in q. Given two
BUCQs q1 = q11 ∨ . . .∨ qn

1 and q2 = q12 ∨ . . .∨ qm
2 , we denote by q1 ∧ q2 the BUCQ

(q11 ∧ q12) ∨ . . . ∨ (q11 ∧ qm
2 )∨

...
(qn

1 ∧ q12) ∨ . . . ∨ (qn
1 ∧ qm

2 ) .
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We recall that entailment of BUCQs in DL-LiteR is FO rewritable, i.e., for
every DL-LiteR TBox T and BUCQ q, it is possible to compute an FO query qr,
called the perfect reformulation of q with respect to T , such that, for each ABox
A, T ∪A |= q iff qr evaluates to true in A. We will use the algorithm PerfectRef
presented in [9], which uses only positive inclusions in T as rewriting rules to
compute perfect reformulations. We point out that the reformulation returned
by PerfectRef is a BUCQ. The following proposition is from [9].

Proposition 1. Let T ∪ A be a consistent DL-LiteR ontology and let q be a
BUCQ. Then, T ∪ A |= q iff PerfectRef (q, T ) evaluates to true in A.

Furthermore, a policy P is a (finite) set of denials, i.e., sentences of the form
q → ⊥, where q is a BCQ. An interpretation satisfies a denial q → ⊥ iff it does
not satisfy the BCQ q. We denote by q(P) the BUCQ

∨
q→⊥∈P q.

The following proposition follows from the definition of satisfaction of a denial
and from Proposition 1.

Proposition 2. Let T ∪A be a consistent DL-LiteR ontology and let P be a pol-
icy. Then, T ∪P ∪A is a consistent FO theory iff PerfectRef (q(P), T ) evaluates
to false in A.

Our complexity results refer to data complexity, i.e., the complexity com-
puted with respect to the size of the ABox only.

3 Framework

We now introduce our framework. All definitions and properties given in this
section apply to any DL language.

A CQE specification is a pair 〈T ,P〉, where T is a TBox and P is a policy,
such that T ∪ P is consistent. A CQE instance is a triple E = 〈T ,P,A〉, where
〈T ,P〉 is a CQE specification, and A is an ABox such that T ∪ A is consistent.

Censors specify which consequences of an ontology can be disclosed without
violating the policy. The following definition is adapted from [11, Definition 1].1

Definition 1 (Censor). Let E = 〈T ,A,P〉 be a CQE instance. A censor for
E is an ABox C ⊆ clT (A) such that T ∪ P ∪ C is consistent.

Given a CQE instance E and a censor C for E , we say that C is optimal if
there exists no censor C′ for E such that C ⊂ C′. We denote by OptCens(E) the
set of all the optimal censors for E . We observe that a censor for a CQE instance
E always exists,2 and thus OptCens(E) �= ∅. Given a BUCQ q, we denote by
OptCens(E , q) the set of optimal censors that, together with T , entail q:

OptCens(E , q) = {C ∈ OptCens(E) | T ∪ C |= q}
1 Other definitions of censors have been considered in the literature, for example in [15,

17]. Definition 1 is chosen because it yields several important properties, such as
indistinguishability (cf. Sect. 6), and it has been thoroughly investigated in various
settings (e.g., in [10,11]).

2 Trivially, the empty set is a censor for any CQE instance E .
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The following notion of protection state captures the history of queries sub-
mitted by the users to a CQE instance.

Definition 2 (State). Let E = 〈T ,P,A〉 be a CQE instance. A protection
state of E (or simply state of E) is a pair S = 〈E ,Q〉, where Q = 〈q1, . . . , qn〉
(with n ≥ 0) is a sequence of BUCQs.

Below we formalize our idea of dynamic CQE (dynCQE), i.e., a CQE that
takes into account the sequence of queries that have been already processed. In
what follows, given a CQE instance E , a sequence Qn = 〈q1, . . . , qn〉 of BUCQs,
and any integer i ∈ [0, n], we denote with Qi the sequence 〈q1, . . . , qi〉 and with
Si the state 〈E ,Qi〉 of E , with the convention that Q0 is the empty sequence 〈〉.

Definition 3. (Dynamic CQE – dynCQE). Let E = 〈T ,P,A〉 be a CQE
instance, and let Qn = 〈q1, . . . , qn〉 (with n ≥ 0) a sequence of BUCQs. The
set StCens(Sn) of censors of Sn is inductively defined as follows:

– StCens(S0) = OptCens(E);

– StCens(Si+1) =

{
StCens(Si) if StCens(Si) ∩ OptCens(E , qi+1) = ∅,

StCens(Si) ∩ OptCens(E , qi+1) otherwise,
for every 0 ≤ i ≤ n − 1.

For each BUCQ qi occurring in Qn, we say that qi is entailed by Sn, denoted by
Sn |= qi, if T ∪ C |= qi for every C ∈ StCens(Sn). We denote by EntQ(Sn) the
set of queries of Qn entailed by Sn, i.e., EntQ(Sn) = {q ∈ Qn | Sn |= q}.

One can see that, for any i = 1, . . . , n, the set of censors of a state Si is always
non-empty and consists of a subset of the set of censors in its predecessor state
Si−1, i.e. StCens(Si−1) ⊇ StCens(Si) ⊃ ∅. This also means that EntQ(Si−1) ⊆
EntQ(Si) holds for any i = 1, . . . , n.

Informally speaking, each set StCens(Si) (with 1 ≤ i ≤ n) in the above def-
inition progressively selects the optimal censors of E that agree with EntQ(Si).
If none of the surviving optimal censors in StCens(Si) entails (together with T )
a query qi+1, then Si+1 �|= qi+1, so we have that StCens(Si+1) = StCens(Si).
Conversely, if at least one of the censors in StCens(Si), together with the
TBox, entails qi+1, then, according to dynCQE, we have a positive answer, and
StCens(Si+1) keeps only the censors in StCens(Si) that agree with such answer.

As a result, the stream of queries is processed greedily, answering the truth
as long as some of the censors in StCens(Sn) allows to do it (longest honeymoon
approach [5]), as we will formally show below.

Note that, by Definition 3, given a state S = 〈E ,Q〉 and a query q occurring
in Q, we have that either T ∪ C |= q for every C ∈ StCens(S), or T ∪ C �|= q for
every C ∈ StCens(S). This means that S |= q if and only if there exists a censor
C ∈ StCens(S) such that T ∪ C |= q.

Example 1. Some pharmaceutical products may reveal with high accuracy which
kind of disease is affecting a person. For instance, drugs that contain phenytoin,
or that are classified as anti-seizure medications, indicate some form of epilepsy.

Let E = 〈T ,P,A〉 be a CQE instance, where:
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T = {Abc � Antiseizure};
P = {∃x, y(buy(x, y) ∧ Antiseizure(y)) → ⊥,

∃x, y(buy(x, y) ∧ contain(y, phenytoin)) → ⊥};
A = {buy(john,ma),Abc(ma), buy(alice,mb), contain(mb, phenytoin)}.

In words, the TBox states that Abc is an anti-seizure medication, while the policy
conceals the presence of patients suffering from epilepsy.

Let us start by considering an empty sequence of BUCQs. By definition, we
have that StCens(〈E , 〈〉〉) coincides with the set of the optimal censors for E :

– C1 = {buy(john,ma), buy(alice,mb)};
– C2 = {buy(john,ma), contain(mb, phenytoin)};
– C3 = {Abc(ma),Antiseizure(ma), buy(alice,mb)};
– C4 = {Abc(ma),Antiseizure(ma), contain(mb, phenytoin)}.

Let q1 = buy(john,ma) be the first query. The censors C1 and C2 agree with
answering true to this query. All the censors that disagree with such answer are
then removed, obtaining StCens(〈E , 〈q1〉〉) = StCens(〈E , 〈〉〉) ∩ OptCens(E , q1) =
{C1, C2}. Then, let q2 = Abc(ma) be a new query in the sequence. Since neither
T ∪ C1 nor T ∪ C2 entail q2, then StCens(〈E , 〈q1, q2〉〉) = StCens(〈E , 〈q1〉〉). Now,
consider to add q3 = ∃xbuy(x,mb) to the sequence. Since T ∪ C1 |= q3 while
T ∪ C2 �|= q3, we have StCens(S) = {C1}, where S = 〈E ,Q〉 with Q = 〈q1, q2, q3〉.
Clearly, S |= q1 and S |= q3, but S �|= q2. ��

Let E = 〈T ,P,A〉 be a CQE instance. For all states S of E , our dynamic CQE
method is optimal with respect to S, in the sense that we have that EntQ(S) is
never strictly contained in the set of queries of S entailed by any censor C for
E . In order to formalize this property, for all states S = 〈E ,Q〉 and all censors
C for E , let EntQ(Q, C, T ) be the subset of queries of Q entailed by C ∪ T , i.e.
EntQ(Q, C, T ) = {q ∈ Q | T ∪ C |= q}.

Proposition 3. Let E = 〈T ,P,A〉 be a CQE instance, Q = 〈q1, . . . , qn〉 (with
n ≥ 0) be a sequence of BUCQs, and S = 〈E ,Q〉. There exists no censor C ∈
OptCens(E) such that EntQ(S) ⊂ EntQ(Q, C, T ).

Proof. By contradiction, let such a censor C exist and let i be the least index
such that T ∪C |= qi and qi �∈ EntQ(S). By the minimality of i we have that, for
all j ∈ {1, . . . , i−1}, T ∪C |= qj iff qj ∈ EntQ(〈E , 〈q1, . . . , qi−1〉〉). It follows that
C ∈ StCens(〈E , 〈q1, . . . , qi−1〉〉). But then, by definition, we should have that C ∈
StCens(〈E , 〈q1, . . . , qi〉〉), and, consequently, that qi ∈ EntQ(〈E , 〈q1, . . . , qi〉〉) ⊆
EntQ(S) (a contradiction). ��

Moreover, dynCQE is the only way to guarantee that such optimality is pre-
served in the future. One might object that answering the current query q hon-
estly may prevent the system from answering honestly another set of queries Q′

in the future. However, the queries in Q′ might never be submitted, so any cen-
sor that conceals the answer to q now might remain sub-optimal in the future.
This may happen no matter how many additional queries are submitted by the
users. Formally, we have:
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Proposition 4. Let E = 〈T ,P,A〉 be a CQE instance, Q = 〈q1, . . . , qn〉 be a
sequence of BUCQs, and S = 〈E ,Q〉. For all BUCQs qn+1, and for all censors C in
StCens(S) \ StCens(〈E ,Q ◦ 〈qn+1〉〉)3, there exist queries qn+2, qn+3, . . . , qn+k, . . .
such that EntQ(〈q1, . . . , qi〉, C, T ) ⊂ EntQ(〈E , 〈q1, . . . , qi〉〉) for all i > n.

In the above proposition, the hypothesis C ∈ StCens(S)\StCens(〈E ,Q◦〈qn+1〉〉)
implies that qn+1 can be given a positive answer without disclosing any protected
data, but C does not allow a positive answer to qn+1.

Another property of dynamic CQE is that the first answer modification
occurs as late as possible (longest honeymoon property). The following notion of
maximal cooperativity implies and strengthens the longest honeymoon property.

Definition 4 (Cooperativity). Let E = 〈T ,P,A〉 be a CQE instance, Q =
〈q1, . . . , qn〉 (with n ≥ 0) a sequence of BUCQs, and C and C′ two censors for
E. We say that C is more cooperative than C′ with respect to Q if there exists a
non-negative natural number m < n such that

– T ∪ C |= qi ⇐⇒ T ∪ C′ |= qi for every 1 ≤ i ≤ m, and
– T ∪ C |= qm+1 and T ∪ C′ �|= qm+1.

We also say that C is maximally cooperative with respect to Q if there does
not exist any censor C′′ for E that is more cooperative than C.

The following intermediate result shows that a state of a CQE instance cannot
discriminate between two optimal censors if they have answered all the queries
posed so far in the same way.

Lemma 1. Let E = 〈T ,P,A〉 be a CQE instance, Q = 〈q1, . . . , qn〉 (with n ≥ 0)
be a sequence of BUCQs, and C and C′ be two optimal censors for E such that
T ∪ C |= qi ⇐⇒ T ∪ C′ |= qi, for all i ∈ {1, . . . , n}. Then, C ∈ StCens(〈E ,Q〉) iff
C′ ∈ StCens(〈E ,Q〉).

Proof. The proof is by induction on the length of Q.
Case n = 0. Since Q is empty, both C and C′ are in StCens(〈E ,Q〉).
Case n ≥ 1. In this case Q = Q′ ◦ 〈qn〉, where Q′ = 〈q1, . . . , qn−1〉. From

the assumption T ∪ C |= qi iff T ∪ C′ |= qi, for all i ∈ {1, . . . , n}, the following
two facts hold: (i) C ∈ OptCens(E , qn) iff C′ ∈ OptCens(E , qn); (ii) by IH, C ∈
StCens(〈E ,Q′〉) iff C′ ∈ StCens(〈E ,Q′〉). Then, since StCens(〈E ,Q〉) is by Defi-
nition 3 equal either to StCens(〈E ,Q′〉) or to StCens(〈E ,Q′〉) ∩ OptCens(E , qn),
we have the thesis. ��

Then, we prove that for all states S = 〈E ,Q〉 of a CQE instance, the set
StCens(S) coincides with the set of all censors that are maximally cooperative
with respect to Q.

Theorem 1. Let E = 〈T ,P,A〉 be a CQE instance, and Q = 〈q1, . . . , qn〉 (with
n ≥ 0) be a sequence of BUCQs. A censor C for E is maximally cooperative with
respect to Q iff C ∈ StCens(〈E ,Q〉).
3 With Q ◦ 〈qn+1〉 we denote the sequence 〈q1, . . . , qn, qn+1〉.
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Proof. We start by showing that every C ∈ StCens(〈E ,Q〉) is maximally cooper-
ative with respect to Q. Let Sh = 〈E , 〈q1, . . . , qh〉〉, with h ≤ n, and assume by
contradiction that, for some C ∈ StCens(Sn), there exists an optimal censor C′

and a number m < n such that (i) T ∪ C |= qi ⇐⇒ T ∪ C′ |= qi, for each i ≤ m,
and (ii) T ∪ C �|= qm+1 and T ∪ C′ |= qm+1.

Note that the sets StCens(Sh) form by construction a descending ⊆-chain,
hence C is in StCens(Sm). Then, from (i) and Lemma 1, C′ ∈ StCens(Sm) too.

From (ii) we have that C′ occurs in OptCens(E , qm+1) whereas C does
not. Then, on the one hand, since C′ ∈ StCens(Sm) ∩ OptCens(E , qm+1),
StCens(Sm+1) is equal by definition to StCens(Sm) ∩ OptCens(E , qm+1). On the
other hand, StCens(Sm+1) does not contain C, as C is not in OptCens(E , qm+1).
But this means that also StCens(Sn) does not contain C, a contradiction.

Now, we show that if a censor C for E is maximally cooperative w.r.t. Q, then
C ∈ StCens(〈E ,Q〉). By contradiction, assume that C �∈ StCens(〈E ,Q〉). So, there
exists in Q = 〈q1, . . . , qn〉 a query qi such that C ∈ StCens(〈E , 〈q1, ..., qi−1〉〉) \
StCens(〈E , 〈q1, ..., qi〉〉). Hence, there exists a censor C′ ∈ StCens(〈E , 〈q1, ..., qi〉〉)
such that T ∪C′ |= qi, while T ∪C �|= qi and such that T ∪C′ |= qj ⇐⇒ T ∪C |= qj

for every 1 ≤ j ≤ i−1. So, by Definition 4, C′ is more cooperative than C, which
contradicts the fact that C is maximally cooperative. ��

We conclude this section by comparing our new semantics of entailment with
some other semantics from the literature. A first proposed strategy is arbitrarily
choosing an optimal censor [6,13,14]. In this case, it might happen, as also stated
by Proposition 4, that one looses optimality with respect to the state S. For
instance, if one arbitrarily picks censor C2 in Example 1, then EntQ(Q, C2, T ) ⊂
EntQ(S). On the other hand, when the chosen censor C turns out to be optimal
with respect to a state S, then, due to Theorem 1, either C ∈ StCens(S) or C is
not maximally cooperative with respect to Q.

Other two CQE semantics proposed in literature are: (i) skeptical reason-
ing [13,17], where a query q is entailed by a CQE instance E = 〈T ,P,A〉,
denoted by E |= q, if it is entailed by all the optimal censors for E together with
the TBox, i.e., T ∪ C |= q for each C ∈ OptCens(E), and (ii) its approximation,
called IGA semantics [10], under which q is entailed – in symbols, E |=IGA q –
if it is entailed by T ∪ CIGA, where CIGA is the intersection of all the optimal
censors for E , i.e., CIGA =

⋂
C∈OptCens(E) C. The following proposition shows that

skeptically reasoning over all optimal censors is always a sound approximation
of dynCQE.

Proposition 5. Let E = 〈T ,P,A〉 be a CQE instance, Q = 〈q1, . . . , qn〉 (with
n ≥ 0) be a sequence of BUCQs, and q be a BCQ in Q. We have that E |=IGA

q =⇒ E |= q =⇒ 〈E ,Q〉 |= q. The converse does not necessarily hold.

Proof. Suppose that E |=IGA q. By [10, Proposition 1], we already know that
E |= q. Now, since E |= q by definition means that T ∪ C |= q holds for each
C ∈ StCens(S) ⊆ OptCens(E), we trivially have that 〈E ,Q〉 |= q.

As for the converse, consider Example 1. We have that 〈E ,Q〉 |= q1 but
E �|= q1 (and thus, also E �|=IGA q1) because T ∪ C3 �|= q1. ��
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4 First-Order Rewritability of Query Entailment

We now move to the study of computational complexity of query entailment. In
this investigation, we focus on DL-LiteR CQE specifications, i.e., whose TBox
and ABox are expressed in DL-LiteR.

A first way to solve query entailment in a state might consist in finding
a reduction to the stateless CQE approach, for which algorithms are already
known. It turns out, however, that the behavior of dynCQE cannot be intension-
ally simulated by a stateless CQE instance, independent of query history.

Theorem 2. There exist a DL-LiteR CQE specification 〈T ,P〉 and a BUCQ q
such that there exist no DL-LiteR CQE specification 〈T ′,P ′〉 such that, for every
ABox A, OptCens(〈T ′,P ′,A〉) = StCens(S), where S = 〈〈T ,P,A〉, 〈q〉〉.

Proof. Let T = ∅, let P = {C(x) ∧ D(x) → ⊥}, and let q = ∃xC(x). By
contradiction, suppose there exist a TBox T ′ and a policy P ′ such that, for
every ABox A, OptCens(〈T ′,P ′,A〉) = StCens(S).

Now consider the ABox A = {C(a1), C(a2),D(a1),D(a2)}, where a1, a2

are individual names that do not appear in P ′. The optimal censors for
〈T ,P,A〉 are C1 = {C(a1), C(a2)}, C2 = {C(a1),D(a2)}, C3 = {D(a1), C(a2)},
C4 = {D(a1),D(a2)}. Among such optimal censors, only C4 does not sat-
isfy q. Therefore, StCens(S) = {C1, C2, C3}. Since by hypothesis StCens(S) =
OptCens(〈T ′,P ′,A〉), it follows that T ′ ∪P ′ ∪C4 is inconsistent and T ′ ∪P ′ ∪C3

is consistent. Consequently, by Proposition 2, PerfectRef (q(P ′), T ′) evaluates to
true in C4 and evaluates to false in C3.

On the other hand, it is immediate to see that, for every BUCQ q that does
not mention individual names in A, q evaluates to true in C4 only if q evaluates
to true in C3. Consequently, PerfectRef (q(P ′), T ′) evaluates to true in C4 only if
PerfectRef (q(P ′), T ′) evaluates to true in C3. Thus we get a contradiction. ��

We now study the data complexity of the query entailment problem in a state,
i.e., given a state S = 〈E ,Q〉 of a CQE instance E = 〈T ,P,A〉, the problem of
checking whether a BUCQ q in Q belongs to EntQ(S). In particular, we prove
that this problem is FO rewritable, and, so, that it is in AC 0 in data complexity.

We start by showing a fundamental property of query entailment in a state,
which holds for all DLs.

Theorem 3. Let E = 〈T ,P,A〉 be a CQE instance, Q = 〈q1, . . . , qn〉 be a
sequence of BUCQs, and let S = 〈E ,Q〉. For every i such that 1 ≤ i ≤ n,
qi ∈ EntQ(S) iff there exists a censor C for E such that

T ∪ C |=
( ∧

q∈EntQ(Si−1)

q
)

∧ qi

Proof. (⇐:) Suppose there exists a censor C for E such that T ∪ C |=
(
∧

q∈EntQ(Si−1)
q)∧ qi. Then, it follows immediately that there exists an optimal

censor C′ for E such that C′ ⊃ C, consequently T ∪ C′ |= (
∧

q∈EntQ(Si−1)
q) ∧ qi.

Hence, by Definition 3, C′ ∈ StCens(〈E , 〈q1, . . . , qi〉〉). Therefore, qi ∈ EntQ(S).
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(⇒:) Suppose qi ∈ EntQ(S). Now, let C′ be an optimal censor for E such
that C′ ∈ StCens(S). We have that T ∪ C′ |= q for every q ∈ EntQ(S), and
since qi ∈ EntQ(S) and EntQ(Si−1) ⊆ EntQ(S), it follows that T ∪ C′ |=
(
∧

q∈EntQ(Si−1)
q) ∧ qi, thus proving the thesis. ��

Given a BUCQ q and an ABox A, we say that an image of q in A is a
minimal subset A′ of A such that A′ |= q. Furthermore, given a BUCQ q, a
TBox T and an ABox A, we say that an image of qin A with respect to T is a
minimal subset A′ of A such that T ∪ A′ |= q.

Theorem 4. Let E = 〈T ,P,A〉 be a DL-LiteR CQE instance and Q =
〈q1, . . . , qn〉 (with n ≥ 0) be a sequence of BUCQs. For every i such that 1 ≤ i ≤
n, qi ∈ EntQ(S) iff there exists an image IM of PerfectRef ((

∧
q∈EntQ(Si−1)

q) ∧
qi, T ) in clT (A) such that PerfectRef (q(P), T ) evaluates to false in IM .

Now observe that: (i) clT (A) can be computed in PTIME w.r.t. data com-
plexity; (ii) every image of a BUCQ q has a size that is not larger than the
length of the longest BCQ in q; (iii) such a maximum length is a constant w.r.t.
data complexity; (iv) all the conditions in the theorem can be verified in PTIME
with respect to data complexity [9]. This implies that the entailment problem in
a state can be decided in PTIME w.r.t. data complexity.

In the following, we provide a tighter upper bound, showing that this entail-
ment problem is in AC 0 in data complexity. We do so by proving that the
problem is FO rewritable. That is, for every BUCQ q of the state, there exists
an FO query q′ that does not depend on the ABox and is such that q is entailed
in the state iff q′ evaluates to true in the ABox.

To this purpose, we will find an FO query that depends on the intensional
part of the state, i.e., the TBox, the policy and the sequence of queries, and such
that its evaluation on the ABox is true if and only if the condition expressed
in Theorem 4 holds (Theorem 7). We will make two intermediate steps towards
this result: first (Theorem 5), given a query q on a DL-LiteR CQE specification
〈T ,P〉, we will find a query denoted by BraveRef (q, T ,P) whose evaluation on
clT (A) corresponds to checking the existence of an optimal censor C for the CQE
instance 〈T ,P,A〉 such that T ∪ C |= q; then (Theorem 6), we will find an FO
query such that its evaluation on clT (A) is true if and only if the condition
expressed in Theorem 4 holds.

Given two BCQs q and q′, a mapping of q′ into q is a function h :
Atoms(q′) → Atoms(q) such that there exists a most general unifier σh such
that, for every atom α ∈ Atoms(q′), σh(α) = σh(h(α)). Such a most general
unifier (variable substitution) assigns variables occurring either in q′ or in q to
either variables of q or constants. We denote by Map(q′, q) the set of all the
mappings of q′ into q.

Furthermore, we denote by σh[q] the variable substitutions of σh limited to
variables occurring in q. For instance, if q = ∃x, y, zR(x, y, z), q′ = ∃x′R(x′, x′, a)
(where a is a constant and all other arguments are variables), then σh = {x′ ←
x, y ← x, z ← a} and σh[q] = {y ← x, z ← a}.
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Given two BCQs q and q′, we denote by Unify(q, q′) the formula:
∨

h∈Map(q′,q)

( ∧

x←t ∈σh[q]

x = t
)

Definition 5. Given a BUCQ q, a DL-LiteR TBox T and a policy P, we define
BraveRef (q, T ,P) as the FO sentence:

∨

qr∈PerfectRef (q,T )

∃�xr

(
conjr(�xr) ∧ ¬

( ∧

qd∈PerfectRef (q(P),T )

Unify(qr, qd)
))

(where we assume qr = ∃�xr(conjr(�xr))).

We now establish the fundamental property of the above query reformulation
function BraveRef .

Theorem 5. Let 〈T ,P〉 be a DL-LiteR CQE specification. For every ABox
A, there exists an optimal censor C for 〈T ,P,A〉 such that T ∪ C |= q iff
BraveRef (q, T ,P) evaluates to true in clT (A).

Then, we use BraveRef to define the new query reformulation function
StateRef as follows.

Definition 6. Let E = 〈T ,P,A〉 be a DL-LiteR CQE instance, Q = 〈q1, . . . , qn〉
(with n ≥ 0) be a sequence of BUCQs, let i be such that 1 ≤ i ≤ n, and let
I ⊆ {1, . . . , i − 1}: I represents the set of indexes of the queries that precede
query qi in Q and that are guessed to be true in the state S = 〈E ,Q〉. We define
StateRef (S, i, I) as the FO sentence:
( ∧

1 ≤ j ≤ i − 1
∧ j 
∈ I

¬BraveRef ((
∧

�∈I ∧ �<j

q�) ∧ qj , T ,P)
)
∧BraveRef ((

∧

�∈I

q�) ∧ qi, T ,P)

As an example, consider the DL-LiteR CQE instance E = 〈T ,P,A〉 and the
query sequence Q = 〈q1, q2, q3〉 of Example 1, and let us set i = 3 and I = {1}.
We have that StateRef (〈E ,Q〉, i, I) is the FO sentence ¬BraveRef (q1∧q2, T ,P)∧
BraveRef (q1 ∧ q3, T ,P) = ¬(buy(john,ma) ∧ Abc(ma) ∧ ¬(∃z, w(buy(z, w) ∧
Abc(w) ∧ z = john ∧ w = ma))) ∧ ∃x(buy(john,ma) ∧ buy(x,mb)).

The query reformulation function StateRef allows for reducing query entail-
ment in a state to evaluating an FO query, as stated by the following property.

Theorem 6. Let E = 〈T ,P,A〉 be a DL-LiteR CQE instance, Q = 〈q1, . . . , qn〉
(with n ≥ 0) be a sequence of BUCQs. For every i such that 1 ≤ i ≤ n, qi ∈
EntQ(S) iff the following FO sentence evaluates to true in clT (A):

∨

I∈℘({1,...,i−1})
StateRef (S, i, I),

where ℘({1, . . . , i − 1}) denotes the powerset of {1, . . . , i − 1}.
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The last two theorems show the FO rewritability of the problems studied on
clT (A). We now modify the respective reformulations to evaluate them directly
on the ABox A and thus produce “genuine” FO rewritability results.

In what follows we will make use of the algorithm AtomRewr provided in [13],
that we now briefly describe. Given an FO sentence φ and a DL-LiteR TBox T ,
AtomRewr(φ, T ) computes the FO sentence obtained from φ by replacing every
atom α = p(�x) (where �x are all the variables occurring in α) with the disjunction
of atoms corresponding to the perfect rewriting of the non-Boolean atomic query
qα = {�x | p(�x)} with respect to T .

For our purposes, we recall the key property of AtomRewr provided in [13].

Proposition 6. For every FO sentence φ, DL-LiteR TBox T , and ABox A, φ
evaluates to true in clT (A) iff AtomRewr(φ, T ) evaluates to true in A.

Now, Proposition 6 and Theorem 6 immediately imply the next property.

Theorem 7. Let E = 〈T ,P,A〉 be a DL-LiteR CQE instance, Q = 〈q1, . . . , qn〉
be a sequence of BUCQs. For every i such that 1 ≤ i ≤ n, qi ∈ EntQ(S) iff the
following FO sentence evaluates to true in A:

AtomRewr(
∨

I∈℘({1,...,i−1})
StateRef (S, i, I), T )

The previous theorem shows the FO rewritability of the problem of entail-
ment of BUCQs in a state.

Example 2. Let E and Q = 〈q1, q2, q3〉 be as in Example 1. According to Theo-
rem 7, the query q3 = ∃xbuy(x,mb) belongs to EntQ(〈E ,Q〉) if and only if the FO
sentence below evaluates to true in A (fI denotes the sub-formula considering
the guess I of the indexes of the queries that precede the query q3):

AtomRewr(
∨

I∈℘({1,2}) StateRef (〈E ,Q〉, i, I), T ) =
fI=∅ ¬BraveRef (q1, T ,P) ∧ ¬BraveRef (q2, T ,P) ∧ BraveRef (q3, T ,P)∨
fI={1} ¬BraveRef (q1 ∧ q2, T ,P) ∧ BraveRef (q1 ∧ q3, T ,P)∨
fI={2} ¬BraveRef (q1, T ,P) ∧ BraveRef (q2 ∧ q3, T ,P)∨
fI={1,2} BraveRef (q1 ∧ q2 ∧ q3, T ,P) =
fI=∅ ¬buy(john,ma) ∧ ¬Abc(ma) ∧ ∃xbuy(x,mb)∨
fI={1} ¬(buy(john,ma) ∧ Abc(ma) ∧ ¬(∃z, w(buy(z, w) ∧ Abc(w)∧

z = john ∧ w = ma))) ∧ ∃x(buy(john,ma) ∧ buy(x,mb))∨
fI={2} ¬(buy(john,ma)) ∧ (∃x(Abc(ma) ∧ buy(x,mb)))∨
fI={1,2} ∃x(buy(john,ma) ∧ Abc(ma) ∧ buy(x,mb))∧

¬(∃z, w(buy(z, w) ∧ Abc(w) ∧ z = john ∧ w = ma))

which, indeed, evaluates to true in A thanks to fI={1}. ��

5 Towards Practical Techniques and Approximations

We now provide a simplification of the query rewriting presented in Theorem 7.
In particular, in a real maximally collaborative CQE system, the answers to



440 P. Bonatti et al.

the queries already executed (i.e., the queries belonging to the state) can obvi-
ously be stored and re-used when the next query is submitted. This allows for
greatly simplifying the structure of the FO reformulation of the query defined
in Theorem 7, as shown in the following.

Theorem 8. Let E = 〈T ,P,A〉 be a DL-LiteR CQE instance, Q = 〈q1, . . . , qn〉
be a sequence of BUCQs, let S = 〈E ,Q〉, let qn+1 be a BUCQ, and let S ′ =
〈E , 〈q1, . . . , qn, qn+1〉〉. Then, qn+1 is entailed by S ′ iff the following FO sentence
evaluates to true in A:

AtomRewr(BraveRef ((
∧

qi∈EntQ(S)

qi) ∧ qn+1, T ,P), T )

Proof. Suppose S ′ |= qn+1, i.e. EntQ(S ′) = EntQ(S) ∪ {qn+1}. By Theo-
rem 7, the sentence ψ = AtomRewr(StateRef (S ′, n + 1, I), T ) evaluates to
true in A, where I = {i | qi ∈ EntQ(S ′)}. Consequently, the sentence
AtomRewr(BraveRef ((

∧
qi∈EntQ(S) qi) ∧ qn+1, T ,P), T ) is equal to the last con-

junct of ψ, and therefore evaluates to true in A as well.
Suppose now S ′ �|= qn+1. From Theorem 7, we have that the sentence

AtomRewr(StateRef (S ′, n + 1, I), T ) evaluates to false in A, where I = {i |
qi ∈ EntQ(S)}. Since EntQ(S) is the set of BUCQ from 〈q1, . . . , qn〉 entailed by
S, all the conjuncts of AtomRewr(StateRef (S ′, n + 1, I), T ) except the last one
evaluate to true in A. This means that its last conjunct evaluates to false in A.
Such a conjunct is equal to the sentence AtomRewr(BraveRef ((

∧
qi∈EntQ(S) qi)∧

qn+1, T ,P), T ), which proves the thesis. ��

Example 3. Let E and the queries q1, q2, and q3 be as in Example 1. Con-
sider the sequence of queries Q = 〈q1, q2〉. From Example 1, we know that only
q1 = buy(john,ma) belongs to EntQ(〈E ,Q〉). Hence, according to Theorem 8,
the query q3 = ∃xbuy(x,mb) is entailed by the state 〈E ,Q ◦ {q3}〉 if and only if
the FO sentence ∃x(buy(john,ma) ∧ buy(x,mb)) evaluates to true in A. ��

An issue that the query rewriting technique of Theorem 8 does not solve is
the scalability w.r.t. the number of submitted queries, which might become too
large to make the FO query produced by the rewriting executable in practice. On
the other hand, Theorem 2 shows that it is not always possible to intensionally
simulate dynCQE by using a stateless CQE specification, i.e., through an ABox-
independent transformation of the intensional part of a CQE instance.

To overcome the above issue, a possible approach is to materialize a censor C
of the current state S of the CQE instance, and then evaluate the next queries
over the ontology T ∪ C. If the current state S has multiple censors, evaluating
a query over T ∪ C is only an approximation of the query entailment through
dynCQE, i.e., in the corresponding state. More precisely: as long as the materi-
alized system processes only queries entailed by T ∪ C (i.e., it always answers
“yes”), it returns exactly the same answers provided by dynCQE. The first time
it processes a query q non-entailed by T ∪ C (i.e., it answers “no”), its behaviour
might differ from the dynamic approach, where q might be either entailed or not
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entailed (depending on how the censors of the states evolve). After the first neg-
ative answer, the system using C might answer “yes” (resp. “no”) to a subsequent
query q even if the state does not entail (resp. entail) q. Obviously, if the state
S has the only censor C, then T ∪ C and the dynCQE system will have the same
behaviour. Below we describe how to materialize a censor of a state.

1. Split the FO query of Theorem 8, execute only one q′ ∈ PerfectRef (EntQ(S)∪
{q}, T ) at a time, and turn all the variables appearing in AtomRewr(q′, T )
as free variables.

2. As soon as one of such queries is true in A, we can construct (through the
corresponding binding of the free variables of the query) an image of this
query in A. Let A′ be such a subset of A.

3. P ∪ A′ is consistent, so there exists at least one censor C of S that contains
A′. One such censor can be computed by first setting C = A′, and then, as
long as it possible, by iteratively adding to C ground atoms γ from clT (A)\A′

such that T ∪ P ∪ C ∪ {γ} is consistent.

6 Related Work

As shown in [11], the censors introduced in Definition 1 enjoy the indistinguisha-
bility property, that is, for all CQE instances E = 〈T ,P,A〉 and all censors C for
E , there exists an ABox A′ that entails no secrets, such that C is also a censor for
E = 〈T ,P,A′〉. Such censors are called indistinguishability-based (IB) because
the instances with A and A′ cannot be distinguished based on the answers
allowed by C. IB censors are secure against attackers that know the censor’s
algorithm. In particular, even if the attackers could compute the ABoxes that
yield C, using their knowledge about the algorithm, the ABox A′ would prevent
them from inferring any secret.

Benedikt et al. [2] provide, for OBDA settings, a systematic complexity anal-
ysis of confidentiality preserving query answering based on indistinguishability.
They do not address the issue of selecting a secure data disclosure among the
available ones. IB censors in OBDA are also considered in [10], where a practical
approach to skeptical reasoning in CQE is presented. Differently from our app-
roach, in [10] censors do not take into account the history of the users’ queries.

In [13], IB censors are compared with so-called confidentiality preserving
(CP) censors, that in general do not enjoy the indistinguishability property.
Moreover, [13] introduces algorithms and complexity results for skeptical rea-
soning in CQE, i.e., the problem of computing only the query answers that are
returned by all IB censors. By definition, the skeptical CQE method is generally
less cooperative than the dynamic method introduced and analyzed in this paper
(Theorem 5). In [12], policies have been extended with numerical restrictions,
and it is proved that this extension preserves FO rewritability.

The first IB CQE method for Description Logics was introduced in [8]. Its
confidentiality model is more robust and general, as it takes into account both
object-level and meta-level background knowledge of the attacker. However, CQ
answering and FO rewritability are not addressed. Moreover, the secure views of
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[8] are constructed from a sequence of queries that covers all possible relevant
queries, while the properties we investigate here hold for arbitrary (possibly
non-exhaustive) sequences of queries submitted by the users.

The issue of how to select an optimal censor has been tackled in [11]. The
selection criterion is based on explicit preferences over predicates, that are spec-
ified together with the CQE instance. This approach, in general, is neither max-
imally cooperative nor optimal w.r.t. a given state, because the optimal censor
is selected statically, in a stateless fashion. Moreover, the given preferences are
not always able to select a single optimal censor.

Other CQE approaches based on censors, such as CP censors, in general
do not enjoy the indistinguishability property [15,17], which makes them vul-
nerable to attacks based on knowledge of the CQE algorithm. Moreover, they
do not address dynamic query-based censor selection. See [8] for a list of ear-
lier approaches with similar features focused on publishing secure subsets of
the ontology. Two nice abstract analyses of censors properties can be found in
[21,22].

Finally, Cuenca Grau et al. [16] introduce and investigate an anonymization
framework for knowledge graphs based on substituting nodes with blanks.

7 Conclusions

In this paper, we have presented a maximally cooperative approach to controlled
query evaluation in OWL and Description Logic ontologies. We have shown
that the approach is computationally not harder than the previous static and
less cooperative approaches to CQE. Moreover, we have defined a new query
rewriting algorithm to solve the query entailment problem in this framework.

The present work can be extended in several interesting directions. First,
while the presented results indicate the possibility of a query rewriting approach
to dynamic CQE, more work is still needed to define a practical query answering
technique and to extend it to non-Boolean UCQs.

Then, the policy language adopted in this paper (set of denials) can be
extended to encompass more expressive data protection policies. One step
towards this direction, although in the context of static CQE, has been pre-
sented e.g. in [12]: it would be interesting to see whether dynCQE can also be
extended in a similar way. Finally, it would be interesting to study the computa-
tional properties of dynamic CQE in ontology languages different from OWL 2
QL and DL-LiteR, in particular in the other lightweight profiles of OWL 2.

Supplemental Material Statement: For complete proofs of our results we refer
the reader to an extended version of the present paper [7].
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Abstract. Despite the large-scale uptake of semantic technologies in the
biomedical domain, little is known about common modelling practices in pub-
lished ontologies. OWL ontologies are often published only in the crude form of
sets of axioms leaving the underlying design opaque. However, a principled and
systematic ontology development life cycle is likely to be reflected in regulari-
ties of the ontology’s emergent syntactic structure. To develop an understanding
of this emergent structure, we propose to reverse-engineer ontologies taking a
syntax-directed approach for identifying and analysing regularities for axioms
and sets of axioms. We survey BioPortal in terms of syntactic modelling trends
and common practices for OWL axioms and class frames. Our findings suggest
that biomedical ontologies only share simple syntactic structures in which OWL
constructors are not deeply nested or combined in a complex manner. While such
simple structures often account for large proportions of axioms in a given ontol-
ogy, many ontologies also contain non-trivial amounts of more complex syntactic
structures that are not common across ontologies.

1 Introduction

The uptake of OWL in the biomedical domain has lead to the development of a large
number of ontologies as well as tools providing support for ontology construction and
maintenance. While some ontologies are documented to follow pattern-based design
principles, e.g., [19,21], little is known about what kind of design choices, principles,
and patterns are widely-used, how they impact ontology engineering in practice. Com-
paring ontologies in terms of their design rationales is often challenging because dif-
ferent ontology are developed and maintained using a wide range of methodologies,
techniques, and tools. Moreover, ontologies are often published as a single file with
scarce to no documentation. Yet, a principled and systematic ontology design is likely
to be reflected in regularities of the ontology’s emergent syntactic structure.

So, to develop an understanding of common practices in ontology engineering, we
propose to reverse-engineer ontologies in terms of syntactic regularities. Identified reg-
ularities may then be analysed and compared to distil common modelling structures
both within and across ontologies. In this work, we focus on the syntactic structure of
logical expressions in OWL ontologies. In particular, we analyse the way they are com-
posed and combined. The contributions are as follows: (i) we adapt and simplify the
formal framework for identifying syntactic regularities originally proposed in [9,10],
(ii) we extend this framework by developing methods for analysing such regularities

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 445–461, 2022.
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w.r.t. their underlying syntactic structures, and (iii) we conduct an empirical study to
characterise the syntactic structure of axioms and class frames in biomedical ontolo-
gies.

This paper is accompanied by a technical report [11] providing more detailed exam-
ples, an in-depth discussion about differences between this and prior work, and a more
elaborate presentation of both the motivation and potential impact of our work.

2 Preliminaries

We assume the reader to be familiar with Description Logics (DL) [1] and the Web
Ontology Language (OWL) [5]. We use DL notation for the sake of readability but
interpret logical constructors as specified by OWL. Furthermore, we use both infix and
prefix notation for presentational purposes, e.g., SubClassOf(A,B) may be written
as A � B or �(A,B). We disregard OWL annotations, i.e., axioms with and without
annotations are indistinguishable.

A directed labelled graph g is an ordered pair (N,E,L) where N is a set of nodes,
L is a set of labels, and E ⊆ N × L × N is a set of edges. A graph s = (N ′, E′, L′) is
a subgraph of g, written s � g, if N ′ ⊆ N an E′ ⊆ E. A graph isomorphism between
two graphs g1 = (N1, E1, L1) and g2 = (N2, E2, L2) is a bijection f : N1 ∪ L1 →
N2 ∪ L2 s.t. (n, l, n′) ∈ E1 iff (f(n), f(l), f(n′)) ∈ E2. Two graphs are isomorphic if
there exists an isomorphism between them. A contraction of an edge e = (n1, l, n2) ∈
E with n1 �= n2 is an operation that first removes e from E and replaces both n1 and
n2 with a single node n′ and then makes any node (originally) adjacent to either n1 or
n2 adjacent to n′. A minor of a graph is a graph obtained by (iteratively) contracting
edges, removing edges, or removing nodes without adjacent nodes.

3 Framework for Syntax-Directed Analysis of OWL Ontologies

3.1 Syntactic Regularities

We analyse structures in OWL ontologies using a syntax-directed approach based on
their abstract representation according to the structural specification for OWL 2 [16].
This abstract representation can be captured by abstract syntax trees (AST).

Definition 1 (OWL Abstract Syntax Tree). Let ϕ be an OWL expression. Then, the
abstract syntax tree for T (ϕ) is defined as follows:

– if ϕ is atomic, then T (ϕ) is a node labelled with ϕ,
– if ϕ = C(ψ1, . . . , ψn), where C is an OWL constructor and ψ1, . . . , ψn are OWL
expressions, then T (ϕ) = C

T (ψ1) . . . T (ψn)

�(ϕ, 1) �(ϕ, n)

where � is a labelling function for branches s.t. �(ϕ, i) specifies how a subexpression
ψi at position i is used in relation to C.
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The labelling function � is used to treat abstract syntax trees for OWL expressions
uniformly as unordered trees even in cases where the order of arguments for OWL
constructors matters. Consider for example the AST of SubClassOf(A,B). Here the
branches to A and B would be labelled with ”Subclass” and ”Superclass” respectively.
In the following, we will not distinguish between OWL axioms and their ASTs, i.e., an
axiom will be referred to simply as a tree (meaning its AST) and vice versa. Similarly,
an ontology can be understood as a set of trees.

Given the notion of OWL abstract syntax trees, we can formulate syntax-directed
transformations for OWL abstract syntax trees that highlight specific syntactic prop-
erties of OWL expressions. In particular, we can highlight shared syntactic prop-
erties between OWL axioms to identify recurring expressions. Consider the axioms
α1 = A1 � ∃P.A2 and α2 = B1 � ∃Q.B2. While both axioms differ in terms of
named classes and properties, they coincide otherwise. This structural similarity can be
highlighted via a syntax-directed transformation that abstracts over syntactic properties
in which two axioms differ. For example, with a transformation G that replaces atomic
entities with a placeholder symbol, say ∗, we have G(α1) = G(α2) = ∗ � ∃ ∗ . ∗ . Put
differently, α1 and α2 exhibit the same syntactic structure that is preserved under the
abstraction G. An abstraction is intuitively understood as an operation that hides some
level of detail. This intuition can be captured for transformations of ASTs by restricting
them to the removal of branches and nodes.

Definition 2 (Language Abstraction). An abstraction for a tree language L into a
tree language L′ is defined by a function A : L → L′ such that

1. there exist t, t′ ∈ L s.t. t �= t′ with A(t) = A(t′),
2. for t ∈ L there exists a graph minor tm that is isomorphic to A(t).

The second condition formalises the idea of only allowing the removal of a tree’s
branches and nodes whereas the first condition requires that an abstraction hides some
kind of information so that two syntax trees become indistinguishable. Coming back to
the earlier observation that G(α1) = G(α2), we note that axiom equality under a given
abstraction gives rise to an equivalence relation w.r.t. the syntactic structure of axioms
in an ontology. We refer to corresponding equivalence classes as syntactic regularities.

Definition 3 (Syntactic Regularity for Axioms). A syntactic regularity for axioms in
an ontology O is an equivalence class [α]A = {αi ∈ O | A(αi) = A(α)}, where A is
a language abstraction.

While axioms are the primary building blocks in OWL ontologies, an entity is often
not represented by single axiom but by a set of axioms. So, in addition to regularities
for axioms, we are also interested in regularities for sets of axioms. We defer the discus-
sion of how to group related axioms into sets until Sect. 3.2. Here, we only note that the
notion of syntactic regularities for axioms can be lifted to sets of axioms in a straight-
forward way. By abuse of notation, we write A(S) to denote a language abstraction on
forests of syntax trees S rather than syntax trees only.

Definition 4 (Syntactic Regularity for Sets of Axioms). Let S = {S1, . . . , Sn} be a
family of sets of axioms in an ontology O. A syntactic regularity for sets of axioms in
O w.r.t. S is an equivalence class [S]A = {Si ∈ S | A(S) = A(Si)} where A is a
language abstraction.
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O = { α1 = A � �(A1,A2),
α2 = B � �(B1,B2),
α3 = C � �(C1,C2,C3) }

[α1]G = {α1, α2}
[α3]G = {α3}
[α1]I = {α1, α2, α3}

�

∗ �

∗ ∗

�

∗ �

∗ ∗ ∗

�

�

)c()b()a(

Fig. 1. Example of the language abstractions G and I applied to a sample ontology, and their
associated modelling structures: (a) shows the sample ontology (of three axioms) and its syntactic
regularities under G and I , (b) displays the two modelling structures for O under G, while (c)
shows the single modelling structure for O under I . Branch labels are not shown.

3.2 Modelling Structures

A syntactic regularity w.r.t. a language abstraction is uniquely determined by an abstract
syntactic structure, namely the abstract syntax tree or forest that each of its elements are
mapped to under the used language abstraction. We will refer to these abstract structures
as modelling structures.

Definition 5 (Modelling Structure). Let O be an OWL ontology, α ∈ O, and S ⊆ O,
and A a language abstraction. Then A(α) and A(S) are modelling structures for α and
S under A respectively.

So, a language abstraction gives rise to syntactic regularities in an ontology and
each syntactic regularity is associated with a modellling structure. In the following,
we provide concrete examples for these notions. We already mentioned the language
abstraction G that highlights structural similarities between axioms by abstracting over
atomic entities. We will refer to this abstraction as the ground generalisation.

Definition 6 (Ground Generalisation). Let t be an OWL abstract syntax tree. The
Ground Generalisation G(t) of t is a language abstraction defined by a function G that
replaces the label of each leaf node in t with the label ∗ .

The example ontology in Fig. 1(a) has two syntactic regularities w.r.t. G, namely
[α1]G = {α1, α2} and [α3]G = {α3}, which each give rise to a modelling structure
under G, shown in Fig. 1(b): G(α1) = G(α2) = ∗ � 
(∗, ∗) and G(α3) = ∗ �

(∗, ∗, ∗). Note that we use prefix notation for the n-ary constructor 
 to avoid nota-
tional ambiguity. However, all three axioms in the example can be characterised in
terms of the nesting of OWL constructors, i.e., all three are subsumption axioms with a
conjunction on the right-hand side. The nesting of constructors in OWL axioms can be
distilled with a transformation that removes all leaf nodes (and corresponding branches)
from the axiom’s associated abstract syntax tree. We will refer to the nesting structure
of OWL constructors as an axiom’s internal tree structure.

Definition 7 (Internal Tree Structure). Let t be an OWL abstract syntax tree. The
internal tree structure I(t) of t is a language abstraction defined by a function I that
removes all leaf nodes and corresponding branches from t.
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The example ontology in Fig. 1(a) has only one syntactic regularity w.r.t. I , shown
in Fig. 1(c), since I(α1) = I(α2) = I(α3). Intuitively, the abstraction I abstracts
over more syntactic properties compared to G which leads to fewer but larger syntactic
regularities (where the size of a regularity is the number of its elements, i.e., axioms).

As already mentioned in Sect. 3.1, conceptual models for domain-specific entities
are, more often than not, represented with a set of axioms rather than with a single
axiom. The notion of a class frame is widely used for grouping conceptually related
axioms in OWL ontologies [7,18].

Definition 8 (Class Frame). A class frame CF (C,O) for a class expression
C in an ontology O is defined as the set: CF (C,O) = {α ∈ O |
α = SubClassOf(C,C′), or α = EquivalentClasses(C,C1, . . . ,Cn)}, or α =
DisjointClasses(C,C1, . . . ,Cn)}, or α = DisjointUnion(C,C1, . . . ,Cn)}.
The abstractions I and G for abstract syntax trees of axioms can be lifted to forests of
abstract syntax trees in a straightforward manner.

Definition 9 (Multiset Lifting of Language Abstractions). Let F be a forest of OWL
abstract syntax trees and A a language abstraction for OWL abstract syntax trees. Then
the image A(F ) of F under A is defined as the multiset A(F ) = {A(t) | t ∈ F}.
We define A(F ) as a multiset to account for repetitions of axioms with the same
modelling structure. Consider the set F = {SubClassOf(C,B), SubClassOf(C,
D)}. Using a set for the lifiting of G would yield {SubClassOf(∗, ∗)} instead
of the desired multiset. We write αx to denote the x-fold repetition of modelling
structure α. So, {SubClassOf(∗, ∗)2} denotes the multiset {SubClassOf(∗, ∗),
SubClassOf(∗, ∗)}.

3.3 Relations Between Modelling Structures

The intention of G with regards to syntactic regularities is to group OWL axioms or sets
of axioms based on the way OWL constructors are combined and nested. In particular,
any difference between axioms in terms of used OWL constructors will be captured
by different syntactic regularities. Consider the axioms α1 = A � ∃ R.B and α2 =
A � ∃ R.(∃ R.B). Clearly, G(α1) �= G(α2). Note, however, that the nesting of OWL
constructors in α1, i.e., its internal tree structure I(α1), occurs as a substructure in α2.
We can formalise this substructure relationship via subgraphs in modelling structures.

Definition 10 (Structure Containment). Let t and t′ be two OWL abstract syntax
trees. Then, t structurally contains t′, written t �G

I t′, if

1. I(t) � I(t′) and I(t) �= I(t′), or
2. G(t) � G(t′) and I(t) = I(t′).

The two cases in the definition for structure containment are owed to n-ary con-
structors. In the case of two OWL expressions e and e′ that only involve constructors
with a fixed arity we have that I(e) = I(e′) implies G(e) = G(e). However, this is not
the case for expressions involving n-ary constructors. Consider for example the axioms
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α1 = A � 
(C1,C2) and α2 = A � 
(C1,C2,C3). Here, we have I(α1) = I(α2)
but G(α1) �= G(α2). So, defining the substructure containment between OWL abstract
syntax trees only in terms of their internal tree structures would ignore structural infor-
mation about n-ary constructors. The second case in Definition 10 rectifies this so that
α2 structurally contains α1. The structure containment relation defines a partial order
on OWL abstract syntax trees and thus induces a partial order on syntactic regularities
for axioms.

Lemma 1 (Partial Order on Ground Generalisations). Let [t1]G, . . . , [tn]G be syn-
tactic regularities for axioms w.r.t. G in an ontology O. Then the relation �G

I induces
a partial order on [t1]G, . . . , [tn]G.

Similarly, we can induce a partial order on syntactic regularities for class frames
w.r.t. G by defining a containment relation based on a notion of subsets for multisets.
That is, for each number of axioms with the same ground generalisation in one class
frame there needs to exist at least as many axioms with an identical ground generalisa-
tion in the other class frame.

Definition 11 (Class Frame Containment). Let C and C ′ be class frames in an ontol-
ogy O. If there exists an injective mapping m : C → C ′ s.t. t ∈ C implies that
G(t) = G(m(t)), then C ′ contains C, written C �G C ′.

Lemma 2 (Partial Order on Class Frames). Let [C1], . . . , [Cn] be syntactic regular-
ities for class frames in an ontology O. Then the relation �G for class frames induces
a partial order on [C1], . . . , [Cn].

4 Methods

Research Questions. To develop a first understanding of syntactic structures in pub-
lished ontologies, we focus on properties related to OWL constructors for class expres-
sions. In particular, we investigate to what extent such constructors are nested and com-
bined to give rise to more complex structures. Furthermore, we aim to identify and
characterise common structures within and across ontologies. Lastly, we investigate to
what extent distinct syntactic structures are related by shared substructures.

Experimental Design. Since we are interested in the way OWL constructors are used
in OWL ontologies, we will investigate syntactic regularities w.r.t. the language abstrac-
tion G proposed in Sect. 3.2. So, we will refer to syntactic regularities based on G (for
axioms and class frames) simply as regularities (for axioms and class frame respec-
tively) unless stated otherwise. Likewise, we will not explicitly specify that modelling
structures for regularities are based on G unless the context is ambiguous. Our inves-
tigation consists of five experiments. In the following, we give a brief description for
each of these experiments and describe the construction of the experimental corpus of
ontologies using BioPortal. We refer the interested reader to the technical report [11]
for a discussion of using BioPortal for the purposes of this study.

1. Number of Syntactic Regularities. We determine to what extent ontologies give rise
to different regularities, i.e., contain different syntactic structures.
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2. Size of Syntactic Regularities. We give an account of the size of syntactic regularities.
Since a regularity is a set, its size is defined by the number of its elements.

3. Characteristics of Common Modelling Structures. We determine what kind of mod-
elling structures are common within and across ontologies. For this purpose, we
inspect the three largest syntactic regularities in each ontology and qualify their asso-
ciated modelling structures in terms of the nesting and combination of OWL con-
structors. Furthermore, we compare the modelling structures associated with large
regularities across ontologies to identify structures of a general nature.

4. Size and Depth of Modelling Structures. We determine to what extent OWL construc-
tors are nested and combined in modelling structures. For this purpose, we report on
the maximal size and depth of modelling structures in ontologies. Since a modelling
structure for axioms is a tree, its depth is defined as its tree depth, i.e., the longest
path from its root to a child. In the case of modelling structures for class frames,
their depth is defined as the maximal depth of its axioms.

5. Interrelations between Syntactic Regularities. We determine to what extent syntac-
tic regularities in ontologies are structurally related. So, we analyse the partially
ordered sets of syntactic regularities w.r.t. the notions of structural containment (cf.
Sect. 3.3). In particular, we construct the Hasse diagrams associated with said posets
for each ontology and report on their longest paths, i.e., their depth, as well as their
maximal branching factors.

Ontology Corpus. We work with a recent (February 2022) snapshot of BioPortal cre-
ated in the same way as described in [14]. The data set of ontologies encompasses a
total of 736 ontologies. We use the OWL API1 (v.5.1.15) to orchestrate all experiments.
Therefore, we restrict the experimental corpus to ontologies that can be loaded with the
OWL API. We load ontologies without their imports closure to avoid double counting
syntactic structures that are imported by different ontologies. Furthermore, we exclude
ontologies that do not contain class expression axioms because our experiments are
restricted to class expression axioms. Lastly, we exclude ontologies for which we could
not compute all syntactic regularities and their interrelations within one hour. This pro-
cedure results in an experimental corpus of 657 ontologies.

In our experiments, we distinguish between three kinds of ontologies. First, ontolo-
gies that consist of atomic axioms only, i.e., SubClassOf and EquivalentClasses
axioms that have only named classes as arguments. Second, ontologies expressible in
EL++. And third, ontologies not expressible in EL++. We refer to these three kinds of
ontologies as atomic, EL++, and rich ontologies respectively. Figure 2 shows the size
of an ontology’s TBox as well as the size of its subset of class expression axioms. We
order ontologies within a category by size and assign each ontology an index in ascend-
ing order starting with atomic ontologies as shown in Fig. 2. The corpus contains 94
atomic ontologies, 90 EL++ ontologies, and 473 rich ontologies.

5 Results

We present results for the five experiments as specified in Sect. 4 in separate subsec-
tions. We remind the reader that our experimental design distinguishes between three

1 http://owlcs.github.io/owlapi/.

http://owlcs.github.io/owlapi/
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Fig. 2. Number of TBox axioms (a) and class expression axioms (b).

categories of ontologies (atomic, EL++, and rich) and that we have two experimental
conditions for all three categories, namely, (a) regularities for axioms and (b) regulari-
ties for class frames.

5.1 Experiment 1: Number of Syntactic Regularities

The number of different syntactic regularities for (a) axioms and (b) class frames are
shown in Fig. 3 for all three categories of ontologies.

The data reveals that atomic and EL++ ontologies give rise to mostly only one or
two regularities for axioms whereas rich ontologies give rise to varying numbers of
regularities for axioms. While the largest number of regularities can be found in large
rich ontologies, it is not the case that all large ontologies give rise to many regularities.

Even though atomic and EL++ ontologies exhibit only a few regularities for axioms
and thus contain mostly axioms of the same syntactic structure, these axioms are com-
bined in many ontologies to give rise to a comparatively larger number of regularities
for class frames. For example, the EL++ ontology RH-MESH at index 183 has only
two regularities for axioms but 65 regularities for class frames. Similarly, most rich
ontologies, especially larger ones beyond index 351 (with about 350 axioms), often
give rise to considerably more regularities for class frames compared to regularities for
axioms. For example, the rich ontology FMA at index 652 gives rise to 99 regularities
for axioms and 3487 regularities for class frames.

5.2 Experiment 2: Size of Syntactic Regularities

The results of Experiment 1 show that many rich ontologies give rise to a fair number
of regularities for axioms. In [10], the same result was found for an older snapshot
of BioPortal and it was reported that only a few of these regularities for axioms are
large. In particular, in the case of regularities for axioms, it was determined that 90%
of axioms in many ontologies can be covered by one to three regularities in all three
ontology categories. However, the same could not be reported for regularities of class
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Fig. 3. Number of regularities (with respect to G) for (a) axioms and (b) class frames in atomic,
EL++, and rich ontologies.

Table 1. Number of ontologies giving rise to a minimal number of regularities (both for axioms
and class frames) with a minimal size of 10, 100, and 1000.

Min. Regularities Min. Size Number of Ontologies

Regularities for Axioms Regularities for Class Frames

Atomic EL++ Rich Atomic EL++ Rich

5 10 – – 127 1 37 189

100 – – 35 1 6 64

1000 – – 8 – 1 21

10 10 – – 45 – 9 108

100 – – 7 – 1 34

1000 – – – – – 5

frames; especially for larger rich ontologies. In the case of class frames, it was reported
that often more than ten regularities are required to account for 90% of axioms in a
given ontology.

While this finding gives some indication for the size of the three largest regularities
in ontologies, it is important to keep in mind that many ontologies in our experimental
corpus contain several thousands of axioms and that small relative proportions of an
ontology can still correspond to many axioms. So, to give an account of the size of
regularities in terms of absolute numbers, we report on the number of ontologies that
contain at least five or ten regularities with a minimal size of (i) ten, (ii) a hundred or
(iii) a thousand elements in Table 1.

It transpires that mostly rich ontologies give rise to multiple regularities of non-
trivial sizes within a given ontology. In the case of regularities for axioms, for example,
there are 35 rich ontologies with at least 5 regularities that have at least 100 elements.
In the case of regularities for class frames, there are even 34 rich ontologies with at
least 10 regularities that have at least 100 elements. This confirms to some extent the
hypothesis that there exist ontologies with more than three regularities of non-trivial
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size. However, increasing either the number of minimal regularities, e.g., to ten, or the
number of minimal elements, e.g., to 1000, reveals that there are only a few ontologies
with many regularities of considerable size.

Lastly, we note that many rich ontologies do not give rise to at least 5 regularities
with a minimal size of ten. This is interesting in the context of the total number of
ontologies (cf. Sect. 5.1) that give rise to 5 or more regularities. In the case of regulari-
ties for axioms, there are 285 such rich ontologies which means that 285 − 127 = 158
ontologies contain only a few large regularities despite giving rise to 5 or more. Sim-
ilarly, in the case of regularities for class frames, there are 364 − 189 = 175 such
ontologies.

5.3 Experiment 3: Characteristics of Common Modelling Structures

We remind the reader that each syntactic regularity is associated with a unique mod-
elling structure. So, we can identify common syntactic structures within an ontology by
inspecting the modelling structures of the ontology’s largest regularities. Furthermore,
we can identify common syntactic structures across ontologies by comparing modelling
structures associated with the largest regularities within ontologies.

The three largest regularities for axioms across atomic, EL++, and rich ontologies
give rise to 2, 11, and 103 distinct modelling structures respectively. Table 2 lists those
modelling structures2 that occur across at least 20 different ontologies. The values in
the last three columns of Table 2 reveal the actual number of ontologies in which a
given modelling structure is associated with one of the three largest regularities, e.g.,
the modelling structure EquivalentClasses(∗, ∗) is associated with one of the three
largest regularities in two atomic ontologies, two EL++ ontologies, and 24 rich ontolo-
gies.

Overall, it transpires that only a few modelling structures for axioms are common
both within and across ontologies. Furthermore, these modelling structures are fairly
simple in regards to the way OWL constructors are nested and combined. Neverthe-
less, it is important to keep in mind that rich ontologies exhibit a large variety of mod-
elling structures that are associated with their respective largest regularities. It is also
important to mention that many such structures are more complex compared to the ones
shown in Table 2. For example, the second largest regularity in the ontology HOOM
with 78738 elements is associated with the modelling structure.

EquivalentClasses(*, ObjectIntersectionOf (ObjectSomeV aluesFrom(*,*),
ObjectSomeV aluesFrom(*,*), ObjectSomeV aluesFrom(*,*),

ObjectSomeV aluesFrom(*,*), DataHasV alue(*,*))).

So, while common modelling structures for axioms across ontologies are mostly simple,
common modelling structures within ontologies can also be rather complex.

The three largest regularities for class frames across atomic, EL++, and rich ontolo-
gies give rise to 6, 28, and 209 distinct modelling structures respectively. Table 3 lists

2 The prefix “Object” in some OWL expressions is abbreviated with the capital letter “O” for
presentational purposes.
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Table 2. Common modelling structures across ontologies. A modelling structure is considered
common in a given ontology if it associated with one of its three largest regularities. Ordered by
total number of ontologies.

Row Modelling Structure Atomic EL++ Rich

1 SubClassOf(∗, ∗) 94 88 466

2 SubClassOf(∗, OSomeV aluesFrom(∗, ∗)) – 68 270

3 DisjointClasses(∗, ∗) – – 103

4 EquivalentClasses(∗, OIntersectionOf(∗, OSomeV aluesFrom(∗, ∗))) – 1 70

5 SubClassOf(∗, OAllV aluesFrom(∗, ∗)) – – 44

6 EquivalentClasses(∗, ∗) 2 2 24

7 SubClassOf(∗, OExactCardinality(∗, ∗, ∗)) – – 20

Table 3. Number of ontologies in which its the three largest regularities for class frames is asso-
ciated with a given modelling structure. Ordered by total number of ontologies.

Row Modelling Structure Atomic EL++ Rich

1 {SubClassOf(∗, ∗)1} 94 67 431

2 {SubClassOf(∗, ∗)2} 37 32 106

3 {SubClassOf(∗, ∗)3} 16 15 20

4 {SubClassOf(∗, OSomeV aluesFrom(∗, ∗))1} - 22 12

5 {EquivalentClasses(∗, OIntersectionOf(∗, OSomeV aluesFrom(∗, ∗)))1} - 1 62

6 {DisjointClasses(∗, ∗)1} - - 22

7 {SubClassOf(∗, ∗)1, SubClassOf(∗, OSomeV aluesFrom(∗, ∗))1} - 35 157

8 {SubClassOf(∗, ∗)1, SubClassOf(∗, OSomeV aluesFrom(∗, ∗))2} - 9 50

9 {SubClassOf(∗, ∗)1, SubClassOf(∗, OSomeV aluesFrom(∗, ∗))3} - 15 8

10 {SubClassOf(∗, ∗)1, DisjointClasses(∗, ∗)1} - - 58

11 {SubClassOf(∗, ∗)1, EquivalentClasses(∗, ∗)1} 2 - 19

those modelling structures for class frames that occur across at least 20 different ontolo-
gies in the same manner as Table 2 lists modelling structures for axioms. The results are
similar to the case for regularities for axioms in the sense that common modelling struc-
tures for class frames across ontologies are mostly simple, i.e., the class frames consist
of only a few axioms and the axioms are not deeply nested. Likewise, there are also
many ontologies in which the largest three regularities for class frames are associated
with more complex modelling structures involving more axioms or more deeply nested
OWL constructors (see regularities in CLO for example). However, such more complex
modelling structures are only common within ontologies and not across.

5.4 Experiment 4: Size and Depth of Modelling Structures

In this section, we shed some light on the most complex modelling structures in ontolo-
gies. We start with the size of modelling structures, i.e., their number of nodes. Figure 4
shows the size of the largest modelling structures in ontologies for both (a) axioms
and (b) class frames. We will first highlight some details about the size of modelling
structures for axioms before we compare them to modelling structures for class frames.
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The maximal size of modelling structures for axioms in atomic ontologies is three
because they only contain the modelling structures ∗ � ∗ and ∗ ≡ ∗ . Similarly, the
size of modelling structures in most EL++ontologies is three or five because they only
contain the modelling structures ∗ � ∗ and ∗ � ∃ ∗ . ∗ . There are only four ontologies
containing modelling structures with a size larger than five. The largest one is found in
the ontology CHIRO with size 11 and has the form ∗ ≡ ∗
(∃∗.(∗
(∃∗.∗))). However,
about half of rich ontologies (211 out of 473) contain modelling structures for axioms
with a size larger than ten. Interestingly, the maximal size of modelling structures in
ontologies appears be independent of the ontologies’ overall size, i.e., modelling struc-
tures of different sizes occur in ontologies of different sizes.
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Fig. 4. Number of nodes in the largest modelling structures associated with regularities for (a)
axioms and (b) class frames.

The maximal size of modelling structures for class frames is often considerably
larger compared to the maximal size of modelling structures for axioms, especially for
EL++and rich ontologies that have more than about 350 axioms. This is to be expected
if class frames consist of combinations of many axioms. In this regard, it transpires
that class frames in many atomic ontologies and many rich ontologies of smaller size
consist of only single axioms. On the right-hand side of Table 4, we summarise how
many ontologies contain class frames up to a maximal number axioms. It appears that
EL++and rich ontologies contain class frames with more than three axioms whereas
many atomic ontologies only contain class frames with one or two axioms.

In addition to the size of modelling structures, we also investigate their depth. Note
that the depth of a class frame is defined in terms of the maximal depth of its axioms.
So, the maximal depth of modelling structures for both axioms and class frames is the
same and we will not distinguish between the two in the following. On the left-hand
side of Table 4, we summarise how many ontologies contain modelling structures up to
a maximal depth. There are 167 rich ontologies that contain modelling structures with a
depth of at least four. This shows that many rich ontologies not only contain fairly large
modelling structures but that modelling structures also involve non-trivial nestings of
OWL constructors.
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5.5 Experiment 5: Interrelations Between Syntactic Regularities

Table 5 shows the depth and maximal branching factor of Hasse diagrams correspond-
ing to partially ordered sets for syntactic regularities for axioms and class frames w.r.t.
�G

I and �G respectively. It transpires that more than half of the ontologies in our exper-
imental corpus (365 out of 657) give rise to Hasse diagrams with a depth of at least 4.
Moreover, 110 ontologies even bring about Hasse diagrams with a depth of 10 or more.
The numbers for the maximal branching factor are comparable.

A long path in a Hasse diagram for regularities of class frames means that cor-
responding modelling structures for class frames are based on the same constituent
components since �G is defined in terms of a subset relation for multisets. A large
branching factor, on the one hand, means that many class frames share a common sub-
structure, namely the modelling structure of their parent. But, on the other hand, it also
means that siblings of that parent vary in terms of the modelling structures.

Similarly, a long path in a Hasse diagram for regularities for axioms (as in the case
of many rich ontologies) means that many regularities are based on the same nesting of
OWL constructors. And a large branching factor signifies that there is a good amount
of variablitiy in term of the nesting of OWL constructors on some nesting level.

6 Related Work and Discussion

While there are many surveys of properties of existing ontologies, e.g., [4,13,23,24],
there is only little research on the topic of discovering ontology patterns or reverse-
engineering an ontology’s design. However, two approaches in this direction are moti-
vated on similar grounds to the ones put forward in this work.

The first approach is based on agglomerative clustering to identify commonalities
for named entities in an ontology based on similar syntactic representations [15]. Sim-
ilarities between these representations are distilled in the form of sets of axioms with
variables. While these representations bear some similarities to the notion of modelling
structures in the context of this work, there are subtle differences with regards to the
underlying notion of regularity. The approach using agglomerative clustering identifies
regularities for named entities, whereas the approach based on language abstractions
identifies regularities for axioms (or sets of axioms). So, the former approach is primar-
ily concerned with regularities for elements of an ontology’s domain-specific vocab-
ulary, whereas the latter focuses on regularities for syntactic structures based on an
ontology’s underlying formal language, e.g., OWL.

The second approach is based on frequent subtree mining over OWL axioms [12].
By interpreting OWL axioms as syntax trees, well-known subtree mining algorithms
can be used to identify frequent tree structures. Furthermore, a notion for regularities
for class frames is motivated that is based on identified regularities for syntax trees
of axioms. For example, regularities for subsumption axioms with the same and non-
variable left-hand side are grouped into a set to give rise to a new regularity for sets.
In cases where the left-hand side is a variable, frequent itemset mining is proposed
to identify co-occurring axioms as regularities for class frames. While the approach
based on frequent subtree mining bears a resemblance to the approach based language
abstractions, there are both technical differences as well as conceptual differences.
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Table 4. Maximal nesting depth of modelling structures (left-hand side) and maximal number of
axioms in class frames (right-hand side).

Max Depth Atomic EL++ Rich

1 94 16 107

2 - 71 116

3 - 1 83

4 - 1 36

5–9 - 1 118

≥ 10 - - 13

Max CF Axioms Atomic EL++ Rich

1 54 7 43

2 21 14 46

3 6 11 49

4–9 13 35 174

10–19 - 5 73

≥ 20 - 18 88

Table 5. Depth and maximal branching factor of Hasse diagrams for posets.

Depth
Axioms Class Frames

Atomic EL++ Rich Atomic EL++ Rich

1 94 21 96 54 8 47

2 - 67 136 21 14 53

3 - 2 56 9 15 71

4–9 - - 139 10 33 212

10–19 - - 41 - 17 61

≥ 20 - - 5 - 3 29

Branching
Axioms Class Frames

Atomic EL++ Rich Atomic EL++ Rich

0 94 21 96 54 8 47

1 - 66 123 40 34 64

2 - 2 55 - 43 51

3–9 - 1 174 - 5 179

10–19 - - 25 - - 70

≥ 20 - - - - - 62

First and foremost, it is important to recognise that frequent subtree mining aims at
identify regularities based on some notion of frequency. A tree structure is considered
frequent if it satisfies some threshold criterion. However, regularities based on language
abstractions are independent of any notion of frequency; or any other notion depending
on a threshold for that matter. The importance of this needs to be emphasised because
regularities based on thresholds are generally not suitable for analysing an ontology’s
design as a whole. The simple reason for this is that such notions, by definition, do not
account for structures that do not satisfy the threshold criterion. For example, variations
in the reuse of a single pattern in an ontology’s design may give rise to many slightly
different syntactic structures. If none of the variant reuses of the pattern gives rise to
frequent structures, then no regularity (based on frequency) is identified.

In any case, any conclusion or claim about an ontology’s underlying design based on
syntactic regularities has to be made with due diligence regardless of the used approach.
Consider for example the case of a pattern-based ontology design. A pattern in the con-
text of ontology engineering often denotes a rather distinctive notion. An example of
this are Ontology Design Patterns (ODP) that are proposed as well-proven modelling
solution to common modelling problems and often provide a reusable component such
as a set of axioms [2,3]. While such a reusable component is often associated with a
syntactic structure, e.g., a set of axioms, the converse is not necessarily the case. Mean-
ing, a reusable component of a pattern cannot be equated with the pattern itself and the
presence of axioms associated with a pattern’s reusable component cannot be equated
with an actual reuse of the pattern. So, even though the discovery of regularities can
be helpful to detect structures that are indicative of an ODP’s reuse, a domain expert’s
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assessment of an identified regularity in an ontology is required to gauge whether the
regularity is connected to an ODP.

Even though the idea of reusable components has been popularised by the ODP
community, there is no standard mechanism or de facto practice for reusing a given
ODP. Despite the development of frameworks and tool support for ODPs reuse [8,17,
22,25], little is known about what kind of features are needed to facilitate pattern-based
ontology engineering in practice [6]. Developing an understanding of compositional
aspects of syntactic structures in ontologies w.r.t. syntactic abstractions may provide a
way of informing and evaluating the design of tools and frameworks in this direction.

As an example, consider the Galen Ontology [20] in which the classes Current-
BloodPressureLevel and RecentBloodPressureLevel are represented via almost iden-
tical EquivalentClasses axioms. Both use the following expression (written in infix
notation):

LevelState 
 (∃isSpecificAnswerOf.(InvestigationAct 
 (∃hasTimeOfOccurrence.
(TimeOfOccurrence 
 (∃hasAbsoluteState atT ime))) 
 (∃isToDetermine.BloodPressure)))

where the variable atT ime is set to Now and RecentPast respectively. Here, the
use of the variable atT ime can be seen as an abstraction over differences between the
representations of CurrentBloodPressureLevel and RecentBloodPressureLevel. In this
case, a simple templating mechanism allowing for the instantiation of parametrised
representations, e.g. CurrentBloodPressureLevel ≡ BloodPressureLevel(Now),
would be suitable to capture this abstract structure in an arguably meaningful way.
So, research into the discovery of meaningful abstractions as well as suitable ways of
encoding them promises to have a great impact on pattern-based ontology engineering.

7 Conclusion

In this paper, we adapted and extended a formal framework for analysing syntactic
regularities in ontologies originally proposed in [9,10]. The framework is based on a
syntax-directed approach that decomposes an ontology into equivalence classes of syn-
tactic structures, where two syntactic structures are considered equivalent if they are
indistinguishable under a formal notion of abstraction. We proposed the notion of a
modelling structure for the purpose of analysing and characterising syntactic regulari-
ties. Furthermore, we proposed formal relations between such modelling structures so
that they can be organised in terms of a partial order that captures a notion of sub-
structure containment. Finally, we used these notions to conduct a large-scale empirical
investigation of syntactic modelling structures in biomedical ontologies.

We find that most ontologies contain primarily axioms of a simple syntactic struc-
ture. However, such axioms seem to be combined in various ways to give rise to com-
paratively many modelling structures for class frames. This suggests that class frames
play a crucial role in the representation of many entities in the biomedical domain.

Our findings on common modelling structures across biomedical ontologies reveal
that only comparatively simple syntactic structures for both axioms and class frames
reoccur. However, the results obtained on the maximal size and depth of modelling
structures indicate that many rich ontologies also contain highly complex modelling
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structures in which OWL constructors are deeply nested and combined. Moreover,
such complex structures are also highly interrelated w.r.t. shared substructures in many
ontologies. While our investigation provides proof of structural complexities in ontolo-
gies, further research is needed to qualify underlying design rationales.

Supplemental Material Statement: Source code is available at https://github.com/
ckindermann/iswc-2022.
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Abstract. We consider fact-checking approaches that aim to predict the verac-
ity of assertions in knowledge graphs. Five main categories of fact-checking
approaches for knowledge graphs have been proposed in the recent literature,
of which each is subject to partially overlapping limitations. In particular, cur-
rent text-based approaches are limited by manual feature engineering. Path-
based and rule-based approaches are limited by their exclusive use of knowl-
edge graphs as background knowledge, and embedding-based approaches suffer
from low accuracy scores on current fact-checking tasks. We propose a hybrid
approach—dubbed HybridFC—that exploits the diversity of existing categories
of fact-checking approaches within an ensemble learning setting to achieve a sig-
nificantly better prediction performance. In particular, our approach outperforms
the state of the art by 0.14 to 0.27 in terms of Area Under the Receiver Operating
Characteristic curve on the FactBench dataset. Our code is open-source and can
be found at https://github.com/dice-group/HybridFC.

Keywords: Fact checking · Ensemble learning · Knowledge graph veracity

1 Introduction

Knowledge graphs (KGs) are an integral part of the Web. A recent crawl of 3.2 billion
HTML pages found over 82 billion RDF statements distributed over roughly half of
the Web pages that were crawled.1 The increasing adoption of RDF at Web scale is
further corroborated by the Linked Open Data cloud, which now contains over 10,000
KGs with more than 150 billion assertions and 3 billion entities.2 Large-scale KGs like
WikiData [30], DBpedia [2], Knowledge Vault [13], and YAGO [43] contain billions
of assertions, and describe millions of entities. They are being used as background
knowledge in a growing number of applications, including healthcare [26], autonomous
chatbots [1], and in-flight entertainment [31]. However, it is well established that current
KGs are partially incorrect. For example, roughly 20% of DBpedia’s assertions are

1 http://webdatacommons.org/structureddata/2021-12/stats/stats.html.
2 https://lod-cloud.net/.
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assumed to be false in the literature [20,39]. Fostering the further uptake of KGs at
Web scale hence requires the development of highly accurate approaches that are able
to predict the veracity of the assertions found in KGs in an automated fashion. We call
such approaches fact-checking approaches.

In general, fact checking can be understood as the task of computing the likelihood
that a given assertion is true [6]. Various categories of automatic approaches have been
proposed for this task. These categories include but are not limited to text-based [20,
46], path-based [9,19,41,45,48], rule-based [16,17,27], and embedding-based [7,29]
approaches. State-of-the-art instantiations of these categories of approaches are faced
with a set of common limitations. In particular,

(1) Current text-based approaches rely on manual feature engineering [20,39,46],
which is time-consuming, and has been shown to be suboptimal w.r.t. their pre-
diction performance by representation learning approaches [5].

(2) Path-based approaches rely on the availability of (short) paths in the KG between
the entities that are part of the given assertion [48].

(3) Approaches that rely on KGs as background knowledge, i.e., path-, rule- and
embedding-based approaches, have to take the open-world assumption (OWA) into
account when determining the veracity of the given assertion [48].

(4) Embedding-based approaches [42] encounter limitations with respect to their accu-
racy [22] as well as their scalability [50].

We alleviate these limitations by exploiting the principles of diversity and accu-
racy known from ensemble learning. Our approach, dubbed HybridFC, overcomes the
drawbacks of individual categories of approaches by leveraging the advantages of other
categories of approaches. For example, we replace the manual feature engineering of the
text-based approaches by exploiting embeddings. To the best of our knowledge, we are
the first to propose the combination of text-, path- and embedding-based fact-checking
approaches in an ensemble learning setting.

The contributions of this work are as follows:

– We use pre-trained KG embedding and sentence transformer models, and take
advantage of transfer learning to reuse them for the task of fact checking.

– We study the performance of different fact-checking approaches in isolation and in
combination, and show that the joint use of multiple categories of approaches within
an ensemble learning setting often leads to an improved performance.

– We benchmark our approach on two recent fact-checking datasets, i.e., FactBench
and BirthPlace/DeathPlace (BD). Our experiments suggest that our hybrid approach
outperforms other text-, path-, rule- and embedding-based approaches by at least
0.14 area under the curve (AUROC) on average on the FactBench dataset. It is
ranked 3rd on the smaller BD dataset.

The rest of this paper is structured as follows. In Sect. 2, we introduce the notation
required to understand the rest of the paper. In Sect. 3, we give related work and moti-
vate our work using a real-world example. In Sect. 4, we present HybridFC. Thereafter,
the evaluation datasets and metric used are presented in Sect. 5. We then discuss our
results in Sect. 6. In Sect. 7, we present an ablation study of our approach. Finally, we
conclude and discuss potential future work in Sect. 8.
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2 Preliminaries

In this section, we define the terminology and notation used throughout this paper. We
build upon the definition of fact checking for KGs suggested in [46]:

Definition 1 (Fact Checking). Given an assertion, a reference KG G, and/or a refer-
ence corpus, fact checking is the task of computing the likelihood that the given asser-
tion is true or false [46].

Throughout this work, we rely on RDF KGs:

Definition 2 (RDF Knowledge Graph). An RDF KG G is a set of RDF triples G ⊆
(E ∪ B) × P × (E ∪ B ∪ L), where each triple (s, p, o) ∈ G comprises a subject s, a
predicate p, and an object o. E is the set of all RDF resource IRIs, B the set of all blank
nodes, P ⊆ E the set of all RDF predicates, and L the set of all literals [47].

In our approach, we use multiple representations of RDF KGs. In addition to their
representation as sets of assertions, we also exploit representations in continuous vector
spaces, called embeddings [10,50].

Definition 3 (KG Embeddings). A KG embedding function ϕ maps a KG G to a con-
tinuous vector space. Given an assertion (s, p, o), ϕ(s), ϕ(p), and ϕ(o) stand for the
embedding of the subject, predicate, and object, respectively. Some embedding models
map the predicate embedding into a vector space that differs from the space wherein
ϕ(s) and ϕ(o) are mapped. For those models, we use ϕ∗(p) to denote predicate embed-
dings.

Different embedding-based approaches use different scoring functions to compute
embeddings [50]. The approaches considered in this paper are shown in Table 1.

Table 1. Scoring functions of different embedding-based approaches used in this paper. ⊗ stands
for the quaternion multiplication, R for the space of real numbers, H for the space of quaternions,
C for the complex numbers, Re for the real part of a complex number, Im for the imaginary part
of a complex number, conv for the convolution operator, ϕ(o) for the complex conjugate of ϕ(o),
q is the length of embedding vectors, · for the dot product and ‖·‖2 for the L2 norm.

Approach Scoring function VectorSpace Regularizer

TransE ‖(ϕ(s) + ϕ(p)) − ϕ(o)‖2 ϕ(s), ϕ(p), ϕ(o) ∈ Rq L2

ComplEx Re
(
< ϕ(s), ϕ(p), ϕ(o) >

)
ϕ(s), ϕ(p), ϕ(o) ∈ Cq Weighted L2

QMult ϕ(s) ⊗ ϕ(p) · ϕ(o) ϕ(s), ϕ(p), ϕ(o) ∈ Hq Weighted L2

ConEx Re(〈conv(ϕ(s), ϕ(p)), ϕ(s), ϕ(p), ϕ(o)〉) ϕ(s), ϕ(p), ϕ(o) ∈ Cq Dropout, BatchNorm

Definition 4 (Sentence Embedding Model). A sentence embedding model maps the
natural language sentence t to a continuous vector space [37]. Let b be the embedding
function and let T = (t1, . . . , tk) be a list of k sentences. We create the embedding vector
for T by concatenating the embedding vectors of the single sentences.
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3 Related Work

We divide the existing fact-checking approaches into 5 categories: text-based [20,46],
path-based [41,47], rule-based [16,17,27], KG-embedding-based [7,24,29], and hybrid
approaches [14,15,28]. In the following, we give a brief overview of state-of-the-art
approaches in each category along with their limitations.

3.1 Text-Based Approaches

Approaches in this category validate a given assertion by searching for evidence in a
reference text corpus. FactCheck [46] and DeFacto [20] are two instantiations of this
category. Both approaches search for pieces of text that can be used as evidence to sup-
port the given assertion by relying on RDF verbalisation techniques. TISCO [39] relies
on a temporal extension of DeFacto. All three approaches rely on a set of manually
engineered features to compute a vectorial representation of the texts they retrieved as
evidence. This manual feature engineering often leads to a suboptimal vectorial rep-
resentation of textual evidence [5]. In contrast, we propose the use of embeddings to
represent pieces of evidence gathered from text as vectors. First, this ensures that our
approach is aware of the complete piece of textual evidence instead of the fragment
extracted by previous approaches. Second, it removes the need to engineer features
manually and hence reduces the risk of representing text with a possibly suboptimal set
of manually engineered features.

3.2 Path-Based Approaches

Path-based approaches generally aim to validate the input assertion by first comput-
ing short paths from the assertion’s subject to its object within the input KG. These
paths are then used to score the input assertion. Most of the state-of-the-art path-based
approaches, such as COPAAL [47], Knowledge stream [41], PRA [19], SFE [18], and
KG-Miner [40] rely on RDF semantics (e.g., class subsumption hierarchy, domain and
range information) to filter useful paths. However, the T-Box of a large number of KGs
provides a limited number of RDFS statements. Furthermore, it may also be the case
that no short paths can be found within the reference KG, although the assertion is cor-
rect [47]. In these scenarios, path-based approaches fail to predict the veracity of the
given assertion correctly.3

3.3 Rule-based Approaches

State-of-the-art rule-based models such as KV-Rule [25], AMIE [16,17,27], OP [8],
and RuDiK [34] extract association rules to perform fact checking or fact prediction on
KGs. To this end, they often rely on reasoning [27,44]. These approaches are limited by
the knowledge contained within the KG, and mining rules from large-scale KGs can be
a very slow process in terms of runtime (e.g., OP takes ≥ 45 hours on DBpedia [27]).

3 For the assertion award 00135 from the FactBench, COPAAL produces a score of 0.0 as it is
unable to find a path between the assertion’s subject and its object.
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3.4 Embedding-Based Approaches

Embedding-based approaches use a mapping function to represent the input KG in
a continuous low-dimensional vector space [7,12,21,24,29,42,49]. For example,
Esther [42] uses compositional embeddings to compute likely paths between resources.
TKGC [21] checks the veracity of assertions extracted from theWeb before adding them
to a given KG. The veracity of assertions is calculated by creating a KG embedding
model and learning a scoring function to compute the veracity of these assertions. In
general, embedding-based approaches are mainly limited by the knowledge contained
within the continuous representation of the KG. Therefore, these approaches encounter
limitations with respect to their accuracy in fact-checking scenarios [22] as well as their
scalability when applied to large-scale KGs [50].

3.5 Hybrid Approaches

While the aforementioned categories have their limitations, they also come with
their own strengths. Consider the assertion in Listing 1.1. The text-based approach
FactCheck cannot find evidence for the assertion. A possible reason might be that
West Hollywood is not mentioned on the Wikipedia page of Johnny Carson. However,
COPAAL finds evidence in the form of corroborative paths that connect the subject and
the object in DBpedia. For example, the first corroborative path in this particular exam-
ple from FactBench [20] encodes that if two individuals share a death place, then they
often share several death places. While this seems counter-intuitive, one can indeed have
several death places by virtue of the part-of relation between geo-spatial entities, e.g.,
one’s death places can be both the Sierra Towers and West Hollywood. In our second
example shown in Listing 1.2, COPAAL is not able to find any relevant paths between
the subject and the object. This shows one of the weaknesses of COPAAL which does
not perform well for rare events, e.g., when faced with the :award property [47]. In
contrast, TransE [7] is able to classify the assertion as correct. These examples support
our hypothesis that there is a need for a hybrid solution in which the limitations of one
approach can be compensated by the other approaches.

Listing 1.1. Example 1 (correct, death-00129.ttl in the FactBench dataset [20]).
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
Assertion: dbr:Johnny_Carson dbo:deathPlace dbr:West_Hollywood ,_California

FactCheck Result: Score: 0.0
Proofs: [no proofs found]
========================================================
COPAAL Result: Score: 0.99
Proofs: evidence paths:[
evidence path 1: "predicate path: dbo:deathPlace/ˆdbo:deathPlace/dbo:deathPlace",
evidence path 2: "predicate path: dbo:deathPlace/ˆdbo:recordedIn/dbo:recordedIn",
...]

Listing 1.2. Example 2 (correct, award-00135.ttl in the FactBench dataset [20]).
Assertion: dbr:T._S._Eliot dbo:award dbr:Nobel_Prize_in_Literature

COPAAL Result: Score: 0.0
Proofs: evidence paths: [no paths found]
========================================================
TransE Result: Score: 0.90
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FACTY [28], ExFaKT [15], and Tracy [14] are hybrid approaches that exploit struc-
tured as well as textual reference knowledge to find the human-comprehensible expla-
nations for a given assertion. ExFaKT and Tracy4 make use of rules mined from the
KG. A given assertion is assumed to be correct if it fulfills all conditions of one of the
mined rules. These conditions can be fulfilled by facts from the KG or by texts retrieved
from the Web. The output of these approaches is not a veracity score. Rather, they
produce human-comprehensible explanations to support human fact-checkers. Further-
more, these approaches are not designed for ensemble learning settings. They incor-
porate a text search merely to find support for the rules they generate. As such, they
actually address different problem statements than the one addressed herein. FACTY
leverages textual reference and path-based techniques to find supporting evidence for
each triple, and subsequently predicts the correctness of each triple based on the found
evidence. Like Tracy and ExFaKT, FACTY only combines two different categories and
mainly focuses on generating human-comprehensible explanations for candidate facts.
To the best of our knowledge, our approach is the first approach that uses approaches
from three different categories with the focus on automating the fact-checking task.

Fig. 1. Architecture of HybridFC. The purple color represents reference knowledge. The green
color marks the input assertion. KG stands for knowledge graph. (Color figure online)

4 https://www.mpi-inf.mpg.de/impact/exfakt#Tracy.

https://www.mpi-inf.mpg.de/impact/exfakt#Tracy
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4 Methodology

The main idea behind our approach, HybridFC, is to combine fact-checking approaches
from different categories. To this end, we created components for a text-based, a path-
based and a KG embedding-based fact-checking algorithm. Figure 1 depicts a high-level
architecture of our approach. We fuse the results from the three components and feed
them into a neural network component, which computes a final veracity score. In the
following, we first describe the three individual components of our approach in detail.
Thereafter, we describe the neural network component that merges their results.

4.1 Text-Based Component

Text-based approaches typically provide a list of scored text snippets that provide evi-
dence for the given assertion, together with a link to the source of these snippets and a
trustworthiness score [20,46]. The next step is to use machine learning on these textual
evidence snippets to evaluate a given assertion. In HybridFC, we refrain from using
the machine learning module of text-based approaches. Instead, we compute an order-
ing for the list of text snippets returned by text-based approaches. To this end, we first
determine the PageRank scores for all articles in the reference corpus [35] and select
evidence sentences. Our evidence sentence selection module is based on the following
hypothesis: ”Documents (websites) with higher PageRank score provide better evidence
sentences”. Ergo, once provided with scored text snippets by a text-based approach,
we select the top-k evidence sentences coming from documents with top-k PageRank
scores. To each text snippet, we assign the PageRank score of its source article. Then,
we sort the list of text snippets and use the k snippets with the highest PageRank score.

We convert each of the selected snippets ti into a continuous vector representation
using a sentence embedding model. We concatenate these sentence embeddings along
with the trustworthiness scores [32] of their respective sources to create a single vector
ϕℵ. In short:

ϕℵ =
k⊕

i=1

(b(ti) ⊕ τi) , (1)

where ⊕ stands for the concatenation of vectors, b(ti) is the sentence embeddings of
ti and τi is the trustworthiness score of ti. Our approach can make use of any text-
based fact-checking approach that provides text snippets and a trustworthiness score,
and allows us to compute PageRank score. Moreover, we can use any sentence embed-
ding model. For our experiments, we adapt the state-of-the-art text-based approach
FactCheck [46] as a text-based fact checking approach, and make use of a pre-trained
SBert Transformer model for sentence embeddings [37].

4.2 Path-Based Component

Path-based approaches determine the veracity of a given assertion by finding evidence
paths in a reference KG. Our path-based component can make use of any existing path-
based approach that takes the given assertion as input together with the reference KG
and creates a single veracity score ζ as output. This veracity score is the result of our
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path-based component. Within our experiments, we use the state-of-the-art unsuper-
vised path-based approach COPAAL [48].

Fig. 2. Left: Overview of the architecture of HybridFC’s neural network component. Right: Every
ϑi is a multi-layer perceptron module.

4.3 KG Embedding-Based Component

KG embedding-based approaches generate a continuous representation of a KG using
a mapping function. Based on a given KG embedding model, we create an embedding
vector for a given assertion (s, p, o) by concatenating the embedding of its elements and
define the embedding mapping function for assertions ϕ((s, p, o)) as follows:

ϕ((s, p, o)) = ϕ(s) ⊕ ϕ(p) ⊕ ϕ(o). (2)

In our approach, we can make use of any KG embedding approach that returns both
entities and relations embeddings. However, only a few approaches provide pre-trained
embeddings for large-scale KGs (e.g., DBpedia). We use all approaches that provide
pre-trained embeddings for DBpedia entities and relations in our experiments.

4.4 Neural Network Component

The output of the three components above is the input to our neural network component.
As depicted in Fig. 2, the neural network component consists of three multi-layer per-
ceptron modules that we name ϑi.5 Each of these modules consists of a Linear layer, a
Batch Normalization layer, a ReLU layer, a Dropout layer and a final Linear layer.
The output of the text-based component ϕℵ is fed as input to the first module. The out-
put of the KG embedding-based component ϕ((s, p, o)) is fed to the second module. The
output of the 2 modules and the veracity score ζ of the path-based component are con-
catenated and fed to the third module. The result of the third module is used as input to

5 During a first evaluation a simpler approach with only one multi-layer perceptron module (i.e.,
without ϑ1 and ϑ2) showed an insufficient performance.
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a sigmoid function σ, which produces a final output in the range [0, 1]. The calculation
of the final veracity ω score for the given assertion can be formalized as follows:

ω = σ
(
wT
σϑ3 (ϑ1(ϕℵ) ⊕ ϑ2(ϕ((s, p, o))) ⊕ ζ)

)
, (3)

where wσ is a weight vector that is multiplied with the output vector of the third module.
Each of the three multi-layer perceptron modules (ϑi) is defined as follows for an input
vector x:

ϑi = W5,i × Dp(ReLU(W3,i × (BN(W1,i × x)))) , (4)

where x is an input vector, Wj,i is the weight matrix of an affine transformation in the
j-th layer of the multi-layer perceptron, × represents the matrix multiplication, ReLU
is an activation function, Dp stands for a Dropout layer [51], and BN represents the
Batch Normalization [23]. The latter is defined in the following equation:

BN(x′) = β + γ
x′ − E [x′]√
Var [x′]

, (5)

where, x′ is the output vector of the first Linear layer and the input to the Batch

Normalization, and E [x′] and Var [x′] are the expected value and variance of x′,
respectively. β and γ are weight vectors, which are learned during the training process
via backpropagation to increase the accuracy [23]. Furthermore, given the output of the
Linear layer x as input to the Dropout layer Dp, the output x̄ is computed as:

⎧⎪⎪⎨⎪⎪⎩
x̄ = Dp(x)

x̄i = δi xi ,
(6)

where each δi follows the Bernoulli distribution of parameter p, i.e., δ is 1 with proba-
bility p, and 0 otherwise.

5 Experimental Setup

We evaluate our approach by comparing it with seven state-of-the-art fact-checking
approaches. In the following, we first describe the datasets we rely upon. Then, we
describe our experimental setting.

5.1 Datasets

Fact-Checking Datasets. In our experiments, we use two recent fact-checking datasets
that are often used in the literature [20,46,47]: FactBench and BirthPlace/DeathPlace
(BD). We use these datasets because they comprise entities of DBpedia, which is (i)
large, and (ii) for which multiple pre-trained embedding models are available.

We only use a subset of the original FactBench dataset because it was created in
2014, and is based on DBpedia version 3.9 [20]. Ergo, some of the facts it contains
are outdated. For example, (:B.Obama, :presidentOf, :USA) was a correct assertion
when the benchmark was created but is currently incorrect (without the date informa-
tion). We performed the following list of changes to obtain the benchmark used herein:
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Table 2. Overview of all correct facts used in our experiments. The train and test sets (train/test)
are from the 2 benchmark datasets FactBench and BD from [46].

Property |Sub| |Obj| Comment

FactBench :birthPlace 75/75 67/65 Birth place (city)

:deathPlace 75/75 54/48 Death place (city)

:award 75/75 5/5 Winners of nobel prizes

:foundationPlace 75/75 59/62 Foundation place and timeof software companies

:author 75/75 75/73 Authors of science fiction books (one book/author)

:spouse 74/74 74/74 Marriages between actors(after 2013/01/01)

:starring 22/21 74/74 Actors starring in a movie

:subsidiary 54/50 75/75 Company acquisitions

BD :birthPlace 51/52 45/35 Birth place (city)

:deathPlace 52/51 42/38 Death place (city)

Table 3. Overview of the number of wrong assertions in the different categories of the train and
test set (train/test) from the 2 benchmark datasets FactBench and BD [46].

Category |Assertions| Comment

FactBench Domain 1000/985 Replacing s with another entity in the domain of p

Range 999/985 Replacing o with another entity in the range of p

DomainRange 990/989 Replacing s or o based on the domain and range of p, resp

Property 1032/997 Replacing s and o based on p connectivity

Random 1061/1031 Randomly replacing o or s with other entities

Mix 1025/1024 Mixture of above categories

BD type-based 206/206 Replacing s or o of different RDF type

– We removed the date category from wrong assertions.
– We removed all assertions with Freebase entities.
– We removed the : team predicate, because there were many false positives in this

category of assertions, since nearly all players changed their teams meanwhile.

Our second evaluation dataset, dubbed BirthPlace/DeathPlace (short DB) [46], aims to
overcome a limitation of the FactBench dataset. It only contains assertions pertaining
to birth and death places. The dataset was created based on the observation that some
fact-checking approaches only check if the subject and object have a relation to each
other while the type of the relation, i.e., whether it matches the property of the given
assertion, is not always taken into account. Hence, all subjects and objects within the
BD dataset have a relation to each other. This ensures that an approach only performs
well on this dataset if it takes the type of the relation in assertions into account.

An overview of the two benchmarking datasets used in our evaluation in terms of
the number of true and false assertions in training and testing sets, predicates, and some
details about the generation of those assertions are presented in Tables 2 and 3. Note that
both datasets were designed to be class-balanced. Hence, we do not need to apply any
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method to alleviate potential class imbalances in the training and test data. However, we
want to point out that the BD dataset provides less training examples than FactBench.

Reference Corpus. Our text-based component makes use of a reference corpus. We
created this corpus by extracting the plain text snippets from all English Wikipedia
articles and loading them into an Elasticsearch instance. We used the dump fromMarch
7th, 2022. For the Elasticsearch6 index, we used a cluster of 3 nodes with a combined
storage of 1 TB and 32 GB RAM per node.

5.2 Evaluation Metric

As suggested in the literature, we use the area under the receiver operator characteris-
tic curve (AUROC) to compare the fact-checking results [25,46,47]. We compute this
score using the knowledge-base curation branch of the GERBIL framework [33,36].

5.3 Setup Details and Reproducibility

Within the sentence embedding module, we use a pre-trained SBert model.7 Further-
more, we set k = 3 in the sentence selection module. The size of the sentence embed-
ding vectors generated by SBert is 768, and the trustworthiness score values against
each sentence vector, which leads to |ϕℵ| = (3 × 768) + 3 = 2307.

We use embeddings from 5 KG embedding models, where pre-trained DBpedia
embeddings are available8. These models include: TransE [7], ConEx [12], QMult [11],
ComplEx [49], and RDF2Vec [38]. For the FactBench dataset, we do not include exper-
iments using RDF2Vec embeddings, because these embeddings were generated using a
different version of DBpedia (i.e., 2015-10) and missing embeddings of multiple enti-
ties (i.e., 40/1800).9 However, we included RDF2Vec embedding in the BD dataset
comparison. Different KG embedding models provide embedding vectors with differ-
ent lengths. For example, the TransE model used within our experiment maps each
entity and each relation to a vector with 100 dimensions. This leads to a total size for
ϕ(s,p,o) of 300.

We use the Binary Cross Entropy (BCE) as loss function for training our neural
network component. We set the maximum number of epochs to 1000 with a batch size
of 1/3 of the training data size. The training may have to be stopped earlier in case
the neural network component starts to overfit. To this end, we calculate the validation

6 https://www.elastic.co/.
7 We ran experiments with all available pre-trained models (not shown in the paper due to
space limitations) from the SBert homepage (https://www.sbert.net/docs/pretrained models.
html) and found that nq-distilbert-base-v1 worked best for our approach.

8 A large number of KG embedding algorithms [12,42,49] has been developed in recent years.
However, while many of them show promising effectiveness, their scalability is often limited.
For many of them, generating embedding models for the whole DBpedia is impractical (run-
times > 1month). Hence, we only considered the approaches for which pre-trained DBpedia
embeddings are available.

