
Lecture Notes in Civil Engineering

Kamal Jain
Vishal Mishra
Biswajeet Pradhan   Editors

Proceedings 
of UASG 2021: 
Wings 4 
Sustainability
Unmanned Aerial System in Geomatics



Lecture Notes in Civil Engineering 

Volume 304 

Series Editors 

Marco di Prisco, Politecnico di Milano, Milano, Italy 

Sheng-Hong Chen, School of Water Resources and Hydropower Engineering, 
Wuhan University, Wuhan, China 

Ioannis Vayas, Institute of Steel Structures, National Technical University of 
Athens, Athens, Greece 

Sanjay Kumar Shukla, School of Engineering, Edith Cowan University, Joondalup, 
WA, Australia 

Anuj Sharma, Iowa State University, Ames, IA, USA 

Nagesh Kumar, Department of Civil Engineering, Indian Institute of Science 
Bangalore, Bengaluru, Karnataka, India 

Chien Ming Wang, School of Civil Engineering, The University of Queensland, 
Brisbane, QLD, Australia



Lecture Notes in Civil Engineering (LNCE) publishes the latest developments in 
Civil Engineering—quickly, informally and in top quality. Though original research 
reported in proceedings and post-proceedings represents the core of LNCE, edited 
volumes of exceptionally high quality and interest may also be considered for publi-
cation. Volumes published in LNCE embrace all aspects and subfields of, as well as 
new challenges in, Civil Engineering. Topics in the series include:

-Construction and Structural Mechanics-Building Materials-Concrete, Steel 
and Timber Structures-Geotechnical Engineering-Earthquake Engineering-Coastal 
Engineering-Ocean and Offshore Engineering; Ships and Floating Structures-
Hydraulics, Hydrology and Water Resources Engineering-Environmental Engi-
neering and Sustainability-Structural Health and Monitoring-Surveying and 
Geographical Information Systems-Indoor Environments-Transportation and 
Traffic-Risk Analysis-Safety and Security To submit a proposal or request further 
information, please contact the appropriate Springer Editor: Pierpaolo Riva at 
pierpaolo.riva@springer.com (Europe and Americas); Swati Meherishi at swati. 
meherishi@springer.com (Asia—except China, Australia, and New Zealand); Wayne 
Hu at wayne.hu@springer.com (China). 

All books in the series now indexed by Scopus and EI Compendex database!

mailto:pierpaolo.riva@springer.com
mailto:swati.meherishi@springer.com
mailto:swati.meherishi@springer.com
mailto:wayne.hu@springer.com


Kamal Jain · Vishal Mishra · Biswajeet Pradhan 
Editors 

Proceedings of UASG 2021: 
Wings 4 Sustainability 
Unmanned Aerial System in Geomatics



Editors 
Kamal Jain 
Department of Civil Engineering, Centre 
of Excellence in Disaster Mitigation 
and Management (CoEDMM) 
Indian Institute of Technology Roorkee 
Roorkee, Uttarakhand, India 

Biswajeet Pradhan 
Centre for Advanced Modelling 
and Geospatial Information Systems 
(CAMGIS) 
University of Technology Sydney 
Ultimo, NSW, Australia 

Vishal Mishra 
Department of Civil Engineering 
Indian Institute of Technology Roorkee 
Roorkee, Uttarakhand, India 

ISSN 2366-2557 ISSN 2366-2565 (electronic) 
Lecture Notes in Civil Engineering 
ISBN 978-3-031-19308-8 ISBN 978-3-031-19309-5 (eBook) 
https://doi.org/10.1007/978-3-031-19309-5 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2023 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9863-2054
https://doi.org/10.1007/978-3-031-19309-5


Preface 

Second International Conference on Unmanned Aerial Systems in Geomatics-2023 
(UASG-2021) was organized by the Department of Civil Engineering, Indian Insti-
tute of Technology Roorkee (IIT Roorkee) Roorkee, India, during 02–04 April 2021. 
UASG-2021 was conducted in the midst of Covid-19 pandemic and it was completely 
online. UASG-2021 was a great experience for its users as attendees, speakers and 
presenters with a huge global audience of around 500 registered and 1000+ free 
users for whom we made the sessions live on an open portal. The inauguration cere-
mony itself had almost 300 attendees from all over the world with 800 views on the 
open portal. There were 25 sessions, in which 8 keynote speakers distinguished and 
eminent in their respective fields shared their ideas and experiences, 4 theme-based 
sessions with over 30 plenary speakers focussed on different aspects and consid-
erations related to Unmanned Aerial Vehicles (UAVs) as well there were 3 special 
sessions covering specific details about various aspects and applications of UAVs. 

The main theme of this conference was “Wings for Sustainability”. We all are 
aware of the word “Sustainable Development”. With the increase in human popula-
tion, it is becoming very necessary to adopt such practices. The focus of the confer-
ence was how drones can be instrumental in achieving the Sustainable Development 
and the 17 Sustainable Development Goals envisioned by the United Nations for 
2030. The Sustainable Development Goals (SDGs), otherwise known as the Global 
Goals, are a set of objectives within a universal agreement to protect all that makes 
the planet habitable and ensure that all people enjoy peace and prosperity, now and 
in the future. 

UAVs are being used around the world as means of recreation as well as for inspec-
tion, surveys and for data collection. Thus, they are becoming tools of development. 
These UAVs can be used in a variety of creative ways to advance Sustainable Devel-
opment Goals. From aiding citizens in Search and Rescue during a disaster, from 
infrastructure planning to monitoring peace and security they can be anywhere and 
everywhere. The papers were invited on the theme “Wings for Sustainability” but 
were not restricted to this only. The selected and revised papers are produced here
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in this proceedings. We hope that these papers will directly or indirectly contribute 
to Sustainable Development. 

Roorkee, India 
Ultimo, Australia 
Roorkee, India 

Kamal Jain 
Biswajeet Pradhan 

Vishal Mishra
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Comparison of DEM Generated 
from UAV Images and ICESat-1 
Elevation Datasets with an Assessment 
of the Cartographic Potential 
of UAV-Based Sensor Datasets 

Ashutosh Bhardwaj, Surendra Kumar Sharma, and Kshama Gupta 

Abstract The availability of Very High-Resolution (VHR) remote sensing datasets 
from the Unmanned Aerial Vehicle (UAV) based sensors are changing the methods 
of cartographic mapping as well as visualization by taking advantage of both the 
high spatial resolution as well as high radiometric resolutions. A high-fidelity digital 
elevation model (DEM) can be prepared using these UAV datasets, which can 
produce high-quality orthoimages. In the present study, the space-borne lidar eleva-
tion datasets from the Ice, Clouds, and Land Elevation Satellite (ICESat-1) and 
TanDEM-X 90 m DEM from TerraSAR-X add-on for Digital Elevation Measure-
ment (TanDEM-X) mission are utilized for the comparison of elevation values from 
DEM generated using UAV datasets for the experimental site in Switzerland. The 
experimental site is part of Yverdon-Les-Bains, which is a municipality in the district 
of Jura-Nord VauDOIs, canton of Vaud, Switzerland. The openly accessible dataset 
from the Sensefly Sensor Optimized for Drone Applications (S.O.D.A.) includes 
235 true-color RGB images acquired from a flight height of 106 m, at an average 
Ground Sampling Distance (GSD) of 2.64 cm. The datasets are processed in Pix4D 
software for the bundle block adjustment, followed by the generation of DEM and 
orthomosaic. The comparison of ICESat-1 elevation data with DEM depicts a differ-
ence of about 26 cm on plain ground, which is reasonably good considering the use 
of a Global Navigation Satellite System (GNSS) network in Real-Time Kinematic 
(RTK) mode. The quality report depicts the mean of geolocation accuracy in X, Y, 
and z as 2.73 cm, 2.73 cm, and 3.46 cm respectively, which is practically highly 
accurate. Root Mean Square Error (RMSE) in X, Y, and z is computed as 1.7 cm, 
2.27 cm, and 2.31 cm respectively. The study depicts that practically the cartographic
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potential for the UAV dataset is suitable for mapping at a scale range of 1:250 to 
1:300 or better for such plain terrain conditions, meeting the engineering drawing 
requirements for facility management and utility mapping. 

Keywords Scale · Cartographic potential · Accuracy · Orthomosaic 

1 Introduction 

Digital images acquired from aerial platforms such as aircraft or UAVs are providing 
VHR datasets having spatial resolutions of the order of a few centimeters. These 
datasets when processed under a quality-controlled environment yield accuracies of 
the order of better than a pixel. Similarly, the Light Detection and Ranging (LiDAR) 
technique is also providing vertical accuracy of the order of a few centimeters to 
decimeters depending on the ground feature. Whereas the digital images provide a 
continuous picture of the study area, the LiDAR datasets provide discrete information 
based on their footprints. VHR satellite-based sensors such as Cartosat-2 series, 
Cartosat-3, Quickbird, and Worldview series of satellites are approaching higher and 
higher spatial resolution suitable for orthoimages as photogrammetric products and 
large-scale mapping ranging from 1:2500 to 1:10,000 or better under stringent control 
conditions [1, 2]. However, the VHR UAV datasets can comply with mapping scale 
requirements of 1:250 to 1:300 with good ground control points or highly accurate 
position and attitude sensor parameters. 

1.1 UAV 

UAV or the Unmanned Aircraft System (UAS) which refers to an unmanned 
aircraft or an aircraft with no pilot, is currently providing the VHR datasets with 
immense potential in the service sector including disaster management. The UAVs 
are primarily categorized as nano (<250 g), micro (>250 g and <2 kg), small (>2 kg 
and <25 kg), medium (>25 kg and <150 kg), and large (>150 kg) depending on their 
weight inclusive of the payloads. The UAVs are also referred to as Remotely Piloted 
Aircraft (RPA) or drones in common language. UAVs have extensively been used 
for various applications such as forestry [3], agriculture [4], structural damages [5], 
image classification [6], geological structures [7], urban flood [8], DEM generation 
[9, 10], vehicle detection [11] and data fusion-based studies [12, 13].
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1.2 ICESat Missions 

The Ice, Clouds, and Land Elevation Satellite (ICESat) Missions include two space-
borne lidar-based payload-carrying satellites namely, ICESat-1 (launched on 13 
January 2003) and ICESat-2 (launched on 15 September 2018). These missions 
provide highly accurate elevation datasets which are utilized for elevation accuracy 
assessments as well as data fusion [14–19]. Currently, the Openaltimetry portal is 
providing the ICESat/GLAS (Geoscience Laser Altimeter System) data including 
the GLAH06 (Level-1B) Global Elevation Data, Version/Release 34, which incor-
porates improvements over Release 33 data products (https://openaltimetry.org/dat 
ainfo.html) [20]. ICESat-1 used a diode-pumped Q-switched Nd:YAG laser oper-
ating in the near-infrared (1064 nm) for the measurement of surface topography 
besides the visible green light (532 nm) pulses to measure the vertical distribution 
of clouds and aerosols. The spots produced on the Earth’s surface have a 70 m diam-
eter and the spacing between spots is about 175 m, caused by the orbital motion 
of the spacecraft [21]. ICESat-2 carries the Advanced Topographic Laser Altimeter 
System (ATLAS), a laser altimeter that sends 10,000 pulses per second toward Earth 
and records the travel time of individual photons for measurements of the surface 
topography [22, 23]. 

The effects of LiDAR at various wavelengths, including the eye-safe 1064 nm 
Near-InfraRed (NIR) wavelength have been studied for penetration to human skin 
[24] and tree canopy. Ground surface and forest canopy characteristics are found to 
be uniquely represented at different LiDAR wavelengths. Canopy attenuation was 
greatest at 532 nm due to leaf tissue absorption [25]. The tree area has a higher 
penetration rate than buildings and therefore yields a higher number of multiple 
returns [26]. The UAV and spaceborne LiDAR technologies are considered in this 
study for the comparative study since both of them have the capabilities to provide 
elevation information and products with a high order of accuracy [7]. 

2 Study Area 

The study area is part of Yverdon-les-Bains, which is a municipality in the district 
of Jura-Nord VauDOIs in Switzerland (Fig. 1). The study area primarily 0.46 sq. km 
consists of a technology park, agricultural fields, buildings, and parking areas. The 
area is on the south of Lake Neuchatel.

https://openaltimetry.org/datainfo.html
https://openaltimetry.org/datainfo.html
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Fig. 1 Study area with boundary and ICESat-1 data points overlaid on the Google Earth platform 

3 Material and Method 

The openly accessible dataset downloaded from the senseFly portal includes 235 
sensefly (S.O.D.A.) true-color RGB images acquired from a flight height of 106 m, 
at an average GSD of 2.64 cm. The method involves the standard photogrammetric 
procedures for the bundle block adjustment, DEM generation, and orthoimage gener-
ation using Pix4D software (Fig. 2). The ICESat-1 dataset is selected from Openal-
timetry web-based platform and downloaded as an excel file. The preprocessing of 
the ICESat-1 data including shapefile generation from downloaded files and clipping 
is done in open-source QGIS software. The comparison of the elevation values for the 
DEM generated from the UAV dataset (HDEM) is done with the elevation values from 
openly accessible ICESat-1 datasets (HICESat-1) from different campaigns (Table 1).

Additionally, the openly accessible TanDEM-X 90 m DEM elevation values 
(HTDM) available from the website platform provided by the German Aerospace 
Center, DLR (https://download.geoservice.dlr.de/TDM90/) were generated using 
Synthetic Aperture Radar Interferometry (InSAR) were utilized for comparative 
assessment considering its good performance for the plain regions [27]. 

The ellipsoid used by ICESat/GLAS is about 70 cm smaller than the World 
Geodetic System (WGS84) ellipsoid [28]. Thus Eq. 1 is used for the transforma-
tion of height values in meters from TOPEX/Poseidon (Topography Experiment— 
Positioning, Ocean, Solid Earth, Ice Dynamics, Orbital Navigator) to the WGS84 
datum. 

HWG  S84 = HICESat−1 − 0.7 (1)

https://download.geoservice.dlr.de/TDM90/
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Stereopairs 
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Elevation datasets 

Preprocessing Preprocessing 

TanDEM-X DEM 
(90m) 
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DEM download 

Fig. 2 Methodology for photogrammetric procedure for UAV dataset and its comparison with 
ICESat datasets

4 Results and Discussion 

Table1 depicts the comparison of elevation data from the ICESat-1 mission with 
the DEM generated from UAV images and shows a difference of about 26 cm on 
the plain ground with metallic road primarily, and 44 cm on the plain ground with 
the permeable surface (soil and vegetation) for complete footprint. The difference 
in elevation values, ΔH between ICESat-1 and UAV-DEM, are reasonably good 
considering the use of a Virtual Reference Station (VRS) and GNSS network in RTK 
mode for UAV missions. Similarly, the comparative results are highly satisfactory 
for points 3 and 7 with ΔH of 0.351 m and 0.194 m respectively in Table 1. Here, 
the footprint for point 3 is majorly on the ground with few trees and buildings at a 
distance near the boundary of footprints. Whereas the footprint for point 7 is majorly 
on the ground with metalled road and parking areas. Primarily the results show 
that the ICESat-1 and TanDEM-X 90 m, elevation values have an underestimation 
of height as compared to the elevation values of DEM generated from UAV data, 
which can be attributed to the capability of LiDAR as well as InSAR to penetrate 
the features. Points 1,4 and 6 represent the regions with larger deviations as the 
center of the footprint lies on or near the buildings, from where the maximum energy 
has returned to the spaceborne LiDAR sensor. The comparison depicted that the 
difference between HICESat-1 and HTDM is ranging from nearly −3.8 m to 0.3 m at 
different locations, depending on the uniformity of the terrain and feature. Similarly, 
the difference between HDEM and HTDM ranges from nearly −0.9 m to 11.8 m at 
different locations (Table 1) (Fig. 3).
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Fig. 3 TanDEM-X 90 m DEM overlaid with the boundary of the study site and ICESat-1 footprint 
locations 

The bundle block adjustment results in the quality report illustrate the mean of 
geolocation accuracy within a pixel range, i.e. 2.73 cm, 2.73 cm, and 3.46 cm for X, 
Y, and Z respectively. The RMSE in X, Y, and Z is 1.7 cm, 2.27 cm, and 2.31 cm 
respectively within a pixel range. The mean of geolocation accuracy and RMSE 
thus has a practically high accuracy needed for many of the applications. The model 
accuracies achieved by the UAV datasets in the study depict that practically the 
cartographic potential for the UAV dataset is suitable for mapping at a scale range 
of 1:250 to 1:300 or even better for such plain sites, meeting the 2-Dimensional 
as well as 3-Dimensional mensuration requirements of engineering drawing needed 
for the facility management and utility mapping. However, as the optical DEMs are 
prone to the digging and hanging of mass points, DEM editing will be required for 
generating good mapping products at these large scales after inclusion or valida-
tion with ground control points (GCPs) [29, 30]. The use of GCPs in the study can
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enhance the assessment of accuracy in more absolute terms [2]. Further, the quan-
titative comparison can be utilized for the generation of a framework and strategy 
for data or DEM fusion methods [19, 30, 31]. Aerial platform-based InSAR DEM 
availability is limited, however, may have the potential to provide equivalent DEMs, 
when compared to UAV-based DEMs. 

5 Conclusion 

The UAV datasets are providing very high accuracies of the order of pixel in both 
planimetry and vertical dimensions with VRS-RTK GNSS and attitude sensors. The 
spaceborne LiDAR (ICESat-1), which also has high accuracy, mostly has an underes-
timation for the elevation values concerning the estimations done through UAV-based 
sensors. This can be attributed to the fact that LiDAR is able to do penetration in the 
ground to some extent depending on the type of surface material. The study concludes 
that overall, the performance of UAV-based DEM or the elevation values from space-
borne LiDAR is better than currently available openly accessible TanDEM-X 90 m 
(InSAR-based DEM) from satellite platforms. The ICESat-2 data was also planned 
for the comparison since it has smaller footprints. ICESat-2 footprints were also 
searched on the portal, however, ICESat-2 currently does not have a footprint on the 
study site, and thus the study was limited to comparison with ICESat-1 datasets. 
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UAV to Cadastral Parcel Boundary 
Translation and Synthetic UAV Image 
Generation Using 
Conditional-Generative Adversarial 
Network 

Ganesh Khadanga and Kamal Jain 

Abstract The precise boundaries of the cadastral parcels from the Unmanned Aerial 
Vehicle (UAV) data are essential for any eGovernance application. The pix2pix, 
image-to-image translation using the conditional Generative Adversarial Network 
(cGAN) models, has emerged as an alternative to the traditional machine learning 
and image processing algorithms. It has been used and demonstrated for productive 
purposes in different domains without any change in the pix2pix network model and 
loss functions. The pix2pix model is implemented in this research for extracting the 
cadastral parcel boundaries using the existing UAV data set, and the corresponding 
digitised data. The input data set is prepared using the python modules. The model 
is also used to predict the synthetic UAV data from the map data. The predicted 
boundary of the model is very useful. The proposed model can reduce the manual 
labour and human interventions in outlining the parcel boundary from UAV data. 

Keywords Pix2Pix · Image-to-image translation · c-GAN · CNN · UAV · Deep 
learning · Parcel 

1 Introduction 

The record of rights (ROR) of a land parcel, along with the boundary maps, identifies 
the extent of an agriculture land parcel. The land records with accurate boundary 
information are essential for any sort of developmental programme initiated by the 
Government. Technological developments have been used for recording the boundary 
from remote sensing and UAV data for cadastral mapping. The approaches like 
image-to-image translation [1] have been used for identifying and modelling the 
regularities or patterns in the input data set. The Generative Adversarial Network
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(GAN) has been found to be used for image segmentation and boundary extraction 
tasks by many researchers. 

GAN consists of the generator part and the discriminator part. The generator part 
generates the new images, and the discriminator part tries to classify the generated 
image as real or fake. Thus in GANs, the generator and discriminator model is trained 
together in such a way that the discriminator model is fooled most of the time and 
indicates that the generator generates the images that belong to the domain. 

The authors [2, 3] in the pix2pix algorithm used a GAN conditioned on the source 
image and imposed an L1 (absolute deviations) loss between the generated image and 
its ground-truth map. This requires the existence of ground-truth paired images from 
each of the source and target domains. The quality of the generated images improves 
as the generator and discriminator compete to reach the nash equilibrium expressed 
by the minimax loss of the training procedure. The U-Net [1, 4, 5] architecture for the 
generator, is simply an encoder-decoder architecture with skip connections between 
them. For the discriminator, a PatchGAN is used. A PatchGAN [3] is similar to 
a common discriminator, except that it tries to classify each patch of N × N size  
whether it is real or fake. 

In GAN models the generator is the main part, and the discriminator is an adaptive 
loss function that gets discarded once the generator has been trained [6]. The paper 
also describes a new training methodology for generative adversarial networks. The 
generator and discriminator are grown progressively with low resolution and then 
add a layer with increasing details. This has enabled GAN to produce high-quality 
output. The sliced Wasserstein distance indicates that the distribution of the patches 
is similar and is also proposed as a metric for evaluating GAN results. The relation-
ship between the original images and the reconstructed was introduced by adding a 
controller to pix2pix [7]. A detailed analysis of quantitative and qualitative measures 
for evaluating the generative model is described in Ref. [8]. The authors Valencia-
Rosado et al. used the Pix2Pix framework with the water map feature and generated 
the river deltas and coastal areas. However, the authors have not indicated any quan-
titative evaluation of the results [9]. Fetty et al. [10] have trained cGAN with four 
different generators (SE-ResNet, DenseNet, U-Net, and Embedded Net), and an 
ensemble model was created from the four network outputs. The author has also 
indicated that the cGAN architecture can be considered a useful model as it only 
needs a small sample size for the generator-discriminator cross-training. The authors 
[11] proposed additions of partial dense connections in the cGAN generator for 
linear segmentation. The network thus can learn the differences between object and 
background in a relatively short time. The authors Abdollahi and Pradhan proposed 
the SegNet model with Bi-directional Convolutional LSTM in cGAN generator part 
to generate the segmentation map from the existing building dataset [12]. Jafrasteh 
et al. [13] proposed the cGAN with mean squared error loss for fining the faults and 
fractures with limited inputs. 

TuiGan model [14] as proposed is able to transfer the domain distribution of 
the input image to the target domain by progressively translating the image from 
coarse to fine. The progressive translation enables the model to extract the underlying 
relationship between two images by continuously varying the receptive fields at
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different scales. TuiGan model realises the image-to-image translation with only 
two unpaired images. Image-to-Image translation is also valuable for applications 
such as colourisation and super-resolution, edge-to-image formation, style transfer, 
data augmentation, and inpainting. 

The primary contribution of this study is the preparation of the specialised data 
set and training of the model based on cGAN for boundary extraction and synthetic 
UAV image generation. UAV dataset, with its high resolution, are very suitable for 
extraction of geospatial information at a much larger scale [15, 16]. The data is 
prepared from the UAV images and the corresponding manually digitised cadastral 
map files using the python modules. The fitted model can be used to predict the 
parcel boundaries and synthetic UAV images for a new dataset. This work can also 
be treated as a practical field application of computer vision for the automation of 
cadastral boundary extraction. 

2 Data Set 

The UAV images and the corresponding vetors maps consisting of cadastral parcel 
boundary is cropped into patches of 256 × 256 pixels using python modules. The 
set of images pairs of 512 × 256 size is prepared from the UAV image and the 
corresponding cadastral map image. Total 595 images were prepared. The features 
are also color coded. Few samples of the dataset is shown in Fig. 1. The GAN network 
was applied to this data set (Fig. 2). 

Parcel 
Road 

Water Bodies 
River 

Building 

Fig. 1 Parcel data set (256 × 256) UAV data with corresponding plots with boundary 

Input 

Target 

x Generator G(x)

  x   
 Discriminator D(x, G(x)) 

y 

x 
D(x, y) Discriminator 

Fig.2 Description of the conditional GAN model [2]
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3 Network Architecture 

The conditional-GAN consists of the generator G and the discriminator D. The 
generator tries to produce an image like a real image and fool the discriminator 
[2]. The discriminator tries to differentiate between the real image and the fake 
image from the generator for a given reference input image. Figure 2 describes the 
conditional-GAN architecture. 

The objective of a conditional-GAN consists of two parts: adversarial loss and L1 
Loss (mean absolute error). The x is the observed image, z is the random noise and 
y is the output image, and the adversarial loss can be expressed as 

LcGAN(G, D) = Ex,y[logD(x, y)] +  Ex,z[log(1 − D(x, G(x, z)] (1) 

L1 distance is added to the generator loss to encourage the low-frequency correct-
ness of the generated image. L1 distance is preferred over L2 distance as it produces 
images with less blurring. Thus the objective for the min–max game is:

(
G∗, D∗) = arg minG max D[LcGAN(G, D) + λLL1(G)] (2) 

The model as proposed by Isola et al. [3] is taken up. The model takes an input 
image of size 3 × 256 × 256 and generates an output image G(x) of the same size. 

U-Net generator is an encoder-decoder network with symmetrical long skip 
connections. The network consists of 8 encoding layers and 8 decoding layers, with 
skip connections from layer i to layer n-i, where n is the total number of layers. Each 
encoding and decoding block follows the form of the convolution/deconvolution-
Bacthnorm-Leaky Relu. 

The convolutional PachGAN classifier with architecture similar to the classifier 
in pix2pix is used as a discriminator. PatchGAN discriminator determines whether 
an image is real or fake by using local patches of size 70 × 70, rather than the 
entire image. The discriminator takes in two images, the input image (x) and the 
unknown image (G(x) or y), pass them through 5 down-sampling convolutional-
BatchNorm-LeakyRelLU layers, and outputs a matrix of 30 × 30, in which each 
element corresponds to the classification of one patch. The model is trained for 100 
epochs until the loss plateaus. The generator and discriminator loss are shown in 
Fig. 3 (Figs. 4 and 5).
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Fig. 3 The generated error plots for each iterations (loss vs iterations upto 3000 is shown) 

Fig. 4 The generated output with the image-to-image translation model during training. The source 
UAV image (top), the ground truth (in the middle), and the predicted image during training (bottom)
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Fig. 5 Sample model prediction for the test data set (1st row: UAV data, 2nd row: ground truth, 
3rd row: predicted boundary) 

4 Translating Cadastral Parcel Maps to Synthetic UAV 
Images 

The pix2pix network as described above is applied to translate the cadastral parcel 
images to possible UAV images. The predicted UAV data for the cadastral parcel 
maps are shown in Fig. 6. The generator and discriminator losses are shown in 
Fig. 7.

5 Results and Discussions 

The model is trained with the test dataset consisting of 400 images. The model is 
executed for 100 epochs. The predicted boundaries of the UAV images are shown in 
Fig. 5. The UAV images are shown in the top row and the ground truth is shown in the 
2nd row of Fig. 5. The 3rd row contains the predicted images out of the model with 
U-Net as generator. The error plot is shown in Fig. 3. The boundaries of the cadastral



UAV to Cadastral Parcel Boundary Translation and Synthetic UAV … 17

Fig. 6 Sample model prediction for the test data set (1st column: map data, 2nd row: UAV data-
ground truth, 3rd column: synthetic UAV images predicted) 

Fig. 7 Generator and discriminator losses for synthetic image generation for each iteration
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parcels are extracted to a great extent. However, the boundaries of many fields are 
partially extracted. The same can be completed with little manual post-processing 
activity. 

The texture of the synthetic images are visually very promising and it can be used 
as an alternative to the real UAV images. The generator and discriminator losses are 
shown in Fig. 7. 

The subpixel methodology, colorimetry, and contextual information, as proposed 
by Suresh and Jain [17], can also be used for boundary extraction and classification. 
The boundaries of the plots are quite satisfactorily extracted. 

Though the result is satisfactory, there is scope for enhancement of the results to 
match the ground truth. Further experiments can be done with a larger data set and 
techniques like data argumentation can also be taken up to enhance the result. 

The automation of input data preparation and the use of data augmentation tech-
niques, pre-processing and post-processing of data for fast and accurate results are 
the key challenges. The use of temporal data is also a promising field. 

6 Conclusion 

The investigations are done for extraction of the parcel boundaries from the UAV 
images using the cGAN modules. The synthetic UAV images are also generated using 
above network by reversing the inputs. The proposed approach contributes to the 
research area of the automatic generation of parcel boundaries from the specialised 
dataset as prepared from the UAV images. The extraction of the parcel boundaries 
using the proposed approach is quite satisfactory. This will enhance the ways to 
continuously update the cadastral boundaries by the revenue field functionaries. The 
synthetic UAV images generation approach can be used in difficult areas where the 
UAVs can not be deployed because of technical and administrative issues. There 
are still constraints in the approach like obstruction to visible boundaries because 
of trees and shadow. The modules are required for data augumentation and enhance 
the extraction process. Presently the methodology will complement the operators in 
automation of the parcel boundary generation. 
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UAV-Based Terrain-Following Mapping 
Using LiDAR in High Undulating 
Catastrophic Areas 

Chandra Has Singh, Kamal Jain, and Vishal Mishra 

Abstract Expanding needs for using UAV (Uncrewed Aerial Vehicles) remote 
sensing approaches, such as terrain-following aerial mapping applications using 
LiDAR (light detection and ranging) in catastrophic applications. New extracts 
in UAV mapping still contain a limited number of studies for analyzing fine-
scale mapping accuracy in UAV remote sensing methods—terrain-following aerial 
mapping for UAVs based on external airborne LiDAR integrated with the flight 
controller. We introduce the UAV system for the terrain after mapping the high-rise 
area by circumventing obstacles around it, expanding it so that UAVs flying at low 
altitudes can collect high-quality ground information while protecting them from all 
kinds of obstacles up and down. A more informative map is prepared to speed up the 
rescue and relief operations of the devastated area. Then on-destructive techniques 
have been surveyed and explored Solani riverbank sites of the high undulating area 
in Roorkee, Haridwar district in the Indian state of Uttrakhand. This work aims to 
critically analyze fine-scale remotely sensed data for mapping using LiDAR and 
UAV obtained the structure from motion photogrammetry. This work outlines the 
approaches applied to remote sensing data to reveal potential sensitivities, reflecting 
the close visual methods of the catastrophic region. 

Keywords Terrain following · UAV · LiDAR · Aerial mapping · Structure from 
motion · Photogrammetry · Undulating
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1 Introduction 

UAVs are revolutionizing the domain of Remote Sensing and Photogrammetry. They 
are excellent tools for data collection under their adaptability, versatility, cheaper 
cost, and high resolution of sampling. As technology evolves, new methods and 
sensors are devised for different applications. UAV applications span from river bed 
mapping [1], Campus monitoring [2], Precision Agriculture [3], and UAVs being 
used for surveillance and reconnaissance in the tense war zone. 

In cases of natural hazards, flying at extremely low altitudes is necessary and 
challenging. The mission’s main task is to fly by following the fluctuations of the 
ground surface so that, as much as possible, the micro-sensory information on the 
ground can be captured in the UAV cameras, which will help the survivors prove to 
be more helpful in the search and rescue operations. In many areas, it is necessary 
to fly following the area’s slope to see the emergency of a mudslide or landslide 
[4]. The principal mission goal of the UAV is to accurately map the area of interest 
or 3D mapping and generate geomatical models with a high level of resolution to 
make accurate geospatial measurements. Estimating the volume of a landslide or 
measuring the amount of lava ejected from a volcanic vent is an essential factor 
that helps the relevant authorities better understand the status and progress of the 
hazardous event [5]. The analysis of ground distortions at the micro-level allows 
surveillance and, in some cases, accurate prediction of hazards by nature. Terrian 
following flights near the ground surface were also explored as a solution for accu-
rate estimation of yield and precise agricultural harvest. All the examples given prove 
the usefulness of hardware and software techniques to enable the UAV to follow a 
low-altitude trajectory considering the subtle geospatial geometry of the landscape 
[6]. The solution presented in this paper proposes a survey intervention to map the 
area of interest highly detailed with a multidisciplinary approach to terrain-following 
mapping missions. For this, various aspects were considered in Airborne LiDAR, 
ranging from integrating the LiDAR with the flight controller of the UAV to the effec-
tive execution of the mission [7]. The proposed methodology uses a single LiDAR 
system to obtain terrain information during flight. The mission implementation is 
fully compatible with low-cost hardware and open-source flight planning software 
[8]. 

All aspects of this research paper have been collected in several parts. Section 2 
gives a critical overview of the techniques currently used in terrain-following flight 
planning. Our proposed solution is presented in Sect. 3, and the various aspects 
of the solution are explained. Section 4 describes the experimental setup used for 
the terrain-following mapping and highlights LiDAR integration with UAVs and 
communication of UAVs from GCS. Section 5 is mainly devoted to dataset and flight 
planning. The data processing and surface model generation to generate the map are 
described in Sect. 7, whereas the results obtained in actual test scenarios are reported 
and analyzed in Sect. 8. Finally, the findings and future enhancements are reported 
in Sect. 9.
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2 Literature Review 

Currently, terrain-following systems are provided on aerial vehicles such as UAVs to 
register images with all dimensions of precise geospatial coordinates relative to the 
area of interest by estimating the UAV position in a terrain map. Based on real-time 
LiDAR data during flight and after accurately forecasting vehicle position, Autopilot 
also provides alerts to avoid obstacles for impending action [9]. In a related literature 
review, an oft-repeated approach to the collection of ground data extensively of a truly 
uninhabited unknown area is to employ UAVs equipped with cameras. Such flight 
planning is usually referred to as post-terrain mapping because it considers the partic-
ular morphology of the region of interest and terrain to be observed [10]. A control 
strategy called the OptiPilot is introduced in [11] that allows a fixed-wing UAV to fly 
independently autonomously. It is a one-way customized optical flow terrain detector 
that performs the task of gathering information about the surface. The ground detec-
tion system occurs at the height of approximately 9 m above ground level (AGL) and 
reacts to the presence of fixed obstacles. This suggested method represents the first 
solution to the problem of flying at medium altitudes using a strategy complete with 
sensor-to-actuator control. The output of the optical flow algorithm contains essen-
tial information that is used to detect obstacles and orientation parameters mapped 
to roll and pitch control signals, which control its navigation, causing the vehicle 
to tilt and change its height up and down. Such an approach has a weakness as it 
requires a lot of dedicated and custom hardware, and it is very challenging to inte-
grate it seamlessly with the UAVs and flight controllers being used extensively in 
the market in addition, this strategy, which is based on adopting optical flow, but on 
some surfaces such as ice fields, landslides, volcano lava fields, it is difficult to find 
visible points and then it is not only challenging to obtain results from the process 
adopted. A similar optical-flow-based solution [12] is presented, where the lowest 
altitude during testing reaches 15 m AGL. In this, the authors have focused on devel-
oping a mission planning solution that takes different heights as obstacles in the open 
terrain . The suggested resolution is based on the algorithmic fast marching square 
path planning method. The reported results are only based on software simulations; 
altitudes of 2, 5, and 10 m AGL were adopted to test the algorithm. A robust control 
strategy combining sensors and GPS for flights following terrain is presented in [13]. 
The authors developed a second-order hexacopter dynamics model in this work by 
adopting flight controller factors’ localization and orientation feedback, including a 
barometer, GPS, and IMU. The authors could fly between 2 and 6 m AGL with the 
strategy developed. However, they cannot deal with the troubles encountered during 
post-terrestrial flights. Several techniques have been presented in [14] for guidance or 
navigation for the low-altitude path of uncrewed helicopters, including laser sensors 
integrated with the UAV mounted under the vehicle’s front nose to scan the terrain. 

Although this approach entails a costly micro-sensing system and control payload 
and is computationally intensive, it can diagnose the problem to a great extent as it 
will detect terrain fluctuations in advance. The UAV increases or decreases the height 
accordingly [15].
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Additionally, several commercial and software solutions were proposed that allow 
for flying in the area of interest. . In a case like this, a database of the area of interest 
and the terrain elevation already available must first be uploaded from the Ground 
Control Station (GCS) to the autopilot storage. During the initial flight, the Autopilot 
uses terrain data to maintain a constant altitude above the ground [16]. However, in 
high mountain areas like 80 m AGL or more, the first recommendation is to fly at 
altitudes of 80 m AGL or more. The data available in the GCS does not have the same 
accuracy as we need to work, so low-altitude ultrasonic sensors are facing while not 
working so effectively from that height. 

3 Proposed Solution 

Our proposed method was developed to perform terrain-following flight missions 
at lower altitudes (below 20 m AGL). The desired height for the mission’s exit was 
provided to avoid an obstacle in the path of the task, thus allowing the flight to 
decrease or increase altitude, taking into account the vehicle’s performance. Further-
more, unlike the strategies mentioned in Sect. 2, our approach is suitable for low-cost 
UAVs with limited onboard computing resources [17]. The result of our workflow is a 
sequence of integrating airborne LiDAR with Autopilot to obtain a terrain-following 
mapping. 

The methodology of our suggested method is structured as follows:

• the desired Points of Interest are selected on the map;
• the desired height, speed, and overlapping for map generation is set;
• The Terrain enable has been set to 1 to run the system of terrain-following smoothly 

and the minimum and maximum limits of LiDAR have been programmed to 
Autopilot up to a suitable value;

• The altitude type was set to “Terrain”, using a recent version of the Mission 
Planner (or other GCS supporting terrain-following) on the Flat Plan screen. All 
mission commands once included “alt” fields will be interpreted as altitudes above 
Terrain;

• The waypoint file is uploaded to the onboard autopilots, thus making the UAV 
flight controller ready to autonomously execute the entire mission as you usually 
do in auto mode [18]. 

During the design and development stages, the efficiency and robustness of the 
LiDAR-based terrain-following method and function after mapping was verified 
and tested behind the geomatics lab ground at IIT Roorkee. After that, the process 
was tested in a real-time environment. We conducted an initial on-field trial along 
the banks of the Solani River area, a high undulating area that was best suited for 
testing. Finally, we surveyed a bank of the Solani River.
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Fig. 1 Study area for Terrain-following mapping 

4 Study Area 

The selection of the area of interest is a critical and challenging task using complex 
experiments like terrain-following mapping, for this an area with fluctuations along 
the banks of the Solani river flowing in the eastern area of IIT Roorkee located in 
Roorkee city of Uttarakhand state in India was selected (Fig. 1). 

This is a very favorable condition, according to the experiment. This area is very 
high undulating, with dunes of great height on both sides of the river through which 
the river flows. For this experiment, a total area mapping of 0.021 km2 of Solani River 
was done, which was more bumpy. The lowest ground altitude is 204.3249969 m, 
while the peak height in that region is 208.0390015 m. 

5 Experimental Setup 

The solution presented was a 460 mm dimension quadcopter developed and tested 
using a material such as carbon fiber, equipped with a highly stable autopilot flight 
controller such as the Pixhawk imagery acquisition of aerial mapping in various
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areas. It was decided to adopt the mission planner (https://ardupilot.org/planner/ 
docs/common-connect-mission-planner-autopilot.html last accessed on 2021/03/23) 
open-source software suite, which provides a complete and versatile control stack 
providing different flight planning facilities [19]. The RFD900+’s air unit radio 
communication was set to 56,700 baudrate on the Serial1 port of the Autopilot 
with the MAVLink (micro air vehicle communication) protocol, which was used for 
communication with the autopilot and ground control station (GCS) and position 
information of the UAV and was done to send the command of the mission. 

It was possible to retrieve all telemetry data from global positioning system (GPS) 
and inertial measurement unit (IMU) parameters, as well as to send commands from 
the GCS to the Autopilot [20] (Fig. 3). 

The setup developed for the on-field tests is outlined in Fig. 2. The 1D TF-03 Mini-
LiDAR was used to detect the terrain surface, which is lighter in weight and provides 
significantly better quality data. It executes high-level navigation functions through 
terrain data that send appropriate commands to the Autopilot over the serial port. 
The Cube Black Flight Controller communicates with the GCS over the RFD900+ 
radio telemetry connection. The Mission Planner ground control interface allows us 
to set up and configure the Autopilot for the area of interest and plan and manage all 
phases of the mission [21]. 

Fig. 2 UAV with airborne LiDAR

https://ardupilot.org/planner/docs/common-connect-mission-planner-autopilot.html
https://ardupilot.org/planner/docs/common-connect-mission-planner-autopilot.html
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Fig. 3 Experimental setup for Terrain-following mapping 

6 Dataset Used 

The UAV data acquisition of the Solani riverbank was taken up with the help of any 
of the group members. The dataset was obtained with a 450 mm self-built UAV, using 
the GoPro Hero6 camera model with an optical sensor (Fig. 4).

A total of 302 images were acquired at the height of 20 m, which was also collected 
from 25 and 30 m, and side overlap and front overlap were kept optimal. We have 
used the mission planner for the flight of areas of interest. The steps acquired during 
the mission are processed. The parameters of data acquisition are tabulated in Table 
1 [16].

7 Methodology 

All sensors mounted on the UAV are checked before takeoff, and the GPS position 
is required to lock the position of the home so that the UAV can return safely to the 
launch position after the mission is completed. First, the area of interest is selected, 
and an appropriate altitude for the flight is set by feeding all the proper parameters 
of the flight plan in Autopilot. The complete details are given in Table 1 (Fig. 5).
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Fig. 4 Flight plan of the area in mission planner

Table 1 Flight and camera 
parameters 

Parameter Dataset 

Flying height 20,25,30 m 

Side overlap 70% 

Front overlap 75% 

Camera model Hero 6 Black  

Exposure time 1/846 s 

ISO-speed ISO-100 

Focal length 3 mm  

Dimensions 4000 × 3000 
F-stop f/2.8

Initially, flight planning was performed considering the data acquisition param-
eters and optimum flying height. So that there are multiple objects in the UAV’s 
line of sight of a flight plan. Data acquisition was made with the help of a UAV 
with an optical sensor mounted on it. With the help of LiDAR, we protect from all 
obstacles in the way of flight. Wherever the obstacle is encountered, LiDAR will 
detect it beforehand and increase its height from the height of the barrier and when 
there are no obstacles, it will increase its elevation to a fixed height. If the peak was 
increased earlier due to any obstruction, it reduces its height to the height previously 
fed in it. During this time, the camera fitted with the UAV keeps taking pictures 
continuously. Thus, this straightforward and robust solution has been suggested for 
terrain-following mapping [22].
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Fig. 5 Complete 
methodology for 
Terrain-following mapping

8 Surface Model Construction 

3D model reconstruction process Pix4Dmapper (https://www.pix4d.com/product/ 
pix4dmapper-photogrammetry-software ), a photogrammetry software for mapping 
from images captured by UAVs, was created by collecting information on camera 
position and orientation parameters which is estimated through the famous 
photogrammetric bundle block adjustment (BBA), which obtains the camera position 
directly from the image’s metadata. In essence, the map reconstruction process is 
based on automatic extraction and maximizing matching of visual key points between 
aerial images acquired by UAV, which are then used to obtain the camera’s pose (i.e., 
altitude and position) during flight [18]. 

The flight plan for image acquisition must be conducted to ensure that several 
key points can be matched, namely, that adequate overlap between captured images 
is provided. This is achieved by following a back-and-forth pattern considering the 
dimensions of all the mapping factors [23].

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
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The accuracy of the reconstructed 3D model depends entirely on the Ground 
Sampling Distance (GSD), which is correlated to the real-world distance from the 
ground between two consecutive pixel centers in the acquired image. The decision 
of flight altitude above ground level is dependent on the aerial camera parameters 
(image dimension, focal length of camera, sensor width) with the UAV and related 
to the GSD of a single image by the following: 

h(m) = 
image width

[
pixel

] × GSD
[

cm 
pixel

]
× focal length [mm] 

sensor width [mm].100 

The Pix4D mapper requires some additional information to georeference the 
model. In particular, it must be known to locate the correct position of the images, 
scale appropriately, and orient the model correctly. This information is automatically 
imported from the photos if the onboard geotagging system is used to save the GPS 
coordinates and orientation parameters as metadata in the acquired image files, or we 
have to geotag the flight data and images from an autopilot [24]. Therefore, georef-
erenced models’ accuracy is closely related to the absolute accuracy of onboard GPS 
receiver type (single-band or multi-band) used for geotagging images. Although the 
processing of data acquired by UAV in Pix4Dmapper averages the Image positions, 
inaccuracies in the coordinates can lead to significant errors in model positions that 
affect the accuracy of the entire model [25]. 

9 Results and Discussions 

After successful initial testing, on-field testing was conducted on the banks of the 
Solani River. The data in Fig. 6 shows that the UAV follows the specified reference 
path with elevation variation between the two trends due to the time required to reach 
the specified route. The UAV has been flown on three desired elevations (i.e., at 20 m, 
25 m, and 30 m height) from the ground. The altitudes trends have been shown in 
the figure and Table (Figs. 7, 8 and 9).

In Fig. 10, the executed trajectory and the proposed waypoints of flight projected 
on the longitude-latitude plane are superimposed to show the terrain-following 
feature.

The same trajectories in Fig. 11 are given above the point cloud generated by 
Pix4D. This final figure allows us to appreciate how UAVs follow the more complex 
morphology of Terrain when flying close to the ground (Fig. 12).

The data acquired in the Solani River area bank data description reconstructed by 
Pix4Dmapper using 346 images obtained during flights at low altitudes allows us to 
obtain a high-resolution 3D textured mesh for accurate measurements. The smallest 
information can be used to identify the object on any ground, thus supporting the 
benefit of the proposed method that we can use for a catastrophic area.
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Fig. 6 Data processing in Pix4D 

Fig. 7 On-field test-terrain-following mapping (20 m): altitudes of the ground terrain in meters (in 
blue) and the altitude of the executed trajectory by UAV in meters (in red)

In Fig. 13, we can see mixed results obtained with the help of Pix4D, in which 
orthomosaic, DSM, and contour were constructed at a distance of 0.5 m. Above all 
this, the proposed flight plan built in the mission planner is shown superimposed 
with the executed flight plan to show that the terrain following has been fully used 
in the sample of the suggested measures. As seen in the figure, altitude fluctuates a 
lot on both sides of the river and is actually a very fluctuating area.
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Fig. 8 On-field test-terrain-following mapping (25 m): altitudes of the ground terrain in meters (in 
blue) and the altitude of the executed trajectory by UAV in meters (in red) 

Fig. 9 On-field test-terrain-following mapping (20, 25, and 30 m): altitudes of the ground terrain 
in meters (in blue) and the altitude of the executed trajectory by UAV in meters (in red)

In this way, it was observed that the locality could successfully achieve the 
following with the help of LiDAR. So far, we have seen the following available 
terrain measurements, and we were already aware of all the dimensions of the locality. 
The solution suggested in this paper is a surprisingly simple and convenient way by 
which we can observe and survey an area surrounded by any disaster where no human 
activity is possible (Table 2).
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Fig. 10 On-field test—Solani river bank: reference path (in red) and performed trajectory (in blue), 
together with the assigned waypoints (in green) in the longitude-latitude plane

Fig. 11 On-field test—Solani river bank: the executed Flight path of Terrain follows in red and the 
proposed flight plan in the mission planner in blue

10 Conclusions and Future Work 

This paper presents a method for UAV flights close to the ground following the terrain 
profile and considers all kinds of uncertainties of both the flight controller and the 
onboard GPS. As explained, these types of missions are beneficial for collecting
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Fig. 12 a On-field test—Solani river bank: Orthomosaic generated by Pix4D Mapper using 346 
Images. b On-field test-Solani river bank: DSM generated by Pix4D of the testing area

images needed to survey close to the ground, which has a broad spectrum of applica-
tions that contribute significantly to human life. The proposed solution is versatile, 
covering the assignment of the desired mission and all the items for the survey 
mission. The suggested solution, in a very balanced and accessible manner, involves 
all the technical aspects to produce results. The task can be used in many commercial 
and open-source ground control stations and integrated with almost all autopilots and 
multirotor. 

Experimental missions correctly verified initial results obtained from stages 
during testing and development. The vehicle always kept a safe distance from difficult 
Terrain and all obstacles on the way, with all the dimensions of a standard GPS. 

In short, one can summarize the main contributions of this work as follows:

• Generation of onboard real-time Terrain-following flights at lower altitudes than 
available solutions for low altitude autopilot in the market;

• Mission specificity, the desired altitude for the survey mission according to the 
disaster areas, and the desired performance of the vehicle were obtained with the 
help of LiDAR so that the final result can be obtained with greater accuracy;

• In the method adopted, in which the terrain-following has been obtained with 
the help of Lidar, we do not have an obligation to know the information about 
the Terrain of the area of interest; we accept it during the flight itself. All low-
altitude Terrain following flight methods adopted earlier must require geospatial 
information of Terrain;

• Low-cost hardware adoption in the design and development of UAVs for Terrain-
following.
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Fig. 13 On-field test—Solani river bank: all results related to mapping in which the Terrain 
following test was performed

Table 2 Error estimation for different altitude trends 

Desired elevation (m) Mean of the differences 
of actual elevation from 
the desired elevation at 
each waypoint (m) 

Standard deviation of the 
differences of actual 
elevation from the desired 
elevation at each waypoint 

Error percentage 

20 1.090498 0.017535 4.4500 

25 0.650573256 0.376728321 2.5258 

30 2.549123256 0.376728321 8.4333

One of our solution’s main limitations is the very high surface terrain in which it is 
challenging to obtain LiDAR data, leaving little room to improve its position in a 
timely manner so that obstacles in the way are difficult to cross. This prevents our 
approach from being applied when accountability is the critical factor.
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Another limiting aspect concerns the GPS and the lack of robustness against 
possible serious failures of LiDAR or dynamic changes in Terrain. However, this 
limitation can be overcome by providing the UAV with range sensors and 3D LiDAR, 
and reactive-based local barrier control. 

For which it is required to deploy a high-speed calculating device with UAV 
that would generate an alert message by processing the data in time. In addition, 
the current solution was conceived and tested only for multirotor because only this 
type of vehicle is capable of surveying more generally, with less time, to hover 
above a specified time. Further investigation will be required as to whether this 
solution should be compatible with other aerial vehicles such as fixed-wing or VTOL 
(vertical takeoff landing).Finally, moving to solutions for low-altitude flight, using 
more sensors or LiDAR can integrate appropriate control strategies in which the 
Terrain -following mapping feature can be further enhanced. 
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Forest Fire Detection from UAV Images 
Using Fusion of Pre-trained Mobile CNN 
Features 

Bhuma Chandra Mohan 

Abstract In this work, a Convolutional Neural Network based approach is presented 
for accurate classification of forest areas with fire from UAV images. In general, the 
deeper the CNN architecture, the classification of ‘fire’ versus ‘no fire’ is more 
accurate. However, deeper architectures consume lot of battery power and impose 
constraints on the processor used in UAV. It is time taking too. Hence, architec-
tures like ResNet50 are not suitable as 23 million parameters are required to train 
a ResNet50 model. In this regard, mobile CNN architectures are quite handy and 
they require very few parameters of typical 1–7 millions. They are faster also and 
take very less time for inference. In this work, the features from selected pre-trained 
mobile CNN architectures i.e., Squeezenet, MobileNetv1, MobileNetv2, MnasNet, 
MobileNet v3, SqueezeNext, ShuffleNet, CondenseNet, DiCENet, FBNet, MixNet, 
and EfficientNet Lite-0, EfficientNet Lite-1 are used in the classification process. 
All the architectures are pre-trained on ‘imagenet’ dataset with 1000 classes and 
14 millions of images. Features from the last pooling layer of each network are 
obtained. Feature fusion (concatenation) from the selected mobile CNN architec-
tures is considered for classifying the images with ‘fire’ and ‘no fire’. SVM classifier 
is applied to the fused feature vector. In general, as the size of the fused feature vector 
increases, the classification accuracy increases. A wildfire image dataset with 2096 
images is chosen with balanced classes of ‘fire’ and ‘no fire’. With a 80% train and 
test split, the mean classification accuracy obtained is in excess of 98%. Various other 
performance metrics are also given to emphasize the merit of the proposed approach. 

Keywords Forest fire detection ·Mobile CNN architectures · Feature fusion of 
pre-trained networks
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1 Introduction 

Every year more than millions of people are evacuated due to wildfires globally. 
Wildfire is quite common in the forests. In 2020, 52,113 wildfire cases have been 
reported globally, and 8,889,297 acres of land got burned. Compared to 2019, it is 
double in terms of acres burned. In India, in 2019, over 30,000 forest fires were 
reported. Death rate is also alarming due to forest fires. If detected at an early stage, 
it can be confined and life-saving measures can be taken effectively. Monitoring the 
forest areas for wildfire identification using UAVs [1, 2] is an inexpensive and accu-
rate method. Classical machine learning algorithms depend on the texture, color, and 
smoke features [3] for classifying the images with ‘fire’ [4]. An exhaustive survey 
of various fire monitoring systems, classification algorithms, detection algorithms 
and various modalities is given in [5]. In recent past, deep learning architectures are 
gaining popularity and are able to offer higher classification accuracies not achievable 
with machine learning algorithms. But, deep learning algorithms, CNNs in particular 
require large training data and computational resources. To overcome these difficul-
ties, mobile CNN architectures were proposed targeting mobile and portable devices. 
A brief review of the existing works in the classification of ‘fire’ and ‘no fire’ images 
is given next. The paper is organized as follows. A review of recent works is given 
in Sect. 2. Various mobile CNN architectures and their parameter sizes are given 
in Sect. 3. Proposed algorithms is briefed in Sect. 4. Experimental simulations are 
presented in Sect. 5. Conclusions are given in Sect. 6. 

2 Review of Recent Works 

Detecting flame and smoke from the fire is easy in a ground-based imaging system. 
Cameras can be mounted on the towers in the forests. But their purview is limited 
and hence imaging of deeper areas is not possible with these fixed cameras. In this 
regard, unmanned aerial vehicles i.e., drones can cover broader and deeper areas 
with more closer view of the fireplace than fixed cameras. Dangerous areas and 
in accessible areas can be covered with UAVs. In general, UAVs utilize optical or 
infrared charge-coupled device (CCD) for capturing the images in addition to other 
sensors. Traditional methods include the texture features from the fire and smoke 
areas from the images and applying the classifiers on the features. Barmpoutis et al. [6] 
used a flame dynamic texture analysis for classification of fire images. Color, motion 
and spatial-temporal features are used in this. Using 2D wavelet decomposition, 3D 
wavelet decomposition both spatial and temporal texture analysis of the flame is done 
in [7]. Sudhakar et al. [8] used a motion-based algorithm for detecting the fire in the 
forest through UAVs. Additional information from landscape data and meteorological 
information is used in this work. Accurate detection and classification of fire images 
in the forests are done by using a fixed-wing drone and a rotary-wing drone [9]. 
Both optical cameras and thermal cameras were used. Once, the fixed-wing drone
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detects a fire, a closer view is obtained by a rotary wing drone. Chen et al. [10] used a  
traditional multi-layer CNN architecture with an image size of 64 × 64 as input. The 
dataset comprised 950 images. In [11], fire front shape and the way it propagates 
was analyzed using an onboard visual and infrared camera. Multiple views were 
obtained with multiple vehicles for improved monitoring. Compared to traditional 
features and classifiers, deep learning approaches are gaining popularity and utilizing 
deep CNN architectures in the fire detection systems is becoming common in UAVs. 
By localizing and segmenting the fire area Zhao et al. [12] used a saliency detection 
algorithm for fire classification and detection algorithm. Tang et al. [13] and Jiao 
et al. [14, 15] used YOLOv3 (You Only Look Once) architecture for detecting the 
fire. The captured images were of high-resolution 4K images in [13]. 

Integration of fog computing and CNN architecture was proposed by Srinivas and 
Dua [16]. They used AlexNet as the CNN architecture. For detecting both flame and 
smoke, Barmpoutis, et al. [17, 18] have proposed a setup using UAVs. By employing 
360-degree sensor cameras, number of sensors and can be reduced. The burden of 
data acquisition and computational costs is also reduced. Smoke and flame area is 
segmented using DeepLab V3+ networks. In addition, the authors have also proposed 
a “Fire detection 360-degree dataset”, They obtained an F-score detection rate of 
94.6% with fewer sensors. In this work, a dataset [19] available in kaggle is utilized 
and was prepared by them using public images from google and other resources. It 
comprises 2096 images having equal number of ‘fire’ and ‘no fire’ images. Sample 
images from each class are depicted in Fig. 1. 

(a) Fire Images 

(b) No Fire Images 

Fig. 1 Sample images from the UAV forest fire dataset



42 B. C. Mohan

3 Mobile CNN Architectures 

In general, CNN architectures that are deeper and wider are able to capture complex 
features of an image. However, deeper architectures consume lot of memory and 
consume and battery power when deployed on mobile platforms. As computational 
resources on a mobile platform i.e., drones, are minimal, deeper architectures cannot 
be used. Mobile CNN architectures are lightweight and consume less memory and 
inferencing is very fast. Hence, suitable for real-time processing of image or video 
data. In 2016, a small model known as SqueezeNet [20] was proposed. It consists 
of a fire module. With less number of parameters, it was able to perform similar 
to Alexnet on ‘imagenet’ dataset. In a squeeze layer, data is compressed. There are 
eight fir modules in SqueezeNet. At the end of the net, a convolution layer exists. 
SqueezeNetv1.1 has 1.25 million parameter.rs and has top-1 57.5% accuracy on 
‘imagenet’ dataset. Model size is less than 0.5MB. A simple CNN was developed for 
mobile vision applications in 2017 known as MobileNetv1 [21]. In MobileNetv1, 
depthwise separable convolution was used instead of convolution layers. Hence, 
required learned parameters are less. No max pooling is used to reduce the spatial 
dimensions, but there is a global average pooling layer at the end. With a depth 
multiplier of 1, it has 4.24 million parameters and has shown 70.9% top-1 accuracy 
on ‘imagenet’. 

In MobileNetv2 [22], same depthwise convolution used in MobileNetv1 is used, 
but in the middle. One expansion layer before the depthwise convolution and one 
bottleneck layer after the depthwise convolution is employed. Further, a residual 
connection is there in the block. This is between the bottleneck layers, hence known 
as an inverted residual connection. MobileNetv2 has 3.47 million parameters and 
has shown an accuracy of 71.8% on top-1 category of ‘imagenet’. The performance 
varies with a hyper parameter called depth multiplier. An architecture targeted for 
mobile devices known as Mobile Neural Architectural Search (MNASNet) [23] was  
developed in 2018. Similar to MobileNetv2, MNASNet has an expansion layer, 
depthwise convolution, and bottleneck layer, residual connection. Both 3 × 3 and 
5 × 5 convolutions are used and in the MBConv block, the expansion layer uses a 
factor of 3. A new module known as the squeeze and excitation module is introduced 
in order to reduce the feature map spatial dimensions to 1x1. The importance of 
features is learned by the squeeze and excitation module. MNASNET-A1 has 3.9 
million parameters, 75.2% accuracy and MNASNET-A3 has 5.2 million parameters 
and 76.7% accuracy on ‘imagenet’. 

An improvement over MNASNet was MobileNetv3 [24] and was proposed in 
2019. Usage of Swish activation layer, squeeze and excitation module redesign, 
and redesign of expensive layers are the modifications to MNASNet and led to 
MobileNetv3. This architecture is developed with a focus on Android devices. 
MobileNetv3 has two versions i.e., MobileNetv3 (small), and MobileNetv3 (large) 
having 2.9 millions and 5.4 millions parameters and 67.5% and 75.2% classification 
accuracies on ‘imagenet’. SqueezeNext [25] is a modification of SqueezeNet. Two 
bottleneck layers are used in a row. Instead of using sing 3x3 convolution, two single
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1x3 and 3x1 convolution is used. An expansive layer and residual connection exist. 
Depthwise separable convolutions are not used in SqueezeNext. With just 0.7 million 
parameters, 1.0-SqNxt-23 has an accuracy of 59.05%. Point convolutions or dense 
convolutions are computationally expensive. Group convolution is a remedy to this. 
However, there is not information shared between the groups. Residual connection 
is also present in the process. A shuffle operation was employed on these results in 
ShuffleNet [26]. There are 5 variants of ShuffleNets. ShuffleNet v1 1.0× (8 groups) 
needs only 2.4 million parameters and has shown 68% accuracy and ShuffleNet v2+ 
(large) has 6.7 million parameters and 77.1% accuracy was reported. The architecture 
of CondenseNet [27] is similar to DenseNet initially. Reuse of features is employed 
to achieve higher accuracy. But using all the features may not be helpful. Groupwise 
splitting of filters per layer is employed. Usually, 4 or 8 groups per layer are used. 
As training progresses, features that are not prominent are pruned from the model on 
per-group basis. An index layer acts as a look-up table and is helpful in the inference 
process. CondenseNet-74 (8 groups) and CondenseNet-74 (4 groups) require 2.9 and 
4.8 millions parameters and have shown 71% and 73.8% accuracy. 

The concept of dimension-wise convolution and fusion was employed in DiCENet 
[28]. Width-wise and height-wise convolution on the input image is known as 
dimension-wise convolution. For a tensor DxHxW, (D stands for depth, H stands for 
Height, and W for width), in dimension-wise convolution, the input tensor is sliced 
along either W or H axis but not D axis. The filter window works on either DxW or 
DxH. In an interleaved manner, the outputs of the convolutions (depth, width, and 
height) are concatenated. Both local fusion and global fusion are used in DiCENet. 
DiCENet 1.0, DiCENet 1.5 and DiCENet 2.0 are three variants and 1.81, 2.65, and 
3.98 million parameters are required respectively. Top-1 accuracies reported were 
66.5%, 69.5%, and 71.0%. In FBNet [29], a 1x1 convolution for expansion, RELU 
activation function, depthwise convolution, a bottleneck layer with no activation and 
a residual connection are basic blocks. There are nine configurations one can search 
for in this FBNet. Over all structure is fixed, however, choosing specific 9 blocks for 
the 22 layers makes this FBNet flexible. FBNet-A, FBNet-B and FBNet-C require 
4.3, 4.5 and 5.5 million parameters and reported accuracies were 73.3%, 74.5% and 
75.2%. 

In depthwise convolution, the size of the kernel plays an important role. Putting 
multiple kernel sizes in a layer known as MixConv is used in MixNet [30]. Kernel 
sizes of 3 × 3 are common, and in some networks, 5 × 5 and 7 × 7 kernels are 
used with the notion that the accuracies are improved as kernel size increases. This 
is true to some extent, it is observed that with a size of 9 × 9 kernel, the clas-
sification accuracy drops. Channels are split into groups. Depthwise convolution 
is applied for each group with different kernel sizes. At the end, concatenation is 
applied. MixNet-S, MixNet-M, and MixNet-L are proposed in this category and 4.1, 
5.0 and 7.3 million parameters are required for each one respectively. A top-1 accu-
racy of 78.9% was reported for MixNet-L. A recent architecture is EfficientNet [31] 
proposed in 2020. Scaling of network width, depth, and input resolution is imple-
mented using compound scaling. Various scaling parameters are used for width, depth 
and input resolution. These scaled architectures are based on a basic network known
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under EfficientNet B0. EfficientNet-Lite is targeted for mobile devices. Relu6 is used 
as an activation function. EfficientNet-Lite0, EfficientNet-Lite1, EfficientNet-Lite2, 
EfficientNet-Lite3, and EfficientNet-Lite4 models are lightweight models having 
4.7, 5.4,6.1,8.2 and 13.0 million parameters. EfficientNet-Lite4 has demonstrated an 
accuracy of 81% top-1 class. 

4 Proposed Algorithm 

Initially, the dataset is split into training and test set with a split ratio of 80% train and 
20% test data. For a selected mobile CNN architecture, the sizes of the images in the 
dataset are resized as per the selected architecture. Features can be extracted from any 
layer of the CNN architecture. However, the features extracted from the last pooling 
layers are more discriminating in general. Feature vectors from the last pooling layer 
of a pre-trained mobile CNN architecture is computed for both train and test image 
data. Feature vectors of the selected mobile CNN architectures are concatenated and 
given to an SVM (Support Vector Machine) classifier. A concatenated test feature 
vector is given to the trained SVM classifier. Classification accuracy is computed 
for the test image data. The images in the train and test set are shuffled and the 
experiment is repeated for ten times. Mean classification accuracy is computed for the 
ten iterations. This is to ensure that the model is more generalized and not overfitting. 
The feature vector size increases due to concatenation. However, the resulting feature 
is more discriminating than the individual feature vector from a mobile CNN. It is 
summarized in Fig. 2 as a flow chart.

5 Experimental Simulations 

All the pre-trained models features are extracted using the repository given in [32, 33] 
using Pytorch framework in google colab environment. All the selected mobile CNN 
architectures are pre-trained on ‘imagenet’ dataset. Imagenet dataset consists of 1000 
classes and more than 14 million images. Features are extracted from the last pooling 
layer of a pre-trained network. Various models and the size of the feature vector is 
given in Table 1. All the images in the dataset are pre-processed as per the input 
size of the chosen pre-trained model. The train and test split chosen is 80%–20%. 
Hence, there are 1676 images in the train set and 420 images in the test set totaling to 
2096 images. The classification problem is a binary classification problem. Support 
Vector Machine (SVM) classifier with linear kernel is chosen for classification. To 
ensure generalizability of the model train and test images are shuffled at random and 
the experiment is repeated ten times. The mean classification accuracy of various 
mobile CNN architectures is given in Table 1. To have a comparison, Resnet50 [34] 
is also included in Table 1 even though it is not a mobile CNN architecture. There
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Fig. 2 Flow chart of the proposed algorithm

are 23 million parameters in Resnet50, much higher than most of the mobile CNN 
architectures.

MixNet-L is able to classify with an accuracy of 97.14%. The performance of 
Dicenetwd5 is very poor. Except this case, most of the mobile CNN architectures are 
able to classify the images with ‘Fire’ and with ‘No Fire’ demonstrating a classifica-
tion accuracy of higher than 93%. To improve the classification accuracy further, the 
features from the Dicenet_w1, Mixnet_l, Fbnetc_100 and Mobilenetv3_large_100 
are concatenated. Size of the resulting feature vector is 5264. After fusing (concate-
nating), the peak classification accuracy obtained is 98.8% and the mean classifica-
tion accuracy obtained is 98.21%. Iteration-wise classification accuracies are given 
in Table 2a for 80% train −20% test split. For 10% train −90% test split, accuracies 
are given in Table 2b. Without fusing, the performance of the selected four networks 
is shown in Fig. 2 As shown in Fig. 3, the fused feature vector is able to classify with 
higher accuracy compared to an individual feature vector. In 4th and 8th iterations, a 
peak classification accuracy of 98.8% is obtained and the resulting confusion matrix 
is shown in Fig. 4. The simulation is run for 10 iterations and various performance 
metrics calculated over ten iterations is given in Table 3.

