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Abstract Advancements in unmanned aerial vehicle (UAV) technology have 
enabled the acquisition of images of a geographical area with higher spatial resolu-
tions as compared to images acquired by satellites. Detection and segmentation of 
objects in such ultrahigh-spatial-resolution (UHSR) images possess the potential to 
effectively facilitate several applications of remote sensing such as airport surveil-
lance, urban studies, road traffic monitoring crop monitoring, etc. Investigating these 
images for target extraction tasks turns out to be quite challenging, in the terms of 
the involved computation complexities, owing to their high spatial resolutions and 
information content. Due to the development of several deep learning algorithms and 
advanced computing tools, there exists a possibility of harnessing this information for 
computer vision tasks. Manual surveillance of airports or similar areas and manual 
annotation of images are cost-intensive and prone to human-induced errors. There-
fore, there exists a substantial requirement of automating the task of keeping track of 
the airplanes parked on the premises of airports for civil and military services. With 
this paper, we propose a framework for detecting and segmenting such airplanes in 
UHSR images with supervised machine learning algorithms. To detect the target i.e., 
airplanes, MobileNets-deep neural network is trained, whereas to segment the target, 
U-Net-convolutional neural network is trained with our dataset. Further, the perfor-
mance analysis of the trained deep neural networks is presented. The UHSR image 
dataset utilized in this research work is an airport dataset provided by SenseFly. Data 
is acquired by eBee classic drones, flying at a height of 393.7 ft., which provide 
2D-RGB images with a ground resolution of 3.14 cm/px.

P. Dhingra (B) · H. Pande · P. S. Tiwari · S. Agrawal 
Indian Institute of Remote Sensing, ISRO, Dehradun, India 
e-mail: parul.dhingra2709@gmail.com 

H. Pande 
e-mail: hina@iirs.gov.in 

P. S. Tiwari 
e-mail: poonam@iirs.gov.in 

S. Agrawal 
e-mail: shefali_a@iirs.gov.in 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
K. Jain et al. (eds.), Proceedings of UASG 2021: Wings 4 Sustainability, 
Lecture Notes in Civil Engineering 304, 
https://doi.org/10.1007/978-3-031-19309-5_16 

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19309-5_16&domain=pdf
mailto:parul.dhingra2709@gmail.com
mailto:hina@iirs.gov.in
mailto:poonam@iirs.gov.in
mailto:shefali_a@iirs.gov.in
https://doi.org/10.1007/978-3-031-19309-5_16


212 P. Dhingra et al.

Keywords Airplanes · Deep learning · Object detection · Semantic segmentation ·
UAV dataset 

1 Introduction 

Unmanned aerial vehicles (UAVs) [1] are utilized in civil and military arenas for 
several purposes such as surveillance, security, recreational, educational, rescuing, 
and monitoring. Due to their low maintenance cost, undemanding installations, and 
ability to maneuver over a geographical region with high mobility and reliability, they 
are better suited for such purposes as compared to satellites. However, weather plays a 
crucial role in their functionality, as bad weather conditions can adversely affect their 
maneuvering capabilities. UAVs equipped with advanced high-resolution cameras 
readily provide images and videos of a geographical area with continuity, reliability, 
and fine details. These images or videos can be further analyzed and processed to 
extract meaningful information from them for various applications. Over the past 
few years, UAVs are employed to conduct search and rescue operations in the sea 
[2], sense the temperature of streams by using thermal sensors [3], monitor crops 
and droughts, transport goods, inspect construction sites, and various other active 
and passive remote sensing applications [4]. 

Images acquired by aerial missions are subjected to various image processing 
steps [1] to increase their readability and quality. Firstly, initial estimates of the 
orientation and position of each image are acquired by the log files. To reestablish 
the true orientation and position of the images acquired by UAVs, aerial triangulation 
is implemented. With this step, many automated tie points are generated for conju-
gate points corresponding to multiple images. The automated tie points are used to 
optimize the image orientation and position with bundle block adjustment. Further, a 
digital surface model is created with oriented images. The features in multiple image 
pairs are matched which generates a dense point cloud. Subsequently, a digital terrain 
model is generated, and to remove distortion in images, the orthorectification process 
is implemented. The images are then combined into a mosaic to produce seamless 
images of the geographical area of interest. 