9 Fair comparison could not be possible with missing entities, which constitute many assertions.

https://www.elastic.co/
https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
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loss every 10th epoch and if this loss does not decrease for 50 epochs, the training is
stopped.

All experiments are conducted on a machine with 32 CPU cores, 128 GB RAM and
an NVIDIA GeForce RTX 3090. We provide hyperparameter optimization, training,
and evaluation scripts on our project page for the sake of reproducibility.

5.4 Competing Approaches

We compare HybridFC in different configurations to FactCheck [46], COPAAL [47],
and KV-Rule [25], which are the state-of-the-art approaches of the text-, path- and
rule-based categories, respectively. We also compare our results to those four KG
embedding-based approaches for which pre-trained DBpedia embedding models are
available. We employ these models for fact checking by training the neural network
module ϑ2 of our approach based only on the output of the KG-based component. The
output of this neural network module is then directly used as input for the final sig-
moid function. We do not compare our results with results of the hybrid approaches
mentioned in Sect. 3 because ExFaKT and Tracy mainly focus on generating human-
comprehensible explanations and do not produce the veracity score, and FACTY
focuses on calculating the veracity of assertions containing long-tail vertices (i.e., enti-
ties from less popular domains, for example, cheese varieties).

6 Results and Discussion

Tables 4 and 5 show the AUROC scores for the different hybrid and competing
approaches on the FactBench train and test datasets, respectively. We can see that
HybridFC performs best when it uses the TransE embedding model. This is not unex-
pected as TransE is one of the simplest embedding models that supports property com-
position: Given two properties p1 and p2, TransE entails that ϕ(p1◦ p2) ≈ ϕ(p1)+ϕ(p2).
With TransE as its embeddings model, HybridFC significantly outperforms all compet-
ing approaches on the test data.10.

Note that FactCheck does not achieve the performance reported in [46] within our
evaluation. This is due to (i) the use of a different English Wikipedia as reference
corpus—Syed et al. showed that they achieve better results with the larger ClueWeb
corpus—and (ii) the fact that we had to remove triples from the FactBench dataset.

The overall performance of COPAAL is better than the performance of FactCheck,
ConEx, QMult and KV-Rule on the test set. However, we observe large performance
differences with respect to the different properties. While COPAAL achieves the sec-
ond best AUROC scores after HybridFC for 6 out of the 8 properties it struggles to
achieve good results for :award and :author. These experimental results suggest that
our approach makes good use of the diversity of the performance of the approaches it
includes. In particular, it seems to rely on COPAAL’s good performance on most of the
properties while being able to complement COPAAL’s predictions with that of other
algorithms for properties on which COPAAL does not perform well.

10 We use a Wilcoxon signed rank test with a significance threshold α = 0.05.
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Table 4. Area under the curve (AUROC) score on different categories of FactBench train sets.
T stands for text-based approach, P for path-based approach, R for rule-based approaches, and
KG-emb for KG-embedding-based approaches.

Domain Range DomainRange Mix Random Property Avrg.

T FactCheck [46] 0.69 0.69 0.68 0.65 0.68 0.57 0.66

P COPAAL [47] 0.67 0.67 0.68 0.65 0.69 0.68 0.67

R KV-Rule [25] 0.57 0.57 0.58 0.58 0.63 0.63 0.59

K
G
-e
m
b

TransE [7] 0.67 0.61 0.78 0.66 0.92 0.97 0.76

ConEx [12] 0.64 0.67 0.68 0.86 0.96 0.88 0.78

ComplEx [49] 0.78 0.66 0.74 0.80 0.98 0.97 0.82

QMult [11] 0.83 0.73 0.75 0.86 0.97 0.98 0.85

H
yb

ri
dF

C TransE 0.94 0.94 0.96 0.90 0.99 0.99 0.95

ConEx 0.81 0.79 0.81 0.74 0.82 0.80 0.79

ComplEx 0.94 0.94 0.94 0.86 0.95 0.97 0.93

QMult 0.90 0.89 0.89 0.81 0.91 0.94 0.89

Table 5. Area under the curve (AUROC) score on different categories of FactBench test sets; the
abbreviations are: T/Text-based approaches, P/Path-based approaches, R/Rule-based approaches,
and KG-emb/KG embedding-based approaches.

Domain Range DomainRange Mix Random Property Avrg.

T FactCheck [46] 0.67 0.67 0.66 0.61 0.66 0.59 0.64

P COPAAL [47] 0.67 0.68 0.68 0.65 0.69 0.69 0.68

R KV-Rule [25] 0.57 0.57 0.57 0.58 0.61 0.62 0.59

K
G
-e
m
b

TransE [7] 0.63 0.60 0.63 0.64 0.87 0.96 0.72

ConEx [12] 0.50 0.50 0.50 0.52 0.60 0.60 0.54

ComplEx [49] 0.58 0.58 0.52 0.62 0.86 0.95 0.69

QMult [11] 0.57 0.62 0.55 0.69 0.84 0.93 0.70

H
yb

ri
dF

C TransE 0.80 0.80 0.81 0.78 0.95 0.99 0.86

ConEx 0.77 0.78 0.79 0.71 0.80 0.70 0.75

ComplEx 0.75 0.76 0.74 0.72 0.93 0.97 0.81

QMult 0.69 0.73 0.71 0.69 0.91 0.94 0.77

On the BD dataset, KV-rule outperforms all other approaches on the test split
(Table 6). COPAAL achieves the second best score, closely followed by the TransE-
based HybridFC variant. The results confirm that the unsupervised fact-checking
approaches COPAAL and KV-rule achieve good results for the :birthPlace and
:deathplace properties. A closer look at the results reveals two main reasons for the
lower result of the TransE-based HybridFC variant on the test dataset. First, FactCheck
fails to extract pieces of evidence for most of the assertions. Second, FactCheck,
the embedding-based approaches as well as the HybridFC variants are supervised
approaches and suffer from the small size of the train split of the BD dataset. This is
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Table 6.Area under the curve (AUROC) scores on the BD dataset; the abbreviations are: T stands
for text-based approaches, P for path-based approaches, R for rule-based approaches, KG-emb
for KG-embedding-based approaches.

T P R KG-emb HybridFC
Fa
ct
C
he
ck

[4
6]

C
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A
L
[4
7]

K
V
-R
ul
e
[2
5]

T
ra
ns
E
[7
]

C
on

E
x
[1
2]

C
om

pl
E
x
[4
9]

Q
M
ul
t[
11
]

R
D
F2

V
ec

[3
8]

T
ra
ns
E

C
on

E
x

C
om

pl
E
x

Q
M
ul
t

R
D
F2

V
ec

Train 0.51 0.67 0.76 0.69 0.50 0.73 0.60 0.67 0.80 0.51 0.74 0.60 0.74

Test 0.49 0.70 0.81 0.54 0.50 0.54 0.55 0.62 0.69 0.50 0.57 0.58 0.68

Table 7. Results of our ablation study on the FactBench test set and BD dataset. D stands for
Domain, R for Range, DR for DomainRange, Ran. for Random, Prop. for Property, and Avg. for
average. TC stands for text-based component, PC for path-based component, EC for embedding-
based component, and the symbol + indicates the combination of 2 components. Best perfor-
mances are bold, second-best are underlined.

(a) FactBench test set

D R DR Mix Ran. Prop. Avg.

TC 0.76 0.77 0.76 0.69 0.77 0.64 0.73

PC 0.68 0.69 0.69 0.65 0.70 0.69 0.68

EC 0.63 0.61 0.62 0.64 0.86 0.97 0.72

TC+EC 0.76 0.78 0.76 0.74 0.92 0.98 0.82

TC+PC 0.77 0.77 0.77 0.7 0.79 0.67 0.74

PC+EC 0.71 0.7 0.69 0.72 0.89 0.97 0.78

HybridFC 0.80 0.80 0.81 0.78 0.95 0.99 0.86

(b) BD dataset

Train Test

TC 0.59 0.56

PC 0.67 0.70

EC 0.69 0.56

TC+EC 0.79 0.65

TC+PC 0.67 0.64

PC+EC 0.74 0.66

HybridFC 0.80 0.69

confirmed by our observation that the neural network component tends to overfit during
the training phase.

7 Ablation Study

Our previous experiments suggest that HybridFC performs best in combination with
TransE. Hence, we use it as default setting throughout the rest of the paper and overload
HybridFC to mean HybridFC with TransE embeddings. To evaluate the contribution of
the different components of HybridFC to its performance, we rerun our evaluation for
each component (i.e., text-based (TC), path-based (PC), and embedding-based (EC))
individually and as pairwise combination of different components (TC+PC, TC+EC,
PC+EC). The results for the FactBench test and the BD datasets are shown in Tables 7a
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and 7b.11 The results suggest that the individual path-based and embedding-based com-
ponents achieve results similar to those of COPAAL and TransE, respectively. Our
text-based component achieves better results than FactCheck. On the FactBench test
datasets, the combination of two components leads to better results than the single com-
ponents. Similarly, HybridFC, i.e., the combination of all three components, leads to
significantly better results than all pairwise combinations, where significance is mea-
sured using a Wilcoxon signed rank test with a p-value threshold of 0.05. Here, our null
hypothesis is that the performances of the approaches compared are sampled from the
same distribution. For the BD dataset, the pairwise combinations of components suffer
from the same overfitting problem as HybridFC. Overall, our results in Table 7a sug-
gest that our text component commonly achieves the highest average performance on
datasets that provide enough training data. The text component is best supplemented
by the embedding-based component. HybridFC outperforming all combinations of two
components on FactBench suggests that in cases in which HybridFC is trained with
enough training data, each of the three components contributes to the better overall
performance of HybridFC.

8 Conclusion

In this paper, we propose HybridFC–a hybrid fact-checking approach for KGs.
HybridFC aims to alleviate the problem of manual feature engineering in text-based
approaches, cases in which paths between subjects and objects are unavailable to path-
based approaches, and the poor performance of pure KG-embedding-based approaches
by combining these three categories of approaches. We compare HybridFC to the state
of the art in fact checking for KGs. Our experiments show that our hybrid approach is
able to outperform competing approaches in the majority of cases. As future work, we
will exploit the modularity of HybridFC by integrating rule-based approaches. We also
plan to explore other possibilities to select the best evidence sentences.

Supplemental Material Statement

– The source code of HybridFC, the scripts to recreate the full experimental setup, and
the required libraries can be found on GitHub.12

– Datasets used in this paper and the output generated by text-based and path-based
approaches on these datasets are available at Zenodo [3].

– Pre-trained embeddings for these datasets are also available at Zenodo [4].
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11 Due to space limitation we exclude the results of FactBench train set. These results are avail-
able on our GitHub page.

12 Source code: https://github.com/dice-group/HybridFC.
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27. Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with AMIE 3. In: Harth, A.,
et al. (eds.) The Semantic Web, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-49461-2 3

28. Li, F., Dong, X.L., Langen, A., Li, Y.: Knowledge verification for long-tail verticals. Proc.
VLDB Endow. 10(11), 1370–1381 (2017). https://doi.org/10.14778/3137628.3137646

29. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowl-
edge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 29 (2015)
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Abstract. Real-world knowledge graphs (KGs) are usually incomplete—
that is, miss some facts representing valid information. So, when applied
to such KGs, standard symbolic query engines fail to produce answers that
are expected but not logically entailed by the KGs. To overcome this issue,
state-of-the-art ML-based approaches first embed KGs and queries into
a low-dimensional vector space, and then produce query answers based
on the proximity of the candidate entity and the query embeddings in
the embedding space. This allows embedding-based approaches to obtain
expected answers that are not logically entailed. However, embedding-
based approaches are not applicable in the inductive setting, where KG
entities (i.e., constants) seen at runtime may differ from those seen during
training. In this paper, we propose a novel neuro-symbolic approach to
query answering over incomplete KGs applicable in the inductive setting.
Our approach first symbolically augments the input KG with facts repre-
senting parts of the KG that match query fragments, and then applies a
generalisation of the Relational Graph Convolutional Networks (RGCNs)
to the augmented KG to produce the predicted query answers. We for-
mally prove that, under reasonable assumptions, our approach can cap-
ture an approach based on vanilla RGCNs (and no KG augmentation)
using a (often substantially) smaller number of layers. Finally, we empir-
ically validate our theoretical findings by evaluating an implementation
of our approach against the RGCN baseline on several dedicated bench-
marks.

Keywords: Query answering · Knowledge graphs · Graph neural
networks · Neuro-symbolic AI

1 Introduction

Knowledge graphs (KGs) are databases where information is represented as a
collection of entities and relations between them [13], or, equivalently, as a set
of (function-free) first-order facts. Query answering is a fundamental reasoning
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task on KGs, which requires identifying all (tuples of) entities in a KG that
satisfy a specific formal expression, called a query. For example, (conjunctive)
query q(x) = ∃y1, y2. almaMater(x, y1)∧professorAt(y1, y2) finds, in a KG, all the
universities that are the alma maters of persons working as professors.

Queries can be answered over KGs using symbolic logic-based engines, such
as SPARQL and Cypher [16]. This approach, however, is challenged by the
problem that many real-life KGs are incomplete, in the sense that there are
true facts missing in the KG that may be relevant for answering a particular
query. For example, if a KG contains the fact professorAt(edith, berkeley), rep-
resenting that Edith is a professor at UC Berkeley, but it is missing the fact
almaMater(melbourne, edith), representing that the University of Melbourne is
the alma mater of Edith, then melbourne will not be returned as an answer for
the above query, even though this answer may be expected by the user.

Query Embedding (QE) approaches have been proposed as a way to over-
come this limitation [4,9,11,17,18,20]. QE approaches embed KGs and monadic
conjunctive queries jointly in a low dimensional vector space, and then they
evaluate the likelihood of candidate answers according to their distance to the
query embedding in the embedding space. These methods can produce answers
that may be of interest to the user, even if they correspond to parts of the KG
that only partially match the query. However, to the best of our knowledge,
existing QE approaches are only applicable in the transductive setting, where
trained models can only process KGs that mention only entities seen during
training. An increasing number of applications, however, require an inductive
setting [10,14,23,25], where unseen entities are also allowed.

Relational Graph Convolutional Networks (RGCNs) [19] are a class of graph
neural networks (GNNs) which take as input directed labelled multigraphs—
in particular, graphs with nodes connected by coloured edges and annotated
with real-valued feature vectors. When applied to such a multigraph, an RGCN
updates, in each layer, the feature vector of each node by combining, by means
of learned parameters, the node’s feature vector in the previous layer with the
previous-layer vectors of the node’s neighbours. If the vector in the final layer is
a single Boolean value, then the RGCN can be seen as a (binary) node classifier.
RGCNs can be used to answer monadic queries on a KG: first, encode the KG
as a directed multigraph with a node for each entity in the KG; then, run a
trained RGCN on the multigraph to predict whether each entity is an answer
to the query or not (similar approaches have been used for the related problem
of KG completion [10,14,22–24]). This method has three properties making it
suitable for answering queries on incomplete KGs in an inductive setting.

1. Inductive Capabilities. RGCNs do not use entity-specific parameters, so they
can be applied to KGs mentioning entities not seen during training.

2. Expressivity. Recent theoretical analysis of RGCNs [5] shows that, for every
monadic tree-shaped conjunctive query, there exists an RGCN that exactly
captures this query—that is, for each KG, the answers provided by the RGCN
on the KG are the same as the real query answers over the KG.
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3. Noise Tolerance. Similarly to other ML approaches, RGCNs can produce
relevant query answers even if such answers do not have exact matches in the
input KG (e.g., due to missing information).

A key limitation of using RGCNs for query answering over KGs, however,
is that, in order to recognise a part of the KG relevant to a query answer, any
RGCN requires at least as many layers as the length of the longest (simple) path
in the query to an answer variable. Empirical results have shown, however, that
GNNs with many layers often fail to learn long-range dependencies and suffer
from several problems, such as over-smoothing [12]. This problem persists even
if the input KGs have no missing information.

To address this limitation, we propose in this paper a novel neuro-symbolic
approach to inductive query answering over incomplete KGs. Our approach first
augments an input KG using a set of logical (i.e., symbolic) rules extracted
from the query. The application of a rule to a KG adds new facts that repre-
sent (complete) parts of the KG matching connected query fragments. Then the
approach encodes the augmented KG as a coloured hypergraph, and processes
this hypergraph using a novel neural architecture called Hyper-Relational Graph
Convolutional Network (HRGCN ), which generalises vanilla RGCNs to be appli-
cable to coloured hypergraphs. We then provide a proof that, under mild and
reasonable assumptions, our approach can emulate the baseline approach that
relies on vanilla RGCNs (without KG augmentation) using significantly less lay-
ers. Finally, we present an implementation of our approach in a system called
GNNQ and evaluate it on nine novel benchmarks for inductive query answering
over incomplete KGs against a baseline without augmentation. Our results show
that instances of GNNQ can be effectively trained and deployed in practice;
moreover, they outperform the baselines, even if the latter use more layers.

2 Preliminaries

In this paper, we rely on a standard formalisation of knowledge graphs (and
related concepts) in first-order logic.

Let us consider disjoint countable sets of predicates, constants, and variables,
where each predicate is assigned a natural number called arity. A k-ary atom,
with k ∈ N, is an expression of the form P (t̄), where P is a k-ary predicate and
t̄ = t1, . . . , tk is a k-tuple of constants and variables. A fact is a variable-free
atom. A dataset is a finite set of facts. A knowledge graph (KG) is a dataset
containing only unary and binary facts. So, entities in a KG are represented by
constants, while classes of entities and relations between them are represented
by unary and binary facts, respectively. Let Const(D) and Pred(D) denote the
constants and predicates mentioned in a dataset D, respectively.

A conjunctive query (CQ) with (a tuple of) answer variables x̄, is a formula
q(x̄) = ∃ȳ. φ(x̄, ȳ), where the body φ(x̄, ȳ) is a conjunction of atoms over variables
x̄, ȳ. A tuple ā of constants is an answer to q(x̄) over a dataset D if there is a
homomorphism from q(ā) to D—that is, an assignment of constants to ȳ such
that each atom in φ(ā, h(ȳ)) is in D. Let q[D] denote the set of all answers to
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Fig. 1. Representation of tree-CQ q(x) and KG K with completion K∗ from Example 1:
the single completion fact is drawn as a dashed line, constants are shown by first letter.

q(x̄) over D. In this paper, we concentrate on tree-shaped CQs (tree-CQs)—that
is, constant-free CQs over unary and binary predicates with one answer variable
such that the primal pseudograph of the CQ’s body is a tree; here, the primal
pseudograph of a conjunction of atoms is the undirected pseudograph whose
nodes are the variables of the conjunction and which has an edge between (not
necessary distinct) z1 and z2 for each binary atom R(z1, z2) in the conjunction.
We call a primal pseudograph primal tree if it is a tree. The height of a tree-CQ
is the height of its primal tree with the answer variable as the root.

3 Inductive Query Answering over Incomplete KGs

We are interested in the problem of finding the answers to a given (known in
advance) tree-CQ over KGs that may be incomplete—that is, missing (relevant)
information. In particular, we assume that each KG has a completion—that is,
a larger (or identical) KG that may include additional facts, which are ‘miss-
ing’ in the original KG. We consider the setting where all the constants in the
completion facts are already mentioned in the original KG. However, we assume
that the function that maps a KG to its completion is unknown; instead, only
partial knowledge about this function is provided to a system in the form of
examples, each of which consists of a KG, a constant, and a Boolean value,
which tells whether the constant is an answer to the tree-CQ over the com-
pletion of the KG. Finally, our setting is inductive [10,14,23,25], which means
that there exists a finite, known-in-advance set of predicates used in all KGs,
their completions, and the tree-CQ, but the constants in different KGs may be
different.

We are now ready to formalise the ML task of inductive tree-CQ answering
over incomplete KGs, which we call the IQA task for brevity.

Definition 1. Given a finite set Pred of unary and binary predicates, and a
tree-CQ q(x) that uses only predicates from Pred, let us assume a hidden com-
pletion function ·∗ mapping each KG K with Pred(K) ⊆ Pred to another KG
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K∗ with Pred(K∗) ⊆ Pred, called the completion of K, such that K ⊆ K∗ and
Const(K∗) = Const(K). Then, the IQA task is to learn a function gq mapping
each KG K with Pred(K) ⊆ Pred to the set q[K∗] of answers to q(x) over K∗.

Example 1. Let q(x) be the tree-CQ

∃y1, y2, y3, y4. almaMater(x, y1) ∧ professorAt(y1, y2) ∧
supervisedBy(y1, y3) ∧ wonNobel(y3, y4),

which asks for all universities that are the alma maters of professors who were
supervised by Nobel Prize winners, and let K be the KG

{supervisedBy(alice, roger), supervisedBy(daniel, carol),
wonNobel(roger, physics),wonNobel(carol,medicine),
professorAt(alice, oxford), professorAt(daniel, oxford),

graduatedFrom(alice, shanghai), graduatedFrom(daniel, toronto),
almaMater(toronto, daniel)}

with K∗ = K ∪ {almaMater(shanghai, alice)} (see Fig. 1). The desired func-
tion gq for q(x) should return the set {shanghai, toronto} of answers when
applied to K, because both toronto and shanghai are answers to q(x) over K∗.
Note, however, that shanghai is not an answer to q(x) over K, since the fact
almaMater(shanghai, alice) is missing from K.

4 Neuro-Symbolic Approach to the IQA Task

In this section, we describe our approach for solving the IQA task. For the
remainder of this section, let us fix a (possibly empty) set Pred1 = {A1, . . . , Am}
of unary predicates, a finite set Pred2 of binary predicates, and a tree-CQ
q(x) = ∃ȳ. φ(x, ȳ) over predicates in Pred1 ∪ Pred2. For technical reasons, we
assume that the variables x, ȳ are ordered following a breadth-first traverse of
the primal tree of φ(x, ȳ). This assumption is without loss of generality, since
given an arbitrary tree-CQ, we can always construct a semantically equivalent
query that satisfies our requirement by reordering ȳ. Finally, for each R ∈ Pred2,
we consider a fresh binary predicate R̄, which we call the inverse of R, and we
let Pred+2 denote the set Pred2 ∪ {R̄ | R ∈ Pred2}.

Our approach is divided in three steps. In the first step, described in Sect. 4.1,
the input KG is augmented with new facts that will assist our ML model in
recognising parts of the input KG that match selected query fragments. In the
second step, described in Sect. 4.2, our approach encodes the augmented KG
into a data structure suitable for our ML model, namely, a coloured labelled
(multi-)hypergraph, where nodes correspond to constants in the KG and edges
to non-unary atoms. In the third and final step, described in Sect. 4.3, the app-
roach processes the coloured hypergraph by means of a generalisation of RGCNs.
The output of this process is a Boolean value for each node in the hypergraph,
representing whether the constant associated to this node is predicted as an
answer to q(x) over the completion of the input KG or not.
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4.1 Augmentation of Knowledge Graphs

As discussed in the introduction, vanilla RGCNs with Boolean outputs can be
used to solve the IQA task by first encoding the input KG as a directed multi-
graph and then applying a trained RGCN to the encoding. Such RGCNs, how-
ever, may require a large number of layers to adequately capture the target
function. However, training RGCNs with many layers is expensive; moreover,
the resulting models may have poor performance due to over-smoothing [12].
To address these issues, our procedure first augments the input KG with facts
representing (complete) parts of the KG matching query fragments. As we prove
in Sect. 5, this allows us to solve the IQA task using significantly less layers.

The KG augmentation relies on a set of logical rules, which correspond to
fragments of the tree-CQ. These rules are applied to the KG to infer new facts,
which are added to the KG. To formalise this step, we need some terminology.

A (projection-free) rule is an expression of the form H(z̄) ← ψ(z̄), where
the head H(z̄) is an atom over a |z̄|-ary predicate H, and the body ψ(z̄) is a
conjunction of atoms using variables z̄ (i.e., each variable in z̄ appears in at
least one atom in ψ(z̄), and there are no other variables in these atoms). The
application of a set R of rules to a dataset D is a dataset R(D) that extends D
with each fact H(ā) such that there is a rule H(z̄) ← ψ(z̄) in R with every fact
in ψ(ā) belonging to D. Note that in what follows we will only apply a rule to
datasets that do not mention the head predicate of the rule.

Next, we associate a set Rq of rules to our fixed tree-CQ q(x). Specifically, we
define Rq as the set of all the rules H(z̄) ← ψ(z̄), where ψ(z̄) is a sub-conjunction
of φ(x, ȳ) with the same order of variables in z̄ as their order in x, ȳ, such that

– the primal pseudograph of ψ(z̄) is connected (and hence it is a tree) and
– the height of this tree is at least 2,

and where H is a fresh |z̄|-ary predicate uniquely associated to ψ(z̄). Subse-
quently, we use Predq to denote the set of head predicates of the rules in Rq.
Note that, by our assumptions on the order of variables, the first variable in
z̄ will always be the one closest to x in the primal tree of φ(x, ȳ) rooted at x.
Moreover, the assumptions ensure that Rq does not contain rules with the same
body and head predicate, but different heads; this eliminates redundancy by
preventing augmentation with multiple facts identifying the same sub-KGs.

As discussed in Sect. 6.1, in our experiments we observe that it is often better
not to use all rules in Rq in the augmentation step. We believe that there are
two main reasons for this: first, increasing the number of augmentation facts
appears to have diminishing returns, since different facts can represent similar
parts of the input KG (satisfying similar query fragments); second, having a
large number of augmentation facts mentioning the same constant can produce
problems similar to over-smoothing. Therefore, we consider KG augmentations
with full Rq and augmentations with subsets of Rq.

Definition 2. The partial augmentation of a KG K over Pred1 ∪ Pred2 for the
tree-CQ q(x) with respect to rules R′

q ⊆ Rq is the dataset R′
q(K). The (full)

augmentation of K is the partial augmentation with respect to all Rq.
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Fig. 2. Representation of ψ, K, and augmentation R′
q(K) from Example 2

Example 2. Consider KG K, tree-CQ q(x) in Example 1, and the sub-
conjunction

ψ(y1, y2, y3, y4) = professorAt(y1, y2) ∧ supervisedBy(y1, y3) ∧ wonNobel(y3, y4),

of the body of q(x) (see Fig. 2); its primal pseudograph is a tree of height 3. So,
Rq contains rule r = H(y1, y2, y3, y4) ← ψ(y1, y2, y3, y4) for a fresh predicate
H, and the partial augmentation of K for q(x) with respect to R′

q = {r} is
K ∪ {H(alice, oxford, roger, physics),H(daniel, oxford, carol,medicine)}.

4.2 Encoding of Knowledge Graphs

We now describe our encoding of datasets into directed (multi-)hypergraphs
where hyperedges are coloured and nodes are labelled by real-valued vectors.
Specifically, our encoding introduces a hypergraph node for each constant in the
input dataset; then, each fact of arity greater than 1 is encoded into a hyperedge
of the colour corresponding to the fact’s predicate, and each fact of arity 1 is
encoded as a component of the feature vector labelling the corresponding node.
Furthermore, for each binary fact in the original dataset with a predicate R,
the encoding introduces, besides the R-coloured edge, an R̄-coloured edge in
the reverse direction; such edges will ensure that our ML model propagates
information in both directions whenever a binary fact connects two constants.

Definition 3. Given a finite set Col of colours with fixed arities greater than 1
and a dimension δ ∈ N, a (Col, δ)-hypergraph G is a triple (V, E , λ) where V is a
finite set of nodes, E is a set of directed hyperedges of the form (v, c, (u1, . . . , uk))
with c ∈ Col of arity k+1, {v, u1, . . . , uk} ⊆ V, and λ is a labelling function that
assigns a vector λ(v) ∈ R

δ to every v ∈ V. Hypergraph G is Boolean if δ = 1
and λ(v) ∈ {0, 1} for every v ∈ V.

Given a (Col, δ)-hypergraph G = (V, E , λ), we denote, for brevity, the vector
λ(v) for a node v with v, and we refer to its ith element as (v)i. Furthermore,
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for each v ∈ V and c ∈ Col, we define the c-neighbourhood N c
G(v) of v in G as

the set {(u1, . . . , uk) | (v, c, (u1, . . . , uk)) ∈ E}.
Now that we have our target graph structure, we can define our encoding

function, which maps datasets (including augmented KGs) to hypergraphs.

Definition 4. The encoding of a dataset D over predicates Pred1 ∪ Pred2 ∪
Predq is the (Col, δ)-hypergraph GD = (V, E , λ) such that

– Col = Pred+2 ∪ Predq (i.e., the binary predicates, their inverses, and the head
predicates of Rq),

– δ = m + 1 (where m is the number |Pred1| of unary predicates),
– V is the set of constants in D,
– E includes (a,R, (b1, . . . , bk)) for every R(a, b1 . . . , bk) ∈ D with k > 1,
– E includes (b, R̄, (a)) for every R(a, b) ∈ D with R ∈ Pred2, and
– λ is the labelling that assigns, to each a ∈ V, the vector a ∈ R

δ such that
(a)i = 1 if Ai(a) ∈ D or i = m + 1, and (a)i = 0 otherwise.

Note that the (m + 1)th element of each vector a is always 1; this element is
needed to cover the case m = 0—that is, when there are no unary predicates.

4.3 Hyper-Relational Graph Convolutional Networks

We now introduce a generalised version of the RGCN [19] architecture that can
process (Col, δ)-hypergraphs; we call this generalisation Hyper-Relational Graph
Convolutional Network (HRGCN ). Our approach uses a HRGCN to process the
hypergraphs that are encodings of augmented KGs.

Definition 5. Given a finite set Col of colours with fixed arities and δ ∈ N, a
(Col, δ)-HRGCN � with L ≥ 1 layers and dimensions (δ0, . . . , δL), for δ0 = δ, is

({Aggr�}L
�=1, {Comb�}L

�=1,Cls),

where

– each aggregation function Aggr�, 1 ≤ � ≤ L, maps a multiset of tuples of the
form (c,u1, . . . ,uk) with c ∈ Col and each ui in R

δ�−1
to a vector in R

δ�−1
;

– each combination function Comb�, 1 ≤ � ≤ L, maps two vectors in R
δ�−1

to
a vector in R

δ�

;
– classification function Cls maps a vector in R

δL

to a value in {0, 1}.
Given a (Col, δ)-hypergraph G = (V, E , λ), HRGCN � induces the sequence
λ0, . . . , λL of labellings such that λ0 = λ, and, for each � ∈ {1, . . . , L} and
v ∈ V, the value of λ�(v) = v� is defined as

v� = Comb�
(
v�−1,Aggr�

({{(c,u�−1
1 , . . . ,u�−1

k ) | (u1, . . . , uk) ∈ Nc
G(v), c ∈Col}}))

.

The result �(G) of applying � to G is the (Col, δ)-hypergraph (V, E , λbool), where
λbool is the labelling of every node v ∈ V by Cls(vL). Subsequently, �(G, v)
denotes vL and �true[G] denotes the set of all v ∈ V with λbool(v) = 1.

Then, a (Col, δ)-RGCN is a (Col, δ)-HRGCN for Col with no colours of arity
greater than 2 (this is essentially the standard definition of RGCNs [19]).
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5 Advantages of Knowledge Graph Augmentation

As discussed in the introduction, the main motivation for KG augmentation is
to help ML models easily recognise parts of the input KG that match complete
connected fragments of the query. In this section, we present a theorem that
makes this conjecture precise. To this end, we assume a natural and broad class
of completion functions, which arguably captures those one may expect to find
in practice. Then, we will show that, for each (big enough) tree-CQ q, if there
is an instance of our approach capturing the goal function gq without using KG
augmentation, then there exists an instance of the approach that also captures
gq using (full) KG augmentation, but whose HRGCN has significantly less layers.

Definition 6. A completion function ·∗ over a set of predicates Pred is

– monotonic under homomorphisms if for every KGs K1 and K2 over Pred and
each homomorphism h from K1 to K2, h is also a homomorphism from K∗

1 to
K∗

2, where a homomorphism h from K1 to K2 is a mapping from Const(K1)
to constants such that h(K1) ⊆ K2;

– s-local, for s ∈ N, if for every KG K over Pred and every fact α ∈ K∗ there
is Kα ⊆ K such that α ∈ K∗

α and Kα contains an undirected path (through
constants and binary facts) from each constant in Kα to each constant in α
of length at most s;

– k-incomplete for a tree-CQ q(x) if for each KG K over Pred and each answer
a ∈ q[K∗] there is Ka such that K ⊆ Ka ⊆ K∗, a ∈ q[Ka], and |Ka \ K| ≤ k.

The intuition under these notions is as follows. Monotonicity under homo-
morphisms requires that every fact in the completion of a KG should also appear
(in a suitable form) in the completion of any KG that has the same structure
as the original KG. Locality reflects the intuition that every fact in the comple-
tion is a consequence of a small neighbourhood of the fact in the original KG.
Finally, incompleteness for a query means that, for every answer to the query,
only a small number of facts can be missing in any ‘witness’ of it—that is, any
part of the KG completion (fully) matching the query. We will now state our
main result; its proof can be found in the supplemental material.

Theorem 1. Let Pred1 and Pred2 be finite sets of unary and binary predicates,
respectively, and let Pred+2 = Pred2 ∪{R̄ | R ∈ Pred2} and Pred = Pred1 ∪Pred2.
Let q(x) be a tree-CQ of height h over Pred and ·∗ be a completion function
over Pred that is monotonic under homomorphisms, s-local, and k-incomplete for
q(x). If there is an L-layer (Pred+2 , δ)-RGCN �, for δ ∈ N, such that �true[GK] =
q[K∗] for each KG K over Pred, then there is a (k(s + 1) + 1)-layer (Pred+2 ∪
Predq, δ)-HRGCN � such that �true[GRq(K)] = q[K∗] for each KG K over Pred.

We emphasise that many completion functions that one may find in practice
will have small values of s and k, thus making k(s + 1) + 1 significantly smaller
than L. Therefore (for large enough L) KG augmentation allows us to reduce the
number of layers that an HRGCN instance in our approach requires to capture
the goal function gq—that is, to capture query q on incomplete KGs.
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Table 1. Benchmark statistics, where ||q|| and h(q) are the number of atoms and height
of the tree-CQ, and ‘pos./neg.’ stands for ‘number of positive / negative examples’

Benchmark |Pred| ||q|| /h(q) train: pos./neg test: pos./neg.

WatDiv-Q1 158 8 / 4 2114 / 699699 1085 / 349877

WatDiv-Q2 158 8 / 3 3258 / 698396 1769 / 349119

WatDiv-Q3 158 8 / 3 1520 / 700276 798 / 350165

WatDiv-Q4 158 10 / 4 2397 / 698986 1226 / 349546

WatDiv-Q5 158 10 / 4 6338 / 693988 2866 / 347570

WatDiv-Q6 158 10 / 4 7545 / 692439 3744 / 346290

FB15k237-Q1 237 7 / 4 1185 / 1180 395 / 395

FB15k237-Q2 237 7 / 4 650 / 660 220 / 220

FB15k237-Q3 237 5 / 4 860 / 870 290 / 290

6 Implementation and Evaluation

We have implemented our approach to the IQA task over incomplete KGs using
Python 3.8.10, RDFLIB 6.1.1, and PyTorch 1.11.0 in a system called GNNQ.
We then evaluated several instances GNNQL of GNNQ using KG augmentation,
parametrised by the number L of layers of the underlying HRGCN, on a num-
ber of benchmarks. To the best of our knowledge, no existing system can solve
the IQA task (in particular, can deal simultaneously with KG incompleteness,
complex queries, and the inductive setting); thus, we compared the instances
GNNQL against instances GNNQ−

L of GNNQ that do not use KG augmentation,
which we treat as baselines. Our experiments show that the GNNQL instances
significantly outperform the GNNQ−

L instances, even if the RGCNs underlying
the latter use more layers. Thus, we conclude that KG augmentation can pro-
vide a significant advantage in solving the IQA task in practice. All experiments
were performed on a machine equipped with an Intel R© CoreTM i9-10900K CPU,
64GB of RAM, running Ubuntu 20.04.4, and a Nvidia GeForce RTX 3090 GPU.

6.1 Benchmarks

The existing benchmarks for query answering on KGs used in the QE litera-
ture [4,9,11,17,18,20] are designed for the transductive setting, so we cannot
use them for an informative comparison of systems addressing the IQA task.
Thus, in order to evaluate GNNQ instances, we have designed nine novel IQA
benchmarks. Six of these, called WatDiv-Qi, for i ∈ {1, . . . , 6}, are based on syn-
thetic KGs generated with the WatDiv framework [3], and the remaining three,
called FB15k237-Qi, for i ∈ {1, 2, 3}, are based on subgraphs of FB15k-237 [6],
a real-life KG commonly used in benchmarks for evaluation of KG completion
and QE systems. Each of our benchmarks provides the following:
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– a set Pred of unary and binary predicates and a tree-CQ over Pred;
– sets of examples for training (including validation) and testing; each example

is of the form (K, a, Ans) where K is a KG over Pred, a is a constant, and
Ans ∈ {0, 1} is the ground-truth answer.

The benchmarks are constructed so that the ground-truth answer of an exam-
ple is 1 if and only if a ∈ q[K∗], where ·∗ is a hidden completion function over
Pred, which is not given as part of the benchmark. For all our benchmarks,
·∗ is defined by appropriately constructed Datalog rules [2]; such an approach
allows us to capture structural dependencies of KGs, which are best-fitted for
the inductive setting [23]. Table 1 summarises the statistics of our nine bench-
marks. Further details about the selection of queries, completion functions, and
examples for each benchmark are provided in the supplemental material.

6.2 GNNQ Implementation

Using a set of predicates Pred and a tree-CQ q(x) as parameters, each GNNQL

processes a KG K over Pred and a candidate constant a ∈ Const(K) by perform-
ing the following steps, implementing (and specifying) our approach.

Step 1. Each GNNQL computes a partial augmentation R′
q(K) of K with respect

to some subset R′
q ⊆ Rq specified as follows: for the FB15k237-Qi benchmarks,

we take R′
q = Rq; in contrast, for the WatDiv-Qi benchmarks, we take R′

q

as the subset of all rules in Rq with at most 4 variables. We selected such R′
q

because, on the one hand, the FB15k237-Qi benchmarks are relatively irregular,
so we expect that even with full augmentation only a relatively small number of
augmentation facts will be generated; on the other hand, the WatDiv-Qi bench-
marks are highly regular, which suggests that performance may be hampered if
we perform full augmentation, as this will derive many similar facts, which may
cause problems analogous to over-smoothing. Each GNNQL then encodes R′

q(K)
as a (Col, δ)-hypergraph GR′

q(K) with appropriate Col and δ (see Sect. 4.2).

Step 2. Each GNNQL applies, to GR′
q(K), a (Col, δ)-HRGCN � with L layers,

dimensions (δ0, . . . , δL) such that δ0 = δ and δL = 1, and the following compo-
nents. Functions Aggr� and Comb� for each layer � ∈ {1, . . . , L} of � are defined
so that the feature vector of each node v is updated as

v� = σ�
(
C�v(�−1) +

∑
c∈Col

∑
(u1,...,ukc )∈Nc

GR′
q(K)

(v)

A�
c[u

(l−1)
1 , . . . ,ukc

(l−1)]

|N c
GR′

q(K)
(v)| + b�

)
,

where σ� is a element-wise leaky ReLU for each � ∈ {1, . . . , L − 1} and the
element-wise sigmoid function if � = L; where every C� and A�

c, for each
colour c ∈ Col, are (learnable) real-valued matrices of dimension δ� × δ�−1 and
δl × (kcδ

(l−1)), respectively, for kc +1 the arity of c, and each b� is a (learnable)
real-valued bias vector of dimension δ�; and where [u�

1, . . . ,u
�
kc

] is the vector
obtained by concatenating u�

1, . . . ,u
�
kc

. The classification function maps x ∈ R
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Table 2. Results for WatDiv-Qi benchmarks in the format precision/recall/AP

WatDiv-Q1 WatDiv-Q2 WatDiv-Q3 WatDiv-Q4 WatDiv-Q5 WatDiv-Q6

GNNQ−
h−1 .648/ .646/ .678 .655/ .722/ .661 .652/ .731/ .729 .660/ .590/ .653 .733/ .724/ .780 .555/ .614/ .578

GNNQ−
h .742/ .707/ .771 .819/ .852/ .881 .680/ .787/ .784 .791/ .700/ .798 .696/.933/ .860 .625/ .840/ .733

GNNQ−
h+1 .621/.856/ .750 .919/.920/.969 .742/.835/ .807 .770/ .804/.829 .865/ .924/.925 .852/.815/.877

GNNQh−1 .737/ .721/ .815 .779/ .820/ .858 .700/ .806/ .793 .717/ .783/ .806 .743/ .833/ .885 .736/ .619/ .700

GNNQh .806/ .772/.870 .821/ .830/ .906 .797/ .791/.847 .714/.839/ .827 .876/ .852/ .924 .763/ .705/ .784

to 1 if and only if x ≥ 0.5. The feature vector dimensions δ1 = · · · = δL−1 and
the negative slope of the ReLU activations are tuneable hyperparameters.

Step 3. The model returns 1 if a ∈ �true[GR′
q(K)] and 0 otherwise.

The baselines GNNQ−
L follow the same procedure, except that they skip KG

augmentation and use K instead of R′
q(K), thus relying on vanilla RGCNs [19].

For each benchmark, we trained and evaluated the GNNQL instances for each
L ∈ {h − 1, h} and the GNNQ−

L instances for each L ∈ {h − 1, h, h + 1}, where h
is the height of the benchmark’s tree-CQ. Before training, we randomly split the
benchmark’s training-and-validation set of examples into training and validation
sets with ratio 1:1 or 2:1, in case of a WatDiv or a FB15k237 benchmark,
respectively. In each training run (on the training set), we trained all model
parameters for 250 epochs using the Adam optimiser and a standard binary
cross-entropy loss computed using the value of the (1-dimensional) feature vector
in the last layer of the model as the prediction value (i.e., without applying the
classification function). Each training run is specified by hyperparameters: the
learning rate from {.0001, .0006, . . . , .1001}, the negative slope of the leaky-
ReLU activation functions from {.001, .006, . . . , .101}, and the latent feature
vector dimension from {8, 9, . . . , 64}. We report results for the hyperparameter
values maximising the average precision on the validation set, which are found
by means of 100 training runs using Optuna (MedianPruner) with 5 warm-up
runs, 30 warm-up epochs in every run, and step size 25.

6.3 Performance Metrics

For each benchmark, we evaluated all the (best of the) trained models over
the test set. For each model, we recorded the numbers tp, tn, fp, fn of true
positives, true negatives, false positives, and false negatives, respectively, and
report the precision tp/(tp + fp) and recall tp/(tp + fn) metrics. Furthermore,
to test the robustness of our models under variations to the threshold used in
the classification, we modified each learned model by removing the application
of the classification function, so that each modified model returns the real value
labelling the node for the candidate constant in the last layer. We then applied
the modified models to the test set, and used the outputs to compute the average
precision (AP), which is the area under the precision-recall curve.
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Table 3. Results for the FB15k237-Qi benchmarks in the format precision/recall/AP

FB15k237-Q1 FB15k237-Q2 FB15k237-Q3

GNNQ−
h−1 .582/ .451/ .554 .569/ .618/ .544 .550/ .648/ .518

GNNQ−
h .606/ .382/ .581 .603/ .559/ .557 .588/ .621/ .579

GNNQ−
h+1 .766/ .597/ .742 .624/ .505/ .580 .556/ .731/ .593

GNNQh−1 .903/ .873/ .958 .641/ .650/.757 .766/ .769/ .889

GNNQh .919/.922/.976 .643/.664/ .670 .822/.828/.933

6.4 Results

We report the results of our experiments for the WatDiv-Qi and FB15k237-
Qi benchmarks in Tables 2 and 3, respectively. As one can see, the GNNQL

instances outperform the GNNQ−
L instances on almost all benchmarks, when

comparing instances whose HRGCN has the same number of layers. Further-
more, the GNNQL instances with the smallest number of layers outperformed
all GNNQ− instances by a significant margin on the FB15k237-Qi benchmarks.
We attribute this to the fact that the real-world KGs are more noisy than the
synthetic ones, and the baselines are more vulnerable to noise since they must
learn longer dependencies. These results confirm our hypothesis that augmenting
input KGs with facts representing the parts of the KG that satisfy connected
query fragments can lead to improved empirical performance in the IQA task.

7 Related Work

KG Completion, which predicts missing facts in a KG, is a central soft reasoning
task on KGs. Existing KG completion approaches can be classified in two cat-
egories. Transductive KG completion models learn an embedding function that
maps constants and predicates in a fixed KG to elements of a vector space. At
inference time, a missing target fact can then be verified by first applying the
embedding function to the predicate and constants used in the target fact, and
then applying a fixed scoring function to the resulting embeddings [1,6,7,21,27].
Inductive KG completion assumes only a fixed set of predicates, and a trained
model can be applied to any KG over these predicates. Many inductive KG com-
pletion approaches use GNNs [10,14,23,24], which can reason over the structure
of KGs and are therefore inductive by design.

Query Embedding (QE) aims to answer monadic queries from various classes
over the completion of an arbitrary but fixed KG. Common QE approaches
are inspired by embedding-based KG completion methods [4,9,11,17,18,20]. To
produce query answers that are not logically entailed, such QE models usually
jointly learn embedding functions for constants and for queries during training.
At inference time, a QE model first embeds the input query using the learnt
embedding functions and then scores constants as potential answers based on
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the distance of their embeddings to the query embedding. Thus QE approaches
aim to answer arbitrary queries over the predicates and constants of a fixed KG.
This is orthogonal to our inductive setting, which assumes a fixed query but is
applicable to arbitrary KGs (over a predefined set of predicates).

Connection of Logic and GNNs. The increasing interest in GNNs across different
domains has motivated the theoretical analysis of the expressiveness and limi-
tations of GNNs. For example, it is trivial to see that GNNs cannot distinguish
between two non-isomorphic k-regular graphs of the same size with uniform
node features. Further analysis connected GNNs to the family of well-known
Weisfeiler-Lehman (WL) graph isomorphism tests; in particular, Xu et al. [26]
and Morris et al. [15] independently showed that the most expressive GNNs can
distinguish the same nodes as the 1-dimensional WL test and hence between the
same nodes as formulas in FOC2, the two-variable fragment of the first-order
logic with counting quantifiers. Further deep connections between various logics
and GNNs have recently followed these works [5,8,22], and we anticipate that
these results are paving a path for future efficient neuro-symbolic AI approaches
to many tasks in data and knowledge management.

8 Conclusion and Future Work

In this paper, we presented a novel neuro-symbolic approach to query answer-
ing over incomplete KGs. In contrast to existing embedding-based approaches,
which assume a fixed KG, our approach is inductive—that is, it only relies on a
fixed set of predicates and is thus applicable to arbitrary KGs over these pred-
icates. Our approach proceeds in three phases. First, it uses symbolic rules to
augment the input KG with facts representing subgraphs that match connected
fragments of the query. Second, it encodes the augmented KG into a hypergraph
with vector-labelled nodes. Third, it processes the hypergraph using a Hyper-
Relational Graph Convolutional Network (HRGCN), a novel GNN architecture
which generalises the well-known RGCN architecture. We then provided a the-
orem showing that the KG augmentation phase can considerably reduce the
number of layers a HRGCN-based system needs to produce correct answers to a
query on every KG. Finally, we implemented our approach in the GNNQ system
and evaluated it on several novel benchmarks. Our experiments showed that KG
augmentation indeed leads to improved empirical performance in the IQA task.
The main challenge for future work is extending our approach to support more
expressive queries. We shall also investigate the queries and completion functions
that can be perfectly captured by our approach and its potential extensions.

Supplemental Material Statement. A proof of Theorem 1 as well as details
about the creation of the benchmark datasets can be found in the supplemen-
tary material. This material, together with the source code of GNNQ, the bench-
marks, and the instructions for the reproduction of our experiments are accessible
through Github (https://github.com/KRR-Oxford/GNNQ).

https://github.com/KRR-Oxford/GNNQ
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Abstract. Relational tables are widely used to store information about
entities and their attributes and they are the de-facto format for training
AI algorithms. Numerous Semantic Table Interpretation approaches have
been proposed in particular for the so-called cell-entity annotation task
aiming at disambiguating the values of table cells given reference knowl-
edge graphs (KGs). Among these methods, heuristic-based ones have
demonstrated to be the ones reaching the best performance, often relying
on the column types and on the inter-column relationships aggregated by
voting strategies. However, they often ignore other column-wised seman-
tic similarities and are very sensitive to error propagation (e.g. if the
type annotation is incorrect, often such systems propagate the entity
annotation error in the target column). In this paper, we propose Radar
Station, a hybrid system that aims to add a semantic disambiguation
step after a previously identified cell-entity annotation. Radar Station
takes into account the entire column as context and uses graph embed-
dings to capture latent relationships between entities to improve their
disambiguation. We evaluate Radar Station using several graph embed-
ding models belonging to different families on Web tables as well as
on synthetic datasets. We demonstrate that our approach can lead to
an accuracy improvement of 3% compared to the heuristics-based sys-
tems. Furthermore, we empirically observe that among the various graph
embeddings families, the ones relying on fine-tuned translation distance
show superior performance compared to other models.

Keywords: Cell-entity annotation · Graph embeddings · Semantic
Table Interpretation · Entity disambiguation

1 Introduction

Tabular data is one of the most commonly used formats. This condensed repre-
sentation of information offers a compact visualisation of the data that is easy
for users to access and use. Among the wide variety of tabular data, relational
tables organise entity attributes into columns and are used extensively in enter-
prise data repositories and on the Web for storing information and for training
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AI algorithms. We argue that adding a semantic layer on top of such rich data
source using KGs can be beneficial to several downstream tasks such as datasets
indexing [2], KG enrichment [25], or dataset recommendation [32]. This process
of automatically understanding what tabular data is about is named Semantic
Table Interpretation (STI). Cell-entity annotation [16] (CEA) is one of the fun-
damental tasks for STI. This task is often performed by retrieving and scoring
possible entity candidates (from a target KG) to disambiguate a cell value. Next,
the result is used as input for performing Column-Type Annotation (CTA) and
Columns-Property Annotation (CPA) [1,6,13,21]. However, associating a men-
tion contained in a cell with an entity in a KG is a complex task requiring the
resolution of several issues including handling properly the syntactic heterogene-
ity of mentions (e.g. the Wikidata entity “France” (Q142) may be referenced in
a table by mentions like “The Republic of France” or “FRA”), the polysemy
of terms (e.g. “Apple” can refer to a fruit or a company), and the diversity
and complexity of table formats and layouts (e.g. matrices, relational table with
hidden subjects, etc.).

Numerous approaches have been proposed for handling these issues. Among
these methods, heuristic-based iterative approaches [1,6,13,21] aim to lever-
age the column types and the inter-column relationships aggregated by voting
strategies for disambiguating cell annotations. They have demonstrated to be the
methods reaching the best performance in the SemTab challenge series [9,16,17].
However, one drawback of these strategies is related to error propagation. Often,
such systems propagate the entity annotation error in the target column. Fur-
thermore, they also often ignore other column-wised semantic similarities: for
example, books appearing in the same column may share the same topic.

To address these limitations, we propose a new hybrid disambiguation system
called Radar Station that takes advantage of both an iterative disambiguation
pipeline and semantic disambiguation using graph embedding similarities. Radar
Station takes as input CEA annotations and associated confidence scores that
quantify the level of certainty associated with each result. Our approach uses
an ambiguity detection module that detects cases where the cell annotation is
potentially wrong due to error propagation. In the following steps, the use of
graph embeddings allows Radar Station to potentially fix the wrong annota-
tions by taking into account semantic proximities (e.g. geometric proximity of
entities representing books) that are not directly encoded and captured in the
sole content of table columns. We evaluate Radar Station using several graph
embedding models belonging to different families on Web tables as well as on
synthetic datasets, and we provide a thorough analysis of the performance among
the graph embeddings models and the datasets.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
some definitions and the assumptions we made in this study. Next, we review the
many approaches that have been proposed for cell annotations and discuss their
limitations (Sect. 3). In Sect. 4, we present the Radar Station system and the use
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of embeddings for cell-entity disambiguation. Then, we present our experimental
settings in Sect. 5 and the evaluation using existing gold standards in Sect. 6.
Finally, we conclude and outline future work in Sect. 7.

2 Preliminaries

In this paper, we focus on relational tables since they are the most used type of
tabular data. Relational tables geometrically translate subjects from the same
topic and their attributes accordingly to a given orientation. More specifically, in
a horizontal table, a row describes the attributes of a given entity, and a column
contains the values of a given attribute for all entities contained in the table.
For example, Table 1 provides an example of relational table from the Limaye
dataset [19]. The last row describes the book “Ylesia” with its attributes, includ-
ing the published year (“2002”) and the platform (“e-book”). We assume that
the orientation of the input table is known and is either horizontal or vertical.
We also assume that a cell value does not contain more than a single entity and
that the system knows the target columns containing the entities to annotate.
Radar Station assumes that a table cell can always be correctly annotated with
an entity w.r.t this KG. Given the above assumptions, Radar Station is a system
that aims to improve cell disambiguation from annotations produced by an STI
system using a target KG (Wikidata, in our experiments). Given Table 1, Radar
Station annotates the cell “Traitor” with the entity “Q7833036”, the science
fiction book, using the table context, while often, traditional STI system will
disambiguate this cell with the anti-war romance novel “Q21161161” which has
the same label.

Table 1. Table file405599 0 cols1 rows23.csv from Limaye dataset, row 13–17

2002 Enemy Lines : Rebel Dream

2002 Enemy Lines : Rebel Stand

2002 Traitor

2002 Destiny’s Way

2002 Ylesia e - book

3 Related Work

STI covers five main tasks: CEA, CTA, CPA [16], row-to-instance annotation
and table topic annotation [24]. Radar Station aims to improve the CEA dis-
ambiguation. Thus, this section reviews the current state-of-the-art methods for
the CEA task on relational tables. We classify them into three groups: heuristic-
based approaches, iterative disambiguation, and graph embeddings approaches,
and we discuss their strengths and limitations [20].
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3.1 Heuristic-Based Approaches

Starting from a basic lookup service that generates target candidates for a given
cell mention, heuristic-based approaches leverage diverse methods interpreting
the table context to filter unreliable candidates and to produce a final annota-
tion. Based on heuristic candidate generation and string similarities measures,
[19] is one of the first works on STI. It constructs a graph-based algorithm that
exploits learnable features from column context, row context, and relation con-
text to construct a confidence function for each candidate for annotating a cell.
TabEL [3] introduces a hybrid system that leverages probabilities to build a
graphical model for representing the interactions between cells, columns, and
headers. ADOG [22] generates features from string similarities, frequencies of
properties, and the normalized Elasticsearch score. Then, these features are cal-
ibrated with the candidate’s TF-IDF score according to entities’ types in the
same column. Our approach takes as input a list of CEA candidate annotations
together with their scores (generated by such an existing CEA annotation tool),
and detects the presence of potential ambiguities in order to select the right
candidate from this closed set.

3.2 Candidate Disambiguation

Adding a disambiguation process on top of a heuristic-based approach can sig-
nificantly improve the performance of an annotation system. Iterative processing
is one of the most commonly-used methods for improving pre-annotated results.
The iteration loop aims to collect the results of several annotation tasks, mutu-
ally improving the compatibility between annotations (e.g. taking into account
the type of a column produced by the CTA to choose the right CEA candidates),
and increasing the scores of candidates that would not have been chosen in the
first place. For example, [35] uses a loop that exploits the CTA annotation of a
given column to select candidate cells that feature that type and then redefines a
new CTA annotation for the column by exploiting the entities selected. Regard-
ing the CEA disambiguation, we identified two classes of iterative systems. First,
T2K [25] and TableMiner+ [33] introduce a loop in the pipeline that ends when
the result becomes stable. The other iterative systems [1,6,13,21] provide a pre-
defined pipeline with sequential modules (e.g. the pipeline of LinkingPark [6] is
composed of a CEA pre-scoring, then a CPA step, and finally the use of the CPA
annotations to generate the final CEA annotations).

Radar Station uses the output scores of an existing STI system. It currently
supports the DAGOBAH-SL [13,14], MTab [21] and BBW [27] systems which
have all competed during the SemTab Challenge series [9,17] and are selected
as baseline systems during the evaluation of Radar Station. These systems use
string similarity in the scoring system and leverage table’s global information car-
ried out by the CTA and CPA annotations to generate more precise CEA annota-
tions. For cell annotations, they evaluate whether a candidate entity ec ∈ Ec(em)
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retrieved from the KG is a good representation of the corresponding table cell em
by incorporating the table context of em and KG context of ec in the score of ec.
Although these approaches show great performance for datasets like BioTable
and HardTable from SemTab, they still have limitations as described in Sect. 1.
First, the use of a unique column type or columns pairs relationship potentially
propagates type (resp. relation) annotation error through cell annotations. Sec-
ond, leveraging only entities’ type (resp. relations) result does not allow to take
into account more attributes and properties in the disambiguation process. For
example, a column type may not bring necessary information such as a person’s
nationality, building localization, or object ownership for disambiguating enti-
ties. Facing these challenges, Radar Station first activates an ambiguity detection
module that detects cases where the cell annotation is potentially wrong. Mean-
while, it considers entities’ embeddings to leverage more similarity measures
inside a given column.

3.3 Usage of Graph Embeddings

Methods applying graph embeddings for STI focus on entity-level in which the
models learn embedding representations for entities of a table cell instead of
the cell itself. Specifically, KG embedding techniques are used to encode the
entities and their relationships into a vector space. STI approaches using deep
learning models are based on the intuition that the entities in the same column
should exhibit semantic similarities. Hence, they should be close to each other
in the embedding space w.r.t. a cosine similarity distance [11] or an Euclidean
distance [5].

Vasilis et al. [11] provide different methods. One of them assumes that the
correct CEA candidates in a column should be semantically close. From this
assumption, a weighted correlation subgraph in which a node represents a CEA
candidate is constructed. The edges are weighted by the cosine similarity between
two related nodes. The best candidates are the ones whose accumulated weights
over all incoming and outcoming edges are the highest. In addition, a hybrid
system combining a correlation subgraph method and an ontology matching sys-
tem, is also introduced, which considerably improves the final result. Yasamin
et al. [12] further enhance this approach by taking the header of the table into
account for ontology matching and giving more weights to unique cell candidates
when calculating embeddings Page-Rank. DAGOBAH-Embedding [5] follows the
same assumption that all entities in the same column of the table should be close
to each other in the embeddings space. Consequently, the correct candidates are
assumed to belong to a few clusters. They apply a K-means clustering using
TransE pre-trained KG embeddings to cluster the entity candidates. The good
clusters with high coverage are selected by a weighted voting strategy. Exper-
imental results prove that they have successfully improved the accuracy of the
CTA task. However, the system is also misled by incorrect candidates during
the CEA task when correct candidates are not in selected clusters. TURL [10]
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leverages the BERT model for STI and table augmentation with the help of a
visibility matrix for capturing table structure. Although TURL introduces entity
embeddings as one of the inputs to its model to assign information to entities,
the entity embeddings do not embed properties about the entities in the graph,
such as the fact that neighbouring nodes are missing in them.

The contributions of our approach are as follows. First, we use embeddings
only during the disambiguation step to benefit from both the iterative disam-
biguation and the embeddings disambiguation. Second, we provide a new scoring
mechanism that takes into account the scores generated by CEA approaches and
the distance between the entities in the embedding space.

4 System Description

Radar Station is not a standalone annotation system. It is built on top of a given
annotation system and resolves ambiguities detected in the annotated results.
We choose to use DAGOBAH-SL [26] as the base annotation system to illustrate
the process of Radar Station. We motivate the need for Radar Station observing
that pure string-based matching and iterative scoring methods are limited in
situations where: i) the target KG is incomplete; ii) the matching mechanism
failed; iii) the CTA or CPA disambiguation can not provide enough informa-
tion in very ambiguous cases (e.g. candidates belonging to the same type or no
property identified). These situations also cover cases with limited row numbers
that can annotate a unique column type (resp. unique columns relationship) by
majority voting. For example, voting for a common type given only the two cell
mentions “Apple” and “Blackberry” may lead to randomly select the company
or the fruit.

Fig. 1. Illustration of Radar Station with DAGOBAH-SL results. The plot is generated
with RotatE embeddings after dimension reduction by T-SNE.
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Figure 1 provides an example where DAGOBAH-SL is not able to handle
properly an ambiguous case: two potential candidates with the same score for the
cell “Traitor”. The ambiguity comes from an unsuccessful matching between the
column “2002” with literal information “30 July 2002” of candidate “Q7833036”
for entity scoring and CPA disambiguation. CTA disambiguation does not work
in this case since these two candidates are books with the type “literary work”
(“Q7725634”). “Q21161161” is a science fiction novel and “Q7833036”is an anti-
wars romance novel.

We do not aim at improving the performance of the system by relying on
clever string matching methods. Instead, we expect to find more semantic sim-
ilarities using the full column as context with the help of the scores generated
from the row context. In this example, one could identify that the correct entity
is “Q7833036” since the topic of this table is the science fiction series “The
New Jedi Order” from Star Wars. This relationship is missing in the table cells,
but it still could be beneficial for the disambiguation steps. Radar Station aims
to leverage graph embeddings to dig similarities alongside the entity types and
common relationships inside the tables. The architecture of Radar Station is
illustrated in Fig. 2 and the modules are described in the following sections.
Table 2 summarizes the notation used in the Radar Station approach.

Fig. 2. Overview of the Radar Station pipeline.

Table 2. Summary of the notation used to define Radar Station

Notation Description

C The collection of cells from the target column

Ec The collection of the context entities representing the column C
Amci The collection of the ambiguous entities extracted from the cell ci

Sc(e) The initial score for the candidate e generated from the previous annotation system,
in our case, DAGOBAH-SL

Em(e) The embedding of a given entity e

Ek The collection of K nearest context entities of an ambiguous candidate am ∈ Amci

for the target column C, Ek ∈ Ec
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4.1 Input Data Structure

Before running Radar Station, the information required by the system includes
the index of the cell in the table (row number and column number), and infor-
mation about all candidates for each cell without filtering the candidates. This
information includes an identification of each candidate and their confidence
score. The confidence score evaluates how compatible a candidate is with the
context information given by the table (e.g. row values, column type, columns-
pair relations).

4.2 Context Entities Selection

The row context has already been interpreted by DAGOBAH-SL and is used to
compute the confidence score of each candidate. The first step of Radar Station
is to build a column-wised context to support the disambiguation process. We
collect entities with the highest confidence score from all cells of a given column
C as the context entities set. In case of ambiguity, that is, multiple candidates
(n candidates) sharing the same highest score, we collect all of them, and the
score is divided by n. Other candidates are not taken into account to maximize
the trust for “sure” annotation from DAGOBAH-SL (e.g., only one candidate
with the highest score) and to avoid noise inside this column. For example, for
the row 15 in Fig. 1, both “Q7833036” and “Q21161161” are collected into the
context set with a score “0.008” (0.016/2), and for row 16, only “Q5265233” is
collected with a score “0.016”. The collected context entities set for the column
C are noted as Ec.

4.3 Ambiguity Detection

Radar Station detects ambiguous cells that are worthy to be disambiguated given
a tolerance t. Intuitively, t enables to relax the constraints one wants to have in
looking up candidates potentially matching a cell mention. Once a candidate’s
score is larger than t∗Max(scores), it is selected as one of the “top candidates”.
For example, if we set t = 1, “Q7833036” and “Q21161161” for row 15 of Fig. 1
will be among the top candidates. If we relax the tolerance t to 0.7, “Q1536329”
will also be considered as a top candidate. We denote “Ambiguities” as Am for
the case that the size of the top candidates is greater than or equal to two.
Radar Station is activated in this case and it will annotate the cell with one of
the candidates from the ambiguities. When there is no ambiguity inside a cell,
we directly output the single top candidate as the annotation.
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4.4 Radar Station Disambiguation

Algorithm 1. Radar Station disambiguation algorithm
Input: Cell index C and ambiguities for each cell Amci , ci ∈ C where the collected

context entities (or senders) of the target column is Ec.
Candidate scores from the annotation system {Sc(ei)}, ei ∈ Ec.
Candidate embeddings {Em(ei)}, ei ∈ Ec.

Output: Entity annotation selected by Radar Station.
1: build a KD-tree with all candidates’ embeddings {Em(ei)}
2: K ← min(|Ef |, 20)
3: for each cell ci from C do
4: if there is an ambiguity in Amci then
5: Ec ← filter entities from the same cell in Ec

6: for each ambiguous entity ami in Amci do
7: find the K nearest candidates of the ambiguous entity Ek in the KD-tree by

ignoring candidates from the same cell.
8: RadarScoreami ← 0
9: for each neighboring entity ej ∈ Ek do

10: RadarScoreami ← RadarScoreami +
Sc(ej)

distance(ami,ej)

11: end for
12: RadarScoreami ← RadarScoreami

K

13: g(ami) ← αRadarScoreami + Sc(ej)
14: end for
15: the annotation is the ambiguous entity with the highest g(ami)
16: end if
17: end for

In our approach, we leverage KG embeddings to uncover the entities’ co-
relationship from a table to improve the disambiguation step. The principle
of the Radar Station approach is inspired by radar station signal emissions.
The receiving signal power of a signal station depends on both the initial power
strength from the sending station and the distance between the sender and the
receiver. That is, the receiving signal will be stronger when the initial power
from the sender is stronger, and this receiving signal strength will decrease as
the distance increases. In our approach, we treat each context entity from the
same column as a signal sender, and receivers are the ambiguities to be resolved.
One ambiguous candidate captures signals from multiple neighbouring context
entities (i.e. senders) and the sum of the receiving signals is the confidence score
of the candidate. The disambiguation pseudo-code is presented in Algorithm 1.

We consider only the K nearest context entities to computer the final score
of an annotation in order to avoid noise and to optimize the performance. The
system first constructs a KD tree of all context entities for each column, and then
calls this KD tree to drop the K nearest context entities during the prediction
(lines 1–2). We set that the maximum K value is 20 (line 2). We set the initial
sender power strength with the confidence score generated by DAGOBAH-SL.
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One ambiguous candidate ami detects K received signals from the surrounding
senders ej ∈ Ec (or context candidates) to generate the confidence score f(ami)
with the Function 1 (line 3–12), where Sc(ej) denotes DAGOBAH-SL scores of
the sender ej and distance(ami, ej) denotes the Euclidean distance between the
sender ej and the receiver ami.

In detail, for a target ami, we collect its top-K nearest neighbors from Ec,
where each context entity cj belongs to Ec. We have each context entity’s scores
Sc(cj) and the distance with the target candidate distance(ami, cj). We then
apply the Function 1. Like this, we could generate a confidence score for each of
those two target candidates. We divide each of their context entities’ confidence
score by the distance between those two candidates and then calculate the sum
to compare.

f(ami) =
1
K

∑

j<K

(
Sc(ej)

distance(ami, ej)
) (1)

The final result g(ami) for an ambiguous entity is the combination of Radar
Station score f(ami) and the initial DAGOBAH-SL confidence score Sc(ami)
introduced in Function 2 (line 13).

g(ami) = αf(ami) + Sc(ami) (2)

Our initial experiments showed that the average distance in the embedding
space between the target ambiguity and its top K nodes is approximately 1.
According to the Function 1, we know that f(ami) and Sc(ami) are roughly
in the same order of magnitude. Since we expect to disambiguate candidates
with a tolerance between 0.7 and 1, we need the value of the discrepancy caused
by f(ami) to be roughly within Sc(ami) ∗ 0.3. We originally set α to 0.3 and
we tested the following α values (0,3, 0.2, 0.1, 0.05, and 0.01). We empirically
observed that 0.05 gives the best results.

5 Experiments

In our experiments, we consider Wikidata as the target KG. We first rely on
the DAGOBAH-SL system to lookup for candidates for each entity cell. We
only consider the top 100 candidates according to the string similarity on entity
label and aliases. We evaluate the result on four different gold standard datasets:
T2D [25], Limaye [19], Tough Tables version 2 [8] and ShortTables.

5.1 Knowledge Graph Embeddings

Pre-trained KG embeddings can provide additional information for table under-
standing beyond the table context. Entities inside the same table column should
be somehow co-related, which means they may share the same entity type, similar
topics, or even attributes. In order to have the most suitable embeddings given
the latest version of Wikidata, we use the PyTorch-BigGraph framework [18]
for training embeddings. The triples used for the training are collected from a
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Wikidata dump published in May 20211. Before the training, the triples with
literal values and Wikimedia disambiguation page entities (e.g. “Q1151870”) are
filtered out. The selection of the final embeddings is made given our empirical
evaluation of Radar Station after fine-tuning the hyper-parameters. We consider
two representative translational distance models (TransE [4] and RotatE [28])
and two semantic matching models (DistMult [31] and ComplEx [29]) following
the classification of [30].

Translational distance models study the geometric distance between entities
inside the vector space. TransE [4] considers both entities and relations from
the same vector space. The training intends to adjust the three vectors from
a given triple (h, r, t) to the synchronized state until h+r ≈ t. In Pytorch-
BigGraph, we use the translation operator for generating the TransE model.
Unlike TransE’s translation, RotatE [28] regards the relation as a rotational
degree between heads and tails. It introduces a loss function based on h ◦ r ≈ t
for simulating the relation translation. We use the GraphVite’s [34] pre-trained
RotatE embeddings in our experiments.

Semantic matching models measure the similarity between entities and rela-
tions during the training. DistMult [31] is based on a bilinear scoring func-
tion hTMrt, where Mr is the relation matrix built on top of the entity. Com-
plEx [29] can be seen as a constrained variant of RESCAL [15] that leverages
fewer relation dimensions inside a complex space. The ComplEx score is defined
as Re(hT diag(r)t). In Pytorch-Biggraph training, we use the diagonal operator
for generating DistMult embeddings and iterations between complex diagonal and
dot operators for ComplEx embeddings.

5.2 Datasets

We evaluate Radar Station on three popular gold standards: T2D2, Limaye3,
and Tough Tables version 24. The original T2D and Limaye datasets contain
some annotation errors that we have corrected. As T2D and Limaye are gold
standards based on DBpedia and Radar Station is a Wikidata-based annota-
tion system, we translate the DBPedia entities given in the gold standards into
Wikidata entities through the “Wikidata item” hyperlink from Wikipedia pages
of DBpedia entities. We manually corrected this translation when it was failing.
Since the number of entities in Wikidata is larger than the number of entities in
DBpedia [23], the annotation based on Wikidata is also harder with more candi-
dates to disambiguate. We publish the new resulting ground truth on Zenodo (see

1 https://archive.org/details/wikibase-wikidatawiki-20210521.
2 http://webdatacommons.org/webtables/goldstandardV2.html.
3 http://websail-fe.cs.northwestern.edu/TabEL/.
4 https://zenodo.org/record/6211551.

https://archive.org/details/wikibase-wikidatawiki-20210521
http://webdatacommons.org/webtables/goldstandardV2.html
http://websail-fe.cs.northwestern.edu/TabEL/
https://zenodo.org/record/6211551
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Table 3. Gold standard datasets for evaluating STI approaches. The ambiguities are
based on DAGOBAH-SL scores

Gold standard #Tables Avg. #Rows Avg. #Col #Entities Ambiguities (t = 1) Ambiguities (t = 0.9)

Limaye 437 37 2 5,143 181 (3.52%) 685 (13.31%)

T2D 762 157 5 18,589 2,322 (12.49%) 8,852 (47.62%)

2T v2 180 1080 5 661,297 30,686(4.64%) 86,739(13.11%)

ShortTables 2237 2 5 4,474 1422 (31.78%) 1822 (40.72%)

the supplementary material). ShortTables is a new dataset we built from T2D,
in such a manner that each table only contains two rows. The aim of creating
such a dataset is to simulate extreme cases where voting strategies lack electors
(i.e. row entities) for a correct CTA (resp. CPA) annotation. The provenance
of T2D and Limaye is Web tables. We also consider a synthetic dataset named
Tough Tables version 2 (2T 2) to evaluate on more data types. We provide the
statistics of these gold standard datasets in Table 3.

6 Evaluation

We evaluate Radar Station with these four datasets varying the embeddings and
the tolerance threshold. A random selection of the highest scoring candidates
is considered as our baseline and noted as the original system name. We show
the overall result for t equals to 1, 0.95, and 0.9 based on DAGOBAH-SL scores
on four datasets with different embeddings in Table 4 and the fine-tuned result
based on DAGOBAH-SL, MTab and BBW with Limaye and T2D in Table 5.

6.1 Evaluation Settings

We aim to evaluate the performance of Radar Station on the ambiguity lists
and how it can influence the global annotations. Thus, we use three indicators
including Ambiguity quality (AP), Precision inside ambiguities (PA), and Global
precision (GP). AP (Eq. 3) shows the quality of generated ambiguity list after
the Ambiguity Detection step, that is, how many ambiguous cells contain a
ground truth in its top candidates. It indicates the extreme precision that we
could achieve in all ambiguous annotations, which is PA in Eq. 4. GP (Eq. 5) is
the overall precision in all labelled cells considering annotations generated with
or without Radar Station.

AP =
#Correct candidates in the candidate set of ambiguities

# Ambiguities
(3)

PA =
# Correct ambiguity disambiguations

# Ambiguities
(4)
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Table 4. Radar Station evaluation based on DAGOBAH-SL scores. AP: Ambiguity
quality, PA: Precision inside ambiguities, GP, Global precision

t Methods Limaye T2D 2T v2 ShortTables

AP PA GP AP PA GP AP PA GP AP PA GP

1 DAGOBAH-SL 0.647 0.168 0.853 0.308 0.053 0.785 0.067 0.023 0.870 0.672 0.194 0.654

RS + TransE 0.630 0.870 0.294 0.813 0.041 0.871 0.355 0.673

RS + RotatE 0.636 0.870 0.289 0.812 0.044 0.871 0.363 0.673

RS + DistMult 0.391 0.861 0.163 0.798 0.034 0.870 0.229 0.658

RS + ComplEx 0.57 0.869 0.171 0.798 0.036 0.870 0.235 0.659

0.95 DAGOBAH-SL 0.614 0.296 0.853 0.332 0.180 0.785 0.327 0.208 0.870 0.671 0.302 0.654

RS + TransE 0.528 0.872 0.312 0.815 0.230 0.872 0.414 0.673

RS + RotatE 0.542 0.873 0.312 0.815 0.235 0.872 0.418 0.674

RS + DistMult 0.377 0.860 0.230 0.797 0.213 0.870 0.328 0.659

RS + ComplEx 0.435 0.864 0.233 0.798 0.219 0.870 0.334 0.660

0.9 DAGOBAH-SL 0.653 0.432 0.853 0.336 0.241 0.785 0.500 0.300 0.870 0.714 0.414 0.654

RS + TransE 0.570 0.872 0.323 0.815 0.313 0.872 0.532 0.684

RS + RotatE 0.578 0.873 0.322 0.814 0.318 0.872 0.536 0.684

RS + DistMult 0.475 0.860 0.274 0.797 0.303 0.870 0.466 0.668

RS + ComplEx 0.494 0.862 0.275 0.798 0.306 0.870 0.471 0.669

Table 5. Gold standard datasets for evaluating STI approaches with RotatE embed-
dings. AP: Ambiguity quality, PA: Precision inside ambiguities, GP, Global precision

Dataset System t AP Original output Radar Station

PA GP PA GP

Limaye DAGOBAH-SL 0.9 0.653 0.432 0.853 0.578 (+0.146) 0.873 (+0.020)

MTab 0.83 0.820 0.705 0.857 0.787 (+0.082) 0.875 (+0.018)

BBW 0.65 0.587 0.359 0.563 0.507 (+0.148) 0.597 (+0.034)

T2D DAGOBAH-SL 0.95 0.332 0.180 0.785 0.312 (+0.132) 0.815 (+0.030)

MTab 0.71 0.385 0.295 0.837 0.346 (+0.051) 0.857 (+0.020)

BBW 0.65 0.263 0.192 0.364 0.253 (+0.061) 0.382 (+0.018)

GP =
#Correct annotations

#Total labels
(5)

We also use the Cohen’s Kappa coefficient [7] to evaluate the independence
of the annotation from different embeddings models (kappa equals to 1 means
that two datasets are the same).

6.2 Analysis

Overall Result. We first observe from Table 4 that all the chosen embeddings
contribute to a significant improvement for PA in the ambiguous cases with
the chosen tolerance values and GP. We also notice that Radar Station brings
more improvements to GP for the Limaye (Max. 0.02), T2D (Max. 0.03), and
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Fig. 3. Illustration of the Kappa test between different outputs on all datasets, t = 0.95.

ShortTables (Max. 0.03) than for 2T v2 (Max. 0.002). This drop for 2T v2 is
due to the distribution of the scores of the top candidates: i) as we can see, after
relaxing the tolerance from 1 to 0.9, AP for 2T v2 has dramatically increased in
comparison to the other datasets. Hence, there is no clear boundary between top
candidates and bad candidates for the 2T v2 dataset. That leads to a relatively
lousy context embedding for the disambiguation. This scoring distribution is
impacted by row number with DAGOBAH-SL mechanism, that is, the more
rows we have, the more balanced the scoring would be; ii) the other reason
is that 2T v2 is a synthetic dataset generated with types from a KG. Thus,
other column-wised semantic similarities are not obvious in this dataset. Hence,
we recommend that future synthetic datasets should consider the inclusion of
common themes from these tables to simulate other real-world use cases.

We introduce ShortTables for simulating the extreme cases where the very
limited number of rows does not allow existing systems to generate correct CTA
and CPA annotations. Bad CTA or CPA may propagate the error to the cell
annotations. Thus, we expected to have a more significant GP improvement for
ShortTables compared to T2D. However, from our evaluation, the contribution
of Radar Station is close in these two datasets (Max 0.03). We analyze that a
small number of rows can decrease the quality of type annotation and more likely
propagate error with type disambiguation: therefore, it provides more chances
for semantic disambiguation. At the same time, the limited number of rows also
limits the content of the context entity set that has been used for semantic disam-
biguation. We argue that these two effects cancel each other in this experiment.
We have implemented Radar Station on two other systems and evaluated its
performance with two Web table datasets. The result shown in Table 5 indicates
that Radar Station benefits to all input annotation systems.
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Analysis on Embeddings. Regarding the two families of embeddings (TransE
and RotatE are translational distance models, DistMult and ComplEx are
semantic matching models), the GP for embeddings from the same family
achieves similar results inside our trained embeddings. From the result of Cohen’s
kappa shown in Fig. 3, we observe that the output is similar for embeddings from
the same family. For example, the kappa value for TransE and RotatE is much
higher than TransE with other outputs (same for DistMult and ComplEx). This
similarity could also be seen in the precision shown in Table 4. We also observe
that translational distance models are generally better than semantic matching
models in our trained embeddings. That may be because we leverage geometric
distance inside Radar Station, which is compatible with the training strategy
of translational distance models. Globally, RotatE embeddings outperform all
other models for all datasets.

Tolerance. Relaxing the tolerance has for effect to include more candidate
entities and thus has the potential to increase the probability that the correct
candidate is in the candidate set. However, such an operation also puts more
noise into the candidate list. In Fig. 4, we illustrate how the tolerance influ-
ences the performance of the system on Limaye and T2D. It shows that relaxing
the tolerance with TransE and RotatE improves the quality of the annotation
(performance peak at t = 0.95 in Fig. 4). In our observation, largely relaxing the
tolerance may decrease the accuracy since more noise is included during the dis-
ambiguation. This is therefore a delicate tradeoff to generalize across datasets.

(a) Limaye dataset (b) T2D dataset

Fig. 4. The GP evaluation on Limaye and T2D with t from 0.7 to 1 based on
DAGOBAH-SL.

7 Conclusion and Future Work

In this paper, we analyze the current limitations of STI systems with relational
tables and we introduce Radar Station, a new disambiguation method that makes
use of pre-trained KG embeddings to strengthen the performance. We evaluate
the system with different embeddings methods and we prove that this optimiza-
tion can be beneficial. In the future, we aim to process more table types such
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as entity tables or matrix tables for enhancing the coverage and robustness of
the system. We also seek to leverage language models to take more contextual
information into account. We finally aim to plug Radar Station on top of other
competitive STI systems.

Supplemental Material Statement. The source code for Radar Station is available
at https://github.com/Orange-OpenSource/radar-station. The RotatE Embed-
dings, TransE embeddings, DAGOBAH-SL scores, Ground Truth and other
required datasets are available from Zenodo at https://zenodo.org/record/
6522985 while the ComplEx and DistMult embeddings are available at https://
zenodo.org/record/6522921.
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ing web tables through knowledge bases: a context-based approach. In: 7th Swiss
Conference on Data Science (SDS), pp. 29–34. IEEE (2020)

13. Huynh, V.P., et al.: DAGOBAH: table and graph contexts for efficient seman-
tic annotation of tabular data. In: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab) (2021)

14. Huynh, V.P., Liu, J., Chabot, Y., Labbé, T., Monnin, P., Troncy, R.: DAGOBAH:
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17. Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K., Cutrona,
V.: Results of SemTab 2020. In: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching (SemTab), vol. 2775, pp. 1–8 (2020)

18. Lerer, A., et al.: Pytorch-biggraph: a large scale graph embedding system. In:
Conference on Machine Learning and Systems (MLSys), vol. 1, pp. 120–131 (2019)

19. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. Proc. VLDB Endow. 3(1–2), 1338–1347
(2010)

20. Liu, J., Chabot, Y., Troncy, R., Huynh, V.P., Labbé, T., Monnin, P.: From tabular
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Abstract. Temporal knowledge graph (TKG) reasoning, which aims to
extrapolate missing facts in TKGs, is vital for many significant applica-
tions, such as event prediction. Previous studies have attempted to equip
entities and relations with temporal information in historical timestamps
and have achieved promising performance. While ignoring the likelihood
that future occurrences would occur simultaneously, they independently
forecast the missing data. However, there are complicated connections
between future concurrent events that might correlate with and influ-
ence one another. Therefore, we propose our Concurrent Reasoning
Network (CRNet) to leverage event concurrency in both historical and
future timestamps for TKG reasoning. Specifically, we select the top-
k candidate events for each missing event and construct a candidate
graph based on the candidate events of all missing events at the future
timestamp. The candidate graph connects missing facts by sharing the
same entities. Furthermore, we employ a novel relational graph attention
network to represent the interactions of candidate events. We evaluate
our proposal by the entity prediction task on three well-known pub-
lic event-based TKG datasets. Extensive experimental results show that
our CRNet complete future missing facts with a 15–20% improvement
over MRR. (The source code is available at https://github.com/shichao-
wang/CRNet-ISWC2022.)

Keywords: Temporal knowledge graph · Temporal reasoning ·
Concurrent events

1 Introduction

Each fact in the TKGs is a quadruple (subject, relation, object, timestamp).
Grouping quadruples by timestamps results in a sequence of KGs. Nodes rep-
resent entities in the real world, and the labeled edges represent related events
between entities. TKG reasoning attempts to predict missing future facts like
(s, r,?, t). Reasoning over TKGs forecasts emerging events, which is helpful for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 516–533, 2022.
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Fig. 1. An illustration of temporal reasoning over TKGs. The concurrent events exist
in history and the future.

many real-world applications, including product recommendation [32] and event
prediction [13,28].

On the one hand, historical events happened concurrently and are relevant
to TKG reasoning. As shown in Fig. 1, for the missing events (Farmworker,
Demonstrate, ?) a good TKG reasoning method should learn from previous con-
current events (Government, Make statement, Police) and (Police Make state-
ment, Farmworker). Previous studies, such as RE-Net [13] and CyGNet [40],
attempt to retrieve query-related information from historical events. Some meth-
ods such as RE-GCN [19], CEN [17] and EvoKG [24], employ recurrent neural
networks (RNNs) to learn a dynamic representation from historical KGs. These
methods adopt relational graph convolution networks (RGCNs) to learn the
concurrent events at historical timestamps. Limited by the traditional RGCN
diagram, which regards the head and tail entities separately, they cannot exploit
the complete semantics of event triplets or leverage the different importance of
neighbors.

On the other hand, there are also complex dependencies among the concur-
rent events at future timestamps [21,39], which all the previous studies neglect.
As shown in Fig. 1, the prediction results will influence each other. For the query
(Government, Provide aid, ?), a possible object would be Farm worker, since
there are two events (Farmworker, Request, Government) and (Farmworker,
Request Aid, Government) at the previous timestamps. However, when there is
the event (Farmworker, Demonstrate, Government) at future timestamp. The
government would not provide aid to farmworkers somehow, since they are antag-
onistic to each other. Thus, combining the concurrent events at future timestamp
is suitable for real world application and enables predicting missing events.

In this paper, we propose the Concurrent Resoning Network (CRNet) for
TKG reasoning, which exploits the concurrent events at historical and future
timestamps. For the historical concurrent events, we develop a novel relational
graph attention network, namely EventRGAT, which passes the complete event
message, rather than nodes or edges, to neighbors and aggregates them adap-
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tively. We also propose a two-stage framework to model the interactions among
future concurrent events. Using true events at future timestamps directly will
result in information leakage and is not suitable for real-world application, so
we first collect the top-k candidates for every missing event at future timestamp
and build the candidate events graph together. Nodes and edges in the candi-
date graph are the entities and the candidate events. Then, we employ our novel
RGAT to encode the interaction among the candidate events and enhance the
representations with concurrent dependencies. In summary, our contributions
are in three folds:

– We formulate and address the problem of concurrent events for the TKG
reasoning in historical and future timestamps, which is fit with the concurrent
nature of events and suitable for real world application.

– For the historical concurrent events, we develop EventRGAT to aggregate
related events adaptively. For future concurrent events, we propose a two-
stage framework, which builds a candidate graph for concurrent missing
events, to capture their interactions.

– Extensive experimental results demonstrate that our CRNet achieves signifi-
cant improvement (15%–20% on MRR) on event-based TKG benchmarks. A
thorough case study is carried out to verify the effectiveness of our proposal.

2 Related Works

This section first discusses two the difference between reasoning over temporal
knowledge graph and the static knowledge graph. Then, we review the temporal
knowledge graph reasoning under two different settings, e.g., interpolative and
extrapolative.

2.1 Static Knowledge Graph Reasoning

The static knowledge graph reasoning aims to predict the missing facts in the
KG. Recent researches focus on learning the low-dimensional representation for
entity and relations in KGs to solve the problem. The representation learn-
ing methods can be categorized into translational and semantic-matching. The
translational models, such as TransE [1] and its variants [20,29,34], measure
the distance between the head and tail entities in the subspace translated by
the relation. RESCAL [23], DistMult [37], NTN [26] and ConvE [5] are seman-
tic matching methods, which measure the plausibility of facts by matching the
semantics of entities and relations in the vector space. Graph neural networks
(GNNs) have also extended for the relational-aware representation learning on
KGs, such as R-GCN [30], HAN [33]. However, these methods are developed
for static KGs, and they are not capable of modeling the dynamic evolutional
patterns in TKGs directly.
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Table 1. Important notations and their descriptions.

Notations Description

Gt, V, R, Et Event knowledge graph at timestamp t, and its node set, relation set
and events set

hi hj , rk Embedding vector for Entity ei, Entity ej , and Relation rk

ht Embedding vector for Entity e and the matrix at timestamp t

Ht, R Embedding matrix for entities at timestamp t and relations
s, r, o The subject, relation, and object of a event
st, rt, ot The subject, relation, and object embedding vector at timestamp t

Qt, Qq The missing events sets at timestamp t and q

2.2 Temporal Knowledge Graph Reasoning

There are two settings for reasoning over TKGs, interpolation, and extrapolation.
The interpolative TKG reasoning task assumes that there are missing facts in
the historical timestamps. It attempts to completing the missing facts through
contextual KGs [6,7,11,12,14,35,36]. For example, Jiang et al. [12] adopt the
temporal order of the happening time of facts to constrain the transformation
between time-sensitive relations. TimePlex [11] embeds the entities, relations,
and timestamps into a uniform compatible space. RTFE [36] treats the sequence
of graphs as a Markov chain and tracks the state transition recursively. These
methods cannot obtain the representations for entities and relations at future
timestamps. Thus, they are not able to tackle the extrapolative TKG reasoning.

On the contrary, the extrapolative reasoning, which this paper focuses on,
attempts to predict the facts at future timestamps through historical KGs. These
methods can be categorized into two: Query-specific methods and evolution rep-
resentation learning methods [17]. The query-specific methods retrieve contex-
tual information from the question, such as subject and relation, from the histor-
ical KGs. For example, RE-Net [13] aggregates the historical neighbors for the
queried subject and predicts its future interactions. CyGNet [40] utilizes the copy
mechanism to collect the object distribution given a specific subject and relation.
xERTE [8] build the sub-graph from the historical facts for the query. TITer [27]
and CluSTeR [18] employ the reinforcement learning to find query-related paths.
The evolution representation learning methods update the embedding for every
entity and relation based on the historical KGs. RE-GCN [19] learns the evolu-
tion representation at a fixed length. CEN [17] extends it for the dynamic lengths.
DynamicGCN [3] and Glean [4] enrich the representation with text features.

3 Problem Formulation and Notations

A temporal knowledge graph (TKG) G = {G1, G2, . . . , Gt, . . . } is a multi-
relational directed graph. Gt = (V,R, Et) denotes a set of events happened
at time t, where V is the set of entities, R is the set of relations (a.k.a.
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Fig. 2. The overview of our proposed CRNet model architecture. CRNet consists of
two parts, e.g., the historical concurrent evolution module and the future concurrent
prediction module. Edges in different colors denote different events between entities.

events) and Et is the set of facts at timestamp t. A fact in TKG can be rep-
resented by a quadruple (s, r, o, t), where s, o ∈ V, r ∈ R represent the sub-
ject, object, and relation respectively. The quadruple describes the subject s
interacts with the object o with an event of r at time t. For every quadru-
ple in the testing set, the extrapolative TKG reasoning task aims to complete
the missing facts (s, r, ?, tq) and (?, r, o, tq) with a sequence of historical KGs
Gq−m:q−1 = {Gq−m, Gq−m+1, . . . , Gq−1}. Taking the object prediction as an
example, the conditional probability of an object given the subject s, relation r,
and history Gq−m:q−1 is p(o|s, r,Gq−m:q−1). We denote it as pi(o|s, r, q) in the
rest of paper.

In this paper, we conduct the concurrent reasoning over TKGs. Comparing
with traditional TKG reasoning our concurrent reasoning diagram considers the
concurrent missing events at future timestamp. We denote all the missing facts at
future timestamp tq as Qq = {(s, r)|(s, r, o) ∈ Gq}. The conditional probability
for object o given the subject s and relation r is p(o|s, r,Gq−m:q−1, Qq). We
denote it as pc(o|s, r, q) in the rest of paper.

The important mathematical notations are described in Table 1

4 Methodology

This section introduces our proposal, CRNet. Figure 2 depicts the overview of
our CRNet, which consists of the historical concurrent evolution module and
the future concurrent prediction module. In the historical concurrent evolution
module, the evolution embeddings for all entities are learned from historical KGs.
In the future concurrent prediction module, we collect the missing facts to build
a candidate graph and conduct concurrent prediction.

4.1 Historical Concurrent Events Evolution

To capture the concurrent interactions for entities, we use the historical KG Gt

to update the entity embeddings. Give an entity representation hi at timestamp
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t, the adaptive triplet message passing module aims to collect the structural
interactions h′

i for it. To obtain the triplet message, we perform a linear trans-
formation over the concatenated triplet (ei, rk, ej) embedding [22].

tijk = W1 [hi||rk||hj ] (1)

where tijk is the representation for the event triplet (ei, rk, ej). [·||·] is the con-
catenation operation. hi and hj are the embeddings for ei and ej , and rk for
the relation rk respectively. W1 ∈ R

h×3h is the learnable parameter matrix. To
learn the different importance αijk for message aggregation, we first adopt a lin-
ear transformation parameterized by a vector w2 followed by a LeackyReLU to
compute the absolute score for every message, which is similar to the architecture
proposed in GAT [31].

sijk = LeackyReLU (w2tijk) (2)

To get the relative attention value for aggregation, we apply softmax over sijk
shown in Eq. (2).

αijk = softmaxjk(sijk)

=
exp (sijk)∑

n∈Ni

∑
r∈Ri,n

exp (sinr)
(3)

where Ni is the neighborhood node set for entity ei, Ri,n represents the con-
nected relation sets for entity ei and en. The neighbor message is finally adap-
tively aggregated following Eq. (4).

hl+1
i = σ

⎛

⎝
∑

j∈Ni

∑

k∈Ri,j

αl
ijkt

l
ijk + W l

3h
l
i

⎞

⎠ (4)

where hl
i is the embedding for ei learned at lth layer. σ is the RReLU [15]

activation function. As suggested in GAT [31], we also employ the multi-head
mechanism to collect multiple information from neighborhoods and stabilize the
learning process. We employ M independent attention heads to calculate the
embeddings from M different subspaces. We average the embeddings from sub-
spaces resulting in the final representation. Note that, there are no parameters
shared across heads or layers.

The final interaction information for entity ei is the aggregated results after
L layers, h′

i = hL
i . We treat L and M as empirical hyper-parameters. We denote

relational graph attention network above as H ′ = EventRGAT(G,H,R), where
H,R is the embedding matrix for all entities and relations respectively. We will
employ it to model the concurrent events again at the future timestamp.

Temporal Evolution. After gathering the interaction information in a specific
timestamp t. We need to update the representation for the next timestamp.
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Fig. 3. The architecture of future concurrent events prediction module. There are three
concurrent missing events to predict, namely (e1, r1), (e2, r2), (e3, r3). For each missing
event, we select top-k (k = 3) candidates to build the candidate graph CQ. The final
predict score is an average of pc and pi with the balance term λ.

We denote ht and h′
t as the entity embedding and interaction information at

timestamp t. We employ the gate mechanism to update the entity embedding.

u = σ (W3 [h′
t||ht] + b) (5)

ht+1 = u � h′
t + (1 − u) � ht (6)

where σ(·) is the sigmoid function which controls the gate value in vector u ∈ R
d

ranges 0 to 1. � is the vector element-wise dot operation.

4.2 Future Concurrent Events Prediction

This subsection introduces our two-stage concurrent prediction framework Fig. 3.
We first use ConvTransE [25] to predict all entities’ probability score pi.

pi (o|s, r, t) = otConvTransE1(st, rt) (7)

where st, rt, ot are the corresponding subject, relation and object embedding
vectors at timestamp t respectively.

ConvTransE(s, r) = f (vec(M(s, r))W4) (8)

where M(s, r) are aligned output vectors from the convolution kernels. vec(·)
converts the feature map matrix into a vector. f(·) denotes the ReLU activation
function here.

Candidate Graph Construction. Qq is the set of concurrent missing events
at future timestamp q. For every (si, ri) ∈ Qq, we select k candidate triplets
with highest probability score pi(o|s, r, t). We then union all queries and their
k candidates to build the candidate graph CQ = (V,R, EQ), where EQ is the
candidate event triplet set for all queries. Thus, it results in |Qq| × k edges in
the candidate graph, where |Qq| is the number of missing facts.
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Algorithm 1. Batch training procedure of CRNet
Input: Historical knowledge graph sequence {Gt−m, ..., Gt−2, Gt−1},
Concurrent missing facts at future timestamp t Qt

Output: Reasoning score for each query in Qt

1: Generate Evolutional Embedding from historical KGs. Eq. (4) and (6).
2: for each (s, r) ∈ Qt do
3: Calculate the prediction score pi(o|s, r, t) without concurrent context Eq. (7).
4: Generate top-k candidate events. Ek

s,r with the k highest prediction score.
5: Add Ek

s,r to candidate graph CQ.
6: end for
7: Enrich entity embeddings with concurrent events based on CQ Eq. (9).
8: Calculate the predict score with concurrent context pc(o|s, r, t) Eq. (10).
9: Predict missing object by jointing two prediction scores. Eq. (11).

10: Update model parameters by minimizing cross-entropy loss. Eq. (12).

Concurrent Events Prediction. After the candidate graph construction, we
employ our novel relational graph attention network EventRGAT to model the
interactions among candidate events. The entity representation after future con-
current interactions Ĥ follows:

Ĥt = EventRGAT(CQ,Ht,R) (9)

The probability score for entities with concurrent events pc can be calculated as
follows:

pc (o|s, r, t) = ĤtConvTransE2(ŝt, rt) (10)

where ŝ is the enhanced entity embedding for subject s. The final probability
score is a combination of pi and pc with a balance term λ.

p(o|s, r, t) = λ · pi(o|s, r, t) + (1 − λ) · pc(o|s, r, t) (11)

The entity prediction task can be seen as a multi-label classification problem.
We employ the cross-entropy loss at future KG Gq:

L =
∑

(s,r,o)∈Gq

− log p(o|s, r, t) (12)

The training procedure for a batch of data is detailed in Algorithm 1. The
training procedure will stop with the early stopping strategy with patience of 5.

5 Experiments

This section demonstrates the effectiveness of our proposal on the TKG rea-
soning. We first declare our experimental settings in detail, including datasets,
baseline methods and evaluation metrics. Secondly, we compare the performance
between CRNet and baseline methods on the link prediction and discussed the
experimental results. After that, we analyze the influence of important hyper-
parameters in CRNet. Finally, we carry out a case study to explain the effec-
tiveness intrinsically.
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Table 2. Statistics of temporal knowledge graph (TKG) datasets.

Dataset # Train # Valid # Test # Nodes # Relations Granularity

ICEWS18 746,036 91,990 99,090 23,033 256 24 h

ICEWS14 74,845 8,514 7,371 6,869 230 24 h

GDELT 1,734,399 238,765 305,241 7,691 240 15min

5.1 Experimental Setup

Datasets. We use three real-word event-based TKGs that have been widely used
in previous studies: ICEWS18 [2], ICEWS14 [28] and GDELT [16]. Datasets
are divided into training (80%), validation (10%) and testing (10%) sets by
timestamps following [13]. ICEWS and GDELT are event-based TKGs. Detailed
statistics of the aforementioned datasets are listed in Table 2.

Baselines. We compare our proposed method with the following state-of-the-
art reasoning methods for temporal knowledge graphs, including

– RE-Net Jin et al. [13] propose an auto-regressive architecture for predicting
future missing facts.

– xTERTE Han et al. [8] propose a temporal relational attention network and a
reverse representation update strategy to guide the query-specific sub-graph
extraction.

– CyGNet Zhu et al. [40] employ a time-aware copy-generation mechanism to
identify facts with repetition.

– HIP He et al. [10] develop the historical information passing network to pass
information from temporal, structural and repetitive perspectives.

– TANGO Han et al. [9] extends the idea of neural ordinary differential equa-
tions (ODEs). TANGO encodes both temporal and structural information
into dynamic embeddings.

– TITer Sun et al. [27] define an abstract agent to search the answer from
historical KGs. They also design a Dirichlet distribution-based time-shaped
reward for reinforcement learning.

– CluSTeR Li et al. [18] propose a clue searching and temporal reasoning two-
stage framework to predict future facts with reinforcement learning.

– RE-GCN Li et al. [19] employ a recurrent architecture to learn the evolutional
representations of entities and relations following the KG sequence.

– EvoKG Park et al. [24] joint learns the time prediction task and link prediction
task in an effective framework.

– CEN Li et al. [17] employ a length-aware decoder and the curriculum learning
strategy to mine the complex evolutional pattern from length diversity and
time-variability aspects.

Evaluation Metrics. We evaluate our model on TKG reasoning, which is a
link prediction task at future timestamps. We adopt Mean Reciprocal Rank
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(MRR), Hits@1, Hits@3 Hits@10 as our evaluation metrics. Note that, the same
as previous works, we add reciprocal relation for every quadruple in the dataset,
i.e., we add (o, r−1, s, t) for every (s, r, o, t). For each quadruple (s, r, o, t) in the
testing set, we predict two facts, e.g.(s, r, ?, t) and (o, r−1, ?, t). We also employ
the time-aware filtered setting which removes all the valid facts that appear
in the ranking list of time-specific corrupted facts. Taking the query (s, r, ?, t1)
with the answer o1 and two ground truths (s, r, o2, t1), (s, r, o3, t2) as an example,
under the time-aware setting, we consider the (s, r, o2, t1) as the corrupted fact
and remove it from the ranking list.

5.2 Implementation Details

There are several empirical hyperparameters in our proposal. For all the entity
and relation embeddings, their dimension d is set to 200. We also constrain
the embedding vector with L2 normalization [38]. The number of layers of the
relational graph attention network L is set to 2. The number of attention head
M is set to 4. We fix the length of historical length m to 3 over all datasets.
We adopt the Adam optimizer with 1e−3 learning rate and 1e−4 weight decay
to optimize the model parameters. We employ the grid search algorithm to find
the optimal number of candidate k and the balance term λ from the validation
set according to MRR. The optimal k are 20,35,10 for ICEWS18, ICEWS14 and
GDELT, respectively. The optimal balance term λ are 0.5,0.5,0.9 for ICEWS18,
ICEWS14 and GDELT, respectively. We analyze their influence in Sect. 5.4. We
use all the missing facts available to conduct the concurrent prediction. We also
study its influence in Sect. 5.4.