6 Conclusions 

In this work, an algorithm for classifying the images with ‘fire’ and ‘no fire’ is 
proposed. Pooled features from the selected pre-trained mobile CNN architectures are 
concatenated. The concatenated feature vector is given to the binary SVM classifier
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Table 1 Pre-trained mobile CNN architectures and classification accuracies 

Architecture Feature vector size Mean classification accuracy 

Condensenet74_c4_g4 2064 96.7619 

Condensenet74_c8_g8 2064 96.0476 

Dicenet_w1 464 96.4286 

Dicenet_w2 976 96.5238 

Dicenet_w3d2 704 96.2619 

Dicenet_w3d4 344 94.5952 

Dicenet_w5d4 576 96.3333 

Dicenet_w7d8 840 96.6190 

Dicenet_wd2 192 93.5714 

Dicenet_wd5 128 62.1190 

Fbnetc_100 1984 96.6905 

Mixnet_l 1536 97.1429 

Mixnet_m 1536 96.8333 

Mixnet_s 1536 96.5476 

Mnasnet_100 1280 96.5000 

Mobilenetv2_100 1280 95.8333 

Mobilenetv2_110d 1280 96.2619 

Mobilenetv2_120d 1280 96.7619 

Mobilenetv2_140 1792 96.5000 

Mobilenetv3large_100 1280 96.7143 

Resnet50 2048 96.9524 

Shufflenet_g1_wd4 144 93.5476 

Shufflenetv2_wd2 1024 95.4286 

Sqnxt23_w1 128 93.3571 

Efficientnet_lite0 1280 95.5000 

Efficientnet_lite1 1280 94.5000 

Efficientnet_lite2 1280 94.6667 

Efficientnet_lite3 1280 95.4286

with a linear kernel. Even at 10% train and 90% test split, a mean classification 
accuracy of 97.1% is achieved after fusing the features from four pre-trained mobile 
CNN architectures. It is in excess of 98% for an 80% train and 20% test case. Each 
experiment is repeated 10 times after shuffling the training and test image data to 
ensure the generalizability of the proposed algorithm. This ensures that there is 
no overfitting problem. Various performance measures, i.e., classification accuracy, 
F-measure, sensitivity, specificity, and precision are computed. Since the selected 
architectures are lightweight in terms of trainable parameters and inference speed, 
they can be easily deployed in any mobile platform like drones. It may be concluded
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Table 2 a Fused mobile CNN architectures and classification accuracies (80%train and 20%test). 
b Fused mobile CNN architectures and classification accuracies(10%train and 90%test) 

Fused architectures Iteration Classification accuracy per iteration 

1 98.5714 

2 96.9048 

3 98.3333 

Dicenet_w1 4 98.8095 

Mixnet_l 5 97.8571 

Fbnetc_100 6 98.5714 

Mobilenetv3large_100 7 97.6190 

Feature Vector Size: 8 98.8095 

5264 9 98.0952 

10 98.5714 

Mean classification accuracy 98.2100 

1 97.8791 

2 96.9777 

3 96.2354 

Dicenet_w1 4 97.1898 

Mixnet_l 5 96.3945 

Fbnetc_100 6 97.2428 

Mobilenetv3large_100 7 97.5610 

Feature Vector Size: 8 96.9777 

5264 9 97.6670 

10 97.5080 

Mean classification accuracy 97.1600

that by properly fusing selected mobile CNN architectures features, it is possible to 
achieve higher classification accuracies of more than 98% even with less number of 
images and with limited computational resources paving the way for deployment in 
drones and other UAVs. This is justified in this work with exhaustive simulations.
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Fig. 3 Classification accuracy of fused features compared to individual features 
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Fig. 4 Confusion matrix for peak classification accuracy 

Table 3 Various 
performance metrics over 10 
iterations 

Performance metric Fire class No fire class 

True positive 2051 2074 

False positive 49 26 

False negative 26 49 

True negative 2074 2051 

Precision 0.976 0.987 

Sensitivity 0.987 0.976 

Specificity 0.976 0.987 

Accuracy 98.21% 98.21% 

F-measure 0.982 0.982
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Deep Learning-Based Improved 
Automatic Building Extraction 
from Open-Source High Resolution 
Unmanned Aerial Vehicle (UAV) Imagery 

Chintan B. Maniyar and Minakshi Kumar 

Abstract Automatically extracting buildings from remotely sensed imagery has 
always been a challenging task, given the spectral homogeneity of buildings with 
non-building features as well as the complex structural diversity within the image. 
Traditional machine learning (ML) based methods deeply rely on a huge number of 
samples and are best suited for medium-resolution images. Unmanned aerial vehicle 
(UAV) imagery offers the distinct advantage of very high spatial resolution, which 
is helpful in improving building extraction by characterizing patterns and structures. 
However, with increased finer details, the number of images also increases many folds 
in a UAV dataset, which require robust processing algorithms. Deep learning algo-
rithms, specifically Fully Convolutional Networks (FCNs) have greatly improved the 
results of building extraction from such high resolution remotely sensed imagery, as 
compared to traditional methods. This study proposes a deep learning-based segmen-
tation approach to extract buildings by transferring the learning of a deep Residual 
Network (ResNet) to the segmentation-based FCN U-Net. This combined dense 
architecture of ResNet and U-Net (Res-U-Net) is trained and tested for building 
extraction on the open source Inria Aerial Image Labelling (IAIL) dataset. This 
dataset contains 360 orthorectified images with a tile size of 1500 m2 each, at 
30 cm spatial resolution with red, green and blue bands; while covering total area 
of 805 km2 in select US and Austrian cities. Quantitative assessments show that the 
proposed methodology outperforms the current deep learning-based building extrac-
tion methods. When compared with a singular U-Net model for building extraction 
for the IAIL dataset, the proposed Res-U-Net model improves the overall accuracy 
from 92.85% to 96.5%, the mean F1-score from 0.83 to 0.88 and the mean IoU metric 
from 0.71 to 0.80. Results show that such a combination of two deep learning archi-
tectures greatly improves the building extraction accuracy as compared to a singular 
architecture.
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1 Introduction 

1.1 Background 

Remote sensing imagery, both satellite and aerial, contains a lot of terrain-feature-
specific information such as land-cover spread, building footprints, waterbody extent, 
vegetation and forest boundaries etc. Extracting this feature information without 
losing relative context within the image is a very important remote sensing image 
processing milieu [1, 2]. Feature extraction is usually done by identifying a common 
pattern among pixels and grouping them together, that group of pixels then being a 
feature [3]. One of the most crucial aspects for accurate image feature extraction is 
finer spatial details such as edges and corners. Primitive feature extraction methods 
were time-consuming and required a lot of expensive human intervention [4]. This 
was mostly because of the unavailability of higher spatial resolution data in conjunc-
tion with the technical infrastructure at the time. However, with advancements in 
digital systems for image processing and also the increased availability and acces-
sibility of high spatial resolution data from both satellites and Unmanned Aerial 
Vehicles (UAVs), image feature extraction has consistently been one of the hottest 
research topics in remote sensing image processing [5]. 

1.2 Previous Works 

In remote sensing feature extraction, building extraction is one of the most vital 
aspects of research. With its applications spread in various pipelines of urban mapping 
and management, disaster management, change detection, maintaining and updating 
geodatabases etc., building extraction has caught the attention of researchers world-
wide for developing robust and accurate algorithms to automate the process [6]. Prim-
itive methods of building extraction were based on applying statistical and morpho-
logical operations on individual pixels to group them together [7], hence automating 
the task up to some extent. One of the most prevalent issues in building extraction 
that has propagated from early methods to the recent methods is the differentiation 
of foreground and background as well as building and non-building objects [8]. To 
be able to differentiate between these, spectral 2 and geometrical cues such as color, 
shape and line have been used to extract buildings from very high-resolution imagery 
[9]. Another study combined distinctive corners while estimating building outlines 
to extract buildings [10], but was unable to extract irregular-shaped buildings. In the 
beginning of the decade, a generic index called Morphological Building Index (MBI) 
was introduced to extract buildings from high-resolution satellite imagery, based on
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spectral information [11]. While this method was able to successfully extract build-
ings with an irregular shape, it failed in shadowy regions and also could not extract 
buildings located close by (instance extraction). A consequent study to MBI proposed 
a Morphological Building/Shadow Index which defined a building index as well as a 
shadow index, and was specifically aimed at bridging the shortcomings of the MBI 
method [12]. 

With the recent availability of strong computing systems as well as finer reso-
lution data, artificial intelligence-based deep learning algorithms such as Convolu-
tional Neural Networks (CNNs) are being aggressively used for building extraction 
given their advantage of hierarchical feature extraction without losing any contex-
tual information [13, 14, 15]. In general, a deep learning architecture consists of a 
network structure with many hidden layers leading to hierarchical feature extrac-
tion thus, eliminating the problem of inadequate representation of learning features 
[16]. Building-A-Nets is an adversarial network to for robust extraction of building 
rooftops. Multiple Feature Reuse Network (MERN) is a resource-efficient rich CNN 
to detect building edges from high spatial resolution satellite imagery [17]. A special 
type of pre-trained CNN, called a Fully Convolutional Network (FCN) is also being 
widely used for transfer learning-based building extraction. A few such popular 
FCNs are VGG-16 [18], ResNet [19], Deeplab [20], DenseNet [21], SegNet [22] 
and U-Net [23]. Studies specifically on building extraction from UAV images have 
also increased of late. SegNet and U-Net have been used in an ensemble manner to 
improve building footprint extraction from high-resolution UAV imagery [24]. Tech-
niques such as dilated spatial pyramid pooling [25], multi-stage multi-task learning 
[26], and channel attention mechanisms [27] have been used to improve the building 
segmentation accuracy from UAV data. Variants of U-Net architecture have also been 
tested for building extraction and studies indicate that the U-Net is the most suitable 
for dense image building extraction [15, 28, 29]. 

1.3 Objective and Summary 

Sometimes, the FCN based segmentation is visually degraded in case of blurred 
building boundaries [30]. Moreover, high spatial resolution data is generally 
restricted to three or four spectral channels, which makes it difficult to differen-
tiate buildings and other spatially similar features [24]. To address these issues, 
this study proposes a deep learning-based segmentation approach that combines 
a pre-trained FCN with a U-Net being trained for building extraction, to extract 
buildings from high-resolution RGB UAV imagery. The learning of a deep Residual 
Network (ResNet) trained on the ImageNet dataset is transferred to the segmentation-
based FCN U-Net, hence forming a combined Res-U-Net architecture. In this Res-U-
Net, the pre-trained ResNet helps capture more context in case of features spatially 
similar to buildings while the U-Net learns building segmentation based on a unique 
loss function (discussed in Sect. 2.3) that simultaneously accounts for crispness 
as well as the region of a segmented building, hence preventing prediction leakage
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outside of feature in case of blurred boundaries. Consequent sections of the paper 
discuss the dataset details, data preparation and training methodology, results and 
their inferences, and conclude the study. 

2 Dataset Details 

This study uses the Inria Aerial Image Labelling (IAIL) dataset. This dataset contains 
a total of 360 orthorectified images (180 for training and 180 for testing) with a tile 
size of 1500 m2 each, at 30 cm spatial resolution with red, green and blue bands. 
Each image is of size 5000 × 5000 pixels. While covering an area of 81 km2/city 
in select 3 US cities of Austin, Chicago, Kitsap County and select Austrian cities 
of Vienna and West Tyrol, this dataset contains 36 images from each city having 
high variance in terms of urban density and building spacing. Moreover, numerous 
instances of shadowy features and shadowy backgrounds are present, especially in 
the images from Chicago, US. The ground truth of the training set is provided as a 
binary feature image with only two classes namely building and non-building. Since 
ground truth is provided only for the training set of 180 images, we use only those 
180 images to train and validate our model. Figure 1 shows the UAV image and its 
corresponding ground truth as available from the IAIL training set, for each of the 
five cities. 

Fig. 1 Data samples from the IAIL dataset, one from each city a Austin, USA, b Chicago, USA, 
c Kitsap County, USA, d West Tyrol, Austria, e Vienna, Austria
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Fig. 2 Data preparation methodology for a single image 

3 Methodology 

3.1 Data Preparation Methodology 

A single image is of size 5000 × 5000 pixels. We further split it into small data chips 
of size 224 × 224 pixels in accordance to the proposed network architecture. This 
results into 484 such tiles from a single image. However, certain number of chips 
contain no buildings or hardly any buildings at all, creating a bias in the type of data 
which could result in model misfit. To ensure uniformity of 224 × 224 chips in terms 
of buildings, we further filter the 484 chips using a High Label Filter (Eq. 1). This is 
basically a ratio of the number of labelled pixels to the total number of pixels in a 224 
× 224 chip. We use a threshold of 0.3 in the High Label Filter to further filter these 
484 chips. This excludes the chips having label density less than 30% and hence 
the earlier bias in the data is now removed. Figure 2 shows the data preparation 
methodology for a single image. This process is performed for all 180 images as 
well as labels. Passing the 87,120 224 × 224 chips obtained from 5000 × 5000 180 
images (180 × 484) through the High Label Filter, we get 27,164 224 × 224 chips. 
The proposed model is trained and validated on these 27,164 chips and entire images 
of size 5000 × 5000 are used for testing. 

HL  F  =
∑224∗224 

i=0 building_pi xeli
∑224∗224 

i=0 image_pi xeli 
(1) 

3.2 Network Architecture 

In this study, the U-Net architecture is implemented with a dynamic decoder to learn 
building extraction as a fully convolutional network (FCN). The whole architecture 
essentially consists of two major operations—image contraction performed by the 
encoder and image expansion performed by the decoder (Fig. 3). The encoder is 
responsible for pooling out the necessary information from within the convolution 
kernel which is done by max pooling operations. The decoder helps preserve precise 
local information such as building edges in case of blurred images which is done 
by upsampling and convoluting over transposed kernels. Each step of encoder is
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Fig. 3 Proposed Res-U-Net architecture described in terms of U-Net encoders and decoders, along 
with the pre-trained ResNet34 layers 

connected with the corresponding inverse step of the decoder using successive skip 
connections. The advantage of using a dynamic network is the automatic creation 
of the decoder based on how the encoder is initialized [31] as well as working with 
almost any patch-size [32]. 

U-Net being an end-to-end FCN can easily be initialized with the weights of a 
deeper CNN. We further initialize the proposed dynamic U-Net architecture with 
the weights of ResNet34 trained on ImageNet, forming a Res-U-Net. The proposed 
Res-U-Net comprises of multiple sequential blocks as well as dynamic U-Net blocks 
initialized with ResNet34. Each encoder-decoder block of the architecture consists of 
a series of 2D batch normalization and ReLU activations which extract the trainable 
features from the data. Table 1 shows the specific network architecture of the proposed 
Res-U-Net architecture. The input to the network is an RGB image of shape (224, 
5 224, 3) to which the network segments buildings and outputs segmented maps of 
shape (224, 224, 2). Here, the prediction contains two channels, one of which is 
a boolean array having discrete prediction for every pixel being a building or not 
and the other is a float32 array which contains the logit probability score for every 
pixel being a building. This is helpful in refining the results by further pooling the 
probability scores with bounded functions such as sigmoid.

3.3 Training the Network 

After weight initialization of the proposed Res-U-Net, transfer learning methodology 
was used to train for building extraction. Figure 4 shows the step-by-step training 
methodology. Out of 27,164 image-label pairs, the network was trained on 23,089 
pairs (85%) and was validated on the remaining 4075 (15%) pairs of images and their
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Table 1 Specific proposed network architecture with individual layer parameters 

Layer Kernel size Output shape Stride 

Conv2d 7 × 7 64 × 112 × 112 2 

Sequential block 1 Conv2d 3 × 3 64 × 56 × 56 1 

Conv2d 3 × 3 64 × 56 × 56 1 

Conv2d 3 × 3 64 × 56 × 56 1 

Sequential block 2 Down block 1 1 × 1 128 × 28 × 28 2 

Conv2d 3 × 3 128 × 28 × 28 1 

Conv2d 3 × 3 128 × 28 × 28 1 

Conv2d 3 × 3 128 × 28 × 28 1 

Conv2d 3 × 3 128 × 28 × 28 1 

Sequential block 3 Down block 2 1 × 1 256 × 14 × 14 2 

Conv2d 3 × 3 256 × 14 × 14 1 

Conv2d 3 × 3 256 × 14 × 14 1 

Conv2d 3 × 3 256 × 14 × 14 1 

Conv2d 3 × 3 256 × 14 × 14 1 

Conv2d 3 × 3 256 × 14 × 14 1 

Sequential block 4 Down block 3 1 × 1 512 × 7 × 7 2 

Conv2d 3 × 3 512 × 7 × 7 1 

Conv2d 3 × 3 512 × 7 × 7 1 

Conv2d 3 × 3 1024 × 7 × 7 1 

Conv2d 3 × 3 512 × 7 × 7 1 

Conv2d 3 × 3 1024 × 7 × 7 
U-Net block 1 Pixelshuffle 256 × 14 × 14 1 

Conv2d 3 × 3 512 × 14 × 14 1 

Conv2d 3 × 3 512 × 14 × 14 1 

Conv2d 3 × 3 1024 × 14 × 14 
U-Net block 2 Pixelshuffle 265 × 28 × 28 1 

Conv2d 3 × 3 384 × 28 × 28 1 

Conv2d 3 × 3 384 × 28 × 28 1 

Conv2d 3 × 3 768 × 28 × 28 
U-Net block 3 Pixelshuffle 192 × 56 × 56 1 

Conv2d 3 × 3 256 × 56 × 56 1 

Conv2d 3 × 3 256 × 56 × 56 1 

Conv2d 3 × 3 512 × 56 × 56 
U-Net block 4 Pixelshuffle 128 × 112 × 112 1 

Conv2d 3 × 3 96 × 112 × 112 1 

Conv2d 3 × 3 96 × 112 × 112 1

(continued)
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Table 1 (continued)

Layer Kernel size Output shape Stride

PixelShuffle_ICNR Conv2d 1 × 1 384 × 112 × 112 1 

Pixelshuffle 96 × 224 × 224 
Sequential extension Conv2d 3 × 3 99 × 224 × 224 1 

Conv2d 3 × 3 99 × 224 × 224 1 

Conv2d 1 × 1 222 × 224 × 224 1

corresponding labels. The network was trained with a batch size of 6 and a patch 
size of 224 × 224 for 30 epochs, with roughly 1200 batches being processed per 
epoch. The training was cut-off based on loss convergence (Fig. 5a). The learning 
was carried out on nearly 20 million parameters extracted at different layers of the 
network. The network was optimized with ADAM optimizer at a learning rate of 
0.0001 and a decay rate of 0.9. 

A unique combination of Binary Cross Entropy (BCE) loss (Eq. 2) and dice loss 
(Eq. 3) was used to train the network. BCE is a probability distribution-based loss [33] 
and hence was used to minimize the entropy between the prediction and the ground 
truth in terms of buildings as features. It was also helpful in preserving the crispness 
near the boundary regions. Dice loss is a region-based Intersection-over-Union like 
metric [34] and it was used to maximize the overlap and similarity between the

Fig. 4 Network training methodology for building extraction using transfer learning
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Fig. 5 a Combo loss variation, b accuracy variation and c IoU variation in 30 epochs of training

predicted region and the ground truth of the feature region. Hence, a combo loss was 
defined (Eq. 4) which focused on both boundary and region preservation. Figure 5a 
shows the loss-based convergence of the model after 30 epochs of training. After 
training for 30 epochs 7 and processing 36,000 batches the model began to converge 
and was saved at the end of 30 epochs with an overall accuracy of 95.7% and mean 
Intersection over Union (IoU) of 0.83. 

BC E Loss  = − 1 

patchsi ze

∑patchsi ze 

i=1 
gi × logpi + (1 − gi ) × log(1 − pi ) (2) 

Dice Loss = 2 × ∑patchsi ze 
i=0 pi gi

∑patchsi ze 
i=0 p2 i +

∑patchsi ze 
i=0 g2 i 

(3) 

Combo  Loss  = BC E Loss  + DiceLoss (4) 

where g = ground truth image, p = predicted building mask 

4 Results and Discussion 

Figure 6 shows the results for building extraction for select RGB images from each 
city of the IAIL dataset. The first column is the input to the model, the second column 
is the ground truth, the third column is the segmented building map as predicted 
by the model and the fourth column shows the evaluation of the prediction with 
True Positives (TP) in white, True Negatives (TN) in black, False Positives (FP) 
in red and False Negatives (FN) in yellow. These are original images of size 5000 
× 5000 from the IAIL dataset. The predictions are obtained by clipping to chips 
of 224 × 224, segmenting buildings and then again merging to the original size 
of 5000 × 5000. In Fig. 6 we try to show all the different conditions for building 
extraction such as the surrounding land-cover classes, urban density, shadows etc. 
from each city. Figure 6a, c, f show successful building extraction in case of high urban 
density with closely spaced buildings, with rare instance segmentation challenges. 
Figure 6b shows effective building extraction even in shadowy regions. It can be 
noted that the shadows are not falsely classified as buildings, which has been a
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very popular challenge in building extraction [12]. Figure 6a, b, f show successful 
building extraction in presence of spectrally similar features such as cemented roads 
and parking lots as well as spatially similar features such as roads, open grounds 
and vegetation patches having shape similar to buildings. The model is also able to 
segment buildings even when the dominant land cover in the image is not urban— 
Fig. 6d, e contain a large cover of vegetation, Fig. 6b, e contain a large area of 
water.

To quantify the prediction made by the model in terms of binary segmentation, 
the metrics of accuracy (4), precision (5), recall (6) and F1-score (7) were used. To 
further perform a feature-based evaluation, object-based metrics such as branching 
factor (8), miss factor (9), detection percentage (10) and IoU or quality percentage 
(11) (otherwise also popularly known as jaccard index) were used. Table 2 shows 
the metrics of the individual images in Fig. 6.

accuracy = tp  + tn  
t p  + tn  + f p  + f n  

(5) 

precision  = tp  

t p  + f p  
(6) 

recall  = tp  

t p  + f n  
(7) 

f 1 = 2 × 
precision  ∗ recall  
precision  + recall  

(8) 

branchingFactor = 
f p  

t p  
(9) 

miss Factor = 
f n  

t p  
(10) 

detection Percentage = 100 × 
tp  

t p  + f n  
(11) 

quali t y Percentage/I oU  = 100 × tp  

t p  + f n  + f p  
(12) 

where tp = True Positive, fp = False Positive, tn = True Negative and fn = False 
Negative. 

Figure 7 shows the city-wise metrics of model validation. Tyrol West and Vienna 
from the IAIL dataset exhibit highly favourable conditions for building extraction. 
Extracting buildings from Chicago and Kitsap has been the most challenging. This 
is due to shadowy regions, typically the shadows being cast on other buildings. 
Though the proposed model successfully discriminates between shadowy regions 
and buildings and avoids shadows as false positives, it faces significant challenges
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Fig. 6 Select instances of building extraction results from each city of the IAIL dataset. First column 
is RGB input to the model, the second column is model prediction for building segmentation, third 
column is ground truth and the fourth column is the evaluation image showing TP (white), TN 
(black), FP (red) and FN (yellow). a, b From Austin, USA, c from Chicago, USA, d from Kitsap 
County, USA, e from Tyrol West, Austria, f from Vienna Austria
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Table 2 Metrics for individual images of Fig. 6 

Accuracy Precision Recall f1-score Branching 
factor 

Miss 
factor 

Detection 
percentage 

IoU 

Figure 6a 0.961 0.943 0.802 0.867 0.060 0.246 0.802 0.765 

Figure 6b 0.942 0.850 0.764 0.859 0.177 0.152 0.868 0.752 

Figure 6c 0.870 0.833 0.666 0.745 0.200 0.500 0.666 0.589 

Figure 6d 0.991 0.997 0.851 0.920 0.001 0.176 0.851 0.845 

Figure 6e 0.982 0.994 0.796 0.889 0.006 0.257 0.796 0.801 

Figure 6f 0.927 0.938 0.893 0.915 0.006 0.120 0.893 0.843

in extracting the buildings which are under shadows. This drastically increases the 
rate of false negatives, as the model excludes the buildings under shadows as only 
shadowy regions (Fig. 8a, b). A potential reason for this could be loss of spectral 
variance as well as the spatial distinction of a building that is under shadow. Moreover, 
another isolated issue encountered in a Kitsap image is a patch of waterbody being 
falsely segmented as building, resulting into a high number of false positives (Fig. 8c). 
This could be due to multiple reasons such as spectral similarity of the waterbody 
area due to turbidity, or saturation of DN values in those areas due to direct glint on 
sensor. Such instances of shadowed buildings and typical water areas are prominent 
in the images from Chicago and Kitsap and hence the extraction results are lowest 
for these two cities from the IAIL dataset. Figure 8 shows select instances buildings 
under shadows which result in a high number of false negatives. 

Despite these specific challenges and rare instance segmentation issues, the overall 
performance of the model when evaluated on the validation set of 4075 images is 
highly favourable. The high values of the evaluation metrics, especially IoU, also 
indicate that the proposed model can segment buildings well within the feature edges 
and there is no region loss except for when the building itself is under a shadow. When 
compared with other deep learning-based approaches, the proposed model increases 
the average IoU to 0.80 and average F1 score to 0.86. Table 3 shows the overall 
evaluation metrics of the model for the validation set as well as a comparison of 
those metrics with other studies on the same IAIL dataset.

Fig. 7 City-wise prediction metrics from the IAIL dataset validation part
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Fig. 8 Select instances where buildings are covered under shadows, leading to high false negative 
rate. First column is RGB input to the model, second column is model prediction for building 
segmentation, third column is ground truth and fourth column is evaluation image showing TP 
(white), TN (black), FP (red) and FN (yellow). a, b From Chicago, USA, c from Kitsap County

Table 3 Overall metrics of the proposed approach and their comparison with existing approaches 

Method Proposed 
Res-U-Net 

Dilated 
spatial 
pyramid 
pooling 
[25] 

GAN-SCA 
[27] 

MSMT-Stage-1 
[26] 

AMLL 
[28] 

Dilated 
CNN [29] 

0.965 0.894 0.966 0.961 0.959 0.928 

0.883 – – – – – 

0.861 – – – – – 

0.88 – – – – 0.83 

0.193 – – – – – 

0.230 – – – – – 

93.42 – – – – – 

0.80 – 0.777 0.733 0.725 0.710
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5 Conclusion 

In this research work, building extraction from UAV imagery was explored using deep 
learning and transfer learning methodology. A Res-U-Net architecture consisting of 
U-Net blocks initialized with pre-trained ResNet34 weights and was used to learn 
building extraction from the IAIL dataset. The combination of ResNet and U-Net 
was used in an attempt to overcome the problems of blurred building boundaries and 
limited spectral resolution in building extraction. Moreover, a combined loss function 
that accounts both for the building region, as well as building boundaries, was used 
to train the proposed Res-U-Net. The model was trained and validated on 180 images 
from across five different cities of US and Austria. These images depicted high vari-
ance in terms of urban density and dominant land cover of the image. The proposed 
model was successfully able to segment buildings in all cases with rare instance 
segmentation issues. Model performance was measured using quantitative metrics 
of confusion matrix as well as object-based metrics such as branching factor, miss 
factor and IoU. When comparing these metrics with those of existing deep learning-
based methods, highly favorable results were noted. Specific challenges such as 
extracting buildings lying under shadow and excluding turbid/active waterbody as a 
building were also identified and are open for research. 
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Design and Development of Human 
Temperature Measuring System Using 
Drone Based Multispectral and Thermal 
Images 

S. Meivel , S. Maheswari , and D. Faridha Banu 

Abstract People’s failure to maintain a social distance is causing the COVID19 
virus to spread. We have used the drone thermal images for a maximum of 10 km 
of coverage to detect temperature and reduce virus spread areas. The part of the 
work is based on utilizing disinfectant spraying drones, disinfectant testing with the 
guidance of doctors, setting the path planning of drones for surveying the temperature 
of people, and monitoring the infected place using GPS. When the thermal camera 
of the drone detects the temperature values using remote sensing images, the drone 
covers crowded places like hospitals, cinemas, and temples using remote sensing 
images. One drone model is designed to provide present results using thermal images. 
The Proposed drone can cover an affected area of up to 16,000 square meters per 
hour for capturing remote sensing images. It predicts affected areas using faster 
CNN algorithms with 2100 thermal images. Thermal mapping is used to monitor the 
social distance between people, alert people that a virus is spreading, and reduce the 
risk factor of people’s movement. In this paper, remote sensing images are analysed 
and detect higher temperature areas using thermal mapping (Messina and Modica in 
Remote Sensing 12:1491, 2020). 
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1 Introduction 

Remote sensing analysis is described when using drones to target at 6 km/h to 
spray only affected areas to avoid wastage of sanitizing liquid. Under the Essen-
tial Commodities Act, alcohols utilized in assembling hand sanitizers have been 
topped under the Essential Commodities Act during the coronavirus episode [6]. 
Direct costs, production, sale, circulation, transport, development, stockpiling, and 
data of alcohol used in the manufacture of hand sanitizers, which are used as a 
preventive measure to avoid disease caused by COVID-19. Fabricate liquor-based 
hand sanitizer splashes with ethyl alcohol as a primary substance on a mass scale in 
a similar plant, which may make this liquor-based sanitizer exceptionally easy and 
make it accessible on the market soonest. Sprayer module The sprayer is used to 
saturate the Sanitizer Sprayer in the tallest building nearest the tank. The Sanitizer 
Sprayer controller is separate from the actuator. The RF receiver and transmitter are 
important for the spray system. The tank is used for storing sanitize materials for the 
spray system. The tank has a storage level of 2,000 gm. It sprays the full level of the 
Sanitizers Sprayer of the system. The nozzle is also important for the sprayer module. 
The nozzle is controlled by the transmitter and receiver of the tank and sprayer of the 
module. Drone navigation depends on IoT board GPS and satellite GPS. A thermal 
camera’s remote sensing image focused on the Drone navigation system when the 
gyroscope is running to measure gear angles, air stress, magnet direction, S-N-E-W, 
and acceleration of BLDC motors [1] using canopy. At the ground station, the drone 
flight defined the flight path, height, trigger, and velocity force. Automated flight 
paths can be set for detection of the image using thermal sensors, and the flight plan 
can be changed using Drone IoT programs [16]. 

1.1 Environmental Impacts 

Use the remote sensing of spraying drones using GIS software and the Biomass 
Prediction Algorithm Sprayer Module (Aluminum Type). The IoT board and Python 
programme were found to help the module implementations [22]. Gray scale and 
RGB scale photographs were created from images captured by an IR camera using 
the S360 module. Rovio performs in the inter-navigation system when using drone 
image estimation. Multistage image pre-processing is tracked when performing filters 
[8]. The Extended Kalman filter is used to estimate the image data from readings of 
the ROVIO+Drone+odometer. DJI cameras interfaced ROS to the drone’s autopilot. 
The PID controller controls the nonlinear version of predictive data, odometer data, 
and commands to the drone’s autopilot.
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1.2 Impacts of Drone Spraying 

The security system of the Agricultural department uses a particular drone for 
spraying infected areas in a city or village. The drone image is used in the Covid19 
thermal value and surrounding virus flow. Individual drones capture thermal video 
at 20000 m2/h. An army drone can spray and surround villages and cities to hit the 
virus. When the drone automated, it already stored all the sprayed data and mapping 
to avoid repeat spraying. Now In coastal areas, the drone captures videos and sprays 
to infect particular places, but it is a limited spray. Sprayed footage can be captured by 
drone cameras within 3–100 m. The mapping survey found the killing virus spreading 
due to a reduction in the death rate. The UAV system proved to use a faster method 
for delivering spray content when critical situations [21]. Tamil Nadu agriculture 
and security Drones have proven to release infected areas like roofs, trees, gardens, 
restaurants, skyscrapers, and crowded areas. Drones are covered, and the thermal 
camera—OpenCV library files provide 90% accuracy of infected results [25]. It also 
prevents people via the alert system or signals through the IoT board from speaking. 

2 Literature Survey

• A large amount of sanitizer is carried by heavy drones for high-speed spray. 
The USA was affected by the COVID19 virus in 2020. The country handles 
heavy drones with a big container up to 30 kg or 40 kg in volume to spray. The 
country will follow in 24 h to control the virus’s spreading area through a heavy 
drone vehicle, as planned. Therefore, in such cases, detect the virus where it is 
spreading high and where it is spreading low while implementing a drone IoT 
system. They invest in simple and smart data delivery, publishing it to people or 
publishing it to the US government. Public awareness of drone technology is low 
because of its inflexible and limited capability. The US government spends dollars 
and employed non-profit social workers to simplify all tasks. They implemented 
Disinfection of villages and cities while reducing the COVID19 virus. Therefore, 
they mostly used crop-spraying drones to disinfect streets in the cities and villages. 
The DJI drones covered 20000sq.m/hour to complete the spraying in affected 
areas only. However, they were left unaffected in each place. The other countries 
did not use a particular drone to spray the sanitizer content. They use all types 
of drones, like those that are used as crop-spraying drones, police drones, and 
consumer drones, because the drones are fitted with tanks to disinfect villages 
and cities. Villagers and city people are interested in spraying sanitizer content 
through drones to disinfect streets in the city or village when they save neighbors 
from COVID 19.

• In India, police security officers and healthcare departments are finding results 
for the most affected areas [17]. They reported on every day using drones with 
IR or thermal cameras. A high-powered spraying system is used for spreading
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seeds. The drone and UV robots focus on and secure COVID19 patients when 
programmed and planned. This drone and robots kill or remove viruses using a 
thermal camera. UV drones have been implemented in the healthcare industry to 
detect COVID19 people and disinfect villages and cities [16]. In EOD, the WHO 
recommends monitoring social distance coverage and coughing area detection in 
order to disinfect villages and cities and dispose of medical tissues in a secure 
location after use [5]. Optimization and simplification of disinfecting villages 
and cities will be applied to drones in the future, like mask detection and thermal 
detection. [7] Covid19 detects people, detects humidity, and cough areas detection 
through heavy drones. Army and Navy people trained as pilots, licensed people to 
disinfect villages and cities. UV robots are too much more expensive than heavy 
drones, and they are used in low traffic usage. Power consumption is reduced in 
drones due to battery cover and low usage. The drone covered infection places only 
and sprayed infection places only. But, robots use high power to spray and it takes a 
long time to complete. Spraying drones are more flexible and stable to complete the 
schedule speed process. All types of drone converted to the Covid19 Drone from 
other applications. They followed the disinfected village and city, optimized these 
programs, sped up operations, instructed damaged parts, maintained surveillance, 
and detected Covid19 people [14]. 

3 Research Analysis of Drone Spraying 

The normal body temperature is 33–37 °C. The Drone NIR Camera scanned >37 °C 
using a thermal camera. When detecting body temperature from virus places, the 
IoT section commands the drone to spray sanitizer. We have calculated real-time 
temperature data using GIS software. GIS Software is managed by an administrator 
or an IoT controller for the automation of Drone Spray. No, you need to spray all 
places where there is a chemical reaction due to the chemical reaction or firing of the 
Sanitizer. Timing and power management of sanitizer sprinklers in the virus-infected 
area when the temperature is >37 °C or >99 °F, the IoT controller, or Admin, give the 
command to the drone sprayer up to cover 5 km/h. The sanitizing sprayer’s weight and 
battery weight should be less to carry a payload for timing and power management of 
the sprayer. Chemical sanitizer is better than organic sanitizer when you need quick 
results in an emergency case. Organic sanitizer is better than chemical sanitizer 
when it comes to reducing viruses, but the slow result is still worth it. Automated 
spraying may reduce the virus infection in affected areas. Organic sanitizers do not 
affect human skin [11]. Maybe suggest organic sanitizer spraying. Drone sanitizer 
spraying covered 10 m/min in normal mode. This speed depends on the spraying 
speed of the pump motor.
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Fig. 1 Isometric 3D view 

4 Design of a Drone with Forward Looking InfraRed 
(FLIR) Camera 

The innovative Drone was created using 3D software such as Solid-Works and 
then printed for use. The drone product includes frames, four BLDC motors, IoT 
controller, GPS receiver, an Inbuilt Arduio Pilot Board, and FLIR camera. This 
paper describes FLIR camera image processing for the detection of thermal value. 
The Faster CNN algorithm solves the detection problems of people’s activation with 
temperature using FLIR real-time images. Figure 1 depicts an isometric 3D view, 
Fig. 2 depicts the drone’s right side 3D view, and Fig. 3 depicts the drone’s rear 
side 3D view. The FLIR camera supports the biomass induction algorithm and IoT 
sensor driver functions for the detection of temperature values. Figure 4 shows the 
top side view of the drone design. The entire mechanism is very lightweight, and 
the camera view is controlled by wifi. This paper mainly describes image processing 
for detecting the temperature range of objects and tracking the objects. A sanitizer 
spraying mechanism can be attached to the bottom of this drone setup.

5 Methodology 

The methodology is based on remote sensing of spraying drones using drone mapping 
[24]. It includes three steps. These are processed 1, process 2 and human temperature 
detection. In process 1, we identified sensing temperature data from remote sensing 
images. Controlled drone path line for detecting human activities and face detection
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Fig. 2 Right side 3D view 

Fig. 3 Rear side 3D view

in process 2. In the human temperature detection stage, collected temperature data 
can be stored in a database. Figure 5 depicts the processes of temperature detection 
stages and explains all of the stage’s steps.
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Fig. 4 Top side 3D view
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Fig. 5 Remote sensing of spraying drone using GIS software 

5.1 Biomass Prediction Algorithm 

The biomass prediction algorithm is mentioned in Fig. 6. It detected camera 
movement and temperature range between objects.

This programme follows the steps in Fig. 6.

Step 1 Connect the SSH port. 
Step 2 Execute the Remote Trigger Algorithm for Detecting Viruses.
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Fig. 6 Algorithm of biomass prediction algorithm

Step 3 If a command is received from the IoT controller, create variable logs. If a 
command is received from the IoT controller, rotate step 3. 

Step 4 If you trigger the NIR camera, activate the UAV to find the location. If you 
did not trigger the NIR camera, repeat step 4. Updated variable list from the 
UAV. 

Step 5 Spray the Sanitizer content onto the affected places using the Admin 
command. 

Step 6 After spraying, send commands to deactivate the trigger signal. 

5.2 Admin 

The biomass prediction algorithm was reprogrammed and uploaded to this IoT 
controller. The Admin server secures and connects the GPS planning.
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5.3 Mission GUI and Waypoint Planner 

The planning mission was executed and mapped using Pix4D mapper software. The 
Mission GUI drivers give commands when they reach targets. 

5.4 Drone Commands 

During an emergency lockdown period for the detection of human body temperature, 
the Drone commands are received. The commands controlled drone activities for 
automated spraying. 

5.5 Process 2 

Wi-Fi Connection Used in the RF Transmitter: The wireless protocol IEEE 802.11 g is 
used for real-time data transmission [20]. When detecting the Coronavirus using GIS 
analysis, the admin gives the command to spray the Sanitizer content. All real-time 
data is stored in a database using NIR analysis. 

5.6 Drivers and Controllers 

GPS+IMU drivers are used for GPS mappings. NIR Camera drivers control the 
camera rotation and zooming. Radiation drivers helped to find the location of target 
places. Temperature sensor drivers are used for temperature detection in a crowd or 
a person. 

5.7 GPS Receiver 

The GPS receiver provided tracking of the target’s GPS location. It also displays the 
latitude and longitude of target places to spray sanitizer. 

5.8 Process 1 

All sensors are connected in Process1 for sensing of images and the number of 
camera sensors connected using GIS to survey the Coronavirus. Drone commands
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are accepted by the IoT sensor controller. The drone’s NIR camera sends GPS value, 
NIR image, radiation value, and thermal value of location. It is easily connected to 
all device drivers using a wireless interface. 

5.9 Human Temperature Detection 

The Region of Interest (RoI) finds the face edge and detects facial detection. When the 
the radiometric mode is activated, 14-bit values of images are scanned and the temper-
ature range is calculated. The output signal of the scene temperature is measured. 
Here, R is the camera’s responsivity. Tk is absolute temperature in units of Kelvin, 
and F is the number of frames per bit. Scene Temperature S= R 

{e B Tk −F} 
and Absolute 

Temperature Tk = B 
ln( R 

S−O +F) 

5.10 Image Sensing Algorithm Using NIR Camera 

The Image sensing algorithm using NIR images is used for temperature measurement 
and object tracking in Fig. 7. Infrared images are captured by the FLIR sensors [25]. 
These NIR images are given image modification (Threshold values). Using higher 
pixels, it is possible to detect the selection of the objects and their matching with the 
template in Fig. 8.The temperature of the objects and their detection are measured 
after they have matched with the template. We can track the objects using the template 
in GPS coordination of the targeted place.

The faster CNN programme detects face mask detection, temperature measure-
ment, and social distance measurement when using real-time images taken in affected 
areas. This temperature measurement is based on the following steps. Threshold value 
detection, filling the holes, selection of the objects, and template tracking. 

5.10.1 NIR Thermal and Hydric State 

The NIR thermal and Hydric State detected and displayed the results. It stores all the 
results in a database. We can compare the present data with previous data to research 
the temperature results and variation results in different ranges. 

5.10.2 Database 

The database data is displayed on common official websites for the updating of 
people’s temperature. All results are stored in the same location of DRAM memory 
on the server side.
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Infrared images 

Image Modification (Thresholding) 

Selection of the objects 

Matching with the Template 

Face Detection 

Calculate and display the temperature range 

Detected objects Track using GPS 

Fig. 7 Flow chart of the temperature detection algorithm 

Thresholding Filling the Holes Selected objects Template Tracking 

Thresholding Filling the Holes Selected objects Template Tracking 

Fig. 8 Image sensing algorithm using NIR images for objects 1 and 2

6 Temperature Scanning Using Thermal Images 

The machine vision and image analysis methods compared with effective results in 
finding the COVID19 virus. Some technologies diagnosed sick people and checked 
them on manually. It reduced the COVID19 via airborne. Machine vision focused
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Inspection, Identification, and Gauges instrumentation [3]. However, these instru-
mentations are the same as ventilators, respirators, and gears. This Instrumenta-
tion helped to COVID19 patients and protecting the doctors when they serviced 
the patient. In Fig. 6, a Thermal camera Installed and scanned in all airports to 
the detecting of all Thermal views [26]. It showed elevated body temperature. It 
detected the Temperature range of each people. When the COVID19 virus affected 
the immune system, internal body temperature increased. This temperature range is 
similar to face Temperature. A thermal camera detected only the thermal view of 
people and did not detect any virus. The thermal image has shown a high-resolution 
image and temperature range of the body or face [7]. 

The 3D camera was fixed and deployed in the drone or any of the 360° rotational 
parts like the servomotor on the wall. A drone camera setup is utilized for sanitizer 
spraying and food delivery using drone image vision [4]. It is detected by positive and 
negative COVID19 patients in Fig. 9. The thermal image of the drone was updated at 
the spraying location to reduce the COVID19 virus. The chest radiography images 
help in the detection of COVID19 virus cases. 

They predicted three Categories 

(a) normal cases, 
(b) virus-infected cases, 
(c) COVID19 virus cases and Non-COVID19 virus cases. 

In Fig. 10, temperature scanning was accurate and stable when set to high resolution. 
In less than 2 m, this scan measured body temperature ranging from 370 °C to 
400 °C. The DJI drone measured the temperature of objects and the temperature 
of a group or separate. It also measured heart rate, respiratory rates, blood pressure 
and skin tone [2]. Color changes or movements of the skin, nose, and eyes have 
been used to calculate heart rate. It observed the coughing and sneezing of people. 
Long distance monitoring and detection, illumination variations, and multi camera

Fig. 9 Machine vision and image analysis 
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(a) 

(b) 

Fig. 10 a Temperature scanning per person. b Temperature Scanning of person’s activity 

fusion were possible to determine. The temperature was reduced by 37° when using 
different directions and different speeds of driving the drone. 

Now Covid19 infections are spreading and people are losing their sense of taste. 
Using the IoT-Raspberry pi3 development board, drone multispectral cameras and 
thermal cameras detect temperature, temperature image, and mask detection. It aids 
in the detection of taste loss by detecting image changes. The Drone is capable of 
recording at 100db (or) 1 m distance for recording and delivering an unmatched 
level of versatility for detecting infections and viruses. DJI drones carried 10 L of 
disinfectants, covering an area of 25 km per day. It helps to clear the crowd and 
control it. The crowd was using thermal cameras. Calibration and testing of the 
thermal camera and drone are required to find an accurate temperature value [12, 
13]. Autonomous drones are used for the detection of viruses and to avoid human 
beings, increasing the monitoring of temperature measurements [19].
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7 Mask Detection and Thermal Detection Using Thermal 
Mapping 

The high-resolution camera detects body temperatures with an accuracy of one degree 
or Fahrenheit. When your body temperature rises above normal, look for signs of 
COVID-19 infection. The thermal image identified those who have a high body 
temperature and are positive for Covid19 infection. The thermal camera is used by 
energy companies to connect pipelines using low-cost drones with a 30 g payload 
[9]. This camera detected body temperature elevation [10]. It can detect the body 
temperature of 20 people in a second. Medical equipment detects viruses slowly 
because it takes a long time and provides only 65% accuracy. 

This camera detects the route of a virus spreading area. For example, when some 
people carry a virus to all places, this camera detects the virus spreading throughout 
the whole conference hall. When wearing glasses, this NoIR or FLIR camera detects 
accurate reading and shows a clear view of a subject’s eyes. This camera screening 
showed coughing, difficulty breathing, and CO2 percentage value. QGIS and ArcGIS-
pro software can be used to analyse thermal images of the coughing area and predict 
virus lines. This prediction showed a 90% accurate result and prioritized it. PCR 
testing was used to find COVID19 virus confirmation cases. The treatment strategy 
is based on the different cases of infection and plans for remedies. The Classifi-
cation Algorithm was performed and showed accurate results. CNN based classi-
fication performs feature extraction and combines different results with architec-
tures. Drone technology provides engineering, servicing, integration, and distribu-
tion for the fastest deployment. This technology can easily detect virus infections and 
coughing areas, body temperature, respiratory rate, pulse rate, and blood pressure. 
The drone technology is mainly used for quick results and providing 100 tests/hour 
in different places. 

7.1 Thermal Mapping Using Pix4D Mapper 

In Figs. 11 and 12, Pix4D Mapping is one technique for detecting physical distance 
and finding population density. This is a COVID19 spreading feature. It needs high 
resolution mapping with a population density image. It displays people’s social 
distancing, rod view, social boundaries, management of society’s gates, delivery 
vehicles, and security work.

The mapping was created to show where virus spread is high and where virus 
spread is low. Patients [18], cluster analysis of the spread, location tracking records, 
and prediction analysis for various parameters.
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Fig. 11 Map view of drone mission path planning

8 Classification 

The thermal images are detected in a minimum of 2000 remote sensing images with 
texture information files [23]. In Table 1, it is classified as Hypothermia-x, Normal-
x, Temperature-x, and Hyperpyrexia-x. Hypothermia-x mentioned Ice Fever and 
the potential for normal conditions. Normal x readings are mentioned as normal 
conditions of the people or individual people. Temperatur—x stage is above normal 
and is stated as >380 °C for higher fevers. These readings may be taken at the initial 
stage of virus spreading. Hyperpyrexia –x mentioned >42 °C for virus severe fever 
confirmation. These readings may be taken at higher stages of virus spread.
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Fig. 12 Ray cloud—selected surface to finding temperature of a street area

Table 1 Classifications of 
thermal images 

Classed as Temperature (°C) Temperature (°F) 

Hypothermia-x <35.0 95.0 

Normal-x 36–38 98–100°F 

Temperature-x >38 or 38 100 or 101 

Hyperpyrexia-x >40 or 42 104 or 107 

9 Outcome Results of Thermal Mapping 

The drone mapping results are plotted as temperature versus reflectance. These read-
ings are taken from the dataset on the websites of Kaggle and FLIR. In Figs. 13 and 
14, the dataset of FLIR images are extracted using the Biomass Prediction Algorithm 
and image sensing algorithms. These extracted results provide temperature readings 
and reflectance readings of the people in a targeted place. This chapter, Chaps. 7– 
9 explained these particular steps. Temperature readings are gradually decreasing 
from 40.75 °C to 30.1 °C in this graph. It mentioned the temperature of the body in 
different places. All the readings are plotted in Fig. 15.

10 Conclusion 

The designed drone can cover 16,000 m2 in 1 h for  the detection of infected  and  
disinfected areas. This process helps and secures COVID 19 and other people. When 
using a biomass prediction algorithm, thermal scanning processes have detected
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Fig. 13 Feature extraction of thermal mapping images 

Fig. 14 Feature extraction using one street area

affected areas in streets or cities. In this paper, remote image sensing values are 
analyzed and detected in infection areas. The detected thermal image shows the 
virus-affected area, the virus-spreading places, body thermal values, humidity values, 
social distance in meters, and the nearest COVID19 people using Tensor Flow and 
OpenCV dataset packages on Raspberrypi3 IoT devices. This concept represents a 
method that can automatically detect human faces with high temperatures among 
other objects. Compared to methods that are used now, this method is faster and 
more accurate and doesn’t require human labor. Methods, which are currently used for



84 S. Meivel et al.

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 

1 2 3 4 5  

Temperature reflectnce 

Fig. 15 Temperature versus reflectance

temperature detection, need a lot of time. The method presented in the concept is able 
to do automatic temperature detection in a very short time. In addition, the presented 
algorithm is able to track objects of interest (human faces with temperature) and draw 
their movement paths. The proposed methods are tested on the 2100 temperature 
images and display the temperature of a street person when applying the Faster CNN 
algorithm and Thermal Mapping. 
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Feature Extraction in Urban Areas Using 
UAV Data 

Surendra Kumar Sharma, Minakshi Kumar, Sandeep Maithani, 
and Pramod Kumar 

Abstract As the rapid development is being focused in the urban area, there is a 
need for the utilisation of a system for updating this profile immediately. The usage 
of Uncrewed Aerial Vehicle (UAV) for mapping purposes is one of the current tech-
nologies being used in recent years. UAVs are widely used in a variety of domains due 
to their low price, ability to deliver very high resolution data, and ability to fly at low 
altitudes without being constrained by overcast weather. Typically, data extraction 
methods for UAVs are still quite limited, and traditional approaches are still used. 
For mapping applications, orthoimage features are often manually recognised and 
digitised using visual interpretation skills. Unfortunately, these approaches are time-
consuming, costly, and repetitive. Pixel-based classification approach is frequently 
utilised to help extract low-level features, in which the image is categorised only 
based on spectral characteristics. The drawback of this approach is that the pixels 
in the overlapping region are misclassified as a result of class confusion. More-
over, pixel based classification performs very poorly in high resolution images. The 
Object-Based Image Analysis (OBIA) classification technique has large potential 
for automatic data extraction from Very High Resolution (VHR) images. OBIA 
techniques start with segmentation of image followed by classification and feature 
extraction using contextual information and rule base. In this study, an attempt is 
made to assess the capability of OBIA for detailed classification of highly dense 
urban areas mapped by UAV with a VHR imagery of the order better than 5 cm. The 
image is segmented using multiresolution image segmentation with a suitable scale, 
compactness and smoothness to form homogeneous image objects. Various parame-
ters (spectral, texture, context and elevation) are computed for the VHR UAV Images. 
Rules are formulated to extract and categorise urban features specifically for roads 
and buildings. The segmented roads are classified into categories based on width 
and connectivity. Buildings extracted are categorised based on their elevation and
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size. The study efficiently demonstrates the potential of VHR orthoimage and Digital 
Surface Model (DSM) for urban classification using the OBIA techniques. The finest 
of details captured by UAV can be effectively classified using the segmentation and 
classification approach. 

Keywords Unmanned aerial vehicle · Feature extraction · Object-based image 
analysis · Multiresolution segmentation 

1 Introduction 

Imaging systems based on UAVs have been proven to be beneficial in a variety of 
remote sensing applications, including environmental, urban/land use, image classi-
fication [1], and agricultural studies [2, 3]. UAVs provide a number of benefits over 
traditional remote sensing platforms, including greater flexibility and reduced costs 
in data collection, as well as increased speed and safety. More importantly, UAVs 
may fly quite near to the target, resulting in images with extremely high resolution 
(cm to dm pixel size). The high-resolution images provide enough detail for object 
identification and parameter extraction. 

UAVs can also provide real-time photography of regions that are challenging to 
reach by conventional processes. The UAV data is used to create a high-resolution 
Digital Terrain Model (DTM), DSM, and orthomosaic, which can be utilised further 
for different applications [3, 4]. UAV-based remote sensing data offers a lot of poten-
tial for building classification and extraction because it may unveil the smallest 
features in urban areas [5, 6]. It makes it easier to distinguish between imper-
vious surfaces such as buildings, roads, parking lots, and urban land. It can also 
estimate acquisition points and maybe do direct georeferencing [7]. The classifi-
cation using pixel-based techniques is relatively restricted since it has significant 
issues coping with the rich information content of high-resolution data such as high-
resolution satellite data and UAV images [8]. It yields inconsistent results and misses 
expectations in extracting the objects of interest. 

Currently, the OBIA approach is particularly relevant in the context of image 
classifications for high spatial resolution and UAV images. OBIA techniques start 
with the segmentation of images followed by classification and feature extraction 
using contextual information and rule base comprising of spectral, textural, neigh-
bourhood, and object-specific shape parameters [9]. Segmentation is described as 
the division of a complete image into a number of segments or sets of pixels with 
the purpose of transforming the image’s current pixels into more meaningful objects 
[10]. The resolution and scale of the intended objects should be used to determine 
segmentation and topology creation. For high and extremely high resolutions, the 
OBIA approach outperforms the pixel-based technique [8, 11–13]. 

In this work, an attempt is made to evaluate the capabilities of OBIA for detailed 
classification of very dense urban areas captured by UAV with VHR data of the order 
of 5 cm. The main objective of the current study is to establish a methodology for
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extracting detailed land use with the sub-objectives of finding suitable segmentation 
algorithms for such VHR imagery. Various parameters (spectral, texture, context 
and elevation) were evaluated, and rules were formulated to extract and categorise 
urban features specifically for roads and buildings. The study aims to demonstrate 
the extraction of the finest of details captured by UAV can be effectively classified 
using the segmentation and classification approach. 

2 Test Area and Dataset 

This study uses highly dense urban area situated in the nearby Roorkee city of 
Uttarakhand, India. The geographical extent of the study area spans from 77° 54'
19.49'' E longitude to 77° 54'21.34'' E longitude and from 29° 52' 0.273'' N latitude 
to 29° 51' 56.86'' N latitude. It comprises of densely packed buildings of varying 
heights and aerial coverage (Fig. 1). The study area consists of both manmade features 
(buildings, roads, pavements and parking lots etc.) and natural features (bare soil, 
grasslands, shrubs and trees).

The imagery was obtained using the UAV DJI Phantom-4 pro (Fig. 2), which 
includes a non-metric camera with visible colour bands (red, green, and blue) having 
12 megapixel resolution.

For the current study, a set of 102 images recorded with a ground sampling distance 
of 1.79 cm from a height of 150 m. 

3 Methodology 

The methodology adopted composes of four components. (i) Photogrammetric 
Processing of UAV images. (ii) Segmentation of Orthoimage. (iii) Rules forma-
tion for detailed classification and feature extraction (iv) Accuracy evaluation. The 
complete methodology flow is illustrated in Fig. 3.

3.1 Photogrammetric Processing 

Collected UAV images were processed in Pix4Dmapper Pro and the orthomosaic 
image with the DSM and DTM were generated. The orthomosaic image had a very 
high spatial resolution of 20 cm, and DSM and DTM were obtained at a resolution 
of 20 cm and 90 cm, respectively. Figures 4 and 5 shows orthomosaic and DSM of 
the study area.



90 S. K. Sharma et al.

Fig. 1 Location map and study area

Fig. 2 DJI phantom 4 pro 
UAV used in the  current  
study
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Fig. 3 Workflow adopted for urban feature extraction

3.2 Image Segmentation 

An integrated dataset comprising of orthomosaic image are then segmented using 
a multiresolution segmentation technique. Multi resolution Segmentation (MRS) 
is a well-known technique to segment image objects into homogeneous patterns. 
Object dimension such as size, shape and texture etc. can be measured. These simple 
image objects provide image data and act as building blocks and information carriers 
for further classification. Beyond merely spectral information, image objects include 
plenty of other characteristics that may be utilised for classification, including shape, 
texture, and relational/contextual data. Multiresolution segmentation distinguishes 
contiguous areas in an image if they are highly contrasted, even if the areas them-
selves include a texture or noise. It’s a bottom-up region merging approach that starts 
with a single pixel object and works its way up to multiple objects and pixels. A clus-
tering strategy is used to combine small image objects into larger ones. The weighted
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Fig. 4 Generated orthomosaic of the study area 

Fig. 5 Generated DSM of 
the study area



Feature Extraction in Urban Areas Using UAV Data 93

heterogeneity of the generated image objects is minimised by the underlying opti-
misation technique. Each phase merges a pair of nearby image objects, resulting in 
the minimal increase in the defined heterogeneity. If the smallest increase crosses 
the scale parameter’s threshold, the procedure is terminated. The object primitives 
such as scale parameter, shape, DSM were used for segmentation. These parameters 
should be tuned such that the procedure yields homogenous areas with clearly defined 
boundaries for the object of interest. Multi-resolution segmentation was performed 
at various scales. The size of the objects created during segmentation is determined 
by the scale parameters. The entire image is segmented during image segmentation, 
and image objects are created based on numerous customisable shape heterogeneity 
criteria. Change the size of the resultant image objects by using the scale parameter. 
A large scale parameter produces large objects, and vice versa. 

3.3 Image Classification and Impervious Surface Estimation 

Following the segmentation of the image with MRS, OBIA is used to classify the 
generated image objects. OBIA contains two phases. The image segmentation makes 
for the first phase, and the second is the image object classification. Object metrics 
were utilised to create rulesets prior to the classification of image objects. To quan-
tify the parameters for object identification, object metrics are estimated. Hence after 
being segmented, area, length, breadth, compactness, density, asymmetry, roundness, 
elliptic fit, rectangular fit, main direction, border index, and shape index were deter-
mined from the segmented objects. The spectral features included the mean of each 
layer, index features included the blue by green layer index and n-DSM was used for 
classification and estimation of impervious surface. 

3.4 Quantitative Assessment 

The accuracy of classification and feature extraction was evaluated using features 
extracted by manual digitisation. True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN) were derived by comparing extracted and 
reference features. TP refers to features that are classified in the same category in 
both the reference and extracted data. The term TN denotes the features that are not 
classified as the same feature in the reference. FP represents features extracted in 
the classified results but not existing in the reference image, whereas FN specifies 
features not classified but available in the reference image. The accuracy of the 
retrieved objects is assessed using these metrics. The correctness, completeness and 
quality was evaluated for accuracy assessment.
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4 Results and Discussions 

Figures 4 and 5 show the obtained Orthomosaic and DSM, respectively, using the 
photogrammetric processing of UAV images. 

The test area (Fig. 6a) was extracted from the orthomosaic. The MRS image 
segmentation technique is used to perform object-based image analysis on the test 
region. The orthomosaic picture’s red, green, and blue layers, together with DSM 
derivatives, were utilised as input for image segmentation. Numerous iterations of 
MRS were executed with different object primitives of scale parameter, shape factor 
and compactness are adjusted through the trial and error method and the suitable 
scale, shape, and compactness parameters were set as 150, 0.6 and 0.5 for Level 2 
and 200, 0.6 and 0.5 for Level 1 Classification. The results of MRS are presented in 
Fig. 6b–d. 

Fig. 6 MRS segmentation using different object primitives and resulting image objects
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Fig. 7 Classified image

After segmentation, the resulting image objects were queried for different object 
primitives. Geometrical shape features and spectral features are obtained from the 
segmented objects. Border Index, compactness, area, length, width, roundness, shape 
index, main direction and mean brightness were useful in the classification and esti-
mation of the impervious surfaces using the standard nearest neighbour approach. 
Results of classification are presented in Fig. 7. Rules were formulated for detailed 
categorisation and extraction of targeted objects using object parametric rectangular 
fit, radius of smallest enclosing ellipse, elliptic fit, asymmetry, blue by green spectral 
indices and nDSM. Figure 8 illustrates the level II classification for the buildings in 
the test area. Figure 9 presents the extracted green cover and roads, and Fig. 10 depicts 
different objects extracted from the image. The accuracy of the extracted objects was 
assessed on the completeness, correctness, and quality for different objects. High 
completeness and correctness values are observed for buildings, green cover and 
soft surface as compared to roads. This could be attributed to the fact that owing to 
the extremely high spatial resolution of UAV there was a difference in the manual esti-
mation and actual extraction of road boundaries. The object-based accuracy measure 
acquires a high overall accuracy along with 94.14%of completeness, 89.61% of 
correctness and 82.07% of overall quality. 

5 Conclusions 

Urban planners require quick access to building data, which may be gathered through 
remote sensing techniques. Due to the spectral complexity of the environment, auto-
matic building extraction utilising remotely sensed data has several limitations, 
particularly in urban regions. The goal of the research was to create an efficient 
method for extracting urban areas from UAV images with very high spatial resolution.
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Fig. 8 Level-2 classified image 

Fig. 9 Extracted green cover and roads

OBIA analysis allows for the detection and extraction of numerous urban objects such 
as buildings, roads, and trees. The segmented roads are classified into categories based 
on width and connectivity. Buildings extracted are categorised based on their eleva-
tion and size. The study efficiently demonstrates the potential of VHR orthoimage and 
DSM for urban classification using the OBIA techniques. The presented approach 
extracts features with great accuracy while requiring less human interaction. The 
improved segmentation parameters, such as scale, shape, and size, are discovered to 
be best for extracting urban regions. 

The combination of UAV with OBIA can provide a quick and effective method 
of updating maps, particularly in frequently changing urban areas. As a result, the
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Fig. 10 Extracted objects

study’s findings provide new insight into the use of OBIA in information extraction 
from UAV data. 
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The Role of ‘Unmanned Aerial Vehicles’ 
in Smart City Planning and Management 

Rewati Raman and Ushnata Datta 

Abstract A massive wave of urbanisation has grasped both developed and devel-
oping nations in the last decade. Various studies showcase the rising trend of rapid 
urbanisation growth due to demographic shifts, catalysed by numerous global and 
local parameters. India is professed to house 50 percent of its population in urban 
areas by 2030. The urban citizen’s rising expectations regarding infrastructure, 
amenities and safety will dovetail with this phenomenon. To cater to the demands 
of increased urbanisation, the concept of Smart cities is being advocated as an apt 
solution. Even so, there is widespread ambiguity about the challenges associated 
with adopting smart solutions into the existing urban social form. Though there have 
been many tentative explanations regarding the basic framework of a smart city, there 
are no known validated definitions. The main notable feature is the use of informa-
tion and communication technologies (ICTs) within the cyclic dynamics of a city 
to facilitate the smooth and cost-effective working of urban areas. This ICT infras-
tructure enables real-time data collection, analysis, response, and storage. This has 
been deemed beneficial due to the increase in efficiency of operation and manage-
ment services involved with the day-to-day functioning of any urban area. Smart 
cities advocate using information and communication technologies (ICTs) within 
the dynamics of a city to enable the real-time collection, analysis, and storage of big 
data. This is beneficial due to the increased efficiency of operation and management 
services involved with an urban area’s daily functioning. One such technological 
intervention is the ‘drone’ or the ‘unmanned aerial vehicles (UAVs)’. UAVs have a 
wide variety of uses in a smart urban fabric, from geospatial integration to traffic 
management, surveillance, disaster response, etc. In the current nascent stage of 
research and development of UAVs as one of the innovative solutions for smart cities 
in India, questions arise regarding privacy, cost of production, technical knowledge,
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safety and security with their large-scale use. This paper aims to assess the appli-
cability of UAVs in overall smart city planning and management. The feasibility 
analysis method is adopted to analyse the felicitousness of UAVs in a smart city’s 
planning and design phases. The results of the study undertaken in this paper high-
light the challenges and opportunities in the planning and management of smart cities 
by integrating UAVs. The paper enumerates the relevance and appropriate benefits 
of using UAVs to plan, design, and perpetuate Indian smart cities. 

Keywords Information and communication technologies · Smart city 
management · Smart city planning · Unmanned aerial vehicles 

1 Introduction 

Drones or Unmanned Aerial Vehicles (UAVs) are autonomous and aerodynamic 
devices that carry a certain payload and vary in size, design, and function over a 
wide plethora of utilisation. The UAVs can be distantly piloted manually by humans 
or independently by preinstalled computer programming [1]. Initially developed 
for defence activities, they have now been marketed for diverse civil solicitations 
(See Fig. 1) [2]. Extensive research has been undertaken to enumerate and expand 
UAV applicability’s possible amalgamation in the urban planning paradigm, among 
other injunctions. UAVs are now being developed to facilitate the marriage between 
physical infrastructure and the internet of things (IOTs) through ‘cloud robotics’ [3]. 

In this context, using UAVs as an integral part of the information and communi-
cation technology (ICT) layer of an urban area undergoing the smart city planning 
process can be hypothesised as beneficial. It will primarily be useful in managing 
and monitoring a smart city. Other applications of UAVs include real-time collection, 
processing, and storage of big data, visual monitoring, vehicle detection [4], traffic 
management, surveillance, disaster response, environmental management, security,

Fig. 1 An unmanned aerial vehicle 
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etc., through various layers of the smart city [5]. Subsequently, questions also arise 
regarding the methods of integration, policy regulation and privacy preservation in 
the wake of pervasive UAV usage [6]. 

Therefore, this paper aims to present a coherent account of the aspects of the 
smart city and its planning process in the wake of the ‘Smart City Mission 2015’ 
launched in India in 100 chosen cities. A discussion is then supervened regarding a 
smart city’s information and communication technologies (ICTs) layer, followed by 
deliberation on UAVs and the Internet of Things (IoTs). In the next section of the 
paper, UAVs’ feasible application in the smart city planning process and its conse-
quent monitoring and maintenance are reflected upon and analysed to identify the 
best practices, opportunities, and challenges. In the end, a final dialogue is provided 
to enumerate the future research and application pathways for the germaneness of 
UAVs in the smart city planning process. 

2 Literature Review 

UAV research concerning the urban planning paradigm has yielded many positive 
directions within the last two decades. The couched versatility of UAVs in informing 
the majority of the facets of planning, operation and maintenance of a city makes it an 
invaluable technological asset for smart city planners [5]. The essentiality of UAVs 
in smart city planning and management has been highlighted in many research works 
in the last 20 years. The research has primarily focused on individual components, 
technologies or applications. Seldom have more holistic investigations been carried 
out towards disseminating the role of UAVs in smart city planning and management. 
To understand the application mechanism of UAVs in various facets of smart cities 
as a whole, it is a prerogative first to examine the research’s distinct constituents in 
parts. Though UAVs primarily began with military applications [7], their dexterity in 
data collection soon popularised them as an effective tool in smart cities of the future 
[5, 8, 9]. Initial research concentrated on developing algorithms, cloud architectures 
and IoT platforms for increasing the efficiency of UAV flights [10–16] along with 
the concerns of cybersecurity and privacy concern of citizens [17, 18, 16]. While 
solutions to the mitigation of cybersecurity threats are being developed [19–22], the 
privacy debate remains ubiquitous. 

Subsequently, extensive research was done towards understanding the unique 
application potential of UAVs smart city components such as surveillance [23–28], 
infrastructure construction [29, 30], traffic management [31–34], aerial imagery [32, 
29, 36, 37, 34, 38], disaster management [39, 40, 36, 41, 42, 43], medical assistance 
[44, 43], environment monitoring [34, 45, 46], product or merchandise delivery [47, 
48, 34, 49, 50], campus monitoring [51], etc. 

Researchers have also undertaken numerous investigations towards the techno-
logical aspect of drones to inform and improve the enhanced applicability of UAVs 
in smart cities. Inquiries involving the advancement of technical elements of UAVs 
include machine learning and algorithm optimisation [52, 53], edge computing [54,
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55, 56, 57, 45, 49, 58], sensors [59–61], internet of things [19, 62, 63, 56, 26, 61, 64, 
43, 50, 37, 58, 65], cloud architecture and robotics [66, 67, 43], etc. among others. 
The specifications and technologies are continuously evolving to strengthen and 
streamline the benefits that UAVs can contribute concerning the day-to-day control 
and functioning of a smart city, making it even more efficient. The sections following 
this brief delineation of literature evidence on the function of UAVs in smart city 
planning and management will thus enumerate in detail the concept and procedural 
information about smart cities and UAVs, culminating in a consolidated evidence 
tabulation regarding the widespread application of drones in planning, operation and 
management stages of a smart city. 