The high-resolution images can accommodate abundant and finer information 
about terrains, and therefore, possess the capability of discerning objects distinctly. 
This has led to research proliferation towards object detection in the field of remote 
sensing. The traditional object detection techniques [5] include selecting a desired 
area in the image, extracting the features in the desired area, and lastly, for classifica-
tion using the training classifier. A few examples [6] of traditional object detection are 
feature descriptors like SURF, BRIEF, SIFT, etc. for object detection, and machine 
learning algorithms like SVM, K-Nearest Neighbor, etc. for predictions. However, 
these techniques lack robustness and adaptability, and thus, require rigorous tuning 
of thresholds and parameters for different environments. Deep learning paves the 
way for increasing the robustness of detection algorithms, as they can perform better 
in environments where brightness, SNR, and backgrounds in an image differ and
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detect a wider range of objects in an image. Various deep learning algorithms like R-
CNN, Fast R-CNN, YOLO, Faster R-CNN, SSD, R-FCN, etc. have been developed 
for various object detection tasks. 

Traditionally, convolutional networks were used for classification tasks [7]. 
However, several segmentation applications require the assignment of class labels 
to each pixel. Ciresan et al. [8] proposed a network for such requirements, where 
the local region around the pixel was used to predict the class label. This algorithm 
was quite slow as it had to run separately for each local region/patch, and there was 
a trade-off between the use of context in terms of the size of patches and the accu-
racy of localization. To overcome these limitations, networks were developed where 
features from multiple layers were taken into account for classifier output. Further, 
Olaf Ronneberger et al. [7] developed a more advanced architecture where even with 
few training images precise segmentations could be achieved. 

The main contributions of this paper include: (1) Developing a supervised learning 
framework for detecting airplanes in UHSR images using MoblieNet-deep neural 
network acquired by UAVs. (2) Manually labeling airport images, and successfully 
implementing U-Net architecture for segmentation of airplanes in images acquired 
by UAVs. (3) Presenting objective performance analysis of the trained deep neural 
networks. 

The paper is organized as follows. Section 2 discusses the basic technical concepts 
underlying our research work. The method for the detection and segmentation of 
airplanes in UHSR images is presented in Sect. 3. Section 4 discusses the training and 
testing process, limitations, and objective analysis of the trained models. Section 5 
states conclusions. 

2 Background 

The section explains about constituents of digital images and their spatial resolution, 
and further, provides the background of neural networks and convolutional neural 
networks (CNNs). 

2.1 Digital Images and Spatial Resolution 

Digital image analysis and processing enables formulating techniques to remove 
noise from images, increase their interpretability, extract the desired object, and 
compress them for storage or transmission purposes. Images can be either in digital 
or analog format. 2D-Digital images are signals, say I’m(x,y), where x and y are 
two independent variables (spatial coordinates). The basic constituent of a digital 
image is a pixel. Pixels are picture elements that are square in shape. Digital images 
are a rectangular array of pixels [9]. For remote sensing applications, the sensors 
mounted on a platform capture the energy emitted or reflected by objects present in
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a geographical area. The sensors can be mounted on satellites, airplanes, or UAVs 
according to the desired application. The value of each pixel is directly proportional 
to the intensity of the light captured and recorded by the optical sensors at a given 
point. A grayscale image, where each pixel can attain a value in the range of 0–255, 
can be represented by a single 2D array, whereas an RGB image with three channels 
is represented by a collection of three 2D arrays, each for the red, green and blue 
channels. Pixels are the physical points containing a digitized value recorded by 
optical sensors. Digital images can be referenced with rows and columns. Digital 
images are stored in various image file formats [10] such as bitmap (BMP), tagged 
image file format (TIFF), joint photographic expert graphic (JPEG), portable network 
graphics (PNG), etc. Four types of resolutions define the characteristics of a digital 
image, namely, spectral, spatial, radiometric, and temporal. The spatial resolution 
[10] of an image corresponds to the actual area in the scene represented by a single 
pixel in an image when a sensor performs imaging with the instantaneous field of 
view (IFOV). It is a measure of the smallest object in a scene that can be discerned 
by the optical sensor sensing over a geographical area. The high resolution of images 
allows us to differentiate objects that are closer to each other. In our work, we deal 
with 2D-digital images that are acquired by capturing the reflected sunlight energy in 
the visible region of the electromagnetic spectrum. These images have an ultrahigh-
spatial resolution of 3.14 cm/px and are stored in Joint Photographic Expert Group 
(JPG) format. 