5.3 Performance Comparison

Table 3 reports the entity prediction results of CRNet and baseline methods on
the three event-based TKG datasets. The first group of baselines are query-
specific methods, they search context for queries from historical timestamps.
They fail to capture the global environment for event evolution, so they obtain
a relatively poor performance. The second group consists of methods using rein-
forcement learning. They design an abstract agent to ‘walk’ through historical
timestamps. The agent usually starts with a query, but ‘walks’ with a specific
strategy, so they will not limit themselves by the query and obtain a better per-
formance. However, reinforcement learning methods require a large number of
computational resources and can not fit with large datasets, such as GDELT.
The last group of baselines are evolution representation learning methods, which
update entities or relations following historical timestamps. They learn entities’
interactions from historical concurrent events but fail to capture the concurrent
events at the future timestamp. As we can observe, our CRNet outperforms
the baselines of all metrics on ICEWS18 and GDELT datasets and achieves an
improvement of 14.62% and 19.57% on MRR, respectively. On the ICEWS14,
CRNet obtains the best performance on most of the metrics except for Hits@10.
CluSTeR searches explicit clues from historical KGs, but is unable to specify
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Table 3. The performance of entity prediction with time-aware filtered metrics. Some
methods do not report their performance under the time-aware filter setting, we use
their public implementation to generate results and denote them with †.

ICEWS18 ICEWS14 GDELT
Method MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-Net 28.81 19.05 32.44 47.51 36.93 26.83 39.51 54.78 19.60 12.03 20.56 33.89
CyGNet 24.93 15.90 28.28 42.61 35.05 25.73 39.01 53.55 †18.79 †11.83 †19.84 †32.31
TANGO 28.97 19.51 32.61 47.51 26.25 17.30 29.07 44.18 – – – –
HIP †29.20 †20.12 †32.27 †47.60 †40.84 †31.60 †40.54 †56.02 †20.08 †12.78 †20.15 †33.62
xERTE 29.31 21.03 33.51 46.48 40.79 32.06 45.67 57.30 – – – –
TITer 29.98 22.05 33.46 44.83 41.73 32.28 46.46 58.44 – – – –
CluSTeR 32.30 20.60 – 55.90 46.00 33.80 – 71.20 18.30 11.60 – 31.90
EvoKG 29.28 – 33.94 50.09 27.18 – 30.84 47.76 19.28 – 20.55 34.44
RE-GCN 30.58 21.01 34.34 48.75 40.39 30.66 44.96 59.21 †19.72 †12.46 †20.99 †33.92
CEN 31.50 21.70 35.44 50.59 42.20 32.08 47.46 61.31 †21.16 †13.43 †22.71 †36.38
CRNet 37.81 26.12 43.10 61.01 48.37 38.21 53.79 67.79 25.32 15.39 27.82 44.07

the most significant clue, thus it achieves high Hits@10 but ordinary Hits@1 or
MRR.

5.4 Ablation Studies

To investigate the influence of concurrent event prediction and verify the robust-
ness of our proposal, we conduct several ablation studies for CRNet. We first
analyze the influence of important hyperparameters in CRNet, e.g. k and λ.
After that, we study the influence of the number of concurrent missing facts.

Influence of k Candidates. k is the number of candidate selected for each
missing fact. Figure 4 demonstrates the influence of k ranges from 1 to 50. The
metric values reported in the line chart are collected from validation set. As
we can observe, for the k ranges from 1 to 10, the performance increase with
higher k. The larger k results in more edges in the candidate graph and will have
more interactions among candidates. On the other hand, the larger k will more
likely to retrieve correct prediction and rank better. However, the larger k does
not mean better performance. More candidate facts will lead to a more complex
environment for concurrent prediction and decrease the predicting performance.
Thus, every datasets have their own optimal k. We choose the optimal k based
on the MRR, e.g., 20 for ICEWS18, 35 for ICEWS14 and 10 for GDELT. We
think the optimal k is relevant to the scale of dataset, since the GDELT and the
ICEWS14 are the largest and smallest dataset, respectively.

Influence of the Balance Term λ. λ is the balance term between pi(o|s, r, t)
and pc(o|s, r, t). The larger λ lead our CRNet to predict missing facts more
on concurrent context pc(o|s, r, t). We evaluate the effectiveness with λ in a
range of 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0. λ = 0.0 and λ = 1.0 are two spe-
cial cases, in which CRNet predict the missing facts purly by pi(o|s, r, t) or
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Fig. 4. The influence of the number of candidates k on three event-based TKG datasets.
The black, red, blue, and green line represent MRR, Hits@1, Hits@3, and Hits@10.
(Color figure online)

Fig. 5. Influence of balance term λ on three event-based datasets. The black, red, blue,
and green line represent MRR, Hits@1, Hits@3, and Hits@10. (Color figure online)

pc(o|s, r, t). Figure 5 illustrates the influence of different λ. As we can observe
from Fig. 5, ICEWS14, ICEWS18 and GDELT have their own optimal λ. Since
the ICEW14 and ICEWS18 share similar collecting procedure, they have the
same λ = 0.5. GDELT obtain the best performance with λ = 0.9. The metric
values with λ = 0.0 and λ = 1.0 obtain a relatively poor performance comparing
with any joint prediction model, which means our proposed concurrent context
pc(o|s, r, t) complement with pi(o|s, r, t) well. However, the pure predict metrics
of pc(o|s, r, t) are worse than pi(o|s, r, t). This means that our candidate graph
not only create the interactions between future missing facts, but also introduce
some distractive information. We leave this problem in our future work.

Influence of the Number of Concurrent Missing Facts. As we introduced
in Sect. 4.2, we build our candidate sub-graph from the concurrent missing fact
set Qq. Therefore, the number of missing facts affects the scale of candidate sub-
graph, and influence the performance further. Since the number of the concurrent
missing facts varies from datasets and future timestamps, we split the missing
facts into several partitions, i.g., 1, 2, 3, 4 and 5, to analysis how the number of



528 S. Wang et al.

Fig. 6. MRR and Hit@3 performance with different ratio of concurrent missing facts
at ICEWS18, ICEWS14 and GDELT datasets. All the metrics are obtained from vali-
dation set.

concurrent missing facts affect the performance. Figure 6 illustrates the perfor-
mance difference from different ratio of concurrent missing facts. In ICEWS18
and ICEWS14 datasets, all metric values drop with smaller scale of concurrent
missing facts significantly. On the contrary, the performance of different num-
ber of missing facts are almost the same and the best performance is obtained
with 33% missing facts in GDELT dataset. This is because the GDELT has a
relatively low performance and has more concurrent missing facts comparing
with the other datasets. Thus, GDELT samples can not benefit from concurrent
missing facts well.

5.5 Case Studies

To evaluate the effectiveness of concurrent missing events, we visualize 4 typical
cases in the testing set of ICEWS14 in Fig. 7. More concretely, we group the
missing events in the same topic and compare the prediction results of CRNet
with RE-GCN, which can not leverage the concurrent context.

In case 1, there are two highly related missing events, (China, Express intent
to meet, ?) and (Japan Express intent to meet, ?). The traditional methods will
easily predict the events with object South Korea, because there are two related
events, such as (South Korea, Make statement, China) and (South Korea, Make
statement, Japan) events in historical context. The Express intent to meet is seen
as a evolution result of Make statement. However, the Express intent to meet
event usually happens to each other. Our CRNet can discover the relationship
between concurrent events (China Express intent to meet, ?) and (Japan Express
intent to meet, ?), and make correct predictions.

For case 2, there are two opposite events Make visit and Host visit, which
usually happen concurrently at the same timestamp. In the historical context,
Envoy (US) makes a visit to the South Korea, and the South Korea also host
a visit for Envoy (US) as a response. When it comes to the missing events
(South Korea, Host visit, ?) at a future timestamp, previous methods will fill
the object with Envoy (US) according to the historical context. On the contrary,
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Fig. 7. Four typical cases in the testing set of ICEWS14.

our CRNet considers the concurrent future event, such as (North Korea, Make
visit, ?), and predict them jointly with concurrent context. With the help of
concurrent context (North Korea, Make vist, South Korea), CRNet completes
the missing event (North Korea, Make visit, ?) with the object North Korea.

The latter two cases are two emergencies, in which historical context cannot
provide enough information to model the actors’ behavior concretely.

In case 3, there is a conflict between the protester and the police. RE-GCN
can predict the events between the police and the protester by transferring knowl-
edge learned from previous conflicts. However there is a new participant Student
in the happening conflict (obtained from (Student, Express intent to yield, ?).
RE-GCN limits itself with the participant of Police and Protester and cannot
leverage the relationship between Student and Protester, which exists in the
concurrent context.

In case 4, previous studies intend to predict the missing event (Citizen, Appeal
economic aid, ?) with Government, since Citizen usually reach out to Gov-
ernment for help according to previous events. However, the Citizen and the
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Government are in poor relationship which can be learned from the concurrent
events. The Citizen are not likely to request economic aid from the Government.

In summary, concurrent missing events at future timestamps are important
for TKG reasoning. Our proposal can mine the relationship between concurrent
missing events and complete missing events more accurately.

6 Conclusion

We formulate and address the problem of concurrent events int TKG reasoning
task in historical and future timestamps. Our proposal, CRNet, is consisted of
two parts. For the historical concurrent events, we propose a novel relational
graph attention network, EventRGAT, to model the interactions among events
in a specific timestamp. For the future concurrent events, we propose a two-
stage frame work, in which we build a candidate graph and model the interac-
tions among future candidate events. Extensive experiments on three event-based
TKG benchmarks demostrate the effectiveness of our CRNet. We also investi-
gate into cases to study the influence of concurrent missing facts. The results
indicate the concurrent context at future timestamp is informative for predicting
missing events.

Supplemental Material Statement: Source code for our proposal is attached with
the submission on EasyChair and will be available to public after acceptance.
The datasets we used is adopt from the repository of RE-GCN. and have been
submitted in the supplemental material. The raw data used to generate Table 3,
Fig. 4, Fig. 5, and Fig. 6 are attached on EasyChair.
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Abstract. It is not an easy task for a data owner to publish a dataset
as Linked Data with connections to existing datasets since there are too
many datasets, thus it is hard to find the related ones, to download
them and to check their content (let alone to apply entity matching
over them). However, the connections with other datasets are important
for discoverability, browsing, and querying in general. To alleviate this
problem in this paper we introduce LODChain, a service that can help a
provider to strengthen the connections between his/her dataset and the
rest of datasets. LODChain finds the common entities, schema elements
and triples among the dataset at hand and hundreds of LOD Datasets
and through equivalence reasoning it suggests to the user various inferred
connections, as well as related datasets. In addition, it detects erroneous
mappings, and offers various content-based dataset discovery services,
for enabling the enrichment of datasets’ content. The key difference with
the existing approaches is that they are metadata-based, while what we
propose is data-based. We present an implementation of LODChain, and
we report various experimental results over real and synthetic datasets.
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1 Introduction

An increasing number of datasets are published through Linked Open Data
(LOD) principles, i.e., over 10,000 datasets [24]. For making a new RDF dataset
more discoverable and reusable, for improving its trustworthiness and for enrich-
ing its content, several tasks should be executed before its actual publishing to
the web. Indeed, it is a prerequisite to discover existing datasets, to create con-
nections with them, through equivalence relationships such as owl:sameAs, to
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check the quality of such relationships and to create rich metadata. These tasks
can be assisted at large scale through existing approaches; for discovering and
exporting relevant datasets through metadata-based services like http://lod-
cloud.net [19] or Google Dataset Search [6], for transforming and querying data
[11,34], for creating schema and instance mappings [8,30], for quality assessment
[28,48], for finding all the URIs of a given entity [22,39] and others.

However, the huge volume of LOD datasets makes it difficult to discover
every possible relevant dataset, especially given that a) existing approaches for
publishing RDF datasets do not favor their discoverability and reusability; e.g.,
[10] states that “up till now, data consumers could, painfully, crawl or search the
LOD cloud diagram for a potential dataset”, and b) Dataset Search engines rely
on metadata and ignore the actual content of datasets [7]. Also, even if one has
discovered and fetched the content of all the datasets, it would be very costly
and time consuming to find commonalities with these datasets at scale, to create
mappings and to check their quality. Such Data Integration tasks usually require
manual work, thus huge human effort, if applied at scale, as well as high storage
and computational capacity, which can be prohibitively expensive [24].

Due to these limitations, the major target of LOD, i.e., linking and integra-
tion [5], has not been yet reached. Indeed, LOD Cloud is sparsely linked; publish-
ers tend to connect their datasets with few and popular datasets and ontologies
[2,22], and “LOD Cloud is at risk of becoming a museum for datasets” [10].
Hence, there is a high need for services that can strengthen the connectivity
of a dataset to the rest of LOD Cloud. To alleviate this problem, we introduce
the research prototype LODChain, which receives a dataset, e.g., before its actual
publishing, computes the transitive and symmetric closure of its owl:sameAs (for
entities), owl:equivalentProperty (for properties) and owl:equivalentClass
(for classes) relationships with hundreds of LOD datasets, i.e., those indexed
by LODsyndesis KB [25], and offers connectivity and enrichment services. For
a new dataset, say Dnew, LODChain a) spots errors in equivalence mappings, b)
infers new mappings, connections and all the common elements, e.g., entities
and triples, between Dnew and LOD datasets, c) discovers its K most relevant
datasets, and d) enriches Dnew, e.g., for offering advanced query capabilities.

Comparing to large-scale services, like LODsyndesis [22,25] or LODlaundro-
mat [34], to the best of our knowledge LODChain is the first service for strength-
ening the connectivity of an RDF dataset to the rest of LOD Cloud, at any time,
even before its actual publishing. In [26], we described a preliminary version of
LODChain providing analytics only for the entities of Cultural Heritage datasets.
In this paper, we introduce the current version of LODChain, which also leverages
the schema and the triples of a dataset of any domain and offers more connec-
tivity analytics and services. We present use cases showcasing its impact for the
discoverability, reusability and trustworthiness of a dataset, and the process of
LODChain, including methods for computing the owl:sameAs closure between a
new dataset and the precomputed inference (of 45 million owl:sameAs mappings)
from hundreds of LOD datasets. Finally, we provide comparative results for the
effectiveness and the efficiency by using 5 real and 2 synthetic datasets, indica-
tively, we obtained at least 450% increase to the connections of real datasets.

http://lod-cloud.net
http://lod-cloud.net
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The rest of the paper is organized as follows. Section 2 introduces the
related work, whereas Sect. 3 presents several use cases by using the real dataset
WW1LOD [18] containing historical data about World War I. Section 4 presents
the process of LODChain, while Sect. 5 provides comparative results for its effi-
ciency and effectiveness. Finally, Sect. 6 concludes the paper and identifies direc-
tions for future research.

2 Related Work

Several approaches have been proposed for aiding the creation, integration and
publication of an RDF dataset, see a recent survey [24] for more details. Here, we
focus on a) large scale services for hundreds or even thousands of RDF datasets,
b) dataset search and discovery approaches and c) data enrichment approaches,
which can be exploited for strengthening the connectivity of a dataset.

Large Scale Services for Multiple RDF Datasets. First, LODLaundro-
mat [34] offers data cleaning and transformation for thousands of RDF docu-
ments, whereas LOD-a-lot [11] provides a single integrated file containing the
documents of LODLaundromat, for enabling their reusability and for offering
more advanced query capabilities. Moreover, there are services for finding all
the datasets of a given URI, e.g., WIMU [39] and LODsyndesis [23,25], all the
equivalent URIs of a given URI, such as MetaLink [3] and LODsyndesis, i.e.,
by computing the transitive closure of millions of owl:sameAs mappings, and
approaches for detecting erroneous owl:sameAs links [31,40]. Such services can
be exploited from the publisher of a new dataset, for enriching the connectivity
of their dataset, e.g., by adding inferred links, and for checking its quality.

RDF Dataset Search and Discovery. Existing services, such as LOD Cloud
(http://lod-cloud.net), Google Dataset Search [7], LODatio [12] and LODAt-
las [32], provide metadata-based search for discovering relevant RDF datasets,
whereas [44] evaluates different snippet generation algorithms that can be used
for performing RDF Dataset Search for thousands of datasets. Furthermore, [29]
introduces a framework for content-based similarity dataset discovery, by using
external knowledge bases (e.g., Wikidata), whereas LODsyndesis offers content-
based dataset discovery for finding the most relevant datasets to a given one.

RDF Dataset Enrichment. There are several approaches introducing meth-
ods (and their importance) for enriching the content of datasets for several
domains, e.g., for tourism [35,46], for Open City Data [4] or for marine domain
[37]. Additionally, one can enrich the data for a given entity, by visiting derefer-
encable equivalent URIs, e.g., through services like Metalink or LODsyndesis, by
using instance matching tools, e.g., Silk [42], by exploiting link-traversal queries
[38], or through SPARQL queries to the endpoints of relevant datasets. A catalog
of SPARQL endpoints is available from SPARQLES [41] and SpEnD [47].

Comparison with Existing Approaches. Concerning the mentioned works,
a) the process of large-scale services (e.g., [25,34]) is done periodically for a
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high number of open datasets, i.e., it is infeasible to exploit the offered services
for unpublished data or for closed linked data, as big organizations/companies
maintain (e.g., [14]), b) the dataset search services (e.g., [7,32]) are metadata-
based, and c) the data enrichment approaches are either domain specific (e.g.,
[35,37]), or require additional effort for discovering enriched data (e.g., [3]). On
the contrary, to the best of our knowledge, LODChain is the first service that
can be used by a publisher at any time, for strengthening the connectivity of a
dataset (of any domain) by providing content-based connectivity analytics and
enrichment to the rest of LOD datasets. Thereby, it can be used for unpublished
or “closed” data, without needing to download any software or to fetch any RDF
dataset.

Fig. 1. Typical approach versus the LODChain approach for publishing an RDF dataset

3 Data Publishing - Typical Approach Versus LODChain

We define the user categories that can have access to a given RDF dataset:
i) data owners (publishers), i.e., people, organizations, universities, etc., that
are the creators and owners of a given dataset, ii) a special group of interest,
i.e., certain individuals, e.g., people, services, within an organization, a research
project, etc., iii) users (or services), i.e., any user on the web like publishers of
other datasets, or services that have access or/and reuse the content of a dataset.
This category is a superset of the previous two, i.e., publishers and special group
of interest. Figure 1 shows the typical approach of publishing an RDF dataset.
Indeed, a data owner describes the desired data in RDF format, creates mappings
with usually few RDF datasets and after assessing its quality, e.g., through
competency queries [45], he/she produces the final version. For achieving this
target, more steps are usually required, e.g., data conversion, transformation,
etc. [24]. Afterwards, the final version is published, either to an open domain
(e.g., to LOD Cloud) which can be publicly accessible, discoverable and reusable
from any user/service on the web (for performing an analysis, for creating an
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application, etc.), or to a closed domain, i.e., these benefits are provided to a
special group of interest.

Concerning the process of LODChain (lower part of Fig. 1), it receives an RDF
dataset, e.g., before its actual publishing, for checking and improving its connec-
tivity to the LOD Cloud and for enriching its content (by exploiting LODsynde-
sis). The target is to increase the benefits of publishing a dataset for any category
of users. Below, we present how LODChain can contribute to these benefits (lower
right side of Fig. 1), by showing a scenario with a real dataset.

Benefits of LODChain for Data Publishing (Use Cases). We describe use
cases by following the steps of the lower side of Fig. 1. For the introduced scenario,
we use the small real dataset WW1LOD [18]. It contains data about World War
I and includes 47,616 triples and 547 sameAs mappings to 5 RDF datasets,
including popular ones, such as DBpedia [16] and GeoNames (more statistics are
given in §5). For checking more cases, we use a synthetic version of WW1LOD,
say WW1LODsynt, where we have added 50 erroneous owl:sameAs mappings.
The scenario starts when the data owner decides to use LODChain for improving
the connectivity of his dataset, before its actual publishing. We suppose that
the first version of the dataset is WW1LODsynt (upper left side of Fig. 2). We
show how the lifecycle of WW1LODsynt can be changed by using LODChain, and
for each Use Case (UC) we indicate its potential impact. The use cases are also
presented in an online video (https://youtu.be/Kh9751p32tM).

Fig. 2. A scenario with 5 use cases by uploading a new dataset to LODChain

UC1. Error Detection and Corrections. The publisher uploads the ver-
sion WW1LODsynt to LODChain, which informs the publisher that there are 50

https://youtu.be/Kh9751p32tM
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possible erroneous mappings, and provides a list containing these errors (upper
side of Fig. 2). The publisher downloads the list for correcting the mappings
and for creating the version WW1LOD. Without checking the quality of equiva-
lence relationships, which is quite difficult at scale [24], it can result in erroneous
relationships, which can negatively affect the trustworthiness of a publisher.

UC2. How Connected is My Dataset? The scenario continues by uploading
the version WW1LOD. LODChain analyzes the dataset, informs the publisher
that there are no errors, and it offers several connectivity analytics. Some of
these real results are shown in UC2 of Fig. 2, i.e., we inferred 2,172 owl:sameAs
relationships (397% increase), which resulted to 25 new connections, i.e., 500%
increase, since the initial version had only 5 connections. In Fig. 2 (and also in
Fig. 1) the inferred connections are depicted as edges/nodes with green color
and the old connections with red color, whereas the label of each edge indicates
the number of their common entities. Except for finding new connections with
popular datasets (e.g., Wikidata [43], YAGO [33]), which is expected due to tran-
sitivity (they share millions of entities with DBpedia), it is feasible to discover
connections with not so popular datasets that were unknown to the publisher.
As regards dataset discovery and selection, indicatively Fig. 2 shows the best
triad of datasets offering a) the most common entities and b) the most comple-
mentary triples for WW1LOD entities. We suppose that the publisher exports
all the inferred data and analytics for reusing them (i.e., version WW1LODenr),
although one can decide to use any subset of these enriched data.

UC3. Publishing the Enriched Dataset to LOD Cloud. Suppose that the
publisher decides to upload the enriched version WW1LODenr, including all the
inferred equivalence mappings and connectivity analytics, to LOD Cloud (see
UC3 in Fig. 2). Below, we explain the possible impact for any users’ category.

UC4. Advanced Query Capabilities, Enrichment and Verification. We
mention the benefits of using LODChain for the data owner or/and for a special
group of interest. By enriching WW1LOD through multiple datasets, more com-
plex queries can be answered, such as the following: “Give me the politicians
that were related to first World War, they have won a Nobel prize and option-
ally information for the books that they have written” (UC4 in Fig. 2). That
query requires data from several datasets, e.g., for “Theodore Roosevelt”, which
is a possible answer, the first part can be answered from WW1LOD (http://ldf.
fi/ww1lod/96403a6a), the second (nobel prizes) from Wikidata (https://www.
wikidata.org/wiki/Q33866), and the third (books) from the National Library of
Germany (http://d-nb.info/gnd/118749633). Although WW1LOD was not con-
nected to Wikidata and the National Library of Germany (Fig. 2), LODChain
inferred and added these connections in the enriched version.

However, it is not always feasible to export and use all the relevant datasets
due to huge data volume, thereby, LODChain also offers services for selecting the
K most relevant datasets for a desired task. For example, two possible tasks are
to find the combination of K = 3 datasets providing i) “the most complementary
triples for the entities of WW1LOD” (UC4 in Fig. 2), i.e., for data enrichment, or
ii) “the most common entities with WW1LOD”, i.e., for data verification. From

http://ldf.fi/ww1lod/96403a6a
http://ldf.fi/ww1lod/96403a6a
https://www.wikidata.org/wiki/Q33866
https://www.wikidata.org/wiki/Q33866
http://d-nb.info/gnd/118749633
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the 30 connected datasets, there exists 4,060 combinations of 3 datasets, thereby,
it is quite expensive to check any possible combination. However, by exploiting
the precomputed results of LODChain, one can find very fast the K = 3 most
relevant datasets for a task (e.g., UC4 in Fig. 2). These examples indicate the
impact of LODChain for the dataset selection process, i.e., the K most relevant
datasets differ according to the desired needs, even for the same dataset.

UC5. Dataset Search, Discoverability and Reusability. Here, we mention
the benefits for any user/service (in case of open data). Suppose that publish-
ers of other datasets periodically check the LOD Cloud for discovering relevant
datasets to their dataset, that were recently published, or an automated service
informs them when a new dataset is connected with their dataset. E.g., in UC5
of Fig. 2, the publisher of VIAF desires to find datasets having a) common enti-
ties with VIAF and b) information about World Wars, i.e., for enriching or for
verifying their content. They observe that WW1LOD not only covers this topic,
but also has 369 common entities with VIAF, thereby they decide to use it.
Without LODChain, it would be extremely difficult for most publishers (25 out
of 30) to discover that WW1LOD is relevant to their dataset (and to reuse it),
e.g., the first version of WW1LOD did not have links to VIAF.

4 LODChain: Connecting Your Dataset to the LOD Cloud

First, we describe LODsyndesis (which is used from LODChain), and then the
steps of LODChain, by showing a running example of how to strengthen the
connectivity of a new dataset, i.e., Dnew (upper left part of Fig. 3). For finding
new connections for Dnew, it is prerequisite Dnew to contain links to at least
one dataset, e.g., in Fig. 3, Dnew is connected with 2 datasets: DBpedia and
Wikidata. Indeed, we do not perform instance and schema matching, but we infer
new connections by computing the closure of equivalence mappings among Dnew

and the rest of LOD datasets. Finally, the data of Dnew are saved temporarily
in LODsyndesis indexes for a user session for producing the desired output.

4.1 LODsyndesis Aggregated Knowledge Graph

LODChain is based on LODsyndesis [25], which is an Aggregated Knowledge Graph
derived by aggregating the content of datasets, computing the transitive and
symmetric closure of 45 million equivalence relationships, and offering semantics-
aware indexes and services for over 412 million entities and 2 billion triples
from 400 LOD datasets. Concerning the quality of the mentioned closure, it
has been evaluated in a semi-manual way in our past work [20]. Afterwards,
LODsyndesis keeps a unique representation for each real world entity, property
and class, while also storing their provenance. The lower right side of Fig. 3
shows a graph representation of the LODsyndesis data about the Greek composer
“Mikis Theodorakis”. LODsyndesis has precomputed the owl:sameAs closure
for “Mikis Theodorakis” URIs, has stored their provenance, and has replaced all
these URIs by a single internal URI (see the single node for M. Theodorakis).
The same process has been done for all the entities (e.g., “Paris”), properties
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(e.g., “bornYear”) and so forth. Regarding the triples (i.e., facts), it stores at the
same place in the index, all the triples of an entity occurring either as a subject
or as an object, and their provenance. Thereby, triples having entities as objects
are stored twice in the index. The lower right side of Fig. 3 shows the triples for
M. Theodorakis and their provenance (see the bold text under each node).

4.2 The Steps of LODChain

Step A. Input. LODChain supports many formats: NTriples, NQuads,
RDF/XML and Turtle (by using the RDF4J library https://rdf4j.org/). The
publishers just give a link of their dataset in one of these formats. They can
optionally type the title and domain of their dataset and can select to perform
the process only for a subset of their dataset (e.g., 10,000 triples) for having a
very fast overview.

Step B. Computation of Equivalence Relationships Closure and Prove-
nance. The objective is to detect which real world objects are a) common in
Dnew and LODsyndesis, b) unique in Dnew, and to detect c) errors in the equiv-
alence relationships of Dnew. LODChain reads the triples of Dnew, collects all
the owl:sameAs, owl:equivalent Property and owl:equivalentClass rela-
tionships and partitions the URIs in three sets: entities, properties and classes.

Fig. 3. Running example. The steps of LODChain for a new dataset Dnew

B1. Local Computation of Closure in Dnew. For each type of these URIs
and equivalence relationships, we use the signature-based algorithm proposed
in [22], for computing the transitive and symmetric closure of the equivalence
relationships of Dnew. Then we store all the URIs of Dnew referring to the

https://rdf4j.org/
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same real world object in the same local “cluster” (i.e., class of equivalence). At
the end, the set C(Dnew) is created, which includes all the “local” clusters of
Dnew (which are pairwise disjoint). For an entity e in Dnew we shall use loc(e) ∈
C(Dnew) to denote the local cluster including the URIs of e, e.g. the local cluster
of “M. Theodorakis” (Step B1 of Fig. 3) contains 3 URIs, loc(e) = 〈dnew:M.
Theodorakis, dbp:Mikis Theodorakis, wkd:Q151976〉. Finally, for the URIs that
are not part of any equivalence relationship, their cluster contains a single URI,
e.g., in Fig. 3 for the entity “Zorbas Dance”, loc(e) = {dnew : Zorbas Dance}.

B2. Computation of Closure Between Dnew and LODsyndesis. Here, we
merge the local “clusters” of Dnew, with the results of the precomputed closure of
LODsyndesis.We shall useC(LOD) to denote the set of all the clusters of LODsyn-
desis (which are pairwise disjoint), and glob(e) ∈ C(LOD) to denote the cluster
of entity e in LODsyndesis, e.g., for “Mikis Theodorakis” glob(e) = {dbp:Mikis
Theodorakis, wkd:Q151976, viaf:Theodorakis, yago:M. Theodorakis} (lower left
side of Fig. 3). Moreover, prov(e) denotes the provenance of e in LODsyndesis, e.g.,
for the mentioned entity prov(e) = {DBpedia,YAGO,Wikidata, VIAF}. Each
loc(e) ∈ C(Dnew) belongs to exactly one of the three below rules:

Rule 1. No Match Between Clusters: New Entities. Here, loc(e) does
not match with any global cluster of LODsyndesis, thereby the corresponding
entity exists only in Dnew, i.e., for a given loc(e) ∈ C(Dnew), � glob(e′) ∈
C(LOD) s.t. loc(e) ∩ glob(e′) �= ∅. In such a case, we add loc(e) to C(LOD).

Algorithm 1: Computation of Closure between Dnew and LODsyndesis
Input: Local Closure C(Dnew) and global closure C(LOD)
Output: The common and unique entities, and errors in owl:sameAs mappings
1 uniqEnt ← ∅, cmnEnt ← ∅, errors ← ∅
2 forall loc(e) ∈ C(Dnew) do // for each local cluster

3 globnew(e) ← ∅ // init. the new global cluster of e
4 forall u ∈ loc(e) do // For each URI u of local cluster

5 if u ∈ glob(e′), glob(e′) ∈ C(LOD) then // If u in LODsyndesis

6 if globnew(e) ≡ ∅ then // 1st global cluster for e
7 globnew(e) ← glob(e′) // Store the global cluster

8 else if globnew(e) �= glob(e′) then // 2nd global cluster for e
9 delete globnew(e) // Delete e, matches 2 glob. clusters

10 errors ← errors ∪ {loc(e)} // Add loc(e) to errors

11 break and go to line 2 // Continue with the next loc(e)

// After finishing with all the URIs of loc(e)
12

13 if globnew(e) ≡ ∅ then // No global cluster found

14 globnew(e) ← loc(e) // loc(e) is the global cluster of e
15 uniqEnt ← uniqEnt ∪ {e} // Add e to unique entities

16 prov(e) ← Dnew // Store its provenance

17 else if globnew(e) �= ∅ then // A single global cluster found

18 globnew(e) ← globnew(e) ∪ loc(e) // Update global cluster of e
19 cmnEnt ← cmnEnt ∪ {e} // Add e to common entities

20 prov(e) ← prov(e) ∪ {Dnew} // Update its provenance

21 return cmnEnt, uniqEnt, errors
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Rule 2. Single Match Between Clusters: Inferring New Relationships.
If a given loc(e) ∈ C(Dnew) matches with exactly one glob(e′), i.e. if ∃! glob(e′) ∈
C(LOD) s.t. glob(e′) ∩ loc(e) �= ∅, then we assume that e ≡ e′, and we perform
the following operation: loc(e) ∪ glob(e′). In step B1 of Fig. 3, two URIs of the
local cluster, i.e., dbp:Mikis Theodorakis and wkd:Q151976, belong also to the
same global cluster in LODsyndesis (see the lower side of Fig. 3). By merging
these clusters (step B2 of Fig. 3), we inferred two new owl:sameAs mappings for
the URI “dnew:M. Theodorakis”, we updated its provenance, and we managed
to discover two new connections for Dnew, i.e., VIAF and YAGO.

Rule 3. Cluster Conflicts: Detecting Possible Errors. If a loc(e) ∈
C(Dnew) matches with two or more clusters of LODsyndesis, i.e., if
∃ glob(e1), glob(e2) ∈ C(LOD). s.t. glob(e1) ∩ loc(e) �= ∅ , glob(e2) ∩ loc(e) �=
∅ , glob(e1) �= glob(e2), then this is an indication of error. For instance, sup-
pose that we have added the following erroneous mapping in Dnew: 〈dnew:M.
Theodorakis, owl:sameAs, dbp:Theodore Roosevelt〉. Due to closure, in Step
B1 the result would be loc(e)={dnew:M. Theodorakis, dbp:Mikis Theodorakis,
wkd:Q151976, dbp:Theodore Roosevelt}. However, by proceeding to Step B2,
loc(e) would match with two clusters of LODsyndesis, i.e., the URIs dbp:Mikis
Theodorakis and dbp:Theodore Roosevelt refer to different entities and belong
to different global clusters. LODChain identifies such cases and informs the user.

Algorithm for Step B2. Algorithm 1 detects if there is zero, one or more
global clusters, that match with the URIs of loc(e), for finding common and
unique entities, and errors in the owl:sameAs mappings. Algorithm 1 reads each
loc(e) separately and iterates over all its URIs (lines 2–11). For each URI u, it
performs a binary search in LODsyndesis index (see line 5), for checking if it
occurs in a global cluster (i.e., if it exists in LODsyndesis). Concerning the rules,
for the local clusters belonging to Rule 1, the lines 6–11 will never be executed,
since there is not a global cluster containing at least one URI of loc(e). On
the contrary, the lines 13–16 will be executed and the entity e will be stored
as unique. Regarding Rule 2, the first time that we find a URI of loc(e) that
belongs to a global cluster, we retrieve and store the corresponding global cluster
(lines 5–7). In case of finding another URI(s) of loc(e) belonging to the same
global cluster, we just continue with the next URI of loc(e). At the end, lines
17–20 are executed for updating the global cluster of e (i.e., globnew(e)) and its
provenance, and for storing the entity as a common one. Concerning Rule 3, in
case of detecting a second different global cluster that matches loc(e), lines 8–11
are executed exactly one time, loc(e) is stored as an error and we continue with
the next loc(e). Finally, Algorithm 1 returns the common and unique entities,
and the sameAs errors.

This algorithm reads each URI u of Dnew once (i.e., each URI of Dnew

exists in exactly one local cluster), and then it performs a binary search for u in
LODsyndesis index. Therefore, its time complexity is O(|UDnew

| ∗ log(|ULOD|)),
where UDnew

are all the URIs of Dnew, ULOD are all the URIs in LODsyndesis,
and log(|ULOD|) is the cost of the binary search in LODsyndesis. On the other
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hand, it keeps in memory all the updated global clusters, containing the entities
of Dnew, i.e., its space complexity is O(

∑
∀loc(e)∈C(Dnew) |globnew(e)|).

How to Reduce the Number of Index Reads? A limitation is that |ULOD|
can be huge, i.e., LODsyndesis contains more than 412 million URIs. Although
we use a binary search (which is logarithmic in scale), we desire to further
decrease the cost of searching to the index of LODsyndesis. For this reason,
we exploit the prefixes of URIs, i.e., they usually indicate the company or
university that publishes the dataset (data owner). For instance, the prefix of
the URI “http://dbpedia.org/resource/Mikis Theodorakis” is “http://dbpedia.
org/”. We use the prefix index of LODsyndesis [22], which contains all the pre-
fixes for the URIs that are indexed in LODsyndesis, for checking very fast if a
URI occurs in at least one existing dataset. Indeed, we know that if the pre-
fix of a URI does not exist in the prefix index, the URI cannot be found in
LODsyndesis [22].

How to Use the Prefix Index: Since the size of the prefix index is quite
small compared to the index of LODsyndesis, i.e., it contains less than 1 million
prefixes, before executing the line 5 of Algorithm 1, we can search if the prefix of
URI u occurs in the prefix index (of LODsyndesis), and only if it is true, we can
perform a binary search for u in the index of LODsyndesis. Otherwise, we just
continue with the next URI. For further reducing the cost, even for searching in
the prefix index, and since prefixes are highly repeated in a given dataset (e.g.,
in our experiments, each dataset has on average only 23.6 prefixes), we keep
in memory the prefixes that we have already seen. As it is shown in §5, it can
highly reduce the execution time, i.e., even more than 5× for real datasets.

Algorithm 2: Merging the triples (facts) of Dnew with LODsyndesis
Input: The common entities cmnEnt and their triples in Dnew

Output: Common and unique triples of Dnew entities to LODsyndesis datasets
1 uniqTriples ← ∅, cmnTriples ← ∅
2 forall e ∈ cmnEnt do // Read each common entity e
3 forall 〈s, p, o〉 ∈ T (Dnew, e) do // Read each triple of e in Dnew

4 if 〈s, p, o〉 ∈ T (LOD, e) then // If triple exists in LODsyndesis

5 prov(〈s, p, o〉) ← prov(〈s, p, o〉) ∪ {Dnew} // Update provenance

6 cmnTriples ← cmnTriples ∪ {〈s, p, o〉} // Add to cmnTriples

7 else // Triple is offered only from Dnew

8 prov(〈s, p, o〉) ← {Dnew} // Store its provenance

9 uniqTriples ← uniqTriples ∪ {〈s, p, o〉} // Add to uniqTriples
10 T (LOD, e) ← T (LOD, e) ∪ {〈s, p, o〉} // Add to LODsyndesis

11 return uniqTriples, cmnTriples

Step C. Merging Triples of Dnew with LODsyndesis. Here, we merge the
triples for the common entities of Dnew to LODsyndesis, for finding common and
unique facts, and possibly complementary facts from other LOD datasets (data
enrichment). This is performed only for the common entities (Rule 2), since for
the entities belonging only to Dnew (Rule 1), we know that all their triples are

http://dbpedia.org/resource/Mikis_Theodorakis
http://dbpedia.org/
http://dbpedia.org/
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unique. We denote all triples having an entity e either as a subject or as an object,
in LODsyndesis as T (LOD, e) and in Dnew as T (Dnew, e). We desire to find for
each common entity e, a) the common triples in LODsyndesis, i.e., T (LOD, e)∩
T (Dnew, e), b) the unique triples of Dnew, i.e., T (Dnew, e) \ T (LOD, e), and
optionally c) the complementary triples to Dnew, i.e., T (LOD, e) \ T (Dnew, e).

Algorithm for Step C. Algorithm 2 shows how to compute the unique and
common triples. It receives as input the common entities (cmnEnt), and ∀e ∈
cmnEnt, it accesses its entry in LODsyndesis index through a random access
file mechanism. The pointer of the entry of each entity (in the index) has been
obtained from the binary search of the previous step (i.e., line 5 of Algorithm
1). Then, for each triple in T (Dnew, e), it checks if it occurs in LODsyndesis
(lines 3–10). If it is true, we update the provenance and we store the triple as
common (lines 4–6), otherwise, we add the unique triple to T (LOD, e) (lines
7–10). In the worst case, i.e., all the entities of Dnew are part of LODsyndesis,
we iterate and keep in memory all the entities and triples of Dnew, i.e., time and
space complexity is O(|cmnEnt|+ |T (Dnew)|). For finding complementary facts,
we can extend Algorithm 2 by also iterating over T (LOD, e). However, since it
can be expensive, for producing connectivity analytics we can use pre-computed
posting lists containing the provenance of each triple of e [25]. In step C of Fig. 3,
we updated the triples and we found common, complementary and unique facts
for Dnew, e.g., the fact “M. Theodorakis, bornYear, 1925” is verified from 3
other datasets, the fact “M. Theodorakis, educatedAt, Paris” is complement to
Dnew and the fact “M. Theodorakis, composer, Zorbas Dance” is offered only
by Dnew.

Step D. Connectivity Analytics and Enrichment Services. By using
the updated (temporal) LODsyndesis indexes and specialized lattice-based algo-
rithms (presented in [22,25]), we provide both connectivity and dataset discovery
content-based measurements (e.g., see Step D of Fig. 3). The algorithms exploit
the posting lists of an index (i.e., containing information about the provenance
of entities, triples, etc.) for computing content-based metrics among any combi-
nation of datasets, by solving the corresponding maximization problems [22,25].
LODChain offers connectivity analytics and data discovery services for the input
dataset, through several visualizations and HTML tables (e.g., UC2 of Fig. 2).

First, LODChain provides a list of possible errors in case of detecting erro-
neous owl:sameAs mappings (Rule 3 of step B2), that can be used for correct-
ing the mappings. Second, a plenty of connectivity metrics are computed and
visualized, i.e., a) the inferred equivalence mappings, b) common, unique and
complementary elements, i.e., how many entities, schema elements and triples of
Dnew exist in ≥ 1 other datasets, how many only in Dnew, and how many com-
plementary triples exist for the entities of Dnew, c) connections of Dnew due to
closure, i.e., the datasets having common entities with Dnew before and after the
computation of closure, d) top-10 connections of Dnew (separately for entities,
schema and triples), and many others. Regarding Dataset Discovery, LODChain
finds the K most relevant datasets to Dnew with common or complementary
elements. Third, it offers an enriched version of Dnew in RDF format having:
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all the common elements and their provenance, the inferred owl:sameAs map-
pings, complementary triples, and rich metadata, created through VoID [1] and
VoIDWH [21], that describe through triples the results of connectivity analytics.

Accessing LODChain and Sustainability Plan. LODChain is available in
https://demos.isl.ics.forth.gr/LODChain and is running on a common machine
with 8 cores, 8 GB memory and 60 GB disk space in okeanos service [13]. There
is no need to download any software for using it, and sample datasets are offered
in the webpage. Regarding its sustainability plan, LODChain can be used with
any updated version of LODsyndesis’ indexes, thereby, one major plan is to
investigate ways for aiding the update of LODsyndesis at least periodically.

5 Experimental Evaluation

The objective is to measure the efficiency of LODChain and to provide connec-
tivity analytics. We use a common machine with 8 cores and 8 GB memory,
which contains the indexes of LODsyndesis. These indexes include over 2 billion
triples and 412 million URIs from 400 RDF datasets, i.e., statistics are given in
[24,25]. Concerning the datasets, we use the 5 real and 2 synthetic RDF datasets
of Table 1. The real datasets include from 3K to 1.5M of triples, they contain
links to few other datasets, i.e., see more statistics in Sect. 5.2, and only a few
number of unique prefixes, i.e., on average 23.6 prefixes. Indeed, most of their
URIs contain a prefix that cannot be found in LODsyndesis. In the worst case
for real datasets, only 26.4% of URIs contain a prefix that occurs in LODsynde-
sis. We also use two synthetic datasets having the same number of triples, URIs
and owl:sameAs mappings, for evaluating two cases. In the first one (HiConn),
most URIs are part of LODsyndesis (highly connected), whereas in the sec-
ond (LowConn), most URIs and their prefix are new (almost disconnected from
LODsyndesis).

Table 1. The 7 evaluation RDF datasets (5 Real and 2 Synthetic)

ID Dataset (abbreviation) Domain # of Triples # of sameAs # of URIs # of URIs with prefix in
LODsyndesis

R1 GReek Children Art Museum
(GRC) [15]

User content 2,212 0 452 58 (12.8%)

R2 Geological TimeScale (GTS)
[9]

Geography 13,271 173 1,206 181 (15.0%)

R3 World War 1 LOD
(WW1LOD) [18]

Publication 47,616 547 11,690 2,191 (18.7%)

R4 MuziekWeb (MW) [17] Media 506,582 10,563 153,538 105,548 (6.8%)

R5 Persons of National Library
of Netherlands (PNLN) [36]

Publication 1,500,000 268,861 636,230 168,444 (26.4%)

S1 Synthetic 1 (HiConn) – 1,000,000 181,105 425,500 400,697 (94.1%)

S2 Synthetic 2 (LowConn) – 1,000,000 181,105 425,500 1,020 (2.3%)

https://demos.isl.ics.forth.gr/LODChain
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Table 2. Total execution time for each
dataset, with and without prefix index

Dataset w/o Prefix
index

With prefix
index

Achieved
speedup

GRC 7.47 s 5.26 s 1.41×
GTS 10.37 s 7.11 s 1.45×
WW1LOD 79.74 s 39.04 s 2.04×
MW 779.10 s 143.11 s 5.44×
PNLN 3,881.02 s 2,110.12 s 1.83×
LowConn 1,960.08 s 62.80 s 31.11×
HiConn 2,531.00 s 2,446.41 s 1.03×

Fig. 4. Execution time with different
number of triples for the same dataset

5.1 Efficiency

We measure the execution time i) for the whole process, ii) for the different steps
of LODChain, and iii) by using a different number of triples for the same dataset.

Execution Time - The Gain of Prefix Index. Concerning the real datasets
(first five rows of Table 2), as the size of the dataset grows, the execution time
increases. However, by exploiting the prefix index, the execution time highly
decreases for all the real datasets, i.e., we achieved a speedup from 1.41× to
5.44×. Since these datasets contain a high percentage of URIs with new pre-
fixes (that are not part of LODsyndesis) we managed to reduce the reads to
LODsyndesis indexes (and thus the execution time). By using that approach,
we needed for the first four real datasets from 5 s to 2.5 min, whereas for the
largest dataset, i.e. PNLN, we needed 35 min. For the synthetic datasets (last
two rows of Table 2), the execution time is extremely different in case of using
the prefix index, although they contain the same number of triples, URIs and
owl:sameAs mappings. For the LowConn dataset, we achieved a 31.11× speedup
by exploiting the prefix index, while for the whole process 1 min was needed,
although the dataset contains 1 million triples. On the contrary, for the HiConn,
which consists of the same number of triples, we needed 40 min to complete the
process, even by using the prefix index, which is rational, since most URIs of
HiConn contain a prefix that is common in LODsyndesis.

Execution Time for Different Numbers of Triples/URIs. Figure 4, shows
the execution time for different numbers of triples (and URIs), by using the three
largest datasets (including the two synthetic datasets). We can see that as the
number of triples (and URIs) grows, the execution time linearly increases, which
is expected, since the time complexity of the most time consuming tasks (results
are presented in the next paragraph), i.e., computation of closure and merging of
triples with LODsyndesis are linearithmic and linear, respectively (see Sect. 4).
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Fig. 5. Execution time for the different steps for each dataset (log scale with base 10)

Table 3. Connectivity Analytics for each real dataset to 400 other LOD datasets

ID Measurement GRC GTS WW1LOD MW PNLN

1 # of owl:sameAs – 173 547 10,563 268,861

2 # of inferred owl:sameAs – 548 2,172 26,113 309,134

3 Increase % of owl:sameAs – 316% 397% 247% 114%

4 # of detected errors in owl:sameAs – 0 0 1 20

5 # of unique entities 411 902 10,271 54,089 297,091

6 # of common entities 39 130 825 3,066 75,181

7 common entities percentage 8.6% 12.5% 7.4% 5.3% 20.1%

8 # of connections before LODChain 2 2 5 5 3

9 # of inferred connections 17 9 25 26 33

10 # of connections after LODChain 19 11 30 31 36

11 Increase % of connections 850% 450% 500% 520% 1100%

12 # of unique properties 19 21 65 19 4

13 # of common properties 23 58 81 8 14

14 common properties percentage 54.7% 73.4% 55.4% 29.6% 77.7%

15 # of unique classes 1 20 52 8 0

16 # of common classes 1 8 23 2 1

17 common classes percentage 50.0% 28.5% 30.6% 20.0% 100%

18 # of unique facts 2,897 16,908 53,505 611,750 1,231,972

19 # of common facts 0 25 368 7,935 193,248

20 common facts percentage 0% 0.1% 0.6% 1.2% 13.5%

21 # of new facts for Dnew entities 26,658 17,632 362,339 597,475 3,632,412

22 % of facts enrichment for Dnew entities 920% 104% 672% 96% 254%

23 Dataset with most common entities Wikidata DBpedia Wikidata Wikidata VIAF

24 Dataset with most common facts – Opencyc YAGO Wikidata VIAF

25 Dataset with most complementary facts Wikidata DBpedia GeoNames Freebase VIAF

Execution Time of Different Steps. Figure 5 depicts in log scale (with base
10) the execution time of the different steps of LODChain for each single dataset
and also the average time (of all the datasets) by using the approach with the
prefix index. The most time-consuming task is the computation of closure among
the URIs of a new dataset and LODsyndesis (i.e., global closure), e.g., for PNLN
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dataset, it requires the 76.4% of the time, whereas the process of merging the
triples can require enough time in case of having a high number of common
entities, e.g., for PNLN it requires 20.2% of the total time. On the contrary, the
rest of steps are quite fast in any case, i.e., less than 50 s even in the worst case.
In general, datasets with high connectivity require more time to be processed,
i.e., for datasets having a lot of common entities with other datasets (such as
PNLN), we need to access more times the indexes of LODsyndesis.

5.2 Connectivity Analytics Over Real Datasets

Table 3 provides connectivity analytics for the 5 real datasets. We can see (IDs
1–3) the high increase (even 397%) in the number of owl:sameAs mappings.
On the contrary, we detected only a very few number of sameAs errors (ID 4),
e.g., only 0.007% for PNLN dataset. Concerning the entities, each dataset shares
several common entities with existing datasets, i.e., from 5.3% to 20.1% of their
total entities (IDs 5–7). Due to the inference, we obtain a high increase in the
number of connections after using LODChain, i.e., from 450% to 1100% (IDs 8–
11). Indeed, the initial versions of the datasets included mappings to few LOD
datasets (from 2 to 5), whereas LODChain discovered many inferred connections
(from 9 to 33). Concerning the schema elements (IDs 12–17), most datasets
use existing ontologies, and have several common properties (even 77.7%). In
some cases we obtained a high number of common facts (IDs 18–20) with other
datasets, i.e., 13.5% for PNLN, which can be used for data verification. Also, we
found a high number of complementary facts (IDs 21–22) for the entities of each
dataset, which can aid data enrichment, e.g., 254% more facts were discovered for
PNLN entities. Also, popular datasets like Wikidata and DBpedia offer several
common entities, common and complementary facts for the input datasets (IDs
23–25). All the datasets, and the results of even more analytics are online in [27].

6 Conclusion and Future Work

Since the current way of publishing an RDF dataset does not favor its connectiv-
ity, and thus its discoverability, reusability and content enrichment, we proposed
a novel service, called LODChain, for strengthening the connections of any RDF
dataset (even before its actual publishing) to the rest of LOD cloud. For show-
casing its potential impact, we described use cases involving different categories
of users, and we detailed its process, which includes methods for computing the
equivalence reasoning among the input dataset and hundreds of LOD datasets.
For evaluating its impact and efficiency we used 5 real and 2 synthetic datasets;
LODChain produced connectivity analytics for datasets with thousands of triples
even in less than 1 min, whereas the connections of real datasets increased from
450% to 1100%. As a future research, work and long-term plan, we want to a)
investigate ways to parallelize LODChain (by extending the techniques of [23]),
b) improve the GUI and perform a usability evaluation with dataset owners, c)
support entity matching for finding connections for totally disconnected RDF
datasets, and d) create an evaluation benchmark for such connection services.
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Resource Availability Statement: The source code and URL of LODChain, the
datasets and the experimental results are available in [27]. A tutorial video pre-
senting LODChain is available in https://youtu.be/Kh9751p32tM.
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Abstract. Data verbalisation is a task of great importance in the cur-
rent field of natural language processing, as there is a clear benefit
in the transformation of our abundant structured and semi-structured
data into human-readable formats. Verbalising Knowledge Graph (KG)
data focuses on converting interconnected triple-based claims, formed
of subject, predicate, and object, into text. Although KG verbalisa-
tion datasets exist for some KGs, there are still limitations in their
applicability to many scenarios. This is especially true for Wikidata,
where available datasets either loosely couple claim sets with textual
information or heavily focus on predicates around biographies, cities,
and countries. To address these gaps, we propose WDV, a large KG
claim verbalisation dataset built from Wikidata, with a tight coupling
between triples and text, covering a wide variety of entities and pred-
icates. We also evaluate the quality of our verbalisations through a
reusable workflow for measuring human-centred fluency and adequacy
scores. Our data (https://doi.org/10.6084/m9.figshare.17159045.v1) and
code (https://github.com/gabrielmaia7/WDV) are openly available in
the hopes of furthering research towards KG verbalisation.

Keywords: Crowdsourcing · Knowledge graphs · Data verbalisation

1 Introduction

Data verbalisation, a facet of Natural Language Generation (NLG), is a task
that has great importance in the current field of natural language process-
ing [10,14,15,32,35,44], as there is great benefit in the transformation of our
abundant structured and semi-structured data into human-readable formats. It
is important in its own right, as well as as a step toward larger tasks such as
open-domain question-answering [23] and automated fact checking [40,41]. One
large source of semi-structured data that would benefit greatly from verbalisa-
tion is collaborative Knowledge Graphs (KG) like DBpedia1 and Wikidata.2

The verbalisation of KGs data consists of converting sets of claims into nat-
ural language text. Each claim consists of a triple, formed of subject, predicate,
1 https://www.dbpedia.org/.
2 https://www.wikidata.org.
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and object, and each claim set shares subjects and objects; the verbalisation then
has to deal with expressing and linking these pieces of information. Although
KG verbalisation datasets, mapping claim sets to text, exist for some popular
KGs [2,6,11], they are not without their limitations.

Wikidata, the web’s largest collaborative KG, has very few such datasets [6,
38], and existing ones rely on distant supervision to prioritise the sheer number
of couplings in exchange for coupling tightness. They also disproportionately
represent specific entity types from Wikidata (e.g. people and locations) when
Wikidata covers a much wider variety of information. Finally, data verbalisation
performance is mainly measured via algorithms, such as BLEU [27], which have
been the target of many criticisms when applied to NLG [25,31,33].

We propose WDV, a large KG verbalisation dataset with 7.6k Wikidata
entries. WDV addresses limitations in coverage disproportion, verbalisation cou-
pling, and algorithmically measured quality, respectively, given that:

1. WDV is built from a much wider variety of entity types and predicates than
similar datasets, and is intended as a benchmarking dataset for data verbal-
isation models applied on Wikidata;

2. WDV supports a tight coupling between single claims and text directly asso-
ciating a triple-based claim and a natural language sentence;

3. 1.4k entries of WDV have been annotated by a collective of humans, allowing
for the evaluation and future improvement of our verbalisations, as well as
establishing a non-algorithmic baseline for other verbalisation models.

Additionally, we create a reproducible crowdsourcing workflow for capturing
human evaluations of fluency and adequacy in graph-to-text NLG. All used code
and gathered data are available in this paper’s GitHub repository.

The remainder of the paper is structured as follows. Section 2 positions our
dataset in regards to existing datasets. Section 3 presents our dataset construc-
tion, including quality annotations. Section 4 describes our verbalisation model.
Finally, Sects. 5 and 6 reinforce and summarise our contributions.

2 Background and Related Work

Verbalising KGs consists of generating grammatically correct natural language
based on structured and semi-structured data from a KG, maintaining the orig-
inal meaning. This data is encoded in triples (claims), consisting of a subject, a
predicate, and an object; all three components model aspects of knowledge, such
as entities, classes, attributes, and relationships. Examples of popular KGs are
DBpedia, Wikidata, Yago,3 and Freebase.4 Their verbalisation is an important
task on its own, but is also a key step in downstream tasks [23,36,40,41].

Datasets that align KG claims to text are vital for creating and evaluat-
ing KG verbalisation approaches. While several have been created, they are not

3 https://github.com/yago-naga/yago3.
4 https://developers.google.com/freebase.

https://github.com/yago-naga/yago3
https://developers.google.com/freebase
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without their limitations. The NYT-FB [24,42] dataset aligns text from the New
York Times with triples from Freebase through named entity linking and key-
word matching against Freebase labels. This leads to a disproportional coverage
of news-worthy entities and topics, such as geography and politics, and from a
specific period in time, limiting its usefulness in broader scenarios. The same
narrow scope is seen in the TACRED dataset [43], which covers only 41 rela-
tionships about people and organisations, such as age, spouse, shareholders, etc.,
as its data does not stem from any specific KG, but rather annotated newswire
and web text from the TAC KBP corpora [5]. Also, its texts often contain much
more information than their aligned triples, making it a resource not fully suited
for NLG. The FB15K-237 dataset [34] aligns Freebase triples to synsets instead
of text, making it unusable for NLG without text grounding. Additionally, both
NYT-FB and FB15K-237 rely on Freebase, which was discontinued and its data
moved to Wikidata [28], compromising these datasets’ usability and upkeep.

More recent datasets attempt to remedy some of these limitations. Pavlos et
al. [37,38] propose two large corpora that align Wikidata and DBpedia claims
to Wikipedia text. However, they focus on verbalisations of multiple claims at a
time, which limits its usefulness for important tasks e.g. automated fact-checking
in favour of others e.g. summarisation. Even more critically, they are based
on distant supervision techniques, providing a loose alignment between sets of
triples and text; triple sets consist of numerous claims that are very likely - but
not guaranteed - to be expressed in the text, and the text contains information
that is not assured to exist in the claims. The same is true for T-REx [6], which
aligns Wikidata claims to Wikipedia abstracts, making it unreliable for NLG
from KG claims while perfectly preserving their sense. Our dataset bridges this
gap by focusing on a tight alignment between Wikidata claims and text.

The coverage issue seen in NYT-FB and TACRED is also present, although
less so, in T-REx. It covers many unique predicates, yet they are dispropor-
tionately represented: the top 7.7% of its unique predicates represent 90% of its
unique triples, and these mostly express information on people and places, with
the country predicate alone representing over 11% of triples. The WebNLG [11]
dataset remedies this by defining a list of very broad DBpedia classes and then
collecting separate and balanced sets of claims from entities in each class. How-
ever, WebNLG also focuses on sets of multiple claims at a time.

We follow WebNLG’s approach to resolving predicate and theme bias. How-
ever, we build WDV out of Wikidata instead, expanding the entity classes defined
by WebNLG, as Wikidata lacks verbalisation datasets that cover its wide range
of predicates and themes. To provide a better view of how WDV compares to
other datasets mentioned in this Section, refer to Table 1.

3 WDV: An Annotated Wikidata Verbalisation Dataset

This section describes the construction of the WDV dataset, including crowd-
sourced annotations, as well as details of its structure. Figure 1 illustrates the
entire process with numbered steps, which we cover in this Section. In a nut-
shell, it consists of first defining 20 large pools of filtered Wikidata claims, each
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Table 1. Comparison between WDV and other KG verbalisation datasets. ‘Entity
Classes’ shows in how many distinct themes the claims might be organised by, if at all.
‘Text Alignment’ refers to whether all text corresponds to aligned triples (Tight) or
not (Distant). Avail. stands for Availability.

Source
graph

Aligned
documents

Unique
predicates

Unique
triples

Entity
classes

Text
alignment

Avail

NYT-FB Freebase 1.8M 258 39K n.a Distant Partial

TACRED n.a 106K 41 21K n.a Distant Closed

FB15K-237 Freebase 2.7M 237 2.7M n.a Tight Public

T-REx Wikidata 6.2M 642 11M n.a Distant Public

WebNLG DBpedia 39K 412 3.2K 16 Tight Public

WDV Wikidata 7.6K 439 7.6K 20 Tight Public

corresponding to a Wikidata class (steps 1–4). Then, we obtain a sample of
claims from each pool such that predicates are represented as equally as possible
(step 5). Lastly, we obtain aligned verbalisations and human annotations (steps
6 and 7). Throughout this entire construction process, data was extracted from
a Wikipedia JSON dump from August 2021. The JSON format was used since
the later stages of the pipeline i.e. crowdsourcing and verbalisation either require
or greatly benefit from that input format. We also release WDV in this format
as it targets ML practitioners and developers, who are very familiar with it.

To improve comprehensibility, transparency, and repeatability, we follow two
recently proposed sets of guidelines. The first, by Gebru et al. [13], pertains to
the effective documentation of machine learning datasets, supporting the trans-
parency and reproducibility of their creation process. The second, by Ramirez
et al. [30], pertains to the detailing of crowdsourcing experiments to guarantee
clarity and repeatability. It ensures the impact of task design, data processing,
and other factors on our conclusions, as well as their validity, can be assessed.

Fig. 1. Overview of WDV’s construction workflow, starting with WebNLG’s structure
and Wikidata’s contents, finishing with WDV and crowd annotations.

3.1 Balanced Claim Set Collection

WDV adapts and expands on WebNLG’s partition and class structure to fit
Wikidata. Firstly, this ensures a balanced representation of Wikidata entities
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and predicates of various natures. Secondly, our data verbalisation model, used
later in the workflow, is fine-tuned with WebNLG; keeping the same class com-
position thus reduces the chances of low-quality verbalisations. WebNLG has two
partitions: SEEN, with 15 classes, and UNSEEN, with five, as seen in Table 2.

We start by mapping WebNLG’s 15 DBpedia classes to their Wikidata equiv-
alents (step 1). Some of Wikidata’s most populous classes are not at all cov-
ered by these 15. Thus, from these uncovered classes, we select the five largest
to compose an additional partition WD UNSEEN (step 2); we do not consider
ontological or scientifically complex classes (e.g. proteins). Next, we extract from
Wikidata all entities that can be considered as instances or examples of these 20
classes or their subclasses (step 3), composing 20 large groups of entities.

From each class’ extracted group of entities, we retrieve all claims that we
deem suitable for verbalisation, based on the following exclusion criteria (step
4): we exclude deprecated claims, as they might contain incorrect or invalid
values; claims with objects of datatypes that are hard to represent in natural
language are excluded e.g. external database identifiers, URLs, images, math-
ematical formulas, etc.; we exclude claims that serve taxonomic or ontological
purposes e.g. subclass of (P31), Topic’s main category (P910), See also
(P1659) etc.; and finally, claims whose objects are the special values no value
or some value. The claims remaining after these exclusions compose 20 distinct
pools of claims, or themes, from which we will next sample a set of claims.

These themes have very unbalanced distributions of claims over predicates
e.g. over 50% of the claims in the Airport and Mountain themes have the
patronage (P3872) and country (P17) predicates, respectively. A simple ran-
dom sample would build a dataset that ignores the vast majority of Wikidata
predicates. Hence, we opt for a stratified sampling of claims (step 5).

For each theme t, we determine the representative sample size Nt needed,
considering its total number of claims, a 95% confidence interval, and a 5%
margin of error. We start the sampling process by grouping each theme’s claims
by predicate, discarding very rare predicates (0.3% to 1.7% of total claims in a
theme), and defining each theme’s remaining Mt predicate groups as a stratum.
For each theme t, we attempt to sample an equal amount of claims (Nt/Mt)
from each stratum. If a stratum in theme t has less than Nt/Mt claims, we select
all its claims and compensate by oversampling other strata in t, so that total
sample size is still Nt. We keep track of all sampling weights in order to adjust
any estimated statistic to account for the stratification. The resulting balanced
claim set consists of statistically representative sets of claims from all 20 themes
(7.6k claims in total), where predicates are as equally present as possible.

3.2 Text Alignment

WDV tightly aligns each claim to a natural language text i.e. each claim corre-
sponds exactly to one sentence (and vice-versa), such that both hold the same
meaning and the sentence is grammatically well-written. This is so that NLG
is directly supported (as explored in Sect. 2) and also because WDV is the first
step towards future research into automating fact checking for Wikidata.
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To achieve this alignment (step 6), we first collect subject, predicate, and
object labels (preferably in English) for each claim in the balanced claim set. We
also collect aliases and descriptions, which play a part later in crowdsourcing.
The collection is done by querying Wikidata’s SPARQL engine.5 In cases such
as timestamps and measurements with units, label templates are used.

For each claim, its three labels are given to a verbalisation model, which out-
puts an English sentence that attempts to communicate the same information.
The model itself, including its training and validation, is detailed in Sect. 4. This
results in 7.6k claim-verbalisation pairings.

These claim-verbalisation pairings, alongside ontological attributes and
the aggregated crowdsourced annotations (see Sect. 3.3), constitute WDV. Its
detailed structure, an exemplary record, and some descriptive statistics are given
in Sect. 3.4. Section 3.5 explores insights obtained from crowd annotations.

3.3 Crowdsourced Annotations

To measure how much of the claims’ meanings are kept (i.e. adequacy) by the
verbalisations and how much they resemble text written by humans (i.e. fluency),
as well as to support the dataset’s refining and correction, we crowdsource human
annotations (step 7). These annotations are collected for a portion of WDV
(20% of total claims) due to budget constraints, randomly selected among those
claims having all labels in English, while keeping a proportional representation
of each theme. Claim components not labelled in English are a minority that
would represent a hurdle for crowd workers [22] and bias results.

Experimental Design. Before crowdsourcing, the WDV data goes through
two pre-processing steps: golden data generation and task composition. Golden
data is a small data subset that is manually annotated and used as a reference
to discern between good and bad workers. We calculate how much golden data
is necessary by minimizing, based on available data from similar studies [1],
the probability of a regular worker finding a repeated set of golden data in two
different tasks, which plateaus near 100% with 90 golden data annotations.

We take 45 random records from the sampled WDV data and set them aside
as golden data for both fluency and adequacy tasks. We manually generate
another 90 uniquely identified pairs to represent poor model performance: 45
for the fluency task by writing different levels of gibberish, and 45 for adequacy
by randomly shuffling their verbalisations. We annotate golden data by defining,
for each pair, what would represent reasonable scores for fluency and adequacy.

Task composition consists of: first, grouping the sampled WDV data plus the
golden data such that each group (a task set) has two random golden data pairs
and four random non-annotated pairs; then, attributing to each task a unique
identifier; and lastly, sending the task set to the crowd embedded in an HTML
script to be solved by at least five different workers.

5 https://query.wikidata.org/.

https://query.wikidata.org/
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Pilots were run in August 2021, and main tasks were run between September
and October of the same year. Pilots helped us measure median time spent
by workers to define fair payment, and collect general feedback to adjust task
design. We calculated pay based on double the US’s minimum hourly wage of
USD7.25, in order to properly account for good workers that need more time
than the median. We paid USD0.50 per fluency task and USD1.00 per adequacy
task. Workers rated our tasks as having fair pay on TurkerView.6 Before starting
the task, workers are made aware of the pay and conditions and are told that
continuing with the task means consenting to both.

Crowd. Crowd workers were selected from Amazon Mechanical Turk (AMT),
the demographics of which have been explored in several papers [3,4,18]. We
limited the tasks only to workers that had a good grasp of English by including
an English grammar screening quiz before each task. Secondly, we only allowed
workers that had done over 1000 tasks with over 80% acceptance rate to work
on our tasks. We analysed contributions from the pilot, identifying workers that
exhibited malicious behaviour and banning them from the main tasks.

Tasks. Task sets are sent to be annotated embedded in HTML pages. There
is one for fluency and one for adequacy annotation tasks. Before starting either
task type, workers are shown a description of that task, rules, and instructions
they should follow. They also see many examples of acceptable answers with
explanations. Workers can access this information at all times during the task.

In the fluency task, workers are shown only the verbalisation and are asked
to rate its fluency with a score from 0 to 5, 0 being the worst and 5 being the
best. In the adequacy task, workers are shown both the verbalisation and the
claim, as well as labels, aliases, and descriptions, and are asked whether they
convey the same information. They can reply Yes (giving it a score of 0), No
(score of 1), and Not Sure (score of 2). Answering No and Not Sure prompts a
question as to the reason; workers can blame the verbalisation, each component
in the triple, a combination, or select Other and give a new justification. These
tasks were released on AMT after receiving ethical approval.

Quality Control. Multiple quality control techniques were applied. The small
randomized grammar quiz at the start of the task serves as an attention check,
discouraging spammers. Our gold data is used to measure worker quality during
the task, alongside other checks such as time spent per pair and whether all
questions were answered. Failing these checks alerts the user and asks them to
reevaluate their annotations. Failing three times closes the task without submis-
sion. Workers are told these details before engaging with the task.

Task Code and Raw Data. All the code and data for our crowdsourcing are
in this paper’s GitHub repository, including detailed descriptions of each task’s
6 https://turkerview.com/.

https://turkerview.com/
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execution and the exact HTML code sent to each anonymous worker alongside
instructions, agreement terms, and examples. It also includes all retrieved data
before it was processed and aggregated back into WDV.

3.4 WDV Composition

WDV consists of a large partially annotated dataset of over 7.6k entries that
align a broad collection of Wikidata claims with their respective verbalisa-
tions. An example of an annotated record can be seen in Fig. 2. The attributes
seen there consist of: attributes describing the claim, such as its Wikidata ID
(claim id) and its rank (normal, deprecated or preferred); attributes from the
claim’s components (subject, predicate, and object), including their Wikidata
IDs (e.g. subject id), labels (e.g. subject label), descriptions (e.g. subject desc),
and aliases (e.g. subject alias); a JSON representation of the object alongside its
type (object datatype) as defined by Wikidata; attributes from the claim’s theme
such as its root class’ Wikidata ID (theme root class id) and label (theme label);
the aligned verbalisation, before and after replacement of tokens unknown to
the model (verbalisation unk replaced); the sampling weight from the stratified
sampling process; and the crowdsourced annotations and their aggregations, for
those entries (∼1.4k) that are annotated.

Our schema is different from the Wikipedia dumps’ JSON schema. Firstly,
the latter is entity-centered: each entry is an entity and claims are components
hierarchically encoded as elements. As WDV is centered on claim-verbalisation
alignments, we flatten this structure. Secondly, information on the claims’ com-
ponents is spread over their respective JSON objects. Our schema organises all
relevant data about the claim-verbalisation pair in a single JSON object.

WDV is a 3 star dataset according to the 5 star deployment scheme for
Linked Data.7 It is available on the web in a structured, machine-readable,
and non-proprietary format. Making it 4 star by converting it into RDF is
our immediate next step. Wikidata already has a well-documented RDF rep-
resentation schema,8 reified based on n-ary relationships [7]. We will make use
of this schema to express the data about the claim and its components (e.g.
ids, rank, labels, descriptions, values, etc.), as they are already explicitly sup-
ported by it, and it is an effective way to represent Wikidata in RDF [17]. We
will then complement it with custom vocabulary in order to express the ver-
balisations and their crowdsourced annotations. We can do this by linking the
statements, expressed in Wikidata’s RDF schema as nodes, to a verbalisation
node through a wdv:verbalisation predicate, which then is linked to its crowd-
sourced annotations through fitting predicates, e.g. wdv:fluencyScore and
wdv:adequacyScore. We can also reuse existing vocabularies, such as LIME [9]).

Table 2 shows a breakdown of WDV. In the first column, we can identify
the SEEN and UNSEEN partitions from WebNLG, as well as our added WD -
UNSEEN partition built from other Wikidata classes. The second column divides

7 https://www.w3.org/2011/gld/wiki/5 Star Linked Data.
8 https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF Dump Format.

https://www.w3.org/2011/gld/wiki/5_Star_Linked_Data
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format
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{ "claim_id": "Q55425899$D1CB6CEC-33E4-41DF-9244-3277C2BE1FA5"

"rank" : "normal",

"subject_id" : "Q55425899",

"property_id" : "P6216",

"subject_label" : "Spring in Jølster",

"property_label" : "copyright status",

"object_label" : "public domain",

"subject_desc" : "painting by Nikolai Astrup",

"property_desc" : "copyright status for intellectual creations like

works of art, publications, software, etc.",↪→

"object_desc" : "works that are no longer in copyright term or were

never protected by copyright law",↪→

"subject_alias" : "no-alias",

"property_alias" : ["copyright restriction"],

"object_alias" : ["PD", "out of copyright", "DP"],

"object_datatype" : "wikibase-item",

"object" : { "value": {"entity-type": "item", "numeric-id": 19652,

"id": 'Q19652'}, "type": "wikibase-entityid" },↪→

"theme_root_class_id" : "Q3305213",

"theme_label" : "Painting",

"verbalisation" : "Spring in J <unk> lster is in the public domain.",

"verbalisation_unk_replaced" : "Spring in Jølster is in the public

domain.",↪→

"sampling_weight" : 3538.615384615385,

"annotations": { "fluency_scores" : [5, 4, 4, 2, 1],

"fluency_mean" : 3.2,

"fluency_median" : 4.0,

"adequacy_scores" : [0, 0, 1, 0, 0],

"adequacy_majority_voted" : 0,

"adequacy_percentage" : 0.8 }

}

Fig. 2. Example of an annotated record from WDV in JSON format

them into component themes (or pools of claims). For each theme, it then shows
the number of unique properties (predicates), unique claims (calculated as Nt,
as described in Sect. 3.1), and how many were annotated.

3.5 Crowd Data and Risk Analysis

Crowdsourced annotations were aggregated and added to WDV as attributes,
as depicted in Sect. 3.4. In this section, we analyse these aggregated annotations
and draw conclusions on the quality and reliability of WDV.

Aggregation and Reliability. Fluency scores were aggregated by calculating
both median and mean, in case more or less weight, respectively, needs to be
given to workers who disagree greatly with their peers. Adequacy was aggregated
by majority voting, and also by calculating the percentage of workers that voted
Yes, which we call adequacy percentage.
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Table 2. Total number of unique properties, unique claims, and annotated claims, per
partition and themes in WDV.

Partition Theme Properties Claims Annotated claims

WebNLG SEEN Airport 27 382 76

Astronaut 57 351 71

Building 67 385 63

City 72 383 73

ComicsCharacter 79 376 76

Food 64 368 67

Monument 62 380 51

SportsTeam 49 383 75

University 62 378 75

WrittenWork 21 385 66

WebNLG UNSEEN Artist 65 384 78

Athlete 53 385 80

CelestialBody 25 385 83

MeanOfTransportation 58 376 71

Politician 56 385 75

WD UNSEEN ChemicalCompound 33 383 81

Mountain 23 380 69

Painting 29 385 50

Street 21 384 66

Taxon 27 385 80

ALL ALL 439 7607 1426

Fluency has been fair to very high in most verbalisations. A fluency score of
3 indicates “Comprehensible text with minor grammatical errors”, and over 96%
of verbalisations find themselves with median fluency equal to or above 3. This
shows our verbalisation model produces fluent text from Wikidata triples. The
model also maintains very well the meaning of Wikidata claims after verbalising.
Almost 93% of verbalisations are majority-voted as adequate.

The reliability of aggregated crowdsourced data can be indicated by statis-
tical inter-annotator agreement metrics [26] such as Krippendorff’s Alpha [16].
The alpha measured for the fluency scores is 0.4272, and for the adequacy scores
it is 0.4583; both indicate moderate agreement, according to the interpretations
recommended by Landis & Koch [21].

Variations in Scores and Agreement. Next, we see how fluency, adequacy,
and agreement might vary across the partitions and themes shown in Table 2.

We can calculate fluency and adequacy scores for each theme by making use
of the sampling weights, accounting for any bias introduced by stratification.
Figure 3a shows the adjusted median fluency per theme: all have from fair (above
3) to excellent (above 4) fluency, with complex and scientific themes in the lower



566 G. Amaral et al.

half. Figure 3b shows the adjusted adequacy percentage per theme, ranging from
85.7% to 99.8%.

For a bigger-picture view, we calculate the average aggregated fluency and
adequacy per partition. This does not consider the sampling weights, as they are
not translatable across differently stratified populations. In all aggregated met-
rics (i.e. mean fluency, median fluency, adequacy percentage, and majority-voted
adequacy) WebNLG SEEN performs the best, followed by WebNLG UNSEEN,
and then WD UNSEEN. Exact metrics can be seen in Table 3. This is in line
with how the model was trained and validated. However, the differences are
small, signalling excellent generalisation to themes unseen both in training and
validation, and also whose provenance is from an entirely different KG.

(a) (b)

Fig. 3. Median fluency (a) and adequacy percentage (b) per theme after adjusting for
stratification by considering sampling weights.

Table 3. Aggregated scores and agreement per partition. Mean fluency, median fluency
and adequacy percentage were averaged. Majority-Adequate Perc. is the percentage of
claims whose majority-voted adequacy score was Yes.

WD UNSEEN WebNLG UNSEEN WebNLG SEEN

Mean fluency 3.684 3.884 3.91

Median fluency 3.848 4.103 4.148

Adequacy percentage 80.3% 80.6% 82%

Majority-adequate perc. 92.5% 92.8% 93.1%

Fluency scores agreement 0.466761 0.508015 0.496089

Adequacy scores agreement 0.659174 0.649527 0.654175

We calculate the agreement for each theme and partition. All themes show
agreement above 0.4 on the fluency task, and above 0.6 on the adequacy task.
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Fluency and adequacy agreement metrics per theme have a substantial correla-
tion (0.63 Pearson correlation). Agreement did not vary substantially between
partitions (see Table 3), showing that whether or not the model was trained or
validated on a partition did not impact the workers’ abilities to judge it.

4 Verbalisation Model

Our dataset relies on a pre-trained and fine-tuned data verbalisation model for
its text alignment. In this section, we describe the model we have chosen and
all reasons for it, as well as its training approach and hyperparameters used. We
finish by evaluating its fitness for use with examples from our dataset.

4.1 Approach, Training, and Validation

Many state-of-the-art KG data verbalisation models take the graph structure
into consideration [10,35,44]. GTR-LSTM [35] and DualEnc [44] both encode
the graph by combining graph neural networks and recurrent sequential neu-
ral networks. Working with single-claim data, we do not need to maintain the
graph’s structure. Large pre-trained language models have achieved state-of-the-
art results when fine-tuned and evaluated on WebNLG [14,15,32], mainly the
T5 [29]. They can disregard most structure and can be applied to one or many
claims at a time. Hence, we utilise the T5 (base version) as our verbalisation
model, following training and evaluation methods from these works.

The T5 converts input text into output text based on a given task, such as
summarisation, specified through natural language as a prefix to the input. It can
also learn new tasks by being fine-tuned with new data and a new prefix [29]. Our
model has been fine-tuned on WebNLG [12]. The SEEN partition is used for both
training and validation/testing, while the UNSEEN partition is kept for testing
only. We follow the training setup from Ribeiro et al. [32] by specifying a new
prefix “translate from Graph to Text” and adding three new tokens (〈H〉, 〈R〉,
and 〈T 〉) that precede the claim’s subject, predicate, and object, respectively.

Each entry in the training data consists of a set aligning multiple triples
to multiple sentences. We train the model by concatenating all triples in the
set in a random order, marked with the new tokens, and choosing one of the
verbalisations at random (as long as they were tagged as good by WebNLG).

Some of the hyperparameters used in the model were: a 3e-5 learning rate on
a linear scheduler with no warmup steps, an Adam [19] optimiser with no weight
decay and 1e-8 epsilon, a cross-entropy loss function, 100 epochs of training
with early stopping patience of 15, batch size of four for both training and
evaluation, and text generation was done via beam search with 3 beams. The
T5 was obtained from HuggingFace [39] and trained with PyTorch Lightning [8].
A full list of hyperparameters is available in this paper’s GitHub repository.

We benchmarked our model in two ways. Firstly, by evaluating aggre-
gated crowdsourced metrics, covered in Sect. 3.5. Secondly, by calculating the
BLEU score [27] for both the SEEN and UNSEEN partitions to make sure our
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model matches current state-of-the-art [32]. BLEU scores were calculated with
Moses [20]. The model achieved 65.51 on SEEN, 51.71 on UNSEEN, and 59.41
on ALL. We refer to Ribeiro et al. [32] for a comparison with results from other
methods.

4.2 Evaluation and Output Examples

Comparisons between the model employed by us (T5-base), other language mod-
els, and other mentioned approaches to verbalising the WebNLG dataset have
been carried by other authors [2,32] and are out of the scope of our paper, as
well as an analysis of language variability and complexity.

To evaluate our model’s fitness for use, we will now look at cases in which it
performed well and poorly for fluency or adequacy. This allows us to understand
how the model could improve, and in which situations its use is and is not
effective. Table 4 shows a few examples of the model’s inputs and outputs.

Table 4. Examples of claims verbalised by the model. From left to right, we see: the
claims, their components’ labels, the verbalisations, and their aggregated metrics of
fluency (median) and adequacy (adequacy percentage).

Subject Predicate Object Verbalisation Flu. Ade.

Eve Towards
the Light

Height 268 centimetre Eve Towards the Light is 268
centimetres high

2.0 1.0

Bydgoszcz Flag Flag of
Bydgoszcz

The flag of Bydgoszcz is the flag
of Bydgoszcz

0.0 1.0

Marawi Köppen climate
classification

Tropical climate City of the Philippines and capital
of the province of Lanao del Sur

4.0 0.4

Decius Child Hostilian Decius is a child of Hostilian 4.0 0.4

UCAC2
28288086

Surface gravity 9 centimetre per
square second

UCAC2 28288086 has a surface
gravity of 9 centimetres per
square second

4.0 1.0

Casa Batlló Fabrication
method

Trencad́ıs Casa Batlló is made using the
Trencad́ıs method

5.0 0.8

We consider a low fluency score to be under 3, when grammatical errors
are not minor or text is not comprehensible. Out of over 1.4k annotated claim-
verbalisation pairs, 55 had low fluency. A considerable amount of them (41%)
suffer due to subject or object labels having complex syntaxes, such as IUPAC
chemical nomenclatures, names of astronomical bodies, and full titles of scien-
tific papers. These are challenging both for the model and for workers with no
context or knowledge of how to use these names in a sentence. This potential
misinterpretation is evidenced by 38% of all low-fluency verbalisations being sim-
ply misinterpreted by the crowd; the sentences are fluent, but have non-trivial
or non-English terms that throw workers off e.g. “Eve Towards the Light is 268
centimetres high”, which describes a painting. Around a third (32%) of cases
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were the model’s fault, either by failure to structure the predicate or by cor-
rupting or inverting subject and object labels. However, 21% of cases could be
solved by improving predicates and entity labels, or rethinking how informa-
tion is stored in Wikidata; some predicates are vague or depend on qualifiers
to make complete sense e.g. inception and different from, and some claims
have redundant data e.g. “The flag of Bydgoszcz is the flag of Bydgoszcz”.

Low adequacy is when the majority-voted option for adequacy was No. This
corresponds to 78 verbalisations. Almost half (46.15%) consists of claims either
for which the model could not properly structure the predicate e.g. “Köppen
climate classification” or for which subject and predicate had complex or non-
English labels. Over a third (38.4%) of these were adequate claims that were
misunderstood by the crowd e.g. “Craig-y-llyn is designated as a Site of Special
Scientific Interest”. Somewhat often (17.9%), vague predicates and badly written
labels were also to blame. Lastly, the model would sometimes (11.5%) either
shift subject with object, infer information not seen in the claim (delusions), or
translate words between English and German (one of T5’s other learned tasks).

These cases show us that the verbalisation model can be improved either by
design or through data curation. For instance, predicates that rely on qualifiers
can have that information communicated to the model if the model can properly
link them to specific components of the claim. We can avoid inversion of subject
and object by adding direction either on the predicate labels (e.g. child to has
child) or through the model’s encoding. We managed to help the model under-
stand certain predicates and entities by using alternative labels (e.g. conflict to
participated in conflict), but which aliases to use is very context dependent.

Some issues are less trivial to address. Entities with syntactically complex
labels hardly have simpler aliases. Vague predicates might be solved by using
aliases, but this is extremely context-sensitive, and there might be good rea-
sons why these predicates unite multiple senses under a common abstraction
(e.g. facet of and inception). Finally, redundant information can emerge from
Wikidata’s predicates. For instance, an entity exists for the city of Bydgoszcz,
and another for its flag, containing information such as its appearance. They
are linked by the flag predicate. This makes ontological sense, but no verbal
sense, as one would express this relationship as either “Bydgoszcz has a flag” or
“Bydgoszcz’s flag is Bydgoszcz’s flag”; this is either redundant or inadequate.

5 Addressing Review Criteria

Here, we further strengthen the argument that the resources presented are not
only of interest to Semantic Web researchers, but have a provable claim to adop-
tion by them and the Wikidata research community. These resources support a
line of research by the same authors on the quality of Wikidata references, which
proposes crowdsourcing and computational methods to assess different dimen-
sions of reference quality. The first part of the work assessed reference acces-
sibility, relevance and authoritativeness based on features that are not directly
related to the content of the reference themselves. It has been recently awarded
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the Wikimedia Research Paper of the Year 2022, from among 230 peer-reviewed
papers. The judges highlighted the importance of the research problem (refer-
ence quality) and the value of the solution proposed, especially in a multilingual
setting. WDV directly builds on top of this, by feeding into computational meth-
ods that allow us to assess reference quality also in terms of the actual content
in the reference source. It has already made possible the authors’ efforts toward
automated fact verification in Wikidata.

Wikidata recognises references as essential in its own guidelines, stating that
“Wikidata is not a database that stores facts about the world, but a secondary
knowledge base that collects and links to references to such knowledge”.9 They
promote reference quality assurance efforts, as many open phabricator tickets
show.10,11 The Wikidata editing community also discusses at length the need
for automated techniques for reference quality assessment.12,13

6 Conclusion

In this paper, we have presented WDV: a large dataset for the verbalisation
of single triple-based claims from Wikidata (a collaborative KG). It directly
aligns claims to natural language sentences that aim at being grammatically
well-written and transmitting the same meaning. WDV was created to provide a
data-to-text resource that covers a wide range of entities, topics, and predicates
in Wikidata. More importantly, it does so in a balanced manner, so that specific
themes are not overly represented. We also presented and carried an evalua-
tion workflow of the fluency and adequacy of its natural language sentences,
concluding that they have very high levels of both metrics.

We believe this dataset constitutes a valuable step towards understanding
how to efficiently carry the verbalisation of triple claims from Wikidata and
KGs in general. Bridging the gap between labelled triple components and natu-
ral language is crucial to implementing downstream NLP tasks in the KG. One
such task that can be helped immensely by this resource is the automated fact-
checking of KG claims based on the textual information found in the references
they cite. Finally, WDV, alongside the annotation workflow we have defined, can
promote the evaluation, through a human perspective, of NLG models perfor-
mances without relying on algorithmic metrics. WDV’s construction process can
also be extended to include languages other than English by using multilingual
LMs and training data akin to WebNLG.
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9 https://www.wikidata.org/wiki/Help:Statements.
10 https://phabricator.wikimedia.org/T90881.
11 https://phabricator.wikimedia.org/T156389.
12 https://www.wikidata.org/wiki/Property talk:P1456.
13 https://www.wikidata.org/wiki/Wikidata:Project chat/Archive/2017/10#

Proposal on citation overkill.
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1 Introduction

Ontology Alignment (a.k.a. Ontology Matching (OM)) is the task of identifying
inter-ontology entity pairs that are semantically related. A primary OM setting
is matching named classes with semantic equivalence or subsumption relation-
ships, with the aim of integrating knowledge from different ontologies. A matched
pair of named classes is known as an equivalence or subsumption mapping. A
successful OM case study is the Mondo Disease Ontology1 [27], which integrates
disease concepts from various biomedical ontologies through mappings. OM can
also support interoperability among ontologies, and help to construct a unified
terminology that extends the coverage of each individual ontology. For exam-
ple, given two classes about “Desosom” in the FMA (Foundational Model of
Anatomy) ontology and the SNOMED CT (SNOMED Clinical Terms) ontol-
ogy that are matched with equivalence, the subclass of the “Desosom” class
named “Autodesosome” in FMA can be further inferred as a subclass of the
“Desosom” class in SNOMED CT, thus augmenting SNOMED CT with more
fine-grained knowledge. However, as ontologies evolve over time and become
larger, it is unfeasible to have human beings annotating all the mappings; hence
(semi-)automatic OM systems are urgently needed [28].

Classical OM systems typically exploit text (e.g., labels and synonyms),
structure (e.g., class hierarchies), and/or logical inference for class matching,
and focus mostly on equivalence mappings. For example, LogMap [15] itera-
tively conducts lexical matching, structure-based mapping extension and logic-
based mapping repair; while AML [9] implements a matcher that considers vari-
ous string-based heuristics, followed by mapping extension and repair. Recently,
machine learning (ML)-based OM systems have become increasingly popular as
they can go beyond surface-form string comparison by encoding ontology entities
into vectors. For example, DeepAlignment [17] adopts counter-fitting to refine
word embeddings for better representation of class labels; VeeAlign [14] pro-
poses a dual encoder to encode both textual and path information of classes;
and BERTMap [12] derives mappings through dynamic contextual text embed-
dings from the pre-trained language model BERT.

For evaluation, the Ontology Alignment Evaluation Initiative2 (OAEI) has
been organizing a yearly evaluation campaign including several tracks (datasets)
mainly comparing Precision, Recall, and F-score. Meanwhile, some recent OM
studies, especially the ML-based ones, have proposed non-standard metrics
and/or datasets with very incomplete gold standards. For example, Chen et al.
used LogMap-ML [6] to match the food ontology FoodOn with the health and
lifestyle ontology HeLiS, and measured approximate Precision and Recall based
on partial reference mappings, sampling and manual checking; and Neutel and
de Boer [21] measured coverage and MRR (Mean Reciprocal Rank) on industrial
data with human judgement.

1 https://mondo.monarchinitiative.org/.
2 http://oaei.ontologymatching.org/.

https://mondo.monarchinitiative.org/
http://oaei.ontologymatching.org/
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Despite the impressive community effort around the OAEI, the evaluation
campaign still suffers from several limitations:

1. Limited evaluation metrics. The prevalent evaluation metrics, Precision,
Recall, and F-score, are of limited value when the reference mappings are
incomplete, and can even stifle development by penalising advanced systems
with high Recall that find correct mappings that are missing from the ref-
erence set. Some other metrics, such as approximate Precision and Recall
based on sampling and human checking [6] or based on consensus by multiple
systems [11], and Accuracy on distinguishing one positive mapping from few
loosely constructed negative mappings [22], may also be inaccurate and/or
not sufficiently general.

2. Suboptimal reference mappings. The reference mappings of many OM
datasets are quite incomplete and/or incorrect. Such mappings are sometimes
called silver standards to distinguish them from (supposedly) complete gold
standard mappings. The use of silver standards often leads to unfair compar-
isons among OM systems. For example, DeepAlignment [17] exhibited better
performance than LogMap and AML when evaluated using silver standard
mappings between the Schema.org and DBPedia ontologies. In this study
AML achieved zero Recall, but closer examination of the results reveals that
it actually retrieved some reasonable mappings that were not in the refer-
ence set. In the OAEI LargeBio track, some reference mappings are removed
(or marked as “ignore”) by an algorithm that repairs logical unsatisfiability
resulting from the integration of the relevant ontologies [23]; however, the
mappings may still be correct according to human experts.

3. Ignoring subsumption mappings. The majority of existing resources are
for equivalence matching. However, there are often more subsumption map-
pings than equivalence mappings between real-world ontologies, and the for-
mer could play an important role in knowledge integration and ontology cura-
tion. With the blooming research and application of ML and text understand-
ing techniques, systems for subsumption matching (e.g., BERTSubs [4]) will
likely become more feasible and widely investigated.

4. Lack of support for ML-based Systems. Most existing OM resources,
including OAEI tracks, are not well suited to ML-based systems. They often
do not consider hold-out validation sets required for tuning hyper-parameters
(even non-ML-based systems may need such a validation set for adjusting
parameters) and/or for training in supervised or semi-supervised settings.
Moreover, during the development of an ML-based system, Precision, Recall
and F-score are not very useful, because computing the full output mappings
is rather time-consuming and often does not directly reflect the capabilities
of different ML modules or settings. Ranking-based metrics are more suitable
for ML development and are widely used in investigations of ML tasks such
as knowledge graph completion [18,25], but they are rarely considered in the
OM community. These issues often lead to non-standardized and inconvenient
evaluation set-ups for ML-based OM systems.
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To address the aforementioned issues, in this paper, we present new large-
scale OM resources based on Mondo and UMLS (Unified Medical Language Sys-
tem)3, and propose a unified evaluation framework suitable for both ML-based
and non-ML-based OM systems. This OM resource and evaluation framework
is the basis for a new Bio-ML track in the OAEI 2022 campaign, which should
be especially useful in attracting ML-based OM systems. With Mondo, we cre-
ate two OM tasks involving the OMIM (Online Mendelian Inheritance in Man),
ORDO (Orphanet Rare Disease Ontology), NCIT (National Cancer Institute
Thesaurus) and DOID (Human Disease Ontology) ontologies, which are tailored
to the disease domain with high quality mappings curated by human experts.
With UMLS, we use the semantic types (categories) of UMLS concepts to cre-
ate multiple category-relevant tasks that involve the SNOMED CT, FMA, and
NCIT ontologies. Briefly, our contributions can be summarized as follows:

1. We have constructed an OM resource from Mondo which includes high quality
manually curated mappings for the disease domain.

2. We propose ontology pruning to (i) improve the relative completeness of ref-
erence mappings w.r.t. the pruned ontologies, and (ii) obtain ontologies of
various sizes to evaluate OM systems with different computational character-
istics. In particular, for UMLS ontologies, we present a semantic-type-based
pruning method for category-specific ontologies.

3. We have developed an approach to generate reference subsumption mappings
from reference equivalence mappings. By deleting the classes involved in a
given equivalence mapping, we ensure that the resulting subsumption map-
ping cannot be directly inferred from the equivalence mapping.

4. We have formulated a unified evaluation framework which includes MRR
(Mean Reciprocal Rank) and Hits@K as local ranking metrics, which mea-
sure a system’s ability to distinguish correct mappings from (non-trivial)
false mappings; and Precision, Recall and F-score as global matching metrics,
which compare a system’s final output mappings with the reference mappings.
Our framework also includes standard data splitting: mappings are divided
into validation and testing sets for unsupervised systems, and into training,
validation and testing sets for (semi-)supervised systems.

5. We present preliminary evaluation results on our datasets for multiple OM
systems of different types.

All the resources are open access, and we are setting up a new Bio-ML track
within OAEI 2022 to promote their use and to attract more participation from
the ML community.

2 Resource Construction

In this section, we introduce how our OM resources are constructed from the
original ontology data shown in Table 1. The resulting equivalence and subsump-
tion matching datasets are presented in Table 2 and 3, respectively.
3 https://www.nlm.nih.gov/research/umls/index.html.

https://www.nlm.nih.gov/research/umls/index.html
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Table 1. Information of the source ontologies used for creating the OM resources.

Mapping source Ontology Ontology source & Version #Classes

Mondo OMIM Mondoa 44,729

ORDO BioPortal, V3.2 14,886

NCIT BioPortal, V18.05d 140,144

DOID BioPortal, 2017-11-28 12,498

UMLS SNOMED UMLS, US.2021.09.01b 358,222

FMA BioPortal, V4.14.0 104,523

NCIT BioPortal, V21.02d 163,842
aCreated from OMIM texts by Mondo’s pipeline tool available at:
https://github.com/monarch-initiative/omim.
bCreated by the official snomed-owl-toolkit available at: https://
github.com/IHTSDO/snomed-owl-toolkit, which keeps 350K classes
of all the 490K classes in the original SNOMED CT.

Table 2. Statistics of each Mondo or UMLS equivalence matching task (dataset),
including its two ontologies, its category (semantic type) for ontology pruning, its scale
(named class and reference mapping sizes), the numbers of class annotations like labels,
synonyms and definitions, and the average depth of named classes (depth is the mini-
mum number of subclass hops from a named class to owl:Thing)). “Body”, “Pharm”,
and “Neoplas” denote semantic types of “Body Part, Organ, or Organ Components”,
“Pharmacologic Substance”, and “Neoplastic Process” in UMLS, respectively.

Ontology pair Category #Classes #Refs (≡) #Annot. AvgDepths

Mondo OMIM-ORDO Disease 9,642–8,838 3,721 34K–34K 1.44–1.63

NCIT-DOID Disease 6,835–8,848 4,684 80K–38K 2.04–6.85

UMLS SNOMED-FMA Body 24,182–64,726 7,256 39K–711K 1.86–9.32

SNOMED-NCIT Pharm 16,045–15,250 5,803 19K–220K 1.09–3.26

SNOMED-NCIT Neoplas 11,271–13,956 3,804 23K–182K 1.15–1.68

Table 3. Statistics of each Mondo or UMLS subsumption matching task (dataset),
including its two ontologies, its category (semantic type) for ontology pruning, its
scales (named class and mapping sizes). Note that #Classes of the target ontology
(right side) is smaller than the corresponding one in Table 2 as some classes are deleted
when constructing subsumption mappings.

Ontology pair Category #Classes #Refs (�)

Mondo OMIM-ORDO Disease 9,642–8,735 103

NCIT-DOID Disease 6,835–5,113 3,339

UMLS SNOMED-FMA Body 24,182–59,567 5,506

SNOMED-NCIT Pharm 16,045–12,462 4,225

SNOMED-NCIT Neoplas 11,271–13,790 213

https://github.com/monarch-initiative/omim
https://github.com/IHTSDO/snomed-owl-toolkit
https://github.com/IHTSDO/snomed-owl-toolkit
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2.1 Mondo Datasets

Our first two datasets are based on the cross-references in Mondo which is an
integrated disease ontology with each of its classes matched to classes of some
source ontologies [27]. When constructing Mondo, curators first gathered ref-
erence mappings from various sources such as UMLS, MeSH (Medical Subject
Headings), ICD (International Classification of Diseases). These mappings are
deemed as semantically loose because there is no guarantee that they can be
merged into a logically coherent ontology. Curators then adopted an ontology
construction tool named k-BOOM to merge various source ontologies based on
logical reasoning and Bayesian inference [20], and further invited domain experts
for manual correction. The merged ontology forms a more comprehensive termi-
nology for rare diseases [10].

As suggested by the Mondo team, we selected two ontology pairs, OMIM-
ORDO and NCIT-DOID, which are relatively up-to-date in Mondo. OMIM is
the primary online source of genes, genetic phenotypes, and gene-phenotype rela-
tions, based on manual curation from biomedical literature [2]. The maximum
class depth of the OMIM ontology is 2, making it a typical example of “flat”
ontology. Such ontologies have limited structural information, thus posing chal-
lenges to OM systems. ORDO, the Orphanet Rare Disease Ontology, includes
a classification of rare diseases and relationships between diseases, genes and
epidemiologic features; the ontology is derived from the Orphanet database,
which is populated by literature curation and validated by international experts
[30]. Many rare diseases are genetic disorders, therefore ORDO has a promi-
nent overlap with OMIM, which is cross-referenced in ORDO and integrated in
Mondo. NCIT (or NCIt) is a large ontology composed of various cancer-related
concepts including cancer diseases, findings, drugs, anatomy, abnormalities, etc.
[29], therefore it has a relatively smaller overlap with Mondo. DOID (or DO)
stands for Human Disease Ontology, a regularly maintained source of human
diseases [26], and most of its concepts are incorporated in Mondo. Matching
NCIT and DOID will, in principle, identify the shared cancer-related diseases.
The versions of the selected ORDO, NCIT, and DOID ontologies (see Table 1)
are the closest to the most recent update of the Mondo mappings, according
to Mondo’s documentation4. With the Mondo mapping data and these original
ontologies, we create our OM datasets as follows:

Ontology Preprocessing. For each ontology, we conduct two preprocessing
operations: (i) removing obsolete or deprecated classes because they usually have
up-to-date alternatives or are not in use anymore; (ii) removing annotation prop-
erties that indicate cross-references to other data sources (e.g., obo:hasDbXref)
because they could leak hints about the reference alignment to the OM systems.
Unlike the OAEI LargeBio track where some annotation properties are selected

4 Mondo was working on official versioning, the information of current mappings is
based on the preliminary release at: https://github.com/monarch-initiative/mondo/
tree/master/src/ontology/mappings.

https://github.com/monarch-initiative/mondo/tree/master/src/ontology/mappings
https://github.com/monarch-initiative/mondo/tree/master/src/ontology/mappings
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and merged into rdfs:label, we keep the rest of annotation properties and leave
their interpretation to the OM systems.

Ontology Pruning. Since the Mondo cross-references mainly aim at disease
concepts, we prune each ontology by preserving disease classes and their contexts.
Specifically, if a class c in an ontology is matched to a Mondo concept through
the skos:exactMatch property, we preserve c; otherwise, we remove c as well
as all the axioms involving c, and at the same time directly assert its children
as subclasses of each of its parents for keeping the hierarchy. Pruning not only
leads to OM tasks with ontologies of reasonable scale, but also improves the
completeness of the reference mappings w.r.t. the pruned ontologies.

Equivalence Mapping Extraction. We extract equivalence mappings from
the cross-references of each Mondo class, i.e., each pair of classes that are linked
to the same Mondo class through the skos:exactMatch property is transformed
to an equivalence mapping5. For example, NCIT:C275186 and DOID:4321 form
an equivalence mapping because they are both mapped to the Mondo concept,
MONDO:0002961 (“Large Cell Acanthoma”).

Subsumption Mapping Extraction. We construct subsumption reference
mappings based on the equivalence reference mappings. Given an equivalence
mapping (c, c′), we extract a subsumption mapping (c, c′′) where c′′ is an asserted
subsumer of c′ in the ontology of c′. Taking the example of DOID:4321 (“Large
Cell Acanthoma”), which is equivalently matched to NCIT:C27518; since one of
its parent classes is DOID:174 (“Acanthoma”), a potential subsumption map-
ping is (NCIT:C27518, DOID:174). Note that both c and c′ could have multiple
asserted and inferred subsumers; considering all of them could lead to exces-
sively many subsumption mappings for each equivalence mapping. Our solution
simply selects one of the most specific subsumers of c′. This leads to challeng-
ing but incomplete subsumption mappings. Thus, when evaluating subsumption
matching, we do not consider Recall (see Sect. 3). To evaluate a system’s ability
on directly inferring cross-ontology subsumptions, we prevent it from utilizing
the original equivalence mapping (c, c′) by deleting c′. As in ontology pruning,
after deleting c′, its parent classes are asserted to be subsumers of each of its
child classes, so as to preserve the class hierarchy. It is possible that the deleted
class appears in some other equivalence mappings to process, or some subsump-
tion mappings that have been created. For the former, we skip such equivalence
mappings, while for the later, we remove such subsumption mappings.