3 Background 

A United Nations study of 2014 states that by the year 2050, 70% of the world’s 
population will be living in cities, compared to 30% in rural zones [68]. Similarly, it 
is predicted that by the year 2030, nearly 40 to 50% of India’s population will live 
in urban areas, contributing to 70% of the country’s GDP [69]. This phenomenon 
requires dexterous action from the government and urban development authori-
ties to facilitate the seamless incorporation of the growing urban population while 
improving the efficiency of all the urban systems [70]. Technological intervention 
is thus inevitable along with socio-economic, physical and environmental reforms 
in urban areas in India and worldwide. The Smart City concept has developed as a 
result, and it advocates the amalgamation of ICT solutions as an additional layer in 
the city dynamics for improving the functionality and efficiency of urban services 
[70]. 

3.1 Smart City 

The Smart City concept is relatively new in origin, as it has been researched and 
developed since the 1990s, when several attempts have been made to define it [68]. 
Due to the subjective nature of the word ‘smart’, a single conclusive definition has 
not yet been formulated for the term ‘Smart City’, even though it encompasses facets 
of governance, ICT, surveillance, infrastructure, sustainability, quality of life, etc. 
A 2015 study by the Centre for Study of Science, Technology, and Policy (CSTEP) 
of 100 smart city definitions from several sources shows that the ICT framework 
emerges as the crux of the smart city concept (See Fig. 2) [71].

Many cities worldwide are now upgrading to be technologically enabled, and 
governance supported smarter energy management, waste management, water 
management, urban mobility, citizen services, building systems, surveillance, health-
care, education, and communication. Amsterdam and Barcelona are two of the most 
popular smart cities, which have adopted smart interventions in the form of smart
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Fig. 2 Graphical web diagram of different facets of smart city planning as derived from 100 
definitions by CSTEP

grids, smart metering, vehicle-2-grid systems, SCADA, smart parking, data portal, 
smart homes, etc. Hence, smart cities encourage collaboration, network integration 
and service connectivity to improve administrative bodies’ decision-making abili-
ties. It also promotes citizen participation and access to information for the masses 
to establish a more transparent governance framework. 

The Government of India also launched the ‘Smart City Mission’ in 2015 to facil-
itate 100 cities to become smart cities and become flag bearers of urban development 
for the entire country. A total of 5 stages of challenges were held, namely, lighthouse 
cities, fast track cities and rounds seconds, third and fourth. The chosen 100 cities had 
to give proposals for their respective smart city planning process during each round. 
The best proposals from a fixed number of cities were selected and awarded funds 
to move on to the next implementation stage. According to the Smart city mission 
statement and guidelines, the core infrastructure elements that the Indian smart cities 
should possess are adequate water supply, assured electric supply, sanitation, solid 
waste management, efficient urban mobility, public transport, affordable housing, 
robust IT connectivity, digitalisation, good governance, e-governance, citizen partic-
ipation, sustainable environment, safety and security of citizens, education provision 
and health reforms [69]. Even though physical urban reforms are a part of the smart 
city mission, there is marked stress on incorporating ICT solutions in the form of 
UAVs, smart parking, smart meters, video monitoring, telemedicine, tele-education, 
electronic service delivery, etc.
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3.2 Smart City Planning Process 

The smart city planning process is dictated to be sustainable and technologically 
cohesive. Decentralisation of existing megacities gives impetus to tier 2 and tier 
3 cities as well as satellite cities. Optimisation of infrastructure to conform to a set 
systemic approach streamlines smart cities’ operation and maintenance while leaving 
room for planning upgradation concerning future urbanisation needs. One of the 
beneficial aspects of smart city planning is its participatory approach through citizen 
feedback, making the whole process more transparent. Energy reforms, mixed land 
use planning, walkability, public open spaces, inclusivity, and compactness have also 
been given impetus in the smart city planning process. The strategies for smart city 
planning are divided into area-based development and pan-city initiatives. Pan-city 
initiatives are essentially the ICT interventions strategically planned around the city 
with the help of sensors, big data, IoT, UAVs, etc. Area-based development reckons 
the type of planning process. The three strategies for area-based development that 
each smart city can choose from are as follows: (a) ‘Retrofitting’ for city improve-
ment, (b) ‘Redevelopment’ for city renewal, and (c) ‘Greenfield development’ for city 
extension. Table 1 gives a detailed account of each strategy’s distinctions depending 
on the planning process’s variations, area extent, and infrastructure development 
type.

The smart city planning process individual to each city was chosen according to 
the final proposal presented by each city in the ‘city challenges’. In each challenge, 
other than the winning cities, all other cities were given feedback to make changes 
to their proposals and present again to compete for approval and funding in the next 
challenge. Therefore, according to various factors pertaining to the need, location, 
population, urban form typology, and potential, the intrinsic smart city planning 
process was chosen for all hundred cities selected for the ‘Smart City Mission’ to 
be developed into smart cities by the year 2022. This thus shows the vision of the 
mission is inclusive and multi-pronged to provide the most profoundly distinctive 
solutions in the form of three different smart city planning strategies to each of the 
hundred cities for maximising the probability of positive results. 

3.3 ICT Technologies 

Information and communication technologies (ICTs) are an additional layer of 
infrastructure in the city, which functions based on orchestration intelligence, 
empowerment intelligence, and instrumentation intelligence. The underlying concept 
behind the ICT intelligence platform is based on problem-solving, open platform, 
cluster innovation, real-time data collection, and faster data analysis, processing, 
and response. They are essentially intelligent collaborative networks with a multi-
pronged approach to data collection and creating a knowledge ecosystem for 
decision-making and innovation through ICT integration in a smart city. Smart grids
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Table 1 Details of the three strategies of the smart planning process for the Smart City Mission 
India, 2015 

Type of Area-based 
development 

Planning process Area extent Infrastructure 
development focus 

Retrofitting Planning within an 
existing municipal 
ward with the help of 
citizen participation 

Minimum 500 acres Mostly ICT 
applications on 
building and area-level 
along with minor 
urban design and 
planning solutions 

Redevelopment Replacement of 
existing physical 
infrastructure with a 
completely new and 
improved planning 
solution by 
incorporating mixed 
land use planning 

Minimum 50 acres Compact, walkable 
and environmentally 
responsible planning 
with smart 
interventions towards 
improving energy 
efficiency 

Greenfield 
development 

Planning an entirely 
new smart city in a 
vacant area using 
innovative planning 
and ICT interventions 

Minimum 250 acres Development of new 
physical, social and 
environmental 
infrastructure along 
with smart ICT 
interventions while 
making the city 
compact and energy 
efficient

and open data systems take advantage of big data and the internet of things with 
sensors, UAVs, actuation technology, and networks to form a loop of information 
flow within a smart city environment to fast-track response time for operation and 
maintenance of a smart city. The main components of an ICT framework include 
the city’s physical infrastructure connected to a portal or device or services for data 
collection, like—citizen portals, sensors, actuators, smart meters or UAVs. These, 
in turn, relay the information collected to the hubs or a central command centre 
where the data is intercepted, analysed, responded to and stored for future use. The 
command centres or data management centres act as controls, while the technology 
platforms act as ICT infrastructure (See Fig. 3).

ICT solutions are adroit for resource optimising, especially in Indian cities, with 
already strained resources. For example, the smart meter will be immediately notified 
if there is a leak in the pipes of the water supply system. Real-time mutually beneficial 
data of the different urban dynamics helps in precise decision making towards running 
smooth operation and maintenance of the city or even during times of crisis or disaster. 
Collection, analysis, storage, and use of information flowing through the dynamic 
fabric of an urban area is the key to meeting citizens’ aspirations and providing a 
good quality of life through ICT integration in a smart city.
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Fig. 3 Working design of smart city infrastructure

3.4 Unmanned Aerial Vehicles (UAVs) 

The UAV or drone, as it is popularly known, is a device capable of flying or being 
flown on its own, without a human pilot on board, through prior computer program-
ming or autonomous manoeuvring [18]. Even though it began with military appli-
cations, extensive research and development have made many advancements with 
respect to size, cost, typology, functionality, etc., so much so that now UAVs have 
a large-scale commercial reach [7]. UAVs can be classified based on usage and an 
aerial platform. According to use, the drone is classified on the basis of its intrinsic 
function, for example, drones for aerial photography, drones for traffic surveillance, 
drones for 3D mapping of an urban area, drones for facial detection, etc. On the 
other hand, based on the aerial platform used, drones can be classified as single rotor 
helicopter type, multi-rotor type, fixed-wing type, and fixed-wing hybrid VTOL type. 

Single rotor drones look like miniature helicopters with one big rotor overhead 
and a small rotor on its tail end. It is one of the most stable varieties of drones 
due to the reduced number of rotors and has a higher-flying time, but it is not cost-
effective due to its complicated design and is accident prone due to its large-sized 
overhead rotor. Multi-rotor drones are the most commonly used type of UAV, which is 
also commercially available for anyone from civilians to professionals. Multi-rotor 
UAVs are also the most commonly used for urban applications toward city-level 
data absorption. These are the cheapest and simplest drones with a wide variety 
of applications and flexibility. The multi-rotor drones can further be classified as 
tricopters, quadcopters, hexacopters, and octocopters, depending upon the number 
of rotors on them (See Fig. 4). The disadvantages of multi-motor UAVs are their 
short time of flying due to limited battery life, relatively slower speed, and reduced 
durability factor. Fixed wing drones are akin to commercial airplanes as they have
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Fig. 4 Different types of UAV 

wings and fly as per their pre-programmed flight paths for more extended periods of 
time. They are used for mapping, surveillance, 3D capture applications, etc. Although 
fixed-wing drones are fuel-efficient, they are not as cost-effective as multi-rotor 
drones. Lastly, the fixed wing hybrid VTOL type of drone is a cross between rotor 
type and fixed wing type of drones. It is controlled via remote control to take flight on 
the course required and may also carry sensors for surveillance and other activities. 
The hybrid type of UAV is still in its nascent research and development state. 

It is readily available in the market, accessible to the general population, and 
used for applications like georeferencing, spatial planning, 3D visualisation of cities, 
buildings and topography, visual surveillance, video recording, etc. It is also being 
used to deliver packages autonomously at a faster speed. For instance, Amazon 
launched ‘Prime Air’, wherein orders from the clients are delivered by drones that 
are pre-programmed to deliver the particular item at the exact address. UAVs enabled 
with solar power can also fly for long periods without the need for refuelling. Hence, 
they can be used to provide broadband connectivity or emergency services as required 
in a smart city environment [18]. The GPS, Wi-Fi, Bluetooth, and camera-enabled 
drones are being researched for urban surveillance applications as well as to form a 
fleet of compact size aerial layers of real-time data collection over the city for trans-
mission to the command centres using IoT for immediate response or for improving 
city operation and maintenance [72]. The data collected by the UAVs is in the form 
of videos, photos, 3D point clouds, environmental data, positioning data coordi-
nates and third-party device data [11]. UAVs are being researched and considered 
for widespread use because they are small in size, flexible in design, and versatile
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Fig. 5 Smart City UAV 
work cycle 

data collection and relaying while being cost-effective. Some prolific examples of 
far-reaching positive impacts of UAVs can be seen in drones delivering medicine in 
rural Africa, disaster mitigation and response in Haiti, tackling wildfire mishaps at 
Yosemite National Park, etc. [72]. In smart cities, drones can be used for urban agri-
culture, traffic management, environmental management, round-the-clock surveil-
lance, disaster response, telecommunication, weather monitoring, mapping, resource 
estimation, etc. [11]. For example, in the Smart City Mission of India, all cities will 
have a central command centre which will have the required IoT-enabled platform 
for data analysis, reaction, and storage, which will function as the control centre 
for assigning functions to a drone or fleets of drones regarding their flight path, and 
mission assignment (See Fig. 5). 

3.5 Internet of Things (IoTs) 

Internet of Things (IoTs) or Internet of Connected Things (IoCTs) facilitates the 
concept of ‘Connectivity for All’ [73]. Therefore, it supports networking and congru-
ence between all the different urban amenities and services through the internet, 
wherein data is collected from them to understand their innate behaviour and func-
tioning. IoT functions are based on a network connectivity framework and ‘big data’ 
driven algorithms over the ‘World Wide Web’ or the internet. IoT has global rele-
vance through ICT-enabled devices and other computing devices. IoT and cloud 
computing can be called the brain of the ideal smart city by providing control over 
all its components, namely, smart grids, smart environmental management, smart 
mobility, smart economy, smart governance, smart people, smart living, building 
automation systems, smart vehicles, UAVs, etc. (Fig. 6) [21]. Electronics, sensors, 
actuators, software, a network for connectivity over the internet for cost-effective, 
and compact devices like UAVs to collect and exchange real-time dynamic urban 
information [74].

IoT platforms can thus be used for real-time regulation over UAVs, unified access 
to central command centres, transfer of large amounts of data from drone to cloud, 
conduct urban surveillance missions with fleets of UAVs, to establish a cooperative
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Fig. 6 A standard smart grid architecture connected and supported by IoT and cloud computing 
[21]

network framework for all the UAVs in service in a particular location, and to provide 
cloud-based programming of UAVs through APIs [75]. Commercialisation and price 
reduction have rendered UAVs or drones useful candidates for IoT applications in 
smart cities [76]. The IoT architecture used for manoeuvring UAVs is known as the 
Internet of Drones (IoDs), which helps in securing connectivity between the UAV 
user and the drone for controlling them, accessing the data collected by them and 
programming them for any desired reaction if needed [75]. Autonomous control of 
UAVs is accomplished through computer algorithms to establish IoT use for accu-
rate real-time response through intelligence and network integration [76]. The IoT 
network for cloud services for UAVs essentially consists of an interface component, 
a computation component and a storage component for data assimilation, scrutiny, 
prompt response and storage [75]. 

4 UAV Application in Smart City Planning Process, 
Maintenance, and Operation 

In the Smart City planning process, planners consider the city as a dynamic system 
whose subsystems are concatenated and interdependent. The complexity of inter-
connectedness and interdependency of the city as a system is appreciated in the 
smart city planning process. The crux of smart city planning and management is to 
understand and manage the intricacy of urban systems by application of ICT and its 
trends. A smart city, as a development tool, is being portrayed as a key component 
of sustainable development for the world. With the rapid technological advancement
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in the field of UAVs, drones are going to play a vital role in smart city planning 
and development. The application of UAVs in a smart city will depend on the type 
of payload assigned to the UAV. The functional characteristic of UAVs will differ 
with respect to the use of varying types of payload. The different types of payloads 
for UAVs can be categorised as follows; a) Camera and Sensors, b) Communication 
Devices, and c) Other Payloads. A range of plausible uses of UAVs in smart city 
planning and development, having these types of payloads are listed in Table 2. 

Urban planning exercises comprise multiple interlinking steps that manifest into 
a holistic design for a particular city. Similarly, the smart city planning process also

Table 2 Types of UAV payloads and their feasible applications in Smart City 

Types of UAV Payload Feasible applications Authors 

Camera and Sensors Survey, Inspection and 
detection, Disaster 
Monitoring and 
Management, Surveying 
and Mapping, Traffic 
monitoring and 
management, Crowd 
management, Wildlife 
monitoring and 
management, 3d 
modelling, Aerial 
Photography, 
Environmental 
Monitoring, Detection, 
Infrastructure 
Inspection, Surveillance, 
Smart resource and asset 
management, Smart 
tracking assets, 
Navigation etc 

[77, 78, 46, 79, 80, 19, 47, 81, 40, 82, 42, 
34, 43, 41, 36, 39, 34, 51, 83, 84, 85, 31, 
48, 32, 33, 34, 86, 87, 29, 67, 88, 89, 34, 
36, 45, 67, 30, 23, 24, 32, 25, 26, 27, 28, 
42, 38] 

Communication Devices Broadband connectivity 
on demand, Cellular 
networks, Dedicated 
radio networks, 
Dedicated closed 
networks, Ham radio, 
Medical assistance etc 

[90, 44, 43, 53, 91, 85, 59, 50, 87, 51, 92, 
54] 

Other Payloads Product Delivery, Taxi, 
Disaster Relief, Medical 
Assistance, Firefighting, 
Gaming, Urban Farming 
and Agriculture, 
Construction, Last-mile 
deliveries in congested 
areas, pandemic 
management, etc 

[44, 40, 93, 42, 34, 43, 41, 36, 39, 94, 9, 5, 
95, 18, 96, 97, 24, 98] 
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consists of several phases that cater to the initial development stage and the subse-
quent operation and management phase of a smart city. The phases of a smart city 
planning process consist of the preparatory planning phase, master planning phase, 
zoning phase, design and implementation phase, and operational phase. The induc-
tion of UAVs into the plethora of smart city planning processes will take advantage 
of all the stages of city operation and management daily. The viable uses of UAVs 
in the smart city planning process are listed in Table 3.

4.1 Challenges 

UAVs are still a growing phenomenon undergoing extensive research, development, 
and commercialisation. Since their inception, drones have shown many benefits in 
a short period, which will only improve with time through skilful research efforts. 
Still, simultaneously, some challenges and issues have also been identified, which 
have been discussed below. 

(1) Privacy and ethical use—there is an omnipresent concern regarding the inva-
sion of privacy and probable unethical use of drones, especially in the absence 
of a cohesive policy framework to regulate the use of drones which are now also 
easily available in stores open to public access and use. (2) Cost—The developed 
UAVs are exorbitant in manufacturing, operation and maintenance. (3) Regulatory 
framework—there is a lack of policies, regulations and sensitisation regarding the 
use of UAVs, whether by civilians or urban local bodies, which is giving rise to 
concerns of safety, security and privacy when used for recreational purposes as 
government surveillance. (4) Hacking and hijacking threats—these range from infor-
mation leakage from the IoT cloud to malicious codes and viruses to third-party 
hacking to introduction of malware by nefarious parties to de-authentication attacks 
to GPS spoofing to hijacking drone remotely to use as cyber-attack manifestations. 
(5) Technical difficulties—building a seamless platform of integration of the UAVs 
with the smart city and designing a network for the mobility of the fleet of drones in 
the aerial domain for various purposes are the main technical issues, along with the 
development of algorithms, wireless sensors, and fail-safe systems to mitigate the 
risk of crashing. (6) Potential of commercial use—though companies like Amazon, 
Facebook, etc. have now started researching, developing and investing in the integra-
tion of UAVs towards the expansion of their businesses into the smart domain, there 
is still a long way to go in this respect due to the high additional financial investment 
needed for this purpose.
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Table 3 Potential uses of UAVs in the Smart City planning process 

Phase of smart city 
planning process 

Fields of activity 
in which UAVs 
can be used 

Authors 

Preparatory 
planning phase 

Surveying, Aerial 
photography 

[77, 78, 67, 29, 88, 34, 36] 

Master planning 
phase 

Surveying, 
Monitoring, 3d 
Modelling, Aerial 
Photography 

[77, 78, 67, 29, 88, 34, 36, 33, 53, 46] 

Zoning phase Surveying, 
Monitoring, 3d 
Modelling, Aerial 
Photography 

[77, 78, 67, 29, 88, 34, 36, 53, 33, 46] 

Design and 
Implementation 
phase 

Monitoring and 
management, 3d 
modelling, Product 
Delivery, 
Mapping, 
Infrastructure 
Inspection, Smart 
resource and asset 
management, 
Aerial 
Photography 

[49, 46, 67, 29, 88, 34, 36, 99, 47, 34, 49, 42] 

Operation and 
management phase 

Monitoring and 
management, 
Inspection and 
Detection, Traffic 
Monitoring and 
Management, 
Crowd 
Management, 
Product Delivery, 
Taxi, Object 
Tracking, Medical 
Assistance, 
Firefighting, 
Urban Farming, 
Environmental 
Monitoring, 
Navigation, 
On-demand 
Broadband 
Connectivity, 
Radio Networking, 
Security and safety 

[46, 20, 99, 47, 55, 34, 49, 42, 100, 90, 44, 43, 53, 91]
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5 Discussion and Way Forward 

The new paradigm of smart cities, especially in the current Indian planning scenario, 
would benefit profusely from the induction of UAVs into the ICT layer of the city. 
The compact and flexible design of UAVs and the advantage of autonomous aerial 
manoeuvring makes them proficient candidates for the deployment of a large arena 
of services and function for the seamless planning, operation and maintenance of 
smart cities with the added advantage of resource optimisation, real-time unhin-
dered data collection, prompt response and storage of dynamic urban data for future 
requirements of the city. Typologies of UAVs and their respective uses are varied and 
can provide a large network of applications, even in locations or situations where 
human access is difficult. UAVs can be incorporated into phases of the urban plan-
ning process to achieve the formulation of an efficient smart city. UAVs are useful 
in the preparatory planning phase owning to their competent data collection appli-
cations. The data collected can be used in the master planning phase for discrete 
design innate to the individual character of the city or region, which is parallel to 
the concept of the Smart City Mission in India, where the individualistic approach 
has been lauded to preserve the omnipresent organic character of each city. UAVs 
are also beneficial in the zoning development and implementation phases of plan-
ning. Still, they will be the most effective in the operation and maintenance phase 
when the day-to-day activity monitoring and reciprocation of the smart city will be 
in focus. Having said so, due to the deficiency of a regulatory framework, challenges 
and issues also abound in the utilisation factor of UAVs, in terms of privacy, safety, 
security and technical mishaps, wherein the chinks have to be filled up with research 
and development to assure better and smooth application of the UAVs in the smart 
city planning process, operation and management for agile data collection, real-time 
response and the prerequisite of a better quality of life. 
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Elevation Data Acquisition Accuracy 
Assessment for ESRI Drone2Map, 
Agisoft Metashape, and Pix4Dmapper 
UAV Photogrammetry Software 

Deepak Tyagi, Vishal Mishra, and Harshit Verma 

Abstract Whether planning urban development, conducting a hydrological 
construction in different terrain conditions, or analyzing terrain features for oil and 
gas exploration: accurate elevation information is vital. Digital Terrain Model (DTM) 
and Digital Surface Model (DSM) is the elevation model that provides elevation infor-
mation of terrain and earth features (object), respectively. This study aims to assess 
the elevation accuracy of some of the most preferred Uncrewed Aerial Vehicle (UAV) 
data processing software from ESRI, Pix4D, and Agisoft Photoscan. In this study, 
DJI Phantom 4 is used to collect 147 very high-resolution overlapped images in 
the selected study area (Department of Civil Engineering, IIT-Roorkee, India) at the 
defined height. Collected images are processed using all the selected platform eleva-
tion datasets, i.e. Digital Surface Model (DSM) is generated. Vertical elevation error 
is estimated by elevation profile and statistical comparisons of UAV-derived elevation 
in the DSM datasets. This study helps to select the best UAV data processing soft-
ware for the project that requires high elevation accuracy in topographical mapping 
or urban object utilization. 

Keywords Drone2Map · UAV · Pix4D · Agisoft photoscaan 

1 Inroduction 

The recent advancement and expansion of UAVs as remote sensing devices, as well 
as improvements in the miniaturization of equipment and data acquisition proce-
dures, have resulted in a rising trend in this domain of photogrammetry and remote 
sensing [1]. Although UAV data acquisition technology is still in its beginning days of
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research where it is not only struggling to become the matured photogrammetry tech-
nologically but also looking forwards to different governments for legal permissions. 
Despite this also utilization of UAV technology in precision farming, ecosystem 
studies, atmospheric investigation, disaster management and mitigation planning, the 
terrain in monitoring, geological and geophysical research, [2–5] utilities monitoring 
and management and many more continue to increase. 

As the introduction of the UAV systems has also increased the acquisition speed 
in the field of 3D mapping [6], the current study specifically focuses on the eleva-
tion data acquisition, processing, and accuracy assessment. 3D information using 
UAVs is reconstructed using high-resolution overlapping images are used, which 
involves both the photogrammetric and computer algorithms based on the dense 
image matching technique. These algorithms find the matching points or features 
from the overlapping images and then calculate the 3D information pixel by pixel 
for the whole image. Nowadays, with the advancement in photogrammetric soft-
ware, the complexity of handling this high-resolution dataset has decreased for the 
user. The advanced photogrammetry software is capable of handling various steps 
of images based 3D model by generating tie points [7–9], point cloud [10], DTMs, 
DSMs [11], Orthophotos, mesh models and so on. This development in this field has 
led to the development of new software platforms which are trying to make processing 
for the user to be simpler and automatic. The new methods for post-processing the 
data obtained are continuously under development with backing up the traditional 
approaches [12, 13 7]. The developed algorithms need to be tested and developed 
accordingly in order to provide the most accurate output. In the case of aerial images, 
using the traditional method to determine the accuracy is tested on two parameters 
firstly, on the high accuracy of point coordinate determination, and secondly, on the 
basis of 3D models generated by it. In the present study, experiments are performed 
to check the optimization of the Digital Surface Model developed by using different 
software platforms [14, 15]. The study involves the comparison between three well-
known commercial software Agisoft Metashape, Drone2Map, and Pix4D [16]. This 
software is used to process the dataset of urban built-up areas. Based on the result 
generated, the accuracies of different software to identify different features was 
justified. 

2 Study Area 

Roorkee is a city in the Haridwar district of Uttarakhand, which lies on the banks 
of the Ganga canal. It has almost flat terrain situated at the Shivalik Hill range of 
The Himalayas with an average elevation of 268 m. Roorkee enjoys all the seasons, 
from summer to winter and monsoon, with an average rainfall of 1170 mm. Roorkee 
is also known for the Indian Institute of Technology Roorkee (IIT-R), which is one 
of the oldest Engineering College in India (Fig. 1). This institute has 21 academic 
departments which provide excellence in the field of engineering, humanities, applied 
sciences, social sciences, and humanities. The present study is focused on the Civil
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Engineering Block of IIT-Roorkee. The study area is situated between 29° 51.722’N, 
29° 51.827’N to 77° 54.084’E, 77° 53.843’E, which covers a total area of 0.062 km2. 

Fig. 1 Study Area
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3 Devices Used, Data Acquisition and Software Used 

For aerial data collection of images DJI Phantom 4 Pro was used. DJI Phantom 4 Pro 
is a Quadcopter that is one of the most advanced UAVs of DJI (Fig. 2a). The model 
of the camera embedded on the UAV was FCS310 with a 1" CMOS sensor with 
an effective pixel of 20MP, which provides images in three sizes i.e.: 5472 X 3648, 
4864 X 3648, and 5472 X 3078. It can provide the images in three formats JPEG, 
DNG (RAW), and JPEG+DNG. These images can be captured using single as well 
as burst mode. To capture the image with less distortion, it has the camera attached to 
the gimbal that provides stabilization pitch, roll, and yaw) with an angular vibration 
of ±0.02˚. 

The flight plan was designed in Pix4D capture, which was provided to the UAV 
system. The flight was operated in fully automated mode to capture the images. To 
capture the data, a flight height of 100m was fixed. A set of a total of 147 images 
was captured, which were covered in a block of 11 strips, as shown in Fig. 2b. To 
get the maximum stereoscopy image, the flight planning was executed with 80% 
longitudinal and 70% lateral overlap. As per these overlaps, the flight took eleven 
strips to cover the whole area under study. 

3.1 Commercial Photogrammetry Software Used

a. AgiSoft (Metashape) : 

This is a standalone software that can perform photogrammetric processing of 
the digital images and can help to generate the 3D spatial data which can be used 
for GIS purposes. Agisoft is widely accepted worldwide among researchers and 
even with the little knowledge of stereo-photogrammetry process the data. Being 
commercial software algorithms used to process spatial data are not public but 
still many steps of the processing can be controlled and easily configured. Since

Fig. 2 a DJI Phantom 4Pro. b Flight Path 



Elevation Data Acquisition Accuracy Assessment for ESRI … 125

2010 this had been included in various studies where it had produced accurate 
and quality results.

b. Drone2Map: 

This product is launched by ESRI 2016 which has simplified the drone image 
processing. 

Drone2Map helps to convert raw drone imagery into the 3D spatial GIS data. 
This is one of the easiest to use software, which automated almost all the image 
processing work. One can create produce 2D and 3D products just in few clicks 
which can be used for analysis and visualization. 

c. Pix4Dmapper: 

This is an advanced photogrammetry software which can be used to produce 3D 
maps and 3D models using different types of raw images. This can produce 3D 
models using computer vision and photogrammetry algorithm from fisheye lens, 
DSLR, thermal, multispectral and RGB images. 

4 Methodology 

The workflow of the study is explained below in Fig. 3, which is elaborated in the 
following text. The initial part of the study is flight planning and data acquisition 
using the Uncrewed Aerial System. The collection of data was completed with the 
help of DJI Phantom 4 Pro this data. 

These obtained data were processed using Agisoft, Drone2map and Pix4D to 
generate the DSM model. The initial step for image processing is the alignment of 
the images in their respective positions using the EXIF data embedded in images, 
which contains information regarding location and orientation parameters.

Then the tie points were analyzed from the overlapping images. These tie points 
collective from the whole image were termed as points cloud. The points cloud 
generated is classified on the basis of the difference in the elevation values and 
creates the DSM model. The user interface varies in terms of different software as 
well as in the method of creating; as in the case of Agisoft, manually classes need 
to be defined but the classes are automatically defined in the case of Pix4D and 
Drone2Map. The generated DSM from the three software were resampled at 2 cm 
so a comparative study between them can be conducted. DSM was compared on two 
bases, first based on the elevation profile and secondly based on statistical analysis. 

5 Results and Discussion 

UAV-derived UAV map using Agisoft Metashape. The elevation range varies from 
250.84 m to 281.722 m. As shown in Fig. 4a. UAV derived UAV map using 
Drone2Map. The elevation value varies from 251.974 m to 276.889 m. As shown in
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Fig. 3 Methodology of the study
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Fig. 4b. UAV derived map using Pix4D. The elevation value varies from 251.984m 
to 279.026m. As shown in Fig. 4c.

DSM generated using these three software (Agisoft Photoscan, Pix4D mapper and 
Drone2map) were assessed on the basis of relative accuracy. Two ways are established 
for depicting the evaluation of results from these DSMs. First, elevation profiles are 
created for the different feature elements such as roads, buildings and trees over three 
surface models to visualize the variation. The basic statistical analysis is done on the 
subtracted DSM for evaluation. Basic comparison parameters for assessment are the 
mean error and standard deviation of those subtracted DSMs. 

In order to analyze the elevation information generated by different software, the 
DSM model created by them was taken into consideration. For this purpose relative 
study of the DSM was conducted. An automatic procedure was adopted to create the 
DSM from Pix4D and Drone2Map. While in the case of Agisoft Photoscan, initially, 
classification of the point cloud was done to differentiate the points of the varying 
objects, and then DSM was generated from the classified points cloud. 

5.1 Relative Elevation Profile Assessment 

The first visual interpretation of the DSMs generated depicts that this software was 
not able to create DSM for the whole area at once. It had some gaps left, which maybe 
be due to the less number of overlapping images and poor texture at the corner of the 
images. Now the output of the DSM model generated was compared by extracting 
elevation profiles over different land cover types such as trees, buildings, and roads. 

1. As per the graph shown below in Fig. 5a, Agisoft gives a proper building feature 
edge rather than Drone2Map and pix4d Mapper, which has two dips in between 
the data that is due to a lack of points extracted for surface modeling on the 
surface of the building feature. 

2. In comparing road features from DSM generated from these three software, it can 
be deduced as there is a vertical shift in the elevation of road surface generated 
from Agisoft and Drone2Map or Pix4d mapper, which might be possible due 
to different algorithms used for extracting elevation data from the image. Being 
at the same level, only Pix4D had some abrupt elevation points near the ending 
points, while Drone2Map was able to properly delineate the elevation profile. As 
shown in Fig. 5b. 

3. In vegetated areas, it is accepted to have a small height difference at the crown. 
From the graph shown below in Fig. 5c, both Agisoft and Pix4D Mapper shows 
large elevation dips over the canopy regions, which proves Drone2Map’s DSM 
better.
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Fig. 4 a DSM Agisoft. b DSM Drone2Map. c DSM Model Pix4D
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Fig. 5 a Building elevation profile. b Road elevation profile. c Tree elevation profile 

5.2 Relative DSM Comparison 

The next relative comparison was performed based on the statistical analysis of the 
DSM model. It involves the comparison of the mean error of DSMs and standard 
deviation. The lowest values of the mean error were obtained near Agisoft and Pix4D, 
as shown in Table 1. The values of the mean error are near 0, which indicates that there 
is no bias associated with the mean error of the DSM generated. At the same time,
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Table 1 Statistics of DSM difference in the flat region 

Software Min Max Mean Error SD 

D2M-Agisoft −22.9533 23.2715 −0.0543 2.0289 

D2M-Pix4D −19.9310 20.1488 −0.06405 1.3320 

Pix4D-Agisoft −22.4667 23.4980 0.0097 1.9102 

Fig. 6 a Drone2Map—Pix4D. b Drone2Map—Agisoft. c Pix4D—Agisoft 

there is a considerable difference between Drone2Map and Pix4D points towards 
the slight difference in the point cloud densities or towards the level of smoothing 
applied by Drone2Map. Comparison between the standard deviation of subtracted 
DSM shows that the results of Agisoft and Drone2Map are pretty similar as far as 
the elevation range of most of the data is concerned (Fig. 6). 

6 Conclusion 

The study was conducted to find the processing capability of different commercial 
photogrammetric software platforms using High-Resolution Images. This processing 
involves the capability of UAV photogrammetry and computer vision to identify 
the featurere constructucting 3D geometry. The assessment of the output generated 
was done in terms of various visual and statistical metrics. While comparing in
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terms of visual data, a vertical profile was calculated over different features in which 
Done2Map was able to create a more accurate DSM over the tree canopy while the 
other two software at the same time had dips which can be denoted as the lack in 
point cloud generation. Even in terms of the elevated road, Drone2Map was able to 
provide the proper elevation profile. Other than in-built parameters, there are several 
other factors such as hardware configuration, terrain conditions, and many others 
that also affect the quality of DSM generated using this photogrammetric software. 
The quality of output generated by each software can be enhanced by changing the 
parameters to get better results as per the need of the project. 
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Characterization of Urban Vegetation 
from an Unmanned Aerial Vehicle (UAV) 
Image 

Minakshi Kumar and Shefali Agrawal 

Abstract Advances in UAV technology and processing made it feasible to obtain 
ultra high-resolution (UHR) imagery and three-dimensional (3D) data, which can 
be efficiently used for urban forestry, green space mapping, green infrastructure 
planning and monitoring with high accuracy and at a cost-effective manner. The 
conventional feature extraction image analysis techniques fail on UHR UAV Images 
as the geometry of features is very well defined and characterized by a very heteroge-
neous texture. The approach required for such ultra-high-resolution images should 
support the cognitive analysis that we use in visual image interpretation, which is a 
form of knowledge-driven analysis incorporating shape, texture, pattern and contex-
tual information. The present study aims at delineating and extract vegetation types 
and height estimation using UHR UAV images in parts of urban slums and dense 
urban environments. The methodology involved utilizes a multiresolution image 
segmentation to create basic image objects at a scale that allows for homogenous 
object extraction while maintaining variability. Normalized Differential Green Vege-
tation (NDGV) and Visible-Band Difference Vegetation Index (VDVI) band ratios 
are computed by combining the red, green and blue (RGB) spectrum of the UHR 
image. Digital Surface Model (DSM) and Digital Terrain Model (DTM) were input 
to the canopy height model (CHM) for height estimation and refinement of different 
vegetation categories. Crown shape parameters and texture parameters are tested 
and compared for vegetation characterization and categorization. Results show the 
3D data set derived from UAV UHR imagery’s potential in detection of treetops, 
delineation of vegetation and its categorization. 
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1 Introduction 

The potential of using satellite image data for forest inventory, mapping trees outside 
the forest (TOF), and individual tree crown delineation is a well-established method-
ology. The accurate characterisation of vegetation type distribution in the forest, as 
well as non-forested areas, is an important task for forest management and vegetation 
research. In recent times, UAVs have been used experimentally in a large number of 
forestry applications. UAVs are an easy-to-use, low-cost tool for remote sensing as 
compared to manned aircraft. Since UAVs can fly near canopies and acquire ultra-
high-resolution images with a spatial resolution of a few centimetres, very detailed 
features, for example, the tree features at the leaf level can be seen. Hence it is possible 
to map various features like vegetation with the use of simple RGB digital images 
facilitating cost-effective monitoring and mapping with broad application poten-
tial [1]. Identifying individual trees, mapping, discriminating between species and 
quantifying individual plants requires specific acquisition parameters and processing 
approaches [2–4] using remote sensing. Very high-spectral resolution satellite data 
have been successful in the identification of tree species, however, ultra-high spatial 
resolution data from UAVs has more potential to be a feasible tool for individual 
feature extraction and species determination. In forest inventories, individual tree 
detection and identification is a desirable product [5]. A 3-D data set derived from 
UAV imagery representing the altitude, the difference between the ground level and 
the top of the vegetation referred to as CHM has gained much attention in recent 
years (Fujimoto et al., 2019). The difference between DSM and DTM known as 
a normalized digital surface model (n-DSM) is the widely used method in height 
estimations [6] that have utilized DEM and n-DSM for refining the segmentation 
results. In addition, its potential has been demonstrated in the detection of tree tops, 
estimation of parameters and delineation of tree crowns. Reference [7] used CHM  
for the separation of ground pixels from vine rows but concluded that their elevations 
were not quite following the actual height of the vines due to a smoothing effect of 
the reconstructed CHM. However, further comparison between CHM and a vigour 
map obtained from normalized difference vegetation index (NDVI) values showed a 
good correlation. 

Even though more fine details in a UHR UAV Image, obtaining meaningful infor-
mation remains challenging and relies mainly on visual interpretation. This manual 
extraction is time-consuming and becomes unfeasible in larger areas. Additionally, 
pixel-based image analysis techniques have limitations in processing such UHR 
datasets. The conventional techniques also fail on UHR UAV Images as the geometry 
of features is very well defined, and characterized by a very heterogeneous texture. 
As the information content of the imagery increases with spatial resolution, the clas-
sification accuracy seems to decrease. This can be attributed to the fact of increasing 
within-class variability inherent in more detailed, higher spatial resolution data. In 
such images, grouping pixels to form image objects or segments is a way to analyse 
such high-resolution data. Additional spectral, structural and textural information
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contained in an object can also be taken into account [8]. Object-based image anal-
ysis (OBIA) techniques have demonstrated great potential to automatically extract 
information from very high-resolution images [9, 10] including those captured by 
UAVs [11, 1] extracted several tree crowns from the three-dimensional model and 
segmentation of RGB Images obtained by the UAV. [11] used simple Linear Itera-
tive Clustering (SLIC) segmentation and random forest classification method for tree 
canopy extraction from the ultra-high resolution ortho-image derived from UAV plat-
forms. [12] developed a methodology for individual tree species identification based 
on crown shape parameters using spaceborne high-resolution imagery. However, 
crown measurements in satellite imagery are more difficult than on UAV images 
since trees show more structural detail at higher resolutions and hence it would be 
more viable in a UHR UAV image. 

An attempt has been made in this present study to delineate and extract vegetation 
types and height estimation using UHR UAV images in parts of an urban slum 
environment. The methodology utilizes an OBIA approach where multiresolution 
image segmentation is performed to create basic image objects. Different Visible 
band ratios computed from the RGB UHR image and CHM are evaluated for height 
estimation and refinement of different vegetation categories. Crown shape parameters 
and texture parameters are tested and compared for vegetation characterization and 
categorization. 

2 Materials and Methods 

2.1 Study Area Description 

The methodology was tested on two datasets. The dataset used was the urban slum 
area of Chingrajpara, Bilaspur, and Chhattisgarh, India (Fig. 1). The ortho mosaic, 
Digital Surface Model and Digital Terrain model were generated from a set of 85 
images captured at a ground sampling distance of 2.19 cm from a height of 150 m 
covering a total area of 0.13 km2 with DJI Phantom 4pro and DJI Inspire 2 (Fig. 2a– 
c). The images were processed using Pix4Dmapper Pro version 4.3.31. The ortho 
mosaic and DSM were provided at 2 cm resolution and DTM at 22 cm.

2.2 Vegetation Crown Delineation 

Firstly, the pixels in the image are converted into Image objects by a multiresolu-
tion segmentation algorithm. Various scale parameters are tested to create the basic 
image objects at a scale that allows for objects to be relatively homogeneous whilst 
capturing the full scene variability. The next processing step required the first level 
classification for vegetation. A band ratio can best discriminate green vegetation
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Fig. 1 Location map of study area

using deviation from the normalised vegetation index. Several vegetation indices in 
the Visible Spectra Region developed by [13] were computed. This can be attributed 
to the fact that data acquisition through UAV is mainly in the visible (RGB) bands 
due to the easy availability of high-resolution lightweight cameras at a low price. 

The indices evaluated were 

Green Vegetation (GV ) = G/R. (1) 

Normalized Green Differential vegetation (NGDV) = Green − Red/(Green + Red). 
(2) 

Visible Band Difference Vegetation Index (VDVI) 

= (2 ∗ Green − Red − Blue/(2 ∗ Green + red + blue). (3)
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Fig. 2 a RGB Ortho Image, b Digital Surface Model (DSM), c Digital Terrain Model and d 
Normalised Surface Model(nDSM) for the study Area

2.3 nDSM or Canopy Height Model (CHM) Creation 

The topmost crown part of a tree inside the forest is known as the canopy. The tree 
height above the ground may be called CHM [5]. The UAV images are processed to 
generate the DSM and DTM for the study which can be used in the estimation of 
CHM. A DSM is a representation of the earth’s surface along with the features on top 
of it, such as buildings and trees while a DTM represents the bare earth surface with
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all protruding objects removed. A CHM then is the depiction of the highest point in 
a tree from the base ground landscape. A normalized DSM (nDSM) or a CHM can 
be then obtained by subtracting DTM from the DSM. The nDSM for the study is 
presented in Fig. 2d. 

CHM = DSM − DTM. (4) 

3 Texture Parameters 

Texture analysis was developed as an image analysis method for medical images [14]. 
The texture is a description of the spatial distribution of tonal intensities, making it a 
useful parameter in the segmentation and classification of similar regions. Haralick 
texture features proposed by [15] are calculated from a grey level dependency matrix 
called Gray level co-occurrence matrix (GLCM), which is a common method to 
represent image texture. The matrix is constructed by counting the co-occurrence 
of a pair of neighbouring grey levels in the image. It is a square matrix of size 
NxN where N represents the number of grey levels in the window. The diagonal 
elements in the GLCM represent pixel pairs which occur together in combination. 
The GLCM is converted to a normalized GLCM which represents the frequency 
or probability of each pair. It is also common to add GLCMs from opposite neigh-
bours (all directions) before normalization. The texture description Contrast (CON), 
Angular Second Moment (ASM), Entropy, Homogeneity, Correlation etc. are then 
derived from the normalised GLCM. The texture feature “contrast” has a low value 
for elements with similar gray level values and elements with dissimilar gray levels 
are given a high weight. Computation of ASM use each element of GLCM as a weight 
for itself. High values of ASM indicate that the window when the window is very 
orderly that is when co-occurrence frequency is concentrated in a few places in the 
GLCM (the main diagonal direction). The measure CON also known as the sum of 
squares variance has a higher weight for the GLCM element that is far from the main 
diagonal and hence contrast increases with the increase in the difference between 
neighbouring pairs. Entropy is a measure of the randomness of pixel pair association. 
It has different values for edges with different characteristics [16]. Though the above 
GLCM textures were developed for pixel-based analysis, it is very useful in OBIA 
for remote sensing data [17–19]. 

4 Geometrical Parameters 

For individual vegetation discrimination, distinctive geometrical shape parameters 
are used to measure the outlines of the identified canopy. They are form factor that 
varies with surface irregularities, compactness, aspect ratio (also called eccentricity),
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Fig. 3 Methodology flow diagram 

and fractal dimension (FD) for a delineated crown boundary is calculated by using the 
crown perimeter/area rate, The Asymmetry feature compares an image object with 
an approximated ellipse around the given image object. The calculation is based on 
the variance in x-direction and y-direction, which results in a feature value, which 
increases with an increasing image object asymmetry. The Shape index is a measure 
of overall shape complexity. The feature value is 1 for compact objects (i.e. square 
or almost square) and increases without limit for more irregular shapes. The overall 
methodology of the study is illustrated in Fig. 3. 

5 Results and Discussion 

Figure 4a presents the subset of the image used to develop discrimination rules. The 
first step involved Multi Resolution Segmentation. The RGB Image is segmented at 
different scale parameters ranging from 70 to 100 to obtain optimum segments of 
homogenous vegetation features yet separate them from other features. An experi-
ment is done by adding the DSM and the DTM layer for segmentation, which greatly 
improved the segmented features then segmenting the RGB alone.

Three vegetation indices GV, NGDV and VDVI (Fig. 4b and c) using the visible 
bands of the RGB ortho image are computed. The range of VDVI for Vegetation 
features ranged from 0.18 to 0.345. The NGDV ranged between 0.15 to 0.64 and the 
GV ranged between 1.36 to 4.62. The CHM values varied between 0.03 and 12.47 m 
for the vegetation features. There are two categories of heightened trees, one above 
8mothers between 2.5 m to 8 m. The shrubs had a height between 1 to 2.5 m and the
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Fig. 4 a RGB Ortho, b NGDV, c VDVI, d Aspect, e Form Factor, f Asymmetry, g Shape Index 
and h Fractal Dimension

scrub vegetation was mainly less than 1 m. The Geometrical features Aspect, Form 
factor, Asymmetry, Shape-index and Fractal dimension are illustrated in Fig. 4d–h 
All the three Vegetation indices were useful in discrimination and anyone can be 
used alternatively (Fig. 5a). Out of the geometrical parameters: Formfactor, Aspect, 
Asymmetry and Fractal Dimension were useful in discrimination largely (Fig. 5c). 
Out of the four texture parameters, GLCM Angular Second Moment was the most 
useful (Fig. 5b).
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Fig. 5 a Vegetation indices. b Texture parameters and c Geometrical parameters in discriminating 
Vegetation type
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Fig. 6 a Level 1 classified image. b Vegetation type classification results 

There were some creepers or vine plants in the study area over the slum house’s 
sloping roofs. The vegetation indices value for such vine plants were high and due 
to the height, they have been classified into shrubs or trees. The level 1 classified 
results are presented in Fig. 6a and vegetation type classification in Fig. 6b 

6 Conclusions 

The capability to delineate individual tree crowns and vegetation types automatically 
would be a major step for applications of remote sensing in ecology, forestry and 
land management. Our work demonstrated vegetation delineation techniques that 
integrate both structural, textural and spectral characteristics to effectively delineate 
mixed vegetation classes. In this article, we presented an Object-based image analysis 
approach which integrated visual band indices along with geometrical and Textural 
features to categorise vegetation in slum areas using a UAV UHR Imagery. The 
detection and discrimination of individual vegetation types in ultra and very high-
resolution images still represent a challenge for the remote sensing community. This 
study can contribute to developing a methodology for more detailed inventories of 
these environments by providing valuable data on trees to facilitate their management 
and monitoring. 
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Environmental Gaseous Sensing Using 
Sniffer Drone for Urban Development 
Control 

Norzailawati Mohd Noor and Mazlan Hashim 

Abstract This study aims to present an environmental gaseous sensing analysis 
using drones in urban development control for the industrial area. The data collection 
method is based on the possibility of gas dispersion in a heavy industrial area in Klang, 
Malaysia, to the neighbouring land uses. The sniffer has carried five types of gaseous 
sensors and is mounted in DJI Matrice 100 quadcopter UAV. However, for this study, 
we analysed two significant gases related to an industrial area consisting Carbon 
dioxide (CO2) and Hydrocarbon (CxHy). The information has been collected in two 
modes of time which are in the early morning and afternoon. The data were mapped 
and analysed with a vector layer to identify whether it breaches concentration limits 
for gases collected. The finding stated that the morning concentration reading is 
denser compared to the afternoon. Results show that CO2 and CxHy are still under 
control and minimise the risk for the local population. However, the safety precaution 
should be undertaken since gas dispersion’s future potential would go beyond and 
affect the surrounding activities. In conclusion, this study shows the UAV’s potential 
as one of the best mechanisms to monitor the environmental effect. Simultaneously, 
there is a need to review existing urban development control since climate change and 
sustainability are linked through their interaction in industries, and their surrounding 
land uses. 
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planning

N. Mohd Noor (B) 
Urban and Regional Planning Department, Kulliyah of Architecture and Environmental Design, 
International Islamic University of Malaysia, Kuala Lumpur, Malaysia 
e-mail: norzailawati@iium.edu.my 

M. Hashim 
Research Institute for Sustainable Environment (RISE), Bangunan Canselori Sultan Ibrahim, 
Universiti Teknologi Malaysia, Aras 2, Kuala Lumpur, Malaysia 
e-mail: mazlanhashim@utm.my 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
K. Jain et al. (eds.), Proceedings of UASG 2021: Wings 4 Sustainability, 
Lecture Notes in Civil Engineering 304, 
https://doi.org/10.1007/978-3-031-19309-5_11 

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19309-5_11&domain=pdf
mailto:norzailawati@iium.edu.my
mailto:mazlanhashim@utm.my
https://doi.org/10.1007/978-3-031-19309-5_11


146 N. Mohd Noor and M. Hashim

1 Introduction 

The development control function seeks to manage and regulate property develop-
ment to ensure that all development takes place at an appropriate time and place 
and in such a manner that it conforms to a pre-determined set of policies or stan-
dards [1, 2]. The development control imposes on the industrial area are consist of 
development guidance for industrial development including the buffer zone imple-
mentation. The buffer zone’s main aim is to preserve the quality of life by adopting 
the sustainable development concept. It also ensures that appropriate consideration is 
given when selecting a site to avoid or minimize environmental conflicts arising from 
land use incompatibility (DOE, 2012). Public concern about air pollution appears to 
have increased over the past decades. As humans that are exposed to air pollution, 
water pollution and soil pollution among others, we also face an increased risk of 
falling victim to illness and disease. Industries may be significant contributors to air 
pollution experienced by local populations [3, 4]. Many studies have investigated the 
possible contribution to poor air quality accounting for 4.5 million premature death 
worldwide and 5% of those diagnosed with lung cancer will be due to extended 
exposure to pollution. A small percentage of chest infections, lung diseases, asthma 
and heart diseases can also be attributed to pollution [5, 6, 7]. 

The International Energy Agency (IEA) reported Malaysia’s carbon emission 
was a total of 194 million tons in 2011, which has seen an increase of 290.7% from 
1990 levels. Research using a long-range energy alternative planning system (LEAP) 
projected that without any mitigation measures, Malaysia’s carbon dioxide (CO2) 
emission in 2020 will amount to 285.73 million tons; a 68.86% increase compared 
to the year 2000. About these facts, the cities are becoming hotter and societies might 
highly have exposed to health problems. Malaysia’s industrial activities, also affect 
the GHG emission resulting from industrial. The highest percentage of gaseous emis-
sion from industry is CO2 as of 2014, CO2 emissions from the manufacturing and 
construction sectors were 12.97 per cent of total fuel combustion in Malaysia. The 
highest in the last 43 years was 48.40 in 1971, while its lowest in 2014 was 12.97 
(IEA, 2014) [8]. CO2 emissions from manufacturing and construction industries 
also include emissions from industrial automotive producers generating electricity 
and/or heat from the combustion of fuels in industry. Carbon dioxide is a colourless 
gas with a density about 60% higher than that of dry air. It occurs naturally in Earth’s 
atmosphere as a trace gas. The current concentration is about 0.04% (410 ppm) by 
volume, having risen from pre-industrial levels of 280 ppm. The scale below shows 
that if the ppm value is above 1,000 ppm the environment is not safe for the people. 
While a hydrocarbon is an organic chemical compound composed exclusively of 
hydrogen and carbon atoms. Hydrocarbons occur naturally and form the basis of 
crude oil, natural gas, coal, and other important energy sources. Hydrocarbons are 
highly combustible, producing carbon dioxide, water, and heat when burnt. There-
fore, they are highly effective and sought after as a source of fuel. The highest 
percentage of hydrocarbon for the industrial category is subjected to 2.2% based on 
areas in the United States. Methane leaking from hydrocarbon wells and pipelines is
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not just wasted energy and money, but a potent source of environmentally damaging 
greenhouse gas emissions. As regulations tighten and sensor technology improves 
both satellites and drones are helping detect such leaks. 

Assessment of air quality has been traditionally conducted by ground-based moni-
toring, and more recently by manned aircraft and satellites. Small drones equipped 
with environmental sensing payloads are emerging as a valuable tool in different 
meteorology disciplines such as atmospheric chemistry, industrial emission moni-
toring and urban development control [9–11]. An environmental sensing payload 
gives drones a unique set of abilities such producing 3D air quality maps with high 
spatial resolution, monitoring toxic gases in dangerous or hard to reach locations or 
analysing the chemical composition of the lower atmosphere [12, 13]. The increase 
in the commercial drone manufacturing sector, which now offers a broad selection of 
small drones that are affordable for most research group. The availability of low-cost 
lightweight gaseous sensing instruments, as well as increasing social concern and 
tightening regulations on air pollution and global warming. The growing interest in 
drones for gas sensing applications is also evident from the recent market appear-
ance of gas detectors specifically designed for drone applications and drones with 
integrated gas sensors. Aerial drones can be classified into two different categories 
according to their design: fixed wing mainly used for sampling over long distances 
and; rotary wing and used in localized studies [14–17]. The use of multiple rotors at 
the periphery, equidistant around a central core, allows the allocation of sensors and 
sampling systems on the centre of the craft, far away from potential turbulences and 
interference [18] UAV/drones equipped with gas sensors to measure carbon dioxide, 
ozone, hydrocarbon and other pollutants have been used for air quality monitoring 
in land use activities in cities, greenhouses, mines and other dangerous or difficult to 
access location. This paper investigates the use of a UAV sniffer drone for environ-
mental analyses in urban development control for the industrial area. Being one of the 
first attempts to apply drone technology to the heavy industrial area with dangerous 
chambers, our objective was not only to map the environmental gaseous but also to 
identify the potential of drone technology for development control in an industrial 
area in Malaysia. 

2 Study Area 

The study area of Klang Industrial Area is located between 02°52N to 02°59N lati-
tudes and 101°16E to 101°23E longitudes. Klang Industrial Area is surrounded by 
massive development in Klang City. The total area of the Klang Industrial Area is 
3748.03 hectares which consists based on the type of industry activities. The type 
of industrial activities are heavy industries which consist of 488.05 hectares, light 
industries comprise 413.24 hectares, medium industries within the area of 2039.858 
hectares and service industries allocate an area of 20.2 hectares. The area comprises
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Not to scale 

Fig. 1 Location of study in Heavy Industrial Area of Klang, Malaysia 

66.64 acres of heavy industry. This area involved in manufacture, electrical substa-
tions and industrial gas supplier. The company that includes in the case study area are 
three main companies which contribute to manufacturing industries. These industries 
are focusing on palm oil processing, provision of industrial gas and manufacturing 
and distribution of industrial, specialty and medical gases respectively (Fig. 1). 

3 Material and Methods 

3.1 Drone Data and Ancillary Information 

The data has been collected from the drone and ancillary data sources. The main data 
collected from the primary sources consist of gaseous data from sniffer drones that are 
mounted to DJI Matrice Quadcopter (Table 1). The ancillary information collected 
from secondary sources includes road network, drainage patterns, cadastral maps of 
alienated land parcels, urban maps and records of industrial development at the site.
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Table 1 Drone and sensor specifications used in this study 

Element Description 

Drone Features DJI Matrice 100. QuadCopter, 5 km control range, HD video downlink, 
1 kg payload capacity, 20 min flight time with Sniffer4D installed 

Sensor CO2 module, 0–5,000 ppm 
High-resolution O3 + NO2 module; 
Wide-range CxHx (CH4) module; 
High-res CO module; 
High-res SO2 module; 

Processing Software Sniffer4D Mapper 

3.2 Methods 

The fieldwork was carried out in September 2020 under the permit of the International 
Islamic University as an authority which managed research in Klang Industrial areas. 
For the drone mission, a sniffer4D sensor as a mobile sensor on an air pollutant 
mapping system carried 5 types of gaseous. It was mounted in a Quadcopter drone 
of DJI matrice 100. Flight tracks at 100 m were planned in Drone Deploy software 
and uploaded through its datalink (Fig. 2a). The time was set up early in the morning 
to get the accurate reading for gaseous that emitted from industrial activities. 

The georeferenced images from the drone were further mosaic in Sniffer4D 
mapper Version 1.3.10.23 and Pix4D Mapper. The mosaic image was exported 
as a regular image with RGB values and a Digital Elevation Model (DEM) 
(Fig. 2b). The produced RGB and DEM images were further rectified using the 
Quantum Geographic Information system (Q-GIS3.16-Havannah software) were
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Fig. 2 a The flight path assigned to the study area; b Digital Elevation Model 
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further rectified with the coordinate reference system was assigned to EPSG:3380 
(Selangor)/UTMWGS. 

4 Result and Discussion 

4.1 Industrial on Carbon Dioxide 

The case study area is in a normal range of outdoor CO2 but the concentration value 
maybe in future will reach the hazardous level. The case study area in which we take 
the reading of CO2 represents many types of heavy to medium industrial activities. 
Based on the Minnesota Department of Health, which used the same hazardous scale 
as mentioned above have set the average concentration should not exceed 10,000 ppm 
over 8 h, and the average concentration should not exceed 30,000 ppm over 15 min 
(Fig. 3). 
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Fig. 3 Reading path for Carbon dioxide (CO2) by Sniffer4D drone at Pulau Indah at 100 m altitude 
(Mission Time 2020/09/03 07:20:32 to 2020/09/03 07:36:11)
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These standards have been developed for healthy working adults and might not be 
suitable for sensitive populations such as children and the elderly. As stated above, 
the range of CO2 in the case study area for 100 m is 267.018 ppm respectively, which 
is below 1,000 ppm. The scale shows that if the ppm value is above 1,000 ppm the 
environment is not safe for the people. This situation shows that the value may be 
increased, thus the government must have a mitigation measure to avoid any disaster 
or pollution happened which results from the high concentration of CO2 (Fig. 4 and 
Table 2). 
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Fig. 4 The concentration values for carbon dioxide (CO2) captured in the study area 

Table 2 Details of CO2 data 
captured by sniffer drone 

Details of data capturing Units 

The total detected area (m2) 256,431.844 

CO2 Average 
Concentration 

480.632 mg/m3 

CO2 Maximum Grid 
Concentration 

527.348 mg/m3 

CO2 Minimum Grid 
Concentration 

324.284 mg/m3 

CO2 Maximum Point 
Concentration 

535.143 mg/m3 2020/09/03 
07:24:02 

CO2 Minimum Point 
Concentration 

319.287 mg/m3 2020/09/03 
07:28:29
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4.2 Industrial on Hydrocarbon 

There are many gas limits for industrial activities and one of them is the gas emis-
sion limit for hydrocarbon. At concentrations hundreds to thousands of times above 
the levels present in the atmosphere, these compounds are only very reactive. At 
levels below 500 ppm, no effects have been identified. The aromatic hydrocarbons 
are biochemically and biologically active. The vapours are much more irritating to 
environmental factors such as higher temperatures, weather inversions, and low wind 
speed. Inhalation of vapours of aromatic compounds and haematological compounds 
may result in systemic injury. As stated for the industrial gas category the limit is 
subjected to a 2.2% maximum for a certain area. In addition, it is stated that the 
percentage of 1% = 10000 ppm. Therefore, the limit hazardous gas of hydrocarbon 
from industry has stated that below 500 ppm (U.S. Department of Health, Education, 
and Welfare). Hence, to relate with the industry site shows that the average hydro-
carbon is 0.078% which is equivalent to 780 ppm. It shows the hazardous level for 
hydrocarbon. The reading is high and reaches the hazardous level because hydro-
carbon gas is mostly emitted from the industry stated in the area. Liquids, gases, 
and vapours can be hydrocarbons. Oil and gas extraction sites will release dissolved 
hydrocarbon gases such as methane, ethane, propane, and butane from production 
liquids and even evaporate. At atmospheric temperature and pressure, hydrocarbon 
gases found in crude oil are readily released into the air. The hydrocarbon is usually 
are compacted and released from a pressurized tank that usually found in the liquid 
manufacturing industries (Figs. 5 and 6 and Table 3).

The overall result shows that the value of CO2 is between an average of 
291.928 ppm – 290.890 ppm and it is still below the hazardous level for CO2. The  
value of the hydrocarbon is 650 ppm – 700 ppm which has the highest value of the 
three sessions. The value has reached a hazardous level for the hydrocarbon gaseous. 
In the case of high concentration, it shows the range of medium to high concentration 
levels of carbon. Even though the concentration level did not reach a hazardous scale, 
local authorities and responsible parties must take precautionary steps to control the 
carbon emission in an industrial area. Hence, the Municipal Council must take into 
consideration carbon emissions in future development and a significant step for local 
authorities in collaboration with regional and national authorities would be to define 
and fund appropriate institutions/s to collect and report this data in a standardized 
format, which offers a comparative analysis of headline indicators at local, national 
and international level. 

The recommendation for zoning of industrial areas based on gaseous emission 
is important because based on findings medium and high concentration levels are 
closely located to each other. For this reason, local and regional areas of the industry 
will be an important analytical unit to ensure that the emission of gaseous takes 
place at the lowest concentration and to avoid dangerous climate change in good 
time. Local authorities also play an important and powerful role as green economy 
regulators, asset owners and potential customers. Therefore, local government should 
encourage green skills by encouraging sustainability and triple bottom line reporting,
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Fig. 5 Reading path of Hydrocarbon by SnifferA4 drone at Pulau Indah at 100 m Altitude (Mission 
Time 2020/09/03 07:20:32 to 2020/09/03 07:36:11)

and sustainable practices in the building and design industries in zoning future 
industry development. The study in Klang Industrial area, Malaysia to carbon emis-
sion that contributes to GHG emission, has unfortunately attempted to match several 
other gaseous that contribute to GHG emission such as nitrogen and ozone due to 
financial and time constraints. So the analysis focused solely on carbon dioxide and 
carbon monoxide emissions in the Industrial area. It is recommended that other indus-
trial areas should be carried out for future research on the other gaseous emissions 
that lead to GHG emissions. Taking into account GHG emissions in Malaysia as 
the city is threatened by rapid urbanization, this continuous study has to be done to 
develop any future industrial area requirements to control the development.
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Fig. 6 The concentration values for carbon dioxide (CxHy) captured in the study area 

Table 3 Details of CxHy 
data captured by sniffer drone 

Reading Unit 

The total detected area (m2) 204,447.406 

CxHy Average Concentration 0.070% 

CxHy Maximum Grid Concentration 0.071% 

CxHy Minimum Grid Concentration 0.066% 

CxHy Maximum Point Concentration 0.072% 
2020/09/03 19:30:04 

CxHy Minimum Point Concentration 0.062% 
2020/09/03 19:31:17

5 Conclusion 

Overall, this research has used a UAV-based system to capture the environmental 
sensing gaseous for development control purposes. The UAV/drone system includes 
the DJI Matrice 100 carrying a SnifferA4 sensor. Through this demonstration, the 
system proved to be a safe, effective and economical tool for assessing develop-
ment control in a heavy industrial area. Ultimately, the pollutant control measure 
can be derived by the system simultaneously assessing development control for the 
industrial area. This research on using UAV/drone to capture environmental sensing 
gaseous is important in supporting SDG number 11 which is “inclusive, safe and 
resilient communities”. But this ambition is multifaceted and covers incongruous 
policy priorities and industries. One critical area of tension is evident between the 
goals of compact city (CC) growth (resource and land use, etc.) and urban green
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space (UGS) goals (important in, for example, living ability, biodiversity, and climate 
regulation) as GHG emission also related to climate change. 
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Drone Technology in Waste 
Management: A Review 

Richa Choudhary and Susheela Dahiya 

Abstract A clean Environment is the basic right of every human being. For the 
last two decades, India is dealing with huge environmental issues and one of the 
major issues is waste management. There is a huge gap between the generation and 
processing of waste in India. Some of the current methods of dealing with waste 
disposal are causing more harm than benefit to the environment and public health. 
Huge advancement in technologies such as Artificial Intelligence, Machine learning, 
smart sensors, IoT, UAVs or Drones, automation, etc. has improved human life in 
every domain such as healthcare, Agriculture, Consumer Services, and Manufac-
turing. There is huge scope in harnessing the potential of these technologies in the 
field of Waste Management. Due to the advancement in sensors and availability of 
cost-effective commercial Drones, Drones have shown significant improvement and 
huge application scope in different domains. There is a huge prospect of using drones 
in waste management. It is one of the popular tools and technology, whose use can be 
explored in different areas of Waste Management. Government and Waste Manage-
ment organizations can utilize smart UAVs or Drones to efficiently manage waste 
disposal at Landfills and dumping zones. In this paper, an attempt has been made 
to review and identify the different areas of waste management where Drones can 
be utilized efficiently in India. This article also reviews the various challenges and 
requirements of using Drone technology in waste management. 

Keywords UAVs · Drone · Smart sensors ·Waste management 

1 Introduction 

One of the major challenges the world is currently facing is waste management. 
In India, the amount of waste generated is huge as compared to waste processing. 
According to the report published by PIB (Press Information Bureau), Delhi (2020), 
the volume of waste will increase from 62 million tons to 150 million tons by the year
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2030 [1]. Another report published in a leading newspaper in March 2021, states that 
40% of plastic waste remains uncollected in India every day which further harms the 
environment and public health. 

Waste management is a term used for the process of collection, transportation, 
segregation, processing, and disposal of waste. This process is managed by the Urban 
Local Bodies (ULB), Gram Panchayat, and few waste management organizations. In 
India, currently, there is a huge gap between waste generation and waste processing. 
The rapid increase in population and socio-economic growth led to urbanization 
and industrialization in the country [2]. This fast pace of development has led to 
the growth of waste generation as well which in turn led to pressure on the govern-
ment to start taking bold steps in the direction of waste management. In the past 
decade, the world has witnessed a huge advancement in the technologies like Artifi-
cial Intelligence, Machine Learning, Internet of Things, smart devices, advancements 
in sensors, Unmanned Aerial Vehicles (UAV), and automation has changed the face 
of the earth in many domains. There is a critical need as well as a huge scope for 
using these new technologies to effectively manage waste and fill up the gap between 
waste generation & waste processing. 

In the past decade, UAVs or Drones have shown significant contributions in a 
variety of applications such as aerial photography, surveillance [3], crowd moni-
toring, agriculture, mapping of land use, data collection for analytics etc. Drones 
enables researchers to study regions which are not safe or unreachable from a safer 
distance with better accuracy than traditional methods [4, 5]. The prospects of Drones 
in waste management are also huge [6]. Current methods of waste management are 
not effective to deal with this increasing volume of waste [7]. 

This paper provides the use of drones in waste management. In Sect. 2 of the 
paper, we provide the generic usage and capabilities of drones in different areas. In 
the next section, the in-depth use of drones in waste management has been discussed. 
In the last section, we discussed the various requirements and challenges of using 
drone technology in waste management. 

2 Status of Landfills and Solid Waste in India 

Waste management refers to the efficient processing of the waste for sustainable 
development. The process of waste management starts from the collection of waste 
and ends at the disposal of this waste at landfills or dumping zones. The major issue 
in India is the illegal dumping of solid waste. According to Sunil Kumar et. al [8] 
90% of the waste in India is dumped illegally. There are serious health hazards of 
dumping waste in open areas. People living near the open dumping sites are already 
facing health issues like nose and throat infections, problems in breathing and several 
other. 

The legal sites of dumping the waste are the areas which are kept away from the 
residential areas and are known as landfills. The waste should be dumped either at 
Landfills or should be sent to waste processing plants. But the current Landfill sites
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are piled up with the huge volume of untreated waste. Also, a maximum number of 
states are having very few landfill sites as compared to the waste generated, which 
demands effective use of landfill sites. Figure 1 shows the statewide number of landfill 
sites in India and Fig. 2 shows the comparison between statewide waste generation 
and waste processing. 