2.2 Neural Networks 

The brain is a highly non-linear data processing system, where complex computations 
are performed extremely fast. An artificial neural network tries to mathematically 
model the functioning of a brain for performing such non-linear computational tasks. 
The fundamental constituent of an artificial neural network is the artificial neuron 
[11]. A neural network is developed by interconnecting these neurons. The three basic 
elements of an artificial neuron are as follows. Firstly, the connecting links between 
the inputs and the neuron. With each link, there is a synaptic weight associated with it. 
Synaptic weights of artificial neurons can obtain negative as well as positive values. 
The input to a neuron is the summation of weighted inputs, with a bias added to 
it. Secondly, an adder to add weighted inputs and bias. The mathematical operation 
carried out at adder yields output vk : 

vk = 
m∑

j=1 

wk j  x j+bk (1) 

At the kth neuron, x j is input signal at jth synapse which is multiplied by the 
synaptic weight wk j , and bk is bias.
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Thirdly, an activation function limits the value of the output from the neuron. 
They are also called squashing functions, as they squash the values of outputs to 
permissible finite values. The mathematical notation for an activation function ϕ(.) 
yielding output yk is: 

yk = ϕ(vk) (2) 

The neural network consists of one or more layers comprising neurons. A single-
layered neural network is a network where inputs are fed directly to the output layer. 
In multi-layer networks, each neuron of a layer is connected with all the nodes of the 
input layer. The neurons within a layer are not connected. The feed-forward networks 
are the networks in which the signals are forwarded from one layer to the next without 
any feedback loop. There can be several layers between the source layer and the output 
layer. The layers in between the input layer and output layers are called hidden layers. 
The hidden layers enable the extraction of high-order statistics from input signals. The 
recurrent neural networks are the networks that contain at least one feedback loop. 
The recurrent networks are designed such that the output from every neuron in a layer 
is fed back to the network as input to all the neurons. The artificial neural network can 
be trained with supervised, unsupervised, or semi-supervised learning algorithms. In 
supervised learning, both the input signals and their corresponding desired outputs 
are utilized for training the network, thus we require labeled data. The input signal 
is fed to the network, and the loss is calculated by taking into account the predicted 
outcome and the ideal expected outcome. The unsupervised learning algorithms 
train the neural networks with unlabeled input signals. The semi-supervised way of 
learning takes into account both labeled and unlabeled training input signals. The 
applications of artificial neural networks for automating various tasks are automated 
driver assisting systems, speech recognition, handwriting recognition, etc. In our 
project, we have trained the neural network with supervised learning algorithms for 
automatic detection and segmentation of the target, i.e., airplanes. 