2.2 UMLS Datasets

UMLS is one of the most comprehensive mapping efforts, and integrates over 200
vocabularies to create a biomedical metathesaurus [3]. As an integrated ontol-
ogy, it incorporates well-known ontologies such as SNOMED CT, FMA, NCIT,

5 We exclude mappings involving missing class ids.
6 Compact IRI of a class in the form of ontology prefix:class ID.
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and GO (Gene Ontology). It describes millions of biomedical concepts, and rela-
tionships among them. Each concept is classified into one or more hierarchical
semantic types (or categories) such as “Finding”, “Chemicals”, and “Substance”.

To construct OM datasets from UMLS, we selected its latest version 2021AB
at the time of doing experiments, and downloaded three of its corresponding
ontologies—SNOMED CT, FMA and NCIT, all of which are large biomed-
ical ontologies with over 100K named classes (see Table 1 for more informa-
tion). SNOMED CT7 has a more general and comprehensive coverage of clinical
terms to support electronic healthcare systems and clinical applications [7,8],
while FMA [24] and NCIT (as introduced previously) are mainly about human
anatomy and cancer, respectively.

We first performed the same preprocessing as described in Sect. 2.1, and
then established category-specific alignment tasks by pruning the ontologies via
semantic types, i.e., we preserve classes of a chosen semantic type, delete the
other classes, and preserve the hierarchy of the superclasses and subclasses of
each deleted class as in ontology pruning for Mondo. The equivalence reference
mappings are extracted from cross-ontology classes that are matched to the same
UMLS concept [16], and the subsumption reference mappings are constructed
from the equivalence mappings in the same way as for Mondo.

3 Evaluation Framework

We propose a comprehensive OM evaluation framework with different metrics
of local ranking and global matching under both unsupervised (fully automatic)
and semi-supervised settings. Metrics of local ranking are to measure a system’s
capability on distinguishing true mappings and (hard) false mappings; while
metrics of global matching are to measure whether a system can output a set of
mappings close to the reference mappings. The semi-supervised setting enables
the evaluation of some ML-based systems that require training mappings.

3.1 Local Ranking

Given a reference mapping m = (c, c′), where c and c′ are two classes from
the to-be-aligned ontologies O and O′, respectively, an OM system is required
to distinguish m from its corresponding set of negative mappings (denoted as
Mm) by assigning m with a higher matching score. Mm := {(c, c′′)|c′′ ∈ Cneg}
is constructed by combining c with a set of mismatched (negative) candidate
classes (denoted as Cneg) from O′. With the mapping scores, we adopt ranking-
based evaluation metrics Hits@K (H@K in short) and MRR (Mean Reciprocal
Rank), which are computed as follows:

Hits@K =
|m ∈ Mref | Rank(m) ≤ K)}|

|Mref |
7 The license to access UMLS is global and can be used to access SNOMED CT.

We obtained SNOMED CT (and UMLS) after signing up to the UTS account
and license following SNOMED and UMLS licensing in https://www.nlm.nih.gov/
healthit/snomedct/snomed licensing.html.

https://www.nlm.nih.gov/healthit/snomedct/snomed_licensing.html
https://www.nlm.nih.gov/healthit/snomedct/snomed_licensing.html
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MRR =

∑
m∈Mref

Rank(m)−1

|Mref |
where Mref denotes the set of reference mappings, Rank(m) returns the ranking
position of m among Mm ∪ {m} according to their scores, K (often set to 1, 5
and 10) denotes the ranking position that is concerned. We could consider all the
classes in O′ for constructing Mm, but this frequently results in excessive evalua-
tion time, especially for large-scale ontologies. To ensure the evaluation efficiency,
which is particularly important for ML-based model comparison/selection, we
sample challenging negative candidates with heuristics introduced as follows.

Negative Candidate Generation. Given a reference mapping m = (c, c′), we
consider three strategies to construct Cneg from O′.

1. IDFSample (text similarity-based). This strategy is to introduce hard neg-
ative candidates that are ambiguous to the ground truth class at text level
(i.e., with similar labels8). We first build a sub-word inverted index [12] for
the labels of all the classes of O′ using a sub-word tokenizer pre-trained on
biomedical texts [1]. With this index, we select top-N classes from O′ accord-
ing to the idf (inverted document frequency) scores in descending order:

s(c′, c′′) =
∑

t∈Tok(c′)∩Tok(c′′)

log10
|C ′|
|I(t)|

where Tok(·) gives all sub-word tokens of a class’s labels, I(t) returns classes
of O′ whose labels contain the token t, and C ′ denotes all the classes of O′.

2. NeighbourSample (graph context-based). This strategy is to introduce
hard negative candidates that are close to the ground truth class along
class hierarchy. With the asserted subsumption axioms in an ontology, we
can establish an undirected graph with named classes as nodes and subclass
(rdfs:subClassOf) relations as edges. We adopt breadth-first search (BFS)
over the subclass edges (bidirectional) to add the neighbouring classes of c′

as candidates. The search starts from one-hop away neighbours, then goes to
two-hop away neighbours, and so forth. It terminates when the number of
neighbours (candidates) exceeds the required number N or the preset max-
imum number of hops has been reached. It is possible to obtain more than
N candidates by adding all r-hop away neighbours; in this case, we sample
among these r-hop candidates randomly to meet the number. Note that we
exclude the root class owl:Thing from BFS. This restricts the candidates
within the branch of c′, leading to high quality negative candidates and sig-
nificantly improving the searching efficiency.

3. RandomSample. This strategy is to randomly select negative candidates
from the classes of O′, as a complement to the above two strategies.

8 Labels are extracted from annotation properties concerning synonyms of the class
name, e.g., rdfs:label, fma:synonym, skos:prefLabel, etc.
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To ensure we always get the required number of negative candidates with
no duplicates, we combine the above three strategies with a Negative Candidate
Generation algorithm (see Algorithm 1) which has the following characteristics:

1. The above strategies could occasionally generate positive candidates, i.e.,
classes that can be matched to c. These classes are pre-computed (in Line 1,
denoted as T (m)) and excluded from negative candidates. For subsumption
matching, T (m) further incorporates the asserted and inferred subumers of
c′ since their combinations with c are not negative subsumption mappings.

2. At ith iteration, only when strategy Si cannot generate Ni (Ni << |C ′|) new
candidates will RandomSample be used to amend the number. The reason for
sampling |G(m)|+ |T (m)|+Ni raw candidates first (in Line 3; the current set
of negative candidates is denoted as G(m)) is that in the worst case scenario,
all the generated candidates are either duplicated or invalid. Therefore, the
algorithm samples |G(m)| + |T (m)| more than required first to preserve as
many candidates as possible.

Algorithm 1. Negative Candidate Generation
Input: A reference mapping, m = (c, c′); Generation strategies {S1,S2, ...,Sn}, and
their corresponding numbers of negative candidates to generate {N1, N2, ..., Nn}
Output: Negative candidates for m, G(m)

1: T (m) ← invalid candidates for m
2: Initialize the set of negative candidates: G(m) ← {}
3: for i ← 1 to n do
4: Generate unique |G(m)| + |T (m)| + Ni raw samples with strategy Si as Gi(m)
5: Remove those have been sampled and invalid: Gi(m) ← Gi(m) \ (G(m)∪T (m))
6: Truncate Gi(m) to first Ni (ranked) samples if |Gi(m)| > Ni

7: while |Gi(m)| < Ni do
8: Randomly select Ni − |Gi(m)| unique candidates as R
9: Gi(m) ← (Gi(m) ∪ R) \ (G(m) ∪ T (m))

10: G(m) ← G(m) ∪ Gi(m)

11: return G(m)

Overall, for each reference mapping m = (c, c′), we sample
∑n

i=1 Ni (defined in
Input of Algorithm 1) unique negative candidates and add c′ as the only positive
candidate; we then compute the ranking-based metrics for each OM system that
supports class pair (mapping) scoring.

3.2 Global Matching

To eventually determine the output mappings, an OM system requires not only
a mapping scoring module (which can be evaluated by local ranking), but also
other components such as mapping searching, blocking, extension and repair.
The prevalent metrics for measuring the final output mappings are Precision
(P ), Recall (R), and F-score:
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P =
|Mout ∩ Mref |

|Mout|
, R =

|Mout ∩ Mref |
|Mref | , Fβ = (1 + β2) · P · R

β2 · P + R

where Mout and Mref correspond to mappings computed by an OM system
and the reference mappings, respectively; β, often set to 1, is a weighting for
Precision and Recall. The global matching evaluation can demonstrate the over-
all performance of an OM system, but it is not well applicable for developing
the ML-based mapping scoring module that has been widely considered in OM
research in recent years, since (i) the output mappings depend on several other
modules besides mapping scoring, and (ii) computing all the mappings is rather
time-consuming (the naive traversal has a quadratic mapping search space), lead-
ing to very inefficient evaluation for ML models. Meanwhile, when the reference
mappings are incomplete, we are essentially penalizing OM systems with good
Recall. The local ranking evaluation can address these issues and thus, it is a
good complement to the global matching evaluation.

3.3 Data Splitting

For both evaluation schemes, we consider two settings for reference mapping
splitting. The first setting splits the reference mappings into 10% hold-out val-
idation set for hyperparameter tuning or model selection, and 90% testing set
for final evaluation. Such setting can be used for comparing fully automatic non-
ML-based OM systems and unsupervised ML-based OM systems. The second
setting splits the reference mappings into 20%, 10%, and 70%, corresponding to
training, validation, and testing sets, respectively. Such a setting can evaluate
those ML-based OM systems that are able to (or have to) use a small portion of
given mappings for training. Note that the prevalent (fully) supervised learning
data split with large portion of training data is not applicable for OM because
of the extreme positive-negative imbalance, i.e., the number of correct mappings
is of several orders smaller than the incorrect ones.

It is worth mentioning when calculating Precision, Recall and F-score on
a particular set (validation or testing) of the reference mappings, we need to
exclude reference mappings that are not in this set from the system output
mappings; e.g., Precision on the validation set Mval is computed as:

Pval =
|Mout ∩ Mval|

|Mout \ (Mref \ Mval)|
.

4 Evaluation Results

4.1 Equivalence Matching

For equivalence matching, we evaluated the following OM systems (methods):

1. EditSim9. Many of the equivalent concepts have a similar naming and there-
fore, measuring class similarity based on simple edit distance between class

9 EditSim and BERTMap codes: https://github.com/KRR-Oxford/DeepOnto.

https://github.com/KRR-Oxford/DeepOnto
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labels is a reasonable baseline. Specifically, this method computes the match-
ing score between two classes using the maximum of the normalized edit
similarity scores among the combinations of their labels (See footnote 5).
Note that the normalized edit similarity score is defined as 1 − normalized
edit distance.

2. LogMap10 & AML11. LogMap and AML are two classical OM systems
based on lexical matching, mapping extension and repair. They are leading
OM systems in many equivalence matching tasks including those in the OAEI.

Table 4. Results of equivalence matching.

90% Test mappings 70% Test mappings

Task System P R F1 MRR H@1 P R F1 MRR H@1

OMIM-ORDO (Disease) EditSim 0.819 0.499 0.620 0.776 0.729 0.781 0.507 0.615 0.777 0.727

LogMap 0.827 0.498 0.622 0.803 0.742 0.788 0.501 0.612 0.805 0.744

AML 0.749 0.510 0.607 NA NA 0.702 0.517 0.596 NA NA

BERTMap 0.730 0.572 0.641 0.873 0.817 0.762 0.548 0.637 0.877 0.823

NCIT-DOID (Disease) EditSim 0.912 0.776 0.838 0.904 0.884 0.889 0.771 0.826 0.903 0.883

LogMap 0.918 0.667 0.773 0.559 0.364 0.896 0.661 0.761 0.559 0.363

AML 0.873 0.773 0.820 NA NA 0.841 0.770 0.804 NA NA

BERTMap 0.912 0.829 0.868 0.967 0.953 0.823 0.887 0.854 0.968 0.955

SNOMED-FMA (Body) EditSim 0.976 0.660 0.787 0.895 0.869 0.970 0.665 0.789 0.897 0.871

LogMap 0.702 0.581 0.636 0.545 0.330 0.646 0.580 0.611 0.542 0.328

AML 0.841 0.776 0.807 NA NA 0.805 0.779 0.792 NA NA

BERTMap 0.997 0.639 0.773 0.954 0.930 0.811 0.708 0.756 0.967 0.950

SNOMED-NCIT (Pharm) EditSim 0.979 0.432 0.600 0.836 0.760 0.973 0.429 0.595 0.835 0.758

LogMap 0.915 0.612 0.733 0.820 0.695 0.893 0.609 0.724 0.821 0.699

AML 0.940 0.615 0.743 NA NA 0.924 0.609 0.734 NA NA

BERTMap 0.966 0.606 0.745 0.919 0.876 0.941 0.724 0.818 0.963 0.941

SNOMED-NCIT (Neoplas) EditSim 0.815 0.709 0.759 0.900 0.876 0.775 0.713 0.743 0.900 0.876

LogMap 0.823 0.547 0.657 0.824 0.747 0.783 0.547 0.644 0.821 0.743

AML 0.747 0.554 0.636 NA NA 0.696 0.552 0.616 NA NA

BERTMap 0.655 0.777 0.711 0.960 0.939 0.575 0.784 0.664 0.965 0.947

3. BERTMap (See footnote 9). BERTMap is a ML-based OM system which
uses class labels (See footnote 5) to fine-tune a pre-trained language model
for synonym classification, and then aggregates the synonym scores as the
mapping score. For efficient prediction, it exploits the sub-word inverted index
for candidate selection and uses EditSim to filter mappings whose two classes
have a common class label. Note that we employ the same candidate selection
method for EditSim.

The validation set is used for tuning hyperparameters such as the mapping fil-
tering threshold of BERTMap and EditSim, and the selection of annotation

10 https://github.com/ernestojimenezruiz/logmap-matcher.
11 https://github.com/AgreementMakerLight/AML-Project.

https://github.com/ernestojimenezruiz/logmap-matcher
https://github.com/AgreementMakerLight/AML-Project
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properties. The numbers of negative candidates using IDFSample and Neigh-
bourSample are both set to 50, and RandomSample is used only for compensat-
ing the number. In total, for each reference mapping, the systems need to rank
100 negative candidates plus 1 ground truth class.

The equivalence matching results are shown in Table 4. The columns of “90%
Test Mappings” and “70% Test Mappings” correspond to the unsupervised and
semi-supervised data splitting settings, respectively. From the global matching
results, we can see that OMIM-ORDO (Disease) is the most challenging task
(with the lowest average F1), while NCIT-DOID (Disease) is the least challeng-
ing. BERTMap attains the highest F1 on OMIM-ORDO (Disease), NCIT-DOID
(Disease), SNOMED-NCIT (Pharm), whereas AML is ranked first on SNOMED-
NCIT (Body). Surprisingly, the naive EditSim method gets the highest F1 score
on SNOMED-NCIT (Neoplas), possibly because the ontologies of this task has
relatively less hierarchical information to utilize. For the local ranking results,
we do not report results of AML because it has no interface for scoring input
class pairs. BERTMap consistently outperforms EditSim and LogMap, which is
expected because of the advanced BERT-based ML module.

4.2 Subsumption Matching

For subsumption matching, we evaluated the following OM systems (methods)12:

1. Word2Vec + Random Forest (RF). This method encodes each class by
the average of the token vectors of its label defined by rdfs:label. We use a
Word2Vec model [19] trained by a Wikipedia English article dump accessed
in 2018. Given a subsumption, the vectors of its two classes are concatenated
and fed to a RF classifier which outputs a mapping score. The classifier is
trained by the asserted intra-ontology subsumptions in both ontologies for
matching in the unsupervised setting. In the semi-supervised setting, these
subsumptions are merged with the training mappings for training.

2. OWL2Vec* + RF. This method is similar to Word2Vec + RF, except that
it encodes each class by an ontology embedding model named OWL2Vec*
[5] which is a Word2Vec model trained on corpora extracted from the ontol-
ogy with different kinds of semantics concerned. We tested different corpus
settings with the best results reported.

3. BERTSubs with Isolated Class (IC). BERTSubs with the IC setting [4]
has the same architecture as BERTMap, but it fine-tunes the BERT model
by the declared subsumptions in the two ontologies for matching. The current
results are based on the labels defined by rdfs:label. We will evaluate the
other settings that consider surrounding classes in the new OAEI track.

The setting for negative candidates is the same as in equivalence matching (N
is set to 50; RandomSample is used only when IDFSample or NeighbourSample

12 BERTSubs codes: https://gitlab.com/chen00217/bert subsumption; Word2Vec (or
OWL2Vec*) + RF codes are in the folder Inter Ontology/baselines/ of the this
repository.

https://gitlab.com/chen00217/bert_subsumption
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Table 5. Results of subsumption matching.

90% Test mappings 70% Test mappings

Task System MRR H@1 H@5 H@10 MRR H@1 H@5 H@10

OMIM-ORDO (Disease) Word2Vec+RF 0.191 0.106 0.223 0.362 0.193 0.110 0.233 0.315

OWL2Vec*+RF 0.270 0.160 0.362 0.521 0.284 0.151 0.411 0.534

BERTSubs (IC) 0.299 0.108 0.473 0.613 0.295 0.139 0.472 0.667

NCIT-DOID (Disease) Word2Vec+RF 0.306 0.206 0.390 0.510 0.363 0.263 0.448 0.566

OWL2Vec*+RF 0.388 0.285 0.485 0.604 0.422 0.315 0.524 0.647

BERTSubs (IC) 0.601 0.460 0.777 0.877 0.618 0.496 0.758 0.862

SNOMED-FMA (Body) Word2Vec+RF 0.558 0.415 0.731 0.850 0.629 0.503 0.792 0.886

OWL2Vec*+RF 0.668 0.540 0.836 0.911 0.743 0.626 0.900 0.944

BERTSubs (IC) 0.589 0.422 0.816 0.939 0.622 0.490 0.788 0.878

SNOMED-NCIT (Pharm) Word2Vec+RF 0.488 0.335 0.687 0.852 0.526 0.402 0.663 0.834

OWL2Vec*+RF 0.524 0.364 0.738 0.870 0.579 0.446 0.747 0.893

BERTSubs (IC) 0.504 0.321 0.762 0.920 0.476 0.281 0.715 0.900

SNOMED-NCIT (Neoplas) Word2Vec+RF 0.512 0.368 0.694 0.834 0.577 0.433 0.773 0.880

OWL2Vec*+RF 0.603 0.461 0.782 0.860 0.666 0.547 0.827 0.880

BERTSubs (IC) 0.530 0.333 0.786 0.948 0.638 0.463 0.859 0.953

outputs less than N candidates). The results are shown in Table 5. We can find
that OWL2Vec* leads to better performance than Word2Vec in all the five tasks
when their class embeddings are fed to RF. BERTSubs (IC) has higher scores
than OWL2Vec* + RF on tasks of OMIM-ORDO and NCIT-DOID for all the
four metrics; while on SNOMED-FMA (Body), SNOMED-NCIT (Pharm) and
SNOMED-NCIT (Neoplas), BERTSubs (IC) has lower MRR and H@1 scores,
but it often has higher H@10 scores than OWL2Vec* + RF. We can also observe
that the results under the semi-supervised setting are usually better than their
correspondences under the unsupervised setting, which matches our assumption
that adding some training mappings bridges the gap between the intra-ontology
subsumptions for training and the inter-ontology subsumptions (mappings) for
testing. Meanwhile, we can find that subsumption matching by BERTSubs (IC)
has much lower MRR and H@1 than equivalence matching by BERTMap in each
task. Although BERTSubs (IC) only uses one class label, this in some degree
verifies that subsumption matching is more challenging.

5 Conclusion and Discussion

In this paper, we proposed evaluation resources for five biomedical OM tasks that
consider both equivalence matching and subsumption matching, with many new
features for supporting the evaluation and development of both ML-based and
non-ML-based OM systems. The quality of the reference mappings is ensured
by selecting reliable mapping sources (e.g., the human curated mappings from
Mondo) and pruning the ontologies. Subsumption reference mappings are con-
structed from equivalence reference mappings, where a class deletion algorithm
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is employed to prevent OM systems from directly inferring the subsumptions
through the equivalence mappings. We also proposed a comprehensive evalu-
ation framework which includes local ranking and global matching, providing
metrics from various perspectives, as well as unsupervised and semi-supervised
mapping splitting settings. Several typical OM systems have been evaluated to
demonstrate the application of these resources and some interesting results and
observations have been reported.

While we only constructed datasets for five OM tasks, the resource construc-
tion approach is reproducible for constructing more datasets from Mondo and
UMLS for different tasks and settings. Most of our techniques, such as category-
specific ontology pruning, subsumption mapping construction, and negative can-
didate generation, are also applicable to general OWL ontologies beyond the
biomedical domain, and other tasks beyond OM such as ontology completion.

As for the evaluation, bringing in local ranking amends some key features
not properly considered in previous works, thus forming a more comprehensive
evaluation framework on assessing both OM systems and mappings. First, most
OM systems, especially those ML-based, rely on a mapping scoring module as
well as some other modules for mapping searching (e.g., task blocking, candidate
mapping selection and mapping repair). If an OM system often performs well in
local ranking but performs poorly in global matching, then the mapping search-
ing modules need to be debugged and improved. Second, even when reference
mappings are rather incomplete, local ranking can still provide a fair compar-
ison, especially towards the mapping scoring module, whereas global matching
will underestimate Precision of an OM system that has good Recall. Actually,
local ranking itself simulates some real-world OM applications, such as querying
a list of matched classes in a target ontology for a given class in a source ontol-
ogy. Third, when many representative OM systems attain high ranking scores
but low matching scores on the same set of reference mappings, it is likely that
the reference mappings themselves are not complete.

We are running a new Bio-ML track in the OAEI 2022 edition with the
proposed datasets. This new track is superseding the current OAEI largebio and
phenotype tracks and, among other objectives, aims at attracting more ML-based
systems to the OAEI, which has been highlighted as a key challenge within the
OM community. We will also consider adapting our evaluation framework into
MELT (Matching EvaLuation Toolkit) [13], especially the MELT-ML module
for ML-based OM systems, to hold a public evaluation for the OM participants.
Meanwhile, we will also develop and extend our current OM systems BERTMap
and BERTSubs based on these new resources, and further consider feeding high-
quality system output mappings to the UMLS and Mondo communities.
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Abstract. Knowledge graph embedding is a representation learning
technique that projects entities and relations in a knowledge graph to
continuous vector spaces. Embeddings have gained a lot of uptake and
have been heavily used in link prediction and other downstream predic-
tion tasks. Most approaches are evaluated on a single task or a single group
of tasks to determine their overall performance. The evaluation is then
assessed in terms of how well the embedding approach performs on the
task at hand. Still, it is hardly evaluated (and often not even deeply under-
stood) what information the embedding approaches are actually learning
to represent.

To fill this gap, we present the DLCC (Description Logic Class Con-
structors) benchmark, a resource to analyze embedding approaches in
terms of which kinds of classes they can represent. Two gold standards are
presented, one based on the real-world knowledge graph DBpedia and one
synthetic gold standard. In addition, an evaluation framework is provided
that implements an experiment protocol so that researchers can directly
use the gold standard. To demonstrate the use of DLCC, we compare mul-
tiple embedding approaches using the gold standards. We find that many
DL constructors on DBpedia are actually learned by recognizing different
correlated patterns rather than those defined in the gold standard; we fur-
ther find that specific DL constructors, such as cardinality constraints, are
particularly hard to be learned for most embedding approaches.

Keywords: Knowledge graph embedding · Node classification ·
Description logics · Benchmark · Evaluation framework

1 Introduction

Knowledge graph embeddings are projections of entities and relations to con-
tinuous vector spaces. They have been proposed for various purposes and are
typically evaluated on task-specific gold standards such as FB15k and WN18 [3]
for link prediction, kgbench for node classification [2], or GEval [9,10] for machine
learning tasks such as classification, regression, or clustering. The benchmarks
frequently come with their own evaluation protocol.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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(a) Good class separation (b) Bad class separation

Fig. 1. Two example embeddings. The left-hand side embedding shows a good class
separation of persons, countries, and cities, whereas the right-hand side one does not.

Independent of the original benchmark task, knowledge graph embeddings
are generally versatile so that they can be used for multiple tasks [11]. While
the performance of embeddings in downstream tasks is often superior to other
entity representation techniques, most, if not all, embedding approaches have in
common that it is not ultimately clear what is learned. For example, both for link
prediction and for node classification, it is required that classes can be separated
(e.g., persons, countries, and cities are clustered in the embedding space) [11],
but so far, it has not been systematically evaluated which embedding methods
can learn which kinds of class separations. Figure 1 shows an example of two
embedding spaces with different qualities of class separation.

In this paper, we present the DLCC (for Description Logic Class Construc-
tors) dataset and an evaluation framework that help to better analyze and under-
stand embedding approaches for specific DL constructors. There are four con-
tributions of this paper: (1) A framework for the DLCC gold standard creation
is presented, (2) two concrete gold standards are provided – a real graph-based
gold standard and one based on synthetic knowledge graphs, (3) an evaluation
framework is provided to easily evaluate and compare the class separation capa-
bilities of embeddings, and (4) a preliminary analysis for different state of the
art embedding approaches is provided.

2 Related Work

In the area of link prediction (or knowledge base completion), the two well-known
evaluation datasets FB15k and WN18 [3] are both based on real datasets: FB15k
is based on the Freebase dataset, and WN18 is based on WordNet [5]. They were
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presented in the context of link prediction: Given a triple in the form (head,
relation, tail), two prediction tasks (head, relation, ?) and (?, relation, tail) are
created. The evaluation is performed by calculating the mean rank/HITS@10
for a list of proposals. Since it has been remarked that those datasets con-
tain too many simple inferences due to inverse relations, the more challenging
variants FB15k-237 [21] and WN18RR [4] have been proposed. More recently,
evaluation sets based on larger knowledge graphs, such as YAGO3-10 [4] and
DBpedia50k/DBpedia500k [19], have been introduced.

Bloem et al. [2] introduce kgbench, a node classification benchmark for knowl-
edge graphs, which, like DLCC, comes with datasets in different sizes and pre-
defined train/test splits. Unlike DLCC, kgbench is based on real-world datasets.
Therefore, it is suitable to evaluate and compare the quality of different embed-
ding approaches on real-world tasks but does not provide any insights into what
these embedding approaches are capable of representing.

Alshagari et al. [1] present a framework for ontological concepts covering
three aspects: (i) categorization, (ii) hierarchy, and (iii) logic validation. The
framework can be used for language models and for knowledge graph embed-
dings. The work presented in this paper differs in that it goes beyond explicit
DBpedia types. The evaluation of this paper is, therefore, of analytical rather
than descriptive nature. Moreover, the task sets of DLCC are significantly larger
and more comprehensive.

Ristoski et al. [17] provide a collection of benchmarking datasets for machine
learning, including classification, clustering, and regression tasks. Later, the
GEval framework [9,10] was introduced to provide a standardized evaluation pro-
tocol for this dataset. The evaluation datasets are based on DBpedia. Internally,
the embeddings are processed by different downstream classification, regression,
or clustering algorithms. The evaluation framework presented in this paper is
similar to GEval in that it also evaluates multiple classifiers given a concept
vector input.

Melo and Paulheim [8] provide a method for synthesizing benchmark datasets
for link and entity type prediction, which are used in conjunction with a fixed
ontology. Their goal is to mimic the characteristic of existing knowledge graphs
in terms of distributions and patterns.

3 Covered DL Constructors

The aim of this paper is to provide a benchmark for analyzing which kinds
of constructs in a knowledge graph can be recognized by different embedding
methods. To that end, we define class labels using different DL constructors.
Later on, we apply classification algorithms to analyze how well the differently
labeled classes can be separated using different embedding algorithms.

Ingoing and Outgoing Relations. All entities that have a particular outgoing or
ingoing relations (e.g., everything that has a location).

∃r.� (1)
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∃r−1.� (2)

∃r.� � ∃r−1.� (3)

where r is bound to a particular relation.1

Relations to Particular Individuals. All entities that have a relation (in any
direction) to a particular individual (e.g., everything that is related to New York
City).

∃R. {e} � ∃R−1. {e} (4)

where R is not bound to a particular relation. Those relations can also span two
(or more2 hops):

∃R1.(∃R2. {e}) � ∃R−1
1 .(∃R−1

2 {e}) (5)

Particular Relations to Particular Individuals. All entities that have a particular
relation to a particular individual (e.g., movies directed by Steven Spielberg).

∃r. {e} (6)

Qualified Restrictions. All entities that have a particular relation to an individual
of a given type (e.g., all people married to soccer players).

∃r.T (7)

∃r−1.T (8)

If types are modeled as a normal relation in the graph (i.e., rdf:type is yet
another relation), we can reformulate Eq. 7 and 8 to

∃r.(∃rdf:type.T ) (7a)

∃r−1.(∃rdf:type.T ) (8a)

In that case, it behaves equally to a chained variant of Eq. 6.

Cardinality Restrictions of Relations. All entities that have at least or at most
n relations of a particular kind (e.g., people who have at least two citizenships).
Here, we depict only the lower bound variant because the corresponding decision
problem is between the two variants (entities that fall below the bound, i.e.,
adhere to the upper bound, are in the negative example set).3

≥ 2r.� (9)

≥ 2r−1.� (10)
1 We use r to denote a particular relation, whereas R denotes any relation.
2 For reasons of scalability, we restrict the provided gold standard to two hops.
3 The fact that most KGs follow the open-world assumption is neglected here since

we test for the presence/absence of patterns.
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Table 1. Overview of the test cases

Test case DL expression

tc01 ∃r.�
tc02 ∃r−1.�
tc03 ∃r.� � ∃r−1.�
tc04 ∃R. {e} � ∃R−1. {e}
tc05 ∃R1.(∃R2. {e}) � ∃R−1

1 .(∃R−1
2 {e})

tc06 ∃r. {e}
tc07 ∃r.T
tc08 ∃r−1.T

tc09 ≥ 2r.�
tc10 ≥ 2r−1.�
tc11 ≥ 2r.T

tc12 ≥ 2r−1.T

Qualified Cardinality Restrictions. Qualified cardinality restrictions combine
qualified restrictions with cardinalities (e.g., people who have published at least
two science fiction novels).

≥ 2r.T (11)

≥ 2r−1.T (12)

Table 1 summarizes the DL constructors for which test cases were built.

4 Approach

For the twelve test cases in Table 1, we create positive examples (i.e., those
which fall into the respective class) and those which do not (under closed-world
semantics). For example, for tc01, we would generate a set of positive instances
for which ∃r.� holds and a set of negative instances for which �r.� holds. We
then evaluate how well these two classes can be separated, given the embedding
vectors of the positive and negative instances. For that, we split the examples
into a training and testing partition, we train binary classifiers on the training
subset of the examples, and evaluate their performance on the test subset.

The approach is visualized in Fig. 2: A gold standard generator generates a
set of positive and negative URIs, as well as a fixed train/test split. The approach
presented in this paper allows to generate custom gold standards – however, a
contribution of this paper is also to provide a pre-calculated gold standard. This
pre-calculated gold standard can be used to guarantee reproducibility. Officially
published gold standards are versioned to allow for future improvements. In this
paper, we present version v1 of the gold standard.

A user provides embeddings in a simple textual format and provides them
together with the training data as input to the evaluator. The evaluator trains
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multiple classifiers and evaluates them on the selected gold standard using the
provided vectors as classification input. The program then calculates multiple
statistics in the form of CSV files that can be further analyzed in a spreadsheet
program or through data analysis frameworks such as pandas4. These analyses
help the user to understand how well the provided vectors are performing on a
particular DL constructor.

4.1 Gold Standard Generator

The gold standard generator is publicly available5. It is implemented as a Java
maven project. The generator can generate either a DBpedia benchmark (see
Subsect. 5.1) or a synthetic one (see Subsect. 5.2). Any DBpedia version can be
used; the user merely needs to provide a SPARQL endpoint. A comprehensive set
of unit tests ensures a high code quality. The generator automatically generates
a fixed train-test split for the evaluation framework or any other downstream
application. The split is configurable; for the pre-generated gold standards, an
80–20 split is used. The resulting gold standard is balanced – i.e., the number of
positives equals the number of negatives – and the train and test partitions are
stratified. Hence, any classifier which achieves an accuracy significantly above
50% is capable of learning the test case’s problem type from the vectors to some
extent.

It is important to note that the generator only needs to be run by users who
want to build their own gold standards. The typical user would merely download6

the official gold standard files online. We recommend using the pre-calculated
gold standards to ensure comparability across publications.

4.2 Evaluation Framework

The evaluator is publicly available7 as well together with usage examples. It
is implemented in Python and can be easily used in a Jupyter notebook. A
comprehensive set of unit tests ensures a high code quality.

The standard user can directly download the gold standard and use the eval-
uation framework. To test class separability, the evaluation framework currently
runs six machine learning classifiers:8 (1) decision trees, (2) näıve Bayes, (3)
KNN, (4) SVM, (5) random forest, and (6) a multilayer perceptron network.
The framework uses the default configurations of the sklearn library9.

After training and evaluation, the framework persists multiple CSV files per
test case as well as higher-level aggregate CSV files. Examples of such CSV files
4 https://pandas.pydata.org/.
5 https://github.com/janothan/DL-TC-Generator.
6 DOI: 10.5281/zenodo.6509715; GitHub link for the latest version. https://github.

com/janothan/DL-TC-Generator/tree/master/results.
7 https://github.com/janothan/dl-evaluation-framework.
8 The evaluation framework is not restricted to the set of classifiers listed here. New

classifiers can be easily added if desired.
9 https://scikit-learn.org/stable/index.html.

https://pandas.pydata.org/
https://github.com/janothan/DL-TC-Generator
https://github.com/janothan/DL-TC-Generator/tree/master/results
https://github.com/janothan/DL-TC-Generator/tree/master/results
https://github.com/janothan/dl-evaluation-framework
https://scikit-learn.org/stable/index.html
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Fig. 2. Overview of the approach

are a file listing the accuracy per classifier and per test case or a file listing the
accuracy of the best classifier per test case. In the case of DBpedia, test cases
are created for multiple domains, and the results can be analyzed on the level of
each domain separately or in an aggregated manner on the level of the test case.

5 Benchmarks

We currently provide two benchmarks, while the framework described above
allows for generating customized benchmarks.

5.1 DBpedia Benchmark

We use the DBpedia knowledge graph to create test cases.10 We created SPARQL
queries for each test case (see Table 1) to generate positives, negatives, and hard
negatives. The latter are meant to be less easily distinguishable from the posi-
tives and are created by variations such as softening the constraints in the class
constructor or switching subject and object in the constraint. For example, for
qualified relations, a positive example would be a person playing in a team which
is a basketball team. A simple negative example would be any person not play-
ing in a basketball team, whereas a hard negative example would be any person
playing in a team that is not a basketball team.

10 We used DBpedia version 2021-09. The generator can be configured to use any
DBpedia SPARQL endpoint if desired.
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Query examples for every test case in the people domain are provided in
Table 2. The framework uses slightly more involved queries to vary the size of
the result set and to better randomize results.

In total, we used six different domains: people (P), books (B), cities (C),
music albums (A), movies (M), and species (S). This setup yields more than 200
hand-written SPARQL queries, which are used to obtain positives, negatives,
and hard negatives; they are available online11 and can be easily extended, e.g.,
to add an additional domain. For each test case, we created differently sized (50,
500, 5000) balanced test sets.12

5.2 Synthetic Benchmark

The previous benchmark is realistic and well suited to compare approaches on
differently typed DL constructors.

However, the following aspects have to be considered: (1) DBpedia is a large
knowledge graph; not every embedding approach can be used to learn an embed-
ding for it (or not every researcher has the computational means to do so, respec-
tively). (2) Depending on the DL constructor and the domain, not enough exam-
ples can be found on DBpedia. (3) It cannot be precluded that patterns correlate;
therefore, the fact that an embedding approach can learn a particular class can
only be an indicator that it might learn the underlying constructor pattern, but
the results are not conclusive. Correlating properties, type biases for entities,
etc., may lead to surprising results in some domains (see Sect. 6.3).

Therefore, we complement the DBpedia-based gold standard with a synthetic
benchmark. The idea is to generate a graph that contains the DL constructors
(positive and negative) of interest. The graph can be constructed to resemble
the DBpedia graph statistically but can be significantly smaller (and contain a
sufficient number of positives and negatives), and, by construction, side effects
and correlations which exist in DBpedia can be mitigated to a large extent.

The configurable parameters are numClasses, numProperties, num
Instances, branchingFactor, maxTriplesPerNode, and numNodesInterest (all
parameters are integers). The overall process is depicted in Algorithm 1: First, a
class tree with numClasses classes is constructed in a way that each class has at
most branchingFactor children. Then, numproperties properties are generated.
Each property is assigned to a range and domain from the class tree, whereby the
first property has the root node as domain and range type so that every node can be
involved in at least one triple statement. A skew can be introduced so that domain
and range refer with a higher probability to a more general class than to a spe-
cific one. Lastly, we generate instances and assign them to a class as type, which
is depicted in Algorithm 1.

Once the ontology is created, numNodesInterest positives and negatives
are generated (adhering to domain/range restrictions). Each class constructor is

11 https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/
queries.

12 The desired size classes can be configured in the framework.

https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/queries
https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/queries
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Table 2. Exemplary SPARQL queries for class Person

TC Query Positive Query Negative Query Negative
(hard)

tc01 SELECT DISTINCT(?x) WHERE
{

?x a dbo:Person .
?x dbo:child ?y . }

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS {

?x dbo:child ?z})}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
?y dbo:child ?x.
FILTER(NOT EXISTS {

?x dbo:child ?z})}
tc02 Analogous to tc01 (inverse case).

tc03 SELECT DISTINCT(?x) WHERE
{
{ ?x a dbo:Person .

?x dbo:child ?y} UNION
{ ?x a dbo:Person .

?y dbo:child ?x}}

SELECT COUNT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS{

?x dbo:child ?y}
AND NOT EXISTS {

?z dbo:child ?x})}

–

tc04 SELECT DISTINCT(?x) WHERE
{
{ ?x a dbo:Person .

?x ?y dbr:New York City}
UNION
{ ?x a dbo:Person .

dbr:New York City ?y ?x}}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS{

?x ?y dbr:New York City}
AND NOT EXISTS {

dbr:New York City ?y
?x})}

SELECT DISTINCT(?x) WHERE {{
?x a dbo:Person .
?x ?y1 ?z .
?z ?y2 dbr:New York City }
UNION {
?x a dbo:Person .
?z ?y1 ?x .
dbr:New York City ?y2 ?z }
FILTER(NOT EXISTS

{?x ?r dbr:New York City}
AND NOT EXISTS

{dbr:New York City ?s
?x})}

tc05 Analogous to tc04 (inverse case).

tc06 SELECT DISTINCT(?x) WHERE
{

?x a dbo:Person .
?x dbo:birthPlace

dbr:New York City }

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS{

?x dbo:birthPlace
dbr:New York City })}

SELECT DISTINCT(?x) ?r WHERE
{{

?x a dbo:Person .
?x dbo:birthPlace ?y .
dbr:New York City ?r ?x .
FILTER(?y!=dbr:New York City)}

UNION {
?x a dbo:Person .
?x dbo:birthPlace ?y .
?x ?r dbr:New York City .
FILTER(?y!=dbr:New York City)}}

tc07 SELECT DISTINCT(?x) WHERE
{

?x a dbo:Person .
?x dbo:team ?y .
?y a dbo:BasketballTeam

}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS{

?x dbo:team ?y .
?y a

dbo:BasketballTeam})}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
?x dbo:team ?z1 .
?x ?r ?z2 .
?z2 a dbo:BaseballTeam
FILTER(NOT EXISTS{

?x dbo:team ?y .
?y a dbo:BasketballTeam

})}
tc08 Analogous to tc07 (inverse case).

tc09 SELECT DISTINCT(?x) WHERE
{

?x a dbo:Person .
?x dbo:award ?y1.
?x dbo:award ?y2.
FILTER(?y1!=?y2)}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS{

?x dbo:award ?y1.
?x dbo:award ?y2.
FILTER(?y1!=?y2)})}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
?x dbo:award ?y .
FILTER(NOT EXISTS{

?x dbo:award ?z.
FILTER(?y!=?z)})}

tc10 Analogous to tc09 (inverse case).

tc11 SELECT DISTINCT(?x) WHERE
{

?x a dbo:Person .
?x dbo:recordLabel ?y1 .
?y1 a dbo:RecordLabel .
?x dbo:recordLabel ?y2 .
?y2 a dbo:RecordLabel .
FILTER(?y1!=?y2)}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
FILTER(NOT EXISTS{

?x dbo:recordLabel ?y1
.

?y1 a dbo:RecordLabel .
?x dbo:recordLabel ?y2

.
?y2 a dbo:RecordLabel .
FILTER(?y1!=?y2)})}

SELECT DISTINCT(?x) WHERE {
?x a dbo:Person .
?x dbo:recordLabel ?y1 .
?y1 a dbo:RecordLabel .
FILTER(NOT EXISTS{

?x dbo:recordLabel ?y2 .
?y2 a dbo:RecordLabel .
FILTER(?y1!=?y2)})}

tc12 Analogous to tc11 (inverse case).
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Fig. 3. Illustration of the instance generation, using the class constructor ∃r.T . First,
the pattern is instantiated for the positive example p1 with the edge (p1, r, e5). Then,
random edges are inserted (dashed lines). The edge (e1, r, p1) is removed, because it
would turn e1 into an additional positive example.

first initialized explicitly for the positive examples. Then, for each entity e in the
graph (i.e., positive and negative examples), rand(n) ∈ [1,maxTriplesPerNode]
random triples are generated, which have e as a subject and adhere to the domain
and range definitions, whereby it is checked that no additional positives are
created, and no negatives are turned into positives accidentally (see Fig. 3).

For version v1 of the gold standard, numClasses = 760, numProperties =
1355, numInstances = 10,000, branchingFactor = 5, maxTriplesPerNode =
11, and numNodesInterest = 1000 were chosen. The parameters were chosen
to form graphs which are smaller than DBpedia but resemble the DBpedia graph
statistically. Therefore, the statistical properties of the DBpedia ontology calcu-
lated by Heist et al. [6] were used.

6 Exemplary Analysis

In order to demonstrate the use of the DLCC benchmark, we compare two
flavors of RDF2vec [16], two flavors of TransE [3], as well as TransR [7] and
ComplEx [22] embeddings with respect to their capability of separating the
classes in the different datasets.

6.1 Configurations

For DBpedia, we use version 2021-09. We train RDF2vec in the variants SG
and its order-aware counterpart SGoa [14]. The embedding files are available
via KGvec2go [12].13 For the DBpedia embeddings, we used 500 random, dupli-
cate free walks per entity, with a depth of 4, a window of 5, 5 epochs, and a
dimension of 200. We used the same parameters for the synthetic gold standard
with the exception of dimension = 100 and walks = 100 to account for the
smaller gold standard size. The embeddings were trained using the jRDF2vec14

framework [13].
For TransE, we use the variants using the L1 and L2 norm [3]. TransE,

TransR, and ComplEx were trained using the DGL-KE framework15 [23], using
13 http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/.
14 https://github.com/dwslab/jRDF2Vec.
15 https://github.com/awslabs/dgl-ke.

http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/
https://github.com/dwslab/jRDF2Vec
https://github.com/awslabs/dgl-ke
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Algorithm 1. Ontology Creation
procedure generateClassTree(numClasses, branchingFactor)

clsURIs ← generateURIs(numClasses)
root ← randomDraw(clsURIs)
i ← 0
workList ← newList( )
result ← newTree( )
currentURI ← root
for clsURI in clsURIs do

if clsURI = root then
continue

end if
if i = branchingFactor then

currentURI ← workList.removeF irst()
i ← 0

end if
result.addLeaf(currentURI, clsURI)
i ← i + 1
workList.add(clsURI)

end for
return result

end procedure

procedure generateProperties(numProperties, classTree)
properties ← generateURIs(numProperties)
for property in properties do

property.addDomain( drawDomainRange(classTree, 0.25) )
property.addRange( drawDomainRange(classTree, 0.25) )

end for
return properties

end procedure

procedure drawDomainRange(classTree, p)
result ← classTree.randomClass()
while Random.nextDouble > p ∧ ¬(classTree.getChildren(result) == ∅) do

result ← randomDraw(classTree.getChildren(result))
end while

end procedure

procedure populateClasses(numInstances, classTree)
instances ← generateURIs(numInstances)
for instance in instances do

instance.type(classTree.randomClass())
end for
return instances

end procedure
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Fig. 4. Best classifiers on the DBpedia and synthetic gold standards. It is important
to note that the total number of test cases varies between the two gold standards –
therefore, two separate plots were drawn.

Fig. 5. Domain complexity of the DBpedia gold standard (size class 5000)

the respective default parameters, with 200 dimensions for DBpedia and 100 for
the synthetic datasets, as for RDF2vec. The models are publicly available.16

6.2 Results and Interpretation

The results on the DBpedia gold standard (class size 5,000) and the synthetic
gold standard (class size 1,000) are depicted in Tables 3 and 4. For each model
and test case, six classifiers were trained (192 classifiers in total). The tables
present the results of the best classifiers. We performed significance tests (approx-
imated one-sided binomial test) for each test case and approach with α = 0.05 to
determine whether the accuracy is significantly higher than 0.5 (random guess-
ing). Since multiple classifiers were trained for each test case, we applied a Bon-
ferroni correction [18] of α to account for the multiple testing problem. On the
DBpedia gold standard, all results are significant; on the synthetic gold standard,
more insignificant results are observed, particularly for TransR and ComplEx.
16 http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-

rdf2vec/.

http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-rdf2vec/
http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-rdf2vec/
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Table 3. Results on the DBpedia gold standard. The best result for each test case is
printed in bold. Listed are the results of the best classifier for each task and model.

TC RDF2vec RDF2vecoa TransE-L1 TransE-L2 TransR ComplEx

tc01 0.915 0.937 0.842 0.947 0.858 0.862

tc01 hard 0.681 0.891 0.799 0.916 0.744 0.651

tc02 0.953 0.961 0.852 0.970 0.832 0.853

tc02 hard 0.637 0.780 0.780 0.849 0.693 0.608

tc03 0.949 0.958 0.821 0.933 0.856 0.874

tc04 0.960 0.968 0.934 0.986 0.973 0.990

tc04 hard 0.963 0.984 0.814 0.912 0.855 0.935

tc05 0.986 0.992 0.867 0.948 0.881 0.905

tc06 0.957 0.963 0.929 0.985 0.976 0.991

tc06 hard 0.863 0.936 0.823 0.779 0.964 0.933

tc07 0.938 0.955 0.930 0.987 0.978 0.966

tc08 0.961 0.966 0.898 0.964 0.870 0.888

tc09 0.902 0.901 0.884 0.938 0.879 0.883

tc09 hard 0.785 0.793 0.749 0.848 0.758 0.776

tc10 0.947 0.958 0.957 0.984 0.898 0.931

tc10 hard 0.740 0.737 0.775 0.774 0.656 0.739

tc11 0.932 0.897 0.917 0.960 0.930 0.946

tc11 hard 0.725 0.737 0.712 0.806 0.753 0.723

tc12 0.955 0.938 0.961 0.984 0.879 0.894

tc12 hard 0.714 0.717 0.762 0.765 0.659 0.710

Figure 4 shows the aggregated number of the best classifiers for each embed-
ding on each test case. It is visible that on DBpedia, MLPs work best, followed
by random forests and SVMs. On the synthetic gold standard, näıve Bayes works
best most of the time, followed by SVMs and MLPs. The differences can partly
be explained by the different size classes of the training sets (MLPs and random
forests typically work better on more data).

Figure 5 depicts the complexity per domain of the DBpedia gold standard in
a box-and-whisker plot. The complexity was determined by using the accuracy
of the best classifier of each embedding model without hard test cases (since
not every domain has an equal amount of hard test cases). We observe that all
domain test cases are similarly hard to solve, whereby the albums, people, and
species domain are a bit simpler to solve than the books and cities domain.

In general, we can observe that the results on the DBpedia gold standard are
much higher than on the synthetic gold standard. While on the DBpedia gold
standard, all but five tasks can be solved with an accuracy above 0.9 (although
the cases with hard variants are actually harder than the non-hard ones, and all
the five problems with a best accuracy below 0.9 are hard cases), the synthetic
gold standard has quite a few tasks (tc07–tc12) which are obviously much harder.
For example, it is hardly possible for any of the approaches to learn classes whose
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Table 4. Results on the synthetic gold standard. The best result for each test case is
printed in bold; statistically insignificant results are printed in italics. Listed are the
results of the best classifier for each task and model.

TC RDF2vec RDF2vecoa TransE-L1 TransE-L2 TransR ComplEx

tc01 0.882 0.867 0.767 0.752 0.712 0.789

tc02 0.742 0.737 0.677 0.677 0.531 0.549

tc03 0.797 0.812 0.531 0.581 0.554 0.536

tc04 1.000 0.998 0.790 0.898 0.685 0.553

tc05 0.892 0.819 0.691 0.774 0.631 0.726

tc06 0.978 0.963 0.898 0.978 0.888 1.000

tc07 0.583 0.583 0.540 0.615 0.673 0.518

tc08 0.563 0.585 0.585 0.613 0.540 0.523

tc09 0.610 0.628 0.588 0.543 0.525 0.545

tc10 0.638 0.623 0.588 0.573 0.518 0.510

tc11 0.633 0.580 0.583 0.590 0.573 0.590

tc12 0.644 0.614 0.618 0.550 0.513 0.540

definitions involve cardinalities. RDF2vec can produce results slightly above the
baseline here because the frequencies of properties appearing in random walks
can reflect cardinalities to a certain extent.

Furthermore, we can observe that it seems easier to predict patterns involving
outgoing edges than those involving ingoing edges (cf. tc02 vs. tc01, tc08 vs.
tc07, tc10 vs. tc09, tc12 vs. tc11), at least for the DBpedia case. Even though
the tasks are very related, this can be explained by the learning process, which
often emphasizes outgoing directions: In RDF2vec, random walks are performed
in forward direction; similarly, TransE is directed in its training process.

For constructors involving a particular entity (tc04 and tc05), we can observe
that RDF2vec is clearly better than embedding approaches for link prediction,
at least on the synthetic gold dataset. Those tasks refer to entity relatedness,
for which RDF2vec has been shown to be more adequate [14,15]. The picture is
more diverse for the other cases.

6.3 DBpedia Gold Standard vs. Synthetic Gold Standard

The results reveal great differences between the gold standards. Many class con-
structors that are easily learnable on the DBpedia gold standard are hard on
the synthetic one. Moreover, the previously reported superiority of RDF2vecoa
over standard RDF2vec [11,14] cannot be observed on the synthetic data.

Figure 6 shows an excerpt of DBpedia, which we will use to illustrate these
deviations. The instance dbr:LeBron James is a positive example for task tc07
in Table 2. At the same time, 95.6% of all entities in DBpedia fulfilling the posi-
tive query for positive examples also fall in the class ∃dbo:position.� (which is
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Fig. 6. Excerpt of DBpedia

a tc01 problem), but only 13.6% of all entities fulfilling the query for trivial neg-
atives. Hence, on a balanced dataset, this class can be learned with an accuracy
of 0.91 by any approach that can learn classes of type tc01. As a comparison to
the synthetic dataset shows, the results on the DBpedia test set for tc07 actu-
ally overestimate the capability of many embedding approaches to learn classes
constructed with a tc07 class constructor. Such correlations are quite frequent
in DBpedia but vastly absent in the synthetic dataset.

The example can also explain the advantage of RDF2vecoa on DBpedia.
Unlike standard RDF2vec, this approach would distinguish the appearance of
dbo:team as a direct edge of dbr:LeBron James as well as an indirect edge
connected to dbr:LeBron James CareerStation N, where the former denotes
the current team, whereas the latter also denotes all previous teams. Those
subtle semantic differences of distinctive usages of the same property in various
contexts also do not exist in the synthetic gold standard. Hence, the order-aware
variant of RDF2vec does not have an advantage here.

7 Conclusion and Future Work

In this paper, we presented DLCC, a resource to analyze embedding approaches
in terms of which kinds of classes they are able to represent. DLCC comes with
an evaluation framework to easily evaluate embeddings using a reproducible pro-
tocol. All DLCC components, i.e., the gold standard, the generation framework,
and the evaluation framework, are publicly available.17

We have shown that many patterns using DL class constructors on DBpedia
are actually learned by recognizing patterns with other constructors correlat-
ing with the pattern to be learned, thus yielding misleading results. This effect
is less prominent in the synthetic gold standard. We showed that certain DL
constructors, such as cardinality constraints, are particularly hard to learn.

In the future, we plan to extend the systematic evaluation to more embed-
ding approaches, including the flavors of RDF2vec, which were published more
recently [14,15,20]. The synthetic dataset generator also allows for more inter-
esting experiments: We can systematically analyze the scalability of existing
approaches or study how variations in the synthetic gold standard (e.g., larger
and smaller ontologies) influence the outcome.

17 Dataset DOI: 10.5281/zenodo.6509715.
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Abstract. This paper presents µKG, an open-source Python library
for representation learning over knowledge graphs. µKG supports joint
representation learning over multi-source knowledge graphs (and also a
single knowledge graph), multiple deep learning libraries (PyTorch and
TensorFlow2), multiple embedding tasks (link prediction, entity align-
ment, entity typing, and multi-source link prediction), and multiple par-
allel computing modes (multi-process and multi-GPU computing). It cur-
rently implements 26 popular knowledge graph embedding models and
supports 16 benchmark datasets. µKG provides advanced implementa-
tions of embedding techniques with simplified pipelines of different tasks.
It also comes with high-quality documentation for ease of use. µKG is
more comprehensive than existing knowledge graph embedding libraries.
It is useful for a thorough comparison and analysis of various embedding
models and tasks. We show that the jointly learned embeddings can
greatly help knowledge-powered downstream tasks, such as multi-hop
knowledge graph question answering. We will stay abreast of the latest
developments in the related fields and incorporate them into µKG.
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1 Introduction

Knowledge graphs (KGs), such as Freebase [4], DBpedia [21], Wikidata [45],
and YAGO [25], store rich structured knowledge about the real world. They
have been widely used in a variety of knowledge-driven applications, including
semantic search, question answering, and logic reasoning [19]. Learning vector
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representations (a.k.a. embeddings) of KGs has become critical to support these
intelligent applications. In the past ten years, various KG embedding models
such as TransE [5], ConvE [12], RotatE [41] and TuckER [3] were proposed and
achieved promising performance. Please refer to the recent surveys [31,46] for an
overview. With these applications becoming more and more popular and diverse,
they put forward higher demands to KGs in terms of coverage, richness and
multilingualism. Oftentimes, a single KG cannot meet all these demands. This
difficulty calls for the integration of multiple KGs. Learning from multi-source
KGs with entity alignment has drawn a lot of attention in recent years [10,36].
The joint KG embeddings have demonstrated useful for a variety of downstream
tasks such as entity typing and multi-source KG completion [11,35].

Table 1. Comparison of existing KG embedding libraries and ours.

Libraries Multi-KG support Deep learning libraries KG tasks
PyTorch TensorFlow LP EA ET Multi-LP

OpenKE [16] a ✗ ✓ TF1 ✓ ✗ ✗ ✗

DGL-KE [57] b ✗ ✓ ✗ ✓ ✗ ✗ ✗

Pykg2vec [53] c ✗ ✓ TF2 ✓ ✗ ✗ ✗

PyKEEN [1,2] d ✗ ✓ ✗ ✓ ✗ ✗ ✗

TorchKGE [6] e ✗ ✓ ✗ ✓ ✗ ✗ ✗

LibKGE [7] f ✗ ✓ ✗ ✓ ✗ ✗ ✗

OpenEA [40] g ✓ ✗ TF1 ✗ ✓ ✗ ✗

EAkit [54] h ✓ ✓ ✗ ✗ ✓ ✗ ✗

NeuralKG [56] i ✗ ✓ ✗ ✓ ✗ ✗ ✗

µKG (Ours) ✓ ✓ TF2 ✓ ✓ ✓ ✓
ahttps://github.com/thunlp/OpenKE.
bhttps://github.com/awslabs/dgl-ke.
chttps://github.com/Sujit-O/pykg2vec.
dhttps://github.com/pykeen/pykeen.
ehttps://github.com/torchkge-team/torchkge.
fhttps://github.com/uma-pi1/kge.
ghttps://github.com/nju-websoft/OpenEA.
hhttps://github.com/THU-KEG/EAkit.
ihttps://github.com/zjukg/NeuralKG.

To support the easy use of KG embeddings and foster reproducible research
into KG embedding techniques, much effort has been dedicated to developing
KG embedding libraries, including OpenKE [16], DGL-KE [57], Pykg2vec [53],
PyKEEN [1,2], TorchKGE [6], LibKGE [7], OpenEA [40], EAkit [54] and Neu-
ralKG [56]. The majority of these libraries concentrates on the typical KG embed-
ding task of link prediction. Only OpenEA and EAkit support multi-source KG
embedding and the corresponding task entity alignment. Besides, most of them
only support one deep learning library, especially PyTorch. No one supports
another prominent deep learning library TensorFlow2 (TF2 for short). This lim-
its the contexts in which these libraries can be used. Facing these limitations of

https://github.com/thunlp/OpenKE
https://github.com/awslabs/dgl-ke
https://github.com/Sujit-O/pykg2vec
https://github.com/pykeen/pykeen
https://github.com/torchkge-team/torchkge
https://github.com/uma-pi1/kge
https://github.com/nju-websoft/OpenEA
https://github.com/THU-KEG/EAkit
https://github.com/zjukg/NeuralKG
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existing work and being aware of the effectiveness of multi-source KG embed-
dings, we develop a new scalable library, namely μKG, for multi-source KG
embeddings and applications. Table 1 compares μKG with the existing popular
KG embedding libraries. In summary, μKG has the following features:

– Comprehensive. μKG is a full-featured Python library for representation
learning over a single KG or multi-source KGs. It is compatible with the
two widely-used deep learning libraries PyTorch and TF2, and can therefore
be easily integrated into downstream applications. It integrates a variety of
KG embedding models and supports four KG tasks including link prediction,
entity alignment, entity typing, and multi-source link prediction.

– Fast and Scalable. μKG provides advanced implementations of KG embed-
ding techniques with the support of multi-process and multi-GPU parallel
computing, making it fast and scalable to large KGs.

– Easy-to-Use. μKG provides simplified pipelines of KG embedding tasks for
easy use. Users can interact with μKG through both methods APIs and com-
mand line. It also has high-quality documentation.

– Open-Source and Continuously Updated. The source code of μKG is
publicly available. Our team will keep up-to-date on new related techniques
and integrate new (multi-source) KG embedding models, tasks, and datasets
into μKG. We will also keep improving existing implementations.

Our experiments on several benchmark datasets demonstrate the effective-
ness and efficiency of our library μKG. Moreover, we carefully design two new
tasks, multi-source link prediction and multi-source knowledge graph question
answering (KGQA), with experiments to demonstrate the potential of multi-
source KG embeddings:

– For Multi-source Link Prediction, we can convert the multiple KGs into
a joint graph by merging their aligned entities, on which we learn joint KG
embeddings for link prediction over each KG. This differs from the traditional
link prediction, which first trains the model on a single KG and then predicts
links for the same KG. In our joint learning setting, to avoid the test set
of a KG’s link prediction task having overlap with other KGs’ training set,
we do not consider relation alignment in multi-source KGs, and also remove
these overlapping triples from the training set if they exist. Our experiment
on DBP15K [36] shows that the joint trained TransE [5] outperforms its
separately trained variant by 122% on Hits@1.

– For multi-source KGQA, as a downstream application of KGs, we have
attempted to use multi-source KG embeddings to aid in the task of multi-hop
question answering over a KG. The typical pipeline of using KG embeddings
to answer natural language questions [32] is learning to align the question
representation (encoded by a pre-trained language model like BERT [13])
with the answer entity’s embedding (encoded by a KG embedding model like
ComplEx [44]). Conventional methods and datasets only consider QA over
a single KG. We introduce an additional KG for joint embedding with the
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Fig. 1. Framework overview of µKG.

target KG using μKG. The embeddings of the target KG from the joint space
are used for QA. Our results on WebQuestionsSP [52] show that joint KG
embeddings can improve the accuracy by 8.6% over independently trained
embeddings on a single KG.

Overall, these experiments show that the multi-source KG embeddings are
able to promote knowledge fusion and transfer, and therefore benefit downstream
tasks. We hope that our μKG library can encourage the use of multi-source KG
embeddings and promote their applications.

2 µKG

μKG is a scalable library for multi-source KG embeddings and applications. It
also supports representation learning over a single KG. Its architecture is shown
in Fig. 1. μKG supports a variety of link prediction, entity alignment, and entity
typing models, as well as the datasets that go with them. It consists of three
modules. The data module converts the input single KG or multi-source KGs
into the training data format (e.g., triples, paths or subgraphs) used by the
embedding model. The computing module supports the execution module with
neural computation and parallel training solutions. As a result, the execution
module can be used for large-scale KGs and is compatible with the widely-used
deep learning libraries PyTorch and TensorFlow. The execution module trains
a KG embedding model with the training data produced by the data module.
The controller keeps track of and records the training process. The evaluator
employs the pre-trained embedding model to perform KG tasks, such as link
prediction, entity alignment, entity typing, and multi-source link prediction.

2.1 Data Module

We hereby introduce the data module of μKG.
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Data Processor. The goal of the data processor is to generate numerical IDs
for entities, relations, and attributes from the input single KG or multi-source
KGs in the Datasets Hub. The numerical ID is the identifier of a resource in an
embedding model. The data processor first reads the original relation triples and
attribute triples from the txt or ttl files. Then, it assigns an ID to each entity,
relation, and attribute. It currently provides two ID generation algorithms. The
unique-ID algorithm generates a unique ID for each resource in KGs. It can
be used for both single KG and multi-source KGs. The shared-ID algorithm
generates the same ID for aligned entities in different KGs. In this way, the
multiple KGs are merged as a “single” joint graph.

Batch Generator. The batch generator takes as input KG triples and divides
the complete data into multiple fixed-size batches for model training. If the
model requires relational paths or subgraphs for training, the batch generator
would first call the path or subgraph sampler to convert triples. The batch gen-
erator also includes several negative sampling methods to randomly generate
negative examples (e.g., negative alignment pairs or negative triples) for each
positive example. The positive and negative examples are used in the embed-
ding model for contrastive embedding learning. The uniform negative sampling
method replaces an entity in a triple or an alignment pair with another randomly-
sampled entity to generate a negative example. It gives each entity the same
replacement probability. Such uniform negative sampling has the problem of
inefficiency since many sampled negative samples are obviously false as training
goes on, which does not provide any meaningful information. μKG also supplies
the self-adversarial negative sampling method [41] and the truncated negative
sampling method [37] that seek to generate hard negative examples.

Path Sampler. The path sampler is to support some embedding models that
are built by modeling the paths of KGs, such as IPTransE [58] and RSN [15]. It
can generate three types of paths based on random walks. The first is the rela-
tional path like (e1, r1, e2, r2, e3), where ei stands for an entity and rj denotes
a relation. It is an entity-relation chain. The second is the entity path like
(e1, e2, e3), and the third is the relation path like (r1, r2).

Subgraph Sampler. The subgraph sampler is to support GNN-based embed-
ding models like GCN-Align [49] and AliNet [39]. It can generate both first-order
(i.e., one-hop) and high-order (i.e., multi-hop) neighborhood subgraphs of enti-
ties. The GNN-based models represent an entity by aggregating the embeddings
of its neighbors in the subgraphs.

2.2 Execution Module

This module carries out the training task of embedding models.
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Trainer. The trainer directs the model training and evaluation based on the
detailed configurations of users. It manages the model’s training progress. μKG
configures trainers for entity alignment models, link prediction models, and entity
typing models, respectively. The trainer provides three optimizers, including the
standard stochastic gradient descent, Adagrad, and Adam. It implements four
loss functions, including the mean-squared loss, marginal ranking loss, limit-
based loss, and noise-contrastive estimation loss.

Evaluator. The evaluator is to assess the performance of the trained model
on specific test data. For (joint) link prediction, it uses the energy function to
compute the plausibility of a candidate triple. For entity alignment or typing, it
provides several metrics to measure entity embedding similarities, such as the
cosine, inner, Euclidean distance, and cross-domain similarity local scaling. The
evaluation process can be accelerated using multi-processing. The implemented
metrics for assessing the performance of embedding tasks include Hits@K, mean
rank (MR) and mean reciprocal rank (MRR). Hits@K measures the percent-
age of the test cases in which the correct counterpart is ranked in the top k.
MR calculates the mean of these ranks. MRR is the average of the reciprocal
ranks of results. Higher Hits@K and MRR or lower MR values indicate better
performance.

Controller. The controller is in charge of the trainer. During the training
process, the controller calls the evaluator to assess the model performance on
validation data. If the performance begins to drop continuously, the controller
would terminate the training (i.e., early stopping). After that, the controller
saves the model and embeddings for further use.

2.3 Computing Module

In this section, we introduce the computing module.

Support of PyTorch and TF2. The computing module uses PyTorch and
TF2 as the backbone for neural computing. Users can choose one of the back-
bones to run μKG or carry on secondary development based on μKG. If no
backbone is specified by the user, μKG can automatically detect which back-
bone has already been installed in the Python environment.

Multi-GPU and Multi-processing Computation. Scalability is a key con-
sideration when we develop μKG, because KGs in real-world applications are
typically very large. Although PyTorch and TensorFlow both provide interfaces
for parallel computing, they differ greatly in implementation and are difficult for
users to use. Hence, we use Ray1 to provide a uniform and easy-to-use interface

1 https://www.ray.io/.

https://www.ray.io/
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Fig. 2. Code snippet for training KG embedding models in the parallel mode.

Fig. 3. Command line for using µKG.

for multi-GPU and multi-processing computation. Fig. 2 shows our Ray-based
implementation for parallel computing and the code snippet to use it. Users can
set the number of CPUs or GPUs used for model training.

2.4 User Interface

μKG gives users two options for running KG embedding models. For users that
are unfamiliar with μKG, they can run a model on a dataset with the command
line, as shown in Fig. 3. For advanced users, they can modify the configurations
of a model and call the model’s running function in their Python code.

3 Experiments

In this section, we report our experiments to evaluate the effectiveness and effi-
ciency of μKG. The source code is available at our GitHub repository.2

3.1 Experiments on Effectiveness

To evaluate the effectiveness, we compare the results produced by our library
with the corresponding official results reported in the models’ papers. We con-
sider one single-KG task link prediction, and three multi-KG tasks entity align-
ment, entity typing and multi-source link prediction.

2 https://github.com/nju-websoft/muKG.

https://github.com/nju-websoft/muKG
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Table 2. LP results on FB15K.

Models Hits@1 Hits@10 MRR

RESCAL Original − 0.284 −
Ours 0.129 0.342 0.202

TransE Original − 0.471 −
Ours 0.194 0.647 0.353

TransH Original − 0.585 −
Ours 0.188 0.604 0.332

TransD Original − 0.742 −
Ours 0.214 0.595 0.345

Table 3. LP results on FB15K-237.

Models Hits@1 Hits@10 MRR

TransE Original − 0.465 0.294
Ours 0.174 0.463 0.270

ConvE Original 0.237 0.501 0.325
Ours 0.237 0.514 0.327

RotatE Original 0.205 0.480 0.297
Ours 0.172 0.456 0.260

TuckER Original 0.266 0.544 0.358
Ours 0.254 0.535 0.346

Link Prediction. We choose two benchmark datasets, FB15K [5] and FB15K-
237 [42], for link prediction evaluation. FB15K-237 was created from FB15K to
ensure that the testing and evaluation datasets do not have inverse relation test
leakage. Recent link prediction models use FB15K-237 for evaluation. On FB15K,
we compare the Hits@1, Hits@10 and MRR results of four old but popular mod-
els in Table 2, including RESCAL [29], TransE [5], TransH [48], and TransD [18].
“−” denotes the unreported results. We can see that our implemented RESCAL,
TransE and TransH can achieve better results than the original code due to our
modern implementations. We also notice that the implemented TransD shows
lower Hits@10 performance than its original version. The reason lies in the differ-
ent evaluation settings. The original TransD removes the corrupted triplets in the
training, validation and test sets before ranking. But our implementation only
removes those in the training set following other methods because this is more
reasonable. On FB15K-237, we compare TransE and other three recent models
including ConvE [12], RotatE [41],3 and TuckER [3] in Table 3. The results of
TransE on FB15K-237 are taken from [41] because TransE was not evaluated on
this dataset. As we can see, our implementations of TransE and ConvE in μKG
perform very similarly to their original code. As for RotatE and TuckER, the per-
formance of our implementations is slightly lower than the original results, but
also in the range of acceptance. This is due to different hyperparameter settings.
In consideration of GPU resources, we do not set the embedding dimension to
1,000, which is used in their original papers but would cost too much GPU mem-
ory. Generally, a large dimension leads to good performance. In summary, our
implementations of link prediction models can basically reproduce the reported
results.

Entity Alignment. We use the recent benchmark dataset OpenEA [40] for
entity alignment evaluation. OpenEA also provides the implementations of sev-
eral entity alignment models using TensorFlow 1.12. We choose three structure-
based entity alignment models GCN-Align [49], SEA [30] and BootEA [37], as

3 We use uniform negative sampling for a fair comparison with other models.
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Table 4. Entity alignment results on EN-DE and EN-FR 15K.

Models Backends EN-DE EN-FR
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

GCN-Align OpenEA 0.481 0.753 0.571 0.338 0.680 0.451
TF2 (ours) 0.480 0.754 0.571 0.335 0.670 0.446
PyTorch (ours) 0.460 0.747 0.560 0.337 0.671 0.453

SEA OpenEA 0.530 0.796 0.617 0.280 0.642 0.328
TF2 (ours) 0.536 0.806 0.624 0.281 0.630 0.304
PyTorch (ours) 0.561 0.834 0.650 0.321 0.679 0.439

BootEA OpenEA 0.675 0.865 0.740 0.507 0.794 0.603
TF2 (ours) 0.671 0.866 0.737 0.503 0.786 0.597
PyTorch (ours) 0.662 0.884 0.738 0.493 0.811 0.599

IMUSE OpenEA 0.580 0.778 0.647 0.569 0.777 0.638
TF2 (ours) 0.567 0.672 0.636 0.571 0.777 0.640
PyTorch (ours) 0.596 0.804 0.670 0.564 0.776 0.640

well as an attribute-enhanced model IMUSE [17], as baselines. We compare their
Hits@1, Hits@10 and MRR results on OpenEA’s EN-DE and EN-FR 15K set-
tings with our PyTorch-based implementations and TF2-based implementations
in Table 4. We can see that the two implementations of a model in μKG achieve
similar performance. For SEA and IMUSE, PyTorch-based implementations per-
form better than TF2-based implementations. We think this is caused by the
difference between the two backbones. When compared to the results of Ope-
nEA, μKG achieves comparable results. This demonstrates the efficacy of our
implementations for entity alignment models.

Entity Typing. Entity typing can be seen as a special link prediction task
across an instance KG and an ontological KG. For example, given (“Michael
Jackson”, “rdf:type”, _), the task is to predict the target type “/music/artist”.
We use the FB15K-ET dataset for evaluation [26]. FB15K-ET is an expansion of
FB15K with entity types. We follow [26] to implement two baselines, RESCAL-
ET and HolE-ET, for entity typing. The two models are built based on the link
prediction models RESCAL [29] and HolE [28], respectively. We compare our
results with those in [26] in Table 5. We can observe that our implementations
achieve similar or even better performance than those in [26], demonstrating the
effectiveness of μKG in entity typing.

Multi-source Link Prediction. This is a new task that we propose, which
is inspired by both link prediction in a single KG and entity alignment between
two KGs. We believe that training embeddings solely on a KG for link predic-
tion is ineffective because the KG may be very incomplete. We introduce another
background KG with entity alignment to the target KG for joint KG embedding
learning. We use the shared-ID generation method in μKG to merge the two
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Table 5. Entity typing results on FB15K-ET.

Models Hits@1 Hits@10 MRR

RESCAL-ET Original 0.097 0.376 0.190
Ours 0.128 0.456 0.236

HolE-ET Original 0.133 0.382 0.220
Ours 0.129 0.522 0.252

KGs and learn embeddings of the joint KG with a KG embedding model such as
TransE [5]. When the learning progress is completed, only the embeddings of the
target KG are used to participate in link prediction. For evaluation, we choose
DBP15KZH−EN [36]. It is an entity alignment dataset, and we denote the two
KGs in DBPZH−EN by DBPZH and DBPEN , respectively. Following TransE [5],
we divide triples into training, validation and test sets. Specifically, DBPZH has
63, 372 training triples, 3, 522 validation triples and 3, 520 test triples, while
DBPEN has 85, 627, 4, 758 and 4, 757, respectively. Conventional link prediction
is usually carried out on a single KG. However, for multi-source link prediction
with entity alignment, it would be interesting to see the performance of link pre-
diction based on the jointly-trained KG embeddings. Based on μKG, we train
a TransE model over the joint graph of DBPZH and DBPEN . We choose three
translational models TransE [5], TransH [48] and TransD [18]; four semantic
matching models DistMult [51], HolE [28], ComplEx [44] and Analogy [23]; as
well as two neural models ProjE [34] and ConvE [12], as baselines. From Table 6,
we can see that μKG (TransE) outperforms the translational and semantic match-
ing models. ConvE achieves better results than our method, but its model com-
plexity is also much higher than TransE. By encoding alignment information,
μKG (TransE) greatly outperforms TransE. The results demonstrate the joint
training is effective to improve the separately-trained models on link prediction.
We think that this is because the alignment information between two KGs can
complement the incomplete relational structures of each other.

3.2 Experiments on Efficiency

In this section, we evaluate the efficiency of the proposed library μKG. The
experiments were conducted on a server with an Intel Xeon Gold 6240 2.6GHz
CPU, 512GB of memory and four NVIDIA Tesla V100 GPUs.

Efficiency of Multi-GPU Training. Figure 4 compares the training time of
RotatE and ConvE on FB15K-237 when using different numbers of GPUs. As we
can see, using multiple GPUs for parallel computing can significantly accelerate
training. The final link prediction results are not affected by parallel computing.
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Table 6. Link prediction results with joint KG embeddings.

Models DBPZH DBPEN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

TransE 0.100 0.529 0.248 0.099 0.512 0.241
TransH 0.103 0.519 0.274 0.125 0.535 0.263
TransD 0.097 0.506 0.237 0.114 0.517 0.251
DistMult 0.095 0.375 0.188 0.100 0.385 0.195
HolE 0.114 0.327 0.186 0.122 0.405 0.221
ComplEx 0.174 0.374 0.245 0.195 0.435 0.279
Analogy 0.145 0.363 0.220 0.169 0.375 0.241
ProjE 0.257 0.613 0.317 0.265 0.629 0.323
ConvE 0.291 0.597 0.398 0.322 0.631 0.429
μKG (TransE) 0.222 0.549 0.331 0.252 0.585 0.363

For example, the Hits@1 scores of ConvE when using 1, 2, and 4 GPUs for
computing are 0.241, 0.239 and 0.227, respectively. This experiment shows the
efficiency of our multi-GPU training.

Fig. 4. Running time comparison on FB15K-237 with multi-GPU training.

Efficiency Comparison Against LibKGE and PyKEEN. We further com-
pare the training time used by μKG with LibKGE [7] and PyKEEN [1]. They are
both PyTorch-based libraries for efficient training, evaluation, and optimization
of KG embeddings. The backbone of μKG in this experiment is also PyTorch.
Table 7 gives the training time of ConvE and RotatE on FB15K-237 with a single
GPU for calculation. For a fair comparison, we use the same hyper-parameter
settings (e.g., batch size and maximum training epochs) for each model in the
three libraries. We discover that μKG costs less time than LibKGE and PyKEEN
to train a KG embedding model, which demonstrates its efficiency.



µKG: A Library for Multi-source Knowledge Graph Embeddings 621

Table 7. Running time on FB15K-237 with a GPU.

Models μKG LibKGE PyKEEN
RotatE 639 s 3,260 s 1,085 s
ConvE 824 s 1,801 s 961 s

4 Application to Multi-hop KGQA

We hereby report the experimental results on the downstream task, i.e., multi-
hop KGQA, using our proposed joint embeddings.

Settings. We follow EmbedKGQA [32], a recent popular embedding-based
KGQA method, to build a QA pipeline with our μKG. EmbedKGQA consists
of three modules. The KG embedding module learns embeddings for the input
KG. Existing KG embedding models such as TransE [5] and ComplEx [44] can
be chosen. The question embedding module encodes natural language questions
with the help of the pre-trained language model RoBERTa [24], which is a new
training recipe that improves on BERT and is widely used for encoding natu-
ral language text. The answer selection module chooses the final answer based
on the question and relation similarity scores. Using KG embeddings to answer
natural language questions can make it more effective in handling the relational
sparsity in KGs. The KG embedding model used in EmbedKGQA is ComplEx.
In our pipeline for QA, we use μKG (the embedding model is also ComplEx)
to learn joint embeddings based on the target KG and another background KG
Wikidata5M [47], which is a subset of Wikidata with million-scale entities. For
a fair comparison, we keep other modules in our pipeline the same as those in
EmbedKGQA.

Dataset. We choose the popular multi-hop QA benchmark WebQuestionsSP
[52] as the dataset. There are 4, 737 questions in total. This dataset contains
1-hop and 2-hop questions that may be answered using Freebase entities [4].
Following EmbedKGQA, we limit the KG to a subset of Freebase that contains
all relational triples within 2-hops of any entity specified in the WebQuestionsSP
questions. We refine it further to include only those relations that are stated in
the dataset. There are a total of 1.8 million entities and 5.7 million triples in
this selected KG (denoted as FB4QA in this paper) to support these questions.
The number of entity links between Wikidata5M and FB4QA is 493, 987.

Results. Table 8 presents the QA accuracy. To study the effect of KG sparsity on
QA performance, following EmbedKGQA, the FB4QA is used for two settings:
Half-FB4QA and Full-FB4QA. The former randomly drops half of the triples
in FB4QA to simulate an incomplete KG. The latter uses the full FB4QA to
learn entity embeddings. Besides, in the Full-FB4QA w/ rel. pruning setting,
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Table 8. QA accuracy on WebQuestionsSP.

EmbedKGQA [32] EmbedKGQA + Wikidata5M

Half-FB4QA 0.485 0.547
Full-FB4QA 0.587 0.646
Full-FB4QA w/rel. pruning 0.666 0.723

a relation pruning strategy is employed to reduce the candidate answer space
by filtering out the dissimilar relations with the key entity in the question. We
can see from the table that EmbedKGQA + Wikidata outperforms the baseline
EmbedKGQA in all three settings. This is because our learned embeddings of
FB4QA can benefit from the background KG, and thus are more expressive
than those in EmbedKGQA. Both our method and EmbedKGQA in the Full-
KG setting achieve better accuracy than the corresponding result in the Half-
KG setting. This demonstrates that KG incompleteness degrades the quality of
KG embeddings, and thus causes a decrease in performance. Our method can
improve the incompleteness issue in KGs through knowledge transfer from other
background KGs. We also consider extending LibKGE [7] for this new task. We
merge two KGs into a large graph and use LibKGE to learn KG embeddings.
The accuracy is 0.718 in the setting of Full-FB4QA w/ rel. pruning, a similar
performance compared with our μKG. This result further shows the effectiveness
of our library and the potential of multi-source KG embeddings. In summary, this
experiment demonstrates that multi-source KG embeddings are also effective in
improving KG-related downstream tasks, and knowledge transfer between multi-
source KGs is an alternative for boosting performance in real-world applications.

5 Related Work

In this section, we review the related work on KG embedding models and tasks,
as well as existing libraries for KG embedding.

5.1 Knowledge Graph Embedding Tasks and Models

Link Prediction. TransE [5] introduces translational KG embeddings. It
defines the score function fTransE(τ) = ||h + r − t||4 to measure the plausi-
bility of relational triple τ = (h, r, t), where h, r and t denote the head entity,
relation and tail entity, respectively. Boldfaced letters denote the corresponding
vector representations. Although TransE performs well for modeling one-to-one
relations, it encounters issues when dealing with more complex relations. For
example, if (h, r, t1) and (h, r, t2) hold for a one-to-many relation r, we have
h+ r ≈ t1 and h+ r ≈ t2, then t1 ≈ t2. If (h, r1, t) and (h, r2, t) hold for h and
t, we have r1 ≈ r2. To resolve these problems, several improved translational

4 Hereafter, || · || denotes the L2 vector norm.
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models, such as TransH [48], TransR [22], and TransD [18], have been proposed.
They enable entities to have relation-specific embeddings. For example, TransH
interprets a relation as a translation vector on a hyperplane, while TransR and
TransD embed entities and relations in distinct vector spaces. RotatE [41] is an
improved variant in the complex vector space. Besides, semantic matching-based
models exploit similarity-based functions to score relational triples. The scores
are computed using bilinear functions in RESCAL [29], DistMult [51], Com-
plEx [44] and SimplE [20], while HolE [28] replaces dot product with circular
correlation. Embeddings are given analogical qualities in Analogy [23]. Recently,
neural network-based models, including ProjE [34], ConvE [12], R-GCN [33],
ConvKB [27], KBGAN [8] and LinkNBed [14], achieve superior link predic-
tion performance. μKG currently supports TransE, TransR, TransH, TransD,
TuckER, DisMult, ComplEx, HolE, Analogy, RESCAL, RotatE, SimplE and
ConvE.

Entity Alignment. Embedding-based entity alignment models usually consist
of two modules, i.e., KG embedding and alignment learning. For KG embedding
based on relational facts, many models including MTransE [10], IPTransE [58],
JAPE [36], KDCoE [9], BootEA [37], SEA [30], AttrE [43], MultiKE [55] and
TransEdge [38] adopt TransE [5] or its improved variants. Most of other mod-
els like GCN-Align [49], RDGCN [50] and AliNet [39] adopt GCN due to its
powerful representation learning ability. Other models like RSN [15] use recur-
rent neural networks for KG embedding, respectively. In addition to relational
facts, some models such as KDCoE, AttrE, MultiKE, RDGCN and IMUSE [17]
also exploit entity attributes for KG embedding and achieve good results. For
alignment learning, IPTransE and KDCoE use the pair loss. Besides, JAPE,
BootEA, AttrE, RSN and MultiKE let aligned entities in seed alignment share
the same or similar embeddings by some tailored data processing skills, which
can be also regarded as a special case of the pair loss. GCN-Align and RDGCN
use the marginal ranking loss and AliNet uses the limit-based loss. To achieve
better performance, some models including IPTransE, BootEA, KDCoE and
TransEdge further employ semi-supervised learning. μKG currently supports
MTransE, AttrE, SEA, GCN-Align, RDGCN, IPTransE, JAPE, BootEA, RSN
and IMUSE.

Entity Typing. Entity typing seeks to predict the “type entities” of an instance
entity. It can be regarded as a special link prediction task across an instance
KG and an ontological KG. μKG currently supports TransE-ET, HolE-ET and
RESCAL-ET. Please refer to [26] for more details.

5.2 Knowledge Graph Embedding Libraries

As summarized in Table 1, most of existing libraries for KG embeddings only
focus on link prediction, a common KG embedding task. Multi-source KG embed-
ding and entity alignment are only supported by OpenEA [40] and EAkit [54].
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Only OpenKE [16], OpenEA and Pykg2vec [53] are developed with TensorFlow,
other libraries only support PyTorch. LibKGE [7] is a recent library for link
prediction with a high degree of modularity. DGL-KGE [57] is developed based
on DGL. It supports PyTorch and XMNet, but not TensorFlow. NeuralKG [56]
is a recent Python-based library for diverse representation learning of KGs, but
it mainly focuses on rule-based link prediction models. By contrast, our library
is more comprehensive than existing work.

6 Conclusion and Future Work

In this paper, we present a new scalable library, μKG, for multi-source KG embed-
dings and applications. It facilitates joint representation learning across multi-
source KGs. It supports PyTorch and TensorFlow2, and can perform multiple
tasks, including link prediction, entity alignment, entity typing, and multi-source
link prediction, with advanced implementations of the corresponding embedding
models. Extensive experiments validate the effectiveness and efficiency of μKG.
We further demonstrate how jointly learned embeddings can greatly aid KG-
powered downstream tasks such as multi-hop KGQA. We show that knowledge
transfer in multi-source KGs is an efficient way to improve the performance of
KG-powered tasks.

Best Practices of KG Embedding Libraries. The proposed μKG supports
multiple tasks, while few libraries support entity typing and multi-source link
prediction. For users who want to carry out these two tasks, μKG is the best
choice. μKG provides many popular methods in both TensorFlow and PyTorch
implementations. If the official code of a model only has one implementation but
users need another, μKG is a good choice. μKG is still in its early stages, and a
few methods do not achieve optimal results. In this case, the original works are
more suitable. For the models that μKG currently does not implement, users
can try other libraries, e.g., LibKGE [7] and PyKEEN [1] for link prediction, or
OpenEA [40] and EAkit [54] for entity alignment.

Future Work. We plan to integrate more KG embedding models and multi-
source KG tasks. We also plan to continually improve our implementations.
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Abstract. Knowledge graphs are emerging as one of the most popu-
lar means for data federation, transformation, integration and sharing,
promising to improve data visibility and reusability. Immunogenetics is
the branch of life sciences that studies the genetics of the immune sys-
tem. Although the complexity and the connected nature of immuno-
genetics data make knowledge graphs a prominent choice to represent
and describe immunogenetics entities and relations, hence enabling a
plethora of applications, little effort has been directed towards building
and using such knowledge graphs so far. In this work, we present the
IMGT Knowledge Graph (IMGT-KG), the first of its kind FAIR knowl-
edge graph in immunogenetics. IMGT-KG acquires and integrates data
from different immunogenetics databases, hence creating links between
them. Consequently, IMGT-KG provides access to 79 670 110 triplets
with 10 430 268 entities, 673 concepts and 173 properties. IMGT-KG
reuses many existing terms from domain ontologies or vocabularies and
provides external links to other resources of the same domain, as well
as a set of rules to guide inference on nucleotide sequence positions
by applying Allen Interval Algebra. Such inference allows, for exam-
ple, reasoning about genomics sequence positions. IMGT-KG fills in the
gap between genomics and protein sequences and opens a perspective
to effective queries and integrative immuno-omics analyses. We make
openly and freely available IMGT-KG with detailed documentation and
a Web interface for access and exploration.

Keywords: Immunogenetics and immunoinformatics · Ontology ·
Knowledge graphs · SPARQL endpoint · Reasoning rules · Semantic
web

1 Introduction

Immunogenetics has the mission to decrypt the genetics of the immune system
and immune responses. To take an example, immunogenetics plays a crucial role
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in the current context marked by the COVID-19 pandemic. The genetic basis
of the immune response in COVID-19 cases may explain the inter-individual
disease variability and provide a way to classify patients in different severity
profiles according to the presence or absence of genetic variants [16]. In addition,
the understanding of such genetics bases contributes to the rapid development
of vaccines.

IMGT R©, the International ImMunoGeneTics Information System R©, is
an international data reference in the immunogenetics field, particularly in
the management of the adaptive immune response data [13,14]. Over the
past 30 years, IMGT elaborated several high-quality databases, web resources
and tools for understanding and cracking the adaptive immune response,
now considered as a reference in the field. IMGT R© offers a knowledge
management system, that allows for a standardised annotation of immuno-
genetics entities from genomic to protein data by using a formal vocabu-
lary: the IMGT-ONTOLOGY [12]. Based on the type of the immunogenet-
ics entity (genomic or protein), IMGT R© provides five different databases: two
genomic databases (IMGT/LIGM-DB, IMGT/GENE-DB) and three protein
databases (IMGT/2Dstructure-DB, IMGT/3Dstructure-DB and IMGT/mAb-
DB), described in the following section in more detail. These databases are
freely accessible via different query form-like interfaces1 [13,14]. According to
the connected nature of immunogenetics information, federating and integrating
different entities in a central knowledge base will not only give a way to make
integrative analyses (via expressive, complete and rich queries like, for example,
“find all proteins with their gene and alleles with a particular genomic reference
sequence”), but will also provide a way to discover new facts like, for example,
the particular genomic sequence associated to a protein structure.

To fill in this gap, we introduce IMGT-KG, the first Findable, Accessible,
Interoperable and Reusable (FAIR) knowledge graph (KG) in immunogenetics,
which provides access to structured immunogenetics data based on the IMGT R©
resources. IMGT-KG is built and published following the W3C recommendations
and best practices [4]. The data model of IMGT-KG is an extended version of the
IMGT-ONTOLOGY [12]. For interoperability purposes, IMGT-KG also reuses
terms from various biomedical resources. To generate the IMGT-KG, we col-
lect and lift data from the IMGT databases and instantiate the data model,
applying a reasoner to check its consistency and to enrich it by inferring new
facts. In addition, we use a set of rules based on Allen’s interval algebra [1], to
infer the different spatial relations between sequence features.2 Hence, IMGT-
KG enables advanced exploration of immunogenetics data via queries such as
“Find all protein chains, domains, the associated allele and its genomic refer-
ence sequence” or “find the epitopes on the Immune Epitope Database (IEDB)
which are in interaction with a particular structure of IMGT-KG” or“Find the
structure that interacts with the COVID-19 spike and their associated chains,

1 https://www.imgt.org/.
2 A feature is a region in a sequence—a succession of nucleotide or amino acids—with

coordinates (start and end value) and a label.

http://www.imgt.org
https://www.imgt.org/
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genes, alleles and genomic reference sequences”. Currently, IMGT-KG con-
tains data from IMGT/LIGM-DB, IMGT/GENE-DB, IMGT/2Dstructure-DB,
IMGT/3Dstructure-DB. It provides access to 79 670 110 triplets with 10 430 268
entities, 673 concepts and 173 properties. We make openly and freely available
IMGT-KG with adequate documentation.3

In Sect. 2, we provide basic background in biology. We describe the IMGT R©
resources and databases used to generate IMGT-KG in Sect. 3. In Sect. 4, we
detail the construction of the KG, while Sect. 5 gives examples of use-cases. We
present related resources in Sect. 6, before we conclude in Sect. 7.

2 Background

This section lays down some fundamentals in molecular biology, needed for the
understanding of our work.

Our body is constituted of tissues and tissues are made of cells. Every cell has
a kernel that contains chromosomes. Each chromosome contains deoxyribonu-
cleic acid (DNA), which is coded with nucleotides represented by four letters:
A,T,C,G. The DNA has a double helix structure and can be considered as the
cell manual. The information contained in one DNA helix is transcribed to RNA
(ribonucleic acid), what is known as a transcription process. The RNA is then
translated to a protein chain or polypeptide,4 known as a translation process.
The protein chains will fold to create a 3D conformation: protein structure. The
processes of transcription and translation are depicted in Fig. 1. A protein is
coded by one or more genes and is made with a succession of residues or amino
acids. A protein can have different units called chains and a chain can be consti-
tuted by domains and regions. A gene is a DNA sequence (genomics level) that
can be potentially transcribed and/or translated (protein level). A gene can have
multiple versions marked by mutations5 called alleles. A gene is localised in a
particular place on a chromosome called a locus.

Fig. 1. Central dogma of molecular biology (from biocore).

3 https://www.imgt.org/imgt-kg/, gives access to the entire IMGT R©database.
4 Successions of amino acids.
5 Either an insertion of nucleotide, either a deletion of nucleotide or substitution of

nucleotide.

https://biocorecrg.github.io/CRG_Bioinformatics_for_Biologists/gene_expression.html
https://www.imgt.org/imgt-kg/
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When an organism that can produce a disease, known as a pathogen, enters
our body, a defensive strategy is put in place: our immune response produces
proteins thanks to the B cells, called immunoglobulins (IG) or antibodies and
thanks to the T cells, called T cell receptors (TR). These proteins recognise the
pathogen thanks to their motifs (epitopes) and trigger their destruction. Each
produced antibody will be specific to the pathogen. This is the so-called adaptive
immune response.

3 IMGT R©: A Knowledge Management System
for Immunogenetics Data

IMGT R© is an information system specialised in the management of the diversity
and complexity of the immunoglobulins or antibodies, T cell receptors, major
histocompatibility (MH) and superfamilies of IG (IgSF) of MH (MhSF) and
immune system proteins (RPI) [13,14]. It manages immunogenetics data through
3 axes:

– the first axis aims to decipher the IG and TR loci, genes and alleles in the
genome of jawed vertebrates.

– the second axis concerns the exploration and analysis of the expressed IG
and TR repertoires based on comparison with IMGT reference directories in
normal and pathological situations.

– the third axis aims to analyse the amino acid changes and functions of 2D
and 3D structures of engineered antibody and TR.

IMGT R© provides a standard way to represent immunogenetics data based on
the IMGT-ONTOLOGY [12] a vocabulary that describes immunogenetics data
from genomics (nucleotide) data level to protein (three-dimensional structure)
level. This vocabulary allows IMGT R©, to build a rich knowledge system with 7
databases in total, 17 tools and more than 20,000 web pages and documents [13,
14]. The vocabulary terms allow for the identification, description, classification,
localisation, orientation, acquisition and numbering of immunogenetics data. The
databases of interest for this study are:

– IMGT/LIGM-DB6 [10] and IMGT/GENE-DB7 [11]. The former (246951
entries) provides standardised terms to annotate immunogenetics data includ-
ing IG, TR and MH nucleotide sequences from human and other vertebrate
species. The latter (9089 entries) stores the IG and TR genes curated with
all IMGT identified alleles.

– IMGT/3Dstructure-DB and IMGT/2Dstructure-DB,8 [8] and the monoclonal
antibodies database IMGT/mAb-DB.9 The structure databases
(8260 entries) provide an access to protein structures and their related chains
and domains. IMGT/mAb-DB is a monoclonal antibody database (1257
entries) for therapeutic purposes.

6 https://www.imgt.org/ligmdb/.
7 http://www.imgt.org/genedb/.
8 https://www.imgt.org/3Dstructure-DB/.
9 https://www.imgt.org/mAb-DB/.

https://www.imgt.org/ligmdb/
http://www.imgt.org/genedb/
https://www.imgt.org/3Dstructure-DB/
https://www.imgt.org/mAb-DB/
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4 IMGT-KG Construction

IMGT-KG is constructed by using an extended version of the IMGT-ONTOLO-
GY [12] as data model and the IMGT R© genomic and protein databases as
data sources. The construction comprises three steps, as illustrated in Fig. 2:
i) defining a data model based on the IMGT-ONTOLOGY by reusing existing
terms when possible and linking equivalent terms with the sameAs property, ii)
instantiating the model and generating the KG, iii) checking the consistency of
the KG by the help of a reasoning engine and completing the KG with newly
inferred facts.

Fig. 2. Pipeline of IMGT-KG construction

The KG is built by using W3C best practices and standards.10 We gen-
erate URIs11 for the IMGT-KG by using the existing URI pattern of the
IMGT-ONTOLOGY: http://www.imgt.org/imgt-ontology#. The implementa-
tion of IMGT-KG is made by the means of the Apache Jena framework.12 To
take advantage of existing terms, we use OntoFox, a web-based application,
that allows the extraction of terms from an ontology by keeping their related
properties, annotations and classes [19].13 It provides also a means to serialise
the extracted terms in the W3C recommendation format. To interact with the

10 RDF, RDFS, and OWL.
11 Uniform Resource Identifier.
12 https://jena.apache.org/.
13 http://ontofox.hegroup.org.

http://www.imgt.org/imgt-ontology#
https://jena.apache.org/
http://ontofox.hegroup.org
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IMGT R© databases, we use an Object-Relational Mapping (ORM) model to map
the relational database to an object model, then we access to the data with a
Java Persistence API (JPA). In order to check the consistency of the KG, we
use Pellet14 an OWL2 DL (Description Logic) reasoner. Additionally, we make
OWL2 DL inference with the latter and use the Jena rule engine to compute
deductions of a defined rule set.

4.1 IMGT-KG Data Model’s Definition and (Re-)used Ontologies
and Vocabularies

The IMGT-KG data model provides the necessary vocabulary and axioms to
describe immunogenetics entities and their relations. We updated the previ-
ous version of the IMGT-ONTOLOGY and defined new terms (identification,
description, classification, localisation, orientation, acquisition and numbering)
for structuring immunogenetics data following the W3C recommendations. In
order to enhance interoperability and link our KG with other external resources
[3,5], we reuse existing terms when it is possible and make equivalence links with
certain Sequence Ontology (SO) terms.15 Major parts of these terms come from
the OBO foundry ontologies (see Figs. 3 and 4):16

– Relation Ontology (RO) [18] provides more than 400 terms for defining rela-
tions across a variety of domains.

– Feature Annotation Location Description Ontology (FALDO) [6] provides
terms to describe a sequence based on location (position/coordinates) of its
different features. This is particularly useful to annotate a position or coor-
dinates of a feature.

– Genotype Ontology (GENO) is an ontology that provides terms covering
genotype description and genetic variations in model organisms.17

– NCI Thesaurus (NCIt) is a reference terminology and core biomedical ontol-
ogy, providing 120,000 key biomedical concepts with a rich set of terms, codes,
115,000 textual definitions, and over 400,000 inter-concept relationships.18

– NCBI Taxonomy provides terminology that covers classification and organ-
isms nomenclature.19

– Sequence Ontology (SO) [9] provides a controlled and standardised vocabu-
lary for sequence annotation, aiming to unify all sequence annotations. SO
uses the concept of feature in sequence annotation, and provides links that
point to some IMGT labels [12]. In fact, 64 terms of SO have synonyms in
IMGT labels.

14 https://github.com/stardog-union/pellet.
15 http://www.sequenceontology.org/.
16 https://obofoundry.org/.
17 https://github.com/monarch-initiative/GENO-ontology.
18 https://ncit.nci.nih.gov/ncitbrowser/.
19 https://www.ncbi.nlm.nih.gov/taxonomy.

https://github.com/stardog-union/pellet
http://www.sequenceontology.org/
https://obofoundry.org/
https://github.com/monarch-initiative/GENO-ontology
https://ncit.nci.nih.gov/ncitbrowser/
https://www.ncbi.nlm.nih.gov/taxonomy
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Fig. 3. Concepts in IMGT-KG (Color
figure online)

Fig. 4. Properties in IMGT-KG (Color
figure online)

Figure 5 describes the IMGT-KG data model. We use the following colour
code in the figure representing the model:

– The light blue colour represents the Gene and its associated knowledge. In
fact, a Gene can be a member of (obo:RO 0002350) IMGT Group, SubGroup
and/or Clan. A Clan or a SubGroup can also be a member of a Group. A
concept of Gene is associated with a type (variable, diversity, joining, con-
stant, conventional) and a structure type. A Gene has at least one Allele
(obo:GENO 0000413) and an Allele can have a functionality type that states
its functionality (functional, Open Reading Frame (ORF) or pseudogene).
An allele is associated to a coding region (faldo:Region), this region can be
a reference sequence or a sequence from the literature. Each Gene is ordered
in a Locus and belongs to a taxon (obo:NCBITaxon 1).

– At the locus level (orange), a Locus has a location type (major
locus, orphon set etc.), it is also member of a given chromosome
(obo:SO 0000340) for a given taxon. This chromosome is member of a
given assembly (obo:SO 0001248) and the assembly has a version num-
ber (obo:SWO 0004000), data origin (obo:NCIT C103167) and belongs to
a taxon.

– Light green colour represents the sequence features and their related descrip-
tion. A feature is a sequence Region (faldo:Region) with a location
(faldo:ExactPosition) and an IMGT label. Every location has a start value
(obo:GENO 0000894) and an end value (obo:GENO 0000895). A gene fea-
ture part of (obo:BFO 0000050) a genomic sequence (obo:GENO 0000960)
with an accession number (obo:NCIT C25402). The feature with associated
IMGT prototype label (e.g. V-GENE) contains other small features thanks
to the imgt:isInPrototype relation and is related to a genomics sequence with
the imgt:isPrototypeInSeq. Also, the feature with the IMGT cluster label
contains the features with IMGT prototype labels thanks to imgt:isInCluster
relation and is related to a genomics sequence with the imgt:isClusterInSeq.

– The pink colour introduces to the protein level and characterises the protein
Chain and its related properties. A chain (obo:NCIT C41207) can have pro-
tein domains (obo:NCIT C13303) with a domain type. It has also regions and
residues (obo:NCIT C48795) with the associated amino acid
(obo:CHEBI 33709) and an IMGT numbering. Every protein chain domain
has an IMGT label and a location. The associated region of a Chain is the

http://purl.obolibrary.org/obo/RO_0002350
http://purl.obolibrary.org/obo/GENO_0000413
http://biohackathon.org/resource/faldo#Region
http://purl.obolibrary.org/obo/NCBITaxon_1
http://purl.obolibrary.org/obo/SO_0000340
http://purl.obolibrary.org/obo/SO_0001248
http://purl.obolibrary.org/obo/SWO_0004000
http://purl.obolibrary.org/obo/NCIT_C103167
http://biohackathon.org/resource/faldo#ExactPosition
http://biohackathon.org/resource/faldo#ExactPosition
http://purl.obolibrary.org/obo/GENO_0000894
http://purl.obolibrary.org/obo/GENO_0000894
http://purl.obolibrary.org/obo/BFO_0000050
http://purl.obolibrary.org/obo/GENO_0000960
http://purl.obolibrary.org/obo/NCIT_C25402
https://www.imgt.org/imgt-kg/kgmodel.html#isInPrototype
https://www.imgt.org/imgt-kg/kgmodel.html#isInPrototype
https://www.imgt.org/imgt-kg/kgmodel.html#isInPrototype
https://www.imgt.org/imgt-kg/kgmodel.html#isInPrototype
http://purl.obolibrary.org/obo/NCIT_C41207
http://purl.obolibrary.org/obo/NCIT_C13303
http://purl.obolibrary.org/obo/NCIT_C48795
http://purl.obolibrary.org/obo/CHEBI_33709
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reference sequence of an Allele with a similarity score. Chains belong to a
taxon and a structure (obo:NCIT C13303).