Maximum number of states are having very few landfill sites as compare to the 
waste generated, so effective use of landfill sites is required to fit the garbage. The 
current methods are not effective to process the tons of mixed solid waste. The 
government spends most of the amount on collection of waste and rest on the trans-
portation & processing of waste. The biggest challenge in the processing of waste 
is the segregation of different types of waste material. The solid waste collected by 
the municipality can be segregated in different categories like organic waste, paper, 
glass, plastic, metal, inert, and rubber [2]. Figure 3 shows the composition of waste 
collected by the municipality in India.

In India, due to the lack of proper regulation, infrastructure and awareness among 
people, huge amount of mixed solid waste is being generated which needs segregation 
before further processing into recycling and reuse. The current methods of treating 
mixed solid waste are burning and gasification, which poses several health hazards 
to the people working in the plant or living near the landfill areas. In landfills, the 
natural way of decomposition of waste is done by an anaerobic reaction between the 
organic matter (such as food, vegetable, dry grass, etc.) which emits harmful gases 
like methane. In rainy days, landfills are the contamination zones of various harmful

Fig. 1 Statewide number of landfill sites in India
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Fig. 2 State/UT-wise status of solid waste generated (Millions tones per Annum) and Processed 
(Millions tones per Annum) (Source http://swachhbharaturban.gov.in/)

Waste Composition of Municipal Solid waste in India 

Organic waste Paper Glass Plastic Metal Inert Rubber other 

Fig. 3 Composition of municipal solid waste in India

bacteria, mosquitoes and pathogens. The release of toxins gases, leaking of harmful 
liquid, and mountains of garbage are the major issues with the current landfills in 
India. The new technologies such as drones can help us in a very efficient manner to 
improve the conditions of landfills as well as the inefficient waste treatment.

http://swachhbharaturban.gov.in/
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3  UAVs or Drones  

UAVs or Drones is an unmanned aerial device which is controlled by a ground 
base controller and the communication is established between the two using Wi-Fi, 
Bluetooth or ZigBee network [4]. Initially, drones were only used in the military but 
in past few years, the usage of drones have been discovered in almost all areas such 
as agriculture, aerial photography, wildlife conservation, data collection, disaster 
management to name a few [9]. 

There is a wide variety of drones available in market ranging from task specific to 
commercial UAVs. With advancement in sensors and automation, the performance 
and application areas of drones have improved remarkably. Due to their smaller 
size, ease in use and latest sensors technology, drones can be used in wide range of 
applications (Table 1). The major application areas of Drones are listed in Table 2. 

3.1 Types of Drones 

The basic design of drone is divided into two parts: the actual drone and the payload. 
Payload in a drone is nothing but the extra weight it carries apart from the drone 
weight. As a payload almost anything can be attached to the drone like a thermal 
camera, weather sensors, the package for shipment, emergency medicines, etc. [9, 15] 
Drones can be differentiated on the basis of their wings, size, weight, storage capacity, 
source of energy, type of take-off/landing. Table 2 lists the difference among drones 
on the basis of these parameters. Drones are also divided into two major application 
areas: surveying and data collection. Drones used in surveying will have different 
specifications as compared to drones used for data collection.

Table 1 Application areas of Drones 

Area Application References 

Smart Agriculture Helps in monitoring crops, soil and land mapping, and 
surveying of the agricultural area 

[4] 

Aerial Photography Takes high-resolution pictures/video which have wide 
range of application area. For ex: crowd monitoring, 
collection of data, geographical survey etc 

[10, 11, 12] 

Wild-life conservation Drones can have thermal cameras which can help to 
monitor wild species in day and night 

[13] 

E-commerce Drones can be used to ship the lightweight packages in 
near location to its controller. Amazon has already 
started using the drones for delivering packages 

[11, 12] 

Geographic mapping This feature makes drones attractive in many fields. 
Drones helps us in getting imagery of difficult locations 
which are not safe for human to reach 

[4, 14]
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Table 2 Various features of drones along with their usage in different domains 

Difference Parameter Types Explanation 

Wings • Fixed wings drone 
• Multirotor drone 
• Hybrid drone 

• Mainly used for data collection 
• Multirotor drones are mainly 
used for recreational purposes 

• Hybrid means taking best of both 
is used in specific tasks or 
operations 

Size/weight • Llarge size drones 
• Medium size drones 
• Mini drones 

Size and weight decide the power 
and capacity 
Large size drones are usually used 
in Military or geographical 
surveying 

Storage capacity • Usually, drones come with 4 to 
8 GB of storage  

This storage capacity is very less 
compared to images collected in 
one flight time. Cloud based 
solutions are used in drones to store 
the data 

Source of Energy • Battery operated 
• Solar panel operated 
• Fuel operated 

Maximum no of drones are battery 
operated, very few are created with 
fuel /kerosene option 

Take off/landing • Vertical takeoff & landing 
• Requires little runway 

Usually, drones are VOTL –vertical 
takeoff and landing e.g. DJI Mavic 
Air2. Very few drones require a 
little runway for takeoff 

Autonomy • Fully autonomous 
• Human operated 

Fully autonomous, 
Requires controller/mobile app for 
navigation

3.2 Working of Drones 

A standard drone consists of unmanned aircraft, ground station. Communication 
between drones is established by using either Wi-Fi or Bluetooth network. Drones 
are launched from the specific area of application to the target area for data collection 
or for surveying [15]. The path to the target area could be autonomous or navigated 
by the pilot on ground through some controller or computer or using mobile app (as 
shown in the Fig. 3). Drones surveys the targeted area by clicking images, videos or 
collects the data using sensors. The usual flight time for drones is 30–35 min. The 
area to survey and flight time requirement decides the type of drone required [13]. 

Data collected by the drones in form of images /pictures, then this data is stored 
either in internal storage of drones or data stream is transmitted to the base station, 
or the live feed can be directly stored at cloud-based storage to process later. This 
data is then processed by the specific software to present the visualization or results 
of the collected data [16, 17].
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The analysis of data collected by drones can be done in real-time or can be 
processed later. Waste management industry can harness the potential of data 
collection and surveying to effectively process or monitor the dumping zones (Fig. 4). 

Fig. 4 Schematic illustration of the working of drone for data transmission to base station
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4 Use of Drones in Waste Management 

Waste management consists of various steps such as collection, segregation, trans-
portation, processing and disposal of waste at the landfills or dumping area. Drones 
can play a major role in this process of waste management [6]. Drones can help 
in managing illegal dumping, identifying open dump areas, landfill site selection, 
landfill monitoring, calculating airspace of landfill, collecting waste from coastlines 
etc. The major areas of waste management where drones can be used for effective 
and fast results are as follows. 

4.1 Waste Collection 

Drones can be used to keep check on littering at public areas. They can be used 
to monitor the industries waste disposal. They can notify the concerned agency on 
illegal dumping of the industrial waste by the industries [11, 18]. Keeping this check 
on the industries will force them to treat the industrial waste properly which in turn 
cause less harm to the environment. 

4.2 Landfill Site Selection 

Landfills are hazardous areas for the human beings who work or live around it. 
Managing the landfills to accommodate the huge volumes of garbage is very essential 
for the effective waste management. To create a landfill, lots of manual work and 
surveying is needed. According to the new municipal waste management act 2016, 
the landfills should not be constructed around 500 m of residential area and It should 
be at least 200 m away from highway. Also, no Landfill should be constructed around 
wildlife Habitat. It should be constructed in near proximity of agricultural land, park, 
and water body like pond or river [19]. Drones can be deployed for the site selection, 
they can survey the land from all directions and this data can be analyzed later to 
decide upon usage of land as a Landfill site [20, 21]. Drones can help in finding an 
appropriate landfill site and also help in checking whether the existing landfill sites 
are as per the act or not. 

4.3 Landfill Monitoring 

Landfills have severe issues which creates air, water and soil pollution. Landfills 
contains huge amount of garbage, one of the examples is Delhi Landfill which looks
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like mountain of garbage. Landfill emits harmful gases due to the anaerobic reac-
tion of organic waste. It also results in contamination of ground water and surface 
water due to leachate. Landfills are also a home to several harmful pathogens and 
mosquitoes, bad odor etc. [19]. 

Drones can effectively help in manage these issues as it is not feasible for the 
Government to monitor all the Landfill sites on regular basis. In such scenario, 
drones come handy as they are easy to operate, lightweight machine which can fly 
autonomous or using a controller. Drones can be used for landfill monitoring in 
following manner. 

To monitor the gas emissions using the specific sensors as payload: Drones 
can be used to monitor gas emissions any no of times depending on the size and 
conditions of the landfill site. 

To survey the Landfill area: Drones provides the visual data of any geographic 
location of landfill with high precision. This high-quality data can be utilized to 
understand the impact of Landfill on the environment. This data can also be analyzed 
using appropriate software to plan for the waste treatment [11]. 

4.4 Calculating the Airspace of Landfill 

Landfill site is created away from residential area, wildlife habitat, water bodies, 
agriculture land and highways. This type of area is not easily available in a country 
like India wherever increasing population always demands land consumption. Due 
to this, very effective use of existing landfill sites like fitting high volume of garbage 
in smaller area is required. Drones can particularly help in calculating the airspace 
of any site along with the usage of high-end software. 

GPS enabled drones can perform the land survey and can transmit the collected 
data of landfill sites [22]. With the help of high-end software, this data can be used to 
create 3-D model of the site which will help in estimating 3-D model of remaining air 
space of a landfill [11]. This estimation can be used to compact the garbage without 
overfilling of the space. This estimation is very hard to achieve by using traditional 
methods, which usually takes weeks to survey the area and calculate the airspace [2]. 
This estimation takes only few hours with the help of drones. 

4.5 Collecting Waste from Coastlines 

At few places in countries outside India, drones are also used to collect the garbage 
at coastlines [11]. The drone swims in the water to catch the floating garbage and 
keeps the bay area clean.



166 R. Choudhary and S. Dahiya

4.6 Decision Making for Waste Management Organizations 

Surveying of the site and data analysis using drones helps the managers or policy 
makers in waste management to keep track of things for better decision making like 
when to create a new cell at landfill, where to install the machines at garbage site, 
and can also help in quick response to any emergency situation [18, 22] (Table 3). 

5 Requirements for Using Drone Technology 

Before using drone technology in waste management, it is necessary to first under-
stand the laws and regulations of the country along with the requirement and avail-
ability of required hardware and software. The different requirements of using drone 
technology are discussed below.

Table 3 Uses of Drones in waste management—use case studies 

References Use case study Conclusion 

[23] Monitoring of 12 dumps and 1 Landfill 
is done using UAVs at the Perm region 
and Sverdlovsk Region of Russia from 
2017 to 2021 

UAVs provided data is rich and can 
effectively help in timely decision 
making. It is helpful for Landfill 
operators as well as other stake holders 

[24] SFEI (San Francisco Estuary Institute) 
team created Machine learning-based 
Trash detection system and used Drones 
Aerial Imagery to collect the data 

It concluded more can be done using 
less i.e. drones are very time efficient in 
aerial imagery 

[25] Landfill of Borgo Montello of Italy is 
using UAVs to design the 3D model of 
the site from 153 Images captured using 
UAV 

3D modelling of Landfill created using 
UAV is effective in carrying out the 
periodical survey. The use of UAV in 
photogrammetric can be further 
improved and standardized 

[26] Oslo, Fjord Norway has approved the 
use of UAV in managing the trash spots 
underwater 

The use of drones underwater to clean 
the seabed has shown that UAVs saves 
time and are cost effective 

[27] UAVs are used to collect the floating 
waste from Mithi river at Mumbai India 
before it enters the sea 

Mapping of river course where plastic 
enters into river is done using UAV and 
is effective in laying out the guidelines 
to reduce the plastic in river 
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5.1 Understand the Aviation Laws or Regulations 
of the Country 

Drones are machines which fly to capture the data with powerful technology and 
their unregulated use can have serious consequences. Before using the drones, it is 
required to understand the norms and regulations for a particular country. Currently, 
in India, there is no proper guidelines formulated for use of drones [12]. But there 
are no fly zones where drones are not allowed which needs to be considered while 
using drones in waste management by private organizations. 

5.2 Check for Permissions of Allowed Sensors 

Drones comes with wide variety of sensors such as heat sensors, weather related 
sensors, thermal cameras and a lot more. There are few types of sensors which may 
not be allowed in a particular area. So, this needs to be clarified before using any 
type of sensor in drones. 

5.3 Availability of the Software to Process Collected Data 
by Drones 

Drones can collect the data and transmit it to the receiver or base station. This 
collected data needs analysis to generate information from it. Different type of data 
is collected by drones such as- images, videos, data collected by different sensors, geo 
spatial data etc. All these different types of data need high-end software to process 
them and provide visualization for the end users [5]. In waste management industry, 
it is important to select the proper software according to the data the organization is 
collecting or analyzing. 

5.4 Availability of the Network 

Drones are of two types—autonomous drones and pilot operated drones where pilot 
controls the drone from ground only. Autonomous drones do not require network 
for navigation, but network availability is required to transmit the collected data. For 
drones, which can be controlled by the controller from ground needs network for 
navigation as well as for data transmission. If the data transmission is live feed, then 
it becomes more crucial to have continuous availability of the network [4, 17].
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5.5 Ethical Issues of Using Drones 

Drones are very powerful tool to collect data, but it is also very crucial to handle such 
technology with utmost sense of responsibility. Drones can access the data from sky 
and have high resolution cameras with powerful zoom capability. The data collection 
can be accessed by unauthorized people. Drones can be used for unauthorized data 
collection such as taking pictures of the nearby restricted areas or people which results 
in breeching the privacy [4]. There is need to address these issues and government 
needs to formulate clear instruction and guidelines regarding the use of drones. 
Unethical use of such technology can have very serious consequences which can 
deprive us from the benefits of the technology. 

5.6 Requirement of Selecting Optimal Hardware 

Drones’ deployment requires certain setup to harness the full potential of its capabil-
ities. To set up the drone’s usage in waste management, it is required to answer two 
questions: what type of data collection is required, what are the available sensors in 
market to fulfill that data collection? Also, to deploy drones in surveying a particular 
area, it should be known the exact area to be covered, demography of the area. All 
these questions will help to select the optimal drone hardware to suit the requirement 
of the research activity. 

5.7 Availability and Ease of Maintenance 

Drones are light weighted machine that can access the area otherwise unsafe or 
dangerous for humans to reach. Their ease in use and maintenance is making them 
popular day by day in most of the domains. Drones can easily replace heavy heli-
copters and planes traditionally used for surveying of the area. They can cover the area 
from high altitudes to closer to ground levels as compared with traditional methods. 
This gives them the advantage of the ease in use and maintenance. 

6 Challenges of Drone Technology 

6.1 Privacy and Security 

Privacy and security are the major concern in using drones. Drones have powerful 
technology and comes with wide variety of sensors. Most of the drones can transmit 
high resolution data in real time which can make the intended breeching of privacy
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and invasion in the private property or trespassing quite easy. In India, current laws 
for use of drones are vaguely worded and does not provide clear instructions, which 
makes it more difficult to assure the privacy while using drones in any industry. 

6.2 Requirement of Specific Software to Gather Data 

Before deploying drones in waste management industry, it is required to understand 
the type of data collection required, the area to be surveyed and the area for which 
monitoring needs to be done. All these different areas will give different set of 
data. All sets of collected need proper storage, processing and visualization of the 
information. Also, there is a need of the skilled professionals who can fully utilize 
the potential of drone technology. 

6.3 Legislature Uncertainty 

Without clear regulation and laws, it is difficult for the stakeholders to invest in drones 
use for waste management. Urban local bodies (ULB) and concerning government 
sector should formulate clear instruction for usage of drones in waste management. 
This will give the boost to investment of drones in waste management industry. 

6.4 Safety 

Usage of drones is there in almost all the domains. There are few areas where use of 
needs can jeopardize the safety for e.g., in wildlife conservation, it increases the risk 
and decreases the safety for the wild animals. Drones are otherwise safer to use, but 
sometimes the weather conditions or usage of heavy drones can pose safety issues. 
These issues need to be addressed by training the controller to respond effectively, 
if something goes wrong. In waste management options for safe use of drones needs 
to be explored more. 

6.5 Weather Conditions 

Drones’ functionality can be influenced by the weather conditions such as rain, winds, 
low visibility. All these factors can affect the flight of drone and can hamper the data 
collection from a landfill site.
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6.6 Requirement of Specific Skills 

Drones can be efficient and fast in providing the data, but the data processing needs 
specific skills and software to understand or process the collected data. Transmission 
of data broadly depends on network availability. Real time data collection and trans-
mission by drones can be slow and can also impact the real time analyses of data. It 
also depends on the user skills to make most out of the data transmitted in real time 
for analysis or decision making. 

7 Conclusion 

Drones have enhanced the speed and quality of research in all application areas. 
Recent studies have shown that drones are fast and more reliable than the traditional 
methods for survey or data collection. Waste management is a multifaceted industry 
comprising of tasks like garbage collection, landfilling, and recycling. These diverse 
tasks of waste management industry need different types of technology to work 
at different fronts. Waste management data collection is typically difficult due to 
its hazardous and dangerous conditions to humans. Until recently, surveying and 
monitoring landfill sites was a time-consuming, costly and dangerous affair but aerial 
surveys and monitoring through drones can revolutionize the waste management 
industry. To successfully deploy the drones in waste management research, specific 
requirements and conditions needs to be fulfilled, once the setup is ready drones can 
be cost-effective, fast, reliable and can provide real-time data visualization for better 
decision making for the stakeholders. Drones provides the option of promising results 
and can handle waste treatment effectively, but before using drones it is important to 
address the questions concerning ethics, regulation and implementation of drones. 
Waste management sector needs proper infrastructure, guidelines and funding laid 
by ULB to include stakeholders. Also, there is need of proper training and awareness 
to handle the real time issues while monitoring using drones. 

References 

1. https://pib.gov.in/PressReleseDetailm.aspx?PRID=1667099 
2. Somayaji SRK, Kaliyaperumal S, Velayutham V (2020) Managing and monitoring E-waste 

using augmented reality in India. In: Karrupusamy P, Chen J, Shi Y (eds) Sustainable commu-
nication networks and application. ICSCN 2019. Lecture notes on data engineering and 
communications technologies, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-345 
15-0_4 

3. Singh CH, Mishra V, Jain K, Shukla AK (2022) FRCNN-Based Reinforcement Learning for 
Real-Time Vehicle Detection Tracking and Geolocation from UAS. Drones 6(12):406. https:// 
doi.org/10.3390/drones6120406

https://pib.gov.in/PressReleseDetailm.aspx?PRID=1667099
https://doi.org/10.1007/978-3-030-34515-0_4
https://doi.org/10.1007/978-3-030-34515-0_4
https://doi.org/10.3390/drones6120406
https://doi.org/10.3390/drones6120406


Drone Technology in Waste Management: A Review 171

4. Maddikunta PKR, Hakak S, Alazab M, Bhattacharya S, Gadekallu TR, Khan WZ, Pham 
Q-V (2021) Unmanned aerial vehicles in smart agriculture: applications, requirements, and 
challenges. IEEE. https://doi.org/10.1109/JSEN.2021.3049471 

5. Caillouet C, Giroire F, Razafindralambo T (2019) Efficient data collection and tracking with 
flying drones. Ad Hoc Netw Elsevier 89(C):35–46. ff10.1016/j.adhoc.2019.01.011ff. ffhal-
02043136f 

6. Merkert R, Bushell J (2020) Managing the drone revolution: A systematic literature review 
into the current use of airborne drones and future strategic directions for their effective control. 
J Air Transp Manag 89:101929. ISSN 0969-6997. https://doi.org/10.1016/j.jairtraman.2020. 
101929 

7. Gevaert CM, Sliuzas R, Persello C, Vosselman G (2018) Evaluating the societal impact of 
using drones to support urban upgrading projects. ISPRS Int J Geo-Inf 7:91. https://doi.org/ 
10.3390/ijgi7030091 

8. Kumar S, Smith SR, Fowler G, Velis C, Kumar SJ, Arya S, Rena, Kumar R, Cheeseman C 
(2017) Challenges and opportunities associated with waste management in India. R Soc Open 
Sci 4160764160764 

9. Zeng Y, Wu Q, Zhang R (2019) Accessing from the sky: a tutorial on UAV communications 
for 5G and beyond. Proc IEEE 107(12):2327–2375 

10. https://www.allerin.com/blog/10-stunning-applications-of-drone-technology.Accessed 10th 
March 2021 

11. https://www.propelleraero.com/blog/using-drones-for-waste-management-the-beginners-
guide/. Accessed 11 March 2021 

12. https://www.latestlaws.com/articles/regulation-of-drones-in-india/. Accessed 11 March 2021 
13. Butcher PA, Colefax AP, Gorkin RA, Kajiura SM, López NA, Mourier J, Purcell CR, Skomal 

GB, Tucker JP, Walsh AJ, Williamson JE, Raoult V (2021) The drone revolution of shark 
science: a review. Drones 5:8. https://doi.org/10.3390/drones5010008 

14. Vergouw B, Nagel H, Bondt G, Custers B (2016) Drone technology: types, payloads, appli-
cations, frequency spectrum issues and future developments. In: Custers B (ed) The future of 
drone use. Information technology and law series, vol 27. T.M.C. Asser Press, The Hague. 
https://doi.org/10.1007/978-94-6265-132-6_2 

15. Casagrande G, Khaddar MA, Parisi S (2020) Technology and the local community: uses 
of drones in #NoDAPL movement and Dandora dumpsite storytelling. Am Behav Sci 
64(13):1906–1920. https://doi.org/10.1177/0002764220952133 

16. Huuskonen J, Oksanen T (2018) Soil sampling with drones and augmented reality in precision 
agriculture. Comput Electron Agric 154:25–35. ISSN 0168-1699. https://doi.org/10.1016/j. 
compag.2018.08.039. https://www.sciencedirect.com/science/article/pii/S0168169918301650 

17. https://www.wastetodaymagazine.com/article/landfill-monitoring-drones/. Accessed 10 
March 2021 

18. Municipal Solid Waste Landfills, Chapter XVII 
19. https://www.droneblog.com/2020/05/12/10-ways-drones-are-being-used-for-waste-manage 

ment/. Accessed 11 March 2021 
20. Marturano F, Ciparisse J-F, Chierici A, d’Errico F, Di Giovanni D, Fumian F, Rossi R, Martel-

lucci L, Gaudio P, Malizia A (2020) Enhancing radiation detection by drones through numerical 
fluid dynamics simulations. Sensors 20:1770. https://doi.org/10.3390/s20061770 

21. Leizer K, Károly G (2018) Possible areas of application of drones in waste management during 
rail accidents and disasters. Óbuda University, Doctoral School on Safety and Security Sciences 
Budapest, Hungary. https://doi.org/10.7906/indecs.16.3.8. Accessed 31 Aug 2018 

22. Meka S (2014) Municipal solid waste management in India: a review and some new results. 
Int J Civ Eng Technol 5:1–8 

23. Filkin T, Sliusar N, Ritzkowski M, Huber-Humer M (2021) Unmanned aerial vehicles for 
operational monitoring of landfills. Drones 5(4):125. https://doi.org/10.3390/drones5040125 

24. https://www.esri.com/about/newsroom/arcnews/improving-trash-monitoring-with-drone-ima 
gery-artificial-intelligence-mapping/. Accessed 21 Dec 2021

https://doi.org/10.1109/JSEN.2021.3049471
https://doi.org/10.1016/j.jairtraman.2020.101929
https://doi.org/10.1016/j.jairtraman.2020.101929
https://doi.org/10.3390/ijgi7030091
https://doi.org/10.3390/ijgi7030091
https://www.allerin.com/blog/10-stunning-applications-of-drone-technology.Accessed
https://www.propelleraero.com/blog/using-drones-for-waste-management-the-beginners-guide/
https://www.propelleraero.com/blog/using-drones-for-waste-management-the-beginners-guide/
https://www.latestlaws.com/articles/regulation-of-drones-in-india/
https://doi.org/10.3390/drones5010008
https://doi.org/10.1007/978-94-6265-132-6_2
https://doi.org/10.1177/0002764220952133
https://doi.org/10.1016/j.compag.2018.08.039
https://doi.org/10.1016/j.compag.2018.08.039
https://www.sciencedirect.com/science/article/pii/S0168169918301650
https://www.wastetodaymagazine.com/article/landfill-monitoring-drones/
https://www.droneblog.com/2020/05/12/10-ways-drones-are-being-used-for-waste-management/
https://www.droneblog.com/2020/05/12/10-ways-drones-are-being-used-for-waste-management/
https://doi.org/10.3390/s20061770
https://doi.org/10.7906/indecs.16.3.8
https://doi.org/10.3390/drones5040125
https://www.esri.com/about/newsroom/arcnews/improving-trash-monitoring-with-drone-imagery-artificial-intelligence-mapping/
https://www.esri.com/about/newsroom/arcnews/improving-trash-monitoring-with-drone-imagery-artificial-intelligence-mapping/


172 R. Choudhary and S. Dahiya

25. Baiocchi V, Quintilio N, Martina T, Giampaolo S, Maria A, Domenica C (2019) UAV for 
monitoring the settlement of a landfill. Eur J Remote Sens. https://doi.org/10.1080/22797254. 
2019.1683471 

26. https://www.nytimes.com/2018/03/04/world/europe/norway-fjords-litter-drones.html. 
Accessed 26 Dec 2021 

27. Sharma HB, Vanapalli KR, Cheela VRS, Ranjan VP, Jaglan AK, Dubey B, Goel S, Bhat-
tacharya J (2020) Challenges, opportunities, and innovations for effective solid waste manage-
ment during and post COVID-19 pandemic. Resources, conservation and recycling, vol 162, 
p 105052. ISSN 0921-3449. https://doi.org/10.1016/j.resconrec.2020.105052

https://doi.org/10.1080/22797254.2019.1683471
https://doi.org/10.1080/22797254.2019.1683471
https://www.nytimes.com/2018/03/04/world/europe/norway-fjords-litter-drones.html
https://doi.org/10.1016/j.resconrec.2020.105052


Solar Roof Panel Extraction from UAV 
Photogrammetric Point Cloud 
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Abstract Many buildings are using solar panels as an additional source of electricity. 
As solar energy is renewable energy and the maintenance cost of solar panels is 
cheap. This research uses a statistical approach of analyzing point clouds generated 
from UAV-based photogrammetric processing. An algorithm has been developed to 
extract solar panels on the building rooftops. The data acquisition is done using an 
Unmanned Aerial Vehicle (UAV) platform mounted with an optical sensor. The RGB 
images acquired are further used to generate a photogrammetric point cloud dataset. 
Geomatics engineering building of Indian Institute of Technology Roorkee, India is 
considered as the study area, on which solar panels were already installed on its roof. 
Normal vectors are computed for each points in the building point cloud dataset. The 
normal vector has its components in the x-axis, y-axis, and z-axis correspondingly. 
Based on the contribution of the z-component of normal vectors, the points are 
classified into roof, facade, and solar panel points respectively. The results obtained 
are evaluated by comparing classified points with respect to manually classified solar 
panel points. This comparision suggests that the developed algorithm is effective in 
extracting the solar roof panels efficiently. This research can be used to calculate the 
effective area of solar panels. 
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1 Introduction 

As urbanization is expanding at an exponential rate in major parts of the globe, the 
limitation of resources are seen quite often. Electricity is one of such resources in 
which we have seen power shortages many times. Many cities have been turning 
towards solar energy usage as an additional energy source to the growing demands. 
Solar roof panels have been installed on the building rooftops or in open spaces 
with direct sun illumination. Unmanned Aerial Vehicle (UAV) has many advantages 
like faster data acquisition, very high-resolution, multi-temporal data, etc. Due to its 
advantages UAV’s play a vital role in many domains like forest degradation mapping 
[1], damage assessment of cultural heritage monuments [2], landslide monitoring 
[3], Tree canopy mapping [4], etc. UAV’s can also play a crucial role in analyzing 
solar panels which are already installed on any building. One can assess the damages 
as well as the efficiency of the solar panels with the help of advanced processing 
of high-resolution UAV datasets. Extracting solar panels could help us derive the 
solar potential utilized of the existing system over a roof and give us an idea of its 
efficiency. 

Point cloud data from various techniques have enriched us with various infor-
mation about our surroundings. They have improved our perception and provided 
a better way of analyzing and understanding our natural and built environment’s 
behavior. Classifying the point cloud efficiently is a critical challenge considering its 
complex 3D geometry, noise, error-prone, varying point density, and often contains 
a gap. Many studies have been conducted to classify urban scene point clouds [5–7]. 

A gradient-based building extraction using LiDAR and photogrammetry imagery 
is performed as the building roof planes have a constant elevation variation along 
the roof’s slope [8, 9]. Another method, using the parameterization approach for 
segmenting ALS point clouds in order to extract building roofs with their geometric 
features, is shown in [10] for the determination of the solar potential. Furthermore, 
a shading analysis utilizing the usable area of those roofs with the most suitable 
orientation for the installation of solar panels is computed for any given date and 
time of the day. The building’s individual sub-elements can be recognized through 
sub-segmentation using geometric and radiometric characteristics jointly obtained 
from photogrammetric point cloud [11]. 

With the development of richness in datasets and software-intensive workflows, 
some machine learning methods have also been used for roof detection. Roof plane 
extraction from a point cloud is a complex task. Since point cloud data has no 
connection information and does not provide any semantic characteristics of the 
surface [12]. Research has been carried out to extract and classify the rooftop from 
airborne LiDAR based on slope criteria by a model builder in ArcMap [13]. Using 
GIS tools, a case study is also done to identify roof surfaces from LiDAR point clouds 
[14]. 

Voxel-based region growing has also been used to segment out building roofs 
from an airborne LiDAR point cloud. Building planar surfaces consist of distinctive 
geometric features like smoothness, continuity, and convexity [15]. Planer surfaces
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are also segmented from the unstructured point cloud based on the 2D Hough trans-
form and octree [16]. A deep learning approach has also been used to detect building 
roofs and facades from Aerial LiDAR data [17]. 

1.1 Normal Vector 

A vector perpendicular to the plane consisting of the points that makes the plane is 
called a normal vector to that plane (Fig. 1). 

Normal vector computation, 
Let us consider three points P, Q, and R in a 3D space, then the equation of a plane 

passing through the three points is; 

f (ϕ) = ax + by + cz = d (1) 

where P, Q, and R satisfy the equations. 
The normal vector to the plane f(φ) is n  = (a, b, c) and is given by; 

−→n = a−→
i + b−→j + c−→k (2) 

The unit normal vector at the given point T (Xt, Yt, Zt) is given by; 

n
∧ = 

ai
∧

+ b j
∧

+ ck
∧

√
a2 + b2 + c2 

|T (Xt , Y t , Zt ) (3) 

The normal vector at each point is an excellent parameter to segregate the point 
cloud into its corresponding feature orientation. From the literature review, it was 
observed that the normal vector of each laser point has shown as an excellent feature 
in decomposing the point cloud into segments describing planar patches. This gave us 
the idea that utilizing the same normal components for photogrammetric point cloud 
could provide more information beyond roof extraction. In this research, normal 
vectors were computed using an open-source python package—Open3D [18], and 
pandas with a Jupyter notebook were used to implement the approach.

Fig. 1 Normal vectors to the 
plane consisting of few 
points in a 3D space 
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The utilization of the normal components has proven to be the best statistical 
approach for planar-based segmentation and classification. By constructing an octree-
based hierarchical representation, normal estimations can be done at different point 
cloud scales. Usually, in an urban environment, the normal vectors are in a particular 
direction as there are many planar surfaces. That makes it easier to segregate buildings 
[19]. A research has been done to extract facade, roof, and slant roofs using semi-
manual filtering of normal vector components [20]. 

City scale level roof type classification for solar energy productivity using machine 
learning was also attempted [21]. Mohajeri presented a study using the machine-
learning technique for classifying roof shapes for city scale. The SVM classifier’s 
effectiveness in identifying the six types of roof shapes, that is, flat, gable, hip, 
gambrel and mansard, cross/corner gable and hip, and complex roofs in a European 
city, was presented. His research derived that the ratio between the useful roof area 
and the building footprint is close to one. The Photo Voltaic (PV) installation’s 
potential depends on the shape, size, and orientation of the available space or roof. 
A similar type of research has been carried out at a regional level to determine the 
solar potential using LiDAR [22]. The accurate solar potential of the points can be 
calculated when parameters like the shadowing effect, the horizon of each points, 
effect of cloud cover are considered [23]. Jochem also presented a method that uses 
the full 3D information for feature extraction and solar potential analysis. A relative 
height threshold is defined to separate possible roof points from the point cloud, 
followed by segmenting these points into homogeneous areas fulfilling the limited 
constraints of roof planes. 

Our research provides a statistical approach to analyz point clouds generated 
from UAV-based photogrammetric processing to classify and extract solar panels. 
This research focuses on developing an algorithm that extracts all the corresponding 
solar panel points into a separate file. 

2 Study Area and Dataset Used 

2.1 Study Area 

This research required a building on which solar panels were already installed. The 
study area chosen is the Geomatics engineering building of the Indian Institute of 
Technology Roorkee, Uttarakhand, India. The location of the study area is sown in 
Fig. 2.

The building under consideration is an isolated building of all departmental 
complex. So, we have chosen this building to check our hypothesis and the efficiency 
of our algorithm. Solar panels were already installed on the roof of the building.
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Fig. 2 a Study area map with its location, b An RGB image of the study area for visualization

2.2 Dataset Used 

The UAV data acquisition of the Geomatics building was done within the Indian Insti-
tute of Technology Roorkee campus. The dataset was acquired with the DJI Phantom 
4 Pro model with an optical sensor. Total 38 images were acquired at a flying altitude 
of 80 m. We have used the point cloud dataset generated through photogrammetric 
processing of the UAV images. The parameters of the data acquisition are tabulated 
in Table 1. 

Table 1 Data Acquisition 
parameter details 

Parameter Dataset 

UAV - Model DJI Phantom 4 Pro 

Optical Sensor FC6310 (8.8 mm) 

Flying Height 80 m 

Side Overlap 50% 

Front Overlap 70% 

Spatial Resolution 2.34 μm
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3 Methodology 

Initially, flight planning was done considering the data acquisition parameters and 
optimum flying height. So that there are no objects in the UAV’s line of flight. Data 
acquisition was made using a UAV with an optical sensor. The RGB images acquired 
were preprocessed in the Agisoft Metashape Professional Software using Structure 
from Motion (SFM) to produce a dense point cloud dataset of the study area. Further, 
a building point cloud is manually segmented out using CloudCompare, from the 
point cloud dataset for our research purpose on which our algorithm can be tested 
(Fig. 3). 

The building point cloud dataset is used as an input to the algorithm developed. 
Normal vectors are computed for all the points in the photogrammetric point cloud. As 
discussed in Sect. 1.1, each normal vector has its corresponding vector components 
in the (Nx) x-axis, (Ny) y-axis, and (Nz) z-axis, respectively (Fig. 4).

An algorithm was based on open-source python libraries such as Open3D, Pandas, 
and NumPy for basic analysis over dense point cloud in the Jupyter notebook. After 
normal computation, a statistical approach was acquired to apprehend the behavior 
of various components of normal vectors for different areas of the dataset. 

After analysis, the difference in vector components was found for roof, facade, and 
solar panels, which were used to compute the classification parameters. Finally, these 
parameters were coded as a primary function to be implemented over the original 
point cloud. Based on the Nz values, the points are classified into Roof, Facade, and 
Solar panels. Once the solar roof points are extracted, the algorithm’s efficiency is 
evaluated compared to the manually segmented point cloud. 

The methodology followed in this research is also represented in a flowchart in 
Fig. 5.

Fig. 3 Photogrammetric dense point cloud of UAV data acquired and study area building segmented 
out 
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Fig. 4 a A subset of the RGB photogrammetric point cloud, b Normal vectors of the point cloud, 
c Solar panel normals orientation, d Roof normals orientation, and e Facade normals orientation

4 Results and Discussions 

The developed algorithm has produced efficient results in extracting the solar panels, 
facade, and roof points from the building photogrammetric point cloud. The roof 
points are shown in red, facade points in yellow, and rooftop solar panel points in 
green colour in Fig. 6a, b, and c, respectively.

The effective surface area of the solar panels are clearly distinguished from the 
overall point cloud. 

4.1 Evaluation of the Results 

The photogrammetric point cloud of the building is shown in Fig. 7a, and the classified 
point cloud results obtained from the algorithm are shown in Fig. 7b.

The results obtained from the algorithm are analyzed at various locations of the 
classified point cloud, and some of the few subsets are depicted in Fig. 8.

Figure 8a1 represents a portion of a protruded structure constructed on the exten-
sion of the building’s vertical piers. Figure 8b1 represents a portion of the tin roof. 
Figure 8c1 represents the flat surface at the entrance of the building. Figure 8d1 
represents the point cloud’s portion at the interface of the windows and the facade of 
the building. Figure 8e1 represents the portion of the solar panel points on the roof 
of the building.
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Fig. 5 Research workflow

Figure 8a3, b3, c3, d3 and e3 represents the corresponding classified points of the 
portions shown in Fig. 8a2, 8b2, 8c2, 8d2 and 8e2 respectively. 

We can see some points are misclassified at the interface between vertical and 
horizontal surfaces as these interfaces are not exactly perpendicular to each other. 
The interface surfaces are smooth with a curve that has induced a misclassification 
error as the solar panels’ normal vectors (Fig. 8a3 and 8b3). There is also noise at the 
interface between the facade and window structure which has also produced errors 
(Fig. 8d3). Due to the low density of the facade points, normal vector computation 
was quite challenging in classification. 

The parameters considered in this research for evaluation [24] are given below 
(Tables 2 and 3). 

Type I error = FN  

T P  + FN  
= 0.174 (4)
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Fig. 6 Point cloud extraction of a Roof, b Facade, and c Solar panel points

Fig. 7 a Photogrammetric point cloud of the building, b classified point cloud based on the 
developed algorithm

Type II error = FP  

FP  + T N  
= 0.051 (5) 

Total error = FN  + FP  

T P  + FN  + FP  + T N  
= 0.072 (6) 

Po = T P  + T N  

T P  + FN  + FP  + T N  
= 0.927 (7) 

Pe = 
(T P  + FN  )X (T P  + FP) + (FP  + T N  )X (FN  + T N  ) 

(T P  + T N  + FP  + FN  )2
= 0.711 (8) 

Kappa = 
Po − Pe 
1 − Pe 

= 0.747 (9) 

Completeness = T P  

T P  + FN  
= 0.825 (10)
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Fig. 8 Different subsets of the point cloud are shown corresponding to its RGB point cloud and 
classified point cloud

Correctness = T P  

T P  + FP  
= 0.764 (11) 

Quality = T P  

T P  + FN  + FP  
= 0.657 (12) 

where, Type I error is the percentage of solar roof panel points rejected as non-
solar panel points, and Type II error is the percentage of non-solar panel points 
accepted as solar roof panel points. Total error is the percentage of incorrectly 
classified points. Completeness is the percentage of reference data being detected. 
Correctness is the percentage of correct detection. Quality is the overall success
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Table 2 Total number of points corresponding to each class of point cloud 

Geomatics 
building points 

Solar panel points 

Actual points Correctly detected 
points 

Wrongly detected 
points 

Undetected points 

1,813,155 304,972 251,638 77,468 53,334 

Table 3 Total number of 
points corresponding to False 
Positive (FP), False Negative 
(FN), True Positive (TP), and 
True Negative (TN) 

FP 77,468 

FN 53,334 

TP 251,638 

TN 1,430,715 

rate. The Kappa coefficient is a statistical measure of the inter-ratio agreement, 
which is believed to be a more robust measurement than a simple percentage, TP 
(True Positive) is the number of solar roof panel points classified by both manual 
as well as algorithm, TN (True Negative) is the number of non-solar panel points 
classified by both datasets, FP (False Positive) is the number of solar panel points 
classified only by the proposed algorithm, FN (False Negative) is the number of 
solar panel points classified only by the reference dataset. 

5 Conclusions 

The proposed algorithm, has proved to be efficient in obtaining solar panel points 
from the building’s overall point cloud dataset. The algorithm has also extracted 
points corresponding to the roof and facade efficiently. The interface points between 
the roof and solar panels, roof, and facade can contribute to an error in the normal 
vectors computed. So, the number of nearby points required to compute the normal 
vectors has to be appropriately chosen, keeping the point density and data structure 
into consideration. 

One of the main limitations of this approach was that the classification is done 
solely based on normals computed over the point cloud. The algorithm can also be 
further improvised to extract points belonging to slant roofs and slant solar panels 
based on RGB values of each points in the photogrammetric point cloud. 

The accuracies obtained for extraction of building solar panels, roofs, and facades 
were efficient considering Completeness as 0.825 and Correctness as 0.764. This  
research is focused on testing the efficiency of the proposed algorithm to extract solar 
panels installed on the building roof. This research can further be used to calculate 
the effective area of solar panels, which can be used to calculate the solar panels’ 
productivity. 

The developed algorithm has produced efficient results in extracting solar panel 
points.
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Spacio-Statistical Model to Predict 
Crime Locations Based on Past Crime 
Events and UAV Based Monitoring 
of the Predicted Surveillance Route 

Hasmukh Chauhan, Pranav Pandya, and Chancy Shah 

Abstract Crime is heterogeneously distributed and occurs at the most vulnerable 
places. Crime occurs under poor surveillance and safety, due to lack of public protec-
tion and results in damage to public property or human life, and creates a public 
discrepancy in that particular location. Crime is disastrous because of its unpre-
dictability and unpreparedness for enforcement officers. Finding the probability of 
occurrence of crimes within such vulnerabilities will help us to deploy certain coun-
termeasures to reduce crime. Crime is limited to location and place. Geographically 
crime can be considered as a function of lack of surveillance, delay in mobility and 
control, and probably hidden escape paths utilized by criminals. In this research, 
a Spatio-Statistical Model was developed for probability-based Crime Prediction 
using past data and location intelligence technology. Neighborhood Analysis was 
performed to evaluate the clustering distance between individual crime occurrences 
within Vadodara city and individual police stations in the neighborhood. The spatial 
distance is converted into Geographical Coordinate System to calculate latitudinal 
and longitudinal extents of crime zones in each taluka of the city, which is then 
utilized to create the Interpolated probability raster for each crime zone with a pixel 
value equivalent to the probability of occurrence of crime in that location. The Inverse 
distance weighted (IDW) interpolation technique generated an interpolated surface 
which was then represented spatially with quantile divisions to form probability 
zones with the adjoining nearest police jurisdiction. This will enable law enforce-
ment officers to make probability-based surveillance decisions while incorporating 
the past data intelligence, time of occurrence of crime, and make efficient service-
able patrolling routes and improve crime control with minimal resources. Using this
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model, the police officers will be able to create patrol routes based on time and zone 
of highest probability of crime, to ensure safety. The time-based probability of crime 
is also calculated using the Bayesian probability formula to get the peak crime hours 
so that surveillance need to be increased at the appropriate time. UAVs mounted with 
thermal vision can be deployed in the generated high probability zones at the highest 
probable time of the crime, to monitor the situation aerially without alarming the 
criminals. In this research it is created an open-source pixel-based route selection 
algorithm that could identify hotspot locations of crime so that law enforcement 
officers can watch human movements and follow them silently using UAV’s thermal 
camera in nighttime also to obtain their hideouts and catch criminals. 

Keywords Crime data · UAV · Location intelligence · Surveillance 

1 Introduction 

Crime is a man-made disaster, but it originates when the criminal finds a social 
vulnerability such as human carelessness, inadequacy in taking precautions, walking 
in dark alleys alone at night i.e. lack of personal safety, carrying valuables in unsafe 
areas, parking vehicles in unregulated regions, etc. All these factors that contribute to 
crime are geographically identifiable and discrete in nature [1]. Crime occurs under 
poor surveillance and safety, due to lack of public protection and results in damage 
to public property and/or human life, creating chaos in that particular area. This 
ultimately damages the public image of law enforcement and government. Crime 
is dangerous because of its unpredictability aspect, which leaves law enforcement 
officers unprepared when they face crime. Finding the probability of occurrence of 
crimes within such vulnerabilities will help authorities to deploy certain counter-
measures to reduce crime. Predicting crime locations could help law enforcement 
agencies to counter it with appropriate approaches while utilizing the same number of 
police personnel. Thus the efficiency and effectiveness of police could be increased. 
Crime is limited to location and place. Geographically crime can be considered as a 
function of lack of surveillance, delay in mobility and control, and probably hidden 
escape paths utilized by criminals. In the following research, a Spatio-Statistical 
Model was developed for probability-based crime prediction using past data and 
location intelligence technology. 

The utilization of Location Intelligence for crime mapping encourages delin-
eation, and investigation of crime problem areas, alongside different patterns and 
examples. It is a key segment of crime investigation and the policing system. GIS 
uses geography and computer-generated maps as an interface for integrating and 
accessing massive amounts of location-based information. GIS permits police work 
force to design adequately for crisis reaction, decide relief needs, examine verifi-
able occasions, and foresee future occasions. It can likewise be utilized to get basic 
data to crisis responders upon dispatch or while in transit to an occurrence to aid 
strategic arranging and reaction. GIS helps crime officers decide potential crime
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locales by analyzing complex apparently disconnected criteria and showing them all 
in a graphical, layered, spatial interface or guide [2]. 

Every single law implementation office and law authorization officer’s extreme 
objective is to prevent crime. Using crime maps the police divisions can recognize 
where the crime is increasingly noticeable, and furthermore where the exploited 
people are found. This data would demonstrate which neighborhoods are the most 
hotspots. Using this data, the Police can follow criminals’ movements from area to 
area. This is finished by separating the crime by the time of day and by day of week 
and by day of the month. For instance, in deciding the criminal mentality for thefts, 
one could take the times of the month and reason that the offenders are progressively 
dynamic in the start of the month. This, and data on the victims, could reveal to us 
that the criminals are concentrating on unfortunate casualties that get their help at 
the start of the month. 

Finding the probability of occurrence of crimes within such vulnerabilities will 
help the authorities to deploy certain countermeasures to reduce crime. Predicting 
crime locations could help law enforcement agencies to counter it with appropriate 
approaches while utilizing the same number of police personnel. Thus the efficiency 
and effectiveness of police could be increased. 

2 Literature Review 

Crime analysis is a function of law enforcement which includes systematic analysis 
of crime data and identifying and analyzing patterns and trends in crime. Crime 
mapping is integral to all types of crime investigation in that it has a significant 
impact in every analysis. Crime mapping does not remain solitary; rather, it is a 
procedure that happens inside the bigger procedure of crime investigation [3, 4]. 

There has been a great deal of work done on the subject of crimes. To assist 
individuals in following law enforcement, large datasets have been evaluated, and 
information such as location and kind of crime has been retrieved. These datasets 
have been used in the past to identify crime hotspots based on location along with 
numerous mapping applications that display the specific location of crimes as well 
as the types of crimes in each particular city. Despite the fact that crime scenes have 
been located, there is no information on the crime’s date and time of occurrence [5]. 

In modern criminology, understanding how social and environmental variables 
influence the spatiotemporal distribution of criminal activity is a critical topic. 
Previous research done in this domain provides feasible solution to analyze exactly 
the crime impact of environmental characteristics to a specific place because of the 
advent of statistical approaches such as Risk Terrain Modeling (RTM) [5]. However, 
the function of social information in determining the distribution of criminal actions, 
on the other hand, has received little attention in the criminological study literature 
[6].
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Research Gap: Despite the fact that there has been previous research, none of it 
considers the three components (place, time, and crime type) together. Furthermore, 
there is virtually little research that can reliably forecast where future crimes will 
occur [4, 7, 8]. This research provide a data-mining methodology for predicting 
crime based on crime categories and employing geographical and temporal hotspots 
for crime in research. 

3 Study Area 

Vadodara is the third-largest city of Gujarat state (Fig. 1). It is the administrative 
headquarters of Vadodara District and is situated on the banks of the Vishwamitri 
River. In 2011, Vadodara had a population of 2.065 million people. City is well 
known for the Lakshmi Vilas Palace, the residence of Baroda State’s Maratha royal 
family, the Gaikwads. It also has Maharaja Sayajirao University of Baroda, the largest 
university in Gujarat. An important industrial, cultural and educational hub of western 
India, the city has various institutions of national and regional importance and various 
small to large scale industries (Table 1). 

Vadodara is gearing towards becoming a smart city, and yet it has observed 
continual growth in crime rate. With increasing crime events, the stability and safety 
of citizens [4]. Previous similar studies and approaches, on the other hand, primarily 
identify crime hotspots based on the area of high crime density, without taking into 
account crime type or crime occurrence date and time [9, 10].

Table 1 Details of study area 

Coordinates 22.30°N 73.19°E 

Altitude 35.5 Mts. above mean sea level 

Area 159.95 km2 

Population 2,065,771 

Population Density 10,335/km2 

Literacy Rate 94.5% 

Railway Vadodara is towards the Western Railway Mumbai Delhi and Mumbai 
Ahmedabad line 

Roadway Vadodara has road connectivity with National Highway No. 8 

Bus Transport The Gujarat State Transport Corporation has appointed its buses between 
Vadodara and Ahmedabad and also on main towns and tourist centres of 
Gujarat 

Airport The city has an international airport connected with Mumbai and Delhi 

Source Wikipedia https://en.wikipedia.org/wiki/Vadodara 

https://en.wikipedia.org/wiki/Vadodara
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Fig. 1 Location of the study area—Vadodara City (Source http://www.maphill.com/india/guj 
arat/location-maps/physical-map/highlighted-country/, https://www.google.com/maps/place/Vad 
odara,+Gujarat/@22.3220425,73.0330003,11) 

4 Crime Data Collection and Analysis 

Crime is dependent on geographical factors, so location-based crime data were 
collected. Data collection included the origin place of the crime, date, time, number of 
people involved, and the type of crime according to the Indian Penal Code (IPC 1860). 
These datasets were Geotagged and point features (Crime Spots) were generated for 
each crime incident [11] (Table 2). 

Neighborhood analysis was performed to evaluate such geographical factors to 
count and classify Neighborhood regions within the city to be vulnerable to crime 
[12, 13]. These regions were clustered and the distance between individual crime 
occurrences within Vadodara city and individual police stations in the neighborhood 
was correlated and evaluated. Later, the spatial distances between zonal geograph-
ical centers and crime spots were converted into geographical coordinate system to

Table 2 Spatial and attribute data collected 

Crime data Date of 
crime 

Time Type Place No. of people 
involved 

Police station Name Location Police station 
number 

Vadodara City Boundary 
shapefile 

OSM road 
network 

Buildings and 
facilities 

http://www.maphill.com/india/gujarat/location-maps/physical-map/highlighted-country/
http://www.maphill.com/india/gujarat/location-maps/physical-map/highlighted-country/
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calculate latitudinal and longitudinal extents of crime zones in each taluka of the city. 
This was helpful in making crime zone maps for Vadodara city [13]. Also, using the 
crime spot, an interpolated probability raster was prepared using the Inverse Distance 
Weighted (IDW) interpolation technique which was then represented spatially to form 
probability zones with the adjoining nearest police jurisdiction for each crime zone 
with pixel value equivalent to the probability of occurrence of crime in that location 
[2]. 

5 Results and Discussion 

5.1 Crime Occurrence Statistics 

In the collected crime data, the date of occurrence of crime was recorded which 
helped us prepare a date-time crime database, using which crime was organized per 
week (Fig. 2a), monthly (Fig. 2b) and seasonal (Fig. 2c) as shown below. 

Fig. 2 a Crime Occurrences per week for 1 year. b Crime count for whole year with crime occurring 
in each month. c Crime occurrence in each season



Spacio-Statistical Model to Predict Crime Locations Based on Past … 193

Fig. 3 Distribution of police 
station and visualization of 
crime occurrences in 
Vadodara City 

5.2 Intelligence in Crime Handling 

Some regions of Vadodara city are more populated than others, in those areas more 
crime rate than other regions is observed, e.g., Alkapuri area. Police station’s influ-
ence in a city is limited by the regional area a patrolling vehicle can cover as quickly 
as possible [2, 3]. 

The Fig. 3 represents the crime occurrences in green with the police station in 
the star. The map expresses the excess amounts of crime occurrences with respect to 
police stations. 

5.3 Time Based Crime Prediction 

A sophisticated body of evidence exists from previous research works which suggests 
the utility of clinical versus statistical-prediction of criminal behavior [7]. In terms of 
the spatial distribution of crime, little is known about the predictive validity of both 
clinical and statistical prediction models [14, 15]. Therefore, how well do experts
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(i.e., front-line officers) predict which geographic regions should be targeted for 
preventative measures is always under question [4]. Crime and location research 
reveals that crime occurrences cluster spatially within their local hotspots. Statistical 
forecasts based on the geographic persistence characteristic of hot spots can be used 
as a benchmark for professional judgment-based prediction capabilities [7]. 

Crime Hotspot Analysis was done to identify the spatial locations of such hotspot 
within different wards of Vadodara City. Police have been able to more effectively 
target criminogenic areas thanks to hotspot mapping [16], whereby the location of a 
position with active crime occurrences is identified by clustering them together, which 
helps us to observe any hidden trend for vulnerabilities present in different regions. 
To make clusters of the crime occurrences table, first crime events are segregated 
into various categories based on IPC crime rules. 

According to IPC there are 7 types of crime [11, 17]: 

· Crimes against body 
· Crimes under sexual offences 
· Crimes relating to property offences 
· Crimes relating to public order 
· Crimes relating to economic crimes 
· Human trafficking 
· Crime against women 

Clustering the crime occurrences, we observed that, there are more than one type 
of crime (marked in red). Location with persistence in occurrence of different types 
of crime are critical to overall safety of society because it indicates that certain 
regions have multitude vulnerabilities, and aren’t related to random occurrences or 
mistakes [18]. For example, certain incidents of robbery can occur randomly, and 
certain planned crimes can take place at a certain location. But if some location has 
different types of crime occurring in that place, it indicates that the given location is 
vulnerable to many different contexts of crime, and addressing this must be at a higher 
priority [9]. Also these clustered locations indicate that a variety of populations are 
prone to be affected, and such regions are not safe for residence as well as economic 
activities (Fig. 4).

5.4 Crime Category Prediction 

After categorizing the crime data and visualizing it, an interpolated raster was gener-
ated using an inverse distance weighted method [19]. This allowed for utilizing crime 
data and generating a predictive map of different regions where multiple types of 
crime can occur [10]. This map will help authorities and police personnel to allocate 
resources to be able to handle predicted categories of crime accordingly. 

As people grow older and more familiar with the neighborhood, chances of occur-
rence of crime keep increasing. Different types of crime can occur in a specific place 
when certain vulnerabilities are existing, and the predictive map generated using



Spacio-Statistical Model to Predict Crime Locations Based on Past … 195

Fig. 4 Crime and police in 
Vadodara City

IDW method forecasts the regions where the probability of occurrence of different 
types of crime is highest [16]. 

The thematic layer in Fig. 5 indicate the possibility of occurrence of crime of 
specified category in the specified region. Hence, police can allocate resources within 
the original bounds which should be competent to handle the different types of crime.

5.5 UAV Utilization in Fighting Crime 

UAVs mounted with thermal vision can be deployed in the calculated high probability 
crime zones at the highest probable time of the crime, to monitor the situation aerially 
without alarming the criminals. Police officers can then spot the criminals using 
thermal vision cameras mounted on UAVs, and follow them to their hideout [2]. 
After confirming the criminals aerially using a drone, police can call for backup and 
can surround the hideout and catch all the criminals before resulting in casualties. 

To make this all possible, in this research, we have created an open-source 
pixel-based selection algorithm that could identify human bodies thermally and law



196 H. Chauhan et al.

Fig. 5 Prediction of 
different crime categories 
and their occurrences in 
Vadodara City

enforcement officers can watch human movements and follow them silently using 
UAVs to obtain their hideouts and catch criminal gangs altogether [16]. 

The chosen UAV path will cover all hotspots and multi-category zones, to help 
monitor and take necessary steps easily and efficiently (Fig. 6).

6 Conclusion 

This will enable law enforcement officers to make probability-based surveillance 
decisions while incorporating (1) The past data intelligence, (2) the Time of occur-
rence of crime, and make efficient serviceable patrolling routes and improve crime 
control with minimal resources. Using this model, the police officers will be able to 
create patrol routes based on time and zone of highest probability of crime, to ensure 
safety. Furthermore, in order to get the peak crime hours when surveillance must 
be increased, the time-based probability of crime was calculated using the Bayesian 
probability formula. 

UAVs mounted with thermal vision can be deployed in the calculated high proba-
bility crime zones at the highest probable time of the crime, to monitor the situation
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Fig. 6 UAV surveillance 
path prepared from hotspot 
and category cluster map of 
Vadodara City

aerially without alarming the criminals. Police officers can then spot the criminals 
using thermal vision cameras mounted on UAVs, and follow them to their hideout. 
After confirming the criminals aerially using a drone, police can call for backup and 
can surround the hideout and catch all the criminals before resulting in casualties. 

To make this all possible, in this research, we have created an open-source 
pixel-based selection algorithm that could identify human bodies thermally and law 
enforcement officers can watch human movements and follow them silently using 
UAVs to obtain their hideouts and catch criminal gangs altogether. 
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Automatic Ship Detection Using CFAR 
Algorithm for Quad-Pol UAV-SAR 
Imagery 

Harshal Mittal and Ashish Joshi 

Abstract Remote Sensing data, either airborne or satellites, are very much useful for 
incorporating the Geographical Information System (GIS) technology. SAR sensors 
are good as compared to optical sensors for monitoring maritime activity due to their 
capability of penetrating clouds and can work without depending upon any weather 
condition. SAR sensors can work day and night while optical sensors need a source 
to illuminate the surface hence can only work in the daytime. Many studies have been 
done on UAV SAR sensors for different applications like oil spills, ship detection, 
etc. Moreover, the polarimetric technique helps in understanding the feature much 
more in detail by using phase information like orientation and shape of the object 
using scattering behavior. In this paper, the main focus of the study is the Automatic 
ship detection using the Adaptive Threshold Algorithm popularly known as Constant 
False Alarm Rate (CFAR) for polarimetric UAV SAR data. Coherency Matrix (T3) 
is computed from quad-pol covariance SAR data C3 and CFAR algorithm is applied 
to each element of the coherency matrix to detect ships. The sea surface follows the 
surface scattering and this can be highly helpful to distinguish the ships from the sea 
background. Moreover, due to the homogeneous background of imagery, the CFAR 
algorithm works more precisely as it can compute the adaptive threshold for each 
pixel using the background area by assuming it to the Gaussian in nature. More-
over, the Global Self-consistent, Hierarchical, High-resolution Geography Database 
(GSHHG) vector coastline layer and Digital Elevation Model (DEM) are used for 
masking out the land area to enhance the area of interest. In this study, T22 element 
of the scattering matrix shows better results in the detection of the ships and in deter-
mining the shape of the ships. Finally, the efficiency of the algorithm is measured 
using the Receiver Operating Characteristics (ROC) curve. 
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1 Introduction 

Synthetic Aperture Radar (SAR) is always a prominent data source for all maritime 
activities like oil spill detection, ship detection, wind direction estimation, etc. More-
over, it is also proved to be an advanced remote sensing technique [5] that is sensi-
tive to the structural properties of the objects on the surface. Also, SAR polarimetry 
(PolSAR) is one of the advancements of the SAR that helps in understanding the 
feature properties more precisely. The SAR majorly transmits and receives Electro-
magnetic waves for the detection of any object. The interaction of these waves with 
the object helps us in understanding the structural property [1]. Using this technique, 
feature extraction and object detection can be done with the help of SAR imagery. 
As maritime Ship detection is considered, due to the homogeneous background [7] 
in the SAR imagery, the adaptive threshold CFAR Technique is the most widely 
used algorithm for the detection. However, some of the ambiguities and sea clutter 
are more often detected as false alarms. Also, to enhance the area of interest, land 
masking is one of the major tasks to precisely mask the land area. Although, vector 
based approach [6] shows a good result in order to mask the area due to the precise 
geometrical accuracy [2] of the dataset however it fails to mask out some artificial 
settlements near the coastline. Thus, to mask these settlements, Digital Elevation 
Model (DEM) is also used for the land water segmentation. In this paper, UAV 
Quad-Pol SAR data is used and the coherency matrix T3 has been generated from the 
covariance matrix C3 to decompose the imagery into single, double, and volume scat-
tering [8]. The Southern California coast, CA area has been chosen and the CFAR 
algorithm is applied in each element of the scattering matrix. Also, to obtain the 
precise land mask, ASTER 30 m DEM is used along with GSHHG vector layer and 
a methodology has been described to remove land areas that are not removed by the 
vector-based approach. The efficiency of the algorithm is obtained using Receiver 
Operating Characteristics (ROC) curves. 

2 Dataset and Study Area 

In this paper, UAVSAR data of Southern California Coast, CA, acquired on April 
16, 2011, has been used for the study. The Data is acquired by the UAV instru-
ment (L-band) by the Jet Propulsion Laboratory (JPL), NASA (Fig. 1). The flight 
ID is 12105 and the mode of acquisition is PolSAR. In this study, orthorectified 
single look complex (SLC) data is used with 6 elements of a covariance matrix. 
The pulse rate used is 40 micros second having 24,362 samples and 14,318 lines. 
The dataset is provided in the form of a covariance matrix. Six elements of the 
covariance matrix have been received that are Shh S∗ 

hh , Shv S∗ 
hv , Shh S

∗ 
hv , Shh S

∗
vv , Shv S∗

vv 
where ∗ denotes the complex conjugate of the respective channel. The obtained T22 
backscatter imagery is shown in Fig. 2. Also, for the precise land masking, the Vector 
coastline layer (GSHHG) and ASTER DEM have been used and shown in Figs. 3
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Fig. 1 Actual tile of southern California Coast, CA. https://uavsar.jpl.nasa.gov/cgi-bin/product.plj 
obName=SCalBt_12105_11013_005_110416_L090_XX_01#data

and 4 respectively. Using the fusion of both the results, an effective land mask has 
been generated that helps in precise extraction of the area of interest. 

The above DEM is extracted using the extent of the UAV SAR data and this acts 
as an input for the algorithm to generate the land mask. 

3 Methodology 

PolSAR datasets perform exceptionally well in the analysis of any maritime activities. 
For Ship detection, due to the homogeneous background, the CFAR algorithm is 
mostly used in order to extract the ship from the background pixels. 

3.1 Land Masking 

The land water mask is generated using the vector-based approach layer and DEM-
based approach to generate the precise land mask. The results from both approaches 
have been discussed in the results and analysis section. In the vector-based approach, 
the GSHHG vector coastline layer is used and with the help of the extent of the raster

https://uavsar.jpl.nasa.gov/cgi-bin/product.pljobName=SCalBt_12105_11013_005_110416_L090_XX_01#data
https://uavsar.jpl.nasa.gov/cgi-bin/product.pljobName=SCalBt_12105_11013_005_110416_L090_XX_01#data
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Fig. 2 UAV SAR imagery T22 generated scattering data 

Fig. 3 GSHHG vector coastline layer

file, the buffer has computed that help in segmenting the land mask. Using the DEM, 
the sea area is masked by creating the mask of land as 0 and water to be 1 where 
binary 0 is given when the DEM pixel value is greater than 0 otherwise assuming it 
to be the sea area, 1 will be given to the rest of the pixel. The final mask is applied 
to the input raster and land water segmentation is performed (Fig. 5).
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Fig. 4 ASTER 30 m DEM extracted for southern California Coast, CA

Fig. 5 Land water masking methodology using vector layer and ASTER 30 m DEM 

3.2 Standard CFAR 

In the Standard CFAR Algorithm, there are 3 windows, a target window that majorly 
contains the target ship, a background window is used to compute the adaptive 
threshold in order to compare the statistics from the target window and a guard 
window is created in between the target and the background. The main focus of the 
guard window is to ensure that no target window pixel [4] should lie common in the 
background window. The sample configuration of the window is shown in the Fig. 6.

The first two moments of the statistics of the background window are computed 
for each window iterating over the image. Also, the adaptive threshold is computed 
from the background using the probability of a false alarm [3] using  Eq.  2.
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Fig. 6 Basic configuration 
of the CFAR window

DV i = 
xi − μi 

σi 
(1) 

PFA  = 
∞∫

T 

f pd f (x)dx (2) 

By computing solving Eq. (2), the threshold can be computed for each sliding 
window. This respective threshold is compared with the Decision variable (DV i ) 
and the binary image is generated that contains values higher than that threshold. 

3.3 Polarimetric Coherency Matrix Generation 

The CFAR is applied over the decomposed T3 matrix computed from the covariance 
matrix. As the instrument is mono-static hence, T3 can be computed from C3 using 
the following Eq. 3. 

T3 = U3(L→P)C3U
−1 
3(L→P) (3) 

where, U3(L→P) is the special unitary transformation matrix given below. Here trans-
formation L → P is from the Lexicographic target vector to the Pauli Target Vector 
[2]. 

U3(L→P) = 
1 √
2 

⎡ 

⎣ 1 0 1  
1 0  −1 
0

√
2 0  

⎤ 

⎦ (4)
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After solving Eq. 3 we get the coherency matrix which is described below. 

T3 = 
1 

2 

⎡ 

⎣ 〈(Shh + Svv)
2〉 〈(Shh + Svv)(Shh − Svv)

∗〉 2〈(Shh + Svv)S∗ 
hv〉

〈(Shh − Svv)(Shh + Svv)
∗〉 〈(Shh − Svv)

2〉 2〈(Shh − Svv)S∗ 
hv〉

2〈(Shv)(Shh + Svv)
∗〉 2〈Shv(Shh − Svv)

∗〉 4〈(Shv)
2〉

⎤ 

⎦ 

(5) 

Here, T11 shows the Single/ odd bounce scattering, T22 shows the double bounce 
scattering and T33 shows the volume scattering. In this, CFAR is applied to each of 
the elements, and results are obtained. For the experiment purpose and depending 
upon the resolution of the dataset the target window is fixed at 50, the guard window 
is fixed at 60 and the background window is taken as 80. The probability of a False 
alarm is taken as 0.0001. The results are analyzed using ROC curves. 

4 Results and Analysis 

4.1 Land Masking Results 

Using the methodology from Sect. 3.1, the results are obtained as shown in Fig. 7. 
In this, it can be observed that the area marked in the red circle is not masked due to 
some of the artificial settlements. When this masked raster image is applied to the 
methodology that uses DEM, the results are as shown in Fig. 8. 

Fig. 7 Land water segmentation using GSHHG vector layer



206 H. Mittal and A. Joshi

Fig. 8 Land water segmentation using vector layer and DEM 

Fig. 9 Input images are shown where a represent the area near the coastline and b represents the 
zoomed area for the ships

In Fig. 8, it can be observed that DEM has shown better results in masking the area. 
This output masked data is now processed with the CFAR along with the parameters 
described in the methodology section (Figs. 9, 10 and 11). 

4.2 CFAR Results 

The CFAR algorithm is applied to T11, T22 and T33 and it can be observed that T22 
shows the best result as compared with the T11 and T33 (Fig. 12).

It can be observed that, T11 and T22 has worked far better than T33. Moreover by 
comparing T22 and T11 by the shape of the ships detected, it can be concluded that, 
T22 shows better results. Hence, double bounce scattering shows the precise result
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Fig. 10 CFAR results is shown for T_33 where a represents the area near the coastline and b 
represents the zoomed portion of that area 

Fig. 11 CFAR results are shown for T_11 where a represents the area near coastline and b 
represents the zoomed area in the red box

Fig. 12 CFAR results are shown for T_22 where a represents the area near coastline and b 
represents the zoomed portion of the area

in the automatic detection of ships. Looking closely at the ships, the double bounce 
scattering matrix detects the shape of the ships more precisely compared to the other 
scattering images. Also, the number of false alarms detected is highest in the T33 
which exhibits the volume scattering. It can also be observed that image containing 
volume scattering suffers a lot of false alarm due to the depolarization of the EM 
waves. While in double bounce scattering, ships are better detected and background 
helps in normalizing the adaptive threshold to automatically detect the ships (Figs. 13 
and 14).