2.3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are widely used neural networks for 
extracting information from 2D-image data, where inputs are grid-structured, and 
there are spatial dependencies within the local regions [12]. The pixels in the neigh-
borhood of an individual pixel often have similar values; hence, image data exhibits 
strong spatial dependencies, which makes it highly suitable for CNNs. The CNNs 
can be used for spatial, temporal, and spatiotemporal input data. The image data 
exhibits translation invariance, where an object has the same interpretation irrespec-
tive of its location in the image. In CNN, similar feature values are created from 
local regions that have a similar pattern. The basic operation executed in CNNs is 
mathematical convolution. A convolution operation is a sliding dot-product carried
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out between the convolution filters and grid-structured inputs. The operation is bene-
ficial for data that exhibits a high level of spatial locality. CNN’s are neural networks 
in which at least one layer is the convolution layer. There can be one or multiple 
convolution layers in a neural network. As every feature value in the current layer 
is dependent on the small local region in the previous layer, the spatial relationships 
get inherited from one layer to the next layer. A three-dimensional grid structure 
with height, width, and depth define each convolution layer of a CNN. The depth 
refers to the number of feature maps in a convolutional layer. The primary building 
blocks of a typical feed-forward convolutional neural network are the convolution 
layer, pooling layer, rectified linear unit (ReLU) layer, fully connected layer, and loss 
layer. The convolution layer overlaps the kernel at every location in an image and 
performs a sliding dot product. The pooling layer performs the downsampling of the 
feature maps in a non-linear manner. Max pooling is one most commonly used non-
linear functions in the pooling layers. A new feature map is produced as the pooling 
layer acts independently on every depth slice of the feature map. The input image is 
partitioned into non-overlapping regions in a feature map, and the pooling function 
obtains the maximum value in the particular region to generate a new feature map. 
The pooling layer reduces the size of the feature map and the parameters required 
to train the network, hence, the computational complexities within the convolutional 
neural network are reduced. The commonly used activation function in CNNs is 
ReLU activation function. The ReLU function squashes the negative values to zero, 
and therefore, does not permit negative values to propagate in the network. The 
dimensions of a layer remain the same when an activation function is applied, as it 
only maps the values in the feature map corresponding to the activation function. 
After the implementation of convolution and max-pooling layers, lastly, the outputs 
are generated by implementing a fully connected neural layer. The loss layer which is 
the final layer of the convolutional neural network determines the deviation between 
the expected ideal outcome and the predicted outcome. Softmax loss and sigmoid 
cross-entropy loss are examples of such loss functions in the loss layer. The CNNs are 
used to perform object detection, classification, and segmentation tasks in computer 
vision. We have implemented CNNs to automate the task of target extraction from 
UHSR images. 

3 Methodology 

This section introduces the method for extracting airplanes from the UHSR images 
in an automated way. Figure 1 depicts the framework implemented for automated 
target extraction. The framework is explained in detail in subsections to follow.

Dataset 

The UHSR image dataset utilized in the project is captured by two eBee classic drones 
[13], flying at a height of 393.7 ft. The ground resolution of images is 3.14 cm/px. 
The images are taken over the geographical region of Le Bourget airport in Paris. The
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Fig. 1 Methodology for automated target extraction

dimension of the images is 4608 × 3456 pixels, and they are stored in JPG format. 
The 2D images possess red, green, and blue (RGB) channels, and thus, have a depth 
of three. The images contain one or multiple parked airplanes, along with several 
other objects like buildings, runways, automobiles, etc. Figure 2 introduces images 
from the airport dataset.

3.1 Object Detection 

Object detection implies that we aim toward enclosing the target object i.e., an 
airplane with rectangular bounding boxes. The deep neural frameworks perform 
better for this category of application than shallow networks [14, 15]. Our training 
set consists of thirteen RGB images. The images are annotated with LabelImg where
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Fig. 2 Images of the airport from the training dataset

annotations are stored in PASCAL VOC format. The trained network is tested with 
nine test images. 

Data Pre-processing 

The dimension of images is reduced to 800 × 600 pixels from 4608 × 3456 pixels to 
reduce the computational complexities and time required for training the deep neural 
network. 

Image Annotation using Labeling 

These processed images are manually annotated with LabelImg [16], version 1.8.0, 
open-source software for graphical image annotations. It generates the annotation 
files in XML (Extensible Markup Language) .xml format. The XML file saves the 
name of the image, size (800,600) and depth (3) of the image, name of the object 
annotated (airplane), and location of the manually annotated bounding boxes in the 
image. To train the neural network thirteen images are annotated manually (Fig. 3) 
which generates thirteen .xml files. 

Fig. 3 Image annotation 
with LabelImg
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Further, these thirteen individual .xml annotation files are combined and 
converted to CSV (Comma Separated Values) .csv file. The .csv file and 
image data are converted and stored in TFRecord (TensorFlow Record) format. 
The TFRecord format stores the data in binary format and significantly reduces 
the training time and occupies less space in the storage disk. The training data in the 
TFRecord file format is fed to the neural network. 