– The white colour represents the protein Structure and its associated
description. A Structure (obo:NCIT C13303) that can belong to a complex
(NCIT C19398), having IMGT label and a molecular component. A Struc-
ture is attached to an entry of an amino-acid sequence (obo:GENO 0000720).
This sequence has an accession number, a related bibliographic reference and
an acquisition experiment.

Fig. 5. An overview of the IMGT-KG data model without annotation properties.
Details are given on the KG interface: https://www.imgt.org/imgt-kg/kgdescription.
html.

4.2 IMGT-KG Data Model’s Population

Once we have the schema of our knowledge graph, we proceed to populate it,
i.e. add facts to the graph by using data from the IMGT databases described
above thanks to the ORM model and the JPA. In the genomic level, we do
JPQL queries in IMGT/GENE-DB in order to retrieve information about genes
including their classification (group, subgroup, clan, allele), their localisation
(locus, chromosome, assembly) and their identification (gene type, molecule type
etc.) and we associate the description (IMGT labels) of their genomic nucleotide
sequence thanks to the information from IMGT/LIGM-DB.20 On protein level,
20 Java Persistence Query Language.

http://purl.obolibrary.org/obo/NCIT_C13303
http://purl.obolibrary.org/obo/NCIT_C13303
http://purl.obolibrary.org/obo/NCIT_C19398
http://purl.obolibrary.org/obo/GENO_0000720
https://www.imgt.org/imgt-kg/kgdescription.html
https://www.imgt.org/imgt-kg/kgdescription.html
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we query the Structure databases in order to retrieve information about struc-
tures, chains, domains, regions, residues, alleles and other related properties and
we associate the alleles of structure databases to alleles in IMGT/GENE-DB.
Thanks to the JPA, we harvest the result of these queries and instantiate the
data model with Jena Ontology API, then we serialise the data in the turtle
format.

Fig. 6. Instances in the IMGT-KG related to the COVID-19 SPIKE protein of the
structure 7JMO

As an example, Fig. 6 shows the representation of the SPIKE protein in
the COVID-19 case. We have the structure 7JMO2 annotated with the SPIKE
IMGT label; it is a component of the 7JMO0 complex and is associated to the
7JMO amino acid sequence obtained from X-ray diffraction. We have also the
7JMO1 structure which belongs to the same complex and has the same amino
acid. The 7JMO1 labelled with FAB-GAMMA-1 KAPPA, contains the 7JMOH
chain (VH-CH1), this chain has 7JMOHD00 domain (VH), a tryptophan residue
at position 41 and a coding region KF698735 12 V-REGION. This region is not
partial and is part of the genomic sequence KF698735. The region is also a ref-
erence sequence of an allele Homsap IGHV3-53*02 with an alignment similarity
score of 100. The allele is a variant of a joining gene Homsap IGHV3-53-Gene
which is member of the IGHV-Group and the Homsap IGHV3-Subgroup. This
gene belongs to Homo sapiens (human) taxon and is ordered in the major locus
Homsap IGH-MajorLocus. This locus belongs to the same taxon and is member
of the chromosome 14. The chromosome comes from a NCBI assembly of the
same human taxon.
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We generated a KG with 79 670 110 triplets, 10 430 268 entities, 15 848 105
distinct subjects, 21 861 727 distinct objects, 673 distinct concepts or classes
and 171 distinct properties or relations. The top 10 instantiated concepts and
properties are presented in Fig. 7, 8.

Fig. 7. Top 10 instantiated concepts in
IMGT-KG

Fig. 8. Top 10 instantiated properties
in IMGT-KG

4.3 IMGT-KG Enrichment: Rules, Consistency and Inference

After the KG is generated, we make sure that no data model violation is encoun-
tered in the KG using Pellet for consistency check. We formalise a set of rules
in order to make deduction on the spatial position of sequence by the means of
Jena rule engine API, then we apply Pellet reasoner in order to deduce new facts
in the KG.

Allen’s Interval Algebra and Rules. In 1989, Allen et al. provided a way to
formalise and reason over the time interval [1]. Called Allen’s Logic Interval, this
powerful tool allows reasoning over time events. For example, suppose the start
of event A is the end of another event B, then event A meets event B. Thus, 13
decidable relations were formalised by Allen to describe all types of events that
may occur over time interval [1]. Similarly, we transpose this logic on genomic
sequence positions (Fig. 9). In fact, the genomic sequence spatial position can
be considered as interval with a start and end point, consequently Allen’s Logic
Interval turns out to be the most suitable to make automatic deductions in our
genomic sequence position. Hence, we formalise a set of rules in order to reason
over genomic sequence position.



638 G. Sanou et al.

A B

A meets B

A overlaps B

B finishes A

B starts A

B equal to A

A before B

A contains B

A RO:0002220 B

A RO:0002131 B

B RO:0002519 A

B RO:0002517 A

Not defined

Not defined

A RO:0002519 B

EA = SB -1 or SB = EA +1

SA < SB ^ SB < EA ^ EA < EB

SA < SB ^ SB < EB ^ EB < EA

SA< SB ^ SA < EA ^ EA = EB

SB = SA ^ SA < EB ^ EB < EA

SA < EA ^ E A < SB ^ SB <EB 

SA = SB ^ EA = EB

Allen rela Rela tology Rules / c

Fig. 9. Allen’s interval rules adaptation, S = start and E = end.

For example, the Fig. 10 shows an example of a prototype (V-GENE) which
is a topological model to describe a nucleotide sequence architecture21. The
prototype allows the annotation of IMGT R© genomic data. The application of
the defined rules in Fig. 9 on the V-GENE sequence allows to infer or deduce
that the L-PART2 meets (obo:RO 0002220) the V-INTRON and FR1-IMGT
and it starts (obo:RO 0002517) the V-EXON and finishes (obo:RO 0002519)
the L-INTRON-L.

Being able to make these deductions allows not only to do spatial reasoning
over genomic sequences but also to verify if all features in a genomic sequence
are well positioned in order to detect annotation errors.

Fig. 10. A V-GENE prototype [12].

Reasoning on IMGT-KG. Once we formalised Allen rule set, we inject them
in the KG and compute automatic deductions on genomic sequence positions by
the means of the Jena rule engine API. Then, we apply Pellet reasoner to not
only check the consistency of the KG but also to infer or complete the KG with
inferred fact.
21 A nucleotide sequence consists of many features with a position and IMGT label.

http://purl.obolibrary.org/obo/RO_0002220
http://purl.obolibrary.org/obo/RO_0002517
http://purl.obolibrary.org/obo/RO_0002519
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We built IMGT-KG, an enriched and FAIR KG that integrates a high-quality
immunogenetics data harvested from five IMGT R© databases. We use Jena triple-
store TDB222 to store our triplets and we provide an access endpoint thanks to
a SPARQL server: Fuseki2.23 IMGT-KG provides access to over 79 million of
triplets without inferences and more than 97 million with inferences.

5 IMGT-KG in Use

The IMGT R© resources are largely adopted by the international immunogenetics
scientific community, establishing themselves as the main reference in the field
over the past 30 years. Therefore, IMGT-KG, which integrates and builds on
top of these resources, also targets this community, enhancing the adoption of
semantic web technologies to a field which is currently underrepresented.24

The IMGT-KG fills the gap between different IMGT R© databases and con-
sequently unifies the genomics and proteins data. Hence, the centralisation of
the IMGT R© databases in a FAIR KG allows for more query possibilities and
enables the discovery of new knowledge. We provide free access to our KG via a
well-documented web interface. This interface allows the user to explore different
facets of IMGT-KG. The welcome page introduces users to IMGT-KG and pro-
vides information about the IMGT-KG team. The IMGT-KG Description page
provides details on the KG data model. We also provide a description of the
IMGT-KG dataset via the VoID Vocabulary.25 The IMGT-KG Statistics page
provides detailed statistics and chart plots about the KG. The IMGT-KG Data
Access page, powered by YASGUI,26 provides open access to the resource. There,
users will find various SPARQL query examples. The IMGT-KG Model docu-
mentation and visualisation page provides useful documentation and a taxonomy
visualisation of our data model. These pages are generated with Ontospy.27

We provide a set of use-case scenarios. The corresponding queries for each
of the scenarios can be found on IMGT-KG’s webpage: https://www.imgt.org/
imgt-kg/kgyasgui.html.

Scenario 1: Assume that a user searches information on the genes/alleles func-
tionality and why they are not functional. She/he must first select the alle-
les/genes of interest, the associated reference sequence and its belonging entity,
the functionality (here P for pseudogene). To explain the absence of some func-
tionality, she/he must check the qualifier associated to the entity with the
imgt:has imgt qualifier and filter based on the qualifier that contains “pseudo”
terms for example.

Scenario 2: Suppose an immunogenetics researcher wants to explore a specific
structure and the associated external links, for example find some structures
22 https://jena.apache.org/documentation/tdb/.
23 https://jena.apache.org/documentation/fuseki2/index.html.
24 We plan to communicate our results and resources to the biological community.
25 https://www.w3.org/TR/void/.
26 https://yasgui.triply.cc/.
27 http://lambdamusic.github.io/Ontospy/.

https://www.imgt.org/imgt-kg/kgyasgui.html
https://www.imgt.org/imgt-kg/kgyasgui.html
https://jena.apache.org/documentation/tdb/
https://jena.apache.org/documentation/fuseki2/index.html
https://www.w3.org/TR/void/
https://yasgui.triply.cc/
http://lambdamusic.github.io/Ontospy/
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and their related bibliographies with the PUBMED identifier, the associated
visualisation of the structure, the same structure in the Protein Database (PDB)
and the probable epitope of the structure. For that, the user must first select the
entry associated to the structure, the related properties of the entry (pdb link,
jmol visualisation, bibliography properties), then select the related properties of
the structure (epitope, name).

Scenario 3: Suppose a clinician wants to find the structures that interact with
the COVID-19 spike and their associated chains, genes, alleles and genomics
reference sequences. For that, the user can select the structures having an IMGT
label SPIKE, their related properties (complex, IEDB epitope, entry) and the
complementary structure of the SPIKE protein which has also the same entry
and belong to the same complex. Subsequently, the user can select the related
properties of entry, like the PDB link. For the associated gene and allele, the user
must select the regions associated to the chain of the complementary structure
and, associated to these regions, their respective allele. These alleles are used to
find the related reference sequence, the entity of the reference sequence and the
gene.

6 Related Resources: The OBO Foundry

Considering the complexity of the biological field, there has been a growing effort
to provide structured data and models in the field, mainly driven by the OBO
(Open Biological and Biomedical Ontologies) community. OBO fosters research
in biological and life sciences by making available ontologies and vocabularies.
Although not specialised for the immunogenetics field, some of these resources
provide general terms to describe: proteins: Protein Ontology PRO allows the
representation of protein-related entities: from protein families to proteoforms
to complexes [7];28 genes: Gene Ontology GO provides resources to enhance the
scientific knowledge about the functions of genes from different organisms [2];29

sequences: Sequence Ontology SO [9] provides a controlled and standardised
vocabulary for sequence annotation, aiming to unify all sequence annotations. In
addition to being more general than IMGT-KG, to our knowledge, none of the
resources developed in OBO provide access to integrated immunogenetics data,
where IMGT-KG comes to fill exactly this gap.

7 Conclusion

Given the complexity of dealing with adaptive immune response from genome
(set of genes) to proteome (set of proteins), there is a need for knowledge sharing
and advanced data access in this field to facilitate future and ongoing research.
Nowadays, responding to many health and sanitary challenges requires a combi-
nation of different studies in different domains, for example the understanding of
28 https://lod.proconsortium.org/.
29 http://geneontology.org/.

https://lod.proconsortium.org/
http://geneontology.org/
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the COVID-19 virus and the development of a vaccine to counter its spread are
both powered by immunogenetics research such as the genetics basis, the main
protein implied in the COVID-19 disease.

To face these challenges, we built IMGT-KG, the first FAIR KG in the domain
of immunogenetics containing over 79 million triplets. The core model of IMGT-
KG is an extended version of the IMGT-ONTOLOGY and the data to populate
the KG come from IMGT R© databases - established reference data sources for
immunogenetics containing both genomics and protein data. Hence IMGT-KG
unifies in a unique manner these two levels of knowledge. This unification gives
more query possibilities and opens a way to the discovery of new scientific knowl-
edge. To take an example, among other applications, the IMGT-KG may help to
improve knowledge about the coronavirus proteins potentially targeted by the
adaptive immune system.

In future work, we will enrich the KG by integrating the IMGT/mAb-DB, the
dedicated database to engineered monoclonal antibodies for clinical applications
[14], then connect it to related resources like PRO and GO . Subsequently, we will
apply representation learning models on the graph in order to predict or discover
new links in our data by embedding the KG [15,17]. A named entity recognition
system relying on IMGT-KG’s entities is currently under construction, aiming to
enable the automatic text annotation (e.g. from scientific articles) with IMGT-
KG entities.

Resource Availability Statement:

– IMGT-KG web interface: https://www.imgt.org/imgt-kg/
– IMGT-KG fuseki server: https://www.imgt.org/fuseki/#/
– IMGT-KG data model: https://doi.org/10.5281/zenodo.6511279
– Query scenarios: https://doi.org/10.5281/zenodo.6674479
– VoID description: https://www.imgt.org/imgt-kg/kgvoid.html
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Abstract. In recent years, several relation extractions (RE) models
have been developed to extract knowledge from natural language texts.
Accordingly, several benchmark datasets have been proposed to evaluate
these models. These RE datasets consisted of natural language sentences
with a fixed number of relations from a particular domain. Albeit useful
for general-purpose RE benchmarking, they do not allow the genera-
tion of customized microbenchmarks according to user-specified criteria
for a specific use case. Microbenchmarks are key to testing the indi-
vidual functionalities of a system and hence pinpoint component-based
insights. This article proposes REBench, a framework for microbench-
marking RE systems, which can select customized relation samples from
existing RE datasets from diverse domains. The framework is flexible
enough to choose relation samples of different sizes and according to the
user-defined criteria on essential features to be considered for RE bench-
marking. We used various clustering algorithms to generate microbench-
marks. We evaluated the state-of-the-art RE systems using different
RE benchmarking samples. The evaluation results show that specialized
microbenchmarking is crucial for identifying the limitations of various
RE models and their components.
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and the task is to determine the relationship between the entities. There have a
wide range of applications of RE including knowledge base creation [25], event
generation [14], and question-answering approaches [33]. In recent years, several
novel approaches have been proposed to extract relations, including rule-based
[22] and machine learning [11,26,27] approaches. These approaches operate in
different environments, such as supervised, semi-supervised, distant-supervised,
and unsupervised [17].

Research Gap: Several datasets such as NYT-FB [18], TACRED [36], WEB-
NLG [8], Wikidata RE [21], and SemEval-2010 [10] have been proposed to bench-
mark RE systems. These datasets (Table 1) contain a fixed number of relations
from a particular domain and are sufficient to test the overall performance of the
RE system in terms of precision and recall. However, they do not allow generation
of use-case-specific benchmarking based on user specified-criteria. For example, a
user may be interested in testing a given RE system using a benchmark containing
only binary relations with a fixed number of sentences and more than three
named entities in each sentence. Such customized microbenchmarks are essen-
tial for performing use-case specific benchmarking and detailed component-based
testing to demonstrate their strengths and weaknesses.

To the best of our knowledge, there is no RE benchmarking framework that
allows users to generate customized microbenchmarks according to user-defined
criteria. Furthermore, the existing RE datasets are generally designed for specific
purpose. For example, the primary purpose of the NYT-FB [18] dataset is distant
supervision and is specialized for RE tasks that are based on distant supervision.
Similarly, the WEB-NLG [8] dataset primarily targets natural language gener-
ation, and supervised RE systems are the main objective of the TACRED [36]
dataset. The main task of the Wikidata-RE [21] dataset is to extract overlapping
or multiple relationships. Consequently, no benchmark dataset is curated from
multiple sources (most of the datasets have Wikipedia as a source). Riedal et
al. [18] mentioned the problems caused by considering only a single source for
RE systems. Finally, the RE systems reported a significant difference in the F
scores for the different datasets (see Table 2).

Our Proposal: The performance of RE systems is significantly affected by vari-
ous sentence and relations-level features, such as the number of tokens in the sen-
tences, named entities, tokens around the mentioned entities, tokens in the enti-
ties, exact string match of the entities, and number of punctuations [1,4,22,26].
We propose REBench, an RE benchmarking framework that allows users to gen-
erate customized microbenchmarks according to user-defined criteria on various
sentence and relations-level features. We use state-of-the-art clustering algorithms
in REBench to cluster more representative relations and select divers microbench-
marks.

REBench selects microbenchmarks from the RELD-RDF dataset, created from
six – WEB-NLG [8], NYT-FB [18], Wikidata RE [21], SemEval2010 [10], Google-
RE [15], and FewRel [9], – state-of-the-art RE datasets. In RELD-RDF, we model
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Table 1. State-of-the-art benchmark datasets, its primary tasks and source of extrac-
tion.

Benchmark Primary task Underlying Corpus Availability

NYT-FB Distant supervision New york times article Partially available

Wikidata-RE Overlaping RE Wikipedia Open

WEB-NLG Natural language Generaion Crowdsourced Open

SEMEval-2010 RE classification Web Open

Google-RE Relation Extraction Wikipedia Open

TACRED Supervised RE TAC-KBP Closed

DocRED Document RE Wikipedia Open

Table 2. Basic statistics of well-known relation extraction benchmark datasets,
D represents documents instead of sentences.

Benchmark # training Sentences # Relation Best F1 # NA relation

NYT-FB 561,95 24 92.5 x

Wikidata-RE 372,059 353 83 0%

WEB-NLG 501,9 246 93 0%

SEMEval-2010 10,717 9 91 17.4%

Google-RE 5528 3 87.2 0%

TACRED 106,264 41 75.2 80%

DocRED 3053D 96 67.28 0%

all these datasets (which were in different formats) into a single ontology.
RELD-RDF provides a unified format for data access along with various anno-
tations which are required for training different types of relation extraction sys-
tems. The RELD-RDF resulted in the largest (to the best of our knowledge) RDF
knowledge graphs of relations, containing 55.54 million triples describing 824
relations and 2 million sentences.

Our main contributions are as follows:

– REBench allows users to generate customized benchmarks according to user-
defined criteria on important sentences and relation-level features. The frame-
work completely abides by Semantic Web technologies: it uses the RDF
dataset as input and makes use of SPARQL queries for sample selection and
clustering.

– RELD-RDF is an assorted dataset constructed from well-known RE datasets
extracted from various domains. This enables REBench to select a microbench-
mark from multiple sources to avoid single-source problems [18].

– We evaluated state-of-the-art RE tools on a customized benchmark generated
by REBench. The evaluation results show that baseline systems can be changed
using more diverse benchmarks.
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The rest of the paper is organized as follows: In Sect. 2, we describe the
RDF dataset we used and the approach to building REBench. Section 3 presents
the performance of different RE systems on the REBench. The importance and
impact of the resource are explained in Sect. 4, and Sect. 5 presents resource
availability, reusability and sustainability. Related work, conclusion and future
work are presented in Sects. 6, and 7, respectively.

2 REBench

This section first discusses the RDF dataset used as an input for the REBench
relation sample generation framework. We then discuss the relation sampling
process and microbenchmark generation framework in detail.

2.1 RELD-RDF Dataset

As mentioned previously, our framework selects a customized relation sample
from the RELD-RDF dataset. The RELD-RDF dataset consists of six datasets that
are commonly used to train and evaluate different types of RE systems. For
example, WEB-NLG, NYT-FB, and Wikidata datasets are commonly used for
sentential RE, Google-RE and DocRED are used for document-based RE, the
FewRel dataset is used for Few-shot RE, and the SemEval2010 dataset is com-
monly used for casual RE1. In RELD-RDF, each relation contains 23 features (more
than the source datasets) divided into two main categories: relation-level and
sentence-level features. Features related to relations include its natural language
representation; source; other representations of the relationship such as P569,
date of birth, birthDate, and /people/person/date of birth all represent the same
relation; and distribution (training, testing, validation). Similarly, the features
related to sentences include the number of tokens, number of entities, direction of
relation, position of the subject and object entity2 in the sentence. Figure 1 sum-
marizes the features attached to each relation. A sample RDF representation of
a relationship in RELD-RDF is presented in Listing 1.1. The RELD-RDF is publicly
available from the SPARQL endpoint http://reld.cs.upb.de:8890/sparql.

2.2 Relation Sample Generation for Microbenchmarking

In this section, we first define the relation sampling generation problem, followed
by the generation process. We define our relation sampling generation problem
as follows:

Definition 1 (Sampling problem). Let S be a set of input relations. Our aim
is to choose a set of R relations that best represents S with more diverse features
R << |S|.

1 For the details about different types of RE system see Sect. 6.
2 Subject and object entities sometimes also named as head and tail entities.

http://reld.cs.upb.de:8890/sparql
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Fig. 1. A summary tree of features attached to relations and sentences in RELD-RDF

dataset.

The relation sample generation process is carried out in four main steps, as shown
in Fig. 2. As a prerequisite, the user provides the RELD-RDF dataset as input, the
required number of relation R, and the selection criteria (as SPARQL query) to
be considered in the RE sampling for microbenchmarking. The sampling process
is carried out in four steps. (1) The relation selection step selects all relations
with required features from the RELD-RDF dataset. (2) The vector representation
step generates feature vectors and normalization of them for the selected rela-
tionships. (3) The model generates an R number of clusters from the selected
relations in the clustering step. (4) Final relation selection, the model selects the
most representative relation from each cluster to be included in the final sample
requested by the user. We now discuss these four steps in more detail.

Fig. 2. REBench sampling process from input to output.
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Listing 1.1. An example RELD-RDF representation of a relation with associated data
sentences properties and associated data of sentences.

@prefix dataset: <https :// reld.dice -research.org/> .
@prefix dbo: <http :// dbpedia.org/ontology/> .
@prefix dc: <http :// purl.org/dc/elements /1.1/ > .
@prefix freebase: <http ://rdf.freebase.com/ns> .
@prefix owl: <http ://www.w3.org /2002/07/ owl#> .
@prefix ps: <http ://www.wikidata.org/prop/statement/> .
@prefix rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#> .
@prefix rdfs: <http ://www.w3.org /2000/01/rdf -schema#> .
@prefix reldr: <https :// reld.dice -research.org/resource/> .
@prefix reldv: <https :// reld.dice -research.org/schema/> .
@prefix xml: <http ://www.w3.org/XML /1998/ namespace > .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .
# Dataset #
dataset:NYT -FB reldv:hasRelation reldr:R-4001 ,

reldr:Dataset_2 dc:title reldr:NYT -FB .
reldr:NYT -FB dc:source reldr:text_freebase ;
reldv:primaryTask reldr:distant_supervision ;
reldv:reType reldr:ternary .

# Relation #
reldr:R -4001 rdfs:label " place_of_birth" ;

owl:equivalentProperty reldr:placeOfBirth ;
owl:sameAs <http ://rdf.freebase.com/ns/people/person/place_of_birth >,

ps:P19 , reldr:R-2, reldr:R-3001 , reldr:R-5001 ;
reldv:distribution "test"^^xsd:string ,

"train"^^xsd:string ,
"valid"^^xsd:string ;

reldv:hasSentence reldr:S_NYT -FB_103382 ,
...

reldr:S_NYT -FB_106692.
# Sentence #
reldr:S_NYT -FB_103382 reldv:direction false ;

reldv:hasNamedEntity reldr:ne_n559817 , reldr:ne_n559818 ,
reldr:ne_n559819 , reldr:ne_n559820;

reldv:hasObject reldr:object_55 ;
reldv:hasSubject reldr:subject_50 ;
reldv:hasText "Or as Heather Marks ,
the 17-year -old Vogue favorite from Calgary , puts it : ’’
It could be that Canada is just having a moment like Brazil and
Russia did ."@en ;
# Sentnece Properties #
reldv:numAftToken 21 ;
reldv:numBefToken 2 ;
reldv:numBetToken 6 ;
reldv:numOfObjToken 1 ;
reldv:numOfPunctuations 3 ;
reldv:numOfRelation 3 ;
reldv:numOfSubToken 2 ;
reldv:numOfTokens 32 ;
reldv:objPos 10 ;
reldv:subPos 2 .

# Subject & Object #
reldr:subject_50 reldv:subject reldr:Heather_Marks .
reldr:object_55 reldv:object reldr:Calgary .
# Named Entities #
reldr:ne_n559817 a dbo:GPE ;

rdfs:label "calgary"@en .
reldr:ne_n559818 a dbo:GPE ;

rdfs:label "canada"@en .
reldr:ne_n559819 a dbo:GPE ;

rdfs:label "brazil"@en .
reldr:ne_n559820 a dbo:GPE ;

rdfs:label "russia"@en .
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Relations Selection: There can be potentially many relations in the REDL-
RDF dataset that pass the user criteria for microbenchmarks. The sampling
framework fetches all relevant relations along with the required annotated fea-
tures from the RELD-RDF dataset using a single SPARQL query. An example of
a SPARQL query is presented in Listing 1.2. This SPARQL query retrieves all
relations from the dataset along with the following features in the sentences:
total number of tokens, named entities, and number of punctuations in a sen-
tence. The user can select any number of features that are considered important
for microbenchmarking. The result of this query execution is stored in a map
that is used in subsequent sampling steps. In the following sections, we show how
this query can be modified to select customized samples for microbenchmarking.

Feature Vectors: The clustering step (explained next) requires measures of
distances between relations. Each relation that was retrieved in the relation
selection step from the RELD-RDF dataset is mapped to a vector representation.
The length of the vector is equal to the number of selected features. The vector
stores the corresponding relation features that were retrieved along with the
given relations. Once feature vectors are created from relations, the next step is
to normalize all values in the vectors between 0 and 1 to avoid bias owing to
high values in the vector. The normalization of vectors for particular features
is performed as follows: each of the individual values in every feature vector is
divided by the overall maximal value (across all vectors) for that feature. This
ensures that all the relations are located in a unit hypercube.

Clustering: Given a set of normalized vectors, the next step is to group
them into the required R number of clusters. For this, we draw a nor-
malized vector in the multidimensional space and used existing well-known
distance-based clustering namely FEASIBLE [20], FEASIBLE Exemplars [20],
KMeans++, DBSCAN+KMeans++ (Combination of DBSCAN and KMeans
where DBSCAN remove outliers while KMeans generate the required number
of clusters) [7], and Random selection. The REBench framework is not limited
to these clustering methods; it is sufficiently flexible to be extended to other
clustering algorithms that allow the generation of a fixed number of clusters.

Listing 1.2. SPARQL Query for selection of relations from NYT-FB from RELD-RDF

dataset using named entity, number of punctuation and number of token features.

PREFIX reld: <https :// reld.dice -research.org/schema/>
SELECT DISTINCT ?rId (AVG(? nToken) as ?avgToken) (count(?ne) as ?NE) (AVG(?

numPunc) as ?avgPunc)
FROM <http :// reld.dice -research.org/NYT -FB>
WHERE{
?rId reld:hasSentence ?sentence.
?sentence reld:hasSubject ?sub.
?sentence reld:hasObject ?obj.
?sentence reld:numOfTokens ?nToken.
?sentence reld:numOfPunctuations ?numPunc.
?sentence reld:hasNamedEntity ?ne.
}
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Final Selection of Most Representative Relations: For this step, we adopt
the exact approach of FEASIBLE [20] as follows: For each cluster C finds the
centroid c which is the average of the feature vectors of all queries in the vectors in
C. Next, we determine the distance between each relation in C and the centroid
c. The final selection criterion is the minimum distance between the relationship
and c. The output of our framework is an RDF file containing the selected
relations, along with a list of features. This RDF output can be queried directly
using a SPARQL query. The input for state-of-the-art RE systems is different,
and we provide a generic script to convert the output into JSON format. The
user can also convert the output into the desired style with minimum effort.
REBench contains CLI options for benchmark generation that are available from
the resource homepage.

Listing 1.3. Personalized query for selection of relations and correspending sentences
along with required features from RELD-RDF dataset having balanced number of sen-
tences.

Prefix reld: <https :// reld.dice -research.org/schema/>
SELECT DISTINCT ?rId (AVG(? nToken) as ?avgToken) (AVG(?befT) as ?

avgBeforeTokens) (AVG(? aftT) as ?avgAfterToken)
{
?rId reld:hasSentence ?sentence.
?sentence reld:numOfTokens ?nToken.
?sentence reld:numBefToken ?befT.
?sentence reld:numAftToken ?aftT.

} Group by ?rId having (count(? sentence) = 700)

2.3 Relation Sample Personalization

As mentioned previously, our framework allows users to generate customized
benchmarks according to user requirements. For example, a user might be inter-
ested in generating a Few-Shot (a benchmark with a balanced number of sen-
tences for each relation) microbenchmark with 700 sentences each. To do so, the
user can simply personalize the SPARQL query given in Listing 1.2 by adding
SPARQL Group By, and Having clauses as shown in Listing 1.3.

2.4 Diversity of Relation Sample

Like any benchmark, the relations included in an RE benchmark should be
diverse in terms of the features that affect the performance of RE systems. We
define the diversity of the benchmark generated by REBench as follows.

Definition 2 (Sample Diversity)
Let S be a relation sample extracted from a set of relations L. The diversity
score D is the average standard deviation of the relation features k included in
the relation sample S:

D =
1
k

k∑

i=1

(σi(S)) (1)
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where μi and σi represent mean and standard deviation, respectively. Where i
represents the ith feature of the said distribution. In the next section, we present
the diversity scores of the microbenchmarks generated using different clustering
methods included in the REBench.

3 Evaluation and Results

This section describes the experimental setup and evaluation results.

3.1 Experimental Setup

We used three microbenchmarks in our evaluation: (1) A 15 relations sample
was extracted from the RELD-RDF NYT-FB sub-graph to evaluate the systems
trained on the NYT-FB dataset. We used the personalized query in Listing 1.2
to select these relations.

(2) To evaluate the Few-shot relation extraction model, we used listing 1.3 to
extract relations with a balanced number of sentences in the RELD-RDF datasets.
We selected 40 relations from the RELD-RDF dataset by keeping the number of
sentences equal to 700. (3) Bootstrapping-based RE approaches are more likely
to be sensitive to the features in a sentence; therefore, we choose two 100 rela-
tion benchmarks with features such as the number of tokens in a sentence, the
number of tokens around the entities, and the direction property. We kept the
direction property true in one benchmark and false in the second benchmark to
observe the effect of direction of the entities during evaluation. We selected all
these benchmarks using FEASIBLE-Exemplars because of their highest diver-
sity score. The systems we chose for evaluation did not accept data directly
in the RDF format; therefore, we converted the selected data according to the
requirements of a particular RE system we chose for the evaluation.

3.2 Selected RE Systems for Evaluation

We selected those RE systems for evaluation that carry out the following criteria:

– Availability of open source implementation
– State-of-the-art baseline results
– Designed for sentence-based relation extraction

We chose three types of RE systems for the evaluation: supervised, boot-
strapping, and unsupervised. Supervised systems include Partition Filter Net-
work (PFN) [29] and Relation Extraction By End-to-end Language generation
(REBEL) [11]. In addition, we selected Distributional Similarity for Relation
Learning (Matching the Blanks) [2] system to evaluate on a balanced bench-
mark. For bootstrapping-based systems, we selected BREDS [4], and from the
unsupervised category, we selected Revisiting Unsupervised Relation Extraction
(URE) [26].
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3.3 Results

Diversity Scores: First, we wanted to check which clustering method included
in REBench generates more diverse benchmarks. To this end, we generated
five microbenchmarks with a number of relations equal to 4, 24, 80, 200, and
350 using supported clustering methods. The diversity scores of these bench-
marks are shown in Fig. 3 for each supported clustering method. It is observed
that FEASIBLE-Exemplars generates the most diverse benchmarks, followed
by FEASIBLE, KMean++, DBSCAN+KM++, and Random selection, respec-
tively. The reason for FEASIBLE-Exemplars high diversity is due to its clus-
tering method: it selects exemplars based on the longest distances from each
other. FEASIBLE and KMeans++ are centroid-based, instead of selecting sam-
ples based on the longest distance. The removal of outliers by DBSCAN reduced
the overall diversity score. Finally, random selection does not follow a particular
method for the selection of relations; therefore, its diversity score is the lowest.

Fig. 3. Diversity score for five different algorithms using benchmarks of different size.

F Measures: We now compare the performance of the selected RE systems
in terms of standard precision, recall, and F measures. The evaluation results
are listed in Table 3. In the supervised category, PFN slightly outperformed
REBEL (in terms of F scores 92.4 vs 91.7) while using the original benchmark
dataset, i.e., NYT-FB. However, REBEL clearly outperformed PFN (F score
89.9 vs 82) for REBench. One possible reason for the fluctuation in the results is
that PFN considers a single token named entity. The results change when the
number of tokens in the entity changes. This indicates that the results of an
RE system depend on the diversity of the samples selected for evaluation and
the different sentence and relation-level features such as the number of named
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entities, tokens in the sentences, can change the ranking of the tested RE systems.
It is highly possible that an RE system might be tuned well for a particular type
of sentence length and style, but performed worse when applied to sentences
with high veracity.

Table 3. Precision, Recall and F-score of different types of RE systems on REBench

and the original benchmark dataset, we observed fluctuation in the values and shows
new baseline. * represents average F-score, while F and T represent a direction feature
in a benchmark as False and True, respectively.

Type RE Systems Dataset P R F

Supervised REBEL (micro) NYT-FB 91.5 92.0 91.7

PFN(micro) 92.3 92.5 92.4

REBEL (micro) REBench 90.4 89.6 89.9

PFN(micro) 84.2 80.0 82.0

Bootstrapping BREDS News Articles 0.79 0.80 0.79∗

REBench F 0.84 0.87 0.85

REBench T 0.66 0.73 0.69

Unsupervised URE NYT-FB 0.31 0.63 0.41

REBench F 0.32 0.70 0.44

REBench T 0.29 0.55 0.38

Similarly, bootstrapping and unsupervised RE systems are sensitive to the
structure of the sentences from which the relations are extracted. For example,
our results show that simply changing the subject and object position in sen-
tences significantly affects the F scores of the BREDS and URE RE systems.
This change in results indicate the importance of customized microbenchmarks
for performing diverse stress testing. Furthermore, we evaluate a Few-shot RE
system [2] on Listing 1.3; the overall F-score remains almost the same as that
reported in the paper (F-score = 88.9). The reported F-score from the original
paper is based on 80 relations, while we chose the 40 most representative rela-
tions. The results indicate that our framework can select the most representative
sample from the population.

4 Impact

This study provides an open source, easily extendable, and reusable resource
for microbenchmarking of RE components and models. We constructed an RDF
dataset from existing RE datasets, which are in different formats. We added
additional features to each relation that are important to perform RE bench-
marking. This dataset is publicly available and can be queried via SPARQL. The
proposed dataset can be used for various NLP tasks such as relation extraction,
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and named entity recognition. To the best of our knowledge, no microbenchmark-
ing framework is available for RE systems. Our proposed framework completely
abides by semantic web technologies. We hope that REBench will be used by
the NLP community to perform use-case specific benchmarking and pinpoint
component-level pros and cons of RE systems.

5 Availability, Reusability and Sustainability

The resource is publicly available for reuse under the licence of GNU General
Public V3.0. A detailed usage manual for reusing and adapting resources is avail-
able in our public GitHub repository. The code and usage instructions are both
documented and available on the project homepage (see Sect. 7). The resource
uses Semantic Web technologies which makes its usage extendable, as well as the
potential to add new clustering algorithms to the core REBench framework. In
addition, the proposed RELD-RDF dataset can be extended to include more RE
datasets. We provided instructions on how to reuse our code to extend the RDF
dataset, as well as the REBench framework. All future extensions will be reflected
on the same GitHub page. In addition, REBench will be sustained via the Pader-
born Center for Parallel Computing PC2, which provides computing resources
as well as consulting regarding their usage to research projects at Paderborn
University and also to external research groups. The Information and Media
Technologies Centre (IMT) at Paderborn University also provides permanent IT
infrastructure to host the REBench project.

6 Related Work

Many benchmarking datasets are available for relation extraction systems. Most
of these benchmarks target a specific type of RE task. In this section, we divide
them according to the target RE task.

Sentence Level Relation Extraction Benchmarks: The highly explored
method of relation extraction is sentence-level RE. In this type of RE, a system
attempts to find the relationship between a pair of entities in a natural language
sentence. A single sentence can contain one or more relations or no relation at
all; similarly, a sentence can contain any number of entities. Several benchmark
datasets are available for the training and evaluation of sentence-level RE systems.

NYT-FB [18]: This dataset was extracted from the New York Times and
aligned to freebase [5] entities. The dataset contains 24 relations and, 56195
sentences. The dataset was initially curated for distant-supervision tasks. Some
reported shortcomings of this dataset are that the dataset does not contain
overlapping sentences [35], it suffers from the problem of long-tailed distribution
of sentences and imbalanced relations in terms of sentence annotation [23], and
Wang et al. [27] found a problem related to NER format and only the last
word annotation, which directly affects the performance. Wei et al. [28] reported
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that a single relation annotation in NYT-FB degrades the overall performance.
TACRED [35]: is a well-known benchmark dataset for RE systems. The datasets
contained 41 relations, which also include NA (no relation). The dataset is not
available as open source. Sample imbalance, a high noise rate, and incorrect
annotations have been reported in TACRED [13,16,37].

Wikipedia-Wikidata-RE: This is a comparatively large dataset in terms of rela-
tions and number of sentences. Sentences were extracted from Wikipedia and
aligned to the entities of Wikidata. The dataset contains 353 relations and
372,059 training sentences. There is a high difference in the macro and micro
evaluation on these datasets [3] Furthermore, some relations are sparse [38] that
significantly affect the overall performance.

WEB-NLG: A natural language generation dataset containing 5019 crowd-
sourced training sentences and 246 relations. It is a widely used dataset for
RE and has achieved human-level accuracy. Researchers have identified mul-
tiple problems regarding this dataset such as long-tail distribution, last word
annotation, confusing relation labels, noisy sentences, and issue related to NER
[23,24,27,32].

Apart from these benchmark datasets, there are other datasets which target
sentence-level RE, such as SciERC [12], Trex [6] and, CoNLL2004 [19].

Document Level Relation Extraction Benchmarks: A relation in natural
language may or may not explicitly exist in a single sentence, but comes from
the context of other surrounding sentences. Therefore, sentence-level relation
benchmarks do not fulfil this requirement. Document-level relation extraction
benchmarks like DocRED [31] and Google-RE [15] are used for this purpose
[34]. One of the main disadvantages of these benchmarks is that the source of
the sentences is mostly Wikipedia. The Google-RE dataset only contains four
relations and the primary task is not document-based relation extraction, while
DocRED consists of 96 relations.

Causal Relation Extraction Benchmarks: A relationship between two enti-
ties e1 and e2, such that the occurrence of e1 results in the occurrence of e2, is
known as a cause-effect relation or causal relation extraction [30]. SemEval 2010
Task 8 and TACRED, contain causality relationships (1331 in SemEval 2010
Task 8 and 269 in TACRED). The main disadvantage of these benchmarks is
the size (in terms of number of sentences) of the benchmarks.

None of the above benchmarking datasets provide a customized microbench-
mark; neither of them uses Semantic Web technologies such as SPARQL query-
ing. Our proposed framework REBench overcomes these problems and provides
task specific, component-level microbenchmarks according to the user require-
ments.
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7 Conclusion and Future Work

In this article, we describe a resource for generating samples of relations and
sentences for microbenchmarking of relation extraction systems. Our resource
uses different clustering algorithms to create more diverse clusters of samples to
evaluate the relation extraction task. Users can select personalized samples for
microbenchmarks based on the required features. The results indicate that diver-
sity in the benchmark sample is key to performing fine-grained evaluations of RE
systems. Microbenchmarking is key to performing such fine-grained component-
level performance evaluations. Using our resources, the NLP community can
evaluate their relation extraction systems based on their specific needs. We aim
to extend our work to other natural language processing tasks, such as named
entity disambiguation and Named Entity recognition.

Resource Availability Statement:

– Source code, usage instruction, evaluation results, JSON conversion code and
code for generation of Fig. 3 of REBench is available from our GitHub repos-
itory3

– Details about the RELD-RDF dataset is available on the GitHub Repository4

– Online endpoint of the data used in REBench is available on5
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Abstract. Faced with the ever-increasing number of scientific publica-
tions, researchers struggle to keep up, find and make sense of articles rel-
evant to their own research. Scientific open archives play a central role in
helping deal with this deluge, yet keyword-based search services often fail
to grasp the richness of the semantic associations between articles. In this
paper, we present the methods, tools and services implemented in the ISSA
project to tackle these issues. The project aims to (1) provide a generic,
reusable and extensible pipeline for the analysis and processing of arti-
cles of an open scientific archive, (2) translate the result into a semantic
index stored and represented as an RDF knowledge graph; (3) develop
innovative search and visualization services that leverage this index to
allow researchers, decision makers or scientific information professionals
to explore thematic association rules, networks of co-publications, articles
with co-occurring topics, etc. To demonstrate the effectiveness of the solu-
tion, we also report on its deployment and user-driven customization for
the needs of an institutional open archive of 110,000+ resources. Fully in
line with the open science and FAIR dynamics, the presented work is avail-
able under an open license with all the accompanying documents necessary
to facilitate its reuse. The knowledge graph produced on our use-case is
compliant with common linked open data best practices.
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1 Searching Scientific Literature: Beyond Keywords

In recent years, several evolutions have drastically transformed the way researchers
interact with scientific literature. First, the number and pace of articles published
are skyrocketing, such that it is increasingly difficult to keep up, find relevant arti-
cles or even identify potential collaborators. The use of social networks such as
Twitter to monitor scientific advances, results in an echo chamber highlighting
laboratories and researchers that are already visible and recognized. Second, most
scientific literature repositories offer simple search capabilities that typically rely
on keyword matches or author names. Such an approach commonly fails to grasp
the richness of the semantic relationships that hold between articles, leaving to
the user a cumbersome filtering of search results. Finally, the ultra-specialization
of research communities makes it difficult to discover cross-disciplinary knowledge,
yet essential to meet the growing demand of funding agencies for pluri- or inter-
disciplinarity. It is therefore essential to offer tools that allow researchers, as
well as scientific and technical information (STI) professionals, to find
their way in and make sense of this mass of knowledge. There exists a vari-
ety of methods and tools designed to process the content of text documents, extract
knowledge, and provide advanced services. However, to the best of our knowledge,
these tools are either domain-specific or address specific steps but do not provide
an end-to-end, integrated pipeline.

In this paper, we present the methods, tools and services implemented in
the ISSA project [3] to tackle these needs. ISSA aims to (1) provide a generic,
reusable and extensible pipeline for the analysis and processing of an
open scientific archive, (2) translate the results into a semantic index in the
form of an RDF knowledge graph (KG); (3) develop innovative search
and visualization services exploiting the index, aimed at researchers, deci-
sion makers, or STI professionals. Geared towards genericity and reusability, the
proposed solution adheres to the FAIR principles [35] and the open science guide-
lines. Furthermore, ISSA adopts a pragmatic approach that strives to rely on
robust, industry-proven, scalable solutions, and integrate them into a coherent,
easily deployable pipeline.

The processing pipeline, depicted in Fig. 1, involves various artificial intelli-
gence techniques: natural language processing, knowledge engineering, semantic
web and linked data. Publications’ metadata and full text are processed in order
to extract thematic descriptors1 and named entities (NE). To allow services to
reason upon the extracted knowledge while leveraging terminological references
such as ontologies or thesauri, thematic descriptors and NEs are linked with
resources such as Wikidata, DBpedia and GeoNames. The resulting KG serves
as a keystone able to support the development of services such as search and visu-
alization. In particular, the Arviz [24] and MGExplorer [25] visualization tools
make it possible to explore and visualize thematic association rules, networks

1 Thematic descriptors are keywords linked to reference vocabularies, thesauri or
ontologies that characterize an article as a whole. Unlike keywords provided by
authors, they are extracted automatically using text classification methods.
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of co-publications, or of articles with co-occurring topics, in order to concretely
answer competency questions. These visualization tools are highly configurable
and can be tailored to a wide range of scenarios.

To demonstrate the effectiveness of the proposed solution, we deployed it
for the needs of a real-world use case, Agritrop [1], CIRAD2’s open archive of
110,000+ resources (i.e., book, book chapter, article, thesis, etc.). By drawing
on the outcome of interviews conducted with CIRAD researchers and documen-
talists, we show the ability of these services to meet user needs and competency
questions with relevant answers.

In the rest of this paper, Sect. 2 provides an overview and a comparison
with related work. Section 3 describes the pipeline spanning metadata retrieval,
extraction and linking of thematic descriptors and NEs, and construction of the
KG. Then, Sect. 4 presents the exploitation and visualization tools and how they
were configured in the Agritrop use-case. Section 5 provides further information
about the accessibility of the pipeline and the KG generated in the case of
Agritrop. Finally, Sect. 6 discusses the impact and reuse of this work in various
communities, and Sect. 7 draws conclusions and suggests future works.

2 Related Works

For over twenty years, the open science movement has aimed at making scientific
research results freely accessible, considerably transforming the landscape of sci-
entific production. Initiatives such as Research Data Alliance [6] (RDA) that
federates working groups on FAIR principles, metadata standards, and seman-
tic resources (ontologies, thesauri, etc.); or Go Fair [2] and European Open
Science Cloud (EOSC) [11], have laid the ground work for the implementation
of the FAIR principles for open science. In this context, the role of open archives
and of how to exploit them are central questions: many projects, including the
ISSA project, have taken up this dimension, covering complementary aspects.

The OpenMinted [5] project aimed at creating a generic Software As A Ser-
vice EU infrastructure for text mining, based on a modular architecture, that
researchers could use by contributing their use-cases. After 5 years of devel-
opment, the project fell short of delivering a fully functional prototype, merely
laying the foundational components of the infrastructure. The related Visa TM
project [7] was to be the core knowledge extraction component, integrating the-
sauri and ontologies from many domains, but only achieved a very preliminary
integration [20]. In contrast, the ISSA project adopts a more modest but focused
and pragmatic approach, proposing a generic pipeline adaptable to multiple
domains, based on the integration of robust, industry-proven and scalable exist-
ing tools, and deployable by each community. ISSA also has a strong focus on
using Linked Open Data and FAIR principles, which are absent from Open-
Minted.

2 CIRAD is the French Agricultural Research Centre for International Development
https://www.cirad.fr/en.

https://www.cirad.fr/en
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The ISTEX infrastructure, which was meant to be the corpus provider for
OpenMinted [20], has goals related to ISSA in that it aims at constituting cor-
pora of scientific publications and providing research communities with tools to
explore relevant subsets of the curated corpora. However, the main focus is to
allow the creation and download of subsets of corpora through very precise cri-
teria, extract terminology and provide a descriptive visualization of the results
through the LODEX tool [10]. The indexing and consolidated KG aspects of
ISSA are absent. The more recent Covid-on-the-Web project [28] has the
most in common with ISSA, providing researchers with ways to access, extract
and query knowledge from literature related to the coronavirus family, by build-
ing and exploiting a KG describing the concepts and arguments extracted from
100,000+ scientific articles, but stopping short of an end-to-end, reusable pipeline
like in ISSA.

In summary the overall scope of ISSA includes something absent from all
those initiatives: a generic end-to-end pipeline, that is easy to deploy and cus-
tomize.

3 From an Open Scientific Archive to the ISSA Pipeline
and Knowledge Graph

The ISSA pipeline harnesses existing tools to analyze and index the articles
of a scientific archive, drawing meaningful links between the articles and the
Web of Data, and following Semantic Web standards. Figure 1 describes the
pipeline: (1) Metadata is retrieved from the open archive API, (2) translated into
RDF with Morph-xR2RML and stored in a Virtuoso OS server. (3) Full text is
extracted with Grobid and for each article, (4) Thematic descriptors and NEs are
extracted from the text and linked to Wikidata, DBPedia and optionally domain-
specific thesauri (unsupervised linking and disambiguation). (5) Descriptors and

Fig. 1. ISSA pipeline: resources, services and applications.
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entities are translated into a unified RDF dataset and stored in Virtuoso along
metadata records. (6) The KG is exploited to propose augmented visualization
applications.

3.1 Text Classification of Articles for Their Thematic Indexing

Thematic descriptors are keywords (typically 5 or 6) or expressions that charac-
terize an article as a whole and that are linked to a standardized vocabulary. In
some institutions, documentalists manually annotate articles with descriptors,
which yields accurate annotations but is time consuming, such that it is usu-
ally not performed retroactively for older publications, possibly leaving behind
a large set of legacy publications.

Provided that there exists a large enough corpus annotated with a domain
vocabulary, one can train a specialized supervised classification model to auto-
matically assign thematic descriptors to publications. The ISSA pipeline includes
such a classification system through the integration of Annif [32], a framework
developed by the National Library of Finland. Annif does not propose any new
methods per se, but provides a framework and API to integrate existing machine
learning models and tools to index corpora of scientific publications. In addition
to the integration of multiple supervised and unsupervised models (TensorFlow
deep net, Omikuji, fastText and Gensim), Annif supports multiple vocabulary
formats, comes with standardized evaluation protocols and metrics, and supports
multiple languages. In the ISSA pipeline, a corpus is extracted per language and
split into training, validation and testing sets, in order to train the Annif model.
The recreation of new models can be triggered independently from the pipeline,
either manually or automatically at fixed intervals. The trained models are used
in the pipeline to classify each article. For articles already manually indexed we
end up with two sets of descriptors, one set corresponding to manual annotation
and one set corresponding to automatic annotation.

Thematic descriptors are represented in RDF as annotations using the Web
Annotation Vocabulary [34] (issa:ThematicDescriptorAnnotation is a subclass of
oa:Annotation). An example is given in Listing 1.1 (lines 7–13). The annotation
points to the annotated article (the target) and the resource that the descriptor
links to (the body). It also provides the confidence of the extraction and linking of
the descriptor, its rank in the list of descriptors ordered by descending confidence.
Using PROV-O3, the annotation keeps track of whether a thematic descriptor
was retrieved from the article metadata or extracted by Annif.

Application to Agritrop. CIRAD curators annotate newly submitted arti-
cles with terms from AGROVOC [13], a standard SKOS thesaurus in the agron-
omy and agriculture domains. To train Annif to annotate new articles with
AGROVOC terms, we extracted a corpus of approximately 12,000 English and
French open-access articles. Descriptors manually annotated by curators were
retrieved from Agritrop. For each language, separate training sets were created

3 https://www.w3.org/TR/prov-o/.

https://www.w3.org/TR/prov-o/
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1 @prefix dct: <http :// purl.org/dc/terms/> .
2 @prefix issa: <http ://data -issa.cirad.fr/> .
3 @prefix issapr: <http ://data -issa.cirad.fr/property/> .
4 @prefix oa: <http ://www.w3.org/ns/oa#> .
5 @prefix prov: <http ://www.w3.org/ns/prov#> .
6 @prefix schema: <http :// schema.org/> .
7 # Thematic descriptor "sustainable development"
8 [] a prov:Entity , issa: ThematicDescriptorAnnotation ;
9 issapr:confidence 0.4556 ;

10 issapr:rank 6 ;
11 oa:hasBody <http :// aims.fao.org/aos/agrovoc/c_35332 > ;
12 oa:hasTarget <http ://data -issa.cirad.fr/article /543654 > ;
13 prov:wasAttributedTo issa:AnnifSubjectIndexer .
14 # Named entity "banana"
15 [] a prov:Entity , oa:Annotation ;
16 schema:about <http ://data -issa.cirad.fr/article /543654 > ;
17 issapr:confidence 0.5939 ;
18 oa:hasBody <http ://www.wikidata.org/entity/Q503 > ;
19 oa:hasTarget [
20 oa:hasSource <http ://data -issa.cirad.fr/article /543654# body_text > ;
21 oa:hasSelector [
22 a oa:TextPositionSelector , oa:TextQuoteSelector ;
23 oa:exact "banana" ; oa:start 12750; oa:end 12756 ]] ;
24 prov:wasAttributedTo issa:EntityFishing .

Listing 1.1. Representation of a thematic descriptor extracted by Annif and linked to
AGROVOC, and a named entity extracted from the article’s body by Entity-fishing,
and linked to Wikidata.

based on automatic language detection4. We experimented with different avail-
able models and chose the best performing one, namely an ensemble of lexical
matching (MLLM) [32] and a tree-based machine learning algorithm [30].

3.2 Extraction and Linking of Named Entities

The ISSA pipeline relies on three tools to identify, disambiguate and link NEs
from the articles (title, abstract and body) of the scientific archive:

– DBpedia Spotlight [15] annotates text in eight different languages with DBpe-
dia entities. Disambiguation is carried out by entity linking using a generative
model with maximum likelihood.

– Entity-fishing [31] identifies and disambiguates NEs against Wikidata. It relies
on FastText word embeddings to generate candidates and ranks them with
gradient tree boosting and features derived from relations and context.

– Dictionary projection annotation performs in-domain NEs with pyclinrec5

and disambiguation is performed with EigenThemes [9] using hyperbolic
graph embeddings [14] computed from the corresponding domain thesauri.

For each article, the pipeline invokes each of the three tools and trans-
lates their respective outputs into an RDF representation. An additional post-
processing step specifically identifies geographic entities by looking for GeoN-
ames mappings in the corresponding Wikidata concepts.
4 https://pypi.org/project/pycld2/.
5 https://github.com/twktheainur/pyclinrec.

https://pypi.org/project/pycld2/
https://github.com/twktheainur/pyclinrec
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Like thematic descriptors, NEs are modelled in RDF as annotations, as exem-
plified in Listing 1.1 (lines 14–23). The annotation points to the annotated article
(property schema:about). The matched text fragment is described in the annota-
tion target that points to the article part wherein the NE was recognized (title,
abstract or body), and locates it with start and end offsets. The annotation body
is the URI of the resource that the NE links to (Wikidata and Geonames in the
example). The annotation includes the extraction and linking confidences, and
provenance information regarding the tool used to extract the NE.

Application to the Agritrop Use Case. The only specific part concerns the
annotation of articles with the AGROVOC thesaurus. Since no gold standard is
available, we used the dictionary projection approach with unsupervised entity
disambiguation. The integration of disambiguation is still ongoing at the time of
writing: Eignethemes must be adapted to compute arbitrary graph embeddings
for any standardized SKOS thesaurus, with a technique suited for hierarchies [14].

3.3 Articles Metadata

In addition to text processing steps, the ISSA pipeline requires obtaining the
articles’ metadata and translating them into RDF. The metadata must contain a
URL to download the PDF file of each article, and may contain an identifier, title,
authors, date, journal, license, DOI, etc. Depending on the considered archive,
metadata may be obtained using various interfaces, commonly a REST API.
Therefore, this step will usually require (1) writing a connector to adjust to the
archive’s API specifics, and (2) adjusting the mapping that lifts the archive-
specific metadata to the target RDF model. The ISSA pipeline comes with a
connector compatible with the Open Archives Initiative Protocol for Metadata
Harvesting (OAI-PMH)6 that is largely adopted in scientific data sharing [16].

We have defined an RDF model that represents articles’ metadata
and content using well-adopted vocabularies: DCMI7, FRBR-aligned Bibli-
ographic Ontology (FaBiO) [29], Bibliographic Ontology8, FOAF [18] and
Schema.org [19]. A comprehensive description of the RDF representation
together with examples are provided in the pipeline’s Github repository.9

Application to the Agritrop Use Case. In Agritrop, OAI-PMH is used to
retrieve the common metadata as well as the abstract and thematic descriptors
defined by the curators, that are mapped to RDF using the model described
in Sect. 3.1. Given that the text and abstract extracted from the PDF files by
Grobid can be of poor quality, we provide a mechanism to coalesce title and
abstract retrieved from the metadata with those extracted from full text.

6 https://www.openarchives.org/pmh/.
7 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.
8 http://bibliontology.com/specification.html.
9 https://github.com/issa-project/issa-pipeline/blob/main/doc/.

https://www.openarchives.org/pmh/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://bibliontology.com/specification.html
https://github.com/issa-project/issa-pipeline/blob/main/doc/
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3.4 Integrating All Building Blocks into a Comprehensive Pipeline

Running the Extractors. The pipeline’s Github repository provides multiple
scripts10 that orchestrate and automate the processing steps from downloading
articles to yielding the resulting RDF KG. To facilitate the deployment, third-
party tools Grobid, Annif, Entity-fishing and DBpedia Spotlight are dockerized
using official Docker images. In addition, DBpedia Spotlight11 and Entity-fishing
are deployed using pre-trained English and French models.

Generation and Publication of the KG. The translation into RDF of the
outputs of each step is carried out using Morph-xR2RML,12 an implementation
of the xR2RML mapping language [27] for MongoDB databases. Thus, the next
steps consist of importing the outputs into MongoDB, pre-processing them to
filter out unneeded or invalid data, and apply the translation rules with Morph-
xR2RML. Lastly, the produced RDF files are loaded into a dockerized Virtuoso
OS server deployed using an official Docker image. An additional customizable
RDF Turtle file13 describes the generated RDF dataset using the DCAT [22],
VOID [8] and SPARQL-SD [33] vocabularies.

Incremental Updates. After initial publication, periodic invocation of the
pipeline can be scheduled to incrementally update the KG with new documents
and retrain the Annif models.

Application to the Agritrop Use Case. In the case of Agritrop, the pipeline
processed the 12,000 open-access articles in English and French. Annif and the
NE extractors were deployed on a virtual machine with 12 CPU cores (2.3 GHz)
and 32 GB RAM, the processing took 11 h. MongoDB and Morph-xR2RML were
deployed on the same virtual machine. The upload in MongoDB of the docu-
ments produced by the NE and descriptor extractors, their pre-processing, the
generation of RDF files and their loading into Virtuoso took 1 h 05 m. Additional
insights into the dataset generated for Agritrop are given in Sect. 5.

Pipeline Reusability. The pipeline can be customized to meet the needs of any
scientific archive and community. The OAI-PMH protocol is very common among
scientific archives, such that connecting to archives implementing it should be
straightforward. The comprehensive metadata model relies on standard vocab-
ularies and is fully generic. The pipeline is delivered with pre-integrated tools
to perform entity-linking against DBpedia, Wikidata, and GeoNames. Yet, new
processing steps can easily be defined to leverage other tools and vocabularies
suited to specific needs. Finally, the automatic thematic indexing relies on Annif
10 https://github.com/issa-project/issa-pipeline/tree/main/pipeline.
11 https://sourceforge.net/projects/dbpedia-spotlight/files/2016-10/en/.
12 https://github.com/frmichel/morph-xr2rml/.
13 https://github.com/issa-project/issa-pipeline/blob/main/dataset/dataset.ttl.

https://github.com/issa-project/issa-pipeline/tree/main/pipeline
https://sourceforge.net/projects/dbpedia-spotlight/files/2016-10/en/
https://github.com/frmichel/morph-xr2rml/
https://github.com/issa-project/issa-pipeline/blob/main/dataset/dataset.ttl
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that supports numerous models and can be used with arbitrary vocabularies and
languages.

4 Visualization and Exploration Services

4.1 Augmented Visualization of Metadata Records

The primary role of an open archive is to provide access to the bibliographic
records of the resources it contains. The ISSA prototype meets this need by
enabling users to access an enriched bibliographic view of each open
access article in the database. Beyond merely presenting common article
metadata, this service (exemplified in Fig. 2 for the case of Agritrop) visualizes
the article abstract where extracted NEs are highlighted and point to the associ-
ated knowledge bases (Wikidata, DBpedia, GeoNames, . . . ). Thematic descrip-
tors automatically extracted with text classification and linked to the considered
thesaurus (e.g. AGROVOC) are also shown, along with a cartographic visual-
ization of the places mentioned in the article, linked to GeoNames. Technically,
the service consists of a React.js-based web interface and a Node.js server that
carries out queries to the semantic index, and is fully generic: adapting the CSS
stylesheets suffices to match any other graphical chart.

Fig. 2. Augmented visualization of an article’s bibliographic records.

4.2 Extraction and Visualization of Association Rules

An association rule is an implication of the form X → Y , where X is an
antecedent itemset and Y is a consequent itemset: transactions containing items
in set X tend to contain items in set Y . Each rule is described through its confi-
dence, which defines the probability of finding Y in a transaction knowing that
X is in the same transaction, and interestingness, which defines the serendipity
of a rule by penalizing rules with high incidence of antecedent and/or consequent
items. Association rule mining is widely used to discover correlations, frequent
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patterns, associations or casual structures, and can assist researchers in narrow-
ing down the search for scientific publications.

Using the algorithm proposed in [12], we extract association rules linking
the articles’ thematic descriptors extracted as described in Sect. 3.1. The mining
process casts scientific publications as transactions and thematic descriptors as
itemsets. Although the approach helps to reduce and focus the exploration of
a dataset, researchers are still confronted with a large set of rules. Therefore,
we leverage the potential of visualization to assist the exploration of these rules
and thus the discovery of hidden knowledge in the database. In particular, we
explore the data using ARViz14 (Fig. 3), a generic tool designed to support the
exploration of association rules via three complementary visualization techniques
(i.e. a scatter plot, a chord diagram, and an association graph) providing the
distribution of rules over the measures of interest and a focused exploration of
(i) items, to find and/or describe the rules involving a particular item, and
(ii) rules, to detect distinguishable association rules that are worth saving for
knowledge acquisition.
Application to the Agritrop Use Case. In the analysis, we considered the
3,610 thematic descriptors mentioned in 21,013 articles15. To keep only relevant
rules, we dropped rules with confidence and interestingness below a given thresh-
old (empirically set to 0.7 and 0.3, respectively), as well as redundant rules (i.e.
a rule A,B,C → D is redundant if Conf(A,B → D) ≥ Conf(A,B,C → D)).
The resulting set consists of 20,697 association rules that can be explored using
ARViz. Given a antecedent or consequent concept, ARViz dynamically identi-
fies and displays all the relevant associated concepts. For instance, in the current
context of the COVID-19 pandemics, researchers might be interested in knowing
how strongly the disease relates to other concepts in publications. Thus, we use
the association graph view in ARViz to display all the rules involving the concept
COVID-19 (Fig. 3b). The graph provides an intuitive portrayal of antecedent and
consequent items involved in the rules (Fig. 3a), where items are represented over
on the left and right sides of the screen, and rules are encoded as diamond-shaped
nodes placed between the items, which color encodes the measures of interest.
This example reveals that COVID-19 is associated to three consequent concepts:
the family Coronavirinae of viruses, pandemics, and economic crises. For the
latter, the associated references indeed reveal publications on the resilience of
the food sector and agricultural response to the COVID-19 crisis. Concepts co-
occurring with COVID-19 share one or more consequent concepts. This is the case
of food security that occurs in publications concerned with economic crises and
pandemics.

4.3 Exploring Descriptors Co-occurrence

We present below a complementary visualization tool, LDViz16 [26] which can
meet other types of exploration needs and solve complex competency questions.
14 Accessible at http://dataviz.i3s.unice.fr/arviz/issa.
15 This includes the 12,000 articles processed by the pipeline, together with articles for

which we only have metadata with curator-provided descriptors.
16 Accessible at http://dataviz.i3s.unice.fr/ldviz.

http://dataviz.i3s.unice.fr/arviz/issa
http://dataviz.i3s.unice.fr/ldviz
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Use Case 1. The One Health initiative [21,23] seeks to unify public, animal and
environmental health themes to better understand the development of pandemics
and the spread of emerging diseases. In the current context of global climate
change, CIRAD researchers wish to figure out publications in the Agritrop open
archive that mention both climate change and health (including sub-concepts
such as human health, public health, animal health, plant health, etc.), and the
time period when these links appeared in CIRAD’s research work. To this end, we
explore the ISSA semantic index using the LDViz tool which leverages SPARQL
queries to explore relevant data through the multiple perspectives delivered by
the MGExplorer graphic library. In particular, the tool supports the exploration
of relationships within data in cluster and pairwise manners and their distribu-
tion over time.

Fig. 3. Visual exploration of (a) association rules involving the COVID-19 concept
using ARViz and (b) the publications mentioning the concepts COVID-19, food security
and pandemics.

Fig. 4. Visual exploration of health and climate change relationship using LDViz.
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To solve the task at hand, we defined a SPARQL query that retrieves the
set of articles mentioning climate change together with health or any narrower
or related concept. LDViz proposes a query panel where domain experts can
select predefined queries (Fig. 4a) and explore the data through complementary
visualization techniques. The exploration starts with a graph view where nodes
represent concepts linked together through the scientific publications where they
co-occur (Fig. 4b). We continue the exploration with an egocentric view focused
on the climate change concept since we want to know how it is related to health.
This shows the different concepts linked to climate change and the number of
publications where they co-occur. For instance, we can see in Fig. 4c that climate
change co-occurs mostly with animal health in 12 publications. Then, the list-
ing view (Fig. 4d) shows the publications that co-mention climate change and
health, which we can further explore using the other visualizations presented
in Sect. 4. Finally, we explore the temporal distribution of those publications
(Fig. 4e) where we observe a slightly more intense joint use of those concepts in
2016 and 2020.

Use Case 2. This second use case exemplifies how these tools can be used at
institutional and decision-making levels. Public policies are a relevant research
subject in CIRAD, as it helps in steering and supporting public decision-
making. Thus, we explore the CIRAD publications through the perspective of the
policies concept to (i) identify the major research areas around public policies,
(ii) the ones that are absent or poorly covered, and (iii) the predominant top-
ics across time, which can be contextualized via historical events. We begin the
exploration with a graph where green nodes depict the policies concept and its
narrowers. These are linked to other concepts (in orange) when they co-occur in
publications (Fig. 5a). This visualization reveals that CIRAD’s major public pol-
icy research topic is agricultural policies (central green node). These are strongly
linked to development policies (Fig. 5d), in line with CIRAD’s mandate, as well
as to land policies. Concepts water (Fig. 5c), food (Fig. 5b), forestry (Fig. 5e)
and environmental policies (Fig. 5f) are present to a lesser extent while being all
related to agricultural policies. The time distribution of publications dealing
with environmental policies reveals a growing interest of research at CIRAD in
this field, confirming that their evolution is correlated with relevant world events
such as the World Development program (UN) in 2016, the Paris Agreement in
2015, its fifth anniversary in 2020, or the COVID-19 pandemic in 2020.
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Fig. 5. Visual exploration of scientific publications mentioning any concept of the “Poli-
cies” family of descriptors.

5 Source Code, Dataset, Documentation

Source Code Availability. From a technical perspective, ISSA consists of sev-
eral software components integrated together. Third-party components such as
Annif, Grobid, DBpedia Spotlight and Entity-fishing are obtained through their
official Docker image distributions on DockerHub.17 The components developed
within the ISSA project are available on Github repositories, licensed under the
open-source, free-software Apache 2.0 license, and assigned a DOI that guaran-
tees long-term availability. This information is summarized in Table 1. In partic-
ular, the processing pipeline’s repository provides multiple scripts that orches-
trate and automate the different steps from downloading the articles to running
the triple store, together with documentation including deployment instructions,
licensing and RDF modelling description.

Sustainability Plan. In the short term, CIRAD wishes to dedicate efforts
to the deployment of the ISSA pipeline and visualization tools for production
use. This will be the opportunity to assess the quality of the deployment pro-
cedure and documentation, and improve them when necessary. Furthermore, a
key motivation of the ISSA project is to provide a solution generic enough to be
reused with various scientific archives. Therefore, we intend to provide support
to communities showing interest in this solution and willing to experiment with
it for their own needs. Depending on further funding opportunities, this may
range from a best-effort support to more substantial collaborations.

17 https://hub.docker.com/.

https://hub.docker.com/
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Table 1. Source code developed or adapted for ISSA.

Name License DOI Repository

Processing
pipeline

Apache 2.0 10.5281/zenodo.6513983 https://github.com/issa-project/issa-pipeline

Arviz and
association
rules mining

Apache 2.0 10.5281/zenodo.6511786
10.5281/zenodo.6511146

https://github.com/Wimmics/arviz
https://github.com/Wimmics/association-rules-
mining

MGExplorer Apache 2.0 10.5281/zenodo.6511782 https://github.com/Wimmics/ldviz

Article
visualization

Apache 2.0 10.5281/zenodo.6510031
10.5281/zenodo.6510029

https://github.com/issa-project/web-visualization
https://github.com/issa-project/web-backend

ISSA Agritrop Dataset. The dataset generated by the pipeline for the
Agritrop archive is available as a downloadable, DOI-identified RDF dump, and
through a Virtuoso OS triple store and SPARQL endpoint. This information is
summarized in Table 2 along with basic statistics. The RDF model underlying
the dataset is provided in the Github repository.18 At the time of writing, the
URIs are not yet dereferenceable due to on-going security validation procedures
required by CIRAD’s administrators. In line with best practices [17], the dataset
comes with a thorough self-description, comprising (1) licensing, authorship and
provenance information, used vocabularies, interlinking and access information,
described with Dublin Core Metadata Information, DCAT, VOID and SPARQL-
SD.

Table 2. Main facts and statistics about the ISSA Agritrop dataset.

Dataset DOI 10.5281/zenodo.6505847

Downloadable RDF dump https://doi.org/10.5281/zenodo.6505847

Public SPARQL endpoint http://issa.i3s.unice.fr/sparql

Documentation https://github.com/issa-project/issa-pipeline/blob/main/doc/

URIs namespace http://data-issa.cira.fr/

Dataset URI http://data-issa.cirad.fr/issa-agritrop

# extracted entities Named entities: 3.65M, thematic descriptors: 350K

# links to external resources Wikidata: 2.17M, DBpedia: 1.47M, GeoNames: 152K, AGROVOC: 314K

# RDF triples 66.0M

Dataset Licensing. Being derived from the Agritrop open archive, different
licenses apply to the different subsets of the ISSA Agritrop dataset. Articles
metadata is provided under the Agritrop open licence19. By contrast, article
content is ruled by various licenses that consequently also apply to the full
text content extracted from the articles and stored in the ISSA dataset. The
additional data produced by mining the articles (thematic descriptors, NEs) is
published under the Open Data Commons Attribution License 1.0 (ODC-By).20

18 https://github.com/issa-project/issa-pipeline/blob/main/doc.
19 https://agritrop.cirad.fr/mention legale.html.
20 ODC-By license: http://opendatacommons.org/licenses/by/1.0/.

https://doi.org/10.5281/zenodo.6513983
https://github.com/issa-project/issa-pipeline
https://doi.org/10.5281/zenodo.6511786
https://doi.org/10.5281/zenodo.6511146
https://github.com/Wimmics/arviz
https://github.com/Wimmics/association-rules-mining
https://github.com/Wimmics/association-rules-mining
https://doi.org/10.5281/zenodo.6511782
https://github.com/Wimmics/ldviz
https://doi.org/10.5281/zenodo.6510031
https://doi.org/10.5281/zenodo.6510029
https://github.com/issa-project/web-visualization
https://github.com/issa-project/web-backend
https://doi.org/10.5281/zenodo.6505847
https://doi.org/10.5281/zenodo.6505847
http://issa.i3s.unice.fr/sparql
https://github.com/issa-project/issa-pipeline/blob/main/doc/
http://data-issa.cira.fr/
http://data-issa.cirad.fr/issa-agritrop
https://github.com/issa-project/issa-pipeline/blob/main/doc
https://agritrop.cirad.fr/mention_legale.html
http://opendatacommons.org/licenses/by/1.0/
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6 Potential Impact and Reusability

Target Audiences and Expected Uses. The ISSA project addresses a widely
expressed need in communities that manage open archives, in particular libraries
and STI services: provide users with powerful, accurate services to find articles
relevant for their goals. The ISSA pipeline not only allows the automatic index-
ing of articles, but also offers services to find relevant articles by exploiting the
richness of their semantic associations. Moreover, adhering to the FAIR prin-
ciples, the solution can be reused by any community adopting these principles
while leaving them free to use terminological references suited to their field. It is
therefore aimed at both researchers and specialists in STI, and will be of interest
to any person or group in charge of institutional management.

Potential for Reuse. The processing pipeline and visualization services are
concrete contributions delivered by the project, designed to be as generic as
possible, and successfully tested and deployed in the context of an institutional
open archive in production. This technical achievement is a positive indicator
of the solution’s reusability, and we believe that transferring it to other com-
munities should require only marginal development and adaptation. The adap-
tation of thematic descriptors extraction may require more substantial work in
the absence of a corpus to train supervised models: one should start with an
unsupervised model and perform manual validation to bootstrap an annotated
corpus of sufficient size for supervised approaches. Furthermore, in line with
the dynamics of open science, all developed software is available under an open
license, along with all the necessary documentation. Finally, in order to inform,
share and transfer our results to other communities, a dissemination workshop
was organized in Strasbourg in June 2022 [4].

Impact Assessment. Being the institution that publishes and maintains the
Agritrop open archive, CIRAD intends to set up the ISSA pipeline in production
as soon as the project will complete (September 2022). This underlines the interest
of CIRAD users in the services offered by ISSA, and results from a joint work on
application scenarios submitted by CIRAD researchers and scientific information
specialists to the ISSA project team. The outcome of this work demonstrates the
relevance and flexibility of the prototype for answering competency questions, and
the benefit provided compared to traditional search tools integrated into document
management platforms. Thus, we are confident that the solution delivered by ISSA
can accommodate multiple open archives concerned with similar issues and needs,
and help them improve their service offerings.

7 Conclusion and Perspectives

In this article, we have highlighted the challenge of finding relevant publications
in the ever-growing body of scientific literature, and presented concrete meth-
ods and tools implemented in the ISSA project to deliver services that address
this challenge. Leveraging robust, industry-proven tools, we designed a generic,
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reusable pipeline for the analysis and processing of articles from an open scientific
archive, to produce a semantic index in the form of an RDF knowledge graph. We
developed innovative search and visualization services that leverage this semantic
index to allow researchers, decision makers or scientific information professionals
to explore thematic association rules, co-publication networks, networks of arti-
cles with co-occurring topics, etc. We demonstrated the ability of these services to
provide answers to real competency questions submitted by researchers.

In the short and middle terms, we plan to continue this work in several ways.
First, in terms of data quality evaluation. In particular, evaluating the quality
of the text classification models trained with Annif is not trivial. Because of the
subjectivity inherent to annotation of documents, the common quality metrics
are not so relevant. However we can calculate the similarity metrics between
human and machine annotations. Secondly, we intend to apply association rules
mining, not only to descriptors, but also to extracted named entities, and assess
the quality and usability of these rules. We also wish to enrich our service offering,
in particular in terms of bibliometrics and information retrieval, and apply the
pipeline to another scientific archive so as to confirm its reusability. Finally, we
plan to conduct dissemination activities so that other communities can take up
our work and adapt it to their own needs. In the longer term, we believe that the
proposed solution could serve as a framework to integrate additional tools and
methods, and eventually extract richer, machine-processable knowledge from the
mass of human-readable knowledge inherent in scientific archives.
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CollEx-Persée (https://www.collexpersee.eu/projet/issa/).

References

1. Agritrop Portal (2022). https://agritrop.cirad.fr/
2. GO-FAIR Initiative (2022). https://www.go-fair.org/
3. ISSA Project Website (2022). https://issa.cirad.fr/en
4. ISSA Workshop, June 2022 (2022). https://t.co/iYVf7xcdhR
5. OpenMINTED project website (2022). http://openminted.eu/
6. RD Alliance project website (2022). https://www.rd-alliance.org/
7. VisaTM Project Website (2022). https://www.ouvrirlascience.fr/projet-visa-tm/
8. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets

with the VoID Vocabulary. W3C Recommendation (2011). http://www.w3.org/
TR/2011/NOTE-void-20110303/

9. Arora, A., Garcia-Duran, A., West, R.: Low-rank subspaces for unsupervised entity
linking. In: Proceedings of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 8037–8054. Association for Computational Lin-
guistics, Online and Punta Cana, Dominican Republic, November 2021. https://
aclanthology.org/2021.emnlp-main.634

10. Benedetti, F., Bergamaschi, S., Po, L.: Lodex: a tool for visual querying linked
open data, January 2015

11. Budroni, P., Claude-Burgelman, J., Schouppe, M.: Architectures of knowledge: the
European open science cloud. ABI Technik 39(2), 130–141 (2019). https://doi.org/
10.1515/abitech-2019-2006

https://www.collexpersee.eu/projet/issa/
https://agritrop.cirad.fr/
https://www.go-fair.org/
https://issa.cirad.fr/en
https://t.co/iYVf7xcdhR
http://openminted.eu/
https://www.rd-alliance.org/
https://www.ouvrirlascience.fr/projet-visa-tm/
http://www.w3.org/TR/2011/NOTE-void-20110303/
http://www.w3.org/TR/2011/NOTE-void-20110303/
https://aclanthology.org/2021.emnlp-main.634
https://aclanthology.org/2021.emnlp-main.634
https://doi.org/10.1515/abitech-2019-2006
https://doi.org/10.1515/abitech-2019-2006


676 A. Toulet et al.

12. Cadorel, L., Tettamanzi, A.G.B.: Mining RDF data of COVID-19 scientific
literature for interesting association rules. In: Proceedings of the WI-IAT’20-
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intel-
ligent Agent Technology, 14–17 December 2020, Melbourne, Australia (2020).
https://hal.inria.fr/hal-03084029

13. Caracciolo, C., et al.: The AGROVOC linked dataset. Semant. Web - Interoper.
Usabil. Appl. 4(3), 341–348 (2013). http://content.iospress.com/articles/semantic-
web/sw106

14. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyper-
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Abstract. In recent years, we saw the emergence of several approaches
for producing machine-readable, semantically rich, interlinked descrip-
tion of the content of research publications, typically encoded as knowl-
edge graphs. A common limitation of these solutions is that they address
a low number of articles, either because they rely on human experts to
summarize information from the literature or because they focus on spe-
cific research areas. In this paper, we introduce the Computer Science
Knowledge Graph (CS-KG), a large-scale knowledge graph composed by
over 350M RDF triples describing 41M statements from 6.7M articles
about 10M entities linked by 179 semantic relations. It was automatically
generated and will be periodically updated by applying an information
extraction pipeline on a large repository of research papers. CS-KG is
much larger than all comparable solutions and offers a very comprehen-
sive representation of tasks, methods, materials, and metrics in Com-
puter Science. It can support a variety of intelligent services, such as
advanced literature search, document classification, article recommenda-
tion, trend forecasting, hypothesis generation, and many others. CS-KG
was evaluated against a benchmark of manually annotated statements,
yielding excellent results.

Keywords: Knowledge graph · Scholarly data · Information
extraction · Natural language processing · Semantic Web · Artificial
Intelligence

1 Introduction

In the last few years, we have witnessed a paradigm shift towards Open Sci-
ence, greatly increasing the availability of scientific articles, datasets, software,
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and other research outcomes. This represents an historical opportunity to sup-
port researchers with new tools enabling more sophisticated search, exploration,
and analytical services than the ones currently available. However, the current
document-centric scholarly communication paradigm does not enable scholars to
efficiently explore, categorize, and reason on this knowledge [17]. Scientists need
instead to find and manually analyze large number of static PDF files in order to
gain a (often incomplete) understanding about recent research advancements [9].

In recent years, we saw the emergence of several solutions for producing
machine-readable, semantically rich, interlinked descriptions of the content of
research publications, typically encoded as knowledge graphs [12,22,36,40,46].
For instance, the Open Research Knowledge Graph1 [22] offers an infrastructure
for describing articles in a structured manner, making it easy to find and compare
them. The resulting knowledge graph includes about 10K articles, 4.5K research
problems, and 3.3K datasets. Similarly, Nanopublications2 [19] allow users to
represent scientific facts as knowledge graphs and have recently been used to
support “living literature reviews”, which can be continuously amended with new
findings [46]. A common drawback of these solutions is that they are limited to
a relatively low number of articles, either because they rely on human experts to
summarize information from the literature [22,24] or because they focus on very
specific domains (e.g., computational linguistics [16], intrusion detection [48]).

In order to address this issue, in 2020 we released the Artificial Intelligence
Knowledge Graph (AI-KG) [15], the first automatically generated large-scale
knowledge graph of AI, which included 1.2M statements about 820K research
entities. This resource was an important first step in the large-scale generation
of scientific knowledge graphs, inspiring further work in this direction [6,31] and
supporting several methods for classifying and recommend scientific papers [8,21,
25]. However, AI-KG still suffers from a number of significant limitations, which
emerged clearly during discussions with its users. First and most important, it
only covers about 330K articles in AI: sizable compared to alternative solutions,
but not quite representative of the millions of articles published in Computer
Science. Second, the methodology for integrating different lexical variations of
entities did not always work, resulting in multiple versions of the same entity
(e.g., recommendation_system and recommendation_framework). Finally, the
mapping schema used for recognizing a relations (e.g., aikg-ont:supportsMethod)
from verbal predicates in the articles (e.g., support, enable, foster) was quite
limited. As a result, sentences using less frequent predicates were not considered.

In this paper, we introduce the Computer Science Knowledge Graph (CS-
KG), a large-scale knowledge graph composed by over 350M RDF triples describ-
ing 41M statements from 6.7M articles about 10M entities (e.g., tasks, methods,
materials, metrics) linked by 179 semantic relations. Our objective is to make
available and maintain a comprehensive representation of all the significant con-
cepts in this field, in order to support a variety of intelligent services, such as

1 https://www.orkg.org/.
2 https://nanopub.org/.

https://www.orkg.org/
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advanced search, article recommendation, trend forecasting, hypothesis genera-
tion, and many others.

CS-KG is an order of magnitude larger than AI-KG. Specifically, it is 34
times larger in terms of number of statements and 20 times larger in terms of
number of articles. It was generated by applying an improved version of the AI-
KG pipeline [14] which includes the following advancements: 1) a novel module
to merge different lexical representations of the same entity based on trans-
formers [32], 2) a new methodology to map verbal predicates to relations which
exploits VerbNet [38], and 3) a richer domain ontology describing 179 semantic
relations. CS-KG was evaluated on a benchmark of 1, 200 manually annotated
statements, yielding excellent results in comparison with alternative solutions.

CS-KG is licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). It available as a dump3 or via a SPARQL endpoint4.

In summary, the main contributions of this resource paper are:

– The CS-KG knowledge graph, which includes 41M statements about 10M
entities in Computer Science.

– An improved pipeline for knowledge graph generation from research articles.
– An analysis of the entities and statements extracted from 6.7M articles.
– A ground truth5 of 1200 manually annotated statements, which can be used

as a benchmark for statements validation.

The remainder of this paper is organized as follows. Section 2 discusses the
related work, pointing out the existing gaps. Section 3 describes CS-KG and its
user cases. The pipeline used for its generation is discussed in Sect. 4. Section 5
reports several statistics about CS-KG and Sect. 6 describes the evaluation.
Finally, Sect. 7 concludes the paper, discusses the limitations, and defines future
directions of research.

2 Related Work

Knowledge extraction from scientific and academic texts is a relatively recent
task in which structured information is mined from research publications,
patents, and similar texts [35,39]. The interest in this task has been also fostered
by the continuous growth of the number of scientific articles available online; in
some fields the growth is such that researchers trying to perform assessment of
scientific literature are overwhelmed [33].

Existing scientific knowledge graphs (sometimes also named scholarly knowl-
edge graphs) can be categorized into two main types: i) knowledge graphs

3 CS-KG dump - http://w3id.org/cskg/downloads/cskg.zip.
4 CS-KG SPARQL endpoint - http://w3id.org/cskg/sparql. It contains about 740M

RDF triples because, for the sake of performance, we materialize some statements
entailed by the ontology (e.g., inverse relations).

5 http://w3id.org/cskg/downloads/ML1200.csv.

http://w3id.org/cskg/downloads/cskg.zip
http://w3id.org/cskg/sparql
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based only on meta-information such as authors, titles, organizations and cita-
tions (e.g., the Microsoft Academic Graph [44], ArnetMiner [49], OpenAlex6,
AIDA [2]) and ii) knowledge graphs that also represent the content of papers
at a fine-grained level. In this paper, we focus on the second category. One of
such knowledge graphs is ORKG [22], where articles are associated with the
relevant topics, approaches, datasets, and evaluation methodologies. Nanopub-
lications [19] enable users to represent in a minimalistic way various facts from
academic publications. One of the drawbacks of both ORKG and Nanopub is
that they are manually curated resources, where the representations of research
articles are filled by crowdsourcing. Therefore, they cover a limited number of
articles and require an important manual effort.

Biology is the only field offering some sizable and high-quality knowledge
bases of relevant entities, such as UMLS7. Other research areas, including Com-
puter Science, are very lacking in this respect. Some recent efforts focused on
producing methods and tools able to automatically extract fine-grained seman-
tic information from the content of the papers. For instance, Luan at al. [27]
implemented a deep architecture that carries out multitask learning on top of
shared span representations to build a knowledge graph on a dataset of 110K
papers. Jiang et al. [23] used instead a recurrent neural network model to carry
out joint entity and relation extraction. In their work, they extract also “condi-
tional” tuples that represent constraints on other statements: they assume that
some facts are not universally valid but depend on the context of application.
Their final resource contains 756 fact tuples and 654 condition tuples. Wang
at al. [45] targeted specifically articles on Covid-19. Specifically, they adapted
an entity recognition tool to extract 75 different types of entities, using distant
supervision. The advantage of distant supervision is that it does not require
expensive human annotation. However, relations are not extracted from text,
but are defined in a handcrafted ontology. Overall, there is still a significant lack
of large-scale resources that offer a granular representation of claims and entities
in research literature.

3 The Computer Science Knowledge Graph

The Computer Science Knowledge Graph (CS-KG) includes over 350M RDF
triples that describe 41M statements and 10M entities extracted from a col-
lection of 6.7M scientific papers in the period 2010–2021. These articles were
selected by considering all papers from 2010 to 2019 with at least 1 citation
(as of December 2021) and all the papers in 2020-2021 period from the set of
articles from MAG [44] associated with the Field of Study “Computer Science”.
Since MAG has been decommissioned in 2021, the following versions will adopt
OpenAlex, which offers a comparable publication coverage.

6 OpenAlex - https://openalex.org/.
7 UMLS - https://www.nlm.nih.gov/research/umls/index.html.

https://openalex.org/
https://www.nlm.nih.gov/research/umls/index.html
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The CS-KG ontology is available at https://scholkg.kmi.open.ac.uk/cskg/
ontology and builds on top of SKOS8 and PROV-O9. Its documentation is
available at https://scholkg.kmi.open.ac.uk/cskg/ontology.html. The current
schema in CS-KG uses the namespaces http://scholkg.kmi.open.ac.uk/cskg/
ontology# to refer to elements that belong to the ontology (prefix cskg-
ont), and http://scholkg.kmi.open.ac.uk/cskg/resource/ for the instances (pre-
fix cskg). The ontology defines 179 relations (e.g., cskg-ont:usesMethod, cskg-
ont:solvesTask) between five entity types: cskg-ont:Task, cskg-ont:Method, cskg-
ont:Material, cskg-ont:Metric, cskg-ont:OtherEntity.

In order to design the object properties, we started from a set of 39 high level
predicates (e.g., uses, analyzes, includes) produced by the knowledge graph
generation pipeline (see Sect. 4.2). We then associate specific domain and range
constraints to them, which are used to drive and correct the automatic extraction
process. For example, since a Method or a Task can use a Material, the predicate
uses was used to create the object property cskg-ont:usesMaterial which has
cskg:Method and cskg:Task in its domain as well as cskg:Material as its range.
We instead considered incorrect to claim that a cskg:Material uses a cskg:Method,
and therefore, the domain of the property cskg-ont:usesMethod does not include
the class cskg:Material.

A statement in CS-KG refers to a specific claim extracted from a research
article, defining a relationship between two entities, e.g., <cskg:web_ontology_
language, skos:broader, cskg:semantic_web_standard_technology>. Natu-
rally, it is not possible to verify the objective truth of every claim. As a conse-
quence, within CS-KG and its potential use cases, a claim should be considered
correct only in the context of the research papers linked to it. We also associate
the statement with metadata about the original articles and other provenance
information. Each statement in CS-KG includes:

– rdf:subject, rdf:predicate, and rdf:object, which provide the reification of triples
within a rdf:Statement ;

– cskg-ont:hasSupport, which reports the number of articles that contributed to
create the statement (support);

– provo:wasDerivedFrom, which provides provenance information and lists the
MAG IDs (now OpenAlex IDs) of the articles from which the statement was
extracted;

– provo:wasGeneratedBy, which provides provenance and versioning informa-
tion of the tools used to detect the statement.

The support score can be used to select subsets of statements that are supported
by a good number of articles, and thus are typically more reliable (see evaluation
in Sect. 6).

8 SKOS - https://www.w3.org/2004/02/skos/.
9 PROV-O - https://www.w3.org/TR/prov-o/.

https://scholkg.kmi.open.ac.uk/cskg/ontology
https://scholkg.kmi.open.ac.uk/cskg/ontology
https://scholkg.kmi.open.ac.uk/cskg/ontology.html
http://scholkg.kmi.open.ac.uk/cskg/ontology#
http://scholkg.kmi.open.ac.uk/cskg/ontology#
http://scholkg.kmi.open.ac.uk/cskg/resource/
https://www.w3.org/2004/02/skos/
https://www.w3.org/TR/prov-o/
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In the following we report an exemplary statement:

cskg:statement_4508242 a cskg-ont:Statement, provo:Entity;
rdf:subject cskg:web_ontology_language;
rdf:predicate skos:broader;
rdf:object cskg:semantic_web_standard_technology;
cskg-ont:hasSupport 6;
provo:wasDerivedFrom cskg:2913757079,

cskg:2145844448,
...,
cskg: 1551604567;

provo:wasGeneratedBy cskg:DyGIEpp.

This statement describes a claim which is extracted from 6 papers (MAG
IDs 2913757079, 2145844448, etc.), by the tool DyGIEpp.

Following the best practices of Linked Data, entities in CS-KG are associ-
ated with a set of alternative labels that are used to refer them in the scientific
literature. For example, the entity cskg:recurrent_neural_network is associated
with the labels recurrent neural network, recurrent trainable neural network, and
recurrent neural network paradigm. CS-KG also provides 31K owl:sameAs links
to DBPedia [4], 27K links to Wikidata10, and 6K to the Computer Science Ontol-
ogy (CSO) [37]. For instance the entity cskg:feedforward_neural_network is
linked to the CSO topic cso:feedforward_neural_network, to the DBpedia entity
dbpedia:Feedforward_neural_network, and to the Wikidata entity wd:Q5441227.

CS-KG can support several intelligent services that require a high quality
representation of research concepts and currently rely on alternative knowl-
edge bases which cover a smaller number of publications (e.g., AI-KG, ORKG,
Nanopublications) or offer a less granular conceptualization of the domain
(SemanticScholar, OpenAlex, AIDA). These include systems for supporting
machine-readable surveys [30,46], tools for generating research hypothesis [20]
and detecting contradictory research claims [3], ontology-driven topic mod-
els (e.g., CoCoNoW [5]), recommender systems for articles (e.g., SBR [41])
and video lessons [7], visualisation frameworks (e.g., ScholarLensViz [26], Con-
ceptScope [47]), scholarly knowledge graph embeddings (e.g., Trans4E [29]),
tools for identifying domain experts (e.g., VeTo [42]), and systems for predicting
research impact (e.g., ArtSim [13]).

We plan to keep maintaining and updating CS-KG in the following several
years. We thus created a fully automatic pipeline that we will run every six
months to produce new versions of CS-KG that will include recent papers from
OpenAlex. Indeed, one of the advantage of our solution is that it does not require
heavy workload for the maintainers. In order to cope with the ever increas-
ing number of papers, we are also embedding big data technologies within the
pipeline. We also plan to keep evolving the ontology by including new predicates
according to patterns emerging from the data and the community feedback.

10 https://www.wikidata.org/wiki/Wikidata:Main_Page.

https://www.wikidata.org/wiki/Wikidata:Main_Page
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Fig. 1. Architecture of the automatic generation pipeline.

4 Automatic Generation of CS-KG

This section briefly describes the methodology that we applied to build the CS-
KG. It builds on top of the pipeline introduced in [14], which has already been
successfully employed to build the Artificial Intelligence Knowledge Graph (AI-
KG) [15]. Our new approach is more scalable, allowing to efficiently compute
the much larger set of articles used for CS-KG. It also extends significantly the
range of semantic relations extracted from the literature by using VerbNet [38] to
semi-automatically enrich the domain ontology. Finally, it can extract multiple
relationships between a pair of entities, while the previous solution was limited
to one. Figure 1 shows an overview of the automatic extraction pipeline.

4.1 Extraction Modules

The proposed methodology employs four complementary tools to extract enti-
ties and relationships from plain text (typically the titles and abstracts of the
articles). These tools are:

– DyGIEpp [43]. This tool extracts a set of entities EDy of six pre-defined
types (Method, Task, Material, Metric, Other-Scientific-Term, and Generic)
and seven kinds of relationship (Used-for, Hyponym-Of, Compare, Part-of,
Conjunction, Feature-of, Evaluate-for). It is used to yield a set of entities
EDy and a set of triples among them, TDy.

– Computer Science Ontology Classifier (CSO-C) [34]. CSO-C is a clas-
sifier which exploits syntactic and semantic similarity to map text spans to
topics in CSO. It extracts the set of entities ECSO.

– OpenIE of the Stanford Core NLP suite [1]. This tool is used to extract open
domain relationships from plain texts of the input dataset among the entities
in the sets EDy and ECSO. The module considers only triples whose relations
are composed by only one verb and yields the set of triples TOIE .
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– PoS Tagger (PoST). This module is built on top of the Stanford Core
NLP suite [28]. It uses part-of-speech (PoS) tags to find all verbs that exist in
sentences between pairs of entities. For example, given a sentence s and two
entities in it ei and ej where ei, ej ∈ EDy ∪ ECSO, this module builds triples
<ei, v, ej>, where v is a verb in s between ei and ej . This module uses a
window of size 15 as the maximum number of tokens that can occur between
two entities to extract verb relations. It returns the set of triples TPoS .

The sets TDy, TOIE , and TPoS are given as an input to the Entities and
Relations Handler Module.

4.2 Entities and Relations Handler Module

This module has been developed to integrate and clean up entities and relation-
ships from the different tools, in order to reduce noise and redundancies.

Entities Handler. This module: (i) lemmatizes all entities to group singulars
and plurals forms of the same entities; (ii) solves acronyms by exploiting the fact
that they are usually placed in brackets near entities in the text; (iii) removes
entities which appear in a handcrafted blacklist; (iv) removes generic entities
which have an information content provided by WordNet equal to or lower than
an empirically defined threshold of 5. In order to not discard key entities for the
this domain, the module uses a whitelist of research entities which includes the
‘Fields of Study’ from MAG.

Next, a sentence transformer model is used to detect and merge entities with
the same meaning.

Given the set of all entities, let us say E, the module creates an index based
on the tokens contained by the entities. The index links each token to all the
entities that include it. Then, it compares two entities ei, ej ∈ E if they share at
least one token. The comparison is performed by using the state-of-the-art frame-
work SentenceTransformers [32] and encoding the entities with the paraphrase-
distilroberta-base-v2 11 transformer model. Entities which have a cosine similarity
equal to or greater than a threshold thmerge = 0.9 (empirically calculated) are
merged together. For example, if the entity ei and ej have a cosine similarity
greater than 0.9, then the module chooses ei as representative entity for both ei
and ej , and uses ej as an alternative label of ei.

Relationships Handler. The sets TDy, TOIE , and TPoS may contain several
redundant triples that use different predicates (e.g., includes, embeds, contains)
to convey the same meaning. We address this issue by mapping similar verbs
to the same predicate. The mapping schema has been built by enriching our
previous handcrafted mapping [15] with VerbNet [38], which offers a complete
and coherent semantic representations of verbs [10]. Verbnet is a taxonomy of

11 https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2.

https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2
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English verbs organized in classes whose verbs share syntactic and semantic
coherence. It enables to build new taxonomies with domain-specific jargon while
holding as a core the most common use of verbs based on their semantics in
more general contexts. Specifically, we associated the extracted verbs with the
high-level predicates of the previous mapping as well as relevant VerbNet classes.
We then manually refined this schema to produce a final set of 39 representative
predicates mapped to 464 verbs from the articles12. These same predicates were
also used to produce the relevant relations in the CS-KG ontology.

All verbs of sets TOIE , and TPoS are mapped using this schema. The relations
generated by DyGIEpp in the set TDy are also mapped to the same representative
predicates13. For example, two triples which share the same entities such as <a,
embeds, b> and <a, contains, b> will be merged in a single triple <a, includes,
b>, given that embeds and contains are mapped to includes. After mapping
all the relations of the sets TDy, TOIE , and TPoS , the module yields the set of
triples T .

4.3 Ontology-Based Checker Module

In this phase, the CS-KG ontology is used to integrate entities from different
tools and discard triples that do not comply with domain and range of the
relations. All triples of the set T are then represented according to the CS-KG
ontology. The types of entities returned by the DyGIEpp tool are mapped to
the relevant classes in the ontology. Specifically, methods, tasks, materials, and
metrics are mapped to the homonymous classes in the ontology (e.g., material is
mapped to the class cskg-ont:Material), while other-scientific-terms and generic
entities are mapped to cskg-ont:OtherEntity. The predicates are mapped to the
ontology object properties. For instance, <cskg:semantic_interoperability,
uses, cskg:ontology_matching>, considering that <cskg:ontology_matching,
rdf:type, cskg-ont:Task>, becomes <cskg:semantic_interoperability,
cskgont:usesTask, cskg:ontology_matching>.

In this phase, triples which do not comply with the semantics of the on-
tology are discarded. For example the triple <cskg:utk_face_dataset,uses,
cskg:deep_learning>, where cskg:utk_face_dataset is a cskg-ont:Material and
cskg: deep_learning is a cskg-ont:Method, is discarded because the class cskg-ont:
Material is not in the domain of the property cskg-ont:usesMethod.

4.4 Machine Learning-Based Checker Module

Triples obtained from several articles are typically of good quality, since the
probability of extracting the same incorrect claim from multiple papers is fairly
low. On the other hand, triples which appear in one or very few papers are more
noisy and less reliable. We can thus use the number of papers associated with
a triple, which we label support, to distinguish between reliable and uncertain

12 http://w3id.org/cskg/downloads/SKG-predicates-new-VerbNet-equivCSKG.csv.
13 http://w3id.org/cskg/downloads/SKG-dygiepp-Mapping.csv.

http://w3id.org/cskg/downloads/SKG-predicates-new-VerbNet-equivCSKG.csv
http://w3id.org/cskg/downloads/SKG-dygiepp-Mapping.csv
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Fig. 2. Distribution of the research areas in terms of relevant papers.

triples. However, we do not want to automatically discard all uncertain triples,
since many of them may be valid. Therefore, this module uses a classifier to
decide which triples need to be included in the knowledge graph. It first splits T
in two disjoint sets: Treliable (support ≥ 3) and Tuncertain (otherwise). The set
Treliable is employed to train a Multi-Layer Perceptron classifier which imple-
ments a function θ : t → {0, 1} that, given an input triple t, predicts 1 if the
triple t is correct and can be included in the knowledge graph, and 0 if the triple t
should be discarded. In order to generate negative triples for the training phase,
each triple t ∈ Treliable is corrupted by a triple t′|t′ �∈ T by replacing the head or
the tail with a random chosen entity. The set of the triples {t′0, . . . , t

′
n} consti-

tutes the set of negative triples Tnegative. Therefore the set Treliable ∪Tnegative is
actually used to train the model. The rationale behind this solution is to use the
classifier to identify high quality triples in the set Tuncertain which is consistent
with triples of the set Treliable. The set of triples for which the classifier predicts
1 is referred as Tconsistent. Finally, the triples in sets Treliable and Tconsistent as
well as all associated information (e.g., support, relevant articles, and so on) are
refied into statements and encoded as RDF in order to generate CS-KG.

5 Statistics About CS-KG

This section discusses several analytics about the current version of CS-KG. The
first two subsections report statistics about entities and statements, respectively.
The third one compares CS-KG to AI-KG according to several quantitative
metrics. A major novelty of CS-KG is that include a variety of fiends across all
Computer Science. Figure 2 shows the top 15 high-level topics (direct sub-topics
of Computer Science in CSO) associated with the articles within CS-KG.
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Fig. 3. Entities distribution over number of statements in logarithmic scale. For space
constraints, we show only entities appearing in less than 100 statements.