At a certain window size and PFA, the threshold is automatically computed by 
the algorithm in each scattering image as shown in Table 1.
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Fig. 13 Ship shape detected 
in T11 

Fig. 14 Ship shape detected 
in T22

Table 1 Adaptive threshold 
value for each scattering 
matrix 

Image Threshold 

T11 2.8 × 10–4 

T22 3 × 10–5 

T33 0.0003 

For obtaining the efficiency of the algorithm, the ROC curve is plotted between 
the PFA and the Probability of Detection. The Probability of detection is basically 
the ratio of the number of the target pixel to the total number of the target pixel. 

pd = 
Ntarget detected 

Ntotal  target  
(6) 

The ROC is plotted between PFA and the Probability of Detection (PD) is shown 
in Fig. 15. Analyzing the ROC curve, it can be said that T22 worked efficiently for 
the CFAR algorithm.
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Fig. 15 ROC curve obtained 

5 Conclusion 

In ship detection using polarimetric SAR data, there is two major concern that should 
be considered while implementing any algorithm. Firstly, is the land water segmen-
tation, which is the most essential part in order to get the precise area of interest. 
Secondly, the utilization of the polarimetric information in the SAR data, that also 
plays a vital role in the automatic detection of ships. In this paper, T3 coherency 
matrix has been computed from the covariance matrix of the UAV SAR imagery. 
In result, it is found that fusion of the vector layer with the DEM is the most suit-
able way to obtain precise land water segmentation. Upon the analysis, it can be 
concluded that, in the coherency matrix, T11 and T22 shows better results than T33 
while among T11 and T22, the shape of the ships are more precisely found in T22. 
Hence, T22 shows the best results among all other elements of the scattering matrix 
in terms of false alarm and shape of the ships. The ROC curve also suggests that T22 
shows the optimum results on the certain parameter of the CFAR algorithm. 
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A Deep Learning Approach for Detection 
and Segmentation of Airplanes 
in Ultrahigh-Spatial-Resolution UAV 
Dataset 

Parul Dhingra, Hina Pande, Poonam S. Tiwari, and Shefali Agrawal 

Abstract Advancements in unmanned aerial vehicle (UAV) technology have 
enabled the acquisition of images of a geographical area with higher spatial resolu-
tions as compared to images acquired by satellites. Detection and segmentation of 
objects in such ultrahigh-spatial-resolution (UHSR) images possess the potential to 
effectively facilitate several applications of remote sensing such as airport surveil-
lance, urban studies, road traffic monitoring crop monitoring, etc. Investigating these 
images for target extraction tasks turns out to be quite challenging, in the terms of 
the involved computation complexities, owing to their high spatial resolutions and 
information content. Due to the development of several deep learning algorithms and 
advanced computing tools, there exists a possibility of harnessing this information for 
computer vision tasks. Manual surveillance of airports or similar areas and manual 
annotation of images are cost-intensive and prone to human-induced errors. There-
fore, there exists a substantial requirement of automating the task of keeping track of 
the airplanes parked on the premises of airports for civil and military services. With 
this paper, we propose a framework for detecting and segmenting such airplanes in 
UHSR images with supervised machine learning algorithms. To detect the target i.e., 
airplanes, MobileNets-deep neural network is trained, whereas to segment the target, 
U-Net-convolutional neural network is trained with our dataset. Further, the perfor-
mance analysis of the trained deep neural networks is presented. The UHSR image 
dataset utilized in this research work is an airport dataset provided by SenseFly. Data 
is acquired by eBee classic drones, flying at a height of 393.7 ft., which provide 
2D-RGB images with a ground resolution of 3.14 cm/px.
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1 Introduction 

Unmanned aerial vehicles (UAVs) [1] are utilized in civil and military arenas for 
several purposes such as surveillance, security, recreational, educational, rescuing, 
and monitoring. Due to their low maintenance cost, undemanding installations, and 
ability to maneuver over a geographical region with high mobility and reliability, they 
are better suited for such purposes as compared to satellites. However, weather plays a 
crucial role in their functionality, as bad weather conditions can adversely affect their 
maneuvering capabilities. UAVs equipped with advanced high-resolution cameras 
readily provide images and videos of a geographical area with continuity, reliability, 
and fine details. These images or videos can be further analyzed and processed to 
extract meaningful information from them for various applications. Over the past 
few years, UAVs are employed to conduct search and rescue operations in the sea 
[2], sense the temperature of streams by using thermal sensors [3], monitor crops 
and droughts, transport goods, inspect construction sites, and various other active 
and passive remote sensing applications [4]. 

Images acquired by aerial missions are subjected to various image processing 
steps [1] to increase their readability and quality. Firstly, initial estimates of the 
orientation and position of each image are acquired by the log files. To reestablish 
the true orientation and position of the images acquired by UAVs, aerial triangulation 
is implemented. With this step, many automated tie points are generated for conju-
gate points corresponding to multiple images. The automated tie points are used to 
optimize the image orientation and position with bundle block adjustment. Further, a 
digital surface model is created with oriented images. The features in multiple image 
pairs are matched which generates a dense point cloud. Subsequently, a digital terrain 
model is generated, and to remove distortion in images, the orthorectification process 
is implemented. The images are then combined into a mosaic to produce seamless 
images of the geographical area of interest. 

The high-resolution images can accommodate abundant and finer information 
about terrains, and therefore, possess the capability of discerning objects distinctly. 
This has led to research proliferation towards object detection in the field of remote 
sensing. The traditional object detection techniques [5] include selecting a desired 
area in the image, extracting the features in the desired area, and lastly, for classifica-
tion using the training classifier. A few examples [6] of traditional object detection are 
feature descriptors like SURF, BRIEF, SIFT, etc. for object detection, and machine 
learning algorithms like SVM, K-Nearest Neighbor, etc. for predictions. However, 
these techniques lack robustness and adaptability, and thus, require rigorous tuning 
of thresholds and parameters for different environments. Deep learning paves the 
way for increasing the robustness of detection algorithms, as they can perform better 
in environments where brightness, SNR, and backgrounds in an image differ and
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detect a wider range of objects in an image. Various deep learning algorithms like R-
CNN, Fast R-CNN, YOLO, Faster R-CNN, SSD, R-FCN, etc. have been developed 
for various object detection tasks. 

Traditionally, convolutional networks were used for classification tasks [7]. 
However, several segmentation applications require the assignment of class labels 
to each pixel. Ciresan et al. [8] proposed a network for such requirements, where 
the local region around the pixel was used to predict the class label. This algorithm 
was quite slow as it had to run separately for each local region/patch, and there was 
a trade-off between the use of context in terms of the size of patches and the accu-
racy of localization. To overcome these limitations, networks were developed where 
features from multiple layers were taken into account for classifier output. Further, 
Olaf Ronneberger et al. [7] developed a more advanced architecture where even with 
few training images precise segmentations could be achieved. 

The main contributions of this paper include: (1) Developing a supervised learning 
framework for detecting airplanes in UHSR images using MoblieNet-deep neural 
network acquired by UAVs. (2) Manually labeling airport images, and successfully 
implementing U-Net architecture for segmentation of airplanes in images acquired 
by UAVs. (3) Presenting objective performance analysis of the trained deep neural 
networks. 

The paper is organized as follows. Section 2 discusses the basic technical concepts 
underlying our research work. The method for the detection and segmentation of 
airplanes in UHSR images is presented in Sect. 3. Section 4 discusses the training and 
testing process, limitations, and objective analysis of the trained models. Section 5 
states conclusions. 

2 Background 

The section explains about constituents of digital images and their spatial resolution, 
and further, provides the background of neural networks and convolutional neural 
networks (CNNs). 

2.1 Digital Images and Spatial Resolution 

Digital image analysis and processing enables formulating techniques to remove 
noise from images, increase their interpretability, extract the desired object, and 
compress them for storage or transmission purposes. Images can be either in digital 
or analog format. 2D-Digital images are signals, say I’m(x,y), where x and y are 
two independent variables (spatial coordinates). The basic constituent of a digital 
image is a pixel. Pixels are picture elements that are square in shape. Digital images 
are a rectangular array of pixels [9]. For remote sensing applications, the sensors 
mounted on a platform capture the energy emitted or reflected by objects present in
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a geographical area. The sensors can be mounted on satellites, airplanes, or UAVs 
according to the desired application. The value of each pixel is directly proportional 
to the intensity of the light captured and recorded by the optical sensors at a given 
point. A grayscale image, where each pixel can attain a value in the range of 0–255, 
can be represented by a single 2D array, whereas an RGB image with three channels 
is represented by a collection of three 2D arrays, each for the red, green and blue 
channels. Pixels are the physical points containing a digitized value recorded by 
optical sensors. Digital images can be referenced with rows and columns. Digital 
images are stored in various image file formats [10] such as bitmap (BMP), tagged 
image file format (TIFF), joint photographic expert graphic (JPEG), portable network 
graphics (PNG), etc. Four types of resolutions define the characteristics of a digital 
image, namely, spectral, spatial, radiometric, and temporal. The spatial resolution 
[10] of an image corresponds to the actual area in the scene represented by a single 
pixel in an image when a sensor performs imaging with the instantaneous field of 
view (IFOV). It is a measure of the smallest object in a scene that can be discerned 
by the optical sensor sensing over a geographical area. The high resolution of images 
allows us to differentiate objects that are closer to each other. In our work, we deal 
with 2D-digital images that are acquired by capturing the reflected sunlight energy in 
the visible region of the electromagnetic spectrum. These images have an ultrahigh-
spatial resolution of 3.14 cm/px and are stored in Joint Photographic Expert Group 
(JPG) format. 

2.2 Neural Networks 

The brain is a highly non-linear data processing system, where complex computations 
are performed extremely fast. An artificial neural network tries to mathematically 
model the functioning of a brain for performing such non-linear computational tasks. 
The fundamental constituent of an artificial neural network is the artificial neuron 
[11]. A neural network is developed by interconnecting these neurons. The three basic 
elements of an artificial neuron are as follows. Firstly, the connecting links between 
the inputs and the neuron. With each link, there is a synaptic weight associated with it. 
Synaptic weights of artificial neurons can obtain negative as well as positive values. 
The input to a neuron is the summation of weighted inputs, with a bias added to 
it. Secondly, an adder to add weighted inputs and bias. The mathematical operation 
carried out at adder yields output vk : 

vk = 
m∑

j=1 

wk j  x j+bk (1) 

At the kth neuron, x j is input signal at jth synapse which is multiplied by the 
synaptic weight wk j , and bk is bias.
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Thirdly, an activation function limits the value of the output from the neuron. 
They are also called squashing functions, as they squash the values of outputs to 
permissible finite values. The mathematical notation for an activation function ϕ(.) 
yielding output yk is: 

yk = ϕ(vk) (2) 

The neural network consists of one or more layers comprising neurons. A single-
layered neural network is a network where inputs are fed directly to the output layer. 
In multi-layer networks, each neuron of a layer is connected with all the nodes of the 
input layer. The neurons within a layer are not connected. The feed-forward networks 
are the networks in which the signals are forwarded from one layer to the next without 
any feedback loop. There can be several layers between the source layer and the output 
layer. The layers in between the input layer and output layers are called hidden layers. 
The hidden layers enable the extraction of high-order statistics from input signals. The 
recurrent neural networks are the networks that contain at least one feedback loop. 
The recurrent networks are designed such that the output from every neuron in a layer 
is fed back to the network as input to all the neurons. The artificial neural network can 
be trained with supervised, unsupervised, or semi-supervised learning algorithms. In 
supervised learning, both the input signals and their corresponding desired outputs 
are utilized for training the network, thus we require labeled data. The input signal 
is fed to the network, and the loss is calculated by taking into account the predicted 
outcome and the ideal expected outcome. The unsupervised learning algorithms 
train the neural networks with unlabeled input signals. The semi-supervised way of 
learning takes into account both labeled and unlabeled training input signals. The 
applications of artificial neural networks for automating various tasks are automated 
driver assisting systems, speech recognition, handwriting recognition, etc. In our 
project, we have trained the neural network with supervised learning algorithms for 
automatic detection and segmentation of the target, i.e., airplanes. 

2.3 Convolutional Neural Networks 

Convolutional neural networks (CNNs) are widely used neural networks for 
extracting information from 2D-image data, where inputs are grid-structured, and 
there are spatial dependencies within the local regions [12]. The pixels in the neigh-
borhood of an individual pixel often have similar values; hence, image data exhibits 
strong spatial dependencies, which makes it highly suitable for CNNs. The CNNs 
can be used for spatial, temporal, and spatiotemporal input data. The image data 
exhibits translation invariance, where an object has the same interpretation irrespec-
tive of its location in the image. In CNN, similar feature values are created from 
local regions that have a similar pattern. The basic operation executed in CNNs is 
mathematical convolution. A convolution operation is a sliding dot-product carried
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out between the convolution filters and grid-structured inputs. The operation is bene-
ficial for data that exhibits a high level of spatial locality. CNN’s are neural networks 
in which at least one layer is the convolution layer. There can be one or multiple 
convolution layers in a neural network. As every feature value in the current layer 
is dependent on the small local region in the previous layer, the spatial relationships 
get inherited from one layer to the next layer. A three-dimensional grid structure 
with height, width, and depth define each convolution layer of a CNN. The depth 
refers to the number of feature maps in a convolutional layer. The primary building 
blocks of a typical feed-forward convolutional neural network are the convolution 
layer, pooling layer, rectified linear unit (ReLU) layer, fully connected layer, and loss 
layer. The convolution layer overlaps the kernel at every location in an image and 
performs a sliding dot product. The pooling layer performs the downsampling of the 
feature maps in a non-linear manner. Max pooling is one most commonly used non-
linear functions in the pooling layers. A new feature map is produced as the pooling 
layer acts independently on every depth slice of the feature map. The input image is 
partitioned into non-overlapping regions in a feature map, and the pooling function 
obtains the maximum value in the particular region to generate a new feature map. 
The pooling layer reduces the size of the feature map and the parameters required 
to train the network, hence, the computational complexities within the convolutional 
neural network are reduced. The commonly used activation function in CNNs is 
ReLU activation function. The ReLU function squashes the negative values to zero, 
and therefore, does not permit negative values to propagate in the network. The 
dimensions of a layer remain the same when an activation function is applied, as it 
only maps the values in the feature map corresponding to the activation function. 
After the implementation of convolution and max-pooling layers, lastly, the outputs 
are generated by implementing a fully connected neural layer. The loss layer which is 
the final layer of the convolutional neural network determines the deviation between 
the expected ideal outcome and the predicted outcome. Softmax loss and sigmoid 
cross-entropy loss are examples of such loss functions in the loss layer. The CNNs are 
used to perform object detection, classification, and segmentation tasks in computer 
vision. We have implemented CNNs to automate the task of target extraction from 
UHSR images. 

3 Methodology 

This section introduces the method for extracting airplanes from the UHSR images 
in an automated way. Figure 1 depicts the framework implemented for automated 
target extraction. The framework is explained in detail in subsections to follow.

Dataset 

The UHSR image dataset utilized in the project is captured by two eBee classic drones 
[13], flying at a height of 393.7 ft. The ground resolution of images is 3.14 cm/px. 
The images are taken over the geographical region of Le Bourget airport in Paris. The
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Fig. 1 Methodology for automated target extraction

dimension of the images is 4608 × 3456 pixels, and they are stored in JPG format. 
The 2D images possess red, green, and blue (RGB) channels, and thus, have a depth 
of three. The images contain one or multiple parked airplanes, along with several 
other objects like buildings, runways, automobiles, etc. Figure 2 introduces images 
from the airport dataset.

3.1 Object Detection 

Object detection implies that we aim toward enclosing the target object i.e., an 
airplane with rectangular bounding boxes. The deep neural frameworks perform 
better for this category of application than shallow networks [14, 15]. Our training 
set consists of thirteen RGB images. The images are annotated with LabelImg where
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Fig. 2 Images of the airport from the training dataset

annotations are stored in PASCAL VOC format. The trained network is tested with 
nine test images. 

Data Pre-processing 

The dimension of images is reduced to 800 × 600 pixels from 4608 × 3456 pixels to 
reduce the computational complexities and time required for training the deep neural 
network. 

Image Annotation using Labeling 

These processed images are manually annotated with LabelImg [16], version 1.8.0, 
open-source software for graphical image annotations. It generates the annotation 
files in XML (Extensible Markup Language) .xml format. The XML file saves the 
name of the image, size (800,600) and depth (3) of the image, name of the object 
annotated (airplane), and location of the manually annotated bounding boxes in the 
image. To train the neural network thirteen images are annotated manually (Fig. 3) 
which generates thirteen .xml files. 

Fig. 3 Image annotation 
with LabelImg
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Further, these thirteen individual .xml annotation files are combined and 
converted to CSV (Comma Separated Values) .csv file. The .csv file and 
image data are converted and stored in TFRecord (TensorFlow Record) format. 
The TFRecord format stores the data in binary format and significantly reduces 
the training time and occupies less space in the storage disk. The training data in the 
TFRecord file format is fed to the neural network. 

Network Architecture: SSD MobileNet-v2 

The SSD- MobileNet-v2 [17] deep learning architecture is implemented to clas-
sify and locate airplanes in digital images. The output of the network generates 
the bounding boxes around the desired feature and gives the confidence score for 
the class encapsulated by the box. In this architecture, the MobileNet-v2 model is 
used to classify features and subsequently, a single shot multi box detector model 
(SSD) is used to locate the feature with bounding boxes. MobileNet models [18] are  
lightweight neural network models that are based on depth-wise separable convolu-
tions, which facilitates the reduction in the size of the model. There is a significantly 
lesser number of parameters required in this model, as compared to other advanced 
deep learning frameworks like GoogleNet and VGG16 [18] for object detection. The 
convolutional blocks in Mobilenet-v1 consist of two layers, namely, the depth-wise 
convolution layer, and the pointwise convolution layer. The depth-wise convolu-
tion means that to each channel, a single convolutional filter is applied. Further, 
pointwise convolution is applied to merge the outputs from the depth-wise layer. The 
main difference between standard convolution and depth-wise separable convolution 
is that, the former filters and combines the inputs to generate the output in a single 
step, whereas the latter divides it into two layers, the first to filter and the second to 
combine. This division helps in reducing the size of the model, and hence, associated 
computations. The MobileNet-v2 [17] consists of an inverted residual structure as its 
backbone, where the thin bottleneck layer possesses the short connections between 
them. The inverted residual with a linear bottleneck layer is given the input which is a 
low-dimensional representation. It expands it to a high dimension and further, depth-
wise convolution filtering is performed. Finally, with the help of linear convolution, 
there is a backward projection to the lower dimension. These layers commendably 
enable the reduction in the memory footprint required during inference. The mobile 
net-v2 model comprises two types of blocks, the residual block (stride=1) and the 
downsizing block (stride=2). The ReLU6 in each block is the rectified linear unit 
activation function with maximum output limited to 6. The MobileNet-v2 architec-
ture comprises, firstly, a fully convolutional layer having 32 filters, and subsequently 
19 residual bottleneck layers. The SSD network [19] incorporates a feed-forward 
convolutional network. The SSD network is appended as the auxiliary network to 
the base network MobileNet-v2 architecture. The base network works as a feature 
extractor. The SSD network performs an object-detection task, where its outputs 
are bounding boxes and the corresponding confidence scores of the particular class. 
It implements non-max suppression as the last step for the detection of the object. 
The SSD MobileNet-v2 deep learning architecture is one of the most advanced and 
lightweight deep neural networks.
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3.2 Semantic Segmentation 

Semantic segmentation [20] intends to classify each pixel in an image to its corre-
sponding class/label. In semantic segmentation, pixels of multiple objects belonging 
to the same class are considered as a single entity. We intend to implement semantic 
segmentation of the image, where, all airplanes will belong to the same class-
‘airplane’. Let, there be m pre-defined labels, such that, label = {label1, label2, 
... labelm}, where j = 1 to m. Let, the image consists of k number of pixels, such that, 
pixel = {pixel1, pixel2, ... pixelk}, where i = 1 to k, then we intend to implement 
an architecture ‘S’ for semantic segmentation such that for each pixel: pixel, there 
is a class: labels assigned to it [20]. We train the U-Net network with thirteen RGB 
images. The trained network is tested with nine images. 

Data Pre-processing 

To reduce the computational complexities while training the neural network, images 
are resized to a dimension of 256 × 256 and are converted to the grayscale format. 

Image Annotations 

The U-Net architecture is a supervised machine learning technique. For every training 
image, we create its corresponding ground-truth mask image. The mask images are 
such that the pixels belonging to the target possess a value of ‘255’, and the value 
of background pixels is ‘0’. The ground truth mask is generated using Microsoft 
Paint3D. The dimension of ground truth images is 256 × 256 × 1. Figure 4 shows 
the examples of raw images from the dataset. Figure 5 presents their respective ground 
truth masks. Figure 6 shows the corresponding histogram for the ground truth masks, 
where the x-axis denotes the pixel values (0–255) and the y-axis denotes the count 
of pixels. The histogram indicates that the pixels of ground truth images have values 
of either 0 (background pixels) or 255 (pixels belonging to the target (airplane)). 

Network Architecture: U-Net 

The implementation of U-Net architecture for semantic segmentation requires less 
training data as compared to several other CNNs and provides good segmentation 
results [7]. The U-Net model comprises two paths, namely, contraction and expansion

Fig. 4 Raw images from the training dataset
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Fig. 5 Ground truth mask images 

Fig. 6 Histograms of corresponding ground truth mask images respectively

paths. There are a total of 23 convolutional layers in the architecture. To harness the 
context information of each pixel, the contracting path extracts the features [21] 
at various levels. It is performed by sequential implementations of convolutions, 
activation functions, and max pooling. Subsequently, to increase the resolution of 
the segmented features, the expanding path, which is symmetric to the contraction 
path, is implemented. It consists of sequential implementations of up-convolutions 
and ReLU activation functions. Due to the contraction and expansion nature of the 
architecture, it is called a U-Net architecture. To capacitate propagating context 
information to higher resolution layers, the upsampling network consists of a large 
number of feature channels. There are no fully connected layers in the entire U-
Net architecture. The final output from the expansion path consists of an image 
where the value of each pixel gives its class. The steps for the contracting path [7] 
are as follows. Firstly, it performs two 3 × 3 convolutions with 64 filters. After 
each convolution, the outputs are subjected to the ReLU activation function and are 
downsampled by using a 2 × 2 max-pooling operation with stride 2. With each 
downsampling step, the number of feature channels is doubled. The architecture for 
the expansion path is as follows. Firstly, the expansion path upsamples the feature 
map. Subsequently, to reduce the number of feature channels to half, a 2 × 2 up-
convolution is implemented, followed by a concatenation step. Further, two 3 × 3
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convolutions are implemented. The outputs from both the convolutions are subjected 
to the ReLU activation function. The final layer implements 1 × 1 convolutions, 
which relate a feature vector consisting of 64 components to the required number of 
labels. 

4 Model Training and Results 

The section presents the procedure implemented for training the deep neural 
networks, outputs predicted from the trained network, and additionally, the limita-
tions of the network. The networks are implemented on the cloud-computing platform 
by utilizing the data storage and computational capabilities provided by Microsoft 
Azure and Google Colaboratory. 

4.1 Object Detection 

Training 

To train the network [22], instructions are implemented in the Python programming 
language. The transfer learning technique is used for training the model. A pre-
trained model where the base model is trained with Microsoft’s Common Objects 
in Context-dataset [23] is utilized for transfer learning. This reduces the training 
time and the required computations and provides initial weights/checkpoints of the 
model. Further, we train the model to tune and update the weights/checkpoints of 
the model for our dataset consisting of thirteen images and their corresponding 
annotation files. The number of training steps and evaluation steps implemented 
are 4500 and 100 respectively. The value for batch size is 12. The model uses a 
sigmoid cross-entropy loss function for classification purposes and a smooth L1 loss 
function for localization purposes. The model is trained in a TensorFlow version 1.15 
environment. 

Test Results 

The trained SSD MobileNet-v2 deep neural network model is tested with nine RGB 
images. The detected object is saved using the following parameters: x and y coordi-
nates of the center of the bounding box, height and width of the bounding box, and 
confidence score. Figure 7 presents four test cases A, B, C, and D. Figure 8 presents 
predicted outputs from the trained network for the test cases.

Evaluation Metrics: Mean Average Precision 

The confidence score (CS) [24] indicates the probability of the presence of an airplane 
in a bounding box and the accuracy of the box itself. The mathematical equation for 
calculating confidence score (CS) is:
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Fig. 7 Test cases: RGB images A, B, C, and D 

Fig. 8 Detection results from the trained model
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CS = Probability (object) × IoU (3) 

The Intersection Over Union (IoU) is the ratio of the area of overlap between the 
ground-truth bounding box and predicted bounding box and the total area encom-
passed by both. It calculates the similarity between the predicted bounding box and 
its respective ground-truth box. Average precision (AP) [25] is the weighted sum of 
precisions, where the weight is the increase in recall, at each threshold, and m is the 
number of thresholds. 

AP = 
m=n−1∑

m=0 

[Recalls(m) − Recalls(m + 1)] ∗  Precision(m) (4) 

Concerning COCO challenge accuracy metrics [25], we set ten different IoU 
thresholds from 0.5 to 0.95 in the steps of 0.05. The accuracy metrics mAP, is 
calculated by averaging over all the APs of the classes detected by the object detection 
model. Our model is trained to detect a single class i.e., airplanes. The mAP = AP 
value achieved for our trained detection model is 95.9%. 

Limitations 

SSD-MobileNet v2 is trained to enclose the airplane feature in rectangular bounding 
boxes. When the trained network is tested with nine images, it is observed that if an 
image consists of an object whose spatial features are similar to that of an airplane, 
then it captures that object too as the target. Figure 9 shows the two limitation cases 
A and B, where the objects other than airplanes are enclosed in rectangular bounding 
boxes. 

Fig. 9 Limitation cases for object detection



A Deep Learning Approach for Detection and Segmentation … 225

4.2 Semantic Segmentation 

To train the network we perform all the computations on the Microsoft Azure 
cloud-computing platform. The instructions to train the model are written in Python 
programming language. 

Training 

The network [7] is trained by utilizing neural-network libraries provided 
by Keras API. The training data is stored in PNG (Portable Network Graphics) 
format. Before initiating the training process, the data augmentation step is carried 
out, as we are aiming to train the network with a lesser number of images. The data 
augmentation process helps in minimizing the risk of overfitting while training the 
neural network. To execute the data augmentation, a few of the operations executed 
are flipping, zooming, shearing, etc. The initial weights of the network are set up 
using transfer learning. Further, we train the U-Net with our training data to update 
the weights with several epochs. The model’s weights get updated after every epoch 
if the loss reduces. The Adam-optimizer is used to update the model’s weights after 
each iteration. The loss function implemented while training the network is binary 
cross-entropy loss [26]: 

Loss = −  
1 

s 

s∑

i=1 

ai log
�

ai + (1 − ai) log 
( 
1 − �

ai 
) 

(5) 

where,
�

ai is the ith value in the model output, s is the output size, and ai is the target 
value. 

Test Results 

The neural network trained is trained with 150 epochs. The loss reduced from 1.5627 
to 0.01195 after 150 epochs. Figure 10 presents several examples of outputs from 
the trained U-Net neural network with 150 epochs. The first row consists of original 
RGB images used for testing the network, the second row presents the corresponding 
grayscale images which are fed to test the trained neural network, and the third row 
presents the outputs from the trained U-Net neural network.

Evaluation Metrics: Dice Coefficient 

Dice similarity coefficient (DSC) [27] evaluates the spatial overlap between the 
ground truth (‘M’) and the result obtained from the trained U-Net (‘N’) when tested 
with the test images. The mathematical equation for calculating the Dice similarity 
coefficient is: 

DSC = 2(M ∩ N)/(M + N) (6)
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Fig. 10 Outputs from trained U-Net neural network. First row: Original RGB images for testing. 
Second row: Corresponding grayscale images fed to network for testing. Third row: Outputs from 
the trained U-Net

The values of the dice coefficient range from 0 to 1. The higher value implies 
higher segmentation accuracy and high similarity in terms of spatial overlap between 
ground truth image and output image from the U-Net network. The value of Dice 
similarity coefficients obtained for the test set is 0.72. 

Limitations 

The training process of the U-Net deep neural network includes learning the features 
of the target object with each iteration. When the U-Net model is implemented for our 
dataset, it is observed that along with the target object, occasionally, it also segments 
the objects which have a similar shape as that of the target object in the same category. 
Hence, the limitation cases are the instances where the test image contains an object 
(not an airplane) that has similar spatial features as an airplane in the spatial domain, 
and when tested with the trained U-Net it segments it as the target object. 

5 Conclusions 

We have presented a framework for automatic detection and segmentation of 
airplanes in UHSR images captured by eBee classic drones. To accomplish this task 
with supervised machine learning algorithms, we have implemented state-of-the-art 
SSD MobileNet-v2 for object detection, and U-Net for semantic segmentation. The 
proposed approach gives arguably good accuracy metrics results for detection and
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segmentation tasks in the terms of mAP and dice coefficient respectively. The imple-
mented architectures possess a limitation that objects that are similar in shape to the 
target i.e., airplanes, are detected or segmented as targets too. The architecture for the 
segmentation of images performs hard classification for each pixel, where each pixel 
belongs to a class with either 0 or 100% probability. There can be impure pixels in the 
image, especially at the boundaries of the target, where they might contain both, a 
background object and a target object in an image. Research work can be carried out 
towards developing such neural network architectures that can distinctively specify 
those pixels as well. 
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Influence of European UAS Regulations 
on Image Acquisition for 3D Building 
Modeling 

Grzegorz Gabara 

Abstract The dynamic development of 3D building reconstruction using digital 
images obtained with unmanned aerial systems (UAS) has been observed in recent 
years. The popularity of UAS is due to its wide technological availability at a low 
price, compared to geodetic measurement equipment, laser scanners, or manned 
flight missions. In practice, the usage of UAS for 3D building reconstruction and 
modelling allows the acceleration of the production process (image acquisition, 
processing, computation) while maintaining a high quality of the final product. With 
the increasing number of new flying objects in airspace and because of differences 
in UAS regulation in each EU country, it was necessary to adapt the rules for the 
operation of unmanned aircraft to standardize regulations, make operations easier, 
and assure aviation safety. Due to this fact, from 31 December 2020, the new Euro-
pean Union (EU) Commission Implementing Regulation 2019/947 on the rules and 
procedures for the operation of unmanned aircraft entered into force across the conti-
nent. The new regulations replaced each EU national’s existing laws and applied to all 
UAS pilots. They have adopted a risk-based approach and do not distinguish between 
leisure or commercial activities like previous regulations. To assess the operational 
risk and to determine the category of flight mission, the weight and specifications of 
the UAS, the operation, and UAS pilot qualification are taken into account. Because 
of that, new categories of operations have been established. In this study, the review 
of 3D reconstruction using UAS was performed and the new EU UAS regulations in 
the context of the image acquisition of buildings in different levels of detail (LoD) 
were studied. For this purpose, the practical 3D reconstructions of buildings were 
analyzed. Furthermore, taking Poland as an example, new unified EU rules were 
compared with the previous ones. 
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1 Introduction 

The interest in creating 3D models is inspired by a wide range of applications, such 
as urban design [57], urban analysis [4], emissions analysis [37], solar potential 
estimation [56], real-time disaster management [2, 45, 52], property visualization 
[55] and real estate valuations [8], historic building documentation [38, 41, 43], 
reconstruction of damaged buildings [34], virtual tourism [3], building information 
modelling (BIM) [9, 54], campus monitoring [10] and the augmented reality [7]. 

Since the development of 3D building presentation [15] for the geometric and 
semantic representation differentiation [8] and 3D model visual quality and complete-
ness assessment, the level of detail (LoD) concept [6–8] is used. The 3D building 
models are inseparable related to the CityGML standard. Version 2.0 defines 5 LOD 
levels in its structure. These levels and differences between them were described 
by Biljecki et al. [6]. Initially, the LoD concept was used in graphic applications 
as faces number reduction with attempting to maintain visual fidelity [11, 12, 36], 
while GIS is used as a form of 3D models generalization [6, 25]. Biljecki et al. [8] 
have described this difference based on two buildings, one in LoD1 and the second in 
LoD2, where the first one has more faces than the second one, even though it’s LoD 
is lower. In the recent decade, due to the lack in the characterization of the LoD’s for 
different building classes, which were pointed out by Döllner [5–8, 18, 28, 29, 48, 
49], the description of the concept was modified and expanded [8]. 

Over the last decades, the 3D building model generation has evolved, initially, 
3D models were prepared using stereophotogrammetry [1, 27] or direct geodetic 
measurement documentation. The easiest way to produce simple 3D models was 
to use high-scale geodetic maps and based on the number and height of the floors, 
add a third dimension (Z). Additionally, in the late 1990s, due to the development 
in the video game industry, the 3D models of the building were created to fulfil the 
narrative and artistic requirements of a particular scenario [51] (i.e., Tomb Raider) 
without taking into account the real dimensions and locations of objects [50]. In the 
2000s the integration of spatial information about building from different databases 
was observed. This stage allows for obtaining 3D building models of high quality. 
Due to the progress in measuring tools, computing powers, disk storage capacity, 
and greater availability, the number of companies and research centres that deal 
with 3D buildings rose. The next stage in 3D building modelling was the usage of 
point clouds obtained using airborne laser scanning (ALS) and terrestrial laser scan-
ning (TLS) [53]. Since around 2010, the structure from the motion approach which 
provides fully automated 3D reconstruction has become a very popular trend [37]. It 
allows the reconstruction of existing urban spaces using arbitrary imagery without 
any on-site measurements, significantly reducing the costs of 3D building modelling. 
Common usage of advanced computing algorithms with wide and easy access to tech-
nology, a low price of sensors, and their minimization result in fast data acquisition. 
Furthermore, due to this fact it is possible to load those sensors onto unmanned flying 
platforms. They enable avoiding some limitations and disadvantages of manned flight 
missions, terrestrial imagery, and laser scanning.
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To describe the collection of remotely-piloted objects many terms had been intro-
duced. The most popular was a drone, unmanned aerial vehicle (UAV), Unmanned 
Aircraft Systems (UAS), Remotely Piloted Aircraft (RPA), Remotely Piloted Aircraft 
Systems (RPAS), Unmanned Aircraft (UA), light unmanned aeroplane systems 
(LUAS), light unmanned rotorcraft systems (LURS), Autonomous aircraft (AA). 
All of these terms have been taking part in name evolution for years and all of them 
were used by Aviation Authorities (i.e., National Aviation Authorities, International 
Civil Aviation Organization, Federal Aviation Administration) in official documents 
or rules. An interesting introduction to this terminology is presented by Granshaw 
[26]. 

According to the Department of Defense (DoD) [39], four terms were used: drone 
as a land, sea, air vehicle that is remotely controlled, remotely piloted vehicle (RPV), 
which was defined as an air vehicle controlled by a person through a communication 
link, automatically piloted vehicle (APV), which was aerial vehicle controlled by 
instruction saved on-board the vehicle and UAV that includes RPV and APV. In 2005 
International Civil Aviation Organization [31] and Federal Aviation Administration 
(USA) [32] for the Unmanned Aerial Vehicle (UAV), a ground control station (GCS), 
and a communication system between GCS and UAV defined a new term UAS. 
Furthermore, firstly in 2007 ICAO recommended using only this term, and in 2011 
[30] informed that UAV is an obsolete term. In 2015 ICAO decided that terms like 
UAV or UAS were dropped and replaced with RPAS [33]. But, according to the recent 
definition section EU (EASA) [13] and U.S. (FAA) [17] regulation, the following 
terms are used: UAS small UAS and UA. Because of multiple terms and some 
discrepancies between regulations, in this study, the recent definitions will be used 
[19]. 

So far, many publications about UAS operation rules [16, 40, 44, 47] and 3D 
building modelling using UAS have been written [20, 21, 35, 38, 46], however, 
according to the author knowledge, the study, which deals with new UAS operation 
rules in the context of 3D building modelling does not exist at present. 

In this study, the review of 3D building reconstruction was performed and the new 
EU UAS regulations in the context of the image acquisition of buildings in different 
levels of detail (LoD) were studied. For this purpose, the practical 3D reconstructions 
of buildings were analyzed. Furthermore, taking Poland as an example, new unified 
EU rules were compared with the previous ones. 

2 3D Building Modeling 

As mentioned before to describe the visual quality and completeness of 3D building 
models, the LoD concept of CityGML 2.0 is used. The five types of LoD are presented 
in Fig. 1 using a building located on Gabara and Sawicki [22, 23] test field.

The LoD0 is the contour of the building (footprint), LoD1 is extruded LoD0, LoD2 
includes roof shape changes, LoD3 additionally provides information about architec-
tural details of façades, while LoD4 contains LoD3 details with indoor features [8].
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e 

Fig. 1 Visualization of different LoD used for building representation. a The 2D visualization— 
LoD0, b The basic 3D visualization—LoD1, c The basic 3D visualization, which can be used for 
planning and spatial analysis—LoD2, d The 3D visualization of building used for a more advanced 
task, i.e., historic building documentation or reconstruction of damaged buildings—LoD3, e The 
most advanced 3D visualization, which can be used in BIM

The data for 3D building modelling in different LoDs uses TLS, terrestrial imagery 
(normal and convergent images), manned and unmanned airborne imagery (nadir 
and oblique images), and ALS. The usage of all of these techniques carries a load of 
advantages and disadvantages, which are described in Table 1.

Since buildings described in [24] were measured using both ALS (two independent 
measurements with different point cloud density: one acquired in national mapping 
campaign, second using RIEGL LMS-Q680i laser scanner) and airborne imagery 
(Phase One iXU-RS 1000) for modelling purposes, they will be used as a reference 
for presentation and comparison of different measuring techniques. Furthermore, as 
an addition, the unmanned flight mission using Yuneec H520 UAS with E90 camera 
was performed to describe some measurement issues solutions. Figure 3 presents 
the densification and quality of point clouds acquired with described techniques. 
Furthermore, it shows how multiple stripes of images could minimize the density 
of tie points only in parts of images. Additional images with different tilt angles 
give more areas of interest, and the dense point cloud covers even the homogenous 
structure of the façade.

Because of the wide application range, 3D building reconstruction has become 
a common trend. For this reason, it has been a focus of attention for city authori-
ties, which are usually involved in campaigns for data acquisition for 3D building 
modelling purposes. In Poland, it is realized by the institutional way for the whole
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country (in LoD1 and LoD2) by performing particular CAPAP project tasks, as 
described by Ostrowski et al. [42] or individually by hobbyists and enthusiasts, 
which create 3D models of recognizable or fame buildings. 

3 Rules and Procedures for UAS Operations 

Because of the high potential of UAS usage in data acquisition for 3D building 
modelling in this section the limitations of both old and new aviation rules in Poland 
are characterized. First of all, some of the UAS flight limitations are shared by both 
regulations. They are caused by special zones (i.e., Aerodrome Traffic Zones and

Table 1 Pros and cons of different data acquisition techniques 

Acquisition technique Advantages Disadvantages 

TLS Reconstruction accuracy 
Data collection efficiency and capability 
High-level detail 
High geometric fidelity 
Allow generating LoD3 and LoD4 
Easy change of project parameters (i.e., 
the distance between points in a point 
cloud) 
Possibility to obtain dense point cloud 
Fast data processing 
Easy to obtain additional epochs of data 
(i.e., for object monitoring)—even several 
times per year 

Laser scanner costs 
Data noise 
Data inconsistency (windows) 
Measurements with high details are 
time-consuming 
Usage only for low-rise buildings 
Beam reflection off the building roof plane 
Designed for small area 
Lack of details on roofs and noise (Fig. 2a) 
A stable control network is required for 
time series 

Terrestrial Imagery Reduced risk of accidents 
High accuracy 
high-level detail (ornamental details) 
High visual and geometric fidelity 
Allow generating LoD3 and LoD4 
Dense point cloud 
Fast data acquisition 
Wide technological availability 
Easy change of project parameters (i.e., 
GSD) 
Easy to obtain additional epochs of data 
(i.e., for object monitoring)—even several 
times per year 

Problem with high-rise building 
reconstruction (different GSD and 
accuracy) 
Lack of details on roofs and noise (Fig. 2a) 
A photogrammetric network is necessary 
for high geometric accuracy reconstruction 
Used for only single building 
reconstruction 
Long data processing 
The issue related to tie point localization 
on building façades with homogenous 
structures (Fig. 2b) 
A stable control network is required for 
time series 

ALS 
(manned flight missions) 

Used for big areas 
Allow for high-building data acquisition 
The issue with vegetation that masks 
buildings do not exist 
Fast data acquisition 
Fast data processing 
No additional measurements are needed 
for time series (flight path is tied to GNSS 
reference stations) 

Low point cloud density (searching for 
building edges—measuring error) 
High costs of equipment 
High operational costs 
Additional epochs are realized once a year 
or less often 
Limitations related to aviation rules 
Allow obtaining only LoD2

(continued)
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Table 1 (continued)

Acquisition technique Advantages Disadvantages

ALS 
(unmanned flight missions) 

Fast data acquisition 
Fast data processing 
Allow high-rise building data acquisition 
Easy change of project parameters (i.e., 
number of points per sq m) 
Low operational costs 
Possibility to obtain high point cloud 
density 
High geometric fidelity 
Allow obtaining LoD3 
The issue with vegetation that masks 
buildings do not exist 
Easy to obtain additional epochs of data 
(i.e., for object monitoring)—even several 
times per year 
When high accuracy GNSS + IMU 
receivers are used, there is no need for 
additional measurements for time series 
(flight path is tied to GNSS reference 
stations) 

The capacity of acquiring data in small 
areas 
Additional limitations related to aviation 
rules 
A high-grade GNSS + IMU receiver is 
needed for high-accuracy measurements 
High costs of equipment 
Data noise 
Data inconsistency (windows) 
Measurements with high details are 
time-consuming 

Airborne imagery 
(manned flight missions) 

Allow high-rise building data acquisition 
Used for big areas 
High-level detail 
High geometric fidelity 
Dense point cloud 
Fast data acquisition 
Allow generating LoD3 

High costs of equipment 
High operational costs 
Limitations related to aviation rules 
Long data processing 
The issue with vegetation that masks 
buildings (Fig. 2d) 
Additional direct measurement is needed 
for high-accuracy measurements 
Additional epochs are realized once a year 
or less often 
A stable control network is required for 
time series 
The lack of façades consistency when 
using only nadir images (Fig. 2c) 

Airborne imagery 
(unmanned flight missions) 

Allow high-rise building data acquisition 
Easy change of project parameters (i.e., 
GSD) 
Wide technological availability 
Low-cost technology 
Low operation costs 
High-level detail 
High geometric fidelity 
Dense point cloud 
Fast data acquisition 
Allow generating LoD3 
In the case of using a multirotor, it is 
possible to acquire a building shape 
masked by vegetation (in manual flight) 
Easy to obtain additional epochs of data 
(i.e., for object monitoring)—even several 
times per year 

The capacity of acquiring data in small 
areas 
Additional limitations related to aviation 
rules 
Long data processing 
The partial issue with vegetation that 
masks buildings 
Additional direct measurement is needed 
for high-accuracy measurements 
A stable control network is required for 
time series 
The lack of façades consistency or 
reconstruction errors when using only 
nadir images (Fig. 2c)
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a 

b c 

d 

Fig. 2 Visualization of issues related to different measuring techniques. a Lack of details on roofs 
and noise using TLS or terrestrial imagery, b The issue related to tie point localization on building 
façade with homogenous structure, c The lack of façades consistency or reconstruction errors when 
using only nadir images, d The issue related to buildings partially occluded by vegetation—mainly 
occur in airborne imagery

Restricted Areas and other National Zones) and controlled traffic regions around 
airports. 

The main difference between those aviation rules is the approach used to assure 
aviation safety. Most of the old rules related to UAS operations were stated by 
the Regulation of the Minister of Infrastructure (2019) and they are distinguishing 
commercial and non-commercial flight missions, while new rules [13] are founded 
on Specific Operations Risk Assessment (SORA) for UAS. The division in old rules
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a b 

c d 

Fig. 3 Visualization of point clouds quality acquired with different measuring techniques. a LiDAR 
point cloud with the minimal density of 12 pts/m2, b LiDAR point cloud with the minimal density 
of 25 pts/m2, c point cloud acquired processing nadir images d) point cloud acquired processing 
oblique, nadir, and convergent images

is related to the type of flight and used UAS. Most commercial flights are done using 
heavier equipment and more often flight route is complicated, so the UAS pilot must 
be more careful and experienced. In the case of non-commercial operations, flights 
are performed using light UAS mostly by hobbyists and enthusiasts. Because of that, 
the possibility of doing some damage is lower. 

3.1 Old UAS Operation Rules 

The main limitation related to data acquisition for 3D building modelling are the 
following: 

1. In the case of Visual Line of Sight (VLOS) and non-commercial operation using 
UAS heavier than 600 g, the distance to the dense settlement must be more than 
100 m and more than 30 m to people and buildings. 

2. In the case of VLOS and non-commercial operation using UAS lighter than 600 g, 
UAS pilot should assure safe distance to buildings and people, but the specific 
value is not defined. It depends on the UAS pilot. 

3. In the case of VLOS and commercial operations, UAS pilots have to assure safe 
distance to people, cars, and other aviation space users. 

There is no limitation on distance and UAS weight, however for commercial flight 
missions, UAS pilot needs Unmanned Aerial Vehicle Operator (UAVO) certificate,
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which defines the UAS type and weight range. To get the certificate a person has 
to complete training performed by a competent authority and pass theoretical and 
practical exams. Taking into account data acquisition for high accuracy 3D building 
modelling for non-commercial purposes (e.g. enthusiasts do charity flights, or gather 
data for self-training in 3D modelling), the flight could be done using DJI Mavic 2 
Air (570 g). The flight mission could be done using heavier UAS like DJI Phantom 
4 Pro or Yuneec H520 with E90 camera, but in that case, the ground sample distance 
(GSD) is about 0.027 m. 

3.2 New UAS Operation Rules 

The new aviation rules conditioned UAS flights by the risk, distance to people, and 
UAS weight. Due to this, the new division into flight categories is related to the risk to 
people on the ground and other airspace users. The new thing is that all UAS heavier 
than 250 g have to be registered. Three flight categories are specified: open, which 
includes VLOS operations without any authorization but is limited by maximum 
flight height (120 m above ground). Furthermore, it is divided into 3 subcategories 
related to the distance to people: 

1. A1 means flight over people but using UAS with a limited weight to 250 g and a 
maximum operating speed of 19 m/s. Also, in this subcategory, UAS has to meet 
C1 class conditions (additional annex with UAS requirements), and UAS pilot 
must complete an online training course and pass an online theoretical knowledge 
examination. 

2. A2 means close to people, but UAS weight is limited to 2 kg and the horizontal 
safety distance to uninvolved people is more than 30 m (5 m to uninvolved 
persons when UAS has an active low-speed mode function). Furthermore, a 
person who wants to perform missions in that subcategory must complete self-
practical training, do an online training course, and pass the online theoretical 
knowledge examination. 

3. A3 means flights away from people and is limited by weight below 25 kg and the 
horizontal safety distance to residential, commercial, industrial, or recreational 
areas (more than 150 m). Also, UAS has to meet the conditions of class C2-
C4, and UAS pilots must complete an online training course and pass an online 
theoretical knowledge examination. 

For existing UAS that does not comply with the requirements of C1-C4 UAS 
categories, the transitional period (30 months) is established, which starts one year 
after the date of entry into force of EU Commission Delegated Regulation [13]. The 
UAS with a take-off mass lower than 500 g could be used in the A1 subcategory. 
In the case of UAS with a weight limitation of 2 kg, the minimum horizontal safety 
distance from people is 50 m.
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The specified category includes VLOS and BVLOS operation, which requires 
approval from the competent authority due to the higher risk to third parties (oper-
ations that exceed the limits of the open category). The flight missions are real-
ized based on standard scenarios (STS and national NSTS), which contain a set of 
procedures used for a specific type of operation. For such types of flights and to 
obtain confirmation of qualifications, the training, theoretical knowledge, and prac-
tical skills are examined. The last category in new aviation regulation is certified, 
and flight missions are classified in this category only when UAS and pilot are certi-
fied. Also, the operation is realized over assemblies of people or is used for people 
transportation or transportation of dangerous goods. 

To analyze the limitations of each category and subcategories, popular UAS were 
matched to each of them. In A1, it is possible to use DJI Mavic Mini 2 (249 g) 
equipped with a 12MPix camera (1/2.3'' CMOS sensor). It is not a high-grade tool 
for image acquisition but enthusiasts could be fine. In A2, the DJI Phantom 4 Pro 
or Mavic 2 Pro could be used. Considering the transitional period, the minimal 
GSD value of about 0.014 m could be obtained. In the A3 subcategory, all UAS 
mentioned before can be used, but the acquisition of images is useless because of the 
horizontal safe distance (150 m) to people. The obtained GSD will be about 0.05 m, so 
comparable to GSD obtained in manned airborne missions. The specified category 
should be compared with commercial flight missions (old UAS operation rules). 
For both special training is needed and to obtain the certificate, the theoretical and 
practical exams must be passed. Also, the price for the old weight category training 
is comparable to one standard scenario training. In the case of image acquisition 
for 3D building modelling, the UAS pilot had more comfort, fewer limitations, and 
fewer formalities (e.g., operator, pilot, and UAS registration) using previous aviation 
rules. 

4 Conclusions 

Undoubtedly, using UAS for image acquisition of buildings has contributed to 3D 
building modelling. The algorithms for 3D reconstruction were modified and, by 
extension, the 3D models’ accuracy and completeness were enhanced. In this paper, 
the image processing issues were presented. The attention was drawn to computation 
without nadir and oblique images acquired from proper height and distance to the 
object, i.e., the lack of surface consistency, and higher point position errors. Also, the 
homogenous structure of the building façade scenario, including tie point placement 
on images, were analyzed. The results showed that in this case of terrestrial images, 
tie points are localized only in a part of the image while using images acquired 
by UAS, the issue is irrelevant because more structured objects are registered on 
photos. Furthermore, the scenarios with some ALS problems and airborne nadir 
imagery in the case of 3D building reconstruction were presented. These issues can 
be solved using a multirotor to acquire different image configurations (nadir, oblique, 
convergent).
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Nevertheless, image acquisition using UAS should be performed according to 
aviation rules, which in the European Union have been changed [13]. Because of 
that, taking Poland as an example, the old and new UAS operation regulations in the 
context of the image acquisition of buildings in different levels of detail (LoD) were 
studied. Until new EU regulation entered into force, every person in Poland could 
use UAS for non-commercial operations [14] and, by extension, every person using a 
UAS camera could contribute to expanding repositories and databases with building 
images and 3D models. However, with the implementation of new rules, some new 
UAS limitations were introduced, but a legislator did not analyze their consequences 
in the context of 3D building modelling. Considering the requirements for the UAS 
pilot, the comparable conditions of flight are for the open category, in subcategories 
A1 and A3 (A2 requires passing an additional theoretical knowledge examination 
provided by the competent authority). In A1 the UAS is limited to Maximum takeoff 
mass (MTOM), including payload, of less than 250 g, which makes it impossible 
to use UAS (i.e., DJI Phantom) that enables image acquisition. In subcategory A3, 
the limitation is related to a horizontal distance of at least 150 m from residential, 
commercial, industrial, or recreational areas, which means that the ground sample 
distance of images acquired by popular DJI Phantom 3 Pro or DJI Phantom 4 Pro 
is big (approx. 0.065 m and 0.041 m, respectively) and final 3D building model is 
useless for many applications. Other categories and the A2 subcategory are related 
to meeting some costs and spending additional time by UAS pilots, but it enables 
good conditions for image acquisition of buildings. It should be pointed out that this 
will cause the commercialization of 3D building modelling and cut off hobbyists and 
enthusiasts. On the other hand, the risk-based approach was adopted to make aviation 
safer and avoid any accidents in every possible way. In the case of Poland, where 
previous aviation rules described in detail the usage of UAS and ensured safety, the 
new limitation seems to be prepared a bit in advance. 
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Effects of Flight Plan Parameters 
on the Quality and Usability of Low-Cost 
UAS Photogrammetry Data Products 
for Tree Crown Delineation 

Jojene R. Santillan, Jun Love E. Gesta, and Marcia Coleen N. Marcial 

Abstract The continued understanding of the influence of flight planning character-
istics on data quality is crucial in the demand for minimizing costs and maximizing the 
output potential of Uncrewed Aerial Systems (UAS) for forestry applications. This 
study was conducted to ascertain the effects of various combinations of flying height 
and percentage overlaps on the quality of photogrammetry data products generated 
from images acquired by a low-cost UAS (Mavic 2 Pro), with emphasis on tree 
crown delineation in a Mangium plantation forest in the Philippines. The quality 
of the products is evaluated based on their completeness and the accuracy of tree 
crown delineations. Results suggest that the percentage completeness increases as 
the flying height and percentage overlap increase. More than 90% completeness was 
achieved for 90% overlap regardless of the flying height. Tree crown delineations 
using multiresolution segmentation of Digital Surface Models (DSMs) generated 
from images with a flying height of 120 m and percentage overlap of 80% and 90%, 
achieved the highest overall accuracy of 43.35%. This study showed that a minimum 
of 80% overlap must be aimed when acquiring images to ensure higher completeness 
of the data products and that flying at 120 m above ground with at least 80% overlaps 
can provide more accurate tree crown delineations.
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1 Introduction 

There have been rapid advancements in the last decade in remote sensing-based 
mapping and monitoring of the environment and natural resources. One of these is the 
emergence of Uncrewed Aerial Systems (UAS). Images acquired by high-resolution 
digital aerial cameras installed in these so-called “drone” remote sensing platforms 
have provided users up to a centimetre level of detail and accuracy, prompting its 
applications in forestry, among many other fields. One importance of UAS is its 
potential to fill data gaps and supplement the capabilities of crewed aircraft and 
satellite remote sensing systems. UAS technology is also advantageous because of 
its low material and operational costs, flexible spatial and temporal resolution control, 
high-intensity data collection, and the absence of risk to crews [1]. 

Among the data products derived from overlapping UAS collected images and 
utilized for forestry applications are three-dimensional (3D) point clouds, Digital 
Surface Models (DSMs), Digital Terrain Models (DTMs), and orthomosaics. Popular 
applications of these products include tree detection and counting, individual tree 
crown delineations, generation of canopy height models, estimation of tree heights, 
and biomass predictions [2–6]. The potential of UAS technology in this application 
area is enormous. Even low-cost commercial off-the-shelf UAS are already being 
utilized to complement, if not replace, field-based forest inventories [7]. Low-cost 
UASs are often characterized by an uncrewed aerial vehicle (UAV) component that 
is lightweight and comprised only of a Red–Green–Blue (RGB) camera and built-in 
Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU). 
Compared to high-end UASs with multispectral (e.g., RGB + NIR) imaging capa-
bilities and survey-grade positioning and inertial navigation systems, low-cost UASs 
have positioning accuracies ranging from ±0.5 m to ±1.5 m [8] which may already 
be sufficient for general plantation mapping applications. 

Whether a UAS used in image acquisition is high-end or low-cost, products gener-
ated from images acquired by these UAS are generated through photogrammetric 
processing. Modern processing techniques and software involve the application of the 
Structure-from-Motion (SfM) and dense matching algorithms such as the Multiview 
Stereopsis (MVS), commonly referred to as the SfM-MVS approach [9]. 

Several studies have found that the success of the SfM-MVS approach in gener-
ating the data products is dependent on several factors that include flight planning 
characteristics (e.g., Ground Sample Distance (GSD), camera type, image overlap, 
and flying height), software package choice, and processing parameter settings [2, 
5, 6, 10]. In a study conducted to evaluate the effects of flying height of a fixed-wing 
UAS on SfM processing capability for complex forest environments [10], superior 
performance in terms of image alignment success, the average number of tie points
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per image, and planimetric model ground sampling distance, was found for the 100-
m flying height above the forest canopy compared to flying heights of 50 and 120 m, 
with 85% front overlap and 70% sidelap set for all flying heights. In another study 
on individual tree detection in structurally complex conifer forests, the accuracy of 
the resulting tree maps was generally maximized by collecting UAS imagery at a 
high altitude (120 m) with at least 90% image-to-image overlap [11]. On the other 
hand, a study conducted by [6] showed that no statistically significant differences 
exist between image resolution, camera types, side overlap, and terrain slope in the 
accuracy of estimating biomass using UAS-derived point clouds. Model accuracy 
was also found to increase when using the RGB camera and finer image resolution 
while NIR camera and coarser resolution decreased model accuracy. Moreover, the 
authors suggested a reduction of side overlap from 80 to 70%, while keeping a fixed 
forward overlap of 90% or reducing flight time and cost of acquisitions [6]. The study 
of [5] that examined the effects of differences in SfM software on image processing 
of UAS images for tree height estimation revealed differences in the accuracy of the 
estimated tree heights by Pix4Dmapper, Terra Mapper, and Agisoft Photoscan, with 
the estimates by Pix4D in many flight conditions having smaller Root Mean Square 
Error (RMSE) values than those of the other software. In [10], Agisoft Photoscan 
generated higher quality SfM-MVS outputs, i.e., 11.8% greater image alignment and 
9.9% finer resolution than Pix4Dmapper. 

From these cited studies, there is no consensus on the specific flight planning 
characteristics, software, and processing parameter settings that must be adopted 
when conducting UAS image acquisitions and applying the SfM-MVS approach 
for forestry applications. Fraser and Congalton [10] noted that successful SfM 
modelling and generation of data products from UAS collected imagery requires 
diligent consideration of fundamental flight planning characteristics. Since unifying 
the flight parameters when capturing UAS images is difficult [5], there is a need to 
evaluate the influence of the flight and camera configurations when estimating forest 
attributes from UAS products [6]. This continued understanding of the influence of 
flight planning and processing characteristics on the quality and usability of UAS 
data products is crucial for minimizing costs and maximizing the output potential 
of UAS for forestry applications [10]. More so in the case of low-cost commercial 
off-the-shelf UAS that has penetrated the UAS market, offering forest plantation 
managers affordable access to UAS technology for plantation monitoring and inven-
torying activities. Several studies have established the utility of low-cost UAS in 
this application area, e.g., [7, 11–13]. However, most of these studies are species-
and location-specific, utilized different UAS brands/models, and applied different 
photogrammetric processing and information extraction procedures. Therefore, the 
flight plans, image acquisition configurations, and processing steps that have been 
proven effective by these studies may differ when applied under different settings 
and field conditions. In the Philippines, particularly in the Caraga Region, where 
industrial tree plantations support more than 50% of the country’s total log produc-
tion [14], low-cost UAS is attractive to support plantation management activities, 
particularly tree inventorying. To our knowledge, there is a lack of studies that can
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support the use of low-cost UAS for such purposes. Determining the best flight plan-
ning parameters for image acquisition and how these parameters could affect the 
quality and usability of data products generated from the low-cost UAS images are 
some research problems that need investigation. 

Hence, this study was conducted to evaluate the use of a low-cost UAS, specif-
ically Mavic 2 Pro (DJI, China), in acquiring images for the generation of data 
products useful for mapping and inventorying a tree plantation forest in the Philip-
pines. Specifically, we analyzed the effects of various combinations of two flight 
planning parameters, namely flying above terrain (altitude) and percentage overlaps, 
on the quality of UAS photogrammetry data products and their degree of usability for 
tree crown delineation in plantation forests. We aimed to quantify the effects of four 
(4) flying heights (60, 80, 100, and 120 m above ground) and four forward (front) 
overlap and sidelap percentages (60, 70, 80, and 90% set for each flying height) to the 
completeness of DSM and orthomosaics generated using the SfM-MVS approach. 
We focused on evaluating the completeness of DSM and orthomosaic, and not the 3D 
point cloud, for the main reason that both the DSM and orthomosaic are commonly 
used inputs for tree crown delineations. We also aimed to quantify how the degree 
of completeness affects the accuracy of a tree crown delineation algorithm applied 
to the various DSMs generated. We also considered the effects of other factors on 
tree crown delineation accuracy. 

2 Materials and Methods 

2.1 Study Area 

The study area is within the Caraga State University campus in Butuan City, Agusan 
del Norte, Philippines. It has a dimension of 364 × 175 m, with an area of 6.37 
hectares (Fig. 1). The terrain is generally flat and planted with Mangium (Acacia 
mangium Willd.) and Mahogany (Swietenia macrophylla King spp.) trees, which are 
approximately 10–12 years old. These tree species are common in plantation forests 
in the Philippines. In the study area, rice fields surround the tree plantations.

2.2 UAS Flight Planning and Image Acquisitions 

We used a Mavic 2 Pro (DJI China) UAS equipped with a Hasselblad L1D-20c 
RGB camera, a 1-inch CMOS sensor, and a remote controller. The camera lens’ 
focal length is 10.26 mm, and the images acquired have dimensions of 5472 × 3648 
pixels. A mobile phone camera with the Android operating system was connected to 
the remote controller for flight planning and acquisition.



Effects of Flight Plan Parameters on the Quality and Usability … 247

Fig. 1 a Location of the study area; b a portion of the study area containing Mangium trees that were 
considered for tree crown delineation; c a Google Earth image of the study area (in red rectangle) 
with the rice fields surrounding it
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The free edition of DroneDeploy (https://www.dronedeploy.com/) was used to 
prepare a total of 16 standard (single grid-type) flight plans, each plan having 
a specific combination of flying height and percentage overlaps (Table 1). Since 
DroneDeploy already included the Mavic 2 Pro camera in its list of planning cameras, 
it was selected accordingly and no other parameters were changed except for the 
flying heights, overlap percentages, and flight direction. The flying heights consid-
ered are 60, 80, 100, and 120 m above ground. Forward overlap and side lap percent-
ages were set the same, with values of 60%, 70%, 80% and 90%. These values 
were chosen so that the acquired images will have varying characteristics in scale, 
GSD, and ground coverage. We limit the flying height to 120 m to comply with the 
flying height limitations for non-commercial UAS flights imposed by the Civil Avia-
tion Authority of the Philippines. Also, flight plans were prepared such that vertical 
images will be acquired. 

The flight direction was set to 169° in all flight plans, which is the same direction 
as the longer dimension of the study site. This minimized the number of flight lines. 
Image acquisitions were done repetitively based on the prepared flight plans. The 
images were acquired on sunny days from July 15 to July 24, 2020, between 10 am 
to 2 pm to minimize the effect of shadows. 

2.3 Processing of UAS Images 

Images acquired for each flight plan were processed using Agisoft Metashape Profes-
sional Version 1.5 (Agisoft LLC, Russia) in a Windows 10 virtual machine configured 
using VMWare ESXi with the following technical specifications and components: 
Intel Xeon, 2.10 GHz, 64 cores; 75 GB RAM; and NVIDIA Tesla V100 graphical 
processing unit (GPU) with 32 GB memory. 

The SfM-MVS steps implemented in Agisoft Metashape consist of (i) alignment 
of photos (images) to generate a sparse point cloud composed of tie points, (ii) 
building a dense point cloud, and (iii) building a DEM, wherein a DSM is generated 
using the dense point cloud, and (iv) building an orthomosaic. These steps comprise 
the general workflow for image processing in Agisoft Metashape. The settings used 
in each step are summarized in Table 2. More details about each step can be found 
in the user manual [15].

The “Build DEM” and “Build Orthomosaic” procedures were run twice. In the first 
run, interpolation andhole filling were initially disabled, respectively, to generate a 
DSM and orthomosaic that will be used for quantitative analysis of data completeness. 
This will ensure that the DSM and orthomosaic will not include interpolated data. It 
means that the output DSM and orthomosaic will only contain valid pixel values in 
portions with sparse and dense point clouds, i.e., in portions where the SfM-MVS 
procedure succeeded. 

A second run was performed, this time enabling DSM interpolation and ortho-
mosaic hole filling. The output DSMs from the second run for each flight plan were

https://www.dronedeploy.com/
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Table 1 Summary of image acquisition parameters per flight plan 

Flight plan No Flying height 
above ground 
(m) 

Side and front 
overlaps (%) 

Estimated 
number of 
images 

Estimated 
total flying 
time 

Mapping 
flight speed 
(m/s) 

FP1 60 60 140 7 min  06  s 8 

FP2 60 70 240 12 min 49 s 6 

FP3 60 80 520 25 min 25 s 4 

FP4 60 90 2002 89 min 53 s 3 

FP5 80 60 75 5 min  28  s 11 

FP6 80 70 140 8 min  34  s 8 

FP7 80 80 300 16 min 48 s 5 

FP8 80 90 1141 53 min 02 s 3 

FP9 100 60 47 4 min  32  s 13 

FP10 100 70 79 6 min  04  s 10 

FP11 100 80 190 11 min 16 s 7 

FP12 100 90 712 38 min 03 s 3 

FP13 120 60 40 4 min  33  s 15 

FP14 120 70 66 5 min  46  s 12 

FP15 120 80 138 9 min  14  s 8 

FP16 120 90 514 26 min 16 s 3

then used for tree crown delineations. For both runs, the GSD of the orthomosaic 
was set to that of the DSM. 

2.4 Quantitative Analysis of Data Completeness 

The completeness of each of the 16 sets of DSMs and orthomosaic generated during 
the 1st run was analyzed by determining the proportion of the pixels with data and 
pixels with “no data” within the boundary of the study area (Fig. 2). The “no data” 
pixels are those portions of the DSM that have no equivalent data points in the dense 
point cloud, i.e., where tie point generation (during photo alignment) and dense 
matching failed. These “no data” portions will have interpolated values in the 2nd 
run, i.e., when DSM interpolation and orthomosaics hole-filling were enabled.

To perform the analysis, the raster files were clipped in ArcGIS 10.8 software 
(Esri, USA) with a common polygon shapefile of the study area boundary. The 
number of “with data” and “no data pixels” within the study area were determined 
through map algebra using ArcGIS Spatial Analyst extension. The completeness of 
each product was calculated by getting the percentage of the “with data” pixels to 
all pixels within the study area (“with data” pixels + “no data” pixels).
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Fig. 2 Illustration of “with data” and “no data” pixels for the quantitative analysis of DSM 
completeness

2.5 Tree Crown Delineation 

A portion of the study area containing 263 Mangium trees (Fig. 1b) was chosen for 
tree crown delineation. The output DSMs from the second run for this portion were 
subjected to tree crown delineation using a multiresolution segmentation algorithm 
in eCognition Version 9 software (Trimble Inc., USA). This algorithm performs a 
bottom-up segmentation (i.e., assembling objects to create larger objects) by consec-
utively merging pixels or existing image objects using a homogeneity criterion [16]. 
Moreover, it involves a combination of spectral and spatial heterogeneity of tree 
crowns for hierarchical region merging [17]. This algorithm utilizes a scale param-
eter and composites of homogeneity criterion (i.e., shape and compactness). The scale 
parameter is for determining the segment size; shape calculates a relative weighing 
against colour; compactness defines whether the smoothness affects the segmenta-
tion [18]. The optimum values and combination of the parameters were determined 
through a trial-and-error process using the Flight Plan 16 DSM 2nd run output. After 
trial and error, it was decided that the data products will be segmented with scale 
parameters, shape, and compactness of 90, 0.35, and 0.8, respectively. 