Network Architecture: SSD MobileNet-v2 

The SSD- MobileNet-v2 [17] deep learning architecture is implemented to clas-
sify and locate airplanes in digital images. The output of the network generates 
the bounding boxes around the desired feature and gives the confidence score for 
the class encapsulated by the box. In this architecture, the MobileNet-v2 model is 
used to classify features and subsequently, a single shot multi box detector model 
(SSD) is used to locate the feature with bounding boxes. MobileNet models [18] are  
lightweight neural network models that are based on depth-wise separable convolu-
tions, which facilitates the reduction in the size of the model. There is a significantly 
lesser number of parameters required in this model, as compared to other advanced 
deep learning frameworks like GoogleNet and VGG16 [18] for object detection. The 
convolutional blocks in Mobilenet-v1 consist of two layers, namely, the depth-wise 
convolution layer, and the pointwise convolution layer. The depth-wise convolu-
tion means that to each channel, a single convolutional filter is applied. Further, 
pointwise convolution is applied to merge the outputs from the depth-wise layer. The 
main difference between standard convolution and depth-wise separable convolution 
is that, the former filters and combines the inputs to generate the output in a single 
step, whereas the latter divides it into two layers, the first to filter and the second to 
combine. This division helps in reducing the size of the model, and hence, associated 
computations. The MobileNet-v2 [17] consists of an inverted residual structure as its 
backbone, where the thin bottleneck layer possesses the short connections between 
them. The inverted residual with a linear bottleneck layer is given the input which is a 
low-dimensional representation. It expands it to a high dimension and further, depth-
wise convolution filtering is performed. Finally, with the help of linear convolution, 
there is a backward projection to the lower dimension. These layers commendably 
enable the reduction in the memory footprint required during inference. The mobile 
net-v2 model comprises two types of blocks, the residual block (stride=1) and the 
downsizing block (stride=2). The ReLU6 in each block is the rectified linear unit 
activation function with maximum output limited to 6. The MobileNet-v2 architec-
ture comprises, firstly, a fully convolutional layer having 32 filters, and subsequently 
19 residual bottleneck layers. The SSD network [19] incorporates a feed-forward 
convolutional network. The SSD network is appended as the auxiliary network to 
the base network MobileNet-v2 architecture. The base network works as a feature 
extractor. The SSD network performs an object-detection task, where its outputs 
are bounding boxes and the corresponding confidence scores of the particular class. 
It implements non-max suppression as the last step for the detection of the object. 
The SSD MobileNet-v2 deep learning architecture is one of the most advanced and 
lightweight deep neural networks.
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3.2 Semantic Segmentation 

Semantic segmentation [20] intends to classify each pixel in an image to its corre-
sponding class/label. In semantic segmentation, pixels of multiple objects belonging 
to the same class are considered as a single entity. We intend to implement semantic 
segmentation of the image, where, all airplanes will belong to the same class-
‘airplane’. Let, there be m pre-defined labels, such that, label = {label1, label2, 
... labelm}, where j = 1 to m. Let, the image consists of k number of pixels, such that, 
pixel = {pixel1, pixel2, ... pixelk}, where i = 1 to k, then we intend to implement 
an architecture ‘S’ for semantic segmentation such that for each pixel: pixel, there 
is a class: labels assigned to it [20]. We train the U-Net network with thirteen RGB 
images. The trained network is tested with nine images. 

Data Pre-processing 

To reduce the computational complexities while training the neural network, images 
are resized to a dimension of 256 × 256 and are converted to the grayscale format. 

Image Annotations 

The U-Net architecture is a supervised machine learning technique. For every training 
image, we create its corresponding ground-truth mask image. The mask images are 
such that the pixels belonging to the target possess a value of ‘255’, and the value 
of background pixels is ‘0’. The ground truth mask is generated using Microsoft 
Paint3D. The dimension of ground truth images is 256 × 256 × 1. Figure 4 shows 
the examples of raw images from the dataset. Figure 5 presents their respective ground 
truth masks. Figure 6 shows the corresponding histogram for the ground truth masks, 
where the x-axis denotes the pixel values (0–255) and the y-axis denotes the count 
of pixels. The histogram indicates that the pixels of ground truth images have values 
of either 0 (background pixels) or 255 (pixels belonging to the target (airplane)). 