5.1 Entity Statistics

CS-KG contains 10M entities distributed among the five exclusive entity types.
About 3.9M entities are classified as Methods (e.g., cskg:spiking_neural_net-
work, cskg:latent_topical_skip_gram, cskg:secret_key_generation_approach);
this reflects the fact that a large number of articles in the Computer Science
literature present or reuse methods. CS-KG also includes 1.3M Tasks (e.g., cskg:
identity_authentication, cskg:face_recognition, cskg:natural_language_
generation) , 450K Materials (e.g., cskg:freebase, cskg:dbpedia, cskg:image_
data), and 215K Metrics (e.g., cskg:accuracy_rate, cskg:network_lifetime,
cskg:storage_efficiency). Finally, 4M entities are associated with the type Oth-
erEntity, which includes all entities that were not assigned to the other classes. In
future work we plan to further investigate and characterize more accurately the
entities currently associated to this class.

Figure 3 shows the distribution of the entities according to the number of
statements in which they appear. For example, 79K entities appear in exactly
10 statements. CS-KG contains a large number entities associated with multiple
statements. For instance, a total of 820K entities appear in at least 10 statements
(i.e., the sum of the y values corresponding to x ≥ 10 in Fig. 3). This allows users
to chose different compromises between the number of entities and the richness of
their description. For instance, in some use cases it may be advisable to consider
a smaller set of entities associated with a lot of information.

Very common entities are often associated to several CS subdomain, such as
cskg:quality_of_service (6, 141 statements), cskg:feedforward_neural_network
(1, 747 statements), cskg:cskg:simulation_based_environment (1, 711 state-
ments), cskg:computing_time (1, 228 statements). Conversely, entities that
appear only in a lower number of statements suggests are either very recent
or only used for specific purposes or CS sub-areas. For example, the entities
cskg:fingerprint_image_encryption_scheme and cskg:gene_ontology_tool, that
only appear 6 and 5 times, respectively, are specific to their sub-areas.
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Fig. 4. The distribution of the statements over the support in logarithmic scale.

5.2 Statement Statistics

Figure 4 reports the distribution of all statements over the number of articles
from which they were extracted. Most of the statements are associated to one
or few scientific papers. This indicates the importance of including a mechanism
to validate low supported statements such as the one described in Sect. 4.4.
The chart also suggests that CS-KG includes both broad knowledge, which is
supported by a large community consensus, and very fine-grained information,
appearing in few articles.

The distribution of high supported statements can be better observed in
Fig. 5, where each bar represents the number of statements supported by a mini-
mum amount of papers. For instance, 100K statements are supported by at least
5 articles. Some examples of this category are <cskg:ontology_engineering,
cskg:usesMethod, cskg:description_logic>, <cskg:web_ontology_langua-
ge, skos:broader, cskg:semantic_web_standard_technology>, and <cskg:
sparql, cskg-ont:queriesMaterial, cskg:rdf_data> which represent general
knowledge about the Semantic Web domain.

Fig. 5. The distribution of the statements over the minimum level of support in loga-
rithmic scale.
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Fig. 6. The number of statements produced by each extractor tool.

The tools used to extract statements from the articles contributed differ-
ently to CS-KG: PoST yielded 22M statements, DyGIEpp 14M , and OpenIE
10M . The Venn diagram in Fig. 6 shows the number of statements extracted
from each tool, as well as their intersections. The relatively small size of the
intersections suggest that these solutions are highly complementary. Finally,
Fig. 7 shows the distribution of the 20 most frequent relations over the num-
ber of relevant statements. We can appreciate the variety of significant relations
in CS-KG: 19 relations are associated with at least 500K statements and 64
with over 100K statements. The most common relations are cskg:usesMethod,
cskg:includesMethod, cskg:includesOtherEntity, and skos:broader which are asso-
ciated respectively with 6.6M , 4.4M , 3.5M , and 2.0M statements.

5.3 Comparison Between CS-KG and AI-KG

Table 1 compares CS-KG and AI-KG according to different characteristics. CS-
KG is a major improvement according to all metrics. Specifically, it is 34 times

Fig. 7. The number of statements of the 20 most frequent relationships.
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Table 1. Comparison between CS-KG and AI-KG.

Feature CS-KG AI-KG Difference

Number of entities 10M 820K +1,119%
Number of statements 41M 1.2M +3,316%
Number of covered scientific papers 6.7M 333K +1,930%
Multiple relationships between two entities Yes No N.A
Number of ontology axioms 2,213 321 +901%
Number of object properties 179 27 +562%
Links to DBpedia 31K 0 N.A
Links to Wikidata 27K 19K +42%

larger in terms of number of statements, 20 times larger in terms of number
of articles, and 12 times bigger in terms of number of entities. The ontolog-
ical schema is also much more comprehensive, including a larger number of
object properties and axioms such as cskg-onto:executesMethod, cskg-ont:based-
onMethod, and cskg-ont:producesMaterial. CS-KG is also better connected to
external knowledge graphs, including about 65K owl:sameAs links against the
25K of AI-KG.

6 Evaluation

In order to evaluate the automatic methodology used for producing CS-KG,
we measured its performance on a manually annotated gold standard. To this
purpose, we first selected 1200 statements which contain as subject or object one
of sub-topics of Machine Learning14 according to CSO. More specifically, the set
of statements was created by aggregating: 1) 200 statements whose support is
greater than 5, 2) 200 statements whose support is equal to or greater than 3, 3)
200 statements whose support is lower than 3, 4) 400 statements discarded by
the methodology, and 5) 200 randomly generated statements that are not part
of CS-KG. The latter were produced by replacing the subject or the object of a
statement from CS-KG.

This set was then manually annotated by 3 senior computer science
researchers. For each triple, the experts were asked to return 1 if a triple was
correct, i.e., it appeared in literature, and 0 otherwise. They were also allowed
to use online tools to check if a triple was consistent with the scientific lit-
erature. The Fleiss’ kappa agreement [18] between the annotators was 0.435,
indicating a moderate agreement. The majority vote schema was employed to
generate the gold standard. In order to show the advantage of our hybrid method
that builds on top of multiple tools, we compared our full methodology against
DyGIEpp [43], OpenIE [1], PoST [28], and against the union of their results

14 https://cso.kmi.open.ac.uk/topics/machine_learning.

https://cso.kmi.open.ac.uk/topics/machine_learning
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Table 2. Precision (P) Recall (R) and F-measure (F1) over 1,200 annotated statements.

Extraction tools P R F1

DyGIEpp 0.67 0.37 0.47
OpenIE 0.60 0.24 0.34
PoST 0.56 0.46 0.51
DyGIEpp + OpenIE + PoST 0.55 0.93 0.69
CS-KG pipeline 0.76 0.77 0.76

(DyGIEpp + OpenIE + PoST). Table 2 reports the results of the evaluation in
terms of precision, recall, and f-measure. The CS-KG pipeline outperforms all
the other tools yielding a overall f-measure of 0.76. This demonstrates how the
checker modules (described in Sects. 4.3 and 4.4) are able to increase significantly
the accuracy of the statements (+21% in precision), paying a relatively low price
in recall. An inspection of the results shows also that 86% of the statements with
support greater than 5 are correct, consistently with the intuition that support
is an indicator of a triple correctness. The method which aggregates all the basic
tools (DyGIEpp+OpenIE+PoST) performs second best (0.69), highlighting the
value of an hybrid approach that combines both unsupervised and supervised
methods. Finally, DyGIEpp, OpenIE, and PoST obtain f-measures in the 0.47-
0.51 range. Among them, DyGIEpp has the highest precision (0.67), while PoST
has the highest recall (0.46).

In summary, the evaluation suggests that i) CS-KG offers good quality state-
ments, in particular when associated to a good support, ii) the performance of
each of the three tools is unsatisfactory and, therefore, it is worth to produce
a pipeline that is able to combine them, and iii) the components of the CS-KG
pipeline used to discriminate valid statements (i.e., the Machine Learning-based
Checker Module and the Ontology-based Checker Module) play an important role
in improving the overall quality and reducing noisy and incorrect statements.

7 Conclusions

In this paper, we introduce the Computer Science Knowledge Graph (CS-KG),
a new knowledge graph including over 350M RDF triples that describes 41M
statements about 10M entities automatically extracted from over 6.7M articles.
CS-KG offers a much more comprehensive representation of research concepts
in Computer Science than alternative knowledge bases and can support a wide
variety of intelligent services. CS-KG will replace AI-KG, now deprecated. We
plan to keep maintaining and updating it in the following years. To this purpose
we developed an automatic pipeline that we will run every six months.

The main limitation of CS-KG is that it was produced with a fully automatic
methodology, so the specific statements are not revised by humans, as in manu-
ally crafted knowledge graphs. We are thus investigating ways to allow users to
correct and give feedback on specific statements, either by supporting wiki-like
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portals (e.g., the CSO Portal, Semantic Wikis [11]) or more complex platforms
for editing machine-readable representations of the literature (e.g., ORKG). We
are also working on developing an entity linking tool for automatically mapping
documents (e.g., articles, patents, educational material) to entities and state-
ments in CS-KG. Finally, we plan to further extend the ontology and the entity
typing process, in particular by providing a more granular categorization of entity
types.
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Abstract. Stream-reasoning query languages such as CQELS and C-
SPARQL enable query answering over RDF streams. Unfortunately,
there currently is a lack of efficient RDF stream generators to feed RDF
stream reasoners. State-of-the-art RDF stream generators are limited
with regard to the velocity and volume of streaming data they can han-
dle. To efficiently generate RDF streams in a scalable way, we extended
the RMLStreamer to also generate RDF streams from dynamic hetero-
geneous data streams. This paper introduces a scalable solution that
relies on a dynamic window approach to generate RDF streams with low
latency and high throughput from multiple heterogeneous data streams.
Our evaluation shows that our solution outperforms the state-of-the-
art by achieving millisecond latency (compared to seconds that state-of-
the-art solutions need), constant memory usage for all workloads, and
sustainable throughput of around 70,000 records/s (compared to 10,000
records/s that state-of-the-art solutions take). This opens up the access
to numerous data streams for integration with the semantic web.
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1 Introduction

An increasing portion of data are continuous in nature, e.g., sensor events, user
activities on a website, or financial trade events. This type of data is known as
data streams; sequences of unbounded tuples generated continuously in different
rates and volumes [3]. Due to the temporal nature of data streams, low latency
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computation of analytical results is needed to timely react in different use cases,
e.g., fraud detection [9]. Thus, stream processing engines must efficiently handle
low latency computation of varying velocity and volume.

On the one hand, different frameworks were proposed to handle data streams,
e.g., Flink, Spark or Storm [6,19,26]. On the other hand, RDF stream process-
ing (RSP) engines, e.g., CQELS and C-SPARQL [1,5,16], were widely studied
and perform high-throughput analysis of RDF streams with low memory foot-
prints [16]. Yet, these stream processing frameworks are not substantially used
in the domain of RDF graph generation from streaming data sources, despite
the demand of these mature RSP engines for more RDF streams.

Between data processing frameworks and stream processing engines, there are
tools to generate RDF streams from heterogeneous data streams (e.g. SPARQL-
Generate [17], RDFGen [21], TripleWave [18], Cefriel’s Chimera [22]). However,
some of these tools are inefficient when the data stream starts to scale in terms of
volume and velocity, such as TripleWave, and SPARQL-Generate. While other
tools are not open sourced nor suitable for the mapping of streaming data, such as
RDFGen, and Cefriel’s Chimera respectively. Overall, there are no RDF stream
generators that keep up with the needs of stream reasoning engines while taking
advantage of data processing frameworks to efficiently produce RDF streams.

In this paper, we present the RMLStreamer-SISO, a parallel, vertically and
horizontally scalable stream processing engine to generate RDF streams from
heterogeneous data streams of any format (e.g. JSON, CSV, XML, etc.). We
extended previous preliminary work [13] of heterogeneous data stream mapping
solution: an open source implementation on top of Apache Flink [6], available
under MIT license, which generates high volume RDF data from high volume
heterogeneous data. RMLStreamer-SISO extends RMLStreamer to also sup-
port any input data streams and export RDF streams (Stream-In-Stream-Out
(SISO)). RMLStreamer-SISO now supports a much larger part of the RML spec-
ification1, including all features of RML but relational databases.

The RMLStreamer-SISO outperforms the state-of-the-art tools when han-
dling high velocity data stream, increasing the throughput it could handle while
maintaining low latency. The RMLStreamer-SISO achieves millisecond latency,
as opposed to seconds that state-of-the-art solutions need, constant memory
usage for all workloads, and sustainable throughput of around 70,000 records/s,
compared to 10,000 records/s that state-of-the-art solutions take.

Through the utilization of a low-latency tool like RMLStreamer-SISO, legacy
streaming systems could exploit the unique characteristics of real-life streaming
data, while enabling analysts to exploit the semantic reasoning using knowledge
graphs in real-time and have access to more reliable data.

The contributions presented in this paper are: (i) an algorithm to generate
the RDF streams from heterogeneous streaming data; (ii) its implementation,
the RMLStreamer-SISO, as an extension of RMLStreamer; and (iii) an evalu-
ation demonstrating that the RMLStreamer-SISO outperform the state-of-the-
art. The paper is structured as follows: Sect. 2 discusses related work, Sect. 3

1 Implementation report of RML: https://rml.io/implementation-report/.

https://rml.io/implementation-report/
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the approach and its implementation, Sect. 4 the evaluation of RMLStreamer-
SISO against state-of-the-art, Sect. 5 the results of our evaluations, and Sect. 7
concludes our work with possible future works.

2 Related Works

Streaming RDF mapping engines transform heterogeneous data streams to RDF
data streams. Several solutions exist in the literature for generating RDF from
persistent data sources [2,13,14,23], but only few generate RDF from data
streams [17,18,21]. Although the implementations details are elaborated in these
works, their evaluations are designed without considering the different data
stream behaviours nor the resource contention between different evaluation com-
ponents.

TripleWave [18] generates RDF streams from streaming or static data
sources using R2RML mappings, and publishes them as RDF stream. However,
the R2RML mappings of TripleWave are invalid according to the specifications
of R2RML and it does not support joins. Although it is purported to support
several input sources, the user has to write the code to process the input data
and iterate over them before using the tool. This can result in poor performance
from improper implementation. Last, it is not designed to support distributed
parallel processing, resulting in limited scaling with data volume and velocity.

RDF-Gen [21] generates static or streaming RDF data from static or
streaming data sources. A Data connector communicates with the data source,
iterates over its data entries, and converts every entry to a record of values.
These records are converted to RDF using a graph template: a listing of RDF-
like statements with variables bound to the record values coming from data con-
nectors. RDF-Gen generates RDF on a per record basis, theoretically allowing a
distributed parallel processing set-up. However, the current implementation and
documentation show no indication of a clustered setup nor how to run it.

SPARQL-Generate [17] extends SPARQL 1.1 syntax to support map-
ping of heterogeneous data to RDF data. SPARQL-Generate could be imple-
mented on top of any SPARQL query engine, and knowledge engineers with
SPARQL experience could use it with ease. The reference implementation of
SPARQL-Generate2 generates RDF streams from data streams, even though
it is not reported in the original paper. Although joining data from multiple
sources is supported, SPARQL-Generate waits for one of the data streams to
end first before consuming other data sources to join the data. Thus, joins with
unbounded streaming data sources are not supported. The implementation is
based on single machine setup without scaling with data volume and velocity.

Cefriel’s Chimera [22] is an integration framework based on Apache
Camel3 split into four “blocks” of components to map heterogeneous data to
RDF data: lifting block, data enricher, inference enricher, and lowering block.

2 SPARQL-Generate: https://github.com/sparql-generate/sparql-generate.
3 Apache Camel: https://camel.apache.org/.

https://github.com/sparql-generate/sparql-generate
https://camel.apache.org/
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Chimera aims to be modular and allows each block to be replaced with cus-
tom implementations. The current implementation uses a modified version of
RMLMapper4 in the lifting block for data stream processing. However, the whole
RML mapping process is recreated with each incoming message which could lead
to high performance overhead in a highly dynamic data stream environment.

3 Stream In - Stream Out (SISO)

We extend RMLStreamer’s architecture for generating RDF from persistent big
data sources [13] to also generate RDF streams from heterogeneous data streams
with high data velocity and volume, while keeping the latency low. The RDF
mapping language (RML) [10], a superset of R2RML, expresses customized map-
ping from heterogeneous data sources to RDF datasets. We illustrate the con-
cepts of RML with the example RML document in Listing 1.2.

We break the process of generating RDF from a data stream into tasks and
subtasks (Fig. 1). Each task or subtask is a stream processing operator acting
on an incoming data stream. They could be chained one after the other to form
a pipeline of operators and result in one or more outgoing data streams. This
approach introduces parallelism on both data and processing level, enabling each
data stream and operator to be processed and executed respectively in parallel.

To illustrate RMLStreamer-SISO’s pipeline, we use the examples in Listing
1.1 and 1.2. The mapping document in Listing 1.2 is used to join and map JSON
data (Listing 1.1) from websocket streams to RDF with dynamic window join.

b) Data source
connector

a) Data source

c) Records

d) Partitioner*

e) Item 
generator*

f) Data items

Data

Components
mapped to Flink

operator(s)

Component

Data flow

* Introduces
parallelism

Ingestion

Pre-mapping
(optional)

g) Stream processing
operators

Window operators FnO functions

h) Statement generators*

Subject 
generator

Predicate
generator

Object
generator

i) Abstract RDF statements

l) Stream merger

m) Sink writer

Mapping

Combination

j) RDF serializer

k) Serialized RDF statements

Fig. 1. Workflow of RMLStreamer. Data flows from the Data Source at the top through
all the components pipeline to the Sink writer at the bottom.

4 RMLMapper: https://github.com/RMLio/rmlmapper-java.

https://github.com/RMLio/rmlmapper-java
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Listing 1.1. Data records from 2 data streams “Flow” & “Speed”.
1 // data records from Speed stream
2 {"speed":123.0 ,"time":"14:42:00","id":"lane1"}
3 // data records from Flow stream
4 {"flow":1680,"time":"14:42:00","id":"lane1"}

Listing 1.2. Example RML Mapping file to generate streaming RDF from the stream-
ing heterogeneous data of Listing 1.1.
1 # prefix definitions omitted
2 _:ws_source_ndwSpeed a td:Thing ;
3 td:hasPropertyAffordance [ td:hasForm [
4 hctl:hasTarget "ws:// data-streamer :9001" ; # URL and content type
5 hctl:forContentType "application/json" ; # Data format
6 hctl:hasOperationType "readproperty" ] ] . # Read only
7 _:ws_source_ndwFlow a td:Thing;
8 td:hasPropertyAffordance [ td:hasForm [
9 hctl:hasTarget "ws:// data-streamer :9000" ;

10 hctl:forContentType "application/json" ;
11 hctl:hasOperationType "readproperty" ] ] .
12 <JoinConfigMap > a rmls:JoinConfigMap ;
13 rmls:joinType rmls:TumblingJoin . # Trigger/eviction type
14 <NDWSpeedMap > a rr:TriplesMap ;
15 rml:logicalSource [ # Describes data source
16 rml:source _:ws_source_ndwSpeed ;
17 rml:referenceFormulation ql:JSONPath ; # JSONPath iterator
18 rml:iterator "$" ] ; # Iterates the data as JSON root object
19 rr:subjectMap [ # Generation of the subject IRI
20 rr:template "speed={speed}&time={time}" ] ;
21 rr:predicateObjectMap [ # Describes how predicate and object are generated
22 rr:predicate <http :// example.com/laneFlow > ;
23 rr:objectMap [
24 rr:parentTriplesMap <NDWFlowMap > ; # TripleMap to be joined with
25 rmls:joinConfig <JoinConfigMap > ; # Configuration of join window
26 rmls:windowType rmls:TumblingWindow ; # Type of join window
27 rr:joinCondition [ # Attributes on which the data records are joined
28 rr:child "id" ; rr:parent "id" ; ] ] ] .
29 <NDWFlowMap > a rr:TriplesMap ;
30 rml:logicalSource [
31 rml:source _:ws_source_ndwFlow ;
32 rml:referenceFormulation ql:JSONPath ;
33 rml:iterator "$" ] ;
34 rr:subjectMap [ rr:template "flow={flow}&time={time}" ] .

3.1 RDF Stream Generation Workflow

Our approach consists of a workflow with four tasks (see Fig. 1):

Ingestion. The ingestion task captures data streams and prepares the data
records for the mapping task. Each data stream triggers one ingestion task that
can run in parallel with the other ingestion tasks spawned by the other data
streams. The ingestion task can be divided in three subtasks:

1. Data source connector (Fig. 1,(b)): This subtask is responsible for connecting
to a (streaming) data source (a). It reads data records from the source and
passes these records (c) on to the stream partitioner.
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2. Stream partitioner (d): The stream of data records is optionally partitioned
in disjoint partitions to be fed to the next subtask. The partitioning depends
on the order’s maintenance. If the exact order of the incoming data records is
not important to be maintained, then these records can be distributed evenly
among multiple instances of the next subtask, increasing parallelism. If the
order of generating RDF statements needs to correspond with the order of
the incoming data records, then the stream is not distributed at this stage.

3. Item generator (e): One data record can lead to zero or more RDF state-
ments. This subtask splits a data record in zero or more items of internal
representation called data items (f), according to the logical iterators defined
in the mapping document, before the actual mapping task takes place. Using
the sample data and the mapping document from Listing 1.1 and 1.2 respec-
tively, this subtask will use the logical iterator ‘$’, a JSONPath5, to generate
data items from each data record shown in Listing 1.1. In this case, the logical
iterator is the JSON root object, so the data item is the same as the incoming
data records. Otherwise, if the data record contains a list of sub-records, and
the logical iterator is specified over the list (e.g., $.list[*]), each of these
sub-records are turned into data items.

Pre-mapping (Optional). Before the data items are mapped to RDF, the data
items may be processed with custom data transformations defined with FnO [8],
or the window operators, such as joins, aggregates, and reduce. The FnO func-
tions could be as simple as changing letters to uppercase or as complex as the
window joins. This stage is optional and omitted if the RML document does not
define pre-mapping functions. The pre-mapping task (g) is right before the map-
ping task since the data fields requiring preprocessing can be more than the data
fields needed for mapping to RDF data. For example, with the given inputs and
mapping document (Listing 1.2), the data items (Listing 1.1) from the two input
streams, “Flow” and “Speed”, are first buffered inside a window, and then joined
based on their internalId value. Data records, having the same value for the
“id”, are joined pairwise. If windows joins were implemented after the mapping
stage, the verbosity of RDF would substantially increase the network bandwidth.
More, to fully map the data before joining, RMLStreamer-SISO needs to know
all attributes present in the raw data records which would be infeasible.

To support joining with windows, RML was extended. New vocabulary terms
were defined to support windowing operations with RML. We defined two new
properties: rmls:windowType to provide the type of window to be used when
joining and rmls:joinConfig when joining the Child and Parent Triple Map to
define how the trigger, and eviction are fired inside the window.

Section 3.2 details the dynamic windowing algorithm and Sect. 3.3 elaborates
on the design choice and windows’ implementation for RMLStreamer-SISO.

Mapping. RDF statements are generated from data items coming from the inges-
tion task and the pre-mapping task.

5 JSONPath documentation: https://goessner.net/articles/JsonPath/index.html.

https://goessner.net/articles/JsonPath/index.html
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1. Statement generator (h): Each data item leads to one or more RDF statements
in this sub task. Each statement is generated in parallel as an abstract RDF
statement (i) which could be fed to the next subtask for serialization.

2. RDF serializer (j): The abstract RDF statements are serialized into various
RDF serialisations based on the configuration given to the RMLStreamer.

Combination. This task brings back together all streams of RDF statements (l)
into one final RDF stream which will be written out using the sink writer (m).

3.2 Heterogeneous Data Streams Join in RDF Streams

Supporting joins in RMLStreamer-SISO and any streaming RDF generator, is
not trivial as windowing techniques are required for unbounded and unsynchro-
nized streaming data. Unlike batch processing where data is bounded, processing
whole data streams in memory is unsustainable due to the continuous and infi-
nite characteristics of streaming data. Therefore, stream processing engines use
buffers called windows to hold the most recent stream of records in memory. The
windows’ lifetime is measured in terms of time interval, thus, the window interval
determines the size of the window and their operation behaviour is defined by
the trigger, and the eviction events [12]. A trigger event occurs when an operator
is executed to process the data records inside the window interval. An eviction
event occurs when the window evicts the data records inside its buffer.

Time

Blue stream

Green stream ...

High stream
velocity

Low stream
velocity

Dynamic window

Fig. 2. Behaviour of the dynamic window under high, and low stream velocities. The
cogwheels are the trigger events representing the moment when the data records are
processed. In this figure, the trigger events are fired with every new data record, and
only when there is at least one data record from each data stream.

We opted for an eager trigger implementation to lower the latency of RML-
Streamer’s responses for the windowed joins’ implementation. The joined results
are emitted as soon as possible without waiting for the eviction event to occur.
We designed a dynamic window which adapts its window intervals according to
the velocity of the incoming data streams. Adaptive windowing [27] was studied
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in the context of batch stream processing with a positive impact on the stream
processing job’s performance: lower latency, and higher throughput. We opted
for a simple cost metric based on the data records’ number to keep the memory
and latency low in a real-time stream processing environment where the time
constraint is more stringent.

The algorithm is inspired by the additive-increase, and multiplicative
decrease algorithm of TCP congestion control [7]. Figure 2 shows the high level
behaviour of our dynamic window for the two different stream velocities. When
the data stream velocity is high, the window size shrinks to process the data
records as fast as possible, keeping the latency low and throughput high. When
the data stream velocity is low, the size of the window grows to wait for more
data records and process them. This ensures that the window do not miss the
records due to short window size. We elaborate the details of the algorithm
below. For each window, the following configuration parameters are provided:

1. |W |: The window interval
2. εu & εl: Upper and lower threshold limit for total cost metric
3. U & L: Upper and lower limit for the window interval
4. Limit(ListP ) & Limit(ListC): Upper limit size for parent and child stream

Algorithm 1: Dynamic window onEviction routine
Data: |W |, εu, εl, U, L, Limit(ListP ), Limit(ListC), SP , SC

1 cost(ListP ) = |SP |/Limit(ListP )
2 cost(ListC) = |SC |/Limit(ListC)
3 total cost m = cost(ListP ) + cost(ListC)

// adapts window size based on cost
4 if m > εu then
5 |W | = |W |/2
6 Limit(ListP ) = Limit(ListP ) ∗ cost(ListP ) ∗ 1.5
7 Limit(ListC) = Limit(ListC) ∗ cost(ListC) ∗ 1.5

8 else if m < εl then
9 |W | = |W | ∗ 1.1

10 Limit(ListP ) = Limit(ListP ) ∗ cost(ListP ) ∗ 1.5
11 Limit(ListC) = Limit(ListC) ∗ cost(ListC) ∗ 1.5

12 clean both ListC and ListP
13 clip |W | in the range of [L, U ]

Since we implement the join operator with eager execution, the trigger event
is fired when the current record rc arrives inside the window. We denote the
current window as W with interval size |W |. The streams are denoted as Sp

and Sc with the corresponding states Listp and Listc, for the parent and child
stream respectively (the parent and child stream follows the RML specification
for joining triples maps). The states contain the records from their respective



RMLStreamer-SISO: An RDF Stream Generator 705

streams inside the window with for example |Sp| denoting the number of records
from Sp. Listp and Listc are only used in cost calculation to determine if the
window interval needs to be changed; they do not limit the amount of records
that could be buffered inside the window.

At each eviction trigger, we calculate the cost for each list states Listp and
Listc. For example, the cost for cost(ListP ) = |Sp|/Limit(ListP ). The total cost
is m = cost(Listp) + cost(Listc) and it is checked against the thresholds εl and
εu to adjust the window interval accordingly. We assume the stable zone to be
achieved if the total cost fulfils the predicate: εl ≤ m ≤ εu. Algorithm1 shows
the pseudo-code for the eviction algorithm we just elaborated.

3.3 Implementation

RMLStreamer-SISO is released as version 2.3 of RMLStreamer to utilize Flink’s
parallelism for horizontal scaling (via distributed processing in a network and
vertical scaling (via multi-threaded execution of tasks). The update brings the
windowing support for joining multiple data streams, the dynamic windowing
algorithm, and FnO [8] as an extension point for joins execution. The code and
usage instructions for RMLStreamer-SISO are available online at the Github
repository: https://github.com/RMLio/RMLStreamer.

Windowing support is implemented through the use of Flink’s windowing
API6 for common types of window, e.g., Tumbling Window. We implemented
the KeyedCoProcessFunction provided by Flink’s low-level stream processing
API to manage the different states required for the algorithm (Algorithm1) of
the dynamic window. We implemented the dynamic windowed join before the
mapping stage, to group input streams and reduce network bandwidth usage.
The generated RDF stream could be windowed by the RDF stream processing
engines consuming the output.

Currently, FnO functions jar files have to be compiled together as part
of the RMLStreamer-SISO jar. Examples on github7 show the working of
RMLStreamer-SISO with TCP data stream. We also provide an extensive docu-
mentation on RMLStreamer-SISO in a containerized environment with docker8.

4 Evaluation

An extensive evaluation was conducted focused on variable data stream veloc-
ity, volume and variety of data formats to emulate the real-life workloads as
close as possible. The code for the evaluation is available on github9. Since
RMLStreamer-SISO is situated between traditional stream processing and RSP,
state-of-the-art approaches for benchmarking in these domains are combined:
6 Window: https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/

datastream/operators/windows/.
7 RMLStreamer-SISO: https://github.com/RMLio/RMLStreamer.
8 Docker: https://docker.com.
9 Benchmark: https://github.com/s-minoo/rmlstreamer-benchmark-rust.

https://github.com/RMLio/RMLStreamer
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/operators/windows/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/datastream/operators/windows/
https://github.com/RMLio/RMLStreamer
https://docker.com
https://github.com/s-minoo/rmlstreamer-benchmark-rust
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architectural design of RSPLab [25], workload design of Open Stream Process-
ing Benchmark [11], and measurement strategies of Karimov et al. [15].

We compare the RMLStreamer-SISO with the state-of-the-art streaming
RDF generator, SPARQL-Generate, which is actively maintained, used and sup-
ports the same features as RMLStreamer-SISO. The other tools were not con-
sidered for different reasons: TripleWave requires a custom implementation to
process each data stream and feed it in TripleWave which means it cannot be
used as-it-is. More, TripleWave is meant purely for feeding RDF streams to RDF
stream processing engines without performing joins, therefore it would have been
an unfair comparison both in terms of features and scope. RDF-Gen’s source
code is not available, but only a jar is available without any instructions to run
it. Both TripleWave and RDF-Gen are also not actively maintained. Finally,
Cefriel’s Chimera restarts the RDF mapping engine with every data record,
which means that the processing of the input and mapping is not performed in
a true streaming manner; the comparison would not be meaningful.

Data Source. The input data used in the evaluation comes from time annotated
traffic sensor data from the Netherlands provided by NDW (Nationale Databank
Wegverkeersgegevens)10, and also used by Van Dongen et al. [11]. It contains
around 68,000 rows of CSV data with two different measurements across different
lanes on a highway: number of cars (flow), and their average speed. The two
measurements are streamed through a websocket data streaming server.

Metrics. Stream processing frameworks are typically evaluated using two main
metrics: latency and throughput [15]. Latency can be further distinguished
into two types: processing-time latency, and event-time latency. Processing time
latency is the interval between the data record’s arrival time at the input and
the emission time at the output of the streaming engine [15]. Event-time latency
is the interval between the creation time, and the emission time at the stream-
ing engine’s output, of the data record [15]. Latency measurement requires to
consider the effect of coordinated occlusion, where the queueing time, a part of
the event-time, is ignored [15]. Therefore, we consider event-time latency as our
latency measurement to take the effect of coordinated occlusion in consideration.

For our evaluation, we considered the event-time latency of each record, the
throughput as number of consumed records per second, the memory and CPU
usage of the engine’s docker container. The measurements are captured on a
machine separate from the host machine of the System Under Test (SUT), where
memory and CPU usage are measured using cAdvisor11. By treating the SUTs as
a blackbox, we ensure that the measurement of the metrics incurs no performance
penalty nor resource contention with the SUTs during the evaluation.

Evaluation Set Up. The architectural design is a modification of RSPLab with
a custom data streaming component (Fig. 3). It consists of three components: a)
the data streamer, b) the system under test, and c) the monitoring system.
10 NDW: https://www.ndw.nu/.
11 cAdvisor: https://github.com/google/cadvisor.

https://www.ndw.nu/
https://github.com/google/cadvisor
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With the proposed architecture where each components is isolated, we aim
to reduce the influence of the benchmark components on the engine during the
evaluation process. The modularity of the setup also increases the flexibility of
configuring the evaluation environment with minimal changes for the engines.

Workload Design. To evaluate the performance of the engines under different data
characteristics and processing scenarios, we devise three different workloads: (i)
throughput measurement, (ii) periodic burst, and (iii) scalability measurement. As
SPARQL-Generate is unable to join unbounded streaming data (it expects data
streams with an end, Sect. 2), we evaluated the two workloads (throughput mea-
surement and periodic burst) without joining functionality to compare.

System under testData streamer

Remote
sources

Heterogeneous
data files

Data streaming engine

Splits incoming data according to
config
Induce stream behaviour
Timestamp, if required, the records
to induce timely behaviour

Streamer config

Output to sink
Stream Sink
Websocket

Mapping Engine

Monitoring system 

Time series DB

Monitoring sub system

* Latency 
* Throughput

File Store

Legend
Dedicated
machine

Docker
container

Data

Fig. 3. Benchmark architecture to evaluate the different engines, inspired by RSPLab.

– throughput measurement: the data stream throughput is constant and
steadily increases with each run to determine the engine’s sustainable through-
put [15]. CPU, latency and memory usage are measured.

– periodic burst: a burst of data records is emitted periodically to mimic fluctu-
ations in data streams; CPU, memory, latency and throughput are measured.

– scalability measurement: RMLStreamer-SISO is evaluated in two modes: cen-
tralised mode without parallelism and distributed mode with parallelizable
data to measure the impact of parallelism on its scalability. In both modes,
data from two input streams are joined and latency is measured.

System Specifications. We ran the evaluation on a single machine with multi-
ple docker containers to emulate the communication between the data stream-
ing source and the mapping engine in a streaming network environment. The
machine has Intel i7 CPU with 8 cores at 4.8GHz, 16GB RAM, and 200GB
hard disk space. The data streamer and the monitoring system docker contain-
ers (Fig. 3) have access to 4 of the cores, and the SUT docker container has
access to the leftover 4 cores. This prevents CPU resource contention between
the SUT and the other components used for running the evaluation.
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To evaluate horizontal scaling, the data streamer component is replaced with
Apache Kafka to support parallel ingestion of data streams by RMLStreamer-
SISO. Apache Kafka is configured with default settings and the data (Sect. 4) is
streamed into two topics12; “ndwFlow”, and “ndwSpeed” containing the records
about the number, and the average speed of the cars respectively.

5 Results

In this section, we discuss the results of our evaluation using different workloads.

Workload for Throughput Measurement. For the throughput measurement work-
load, we ran the evaluation multiple times with increasing input data throughput
for each run to evaluate the sustainable throughput of the SUTs.

In the first few runs of the evaluation, the RMLStreamer fared a bit worse
than SPARQL-Generate in all three measurements. This is due to the overhead
of having a distributed task manager for executing, and managing the different
tasks and subtasks of mapping heterogeneous data (Fig. 1). However, when the
throughput starts increasing beyond 10,000 records per second, RMLStreamer-
SISO outperforms SPARQL-Generate in terms of latency and memory usage.
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Fig. 4. SUTs performance under different data stream velocity for sustainable through-
put measurement. The last run for SPARQL-Generate was omitted because it took
more than 1 h instead of the expected 30min to process the whole data stream.

12 Kafka topics: https://developer.confluent.io/learn-kafka/apache-kafka/topics/.

https://developer.confluent.io/learn-kafka/apache-kafka/topics/
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Compared to RMLStreamer-SISO, SPARQL-Generate became unsustainable
when the throughput of the input data streams passes 10,000 records per second
with 20 s latency (Fig. 4). To the contrary, RMLStreamer-SISO has a consistent
low latency of 1 s for all runs of the workload having 100x magnitude lower
latency than SPARQL-Generate in later runs.

Regarding CPU usage, RMLStreamer-SISO has on average 20% more CPU
usage for the overhead of Apache Flink managing the distributed tasks.

In terms of memory usage, RMLStreamer-SISO uses significantly lower mem-
ory than SPARQL-Generate at around 900MB compared to 3GB by SPARQL-
Generate. Based on the previous observations, we conclude that RMLStreamer-
SISO outperforms SPARQL-Generate at higher throughput with lower latency
and memory usage. Even though, RMLStreamer-SISO’s CPU usage is around
30% higher than SPARQL-Generate in the last run, it effectively copes with the
increase in data stream velocity to maintain low latency processing.

Workload for Periodic Burst. The periodic burst workload studies the adapt-
ability of the engine to the recurring sudden burst of data stream. We used the
measurements from the last minute of the evaluation, when the engines are sta-
ble without warm-up overheads, to better visualize their performance during the
periodic burst of data (Fig. 5). In Fig. 5, we see a periodic increase, and drop in
the throughput metrics measurements, which is an expected behaviour in the
engines when consuming a data stream input with periodic burst of data. Every
10 s we see a burst of around 35,000 messages. Both engines behave as expected
for the throughput metrics measurement.

The spikes for latency measurement of SPARQL-Generate (Fig. 5) have a
wider base than those of RMLStreamer-SISO. This indicates that SPARQL-
Generate takes a longer time to recover from processing periodic workload than
RMLStreamer-SISO by a few seconds. RMLStreamer-SISO’s peak latency is
around 500ms whereas SPARQL-Generate has a peak latency of around 3.5 s.
Although RMLStreamer-SISO uses more CPU than SPARQL-Generate to pro-
cess data burst, it adapts to the sudden burst of data and recover more quickly
than SPARQL-Generate. The latency of RMLStreamer-SISO is also 7 times
lower than SPARQL-Generate due to the record-based processing capabilities.
We conclude that RMLStreamer-SISO is better adapted to workloads with peri-
odic burst of data with faster recovery period, lower latency and memory usage
while maintaining the same throughput capabilities as SPARQL-Generate.

Workload for Scalability Measurement. We evaluated the RMLStreamer-SISO’s
capability to join two data streams with a constant throughput of around 17000
messages per second. CPU and memory usage of both modes of RMLStreamer-
SISO are similar throughout the evaluation. However, despite the similar per-
formance in terms of CPU and memory usage, parallelized mode fared signifi-
cantly better in terms of the latency metric than unparallelized mode. Unpar-
allelized mode has a median latency of around 50000ms whereas parallelized
mode has a median latency of around 57ms. This is around 1000x lower in
terms of the median latency. Moreover, the minimum latency of parallelized
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Fig. 5. Performance of SUTs in the last one minute of the periodic burst workload eval-
uation. A part of the throughput graph is blurred to give more clarity to the relationship
between the trends in latency and throughput of the engines.

RMLStreamer-SISO at 8ms is 10,000x lower than the minimum latency of unpar-
allelized RMLStreamer-SISO at 13653ms. The latency is kept low with high par-
allelization due to the effective distribution of the workload amongst the different
parallelized tasks by the underlying DSP engine (Apache Flink). We conclude
that RMLStreamer scales extremely well with significantly better performance
in terms of latency if configured to be executed in a distributed mode.

6 Use Cases

RMLStreamer-SISO has seen uptake in multiple projects – covering different
use cases in different architectures – to process streaming data and gener-
ate RDF streams. Largest validation was in research and development (R&D)
projects between imec and Flemish companies such as DyVerSIFy on streaming
data analysis and visualisation [20,24], together with Televic Rail on IoT data,
DAIQUIRI13 together with VRT on sport sensor data, and ESSENCE and H2020
project MOS2S14 on media data. Other projects include DiSSeCt15 on health
data and transport data [4]. The variety of use cases shows that the resource is
13 https://www.imec-int.com/en/what-we-offer/research-portfolio/daiquiri.
14 https://innovatie.vrt.be/project/essence, https://itea4.org/project/mos2s.html.
15 https://smit.vub.ac.be/project/dissect.

https://www.imec-int.com/en/what-we-offer/research-portfolio/daiquiri
https://innovatie.vrt.be/project/essence
https://itea4.org/project/mos2s.html
https://smit.vub.ac.be/project/dissect
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suitable for solving the task at hand and also applicable to a multitude of use
cases for society in general. Applications – within the knowledge graph construc-
tion problem domain – are varied, i.e., processing a large amount of low-frequency
sensor data, a small amount of high-frequency sensor data, and large data sets
combined with streaming data, processing Kafka streams, MQTT, Socket.io, and
TCP streams. Beyond Belgium, RMLStreamer has received attention by the
Institute of Data Science, proposed as part of RDF graph generation tutorials
such as those by STIInnsbruck in Austria, and services such as Data2Services16
by the Institute of Data Science in Maastricht in the Netherlands.

7 Conclusion and Future Work

In this paper, we present RMLStreamer-SISO, a highly scalable solution to seam-
lessly generate RDF streams thanks to its dynamic window algorithm which
adapts its window size to handle the dynamic characteristics of the data stream.
This way, RMLStreamer-SISO enables low latency and high throughput map-
ping of heterogeneous data to RDF data. We showed that our solution scales
better than the state-of-the-art in terms of latency, memory, and throughput.
It is the only RDF stream generator which joins unbounded data streams and
scale horizontally and vertically, enabling RDF streams generation from hetero-
geneous data streams which was not possible so far. Given it is open source and
already widely used in different use cases involving not only academia but also
industry, as shown in our use cases, it is expected that the community that grew
around it will further grow and contribute at its maintenance, while its extensive
documentation and tutorials allow for easy reuse17. The RML extensions will be
further discussed with the W3C community group on knowledge graph construc-
tion and eventually will be incorporated to the revised RML specification.

RMLStreamer-SISO increases the availability of RDF streams following the
high availability of data streams. Using a low-latency tool like RMLStreamer-
SISO, legacy streaming systems could exploit the unique characteristics of real-
life streaming data, while enabling analysts to exploit the semantic reasoning
using knowledge graphs in real-time. This way, we enabled access to more data
which should impact the further improvements of RSP engines and other seman-
tic web technologies on top of RDF streams which were not possible so far.

Resource Availability Statement: Source code for RMLStreamer-SISO is available
at https://github.com/RMLio/RMLStreamer. The source code for the bench-
mark is available at https://github.com/s-minoo/rmlstreamer-benchmark-rust.
The dataset used for the benchmark is available at https://github.com/Klarrio/
open-stream-processing-benchmark/tree/master/data-stream-generator.
16 https://maastrichtu-ids.github.io/best-practices/blog/2021/03/18/build-a-kg/,

https://stiinnsbruck.github.io/lkgt/, https://d2s.semanticscience.org/docs/d2s-
rml/.

17 Example of tutorial for use with docker technology, https://github.com/RMLio/
RMLStreamer/tree/development/docker.

https://github.com/RMLio/RMLStreamer
https://github.com/s-minoo/rmlstreamer-benchmark-rust
https://github.com/Klarrio/open-stream-processing-benchmark/tree/master/data-stream-generator
https://github.com/Klarrio/open-stream-processing-benchmark/tree/master/data-stream-generator
https://maastrichtu-ids.github.io/best-practices/blog/2021/03/18/build-a-kg/
https://stiinnsbruck.github.io/lkgt/
https://d2s.semanticscience.org/docs/d2s-rml/
https://d2s.semanticscience.org/docs/d2s-rml/
https://github.com/RMLio/RMLStreamer/tree/development/docker
https://github.com/RMLio/RMLStreamer/tree/development/docker
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Abstract. We propose WDBench: a query benchmark for knowledge
graphs based on Wikidata, featuring real-world queries extracted from
the public query logs of the Wikidata SPARQL endpoint. While a num-
ber of benchmarks for graph databases (including SPARQL engines) have
been proposed in recent years, few are based on real-world data, even
fewer use real-world queries, and fewer still allow for comparing SPARQL
engines with (non-SPARQL) graph databases. The raw Wikidata query
log contains millions of diverse queries, where it would be prohibitively
costly to run all such queries, and difficult to draw conclusions given the
mix of features that these queries use. WDBench thus focuses on three
main query features that are common to SPARQL and graph databases:
(i) basic graph patterns, (ii) optional graph patterns, (iii) path patterns,
and (iv) navigational graph patterns. We extract queries from the Wiki-
data logs specifically to test these patterns, clean them of non-standard
features, remove duplicates, classify them into different structural sub-
sets, and present them in two different syntaxes. Using this benchmark,
we present and compare performance results for evaluating queries using
Blazegraph, Jena/Fuseki, Virtuoso and Neo4j.

1 Introduction

Recent years have seen renewed interest in querying graphs, driven in particular
by the growing popularity of knowledge graphs [25]. There are two related options
for querying knowledge graphs. On the one hand, SPARQL [22] is the standard
query language for RDF graphs/datasets [16], and has enjoyed significant devel-
opments down through the years, including the publication of hundreds of public
query services [43], the development of hundreds of SPARQL query engines and
prototypes [1], the release of dozens of benchmarks [1], an extended version of the
original standard [22], etc. SPARQL is the query language of choice for prominent
open knowledge graphs – such as DBpedia [29], Wikidata [44], etc. – which pro-
vide public query services that can receive in the order of hundreds of thousand
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 714–731, 2022.
https://doi.org/10.1007/978-3-031-19433-7_41
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or even millions of queries per day [30,35]. On the other hand, a variety of graph
query languages, databases, etc., have been proposed and developed within the
NoSQL/Database community [13], and have become widely used, particularly for
enterprise knowledge graphs, with Neo4j [46] and its query language Cypher [20]
leading the way in terms of popularity.1

With may options available, it can be difficult to choose a suitable engine to
support queries over a given knowledge graph, which calls for graph query bench-
marks that reflect real-world workloads. For example, the Wikidata community
is currently seeking an alternative to replace Blazegraph [42], whose development
team has moved on to work on other projects.2

While dozens of query benchmarks have been proposed down through
the years for RDF/SPARQL [2,9,12,17,19,21,26,31,36,39,40,48] and graph
databases [7,19], most rely on synthetic data generated according to a fixed
schema [2,7,12,17,19,21,39,40]. While benchmarks based on synthetic data are
useful for scalability testing, since most allow for generating graphs of arbitrary
size, the schemas used for such benchmarks are hand-crafted and thus often
much simpler than the organic, collaboratively-generated schemas that emerge
within knowledge graphs such as DBpedia [29] and Wikidata [44].

A smaller number of benchmarks have been proposed based on real-world
knowledge graphs [9,26,31,36,48], but either rely on synthetic queries [26], a
small number of hand-selected queries [9,48], or instances of a small number of
templates induced through log analysis [31,36]. One of the challenges of using
query logs [30,35] for benchmarks is the sheer number and diversity of queries
available, with, for example, millions of queries available in the Wikidata query
logs [30]. Running all such queries over multiple engines on a large knowledge
graph would not only be prohibitively costly, but would also generate results that
are difficult to interpret, given that real-world queries will often mix features.
Approaches to deal with this have focused on generating templates [31,36].

In this paper, we rather follow a feature-based approach: we generate a real-
world benchmark by extracting a large and diverse set of queries from the query
log of an open knowledge graph, but only for selected core features that are com-
mon to both SPARQL engines and graph databases [5]. Within these features, we
define high-level subclasses in order to gain more detailed insights into the per-
formance of different engines. The specific benchmark we propose here, which
we call WDBench, is based on the Wikidata knowledge graph [44] and query
logs [30]. The features we currently focus on are basic graph patterns, optional
graph patterns, path patterns, and navigational graph patterns, which can be
translated to SPARQL and Cypher. We use WDBench to compare the query
performance of Blazegraph [42], Jena TDB [27], Virtuoso [18] and Neo4j [46].

Paper Structure. Section 2 discusses related work, Sect. 3 describes the design of
WDBench, Sect. 4 describes the experimental design, Sect. 5 describes the results
of these experiments, while Sect. 6 concludes.

1 See https://db-engines.com/en/ranking/graph+dbms; retr. 2022-05-06.
2 See https://phabricator.wikimedia.org/T206560; retr. 2022-05-06.

https://db-engines.com/en/ranking/graph+dbms
https://phabricator.wikimedia.org/T206560
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2 Related Work

As highlighted previously, dozens of benchmarks have been proposed for RDF
and other graph databases over the years. They can be classified in two general
classes: benchmarks based on synthetic and real-world graphs. Some benchmarks
target RDF/SPARQL engines, while others target other graph databases; to the
best of our knowledge, the latter exclusively use synthetic datasets.

Synthetic SPARQL-Oriented Benchmarks. The Lehigh University Benchmark
(LUBM) [21] was one of the first benchmarks proposed for RDF/SPARQL,
generating synthetic data about universities. Berlin [12] generates data fol-
lowing an e-commerce use-case, with comparable SPARQL and SQL queries
provided. SP 2̂Bench [39] generates an arbitrarily-large graph following the
schema of DBLP database, with queries provided in a variety of shapes.
BowlognaBench [17] generates synthetic RDF graphs about universities, provid-
ing queries inspired by the Bologna reform of European universities. WatDiv [2]
presents an approach that focuses on generating diverse graph data and basic
graph patterns in order to address the “structuredness” problem of other bench-
marks [37]; queries follow star, path and snowflake query shapes. TrainBench [40]
is another synthetic benchmark, this time inspired by a railway network, defining
six queries encoding network validation constraints.

Synthetic Graph Database-Oriented Benchmarks. gMark [7] provides a domain-
and query language-independent driver, generating query workloads for a user-
defined schema. The user can define the scenario from which the data is gener-
ated (i.e. social network, biological database, etc.) and from that data the driver
generates the queries and translates them to the desired engine (i.e. Neo4J,
SPARQL, etc.). The Linked Data Benchmark Council’s Social Network Bench-
mark LDBC-SNB [19] is a benchmark that provides a common synthetic dataset
for two different query workloads. The dataset represents a social network and
the two workloads differ in the use case they evaluate the engine for: one focuses
on transactional graph processing queries that target neighbouring nodes and
update operations that continuously insert new data in the graph. The second
workload focuses on aggregate queries accessing large parts of the graph.

Real-World RDF-Oriented Benchmarks. DBpedia SPARQL Benchmark
(DBSBM) [31] generates queries for a specific version of DBpedia based on real-
world query logs. The queries in the log files are cleaned and clustered according
to the SPARQL features, generating 25 query templates from the most promi-
nent clusters with placeholder variables that can be instantiated from the data in
order to generate multiple instances per template. FEASIBLE [36] builds upon
this idea of generating benchmarks from query logs. The query generation takes
into account several query characteristics such as number of triple patterns or
number of join vertices, generates vectors that represent queries according to the
features, and generates queries based on the patterns from the vectors. BioBench-
mark [48] defines a benchmark over five biomedical datasets (Cell, Allie, PDBJ,
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DDBJ, and UniProt), providing 48 queries extracted from real-world applica-
tions. The Wikidata Graph Pattern Benchmark [26] is based on Wikidata, but
rather uses synthetic queries following structural graph pattern templates.

Comparison and Novelty. We refer to Saleem et al. [37] for a detailed comparison
of the benchmarks discussed here. In terms of the novelty of WDBench, it uses
real-world data and queries; to the best of our knowledge, only DBSBM [31]
and FEASIBLE [36] share this characteristic. Unlike these two benchmarks,
WDBench (1) is based on Wikidata rather than DBpedia; (2) uses a larger
graph (1.257 billion triples/edges vs. 232 million triples/edges); (3) contains
path patterns that can match arbitrary length paths, which are a key feature
of graph queries; (4) is offered in both SPARQL and Cypher variants; (5) does
not apply templates or clustering, but rather contains a larger and more diverse
query set that includes thousands of queries. It is important to note that the
goal of WDBench is to complement existing benchmarks rather than to replace
them. We see WDBench as being a useful resource to test query performance for
core features of graph queries over a real-world knowledge graph using realistic
workloads. However, other benchmarks may have other benefits, and could be
run alongside WDBench. For example, synthetic benchmarks have the benefit of
being able to generate graphs of arbitrary size, where one could be run alongside
WDBench in order to stress-test scalability. Other benchmarks could be used to
test SPARQL-specific or relational features not included in WDBench.

3 WDBench: Graph and Queries

We now discuss the design of WDBench. We start by explaining the rationale
behind the subset of Wikidata used for benchmarking, and then specify the
process for selecting a representative query set out of the millions of queries
available in the Wikidata public endpoint log [13,30]. We then discuss conversion
of the benchmark into a property graph with Cypher queries for running Neo4j.

3.1 WDBench Graph

In order to define the graph used in WDBench, we were guided by three criteria:
(i) that it is representative of a diverse, large-scale, real-world knowledge graph;
(ii) that it covers a wide range of queries from the public query log of Wiki-
data; and (iii) that it is succinct, i.e., that it does not contain massive amounts
of data irrelevant for the queries that would increase load times for different
engines. To balance these criteria, we base WDBench on the Wikidata truthy
dump [41] for three reasons: (1) it is more concise and thus faster to load: some
engines can take over a week to load the complete version of Wikidata; (2) it
is sufficient to address the majority of queries in the log chosen: 86.8% of the
queries in this log use only truthy properties; (3) it avoids issues relating to how
Wikidata-specific qualifiers should be reified in different databases: this topic
diverges from our goal of a general query benchmark for knowledge graphs and
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is addressed elsewhere [23,24]. To further prune the dataset, we only kept triples
in which (a) the subject position is a Wikidata entity, and (b) the predicate is a
truthy (direct) property. This allows us to focus on structural properties of the
queries and the graph, while increasing succinctness. The particular Wikidata
truthy dump we used is 20210623-truthy-BETA, which contains 18,579,709,438
triples. After pruning based on the described criteria, the final dataset contains
1,257,169,959 triples. Many of the triples pruned are labels and descriptions in
multiple languages, which we deem as inessential for testing the performance
of graph pattern evaluation (rarely are joins or paths expressed via labels or
descriptions). The dataset is available for download online at [3], and the scripts
used to prune a truthy dump can be found online at [4].

3.2 WDBench Queries

WDBench is based on real-world queries posted by Wikidata users, as found
in Wikidata’s query logs [30,47]. Given that the log files contain millions of
queries, where it would be prohibitively costly to run them all, and where the
results would be difficult to interpret given the mix of features that they use, we
reduce the queries in several phases and classify them by their features.

The first choice we made was to concentrate exclusively on queries that timed
out on the Wikidata endpoint (code 500 queries in the log files [30,47]). While
endpoint timeouts can be caused by many factors (including temporary server
load), we wish to focus on challenging queries, where this subset of queries largely
filters out the multitude of trivial queries in the log. Additionally, focusing on the
code 500 queries reduces the set to 122,980 queries. If the query uses vocabulary
not present in our graph, we discard it (note that queries generating empty
results are kept so long as they only use relevant vocabulary terms).

The next reduction was based on the operators used by the queries. Consid-
ering that we aim to compare note only RDF/SPARQL engines, but also other
graph databases, we decided to focus on four types of graph patterns at the
core of popular graph query languages [5]: (i) basic graph patterns; (ii) optional
graph patterns; (iii) path patterns; and (iv) navigational graph patterns (using
paths). Other features – including relational-style operators such as projection,
difference, selection (filter), union, aggregation, solution modifiers, etc. – could
be added in future using a similar methodology; however, adding more features
would complicate generating comparable queries in distinct graph query lan-
guages. We thus pruned queries that use any operator different from basic graph
patterns, optionals and property paths. However, we keep queries with SERVICE,
since this operator is used in the majority of Wikidata queries in order to specify
language preferences for labels; and DISTINCT, GROUP BY, ORDER BY, LIMIT, since
these solution modifiers are generally applied after processing the base query
pattern. In these exceptional cases, we remove the service and solution modifier
clauses and keep the resulting query. Given that the labelling service can pro-
duce new variables that can be referenced in projected results, we use SELECT *
such that our queries are of the form SELECT * WHERE {graph pattern}. From
there, we profiled the following four groups of graph pattern queries.
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Basic Graph Patterns. These were the queries that consisted exclusively of
joins between triple patterns. In order to eliminate duplicate queries, we sort
the triple patterns, and rename the variables they use, allowing us to detect the
queries which differ only in variable names, or the order of triples. The result is
a set of 1,335 BGP queries. We further partition BGPs into two disjoint subsets:

– Single. This set contains BGPs with a single triple pattern. While relatively
simple to evaluate, these queries test the engines’ data retrieval and result
enumeration capabilities, which are key to evaluating any query efficiently.
We ended up with 280 queries in this set.

– Multiple. These are queries consisting exclusively of BGPs, which have at
least two triple patterns, and thus require a join to be performed. Again,
being able to evaluate joins within basic graph patterns efficiently is crucial
for query performance. This set contains a total of 681 queries.

Optional Graph Patterns. We choose optional graph patterns as a focus
of WDBench since they are frequently used to query incomplete knowledge
graphs [13], and they have been widely studied in the literature as a charac-
teristic feature of graph queries that can increase the computational complex-
ity of query evaluation [33,34]. Queries in this set include (only) basic graph
patterns and one or more (potentially nested) OPTIONAL patterns. We further
remove queries that artificially create a cross product via OPTIONAL whereby the
right-hand side of an OPTIONAL contains only variables that are not mentioned
elsewhere; such queries might skew the benchmark results. This Optionals set
contains 498 distinct queries. We partition Optionals into two disjoint sets:

– Well-Designed (WD). An Optional query Q is well-designed if and only
if, for every optional clause O = {P1} OPTIONAL {P2} it contains, each variable
in P2 either appears in P1 or appears nowhere else in Q besides P2 [33]. Such
queries avoid leaps in complexity associated with optional graph patterns [10,
33,34]. This subset contains 390 queries.

– Not-Well-Designed (NWD). These are Optional queries that are not
well-designed, and are thus associated with leaps in computational complexity
for key decision problems [33]. This subset contains 108 queries.

Path Patterns. We further test the performance of executing a single property
path query (excluding simple predicates). These queries test the engines’ ability
to detect whether there is a path connecting two nodes that conforms to a regular
expression. In the research literature this class of queries is known as two-way
regular path queries (2RPQs) [6], and in SPARQL standard they are called
property paths [22,28].3 Given that property paths almost exclusively form part
of a larger query in our log, we extracted path patterns from queries in order to
achieve a larger query set. Thus, if a query contains two property paths, this will
result in two new queries being added to Paths. After eliminating duplicates
Paths contains 660 queries. We partition Paths into two disjoint subsets:
3 Property paths include negated property sets that fall outside 2RPQs [28], but these

are rarely used [13], and can be partially emulated through disjunction (|) [28].



720 R. Angles et al.

– Recursive (R). We call a Path query recursive if and only if it uses Kleene
star (*) or Kleene plus (+), i.e., if and only if it can match paths of arbitrary
length. There were 594 queries in this subset.

– Non-Recursive (NR). We call a Path query non-recursive if and only if
it does not use Kleene star (*) nor Kleene plus (+), i.e., if and only if it can
match paths of fixed length. There were 66 queries in this subset.

Navigational Graph Patterns. The final set of queries considers navigational
graph patterns, which incorporate property paths [22], triple patterns, and joins;
i.e., they are BGPs with property paths. To be more precise, we keep queries
which use either joins, or property paths, thus having a set of queries akin to
conjunctive two-way regular path queries (C2RPQs) [15]. We call this query set
Navigational [5]. In order to not have an overlap with the Paths query set, all
queries in C2RPQs must perform at least one join. These are more advanced
queries, and SPARQL engines are known to run into issues when evaluating
them [8]. The set C2RPQs contains a total of 539 queries. We further partition
Navigational into two disjoint subsets:

– Recursive (R). We call a Navigational query recursive if and only if it
contains a recursive path pattern. There are 515 such queries.

– Non-Recursive (NR). We call a Path query non-recursive if and only if it
does not contain a recursive path pattern. There were 24 such queries.

3.3 Conversion to Cypher

The Wikidata dump and query logs are natively expressed as RDF/SPARQL.
However, we aim for WDBench to also be usable for comparing graph databases.
A complication here is that graph databases often define their own declarative
query language. For now we thus focus on creating a version of the benchmark
for testing with Neo4j. This requires mapping the Wikidata graph to a property
graph, which is straightforwardly achieved given that we only include binary
(truthy) relations: each triple is simply represented as an edge in the property
graph. The more complex part involves converting the queries to Cypher [20]:
Neo4j’s query language. Graph patterns are expressed using a MATCH clause,
while optional graph patterns use the OPTIONAL MATCH clause. Within a MATCH
clause, Neo4j applies an edge-isomorphism semantics, while SPARQL uses a
homomorphism semantics [5]; thus Cypher’s query results can differ, but we
found such differences to be marginal in practice. Regarding path patterns, Neo4j
only supports Kleene star (i.e., zero or more, which it denotes by “*”). Where
possible, we rewrite path expressions into other available Neo4j operators, with
concatenations rewritten to basic graph patterns, inverses rewritten by swapping
source and target nodes, etc.; however, not all property paths (2RPQs) can
be supported. Neo4j allows for returning string representations of paths; to be
comparable with SPARQL, we project only the endpoints of paths.
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4 Running WDBench

We now turn to using WDBench in order to test the performance of four query
engines. This section specifies the operational parameters for these experiments.

The Machine. All experiments were run on a single commodity server with an
Intel R©Xeon R©Silver 4110 CPU, and 128 GB of DDR4/2666 MHz RAM, running
Linux Debian 10 with the kernel version 5.10. The hard disk used to store the
data was a SEAGATE ST14000NM001G with 14 TB of storage.

How we Ran the Queries. To simulate a realistic database load, we do not split
queries into cold/hot run segments. Rather we run them in succession, one after
another, after a cold start of each system (and after cleaning the OS cache4).
This simulates the fact that query performance can vary significantly based on
the state of the system buffer, or even on the state of the hard drive, or the state
of OS’s virtual memory. For each system, queries were run in the same order.
We record the execution time of each individual query, which includes iterating
over all results. We set a limit of 100,000 distinct results for each query, again in
order to enable comparability as some engines showed instability when returning
larger results (also Virtuoso is hard-limited to 220 = 1, 048, 576 results). We
replicated this setup for each query set described above. This allows us to gauge
the systems’ performance on each particular type of query.

Handling Timeouts. We defined a timeout of 1 min per query for each system.
This is a common limit available of SPARQL endpoints, so we replicated it in
the benchmark. Apart from that, we note that most systems had to be restarted
upon a timeout as they often showed instability, particularly while evaluating
path queries. This was done without cleaning the OS cache in order to preserve
some of the virtual memory mapping that the OS built up to that point.

Tested Engines. We use four persistent graph query engines that are popular
in practice. First, we include three RDF/SPARQL engines: Jena TDB version
4.1.0 [27], Blazegraph (BlazeG for short) version 2.1.6 [42], and Virtuoso version
7.2.6 [18]. We further include a property graph engine: Neo4J community edition
4.3.5 [46]. Jena and Blazegraph were assigned 64GB of RAM, and Virtuoso was
set up with 64GB or more of RAM as is recommended. Neo4J was run with
default settings. The size of the WDBench dataset when loaded into each of the
engines can be found in Table 1.

5 Experimental Results

In this section we present results for the tested engines on each query set specified
in WDBench. We divide the discussion by the different query features described

4 This is done by the command “# sync; echo 3 > /proc/sys/vm/drop caches”.
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Table 1. WDBench dataset sizes when loaded into each engine.

BlazeG Jena Virtuoso Neo4J

70 GB 110 GB 70GB 112GB

in Sect. 3.2 – namely basic graph patterns, optional graph patterns, path pat-
terns, navigational graph patterns and their sub-variants – and discuss explana-
tions for the behaviour we observe. All experimental results, including runtimes
for individual queries on each engine tested, can be found online [4].

5.1 Basic Graph Patterns

We begin by examining the performance of each query engine for basic graph
patterns (BGPs), considering both Single and Multiple subsets. A summary
of the results can be observed in Table 2 and Fig. 1. The box plots are generated
in the standard manner, showing the range between the first and the third quar-
tile, with the midline representing the median, and the whiskers represented by
thin lines. Table 2 additionally indicates how many queries are supported by the
engine, the number of errors and timeouts, the average, and the median.

We can observe that as far as Single is concerned, Virtuoso is the most
stable engine, returning no timeouts, nor errors, closely followed by Blazegraph.
In terms of performance, Blazegraph is the clear winner in the Single query
set, followed thereafter by Virtuoso. Both Jena and Neo4j are lagging in terms of
performance, with averages 4–5 times higher than the other two engines. Neo4j’s
median is also above the third quartile for both Blazegraph and Virtuoso. Queries
from the Single set have precisely the same structure. However, depending on
the exact constants they use, the results can vary from timeouts to fast runs,
depending on the data distribution, number of results, etc. For this reason we
believe that it is beneficial to have a large number of queries that might be
structurally similar, but that access different parts of the dataset.
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Fig. 1. Performance for all BGPs (left), Single (middle), and Multiple (right)
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Table 2. Summary of runtimes (in seconds) for BGPs

Engine Supported Timeouts Error Average Median

BGPs (961 queries)

Blazegraph 961 55 0 6.51 1.05

Jena 961 79 0 10.73 2.71

Virtuoso 961 8 3 6.79 4.90

Neo4j 961 206 1 20.16 6.17

BGPs Single (280 queries)

Blazegraph 280 3 0 1.73 0.07

Jena 280 25 0 9.92 0.46

Virtuoso 280 1 0 2.12 0.28

Neo4j 280 47 0 15.28 2.03

BGPs Multiple (681 queries)

Blazegraph 681 52 0 8.47 1.34

Jena 681 54 0 11.06 3.16

Virtuoso 681 7 3 8.71 8.34

Neo4j 681 159 1 22.17 6.75

When considering join queries in Multiple, we observe a rather similar pat-
tern. Virtuoso is again the most stable engine, but it falls behind Blazegraph
slightly in the average case. Medians and boxplots tell another story here, show-
ing that both Jena and Blazegraph outperform Virtuoso on the majority of the
queries, where even Neo4j’s median, and first to third quartiles, are lower than
that of Virtuoso’s. Thus it would seem that Blazegraph and Jena, in particular,
can evaluate the majority of these queries faster than Virtuoso, but Virtuoso
performs relatively better for higher percentiles (more costly queries).

5.2 Optional Graph Patterns

The results for Optionals is given in Table 3, and in Fig. 2. Blazegraph is the
clear winner here, both in stability, with only 28 timeouts, and in speed, with
its median being below the first quartile of the next best competitor, Jena. Jena
also outperforms Virtuoso by a wide margin, and Neo4j trails further behind.

Considering only well-designed OPTIONAL patterns, the performance of Vir-
tuoso improves drastically. Blazegraph wins in terms of runtimes, but Virtuoso
surpasses other engines in stability, timing out on only 5 of 390 queries. Non well-
designed optionals seems to be a major issue for Virtuoso, where it times out in
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64 of 108 cases, and its performance drops significantly. Other engines actually
perform significantly better on Optionals NWD. Looking a bit deeper into this
performance gain, we speculate that this is mostly due to the non well-designed
optionals simulating a cross-product, which generates 100,000 results, our query
limit, quite fast, at least when the engine is optimised for such cases, per the
results for Blazegraph and Jena (but not Virtuoso nor Neo4j).

Table 3. Summary of runtimes (in seconds) for optional graph patterns

Engine Supported Timeouts Error Average Median

Optionals (498 queries)

Blazegraph 498 37 0 8.55 2.16

Jena 498 59 0 13.56 4.34

Virtuoso 498 69 2 17.29 9.45

Neo4j 498 146 1 27.09 17.87

Optionals Well-Designed (390 queries)

Blazegraph 390 36 0 9.99 2.32

Jena 390 56 0 14.91 4.66

Virtuoso 390 5 1 10.37 7.70

Neo4j 390 113 1 28.21 18.89

Optionals Not Well-Designed (108 queries)

Blazegraph 108 1 0 3.37 1.89

Jena 108 3 0 8.68 3.46

Virtuoso 108 64 1 42.26 60.00

Neo4j 108 33 0 23.08 5.89
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Fig. 2. Performance for Optionals (left), Optionals WD (middle), and Optionals

NWD (right)
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Table 4. Summary of runtimes (in seconds) for path patterns

Engine Supported Timeouts Error Average Median

Paths (660 queries)

Blazegraph 660 87 0 11.00 0.82

Jena 660 96 0 11.74 0.81

Virtuoso 660 24 27 4.71 0.70

Neo4j 639 134 6 20.89 9.74

Paths Recursive (594 queries)

Blazegraph 594 79 0 11.13 0.78

Jena 594 75 0 10.52 0.62

Virtuoso 594 24 25 4.65 0.43

Neo4j 575 104 5 19.48 9.36

Paths Non-Recursive (66 queries)

Blazegraph 66 8 0 9.89 1.19

Jena 66 21 0 22.71 3.04

Virtuoso 66 0 2 5.23 3.72

Neo4j 64 30 1 33.56 42.95
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Fig. 3. Performance for Paths (left), Paths R (middle), and Paths NR (right)

5.3 Path Patterns

Considering that property paths are known to give trouble to graph query
engines [8], it is interesting to consider their performance in the context of this
benchmark. We summarise our findings in Table 4, and in Fig. 3.

Considering all property paths in the Paths query set, we can see that Virtu-
oso is the clear winner, both in stability and performance. Both Jena and Blaze-
graph trail some distance behind, and Neo4j is an order of magnitude slower in
the median case. Similarly as in Single, we can observe that the form of the
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query (almost identical for all the queries in the set) does not matter much,
but that the distribution of the data dictates query performance. We even man-
aged to identify paths which use the exact same regular expression to specify
the query, but have a different starting point for the search, where one finishes
almost instantaneously, and the other one times out.

When we analyse queries that use recursion, versus the path queries that use
no recursion, we can see that all engines except Jena perform similarly in the
average case, with Virtuoso being again the most stable and the fastest in terms
of the median case. Blazegraph performs better than the other engines in the
median case for non-recursive paths. Interestingly, Jena seems to perform better
on recursive patterns. Likewise, all systems perform better in the median case
for recursive patterns as compared to non-recursive ones. This is a surprising
result since one should expect recursive queries to be more costly. In the case of
the RDF/SPARQL engines, the SPARQL standard indicates that (most) non-
recursive path patterns should be rewritten to BGPs and unions of BGPs, rather
than evaluating them directly as paths, meaning that implementations following
this strategy will follow very different query evaluation plans when comparing
recursive and non-recursive cases.

5.4 Navigational Graph Patterns

The results for Navigational are given in Table 5 and Fig. 4. As before, we
provide the results for all the queries in this set, and then analyse the recursive
and the non-recursive cases within the set.

When we consider all navigational graph patterns, this set is clearly the most
challenging thus far, where we observe the highest average and median runtimes
for all engines across all patterns, except in the case of Neo4j, which was slower
in the average case for Optionals. Virtuoso is a clear winner in this category,
particularly in the average case, although both Blazegraph and Jena come close
in terms of median runtimes. Neo4j is again the slowest of all the engines.

When comparing recursive and non-recursive navigational graph patterns, we
see different effects on different systems. Blazegraph is slightly slower for non-
recursive queries, Jena is notably faster for non-recursive queries, Virtuoso is
notably slower for non-recursive queries, and finally Neo4j is considerably slower
for non-recursive queries. This is similar to what we observed for Paths, except
in the case of Jena, where the trend is reversed. Many queries in Navigational

that timed out contain a query in Paths that also times out. This would suggest
that an important factor in timeouts is the performance of property paths.
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Table 5. Summary of runtimes (in seconds) for navigational graph patterns

Engine Supported Timeouts Error Average Median

Navigational (539 queries)

Blazegraph 539 180 0 22.32 2.58

Jena 539 245 0 30.98 29.83

Virtuoso 539 37 2 10.42 4.36

Neo4j 531 211 0 31.07 24.83

Navigational Recursive (515 queries)

Blazegraph 515 172 0 22.29 2.58

Jena 515 238 0 31.31 35.47

Virtuoso 515 36 2 10.15 4.03

Neo4j 509 199 0 30.69 24.09

Navigational Non-Recursive (24 queries)

Blazegraph 24 8 0 22.96 2.94

Jena 24 7 0 23.97 10.07

Virtuoso 24 1 0 16.24 6.48

Neo4j 22 12 0 40.01 60.00

0

20,000

40,000

60,000

T
im

e
(m

s)

Navigational: All

0

20,000

40,000

60,000

T
im

e
(m

s)

Navigational: R

0

20,000

40,000

60,000

T
im

e
(m

s)

Navigational: NR

Blazegraph Jena Virtuoso Neo4j

Fig. 4. Performance for Navigational (left), Navigational R (middle), and Navi-

gational NR (right)

6 Conclusions

We conclude with a recap of our contributions, a summary of our results, and a
discussion on limitations and future directions.

Contributions: We have developed WDBench: a query benchmark for knowledge
graphs based on real-world data (Wikidata) and queries (from Wikidata logs). The
benchmark allows for measuring the performance of RDF/SPARQL and graph
query engines. In this first release, we have focused on analysing four classes of
queries corresponding to core features of graph queries: basic graph patterns,
optional graph patterns, path patterns, and navigational graph patterns. We have
further partitioned these sets into finer subsets: single vs. multiple, well-designed
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vs. not well-designed, and recursive vs. non-recursive. We have published two ver-
sions of the benchmark: an RDF/SPARQL version, and a property graph/Cypher
version. We have further presented empirical results for the performance of Blaze-
graph, Jena, Virtuoso and Neo4j using this benchmark.

Results: We observed that Blazegraph and Virtuoso were the best-performing
query engines for WDBench, followed by Jena, with Neo4j generally offering the
slowest runtimes. Comparing Blazegraph and Virtuoso, the former is slightly
faster than the latter for basic graph patterns, considerably faster for optional
graph patterns (particularly for not well-designed patterns), considerably slower
for path patterns (except the median case of non-recursive queries), and faster
in the median case but slower in the average case for navigational graph pat-
terns. In terms of cases where engines could be better optimised, we see that
Virtuoso underperforms for not well-designed patterns, while Jena underper-
forms for non-recursive path queries. Neo4j does not appear to offer competitive
performance in the Wikidata setting: while there is the caveat that the query
semantics of Cypher varies slightly in some cases from SPARQL, the differences
in performance would seem to go beyond such variations; indeed, our results are
consistent with previous results for querying Wikidata with Neo4j [24].

Limitations and Future Directions: WDBench currently focuses on core features
of graph queries, where languages such as SPARQL and Cypher include a wide
range of other features that are frequently used in practice. As part of future
work, the same methodology as presented here could be straightforwardly used
for generating sets of SPARQL queries using other features and combinations
thereof. However, as new features are introduced, it will become increasingly
complex to offer analogous versions in Cypher (and other query languages), par-
ticularly for features using built-in expressions, such as filters, aggregations, and
variable binding. We currently compare the performance of four query engines,
but there are other systems that would be interesting to compare in future,
including QLever [11], RDF-3x [32] (for SPARQL 1.0), RDF4j [14], etc.5 Unlike
synthetic benchmarks, the scale of WDBench is limited by the size of Wiki-
data. While it would be possible to test, for example, on the complete version of
Wikidata, query results would not change. We view WDBench as a real-world
benchmark that can complement other benchmarks, where synthetic benchmarks
can be used for stress-testing scalability. Finally, WDBench is a read-only bench-
mark. An interesting direction for an extended version of the benchmark could
include a workload of real-world updates mined from Wikidata [38].

Supplemental Material. The Wikidata graph is available on Figshare [3]. Scripts
for data preparation, queries, and detailed results are available on Github [4].

5 We also have results for MillenniumDB [45], which we do not include here since the
system has been developed by the authors. We keep our results third-party.
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Abstract. Research publishing companies need to constantly monitor
and compare scientific journals and conferences in order to inform critical
business and editorial decisions. Semantic Web and Knowledge Graph
technologies are natural solutions since they allow these companies to
integrate, represent, and analyse a large quantity of information from het-
erogeneous sources. In this paper, we present the AIDA Dashboard 2.0,
an innovative system developed in collaboration with Springer Nature to
analyse and compare scientific venues, now also available to the public.
This tool builds on a knowledge graph which includes over 1.5B RDF
triples and was produced by integrating information about 25M research
articles from Microsoft Academic Graph, Dimensions, DBpedia, GRID,
CSO, and INDUSO. It can produce sophisticated analytics and rankings
that are not available in alternative systems. We discuss the advantages
of this solution for the Springer Nature editorial process and present a
user study involving 5 editors and 5 researchers, which yielded excellent
results in terms of quality of the analytics and usability.

Keywords: Scholarly data · Knowledge graphs · Scholarly ontologies ·
Science of science · Scholarly analytics · Scholarly knowledge

1 Introduction

Springer Nature (SN) is one of the main publishers of research in Computer Sci-
ence and manages a vast catalogue of about 162 journals in this field and several
series of proceedings books (e.g., LNCS, LNAI, IFIP-AICT, CCIS, LNBIP) for a
total of about 800 volumes per year. Their data analysts have to regularly inte-
grate and analyse a large quantity of information regarding these venues1 for
1 In this paper, we use the term ‘venue’ to denote both journals and conferences.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
U. Sattler et al. (Eds.): ISWC 2022, LNCS 13489, pp. 735–752, 2022.
https://doi.org/10.1007/978-3-031-19433-7_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19433-7_42&domain=pdf
https://doi.org/10.1007/978-3-031-19433-7_42
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supporting crucial business and editorial decisions. In particular, SN editorial
team needs to compare all journals and conferences in a field according to sev-
eral metrics, be aware of which venues are rising and attracting more attention
in the community, monitor how they change over time in terms of researchers
and topics distribution, and assess the involvement of commercial organisations.
However, bibliometric systems and academic search engines provide a limited
support for analysing scientific venues. This led to the creation of the AIDA
Dashboard, an innovative tool for supporting editors in performing advanced
analysis of these dynamics.

In this paper, we present the AIDA Dashboard 2.0, the last version of the
system developed in collaboration with SN to analyse and compare journals
and conferences, which we are now releasing to the wider scientific community.
This tool builds on the Academia/Industry DynAmics Knowledge Graph (AIDA
KG) [3], a knowledge graph which includes over 1.5B RDF triples and was pro-
duced by integrating information about 25M papers from Microsoft Academic
Graph, Dimensions, DBpedia, and the Global Research Identifier Database
(GRID). Journals and conferences are categorised according to the Focus Areas
Taxonomy2, a new ontology detailing the 124 most prominent research fields
within Computer Science venues. The specific research topics in these venues
are instead represented according to 14K research topics from the Computer
Science Ontology3 (CSO) [24], whereas the industrial sectors of the organisa-
tions (e.g., education, energy, financial, technology) are represented with the
Industrial Sectors Ontology4 (INDUSO). The last version of the AIDA knowl-
edge graph (ver. 3.0) is publicly available via a dump and a SPARQL endpoint
at https://w3id.org/aida.

The main novelties with respect to the earlier version of AIDA Dashboard
reported in previous work [4] and presented as a demo at ISWC 2020 [5] include:
1) the ability to analyse journals in addition to conferences, 2) a new expert
search functionality that allows users to browse, compare, and order journals
and conferences according to several metrics and ranking systems, 3) a new
taxonomy of high-level research areas, representing the main research fields used
to classify the venues, and 4) the full integration of the dashboard with the SN
Data Cloud Infrastructure.

The AIDA Dashboard was evaluated by performing a user study involving
five SN editors and five researchers, which yielded excellent results in terms of
usability and quality of the analytics.

In order to support the scientific community, we recently released a publicly
available version of the system, that can be accessed at https://w3id.org/aida/
dashboard. We hope that it could become a standard tool used by researchers,
institutions, and funding agencies for analysing venues in Computer Science. We
plan to keep updating it in the following years and also add more entities to
analyse (e.g., researchers, organizations, countries, topics).

2 Focus Areas Taxonomy - https://w3id.org/aida/fat.
3 CSO - https://cso.kmi.open.ac.uk/.
4 INDUSO - https://w3id.org/aida/downloads/induso.ttl.

https://w3id.org/aida
https://w3id.org/aida/dashboard
https://w3id.org/aida/dashboard
https://w3id.org/aida/fat
https://cso.kmi.open.ac.uk/
https://w3id.org/aida/downloads/induso.ttl
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We also release theAIDAVenue dataset5, a machine readable version of all the
analytics produced by the AIDA Dashboard on journals and conferences that can
support bibliometric analysis and be used to train machine learning systems.

In summary, the novel contributions of this paper include:

– the AIDA Dashboard 2.0, a new version of the AIDA Dashboard which offers
several new functionalities;

– a user study involving five SN editors and five researchers;
– a discussion of the impact and uptake of this tool within SN;
– the AIDA KG 3.0, the last version of the AIDA KG including 25M publica-

tions;
– the AIDA Venues dataset 2.0, a new resource describing 3,263 journals and

2,003 conferences in Computer Science6 according to all the data produced
by the AIDA Dashboard back-end.

The remainder of the paper is structured as follows. In Sect. 2, we describe
the AIDA Dashboard back-end and the sustainability plan. Section 3 details
the AIDA Dashboard GUI. Section 4 presents the evaluation study and Sect. 5
describes the uptake and impact of the AIDA Dashboard within SN. Section 6
presents the related work. Finally, Sect. 7 concludes the paper and discusses
future work.

2 The AIDA Engine

The AIDA Dashboard is powered by a complex pipeline for data integration and
analysis. Figure 1 summarises its architecture, which is composed by three main
components (grey dashed boxes): i) the pipeline for the generation of AIDA KG,
ii) the module for pre-computing the analytics, and iii) the AIDA Dashboard
GUI. The main data about research articles and relevant metadata are stored
in the SN Data Cloud Infrastructure (purple dashed box), which is based on a
Google BigQuery instance. This infrastructure regularly downloads four datasets
from external data sources, i.e., MAG, Dimensions, DBLP, and OpenAlex. These
data are then integrated with several other knowledge bases (upper part of the
figure) for generating the AIDA Knowledge Graph. We then compute several
analytics that will be reported by the AIDA Dashboard GUI. The following
subsections will describe more in detail the generation of AIDA KG and the
analytics. The interface of the AIDA Dashboard will be instead described in
Sect. 3.

2.1 The AIDA Knowledge Graph

The AIDA Knowledge Graph is automatically generated by integrating sev-
eral knowledge bases, including MAG, Dimensions, CSO, DBpedia, GRID, and
5 AIDA Downloads - https://w3id.org/aida/downloads.
6 These numbers are the results of a selection process that identifies only venues active

in the last 5 years.

https://w3id.org/aida/downloads


738 S. Angioni et al.

Fig. 1. The AIDA engine architecture

INDUSO. The knowledge graph describes 25M research papers and 8M patents
in the field of Computer Science. All these documents are classified with the
Computer Science Ontology topics [25]. 6.7M papers and 5.6M patents are also
classified based on the type of authors’ affiliations (i.e., academia, industry, col-
laborative), and the industrial sectors from INDUSO. Patents are used by SN
analysts for supporting analysis on research impact, but they are not employed
yet by the AIDA Dashboard. Since Microsoft recently decommissioned MAG,
we are now switching to a combination of OpenAlex and DBLP, as detailed by
Sect. 2.3 (Sustainability Plan).

The integration pipeline first selects all research papers and patents respec-
tively from MAG and Dimensions. It applies filters to select the documents
within the Computer Science field. It then uses the CSO Classifier [20] to anno-
tate all documents with their relevant research topics. Next, it leverages the
GRID IDs associated with the original data to determine whether the docu-
ments are authored by either academic or industrial institutions, or through
a collaborative effort. For all papers authored by industrial affiliations, it uses
DBpedia to classify their industrial sectors according to INDUSO. The reader
can refer to [2] for additional details about the AIDA KG generation.

The data model of the resulting knowledge graph builds on the AIDA Schema7

(aida:), Schema.org (schema:), FOAF, OWL, CSO schema8 (cso:), Microsoft
Academic KG schema9 (mag:), GRID schema10 (grid:) and others. Specifi-

7 The AIDA Schema - https://w3id.org/aida/ontology.
8 The CSO Schema - https://w3id.org/cso/schema/cso.
9 The MAKG Schema - https://makg.org/ontology.owl.

10 The GRID ontology - http://www.grid.ac/ontology/.

https://w3id.org/aida/ontology
https://w3id.org/cso/schema/cso
https://makg.org/ontology.owl
http://www.grid.ac/ontology/
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cally, in the context of the AIDA Dashboard, we leverage five main entities
defined in the AIDA Schema (aida:paper, aida:author, aida:affiliation,
aida:industrialSector, and aida:DBpediaCategory) as well as seven addi-
tional entities reused from external ontologies (mag:paper, mag:author, grid:
affiliation, mag:Journal, mag:ConferenceSeries, mag:Conference
Instance, and cso:Topic). These entities are interconnected through 23 seman-
tic relations, 10 defined in the AIDA schema and 13 reused from external ontolo-
gies (e.g., cito:cites, datacite:doi, dc:title, prism:publicationDate,
schema:memberOf). In particular, the following 4 relations (out of the 10 defined in
the schema) characterise articles according to the relevant information from DBpe-
dia, GRID, INDUSO, and CSO:

– aida:hasDBpediaCategory, indicating the industrial sectors (DBpediaCat-
egory) obtained from several DBpedia fields, such as About:Property and
About:Industry;

– aida:hasGridType showing the type of an affiliation according to the GRID
classification (e.g., education, company, government, non-profit);

– aida:hasIndustrialSector, indicating the INDUSO industrials sector of an
affiliation;

– aida:hasTopic, indicating the CSO topics identified in a paper.

A more comprehensive description of the AIDA Schema is available at http://
w3id.org/aida/#aidaschema. The AIDA knowledge graph is serialised in RDF
and can be downloaded from https://w3id.org/aida/downloads. It can also be
queried via a SPARQL endpoint at https://w3id.org/aida/sparql.

2.2 Generation of Analytics

The second component of the AIDA Engine takes in input the AIDA KG and
produces the analytics related to journals and conferences. We pre-computed
all analytics to improve scalability and response time. The analytics are com-
puted in three phases: i) we retrieve all information about venues and produce a
very comprehensive set of metrics about them and related entities (e.g., topics,
authors, organisations); ii) we classify venues according to their main research
fields, using the Focus Areas Taxonomy; iii) we produce the venue rankings in
different fields according to both our metrics and a set of external ratings, such
as SJR and CORE.

Metrics Computation. We first get from AIDA KG the journals and con-
ferences which counted at least 50 publications in the last 5 years. The cur-
rent version includes 3,263 journals and 2,003 conferences. We then compute a
set of performance metrics based on citations, such as h-index, h5-index, and
impact factor (on the previous 2 years). Next, we use the schema:creator,
aida:hasAffiliation, grid:countryName, and aida:hasTopic relationships
to select the top 100 authors, organisations, countries, and main topics in terms
of publications and citations. These are computed both as totals (e.g., all years,

http://w3id.org/aida/#aidaschema
http://w3id.org/aida/#aidaschema
https://w3id.org/aida/downloads
https://w3id.org/aida/sparql
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last 5 years, last 10 years) and as distributions over time. For authors and organi-
sations, we also compute their h-index and h5-index considering all their publica-
tions in the knowledge graph. In addition to the main topics, we also identify the
top 100 fingerprint topics, which are ranked according to the difference between
the fraction of relevant publications in the venue and the average distribution
in the whole Computer Science. This metric usually identifies the topics that
are most significant for the underlying venue, also according to the user assess-
ment [4]. Finally, we compute the number of publications and citations received
from the research papers written by academia, industry, and collaborations, and
the distribution of the industrial sectors at the venue.

Venue Classification. It is crucial to categorise journals and conferences with
their research fields, in order to contextualise performance metrics and compar-
isons with other venues. Indeed, comparing the h-index or impact factor of a
journal in the area of Neural Networks with one in Formal Logic would neither
be fair nor informative. To this end, we created the Focus Areas Taxonomy11

containing 124 broad areas organised into 4 levels. In contrast, the taxonomy
used by Google Scholar Metrics for characterising venues includes only 26 cate-
gories relevant to Computer Science.

The Focus Areas Taxonomy has been created following both bottom-up and
top-down strategies. We first selected 200 research areas from CSO that appeared
as sub-string in a venue name and were also in the top 10 fingerprint topics for at
least 10 venues. We then included all the super-topics of the first set (which are
392), resulting in a total of 592 candidate topics. We then associated them with
various metrics linked with their prevalence in the 5.2K venues in our system.
These included the frequency of appearance in journal or conference titles and
the number of journals and conferences in which it appears among the top 10
topics. Finally, we arranged all the topics within a taxonomy following the same
structure of CSO. We then asked three senior researchers in Computer Science to
revise the taxonomy by 1) selecting the most significant topics on the basis of the
metrics and their expertise, and 2) rearranging their position in the taxonomy
if needed. We plan to keep updating this knowledge base according to feedback
from the editors and the community.

In order to classify venues with the fields of the Focus Areas Taxonomy, we
first check if the venue mentions a focus area in the name and in that case
we directly assign to this area. For instance, the International Conference on
Robotics and Automation (ICRA) is automatically assigned to “Robotics”. Oth-
erwise, we identify the focus area with the highest coverage in the distribution
of fingerprint topics and, among its descendants, we select the most specific area
with at least 20% of publications in the venue.

Venue Ranking. The last step consists of pre-computing the rankings of the
venues across specific fields. For each focus area, we generate a list of all relevant
venues along with a set of metrics, such as h5-index, average h5-index of the

11 Focus Areas Taxonomy is browsable here: https://w3id.org/aida/fat.

https://w3id.org/aida/fat
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relevant organizations, and average number of papers in the last 5 years. We also
include well-known external journal and conference ratings made available by
various associations. For journals, we use the SCIMAGO Journal Rank (SJR),
and the SCIMAGO Quartile12. For conferences, we use the ranks provided by
liveSHINE13, CORE14, and GII-GRIN-SCIE (GGS)15.

2.3 Sustainability Plan

We plan to keep maintaining and updating the dashboard in the following years.
For this reason, we set up an automatic pipeline that will update the data every
6 months. In addition, we will keep developing the main functionalities, following
the feedback of the community and the editors (see Sect. 4).

At the end of 2021 Microsoft decommissioned the MAG project16. We thus
decided to introduce two additional datasets within our integration pipeline:
OpenAlex17 and DBLP18, as shown in Fig. 1. We included OpenAlex because it
shares the same schema with MAG and it has a low cost of integration. How-
ever, since OpenAlex does not disambiguate conferences yet, we leveraged the
conference representation of DBLP, by mapping papers across the two datasets.
To achieve this, we designed a two-stage pipeline. We firstly mapped papers with
the same DOI. Then, for the conferences that do not assign DOIs to articles (e.g.,
AAAI, NeurIPS), we mapped the papers across the two datasets by computing
the string similarity of their titles. We worked in close collaboration with the
SN Data Science team and we now have stable version with over 95% conference
papers matched between DBLP and OpenAlex. Future versions of AIDA KG
and the generated analytics will be based on these newly integrated datasets.

3 The AIDA Dashboard

The AIDA Dashboard is a web application that allows users to analyse and
compare journals and conferences. In May 2022, we released a public version,
independent from Springer Nature internal workflow, that is available at https://
w3id.org/aida/dashboard.

In the starting page, the users can search either for a venue or a research
topic. If the user selects a conference or a journal, the system will retrieve the
pre-computed analytics (as JSON file) and display them in the venue panel. If
the user selects a research field (e.g., Artificial Intelligence) the application will

12 SCIMAGO - https://www.scimagojr.com.
13 liveSHINE - http://web.archive.org/web/20180728060959/http://liveshine.icomp.ufam.edu.br/
14 CORE - https://www.core.edu.au/team.
15 GGS - https://scie.lcc.uma.es:8443/conferenceRating.jsf.
16 Next Steps for Microsoft Academic - Expanding into New Horizons - https://www.

microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-
expand-horizons-with-community-driven-approach/.

17 OpenAlex - https://openalex.org.
18 DBLP - https://dblp.org.

https://w3id.org/aida/dashboard
https://w3id.org/aida/dashboard
https://www.scimagojr.com
https://www.core.edu.au/team
https://scie.lcc.uma.es:8443/conferenceRating.jsf
https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-expand-horizons-with-community-driven-approach/
https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-expand-horizons-with-community-driven-approach/
https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-to-expand-horizons-with-community-driven-approach/
https://openalex.org
https://dblp.org
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return the advanced search panel that ranks all venues in the field according to
a variety of metrics and allows the user to navigate and compare them. In the
following, we describe these two interfaces in details.

Fig. 2. Overview page of Scientometrics (journal).

3.1 Venue Panel

The venue panel is structured in eight tabs: i) Overview, ii) Citation Analysis,
iii) Organizations, iv) Countries, v) Authors, vi) Topics, vii) Related Confer-
ences/Journals, and viii) Industry.

The users first lands on the Overview tab, shown in Fig. 2, which displays
the most important metrics and a selection of charts, including: a) publications
and citations across time, b) the top fingerprint topics in terms of publications
and citations in the last 10 years, and c) the top 10 authors and organisations in
the last 10 years.

The Citation Analysis tab reports how the venue is performing in terms
of citation-based metrics, such as impact factor and average citations over time.
Notably, it also shows the evolution of the venue’s rank and percentile within its
focus areas. This is a very intuitive measure of the prominence of the conference
in the field over time, which is not available in alternative tools.

The Organizations, Authors, Countries, and Topics tabs allows users
to rank and inspect these entities in terms of publications, citations, and average
citations. All metrics can be displayed either as totals (all years, last 5 years, or
last 10 years) or as time-based distributions.

The Related Conferences/Journals tab allows users to compare the venue
of interest with other venues in the same fields according to their number of
publications, citations, and average citations across time. This diachronic view
is very useful for identifying emerging conferences or journals that may not be
dominant yet, but exhibit a strong positive trend.
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The Industry tab presents the distribution of publications and citations of
academic institutions, industrial organisations, and collaborative efforts. This
tab displays also the distribution of publications and citations of the different
industrial sectors that published at the venue. For instance, the NeurIPS con-
ference attracts publications prevalentely from companies in the sectors: “Tech-
nology”,“Computing and IT”, “Marketing”, and “Electronics”.

3.2 Advanced Search

Figure 3 displays the Advanced Search panel, which allows users to browse and
compare venues according to their fields. The user can browse the different fields
using the selection menus and switch between journals and conferences with the
button in the upper right. For instance, a user checking all the conferences in
the field “The Web” can decide to focus further the analysis and only show the
subset of venues within the sub-area “Semantic Web”. Clicking on a specific
venue will bring the user to the relevant venue panel.

Fig. 3. The Advanced Search Panel displaying conferences in Artificial Intelligence
ranked by h5-index.

Journals and conferences can be ranked according several metrics, including:
a) average citations received in the last five years, b) average articles published in
the last 5 years, c) h5-index, d) the average h5-index of the relevant organisations,
and e) the average h5-index of the relevant authors. The last two metrics are not
typically offered by alternative systems, but are very useful to identify emergent
conferences that are attracting strong research groups but may not have yet
received a good number of citations. Venues can be also ranked according to the
set of external ratings discussed in Sect. 2.2.

4 User Study

We performed a user study on the AIDA Dashboard to assess the quality and
usefulness of the analytics as well as the usability of the user interface. To this
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end, we organised individual sessions with 5 SN editors and 5 researchers in
Computer Science. In each session, we first presented the AIDA Dashboard 2.0
for about 20 min. We then assigned to the users the task of analysing two venues
and a focus area of their expertise in order to assess the quality of the resulting
analytics. After the hands-on session the users filled a five-parts survey about
their experience. The first part covered the users background and expertise. The
second part was a standard System Usability Scale19 (SUS) [7] questionnaire to
gauge the usability of the AIDA dashboard. The third section asked the users
to rate the quality of the analytics for the two venues and the focus area on
a Likert scale in the [1–5] range. The fourth part included four open questions
about strengths and weaknesses of the dashboard asked to all users and two
further questions that were asked only to the editors. Finally, the fifth part
asked to list at least three of the most useful functionalities.

The data produced during the user study are available online20.

4.1 User Background

The five researchers in the user study are all senior researchers, with an average
of 13.4 years of experience, and come from different institutions: i) University
of Cagliari (IT), ii) Institute for Applied Informatics (DE), iii) FIZ Karlsruhe
- Leibniz (DE), iv) University of Paris 13 (FR), and v) National Council of
Research (IT). The five editors are at various career stages (1, 5, 13, 21, and
25 years of experience) and come from different departments within SN.

The areas of expertise of the 10 users include Artificial Intelligence, Natural
Language Processing, Semantic Web, Robotics, Machine Learning, Multimedia
Systems, and Theoretical Computer Science.

Fig. 4. The SUS Questionnaire results. (Color
figure online)

Fig. 5. Number of votes received by
each Section/Functionality.

19 System Usability Scale (SUS) - https://www.usability.gov/how-to-and-tools/
methods/system-usability-scale.html.

20 AIDA Evaluations - https://w3id.org/aida/downloads#evaluation.

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://w3id.org/aida/downloads#evaluation
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4.2 SUS Questionnaire

The SUS questionnaire provided excellent results obtaining a score of 88.5/100
considering all users. This corresponds to the 97% percentile rank in terms of
usability (A+ grade) according to the SUS guidelines21. In general, editors were
more severe than researchers, mostly because they consider the dashboard an
important working tool and they where very motivated in suggesting further
improvements. Indeed, editors scored an average 84.5 SUS score (96% percentile
rank), while researchers yielded 92.5 (98%). This version of the dashboard (2.0)
showed a better usability than the previous one, which achieved a SUS score of
87.5 in a user study involving 10 researchers [4].

Figure 4 reports the average score given by researchers (red bars) and editors
(blue bars) to specific questions in the SUS questionnaire. Odd questions are
positive (a higher score is better) while even ones are negative (a lower score is
better). Overall, all the users found the system very easy to use (high values in
question 3), they could easily learn the system (question 7), and they do not need
support to use the system (question 4). The editors found some inconsistency in
the integration of the functionalities (question 5). Finally, all users would like to
frequently use the dashboard (question 1).

4.3 Quality Assessment

We asked the users to evaluate the quality of the analytics produced by the AIDA
Dashboard for the two venues and the focus area according to a Likert scale. On
average, editors scored 3.8 for venues and 4 for focus areas, whereas researchers
4.2 for both venues and focus areas. The range of fields and venues analysed by
the users included Artificial Intelligence (AAAI, ICML, EANN, NC&L, Machine
Learning), Natural Language Processing (EMNLP, ACL, EACL), Multime-
dia Systems (ACM Multimedia, Multimedia Tools & Applications), Robotics
(ICRA, IROS), The Web (The Web Conference), Information Retrieval (SIGIR),
Digital Library (TPDL), Semantic Web (ISWC), and Theoretical Computer Sci-
ence (Information & Computation, iConference).

4.4 Open Questions

We summarise here the main feedback emerged from questions Q1–Q4 (all users)
and questions Q5–Q6 (only editors).

Q1. What are the main strengths of AIDA Dashboard? Users were pos-
itively impressed by the easy and intuitive interface and the large amount of
analytics. Other positive feedback regarded the granularity of the topic classifi-
cation and the fact that the system addressed a real need in the community, i.e.
analysing and comparing venues.

Q2. What are the main weaknesses of AIDA Dashboard? Users listed a
range of issues that we plan to address in the future. One researcher suggested
21 Interpreting a SUS score - https://measuringu.com/interpret-sus-score/.

https://measuringu.com/interpret-sus-score/
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that the major limitation is that the coverage is constrained to the Computer
Science domain. Another one reported some disambiguation issues, in particular
regarding authors with similar names. One more suggested that certain function-
alities were hard to locate because the second level tabs were not particularly
discernible. One editor mentioned the need of analysing venues in time ranges
smaller than 5 years. Another one criticised the current interface for navigating
the taxonomy based on selection menu. Finally, one editor did not find smooth
the integration of journals and conferences and asked to be able to compare both
of them in the same panel.

Q3. Can you think of any additional features to be included in AIDA
Dashboard? Researchers mentioned: 1) adding more type of scholarly entities
to analyse (e.g., organisations, researchers), 2) the ability to compare specific
charts from different venues, 3) some additional metrics (e.g., number of papers
that contributed to the citation count), 4) various minor GUI improvements, and
5) the ability to rank topics alphabetically. Editors mentioned: 1) the ability to
directly compare conferences to journals; 2) a better integration with the CSO
taxonomy; 3) adding information about the publishers of the venues, and 4)
considering also books series.

Q4. How comprehensive/accurate do you consider the list of focus
areas associated with the venues in AIDA Dashboard? All the researchers
found the list of focus areas accurate and comprehensive. However, two of them
suggest that they were sometimes too broad and would have liked the ability to
browse venues also according to arbitrary research topics. Four editors found the
list very accurate and comprehensive, while one of them identified some missing
areas in their field of expertise and suggest edits for the Machine Learning branch
(already implemented in the current version).

Q5. In which way the AIDA Dashboard support your work? Two editors
reported that the system was very useful for supporting junior or new editors in
analysing specific research fields. Two found it very helpful in identifying notable
trends in venues topics and performing country-centric analysis. One found it
very useful in identifying and comparing venues. Some editors also highlighted
how the dashboard supports the detection of conferences and workshops that
could produce special issues about specific emerging topics.

Q6. What competitive advantages would you say the AIDA Dash-
board provides with respect to Scopus/Google Scholar (if any)? One
editor pointed out that the AIDA Dashboard provides better visualisations as
well as more granular analytics compared to Scopus and Google Scholar. One
considered the auto-suggested search more helpful and simpler than the one
in Scopus search. Finally, an editor found the AIDA Dashboard more power-
ful in analysing conferences and journals, preferring instead Google Scholar for
analysing individual researchers or articles.
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4.5 Best Functionalities

We asked the ten users to list at least three of the most useful sections of
the AIDA Dashboard. Figure 5 reports the user preferences. The Related Con-
ferences/Journals tab was the most appreciated section for both editors and
researchers. This highlights how comparing venues is a critical task that was
not well supported by previous solutions. Interestingly, researchers preferred the
analytics about topics and citation analysis, while editors the analysis on authors
and organisations.