To assess the accuracy of the delineation, individual tree crowns were manually 
delineated through visual interpretation of the FP 16 DSM and orthomosaic outputs. 
Before the delineation, a field survey was conducted to map the location of each tree 
within the study area. A Garmin Oregon 550 handheld GNSS receiver with positional 
accuracy of ± 5 m was used to get the average UTM 51 WGS 84 grid coordinates 
of each tree. For each tree, 2–3 min of observation time was devoted to getting the 
average coordinates. The tree location data (263 trees) was downloaded from the
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GNSS receiver and exported as a GIS point shapefile. It was then overlaid to the 
DSM and orthomosaic in ArcGIS to guide the visual interpretation and on-screen 
digitizing of the tree crowns. Due to the differences in positional accuracy of the tree 
location data and the UAS data products, some of the tree points will not fall in the 
middle of the tree crowns. However, most of them are within their corresponding 
tree crowns, making the manual delineation relatively easier. 

The delineated tree crowns, in GIS shapefile format, were used for comparison 
with the multiresolution segmentation results (Fig. 3). Five categories (Table 3) were  
used in assessing the accuracy of the tree crown delineations, with each category 
indicated by the spatial relationship of the manually delineated crowns with the 
automatically delineated crowns [19]. Matched and nearly matched were taken as 
correctly delineated tree crowns. Missed and merged corresponds to the omission 
errors and the split represents the commission errors. Below are the equations used 
in calculating these accuracy measures:

Tree  Crown Delineation Accuracy = Matched  + Nearly  Matched  

T otal N umber o f Actual T ree Crowns 

Commission  Error  = Spli t  

T otal N umber o f Actual T ree Crowns 

Omission  Error  = Missed + Merged  

T otal N umber o f Actual T ree Crowns 

Pearson’s correlation coefficients were also used to explain and measure the 
strength and direction of the relationship between flight plan parameters, GSD, 
camera location errors, and data completeness to the tree crown delineation accuracy.

3 Results and Discussion 

3.1 Characteristics of Acquired and Processed Images 

The characteristics of the acquired and processed images are presented in Table 4. 
The FP4, with 60 m flying height (FH) and 90% overlaps, has the highest number 
of acquired images at 1,836; the FP13 (120 m FH and 60% overlaps) has the least 
number of images at 45. At any given percentage of the image overlaps, increasing 
flying heights leads to a lesser number of images; while a 10% increase in percentage 
overlaps at any given flying height almost doubles or triples the number of images 
acquired (Fig. 4a). While these results are expected for any UAS image acquisition 
activity, it can provide us with a clear understanding of the relationship between 
flying height and percentage overlaps. In large tree plantations, flying higher would 
be cost efficient because fewer images will need to be acquired to cover the whole
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Table 2 Agisoft metashape settings 

Step Parameters/Settings 

Align photos Accuracy High 

Generic preselection Checked 

Reference preselection Checked 

Reset current alignment Unchecked 

Key point limit 40,000 

Tie point limit 5,000 

Apply masks to None 

Adoptive camera modelling fitting Unchecked 

Build dense cloud Quality High 

Depth filtering Mild 

Reuse depth maps Unchecked 

Calculate point colours Checked 

Calculate point confidence Unchecked 

Build DEM Projection WGS 84/UTM Zone 51 N 
(EPSG:32,651) 

Source data Dense cloud 

Interpolation Disabled (for 1st run); Enabled 
(for 2nd run) 

Setup boundaries Unchecked 

Build orthomosaic Surface DEM 

Building mode Mosaic (default) 

Refine seamlines Unchecked 

Enable hole-filling Unchecked (for 1st run); Checked 
(for 2nd run) 

GSD (Pixel size, m.) (same as used in Build DEM)

plantation area compared to flying lower. Flying higher with lesser percentage over-
laps will further decrease the number of images to be acquired (and hence, the flying 
time), resulting in a decrease in image acquisition and processing costs. However, 
flying higher or lower without the appropriate percentage overlaps can lead to image 
alignment problems when the images are subjected to the SfM-MVS processing.

In terms of the percentage of the acquired images that were successfully aligned 
during the first step of the SfM-MVS process, it was found that images acquired with 
at least 80 m of flying height and at least 80% image overlaps have more than 90% 
alignment success rate (Fig. 4b). This means that more than 90% of the acquired 
images were successfully tied (matched) with each other using keypoints that were 
identified in those images. With a sufficient number of images and keypoint matches, 
the SfM algorithm can perform bundle adjustments to simultaneously compute the 
3D location of the camera stations and generate a sparse 3D point cloud [9]. This



Effects of Flight Plan Parameters on the Quality and Usability … 253

Fig. 3 Illustration of the categories used in accuracy assessment of tree crown delineations. The 
manually delineated crowns (white outline) are overlaid with the automatically delineated crowns 
(red outline): a matched; b nearly matched; c split; d merged

Table 3 Categories and its description used in the accuracy assessment of tree crown delineations 
(adopted from [19]) 

Category Description 

Matched If the manually delineated crown and automatically delineated crown has more 
than 50% overlaps 

Nearly matched If the manually delineated crown and automatically delineated crown has more 
than 50% overlaps of only one segment 

Merged If there were multiple manually delineated crowns in an automatically-
delineated crown 

Split If there were multiple automatically delineated crowns in the manually 
delineated crown 

Missed If 50% of the manually delineated crown has no overlaps with automatically 
delineated crowns
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Fig. 4 Bubble graphs for the visualization of characteristics of acquired and processed UAS images 
concerning flying height above ground and image overlaps. The labels correspond to the parameter 
indicated in each graph

result suggests that image acquisition with these minimum flight configurations is 
cost-effective because it can acquire a higher number of usable images for UAS data 
product generation. Images obtained with 60% overlaps, particularly those acquired 
from 60 to 100 m flying heights, are the most prone to lower alignment percentages 
and must be avoided. Images acquired with 90% overlaps regardless of the flying 
height have100% alignment. The same can be stated for images acquired at 120 m 
flying height, irrespective of the percentage overlaps. 

On the other hand, the bundle adjustments resulted in average camera location 
error ranging from 1.07 m to 3.81 m along the horizontal (XY), and from 0.73 m to 
3.19 m along the vertical (Z) (Fig. 4c, d). The camera XY location errors depend on 
the flying height and percentage overlaps. XY location errors are the least for images 
acquired with 90% overlaps. In general, an increase in flying height combined with a 
decrease in percentage overlaps resulted in a rise in the XY location errors. However, 
the same cannot be said for the Z location errors. The largest error is 3.19 m for images 
acquired at 100 m flying height and 70% overlaps. These camera location errors can 
be said to have been affected by the quality of the image alignment process, as well 
as the quantity and distribution of the generated key points. It can be recalled that the 
SfM algorithm relies on the generated key points to perform bundle adjustments for
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estimating the camera locations. It should also be noted that the UAS used in the image 
acquisition is equipped with a built-in GNSS receiver that is not survey-grade and 
did not benefit from Post-processed Kinematic (PPK) or Real-time Kinematic (RTK) 
positioning. This resulted in less precise and less accurate coordinates of the camera 
locations recorded during the image acquisitions, which were complementarily used 
and optimized during the bundle adjustments [9]. 

3.2 GSD and Completeness of the DSMs and Orthomosaics 

Images acquired at lower altitudes resulted in DSM and orthomosaics with smaller 
GSD values (Table 5, Fig.  9a). Hence, they are of higher spatial resolution. The 
smallest GSD of 2.65 cm was found for images acquired at a flying height of 60 m 
and 90% overlaps; the largest GSD was for images acquired at 120 m, and 60% 
overlaps. The average GSDs were computed as 2.86, 3.78, 4.90, and 5.85 cm/pixel, 
respectively, for flying heights of 60 m, 80 m, 100 m, and 120 m. It also shows that 
images acquired at 60 m and 80 m flying heights can produce data products with 
relatively small differences in GSD. The same can be observed for images acquired 
at 100 m and 120 m flying heights.

Shown in Figs. 5, 6, 7, and 8 are example outputs of the first run of DSM and 
orthomosaic generation procedures. By disabling DSM interpolation and orthomo-
saic hole-filling, the outputs clearly show where and how much the information can be 
provided by the data products and can be useable for tree crown delineation and other 
purposes. The location of missing data/information is also obvious in the resulting 
DSM maps which can inform the user of the limitations of the data products.

The DSM and orthomosaics derived using images acquired at percentage overlap 
greater than or equal to 80% have a higher percentage of completeness (Fig. 9b). 
The completeness ranges from 69.96% (60 m FH, 80% overlap) to 98.89% (120 m 
FH, 90% overlap). Images acquired at 60 m flying height and 60% overlap has the 
least percentage completeness at 23.76%. It can also be observed that there is a 
considerable increase in percentage completeness of products as the flying height 
increases (e.g., specifically for those images acquired at 60% and 70% image over-
laps). However, the same cannot be stated for images acquired at 90% image overlaps. 
As far as the flight plan parameters considered in this study are concerned, it appears 
that a higher percentage of completeness was guaranteed with 90% image overlap 
regardless of the flying height. Nonetheless, 100% completeness was not achieved. 

These results imply that the UAS data products generated through the SfM-MVS 
workflow will have missing data which needs to be interpolated or hole-filled to 
generate seamless DSMs and orthomosaics. Images acquired at 60% overlaps are 
the most prone to produce data products with the most missing data (i.e., less than 
50%, especially if the flying height is set from 60 to 100 m above ground. The most 
practical configuration is to choose at least 100 m flying height with at least 80% 
overlap to ensure more than 90% data completeness.
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Table 5 Summary of GSD and data completeness 

Flight 
plan No. 

Flying 
height 
above 
ground 
(m) 

Side and 
front 
overlaps 
(%) 

DSM and 
orthomosaic 
ground 
sample 
distance, 
cm/pixel 

Total number 
of pixels 
within the 
study area 

Number of 
pixels with 
data only 

Data 
completeness 
(%) 

FP1 60 60 2.97 71,792,673 17,061,197 23.76 

FP2 60 70 2.92 74,199,747 29,902,491 40.30 

FP3 60 80 2.90 75,416,957 52,762,278 69.96 

FP4 60 90 2.65 90,429,036 85,790,169 94.87 

FP5 80 60 3.96 40,411,847 12,143,596 30.05 

FP6 80 70 3.87 42,409,467 28,151,289 66.38 

FP7 80 80 3.74 45,516,418 40,896,168 89.85 

FP8 80 90 3.53 50,850,023 49,287,430 96.93 

FP9 100 60 5.00 25,402,882 8,799,226 34.64 

FP10 100 70 5.16 23,863,651 15,252,614 63.92 

FP11 100 80 4.87 18,905,354 18,001,667 95.22 

FP12 100 90 4.56 30,540,923 30,119,157 98.62 

FP13 120 60 6.04 17,406,415 9,518,051 54.68 

FP14 120 70 5.97 17,820,712 14,749,939 82.77 

FP15 120 80 5.79 18,905,353 18,000,177 95.21 

FP16 120 90 5.60 20,237,898 20,013,634 98.89

3.3 Delineated Tree Crowns 

Figures 10, 11, and 12 show some of the results of the tree crown delineations using 
multiresolution segmentation. Tree crowns delineations in DSMs generated using 
UAS images acquired at the highest-flying height (120 m), and image overlaps of 
80% and 90% gained the highest overall accuracy of 43.35% (Table 6). A 31.18% 
accuracy was obtained for delineations performed in a DSM generated using images 
acquired at 100 m flying height and 90% image overlaps. On the other hand, accu-
racies were lowest for delineations in DSMs generated using images acquired at 
60 m flying height and irrespective of percentage image overlaps, with omission 
errors ranging from 60.46% to as high as 97.34%. It is also evident that missed 
crowns are most dominant for this flight plan configuration, which would suggest 
that such configuration shall be avoided as far as the generation of DSM for crown 
delineation purposes is concerned. Low accuracies were obtained for 60 and 80 m 
altitudes regardless of the percentage overlap, primarily due to missed and merged 
tree crowns. Moreover, no missed tree crowns in DSMs generated using images 
acquired at 100 m and 120 m flying height with at least 80% overlap. This would 
indicate that these DSMs are useful for tree crown delineation—it is only that the
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Fig. 5 Digital Surface Models (DSMs) generated from UAS images acquired at a flying height of 
60 m above ground (interpolation disabled). White areas indicate missing data 

Fig. 6 Digital Surface Models (DSMs) generated from UAS images acquired at a flying height of 
120 m above ground (interpolation disabled). White areas indicate missing data
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Fig. 7 Orthomosaics generated from UAS images acquired at a flying height of 60 m above ground 
(hole-filling disabled). White areas indicate missing data 

Fig. 8 Orthomosaics generated from UAS images acquired at a flying height of 120 m above 
ground (hole-filling disabled). White areas indicate missing data
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Fig. 9 GSD and completeness of the generated UAS data products

selected multiresolution segmentation parameters may not be optimal for accurate 
delineations. Tree crown delineations using DSMs generated at 120 m flying heights 
performed better in matched and nearly matched tree crowns. The accuracy values 
increased as percentage overlaps rose from 70 to 90%. This result conforms to that 
of [11] where they were able to generally maximize the accuracy of tree detection 
and the resulting treemaps by collecting images at higher flying height (120 m) with 
at least 90% overlaps.

Several factors may have contributed to the low accuracies of the tree crown 
delineation. A significant contributor would be the completeness of the DSM used 
in the delineations. It was obvious that DSMs with lower percentage completeness 
obtained the lowest accuracies. Increasing the percentage completeness tends to 
increase the accuracy, as supported by a positive Pearson’s correlation coefficient (r) 
of 0.66 (Table 7). However, the flying height above ground and DSM GSD have the 
more direct linear relationships with tree crown delineation accuracy, with r values of 
0.76 and 0.68, respectively. This would indicate that generating a DSM using images 
acquired at higher flying height (higher GSD) would provide better accuracy.

The relationship between accuracy and image overlaps is not as strong as the 
previously mentioned variables. Camera location errors are inversely proportional 
to crown delineation accuracy, but the relationship between the two is weak. From 
these results, the most suitable configuration is to choose at least 120 m flying height 
with at least 80% overlap to ensure better accuracy in tree crown delineations. 

On the methodology side, the crown delineation approach adopted in the study 
may have also impacted the accuracy of the delineations. Optimization of the 
multiresolution segmentation parameters would significantly improve the accuracy 
of the delineations, particularly for DSMs generated using images acquired at flying 
heights of 100 m or higher with at least 90% overlap.
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Fig. 10 Tree crowns delineated through multiresolution segmentation of a DSM derived using 
UAS images acquired at a flying height of 60 m above ground (hole-filling enabled). White areas 
indicate missing data

4 Summary and Conclusions 

In this study, the effects of various combinations of two flight planning parameters, 
namely flying height above ground and percentage overlaps, on the quality of low-
cost UAS photogrammetry data products, and their degree of usability for tree crown 
delineation in a Mangium plantation forest in the Philippines, were analyzed. UAS 
images were acquired using a Mavic 2 Pro UAS at four flying heights (60, 80, 100, 
and 120 m above ground) and four forward overlap and sidelap percentages (60, 70, 
80 and 90% set for each flying height) were subjected to SfM-MVS processing to 
generate DSMs and orthomosaics. The quality of the products was evaluated based 
on their completeness and the accuracy of tree crown delineations. Significant results 
showed that the percentage of completeness of the DSM and orthomosaic increases 
as the altitude and percentage overlap both increases. More than 90% completeness 
was achieved for 90% overlap regardless of the flying height, with minor differences 
between them. A slightly similar value was achieved for 100 and 120 m altitude 
with 80% overlap. In terms of tree crown delineation, the highest overall accu-
racy of 43.35% was achieved for delineations performed in DSMs generated from 
images acquired at a flying height of 120 m and percentage overlaps of 80 and 90%.
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Fig. 11 Tree crowns delineated through multiresolution segmentation of DSM-derived UAS 
images acquired at a flying height of 120 m above ground (hole-filling enabled)

While obtaining a 43.35% highest overall accuracy in tree crown delineation is not 
impressive, the results reveal that better accuracy can be obtained from DSMs with 
higher percentage completeness. Specifically, those that were generated using images 
acquired at 120 m with a minimum percentage overlap of 80%. 

The study’s main conclusion is that at least 120 m flying height and at least 80% 
overlap must be aimed when acquiring images. It will ensure higher completeness 
of the UAS data products and help obtain more accurate tree crown delineations 
for Mangium plantation forests. While the study area is small and the tree crown 
delineation approach and analysis are simplistic, this study has attempted to provide 
a means to unify flight parameters when acquiring UAS images to generate products 
to estimate Mangium plantation forest attributes. It also contributed to the continued 
understanding of the influence of flight planning on UAS data quality which is essen-
tial to consider when minimizing costs and maximizing the potential of UAS for 
forestry applications. With the study results, it is hoped that low-cost UAS will 
become more attractive to support plantation management activities, particularly 
tree inventorying, in the Philippines.
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Fig. 12 Comparison of manually delineated and multiresolution segmentation-delineated tree 
crowns from DSMs generated at varying flying heights above ground and percentage overlaps
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Table 7 Pearson’s 
correlation coefficients (r) 
between tree crown 
delineation accuracy, flight 
plan parameters, and image 
processing results 

Variable Pearson’s r 

Accuracy Omission error Commission 
error 

Flying height 
above ground 
(m) 

0.76 −0.71 0.42 

Side and front 
overlaps (%) 

0.49 −0.44 0.24 

Camera location 
X error (m) 

−0.18 0.04 0.06 

Camera location 
Y error (m) 

−0.10 0.07 −0.02 

Camera location 
Z error (m) 

−0.32 0.30 −0.19 

Camera location 
XY error (m) 

−0.18 0.05 0.06 

Camera location 
Total error (m) 

−0.27 0.14 0.01 

DSM GSD 
(cm/pixel) 

0.68 −0.63 0.38 

DSM 
completeness 
(%) 

0.66 −0.72 0.51
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The Segmentation of Drone Image 
derived 3D Point Cloud Using 
a Combination of RANSAC, DBSCAN 
and Clustering Methods 

Puyam S. Singh, Iainehborlang M. Nongsiej, and Valarie Marboh 

Abstract The 3D Point cloud derived especially from drone-derived images is 
highly unstructured, redundant and has varied density. These point clouds need to 
be segmented and classified into different groups representing similar characteristics 
in the scene presented which is a challenging task especially when the 3D scene 
contains a mix of varied man-made or unstructured natural scenes such as vegetation 
etc. Successful operation of such technology will lead to a wide variety of remote 
sensing, computer vision and robotics applications. In this paper, we have used a 
hybrid approach for effective segmentation of the point cloud. The combination of 
RANSAC, DBSCAN and Euclidean method of Cluster Extraction proved to be useful 
for precise segmentation and classification of the point cloud. 

Keywords 3D point cloud · Segmentation · Clustering, DBSCAN, RANSAC 

1 Introduction 

Point clouds represent our world objects in a three-dimensional space. Each of these 
points has X, Y and Z coordinates. The drone imaging system could be deployed to 
rapidly collect the images and use them to generate the point clouds by the process 
of feature detection and matching the images. The processes such as Structure-from-
Motion, Multi-View-Stereo and dense matching can use these highly overlapped 
images and generate a high-quality dense 3D point cloud. We used these techniques 
to get dense point clouds from the drone images collected by us. As compared to 
3D point clouds captured by laser-based scanners such as LiDAR, the image-based 
derived point clouds such as this, have point clouds which are highly unstructured 
with no fixed scan positions as these images are taken from different locations and
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viewpoints. The 3D point clouds captured have lots of redundant points which need 
to be decimated for better analysis of speed and with less memory consumption. 
Further, every 3D point has limited attributes with no classification information 
making segmentation a challenging task. 

Accurate segmentation and classification of these point clouds will benefit many 
applications from general geospatial analysis to sophisticated vision-based appli-
cations such as robotics. There are many segmentation techniques for point cloud 
segmentation but the majority of the methods focus on laser scanned derived point 
clouds. The limited available methods work on the common basis of grouping the 
point clouds with similar structures representing the objects in the scene. These types 
of segmentation lack semantic information as no prior knowledge is applied in the 
process. On the other hand, the newer methods with deep learning based require 
huge 3D point datasets and are compute intensive. The hybrid approach by lever-
aging a combination of known methods of RANSAC, DBSCAN and Euclidean-
based cluster extraction in an inter-dependent way does give good results. These 
model fitting methods work well to accurately detect shapes and segment the point 
clouds although the output does suffer when the 3D points are noisy with outliers, 
occlusions and more complex scenes with mixed objects. 

2 Materials and Methods 

The Zenmuse X3-FC350 camera with a focal length of 4 mm having an effective 
resolution of 12.4 megapixels fitted on T600 DJI inspire series drone was used to 
capture about 120 images giving a maximum image size of 4000 × 3000. We ensured 
at least 75% image overlapping. This helped us in getting repeated robust feature 
points in each image pair and matching these feature key points to generate a denser 
point cloud (Figs. 1 and 2). 

For our experimentation, we took a subset of data stored in a LAZ file format 
having 7,38,583 points with X, Y, Z and R, G, and B attributes. The derived point cloud 
data having a mix of both the artificial building structure and vegetation structure 
is noisy, sparse, and unorganized. The sampling density of points is also uneven 
due to the varying nature of linear and angular rates of the scanner during data

Fig. 1 Dense point cloud 
generated
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Fig. 2 Point cloud with 
different surface features

acquisition. In addition, the surface shape is arbitrary with sharp features with no 
statistical distribution pattern in the data. These problems present a difficult challenge 
when designing a segmentation algorithm. The use of deep learning methods such as 
semantic segmentation involves the usage of highly sized datasets. To overcome all 
these, a classical hybrid method of segmentation is used for our image-derived point 
cloud to obtain a more precise output for all the object instances present in the point 
cloud. The combination of model-based fitting algorithms such as RANSAC and 
clustering was adopted for the hierarchical grouping of these points and labels. This 
technique is robust to outliers and noise present in the data [1]. RANSAC is good for 
picking up a group of points having geometric primitives such as lines and circles 
present in the scene but fails to group other unstructured point clouds representing 
the trees and irregular structure [2–5]. Therefore, combining these two approaches 
can effectively segment all kinds of surface structures present within the point cloud. 

The process of segmentation starts by initially applying the RANSAC algorithm 
with a planar model and segmenting all the points that lie on the homogenous plane. 
We then subtract the first output of RANSAC and the rest of the dataset is fed 
to a separate DBSCAN clustering algorithm. DBSCAN is good for clustering and 
grouping point with variable point cloud density [6]. This method proved to be more 
effective for 3D points with a higher altitude (Z) value relative to all other remaining 
points in the cloud but within each cluster of similar density. The DBSCAN-based 
segmented point clouds are further fine-tuned by applying the Euclidean Cluster 
Extraction algorithm in the third and final step. A brief diagram of the methodology 
is shown in Fig. 3.

3 Results and Discussions 

3.1 Segmentation Using RANSAC 

To obtain a planar model of our point cloud, we used RANSAC [7] which is a plane 
fitting method, that detects planes in point cloud data robustly. This method was 
considered in our approach because of its capability to segment all planar points 
present in the input 3D point cloud. All such segmented cloud is labelled as ‘ground’
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Fig. 3 A multi-hierarchical 3D point cloud segmentation

since only points with a relatively lower altitude (Z) value are considered as points 
representing the ground. Further, it filters out all non-ground points which can then be 
used as input into DBSCAN. Therefore, the outliers that RANSAC detects become 
the input points for DBSCAN. This way, the RANSAC method finds the largest 
set of points that fit a plane. RANSAC randomly selects three points from the data 
and calculates the parameters of the corresponding plane, after that tries to enlarge 
the plane according to a given distance threshold [8]. Any deviation in the point 
cloud from the defined threshold distance is treated as outliers. The plane is having 
a maximum number of inliers stored and segmented from the rest of the cloud. The 
process is repeated many times. The plane equation for our point cloud data can be 
defined as: 

−0.02x + −0.00y + 1.00z + −816.03 = 0, (the distance threshold = 1.1) (1) 

The resultant segmentation produces a point cloud of 402,563 points, containing 
the inliers i.e., those points that lie on the same ground plane. As evident from Fig. 4, 
we observed the efficacy of RANSAC, where all the planar points present in our point 
cloud, that are lying on the same plane are being segmented. This process proves to 
be effective when segmenting the grounded points which may or may not contain 
vegetation. However other structures such as buildings and bridges are not included 
in the segment. Further, the output depicts the efficiency of RANSAC whereby non-
ground points such as rivers or water streams, trees and buildings are segmented 
out. Additionally, some patches of vegetation, whereby points do not lie on the same 
plane are also segmented out. An advantage of RANSAC is its ability to do a robust 
estimation of the model parameters, i.e., it can estimate the parameters with a high
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Fig. 4 Planar ground points segmentation (right) from source point cloud (left) using RANSAC 

degree of accuracy even when a significant number of outliers are present in the point 
cloud. 

The building structures and water stream are segmented out with good precision. 
The RANSAC in conjunction with the planar model considers only neighbouring 
points which have a similar Z value in the X, Y, and Z coordinates of the point cloud. 
In other words, it leaves out all those points which have a relatively higher value for 
the Z coordinate. 

3.2 Segmentation Using DBSCAN 

For points that had a higher Z-value compared to other points on the plane in our point 
cloud data, the next step would be to segment them and obtain clusters, while keeping 
the planar points intact. For this process, we incorporated the Density-Based Spatial 
Clustering of Applications with noise (DBSCAN) algorithm [9]. The DBSCAN 
method needs at least two parameters: The minimum number of points minPts, and 
the searching radius ε. For our point cloud, we set ε = 1.9 and minPts = 500 to 
get a more favourable output of clusters. This implies that only those points which 
are within a 1.9 unit distance in the cloud are considered. Also, for points to be 
considered as a cluster, there must be at least 500 points in that cluster. Most patches 
of vegetation and trees were accurately clustered in our result, although building and 
roof structures were not in different clusters. The overall number of clusters that were 
generated was 30 and most of them clustered with relatively fewer points than some 
clusters. 

As depicted in Fig. 5, the noise points include most points that exhibit the object 
characteristics of trees, shrubs and some patches of vegetation. Also detected as 
noise, is a roof building structure and some cultivation area present in our point 
cloud. Therefore, segmenting these clusters is necessary and is undertaken by the 
next method presented in our approach, i.e., the Euclidean Cluster Extraction. The 
DBSCAN method proved to be a satisfactory approach to the segmentation of our 
point cloud data. With this algorithm, it is easy to detect clusters surrounded by 
different clusters. It is also robust towards outlier detection. However, it is sensitive 
to the clustering parameters, being ε and minPts. For our image-derived point cloud, 
the results of using DBSCAN are more accurate since the point cloud is dense since
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Fig. 5 Detected clusters. a Water stream cluster (23,153 points), b Building structures cluster 
(17,955 points), c Roof structure cluster (6,667 points), d Cultivated area cluster (46,725 points), e 
Trees/other vegetation clusters (13,925 points), f High slope cluster (117,651 points) 

DBSCAN does not work well with sparse datasets. Additionally, since DBSCAN 
is more applied to satellite and UAV imagery, it is reasonable and more suitable to 
apply the algorithm on our point cloud derived from UAV images. 

3.3 Euclidean Cluster Extraction 

The final step in our approach aims to find clusters which were not already detected 
by DBSCAN as different clusters themselves. With the Euclidean Cluster Extraction 
method, we can detect and segment individual object point clusters by finding the 
nearest neighbours of a point in our data [10, 11]. To get more numbers as well as 
meaningful clusters, we set the distance threshold = 0.02 i.e., 2 cm and we obtained 
more than 20 clusters. However, only two clusters were finally considered to be 
included in our segmentation. These are depicted in Fig. 6a, b. 

Fig. 6 a Roof structure cluster, b Roof structure cluster
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These sets of clusters were earlier detected as noise by the DBSCAN method. 
However, by using Euclidean Cluster Extraction, the segmentation process is further 
accurate in segmenting the points that represent these object characteristics that are 
present in our point cloud. The cluster depicted in Fig. 6a consists of 5,507 points 
which represent a roof structure. However, some points exhibiting tree characteristics 
were also included along with the structure. The cluster depicted in Fig. 6b consists 
of 1,799 points representing a roof structure. When we incorporated all the detected 
clusters, we obtained our final segmented point cloud which is depicted in Fig. 7. The  
method yielded satisfying results of clustering roof building structures which were 
not earlier detected by previous methods. However, it generates other clusters which 
may not prove to be useful, thus the resulting clusters must be manually selected 
for usage and segmentation. This method is very fast to build and is useful for 
situations where either a volumetric representation of the occupied space is needed. 
Although Euclidean Cluster Extraction is more widely used for processing point 
clouds obtained using LiDAR scanners, it still proves to be as useful for our image-
derived point cloud because our point cloud is just as dense as a LiDAR point cloud 
(Table 1). 

Fig. 7 Segmented point cloud 

Table 1 Table captions 
should be placed above the 
tables 

Segment Number of 3D points 

Ground 402,563 

Building structure 17,955 

Cultivated area 46,725 

Trees 13,925 

Slope 117,651 

Roof structure 13,973 

Water streams 23,153 

Noise/Unclassified 85,178



274 P. S. Singh et al.

3.4 Clustering Measure Assessment 

To further analyse the generated clusters, evaluation of how well the clustering has 
performed can be quantified. Ideal clustering is characterised by minimal intra-cluster 
distance and maximal inter-cluster distance. There are majorly two types of measures 
to assess the clustering performance: 

(i) Extrinsic Measures: These require ground truth labels. Examples are Fowlkes-
Mallows scores, Homogeneity, Completeness and V-measure. 

(ii) Intrinsic Measures: These do not require ground truth labels. Some of the 
clustering performance measures are Silhouette Coefficient, Calinski-Harabasz 
Index, Davies-Bouldin Index etc. 

Since no ground truth labels are available for our point cloud data, the Davies 
Bouldwin (DB) Index serves as a good measure as it does not require ground truth 
labels and can be used to evaluate the efficacy of the clusters [12]. This index signi-
fies the average similarity between clusters, where the similarity is a measure that 
compares the distance between clusters with the size of the clusters themselves. Zero 
is the lowest possible score. Values closer to zero indicate a better partition. 

The index is defined as the average similarity between each cluster Ci for i = 1, 
…, k and its most similar one Cj. In the context of this index, the similarity is defined 
as a measure Rij that trades off: 

• si, the average distance between each point of cluster i and the centroid of that 
cluster—also known as cluster diameter. 

• dij, the distance between cluster centroids i and j. 

A simple choice to construct Rij so that it is nonnegative and symmetric is: 

Ri j  = 
si + s j 
di j  

(2) 

Then the Davies-Bouldin index is defined as: 

DB  = 
1 

k 

k∑

i=1 

maxi /= j Ri j (3) 

DB Index values were calculated to primarily determine the optimal value of 
the eps (ε) of DBSCAN. First, the entire point cloud was processed using DBSCAN 
along with eps values ranging from 1.2 to 2.2. Any lower values resulted in 0 number 
of clusters and higher values resulted in higher DB Index values, both of which, are 
not ideal. This is depicted in Table 2.

Although the minimal value of the DB Index calculated is 1.14 however, the 
number of clusters generated is not sufficient. With a 1.9 eps value, however, the 
optimal number of clusters is achieved with a relatively minimal score for the DB 
Index. Table 2 is further represented as a graph in Fig. 8.
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Table 2 DBSCAN on the 
entire point cloud 

eps DB index Number of clusters 

1.2 1.14 2 

1.3 1.85 27 

1.4 1.89 73 

1.5 1.99 59 

1.6 2.2 42 

1.7 2.18 40 

1.8 2.32 40 

1.9 1.83 33 

2.0 1.92 26 

2.1 2.57 24 

2.2 3.71 21
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Fig. 8 Davies Bouldwin index for eps values of DBSCAN on entire point cloud 

Second, the DB Index score was calculated to precisely determine the optimal eps 
value and number of clusters generated by DBSCAN on the outlier point cloud of 
RANSAC. In other words, only those points that were not segmented by RANSAC 
as the ground points were considered as input to DBSCAN. Table 3 presents a listing 
of the eps values and their corresponding DB indexes that were calculated.

In both cases, we observed that the eps value is identical since both produce an 
optimal number of clusters and a relatively lower DB Index. However, the difference 
lies in their DB indices whereby, DBSCAN applied only on the point cloud that 
RANSAC detected as outliers, has a lower DB Index than that of DBSCAN on the 
entire cloud. This indicates a better performance of the former in terms of efficient 
clustering than the latter. The table is further represented as a graph in Fig. 9.

Finally, the performance of the entire process of RANSAC, DBSCAN and 
Euclidean Cluster Evaluation was evaluated in terms of the DB Index, several clusters 
and its execution time and is compared with DBSCAN(only) used on the entire point 
cloud, which is depicted in Table 4. Our approach offers better performance in terms 
of unsupervised clustering and processing of the point cloud data than DBSCAN 
alone.
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Table 3 DBSCAN on outlier 
point cloud of RANSAC 

eps DB index Number of clusters 

1.2 1.07 2 

1.3 2.69 12 

1.4 1.9 36 

1.5 1.81 43 

1.6 1.84 36 

1.7 1.76 38 

1.8 1.86 34 

1.9 1.47 30 

2.0 1.61 29 

2.1 1.72 28 

2.2 3.31 27
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Fig. 9 Davies Bouldwin index for eps values of DBSCAN on outlier point cloud of RANSAC

Table 4 Comparison table of DBSCAN and our approach 

Detail DBSCAN (only) RANSAC + DBSCAN + Euclidean cluster 
extraction 

Davies bouldwin index 1.83 1.76 

Execution time (s) 189.210074 34.245472 

Number of clusters 33 32 

The smaller the Davies-Bouldwin Index value, the better the clustering as it implies 
that the clusters are well separated, i.e., the distance between the cluster means is 
large. However, one drawback is that a good value reported by this method does 
not always imply the best information retrieval. But with no ground truth labels for 
unsupervised clustering, it is a powerful metric and is still widely used for measuring 
the accuracy of the clustering process.
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4 Conclusions 

The clustering algorithm such as DBSCAN is still widely used for finding meaningful 
clusters from satellite imagery. Our approach uses a purely mathematical model 
and geometric reasoning techniques such as RANSAC and DBSCAN, to segment 
our point cloud data. This approach allows fast running time and achieves good 
results in a simple scenario. The limitations of this approach are while determining 
which segment represents which object, sensitive to noise, and not working well in 
complex scenes with highly unstructured features. The reason is due to noise, uneven 
density, and occlusions in point cloud data leading to difficulty in finding and fitting 
complicated geometric primitives to objects. Although machine learning techniques 
give better results, they are usually slow and rely on the result of the feature extraction 
process. 

This study, therefore, presents a segmentation task for point clouds using a combi-
nation of a geometric-based method and clustering to obtain more specific segments 
present in the point cloud. Our approach to segmentation of point clouds is simple yet 
effective and the combination of different methods yields different segments that are 
present in our point cloud. Although some methods such as the DBSCAN produces 
small clusters that are just blobs of vegetation, the overall segmentation procedure is 
still applicable and useful. Euclidean Cluster Extraction yielded satisfying results of 
clustering grassy terrains and roof building structures which were not earlier detected 
by previous algorithms. 
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An Automated Process to Filter 
UAS-Based Point Clouds 

Volkan Yilmaz 

Abstract Digital Terrain Models (DTMs), which represent the topography of the 
bare Earth surface, are widely used in many geomatics applications. In parallel to 
the emergence of sophisticated Unmanned Aerial Systems (UASs) in recent years, 
they are produced from point clouds generated through aerial images taken from 
digital imaging systems mounted on UASs. The first and most important step of 
DTM production is to remove the points of the above-ground objects such as trees, 
buildings, bridges, etc. A great variety of point cloud filtering strategies have been 
developed so far. However, due to the irregularities in the topography of the Earth’s 
surface, all proposed approaches employ several user-defined parameters, which 
makes point cloud filtering dependent on the parameter values defined. Since complex 
topographies make it very hard to define some protocols to estimate the best param-
eter values, users usually have to try a large number of parameter values for optimal 
filtering performance, which is neither practical nor time-efficient. Hence, this study 
proposed to use the metaheuristic Whale Optimization Algorithm (WOA) to esti-
mate the parameters of a simple morphology-based (SMRF) point cloud filtering 
algorithm to improve its performance, automating the filtering process. The perfor-
mance of the proposed filtering methodology was compared not only against that of 
the standard SMRF algorithm but also against those of popular filtering algorithms 
Cloth Simulation Filtering (CSF) and Progressive TIN Densification (PTIN). The 
results showed that the proposed filtering methodology outperformed the PTIN and 
standard SMRF algorithms and presented a comparable performance with the CSF 
algorithm, which is one of the most robust point cloud filtering algorithms proposed 
to date. It can also be concluded that metaheuristic optimization algorithms can be 
used to automate the point cloud filtering process, minimizing the filtering errors 
caused by user intervention. 

Keywords Digital terrain modelling · Point cloud filtering · Metaheuristic 
optimization
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1 Introduction 

The International Organization for Standardization (ISO) defines geomatics as the 
“discipline concerned with the collection, distribution, storage, analysis, processing, 
presentation of geographic data or geographic information” [1]. Geomatics experts 
survey certain parts (s) of the Earth and the obtained spatial data is used to produce 
maps or plans that are used in various engineering applications. Conventional 
surveying techniques have been used to gather accurate spatial data for decades. 
However, these techniques require a sufficient amount of budget and manpower, 
especially for large-scale terrains. Another means of surveying the surface of the 
Earth is by using aerial photos taken from digital cameras mounted on Unmanned 
Aerial Systems (UASs). The advanced UASs developed in recent years provide 
spatial data with 3D position accuracy comparable to terrestrial measurements. Using 
such systems in geomatics applications also saves time, cost, and manpower in many 
cases. 

Producing 3D elevation models representing the topography of the surface of the 
Earth is one of the most common activities of geomatics experts. Two types of eleva-
tion models can be considered important in this regard, namely the Digital Surface 
Model (DSM) and Digital Terrain Model (DTM). A DSM comprises the elevation 
information of the ground surface together with the objects on it, whereas a DTM 
contains the elevation information of only the ground surface. Both of these elevation 
models can be produced through terrestrial measurement techniques. However, using 
UAS images for such a purpose enables the production of DSMs or DTMs with less 
cost in a shorter period. 

DTMs can be used for a wide range of purposes, including the estimation of tree 
heights [2], disaster monitoring [3], archaeological interpretation of terrain anomalies 
[4], landslide monitoring [5], biomass estimation [6], individual tree detection [7], 3D 
highway modeling [8], crown diameter estimation in urban forests [9], 3D modeling 
of historical remains [10] and so on. The most important step of DTM production 
from UAS-based point clouds is point cloud filtering, which refers to the removal 
of the points of the above-ground objects such as trees, buildings, bridges, etc. This 
is not an easy task in many cases, which is why a large number of point cloud 
filtering strategies have been proposed so far. However, due to the irregularities in 
the topography of the Earth’s surface, all point cloud filtering approaches employ 
several user-defined parameters, which makes point cloud filtering dependent on 
the parameter values defined. As observed easily, the topography of the surface of 
the Earth is mostly complex, which makes it hard to define the most appropriate 
parameter values for optimal point cloud filtering performance. In such cases, the 
analysts have to try different parameter values to find the best filtering result [11], 
which is not practical and takes a long time [12]. Hence, an automated process is 
needed to minimize the filtering errors caused as a result of incorrect parameter 
definition. This study aims to automate a Simple Morphology-Based (SMRF) [13] 
point cloud filtering algorithm by estimating its parameters through the metaheuristic 
Whale Optimization Algorithm (WOA) [14].
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2 Material and Methods 

2.1 Test Site and Data Used 

The proposed point cloud filtering methodology was applied in a test site located in 
the Fatih Egitim Faculty campus of Trabzon University, Trabzon, Turkey. The point 
cloud of the study area was produced from 261 aerial photos taken by a RICOH GR 
DIGITAL 4 (6 mm) digital camera mounted on a Gatewing × 100 UAS. The aerial 
photos were acquired within a flight conducted at an altitude of 160 m along fifteen 
flight lines. Both the forward and sideways overlap was set to 80% during the flight. 
A point cloud with a point density of 9 points/m2 was produced through the Structure 
from Motion (SfM) algorithm. The test site is shown in Fig. 1. The test site includes 
different complex-shaped buildings surrounded by trees, which can be seen in the 
figure.

2.2 Proposed Point Cloud Filtering Approach 

The proposed approach automates the SMRF algorithm using the metaheuristic WOA 
algorithm. The SMRF algorithm is based on the application of successive morpho-
logical opening operations against a DSM. The SMRF algorithm divides the point 
cloud into grids. Then, the points with minimum elevation are used to generate an 
initial minimum surface. The SMRF algorithm uses five parameters as; c, which is 
the cell size of the gridded surface; s, which refers to the maximum slope of the 
ground surface; t, which specifies the height threshold that refers to the maximum 
vertical distance a point can be above the possible ground surface once the opening 
process is completed; e, which defines the elevation scaling factor that scales the 
elevation considering the slope of the possible DSM generated after all non-ground 
points on the minimum surface are identified; and w, which defines the size of the 
window that applies opening operation [13, 15]. 

The parameters of the SMRF algorithm were optimized with the WOA algo-
rithm, which is a population-based optimization algorithm that simulates the hunting 
behavior of humpback whales [14]. Like many other population-based algorithms, 
the WOA algorithm starts with a set of random solutions for the problem at hand. 
These solutions are improved until a stopping criterion is achieved [16]. Let 

−→
Xb be the 

best candidate solution in the current iteration (i.e. generation), the WOA algorithm 
updates and improves the solutions by considering three rules [14, 17]: 

• Encircling the prey 

The position of a candidate solution 
−→
X (t + 1) is updated as [14]: 

−→
D =

∣
∣
∣
−→
C · −→Xb − −→X (t)

∣
∣
∣ (1)



282 V. Yilmaz

Fig. 1 Test site

−→
X (t + 1) =

∣
∣
∣
−→
Xb(t) − −→A · −→D

∣
∣
∣ (2) 

where, p ∈ [0, 1]. −→A and −→C are computed as; 

−→
A = ∣

∣2−→a · −→r − −→a ∣
∣ (3) 

−→
C = ∣

∣2 · −→r ∣
∣ (4) 

where, −→r is a random vector whose elements vary between 0 and 1; and −→a linearly 
decreases from 2 to 0 [17].
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• Spiral updating position 

The position of a candidate solution 
−→
X (t + 1) is updated as [14]: 

−→
X (t + 1) = −→D

′
· ebl · cos(2πl) + −→Xb(t) (5) 

where, 
−→
D

′
=

∣
∣
∣
−→
Xb(t) − −→X (t)

∣
∣
∣ refers to the distance between the prey and i th prey, 

b is a constant defining the logarithmic spiral shape and l defines a random number 
between −1 and 1 [18]. 

• Search for prey 

The position of a candidate solution 
−→
X (t + 1) is updated as [14, 18]: 

−→
D =

∣
∣
∣
−→
C · −→X rand  − −→X

∣
∣
∣ (6) 

−→
X (t + 1) = −→X rand  − −→A · −→D (7) 

where, 
−→
X rand  is a random whale position vector [14, 18]. 

The WOA iterates until a stopping criterion is reached. This study used the Total 
Error (ET ) metric [19] to minimize the filtering errors within each iteration. In other 
words, the proposed methodology aimed to find the best parameter values that ensured 
the minimum ET in each iteration. The total error metric was given in [12, 19, 20]; 

ET = (EO + EC )/(PG + PNG  ) (8) 

where, EO refers to the omission error that defines the number of misclassified 
reference ground points, EC refers to the commission error that defines the number 
of misclassified reference non-ground points. PG and PNG  denote the number of 
reference ground and non-ground points, respectively [12]. This study used a total of 
10,000 reference points selected from the point cloud to find the optimal parameter 
values. Note that 5000 of them were for the ground points, whereas 5000 of them 
were for the non-ground points. All reference points were randomly selected through 
the polygons that were manually digitized over the orthophoto image of the test site. 
Table 1 shows the optimum parameter values that achieved the minimum ET . The  
table also shows the upper and lower bounds defined for these parameters.

3 Results 

The performance of the proposed filtering methodology was compared not only 
against that of the standard SMRF algorithm but also against those of popular filtering 
algorithms Cloth Simulation Filtering (CSF) [21] and Progressive TIN Densification
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Table 1 Parameter values Parameter Lower bound Upper bound Optimum 

c 0.1 3 2.9 

s 0.05 0.3 0.05 

t 0.25 2 1.9 

e 0.05 2.5 2.4 

w 2 48 16

Table 2 Computed metric values 

Method EO EC ET 1 ET 2 ET 

SMRF 125 1626 0.025 0.325 0.175 

PTIN 891 330 0.178 0.066 0.122 

CSF 526 214 0.105 0.043 0.074 

Proposed 269 447 0.054 0.089 0.072 

(PTIN) [22]. Table 2 provides the EO , EC , , Type I Error (ET 1), Type II Error (ET 2) 
and ET values computed from the filtering results. Note that the ET 1 is calculated 
by the ratio between the number of misclassified reference ground points and the 
number of all reference ground points; whereas the ET 2 is computed as the ratio 
between the number of misclassified reference non-ground points and the number of 
all reference non-ground points [12, 19, 20]. The metric values given in Table 2 were 
computed using 10,000 reference points (5000 for ground and 5000 for non-ground 
features) that were different than those used to optimize the parameter values. Note 
also that the best values for each metric were shown in boldface in the table. As seen 
in Table 2, the point cloud obtained from the proposed method achieved the best ET 

value of 0.072. The CSF result got the second best ET value of 0.074. The SMRF 
result yielded the greatest ET value of 0.175. 

Figure 2 shows the original DSM and DTMs produced from the filtered point 
clouds. As seen in the figure, the SMRF algorithm kept a considerable amount of the 
non-ground points, which is justified by the metric values given in Table 2. As also  
seen in the figure, the proposed method and CSF algorithm presented a very similar 
performance as it is very hard to notice the difference between the DTMs produced 
from these methods.

4 Conclusion 

The variations in the topography of the surface of the Earth make point cloud filtering 
a challenging task. In many cases, the analysts have to try different parameter values 
to get the best filtering performance from point cloud filtering algorithms, which is
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Fig. 2 Produced DTMs

another factor that makes the point cloud filtering process a challenging and time-
consuming task. On the other hand, unsuitable parameter values lead to greater 
filtering errors. Hence, this study aimed to automate a morphology-based filtering 
algorithm SMRF through the use of a metaheuristic algorithm WOA to avoid user 
intervention to minimize user-related filtering errors. The proposed method was 
found to be successful in estimating the optimal parameter values to achieve the 
optimal filtering performance. It can also be concluded that the proposed method 
can be effectively used for UAS-based point clouds.
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Some Enhancement of Aerial 
and Terrestrial Photo for 3D Modeling 
of Texture-Less Object Surface 

Catur Aries Rokhmana and Hanif Muhammad Fauzi 

Abstract Today, the combination of Aerial and Terrestrial photos has been more 
implemented for 3D modelling purposes. This 3D modelling technique getting 
popular because it is supporting with photogrammetry structure from motion algo-
rithm (SFM). The SFM algorithm makes automation in the processing step. One of 
the main problems that will occur in the automation of 3D modelling objects with 
the SFM algorithm is whether objects have texture-less surfaces. The purpose of 
this research is to evaluate some enhancement processes that were applied before 
running the SFM algorithm for 3D modelling. Some pre-processing enhancements 
are a combination Contrast-Limited Adaptive Histogram Equalization (CLAHE) 
from Fiji-ImageJ and JPEG to RAW Ai artefact algorithm from Topaz Labs. Two 
sample objects are tested which are a heritage object that has a texture-less wall 
surface object and a paddy field that has a similar object pattern. Some aerial and 
terrestrial photos have been enhanced before processing in 3D modelling. The result 
shows that applying preprocessing enhancement can improve the completeness of 
the object, especially in texture-less wall surface area. Pre-processing enhancement 
improves the geometric accuracy and number of vertex and surfaces also. In the 
future, the combination of the Jpeg to Raw Ai and the CLAHE enhancement should 
be explored for the best 3D model solution. 

Keywords 3D modeling · Texture-less objects · JPD to RAW enhancement ·
CLAHE 

1 Background 

In the last 5 years, the platform technology for visualizing a 3D virtual reality or 
digital twin world has increased. As a consequence, the demand for a 3D model of 
the object has also increased. Many 3D modelling instrumentations have already on
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the market and it is smaller and more portable. In general, there are two popular tech-
nologies for doing 3D modelling which is based on an optical camera (passive sensor) 
with structure from motion-photogrammetry and lidar scanning (active sensor). This 
paper is focused on utilizing a camera sensor for 3D modelling. Some dominant 
factors are working with the camera for the automatic 3D modelling, such as (1) lens 
quality; (2) pixel spatial resolution; (3) base/high ratio; (4) ground control accuracy; 
and (5) object condition or texture. Only the object condition and image quality 
factors that dealt with in this paper. 

This study has chosen “Panggung Krapyak” a heritage object [1] and the Paddy 
field area. The object represents two challenging conditions, which are (1) the object 
is large; and (2) it has a dominantly similar pattern or texture-less wall skin. Due to 
the large size of the object, so the combination of the aerial photograph and terres-
trial photograph should be implemented in this case study. Today, the combination of 
aerial and terrestrial photos has been more implemented for 3D modelling purposes. 
Meanwhile, the texture-less object skin will make it difficult for doing automation 
in processing. Working with scale-invariant feature transform (SIFT) in the align-
ment process will provide difficulties if the object texture is homogeneous. This 
texture-less object skin makes potentially reduce accuracy and reduce the number 
of the right point matching result. The purpose of pre-processing image enhance-
ment is to improve photo orientation accuracy and minimize errors in dense matching 
using an algorithm such as scale-invariant feature transform (SIFT) during processing 
alignment [2]. 

Working with an optical technique for 3D modelling has two main challenges 
due to its environments, which are (1) homogenous lighting direction issues, and (2) 
texture of the object skin issue. The purpose of this study is to evaluate and implement 
some image enhancement for reducing those two issues. Other’s problems that can 
occur in photo quality i.e., motion blur, noise sensor, jpeg artefacts, and depth of 
field errors [2] are not detailed and discussed in this paper. Several methods can 
be used for processing image enhancement. This paper utilizes (1) contrast limited 
adaptive histogram equalization (CLAHE) and (2) restore photo quality from jpeg 
format to raw format (Jpeg to Raw). Contrast limited adaptive histogram equalization 
(CLAHE) is an enhancement method for contrast value in certain areas of a photo 
[3]. Changing the photo format from jpeg to raw is a method for improving dynamic 
range, colour space, white balance, and image quality restoration [4]. This image 
enhancement process has been implemented before 3D modelling processing with 
the structure from motion (SFM) algorithm. 

1.1 Conceptual Background 

The Contrast Limited Adaptive Histogram Equalization (CLAHE) is one of the 
contrast enhancement techniques for an image. The Fiji-ImageJ software with 
CLAHE-Plugin is used as a script tool for implementing CLAHE [5]. This is a 
point operator that does not change the image geometry. It only deals with the digital
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Representing 
Blocksize          : sub-image area. The value depend on image 

resolution and object texture condition. 
Histogram Bins : value for Digital Number 
Max. Slope  : more large value more effect (slope of 

histogram) 
Mask                 : area boundary that implemented 

Fig. 1 Interface CLAHE operator in Fiji-ImageJ software 

number value of the pixel. CLAHE is a derivative of the Adaptive Histogram Equal-
ization (AHE) method in terms of restrictions contrast value. In the CLAHE method, 
an image will be divided into several processing areas called sub-image, tiles, or 
blocks. There are two main parameters in CLAHE processing, namely, block size 
(BS) and clip limit (CL). These two parameters control the quality improvement in 
the sub-image. The results of photo processing will have a higher brightness level 
when the clip limit value increases. The higher the clip limit value, the photo will have 
lower intensity and the histogram will be sloping. If the block size value becomes 
larger, the dynamic range becomes wider, and the contrast of the image increases [3]. 
CLAHE method is an application of the histogram equalization to the specified sub-
image. The original image histogram will be cropped and distributed over each gray 
value of the pixel. The distribution of the histogram is different from the adaptive 
histogram equalization method because the intensity of each pixel has been limited 
based on the maximum value. However, the enhanced image and the original image 
have the same minimum and maximum gray values [3]. According to Fiji-ImageJ 
software, three parameters determine the result (see Fig. 1). 

The JPEG to RAW operator is a method in image enhancement, which is to change 
the image quality due to the effect of image compression in JPEG format. The JPEG 
format has a smaller size in storage because it reduces the decrease in quality to 
speed up the photo processing. In general, the JPEG image has more visual artifact 
effect imagery. So, this JPEG to RAW operation will change or remove the artifact 
image geometry but not on the edge of the object in the image. This operator is 
implemented by Jpeg to RAW Ai Topaz Labs software [6]. The algorithm was used 
to improve the quality of the image format, namely Dejpeg-m-spline. The effect of 
this operator can be seen as removing artifacts in the image. So, the image will look 
more emphasize the features. According to Jpeg to Raw Ai Topaz-Labs. software, 
two dominant parameters control the result (see Fig. 2).
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Representing 
Reduce Artifact  :   control the sensitivity of reducing artifact. 

More value will produce more large area 
Remove Blur     : control the sensitivity of image blurring. 

More value will produce less blur, as 
consequence more change in geometry 

Fig. 2 Interface JPEG to RAW AI operator in Topaz Labs. software 

2 Data and Methodology 

The Panggung Krapyak Data. This research was conducted for the building called 
the “Panggung Krapyak” which is located in D. I. Yogyakarta (see Fig. 3). The 
“Panggung Krapyak” is a heritage building that has built in the Mataram Kingdom 
era that was built during the time of Sultan Hamengkubuwono I. The function of 
this building was for hunting and the place of defense of the Yogyakarta Palace 
from protecting enemies coming from the south. This building is located to the 
south of the “Keraton” and forms a straight line with the “Tugu” object. So, the 
“Panggung Krapyak” is part of the axis imaginary or philosophical axis of Yogyakarta 
(Balai Pelestarian Cagar Budaya DIY, 2019). The “panggung krapyak” is one of the 
buildings that can be used as a test because it has a cube model with a texture-less 
white color wall of the building. 

Figure 4 shows the methodology for this case study. As a quality control, several 
ground control points have been used as independent checkpoints and some shape– 
dimensional measurements also. The control point has to measure by GNSS RTK 
(Realtime Kinematic) survey technology for 2 mm accuracy. While the dimensioning 
check has measured by tape with 2 mm accuracy also.

The aerial photo data acquisition has taken by the DJI drone platform Mavic Pro 
with an image size 12Mpix. The flight path design is done manually because there 
are many obstacles around the object. The shooting distance varies considerably 
between 5 to 10 m. This recording produces a GSD value of 1.6 cm to 3.3 cm.

Fig. 3 Heritage object “Panggung Krapyak” a google maps and b photos 
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Design Data Acquisition 
Airborne and Terrestrial 

Ground Control and 
Dimensional Survey 

Ground Control and 
Dimensional Survey 

Image Enhancement: 
(a)CLAHE (Fiji-ImageJ) 

(b)Jpeg to RAW AI (Topaz Lab) 

3D reconstruction by Sfm-Photogrammetry 
Reality Capture Software 

Evaluation: 
Number of Point Cloud 

Completeness 3D Model 

Photograph 

Fig. 4 Methodology in this study

The resulting overlap amount ranges from 80% up to 85%. The amount of side lap 
generated ranges from 70% up to 80%. Meanwhile, the terrestrial photo was also 
taken with the same camera as the aerial photo. Figure 5 shows the camera exposure 
position and ground control point, which is a combination of aerial and terrestrial 
positions. 

The number of all photos used is 1409 which are 787 terrestrial and 622 elevated 
or aerial images. To get the same lighting condition and remove the shadow effect, the 
photo should be taken in a certain sun direction. The acquisition began at 2:42 p.m. 
to take a southern side. The acquisition began at 3:35 p.m. to take a western-eastern 
side. The acquisition started at 12:13 p.m. to take the top and surrounding area. This 
will reduce the shadow effect on each side of the building. 

The Paddy Field Data. The research is located in the paddy fields of 
Desa Pendoworejo, Girimulyo District, Kulon Progo Regency, Special Region, 
Yogyakarta, Indonesia. There are 5 Ground Control Points (GCP) used with the 
placement of each point >200 m between the GCP point. All of the GCP have been

Fig. 5 a Camera exposure position and b GCP distribution 
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Fig. 6 Sample aerial photo of paddy field (a) Raw in JPG format (b) after CLAHE enhancement 

surveyed with the GNSS Static Survey technique to achieve 5 mm positional accu-
racy. Aerial photo data was acquired using the DJI Mavic Pro UAV drone. The aerial 
photo data acquisition was carried out within 1 (one) day of implementation on 
March 20, 2021. The data acquisition in Pendoworejo Village used 1 flight path with 
an area of 18 hectares using 3 batteries in the measurement due to the relatively short 
battery life. 

The acquisition of aerial photos has sidelap and overlap percentages respectively 
60% and 80% with a flying height of 75 m and a flight speed of 6 m/s. The takeoff 
and landing location of the flight path is at the GCP 1 point which is north of Jl. Raya 
Kaligesing because the location is an open area and includes a shooting area, it is 
more efficient in terms of time and energy from the tool when taking off, landing, 
and aerial shooting. The aerial photo has a Ground Sampling Distance (GSD) of less 
than 3 cm (see Fig.  6). A bund or boundary in the paddy field after CLAHE image 
enhancement is easier to see. The Jpeg to Raw enhancement is not implemented 
in these aerial photos, because in general the aerial photo always has texture or 
heterogeneous objects. 

3 Results and Discussion 

3.1 The Visual Comparison 

Table 1 shows some samples for visual comparison before and after the image 
enhancement process. The dominant differences can be seen in the wall and other 
texture-less objects. The CLAHE result looks more textured image which is good 
for SIFT point detection. Unfortunately, this CLAHE operator also emphasizes the 
noise or artifact in the original jpeg image. This can be a problem because the noise 
artifact is a random pattern and does not represent the original objects. Meanwhile,
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Table 1 Visual comparison: original Jpeg, CLAHE, and Jpeg to Raw AI 
Original JPEG CLAHE Jpeg to RAW AI 

Not Implemented 

Not Implemented 

Not Implemented 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Some artifacts in the 
homogenous object do not 
represent the actual object's skin 

Minim texture skin that makes it 
difficult for image matching 

Edges between objects are not 
so clean 

Some artifacts in the 
homogenous object more 
emphasized 

More texture skin, but 
some of the texture is 
emphasized of an artifact 
also. So it does not 
represent the actual skin 

Edges between objects are 
more emphasized 

Some artifacts in homogenous 
objects are removed and look 
more clear and close to the 
actual object's skin 

Less texture skin makes it 
difficult for image matching 

The edge between the objects 
is cleaner
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the Jpeg to Raw results makes the wall looks like a clean wall. This reduces the 
artifact noise in the original Jpeg image. Unfortunately, this operator makes the wall 
looks more texture-less, which is not good for future image matching process.

The best parameter setting for CLAHE and Jpeg to Raw AI can be concluded. This 
setting parameter is always a try-and-error process due to the variation in Sunlight 
direction and atmosphere condition. Some patterns can be concluded which are: 

1. In CLAHE enhancement parameter setup: the smaller object size that should be 
detected in the image, then, the small number in block size should be set. In 
general, the block size number 50–100 is enough for all kind of photos that has 
a GSD of less than 5 cm. 

2. The CLAHE enhancement also emphasizes the artifact noise. So, it is recom-
mended not to use an image with as much artifact due to jpeg compression. Using 
Tiff image format that has a minor artifact effect would be better. 

3. In Jpeg to Raw Ai enhancement parameter: the blurring parameter should be set 
between 0.7 and 0.9 for reducing the artifact, while at the same time getting a 
sharp edge of objects. 

4. The combination of both enhancements should be the best choice. First, using the 
Jpeg to Raw Ai enhancement for removing the artifact effect in jpeg compression. 
Then, implement CLAHE enhancement to emphasize texture in the object’s skin. 

3.2 The 3D Reconstruction Results 

The final 3D reconstruction has been processed three times which the same param-
eter setting. Each of the processing options uses different data inputs which are (1) 
original jpeg image; (2) CLAHE enhancement; and (3) Jpeg to Raw AI enhancement. 
The parameter for evaluating the 3D model quality can be classified in geometric 
aspect and semantic completeness of the object. Table 2 shows the comparison of 
the geometric aspect of the 3D reconstruction Results. The best empirical geometric 
accuracy can be shown from the dimensioning error and checkpoint error. The best 
geometric accuracy is data with CLAHE enhancement then followed by Jpeg to Raw 
AI enhancement. The improvement of geometric quality is more than 35% relative 
to the original result. This is because the enhancement process improves the texture 
and reduces the artifact also. The best image should be more texture and minimize 
artifact noise. The combination of booth enhancement can be used for that purpose. 
The Jpeg to Raw Ai enhancement can be used for removing artifact noise. Then, the 
CLAHE enhancement processing can be used to emphasize the texture objects. The 
CLAHE enhancement process can also improve the time processing in alignment 
adjustment by more than 35%.

Table 3 shows the comparison of the 3D model completeness. The Jpeg to Raw Ai 
enhancement gives the best for overall 3D model completeness. Then, followed by 
CLAHE enhancement, while the original Jpeg has failed 3D model in some texture-
less surface. The CLAHE effect makes the photo over-textured and also enhanced
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Table 2 Geometric comparison for Panggung Krapyak data: original Jpeg, CLAHE, and Jpeg to 
Raw AI 

Parameter Original JPEG CLAHE Jpeg to RAW AI 

The bundle adjustment and dimension check 

Number of image-oriented/total image 1408/1409 1408/1409 1408/1409 

Number of tie point 2.054.757 1.433.118 1.678.294 

Max Residual Error (pix) 16.26 3.84 4.72 

Mean Residual Error (pix) 0.89 0.64 0.66 

Alignment time process 00:26:15 00:11:53 00:28:07 

Dimensioning length error 
8 Length objects 

0.460 m 0.035 m 0.063 m 

GCP checkpoint 
Ave. from 4 checkpoints 

X: −0.372 m 
Y: −4.232 m 
Z: −16.536 m 

X: 0.004 m 
Y: 0.001 m 
Z: 0.001 m 

X: 0.006 m 
Y: 0.001 m 
Z: 0.002 m

the artifact noise. So that the artifact makes the model error in planar or texture-
less skin. Meanwhile, the Jpeg to Raw Ai enhancement gives the best 3D model in 
planar or texture-less skin due to it can remove the artifact noise. The number of 
vertices represents the result from the dense point matching operation but does not 
always represent the completeness of the 3D model. This is because not all the point 
matching is representing the right point in the 3D model. Some of the points may be 
an error point matching. The CLAHE enhancement gives the densest point number. 
The CLAHE enhancement has a minor change in color from the original image. This 
makes the 3D model texture from the enhancement process darker than the original 
color. The overall 3D model completeness by implementing image enhancement has 
30% more complete than its original picture. The processing time for building 3D 
has significantly reduced when using an image from Jpeg to Raw Ai enhancement. 
This is because the image from Jpeg to Raw Ai gives the less vertex number.

Table 4 shows the comparison of the distance test between points. It shows 
that CLAHE image enhancement can improve distance measurement accuracy. 
This shows the original photo data before pre-processing has an RMSE value of 
386,911 mm, while data after pre-processing image enhancement using CLAHE has 
an RMSE value of 100,995 mm. There are some notes regarding the dimensioning 
test as follows:

1. Pre-processing with CLAHE image enhancement makes the boundary paddy 
field easier to identify the objects. This makes measurement more reliable. 

2. This enhancement makes the edge object more reliable also. The CLAHE oper-
ator is a point operator that only changes the digital number. So, it does not 
change the object’s geometry.
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Table 3 The 3D model completeness comparison for Panggung Krapyak data: original Jpeg, 
CLAHE, and Jpeg to Raw AI 

Parameter Original JPEG CLAHE Jpeg to RAW AI 

The Completeness 
Number vertex points 22.421.846 22.978.198 22.222.719 

Triangle mesh 44.728.214 45.840.430 44.351.390 
Overall process 07:44:34 07:33:55 05:53:32 

Samples image

4 Conclusion 

This paper shows the effect of the image enhancement process in the final 3D recon-
struction model. There are two pre-processing for image enhancement which is (1) 
CLAHE, and (2) Jpeg to Raw Ai algorithm. Each enhancement gives a different 
result. The CLAHE enhancement is superior for emphasizing the texture-less object. 
Meanwhile, the Jpeg to Raw Ai enhancement fit for reducing the artifact noise due 
to the image compression effect. All of the image enhancement processes will be 
improving the geometric accuracy and the completeness of the 3D model. It also 
improves the processing time, even if it is not significant. Implementing the enhance-
ment process will change a color that makes it darker than the original color. In the 
future, the combination of both enhancements should be explored. The enhancement 
process to make the image more texture but free from artifact noise also. So, the
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Table 4 The distance test comparison for paddy field data: original Jpeg and CLAHE 

Objects distance Original JPEG CLAHE Field measurement 

11,700 mm 11,500 mm 11,440 mm 

12,100 mm 11,950 mm 11,900 mm 

10,600 mm 10,500 mm 10,460 mm 

17,800 mm 17,600 mm 17,650 mm 

Average differences 386.911 mm 100.995 mm

first process of implementing the Jpeg to Raw Ai enhancement is for removing the 
artifact noise. Then, the following implemented CLAHE enhancement to emphasize 
the texture object’s skin. 
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Role of Drone Technology in Sustainable 
Rural Development: Opportunities 
and Challenges 
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Abstract Climate change and local weather conditions have caused several issues in 
the farming sector. The rapidly expanding global population is an issue that must be 
addressed to secure food and water supplies through the use of information tech-
nology in precision agriculture and smart farming. These technical advances in 
precision agriculture are represented by unmanned aerial vehicles (UAVs). UAVs 
or DRONEs help in agriculture by counting the number of plants, visual inspection 
of the crop field, water management, erosion analysis, plant counting, soil moisture 
analysis, crop health assessment, irrigation scheduling, analyzing plant physiology, 
and yield forecasting. Drones can be used to facilitate development by reporting and 
collecting data in rural development in terms of agriculture land boundaries, water 
resources and their surface area, village boundaries, monitoring forest area, obser-
vation of hilly and tall plant regions, and soil condition in terms of water content, 
moisture, electrical conductivity, pH, and temperature. Repetitive collection of image 
and video data helps to analyze changes in rural development. Rural development 
aims to improve rural communities’ physical infrastructure and basic services. Delay 
in detecting problems associated with rural development may further deteriorate soil 
and water resources making them more vulnerable. This paper focuses on various 
opportunities and challenges in sustainable rural development and the application 
of UAVs in almost every aspect of human life, allowing people to make significant 
advances in human life support.
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1 Introduction 

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have been a game 
changer in the agriculture sector since 2011 because they are more inexpensive and 
easier to operate [1]. They fix vision issues caused by cloudy weather or inaccessi-
bility to a tall crop area. In contrast to satellite and airborne cameras, they have a 
major advantage in terms of image resolution, avoid missing data due to clouds, can 
be operated at any time unlike satellites passing at a fixed time, have greater detail 
and lesser error, and to avoid repetitive flying drone data can be blended with satellite 
data to increase the accuracy of satellite data. 

UAVs or DRONEs help in agriculture by counting the number of plants, visual 
inspection of a crop field, water management, erosion analysis, plant counting, soil 
moisture analysis, crop health assessment [2], irrigation scheduling, and analyzing 
plant physiology, and yield forecasting. Drones use a variety of sensors depending on 
their intended use [3, 4]. Drones can be used to facilitate development by reporting 
and collecting data in rural development in terms of agriculture land boundaries [5], 
water resources and their surface area, village boundaries [6], monitoring forest area, 
observation of hilly and tall plant regions, soil condition [7] in terms of water content, 
moisture, electrical conductivity, pH, and temperature. 