Network Architecture: U-Net 

The implementation of U-Net architecture for semantic segmentation requires less 
training data as compared to several other CNNs and provides good segmentation 
results [7]. The U-Net model comprises two paths, namely, contraction and expansion

Fig. 4 Raw images from the training dataset
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Fig. 5 Ground truth mask images 

Fig. 6 Histograms of corresponding ground truth mask images respectively

paths. There are a total of 23 convolutional layers in the architecture. To harness the 
context information of each pixel, the contracting path extracts the features [21] 
at various levels. It is performed by sequential implementations of convolutions, 
activation functions, and max pooling. Subsequently, to increase the resolution of 
the segmented features, the expanding path, which is symmetric to the contraction 
path, is implemented. It consists of sequential implementations of up-convolutions 
and ReLU activation functions. Due to the contraction and expansion nature of the 
architecture, it is called a U-Net architecture. To capacitate propagating context 
information to higher resolution layers, the upsampling network consists of a large 
number of feature channels. There are no fully connected layers in the entire U-
Net architecture. The final output from the expansion path consists of an image 
where the value of each pixel gives its class. The steps for the contracting path [7] 
are as follows. Firstly, it performs two 3 × 3 convolutions with 64 filters. After 
each convolution, the outputs are subjected to the ReLU activation function and are 
downsampled by using a 2 × 2 max-pooling operation with stride 2. With each 
downsampling step, the number of feature channels is doubled. The architecture for 
the expansion path is as follows. Firstly, the expansion path upsamples the feature 
map. Subsequently, to reduce the number of feature channels to half, a 2 × 2 up-
convolution is implemented, followed by a concatenation step. Further, two 3 × 3
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convolutions are implemented. The outputs from both the convolutions are subjected 
to the ReLU activation function. The final layer implements 1 × 1 convolutions, 
which relate a feature vector consisting of 64 components to the required number of 
labels. 

4 Model Training and Results 

The section presents the procedure implemented for training the deep neural 
networks, outputs predicted from the trained network, and additionally, the limita-
tions of the network. The networks are implemented on the cloud-computing platform 
by utilizing the data storage and computational capabilities provided by Microsoft 
Azure and Google Colaboratory. 

4.1 Object Detection 

Training 

To train the network [22], instructions are implemented in the Python programming 
language. The transfer learning technique is used for training the model. A pre-
trained model where the base model is trained with Microsoft’s Common Objects 
in Context-dataset [23] is utilized for transfer learning. This reduces the training 
time and the required computations and provides initial weights/checkpoints of the 
model. Further, we train the model to tune and update the weights/checkpoints of 
the model for our dataset consisting of thirteen images and their corresponding 
annotation files. The number of training steps and evaluation steps implemented 
are 4500 and 100 respectively. The value for batch size is 12. The model uses a 
sigmoid cross-entropy loss function for classification purposes and a smooth L1 loss 
function for localization purposes. The model is trained in a TensorFlow version 1.15 
environment. 

Test Results 

The trained SSD MobileNet-v2 deep neural network model is tested with nine RGB 
images. The detected object is saved using the following parameters: x and y coordi-
nates of the center of the bounding box, height and width of the bounding box, and 
confidence score. Figure 7 presents four test cases A, B, C, and D. Figure 8 presents 
predicted outputs from the trained network for the test cases.

Evaluation Metrics: Mean Average Precision 

The confidence score (CS) [24] indicates the probability of the presence of an airplane 
in a bounding box and the accuracy of the box itself. The mathematical equation for 
calculating confidence score (CS) is:
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Fig. 7 Test cases: RGB images A, B, C, and D 

Fig. 8 Detection results from the trained model



224 P. Dhingra et al.

CS = Probability (object) × IoU (3) 

The Intersection Over Union (IoU) is the ratio of the area of overlap between the 
ground-truth bounding box and predicted bounding box and the total area encom-
passed by both. It calculates the similarity between the predicted bounding box and 
its respective ground-truth box. Average precision (AP) [25] is the weighted sum of 
precisions, where the weight is the increase in recall, at each threshold, and m is the 
number of thresholds. 

AP = 
m=n−1∑

m=0 

[Recalls(m) − Recalls(m + 1)] ∗  Precision(m) (4) 

Concerning COCO challenge accuracy metrics [25], we set ten different IoU 
thresholds from 0.5 to 0.95 in the steps of 0.05. The accuracy metrics mAP, is 
calculated by averaging over all the APs of the classes detected by the object detection 
model. Our model is trained to detect a single class i.e., airplanes. The mAP = AP 
value achieved for our trained detection model is 95.9%. 