5 Uptake and Impact

The partnership between The Open University and SN has produced a wide
range of intelligent tools and services for automatically classifying articles [23]
and proceeding books [21], recommending publications [26], evolving domain
ontologies [18], and predicting the emergence of research topics [22]. The very
first prototype of the AIDA Dashboard was introduced at SN in 2020 and has
since been used by their editors and analysts to assess venues in Computer Sci-
ence. The aim was to inform editorial and marketing decisions regarding the 162
journals and the about 800 proceedings books produced each year. In particular,
editors need to monitor the performance across time of journals and conferences
within specific fields and take action for improving the coverage and quality of
SN catalogue. They also need to scan the horizon to detect the emergence of
new scientific communities and relevant venues. It is typically ideal to establish
a solid presence in new fields as early as possible by starting relevant journals
and publishing the proceedings of new conferences. The editors need also to gain
an understanding of the key persons within specific communities that may be
invited to editorial boards or to organise special issues. Finally, it is important
to assess what industrial sectors are interested in specific community in order
to support targeted marketing campaign and specific editorial products. These
are very complex and time-consuming analyses that were performed by senior
editors on the basis of their personal knowledge and standard metrics offered by
commercial datasets, resulting into bottlenecks, delays, and high costs. A task
such as comparing all the journals and conferences within a specific research
areas (e.g., Cloud Computing), considering also the potential for growth, used
to take days of work by editors and assistant editors.

The adoption of AIDA has drastically improved the situation and brought
three major benefits. First, it halved the time needed for analysing venues and
prepare relevant analytics. Second, it reduced the complexity of the task, allow-
ing less experienced junior editors and editorial assistants to also perform these
analysis, improving the distribution of the workload and freeing up the time
of the senior editors and analysts. Overall, this resulted in an estimated 60%
cost reduction. Finally, the dashboard had a positive effect on both the velocity
and the quality of the decision making process, that can be now continuously
supported by advanced large-scale analytics.
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In preparation to the public release of the AIDA Dashboard, we also made it
available to selected members of the research community. During this pilot, the
AIDA Dashboard informed the decisions of members of the organiser committees
of conferences (SEMANTICS, EKAW) and workshops (DL4KG, Text2KG, Sci-
K). For instance, one of the chairs of SEMANTICS 2023 used the dashboard
for gaining a deeper understanding of the conference trends in terms of topics,
countries, and organisations, with the aim of supporting strategic decisions for
the next edition.

6 Related Work

Within the scholarly domain, many knowledge graphs offer a good representation
of research papers and their metadata, such as authors, affiliations, topics, and so
on. Among them, we find AMiner [30], Microsoft Academic Graph (MAG) [28],
PID Graph [8], the Research Graph [6], ScholarlyData [17], the OpenAIRE
Research Graph [15], SciGraph22 [11], OpenCitations [19], the Open Research
Knowledge Graph (ORKG) [12], Nanopublications [9,29], and the AIDA Knowl-
edge Graph [2].

Several bibliometric tools and search engines can be used to query informa-
tion about journals and conferences. For instance, Microsoft Academic Search,
now dismissed, offered several metrics relevant to scientific venues, including
their citations, topics, related venues, authors, and institutions. However, it did
not let users compare venues or examine how research topics evolved across
time. AMiner23 and Semantic Scholar [1] support users in exploring journals
and conferences, but they report only the most prominent authors and papers.
Scholia24 [16] consists of a Web service that builds scholarly profiles for topics,
people, organisations, and venues on top of the information available in Wiki-
data25. If a journal or conference are selected, Scholia reports some relevant
information, such as the main articles ranked by their citations, the main topics,
related authors, and organisations. One drawback of this tool is that the topics
are associated to venues as a whole and cannot be used to evaluate their tem-
poral evolution. The Scopus26 web application is a widely used online platform
that offers several analytics regarding both researchers and scientific papers.
However, it does not aggregate information on conference series. Lens.org [13] is
another web application that integrates data from MAG, Crossref27, CORE [14],
and PubMed28. It enables the analysis of several entities (e.g., authors, institu-
tions, countries, journals, conferences, topics), but it is built on top of MAG and
therefore shares the same limitations of Microsoft Academic Search. RelPath [10]

22 SciGraph datasets - https://sn-scigraph.figshare.com.
23 AMiner - https://www.aminer.org/.
24 Scholia - https://scholia.toolforge.org.
25 Wikidata - https://www.wikidata.org.
26 Scopus.com - https://www.scopus.com/.
27 Crossref - https://www.crossref.org/.
28 PubMed - https://pubmed.ncbi.nlm.nih.gov/.

https://sn-scigraph.figshare.com
https://www.aminer.org/
https://scholia.toolforge.org
https://www.wikidata.org
https://www.scopus.com/
https://www.crossref.org/
https://pubmed.ncbi.nlm.nih.gov/
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leverages the citation network to identify experts in a certain domain that can
act as reviewers of a target paper. The rationale behind the approach is that if
a given paper shares similar scientific elements with some of its references, then
the authors of such references can be considered experts. The approach may be
extended at journal and conference level to suggest who can act as a programme
committee member or co-editor of a journal special issues. SciKGraph is another
approach that leverages semantic technologies and natural language processing
techniques to identify research fields from research papers [27]. Given a dataset
of papers, it finds their main concepts and creates a knowledge graph based on
their co-occurrence in papers. Concepts are then clustered to show how a scien-
tific area is organised. Likewise, it is straightforward to apply the same approach
to journals and conferences for identifying similar papers through their topical
characterisation.

All the mentioned systems allow only a coarse-grained analysis of the involved
actors (e.g., conferences, journals, authors, organisations, countries, topics). Fur-
thermore, they do not take into account how much a venue attracts commercial
organizations or specific industrial sectors. Therefore, the original idea when
building the AIDA Dashboard was to integrate different knowledge graphs with
the goal of enhancing the set of available analytics and performing more fine-
grained analyses.

7 Conclusions

We have illustrated the second version of the AIDA Dashboard, a system devel-
oped within SN to support the analysis and comparison of journals and con-
ferences according to several metrics. The AIDA Dashboard is built on top of
the Academia/Industry Dynamics Knowledge Graph, a large knowledge graph
containing over 1.5B triples obtained by merging data of 25M papers conferences
from Microsoft Academic Graph, Dimensions, DBpedia and GRID. This version
greatly improves the first prototype [4] by offering i) journals in addition to
conferences, ii) an advanced search functionality to browse, compare, and rank
journals and conferences, iii) the Focus Areas Taxonomy, a new taxonomy of
research areas that we have produced to classify research venues, and iv) the
integration of the dashboard with the SN Data Cloud Infrastructure. We have
carried out a user evaluation involving 10 users of which 5 SN editors and 5
researchers, obtaining excellent results.

The AIDA Dashboard is now freely available online and the underneath data
can be downloaded as well.

In future work, we plan to further enhance the AIDA Dashboard according
to the feedback from editors and researchers. In particular, we are working in
collaboration with the SN Data Science team on improving the intuitiveness of
the interface and widening the coverage by expanding to other research fields,
starting with Engineering. We also plan to include new types of entities for the
user to inspect and compare, such as countries, researchers, organisations, and
scientific communities.
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Supplemental Material Availability: The AIDA KG 3.0, the AIDA Schema, the
AIDA Venues dataset 2.0, INDUSO, the Focus Areas Taxonomy, and the eval-
uation data are available at https://w3id.org/aida.
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Abstract. This paper presents the experience gained in the context of
a European pilot project funded by the ISA2 programme. It aims at
constructing a semantic knowledge graph that establishes a distributed
data space for public procurement. We describe the results obtained, the
follow up actions and the main lessons learnt from the construction of
the knowledge graph. This latter requires to support different data gover-
nance scenarios: some partners control, with their own tools, the building
process of their portion of the knowledge graph. Other partners partici-
pate in the pilot by providing only their open CSV/XML/JSON datasets,
in which case transformations are required. These are performed on the
infrastructure made available by the European Big Data Test Infrastruc-
ture (BDTI). The paper introduces the design and implementation of
the knowledge graph construction process within such a BDTI infras-
tructure. By instantiating an OWL ontology created for this purpose,
we are able to provide a declarative description of the whole workflow
required to transform input data into RDF output data, which form the
knowledge graph. The declarative description is therefore used to provide
instructions to a workflow engine we use (Apache Airflow) for knowledge
graph construction purposes.

Keywords: Knowledge graph · Data space · Linked (Open) data ·
Data transformation

1 Introduction

The importance of Public Procurement in the economy of the EU is well docu-
mented. Over 250.000 public authorities in the EU spend around 14% of GDP,
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around 2 trillion euros per year1. Therefore, it is important to make the best
use of the data it generates. Traditionally, public procurement has been mainly
document-based. However, with the increasing use of digital technologies and
digital negotiation instruments, public procurement has faced a variety of new
interoperability challenges. These are related to insufficient sharing and re-use
of data, overall lack of quality for the available data, inability to match related
data from numerous and heterogeneous databases and systems. To start facing
some of these challenges, the Publications Office published an OWL ontology
named ePO - eProcurement Ontology2, aligned with the latest related EU direc-
tives and regulations. ePO describes the main objects of public procurement and
their relationships.

In order to test and exploit this ontology, the European Commission has
implemented a pilot project whose aim is to lay the foundations for the creation
of a European public procurement data space. In this data space, a semantic
knowledge graph, i.e., a knowledge graph constructed using semantic web stan-
dards such as RDF and OWL (henceforth referred to as ‘KG’), is exploited for
the integration of data between different public procurement actors. The KG
consists of public procurement data modelled through the aforementioned ePO
ontology.

In the light of this scenario, the main contributions of this paper are:

– a distributed architecture that exploits semantic web technologies for the
EU public procurement data space, where different governance scenarios are
possible;

– a novel declarative approach for creating and managing KGs. This approach
consists of defining an OWL ontology we present, whose instances are declara-
tive descriptions used by a workflow engine. The workflow engine orchestrates
tasks based on these declarative descriptions, aiming at transforming input
datasets into the desired representation. Overall, this contributes to the cre-
ation of the KG of the data space, reducing possible manual interventions
and making it maintainable and sustainable over time;

– a workflow process that, using this OWL ontology, is able to orchestrate the
tasks to be performed to produce RDF datasets, compliant with a reference
domain ontology;

– an open data based approach for ETL - Extract Transform and Load, by
which the catalogue of transformed federated datasets is built in, thus reduc-
ing the maintenance efforts and increasing overall consistency;

– a number of lesson learnt for future developments of the EU Public Procure-
ment data space.

The rest of this paper is structured as follows. Section 2 presents an overview
of related work. Section 3 describes the pilot experience and its configuration.
Section 4 introduces the solution we designed and implemented for the realisation
of the pilot. Section 5 discusses the main lesson learnt and Sect. 6 the uptake.
Finally, Sect. 7 concludes the paper with future work.
1 https://ec.europa.eu/growth/single-market/public-procurement_en.
2 https://github.com/OP-TED/ePO.

https://ec.europa.eu/growth/single-market/public-procurement_en
https://github.com/OP-TED/ePO
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2 Related Work

We present different works that we have analysed because they are similar to
the overall work we propose. These are divided into: i) similar approaches in the
use of semantic standards in the procurement domain; ii) similar works on the
use of ontologies as declarative descriptions to govern workflow systems.

In the procurement domain, semantic technologies have been used in different
projects. A recent one is The Buy for You Platform [24] that applies an approach
that is similar to the one used in our pilot. It exploits KGs based on ontologies,
proposing an infrastructure with rest APIs for easy access to data. The ontologies
form a network and deal with two types of data: procurement-related data (e.g.,
contract, award, plan, tender) on one hand [25] and company data on the other
hand (e.g., registered organisation, address, site). For the procurement-related
data, it uses a data specification that is emerging in the contract management
context named OCDS - Open Contracting Data Specification, entirely based on
JSON and JSON-based rest APIs.

Other past attempts to model public procurement have been done with the
LOTED2 [13], PPROC [21] and PublicContract3 OWL ontologies; however, they
seem focused on some specific elements of the procurement, only: LOTED2 on
legal notices, PPROC and PublicContract on public contracts.

As for the use of ontologies for guiding the KG production, in [11], the authors
pose a set of research challenges, also mentioning the use of “declarative descrip-
tions of workflows” as a possible technique that is appearing, as we proposed in
our pilot.

In [5], the authors introduce TITAN, a system that uses the BIGOWL ontol-
ogy for describing workflows and entities that contain software components of
the system. TITAN proposes a similar approach to ours, but more general. In
contrast, we focus on describing specific activities on the creation of KGs in
specific contexts, and for this we extend ontologies used in the public sector to
document datasets in catalogues.

In [15] and [16], the LinkedPipes ETL tool is introduced and described. Its
aim is to support the whole process of data publication, especially the lifting
of internal data in relational databases or Excel, CSV, XML or JSON files to
Linked Open Data, with a successive cataloguing activity. The data transforma-
tion pipelines are stored in the system as RDF but no specific OWL ontology is
used to govern the pipeline, as in our case.

In [23], the authors provide a holistic approach and architecture to populate
a commercial KG based on heterogeneous data sources. Although the approach
is similar to ours, and enables the automation of the creation of the KG, the
use of an OWL ontology that describes the workflow in a declarative way is not
treated as in our case. The authors use the PROV-O ontology to keep track of the
source information, but do not exploit it to provide the necessary instructions
for a workflow system as we propose.

3 https://w3id.org/italia/onto/PublicContract.

http://standard.open-contracting.org
https://w3id.org/italia/onto/PublicContract
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3 The Public Procurement Pilot

An attempt to get public procurement data at EU level has been done by estab-
lishing an European system named TED (Tender Electronic Daily) that man-
dates Member States to publish all the notices of their national tenders above
the regulatory thresholds. While the latest reform of the regulation intends to
get more and better public procurement data, it does not address some prob-
lems that were detected with the system [2]: i) fragmentation and complexity
of procurement systems in Member States; ii) lack of compatibility between
TED and Member State systems; iii) publication of mainly documents (notices)
rather than data. This prevents the adoption of an effective data-driven app-
roach to public procurement depriving the stakeholders of the possible savings
and improvements that such a paradigm can bring, even in terms of transparency,
corruption fight and governance of public procurement.

In 2020, Italy requested the ISA2 programme to develop, maintain and pro-
mote an infrastructure to gather, process, analyse and publish public procure-
ment data based on the earlier cited ePO ontology. One key requirement is to
work on reusable open source tools that can be implemented in the national (or
regional) eProcurement infrastructures to carry out successive data analysis. In
essence, the idea is to lay the foundations for creating a data ecosystem. Within
it, public procurement data and data products can be seamlessly exchanged
among stakeholders, allowing for their reuse to build advanced applications and
services.

The pilot was launched after gathering strategic input from the Analytics
subgroup of the expert group on eProcurement, who expressed the following
guiding principles: i) to allow all data sources to be included in a reusable way,
once they become relevant for supporting the policy objectives; ii) to make data
timely accessible, traceable and comparable; iii) to reuse as much as possible
data, data products and tools.

In the light of these considerations, the objectives of the pilot are: i) to explore
the harmonisation of the public procurement data landscape thanks to the use
of the ePO ontology built for such purpose; ii) to pilot a federated solution,
paving the way towards a data space instead of a centralized data warehouse;
iii) to explore the construction of quality processes and use of tools that involve
the data owners and data providers at various levels: EU, national and local.
To simulate the heterogeneity of the European public procurement landscape,
the pilot selected several national data providers: ANAC the Italian National
Anti-Corruption Authority collecting all Italian procurement data, IMPIC, the
Portuguese public authority collecting all Portuguese procurement data, DFO
the Norwegian Public and Financial Management Agency collecting all the Nor-
wegian procurement data. In the Public Procurement data provisioning land-
scape, CONSIP, the Italian Central Purchasing Body, a primary data owner,
is also involved to explore how the existing organisation of data provisioning
mandated by law may be complemented by voluntary adhesion of data own-
ers to the federated data space. The pilot also involves the Publications Office,
owner of the earlier cited TED system and EU data provider. The Institute of
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Cognitive Science and Technologies (ISTC) of the Italian National Council of
Research (CNR) contributes in the pilot from a technological transfer perspec-
tive, supporting in the technical work related to the use of semantic technologies.
Directorate General DIGIT of the EU Commission coordinates the pilot.

The heterogeneity and complexity to be dealt with in the construction of
the resulting KG led the participants to automate the transformation processes,
from the very beginning, in such a way as to reduce as much as possible any
manual interventions.

The pilot aims at analysing the number of received tenders since 2017 until
the latest available data, using contract award notice information. Therefore,
in the KG, we did not instantiate all the ePO ontology (version 2.0.1) ele-
ments; rather, we mainly used the following classes: Procedure, Lot, Technique,
Purpose, StatisticalInformation, AwardDecision, ContractAwardNotice,
Organisation, Role.

4 Proposed Solution for the Pilot Implementation

As shown in Fig. 1, we designed a distributed architecture coherent with the
pilot objectives and guiding principles. Multiple data sources are used, with dif-
ferent source data models, reflecting the diversity of the landscape. Two partners,
Consip and Publications Office contribute with linked open datasets already in
compliance with the ePO ontology, produced through their internal processes
and infrastructures. The ISTC-CNR partner supported Consip in their KG con-
struction processes, providing the required mapping rules from the original data
to the ePO-based RDF target datasets. The rest of the partners from Italy, Por-
tugal and Norway contribute with many open datasets available in a variety of
data formats and structures (see Fig. 1). This requires data transformations that
have been carried out using the European Big Data Test Infrastructure (BDTI)
(see Sect. 4.1).

Within the BDTI, a transformation process is managed by a workflow man-
agement system whose tasks are governed by the instances of the OWL trans-
formation ontology we developed for such a purpose (Fig. 1).

4.1 The Big Data Test Infrastructure

The Big Data Test Infrastructure (BDTI4) is a technical building block of the
Digital Europe Programme of the European Commission that can be used, on
a per-request basis, to support public administrations in their prototype ana-
lytic and Big Data solutions. Instead of setting up a testing environment for
these solutions, the use of such an infrastructure allows public administrations
to concentrate on the core business, insights and value they can obtain from
their data.

4 https://ec-europa.github.io/bdti-infrastructure/.

https://ec-europa.github.io/bdti-infrastructure/
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Fig. 1. Pilot architectural scenario

The infrastructure was assessed as particularly useful to support all those
public sector partners in the pilot that do not participate with their own inter-
nal tools but only by providing open datasets already available in their data
catalogues in different formats (e.g., JSON, CSV).

In particular, the BDTI was used to: (i) manually save datasets from ANAC,
IMPIC and DFO in the BDTI cloud storage space; (ii) transform the content
of the datasets into a KG according to the RDF standard and the ePO ontol-
ogy earlier mentioned; (iii) publish the data in the SPARQL Virtuoso endpoint
instance of the BDTI; and (iv) publish the metadata of transformed data in the
SPARQL Virtuoso endpoint instance of the BDTI, thus forming a catalogue of
federated transformed data sources.

4.2 Data Transformation Process in the BDTI

To carry out all these activities, we designed and implemented a process that,
starting from datasets located in the cloud storage space of the BDTI, is capable
of transforming the data into a KG by leveraging the RDF Mapping Language
(RML) [12], using a set of its functions for data manipulation purposes (e.g.,
array-join for defining URIs5, controls_if for verifying specific values). In
the RML mapping rules, we also managed the creation of links (i.e., owl:sameAs)
to other linked open datasets available in the Web of Data such as controlled

5 We used the same URI schema for all those partners using the BDTI. The schema
followed the ‘10 persistent rules for URIs’ - https://joinup.ec.europa.eu/collection/
semantic-interoperability-community-semic/document/10-rules-persistent-uris,
where the domain part depends on the specific EU country.

https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/document/10-rules-persistent-uris,
https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/document/10-rules-persistent-uris,
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vocabularies6 published by the Publications Office and recommended in the ePO
ontology. The RML mapping rules7, expressed in R2RML [9] syntax, were saved
in the cloud storage space of the BDTI and executed using the RML mapper8
through instructions configured in a workflow management system.

In order to make this process manageable and sustainable over time, thus
minimising any possible manual interventions, we designed an OWL ontology
that describes all the activities and resources required by a workflow engine, used
successively to orchestrate the stages of the building process. In essence, the RDF
triples, instances of the OWL ontology we introduce in this paper, can be thought
of as declarative descriptions for a workflow system. In the implementation of our
pilot, we adopted Apache Airflow (see below) as workflow engine. We argue that
one of the strengths of this approach is that the update of transformed datasets
can be done reducing any manual interventions by querying the specific metadata
of the input datasets (e.g., last modification date), while the monitoring of the
construction of the KG is ensured by querying the transformation metadata.
Finally, a further unforeseen result is that the declaration of transformations
contributes to the creation of a catalogue of federated transformed data sources,
ensuring by design their findability.

Transformation Ontology. The OWL ontology that controls the transforma-
tion process is illustrated in Fig. 2.

Ontology Modelling Approach. It is grounded on two foundational ontologies
for metadata description; namely, DCAT-AP - European Application Profile for
Data Catalogue Vocabulary [10], which extends the DCAT Web Recommenda-
tion [4] in order to describe datasets available in data catalogues, and PROV-O
- Provenance Ontology [17], another Web Recommendation which allows one
to represent all provenance information related to activities and entities. Our
ontology imports PROV-O and extends it with a minimum set of classes and
properties (the bottom level in Fig. 2) that represent the specific transforma-
tion activities and resources to be done and used in the KG construction pro-
cess. Moreover, we extend DCAT-AP, based on DCAT version 2, by defining
a data distribution concept used to support the core elements of the ontology
(see below). In general, we favoured the approach of maintaining the control on
our semantics and extend existing ontologies according to our requirements. In
essence, we applied an indirect re-use of existing ontologies [22].

The resulting ontology is simple, with elements that can be clearly under-
stood in contexts such as the public sector, as the use of DCAT-AP is becoming
increasingly popular due to European and national requirements for federated
data catalogues.

Competency Questions. The ontology has been developed using the methodology
available in the literature called eXtreme Design [6,7] (e.g., definition of CQs,
6 https://op.europa.eu/en/web/eu-vocabularies/authority-tables.
7 https://git.fpfis.eu/public-datateam/eprocurement/-/tree/develop/rml-mappings.
8 https://github.com/RMLio/rmlmapper-java.

https://op.europa.eu/en/web/eu-vocabularies/authority-tables
https://git.fpfis.eu/public-datateam/eprocurement/-/tree/develop/rml-mappings
https://github.com/RMLio/rmlmapper-java
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Fig. 2. Graffoo diagram of the transformation ontology

reuse of ontology design patterns). Therefore, we started from the elicitation
of specific requirements translating them into so-called Competency Questions
(CQs) that represent the de-facto ontological commitments. A non exhaustive
list of CQs for the transformation process modelled in the ontology is provided
in Table 1.

Ontology Description. A transformation (the class :Transformation) is a spe-
cific type of PROV-O plan (thus represented as subclass of prov:Plan), and it
is defined as a planned set of operations to be executed by one or more agents; it
aims at transforming a given input dataset distribution into an output dataset
distribution.

To identify a dataset distribution, which is a representation of a dataset
used to distribute it according to different serializations or formats, we extend
the same concept as the one defined in DCAT so as to link it to the core
elements of the proposed ontology. For instance, we added an inverse prop-
erty from our :Distribution concept to the dcat:Dataset class and an OWL
restriction that represents the connection of the distribution of a dataset to the
execution of a transformation plan. This extension is represented by the class
:Distribution (bottom part of Fig. 2); it inherits all the properties of the main
dcat:Distribution (e.g., dct:modified, dcat:accessURL, etc.), including the
relationship with the class dcat:DataService.
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Table 1. Competency questions of the OWL ontology.

ID Competency question

CQ1 Which is the input distribution to be used for the transformation?
CQ2 Which are the standards used in the transformation?
CQ3 Which is the transformation resource to be used in a transformation plan?
CQ4 What is the output dataset distribution generated by a transformation?
CQ5 Who executed the transformation activity?
CQ6 When the transformation resource of the transformation plan has been

updated?
CQ7 Which are the output distributions generated by the execution of a

transformation plan?

A transformation plan defines transformation rules within specific types of
transformation resources (the class :TransformationResource intended as a
subclass of dcat:Resource).

During our pilot, we identified two types of transformation resources; namely
RML mapping rules files (the class :RMLMappingScript which is currently the
de-facto standard for the construction of KGs, and SPARQL query. This latter
class :SPARQLQuery allows us to represent alternative approaches with respect
to the use of mapping languages like RML. Tools such as SPARQL Generate [18]
or SPARQL Anything [8] can be captured using the :SPARQLQuery class where a
SPARQL query is used to specify mapping rules. We believe that these transfor-
mation resources are sufficient to model well-established mechanisms for trans-
forming different dataset formats (e.g., XML, JSON, CSV) into RDF, thus mak-
ing the ontology applicable in domains other than our own, where RML mapping
rules only are used.

A :TransformationExecution activity (a subclass of prov:Activity), exe-
cuted by some Agent (prov:Agent), is defined. It generates a dataset distribution
(:Distribution), executes (the :executeTransformation property) a transfor-
mation plan and produces a report (the class :TransformationReport). This
activity is started and ended at some time (since :TransformationExecution
is a subclass of prov:Activity, it inherits the properties prov:startedAtTime
and prov:endedAtTime both typed literals xsd:dateTime). The produced report
is a prov:Entity representing any return message that gives information on the
success or otherwise of the transformation operation.

Transformation System. In order to execute the data transformation pro-
cess at scheduled times and based on the activities and resources identified by
the instances of the transformation OWL ontology, it was necessary to select a
workflow/task runner engine. Apache Airflow [1] was selected as it is the most
suitable solution for the purpose that meets the following criteria: i) Open source,
as to lower the barriers for adoption of the paradigm; ii) scalable; iii) tasks can
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be defined in code, so that the instance data of the ontology can be used to
define the tasks. Apache Airflow fits these criteria as it is Open source soft-
ware that allows for the scheduled execution of workflow tasks on a cluster of
workers. Airflow provides the framework for workflow definition and scheduling,
but the actual task execution is delegated to a Celery cluster. The Celery clus-
ter is a distributed job queue: jobs get added to the queue, and are executed
asynchronously on the worker nodes. This allows one to scale the process, as
additional worker nodes can be added.

Inside Airflow, workflows consist of tasks which can depend on one another.
Each task can be executed by a cluster node, once all its dependencies have
successfully been fulfilled; the upstream tasks have been executed successfully.
This model allows tasks to be performed in parallel as much as possible, limited
only by the tasks dependencies and the availability of cluster capacity to exe-
cute the task. Since tasks can be scheduled on any node in the Celery cluster,
data cannot be stored on disk at the node. Instead, an external system should
be used, such as a database, object store or network file system, which must
be moved to and from the node when needed. Moreover, although not imple-
mented in the pilot, the model allows transformations to depend on multiple
input distributions, which in turn could be the result of another transforma-
tion. As transformations are executed once one of their input distributions has
changed (this is detected by the date of last update, i.e., the dct:modified
property of the class :Distribution), a more complex logic should be consid-
ered to determine the order of scheduling if several input distributions of the
transformation have a high update frequency.

Workflow Definition. In our pilot, the (extended) catalogue is the only place
where the state of the workflow process is persisted. This guarantees a clear
separation between the business processes whose output is recorded in the cat-
alogue and the operational side, in the form of code executed by the engine.
The workflow representation in Apache Airflow (tasks and their dependencies)
is created through the execution of a Python program, that takes the instance
data of the ontology as its input. The following instance data in Listing 1.1 is
an example of how a ETL transformation can be defined.

Listing 1.1. Turtle instance data for transformation

@prefix dcat: <http ://www.w3.org/ns/dcat#> .
@prefix etl: <https :// data.europa.eu/a4g/transform -validate -

ontology#> .
@prefix eproc: <http :// eprocurement -placeholder/> .
@prefix rdfs: <http ://www.w3.org /2000/01/ rdf -schema#> .

# Datasets
eproc:example_input_dataset a dcat:Dataset;

dcat:distribution eproc:example_input_distribution .

eproc:example_transformed_dataset a dcat:Dataset;
dcat:distribution eproc:example_output_dist .

https://docs.celeryproject.org/
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# Distributions
eproc:example_input_distribution a etl:Distribution ;

dcat:accessURL eproc:input.csv .

eproc:example_output_distribution a etl:Distribution .
dcat:accessURL eproc:output.ttl .

# Transformation
eproc:example_transformation a etl:Transformation ;

rdfs:label "Example data transformation" ;
etl:hadInputSource eproc:example_input_distribution ;
etl:declaresOutputDistribution eproc:

example_output_distribution ;

etl:definesTransformationRuleIn eproc:
example_rml_transformation_script .

# Transformation Resource
eproc:example_rml_transformation_script a etl:RMLMappingScript ;

rdfs:label "RML mapping rules used to transform the input
distribution into the output distribution." ;

etl:accessURL eproc:rml -transformation -rules.ttl ;

By using the instance data, it is possible to automatically generate the work-
flow in Apache Airflow. The basis of the process is that each instance of the
:Transformation class in the catalogue (eproc:example_transformation in List-
ing 1.1) is turned into a workflow object.

Listing 1.2. Apache Airflow code for transformation data

g = Graph ()
# Parse turtle file into in -memory graph
g.parse("catalogue.ttl", format=’text/turtle ’)
# Use catalogue graph to create entity model
catalogue = EntityRepository(g)
transformations = catalogue.getTransformations ()
workflow_creator = DagTransform ()
for transformation in transformations :

# Create workflow object from the transformation instance.
workflow = workflow_creator.transformationToDag (

transformation)

In its most basic setup, each workflow contains a single Transformation task,
which performs the execution of the transformation script. Additional tasks can
be defined, e.g. to load the transformed data into a target database. To access
the data catalogue in a developer friendly way, and separate the ontology/data
concerns from workflow’s business logic, a rudimentary Object RDF Mapper
(ORM)9 is developed and used.

9 ORM code on GitLab.

https://git.fpfis.eu/public-datateam/eprocurement/-/blob/develop/airflow_node/dags/catalogue/ontology.py
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Workflow Execution. The tasks are planned by the Airflow scheduler, and exe-
cuted by the Celery cluster. When the transformation task is executed, the
:TransformationExecution class is instantiated. In Airflow, the equivalent of
a :TransformationExecution is an Airflow DAG run. The main steps then can
be summarised as follows.

– Extract. The file referenced by the dcat:accessUrl property of the input
distribution, referenced through the :hadInputSource property of the ontol-
ogy defined for the :Transformation class instance, gets downloaded to the
Celery worker node. This file is the input data to the transformation process.
Also, the :RMLMappingScript (in case of a RML transformation), also refer-
enced from the :Transformation class instance, is downloaded to the node.
In our pilot, both are stored in the AWS S3 objectstore. In the future, the
system can be extended to support a wider variety of transformation systems.
A plugin would subclass the :TransformationResource of the ontology and
the Airflow code to support the transformation engine.

– Transform. After moving the downloaded :Distribution into the working
directory of the Airflow runner, the transformations must be executed. In our
pilot, this is done via the external executable process RMLMapper, passing it
the file name of the input :Distribution and the RML mapping rules file(s)
as parameters. The result of the transformation is stored in a temporary file
on the Celery node.

– Load. The transformation result is written back to the dcat:accessUrl of
the output distribution. In our pilot, this is the S3 object store. It is worth
noting that this approach differs from a traditional ETL process, where the
Load stage loads the data into the target database. In our case, the data
merely gets stored as a file. If further representation of the data (for instance
in a triplestore) is needed, an instance of the dcat:DataService class (see
Fig. 2) must be added, linked to the output distribution. This will result in
an additional workflow task to be added to the workflow to materialise the
data into the database.

5 Lesson Learnt

From the pilot project experience we can draw a number of lessons learnt, useful
for anyone, in different domains, when leveraging semantic technologies and KGs
as means for the definition of a data space. These, related with each other, are
summarised as follows.

RDF Declarative Approach to Data Transformation. The instantiation of our
transformation ontology, as a declarative description of jobs to be executed by a
workflow engine, allows us to make the process of building the KG sustainable
and maintainable over time, as manual human interventions are greatly reduced.
We argue that this approach is particularly effective in the scenarios we faced,
where large numbers of data distributions consisting of even more than 100
data files for 4 years of procurement data for Italy, only, must be managed and
transformed.

https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html
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Lightweight Transformation Ontology. The benefits of extending DCAT-AP and
PROV-O, well-known standards of the Semantic Web, to manage the transfor-
mation operations on the data are: i) helping in monitoring which data sources
have been analysed and then transformed; ii) guaranteeing the discoverability
of the transformed data sources results as the metadata of the output datasets
is added to the output data catalogue at the time of the declaration of the
transformation; iii) allowing for monitoring the transformation operations, thus
understanding the status of the overall construction process; iv) allowing for
traceability of the operations performed between the input data source and the
output data source, discoverable through the data catalogue; v) allowing for
automating the refresh of output datasets when input datasets have changed or
when the transformation code has been revised.

Use of EU Commodities. Most of the pilot participants did not own infrastruc-
tures for managing KG. The use of commodities like the BDTI becomes crucial
when supporting the data space establishment.

Fostering DCAT-AP in Europe. The use of DCAT-AP for datasets findability is
increasing in Europe. However, this is not yet common practice in all EU coun-
tries. Due to the role of DCAT we described in this paper, promoting its adoption
is crucial. In addition, adopting the solution we propose naturally contributes to
increasing the reach of DCAT-AP.

Define a Common Language in the Data Space. In a data space, one key point
is that actors ‘speak the same language’. Data transformation towards a shared
semantic layer, like the ePO ontology, has to happen as soon as possible in the
data management process so as to build additional artefacts on a standardised
and high quality set of datasets.

Define Streamlined ETL Processes. In a data space, another key point is that
data is of good quality. Our generic approach ensures that the risks of degrading
data quality through transformation are minimized. This is guaranteed thanks
to the separation of concerns between the transformation scripts and automation
of the process.

Issues When Working with Current Available Open Data. While working with
existing open datasets seems desirable as a set of available resources that can
be easily re-used, the pilot identified a drawback in this scenario: open data is
often treated as a process apart from the main internal data management pro-
cesses (processes on data that is not publicly available). This practice inevitably
introduces delays between data changes in internal systems (e.g. a data ware-
house) and the publication of data under the open data paradigm. In addition,
it reduces the potential richness of the data as not all that available is publicly
published. In essence, the mere use of these open sources may hinder easier and
more timely data management than would be possible with a direct access to
the data stored in internal systems. In our experience, some input open datasets
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required a first data manipulation for allowing RML processes to run smoothly.
This was particularly the case with Portuguese JSON files: the lot identifiers
were simply incremental numbers without including the relevant procedure con-
text. Due to some limitations in navigating JSON files in RML, this scenario
prevented us from constructing persistent URIs for the lots. Therefore, a manip-
ulation of the data to include the identifiers of the parent procedure in the lot
identifier was done in Python. Finally, when linking some datasets from Italy
to TED open datasets, we discovered entity duplication issues in TED. This
happened when the same entity was used in different phases of the procurement
(at contract notice and contract award notice times). The Publications Office is
carrying out a work to ensure entity deduplication. These issues did not occur
for the datasets we produced within the BDTI.

6 Uptake

The pilot experience led to follow-up actions described below. Firstly, Consip
decided to publish online for anyone its produced portion of KG. Therefore,
they enriched their open data catalogue10 with a specific section named “Linked
Open Data”11 where the results of the work carried out in the pilot can be
queried and re-used.

Secondly, the proposed RDF declarative approach to data transformation is
used in a European funded project named WHOW - Water Health Open Knowl-
edge12. In WHOW, open datasets located in data catalogues and documented
using DCAT-AP are to be transformed in linked open data and the use of such
an approach allows the project to meet its objectives in a sustainable and main-
tainable manner [19].

Finally, the future Public Procurement Data Space (PPDS) that the Euro-
pean Commission is currently designing and implementing will leverage the main
results and digital artefacts presented in this paper. In particular, the PPDS is
considering the transformation ontology as a key asset to support the transfor-
mation process through the use of a workflow engine. The plan also foresees
to extend this approach for automating data extraction from data catalogues
in Europe, validating the data according to specific business rules. The plan is
not yet publicly available for anyone; however, from a high level overview of the
public procurement data strategy13, the main principles here described can be
found.

10 https://dati.consip.it/.
11 https://dati.consip.it/linked_opendata.
12 https://whowproject.eu/.
13 https://vkazprodwordpressstacc01.blob.core.windows.net/wordpress/2021/07/PP-

Data-strategy.pdf.

https://dati.consip.it/
https://dati.consip.it/linked_opendata
https://whowproject.eu/
https://vkazprodwordpressstacc01.blob.core.windows.net/wordpress/2021/07/PP-Data-strategy.pdf
https://vkazprodwordpressstacc01.blob.core.windows.net/wordpress/2021/07/PP-Data-strategy.pdf
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7 Conclusions and Future Work

This paper shows that the construction of a European public procurement data
space based on semantic web standards and technologies and reusable open soft-
ware solutions is feasible and effective in ensuring interoperability. It focuses on
a distributed architecture capable of dealing with different data governance sce-
narios, where RDF transformations are performed and orchestrated via instances
of an OWL ontology that describes the tasks of a workflow system.

Future Work. There is currently an on-going work for officially assigning to the
presented ontology an URI under the European Core Vocabularies namespace,
according to the URI policies adopted by the EU institutions and bodies14. This
will also enable content negotiation mechanisms for the proposed ontology. We
are planning to implement the workflow that allows us to validate the trans-
formation against specific procurement business rules. In this sense, we have
already considered the use of the ontology to control the execution of differ-
ent types of validation, through existing validation engines (e.g., the SHACL
validator already provided in the BDTI15).

Moreover, we are planning to extend the transformation ontology in order to
represent data quality metrics. These can be used for example to create a trans-
formation and validation monitoring dashboard that developers can leverage in
assessing the overall effectiveness of the KG construction process. The Data
Quality Vocabulary [3] can be taken into account as an additional modelling
part of the proposed transformation ontology.

Finally, further investigation can be required to understand how the workflow
engine can be made more flexible through ontology-code plugins, following the
approach of the function ontology [20]. A plugin would consist of a function
definition and an implementation in code. For example an ‘FTP Distribution’
plugin would allow for transparent access of distributions accessible over FTP. A
micro-kernel architecture would allow one to add plugins to the workflow engine
in a modular way.

Supplemental Material Availability: The source code and RML mapping rules
that have been produced for the knowledge graph production process in the
BDTI can be found in the following GitLab space: https://git.fpfis.eu/public-
datateam/eprocurement

The transformation ontology is open for the re-use by anyone and it is avail-
able for the download on the gitlab repository of the European pilot project16.
Moreover, we setup a github repository17 to let users navigate it via HTML18

by means of tools such as Widoco [14].
14 https://data.europa.eu/URI.html.
15 https://www.itb.ec.europa.eu/shacl/any/upload.
16 https://git.fpfis.eu/public-datateam/eprocurement/-/blob/develop/transform-

validate-ontology.ttl.
17 https://github.com/transformationvalidation/transformationontology.
18 https://transformationvalidation.github.io/transformationontology/.

https://git.fpfis.eu/public-datateam/eprocurement
https://git.fpfis.eu/public-datateam/eprocurement
https://data.europa.eu/URI.html
https://www.itb.ec.europa.eu/shacl/any/upload
https://git.fpfis.eu/public-datateam/eprocurement/-/blob/develop/transform-validate-ontology.ttl
https://git.fpfis.eu/public-datateam/eprocurement/-/blob/develop/transform-validate-ontology.ttl
https://github.com/transformationvalidation/transformationontology
https://transformationvalidation.github.io/transformationontology/
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Abstract. Automatic knowledge graph (KG) construction is widely used in
industry for data integration and access, and there are several approaches to
enable (semi-)automatic construction of knowledge graphs. One important app-
roach is to map the raw data to a given knowledge graph schema, often a
domain ontology, and construct the entities and properties according to the ontol-
ogy. However, the existing approaches to construct knowledge graphs are not
always efficient enough and the resulting knowledge graphs are not sufficiently
application-oriented and user-friendly. The challenge arises from the trade-off:
the domain ontology should be knowledge-oriented, to reflect the general domain
knowledge rather than data particularities; while a knowledge graph schema
should be data-oriented, to cover all data features. If the former is directly used as
the knowledge graph schema, this can cause issues like blank nodes created due
to classes unmapped to data and deep knowledge graph structures. To this end,
we propose a system for ontology reshaping, which generates knowledge graph
schemata that fully cover the data while also covers domain knowledge well. We
evaluated our approach extensively with a user study and three real manufacturing
datasets from Bosch against four baselines, showing promising results.

Keywords: Semantic data integration · Knowledge graph · Ontology
reshaping · Graph algorithm · Automatic knowledge graph construction

1 Introduction

Knowledge graphs (KG) allow to structure information in terms of nodes and
edges [17]. The nodes represent entities of interests. The edges that connect entities
represent relationships between them. The edges that connect entities to their data val-
ues, represent the data properties of the entities. In the context of Industry 4.0 [26] and
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Internet of Things [20], knowledge graphs have been successfully used in a wide range
of applications and industrial sectors [18,37,38,41,52,59].

Due to the complexity and variety of industrial data (the typical example is rela-
tional tables [54]), it is very desired to facilitate automation of knowledge graph con-
struction [39]. A common approach on knowledge graph construction is to construct
entities and properties by relying on a given knowledge graph schema, often a domain
ontology (Fig. 1a). This approach matches the attributes names in raw data to enti-
ties and properties in knowledge graph, then organise them in the same pattern as the
schema [9,22,28]. However, the existing approaches to construct knowledge graphs
are not always efficient enough and the resulting knowledge graphs are not sufficiently
application-oriented and user-friendly. The challenge arises from the trade-off between
the knowledge-orientation and data-orientation: A classical domain ontology is a formal
specification of shared conceptualisation of knowledge [14,40]. It should be knowledge-
oriented, to reflect the experts knowledge on upper level concepts, specific domains, or
applications, rather than data particularities of arbitrary datasets [27]; while a knowl-
edge graph schema should be data-oriented, to cover all the features (columns in tables)
and have limited number of blank nodes. If a knowledge-oriented domain ontology is
directly used as the knowledge graph schema, this can cause a series of issues, e.g., the
data integrated with the help of domain ontologies suffers from a high load of blank
nodes in knowledge graphs that result from data integration, e.g., up to 90% of infor-
mation in the knowledge graph are blank nodes [16].

Indeed, sparse knowledge graphs are hard to digest for end-users: browsing them
is a bad experience, users will have to go through hordes of blank nodes. Then, blank
nodes affect application development. The applications should adapt to the structure
of the knowledge graph, e.g., by reflecting this structure in SPARQL queries, thus the
queries will have to handle and skip many bank nodes. Then, the bigger a knowledge
graph gets the mode difficult is to process or search in it. Thus, it is desired to reduce
the number of spurious blank nodes and to make knowledge graphs more compact.

Considering an example in Fig. 1c-d, where classes and data properties in the
domain ontology (Gdo) are mapped to tables and attributes in the relational schema
(R). There exist many discrepancies between Gdo and R. If Gdo is directly used as the
schema to construct knowledge graphs, a number of issues will arise: many classes in
Gdo that are not mapped to any tables or attributes in R will lead to blank nodes (or
dummy nodes); the attribute DP2 will be connected to a dummy class C6, instead of
C1, which it should be connected to, etc.

Past works like ontology modularisation, summarisation did not address the chal-
lenge, because they still use the domain ontology to construct knowledge graph. Our
previous work [60] could convert the domain ontology to data-oriented ontologies as
knowledge graph schemata, but did not provide interoperability between these knowl-
edge graphs and also did not fully exploit the knowledge in the domain ontology. A
better solution is to have data-oriented knowledge graph schemata while still preserve
knowledge in the domain ontology.
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Fig. 1. (a) Ontology-based knowledge graph construction without ontology reshaping generates
sparse knowledge graphs with many dummy nodes, which are generated based on classes in
the knowledge graph schema that do not have correspondence in the raw data; (b) knowledge
graph-construction with ontology reshaping that converts the general domain ontology to data-
specific knowledge graph schemata, which makes the knowledge graph more user-friendly. (c)
Domain ontology reflects the domain knowledge; (d) The knowledge graph schema needs to
reflect raw relational data schema specificities and usability. orange and red circles: classes that
can be mapped to attributes in the relational data schema; blue circles: classes that cannot be
found in the relational data schema. (Color figure online)

To this end, we propose our knowledge graph construction system that relies on the
OntoReshape+ algorithm to “reshape” a given domain ontology to data-oriented knowl-
edge graph schemata (Fig. 1b), better incorporates knowledge in the domain ontol-
ogy, and provide interoperability between the knowledge graphs based on the reshaped
knowledge graph schemata. Our contributions are as follows:

– We introduce a use case of knowledge graph generation for welding quality moni-
toring which shows the challenge of sparse knowledge graphs constructed from raw
data based on the domain ontology as the schema.

– We derive the four requirements: data coverage, knowledge coverage, user-
friendliness and efficiency, from the use case perspective, and mathematically
abstract them.

– We propose an algorithm, OntoReshape+, which can fully satisfy data coverage
while better incorporates knowledge from the domain ontology, compared to the
baselines.

– We implemented the algorithms in system of knowledge graph construction
enhanced by ontology reshaping, which can automatically reshape the domain ontol-
ogy to data-oriented ontologies that serve as knowledge graph schemata, and con-
struct the knowledge graph without dummy nodes.

– We evaluated our approach extensively with a user study and three real manufactur-
ing dataset from Bosch against four benchmarks, showing promising results.

This paper is organised as follows. Section 2 introduces Bosch manufacturing weld-
ing use case. Section 3 introduces some preliminary knowledge. Section 4 presents our
method. Section 5 evaluates the method. Section 6 discusses related work. Section 7
concludes the paper.
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Fig. 2. Schematic illustration of the (a) domain ontology (partial) and (b) an excerpt of knowledge
graph constructed by directly using the domain ontology as the knowledge graph schema, which
has many dummy nodes due to classes in (a) that are unmapped to the data.

2 The Bosch Welding Use Case

Resistance Spot Welding and Quality Monitoring. Resistance spot welding is a type
of automated welding process that accounts for millions of car production globally.
During the welding, the electrode presses the worksheets (car bodies) and passes a high
current through the electrodes and the worksheets [53,55]. The material in the small
area between the electrodes will melt due to the heat generated by electricity and then
congeal after cooling down, forming a welding spot that connects the worksheets by
controlling robot arm positioning [3,34]. Multiple quality indicators, e.g. the spot diam-
eter, are monitored to ensure the welding quality. The quality monitoring of resistance
spot welding is essential and involves large amounts of data collected from welding
process.

Bosch Welding Data with High Variety. Bosch welding data come from multiple
sources [44,57], e.g. welding production plants, welding laboratories, analytical or
numerical simulation models in Bosch’s research centres. Just taking the production
data as example, whose sources are hundreds of Bosch plants worldwide and many
Bosch’s renowned customers [47]. These data are highly diversified because they are
collected with various sensors settings, formats, databases, software versions, etc. that
are tailored to individual customer needs and factory specifications [51,58,61].

Data Integration, Domain Ontology and Knowledge Graph. Due to the many dis-
crepancies of data semantics and formats, data integration is essential for building user-
friendly, sustainable and efficient industrial solutions [45,56]. Bosch adopts semantic
data integration that relies on domain ontologies to transform various data into uniform
data formats, one typical example of which is knowledge graph for it provides an effi-
cient foundation for many applications. The welding domain ontology is usually gen-
erated by semantic experts or domain experts, and should reflect the general resistance
welding knowledge across different scenarios of production, laboratory and simulation
(Fig. 2). It is modelled in OWL 2 language and has a large number of axioms. One of
such example has 1181 axioms that describe 210 classes, 203 object properties, and 191
datatype properties. In contrast, the various welding datasets may have a much smaller
scope. For example, one production dataset only contains data generated by the welding
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control of a particular welding setting or a specific software version, and miss large data
that are measured in other settings, software versions, or in laboratory or simulation. On
the other hand, laboratory and simulation data enjoy the flexibility of sensor installation
that would be otherwise extremely costly to realise in the real production. Traditional
approaches that use a common domain ontology as the knowledge graph schema for
integrating various data will cause a series of issues, discussed in next section.

Fig. 3. (a) An example query to retrieve the current sensor measurement array, over knowledge
graph constructed based on the domain ontology. (b) The query that retrieves the same results
over knowledge graph constructed based on the reshaped ontology, which is much user-friendly
than that in (a).

Cumbersome KGs and Long Queries due to KG Schema. The knowledge graphs
integrated from various data sources with the same domain ontology as the knowl-
edge graph schema enjoys the data interoperability, namely uniform data access across
all datasets. However, it also has serious drawbacks. Considering the example knowl-
edge graph (Fig. 5b) generated with the schema in Fig. 5a, where the black blocks with
white background are dummy nodes, generated because classes in the domain ontol-
ogy is not mapped to anything in the data. The number of such dummy nodes are
very high, up to 63.6%. The dummy nodes cause the knowledge graph to be unnec-
essarily cumbersome, consuming much computational power in generation and stor-
age resource in the database. In addition, they also lead to superfluously long queries
(Fig. 3a) that need to traverse many dummy nodes during data accessing, which is nei-
ther technologically-friendly nor user-friendly. Moreover, our users also complain that
some knowledge graphs based on domain ontologies have disconnected sub-graphs that
cannot be reached with queries starting from the welding operation, which is the most
important node in the knowledge graphs that they usually start in the queries. They
prefer connected knowledge graphs schemata.

Requirements for the Ontology Reshaping System. Both from the system and user
view, it is highly desired to simplify the knowledge graph schemata to avoid the dummy
nodes while still cover all the data and reflect the domain knowledge, so that the knowl-
edge graphs become much more efficient and queries become simpler (Fig. 3b). We
thus derive the following requirements for the new knowledge graph schemata and for
the algorithm and system that generates the knowledge graph schemata and facilitates
knowledge graph construction:

– R1 Data Coverage. The knowledge graph schemata generated by system should still
cover all the data, e.g. including table names and attribute names for relational tables.
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– R2 Knowledge Coverage. The knowledge graph schemata should still possibly pre-
serve the knowledge encoded in the domain ontology. It should be similar to the
domain ontology, either judged by the users or with some metrics.

– R3 User-friendliness. The user-friendliness involves at least 3 aspects: R3.1, the
knowledge graphs constructed based on the new knowledge graph schemata should
possible have very few dummy nodes, ideally zero (we call this the succinctness of
the knowledge graph schemata or the knowledge graph); R3.2, the knowledge graphs
schemata should be connected, namely no disconnected sub-graphs, so that the users
can reach all nodes relevant to when they write queries (connectivity); R3.3, users
prefer simpler and shorter queries than long queries when they can retrieve the same
information. Thus, the constructed knowledge graphs should possibly have shal-
lower structure (simplicity). Apart from that, the system for generating knowledge
graph schemata and constructing knowledge graphs should also be user-friendly.
This is commonly known as system usability [19] in terms of human machine inter-
action. It is evaluated by effectiveness, user efficiency (note this is the efficiency of
users using the system, different from the R4 system efficiency), and user satisfac-
tion of the system.

– R4 System Efficiency. The system efficiency measures two aspects: time efficiency,
namely the overall time for generating the knowledge graph schemata and construct-
ing the knowledge graphs, and the space efficiency, the storage space needed for the
knowledge graphs to store the same information.

3 Preliminaries

Concepts and Problem Formulation.We formulate the problem of Ontology Reshap-
ing as problem of computing from a given ontology and some context, a new ontology
that fully satisfies the requirement R1 (Sect. 2) and achieves possibly good performance
in terms of R2-R4. In particular, in this work we focus on specific type of contexts that
can be formulated as follows:

Ontology Reshaping : (Gdo, R,Mdo, U) → Gro,Mro (1)

where Gdo is a given domain ontology, R is a relational schema of relational tables,
Mdo is a mapping between R and Gdo, U is optional user information, and Gro is the
“reshaped” ontology, Mro is a mapping between Gro and R– defined as follows:

An Ontology in the context of our work is a directed labelled multigraph G(N , E), e.g.,
projected1 from a set of OWL 2 axioms (e.g., the domain ontology Gdo and reshaped
ontology Gro) as follows: The classes are projected to class nodes NC , the datatypes to
datatype nodes ND, the object properties to object property edges EO, and the datatype
properties to datatype property edges ED.

A Relational Schema (R) is a finite set relational tables R = {T1(A), ...,Tn(A)}, where
Ti is a table name while A is a finite set of attributes A = {a1, ..., ak} represented by

1 Ontology projections typically do not preserve all information captured by ontologies, but they
are sufficient for our purpose of ontology reshaping.
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their attribute names aj . Among the attributes, there exist attributes called the primary
key Ap (each table only one) that uniquely identifies the rows, (optionally) foreign key
attributes Af refer to the primary keys of other tables, and normal attributes An that
contain normal data.

A Mapping (M ) is a bidirectional function that maps the elements in R to elements
in G. The Raw-to-DO Mapping (raw data to domain ontology mapping) Mdo maps
the table names T in R to class nodes NC in Gdo, normal attributes An to datatype
property edges ED, and foreign keys Af to object property edges EO, and vice versa.
Similarly, the generated Raw-to-RO Mapping (raw data to reshaped ontology mapping)
Mro maps the T, An, Af to NC , ED, EO in Gro. In this work, we assume the mapping
Mdo is one-to-one mapping that maps all elements in R to elements in Gdo.2 Similarly,
the generated Mro is also one-to-one mapping.

M : {T ↔ NC ,An ↔ ED,Af ↔ EO | T,An,Af ∈ R, NC , ED, EO ∈ G}.
The User Information (U ) can be understood as (1) a mandatory label that labels a node
in Gdo as the most important node for the users, named as the main node, nm; (2) an
extra set of mappings that map some normal attributes An in R to class nodes NC in
Gdo: U : {An ↔ NC | An ∈ R,NC ∈ Gdo}.
The Dummy Nodes N dummy are the nodes in the knowledge graph schema G (and the
knowledge graph constructed based on G) that cannot be mapped to any elements in R.

Mathematical Abstraction of Requirements. Following the requirements for the sys-
tem in Sect. 2, we derive their mathematical abstraction. The R1-R3 are designed in a
way that they range from 0 to 1. The closer to 1 they are, the better performance the
ontology reshaping algorithm has

– R1 Data Coverage, this is measured by the number of elements inRmapped to Gro:
– R2 Knowledge Coverage, Gro should preserve possible many nodes and edges in

Gdo, measured by the number of elements in Gdo kept in Gro. We use the formula to
transform this metric to a range between(0,1]: ( |{n}| + |{e}| ) / ( |N do| + |Edo| ),
where ∃ ndo ∈ N do, n ↔ ndo, ∃ edo ∈ Edo, e ↔ edo, n,e∈ Gro.

– R3 User-friendliness, calculated in 3 aspects:
• R3.1 Succinctness, measured by the percentage of non-dummy nodes divided
by the total number of nodes: |N dummy|/|N ro|,N dummy ⊂ N ro.

• R3.2 Connectivity, determined by the number of required extra edges e needed
to connect Gdo. We use the formula to transform this metric to a range between
(0,1]: 1/(1 + #e).

• R3.3 Simplicity, determined by the graph diameter d of Gro. We use the formula
to transform this metric to a range between (0,1]: 1/d.

– R4 Efficiency. The time efficiency is measured by the total time of ontology reshap-
ing and knowledge graph construction based on knowledge graph schema. The space
efficiency is measured by the storage space needed for the constructed knowledge
graph.

2 Note it is not the same case for the other way around: there normally exist many nodes or
edges in Gdo that cannot be mapped to any elements in R.
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Fig. 4. An architectural overview of our KG solution. KG: knowledge graph. KGS: KG schema.

4 Our Approach

4.1 Architectural Overview

We now walk through the readers through our ontology reshaping system (Fig. 4) The
system consists of four layers: (Non-KG) Data Layer, Semantic Layer, KG Data Layer,
and Application Layer. From the very left, the (Non-KG) Data Layer contains theWeld-
ing Raw Data. The Welding Raw Data are in the form of relational tables and also
have their corresponding Relational Schemata. The Semantic Layer contains several
semantic artefacts and semantic modules. TheOntoReshape+ module takes theDomain
Ontology Gdo, the Raw-to-DO Mapping Mdo (raw data to domain ontology), and the
Relational Schemata R (in addition, the user information U ) as inputs, and generates
a series of Reshaped Ontology Gro (KG Schemata at the same time) and their corre-
sponding Raw-to-RO Mappings Mro. These KG Schemata and Raw-to-RO Mappings
are then used by the KG Construction module to construct the Welding KGs from the
Welding Raw Data. And common Queries are selected by the users for welding quality
monitoring. The Welding KGs in the KG Data Layer then can be used for applications
like Query-Based Analytics and ML Analytics [59] in Application Layer.

4.2 Semantic Artefacts

Ontologies. The three different type of ontologies are domain ontology, relational
schema graph and KG schema.

Domain Ontology Gdo. The domain ontology models the general knowledge of resis-
tance welding spot manufacturing process (Fig. 2) and should cover all attributes in the
common Bosch datasets in our consideration. The domain ontology has the RSWOper-
ation as the most important class, where the RSWOperation is a welding operation that
produces an atomic product. The RSWOperation takes sheet components with speci-
fied combination in, choose the specific welding machine and outputs the welding sheet
combination with welding spots.
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Reshaped Ontology Gro. The reshaped ontology is similar to domain ontologies. Our
reshaped ontology are reshaped from the Domain Ontology Gdo by Algorithm 1. An
example is given by Fig. 5d. The reshaped ontologies are the simplified knowledge
graph schemata, and keep the necessary parts to cover the specified datasets, which
are then used as the schema of Welding knowledge graph.

Mapping. The system has two types of mappings: Raw-to-DOMappingMdo (raw data
to domain ontology) and the Raw-to-ROMappingMro (raw data to reshaped ontology).

Raw-to-DO Mapping Mdo is generated manually by users (welding experts). It should
map all tables and attributes in the data to the nodes or edges in the domain ontology.
Thus, each dataset has its own Mdo.

Raw-to-RO Mapping Mro is automatically generated by the ontology reshaping algo-
rithm, accompanying the reshaped ontology Gro. It is needed for every Gro since every
Gro will be used for data integration. Mro reuses most of the Mdo and should map all
tables and attributes in the raw data to the nodes and edges in Gro.

Fig. 5. (a) Schematic illustration of a small excerpt of the domain ontology Gdo. (b) Intermediate
results in OntoReshape+: Tree 1 T1 and (c) Tree 2 T2. (d) Reshaped ontology Gro. (e) knowledge
graph constructed based on (d).

Queries. The queries in our system are SPARQL queries with the backbone as Basic
Graph Pattern (BGP) query.

4.3 The Algorithm OntoReshape+

Intuition. The intuition behind our algorithm OntoReshape+ is to select subsets of
nodes and edges from a given domain ontology Gdo, which can be mapped to a rela-
tional schema R or included in the user information U , and then connect the selected
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Algorithm 1: Schema Reshaping

Input: Gdo, R,Mro, U
Output: Gro

1 T1, Edeleted
1 ← Graph2Tree(Gdo, U )

2 T2, Edeleted
2 , Mro ← TreeCollapse(T1, R, Mdo, U )

3 Gro ← T2 ∪ {e(nt, nh) | e(nt, nh) ∈ Edeleted
1 ∪ Edeleted

2 , nt ∈ T2, nh ∈ T2}

subsets with possibly more edges in Gdo, thus generating the reshaped ontology Gro.
More specifically, OntoReshape+ does so in three steps:

– Step 1, it transforms Gdo (Fig. 5.a) to a tree T1 (Fig. 5 b) by removing some edges,
where the tree has the main node nm given in U as the root;

– Step 2, it selects the subsets of nodes and edges of T1 that are mapped in R by Mdo

or pointed by the users, creating a T2 (Fig. 5 c);
– Step 3, some deleted edges in Step1 and Step 2 are added back to T2, where these

edges have both their head and tail in T2, resulting Gro (Fig. 5 d).

Step 1. Graph2Tree. With nm as the root node, Step 1 (Algorithm 2) expands the tree
T1 with nodes and edges selected from Gdo layer by layer, in a way that there exists
only one path between any node and nm. We first clarify several concepts used in the
step: N leaf refer to the set of leaf nodes of T1, N ring refers to the set of “ring nodes”
(nodes in a outer layer of the leaf nodes) that are potential to be added to T1, N visited

is the set of visited nodes, and Edeleted
1 is a set of the deleted edges. Then we introduce

the procedure. First, Algorithm 2 reads the user information to mark the main node nm,
and initialise T1, N leaf , N visited with nm, and the set Edeleted

1 with the empty set (Line
1). Next, if N leaf is not empty, Algorithm 2 does the following steps: it initialises an
empty set N ring (Line3), then it enumerates each node ni in the current N leaf (Line 4)
and create an empty set of ring nodes N ring

i that belong to ni. For each leaf node ni, it
enumerates the edges incidental to the node ni in Gdo, eu(ni, nj)3, but not in Edeleted

1 ,
and exams the other node nj that this edge is connected to. If nj is not visited (not
in N visited), then the node nj and the edge eu(ni, nj) are added to T1 (Line 8), nj is
added to N visited and a new ring set N ring

i that belongs to ni (Line 9–10), and . If nj is
already visited, the edge eu(ni, nj) is added to Edeleted

1 (Line 12). After all eu(ni, nj)
are enumerated, all elements in N ring

i are added to N ring (Line 13). After all ni are
numerated, the N ring becomes the new N leaf (Line 14).

Step 3. Tree collapse. Step 3 (in Algorithm 3) selects nodes in Grs, by user or rule,
and save them in N selected, then deletes the nodes not in N selected from T2 which
is copied by T1, at the same time keeps the connectivity of T2. It takes 4 inputs: the
tree T1, the relational schema R, raw data to domain ontology mapping Mdo, and user
information U . The algorithm firstly inisialised the ring node set N ring with main node
nm, T2 with T1, and deleted edge set Edeleted

2 forT2 with empty set (Line 1). Then the
algorithm selects the nodes in relational schema graph Grs, or with datatype property

3 Here we use eu(ni, nj) to represent both the edge e(ni, nj) and e(ni, nj).
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Algorithm 2: Graph2Tree

Input: Gdo, U
Output: T1, Edeleted

1

1 Initialisation: nm ←ReadUserInfo(U ); T1,N leaf ,N visited ← {nm}; Edeleted
1 ← {}

2 while N leaf �= ∅ do
3 N ring ← {}
4 foreach ni ∈ N leaf do
5 N ring

i ← {}
6 foreach eu(ni, nj) ∈ Gdo \ Edeleted

1 , nj ∈ Gdo do
7 if nj �∈ N visited then
8 T1 := T1 ∪ {nj , e

u(ni, nj)}
9 N visited := N visited ∪ {nj}

10 N ring
i := N ring

i ∪ {nj}
11 else
12 Edeleted

1 := Edeleted
1 ∪ {eu(ni, nj)}

13 N ring := N ring ∪ N ring
i

14 N leaf ← N ring

having”ID” or “Name”, or by user choices. These nodes are added into N selected (Line
2). IfN ring is not empty, the Algorithm 3 does the following steps: it inisialise an empty
set N ring

next , then it enumerate each node ni in the current N leaf (Line 4). For each leaf
node ni, it enumerates the edges incidental to the node ni in T1, eu(ni, nj). If nj is
not selected (not in N selected), then the node nj and edge eu(ni, nj) are deleted from
T2 and eu(ni, nj) is added to Edeleted

2 . If the edge eu(nj , nk) is in T1,then eu(nj , nk)
is deleted from T2, and a new edge eu(ni, nj) with same label of eu(nj , nk) is added
to T2. The eu(nj , nk) is added to N selected and the ni is added to N ring

next . If nj is in
N selected, nj is added to N ring

next . After all ni are enumerated, The N ring is added to
Nvisited, the N ring

next becomes the new N ring . After N ring is empty, items in Mdo, of
which exist in T2, are added inMro.

Step 4. Add edges back. The algorithm adds the edge back into T2, which is in Edeleted
1

or Edeleted
2 , and the endpoints are both in T2. The final tree is the reshaped ontology Gro.

4.4 Knowledge Graph Construction

The KG Construction module takes the reshaped ontology Gro, the Raw-to-RO Map-
ping Mro and the Welding Raw Data as inputs, and generates a series corresponding
Welding KG. We enumerate all class nodes in Gro. For each node and its datatype prop-
erty edges, we find the primary keys for node and attributes for the edge respectively
in the mapped tables and attributes in Welding Raw Data via Mro, and create an entity
for each key, and create datatype properties for each such edge. Next, we enumerate all
object property edges in Gro, find the mapped foreign keys in theWelding Raw Data via
Mro, and create links (object properties) between the entity represented by the primary
key and the entity represented by the foreign key. An small excerpt is shown in Fig. 5e,
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which shows the knowledge graphs constructed based on Gro as the schema has zero
dummy nodes.

5 Evaluation

This section includes a preliminary user study and a system evaluation that evaluate our
system from the user view and system view, respectively.

5.1 Preliminary User Study

Participants. We deployed our system with tasks and questionnaires on a Bosch envi-
ronment and received a number of results. The participants (Table 1) include Bosch
welding experts, engineers, welding, and production, and additionally software engi-
neers and data scientists. They need to input their age, occupation, education and skills
for semantic web, query, and welding, ranging from 0 (no knowledge), to 5 (experts).

Algorithm 3: TreeCollapse

Input: T1, R, Mdo, U
Output: T2, Edeleted

2 , Mro

1 Initialisation: N ring ← {nm}, T2 ← T1, Edeleted
2 ← {}

2 N selected ← GetNodes(R, Mdo) ∪ ReadUserInfo(U) ∪ IdentifyID(Grs)

3 while N ring �= ∅ do
4 N ring

next ← {}
5 foreach ni ∈ N ring do
6 foreach eu(ni, nj) ∈ T1 do
7 if nj �∈ N selected then
8 T2 := T2 \ {nj , e

u(ni, nj)}
9 Edeleted

2 := Edeleted
2 ∪ {eu(ni, nj)}

10 if eu(nj , nk) ∈ T1 then
11 T2 := T2 \ {eu(nj , nk)}
12 T2 := T2 ∪ {eu(ni, nk)}, where eu(ni, nk) adopts the label of

eu(nj , nk)
13 Edeleted := Edeleted ∪ {eu(nj , nk)}
14 N ring

next := N ring
next ∪ {ni}

15 else
16 N ring

next := N ring
next ∪ {nj}

17 N ring ← N ring
next

18 Mro ← MappingGeneration(T2,Mdo)

Tasks. We selected 7 tasks (Table 2) that should reach a balance between testing the
system and maintaining a controllable scope. The tasks include two types: Type 1, to
input user information for ontology reshaping and Type 2, to select one query from
four options (only one option is correct) to perform data inspection or diagnostics in
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Table 1. User profiles in the user study

# Age Occupation Education Sem. Web Query Welding skills

P1 28 R&D Engineer MSc 2 2 3

P2 29 R&D Engineer MSc 2 1 3

P3 29 Welding Engineer MSc 1 0 3

P4 41 Senior Welding Expert MSc 0 0 5

P5 45 Welding Engineer MSc 0 0 4

P6 25 Welding Engineer BSc 0 0 4

P7 42 Software Engineer BSc 3 2 2

P8 39 Production Engineer BSc 0 0 3

P9 23 Data Scientist MSc 2 2 2

P10 44 Data Scientist PhD 2 1 2

Table 2. Tasks and type in the user study

# Tasks Type

T1 Select “RSWOperation” as the main node Type 1

T2 Mark “SheetComponent1” as a table node Type 1

T3 Create a new table node “SheetCombination” Type 1

T4 Inspect operation curves on KGro Type 2

T5 Inspect operation curves on KGdo Type 2

T6 Detect abnormal welding operations KGro Type 2

T7 Detect abnormal welding operations KGdo Type 2
Fig. 6. Time/correctness for tasks

the knowledge graph (KGro) with the reshaped knowledge graph schema and in the
knowledge graph (KGdo) with the domain ontology as the schema. Type 1 measure the
usability of using our ontology reshaping system, and Type 2 compares users’ percep-
tion of querying knowledge graphs with and without the ontology reshaping. Specifi-
cally, Type 1 has three tasks: T1, select the main node; T2, mark an attribute to table
node in R; T3, create a new table node in R. Type 2 has four tasks: T4, select a query
to inspect operation curves in KGro; T5, do the same on T4 in the KGdo; T6, select a
query to detect abnormal welding operations (exceeding tolerance limit) in the KGro;
T7, do the same on T6 in the KGdo.

Workflow of the User Study. For the user study, we first give the participants a short
introduction with background knowledge, including basics of semantic technology like
ontology, knowledge graph construction, and SPARQL query. Then, we explain them
some relevant concepts of welding and the welding data (some users are not welding
experts), present them visualisation of resistance welding domain ontology (Fig. 5).
Then, we introduce them our tasks and how to use our GUI system. This introduction
text is shown later constantly during the tasks. After that, the participants use the GUI
system to perform the tasks. We record the time they use for each task, and the results
of their actions stored in json. At the end, they answer a questionnaire (Table 3) with 12
questions that represent dimensions of their satisfaction about the system.
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Results and Discussion. The results reflect the system usability (R3) [19] in efficiency
(time used for tasks), effectiveness (correctness of user actions), and satisfaction. The
recorded time (Fig. 6) show that the users need very limited time (average 28.0s) to
perform the tasks, and thus the system is efficient. We compared the user results with
a list of recommended results (we designed the tasks in a way so that the comparison
is possible) and calculate the correctness. The results show (Fig. 6) that the correctness
is always very high (average 82.1%) for the ontology reshaping tasks (Type 1) and for
the query on theKGro (Type 2). The results also show that the correctness of selecting
queries on KGro is higher than that on KGdo (T4>T5, T6>T7), which demonstrates
the benefit of our ontology reshaping system.

The questionnaires (Table 3) subjectively evaluate the users’ satisfaction about our
system in four requirements (Sect. 2). From the aggregated scores, it can be seen that
the users unanimously agree that our ontology reshaping system has good data coverage
(R1); The knowledge coverage (R2) is scored 3.8, relatively good but has improvement
room; The user-friendliness (R3) that covers connectivity, succinctness, simplicity and
usability is also evaluated relatively high; The users are also quite satisfied with the
system efficiency in terms of saving time and space (R4).

5.2 System Evaluation with Bosch Welding Dataset

We evaluated our system with OntoReshape+ on 3 industrial datasets. In addition to
baseline of using Gdo as knowledge graph schema, we also compare with other 3 base-
lines.

Data Description. We now describe the datasets, including 3 industrial datasets D for
knowledge graph construction and four inputs for ontology reshaping: 1 domain ontol-
ogy Gdo, 3 relational schema R, 3 data to domain mappings M , and user information
U .

Table 3. Questionnaires and scores for subjective evaluation. The scores range from 1 (disagree),
2 (fairly disagree), 3 (neutral), 4 (fairly agree), to 5 (agree). The column Score is aggregated by
reversing the scores of negative questions (Q2, 4, 6, 8, 10, 12) and then computing the average
(avg.) and standard deviation (std.) (avg.±std.)

# Questions Dimension Score

Q1 I’m in general satisfied that KGro cover the data that I need. Data coverage 4.31 ± 0.87

Q2 I found KGro miss some welding parameters that I need.

Q3 I felt the knowledge represented by KGro is reasonable. Knowledge coverage 4.63 ± 0.32

Q4 I thought KGro differs much from my understanding of welding.

Q5 I like that inKGro all data can be reached from the main node. User-friendliness 4.23 ± 0.71

Q6 I do not think that the queries over KGro become simpler.

Q7 I found that it is great that KGro contains no dummy nodes.

Q8 I hardly found KGro became simpler compared to KGdo.

Q9 I found very confident using the system

Q10 I needed to learn many things before I could use the system.

Q11 I like that KGro saves storage space. System efficiency 4.46 ± 0.33

Q12 I find it unnecessary the small amount of time saved by KGro.
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Fig. 7. Evaluation of space efficiency with storage taken by the constructed knowledge graph
(a) and consumed time (b). The figure exemplifies the results obtained on D1 since the results
obtained onD2 and D3 are very similar.

Industrial Datasets D. Two production datasets D1 and D2 are collected from produc-
tion lines in a factory of resistance spot welding in Germany. The third dataset D3 is
collected from a laboratory for welding research in Germany. After some processing
they are transformed into relational tables. D1 and D2 contain 4 types of tables: they
are the welding operation table, welding setting table, operation curve tables and refer-
ence curve tables.D1 has 121 attributes andD2 has 147 attributes.D3 contains 5 types
of tables: similar 4 types of tables as inD1 andD2 and an extra table of control param-
eter setting. D3 has 160 attributes. For the evaluation purpose and a fair comparison,
we select 1000 welding operations from each dataset.

Domain Ontology Grsw. The domain ontology models general knowledge of resistance
spot welding. It is projected to a graph Grsw with 210 class nodes and 191 datatype
nodes, and 203 edges for object properties and 191 edges for datatype properties.

Relational Schema Rand Mappings M . The 3 relational schemata are information of
table names and attribute names stored in csv. They are extracted from the three datasets
D1, D2, and D3. The 3 mappings map the table names and attribute names in the rela-
tional schemata to the domain ontology Grsw. These two help to generate the relational
graphs Grs.
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Table 4. The data coverage of all methods is 100%, and thus not displayed in the table. B: base-
line.

Dataset Evaluation metrics Baseline methods/Ontology reshape methods

B1: Gdo B2:
Gmd

B3: Grs B4:
OntoRe-
shape

OntoReshape+

Production1 (D1) Knowledge coverage 1.00 0.36 0.21 0.42 0.74

User-friendliness Succinctness 0.38 0.46 1.00 1.00 1.00

Connectivity 1.00 0.50 1.00 1.00 1.00

Simplicity 0.13 0.17 0.33 0.33 0.33

Production2 (D2) Knowledge coverage 1.00 0.42 0.25 0.42 0.61

User-friendliness Succinctness 0.45 0.57 1.00 1.00 1.00

Connectivity 1.00 0.50 1.00 1.00 1.00

Simplicity 0.13 0.14 0.33 0.33 0.33

Lab data (D3) Knowledge coverage 1.00 0.45 0.27 0.42 0.81

User-friendliness Succinctness 0.51 0.59 1.00 1.00 1.00

Connectivity 1.00 0.50 0.60 1.00 1.00

Simplicity 0.13 0.17 0.33 0.33 0.33

Baselines. We compare the OntoReshape+ algorithm with the traditional approach
(Baseline 1, B1) that directly uses the domain ontology Gdo as the schema for knowl-
edge graph construction, in terms of the four requirements and 7 performance metrics
(Sect. 3). In addition, we also compare with three other state-of-the-art baselines: Base-
line 2 (B2) adopts an established ontology modularisation method [13,23] and uses the
graph Gmd projected from the modular ontology as the knowledge graph schema, which
is computed with a signature of all table and attribute names in R; Baseline 3 (B3) uses
the relational graph Grs as the knowledge graph schema, which is trivially transformed
from the relational schemaR and the mappingMdo; Baseline 4 (B4) is a previous work
of ontology reshaping [60].

Results and Discussion. We now discuss the performance of OntoReshape+ in terms
of the 4 requirements. We show the results evaluated in Table 4 and Fig. 7. We first look
at D1. It can be seen from Fig. 7a that our OntoReshape+ outperforms the RawData,
B1, B2 significantly in terms of the storage space (system efficiency R4), fairly better
than B4, and slightly worse but comparable to B3. In terms of time efficiency (Fig. 7b),
OntoReshape+ significantly outperforms B1 and B2, while achieving comparable per-
formance with respect to B3, B4.

All approaches have 100% data coverage (R1). Thus it is not displayed in the
table. In terms of knowledge coverage (R2), it can be seem that OntoReshape+ outper-
forms B2-B4 significantly, which means OntoReshape+ keep the most knowledge of the
domain ontology. It of course cannot beat B1 because B1 directly uses Gdo as the knowl-
edge graph schema, but B1 suffers substantially in terms of the later two metrics. The
user-friendliness (R3) is decomposed to three metrics. OntoReshape+ outperforms B1
and B2, and is equally good as B3 and B4 concerning succinctness. In respect to connec-
tivity B3 is the worst and the others are equally good. As to simplicity, OntoReshape+

outperforms B1, B2 and B4 and is equally good as B3. Thus, OntoReshape+ either beats
the baselines or is equally good as some. Regarding efficiency (R4), OntoReshape+
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saves time and space for knowledge graph generation when compared to B1, B2, and is
comparable to B3 and B4. When looking at D2 and D3, it can be seem that the results
are quite consistent across the datasets.

In summary, baselines B1, B2, B3 all are too focused either on knowledge cov-
erage or data coverage. B4 and OntoReshape+ are a balance between them, but
OntoReshape+ outperforms B4 in knowledge coverage and is comparable in other
requirements.

6 Related Work

Knowledge graphs provide semantically structured information that can be interpreted
by computing machines [49,62] and are widely used in industries [11,18,37,50].
The methods for knowledge graph construction have also been studied in many
works [12,21,33], with focus on the rule-based approach [15], the combination of rule-
based and similarity-based approach [29], the connection of data silos methods [18].
RDF lifting and lowering [2]. Commercial tools like OpenRefine [46] and OntoRe-
fine [10] can transfer XML or tabular data to knowledge graphs or generate RML [1]
and SPARQL [32]. Yet, they do not provide docking interface to our MLMapping Rea-
soner/Annotator that reasons over domain ontologies, mappings and ML ontology.

The problem of transforming a bigger ontology to a smaller ontology of the same
domain is often referred to as ontology modularisation [4–7,31] and ontology sum-
marisation [35,36,48]. Most of them focus on the problem of selecting a subset of the
ontology that is interesting for the users [30], but they still cannot avoid dummy enti-
ties. Works on ontology reengineering [42,43] also talked about reuse/adjustment of
ontologies, they do not focus on the challenge of creating an ontology that reflect data
specificities.

Previous work on ontology evolution [13] did not focus on the data coverage
requirement. Our previous work on ontology reshaping [60] insufficiently address
the knowledge coverage. Works on ontology bootstrapping [8,24,25] attempt to
align ontologies with relational data schemata by automatically computing mappings
between the ontologies and the data schemata, but the ontologies in these work only
serve as a vocabulary for computing the mapping and new ontologies. Not much infor-
mation from the original ontologies are retained.

In summary, past works insufficiently addressed the requirements R1-R4. Thus, we
propose our work that can better address them overall.

7 Conclusion and Outlook

This work addresses the challenge of sparse knowledge graphs with many dummy
nodes when domain ontologies that reflect general knowledge are directly used as the
knowledge graph schemata. To this end, we proposed the ontology reshaping system
and the algorithm OntoReshape+. We evaluated the approach with a user study and a
system evaluation in terms of four requirements, which shows promising results.

Our system is currently deployed in our Bosch evaluation environment, and we
are considering to push it further into a more advanced and strict evaluation phase of
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production that runs in real-time. To show the benefits, we also plan to demonstrate our
knowledge graph solution with more users and more use cases. In the future, we plan
to study the compatibility between domain ontologies and knowledge graph schemata,
i.e. to ensure that the semantics of the domain is respected in the smaller ontology.
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Abstract. Data analysis including ML are essential to extract insights from pro-
duction data in modern industries. However, industrial ML is affected by: the low
transparency of ML towards non-ML experts; poor and non-unified descriptions
of ML practices for reviewing or comprehension; ad hoc fashion of ML solutions
tailored to specific applications, which affects their re-usability. To address these
challenges, we propose the concept and a system of executable Knowledge Graph
(KG). It relies on semantic technologies to formally encode ML knowledge and
solutions in KGs, which can be translated to executable scripts in a reusable and
modularised fashion. In addition, the executable KGs also serve as common lan-
guage between ML experts and non-ML experts, and facilitate their communica-
tion. We evaluated our system extensively with an impactful industrial use case at
Bosch, including a user study, workshops and scalability evaluation. The evalua-
tion demonstrates the system offers a user-friendly way for even non-ML experts
to discuss, customise, and reuse ML methods.

Keywords: Knowledge graph · Machine learning · Data analytics · Industrial
application · Welding monitoring

1 Introduction

Data analysis technologies play an important role in modern manufacturing industries.
Examples include production monitoring, fault detection, root cause analysis, as well
as robot positioning [1–3]. Among these technologies, machine learning attracts sub-
stantial yet increasing attention, for its strong modelling capability without the need
of explicit programming [4] and the voluminous data that become available due to the
introduction of internet of things into manufacturing [5]. Take the welding monitoring
at Bosch as an example (Fig. 1a), which is an impactful automated manufacturing pro-
cess that accounts for the global production of millions of cars every year. In welding
monitoring, massive heterogeneous data from many sources need to be analysed for
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Fig. 1. Three of the activities of machine learning practice for (a) welding quality monitoring:
visual analytics (b), statistical analytics (c), machine learning analytics (d). It faces three chal-
lenges: (C1) transparency of machine learning; (C2) standardised description; (C3) reusability.

various applications to solve different questions, e.g., to estimate or predict numerical
quality indicators that are essential for ensuring high quality car production. Traditional
quality monitoring approaches often require tearing the welded car bodies apart in ran-
dom samples and measuring the diameter of the welded parts connection point, which
is extremely costly. In contrast, data-driven methods like machine learning will help
reduce the waste and contribute to more economical manufacturing industry [6]. Three
important activities of machine learning practice at Bosch (Fig. 1b–d) include visual,
statistical analytics (these two are often known as exploratory data analysis and seen
as important preceding steps for machine learning analytics [7]), and machine learning
analytics based on algorithms such as neural networks.

However, there exist still challenges of machine learning practice (Fig. 1) in modern
industry, which often involve an interdisciplinary team of experts with distinct back-
ground. The transparency of machine learning (C1) to non-machine learning experts is
usually challenging, since the latter often specialise in their domain knowledge and did
not receive excessive training of machine learning that is often required to understand
the sophisticated machine learning methods and interpret the machine learning results.
The non-machine learning experts need to understand machine learning and trust that
machine learning applied in manufacturing robots operating with high electricity can
ensure product quality and personnel safety [8]. In addition, in traditional machine
learning projects, the machine learning procedures, methods, scripts, and decisions are
described in the technical language of machine learning, which is highly dependent
on the person who writes the document. Machine learning knowledge and solutions are
hardly described or documented in a standardised way (C2), causing difficulties for later
review and retrospective comprehension of the projects in big companies like Bosch,
which have strict regulations in reporting the details for later audit and analysis. More-
over, ML solutions are often developed in an ad hoc fashion and tailored to specific
applications, which complicates its reusability (C3) for new data or questions.

To address these challenges, we propose to combine semantic technologies and
machine learning, to encode machine learning solutions in knowledge graphs in a smart
way, so that the knowledge graphs help in describing machine learning knowledge and
solutions in a standardised and transparent way via GUI-based system and knowledge
graphs visualisation. We name our approach as executable knowledge graphs, because
our knowledge graphs can be translated to modularised executable machine learning
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scripts that can be modified and reused for new questions. In particular, our contribu-
tions are as follows:

– We introduce the concept and a basic framework of executable knowledge graph,
that represents the machine learning solutions for solving machine learning ques-
tions. The executable knowledge graphs can be translated into modularised exe-
cutable scripts and are highly reusable.

– We present a use case of Bosch welding monitoring with machine learning, and
derive the requirements for executable knowledge graph system.

– We propose a system of executable knowledge graphs. The system has five layers,
including the layer of semantic artefacts that serve as the schemata of the knowledge
graphs, the of layer semantic modules which construct the knowledge graphs in a
semi-automatic fashion based on GUI, knowledge graph data layer that stores the
knowledge graphs, application layer that covers visual analytics, statistical analytics
and ML analytics, and the (non-knowledge graph) data layer.

– We evaluate our system of executable knowledge graphs extensively: in an user
study that verifies whether our system really help in improve the transparency,
reusability, etc.; and a system evaluation that verifies the scalability of our approach.

The paper is organised as follows: Sect. 2 explains the use case of Bosch Welding
Monitoring, Sect. 4 introduces our framework for executable knowledge graphs, Sect. 5
describes the executable knowledge graph system, Sect. 6 demonstrates the evaluation,
Sect. 3 discusses some related work, Sect. 7 presents the conclusion.

2 Use Case: Bosch Welding Monitoring

Resistance SpotWelding and QualityMonitoring. Resistance Spot Welding is a type
of fully automated and impactful manufacturing process widely applied in automotive
industry [9], accounting for the production of millions of cars globally every year. We
illustrate RSW with Fig. 1a, in which the two electrode caps of the welding gun press
two or three metal worksheets between the electrodes with force, and pass a high electric
current flow through the worksheets. A huge amount of heat is generated due to resis-
tance. The material in a small area between the electrodes will melt, and form a welding
nugget connecting the worksheets, known as the welding spot. The quality of welding
operations is typically quantified by quality indicators like spot diameters, as prescribed
in international and German standards [10,11]. To obtain the spot diameters precisely,
the common practice is to tear the welded car body apart and measure them [11], which
destroys the welded cars and is extremely expensive. Now Bosch is developing machine
learning-based methods to reduce the need of destroyed car bodies and thus reducing
waste, aiming at more economical and sustainable manufacturing [12].

Machine Learning Development: Interdisciplinary, Documented, Reusable.
Machine learning projects at Bosch involve experts of distinct backgrounds [13,14]:
e.g., welding experts know the domain knowledge of the process and the questions
that need to be solved, measurement experts know the data particularities like sensor
setting, data scientists (typically machine learning experts) know the machine learn-
ing technology to solve the question, managers need to prioritise the activities accord-
ing to available resource the strategic interest of the companies. They work together



794 Z. Zheng et al.

for machine learning development yet speak different language. Their communication
requires the transparency of machine learning practice (knowledge, solution, options,
etc.), so that the non-machine learning experts can understand machine learning and
trust that machine learning applied in heavy robots that operate with high electricity
can ensure product quality and personnel safety [15,16]. In addition, Bosch has strict
regulations on documenting and reporting machine learning projects for later review or
audit. Thus, the process of machine learning development, and the developed machine
learning solutions, knowledge, and insights need to be documented properly by the
experts. Moreover, Bosch has many data sources, similar manufacturing processes.
Alone the resistance spot welding has data sources of at least 4 locations and 3 cus-
tomers, while Bosch has other similar welding processes like hot-staking, ultrasonic
welding, etc. Thus the reusability of machine learning solutions is highly desired so
that they can be transferred to similar data or machine learning questions.

Visual Analytics, Statistical Analytics, and ML Analytics. Here we discuss three
important ML activities at Bosch. We refer visual analytics to the visualisation of data
in various plots [17], e.g., line plot, scatter plot, bar plot, heat map. It helps the experts
to gain an intuitive understanding of the data, detect potential interest data subset, and
visualise machine learning results. We discuss statistical analytics as using a broad
range of statistical methods for generating insights from data [18], such as calculation of
mean, median, standard deviation, sliding window filter, outlier detection, etc. machine
learning analytics is understood [19] as relying on two schools of machine learning
approaches, feature engineering and deep learning, to train machine learning models
and make machine learning inference, e.g., classification, regression.

Requirements for Executable Knowledge Graph System. We derive the require-
ments for the proposed system and the executable knowledge graphs in the system as
follows:

– R1 Transparency. Our system should provide standardised description of machine
learning knowledge and solutions and make them easier to understand for the non-
machine learning experts. It is essential for big manufacturing companies like Bosch
since machine learning can only be trusted when they are understood for manufac-
turing industries with high standards of quality and safety regulations.

– R2 Usability. The system should be easy to use, in three aspects [20]: effectiveness
– users can use the system correctly; efficiency – users can use the system fast;
satisfaction – users are satisifed with the system.

– R3 Executability. The executable knowledge graphs in the system should be able to
be translated to scripts that are executable, namely not having bugs.

– R4 Coverage. The executable knowledge graphs should be able to represent most
solutions of visual analytics, statistical analytics, and ML analytics.

– R5 Reusability and Modularity. The system and the executable knowledge graphs
should support users to reuse developed solutions for similar data or questions by
e.g., slightly modifying existing solutions or reusing modules of the solutions.

– R6 Scalability. The scripts translated from the executable knowledge graphs should
not consume excessive time and thus be scalable for large-scale deployment.
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3 Related Work

In recent years, researchers have begun to use graph structures and knowledge graphs
to represent codes and the relationships between them in programming languages.
They both treat code artefacts, which containing classes, methods, variables, as nodes,
use their predefined relationships as edges [21,22], and use them to complete down-
stream tasks like defect prediction [23] and query-based analytics [24]. However, these
approaches only consider the connections and semantic relationships between codes
and insufficiently discuss the more complex graph form, knowledge graphs, which pro-
vide more expressivity, e.g., treat the information flow of data between codes as edges
and define semantic constraints. Many knowledge graphs were discussed in the litera-
ture, e.g., Freebase [25], DBpedia [26]. Specialised knowledge graphs have been used in
areas, e.g., e-commerce [27], procurement [28,29], and healthcare [30]. KGs are gain-
ing popularity in the industries [31–33], but few works were dedicated into describing
machine learning practice in industries.

Fig. 2. Framework of executable knowledge graph

4 Executable Knowledge Graphs Framework

In this section we introduce the framework for executable knowledge graph that repre-
sents the ML solutions (pipelines) for solving machine learning questions. The frame-
work supports the executable knowledge graph to be translated to executable scripts
and modularised, thus the system based on executable knowledge graph can fulfil the
requirements of Executability and Reusability and Modularity.

We first define data, methods and tasks in this framework. Data D is a set of items
of information, it can be in forms such as numerals, diagrams or strings organised in
different structures such as tables. A Method F is a function in form of language-
dependent script. A method takes some data which fulfils certain constraints as input
and can output specific data. Formally, Dout = F(Din). A Task T is the process of
invoking a method by feeding it with some data that meets certain constraints, and
obtaining some other data. Formally, T 〈Din, F〉 = F(Din) = Dout.

Some tasks have methods which are unified, while other more complex tasks can not
solved by invoking a single integrated method while can be unfolded into a sequence
of tasks where each task is a part of the complex one. We refer the complex tasks as
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data pipelines Tp. Formally, a pipeline Tp with input data Din to get Dout, expressed as
Tp〈Din, F〉 = Dout can be unfolded in the sequence {T1, T2, ..., Tn}. Formally:

T1〈Din1 , F1〉 = Dout1 ,Din1 ∈ Din, ...Tn〈Dinn
, Fn〉 = Doutn ,

Dinn
∈

⋃̇
i∈{1,2...n−1}Douti ∪ Din,−→ Dout ∈

⋃̇
i∈{1,2,...,n}Douti .

Based on the above definitions, we determine the framework for the executable
knowledge graphs as the left part of Fig. 2, such executable knowledge graph should
take the form as the right part of Fig. 2. Here we split the properties from the data D,
which strictly speaking also belong to D, but correspond to the properties rather than
objects of a Task. Except those Tasks with their Methods already been integrated
in script, all other Tasks can be modularised in a Pipeline and be unfolded into a
sequence of Tasks. The objectProperty :hasFirstTask connects the Pipeline with the
first task in its unfolded sequence, while :hasNextTask connects the task in the sequence
with its following task. In this framework, as long as theData and Properties of every
Task fulfil the constraints of theMethod in the Task, the Task is executable. If every
Task in a Pipeline is executable, the Pipeline is executable. In addition, as a Task,
the Pipeline can also be a part of another Task, which represents the modularity of
the executable knowledge graph.

Fig. 3. An architectural overview of our knowledge graph solution

5 Our Executable Knowledge Graph Based ML System

5.1 Architectural Overview

We now give an architectural overview of our system. Our system consists of five lay-
ers (Fig. 3). These layers are (from bottom to top): (non-knowledge graph) data layer,



Executable KG for ML: A Bosch Case of Welding Monitoring 797

application layer, knowledge graph database layer, semantic modules layer, and seman-
tic artefacts layer. From the bottom left, we start with the welding raw data collected
from production lines. These data are transformed by the Data Integration module (with
the help of domain ontologies) to Welding-machine learning knowledge graphs, which
is a type of welding data knowledge graph with some machine learning annotation [34].
These knowledge graphs are used by four types of analytics applications in the applica-
tion layer.

The domain ontologies include various welding ontologies, e.g., resistance spot
welding ontology, hot-staking ontology. These ontologies are created based on the
upper domain ontology [2], the manufacturing ontology. The manufacturing ontology
is semantically connected with an upper task ontology, the data science ontology (Ods),
in a way that the datatype properties in the former one are annotated by some classes in
the latter one. A series of task ontologies (Fig. 4), including the visualisation ontology
(Ovisu), the statistical ontology (Ostats), and ML ontology (Oml), are created based
on the Ods. These task ontologies serve as the schemata for the Executable knowl-
edge graph Construction module, which encodes the executable data pipelines in the
executable knowledge graphs, including the visualisation knowledge graph, statisti-
cal knowledge graph, and ML pipeline knowledge graph. These executable knowledge
graphs then can be translated by the Executable knowledge graph Translator module to
executable scripts for three analytics applications: Visual Analytics, Statistic Analytics,
and ML Analytics, which generate the corresponding results.

Fig. 4. Task Ontologies for the executable KG

5.2 Semantic Artefacts

We now introduce our ontologies some of which are in Fig. 4.

Upper Domain Ontology and Domain Ontologies. The upper domain ontology, the
manufacturing ontology, consists of 1170 axioms containing 95 classes, 70 object prop-
erties and 122 datatype properties [9]. It is an OWL 2 ontology modelling the general
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knowledge of discrete manufacturing process, which refers to a broad range of manu-
facturing processes whose products are easily identifiable and countable, e.g., welding
spots, and differ greatly from continuous process manufacturing where the products are
undifferentiated, e.g. petrol. The ontology has the manufacturing operation as the most
important class, and has other classes to describe other concepts related to the operation,
e.g., the operations process resource, produce products and are performed by machines.
The domain ontologies describe several manufacturing domains at Bosch, e.g., resis-
tance spot welding ontology, hot-staking ontology [35]. These ontologies are created
by domain experts in such a way that all classes (properties) in the domain ontologies
are sub-classes (sub-properties) of that in upper domain ontologies.

Data Science Ontology. The upper task ontology is the data science ontology Ods

(OWL 2) created by Bosch data scientists, which formalise the general knowledge of
data science activities. It contains three most important classes (Fig. 4a):Data that is the
class of all data concepts (the existential being in data science), Method is the class of
all algorithms and functions (the way that data move), whose allowed input, output and
parameters are defined, and Task is the class of the scripts that invoke the functions,
which has an important sub-class, Pipeline that consists of a series of ordered tasks
(the way that the data movement is organised). The Data can have DataSemantics
that describe the meaning of data and DataStructure that prescribes the format (in the
form of datatype properties) of the data, e.g., a TimeSeries has the format Array . A
DataEntity is the class for a concrete dataset or a feature. In addition, there exist some
constraints, e.g., an Array must have XDimension greater than 1 and YDimension
smaller than 2.

Fig. 5. The executable KG for visualisation (a) and its results (b). It needs to be created in Visu-
Task1 in the user study (Sect. 6), which aims to visualise the ML learning results by plotting the
q-value arrays of target (ground-truth), and estimated q-value training and test.

Visualisation, Statistical, and Machine Learning Ontologies are the three task
ontologies created based onOds in such as way that all classes in the task ontologies are
sub-classes of that in Ods, and all properties in the task ontologies are sub-properties of
that in Ods. The visualisation ontology Ovisu describes most common visual analytics
methods, such as Lineplot , Scatterplot , etc., and theDataStructure that is allowed for
themethods, e.g., Lineplot allowsArrays as input. In addition,Ovisu also prescribes the
construction of a visualisation Pipeline, which should has the CanvasTask as the first
task, several PlotTask after that, and has DescriptionTask as the last task. Similarly,
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the statistic ontology Ostats (and the machine learning ontology Oml, resp.) describes
the most common statistical analytics (machine learning analytics, resp.) methods, their
allowedDataStructure, and the organisation of the tasks in Pipeline. In addition, some
rules determine explicitly the constraints between the input data of Task , e.g., the input
DataEntitys of theConcatenation task should have the same concatenation dimension.

Executable Knowledge Graphs. Based on the task ontologies, executable knowledge
graphs are constructed for visual, statistical and machine learning analytics, including
visualisation, statistical and Machine Learning Knowledge Graphs. All such knowl-
edge graphs are in the form of pipelines, which consist of a series of tasks. We illustrate
this with example knowledge graphs in Fig. 5, Fig. 6, and Fig. 7.

5.3 Executable KG Construction

In our system the executable KGs are constructed semi-automatically in three ways:
KG creation, KG modification and KG integration.

Executable Knowledge Graph Creation via GUI is common for relative easy ones
such as visualisation and statistical knowledge graphs. For ML pipeline knowledge
graphs, advanced users can also create knowledge graphs from the scratch, but most
users would prefer to modify or integrate existing ML pipeline knowledge graphs.

Fig. 6. The knowledge graph for (a) computing the outliers of the Q-Value array and (b) visu-
alising the Q-Value array and its the trend, scattering statistical analysis. (c) The visualisation
diagram of (b). (a) and (b) are used in VisuT2 and StatsT3 in Table 2, respectively.
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Visualisation Knowledge Graph (Fig. 5a). Once the user chooses to create a visualisa-
tion knowledge graph, by default the GUI will show a owl:NamedIndividual with the
label VisualPipeline (the user can change it), the CanvasTask and DescriptionTask .
Next the users will need to select the input data (commonly a csv file), and several
PlotTasks from available tasks based on Ovisu, between the CanvasTask and the
DescriptionTask . For each PlotTask , the input data, the method and some parameters
will mandatorily be given based onOvisu. After that, the visualisation knowledge graph
creation is finished.

Statistical Knowledge Graph (Fig. 6a). Once the user chooses to create a statistical
knowledge graph, by default the GUI will show a owl:NamedIndividual with the label
StatisticalPipeline, and the DictionaryTask , which wraps the output into a dictionary
(user can opt to delete it). Next the users will need to select the input data (commonly
a csv file), and StatisticalTasks from available tasks based on Ostats. For each Sta-
tisticalTask , the users need to select the input data, the method and some mandatory
parameters, based on Ostats. After the user configuration, constraints verification and
resolution, the statistical knowledge graph creation is finished.

Executable Knowledge Graph Modification. Another way to create an executable
knowledge graph is to modify existing knowledge graphs, which is common for all
three types of knowledge graphs, especially ML pipeline knowledge graphs.

Statistical Knowledge Graph (Fig. 7a–b). Once the user chooses to modify an existing
knowledge graph, first the user needs to load a knowledge graph from our knowledge
graph database. Now we load the statistical knowledge graph in Fig. 7a, which calcu-
lates mean, standard deviation (std.), minimum (min.), and maximum (max.) from an
array. We want to modify this knowledge graph to another knowledge graph that can
do z-score normalisation, which subtracts the mean from the array and then divides by
std., (arr − mean)/std.. To achieve this, the user only need to delete the two statis-
tical tasks, namely MinimumCalculation (Fig. 7 3) and MaximumCalculation (Fig. 7
4), then add another task NormalisationCalculation (Fig. 7 6) (which has Normali-
sationMethod , and select its input as the MeanValue and StandardDeviation. After
that, the system will suggestNormalisedData as the output of the taskNormalisation-
Calculation. The user then select NormalisedData as the final output of the pipeline
and change the label of the pipeline. Knowledge graph modification is done.

Machine Learning Knowledge Graph. (Fig. 7c) takes TimeSeries and SingleFea-
tures as input data, and does LRRegression to predict the Q-Value. The users can
simply change the input data, output data, and method of the pipeline, by changing the
named individuals, e.g., the users can delete TimeSeries if they do not have the sensor
curves in their data, because the sensor curves are costly to collect. The users can also
change the machine learning method (from LRRegression to MLP), the output data
(from Q-Value to spot diameter) and some hyper-parameters (MLT2 in Table 2).

Executable Knowledge Graph Integration. (Fig. 6), where a statistical pipeline that
does outlier detection can be integrated with a visualisation pipeline to visualise the
detection results. To do so, the users only need to select one output of Fig. 6a, the
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Fig. 7. (a) StatsExtractPipeline that extracts four statistics for a data array: mean, std., min.,
max. (b) DataNormalisePipeline that performs z-score normalisation for a data array. (c)
MLPipeline that takes time series and single features as inputs and relies on linear regression
(LRMethod). (a)(b)(c) are used in StatsT1, StatsT2,MLT1 in Table 2, respectively.

DataDictionary , Trend , and Scattering) as the inputs of the TrendVisualPipeline
in Fig. 6b. Another example is Fig. 7c, which is the result of reusing/integrating the
StatsExtractPipeine (Fig. 71) in Fig. 7a and DataNormalisationPipeline in Fig. 7b.