Drones are also commonly used for a variety of other uses, including surveillance, 
traffic monitoring and weather, fire suppression, irrigation, personal use, shooting, 
land surveying, and inspecting oil pipelines, power lines and other remote infras-
tructure [8]. By training unemployed youngsters, drone technology in rural may give 
complete growth and employment possibilities. This system and Artificial Intelli-
gence can forecast future infrastructure possibilities. In agriculture, drone-attached 
sprayers may be used to spray insecticides and provide fertilizer as required. Crop 
insurance may be offered to farmers by determining the quantity and quality of seed 
per acre. Grain purchase and storage facilities can be established up to two to four 
weeks in advance. The grain name, as well as its quality and price, may be supplied 
to purchasers via the mobile application. Drones will contribute to the restoration of 
ecology and the sustainable environment by identifying open places for afforesta-
tion and planting on inaccessible locations using seed bombs. Detecting fires and 
spraying extinguishers decrease damage in the early stages of a fire. The movement 
of forest officials and animals in the surrounding areas can be followed, and food, 
water, and medications may be sent to locations where human transit is impossible. 

Payload, cameras, trained personnel, experience with the software applications, 
environmental, wind and cloud, and price are all main impediments to drone 
use. However, continuous photographs aid in resource conservation and timely 
decision-making [9]. Employability can be generated based on pesticide and fertilizer 
spraying, reducing farmer illness and death. Lowering the dose of effective sprinkling
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Fig. 1 Shows the current review process on literature collection for applications 

technologies reduces the number of toxins left in the soil and plants that aren’t being 
used. UAVs assess village sustainability by defining villages with adequate growth 
in terms of infrastructure and physical condition to increase villagers’ quality of life. 
Furthermore, this mechanism aids resource distribution decision-making by locating 
villages in need of assistance in supplying municipal services, roads, and amenities 
in a priority-based manner. The process of review was done based on the details in 
Fig. 1 as the flowchart. 

2 Applications for Forest Land Observation 

Drones are used to carry seeds to places that are inaccessible to improve afforestation 
[10]. Forest tracking in the light of ecological balance by aerial maps helps to detect 
illegal logging/cutting for wood/commercial purposes and also in the context of 
the counting and illegal hunting and poaching of particularly endangered wildlife 
species [11]. Drones are found useful when observing large areas on the ground 
with tall and large canopy plants in forests. Thermal cameras mostly penetrate the 
canopy, and the rate of identification of poachers during the night was high due to the 
difference between the temperatures of the human body and the background [12]. 
The UAV speed should be high and the noise should be low so that hunters do not 
quickly flee from there and the response time is short. Choosing quieter propulsion 
systems or operating at higher altitudes would accomplish the requisite reduction, 
and higher altitudes would also cover a large strip of ground. Research is underway on 
the automatic classification of UAV images for wildlife monitoring [13]. Automatic 
object detection techniques [14] and thermal imagery [15] are now being used day
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and night to observe the difference between animal and non-animal subjects. Other 
essential concerns are UAV policies, operating costs, and public discernment [16], 
amid increasing efforts [17] in this region. 

3 Cost Effective 

The spatial resolution of UAVs changes with flying height, thus it would be easy to 
correctly map small fields. Marginal farmers with holdings of less than one hectare 
own up to 67% of India’s cropland [18]. The irrigated area maps generated from 
satellite images and the UAV map do not align [19]. To estimate the irrigation 
development, small field area mapping [20] and precise predictions are required. 

Small farmers cannot bear the cost of drones [21] and one of the reasons that 
discourage them is a low literacy rate among them. Drones will help larger farms 
because each bit is constantly monitored and analyzed [22]. In this case, the manual 
cost of testing would be both costs efficient and time intensive. However, few studies 
suggest that there is no association between farm size [23] and the ability to adopt 
a drone [24]. Farmers should be trained in drone activity and encouraged to form 
community enterprises and their drones, as has traditionally been done with the farm 
equipment scheme. The creation of large-scale topographic maps for landscape and 
environmental management would allow for the provision of comprehensive and 
detailed information. Geotagging all of these assets would provide a clear picture of 
sustainable practice management [25]. 

A public–private partnership (PPP) strategy can be used to support agricultural 
drones for rural India’s social and economic growth to integrate capacity, flexi-
bility, performance, long-term vision, social interest and accountability. Soil data, 
hydrology and weather data can be provided by the government and commercial 
cloud services under this policy. This approach will help private sector investments 
and new entrepreneurs gain support and increase farmers’ incomes agro-ecologically. 
Another potential use for community mapping is aimed at rural village boundary 
mapping along with agriculture land boundary mapping of owners [26]. 

4 Applications for Agriculture Productivity 

UAV use in agriculture is a significant change in crop cycles and changes in response 
to climate change. Climate change is a change that is happening more in less time. 
UAVs help diagnose the effects on plants early and in a short time. Vegetation states 
like plant pigment concentration, and biomass can be evaluated [27] and quantified 
through different vegetation indices [28] from images acquired in the visible, red 
edge, and near-infrared spectral bands. Vegetation indices may be customized to 
specific applications, systems, and platforms, broadening the scope of the study. 
These new trends are readily applicable to UAV and drone platforms, which will
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boost aerospace remote sensing shortly [29]. The Internet of Things and unmanned 
aerial vehicles (UAVs) have the potential to transform traditional agriculture into 
precision farming [30]. Ground-based soil sampling takes time and provides data 
only at the point of sample collection. Uniform nutrient distribution in the soil is 
impossible. Fertilizer application should be based on canopy density and health 
[31]. Such a method is known as variable application rate (VAR). Drone imagery 
can be used to produce VRA maps. These maps help to decrease soil pollution while 
reducing expenses [32]. 

5 Application for Disease/Pest Identification 
and Monitoring 

Recent analysis indicates that this spectral evidence can be found in crops that are 
affected by floating pesticides, as well as in weeds that thrive in crops [33] and are 
resistant to herbicides. Disease-affected plant parts can be recognised with NDVI 
[34] using reflected infra-red light from green plants. Because of the significant shift 
in leaf reflectance behaviour, vegetation indices can identify morphological changes. 
UAV efficiency will be improved by creating digital archives of diseased images for 
public use [35]. In a few instances, pathogens travel in the form of spores through 
the wind from a diseased crop by a few kilometres or more distance. Drones may 
also detect diseases on a wider scale, allowing farmers to brace for the epidemic. Air 
sampling can help to detect pathogens in the air, making it possible to protect crops by 
taking precautions [36]. Traditional manual field surveys to detect pest infestations 
take a long time and require a lot of labour. Human detection errors are often found 
with these mechanisms. Drones and sensors, on the other hand, use reflected light 
energy and algorithms [37]. Detection of pest outbreaks is important to maintain 
crop health. Different infestations exhibit the same symptoms, making it difficult 
to determine the particular type of disease [38]. During pest outbreaks drones help 
to identify pest hotspots thus enabling us to use biological control organisms and 
pesticide spraying. Such an approach is multi-disciplinary where the integration of 
knowledge from engineers, ecologists and agronomists and software developers has 
the huge potential [39]. 

5.1 Pesticide Spraying 

Crop spraying is much safer and more cost-effective by its autonomous and pre-
programmed run on specific schedules and routes. Drones are also programmed to 
self-adjust their altitude and speed using ultrasonic echoing, TOF lasers and GNSS 
signals to achieve a uniform and optimum spraying results across varying topography. 
Usage of quadcopters because of their overall efficiency would minimize the number
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of chemical pesticides and fertilizers to be applied in agricultural fields and also track 
the crop and yield [40]. When pesticide spraying is planned, a weather sensor device 
placed in the target region will assist the UAV in considering wind speed and direction 
[41]. This data is sent to the UAV to make the correct decision regarding the height 
and speed of the UAV. Wind speed and direction are taken into account to limit 
pollution load into the environment, cover all areas without leaving any patches, and 
avoid overlapping regions [42]. Due to limited battery support, cropping areas spread 
over a vast area cannot be covered by a single UAV [43]. In those cases, the area is 
split into small blocks based on the number of UAVs. Each UAV will be configured 
with a path planning algorithm [44]. 

Excessive use of chemical pesticides destroys soil composition because a vast 
amount of these pesticides drift outside the target area. According to [45], using 3 
million metric tons of agrochemicals destroys 40% of the crops. Although terrestrial 
spraying is effective, it has the potential to cause cancer and neurological disorders. 
These issues have resulted in the use of unmanned aerial vehicles (UAVs) in precision 
agriculture [46] to monitor crops and spray pesticides. Future research developments 
include UAV connectivity with ground-based weather stations located in a specific 
region, as well as multi-UAVs with internet connectivity that are controlled by a 
single control system [47]. 

5.2 Plant Stressors 

Plant stressors usually induce physiological changes in plants, thereby rendering their 
ability to do photosynthesis. Such changes in plant reflectance are detected by sensors 
in different spectral ranges. Remote sensing offers an easy and immediate solution 
for the identification of stress like drought [48], pathogens, nutritional deficiencies 
[49] and weeds [50]. Finding out water stress in plants with the help of a micro-
hyperspectral green field imager and thermal camera [51] fixed to a UAV will provide 
complete details [52]. Management of plant water stress is important not only for 
the early detection of stress but also for the precise use of water [53] with the use of 
sprinklers and drip irrigation methods [54]. Soil moisture is regulated using the above-
said methods would allow the fruit trees to attain good size and yield with improved 
quality parameters [55]. Farmers of Dahanu-Palghar tribal villages in Maharashtra, 
India have learned to use drones for organic farming, fish farming, crop rotation, bio-
control, hydroponics, and bio-waste management, besides also using drone-based 
technologies on their orchards and farms. The use of different types of agricultural 
drones includes the creation of electronic maps of fields, operational monitoring of 
crop conditions [56] evaluation of germination, predicting crop yields [57], checking 
the quality of ploughing, and maintaining environmental monitoring of agricultural 
land, etc. [58].
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6 Land Conservation Development 

Both land conservation and land development programs should be designed to 
conserve natural resources and increase employment. It will also generate employ-
ment opportunities in the rural sector which may address social balance. Village 
modernization and urbanization should promote comprehensive land conservation 
measures and improve people’s livelihoods [59]. Development authorities should 
ensure their efficiency by solving various issues which are arising from the begin-
ning to the end of the project. Creative and critical thinking helps to derive the 
best possible sustainable solution to maintain the existing ecological balance with 
minimal disturbance to natural resources and biotic composition. The project must 
be constantly monitored and control measures are taken to achieve the desired result. 
Drones and UAVs can be used to make comprehensive reports in a short time, to 
easily understand the situation, and to make changes to tasks promptly. Completing 
the goal on time and completing it within the intended budget will save money and 
also make environmental balance possible [60]. Currently, the Maharashtra state 
government signed a partnership with the World Economic Forum (WEF) Centre for 
the Fourth Industrial Revolution exploring the use of drones to improve irrigation 
systems in the agricultural field by estimating soil conditions, crop yield prediction, 
crop disease, pest management, unpredictable seasonal variations etc. 

A vigilant, prudence and gradual use of drones by rural indigenous people will help 
them get their land boundaries with the highest accuracy further bringing social and 
environmental justice [61]. UAV technology may be a suitable option for updating 
databases with accurate high-resolution geospatial information at a reasonable price 
[62]. Various developmental projects, industries, mining activities etc. in rural areas 
need land from local people and the government. They need land for establishing 
processing units, energy supply and water resources. Many times nearby lands are 
being encroached on even though they are having official land documents [63]. 
The same is applicable for commercial cropping by private organisations as they 
supply grains, fruits and agricultural commodities to manufacturing companies as 
the ready-packed food has increased tremendously in the world market [64]. 

Drones with high-resolution imagery help to produce real evidence to fight legal 
battles and also to monitor and document illegal activities. An example of indige-
nous communities in Indonesia has shown how drone imagery can be used in court 
to revoke operating licenses of mining companies after demonstrating illegal land 
trespassing beyond their concessions [26]. Social forestry aims to raise plantations 
with the local indigenous people’s support to meet the requirement of timber, fuel 
wood, fodder etc. to reduce the pressure on the natural forest area. These forests are 
best monitored by small drones due to their capability to fly at higher altitudes with 
cameras that can penetrate through the canopy [65]. India has a coastline that stretches 
for about 7000 kms. Continuous monitoring of topographic changes is required for 
land management [66] and erosion control [67].
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7 Fisheries 

Major forms of employment in rural areas are agriculture, livestock and fisheries. 
Drones help to identify and delineate fish habitats and also the occurrence of species 
[68]. They can fly over freshwater bodies like rivers, streams and ponds, and lakes 
to identify the critical habitat, inlet topography, channel morphology and river 
bathymetry. [69] Explained the identification of freshwater fish speciation, their size, 
rate of detection and accuracy are the few census data collection process that can 
be conducted with an aerial survey using drones. Rapid characterization of hydro 
morphology along the river using UAV with high-resolution RGB imagery and a 
novel classification tool based on Artificial Neural Networks (ANN) will increase 
river water quality and ecosystem protection. These techniques leverage the use of 
unmanned aerial vehicles (UAVs) for environmental policy implementation as well 
as high-accuracy river monitoring and management [70]. 

8 Livestock Monitoring 

Farmers in countries like Australia and Israel have embraced UAV technology to 
radically transform how they take care of their livestock. From the comfort of their 
homes, farmers can now use aerial surveillance, high-definition cameras and state-
of-the-art sensors to keep a close eye on the location, health and general well-being 
of their cattle [71]. UAVs can count and monitor cattle, as well as detect abnormal 
animal behaviour that may signify disease. Drones may also be deployed for security 
purposes, sending alerts in the event of trespassing [72]. The expansion of agriculture 
near the forest area forces wild animals to move into villages, farms and cattle sheds 
in search of food. Elephants, lions, tigers, wolves, bears etc. enter during the night 
time causing damage to crops and animals by crossing boundaries of farmland. 
UAV offers a wide range of benefits when integrated into the plan and process to 
scare predators. A smart security system is a real-time working system that uses an 
algorithm to identify predator animals’ faces and eyes [73]. Livestock detection and 
classification using artificial intelligence image processing for aerial surveys in large 
and inaccessible rugged terrain has given 96% accuracy for livestock detection and 
92% for livestock counting [74]. Smart pasture is becoming increasingly important 
in the development of precision agriculture, particularly in agriculture-developed 
countries such as Australia and New Zealand, which are sparsely populated and 
have enormous rangelands but are developing intensive and large-scale farms [75]. 
The use of drones for livestock tracking aids in balancing the number of animals 
grazing in grassland with the carrying capacity of pastures [76]. To control soil 
erosion, the grazing capacity of pastures can be evaluated using aerial multispectral 
[77] and hyperspectral [78] imagery in all seasons in combination with land cover 
mapping.
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9 Challenges Posed by Regulations for the Use of Drones 
in Agriculture 

Different countries have enacted and enforced strict regulations regarding the loss 
of property, life and privacy using UAV data [79]. These regulations mainly focus 
on limits on altitudes and flight permissions, data collection and security systems. 
Despite the evident conveniences, expanded drone flights have increased public ques-
tions about safety and privacy [80]. Drones are a new type of small flying aircraft. 
Using them could endanger other aerospace users as well as those on Earth. Falling 
on the ground can be life-threatening [81]. The balance should be ensured between 
new technology on one side and safety, security and fundamental rights on the other 
hand. The effectiveness of UAVs in agriculture relies on their configuration, weight, 
payload, and price, with an emphasis on environmental sustainability. Recently, UAV 
autonomy has been eased to boost utilization in India’s metropolitan areas [82]. 

10 Employment and Job Opportunities 

The growing use of drones for various applications such as infrastructure, agriculture, 
and transportation is driving the potential market value of a business worth several 
billion dollars [83]. The innovative UAV platform for farming may attract rural youth 
due to its attractive and comfortable working conditions. 

Drones also entice trained young people to start agricultural service companies, 
creating jobs and growing farmers’ profitability [84]. The agricultural labour shortage 
amid the COVID19 pandemic, which has necessitated the implementation of physical 
distancing steps, has created many opportunities for the use of drones in agriculture. 
Labour shortage has become a major obstacle in India due to the migration of villagers 
in search of job opportunities and education purposes. Countries like India, where 
55% population still depend on agriculture as basic employment, need large numbers 
of labour in all stages of agriculture. Such conditions lay new pathways for drones 
for different purposes without compromising basic needs. 

The cost of drones, operational strategy, and the scarcity of technically qualified 
pilots are all major roadblocks to the growth of India’s drone industry. In comparison 
to satellite images, UAVs have better and more affordable methods for monitoring 
and analyzing ecological phenomena at higher spatial and temporal resolutions [85]. 
Farmers who have already introduced precision farming practices to their crops, as 
well as those who are young and male, are more likely to respond. Such research 
would assist manufacturers and providers in selling to those farmers [86]. 

The Director of India Flying Lads (i.e., part of We Robotics) provides training 
to the tribal people of the Dahanu-Palghar belt of Maharashtra on crop rotation, 
aquaponics, hydroponics, fish farming, bio-waste management, organic farming, bio-
based crop protection using Drone. Agriculture Insurance Company (AIC), India 
along with Skynet has carried out a few pilot investigations in Gujrat and Rajasthan to
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evaluate UAV viability for agricultural surveying, and crop disease mapping for crop 
insurance claim settlement [87]. Drone data could also be used to detect and predict 
insect infestations, which insurance companies could then share with farmers. Drone 
data may be used to detect insurance fraud, preventing individuals from insuring 
the same plot of land several times. Because the majority of farmers in developing 
countries, such as India, are inexperienced with technology, a user-friendly UAV is 
required to perform agricultural operations by common people. A better user interface 
based on a human-centred approach will be more efficient [88]. 

By 2050, the world’s population will reach 9 billion, necessitating a 70% 
increase in agricultural productivity. Drone technology with artificial intelligence 
(AI), machine learning (ML) [89], and remote sensing capabilities are becoming 
more popular due to its benefits. With its online ‘Digital Sky Platform,’ the central 
government has recognized the importance of unmanned aerial vehicles (UAVs), 
machine learning, and artificial intelligence [90] (www.equinoxsdrones.com). 

10.1 Innovative Approaches in Agriculture Sector 

New sophisticated automation technology that identifies its position and impediments 
while doing a task without the assistance of a trainer has moved UAVs closer to smart 
agricultural capabilities that can be readily adopted by anyone [91]. Insects play a vital 
role in pollination, and robot pollinators can replace dwindling honeybee populations. 
A synthetic pollinator made of animal hair covered with gel (direct touch) [92] or  
wind power generated by a UAV has aided pollen dispersion asymmetrically [93]. 

Agricultural field 2D and 3D [94] maps serve in evaluating crop health and growth 
[95], soil conditions, leaf area index, size, and so on with greater efficiency [96], and 
high-resolution maps allow for the demarcation of identical zones and nutritional 
quality areas [97]. Few applications of UAVs are given in Table 1.

11 Conclusions 

The growing global population will also increase the food needs of the world popula-
tion by 2050. More crops and increased cultivable areas are needed to meet growing 
food requirements. The 2030 Agenda for Sustainable Development contains land-
related targets and indicators under SDGs 1, 2, 5, 11 and 15 [108]. Plants that are 
adaptable to evolving climate conditions and that produce more with less water are 
most valuable. Augmenting agricultural land while utilizing the natural resources 
available for comprehensive rural development will not only meet future needs but 
also conserve the ecosystem. An integrated geographic information system would 
help accomplish successful land administration and management in terms of land 
title, cost of land, land utilization, and development of land [109]. Climate change is 
happening rapidly under the current circumstances. Spatial technologies and drones

http://www.equinoxsdrones.com
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can be very useful for the analysis and protection from these changes. The influ-
ence of climate change, temperature [110], nitrogen [111], and timely fertilizer input 
[112] on grain protein content could be assessed using UAVs to ensure product 
quality [113]. The increasing nutritional grade is viewed as a method to increase 
farmer revenue. The use of information technology for specific local needs, as well 
as the introduction of emerging technologies, will be vital to its overall growth. The 
major future needs identified in rural development are policies and programs for 
input support, technology development, verification, and adoption. 

Area and technology-specific policy and program-level interventions for prof-
itable farming are the present need. The future generation is dependent on drones 
and they will create a new market. Further research into the adoption of drones 
should concentrate on data protection and confidence in the context of drone use. 
The role of extension services and drone providers in the adoption process should be 
recognized more in-depth as their expertise could compensate for farmers’ possible 
lack of knowledge and skills concerning drones. Integration of Artificial intelligence 
with drone technology will enable the drone to take decisions [114] and be inde-
pendent of human controllers. The next agricultural revolution will be data-driven, 
resulting in increased livelihoods for agricultural communities and increased agricul-
tural production with minimal environmental impact. Supporting ecosystems would 
facilitate the growth of many innovative start-ups providing agricultural intelligence 
using drones and other emerging technologies as a service to rural communities. The 
knowledge gap among rural communities would be resolved by the emergence of a 
new breed of professionals and agricultural infomediaries, as well as the combination 
of various data sources and analytics. 
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80. Luppicini R, So A (2016) A technological review of commercial drone use in the context of 
governance, ethics, and privacy. Technol Soc 46:109–119 

81. Stöcker C, Bennett R, Nex F, Gerke M, Zevenbergen J (2017) Review of the current state of 
UAV regulations. Remote Sens 9:459 

82. Marinello F, Pezzuolo A, Chiumenti A, Sartori L (2016) Technical analysis of unmanned 
aerial vehicles (drones) for agricultural applications. Eng Rural Dev 15:870 

83. Mazur M, Wisniewski A, McMillan J (2016) Clarity from above: PwC global report on the 
commercial applications of drone technology. Drone Powered Solutions, PriceWater house 
Coopers, Warsaw 

84. Sylvester G (ed) (2018) E-agriculture in action: drones for agriculture. Food and Agriculture 
Organization of the United Nations and International Telecommunication Union 

85. Harris JM, Nelson JA, Rieucau G, Broussard WP III (2019) Use of drones in fishery science. 
Trans Am Fish Soc 148(4):687–697 

86. Michels M, Fecke W, Feil J-H, Mubhoff O, Pigisch J, Krone S (2020) Smartphone adoption 
and use in agriculture: empirical evidence from Germany. Precision Agric 21:403–425 

87. Sinha JP, Kushwaha HL, Kushwaha D, Singh N, Purushottam M (2016) Prospect of Unmanned 
Aerial Vehicle (UAV) technology for agricultural production management. In: International 
conference on emerging technologies in agricultural and food engineering agricultural and 
food engineering department, IIT Kharagpur, pp 53–66 

88. Hong A, Lee DG, Bülthoff HH, Son HI (2017) Multimodal feedback for teleoperation of 
multiple mobile robots in an outdoor environment. J Multimodal User Interfaces 11(1):67–80 

89. Singhal G, Bansod B, Mathew L, Goswami J, Choudhury BU, Raju PLN (2019) Chloro-
phyll estimation using a multi-spectral unmanned aerial system based on machine learning 
techniques. Remote Sens Appl Soc Environ 15:100235 

90. https://www.equinoxsdrones.com/blog/importance-of-drone-technology-in-indian-agricu 
lture-farming. Last accessed on 2021/07/16 

91. Sofonia JJ, Phinn S, Roelfsema C, Kendoul F, Rist Y (2019) Modelling the effects of funda-
mental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning. 
ISPRS J Photogram Remote Sens 149:105–118 

92. Jiyu L, Lan Y, Jianwei W, Shengde C, Cong H, Qi L, Qiuping L (2017) Distribution law of 
rice pollen in the wind field of small UAV. Int J Agric Biol Eng 10(4):32–40 

93. Chechetka SA, Yu Y, Tange M, Miyako E (2017) Materially engineered artificial pollinators. 
Chem 2(2):224–239 

94. Hovhannisyan T, Efendyan P, Vardanyan M (2018) Creation of a digital model of fields with 
the application of DJI phantom 3 drone and the opportunities of its utilization in agriculture. 
Ann Agrarian Sci 16(2):177–180 

95. Chebrolu N, Läbe T, Stachniss C (2018) Robust long-term registration of UAV images of crop 
fields for precision agriculture. IEEE Robot Autom Lett 3:3097–3104 

96. Guillén-Climent ML, Zarco-Tejada PJ, Berni JA, North PR, Villalobos FJ (2012) Mapping 
radiation interception in row-structured orchards using 3D simulation and high-resolution 
airborne imagery acquired from a UAV. Precision Agric 13(4):473–500 

97. Torres-Sánchez J, de Pena JM, Castro AI, López-Granados F (2014) Multi-temporal mapping 
of the vegetation fraction in early-season wheat fields using images from UAV. Comput 
Electron Agric 103:104–113 

98. Ju C, Son HI (2018) Multiple UAV systems for agricultural applications: control, implemen-
tation, and evaluation. Electronics 7(9):162

https://www.equinoxsdrones.com/blog/importance-of-drone-technology-in-indian-agriculture-farming
https://www.equinoxsdrones.com/blog/importance-of-drone-technology-in-indian-agriculture-farming


318 V. R. Mandla et al.

99. Sundar K, Rathinam S (2017) Algorithms for heterogeneous, multiple depot, multiple 
unmanned vehicle path planning problems. J Intell Rob Syst 88(2):513–526 

100. Mersheeva V, Friedrich G (2012) Routing for continuous monitoring by multiple micro AVs 
in disaster scenarios. In: ECAI. IOS Press, pp 588–593 

101. Manfreda S, McCabe MF, Miller PE, Lucas R, Pajuelo Madrigal V, Mallinis G, Ben Dor E, 
Helman D, Estes L, Ciraolo G, Müllerová J (2018) On the use of unmanned aerial systems 
for environmental monitoring. Remote Sens 10(4):641 

102. Geipel J, Link J, Claupein W (2014) Combined spectral and spatial modelling of corn yield 
based on aerial images and crop surface models acquired with an unmanned aircraft system. 
Remote Sens 6(11):10335–10355 

103. Uto K, Seki H, Saito G, Kosugi Y (2013) Development of UAV-mounted miniature hyper-
spectral sensor system for agricultural monitoring. In: 2013 IEEE international geoscience 
and remote sensing symposium-IGARSS 2013, pp 4415–441 

104. Zheng H, Zhou X, Cheng T, Yao X, Tian Y, Cao W, Zhu Y (2016) Evaluation of a UAV-based 
hyperspectral frame camera for monitoring the leaf nitrogen concentration in rice. In: 2016 
IEEE international geoscience and remote sensing symposium (IGARSS), pp 7350–7353 

105. Shao W, Kawakami R, Yoshihashi R, You S, Kawase H, Naemura T (2020) Cattle detection 
and counting in UAV images based on convolutional neural networks. Int J Remote Sens 
41(1):31–52 

106. Maluleke W (2020) The use of drones in policing stock theft by the selected rural South 
African livestock farmers. J Soc Sci 48(4):1–20 

107. Michels M, Fecke W, Feil JH, Musshoff O, Pigisch J, Krone S (2020) Smartphone adoption 
and use in agriculture: empirical evidence from Germany. Precision Agric 21(2):403–425 

108. Land Portal, Land and the Sustainable Development Goals (SDGs) (2021). https://landportal. 
org/node/52263 

109. Expert group on land administration and management, framework for effective land admin-
istration a reference for developing, reforming, renewing, strengthening or modernizing land 
administration and management systems (2019). https://ggim.un.org/documents/FELA_Cons 
ultation_Draft.pdf 

110. Raja L, Vyas S (2019) The study of technological development in the field of smart farming. 
In: Smart farming technologies for sustainable agricultural development. IGI Global, Hershey, 
PA, USA, pp 1–24. https://www.igi-global.com/chapter/the-study-of-technological-develo 
pment-in-the-field-of-smart-farming/209543 

111. Ohdaira Y, Sasaki R, Takeda H (2013) Analysis of factors affecting seed protein compositions 
and protein contents in rice of seed-protein mutant cultivars under different cropping seasons. 
Jpn J Crop Sci 82:18–27 

112. Sakaiya E, Inoue Y (2012) Investigating error sources in remote sensing of protein content of 
brown rice towards operational applications on a regional scale. Jpn J Crop Sci 81:317–331 

113. Hama A, Tanaka K, Mochizuki A, Tsuruoka Y, Kondoh A (2020) Estimating the protein 
concentration in rice grain using UAV imagery together with agroclimatic data. Agronomy 
10(3):431 
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Abhinayana Madu, and Kuldeep Chaurasia 

Abstract In regions prone to natural disasters, the buildings must follow specific 
construction standards to avoid demolition. One of the factors that predict the risk 
of damage is the roof material. This paper investigates the performance of various 
deep convolutional neural network architectures to classify buildings based on roof 
material from aerial drone imagery. We also propose a method that is an ensemble 
of ResNet, ResNeXt, and EfficientNet variants of convolutional neural networks, 
which performed the best in our experiments. We obtained a log loss value as low as 
0.4373 using the proposed method. Therefore, the proposed method can be used to 
perform an accurate classification of roof material using aerial drone imagery. 

Keywords Deep learning · Remote sensing · Ensemble learning ·
Disaster-risk-management · Transfer learning 

1 Introduction 

In areas like the Caribbean with a high risk of natural disasters like earthquakes, 
floods, and hurricanes, there is a risk of immense damage to life and property if 
the buildings do not follow modern construction standards. While the buildings can 
be retrofit to follow these standards, officers must inspect them manually, which 
is a time-consuming, labour-intensive, and expensive process. Roof material is a 
particularly relevant characteristic that determines risk, and it is also a predictor of
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other risk factors like building materials. Modern developments in computer vision 
and machine learning can enable us to classify buildings according to their roof 
material accurately. Hence, these techniques can be beneficial to building inspectors 
to make inspections faster and cheaper, and target resources where they create the 
most impact. We obtained a set of high-resolution aerial drone images of a few 
regions in the Caribbean, trained several deep convolutional neural networks, and 
compared their results to this dataset [1]. 

We experimented with several Convolutional Neural Network (CNN) architec-
tures for image classification. Some of the models we used were ResNet, Inception, 
ResNeXt, and EfficientNet. All these models were pre-trained on the ImageNet 
dataset. We used transfer learning to fine-tune these models on our dataset. We made 
the final predictions using an Ensemble of the four most accurate models, which had 
the lowest log loss scores. 

2 Related Work 

Deep learning was explicitly proposed in 2006 by Hinton et al. [2]. The primary 
motivation of deep learning is to have neural networks with many layers to model 
the learning process similar to that of the human brain. In recent years Convolu-
tional Neural Networks have been used extensively in the field of Computer Vision. 
Computer vision exploded in recent years when Alexnet [3] won the ImageNet 
Competition in 2012. Since then, there have been several models that made object 
detection, classification, and other applications of Computer Vision more accurate. 

Several papers have been written on building identification and rooftop extraction 
from high-resolution aerial imagery, which is the first task in our work. Guo [4] 
proposed a very efficient method using CNNs to identify buildings from Google Earth 
images. The authors of this paper also experimented with another supervised machine 
learning method called adaptive boosting (AdaBoost), which lost to CNN by a small 
margin. Li [5] suggested a novel method to extract rooftops from remote sensing 
imagery using higher-order conditional random fields (HCRF). They have combined 
the high-level information obtained by unsupervised image pre-segmentation and 
low-level pixel information. 

Many researchers have worked previously on geospatial data classification, 
although few have aimed toward classifying buildings for disaster risk prediction. 
One of the pieces of literature in this domain by Luus [6] outlined the segregation 
of land into 21 predefined classes based on their usage. In this paper, a multiview 
deep learning approach was proposed. Fu [7] used a multiscale Fully Convolutional 
neural network for land classification from remote sensing imagery. They intro-
duced Atrous convolution to increase the density of the output class maps. Their 
methods were performed on datasets with insufficient labelling, which is a common 
drawback in remote sensing datasets. Despite this drawback, an efficient classifica-
tion method was proposed by Scott [8]. They used data augmentation specifically 
tailored for remote sensing images and Transfer Learning with CaffeNet, GoogleNet,
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and ResNet. They used the UC Merced dataset to train the proposed models. Narloch 
[9] used a deep convolutional neural network (DCNN) to predict the compressive 
strength of cement stabilized rammed earth (CSRE), trained and tested on SEM 
(scanning electron microscope) image database. This is similar to the problem the 
current paper is addressing, which is to predict the demolition risk using rooftop 
images. 

3 Study Area and Data Resources 

3.1 Maps 

The dataset consists of high-resolution aerial drone images of 7 different regions 
(Borde rural, Borde Soacha, Mixco 1 and Ebenezer, Mixco 3, Castries, Dennery, and 
Gros Islet) across three different countries (Colombia, Guatemala, St. Lucia). Table 
1 shows the geographical coordinates of each region. 

Due to the high level of resolution covering a large area mass, the images’ size is 
rather humongous. The smallest image out of the seven, that of mixco 3, is of size 
1.6 Gigabytes and the rest scales up to 10 Gigabytes in size. The resolution, pixel 
dimension, and size of each image are shown in Table 2.

3.2 Other Data Resources 

There is a folder for each country and a sub-folder for each region. These sub-folders 
contain the tiff image of that region along with a thumbnail of the map, one imagery 
JSON file, one train GEOJSON file, and one test GEOJSON file. The thumbnail 
provides an overview of the actual map with much less resolution to help visualize

Table 1 Location of the 
study area 

Country Site name Central scene 
coordinates 

Columbia Borde rural 4.54758°N, 
74.16113°W 

Borde soacha 4.56878°N, 
74.16776°W 

Guatemala Mixco 1 and Ebenezer 14.62212°N, 
90.58445°W 

Mixco 3 14.61027°N, 
90.57494°W 

St.Lucia Dennery 13.91171°N, 
60.89208°W 
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Table 2 Details of the dataset 

Region Spatial resolution (cm) Pixel dimension Size (GB) 

Borde Rural 3.94 5318 ∗ 31,315 4.5 

Borde Soacha 4.25 40,159 ∗ 45,650 4.5 

Mixco 1 and Ebenezer 4.31 27,604 ∗ 26,641 2.0 

Mixco 3 3.78 26,066 ∗ 19,271 1.6 

Dennery 4.16 21,184 ∗ 41,534 2.5

the image on a computer screen since a default image viewer cannot load the TIFF 
images due to their large size and resolution. There is an imagery data file containing 
the coordinates for the town’s outline in the tiff image. The training GEOJSON file 
contains the unique building ID, building footprint (Geospatial coordinates of each 
building in the training set), roof material, and verified field. The test GEOJSON file 
contains the unique building id and building footprint (Geo-spatial coordinates of 
each building in the test set). 

4 Methodology 

Figure 1 shows an outline of the methodology followed in this research work. After 
analysing the dataset, we divide the dataset into training and cross-validation sets, to 
ensure they have the same image distribution. Then we performed data augmentation 
techniques to increase the no. of training samples. We train three deep learning models 
on the training set separately and performed hyperparameter tuning on them to ensure 
their best performances. The models were: ResNet, EfficientNet and ResNeXt. We 
perform test time augmentation on the test set and finally combine the predictions 
from the variants of these three models.

4.1 Data Preprocessing 

Data Extraction 
Images of building rooftops were extracted from each town’s high-resolution aerial 
image using the geojson file provided alongside it. The file consists of the building 
footprint in polygonal coordinates, which were parsed using geopandas python 
package [10] and the exact rooftop image was extracted from the big .tiff image 
using Rasterio python package. 

Cross-Validation 
The test data needs to be classified into five different classes of roof material. The 
training data is imbalanced because in the real world not all categories are equally
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Fig. 1 Methodology

found. In our dataset, there are many more data entries for healthy metal than there 
are for other. The distribution of the training data into different categories is shown 
in Table 3.

As is evident from Table 3, there is an imbalance in the training data. This can 
cause the model to overrepresent some classes and underrepresent others. Also, the 
cost of misclassifying an abnormal class as normal is very high. For example, it 
is very important to not classify incomplete as healthy metal, even though there is 
more training data available for healthy metal. For this reason, we made a stratified 
cross-validation set of the data, which has the same proportions of class labels as 
the input dataset. This set is used to check the trained model’s performance before 
making predictions on test data and to tune the hyperparameters of the model for 
best performance. 

Data Augmentation 
Data Augmentation is an efficient technique for improving training data diversity by 
performing transformations on the images. Data Augmentation techniques include 
cropping, padding, flipping, zooming, etc. For the rooftop images, the transforma-
tions performed were vertical flip, zoom, and increasing the brightness of the image. 
The Fastai library was used to perform data augmentation and training pre-trained 
CNN models on our data [11]. The performance of the model improved by a signif-
icant degree by using data augmentation. A regularization technique called Mixup, 
proposed by Zhang [12], was also used in this research work. In this technique, 
instead of providing raw images, we take a linear combination of two images and 
pass it as input to the model. The accuracy of the model was improved by using this 
technique.
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Table 3 Distribution of the training data 

Category Sample_image Count Description 

Concrete_cement 1518 Roofs are made of concrete or cement 

Healthy_metal 14,817 Includes corrugated metal, galvanized 
sheeting, and other metal materials 

Incomplete 669 Under construction, extremely 
haphazard, or damaged 

Irregular_metal 5241 Includes metal roofing with rusting, 
patching, or some damage. These roofs 
carry a higher risk 

Other 308 Includes shingles, tiles, red-painted, or 
other material
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4.2 Deep Learning Methodology 

Convolutional Neural Networks have shown relatively good results for Image clas-
sification and other computer vision tasks without much feature engineering in 
various research works. The use of transfer learning removed the dependence on 
large datasets to train accurate deep learning models, by using pre-trained models and 
then fine-tuning them on the target dataset. Many such pre-trained CNN architectures 
were used for experiments in our research and their performances were compared. 
The most accurate models were chosen to make a final ensemble to get the best 
results. All the models were trained using a mixed-precision training technique [13]. 

Hyperparameters 
To find optimal learning rates to train each of our models, we used the cyclical 
learning rate method suggested by Smith [14]. For most of the models that we used 
for experiments, the optimal maximum learning rate was of the order of 1e−5. The 
momentum and weight decay were set to 0.9 and 0.01, respectively, for all the models. 
The batch size was 32 during the training process of the models. 

Progressive Resizing 
We used the progressive resizing technique to improve our models’ generalization 
capability, which eventually gave us better scores. The models were initially trained 
using smaller images and later trained on larger images. Training with smaller images 
made the training process fast and training with larger images later improved the 
accuracy of the models. In our experiments, the images were first resized to 128 
× 128 and trained for 10 epochs. Then the images were resized to 256 × 256 and 
trained for 15 epochs. Finally, we unfreeze all the pre-trained model layers and train 
them for 10 more epochs on the dataset. 

Residual Neural Networks (ResNet) 
To get an accurate prediction of the roof material, the CNN must consist of 
many layers. The depth of neural networks has proved to be a crucial factor for 
achieving better performance in classification tasks. But learning better networks 
is not as easy as stacking more layers. Stacking more layers provides us with the 
vanishing/exploding gradients issue [15]. This problem has been addressed through 
the normalized initialization and intermediate normalization layers, which enable 
deeper networks to start converging to the Stochastic Gradient descent using back-
propagation. But this method exposes the degradation problem where, as the network 
depth increases, accuracy gets saturated and decreases rapidly. He [16] addressed this 
problem by using deep residual neural networks (ResNet), where skip connections 
are established, enabling us to make more layers, thereby increasing the accuracy of 
the model. In ResNet, we can go up to 200 layers before which the accuracy gets 
saturated. The best ResNet model for our purpose was the pre-trained ResNet-152 
model from the Fastai python library.
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ResNeXt 
Xie [17] proposed an improvisation of the ResNet models. Their models, called 
ResNeXt, have shown better results for image classification as compared to ResNet 
models. They introduce a new dimension to the neural network called cardinality, in  
addition to depth and width. In neural networks, linear transformations are performed 
on the current layer to obtain each neuron in the next layer. This paper proposes aggre-
gating a set of transformations with the same topology instead of performing linear 
transformations only. The size of this set of transformations is called cardinality. We  
have used the pre-trained model ResNeXt-101 64×4, a 101-layer deep model with 
cardinality 64 [18] in our experiments. 

EfficientNet 
Tan and Le [19] introduced a new CNN architecture called EfficientNet. The paper 
demonstrates a method of scaling the three dimensions of a CNN, namely, depth, 
width, and height. It is found that scaling any one dimension does not improve 
the accuracy linearly. Instead, the accuracy quickly saturates. Although ResNets 
allows us to go deeper than normal, going deeper than 200 layers does not improve 
CNN’s efficiency. The solution to this problem lies in scaling multiple dimensions 
together. But scaling multiple dimensions arbitrarily results in sub-optimal accuracy 
and efficiency. The proposed scaling technique as discussed above is the basis for 
EfficientNet architectures. Scaling does not change the layer operations of a network. 
So an optimal base network is chosen on top of which optimal scaling parameters 
(α, β, γ , φ) are searched. Setting the value of α = 1.2, β = 1.1, and γ =1.15 and 
experimenting with the values of φ gives EfficientNet b1-b7. 

For the roof material classification task mentioned in this paper, pre-trained models 
of EfficientNet implemented here [20] were used using the Fastai library. EfficientNet 
b5, b6, and b7 variants were used in our experiments. 

4.3 Ensemble Modelling 

In addition to augmenting training data, we have performed test time augmentation 
on the test data and aggregated the prediction probabilities to get a more accu-
rate prediction [21]. Ensembling is a method of classifying new data points by 
taking a set of classifiers and combining them in some aggregate function. The 
weighted average was used in the present classification task as an aggregate. The 
ensemble was performed on the outputs obtained from ResNet-152, ResNeXt-101 
64×4, EfficientNet b6, and EfficientNet b7.
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5 Results 

The performance metric that we use to evaluate the models’ accuracy is the log loss 
function. It is an error metric, hence, a lower value is better (as opposed to an accuracy 
metric, where a higher value is better). The log loss can be calculated through Eq. (1). 

loss = 
−1 

N 

N∑

i=1 

M∑

j=1 

yi j  log pi j (1) 

Some sample test images along with their predicted results are shown in Fig. 2. 
The performances of the individual pre-trained models on the validation set and the 
test set after training them using the above said approaches are shown in Table 4. 

The least log loss of 0.4373 was obtained from the ensemble of ResNet-152, 
ResNeXt-101 64×4, EfficientNet b6 and EfficientNet b7.

Image Results 

Concrete Cement: 0.00196 

Healthy Metal: 0.99082 

Incomplete: 0.00059 

Irregular Metal: 0.00600 

Other: 0.0063 

Concrete Cement: 0.650338 

Healthy Metal: 0.18774 

Incomplete: 0.109148 

Irregular Metal: 0.030715 

Other: 0.004717 

Fig. 2 Predictions on some test images
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Table 4 Performance of individual models 

Model Training loss Validation loss Error rate Testing loss 

ResNet-152 0.465180 0.475009 0.182246 0.4723 

ResNeXt-101 64×4 0.591409 0.378783 0.139543 0.4898 

EfficientNet b6 0.527126 0.520498 0.191325 0.4610 

EfficientNet b7 0.584133 0.396385 0.147613 0.4526

6 Conclusion 

Image Classification using deep learning techniques is a powerful alternative to 
manual inspection in Disaster Risk Management. We obtained a log loss value of 
0.4373 on the test dataset. This suggests that we can make good predictions about the 
strength of the buildings using this model. The methods employed in this research 
work are based on the latest developments in image classification. The model can be 
improved with future developments in the field to make the predictions more accurate. 
Since modern neural networks tend to be overconfident about their predictions, better 
calibration techniques can be explored further to reduce the overall log loss. Training 
the model with Label Smoothing loss or using temperature scaling as proposed by 
Guo [22] may improve the model’s capability to predict more accurate probability 
values for each class. 
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High-Resolution Mapping of Forest 
Canopy Cover Using UAV and Sentinel-2 

Charanjeet Singh Nijjar, Sachchidanand Singh, Tanisha Jaiswal, 
and Shivani Kalra 

Abstract Remote sensing plays an important role in characterizing the land surface 
by extensively concerning its spatial resolution. Most of the time, spectral and 
temporal resolution becomes a limitation, which now can be overcome via unmanned 
aerial vehicle (UAV) as a remote sensing platform. The study utilizes the google earth 
engine cloud-based platform to prepare the classified maps from Sentinel 2 and UAV 
datasets using the Random Forest algorithm. The canopy cover was estimated using 
UAV data and divided into 4 classes: very dense forest, moderately dense forest, 
open forest and scrub forest. The majority (39%) areas were under scrub forest. 
Furthermore, the land use land cover was prepared using UAV data and showed 
superior results with 95.5% overall accuracy compared with 86.5% of Sentinel 2. 
Lastly, the tree count of the area was estimated using high-resolution data. The 
predicted number of trees was 3052, with an accuracy of 82%. The tree count algo-
rithm works better in plantation and even canopy-size trees. Thus, this methodology 
ultimately helps to achieve the sustainable use of resources concerning their avail-
ability, demand and exploitation in the study area. The estimated results can help 
policymakers, government officials, and local people halt desertification and better 
sustainable forest management. 
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1 Introduction 

Forest management and research require accurate tree species characterization and 
distribution in a forested area. It helps manage vegetation, breaching invasive species, 
habitat mapping, and ultimately sustainable management and development [1–3]. 
For better practices, remote sensing and Geographic Information System (GIS) has 
played a crucial part as it helps in mapping forest spatially over a large area [4]. 
Various studies have shown its importance in forest mapping [5–7] and ecological 
research [8, 9]. 

The Earth-observing satellite missions, the Landsat series, have been widely used 
for research because of cost efficiency and global coverage [10]. LANDSAT allows 
the mapping of forests, but the type of tree species cannot be identified due to its 30 m 
resolution [11, 12]. Also, in terms of free optical data, Sentinel 2 has the best spatial 
resolution of only 10 m in Red, Blue, Green and Near-infrared (NIR) bands and global 
coverage of 5 days with the Sentinel 2 constellation. Hence, very high-resolution 
satellites like Quick Bird and World-View 2 are used to monitor the forest [13–16]. 
Advancements in technologies introduced hyperspectral, LiDAR sensors that helped 
to identify tree species with higher accuracy [17, 18]. Hyperspectral sensors were 
used based on the narrow bandwidth spectra characteristics of different tree species 
[19, 20] and plant-related disease estimation [21]. Some studies address the problems 
related to background noise and spectral characteristics of hyperspectral [22, 23]. 
Unlike other sensors, LiDAR senses the vertical height of the trees, helping in studies 
related to tree height, volumetric estimation, identification of species, elevation and 
intensity channels [24–29]. Though these methods have high performance, they are 
proven very expensive in their apparatus, flight and processing [30]. 

As per the difficulties mentioned above with different satellites and sensors, 
unmanned aerial vehicles (UAV) are now more frequently used in forestry appli-
cations [31–34]. It overcomes the problem of processing, costing and poor spatial 
resolution with spectral mixing. Simple red, green and blue bands have facilitated 
broad application potential [35]. UAVs can quickly generate land use maps because of 
their ability to capture the best imageries of land use and land cover [36]. Image clas-
sification is the most commonly applied method for land use/cover maps generation 
[37–40]. It is a process of labelling the pixels belonging to spectral data [41]. Gener-
ally, the salt-pepper effect is observed and reduces accuracy [42]. Consequently, 
object-based classification is now being used more frequently. Several researchers 
have confirmed that UAV-based object classification has produced very high accu-
racy [43–48]. Lots incorporate machine learning to deal with classification problems 
[49]. 

This study uses UAV-generated imageries in the Nayla area, Rajasthan. The land 
use land cover (LULC) maps are generated in the cloud-based google earth engine 
platform. Forest canopy density mapping is analyzed using object-based classifica-
tion using a random-forest algorithm. The proposed methodology allows better tree 
characterization and accurate tree counting.
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2 Material and methods 

2.1 Study Area 

Nayla is in Jaipur district, Rajasthan, India, and has a total geographical area of 
671 hectares with 4665 people, according to the census 2011. The surveyed area 
occupies around 868304.9 m2. It has a semi-arid climate with three seasons: winter, 
summer and monsoon. Temperature ranges from as cool as 5 °C in winters and as 
high as 48 °C in summers. The monsoon months range from June to September, with 
an average rainfall of 942.3 mm in Jaipur districts. The average elevation is 360 m 
from sea level. The area is covered with highly undulating hills of Jamwa Ramgarh, 
Viratnagar and Shahpur. The area is covered with younger and older alluvium, sand 
and clay [50]. Forest near Nayla is stretched on Aravalli hills. Forest of Tropical 
Dry Deciduous Forest is majorly present near the study area. Some are Anogeissus 
pendula, Anogeissus latifolia, Acacia catechu, Terminalia tomentosa, Terminalia 
balerica, Terminalia arjuna, Boswellia serrata, Dendrocalamus strictus, and Lanea 
grandis (Fig. 1). 

Fig. 1 The study area map of the Nayla region (Area = 868,304 m2)
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2.2 Datasets and Tools Used 

Google earth engine (GEE) [51, 52], a web-based platform for processing satellite 
imageries, was incorporated to prepare the land use land cover maps of the Nayla 
region. The datasets used in this study are Sentinel 2 MSI Level 1-C imagery at 10 m 
spatial resolution, obtained for November 2020 using a JavaScript algorithm. The 
Nayla region’s high-resolution UAV ortho imagery (0.1 m) was obtained from a field 
survey in November 2020. 

2.3 Methodology 

The following steps were performed to prepare the land use land cover maps. 

1. High-resolution UAV imagery of Nayla was ingested in the GEE asset manager. 
2. Sentinel 2 MSI Level 1C imagery was filtered for November. 
3. Training datasets, namely Barren, Trees, Rocks, Urban and Shadow, were created. 
4. Around 590 points and 173 points were selected for preparing total training 

datasets for UAV and Sentinel 2, respectively. 
5. Out of which, 70% were kept for training, and 30% were kept for testing. 
6. A random forest classifier with 50 decision trees was used to classify the UAV 

and Sentinel 2 datasets. 
7. The accuracy assessment was performed using the remaining 30% testing dataset. 
8. The overall methodology is shown in Fig. 2. 

Fig. 2 Overall methodology used in the study
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The following steps were performed to prepare the Forest Canopy Density maps 
and Tree Count Map using UAV data. 

1. The object-based classification was performed in eCognition software. 
2. Reclassification was done to make 5 classes. 
3. For tree count sample data set of tree canopy was given as sample set. 
4. Prediction for tree count was done. 

3 Results and Discussion 

3.1 LULC Comparison of Sentinel-2 (S2) and UAV (0.04 m 
Spatial Resolution Data) 

The high-resolution satellite data proves good for monitoring, managing and making 
policies for a sustainable future. The LULC for the Nayla region was prepared using 
both UAV and Sentinel 2. The study further tries to differentiate the classifications 
performed on high-resolution UAV datasets and mid-range resolution Sentinel 2 
datasets. Figure 3 shows the classified image of the Nayla region into 5 classes, 
namely, Barren, Tree, Shadow, Rocks and Urban, which comprises 868304.9 m2 

in total. Barren and tree class has been overestimated in Sentinel 2 data compared 
to the UAV dataset. The area distribution of each class is shown in Table 3. The  
estimation using Sentinel 2 for Barren class is almost 40,000 m2 (5%) more than UAV, 
and in Trees class is 1,68,000 m2 (20%) more than UAV. Whereas, as per Table 1, 
Shadow, Rocks and Urban class have been underestimated in Sentinel 2 data by 15%, 
1%, and 6%, respectively. For any department’s management and policy purposes, 
especially for urban management, agroforestry or plantation purposes, the difference 
is significant, particularly in the tree and shadow class. All the classification and 
Forest working plans and sustainable yields are monitored and managed with the 
help of mid-range spatial resolution like sentinel 2. Thus, a 15% to 20% difference 
from the actual case in these important classes would lead to an undervaluation of 
the sustainable management schemes (Figs. 3, 4 and Table 2).

Accuracy Assessment 
The error matrix was prepared for both UAV (Table 1) and Sentinel 2 (Table 2) 
datasets. The overall accuracy and kappa coefficient for UAV are estimated to be 
95.48% and 0.92, respectively and that for Sentinel 2 is estimated to be 86.54% and 
0.82, respectively.
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Table 1 Accuracy assessment for UAV dataset 

Reference test information 

Class Barren Tree Shadow Rocks Urban Row 
total 

User 
accuracy 

Remote 
sensing 
classification 

Barren 100 0 0 0 0 100 100.00 

Tree 0 49 4 0 0 53 92.45 

Shadow 0 1 5 0 0 6 83.33 

Rocks 0 0 0 2 0 2 100.00 

Urban 1 1 0 1 13 16 81.25 

Column 
Total 

101 51 9 3 13 177 

Producer 
Accuracy 

99.01 96.08 55.56 66.67 100.00 

Fig. 3 Land use land cover map of Nayla region using a UAV and b Sentinel 2 dataset

3.2 Forest Canopy Density (FCD) Mapping Using UAV 
(0.04 m Spatial Resolution) Data 

FCD is another important parameter to be kept in the account concerning forests. The 
canopy cover was estimated using UAV data and divided into 4 classes (Fig. 4b): very 
dense forest (FCD > 70%), moderately dense forest (FCD 40–70%), open forest (FCD 
10–40%) and scrub forest (FCD < 10%). It is estimated that the majority (39%) of the 
region falls in scrub forest, followed by open forest, moderately dense forest and very
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Fig. 4 Nayla area with  a tree count map and b forest canopy density map 

Table 2 Accuracy estimation for Sentinel 2 datasets 

Reference test information 

Class Barren Tree Shadow Rocks Urban Row 
total 

User 
accuracy 

Remote 
sensing 
classification 

Barren 11 2 0 0 1 14 78.57 

Tree 1 13 0 0 0 14 92.86 

Shadow 0 1 5 0 0 6 83.33 

Rocks 0 0 0 5 0 5 100.00 

Urban 2 0 0 0 11 13 84.62 

Column 
Total 

14 16 5 5 12 52 

Producer 
Accuracy 

78.57 81.25 100.00 100.00 91.67

dense forest, having area coverage of 13%, 11% and 4%, respectively, as shown in 
Table 4. This implies that sparse vegetation is predominant in the region. Furthermore, 
the remaining (33%) region is covered by built-up areas and settlements.
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Table 3 Area distribution of Nayla region using UAV and Sentinel-2 data 

Class Area (m2) covered as per 
UAV 

Percentage Area (m2) covered as per 
Sentinel-2 

Percentage 

Barren 196,338 22.61 236,221 27.17 

Tree 322,401 37.12 490,981 56.46 

Shadow 181,318 20.88 49,107.1 5.65 

Rocks 33,293.9 3.84 21,343.1 2.46 

Urban 134,954 15.55 71,806.7 8.26 

Total 868,304.9 868,304.9

Table 4 Canopy Class 
distribution of Nayla region 
using UAV data 

Class Area (m2) Percentage 

Forest canopy density > 70% 29448.07 3.4 

Forest canopy density 40–70 93469.82 10.76 

Forest canopy density 10–40% 115054.06 13.25 

Forest canopy density < 10% 337200 38.84 

Other (roads, settlements, etc.) 293132.96 33.75 

Total area 868304.9 

3.3 Tree Count Mapping using UAV Data 

Tree count is the unique approach to High-resolution data, a future technology that 
helps estimate the count of planted trees and track them over the years. In the study, 
the predicted tree count (Fig. 4a) is estimated to be 3052, with an overall accuracy 
of 82%. The reason for this accuracy is the different sizes of tree canopy diameter 
and, the merging of the canopies, less spacing between trees. This algorithm works 
best for planted trees like orchids and plantations. Therefore, accuracy can be further 
enhanced if the canopy is of equal size, meaning the forest is almost the same age. 

4 Conclusion 

The study proposes using a random-forest algorithm to perform a high-resolution 
classification of forest canopy cover from UAV and Sentinel-2 datasets in a Google 
Earth Engine cloud-based platform. The resulting image was classified into 5 land 
cover classes. The overall accuracy for the UAV and Sentinel 2 datasets was obtained 
as 95.5% and 86.5%, respectively. Furthermore, the estimation of the tree counts 
revealed that the region contains around 3052 trees in an overall area of 0.86 km2. It  
is also estimated that the majority (39%) of the region has a canopy density of less 
than 10%, indicating scrub vegetation. These findings would help the policymakers,
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government officials, and local people to stop desertification and advance better 
sustainable forest management in the forest areas. 
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Design and Method of an Agricultural 
Drone System Using Biomass Vegetation 
Indices and Multispectral Images 

S. Meivel , S. Maheswari , and D. Faridha Banu 

Abstract Manual power is not sufficient to solve agricultural tasks. Heavy tasks 
are creating problems of soil contamination and seed contamination. It affected the 
plant after the locust and plant diseases spread. Drone mapping technology and 
the classification of DSM ortho mosaic image techniques provided the solutions 
to the problems. Vegetation indices helped with the identification of plant growth 
with the help of a drone. Drone mapping and surveys capture hyperspectral images. 
The images can be calculated using pix4Dmapper. The process is based on initial 
processing in stage 1, point clouding, meshes generation in stage 2, generation of the 
index, and DSM and ortho mosaic images in stage 3. We converted 1200 multispectral 
images and calculated vegetation index values. We measured plant height, plant 
temperature, the distance between plants, growth vegetation, the soil index of the 
agricultural land, the water index of the agricultural land, the disease index of the 
agricultural land, and the vegetation index of the agricultural land. This research 
proposed identifying the vegetation index on a single agricultural land using an NDVI 
multispectral image and a hyperspectral image (Geli et al. [1]). We utilized some 
vegetation indices using drone mapping. The research work started with multispectral 
image analysis. We collected over 1200 multispectral images in Tif format. It includes 
NIR band images, Red_edge band images, Green band images, Blue band images, 
and Red band images. All images are analyzed and tested for calculating vegetation 
indices of different agricultural land. We have extracted and classified remote sensing 
images of the agricultural land in a different direction [2]. In the future, we can find the 
vegetation value of agricultural land and plants using multispectral thermal images
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for deciding on water irrigation for agricultural places. Our outcome results are 
displayed as the following: plant growth areas, diseased plant areas, locust damaged 
plant areas, water detection areas, and soil quality index using the Vegetation index. 

Keywords Drone mapping · Remote sensing · Vegetation indices · Spraying 
automation · Pix4D mapper 

1 Introduction 

Nowadays, smart cameras are involved in agricultural systems for controlling 
processes, GPS mapping [3], image processing, and precision farming with automa-
tion of fertilizer and pesticide services. We can reduce fuel and electricity usage when-
ever we use smart agricultural systems to apply NDVI and NIR image processing. 
NDVI image quality is established by combining the red and NIR channel pixel 
combinations [4]. This research focused on reducing CO2, the environmental impact 
[5], and the cost of the agricultural system [6]. Various databases and precision 
working are integrated into this system. It can monitor plant height, number, vege-
tation coverage levels, and biomass levels. The system can control plant disease 
using biosensors and an online field sprayer. Multispectral cameras used in drone 
surveys monitor soil and vegetation indexes. NDVI can separate the plant pixel and 
the soil pixel. Plant growth (from 620 to 660 nm) and low values for soil index 
are mostly reflected in NIR reflection [7]. Plant light absorption was supported by 
the chlorophyll activity for the NIR transition (from 660 to 740 nm). Reflection 
wavelengths of plants are 740 nm higher than soil, and NIR and NDVI = 780 nm 
are used. The optical path of the image is determined by pixel adjustment. Rabatal 
et al. described the NDVI + BPF filter combination principle for RED + NIR band 
mixing. The NDVI camera is needed for plant detection using a difference index with 
a red threshold of DIRT. Plant Forward Looking Infrared (FLIR) thermal cameras 
and NDVI cameras use low-cost agricultural systems to modify algorithms [8]. 

The wavelength of agricultural land changes every day when atmospheric condi-
tions and environmental pollution change [9]. The Multispectral camera automati-
cally adjusted the NIR image and NDVI images using the brightness and contrast 
of sunlight illumination [10]. All multispectral wavelengths of light images are 
varied and tabulated in Excel format using the SDCARD setup of the NDVI 
camera. We need to increase production by maintaining cultivation and control-
ling irrigation systems using a Drone automation system [11]. The field is moni-
tored using various image sensors (NDVI and NIR) in all atmospheric situations. 
The NDVI sensor captured the irrigation area and Disease areas for solving the 
agricultural problem without manpower. The system is supported for predicting 
the damage of plants, sprayer control, and saving the data in the daily database. 
We utilized vegetation indices [12] like NDVI—Normalized difference vegetation
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index, RVI—ratio vegetation index, MSR—Modified simple ratio, TVI—Trans-
formed Vegetation Index, MTVI—Modified Triangular Vegetation Index 1 and 2, 
GNDVI—Green Normalized Difference Vegetation Index, EVI—Enhanced Vegeta-
tion Index, SAVI—Soil Adjusted Vegetation Index, LCI—Leaf Chlorophyll Index, 
LAI—Leaf Area Index, TSAVI—Transformed Soil Adjusted Vegetation Index, 
WDVI—Weighted difference vegetation index, NDWI—Normalized Difference 
Water Index, MNDWI—Modified Normalized Difference Water Index, WRI—Water 
Ration Index, SWI—Soil Water Index, AWDI—Alternate Wet and Dry Irrigation 
index, and NDMI—Normalized Difference Moisture Index [13]. 

2 Literature Survey 

In Wu et al.’s paper [14], they described remote sensing-based agricultural crop 
monitoring. This research is used for determining key food production systems. The 
paper described the crop watch structure and methodology, preprocessing, and crop 
condition monitoring. NDVI, VHI, VCI, and TCI vegetation indices were simulated 
and estimated as crop averages. The paper explained the estimation of crop yield 
and production for food availability. Cropping intensity is estimated and monitored 
for the food supply. Cropping information is calibrated and validated using data 
management. 

Giordan et al. [15] published a paper on the investigation of landslides using 
low-cost remote sensing for high-resolution using UAV. The paper described drone 
path planning and data processing. Case study of the San Germano rockslide and 
the PIAN DELLA MUSSA landslide described in this paper. The paper analyzed 
rockslide vegetation and the methodology of UAV camera view [1]. On March 7, 
2014, all data were mapped into a 3D model. Landslide measurements and rockslide 
measurements are analyzed using drone mapping. The geomorphological map of the 
Pian Della Mussa landslide aided in the detection of rock cracking and plant lines 
using drones. 

Joyce et al. [16] described LiDAR mapping and RADAR image data technologies. 
Drone LIDAR technology in RADAR technology is used for Drone mapping and 
automation of airborne landing and takeoff positions. The paper explained geological 
hazard assessment with landslides and erosion. It gave details about synthetic aperture 
radar and seismic and tectonic hazards. It mentioned LIDAR usage from 2004 to 
2012. It determines floods and tsunamis in target areas. It compared LIDAR’s working 
functions for checking flooded areas using the synthetic aperture of RADAR. 

Mendes et al. [17] described photogrammetry with UAV surface models. It 
described the survey camera, the Canon IXUS 127, for UAV path planning. It 
described field tests, image acquisition, and its processing. The paper displayed 
the ortho mosaic generated by Micmac, PS, pix4D, and Agisoft. It mentioned point 
cloud places using all software. It identified plastic plates using a derivation of the
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Root Mean Square. The results show a survey of plastic places using ortho mosaic 
and point clouds. 

The reference paper [18] described the use of unmanned aerial vehicles (UAVs) for 
landslide mapping and deformation analysis. It described a digital elevation model 
(DEM) for detecting high-resolution UAV images. The paper provided a case study 
about data acquisition from an experimental view. The UAV mapping was captured 
by a Nikon 800 camera on an LTBT aircraft. The paper described a method of object-
oriented analysis of landslide OOA and semi-automatic detection. It explained digital 
image correlation methods for displacement using NCC calculation. All the results 
are displayed by using landslide recognition with the classification and deformation 
computations using UAV images. 

The Landslide ArcGIS Toolbox with a landslide zone called Model Builder as 
described in the [19] paper. The paper produced an area of the result. The paper 
elaborated on the geological setting of the study area. An extract of the geological 
map depicts the region between the Germanasca Valley, the Piedmont Region, and 
Northwest Italy. The methodology for the mapping of morphometric factors was 
introduced in those study places. Using the statistical analysis, the author received 
the index for the landslide susceptibility map. The Landslide Susceptibility Map 
was validated and tested using Matlab, and the result plotted the affected area by a 
landslide. 

The Vasuki et al. [20] paper described semi-automatic mapping of geological 
structures using UAV images. The paper analyses the rock surface images with high 
resolution. This topic covered data acquisition using UAV images and analyzed the 
photogrammetry data. The paper explained fault map generation using feature extrac-
tion and first, second, and third stage segment linking. The methods compared the 
semiautomatic fault map with the manual interpretation of the mapping. It described 
automated 3D structure analysis. It compared orientation data and field measurements 
of 3D analysis. 

Westoby et al. [21] paper described “Structure-from-Motion” photogrammetry. It 
provided an outline of a low-cost photogrammetric technique for obtaining datasets 
of high resolutions termed “structure from motion” [SfM]. The paper described all 
photogrammetric survey methods with SfM methods. Image acquisition and keypoint 
extraction are implemented in the SfM workflow. The paper compared terrestrial laser 
scanning using acquisition, processing, and results. The paper’s author identified 
water content in rock. A practical application involves the SfM output for a particular 
time and the establishment of a GCP network to facilitate the transformation to the 
extraction of metric data and the hypothesized effectiveness of an aerial for the 
terrestrial data collection method. 

The paper described (2019) by Song et al. a remote sensing-based method [22] for  
drought monitoring using eigenvectors. The paper described the land surface temper-
ature (LST) index [23], the temperature condition index (TCI), and the temperature-
vegetation water stress index (T-VWSI). The paper compared the normalized differ-
ence vegetation index (NDVI) and the T-VWSI indices. The remote sensing data
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and preprocessing using MODIS datasets were analyzed using LST with enhanced 
vegetation index (EVI) values. Agricultural meteorological methods describe and 
evaluate the drought eigenvectors. The construction of drought indices and optimal 
remote sensing drought index verified the DI values. T-VWSI results were used 
to build the best RSM-(T-VWSI) fitting model, which was then compared to R2 
and error measures in months [24]. The paper analyzed NDVI mapping, T-VWSI 
mapping, and EVI for vegetation growth. 

The Willem et al. [3] described multi-sensor NDVI data continuity for vegeta-
tion monitoring. AVHRR, MODIS, and VIIRS satellite images are described by 
NDVI indices. Atmospherically corrected MODIS data sets show the NDVI value 
as a constant [14]. Canopy reflectance and NDVI are simulated using AVHRR, 
MODIS, and VIIRS satellite images. Atmosphere radiative transfer simulations and 
cross-sensor surface NDVI translation are calculated and simulated in this paper. 
Multi-sensor NDVI values are correlated and scattered on multisensory NDVI. 
NDVI_Rayleigh, NDVI_Aerosol, and NDVI_H2O values and cross-sensor NDVI 
uncertainties are compared for AVHRR, MODIS, and VIIRS satellite images. 

Li et al. [25] described that The Ground Reference Data method is used for 
climate and vegetation checking. Sample plots are compared in pixel number and 
some kilometers for land cover. The author analyzed statistical Analysis values of 
Landsat-7 ETM + and Landsat-8 OLI Spectral Band and The paper evaluated the 
Correlation Analysis of Vegetation Indices Derived from ETM + and OLI that is 
based on the LSWI, NBR, and NDVI values. 