Limitations 

SSD-MobileNet v2 is trained to enclose the airplane feature in rectangular bounding 
boxes. When the trained network is tested with nine images, it is observed that if an 
image consists of an object whose spatial features are similar to that of an airplane, 
then it captures that object too as the target. Figure 9 shows the two limitation cases 
A and B, where the objects other than airplanes are enclosed in rectangular bounding 
boxes. 

Fig. 9 Limitation cases for object detection
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4.2 Semantic Segmentation 

To train the network we perform all the computations on the Microsoft Azure 
cloud-computing platform. The instructions to train the model are written in Python 
programming language. 

Training 

The network [7] is trained by utilizing neural-network libraries provided 
by Keras API. The training data is stored in PNG (Portable Network Graphics) 
format. Before initiating the training process, the data augmentation step is carried 
out, as we are aiming to train the network with a lesser number of images. The data 
augmentation process helps in minimizing the risk of overfitting while training the 
neural network. To execute the data augmentation, a few of the operations executed 
are flipping, zooming, shearing, etc. The initial weights of the network are set up 
using transfer learning. Further, we train the U-Net with our training data to update 
the weights with several epochs. The model’s weights get updated after every epoch 
if the loss reduces. The Adam-optimizer is used to update the model’s weights after 
each iteration. The loss function implemented while training the network is binary 
cross-entropy loss [26]: 

Loss = −  
1 

s 

s∑

i=1 

ai log
�

ai + (1 − ai) log 
( 
1 − �

ai 
) 

(5) 

where,
�

ai is the ith value in the model output, s is the output size, and ai is the target 
value. 

Test Results 

The neural network trained is trained with 150 epochs. The loss reduced from 1.5627 
to 0.01195 after 150 epochs. Figure 10 presents several examples of outputs from 
the trained U-Net neural network with 150 epochs. The first row consists of original 
RGB images used for testing the network, the second row presents the corresponding 
grayscale images which are fed to test the trained neural network, and the third row 
presents the outputs from the trained U-Net neural network.

Evaluation Metrics: Dice Coefficient 

Dice similarity coefficient (DSC) [27] evaluates the spatial overlap between the 
ground truth (‘M’) and the result obtained from the trained U-Net (‘N’) when tested 
with the test images. The mathematical equation for calculating the Dice similarity 
coefficient is: 

DSC = 2(M ∩ N)/(M + N) (6)
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Fig. 10 Outputs from trained U-Net neural network. First row: Original RGB images for testing. 
Second row: Corresponding grayscale images fed to network for testing. Third row: Outputs from 
the trained U-Net

The values of the dice coefficient range from 0 to 1. The higher value implies 
higher segmentation accuracy and high similarity in terms of spatial overlap between 
ground truth image and output image from the U-Net network. The value of Dice 
similarity coefficients obtained for the test set is 0.72. 

Limitations 

The training process of the U-Net deep neural network includes learning the features 
of the target object with each iteration. When the U-Net model is implemented for our 
dataset, it is observed that along with the target object, occasionally, it also segments 
the objects which have a similar shape as that of the target object in the same category. 
Hence, the limitation cases are the instances where the test image contains an object 
(not an airplane) that has similar spatial features as an airplane in the spatial domain, 
and when tested with the trained U-Net it segments it as the target object. 

5 Conclusions 

We have presented a framework for automatic detection and segmentation of 
airplanes in UHSR images captured by eBee classic drones. To accomplish this task 
with supervised machine learning algorithms, we have implemented state-of-the-art 
SSD MobileNet-v2 for object detection, and U-Net for semantic segmentation. The 
proposed approach gives arguably good accuracy metrics results for detection and
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segmentation tasks in the terms of mAP and dice coefficient respectively. The imple-
mented architectures possess a limitation that objects that are similar in shape to the 
target i.e., airplanes, are detected or segmented as targets too. The architecture for the 
segmentation of images performs hard classification for each pixel, where each pixel 
belongs to a class with either 0 or 100% probability. There can be impure pixels in the 
image, especially at the boundaries of the target, where they might contain both, a 
background object and a target object in an image. Research work can be carried out 
towards developing such neural network architectures that can distinctively specify 
those pixels as well. 
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