5.4 Executable Knowledge Graph Translation

The translation of executable knowledge graphs is language-dependent. Here we use
Python as the language for discussion. Each individual of Method is a Python func-
tion script, whose mandatory inputs/outputs and parameters are clearly defined. Each
executable knowledge graph is in the form of a Pipeline, which consists of a series
of Tasks of sequential or parallel structures connected with hasNextTask . Thus, the
translation of an executable knowledge graph invokes the Python function scripts with
the inputs/outputs and parameters given by DataEntity and datatype properties of
knowledge graphs, according to the order defined by hasNextTask .
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6 Evaluation

6.1 User Study: Transparency and Usability

Design of the User Study. We invited 28 experts in backgrounds of machine learning
experts, welding experts, sensor engineers, etc. to attend the user study. For the user
study, we first give a short introduction of our system, then the participants will perform
a series of tasks related to visual, statistical and machine learning analytics, and finally
they will answer questionnaires to record their subjective evaluation. For the tasks,
to avoid user bias, we divided the participants into two groups, who will follow the
schedule in Table 1. To contrast the situation of doing analytic tasks without and with
our system, we designed the workflow as follows: Each group, including 2 machine
learning experts and 12 non-machine learning experts, will first perform an analytic task
without our system (T1), e.g. VisuT1 for Group A, and answer several single selection
questions (SSQ) to test the understanding of the non-machine learning experts about
the task (T2). We have designed 5–7 SSQs for each task, and there are 18 SSQs in total
(Table 3). Then, they will do a similar task with our system (T3) and answer the SSQs
(T4). Finally, they will revisit the previous task (T1) with our system. The same process
repeat for the StatsT (T6–T10) and MLT (T12–T16). In addition, we design T11, T17
and T18 to test whether our system can realise the modularised reuse of executable
knowledge graphs.

Tasks and Metrics. We list the tasks, their content and their knowledge graph visu-
alisation in Table 2. For each task, the machine learning experts will explain the non-
machine learning experts the tasks. In the case of “without our system” (T1, 6, 12), the
experts communicate with technical language, and the non-machine learning experts
will need to perform the tasks. Due to time limit, it is infeasible to do coding during
the user study. The non-machine learning experts will answer whether they can finish
the tasks with their programming an machine learning knowledge, and estimate the
needed time for that. Thus, we will have two metrics: complete percentage and time.
In addition, we compare the answers of SSQs with the correct answers and record the
correctness (T2, 7, 13). In case of “with our system” (T3, 5, 8, 10, 11, 14, 16–18), the
experts communicate using our system and the non-machine learning experts will need
to perform the tasks. They do so by creating, modifying or merging knowledge graphs
via a GUI. We record their actions and needed time for each task, and compare their
action with a ground truth (we designed the task and GUI to make such comparison
possible) to measure the correctness. Some users cannot finish the task, and thus we
also recorded the complete percentage. In addition, we compare the answers of SSQs
with the correct answers and record the correctness (T4, 9, 15).

Results and Discussion. We first look at results of using our system (Fig. 8a–c). It can
be seen that most users have a high complete percentage (above 90%) using the system.
When they complete the tasks, their correctness is also very high, about 80% (effective-
ness, R2), even for the complex tasks T17 and T18. In addition, they usually do not need
much time for each task, in average only 227.3 s, about 4min (user efficiency, R2). Then
we compare the correctness of SSQs without and with our system (Fig. 8d), which also
show that the non-experts can gain better understanding of the three machine learning
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Table 1. Workflow of the tasks in the user study.

# Group A Group B Method

T1 VisuT1 VisuT2 Without our system

T2 VisuT1 SSQ VisuT2 SSQ –

T3 VisuT2 VisuT1 With our system: create KG

T4 VisuT2 SSQ VisuT1 SSQ –

T5 VisuT1 VisuT2 With our system: modify KG

T6 StatsT1 StatsT2 Without our system

T7 StatsT1 SSQ StatsT2 SSQ –

T8 StatsT2 StatsT1 With our system: create KG

T9 StatsT2 SSQ StatsT1 SSQ –

T10 StatsT1 StatsT2 With our system: modify KG

T11 StatsT3 StatsT3 With our system: modify KG

T12 MLT1 MLT2 Without our system

T13 MLT1 SSQ MLT2 SSQ –

T14 MLT2 MLT1 With our system: modify KG

T15 MLT2 SSQ MLT1 SSQ –

T16 MLT1 MLT2 With our system: modify KG

T17 ComplexTask1 ComplexTask1 With our system: merge KG

T18 ComplexTask2 ComplexTask2 With our system: merge KG

Table 2. Tasks and their content

Tasks Content KG

VisuT1 Visualise machine learning results with three line plots: target, estimated
training, estimated test

Fig. 5

VisuT2 Visualise a quality indicator, its trend and scattering with scatter plots
and line plots

Fig. 6b

StatsT1 Extract four statistics from a sequence: mean, std., min. and max Fig. 7a

StatsT2 Z-score normalise a vector by substracting the mean and dividing by the
standard deviation

Fig. 7b

StatsT3 Compute the trend, scattering and outliers of a sequence with median
filter, etc.

Fig. 6a

MLT1 Reuse a ML pipeline for q-value estimation with linear regression Fig. 7c

MLT2 Reuse a ML pipeline for diameter estimation with multilayer perceptron Fig. 7c

ComplexT1 Visualise the results of StatsT1: merging/reusing the pipelines of StatsT1
and VisuT2

Fig. 7c

ComplexT2 Visualise the results of MLT1: merging/reusing the pipelines of StatsT1,
StatsT2, MLT1 and VisuT1

Fig. 7c
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Table 3. Examples of single selection questions (SSQ) for machine learning tasks.

Questions (Q) and Answers (A)

Q1: What are the input data we use for machine learning training? I: single features, II: sensor
curves, III: quality indicator

A1: (A) I + II + III (B) I + II (C) II (D) II + III

Q2: What is the output feature we try to estimate?

A2: (A) Diameter (B) Q-value (C) Current mean (D) Process stability factor

Q3: What features will be the input of StatsExtractPipeline? I: single features, II: sensor curves,
III: quality indicator

A3: (A) I + II + III (B) I + II (C) II (D) II + III

Table 4. Questionnaires (partial) and scores for subjective evaluation. The scores range from
1 (disagree), 2 (fairly disagree), 3 (neutral), 4 (fairly agree), to 5 (agree). The column Score
is aggregated by reversing the scores of negative questions (such as Q2, 4, 6, 8, 9) and then
computing the average (avg.) and standard deviation (std.) (avg.±std.)

# Questions Dimensions Score

Q1 (For ML experts) I am confident to help non-expert to develop ML
approaches based on the system

R1 Transparency 4.28 ± 0.47

(For non-ML experts) I found it’s easy to get basic understanding for ML
approaches based on the system

Q2 I felt the system hampers the communication on ML approaches

Q3 I felt very confident using the system R2 Usability 4.73 ± 0.39

Q4 I thought there was too much inconsistency in this system

Q5 (For ML experts) I have confidence in the system to perform ML tasks R3 Executability 4.60 ± 0.72

(For non-ML experts) I am happy about the executability of this system

Q6 I need the support of technical persons to be able to use this system

Q7 I think the system can in general cover my need R4 Coverage 4.24 ± 0.83

Q8 (For ML experts) I found the system didn’t cover some basic ML
functions that are commonly used in industry

(For non-ML experts) I think the system has very limited application in
production

Q9 (For ML experts) I think the ML pipelines developed in the system can
only be reused in a limited range of applications

R5 Reusability 4.87 ± 0.36

(For non-ML experts) I don’t think I would try to reuse a developed
pipeline when facing a new task

Q10 I am happy that the system reduce time for reusing developed pipelines.

activities (transparency, R1), as their SSQ correctness systematically increases when
they use our system for communication. The comparison of time and task correctness
without (w/o) and with (w) our system (Fig. 8e–f) shows that when users doing tasks
with our systems they can save substantial time and increase the complete percentage
(user efficiency, R2), and make analytics tasks that cannot be done by the non-machine
learning experts now doable (usability, R2). The users also save much time when they
reuse and modify (contrasting bars with m and w) existing knowledge graphs to solve
the tasks.
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It can be seen from the scores of questionnaires (Table 4) that the users indeed think
our system improves the transparency (R1), and has good usability (R2), as these scores
are all above 4. In addition, the users also satisfied with the coverage of the tasks (R4),
and the reusability and modularity of the analytics pipelines (R5) brought by our sys-
tem. The later two will be further discussed in the next section.

6.2 Evaluation of Executability, Coverage, and Reusability

Executability (R3). Beside the 9 executable knowledge graphs in the user study, we
also programmatically generate 1372 executable knowledge graphs covering most of
the tasks (Table 5) encountered by automated modification of a set of executable knowl-
edge graph templates. As expected, all these knowledge graphs can be translated into
scripts that are executable (Fig. 9). Thus, the executable knowledge graphs that follow
the our framework in Sect. 4 are also evaluated as executable.

Coverage (R4). We organised extensive workshops with the machine learning and
non-machine learning experts. After discussion, we categorised most tasks of visual,
statistical and machine learning analytics encountered in our project in groups (see
Table 5), and give the coverage percentage according to our empirical cases. Observe,
for the 3 groups of visual analytics, and 5 groups of statistical, most of them can be
covered (above 80%). While for the feature engineering school of machine learning
analytics, we cover 80%. The feature learning school is currently not our focus of the
work.

Fig. 8. The user study results in time (a), complete percentage (b) and correctness (c); comparing
the SSQ correctness between without and with our system (d); comparing users doing tasks with-
out (w/o) and with (w) our system or only modify knowledge graph (m) in time (e) and complete
percentage (f)
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Table 5. Tasks categories and coverage

Category Sub-category Coverage

Visual
Line plot, scatter plot, bar chart 100%

Pie chart 85%

Heatmap 85%

Statistic

Statistics calculation 95%

Basic mathematical operation 100%

Sliding window filtering 90%

Sub-sampling 80%

Interpolation & extrapolation 80%

ML
Feature engineering 80%

Feature learning 0%

Reusability (R5). In user study, multi-
ple tasks demonstrate the high reusabil-
ity and modularity supported by our sys-
tem. In T5, 10, 14, 16 (Fig. 5a, Fig. 6a,
Fig. 7a and c), users modify existing
knowledge graphs by adding named
individuals and changing task param-
eters, and thus reuse the knowledge
graphs for new tasks, which is a strong
evidence of reusability. In T17 and
18 (Fig. 7c), they simply merge exist-
ing knowledge graphs and form more
complicated ones, this demonstrates the
modularity (and thus also reusability).

6.3 System Evaluation of Scalability

Apart from the aforementioned requirements, we evaluate the scalability (R6) of our
system for large deployment. We tested the running time of different types of analytics
pipelines for welding quality monitoring (Fig. 9). The tasks include 1372 programmati-
cally generated analytics pipelines and thus 1372 executable knowledge graphs, includ-
ing 242 knowledge graphs for visual analytics, 253 knowledge graphs for statistical
analytics, 291 merged knowledge graphs that combine visual and statistical analytics,
272 merge knowledge graphs the combine statistical and ML analytics, and 314 merge
knowledge graphs that combine three of them. We conducted experiments on an Mac-
Book Pro with Apple M1 Processor, 16GB of RAM. To have controllable scope, we
tested these executable knowledge graphs on a sample welding production dataset col-
lected from a factory in Germany. The dataset is in the form of relational tables after
integration, and contains 4585 welding operation records.
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Results and Discussion. The running time (including knowledge graph translation and
execution time) in Fig. 9 demonstrate that our system scales well since it takes limited
time to translate the executable knowledge graphs to scripts and execute the scripts.
Specifically, the running time grows sublinearly with respect to the number of tasks. On
the most right hand side, 300 of the most challenging tasks, namely the hybrid tasks that
combine statistic, machine learning modelling and visual analysis only takes less than
3min on the given data, which is considered to have good scalability by our experts.

7 Conclusion, Lessons Learned, And Outlook

In this work we present our concept and system of executable knowledge graphs, which
address the challenges of transparency, formal description, and reusability of machine
learning practice, including visual, statistical, and machine learning analytics tasks. The
system helps users to do the machine learning-related analytics tasks by providing a
GUI and executable knowledge graphs that can be translated to executable scripts. We
evaluated our approach with a user study, discussion, workshops, and system evaluation
and obtained promising results. The lessons learned for us that as follows: many users
are very interested in machine learning-related knowledge and solutions. They are eager
to spend time to learn such knowledge and practice machine learning, but did not have
a good starting point. They highly value our system and proposed many comments for
improvement, especially for the GUI, and for covering the hyper-parameter tuning and
feature learning. In the future, we plan to further improve our system, to host the system
regularly on the Bosch environment and constantly collect more user feed-backs. We
also plan to develop more theory to improve the generality of the approach.
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Abstract. Digital Twins are digital representations of systems in the
Internet of Things (IoT) that are often based on AI models that are trained
on data from those systems. Semantic models are used increasingly to link
these datasets from different stages of the IoT systems life-cycle together
and to automatically configure the AI modelling pipelines. This combina-
tion of semantic models with AI pipelines running on external datasets
raises unique challenges particular if rolled out at scale. Within this paper
we will discuss the unique requirements of applying semantic graphs to
automate Digital Twins in different practical use cases. We will intro-
duce the benchmark dataset DTBM that reflects these characteristics and
look into the scaling challenges of different knowledge graph technologies.
Based on these insights we will propose a reference architecture that is
in-use in multiple products in IBM and derive lessons learned for scaling
knowledge graphs for configuring AI models for Digital Twins.

Keywords: Knowledge graphs · Semantic models · Scalability ·
Internet of Things · Machine learning · Digital twins

1 Introduction

Semantic models are establishing across industries in the Internet of Things
(IoT) to model and manage domain knowledge. They range from driving the
next generation of manufacturing in Industry 4.0 [3,17,19], to explainable trans-
port [29], energy savings in buildings for a sustainable future [5,11]. Their appli-
cation cumulates in the use of semantic integration of various IoT sensors [28]
to automate analytics of the created data [11,37].

Digital Twins are one area of applying semantic models. A Digital Twin is a
digital representation of an IoT system that is able to continuously learn across
the systems life cycle and predict the behaviour of the IoT system [26]. They have
multiple uses across the life cycle from providing recommendations in the design
of the system, to automating its manufacturing and optimizing its operation
by diagnosing anomalies or improving controls with prediction [36]. The core
of a Digital Twin is formed by two tightly interacting concepts. First, an AI
model, such as a Machine Learning (ML) or simulation model, that is capable
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of continuous learning from data and explaining and predicting its behaviour.
Second, a Digital Thread that is linking these underlying data sources across the
systems life cycle [34]. Both approaches interact tightly as the Thread needs to
be used to automate the configuration of the AI models to allow to scale their
application while results from the AI model should be injected back into the
Thread to learn and explain knowledge.

Semantic Knowledge Graph technologies are very well suited for implement-
ing this Digital Thread [1]. They promise to solve several common challenges
from normalizing labelling of the various data sources to being flexible enough
to be extended over the life cycle when new applications arise [8]. However, scal-
ing knowledge graphs is challenging in its own terms [24] and in our practice
we experience multiple issues in scaling Digital Threads. Within this paper we
will deep dive into this use case and discuss some of the practical issues. We
will follow the typical industry workflow for designing and selecting a solution
from collecting requirements and defining a test example, to deriving a refer-
ence architecture and evaluating final realization options for some large scale
examples. The contributions of the paper are:

– Requirements for Digital Twins: We collect the requirements for semantic
representation of Digital Twins in Sect. 3.

– In-Use Experience for Scaling : We discuss our in-use experience in scaling
Digital Twins and propose a reference architecture.

– Benchmark model for Digital Twins: We define a benchmark model for seman-
tic Digital Twins for an manufacturing example that tests some of the iden-
tified requirements in Sect. 5.

– Comparison of KG Technologies: We compare different knowledge graph tech-
nologies for managing the semantic models for Digital Twins in Sect. 6 includ-
ing our own semantic property graph.

2 State of the Art

Knowledge Graphs for Digital Twins: There are several examples of applying
semantic models for representing Digital Twins [1,18,20]. Kharlamov et al. [18]
argues for the benefits of using semantic models for digital twins e.g. to simplify
analytics in Industry 4.0 settings. Similarly, Kalayci et al. [17] shows how to
manage industry data with semantic models. Lietaert et al. [21] presents a Digital
Twin architecture for Industry 4.0. Chevallier et al. [10] proposes one for Smart
Buildings. Akroyd et al. [1] reviews multiple approaches for geospatial knowledge
graph for a Digital Twin of the UK. Their work demonstrates the challenges
in incorporating data from different domains into one knowledge graph like the
heterogenity of data sources. These example represent the use of semantic models
for building Digital Twins in different industries that we also see in practise.

Semantic Data Management: A common goal of using knowledge graphs for Dig-
ital Twins is to integrate data from various systems. Established solutions exist
for doing this with semantic knowledge graphs that also may integrate external
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data. Pan et al. [25] presents a survey of semantic data management systems and
benchmarks. The authors classify the systems using a taxonomy that includes
native RDF stores, RDBMS-based and NoSql-based data management systems.
Besta et al. [6] provide a classification based on the database technology. Their
analysis shows that the different design have various pros and cons. Some of the
widely-used generic triple-stores such as OpenLink Virtuoso [13], Apache Jena,
Blazegraph, GraphDB excel on managing RDF data, but, do not scale well in
integrating non RDF data. General purpose property graphs like Neo4J or Janus-
Graph lack intrinsic understanding of semantic models. Multi-modal databases
like ArgangoDB or Redis combine a no-sql database with a graph database that
allows to manage documents alongside the graph. But, they also suffer from a
good understanding of semantic [30]. Entris [12] and Schmidt [31] extend this
idea and use semantic models to manage additional data in a data lake. In Sect. 3
we will discuss some unique requirements that create challenges in scaling such
knowledge graphs. We derive a reference architecture that separation the seman-
tic graph layer from the data layer to scale better to large volumes of data and
have federated access to address the Semantic Digital Threads requirements. As
shown by our experiments, such design seems to provide better scalability for
our use case compared to the other semantic data management approaches.

Benchmarks for Semantic Data: To validate that the requirements in modelling
Digital Twins are unique and evaluate different knowledge graph technologies, we
created a new Digital Twin Benchmark Model (DTBM). We compare it against
some established benchmarks. The Berlin SPARQL Benchmark (BSBM) [7]
and Lehigh University Benchmark (LUBM) [14] are generic RDF Benchmarks
that run a variant of queries on generated datasets. SP2Bench [33] is based on
DBLP library dataset and reflects the social network characteristics of seman-
tic web data. DBpedia SPARQL benchmark [23] uses real queries that were
performed by humans and applications against on DBpedia. Additional work
reflects the requirements and characteristics of certain domains. PODiGG [35]
and GTFS-Madrid-Bench [9] are examples of benchmarks for public transport
domain focused on use cases and requirements on route planning on gespatial
and temporal transport data. LSLOD [15] contains datasets from the life sci-
ences domain and the Linked Data cloud and 10 simple and 10 complex queries
that need query federation. Fedbench suite [32] evaluates efficiency and effective-
ness of federated SPARQL queries over three different datasets: cross-domain,
life science, and SPBenc. We will use BSBM and LUBM in the evaluation in
Sect. 6 as they are very well established and tested for many knowledge graphs
technologies and address themselves different RDF characteristics. In addition,
we will propose a new benchmark focused on our use case.

3 Requirements for Semantic Digital Threads

A Digital Thread is linking data from different life cycle stages of a Digital
Twin. This starts from design documents such as textual requirements, test
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specifications, to CAD-files and handbooks that may exist in different formats.
During production additional properties may be attached to a Digital Twin
such as sensor data from machines, materials used, material providers, and test
results. During operation the data collected from the final system is also added.
It is often related to asset management data such as fault reports, maintenance
work-orders, and replacement histories as well as timeseries data collected from
IoT sensors embedded in the systems such as temperature measurements, oper-
ational states or alarms. The different datasets that are collected across the life
cycle are linked together in the Digital Thread and often analyzed by Machine
Learning algorithms to discover and explain anomalies, predict the behaviour of
the system and advise people in improved manufacturing and operation of the
system.

From this description we can synthesize some characteristics to a semantic
knowledge graph that can be used to implement such a Digital Thread.

– C1 - Heterogenous Semantic Types: The connected data is very heterogenous,
representing domainspecific semantic types. A domain ontology can contain
thousands of types. For example, the BRICK ontology [5] contains ca. 3.000
classes for modelling smart buildings datasets.

– C2 - Multi-modal Representation: The data is multi-modal and represented
in different formats from timeseries, to binary files, and text documents.

– C3 - Federated Data: The data is stored and managed in various systems such
as complex Continuous Engineering Systems, Asset Management Systems, or
IoT platforms.

– C4 - Flexible Hierarchies: Data is often structured in hierarchical models such
as location hierarchies (Country > City > Factory > Production Line) and
asset hierarchies (Robot > Arm > Joint) that are of flexible depth.

– C5 - Large size: We see graph sizes often in the range of 100.000 datasets for
a mid-size Digital Twin.

– C6 - Composability: Digital Twins often contain other Digital Twins. For
example, a factory twin may contain a robot twin.

– C7 - Lack of semantic knowledge: We often experience that domain experts do
not have deep semantic knowledge. Though, they often understand software
engineering concepts like classes and inheritance.

– C8 - Dynamic: Digital Twins change over their lifetime and so does the Digital
Thread. In consequence, the knowledge graph does change regularly bringing
in the need to represent time, states and versioning.

The goals for building the Digital Thread are:

– G1 - Data Linking: The first goal of the Digital Thread is to link data from
various life cycle stages and backend systems together to create an integrated
view of the data.

– G2 - Data Contextualization: The second goal of building Digital Threads is
to contextualize the data and understand spatial and functional context to
summarize and explain the data.
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– G3 - Data Model Normalization: The third goal is to reduce the heterogene-
ity of the underlying data and normalize it on: common semantics (C1), a
common data modality (C2), and common hierarchical model (C4).

– G4 - Data Access Abstraction: The next goal is to abstract the access to the
underlying data in the federated systems (C3) to allow users to query data
by its semantics rather then storage specific IDs like asset or sensor IDs.

– G5 - AI Automation: The final goal is to automate lifecycle processes like
analytics. This is needed as manual configuration of these analytic processes
is not possible due to the data size (C5) and regular changes (C8).

From these characteristics and goals we can derive a set of requirements:

– R1 - Domain Taxonomies: From G3 and C1 we can derive the require-
ment to model both normalized upper ontologies (e.g. Sensor) with generic
types on the top and more specific types on lower level of the taxonomy
(e.g. Temperature Sensor � Sensor).

– R2 - Subsumption: From C1 and R1 we can derive the requirement to use sub-
sumption in the taxonomies. Taxonomies may have multiple levels, e.g. most
sensor tags in BRICK have about 3–5 levels of parents.

– R3 - Inheritance: From C1, C6, C7 we can derive the requirement to sup-
port inheritance of properties from concepts to instances. In practise, we use
this heavily to propagate for example units of measurement or ML model
configurations.

– R4 - Semantic Data Access: The solution needs to provide semantic data
access according to G4 to the underlying federated data (C3).

– R5 - Backend agnostic: The system needs to support various data represen-
tation (C2) and federated storage solutions (C3) in a hybrid cloud.

– R6 - Flexible Depth Queries: The hierarchies from C4 provide some means of
structuring and querying data. However, the lack of defined structures with
fixed query depth requires the use of transitive property chains in queries.

– R7 - Event-based Reasoning: Reasoning approaches are a good way of
automating processes in the knowledge graph for G5 to replicate knowledge
for sub-components (C6). The high dynamic of the graph (C8) asks for ways
to automate these reasoning steps on graph events, when for example sub-
components are added.

– R8 - Guaranteed Consistency: C1 and C8 mean also that users regularly
change the domain taxonomies and there need to be ways to propagate
changes in the subsumption taxonomies or the deletion of concepts that keep
the graph consistent and not end up with orphaned elements.

– R9 - Element-level Access Control: The Digital Twin is integrating data from
various systems (C3, C6) and needs to support different use cases and user
roles (C8). In consequence, a fine grained access control on graph element
level is needed [4].

Some of these requirements are of common nature for semantic knowledge
graphs like R1, R2, R5 and therefore support the applicability of this technology.
We consider the requirements R3, R4, R5, R7, R8, R9 more specific for Digital
Twins and do not see them in other applications [22,24].
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4 Architecture for Semantic Digital Twins

Based on the goals and requirements defined in the last section, we derive a
reference architecture for a Semantic Digital Twin in Fig. 1. We keep the refer-
ence architecture on purpose generic as we need to support different backends
(C3) and want to give readers implementation options. We realized the reference
architecture in our own implementation KITT, which is used in different prod-
ucts like IBM Maximo R©or IBM TRIRIGA R©to integrating data from multiple
different solutions in a Digital Threads. The system is deployed and in-use for
various customers since multiple years.

Fig. 1. Reference architecture for semantic Digital Twin

The core design of the architecture is a separation of the data layer from
the graph layer. The data layer links to data from various federated backend
systems. They are integrated by a Semantic Data Access Abstraction Layer. This
is a microservice environment that is implementing for each backend a resolver
microservice that maps the backends onto a key/value interface to query the
respective data in a normalized way according to G4. We differentiate three types
of data representations to address the multi-modality (C2): (i) Timeseries Data
(DB2 R©, PostgreSQL, Watson IoT R©, . . .); (ii) Binary File Data (Disk, RocksDB,
COS R©, . . .); (iii) Textual/JSON Data (MongoDB, Redis, Maximo R©, . . .). A
registry allows to dynamically add new resolvers. The mapping to a key/value
interface provides a simple interface for implementation of the resolvers and
allows us to store the keys as properties in the graph.

The graph layer contains the knowledge graph that is linking the meta-data
from the various backends (G1). The semantic graph represents the normal-
ized data model (G3) annotated with the associated keys from the data layer.



816 J. Ploennigs et al.

By storing only the data keys in the graph we get a separation of the meta-
data graph from the data layer that serves two purposes. First, it keeps the
graph manageable in size as the underlying large volume of raw data that often
reaches multiple terabytes are kept out of the graph. Second, it helps to solve
the federated data problem as clients do not want to move the data out of the
master data systems.

We developed our own in-house knowledge graph technology based on our
learnings from using over the years different off-the-shelf triple stores and prop-
erty graphs as backend. Due to the unique requirements, none of them could
scale to achieve the desired performance (see Sect. 6) and manageability targets.
Based on our experience with triple stores they present two challenges. First,
the graph sizes quickly explode when large numbers of properties (like keys) are
added, which are secondary for traversals. Although they provide good support
for basic RDF semantics most triple stores do not support subsumption infer-
ence out-of-the-box (R2) and rely on rule-based materialization. This not only
increases the triple number, but, more importantly it is hard to manage consis-
tency in our production context. When users change the structure of taxonomies
it is not easy and efficient to update and delete materialized triples such that
a consistent state of the graph can be maintained (R8). Property graphs sepa-
rate the graph from properties and thus could scale better with large number
of properties but they do not necessarily are targeting RDF natively resorting
to arbitrary conversion tools to support such scenarios. This lack of semantic
understanding inflicts subsumption query performance (Sect. 6) and has similar
manageability problems of the consistency.

Our knowledge graph is an in-memory semantic property graph called KITT
(Keep IoT Trivial). It combines the benefits of semantic understanding of RDF
stores and the compact representation of property graphs. It uses an in-memory
multigraph representation [2,16] of nodes and edges decorated with proper-
ties. Subsumption relationships are directly represented in-memory and allow
for guaranteed consistency (R8) such that subconcepts, instances, or relation-
ships cannot exist without the respective parent concepts or property types.
The subsumption relationships can also be directly walked by the reasoner. The
reasoner is a traversal-based RDFS+ reasoner that supports transitive queries
(R6) alongside event-based reasoning (R7) so that whenever new data instances
for a concept are added the reasoner will automatically execute relevant update
queries. We use this to automatically instantiate e.g. analytic functions as dis-
cussed in the next section. Another unique aspect of the graph is its support
for property inheritance (R3) that is used to propagate properties, like AI func-
tion configurations from concepts. It also supports element-level access control
(R9) to homogenize access control across the applications. The graph does not
provide a SPARQL interface as user often lack the required semantic knowledge
(C7) and provides an easier to use structured YAML/JSON based query format.

The application layer contains the various solutions that utilize the Digi-
tal Twin. They consist of AI tools for machine learning and optimization that
are automatically configured from the knowledge graph and of frontend user
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interfaces. To simplify usage of the platform for domain experts (C7) we pro-
vide development frameworks in Java and Python that simplify querying and
automation of tasks such as AI pipelines.

Through this architecture we support semantic retrieval of data streams
which returns with a single call of the in-built reasoner the data alongside it’s
semantic context in the knowledge graph. For example, the user can ask for all
Power data attached to a Robot, with its Workorder history and the last Image
of a camera monitoring the robot. This query will pull the power consumption
data from the IoT platform (Watson IoT R©), the maintenance history from an
asset management system (Maximo R©) and images from an object store (COS R©).

5 Digital Twin Benchmark Model

The requirement analysis in Sect. 3 identified the main requirements for designing
a knowledge graph for Digital Twins. To test and compare different technologies
for scaling knowledge graphs we created the Digital Twin Benchmark Model
(DTBM) that shares the identified characteristics. Figure 2 shows the main ele-
ments of the model structure.

Fig. 2. Digital Twin benchmark model structure

The DTBM benchmark is representing an Industry 4.0 example and creates
the knowledge graph for the Digital Twin of a production line. The RDF model is
split in a core model (dt:*) and a domain taxonomy (f:*) according to require-
ment R1. The core model defines the trinity of Locations, Asset, and Data that
is common with other IoT ontologies like BRICK [5]. To keep the benchmark
self-contained we refrained from using any upper ontologies. The domain model
represents of a location hierarchy in a Factory � Location with multiple pro-
duction lines. The production Lines � Location may have a random depth of
1 to 3 levels to represent flexible hierarchies (C4).
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Each production line has multiple Robots � Asset of different types as exam-
ple for subsumption (R3) with different machine types. Each robot is composed
off two to four Joint � Asset and Arm � Asset segments determining the degree
of freedom to demonstrate composability (C6).

The robots are connected by Belts � Asset as example for a logistic trans-
port system. It is to note, that the logistic system is introducing a horizontal
element cutting across the hierarchical factory structure. These horizontal struc-
tures are very common and allow different views on the represented data.

For simplicity we stick to robots and belts in this example, but, they may
be any machine and logistic element in a typical production process where a
product passes trough a sequence of production steps.

Each robot has different data types attached (C2): a handbook (Data File
� Data), workorder data (Json � Data), a power meter (Data Series Numeric
� Data Series � Data), and on/off state (Data Series Categoric � Data -
Series � Data) coming from different datastorage systems (C3). Each robot
joint has angle measurements and each robot arm has a position measurement
to illustrate heterogenity (C1). The belt has power meter and state as well to
illustrate that data type may repeat across assets. The factory has weather data
as example for a dataset at root level. All elements contain additional data
properties to store meta-data such as asset ids or data keys linking to the data
in the various backend systems.

The benchmark contains 12 queries. They resemble common type of queries
that we see in applications run on the knowledge graph from querying informa-
tion on specific assets to drive user interfaces and automatically configure and
execute ML tasks on the data. The queries are heavily relying on subsumption
(R2) and are using primarily generic concepts (Locations, Asset, Data). The
queries also use transitive relationships (R6) like the hasPart relationship that
is used to link the factory to lines, down to the robot, and its joints.

INSERT {

?newfunc rdf:type dt:Function .

?newfunc dt:hasInputData ?weather .

?newfunc dt:hasInputData ?input .

?newfunc dt:hasOutputData ?newout .

?newout rdf:type f:Data_Power_Pred .

?newout dt:hasDataKeySeries "TBD" .

} WHERE {

?loc rdf:type dt:Location .

?loc dt:hasSeries ?weather .

?weather rdf:type f:Data_Weather .

?loc dt:hasPart+ ?asset .

?asset rdf:type f:Asset .

?asset dt:hasSeries ?input .

?input rdf:type f:Data_Power .

BIND(IRI(CONCAT(STR(?asset),"_Pred")) AS ?newout ).

BIND(IRI(CONCAT(STR(?asset),"_Func")) AS ?newfunc ).

}

(a) Query 10 to configure an AI function

CONSTRUCT {

?func rdf:type ?functype .

?func dt:hasInputData ?input .

?input dt:hasDataKey ?input_key .

?func dt:hasOutputData ?output .

?output dt:hasDataKey ?output_key .

} WHERE {

BIND (f:factory1_line_1_robot_1_Func AS ?func) .

?func rdf:type dt:Function .

?func rdf:type ?functype .

?func dt:hasInputData ?input .

?input dt:hasDataKey ?input_key .

?func dt:hasOutputData ?output .

?output dt:hasDataKey ?output_key .

}

(b) Query 12 to retrieve the sub-graph of
an AI function configuration

Fig. 3. Query example from the Digital Twin benchmark model
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Figure 3 shows two example queries from the benchmark. Query 10 in Fig. 3a
uses SPARQL update to configures a new analytic AI function for each asset
(Robot or Belt) that has an associated power timeseries. It uses this power data
as input for the analytic function and also adds the weather data as additional
input feature from the closes parent owning one (factory). It then assigns an
“TBD” data key to the also newly created output timeseries that later will be
replaced with a pointer to the newly computed data. The benchmark contains
also other examples for configuring AI functions like: Q9 - to aggregate across a
location hierarchy or Q11 - to aggregate all instances by asset type. All queries
follow the same template of utilizing a graph pattern (WHERE) to identify
deployment locations for the AI functions with relevant inputs and a creation
(INSERT) part to materialize the respective AI function. Their configurations
could be added to the (INSERT) section [27] or are in our case inherited from
their type (R3).

Query 12 in Fig. 3b retrieves the sub-graph for one of these created config-
urations that contains the inputs and outputs for computing the prediction in
an ML job including the data keys. In the given example, this would be a new
AI function to compute the prediction of the power meter at robot 1 on line 1
that uses as input the power meter history and the weather data and the newly
created output.

6 Experiments

The goal of our experimental evaluation is threefold. First, we want to illustrate
the unique challenges that scaling knowledge graphs for digital twins create
across various knowledge graph technologies. Second, we want to prove that the
proposed Digital Twin Benchmark Model has different behaviour than other
benchmarks to verify the need for another model and explore the different char-
acteristics these benchmarks expect of the knowledge graph. Last, we want to
validate the benefits of semantic knowledge graphs at the example of our imple-
mentation in comparison to established triple stores and property graphs across
different benchmarks.

Knowledge Graphs: The first three knowledge graph technologies we evalu-
ate are Blazegraph, GraphDB, and Virtuoso all of which are triple stores that
expose SPARQL endpoints. The fourth system is Neo4j as most common prop-
erty graph. The last one is KITT which is our semantic property graph. The
selection is based purely on the availability of information on how to run BSBM
and LUBM for these backends.

We used the same workflow to set the systems up, load the data into them,
and evaluate their performance. Specifically, we used a containerization version
for each graph without following any optimization strategy. The purpose is to
replicate a cloud environment where a user will not have access to optimize the
backend systems nor the knowledge (C7).
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Benchmarks and Datasets: We present the results of two well known RDF
benchmarks namely BSBM [7] and LUBM [14] as well as our proposed Digital
Twin Benchmark Model (DTBM). Each of them generates RDF datasets which
can easily be loaded into the triple stores. For Neo4J we use the neosemantics
plugin to import RDF and had to write custom Cypher queries to support all
subsumption alternatives. For KITT we use our own RDF loader hat converts
RDF in a class and instance model. More details about the benchmarks:

1. The Berlin SPAQRL Benchmark (BSBM) [7] is built around an e-commerce
use case and it is scaled via the number of the products. It creates a set of
products offered by different vendors and reviewed by consumers. In general,
the generated datasets are property heavy and consist of subsumption hier-
archies and their depth depends on the chosen scale factor. For evaluating
the different systems, BSBM uses a query generator which generates queries
that emulate the search and navigation pattern of a consumer looking for a
product.

2. The Lehigh University Benchmark (LUBM) [14] was developed to evaluate
the performance of the semantic web knowledge base systems with respect
to use in large OWL applications. It generates a dataset for the university
domain and its query evaluation uses subsumptions and recursive queries such
as transitive closure.

3. The Digital Twin Benchmark (DTBM) was introduced in the last section.
It is subsumption heavy with transitive queries of flexible depth to query
information and configure AI functions.

The characteristics of the datasets generated by the different benchmarks are
summarized in Table 1. For the BSBM dataset the real “Dataset scale” factor
is the value the reported value multiplied by 1,000. For example, S2 in BSBM
refers to 2,000 products. BSBM is evaluated with 16 queries in parallel in Java,
while LUBM and DTBM are evaluated with single-threaded sequential queries
in Python. We do not run parallel tests to not skew results with Pythons bad
parallelization behaviour.

Table 1. Dataset characteristics with their number of elements

Dataset BSBM LUBM DTBM

scale triplets nodes edges props triplets nodes edges props triplets nodes edges props

S2 377,241 36,871 102,315 37,022 288,894 38,349 113,463 36,834 114,177 35,702 41,698 35,601

S5 1,711,567 152,965 454,334 153,294 781,694 102,383 309,393 100,018 283,785 88,895 103,874 88,713

S10 3,738,188 315,148 982,502 315,477 1,591,643 207,441 630,753 203,625 570,232 178,118 208,224 177,801

S20 7,749,994 632,447 2,018,821 632,776 3,360,686 437,570 1,332,029 430,559 1,136,634 356,087 416,285 355,500

S50 17,571,059 1,593,382 5,132,438 1,594,113 8,317,905 1,082,833 3,298,813 1,067,023 2,844,499 890,624 1,041,300 889,227

S100 35,159,904 3,196,023 10,104,195 3,198,034 16,753,468 2,179,781 6,645,928 2,148,846 5,693,601 1,781, 866 2, 083, 488 1, 779, 119

Query Configuration: In BSBM, we use the default BSBM test driver [7]
which executes sequences of SPARQL queries over the SPARQL protocol against
the system under test. In order to emulate a realistic workload, the test driver can
simulate multiple clients that concurrently execute query mixes against the test
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system. The queries are parameterized with random values from the benchmark
dataset, in order to make it more difficult for the test system to apply caching
techniques. The test driver executes a series of warm-up query mixes before the
actual performance is measured in order to benchmark systems under normal
working conditions. To make a fair comparison, we implemented our own test
driver that follows a similar design to evaluate Neo4j and KITT. Note, BSBM
test driver measures the response time excluding the time needed to deserialize
the response and it puts a constraint to the result size.

In LUBM and DTBM, we use our own query executor in Python to evaluate
the performance of the various systems. We execute each query 500 times and we
report the average response time including the deserialization of the response.
We also place a constraint to the result size limiting the result to 1,000 records
to put the focus on the query execution time and not the serialization time.

Overall, all benchmarks use SPARQL queries; corresponding Cypher queries
for Neo4j or YAML queries for KITT. We optimize the representation for each
graph and e.g. directly represent properties in Neo4j and optimize queries accord-
ingly to e.g. activate subsumption support (RDFS+) for all RDF stores. All
benchmarks have been executed on a Linux machine with a AMD Ryzen 3959X
processor and 64 GB memory and SSDs with the backends running on Docker.
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Fig. 4. Query response times for different sizes (columns) and benchmarks (rows)

6.1 BSBM Evaluation

Figure 4 summarizes the average response time for all benchmarks in seconds. We
will first discuss the BSBM results in the first row. For this one all queries run in
less than a second even for the big graphs. We observe that Neo4j performs well
only for small graphs and worse for larger. It seems that it cannot understand the
semantics hidden in the dataset and it does not perform well when queries use
subsumption. Comparing the triple stores, we find that GraphDB has the lowest
response times while Blazegraph has the worst performance. It seems that the
queries using filtering by multiple properties such as Query 5 are costly for the
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RDF triple stores. KITT outperforms the other knowledge graphs in all datasets
slightly. This shows its ability as a semantic property graph to understand the
model and the semantics contained in the dataset.

6.2 LUBM Evaluation

The results for LUBM on the second row in Fig. 4 show about the same charac-
teristics as BSBM. However, we observe that Neo4j is not able to perform well
for any size. This is due to the fact that LUBM uses many subsumptions and
recursive queries and Neo4j seems unable to process them efficiently. Further-
more, we observe for the different graphs that the ratio some queries have in the
stacked bars change with the experiment sizes. This hints that the knowledge
graphs struggle with different queries characteristics when a graph grows. For
example, Query 9 is the most expensive for triple stores up to dataset size S20,
and then we see an increase in response time for Query 2. This can be explained
by the fact that Query 2 fetches for each department of a university, all the
graduate students and searches for those who have obtained their undergrad-
uate degree from the given university. This breadth exploration becomes very
costly in larger graphs because the number of students becomes huge and many
invalid pathes need to be evaluated before they are dropped from the result set.
In addition, Query 9 returns students who have taken a course of their faculty
advisor which also leads to multiple traversals of the hierarchy that links advi-
sors to students through a course. Although the query is of a similar structure to
Query 2, it is less costly in large graphs due to the smaller search space. Finally,
we observe that KITT again surpasses all knowledge graphs and it can produce
the result in a few milliseconds. This again shows the benefits of an in-memory
semantic property graph that can directly walk the subsumption taxonomy from
high-level concepts to instances and their transitive relationships.

6.3 DTBM Evaluation

The results for our proposed benchmark illustrate first the bad scaling behaviour
of traditional knowledge graphs in a Digital Twin scenario as discussed in the
beginning. While common execution times for BSBM and LUBM were usually
under one second for the triple stores they grow to multiple seconds for some
queries for larger graphs, which is not acceptable for driving user interfaces.
This magnitude differences in response times for DTBM is particularly notable
as that the size in triples of the dataset size S100 is only 1/3 of LUBM and 1/6
of BSBM (Table 1).

The second notable aspect is that the performance characteristics between
the triple stores change. While Blazegraph was performing worst for BSBM and
LUBM it is now Virtuoso that has the largest response times. It is particularly
struggling with Query 10 (Fig. 3a) and actually failed out-the-box for S100 due
to too large implication space.
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Along the same line it is now Neo4J that overtakes the triple stores in the
benchmark. It probably benefits from the lower number of nodes and the prop-
erty representation. It is notable that across all benchmarks it scales constantly
along to the number of nodes. However, we have to note that we had to write
custom Cypher queries for Neo4J to support all subsumption alternatives for
all use cases. In production this is not feasible because taxonomies are domain
specific (R1) and change (C8).

KITT outperforms the other graph stores also for this scenario. This demon-
strates the generalizable benefit of a semantic property graph across multiple
use case from RDF specific benchmarks like BSBM or LUBM to the digital twin
use case addressed in DTBM.

7 Summary

In this paper we share our experience in scaling semantic knowledge graphs for
automating AI of Digital Twins in the IoT domain. We analyze the unique char-
acteristics, goals and requirements of the use case that uniquely links semantic
models to multi-modal data management across different federated data systems.

We derive from this a reference architecture for a Digital Twin knowledge
graph solution that we use in multiple products. It separates the knowledge
graph from the underlying data in a micro-service environment that is easy to
scale and extend.

To enable the community to evaluate different knowledge graph technolo-
gies for this architecture we open source a new Digital Twin Benchmark Model
(DTBM) that represent the specific requirements of the domain. The DTBM
generator creates an Industry 4.0 production line and contains multiple queries
that we use in production. We demonstrate in some query examples how AI
functions can be automatically configured from the semantic graph. We execute
the benchmark for different knowledge graph technologies and compare it to the
well established BSBM and LUBM. The result highlight the different behaviour
of DTBM in comparison to BSBM and LUBM and substantiate the need of the
new benchmark. They also illustrate the challenges in scaling knowledge graphs
for Digital Twins that already show by a magnitude larger response times for
even smaller graphs. It may be possible to optimize the parameters, indexes and
queries for the different knowledge graph technologies, but, given the domain
specificity (R1) and dynamic nature (C8) of these models and queries this is
not feasible in production for a general purpose cloud service where users have
neither access to these configurations nor the expertise (C7).

That our own knowledge graph KITT shows the best performance across
all benchmarks demonstrates the advantage of semantic property graphs that
combine benefits of RDF and property graphs and support subsumption and
transitivity out of the box. We would like to see more graphs that address this
need and not specialize on one or the other. For that purpose we open sourced
the script for creating the Digital Twin Benchmark Model as well as the used
benchmark configuration such that other can replicate and extend our results.
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Supplemental Material Availability: The source code and queries for DTBM as
well as the used configurations for the benchmark are available at https://github.
com/IBM/digital-twin-benchmark-model.
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Abstract. A research division plays an important role of driving inno-
vation in an organization. Drawing insights, following trends, keeping
abreast of new research, and formulating strategies are increasingly
becoming more challenging for both researchers and executives as the
amount of information grows in both velocity and volume. In this paper
we present a use case of how a corporate research community, IBM
Research, utilizes Semantic Web technologies to induce a unified Knowl-
edge Graph from both structured and textual data obtained by inte-
grating various applications used by the community related to research
projects, academic papers, datasets, achievements and recognition. In
order to make the Knowledge Graph more accessible to application devel-
opers, we identified a set of common patterns for exploiting the induced
knowledge and exposed them as APIs. Those patterns were born out of
user research which identified the most valuable use cases or user pain
points to be alleviated. We outline two distinct scenarios: recommenda-
tion and analytics for business use. We will discuss these scenarios in
detail and provide an empirical evaluation on entity recommendation
specifically. The methodology used and the lessons learned from this
work can be applied to other organizations facing similar challenges.

Keywords: Knowledge graph · Knowledge induction ·
Recommending · Trend analysis

1 Introduction

Research and innovation is the heart of any organization that is focused on
advancing technologies to meet the challenges of solving real world problems by
bridging the business needs with scientific discoveries. In fast moving research
areas such as artificial intelligence or quantum computing, there is a tremendous
growth of research activities in both velocity and volume happening within and
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outside the organization [5,37]. It is challenging to understand the trends and
draw insights, and doing so manually is becoming unfeasible. Nevertheless, such
insights are of utmost important for the executives who make strategy decisions
on the impact of current investments and decide on future directions [36] and
for the researchers who are looking for effective collaborations to optimize the
reuse of research assets. In addition, in large organizations involving thousands of
people and various scientific disciplines, it is difficult to keep abreast of individual
projects. Weekly updates are often overwhelming but essential to make sure that
people are informed of progress, to prevent redundant work, enhance re-usability,
and cross fertilize ideas and assets. However, those has to be personalized to each
person’s user’s interests to keep the information overload minimal.

One major challenge in generating insights is that generally data is scattered
across different applications in their own siloed spaces. If integrated manually,
this requires a lot of effort and hinders their full potential use for downstream
applications. Thus, it is useful for an organization to have a unified integrated
view of the data. Furthermore, these applications capture both structured meta-
data and also a lot of unstructured textual data. It’s challenging to analyze the
useful insights hidden in large volumes of text and uncover the insights.

For example, in the IBM research community, there are different applications
for managing research projects, academic papers, datasets, internal achievements
and external recognition. Researchers are both the content providers who con-
tribute to these applications as well as end users that gets the recomendations
and insights. From the adoption point of view, it is important that they have to
spend only a minimum amount of valuable time without duplication of effort in
multiple apps for the same information and get high value and useful insights in
order to increase the engagement.

Before jumping to the solutions, we have first conducted a user study to
understand the most valuable user pain points to be alleviated. Through a set of
in-depth interviews from a set of selected users in different stages of their career,
recommendations and trend analytics were identified as two main use cases that
most requested by the community, as discussed in Sect. 2.

The aforementioned scenario provided us an excellent use case to test the
boundaries of Knowledge Graph Induction (KGI) framework which is presented
in this paper. Specifically, we apply our technology to mitigate some of the
challenges in a corporate research community: IBM Research. While we restrict
our focus to a research community in this paper, KGI framework can be applied
to any organization that has a large volume of structured and unstructured data
to be integrated and analyzed.

We will discuss how we address the common challenges of extraction of knowl-
edge from both structured and unstructured data, how to enrich the KG from
information available in the vast amounts of unstructured text and how to use
the enriched KG to power Knowledge Exploitation Patterns (KEP) for entity
recommendation and trend analytics. We will also discuss how the external ency-
clopedic knowledge such as Wikidata [38] can be seamlessly integrated to internal
knowledge enabling traversal following the Linked Data principles to get more
context or provide more structure to the data using the taxonomic knowledge.
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The main contributions of this paper are as follows:

– We introduce an end-to-end framework for Knowledge Graph Induction
from both structured, semi-structured, and unstructured data. KGI is eas-
ily portable across domains and enables the reuse of high level abstractions,
i.e. KEP, for recommending and trend analysis.

– We introduce the Wikidata Parser, a Knowledge Generation and Linking
approach based on transformer based generative models, which achieves the
state of the art performances on information extraction benchmarks.

– We demonstrate the effectiveness of the KGI framework in two different sce-
narios: IBM research internal community and ISWC 2002–2021 proceedings.

– We discuss how a research organization can benefit from building a KG from
both structured and unstructured data motivated by the pain points identified
in a user study.

The rest of this paper is structured as follows. Section 2 discusses the use
cases identified after an extensive user study. Section 3 introduces the KGI frame-
work including knowledge integration, Wikidata parser and evaluate the knowl-
edge generation using an academic benchmark. Section 4 introduces KEP for
Entity Recommendation, Trend Analysis, and Infobox Generation, providing
and empirical evaluation of the recommending capabilities based on user eval-
uation. Section 5 presents a review of related work, while Sect. 6 concludes the
paper highlighting directions for future work.

2 Application Use Cases

The Apps@Research team, an application design and development team inside
IBM Research, designs, develops, and supports a portfolio of cloud-based web
applications providing rich, intuitive, integrated experiences that serve the unique
needs of the IBM Research community. These include collaborative tools for:

– proposing and reporting progress on research projects including tracking staff
effort, milestones, and impact (Research Project Portal)

– tracking the status of papers submitted to conferences and journal throughout
the cycle from submission to decision (Academic Paper Portal)

– cataloging datasets approved for use by the legal team and datasets published
by our teams (Dataset catalog)

– nominating, reviewing and selecting projects to receive yearly internal accom-
plishment awards (Achievements Portal)

– tracking external recognition and awards won by IBM researchers (Recogni-
tion Portal)

The Apps@Research team engaged the IBM Research AI team to partner on
ways to incorporate IBM Research’s own artificial intelligence technologies to
augment the user experience in these applications. The key motivations were to:

– Unlock the content potential of the Apps@Research applications, which
reflects the work and expertise across each division and teams.
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– Improve user experience by creating exceptional, well-curated, concise and
personalized information.

– Leverage and offer a testbed for IBM Research’s own AI technology

In order to inform prioritization for the product roadmap for one of the most
pervasive applications, we undertook a foundational user research study in 2020
to better understand user needs. The study included over 100 interviews and 220
survey responses from users of our applications. From this study, one key pain
point was identified: because the content in our tools describe detailed research
project proposals and plans of thousands of research projects, the content is
too dense to be easily digestible. Users struggle in discovering relevant content
and are under the perception that other users will find their content either. In
turn, many users could become frustrated and stop using the tools for their key
intended purposes - collaboration, innovation, and sharing updates.

Our hypothesis was that if we were to find a way to help the content become
more discoverable, personalized, and digestible, that users would be motivated to
keep their content up-to-date and visit the tool more frequently to find synergies
and sparking innovation across research projects.

After doing some preliminary technical discovery and feasibility study with
the AI Research team, we performed a more detailed user study. We recruited
12 participants from a representative sample of researcher and strategists at
different stages in their career. They had varying experience with AI technology
concepts. We conducted 60 min structured interview sessions with users in which
we asked open-ended questions and then engaged them in an interactive exercise
in a mural application.

The purpose of the interactive exercise was to identify various possible use
cases and to prioritize them. We gave the users a hypothetical “$100” and asked
them how they would “spend” the money, dividing among the use case ideas
(Hundred dollar prioritization [20]). The purpose of the exercise was to under-
stand the quantitative value that participants would ascribe to various use cases.

Upon completion of the interviews, we then performed a design thinking
exercise called affinity mapping, to group ideas and identify common themes
and patterns. We also analyzed the “$100 prioritization” to help quantify the
value of use cases to all the participants.

Fig. 1. User Interview $100 “spending” results
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Figure 1 shows that most users identified “recommendations” as the most
valuable use case. Recommendations would be automatically generated with
information of which the user might otherwise not be aware. Recommendations
would be personalized, based on users’ previous activities such as papers/patents
published, expertise, current projects, etc. - all of which could be derived from
data in our KG. Figure 1 also shows that users wanted several types of rec-
ommendations such as related research projects, relevant papers, collaborators,
experts to review their papers, etc.

The second most valuable use case would be “automation assistance”. This
would include help to pre-fill forms in the various tools in a smart way, saving the
user time and anticipating their needs. This was a technical requirements and
having an integrated view in KG would allow us to pre-fill a lot of information
in different applications based on the context.

Next, users were interested in “analytics” - smart reports and dashboards
that could be generated to provide business insights. The users have found that
the data in our portals are dense and overwhelming and wanted to have high-
level overview summaries so that can understand the common trends and dig
more into the details.

Users were interested in improved Search and Filtering. Currently most of
our applications’ search is based on keywords and users were interested in more
advanced semantic search capabilities. A KG would allow us to perform more
complex structured searches.

Knowing that recommendations ranked highest as the most important use
case, we analyzed further which types of content would be of greatest interest,
so that we could prioritize developing those features first. We found that users
ascribed the most value to being recommended projects and papers.

The insights gained from the user study led us to focus on the following two
use case scenarios:

– Recommending: For researchers keeping abreast of colleagues’ work
(project status and publications) is very difficult in a large organization focus-
ing on many technology areas. This is a hindrance to effective collaborations
and reuse of research assets. There is a need for technologies and tools to
make this process more seamless.

– Trend Analysis: For executives it is difficult to understand the breadth of
the research portfolio, gain useful insights, and formulate a future strategy.
There is a need to process large volumes of unstructured data and provide
useful insights.

In the following sections, we will discuss our NLP and Semantic Web-driven
approach for addressing these two main use case scenarios.

3 Knowledge Graph Induction

The overview of our KGI framework is illustrated in Fig. 2. It consists on three
main conceptual blocks: data integration, whose main goal is to integrate hetero-
geneous semi-structured data from siloed applications using a domain ontology;
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Fig. 2. The knowledge graph induction framework

knowledge extraction and linking, implemented by the Wikidata Parser, a com-
ponent capable of generating RDF compliant knowledge by processing all textual
content attached to entities in the domain KG; and Knowledge Exploitation Pat-
terns, a set of abstractions over the induced KG that are domain-agnostic and
generalized to use cases such as recommending and analytics.

3.1 Data Integration

Data related to IBM Research is scattered across multiple siloed applications.
We used a knowledge representation approach based on Semantic Web standards
and unified them into a single KG with links to both internal entities as well
as relevant information extracted from background knowledge sources such as
Wikidata.

Internal data pertains to items that are of particular interest to a research
organization: research projects (science, strategy), people (eminence), academic
publications and datasets (eminence), achievements and recognition (impact).

Each of the applications provides an API to extract data, which is then
processed through a RDF conversion pipeline following a process similar to RML-
based tools [10]. For this purpose, a Research KG ontology was built by reusing
and extending the Schema.org with classes and relations that were more specific
to our use case. The data schema of each of the five applications were aligned to
the ontology by a knowledge engineer and the mappings were created.

The Schema.org ontology was selected as the base because it covered most
of the concepts in our applications and is used by some of our collaborators.
In addition, entities and relations from Wikidata are also reused. This enables
us to easily integrate with third parties. The conversion process consists of (a)
data extraction and (b) cleaning to normalize certain values, (c) mapping and
RDF generation. Entity resolution is carried out to convert mentions to people,
projects, and other entities to their canonical identifiers through a deterministic
process. To this aim, we used unique identifiers such as emails and other internal
conventions.

https://www.Schema.org
https://www.Schema.org
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Fig. 3. The Wikidata Parser architecture and an example output.

3.2 Knowledge Generation and Linking: Wikidata Parser

A large part of our data is unstructured text. In order to incorporate them in
the KG, we extract the textual values attached to each entity such as article
content or a project description, chunk them into sentences and parse them
using Wikidata Parser, a novel tool integrated in our KGI framework [9,13].

Wikidata Parser allows converting unstructured text into structured data
represented as a set of ABox assertions compliant with the TBox of Wikidata.
We address this problem as a sequence generation task, similar to machine trans-
lation or text summarization, where the input is an English sentence and the
output is a set of facts. To this aim we leveraged large pre-trained sequence-
to-sequence language models, such as BART [23] and train them from large
dataset derived using distant supervision, by exploiting the alignments between
Wikidata facts with the abstracts of Wikipedia pages.

Specifically, given a sentence, we fine-tune the language model to detect pairs
of entity mentions and jointly generate a set of facts (i.e. <Subject (Sub-

ject Type), relation, Object (Object Type)>) representing entity labels,
entity types and their relationships. The output of the system is then determin-
istically converted in RDF statements, as shown in Fig. 3.

Our experiments and analysis show that Wikidata Parser produces more
accurate triples improving in both precision and recall if compared with the
state-of-the-art generative information extraction methods [6,19,32].

Table 1 reports the F1 results of Wikidata Parser for each type of semantic
annotations part of the triples generated from the abstracts, in terms of correct
predictions of entity mentions, entity labels, entity types and their joint relations.
For training and evaluation purposes, we extended a distantly supervised dataset
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for relation extraction [6] with the full set of Wikidata-based annotations for each
matched triple found in the abstracts of Wikipedia.

Table 1. Information extraction results. MD = Mention Detection. TYPE = Type
Prediction. EL = Entity Label. RN = Relation Name. REL = Relation Prediction
with Label Match. P = Precision. R = Recall. F1 = Micro F1-score.

MD-F1 TYPE-F1 EL-F1 RN-F1 REL-P REL-R REL-F1

Approach

SOTA IE pipeline [19] – – – – 43.30 41.73 42.50

GenIE [19] - - 79.69 78.21 68.02 69.87 68.93

Wikidata Parser 84.27 79.65 82.73 80.84 73.88 67.85 70.74

For both subject and object, we generate the surface form mention, canonical
label, type label, relation label. Whenever applicable, we link the entities and
types to Wikidata entities. Relations are also linked to Wikidata. This informa-
tion is then converted in RDF and represented using a reified statement meta
model. In addition, the facts are associated to an evidence attribute, which
contains the provenance (i.e. the sentence) from which the triple has been gen-
erated together with its confidence score. An example output is shown in Fig. 3.
In addition, each triple is linked to the corresponding entity where the text was
extracted.

3.3 Implementation Details

The KG implementation consists of several components. First and foremost is
the actual deployment and hosting of the knowledge graph. Our knowledge graph
is hosted on a Blazegraph triplestore inside a RedHat OpenShift Container plat-
form which gives us all the advantages of a cloud deployment (scaling, flexibility,
storage). We have a second component, a reverse proxy for Single Sign-On (SSO)
authentication and authorization to the graph. Some of the data in our graph
is confidential and therefore requires a need to know access to prevent travers-
ing and querying the graph by unintended parties. The final set of components
relate to the ETL (Extraction, Transform, and Load) process. Currently we build
and load the graph on weekly basis. Our ETL process consists of extracting the
data from all of the application APIs (both GraphQL and REST) as JSON
documents, keeping an in-memory representation of the documents, and then
converting these documents to RDF in Turtle format. The textual raw data of
each entity is enriched with Wikidata parser as described in Sect. 3.2 with auto-
mated OpenShift cronjobs. Finally, RDF data coming from both structured and
textual sources is integrated and loaded into the triple store on a scheduled basis.

The current ETL process will be vastly be improved in the future to address
the evolution of data by limiting text processing only to detected changes in the
KG. Some of this future work will require including a text fingerprinting service
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to decide if the data has indeed changed (i.e. for computational cost, we only
care about the free text changes and not usually the meta data).

4 Knowledge Exploitation Patterns

To make the KG easy to use and adapt across different domains, we identified
a set of common usage patterns, Knowledge Exploitation Patterns (KEP), and
expose them as parameterized client API library to minimize the learning curve
for the technology. These APIs generate the corresponding SPARQL queries
and handle other cross-cutting concerns such as security or caching. Neverthe-
less, developers also can run queries directly in the SPARQL endpoint if needed.
Currently, we provide APIs required for induced ontology exploration (type hier-
archies, infoboxes), entity recommendation, and trend analysis. The idea behind
the use of KEP is that certain functionalities can be abstracted out of the spe-
cific application domain by performing queries against the KG metamodel that
is then used differently in downstream applications for the specific domain.

4.1 Entity Recommendations

Based on our use cases study described in Sect. 2, the automatic recommenda-
tions of items, such as publications, projects or collaborators, is one of the main
desiderata for the members of our enterprise research community. Collaborative
filtering [22] is arguably the most common approach for recommendation sys-
tems, especially in environments with a large user base where the state-of-the-art
methods are based on advanced deep learning techniques. However, an enterprise
research community might not have enough users to train large parametric mod-
els due to the sparsity of user log activities. For this reason, we adopt a hybrid
content-based recommendation system method [12,24] by exploiting jointly the
textual content, structured data and induced semantic annotations generated
from our Wikidata Parser (see Sect. 3.2).

The idea is to convert our KG in an entity-feature Vector Space Model (VSM)
model, where the rows are represented by the different type of entities in the KG,
such as people, publications, projects and accomplishments, and the columns
represent the feature space. In detail, let us consider V SMn,m a matrix using
the standard tf-idf weighting schema, where each row ei,∗ is an entity vector
created by concatenating different groups of features, described as follow:

Bag of Words. The textual content of entities, such as publications or projects,
are tokenized and each token is considered as a single (sparse) feature. For
entities representing people, where the textual context is not available, we
exploit our KG to collect the textual content, e.g., from the publications or
projects linked to the specific user by a multi-hop navigation in the graph.

Structured Data. This feature set represents relations derived from knowledge
integration from our original data sources. For instance, the research division
and topic of a project, the upper-line management for a person, and so on.
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Entities. This feature set represent the entities extracted from Wikidata parser,
grouped by their Wikidata type. For example, given the triples in Fig. 3,
we create entity features such as Semantic Web:academic discipline,
inference:process, and so on.

Frames. We also leverage the semantic relational information from the extracted
triples. In order to alleviate the sparsity problem, we only concatenate the
semantic annotations w.r.t. the domain, relation and range of each triple. For
instance, <academic discipline, uses, process> for one of the generated
triple in Fig. 3.

It is important to note that our feature set does not depend on the spe-
cific entity and relation set. Instead, this pattern is totally domain-agnostic and
reusable and can be applied to any KG and entity type generated from our KG
induction pipeline and integration process.

After the VSM is built, the recommendation inference for a user is imple-
mented in a non-parametric manner by exploiting the cosine similarity between
the user and the target item vectors, such as publications, projects or other
users. In other words, the recommended items for a user are the nearest neigh-
bor entities in the vector space ranked by their cosine similarity scores.

Fig. 4. An example of paper recommendations for a researcher. The figure on the left
reports the list of recommended publications. The explanation for the top ranked item
is shown in the figure on the right as a list of relevant entities grouped by their semantic
types.

Figure 4 shows an example of a list of recommended publications for an
researcher using the aforementioned KG-based VSM. The KG induced from text
allows us to provide meaningful explanations for the user that justify the rec-
ommendation. The explanation is obtained by measuring and selecting the most
relevant entities (i.e. those that contributed most to the similarity score), ranked
by their combined tf-idf weights.
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Table 2. User evaluation for scholary article, project and achievement recommenda-
tions for 30 users.

Papers Projects Achievements

Criteria MAP P @ 10 MAP P @ 10 MAP P @ 5

LOW 0.89 0.76 0.92 0.81 0.87 0.82

MEDIUM 0.51 0.34 0.65 0.45 0.51 0.36

HIGH 0.21 0.08 0.50 0.14 0.41 0.17

To evaluate the quality of the recommendations, we recruited 30 volunteer
researchers from various disciplines. For each participant, we recommended 10
projects, 10 papers and 5 achievements. Each participant was asked to rate the
recommendations on the following scale:

– NONE: No value to me
– LOW: Good to know but I am not going to read anytime soon
– MEDIUM: Relevant for my specific area of interest (must read)
– HIGH: Relevant to my current project(s) and work

We performed a quantitative analysis by evaluating Mean Average Precision
(MAP) and Precision@K (P@K) metrics, which are popular choices to evaluate
recommendation systems. Both MAP and P@K take in consideration only binary
assessments, i.e. if the recommended item is relevant or non-relevant. In order to
convert our graded rating into a binary assessment, we adopt three different cri-
teria, namely HIGH (i.e. only HIGH category is regarded as positive), MEDIUM
(i.e. HIGH and MED categories are positive), LOW (i.e. HIGH, MED and LOW
are positive). As shown in Table 2, the performance of our recommendation sys-
tem is consistent across the different type of recommended items. Moreover, the
MAP is consistently higher than P@K, showing that the system tends to provide
higher scores to those items considered relevant for the users.

We also performed an analysis focusing on irrelevant recommendations. One
repeating pattern was the users who have recently moved to a different research
area tends to have less accurate recommendation. This is can be explained by
observing that their historical publication profile did not reflect their current
information needs. Another commonly reported problem is that in many cases
the researchers were aware of the recommended items already, in spite of the fact
that we filtered out those items were they were explicitly listed as authors or
contributors. The explanation for that is that there could be multiple relations
between a person and an information object, besides being authorOf. For exam-
ple, one researcher might have been the mentor of one of those authors, might
have been part of a review committee and so on. In future work, we planned to
address the above issues by applying more sophisticated machine learning-based
recommendation techniques able to learn how to traverse the graph structure
from the user provided feedback.
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4.2 Trend Analysis

The KG induced from the unstructured text is used to implement KEPs for
trend analysis. Once a corpus is completely processed by Wikidata parser, trend
analytics provide an overview of the concepts found in the corpus simply by
performing aggregation queries the induced KG.

Since we can not show examples of analytic from the IBM internal data
due to privacy of strategic information, we have created a KG by processing
ISWC papers from year 2002–2021 using DBLP RDF data1. For each paper,
we collected the title and the abstract of the paper and parsed them using the
Wikidata Parser to create an Induced KG. Examples in this section uses that
KG. This also provides evidence that the approach that we have proposed can
be easily adapted to other communities.

Figure 5 shows the most frequent types found in the ISWC 2002–2021 corpus
with the number of unique entities found in the corpus and number of associated
triples. Any type can be selected and expanded to see its subtypes in the corpus
ordered by their cumulative frequency (direct children and all descendants).
Figure 5 (right) illustrates the expansion of type algorithm which has 473 direct
entities and 746 transitive entities. The subclass relations are both induced from
text and extracted from Wikidata. Users can select any of 4739 types generated
in the case of the ISWC corpus and generate a trend analysis for the given type.

Fig. 5. A snippet from induced types from the ISWC corpus.

Figure 6 shows the trend analysis for entities belonging to the type academic
discipline. The last column shows the total number of occurrences of each
entity in all ISWC papers from 2002–2021. Individual cells show the distribution
of the papers in different years as a percentage. Such trend analysis can highlight

1 https://blog.dblp.org/2022/03/02/dblp-in-rdf/.

https://blog.dblp.org/2022/03/02/dblp-in-rdf/
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some interesting facts. For instance, it shows that there was a high interest in
“Ontology” and “Semantic Web” throughout from the beginning but the interest
diversify more in later years. Similarly, we can see that there is a high interest in
“Linked Data” from year 2009 which is at highest during the 2013–2017 period.
In contrast, “Semantic Web Services” are of high interest during 2003–2009
period but the interest completely vanishes on later years. It is important to
notice that the list of entities belonging to the type academic discipline or
any other type is automatically generated. The analyst is just supposed to point
to the right concept in the taxonomy to get her job done.

Fig. 6. An example of trends analytics for entities of type academic discipline

4.3 Infobox Generation

Once an entity of interest is selected, for example, “Linked Data”, the users can
automatically generate an infobox, as shown in Fig. 7. We first induce a schema
for each type, by counting the most frequent relations extracted by the parser
for entities of that type. For example, for the type academic discipline the
important relations are part of, facet of, based on, studies and so on. Then
we collect the object filling those relations for a specific target entity (Linked
Data, in the example). Those relations might come from induced triples or from
Wikidata itself. Each of the relations in the infobox is also associated to its
provenance (might be a textual occurrence or a pre-existing triple in Wikidata)
as illustrated by Fig. 8.

5 Related Work

KGs are a common way to organize data from multiple sources providing a uni-
fied view and represent them in a semantically rich manner empowering a wide
range of downstream applications [15,18,29]. More specifically, Scholarly KGs
such as ORKG [16], MAG [39], OpenAIRE [25] are becoming popular way to
represent research data. Such KGs are used for search [4,14], question answer-
ing [17], recommendation [26,27], analysis of research trends [36], performing
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Fig. 7. An example of infobox for “Linked Data” an entity including both induced
facts and integrated Wikidata facts.

Fig. 8. Evidences for the induced fact (Linked Data, part of, Open Data)

surveys [30], and understanding the dynamics between academia and indus-
try [3].

The Semantic Web community has developed several methods and tools for
building KGs. There are comprehensive survey articles on building KGs from
relational databases [35], semi-structued data [33], and unstructured text [1,8,
11,28,34]. Rezayi et al. [31] propose an approach to augment a KG with key
phrases generated from textual content of entities. In our work, we augment our
KG with semantically rich triples generated from textual content of each entity.
Furthermore, we integrate the induced knowledge with the relevant portion of
background knowledge from Wikidata.

Trend analysis on KGs has been used for analysing research topics [21,36,41],
patents [40], market trends [2]. Wikidata parser presented in our approach allows
automatically create an induced knowledge graphs from text with a large num-
ber of Wikidata types (50K in 2022) enabling fine-grain analysis and seamless
integration of background knowledge from Wikidata that can be used in the
analysis.
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Cai et al. [7] proposes an explainable recommender by generating the candi-
dates using a KG and using an evolutionary algorithm. We use a simpler vector
space model to produce recommendations between different types of entities.

6 Conclusions and Future Work

In this work, we presented an application of the Knowledge Graph Induction
(KGI) technology to fulfill the requirements identified by a user study to enhanc-
ing cooperation in a research community. We have shown how the induced knowl-
edge enables several downstream applications, such as recommending and trend
analytics, providing evaluation for most of the component based on both quan-
titative and qualitative approaches. This year, we intend to deploy the recom-
mending technology to all the member of the IBM research community, in the
order of 6,000 people. We envision both in-app and “meet users where they are”
experiences outside the apps. In all cases, we will provide feedback mechanisms
(e.g. thumbs up/down, free text explanations) for users to share their view on
the quality of the recommendations. The intention is to feed this back into a deep
learning based recommender to learn how to better exploit the graph traversals.

In addition to trend analysis, we believe that KGI technology could also
be leveraged for flexible and on-demand business analytics, providing powerful
insights to accelerate business, for example:

Predicting Success. What are the characteristics of research projects that
result in recognition and awards. How do we invest in new projects that
exhibit these characteristics to better steer the IBM research agenda? Which
papers should we support to have the best chance of publication at key con-
ferences?

Business Development. Quickly identifying relevant research activity of inter-
est to current or prospective clients or partners

Operations and Efficiency. Who is working on what projects and is time
being used effectively? Is there duplicate activity? Where are the gaps? What
are best opportunities for cross-collaboration?

Talent. Who are the rising stars? How do we find the right projects for them,
or nominate them for external awards?

Portfolio. Tracing research projects and outcomes to Objects and Key Results.

We plan to develop KEP for the use cases above that can be generalized
beyond the research community use case. We believe that the KEPs can be
designed to cover variety of different use cases in many different organizations.

Moreover, we are planning to acquire KGs from different research commu-
nities (e.g. Semantic Web, NLP, Deep Learning communities) and make them
available to the community. The goal is to act as a catalyzer for future research
work in the research community beyond IBM.
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1 Introduction

One of the biggest challenges in industrial digitization is to bridge the gap
between Operational Technology (OT) and Information Technology (IT). OT is
centered on a physical world composed of machines, manufacturing equipment,
and other hardware, where a massive amount of data is generated. However, IT
is focused on the contemporary digital world, using data centers, servers, and
smart applications to consume the data. These two domains have traditionally
functioned in isolation [6]. The rise of Industry 4.0, along with increasing con-
nectivity between humans, machines, and sensors, is driving the convergence of
IT and OT, shifting data-supported decision-making from the individual to the
system level and enhancing factory efficiency. However, IT/OT convergence is
difficult to achieve. One example is the deployment of ML on industrial devices,
where ML presents the IT world and industrial devices present the OT world.

ML is one of the fast-growing technical advancements. Applying ML, specif-
ically Neural Network (NN), in the industry by leveraging sensor and system
data can provide reliable insights into the factory and accelerate smart manu-
facturing. Standard ML applications transfer massive field data to the cloud and
centrally process the data against NN models. Concerns have been raised because
this data transfer causes numerous issues, such as high energy consumption and
latency, privacy leaks, bandwidth congestion.

With the Internet of Things (IoT) growth, factories will be equipped with
increasingly powerful, connected, and intelligent devices. This plays a key role
in the continuing industrial evolution. Offloading ML intelligence from the cloud
to the Industrial IoT (IIoT) devices enables performing ML tasks near data
sources and reducing reliance on data transfer, which addresses the latency and
security concerns. However, applying on-device ML in the industry where mass
deployment happens is still challenging.

IIoT devices are specialized to fulfill different tasks. They come in all shapes
and sizes, differ in terms of onboard sensors, available memory and storage capac-
ities, and have various runtime platforms. In the context of on-device ML, they
rely on NN models to interpret sensor data, make predictions about their envi-
ronments, and take intelligent actions locally. NN models are developed with
various structures, e.g., different combinations of layers and individualized pre-
and postprocessing blocks. Additionally, most trained NN models are distributed
as binary files without a clear and standardized description of their usages. The
diversification and proliferation of hardware (IIoT devices) and software (NN
models) widen the gap between each other.

Many compatibility issues must be carefully investigated to run ML properly
on the devices, such as sensor input format, memory constraints, and sensor
availability. Specifically, we want to answer two sets of questions:

1. How do we achieve the co-management of IIoT devices and NN models?
(a) How do we determine which devices may execute a specific NN?
(b) Given a device, how do we determine which trained NN model is com-

patible with it? Does the model meet requirements for accuracy, memory,
and latency?
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2. How do we accelerate the engineering and deployment of ML applications in
IIoT? How might cross-domain collaborations be facilitated and the solution
be made accessible to all?

We present a framework called Semantic Low-Code Engineering for ML
Applications (SeLoC-ML), a system for managing and deploying ML on devices
in IIoT at scale. Here, we propose to use formalized semantic models to describe
heterogeneous IIoT devices and NN models, respectively. With ontology schemas,
we can model the knowledge about devices and NN models semantically in a
unified language and centrally store it in a Knowledge Graph (KG), making
the knowledge searchable like Web resources. As a result, many features are
enabled, such as vendor-agnostic knowledge discovery and matchmaking model
requirements with device capabilities.

Another aspect of our work is deploying NN models on the devices and
integrating ML applications into end-user IIoT applications. More crucially, we
aim to make the approach accessible and understandable to non-experts. We
propose integrating SeLoC-ML into a low-code platform, allowing developers
without necessary expertise to use semantic services and deploy ML models
declaratively, advancing IT/OT convergence. In the background, user inputs
are parsed, and corresponding SPARQL queries1 are formulated to retrieve the
information from the central graph database automatically. Additionally, differ-
ent deployment options will become available depending on matching results,
allowing developers to generate projects and deploy ML on the devices with
minimal effort. Last but not least, we leverage semantic application templates,
so-called recipes [24], to assist developers in integrating ML applications into
greater pipelines and creating end-user applications rapidly. We support appli-
cation development by matching the data types used in recipes with the data
points provided by the devices, which are defined by common semantic models.

As an example of this approach, we present the solution on a Siemens Pro-
grammable Logic Controller (PLC) SIMATIC S7-15002 using the Siemens low-
code platform Mendix3 [12]. We demonstrate in Mendix how to search and
matchmake an NN model with a SIMATIC S7-1500 Technology Module Neural
Processing Unit (TM NPU)4 connected with an Intel RealSense camera5. The
goal is to find an trained NN model compatible with the TM NPU for classifying
different types of objects on a conveyor belt. Following a successful match, an
engineering project for Totally Integrated Automation (TIA) Portal6 - a Siemens

1 https://www.w3.org/TR/rdf-sparql-query.
2 https://new.siemens.com/global/en/products/automation/systems/industrial/plc/

simatic-s7-1500.html.
3 https://www.mendix.com.
4 https://new.siemens.com/global/en/products/automation/systems/industrial/plc/

simatic-s7-1500/simatic-s7-1500-tm-npu.html.
5 https://www.intel.com/content/www/us/en/architecture-and-technology/

realsense-overview.html.
6 https://new.siemens.com/global/en/products/automation/industry-software/

automation-software/tia-portal.html.

https://www.w3.org/TR/rdf-sparql-query
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500.html
https://www.mendix.com
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/simatic-s7-1500-tm-npu.html
https://new.siemens.com/global/en/products/automation/systems/industrial/plc/simatic-s7-1500/simatic-s7-1500-tm-npu.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html
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Integrated Development Environment (IDE) for industrial automation - can be
automatically created and ready for deployment. Later, we present how to use
a semantic recipe to orchestrate the ML application and easily build an end-
user application in Mendix to monitor the classification results. The evaluation
results show that SeLoC-ML can reduce engineering effort by a factor of at least
three compared to conventional approaches.

The remainder of this paper first presents related work on ML in IoT, Seman-
tic Web technologies, ML management, and low-code programming in Sect. 2.
Section 3 describes SeLoC-ML from the semantic system to low-code platform
integration. Section 4 demonstrates SeLoC-ML on an industrial classification
problem using Siemens products as an example. In Sect. 5, we evaluate the
approach, compare it with the traditional workflow and provide the benefits
of SeLoC-ML. Finally, Sect. 6 concludes the paper and discusses future work.

2 Related Work

Advancements of On-Device ML. On-device ML is more than just an algo-
rithm. It is about the proliferation of hardware, progress on algorithms, emerg-
ing ecosystem, and transformative applications. Ultra-low-power devices have
been designed for always-on applications [7,11]. Various algorithms have been
proposed to fully exploit ML models on the devices without compromising per-
formance [17,22]. Collaborative ecosystems can further squeeze the potential
from the synergism of hardware and software [5,16]. Last but not least, many
applications have been brought from a proof-of-concept to products [1,8].

Semantic Web Technologies. Semantic Web technology provides means for
building, storing, and handling diverse data sources of different structures, mak-
ing it an ideal candidate for information modeling and integration in IoT. Evi-
dence has shown the benefits of semantics in industrial domains [13,19]. In the
context of IoT, ontologies like Sensor, Observation, Sample, and Actuator Ontol-
ogy (SOSA) [10], Semantic Sensor Network Ontology (SSN) [3], and Semantic
Smart Sensor Network Ontology (S3N) [20] are few prominent semantic mod-
els for describing intelligent IoT devices, their properties, and interactions. The
Thing Description (TD) [2] ontology developed by the World Wide Web Con-
sortium (W3C) Web of Things (WoT)7 working group specifies the metadata
and interfaces of IoT devices. iotschema.org8 is yet another semantic model in
the IoT domain, which is used to enrich the data among connected things. This
study is interested in combining these semantic schemas with our proposed NN
model ontology [18] for modeling the heterogeneous knowledge about devices
and NN models in IIoT.

7 https://www.w3.org/WoT.
8 http://iotschema.org/.

https://www.w3.org/WoT
http://iotschema.org/
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Management of On-Device ML. There are hundreds of billions of IoT
devices today, and new ML models are developed and distributed daily. To man-
age these resources at scale, it is necessary to increase the interoperability and
transparency of the ecosystem. Open Neural Network Exchange (ONNX)9 aims
to provide a shared exchange format that allows developers to use ML models
across different deep learning frameworks. However, it fails to provide descrip-
tions of models in a formal way. To overcome this limitation, TensorFlow Lite
Metadata10 and Model Card [14] are introduced to formally document ML mod-
els. Few databases [15,26] are introduced for tracking ML models. Nevertheless,
they do not scale well since many manual works are required, and their informa-
tion models do not express the relationships between ML models and hardware.
ML models need to be studied together with the specifications of hardware to
achieve joint management.

Low-Code Engineering. Despite remarkable IT/OT integration achieve-
ments, the current state of developing complex IIoT applications is still far
from satisfactory [25]. The concept of low-code engineering and corresponding
platforms, such as Mendix [12], are introduced to support fast application devel-
opment without a prerequisite of having enhanced coding skills [9]. Low-code
concepts find their applications in the manufacturing domain [21,27], allowing
to quickly build industrial applications based on the services provided by the
machines on the shop floor. To match the business requirements with the exist-
ing functionalities of the machines and compose them meaningfully, we use the
notion of recipes [24] as an easy way to model such compositions. Recipes can
be seen as application templates [23] developed to solve a class of problems and
can be later easily configured for a specific use case.

3 Approach

We present SeLoC-ML considering the interoperability and deployment obsta-
cles in ML applications in IIoT. This section starts by introducing the frame-
work setup. The proposed architecture relies on a semantic system designed to
cover but not be limited to the use case addressed in this study. We illustrate
the semantic system, from the ontology to the semantic services. Next, a sim-
plified KG and two SPARQL queries are presented to exemplify the system’s
advantages. We then propose integrating SeLoC-ML into the Siemens Mendix
low-code platform allowing developers to easily identify and matchmake compo-
nents, deploy NN models to the devices upon matching, and quickly prototype
IIoT user applications.

3.1 Framework Architecture

Figure 1 presents the SeLoC-ML framework. The figure on the left illustrates that
developers are faced with a gap between software (NN models) and hardware
9 https://onnx.ai.

10 https://www.tensorflow.org/lite/convert/metadata.

https://onnx.ai
https://www.tensorflow.org/lite/convert/metadata
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Fig. 1. Framework architecture of SeLoC-ML.

(IIoT devices). We first propose to utilize two semantic models to describe IIoT
devices and NN models, respectively. Here, any formalized semantic models can
be applied, but for demonstrating the technology in the industrial environment,
we choose the standardized W3C TD [2] to describe devices. Aligning with the
TD, we design a semantic ontology [18] with a conversion tool for describing NN
models in terms of their metadata, structures, and hardware requirements. Thus,
knowledge about heterogeneous IIoT devices and NN models can be translated
into unified semantic descriptions against their ontologies and be hosted together
in a KG, as shown on the right side of the figure. The bottom of the figure shows
that even non-experts can easily scrape the KG with Mendix. Mendix will auto-
matically formulate queries based on user inputs and retrieve desired answers
from the graph. Upon matchmaking, different deployment options are made
available. A ready-to-be-deployed engineering project can be generated based
on user configurations and the retrieved semantic information. This is known as
ML-as-a-service [4]. Finally, developers can leverage semantic application tem-
plates recipes to accelerate user application development.

3.2 Semantic System

Ontology. We presented an ontology11 [17] to describe NN models in the con-
text of IoT, as shown in Fig. 2. By reusing existing schemas, such as S3N and
SOSA, we aligned the ontology with other Web standards and avoided reinvent-
ing the wheel. For research and demonstration purposes, the ontology has been
designed to guarantee its interoperability and compatibility with TD, which we

11 https://tinyml-schema-collab.github.io.

https://tinyml-schema-collab.github.io
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applied to describe IIoT devices. The ontology can render three different forms
of information about a NN: 1) metadata, such as the date of creation, cate-
gory, and literal description; 2) structure, such as the input and output layers;
3) hardware requirements, such as memory and sensors.

As references, we provide interested readers with examples of semantic
descriptions of IoT devices and NN models in our repository. Additionally, scripts
are available, which can generate a semantic representation of a given NN model
along with some user inputs since not all information can be obtained by parsing
the NN model, such as dataset and author information.

s3n:Algorithm

schema:name

:trainingDataset

:inputLayer
:outputLayer
:middleLayer

s3n:hasProcedureFeature

schema:runtimePlatform

:NeuralNetwork

:hasType

:hasActivation

:Layer

schema:Text

schema:url

rdfs:class

rdf:property

rdfs:subClassOf

ssn:Input

ssn:Output

:hasInputInfo

:NetworkInput

:hasOutputInfo

:NetworkOutput

:shapeIn

:shapeOut

schema:Number

schema:Number
schema:Text

schema:Text

schema:Number :hasIndex

schema:Text

:hasMetric :hasMetricValue
schema:Number

schema:identifier
schema:Text

schema:codeRepository

schema:citation
schema:url

:hasCategory
schema:description

schema:Text

:hasMultiplyAccumulateOps
schema:Number

schema:dateCreated
schema:Date

schema:creator
schema:Text

ssn-system:inCondition

s3n:ProcedureFeature

s3n:Memory
s3n_extend:Flash

s3n_extend:RAM

<enumeration>
:Activation

:Relu

:Tanh

......

<enumeration>
:Quantization

:Int8

:Int16

......
<enumeration>

:LayerType

:FullyConnected

:Quantize

:DepthwiseConv2D

......

<enumeration>
:Metric

:Top_1_accuracy

:Top_5_accuracy

...... <enumeration>
:NetworkCategory

:Classification

:ObjectDetection

:FeatureExtraction

:Unsupervised

......

schema:Text

:hasQuantization

schema:url

ssn_extend:provideInput

sosa_extend:hasSensorInfo

sosa:Sensorsosa_extend:Microphone

sosa_extend:Camera

sosa_extend:Gyroscope

......

ssn:hasOutput

ssn:hasInput

schema:SoftwareSourceCode

Fig. 2. Ontology of NN model in IoT.

Knowledge Graph. We can design a central KG that stores information from
NN models and IoT devices using the semantic schemas introduced above. For
an example, we used GraphDB12 to demonstrate a simplified KG composed of
nine IoT devices and 22 NN models. As depicted in Fig. 3, the NN model and
device nodes are drawn on the left and right sides of the figure, respectively. An
NN model called Move is expanded in the center, displaying its properties. We
collect NN models trained using TensorFlow, one of the most prominent deep
learning frameworks. However, our approach can be easily scaled to cover differ-
ent devices, NN models, and frameworks. As previously mentioned, we provide
the code and examples for creating KG and interacting with it.

12 https://www.ontotext.com/products/graphdb.

https://www.ontotext.com/products/graphdb
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Discovery and Matchmaking. Many specific uses and services can be enabled
once the KG has been created. We use two simple queries to answer two questions
against the KG example introduced above for a demonstration. More queries can
be found in our repository. The used namespaces and corresponding prefixes are
given as follows:

# Our NN ontology
nnet: <http://tinyml-schema.org/

networkschema/>
# Schema.org Vocabulary
schema: <https://schema.org> .
# Units of Measure Vocabulary
om: <http://www.ontology-of-units-of

-measure.org/resource/om-2/> .
# SSN Ontology
ssn: <http://www.w3.org/ns/ssn/> .

# S3N Ontology
s3n: <http://w3id.org/s3n/> .
# Extension of the SOSA ontology
sosa_extend: <http://tinyml-schema.org/

sosa_extend#> .
# Extension of the SSN ontology
ssn_extend: <http://tinyml-schema.org/

ssn_extend#> .
# Extension of the S3N ontology
s3n_extend: <http://tinyml-schema.org/

s3n_extend#> .

Fig. 3. A simplified KG containing 22 ML models and nine devices.

1. We have an IoT device on which we want to deploy an NN model. The device
is equipped with a camera, and it has 144 and 621 Kb of available RAM and
Flash, respectively. We want to determine all possible NN models that can
be executed on this device.

2. We trained an NN model for motion classification using gyroscope and
accelerometer data. Given that the minimum RAM and Flash requirements
for running this model are 121 and 610 Kb, respectively, we want to know
which available devices can run this model.
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Query 1:

SELECT ?uuid ?MACs ?RAM ?Flash ?Description
WHERE {

?nn a nnet:NeuralNetwork ;
schema:identifier ?uuid ;
schema:description ?Description ;
ssn:hasInput ?input;
nnet:hasMultiplyAccumulateOps ?MACs ;
s3n:hasProcedureFeature ?x_1 ;
s3n:hasProcedureFeature ?x_2 .

?x_1 ssn-system:inCondition ?cond_1 .
?x_2 ssn-system:inCondition ?cond_2 .
?cond_1 a s3n_extend:RAM ;

schema:minValue ?RAM ;
schema:unitCode om:kilobyte .

?cond_2 a s3n_extend:Flash ;
schema:minValue ?Flash ;
schema:unitCode om:kilobyte .

?sensor ssn_extend:provideInput ?input;
a sosa_extend:Camera .

FILTER (?RAM <= 144)
FILTER (?Flash <= 621)

}

Result:
uuid: 2c... ; MACs: 7158144; RAM: 94 Kb; ...
uuid: 49... ; MACs: 7387976; RAM: 116 Kb; ...

Query 2:

SELECT ?Device ?RAM ?Flash
WHERE {

?Device a s3n:SmartSensor ;
ssn:hasSubSystem ?system_1 ;
ssn:hasSubSystem ?system_2 ;
ssn:hasSubSystem ?system_3 .

?system_1 a sosa_extend:Accelerometer .
?system_2 a sosa_extend:Gyroscope .
?system_3 a s3n:MicroController ;

s3n:hasSystemCapability ?x .
?x ssn-system:hasSystemProperty ?cond_1 .
?x ssn-system:hasSystemProperty ?cond_2 .
?cond_1 a s3n_extend:RAM ;

schema:value ?RAM ;
schema:unitCode om:kilobyte .

?cond_2 a s3n_extend:Flash ;
schema:value ?Flash ;
schema:unitCode om:kilobyte .

FILTER (?RAM >= 121)
FILTER (?Flash >= 610)

}
ORDER BY ?RAM

Result:
Device: 002; RAM: 172 Kb; Flash: 628 Kb.
Device: 003; RAM: 187 Kb; Flash: 785 Kb.

Fig. 4. Semantic similarity search.

3.3 Low-Code Platform Integration

Semantic Web techniques are not easy to learn and use. Likewise, on-device ML
is another entirely different field that is challenging to understand. To motivate
cross-domain collaborations and simplify IT/OT convergence, we encourage inte-
grating SeLoC-ML into a low-code platform - Mendix. Mendix allows developers
to design, build, deploy, and operate IoT applications rapidly.

Semantic Management of On-Device ML. We created a Mendix applica-
tion with a user-friendly Graphical User Interface (GUI) connected with a KG
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in the background. The application package is published in our repository. Three
main semantic services are provided in the application:

1. Discovery: Developers can browse through all available NN models and IIoT
devices in the graph database and inspect their details.

2. Matchmaking: Once the developer selects an IIoT device/NN model in the
application, SPARQL queries are automatically formulated to retrieve all
compatible NN models/devices.

3. Semantic Similarity Search: Imagine if hundreds of thousands of IIoT
devices and NN models were hosted in the KG, it would be tedious to examine
them one after another manually. Semantic similarity search13 enables users
to explore relevant objects in the KG by typing a search text, similar to
Google Search. In our example, users can search the stored components by
filling in the provided form with their requirements, as shown in Fig. 4.

ML-As-a-Service. Moreover, depending on the matched devices, different
deployment options become available, and corresponding project code can be
generated by parsing the retrieved information. Of course, specific user config-
urations will be asked to complete the project creation. We aim to provide a
high-level abstraction for deployment, which is as hardware-agnostic as possible.

Problem

discover 
&

matchmake
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Hardware Selection)
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Data Labelling

Model
Converter

Deployment
Project

Data

Deployment
Project
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Fig. 5. Comparison between the traditional, template, and semantic approach.

13 https://graphdb.ontotext.com/documentation/standard/semantic-similarity-
searches.html.

https://graphdb.ontotext.com/documentation/standard/semantic-similarity-searches.html
https://graphdb.ontotext.com/documentation/standard/semantic-similarity-searches.html
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Rapid User Applications Development. Further, we use Mendix to rapidly
prototype an IIoT application using the concept of recipes. Recipes provide
platform-agnostic application templates that can be easily deployed and con-
figured for common automation tasks. They specify the application logic and
the information about input and output required by the tasks [23]. Device data
is described using standardized semantic models, such as OPC UA companion
specifications14. Such a semantic model is stored in the knowledge graph and,
at the same time, it is used for developing the recipes logic in Mendix. End-user
applications can be instantiated by matching the data points provided by system
components with the data types required by the recipe. As a result, developers
quickly orchestrate an end-user application, ready to be delivered.

4 Workflow Comparison and Case Study

This section first outlines SeLoC-ML by comparing it with the State-of-the-
Art approaches. Figure 5 presents three different workflows for constructing ML
applications in IIoT. Traditionally, after the project planning, ML developers
are engaged to engineer an ML model systematically, from data collection and
labeling to model building and training. Afterward, embedded engineers take
over the work, where the trained model is optimized and converted for the tar-
get runtime platform through Model Optimizer. An embedded project is then
engineered with the ML model and uploaded to the device. Later, software engi-
neers design a user application to integrate the ML application and report the
results to end-users. As can be seen, it is difficult to feature an IIoT ML applica-
tion that requires cross-domain expertise and a significant amount of engineering
work.

SeLoC-ML offers an all-in-one solution based on Mendix low-code platform
to alleviate the situation. SeLoC-ML is generic enough, but for easily quantifying
the evaluation and demonstrating its benefits, we illustrate it on an industrial
ML classification use case where a NN model is to be discovered and applied on
a Siemens TM NPU. Of course, the SeLoC-ML framework can be quickly scaled
and applied to other domains and/or use cases.

In-Use: Building an ML Application on Siemens SIMATIC

The case study is conducted on a Festo Didactic workstation15 controlled by a
Siemens SIMATIC S7-1500 PLC, as shown in Fig. 6. In the running example,
the vacuum gripper on the left side puts workpieces on the conveyor belt, trans-
porting them to the following process. Different workpieces need to be classified
for different downstream handlings, and unidentified objects should be sorted
out before the next step. A TM NPU connected with an Intel RealSense camera
14 https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-

specifications/.
15 https://www.festo-didactic.com/int-en/learning-systems/process-automation-

control-theory.

https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
https://www.festo-didactic.com/int-en/learning-systems/process-automation-control-theory
https://www.festo-didactic.com/int-en/learning-systems/process-automation-control-theory
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Fig. 6. Festo Didactic working station controlled by a SIMATIC S7-1500 PLC with a
connected TM NPU.

is installed on the workstation, controlled by the SIMATIC S7-1500 PLC. TM
NPU enables the execution of ML models directly on Siemens PLCs. Our goal is
to leverage Mendix to discover, configure, and deploy an NN model on the TM
NPU for classifying workpieces on the conveyor belt using images captured by
the camera.

Discovery and Matchmaking. We explore all the reusable ML models in the
KG that can run on the SIMATIC TM NPU without spending much time going
through the traditional approach and generating a new model from scratch. This
can be done in Mendix with a simple click, and all compatible ML models will
show up in a pop-up window, as depicted in Fig. 7. After reviewing the results,
we select the model workpieces conveyorbelt mobilnet for our use case.

Fig. 7. Discovery and matchmaking results.
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Deploying ML on Hardware. After matchmaking, different deployment
options become available depending on the selected devices and their runtime
platforms. In our case, Mendix creates relevant files for the TM NPU and PLC
project. As shown in Fig. 7, specific configurations still need to be given by users,
but most of the information in the project is filled automatically by parsing the
retrieved semantic descriptions. With all project files loaded to the hardware,
the ML application is now ready for execution.

Creating a User Application Using Recipe. The classification results from
the TM NPU are made available via an OPC UA server. We created a recipe
that provides a template for visualizing object classification results based on
their color for our running example. To instantiate the recipe, Mendix matches
the data supplied by the PLC with the data types defined in the recipe, based on
the definitions given in the OPC UA companion specification. The application
developer must acknowledge the match before the application can run. Then,
Mendix runtime gets the results of the NN processing, available in the address
space of the respective OPC UA server, and represents them in the dashboard,
enabling real-time monitoring, as illustrated in Fig. 8.

Fig. 8. End-user application that monitors the classification results.

5 Evaluation

This section first compares SeLoC-ML with the traditional approach qualita-
tively. Further, a quantitative analysis is conducted. For that, the example from
the last section is chosen based on our available products to quickly generate
results.

5.1 Qualitative Analysis

Reliability and Flexibility. Reliability is one of the essential factors in the
industry since a single failure can cause significant losses. Unfortunately, it is
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not easy to achieve successful ML applications in IIoT using the conventional
workflow since many processes are involved, each of which requires extensive
domain knowledge and labor. This can potentially raise the failure probability.
SeLoC-ML provides consistent services within one tool that can automate the
engineering work by complying with semantic standards, reducing error, and
guaranteeing reliability. Moreover, it is important to provide flexible solutions
to keep pace with the fast-evolving IIoT world. SeLoC-ML is generic enough to
be applied in other scenarios, avoiding examination on a per-instance basis.

Scalability and Interoperability. It is more beneficial to reuse existing ML
models than to invent a new one every time since reusability means less cost
and better scalability. However, one of the major concerns in IIoT is heterogene-
ity. Numerous trained NNs could be used for various industrial applications,
but it is unclear how to apply them in a concrete use case or on specific hard-
ware. As the IIoT network expands, millions of devices from different vendors
emerge, making manual management of a massive amount of hardware and soft-
ware almost impossible. The proposed approach presents information in a unified
language. This ensures that both humans and machines can consistently inter-
pret the stored data and enable automatic development at scale. Besides, our
semantic framework is vendor-independent and platform-neutral, enhancing the
transparency and interoperability of the ecosystem.

5.2 Quantitative Analysis

We quantitatively evaluate the approach using the conveyor belt example,
described in Sect. 4, since this industrial application is representative and sim-
ilar results have been achieved on other use cases and platforms. We present
the experimental results in the following steps: 1) we describe the file structure
in the deployment project; 2) we compare the semantic approach (SeLoC-ML)
against the other two methods regarding the engineering effort for generating
the project, scalability, error rate, and tools required.

A minimum of five engineering artifacts should be engineered and created in
the project: a configuration of the ML model used, and a user logic for processing,
as well as the corresponding logic in the PLC for exchanging the data with TM
NPU and consuming its results, as shown in Table 1.

Table 1. Project files

Function

npu app.conf Configure the ML model on TM NPU

main.py Configure on-device ML model execution

DataTypes.udt Define data type(s) for PLC/TM NPU interaction

fbLogic.scl Define function block to interact with TM NPU

ControlData.db Define data block to store the data internally in PLC memory
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We compare the implementation effort for programming our running exam-
ple project for three different implementations: 1) traditional approach: pro-
gramming the whole application from scratch; 2) template approach: providing
a user with the pre-developed ready code template that need to be addition-
ally configured for a specific application; 3) semantic approach: SeLoC-ML. We
count the number of LOC needed to be manually programmed to implement the
running example for every solution. Here, we define LOC to include the num-
ber of lines developers need to program and other configuration input that they
must provide, for example, the user input in Mendix, as shown in Fig. 7. Table 2
presents the results of measuring the engineering effort.

Table 2. Engineering effort in LOC based on the running example

npu.conf main.py datatypes.udt fbLogic.scl dataBlock.db Total

Traditional approach 20 284 40 408 14 766

Template approach 10 19 3 3 3 38

Semantic approach 4 6 1 1 1 13

Moreover, we studied the flexibility of the approaches in terms of their scal-
ability, i.e., the ability to add new data to the interaction between the PLC and
TM NPU. This is especially important when switching between different use
cases and/or NNs. Compared to the traditional approach, both template and
semantic approaches showed a significant reduction of the LOC. It is worth not-
ing that the semantic approach scales better than the template approach, as we
managed to reduce the engineering effort by a factor of three with SeLoC-ML.

Another aspect to consider is the error rate. Getting the most of the code
generated will decrease the number of errors made during programming. Once
the code generation process is validated, the produced code will be errorless.

Additionally, we consider the number of tools needed to create the entire
project for PLC and TM NPU. Using our approach, we generate the entire solu-
tion in one place using our Mendix application. Both traditional and template
approaches require an engineer to have competencies in at least three differ-
ent tools: a model converter tool is needed for creating the NN configuration
(npu.conf ), some IDE for python programming to edit the user logic for NN
processing (main.py), and TIA Portal for PLC programming. Table 3 provides
an overview of the tools required for each solution.

Table 3. Engineering tools used for programming the running example

npu.conf main.py *.udt, *.scl, *.db Total

Traditional approach Model converter Python IDE TIA Portal 3

Template approach Model converter Python IDE TIA Portal 3

Semantic approach Mendix 1
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6 Conclusion and Future Work

We have experienced various challenges in implementing ML in IIoT due to the
heterogeneity of the ecosystem. This study presents SeLoC-ML for managing and
deploying ML on the IIoT devices at scale by leveraging Semantic Web technol-
ogy. Many out-of-the-box features were enabled using KG, such as knowledge
discovery, similarity search, and matchmaking software (NN models) and hard-
ware (devices). By integrating SeLoC-ML in the low-code platform, Mendix, we
open new possibilities even for non-experts to easily access these semantic func-
tionalities, use ML-as-a-service for deploying ML models to hardware across the
platforms, and prototype end-user applications. The ontology and code examples
are available online and can be freely used and further extended.

The next steps, which are already underway, include further improvement
and integration of our approach to the production processes. As illustrated in
our repository, we have developed SeLoC-ML to support other platforms than in
our running example presented in the paper, such as, Arduino16. We intend to
conduct additional analysis on other scenarios and platforms and collect feedback
to further advance the robustness and scalability of our system. We hope to
foster the collaboration between the ML and the Semantic Web communities.
Therefore, provisioning the framework and making the toolchain available for
everyone is also one of our next steps.
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