Taniguchi et al. [1] described Inter-sensor NDVI relationships for Soil ISO lines. 
The paper compared Soil ISO lines in different NDVI vegetation indices. The leaf 
area index (LAI) is equated to Soil ISO lines. The paper derived some steps of the 
inter-NDVI relationship. The author simulated the GEOSAIL and PROSPECT of 
Relative transfer models RTM. Soil parameters were checked and simulated using 
NDVI vegetation indices. The author compared NDVI derivation relationships in 
NDVI differences between the two sensors (vB − vA). 

Teillet et al. [26] described radiometric processing Considerations using NDVI 
VIs. The results are computed using NDVI and plotted in the graph for FWHM of 
Generic sensor cases and FWHM of different sensor cases. 

The paper described a comparison of other vegetation indices SAVI, MSAVI, 
RVI, and DVI. Miura et al. [10] described equations of spectral vegetation index and 
Translation formulas and Theorems. Solved Biomass indices theorems using Fourier 
series with DFT image algorithms. 

Myneni et al. [27] described “FAPAR and NDVI”. It prescribed NDVI statistical 
value and FAPAR Technical work. It displayed NDVI analysis and statistical rate of 
vegetation. 

Pinto et al. [28] described the NDVI theorems and solved the biomass transfer 
theorems. The paper described the correlation analysis and RBSE percentage values 
of the NDVI vegetation indices.
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Rahman et al. [29] used NDVI of agricultural land views to describe atmospheric 
conditions and weather location. It analyzed the solar spectrum values and remote 
sensing of drones. 

3 Design of an Agricultural Drone 

The proposed Drone design is having fertilizer and seed sowing method of mecha-
nism. It has 6 wings and a single tank to spray fertilizer or pesticides when predicting 
vegetation indices using target images [25]. BLDC motors are balanced to drive the 
drone system with a tank. The stand of Taking off and land-on position is based 
on auto rotatable and fixed [30]. The eight nozzles are used for spraying pesticides 
and fertilizing the through the nozzles. The Seed sowing options are provided in 
the middle of the drone system and the system is automated with an IoT controller 
[31]. Mobile operated the drone to direct left movement, right movement, top move-
ment, and land-on movement [32]. When detection of dry areas, auto adjusted type 
setup mechanism comes initial position and opened the drive to seeds sowing to the 
agricultural land. The drone setup was utilized and designed for seed sowing and 
fertilizing using vegetation calculation with multispectral images [33]. 

Methodology 

Drone survey-based biomass vegetation indices are shown in Fig. 1. The following 
steps are provided the classified results after classified images and outcome results 
occurred.

1. Collected 1200 multispectral images from Drone 
2. Analyze the Drone mapping 
3. Extract the Ray Cloud 
4. Processing 
5. Feature Extraction of Vegetation Indices 
6. Classification of the indices 
7. Outcome result displayed.
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Start 

Collected 1200 multispectral images from Drone 

Drone mapping 

Ray Cloud 

Processing 

A. Initial Processing 

B. Point Cloud and Mesh 

C. DSM, orthomosaic  image 

D. Index Calculation and color mapping 

FEATURE EXTRACTION 

NDVI, RVI, MSR, TVI, MTVI, GNDVI, EVI, 

SAVI, LCI, LAI, TSAVI, WDVI, NDWI, MNDWI, 

WRI, SWI, AWDI, NDMI 

Classification 

Condition = true 

Stop 

Outcome result displayed 
a) Plant Growth areas 

b) Disease of plant areas 

c) Locust damaged plant areas 

d) Water detection areas 

e) Soil Quality index 

Fig. 1 Drone survey-based biomass vegetation indices
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3.1 Drone Mapping 

The drone mapping set depends upon no of Drone survey images from starting 
stage to the finishing stage. In Fig. 2, these mapping images have 915 images 
including the NIR band, Green band, Red band, and red_edge band. We can view 
every pointed image data using pix4dmapper [34]. This mapping technique merged 
all bands of image wavelengths in nm using the generation of reflectance mapping. 
The four bands Tif file have data like the wavelength of images, the reflectance 
of images, moisture in coloring, Temperature in coloring, water content level in 
coloring, plant vegetation in coloring, plant disease in coloring, and soil quality in 
coloring [35].

Starting images to ending images must be aligned with the same pixel due to 
maintaining equal pixel reading when activation of drone mapping [36]. All bands’ 
wavelengths are in nm and mentioned minimum pixel value per band, maximum 
pixel value per band, average pixel value per band, Standard deviation of pixel per 
band, and variance of pixel per band after generated reflectance map. Here green 
band in 550 nm, NIR band in 790 nm, Red band in 660 nm, and red_edge in 735 nm 
[37]. Region views are shown from the index value, then select and draw in the target 
land. 

3.2 Ray Cloud 

The Ray cloud is the next step and is used for collecting tie points, point clouds, and 
point groups. In point groups, we can select unclassified images, ground images, road 
surface images [26], high vegetation images, building images if it is a building, and
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Fig. 2 Drone mapping

human-made objects. The Ray clouds images are shown in Fig. 3. Grass images are 
easily detected in this method [4]. This graph mapping shows a fully green color in 0– 
100% vegetation and blue color in dry soil. The grey color is shown in 3D for rotation 
of the 3D reflectance mapping. 915 image values are stored in single ray clouds 
and 3D mapping [38]. We can collect the source details like that the used camera 
type is Sequoia_4.0_1280×960 (NIR), and the Number of Automatic Tie Points is 
1230. Initial Position [m]: 312144.16, 5154825.52, 553.87, Computed Position [m]: 
312145.12, 5154825.27, 554.18, Initial Orientation (Omega, Phi, Kappa) [degree]: 
2.03, 3.00. Initial Accuracy (Horizontal, Vertical) [m]: 2.03, 3.00 [39].

All the 1200 images are in the TIF file as NIR, Green, Red, and Red Edge. The 
images are calibrated using pix4dmapper and tested along the mapping route [40]. 
We can run 374,406 classification images in pix4dmapper. Drone mapping classifies 
point clouds. We can navigate and clip the target image location using pix4dmapper. 
After calibration, we can take the new images. The clouds of images are collected 
with multispectral data in single images and drone mapping with GPS location for 
doing analysis [41]. A single point is linked to several images, and all points are 
linked to some cloud cells. Ray Cloud mapping points were connected, calibrated, 
and tested in all 1200 images for merging NIR, Green, Red, and Red_edge [42]. The 
Mapping point of Ray Clouds in all 1200 images is shown in Fig. 4.
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Fig. 3 Ray Clouds of 915 images

Fig. 4 Mapping point of ray clouds in all 1200 images 

3.3 Processing 

3.3.1 Initial Processing 

When processing is started, the initial processing sets the full Key points image scale, 
matching aerial grid, and automated calibration [43].
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3.3.2 Point Cloud and Mesh 

This process sets classifying points for classification. We can generate a 3D textured 
mesh. The processing areas are calibrated [44]. 

3.3.3 DSM, Ortho Mosaic Image 

We can set automatic GSD at 10.687 cm/pixel. The DSM ortho mosaic image is used 
to calibrate all index values [45]. 

3.3.4 Index Calculation 

The NDVI of the Ortho mosaic image is shown in Fig. 5. The vegetation indices are 
calculated using the following equation. 

Fig. 5 NDVI of orthomosaic image
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(a) Normalized difference vegetation 
index (NDVI) 

= (nir − red)/(nir + red) 

(b) Ratio vegetation index (RVI) = nir/red 

(c) Modified simple ratio index (MSR) = (nir − 445)/(red − 445) 
(d) Triangular vegetation index (TVI) = (0.5 * (120 *(nir − green) − 200 * (red 

− green))) 
(e) Modified triangular 

vegetation index (MTVI) 
= 0.5 * (120 * (nir − green) − 200 * 

(red_edge − green)) 
(f) Green normalized difference 

vegetation index (GNDVI) 
= (nir − green)/(nir + green) 

(g) Enhanced vegetation index (EVI) = 2.5 * (nir − red)/((nir + 6 * red  − 7.5 * 
0.5) + 1) 

(h) Soil adjusted vegetation index (SAVI) = ((nir − red)/(nir + red + 0.5)) * (1 + 
0.5) 

(i) Leaf chlorophyll index (LCI) = (850 − red_edge)/(850 + 680) 
(j) Leaf area index (LAI) = (((0.69 − (((nir − red)/(nir + red + 

0.5)) * (1 + 0.5)))/0.59) * 1.5)/0.91 
(k) Transformed soil adjusted vegetation 

index (TSAVI) 
= 0.08 * (nir − 0.08 * red − 0.08)/((red + 

0.08 * nir − 0.08) + 0.1 * 1 + 0.08^2)) 
(l) Weighted (near-infrared-red) 

difference vegetation index (WDVI) 
= nir − (0.9034 * red) 

(m) Normalized difference water index 
(NDWI) 

= (nir + 70 − 1240)/(860 + 1240) 

(n) Modification of normalized difference 
water index (MNDWI) 

= (green − 1.55)/(green + 1.55) 

(o) Water ratio index (WRI) = (green + red)/(nir + 0.5) 
(p) Standardized water-level index (SWI) = (nir − 0.100)/0.14 
(q) Automated water extraction index 

(AWEI) 
= 4 * (green − 2.20) − (0.25 * nir + 2.75 

* 1.60) 

(r) Normalized difference moisture 
(Water) index (NDMI) 

= (nir − 1600)/(nir + 1600) 

3.3.5 Color Mapping 

This is classified into three types. They are equal areas. Equal spacing and Jenks. We 
can assign several classes, say 32 > 32 classes is not possible in the application of 
pix4dmapper [46]. Color mapping classes are based on red, yellow, and green color 
mapping areas and atmospheres. The vegetation indices NDVI, RVI, MSR, TVI, 
MTVI, GNDVI, EVI, SAVI, LCI, LAI, TSAVI, WDVI, NDWI, MNDWI, WRI, 
SWI, AWDI, NDMI are classified using color mapping and After color mapping 
imaging of NDVI, RVI, MSR, TVI, MTVI, GNDVI, EVI, SAVI, LCI, LAI, TSAVI, 
WDVI, NDWI, MNDWI, WRI, SWI, AWDI, NDMI, we can get feature extraction
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of the 915 images in a single clouding image [2]. All feature-extracted images [1] 
are displayed in Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 
and 23. 

Fig. 6 Benchmarking of normalized difference vegetation index (NDVI): 2020 

Fig. 7 Benchmarking of ratio vegetation index (RVI)
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Fig. 8 Benchmarking of modified simple ratio index (MSR) 

Fig. 9 Benchmarking of triangular vegetation index (TVI)
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Fig. 10 Benchmarking of modified triangular vegetation index (MTVI) 

Fig. 11 Benchmarking of green normalized difference vegetation index (GNDVI)
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Fig. 12 Benchmarking of enhanced vegetation index (EVI) 

Fig. 13 Benchmarking of soil adjusted vegetation index (SAVI)
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Fig. 14 Benchmarking of leaf chlorophyll index (LCI) 

Fig. 15 Benchmarking of leaf area index (LAI)
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Fig. 16 Benchmarking of transformed soil adjusted vegetation index (TSAVI) 

Fig. 17 Benchmarking of weighted (near-infrared-red) difference vegetation index (WDVI)



Design and Method of an Agricultural Drone System Using Biomass … 361

Fig. 18 Benchmarking of normalized difference water index (NDWI) 

Fig. 19 Benchmarking of modification of normalized difference water index (MNDWI)
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Fig. 20 Benchmarking of water ratio index (WRI) 

Fig. 21 Benchmarking of standardized water-level index (SWI)
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Fig. 22 Benchmarking of automated water extraction index (AWEI) 

Fig. 23 Benchmarking of normalized difference moisture (water) index (NDMI) 

3.4 Feature Extraction 

3.4.1 Compared Plant Health Value Between in (20.07.2016 
and 03.08.2016) 

The Plant health value calculated in two days on 2016, See Figs. 24 and 25.
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Fig. 24 Plant health value on 20.07.2016 

Fig. 25 Plant health value on 03.08.2016
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3.5 Classifications of Vegetation Indices 

Table 1 showed the value of Plant Growth Vegetation indices. Table 2 showed the 
Disease indices of the land. Table 3 showed the Locust damaged plant indices of 
the land. Table 4 showed the Soil quality indices of the land. Table 5 showed Water 
detection indices in surface of the land. The Classification of VIs value compared 
with decision value. This showed in Table 6. 

Table 1 Plant growth vegetation indices [30] 

S. no VIs Band Min Avg Max StdDev Var 

1. NDVI 1 −0.64 0.63 0.96 0.26 0.07 

2. RVI 1 0.22 0.29 52.59 6.28 39.50 

3. MSR 1 1.00 1.00 1.00 1.00 0.00 

4. TVI 1 −8.46 19.62 91.03 10.42 108.49 

5. MTVI 1 −31.56 4.29 54.74 3.98 15.85 

Table 2 Disease indices 

S. no VIs Band Min Avg Max StdDev Var 

1. NDVI 1 −0.64 0.63 0.96 0.26 0.07 

2. GNDVI 1 −0.79 0.24 0.82 0.26 0.07 

3. EVI 1 −3.19 −0.30 0.20 0.20 0.07 

4. SAVI 1 −0.25 0.40 1.05 0.22 0.05 

5. REDEDGE 1 0.00 0.21 0.62 0.09 0.01 

6. LCI 1 0.56 0.56 0.56 0.00 0.00 

Table 3 Locust damaged plant indices 

S. no VIs Band Min Avg Max StdDev Var 

1. NDVI 1 −0.64 0.63 0.96 0.26 0.07 

2. LAI 1 −1.01 0.81 2.62 0.60 0.37 

3. RVI 1 0.22 0.29 52.59 6.28 39.50 

4. GNDVI 1 −0.79 0.24 0.82 0.26 0.07 

5. SAVI 1 −0.25 0.40 1.05 0.22 0.05
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Table 4 Soil quality indices 

S. no VIs Band Min Avg Max StdDev Var 

1. SQI 1 0.49 0.49 0.49 0.49 0.02 

2. SAVI 1 −0.25 0.40 1.05 0.22 0.05 

3. TSAVI 1 −0.13 0.18 0.63 0.13 0.02 

4. EVI 1 −3.19 −0.30 0.20 0.20 0.07 

5. WDVI 1 −0.11 0.25 1.35 0.16 0.03 

Table 5 Water detection indices on surface [13] 

S.no VIs Band Min Avg Max StdDev Var 

1. NDVI 1 −0.64 0.63 0.96 0.26 0.07 

2. NDWI 1 −0.56 −0.56 −0.56 0.00 0.00 

3. MNDWI 1 −0.97 −0.80 −0.44 0.08 0.01 

4. WRI 1 0.05 0.30 1.05 0.16 0.02 

5. SWI 1 −0.53 1.50 9.27 1.03 1.07 

6. AWEI 1 −13.13 −12.57 −10.88 0.29 0.08 

7. NDMI 1 −1.00 −1.00 −1.00 0.00 0.00 

3.5.1 Classification of VIs with decision value 

See Table 6.

Table 6 Classification of VIs with decision value 

Vegetation indices [4] Decision value Identification 

Normalized difference vegetation 
index (NDVI) 

1 to 0  
−0.1 to 0.1  
0.2 to 0.5  
0.6 to 1.0  

Water bodies 
Rocks, sand, or snow 
Shrubs and grasslands or senescing 
crops 
Dense vegetation or tropical 
rainforest 

Standardized water-level index 
(SWI) 

SWI > 2.0 
SWI > 1.5 
SWI > 1.0 
SWI > 0.0 
SWI < 0.0 

Extreme drought 
Severe drought 
Moderate drought 
Mild drought 
Non drought 

Soil quality index SQI < 1.13 
SQI = 1.1 to 1.45 
SQI > 1.46 

High-quality soil 
Moderate quality soil 
Low-quality soil 

Ratio vegetation index (RVI) <1 
>1 

Vegetation 
Non-vegetation

(continued)
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Table 6 (continued)

Vegetation indices [4] Decision value Identification

Modified simple ratio index (MSR) 0.0 to 0.5  
0.5 to 1.20  

40% vegetation 
60% vegetation 

Triangular vegetation index (TVI) 0–10 
10–20 

300 triangular vegetation 
80% triangular vegetation 

Modified triangular vegetation 
index (MTVI) 

1–3 
3–8 
8–10 

Lower growth 
Higher growth 
Yield cultivation stage 

Green normalized difference 
vegetation index (GNDVI) 

−0.1 to 0.1  
0.2 to 0.5  
0.6 to 1.0  

Depressed and aged vegetation 
Moderate vegetation 
Higher green vegetation 

Enhanced vegetation index (EVI) −1 to 0  
0 to 1  

Low vegetation quality 
Higher vegetation quality 

Soil adjusted vegetation index 
(SAVI) 

L = 0 
L = 0.5 
L = 1 

High green vegetation 
Default—moderate green vegetation 
No green vegetation 

Leaf chlorophyll index (LCI) LCI = −0.5 to 0.5 
LCI = 0.5 to 1.0 

Found locust damaged areas 
No locust damaged areas 

Leaf area index (LAI) LAI < 4 
LAI > 4 

A good estimation of VI 
No estimation of VI 

Transformed soil adjusted 
vegetation index (TSAVI) 

0.1 – 0.5  
0.6 – 1.0  

Transformed soil 
No transformed soil 

Weighted difference vegetation 
index (WDVI) 

0.1 − 0.5 
0.5 − 1.0 

Found 50% LAI of green vegetation 
Found 100% LAI of green vegetation 

Normalized difference water index 
(NDWI) 

−0.0 to −0.6 
0.6 to 1.0  

Found 10% water index 
Found 60–100% water index 

Modification of normalized 
difference water index (MNDWI) 

Positive value 
Negative value 

Water molecule here 
No water molecule here 

Water ratio index (WRI) >1 
<1 

Water content available 
No water content available 

Automated water extraction index 
(AWEI) 

Positive value 
Negative value 

Water content is 100% 
Water content5% 

Normalized difference moisture 
(water) index (NDMI) 

−2 to 0  
0 to 1  

No moisture content in the land 
Moisture content is available
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4 Graph for Vegetation, Plant Disease, Locust Damage, Soil 
Quality, and Water Detection 

(a) Graph of Plant Vegetation indices 

0 
50 

100 
150 

NDVI RVI MSR TVI MTVI 

1 2 3 4 5  

Plant Vegtation Growth Indices 

Avg StdDev Var 

(b) Graph of Disease Indices
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(c) Graph of locust damaged plant indices 
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(d) Graph of soil quality indices
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-0.5 
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Soil Quality Indices 
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(e) Graph of Water detection Indices
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5 Final Result 

The final result of proposed agricultural images are detected after feature extraction. 
The final results are shown in Figs. 26 and 27. 

Fig. 26 Reflectance versus wavelength
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Fig. 27 Vegetation versus water versus soil 

6 Future Work 

This research work proposed the identification of vegetation index in different agri-
cultural lands using NDVI multispectral cameras, hyperspectral cameras, and thermal 
cameras [47]. The multispectral camera for image collection has four frequency 
bands: green, red, red edge, and near-infrared (NIR).

• NDVI, RVI, MSR, TVI, and MTVI vegetation indices can detect the growth and 
vegetation of an agricultural plant with a minimum of 10 km.

• The NDVI, GNDVI, EVI, SAVI, Red_edge, and LCI vegetation indices measured 
the disease of agricultural plants with coverage spreading a minimum of 10 km.

• The NDVI, LAI, RVI, GNDVI, and SAVI vegetation indices can detect the spread 
and vegetation growth of an agricultural plant in an area of a minimum of 10 km.

• The SQI, SAVI, TSAVI, EVI, and WDVI soil quality indices can detect soil 
moisture and soil quality of an agricultural plant with a minimum of 10 km.

• The NDVI, NDWI, MNDWI, WRI, and SWI water detection indices can detect 
the water percentage and dry percentage of an agricultural plant with a minimum 
coverage of 10 km. 

7 Conclusion 

The outcome results are displayed as the Plant Growth Areas, Disease of Plant Areas, 
Locust Damaged Plant Areas, Water Detection Areas, and Soil Quality Index using 
the Vegetation Index. Reflectance vs. vegetation is 47% (approximate), reflectance
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vs. soil quality is 48% (approximate) in 18 um wavelength, and reflectance vs. water 
is 4% (approximate) in 0.6um wavelength. Content is 4% with moisture in the agri-
cultural land and it has dry bare soil. NDVI, RVI, MSR, TVI, and MTVI vege-
tation indices showed 90% (approximate) plant growth detection. NDVI, GNDVI, 
EVI, SAVI, Red_edge, and LCI were measured and showed an indication of 1% 
(approximate) plant diseases. NDVI, LAI, RVI, GNDVI, and SAVI were measured 
and showed an indication of no locust spreading. Soil quality indices measured and 
showing higher soil quality content include SQI, SAVI, TSAVI, EVI, and WDVI. 
NDVI, NDWI, MNDWI, WRI, and SWI indices are measured and shown at 4% 
water spread content. 
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UAV-LiDAR and Terrestrial Laser 
Scanning for Automatic Extraction 
of Forest Inventory Parameters 

Khadija Meghraoui, Hamza Lfalah, Imane Sebari, Souhail Kellouch, 
Sanaa Fadil, Kenza Ait El Kadi, and Saloua Bensiali 

Abstract The determination of the Dendrometric parameters of forest stands has a 
silvicultural and ecological interest for the forester, in particular for the evaluation 
of the dynamics of growth and productivity, and the evaluation of indicators of good 
ecological status. Currently, UAV-LiDAR (Unmanned Aerial Vehicle-Light Detec-
tion and Ranging) has become the new trend for measurement professionals, offering 
very high-resolution data collection at considerably lower survey costs. In addition, 
this technology has started to prove its utility in forest inventory applications namely 
to extract dendrometric parameters, where direct and conventional measurements 
are sometimes difficult. As for the TLS (Terrestrial Laser Scanning) technology, it 
has made it possible to obtain several abundant and refined structural information 
under the forest canopy. In the context of extraction of forest inventory parameters, the 
precision of extracting tree height for example using TLS alone, is insufficient. Hence
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the contribution of the combination of ALS (Aerial Laser Scanning) with TLS data 
to fill any information gaps that may exist. The main goal of this study is to present an 
approach to the automatic extraction of dendrometric parameters from UAV-LiDAR 
and TLS data. The proposed methodology is based on performing a TLS survey at a 
plot level and an ALS scan of the entire area. Our methodology is essentially made 
up of two steps: automatic crown delineation and automatic extraction of dendro-
metric parameters (position, Diameter at breast height, height, stem curve, concave 
and convex hull). For the first step, we compared the segmentation of the point cloud 
by the Watershed algorithm and by the SEGMA pipeline. Whereas the extraction of 
the dendrometric parameters was carried out using a set of algorithms namely RHT 
(Random Hough Transform) and LSR (Least Square Regression). The study focused 
on UAV-ALS and TLS datasets from different regions and with different densities 
(the Mediterranean, tropical, and coniferous forest). The validation was done using 
measurements carried out manually on the datasets. The results show that delin-
eation by SEGMA gave a percentage of crown detection varying from 98 to 113% 
(over-segmentation) with diameters having a coefficient of determination varying 
from 56 to 90% depending on the area while the Watershed algorithm presented an 
over-segmentation of the actual crowns. Whereas the results for the DBH determi-
nation, the RHT and LSR algorithms both displayed almost 1–4 cm deviations from 
the reference while the height was extracted with 1–8 mm deviations. 

Keywords Crown delineation · Dendrometric parameters · Forest inventory ·
LSR · Point cloud · RHT · SEGMA · TLS · Tree segmentation · UAV-LiDAR ·
Watershed 

1 Introduction 

1.1 Background 

The sustainable management of forests requires a preliminary estimation of the 
attributes of the forests. Unmanned Aerial Vehicle (UAV)-based remote sensing 
techniques have proved their usefulness in forest inventory applications as well as 
for ecological purposes [1]. In this context, the UAV-LiDAR system has become a 
promising technology and is starting to be used often for forest management, due 
to its ability to provide very accurate estimates of the three-dimensional structure of 
the forest. 

The Drone based LiDAR has become the essential solution for professional 
measurements. This solution is used to generate high-resolution DTMs for terrain 
analysis. Nowadays, this technology is very efficient and precise. Indeed, a detailed 
planning flight makes it possible to obtain results during data acquisition, and there-
fore to derive very high-resolution DEM. The advantage of drone platforms is that 
they are flexible and adaptable in various contexts and accept access to remote and 
dangerous areas without risk for operators.
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Recently, the development of technological solutions has enabled the use of drones 
as a novel remote sensing alternative offering very high-resolution data collection at 
a considerably lower survey cost. Current research into the use of drones as a tool for 
3D data collection includes a variety of studies including forestry. These studies often 
use image matching techniques. The downside of the point clouds generated by this 
approach is that few points will be measured within the canopy and the underlying 
surface in areas of dense vegetation. LiDAR systems have evolved and sensors collect 
data from ground systems, and airborne systems, including unmanned aerial vehicles 
(UAV). 

In forestry, LiDAR data is used for monitoring changes in vegetation and devel-
oping inventories, assessing the risk of disasters caused by wind or fire, and mapping 
ecosystems and forest habitats. Different parameters characterizing forest stands can 
be estimated from LiDAR data, and this by using one of the two major approaches: 
in particular an approach based on the area, known as the zonal approach (using 
the average height and density of the stands) or an approach based on a single tree 
(detection and measurement of individual trees). If the objective is to predict forest 
attributes at the plot and stand level over large areas, then the area approach is 
used. Using LiDAR data, it was possible to estimate tree height at stand level as 
well as individual stem volumes and other dendrometric parameters. More recently, 
some studies have demonstrated the possibility of differentiating tree species through 
the three-dimensional description offered by point clouds [2]. In addition, previous 
studies have proven that information from LiDAR data can be used to obtain precise 
estimates of tree height and, therefore, stand volume and biomass, as well as to extract 
high-precision digital models. 

The terrestrial laser scanning technology has made it possible to obtain several 
abundant and refined structural information under the forest canopy [3]. The detailed 
stem measurements offered by a terrestrial scan provide a means of better under-
standing the relationships that involve tree growth, allometry, stem mechanisms, 
and canopy structure [4]. This information is provided by forest inventories and it 
begins with the determination of diameter at breast height (DBH), tree height (h), 
tree species, and basal area which are all essential for some forestry studies such as 
the evaluation of the potential of forest fires or aboveground biomass among others. 

On one hand, TLS does not offer much in terms of time and efficiency, but because 
of its accuracy and stability, it is widely used in forest resource surveys. What’s more, 
TLS does not require other special equipment, and it is relatively simple to use. It 
captures the vertical structure of the forest, especially the lower canopy, which offers 
unique advantages in the acquisition of a high-precision DEM. However, due to the 
topography variations and limited field of view of the scanners in vertical directions, 
as well as the shadow effects of other objects, it is often difficult for TLS to capture 
data of the upper canopy. Therefore, the precision of tree height extraction using TLS 
alone is insufficient [5]. On the other hand, UAV LiDAR offers advantages over TLS 
in acquiring a relatively complete forest canopy and retrieving relevant structural 
parameters at a larger scale and in less time.
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1.2 Forest Inventory Parameters 

The main pillars of forest management are the assessment of the resources of stands, 
and their desired states. They are based on the measurement of the characteristics of 
trees and stands. The main attributes of trees are Diameter, Height, Shape, Volume, 
or information on Biomass and Crown. The diameter, measured as the length of the 
straight line passing through the center of the tree, is measured by accepting that the 
cross-section of the tree is circular. It is widely used to calculate the volume of trees. 
Tree height is the vertical distance from a point of interest on the tree to the surface 
of the ground (Fig. 1). 

The tree’s position: The position is generally understood as the position of the center 
of the base of the trees. among the methods of determination that exist there is one 
that uses all the points up to a height specified by the user (for example 60 cm) above 
the lowest point of the tree and calculates the median coordinates of X and Y. The 
Z coordinate is defined as the median Z value of n points closest to the terrain at 
that X, Y position [6]. Another method uses an approach that relies on a Random 
Hough Transform (RHT) for the detection of circles on tree points 1.3 m and 0.65 m 
above the lowest point of the cloud. Finally, the position of the tree is defined as the 
intersection of the vector formed by the centers of the two estimated circles with the 
surface of the DTM [6]. 

The Diameter at Breast Height (DBH): To determine this parameter, two methods 
are usually used, a Random Hough Transformation (RHT) for circle detection with 
an adjustable number of circle estimation iterations: The process of extracting DBH 
is illustrated in Fig. 2. For sliced point cloud data, the RHT method is used to 
sequentially perform the circular detection from multiple sub-regions in each layer 
respectively until the extraction of all the sliced point clouds is complete [8].

A Least Square Regression (LSR), this algorithm employs an algebraic estimation 
of the circle and a geometric reduction of the distances.

Fig. 1 (Right) Example of 
forest inventory parameters: 
CBH: Crown Base Height, 
CH: Crown Height, CTH: 
Crown Total Height, CL: 
Crown Length, CW: Crown 
Width, CC: Crown Centroid, 
DBH: Diameter at Breast 
Height [6]. (Left) Illustration 
of basic tree parameters [7] 
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Fig. 2 Principle of the RHT algorithm [8]

The previous two methods use a subset of the tree point cloud—a horizontal slice 
1.25 to 1.35 m above the calculated tree position. To successfully fit the circle, at 
least 4 points in this slice are needed [6]. Five factors likely affect correct estimates 
of DBH: the diameter of the stem, a missing part of the DBH ring, the percentage of 
noise points, and the number of points creating the ‘DBH ring’. 

Height measurement: Using the locations of the extracted trees, the point clouds are 
clipped at an interval of 1.00 m [6]. The RHT method is used to obtain the diameter 
of multilayer trunks and the centers of the circles, and the multilayer centers of the 
circles are used to fit a straight line in space, which is the direction of growth of the 
tree. Using that straight line, the height is calculated. 

Stem curve: For the analysis of the stem curve and shape, there is an approach 
that exploits the position of stem centers and stem diameters calculated at different 
heights above the position of the tree base. Starting at 0.65 m and followed by 1.3 m, 
2 m, and then every meter above the ground. The circles (defining the center and the 
local stem diameter) are fitted by the RHT algorithm to horizontal slices of the tree 
point cloud cut at appropriate heights. The determination stops when the estimated 
diameter is twice as large as in the previous two circles, indicating the expansion of 
the tree cloud in the crown [6]. The result of the algorithm is a list of diameters at 
different heights of the stem. 

Planar tree projection: The planar tree projection areas are calculated using a 2D 
convex/concave hull (envelope) of the tree point cloud projected orthogonally on 
the horizontal plane at the height of the base position of the tree. The convex hull is 
calculated using the “Gift wrapping” algorithm, then the area of the resulting polygon 
is calculated. Since convex shapes do not match the actual shape of many irregular 
trees well, there is a concave plane projection [6]. The concave projection extends 
the convex shell algorithm by using the “Divide and conquer” algorithm to divide the 
sides of the polygon based on the maximum length given to the side of the polygon.



380 K. Meghraoui et al.

1.3 Objectives 

This paper aims to present an innovative methodology to use both UAV-LiDAR and 
terrestrial Laser scanning to perform automatic extraction of a set of forest inventory 
parameters. 

To process the collected data, we went through two essential stages each using 
specific algorithms: segmentation of the point cloud followed by automatic extraction 
of the desired parameters. 

This study also attempts to examine the efficiency of determining dendrometric 
parameters from UAV-LiDAR and TLS data. 

2 Materials and Methods 

2.1 Study Area 

The study area for the UAV-based LiDAR was conducted in three different regions, a 
Mediterranean forest in Morocco, located at the forest of Maamora which represents 
the largest lowland sub-region in the world. It covers an area of 133,000 ha, of which 
60,000 ha is pure cork oak. The part studied is home to the cork oak (Querqus 
Suber) which is an evergreen tree exploited for its bark which provides the cork. 
This species is native to southwestern Europe and northwestern Africa as shown in 
the photo below (Fig. 3). 

The second and the third points clouds represent a coniferous forest in California, 
this area is characterized by a predominance of trees with needle-like perennial 
leaves. As opposed to deciduous trees, coniferous forests are accompanied by a 
uniform layer of small shrubs and grasses. 

The last ALS point cloud represents a tropical forest in Congo, this forest which 
covers nearly three million km2 and is shared between six countries. The TLS data

(a)          (b)     (c) 

Fig. 3 a Maamora forest, b Coniferous forest, c Tropical forest 
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which is a plot used to examine our methodology consisted of a set of deciduous 
trees. 

2.2 UAV-LiDAR Data 

The first UAV-LiDAR data was obtained in July 2017 with the Unmanned Aerial 
Vehicle Matrice 600 pro equipped with the Velodyne VLP-16 LiDAR sensor. This 
sensor has a range of 100 m, a point accuracy of up to 3 cm, and a frequency of 
72 kHz. The height of flight was 40 m with a speed of 3 m/s, and the georeferencing 
was done by the Comnav T300 GNSS receiver. The second was acquired by Can 
drone (June 2020), and the last one from YellowScan (February 2020) (Fig. 4 and 
Table 1). 

(a) (b) 

Fig. 4 a DJI M600 pro drone used for the first point cloud. b Photo of the first mission 

Table 1 Characteristics of the ALS point cloud used 

Data set Density 
(points/m2) 

Number of 
points (million 
points) 

Area (m2) Volume (Mb) Source 

562 11.13 19 802 976.8 DJI M600 pro 
+ Velodyne 
VLP-16 

312 2.95 9479 236.7 Can drone 
(June 2020) 

299 3.14 10,496 251.3 Can drone 
(June 2020) 

49 6.62 134,123 580.5 YellowScan 
(February 
2020)
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Table 2 Characteristics of the TLS point cloud used 

Data set Density Number of points Area Volume Source 

5199 points/m2 723,000 points 139 m2 55.2 Mb www.computree.onf 

2.3 TLS Data 

The TLS data representing a plot with deciduous trees were downloaded from the 
site of the Computree platform, showing a density of 5199 points/m2 and an area of 
139 m2 (Available for download at www.computree.onf) (Table 2). 

2.4 Methodology 

In this paper, we suggest a methodology based on a first segmentation of the ALS 
point cloud, followed by a second segmentation of TLS point clouds on the plot 
level. The first segmentation will provide a delineation of individual tree crowns for 
which we extracted some attributes. Whilst the second segmentation aims to delineate 
individual trees, from which other dendrometric parameters are to be automatically 
extracted in the final step using specific algorithms (Fig. 5).

Segmentation algorithms for ALS 
SEGMA. This method is based on detecting and filtering maxima to identify peaks. 
The crowns are then delimited using the Watershed algorithm and corrected according 
to geometric criteria. The method is based on the version initially developed by 
St Onge and implemented in the Computree platform. The steps for detecting the 
maxima are as follows: (i) Creation of the CHM from a normalized point cloud (ii) 
Filling of the holes (iii) Smoothing of the CHM by a Gaussian filter (iv) detection of 
the maxima. 

Watershed. This is a simple method that can be explained by the movement of 
water through a landscape, Rainwater falls everywhere and the water moves in the 
direction of the steepest slopes. For tree crown segmentation, the movement is rather 
upward to local maxima, which we assume are treetops. A start point is placed in 
each raster cell above a height threshold. A path is placed from each starting point by 
iteratively moving to the neighboring raster cell with the highest value until a local 
maximum is reached. The starting points that reach the same local maximum define 
a segment. 

Segmentation algorithms for TLS 
Automatic voxel-based approach. This automatic approach is based on the distance 
between points and the minimum number of points forming trees, with a specification

http://www.computree.onf
http://www.computree.onf
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Fig. 5 Workflow chart 
depicting the steps 
performed in this study

of the size of the voxel that includes the points. In the first step of segmentation, all 
the vegetation is divided into slices. Within these slices, clusters with a minimum 
number of points N defined by the user and a maximum distance S between the two 
closest points are built. The next step is to rebuild the bases of the trees. For each 
cluster whose centroid height is less than 1.3 m above the ground, we find the 10 
neighboring clusters (closest) up to the distance 2S. We assume that these clusters 
come from the same tree base. All these clusters are merged into segments. These
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segments are tested to check if they are formed of at least five clusters and if the 
maximum dimension of the segment is at least 1 m to be identified as a tree. 

Semi-automatic voxel-based approach. This method makes it possible to isolate 
the trees to obtain a point cloud per tree from a terrestrial point cloud. This segmenta-
tion is said to be semi-automatic since it contains a manual editing phase to improve 
the results of the automatic part. We have chosen to implement it on the Compu-
tree platform. This method is a pipeline (a processing chain) applied to the cloud to 
be processed, passing through the various stages that follow: (i) Classification and 
generation of the DTM. (ii) Creation of a slice parallel to the DTM. This slice will 
then make it possible to detect starting points for each tree (seeds). (iii) Creation of a 
voxel grid, where each box references the list of points it contains in 3D. This will then 
make it possible to establish neighborhood relations between boxes. (iv) Segmenta-
tion of the voxel grid of points already created, from 3D seeds. The principle is to 
create a topological neighborhood relationship between the boxes containing points, 
to “contaminate” the whole tree from the seeds, first upwards, then downwards. 

3 Results 

In this section, we will present the results obtained after applying the algorithms 
proposed in our methodology to the different clouds available to us. For the California 
point cloud, it was found that it presents several quadrants of different density, we, 
therefore, proceeded to a division of the latter to treat every two quadrants of different 
densities to assess the robustness of the proposed algorithms (Table 3). 

The different algorithms and automatic extraction methods explained in the 
methodology were tested on the TLS point cloud used, and the segmentation results 
were (Fig. 6).

Different other dendrometric parameters to explore from the TLS point cloud are 
in particular:

Table 3 ALS point cloud segmentation results 

Forest Type Mediterranean forest 
(Maamora, Morocco) 

Coniferous forest 
(California, less 
dense quadrant) 

Coniferous forest 
(California, denser 
quadrant) 

Tropical forest 
(Congo) 

SEGMA 

Watershed 
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(a)                       (b) (c) 

Fig. 6 a Segmentation of the TLS point cloud by the automatic approach, b Segmentation of the 
TLS point cloud using the semi-automatic approach, c Segmented and manually edited TLS point 
cloud

Tree position: This parameter is very necessary because it is from the planimetric 
position of the tree that all the dendrometric parameters will be measured (The 
position of the tree is mentioned by the gray sphere (Fig. 7) and its coordinates can 
be exported with other attributes). 

DBH: Measurement of DBH by RHT and LSR gave the following result (measure-
ment in cm). 

Height: The height of this same tree was determined (in m). 

Stem curve: The stem curve, which is one of the most interesting parameters that 
can be extracted from a TLS cloud, was determined for the same tree above. 

The exported results are in the form of a list of diameters corresponding to each 
height of the curve.

(a)                  (b)    (c)   (d) 

Fig. 7 a Example of determining a tree position after segmentation. b DBH measurement by the 
RHT algorithm. c DBH measurement by the LSR algorithm 
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Convex and concave hull 

These two dendrometric parameters were calculated for the tree shown in Fig. 7 
(Figs. 8, 9 and Table 4). 

Fig. 8 Stem curve illustration 

(a)             (b)       (c) 

Fig. 9 a Individual tree used for the determination of hull, b Example of concave hull measurement, 
c Example of convex hull measurement 

Table 4 Diameters 
corresponding to the different 
sections of the curve 

Height (m) Diameter (cm) 

0.65 25.4 

1.30 24 

2.00 25.8 

3.00 24.4 

4.00 22.6
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4 Validation 

To validate the results of the ALS point clouds results, we established the manual 
extraction of certain crowns on the CHM, so that they can be compared with the 
crowns obtained from the segmentation algorithms. For each data set, a validation of 
the number of crowns detected, the area of the canopy, the diameter, the perimeter, and 
the height was carried out by calculating the percentages of detection, RMSE, R2, and 
adjusted R2. Below are the validation crowns extracted manually and comparative 
tables (Fig. 10 and Tables 5, 6 and 7). 

For the Congo Forest point cloud, the comparison was done using a set of reference 
crowns that mainly contain high canopy trees, with manually segmented crowns 
preferably being selected from the larger ones as they must be visible from the

(a)          (b)                   (c) (d) 

Fig. 10 a Validation crown for the Mediterranean forest, b Validation crown for the less dense 
quadrant of the coniferous forest, c Validation crown for the denser quadrant of the coniferous 
forest, d Validation crown for the tropical forest 

Table 5 Number of crowns detected (Mediterranean forest) 

Number of crowns Reference SEGMA Watershed (implemented on R) 

123 139 166 

Pourcentage – 113% 135% 

Table 6 Number of crowns detected (First Coniferous forest) 

Number of crowns Reference SEGMA Watershed (implemented on R) 

104 102 149 

Pourcentage – 98% 143% 

Table 7 Number of crowns detected (Second coniferous forest) 

Number of crowns Reference SEGMA Watershed (implemented on R) 

106 117 203 

Pourcentage – 110% 191% 
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Table 8 Statistics of crown attributes delimited by Watershed and SEGMA for the Mediterranean 
forest 

Diameter Perimeter Height 

Watershed SEGMA Watershed SEGMA Watershed SEGMA 

RMSE (DL = 13) 0.94 0.60 5.90 3.14 0.43 0 

R2 0.70 0.88 0.67 0.86 0.91 1 

Adjusted R2 0.68 0.87 0.64 0.85 0.90 1 

outside. Otherwise, algorithms tend to create erroneous segments that cannot be 
validated (Tables 8, 9, 10 and 11). 

The validation of the TLS results was made by the manual extraction of two 
parameters only, namely the height and the DBH for two individuals since these two 
parameters are the most important and the others which remain are determined by 
the same principle with some small differences. The manual measurements made are 
as follows:

Table 9 Statistics of crown attributes delimited by Watershed and SEGMA for the less dense 
quadrant of the coniferous forest 

Diameter Perimeter Height 

Watershed SEGMA Watershed SEGMA Watershed SEGMA 

RMSE (DL = 13) 1.84 1.63 11.83 9.78 2.10 3.48 

R2 0.66 0.56 0.62 0.65 0.95 0.86 

Adjusted R2 0.64 0.53 0.59 0.63 0.94 0.85 

Table 10 Statistics of crown attributes delimited by Watershed and SEGMA for the denser quadrant 
of the coniferous forest 

Diameter Perimeter Height 

Watershed SEGMA Watershed SEGMA Watershed SEGMA 

RMSE (DL = 13) 1.73 0.86 11.23 5.84 0.19 0.05 

R2 0.52 0.8 0.47 0.82 0.99 1 

Adjusted R2 0.49 0.78 0.43 0.81 0.99 1 

Table 11 Statistics of crown attributes delimited by Watershed and SEGMA for the tropical forest 

Diameter Perimeter Height 

Watershed SEGMA Watershed SEGMA Watershed SEGMA 

RMSE (DL = 13) 5.02 3.81 48.79 31.76 0.003 0.004 

R2 0.89 0.90 0.66 0.76 1 1 

Adjusted R2 0.87 0.88 0.61 0.72 1 1 
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(a)                      (b) 

Fig. 11 a DBH measurement for tree N°1, b DBH measurement for tree N° 2 

DBH: the cloud was cut at the level of 1.30 m and the diameter was measured at 
this height (Figs. 11). 

Height: we used the Z dimension of the bounding box (Fig. 12 and Tables 12 and 
13). 

(a) (b) 

Fig. 12 a Tree height measurement N° 1, b Tree height measurement N° 2 

Table 12 Comparative table of the parameters extracted manually and those determined by the 
algorithms 

N° tree DBH (cm) Height (m) 

Reference RHT LSR Reference Automatic extraction 

1. 23.308 24 24.708 18.152 18.16 

2. 53.155 56.4 56.8 19.039 19.04 

Table 13 Differences 
between manually extracted 
measurements and algorithm 
measurements 

N° Tree DBH difference (cm) Height difference (cm) 

RHT LSR 

1. 0.7 1.4 0.8 

2. 3.2 3.6 0.1
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5 Discussions 

Our study focuses mainly on the introduction of a new methodology combining 
terrestrial LiDAR data with those of the UAV-LiDAR to carry out an improved forest 
inventory. The integration of the data acquired by the two platforms consists of the 
fusion of the cloud of TLS points at each plot with the corresponding part of the 
drone ALS point cloud. The idea is to provide an alternative that can allow the forest 
manager to easily, automatically, and more accurately measure the attributes of the 
trees in a forest stand. These attributes are of visceral importance as they form the 
basis of any forest study. 

Our results concerning the ALS data confirm that the different segmentation 
methods lead to very different results. In general, the performance of the methods 
used is better in the coniferous forest and the forest of Maamora, characterized by an 
average density of trees, than in dense forest stands like that of the Congo. At the very 
level of the Maamora cloud and everywhere else, it has been found that where there 
is a high density leading to the overlapping of the crowns of the trees, the algorithms 
have difficulty distinguishing one from the other. This point made the difference 
between the SEGMA algorithm and the Watershed algorithm that we implemented 
on R. Indeed, the latter was able, visibly, to segment the overlapping crowns where 
SEGMA was unable to delimit the individual crowns. The same remark was raised at 
the level of the Congo Forest in which the density of the canopy, its heterogeneity, and 
the presence of different stages of tree growth limited our segmentation approach. 
However, we tried to act on the configuration of the algorithms to bring out only the 
most imposing specimens in terms of the height and size of the crowns. SEGMA 
method gave better results in terms of crown attributes which is hardly enough to 
judge its performance as Watershed identified contours much more accurately and 
visually realistically. However, the validation carried out could be biased as long as 
the crowns extracted manually do not necessarily correspond to the reality on the 
ground. The only conclusion that we can then draw is that a tropical forest charac-
terized by a high density, a heterogeneous vertical and horizontal structure, and a 
difference in terms of growth stages would be difficult to segment and the results 
obtained would not correspond at all to reality. 

Our study identified the developed SEGMA method as the best method to segment 
crowns. It identifies the closest number of crowns corresponding to reality, but also 
the lowest RMSEs when comparing the segmented crowns with the reference data 
set. Indeed, even if the SEGMA method is significantly more efficient at segmenting 
separate crowns, the Watershed method also works well in areas where the crowns 
overlap as long as it has succeeded in detecting the boundaries of each crown that 
remains to be seen by field data. 

For the TLS part of our methodology, we used an existing dataset comprising 
a plot with a few trees. It measured the DBH, the Height, the Stem curve, and the 
concave and convex envelopes. The validation was done by measuring the DBH 
and the Height manually on the point cloud corresponding to two different trees. A
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validation by field data would have been, without doubt, better except that we did 
not have the conventional measurements of the trees present on the cloud used. 

The approach proposed in our methodology provides for a better description at 
the level of the individual tree. Indeed, the dendrometric parameters extracted are all 
the more important as they will assist the forester to manage and develop forest areas. 
The improvement over conventional methods is the automation of the measurement 
process and the possibility of extrapolation to the entire stand. 

The measurement of the dendrometric parameters in itself is only an intermediate 
step to assist any study that has an appeal to the forest in its many aspects. The 
next studies should deal much more in-depth with the area of space technologies as 
well as the algorithms for segmentation and automatic extraction of dendrometric 
parameters to revolutionize forest measurement, which remains an essential tool for 
the preservation of the natural ecological spaces of our territory. 

6 Conclusion and Future Work 

The detailed description of a forest stand is a crucial step in understanding it, appre-
hending it, and above all managing it to exploit or preserve it in the most optimal 
way possible. This description is the affair of a branch of forestry which is none 
other than the forest inventory. The latter has always been carried out conventionally 
and several experiments have been carried out in the direction of the exploitation 
of the potential offered by geospatial technologies and more precisely UAV-LiDAR 
and terrestrial LiDAR which offer a multitude of advantages and make it possible to 
drastically optimize the inventory process. 

This research project falls within this perspective and has as its main objective 
the exploitation of UAV-LiDAR and TLS data for the extraction of dendrometric 
parameters of a forest stand. 

To meet the objectives set, the development of an appropriate methodology is 
an essential step. Much of the implementation of the latter involves the use and 
comparison of different algorithms for segmentation and automatic extraction of 
the desired parameters. Each algorithm has its characteristics and specificities, we 
were able, thanks to the different datasets, to explore and analyze the results of these 
methods to finally assess the effectiveness of each of them. 

The results obtained demonstrated the effectiveness of the algorithms in 
segmenting ALS clouds, with some differences depending on the characteristics of 
each type of forest. Our study especially underlines the particularity of forest stands 
and the need to choose segmentation methods adapted for each type. A method 
developed for a given case would not be completely transferable to others. As for the 
dendrometric parameters from the TLS data, the proposed approach demonstrates 
certain ease of determination, the precision of the measurement, and the possibility 
of improving the results of the forest inventory by adding parameters previously not 
exploited.
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In addition, this study is an outline that prepares the ground for integrating 
LiDAR technology into forest inventory operations given the undeniable advantages 
it presents in terms of cost and time reduction. 

To conclude our research project, we would like to offer the following recom-
mendations for future studies:

• Apply the proposed methodology using data from a TLS and ALS mission in the 
same area with the collection of field data for validation.

• Adapt the segmentation algorithms to the nature of the forest studied and propose 
appropriate algorithms for dense forests.

• Integrate spectral information or intensity of LiDAR returns or both to potentially 
improve segmentation results.

• Evaluate the performance of algorithms for the automatic extraction of dendro-
metric parameters under different conditions of density, tree species, and survey 
season. 
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A UAS-Based Approach for Orchard 
Geo-Information Management System 

Abhishek Adhikari , Minakshi Kumar, and Shefali Agrawal 

Abstract The orchard management has improved by adequately utilizing the 
Remote Sensing (RS) and Geo-Information System (GIS). With the expansion 
of orchards in recent years, the sector has been facing a lack of skilled workers 
and specialists for optimal irrigation utilities, nutrient intake, canopy pruning, pest 
prevention, disease detection, and orchard quality management name a few. Sustain-
able orchard management will get a potential boost if the orchard database is well 
documented with standardized remote observation. Also, the observations recorded 
have optimal spectral, spatial, and temporal parameters to estimate overall changes in 
the orchard health. The Unmanned Aerial System (UAS)-based RS and GIS provide 
an approach that allows users to collect data efficiently and orderly. The following 
case study focuses on mapping a mango orchard by utilizing the derived product of 
the UAV remote sensing, an RGB ortho-imageries for analysis and generation of the 
orchard geo-management system. 

The geo analysis of the orchard is broadly subdivided into two major categories: 
spatial and spectral properties of the canopies and surroundings. First, the canopies’ 
precise position was determined. Next, the tree height is estimated using the shadow’s 
length, location, and time when the image was captured. From the classified image, 
individual canopies are labeled, and their top crown size is compared between manu-
ally drawn, semi-automatically generated, and field calculated values. It was observed 
that even though the area difference between these methods was only 1.08 m2 on 
average, the difference in perimeter was 8.2 m on average. The automated process 
can precisely map borders to the pixel level. Simultaneously, the manual method 
is limited to human perception of boundaries and will vary from user to user. The 
canopies’ spectral response provides insight and permits the interpretation of their 
physical properties like health, fruit maturity, and diseases. Furthermore, manual and 
semi-automatic generated canopies were compared concerning object-based aver-
aged spectra. It was observed that the canopies’ histogram was bimodal in the green
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band in both cases. This can be attributed to the two-year cycle of Mangifera indica. 
Hence some trees were boring abundant fruits while other canopies bore lesser fruits. 
Further analysis by estimating canopies center, their accurate position is mapped 
which is very useful for logistics and management like planning for minimal distance 
to cover every tree for plucking fruits, visiting, or pruning, simulation of the spread 
of canopies, simulation of infectious disease, inter canopy gaps (between canopies or 
ground where sunlight illumination is available) to name a few. Finally, the orchard 
features such as ‘Canopy Positional Proximity Value’ (CPPV), a positional param-
eter of an individual tree concerning other trees in the orchard, are defined, which is 
further used to determine the ‘Orchard Compactness Factor’ (OCF) as an indicator 
of how densely the trees are packed in an orchard. OFC and CPPV provides informa-
tion on orchard density as well as shape-size factor for the orchard geo-management. 
Hence, UAS-RS and GIS are potential tools that can mitigate many problems associ-
ated with orchard geo-management, which may further enhance the overall orchard 
productivity and sustainability. 

Keywords Tree canopy · Arboriculture · OBIA · Orchard geo-information system 
(OGIS) · Unmanned aerial system (UAS) 

1 Introduction 

Orchards have been part of human civilizations since ancient times. The orchards 
provide aesthetic values and supply staple food, lumber, and medicinal products. The 
orchards are the artificial construction of a single or group of tree species generally 
arranged in a pattern along with anthropogenic utilities, grown mainly for harvesting 
fruits, nuts, vegetables, spices, and flowers over a small region. The orchard may 
have different types of trees and arrangements in various patterns. The canopy is 
which most visible part of the tree and bears fruits and flowers. Thus, canopy obser-
vation is one of the necessary factors for knowing the orchard’s health. Also, for 
extensive orchards, the manual examination is time-consuming and costly. Despite 
being the source of beneficial products, the orchard’s arboriculture research needs 
much progress to build a productive and sustainable orchard system. With the rise of 
modern technology, tracking canopies is done by terrestrial, aerial, and satellite plat-
forms, which are laced with state-of-the-art remote sensing sensors and geolocation. 
Amongst these, terrestrial sensors provide details of individual trees. Still, the data 
generated are costlier (and field intensive) to build and maintain. At the same time, 
most freely available satellite-based sensors are coarse (up to 10 m) in resolution 
and have fixed revisit time limitations. The best approach for orchard monitoring 
is currently the UAS and UGV (Unmanned Ground Vehicle) based remote sensing 
approach to examine the canopies. The UAV-RS (Remote Sensing) provides a multi-
dimensional view of the orchard perceived from different viewpoints. They also 
cover large distances in a short time and supply ultra-high-resolution imagery of the 
orchard.
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The UAV is growing as one of the most versatile machines for surveying. They 
are being used in space explorations to deep-cave missions. In global research and 
surveys, drones are used for various applications [6, 7, 9, 11, 14, 28]. In recent years 
there have also been studies related to forest and tree canopies using UAV remote 
sensing [5, 8, 12, 15, 17, 18, 21, 24, 25, 29]. Similarly, few studies are focused 
on using UAV-RS orchard surveys, which will be discussed below. The following 
paper does not dwell on specific orchard management issues like evapotranspiration, 
yield estimation, or pest detection. It explores the fundamental ontological aspect of 
using the commercial off-the-shelf DSLR on a UAV for remote orchard properties 
extraction. It also compares similarities and differences between the manual and 
automated approaches to canopy feature extraction. This paper is organized as follows 
in six sections, as discussed below. 

2 Literature Review 

The orchards are cultivated throughout various terrain, from semi-arid to high-
altitude geographies. There are age-old practices for orchard cultivation. With 
changing times and rising resource demands, there have been many innovations 
in orchard management. The UAV-RS-based surveying methods for orchards, plan-
tations, and agroforestry are gaining quite popularity [26, 30]. The UAV-RS-based 
analysis, a recent method, is still growing, and as it gets more refined, more oppor-
tunities are on the rise. The orchard-based RS studies lie between crops and forest 
remote sensing, except they are smaller in size and are artificially generated resources. 
There are also not many research papers specific to UAV-RS orchard management, 
although similar work exists in forest and agricultural RS specialization. 

Few papers deal with individual tree delineation [17], which provides high accu-
racy in tree canopy extraction. Also, few studies on spatial feature extraction of 
individual trees [13, 18, 20] like height and crown diameter. These papers expressed 
using SfM (structure from motion) and DSM to extract these features. Even though 
the results were quite acceptable, the quality of 3D and DSM (Digital surface model) 
of vegetation is still challenging due to lack of the tie points. Still, the papers cover the 
basics of orchard and canopies parameters extraction. There are few papers specific to 
orchard study of evapotranspiration [10, 22], health observation [16], disease detec-
tion [1] and yield estimation [4, 21]. There are many products for UAV-based agricul-
ture and forest for sustainable management; not many tools are available for UAV-RS 
orchard management. Sun et al. [27] used UAV visual imaging for 3D morphological 
remote canopy evaluations to facilitate the orchard canopy management and control 
of modern standard orchards. When utilized together, the spectral and spatial prop-
erties provide a deeper insight into the industry’s challenges. The study bridges the 
conventional orchard resources management and UAV-RS technology to provide a 
better resource management paradigm.
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3 Material Used 

3.1 Study Area 

The study area is located near Nahar, Post Koti, Tehsil Vikasnagar, in Dehradun. It 
is approximately 16 km Northwest of Dehradun city-center. Its (UTM zone 43 N) 
central point is longitude; its latitude is 782051.684 E and 3371015.043 N Meters. 
The average elevation is about 648 m above sea level. The study area is an orchard 
that contains young mango, Mangifera indica, and trees owned by the locals. The 
mango orchard provides healthy fruits and many raw materials used in carpentry, 
ceremonies, and medicines [23]. The flowers bloom in March end, and by the last 
of June, the fruits are ready to be plucked. Figure 1 represents the study area map 
(inside the red box). The reference data are manually collected sample tree data from 
the field. The instrument used was a densitometer, “Leica Disto D8”. The ten sample 
canopies were randomly chosen from the dataset, and their canopy height and width 
along NS and EW directions were recorded from the site. 

3.2 Dataset and Tools Used 

The dataset used is provided by the PRSD department IIRS-ISRO, Dehradun. The 
camera used was a Commercially off-the-shelf (COTS) DSLR from SONY, Model: 
NEX-5 T, without a lens. The UAV model used for surveying was UX5. The UX5

Fig. 1 Study area map 
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Table 1 Dataset properties S. no Characteristics Values 

1. Size of image 3274 × 4267 Pixels 
2. Date of acquisition 21/march/2016 

3. Time of acquisition 13:32 IST 

4. GSD (Ground sample distance) 13 cm/pixel 

is a fixed-wing micro-MS-UAV with a weight of 1 kg and a wingspan of 1 m. The 
additional details of the dataset are shown in Table 1. 

Most programming for processing and analytics was done in R and python. Other 
tools and software used to assist in completion are Erdas Imagine, ArcGIS, and 
ENVI, which were for map-making, image processing, and visualization. 

4 Methodology 

In the following study, the orchard data collection and data processing was conducted 
as per previous work [3], as shown in Fig. 2. The ultra-high-resolution RGB images 
using a camera over a UAV platform were collected along with field samples. Then the 
individual pictures were processed and combined to form the georeferenced ortho-
image. The object-based classification provided a better solution for the canopy 
classification than the pixel approach. Thus the ortho-image was segmented using 
Simple linear iterative clustering zero (SLICO) [2] with a superpixel of size 451 
pixels (approx.). Also, Grey Level Correlation Matrix (GLCM) based textural raster 
was also used. Finally, a Random Forest (RF) classification was implemented for 
pixel-based, without textures and variable textural bin sizes. In a recent paper by 
Adhikari et al. [3], it was observed that for current study area classifier with the input 
of three bands and Shape Index (SI) (RGB + SI) (model name “OBIA-RF type-
2”) gave the best results amongst all models. The complex canopy objects (merged 
canopies) are manually delineated and saved as shapefile.

In the current study, a few data analysis parameters for orchards are extracted 
and analyzed. Three significant analyses are based on Spatial, Spectral, and overall 
orchard-influenced features. The objective is to provide ontologically better insight 
using currently available knowledge from literature. The tree height is estimated from 
the shadows cast in the first spatial section. This approach has used shades from raw 
data and has checked how good they are at estimating the tree height. It is measured 
using the manually masked image of the tree canopy and its shadows. The model 
based on Bretagne’s VSOP 87 theory [19] is used to calculate the solar azimuth and 
elevation angle. The rough height is estimated from the shadow using the calculated 
shadow length, elevation angle, and center of the tree. 

The other spatial properties, the center point positional value of canopy, perimeter, 
Shape Index (SI), and area, are also investigated. The position, perimeter, and
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Fig. 2 Methodology flowchart

canopies area were calculated for the manually generated and semi-OBIA-RF type-
2 model using the ArcMap measure tool. This data was used to compare the area 
between field, manual, and model-generated canopies to validate the image’s record-
ings. All three values are statistically plotted for further analysis. The difference in 
canopy centers was compared between type-2 and manual-generated canopies. This 
was then used to find the nearest neighbors of an individual tree canopy object. This 
parameter was further used to rank the average proximity of the canopy concerning 
the cluster. The average proximity of each tree, when presented as an integrated sum 
along with normalized by total trees, gives a rough estimate of how closely each tree 
is packed concerning the whole cluster. It depends on cluster size and canopy centroid 
closeness to the orchard center. It is termed the “orchard compactness factor for n 
trees,” which tells a rough estimate of how closely the “N” (total) trees are packed 
in a cluster. Tree canopy height, length, and width samples were measured on the 
field for area validation. The field data were collected using a measuring tape and 
diameter from North–South and East–West; the average was taken. 

Tree canopy spectral and textural information is essential to understanding the 
canopy properties related to its species, health, and growth. The spectral canopy 
feature is visible, but the variation amongst individual canopies in the orchard gives
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a general idea of the behavior of canopies. The type-2 canopy objects have also 
been compared with manually generated canopy using the histogram overlaying. 
Furthermore, the parameters were observed using a scatterplot to analyze patterns 
and how closely one parameter is linked to another in both extracted canopy types. 
The details of the descriptive analysis and findings are presented in the next section. 

5 Results and Discussion 

This study section focuses on the descriptive analysis of the input parameters 
extracted from the results. For the tree height estimation, the Solar altitude angle 
was 56.10°, and azimuth was 210.93°, derived from location and time data. The 
latitude and longitude information and date and time were taken from the image’s 
metadata to calculate the angles. The regression plot was used to find the relation 
between field and extracted values of tree height. In Fig. 3, the link between field and 
image data for tree height estimation was linear, positive, and strong. The regres-
sion estimation (the red dotted trend-line) of the tree height was the factor of 1.1625 
(trend-line) with a standard error of 0.0124 units overall. This slight deviation can be 
due to the error generated while recording field data. Most of the trees were young, 
and shadows provide a rough estimation of tree heights. 

The next step was estimating individual tree canopy size (area) and comparing 
the values from different approaches. In this, the data (area) from the field and 
image were compared. The field measurement included measuring the width of the 
canopy east–west and north–south, finally taking the average to get the diameter, and 
calculating the radial area of the canopy. The canopies were numbered, as shown in 
Fig. 4. From Fig.  5, it was observed that manual, type-2, and field-collected samples 
produced a similar result. Due to the property of SLIC of high boundary adherence
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Fig. 3 Regression plot between field-measured and image-derived height 
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Fig. 4 Labelled canopies of the orchard 
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Fig. 5 Comparison of difference areas between manual, automated (type-2), and field canopy area 
data 

but at high-resolution proper boundary adherence is not achieved with the manual 
approach might be the reason for subtle differences. The field data gives the radial 
area of the tree. Hence it might contain non-canopy regions. Some error exists at a 
few locations due to improper delineation due to shadows and ground vegetation. The 
area overall is over-estimated in automatic methods compared to manual methods 
by a factor of 1.08 m2 on average. 

The Difference in Perimeter varies significantly with the automated process over-
estimating by the factor of 8.162 m per canopy. It can be attributed to the fact that 
the manual method tends to generalize the borders. In contrast, due to high boundary
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Fig. 6 Tree ID 55 boundary 
sketch 

adherence, the automatic process tends to take minor border details into account. 
Hence current automatic method tends to give a higher perimeter value in the canopy 
perimeter. A comparison using the manual and automated method for aerial calcu-
lation varies from the individual delineation approach. Furthermore, small holes or 
extensions can be neglected from manual drawing to generalize the area. The latitude 
and longitude are defined for the centroid of tree canopies. The geometric centroid 
varies up to 0.266 m with a standard deviation of 0.144 when manual and type-2 
methods are compared. The shape index is also changing, and the average differ-
ence is 0.355 per canopy. It was observed that most of the SI of manually extracted 
canopies are below one, while the shape index of the tree-top from the type-2 model 
is above one. Figure 6 represents one example of tree ID 55 (notice delineation 
behavior of manual and automated approach). 

It was observed that there was not much difference between manually extracted 
canopies and OBIA-RF type-2 canopies when band 1 to band 10 (Red (B1), Green 
(B2), Blue (B3), Mean (B4), variance (B5), homogeneity (B6), contrast (B7), dissim-
ilarity (B8), entropy (B9), and second moment (B)), as shown in Fig. 7. The tree 
canopy spectral behavior is almost the same for both canopy objects. The mean 
feature values of object type-2 are slightly lower than the mean of manually generated 
objects.

In Fig. 8, the relative Kernel Density Estimations (KDE) over normalized (norm) 
values of the histograms reveal that both canopies are similar in spectral properties but 
vary in spatial properties like SI and perimeter. There is a minor sub-class (the green 
band has bimodal histograms) within the canopy. The dual peaks are visible because 
mangoes are in their blooming cycle, and new leaves and flowers are dominant in 
many trees. But few trees are not budding in this season, leading to a double hunch-
back in the histogram of the green (B2) band. The perimeter is more prominent in 
the type-2 canopies due to better boundary adherence. Overall manual canopies have 
slightly higher spectral property values while type-2 objects have higher values of 
perimeter and SI.
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Fig. 8 KDE plots for three spectral bands and shape index (SI)
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Fig. 9 Canopy proximity ranking based on proximity distances 

The total sum of canopies area off all trees in the orchard using the type-2 model 
was 2432.3 m2, while the manual method estimates 2325.3 m2. Two new param-
eters were also defined and investigated to determine orchard-feature concerning 
tree canopy positions. An individual tree’s proximity percentage (Canopy Positional 
Proximity Value (CPPV)) is defined as the canopy’s closeness to the other trees. The 
larger the value more distant it is from the other trees. It is calculated by averaging 
the distance from other trees to a particular tree (as shown in Eq. 1). It is given 
rank in the ascending order called proximity ranking—the ranking from center-most 
(minimal CPP value) to the corner-most canopy (maximum CPP value). Thus, Tree 
number 1 denotes the centermost tree in the cluster, while 99 represents the group’s 
corner-most tree, as shown in Fig. 9. It can be further analyzed to assess the chances 
of disease spread for a particular canopy. 

Canopy  Posi tional  Proximity  V  aluei =
∑n 

1 Distance f rom treen 
N 

(1) 

Furthermore, overall, the canopy density can also be described as the sum of the 
relative proximity of tree canopy concerning each other (Canopy Positional Proximity 
Value, as retrived from Eq. 1) by the total number of trees and termed as Orchard 
Compactness Factor (OCF) as shown in Eq. 2. It explains how close the canopies are 
packed in a particular orchard or within a well defined boundary. 

OC F  =
∑N 

1 (Canopy  Posi tional  Proximity  V  aluei ) 

N 
(2)
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For the current study area, th calculated OC F  was observed to be 55.447 m/tree 
for the type-2 model and 55.478 m/tree for manual canopies, which is quite similar. 
The orchard tree density is approximately 119.3 trees/hectare. The OCF considers 
positional arrangement (proximity) of each tree with respect to other trees and is 
easily defined for unconventional-shaped orchards, thus providing information on 
the tree density as well as shape-size parameter of an orchard. 

6 Conclusion 

The study investigates UAV-RS derived RGB orthoimage for orchard and canopy 
image-based definitions and various properties comparison between manual and 
automated generated canopy objects (type-2 model). The tree’s height is one of 
the essential characteristics collected by conventional field surveys. It was observed 
that shadow height was overestimated by the factor of 1.1625 (trend-line) with a 
standard error of 0.0124 units. The linear regression model was quite accurately able 
to predict size but still had minor errors. It is attributed to multiple sources of error 
like model-fitting, field measurement, and human-based errors. 

A sample of ten trees was selected randomly from a population for area compar-
ison. Data from the field, type-2 model, and polygon (manually generated) were 
compared. It was observed that the area estimates were quite close, while the field 
value was much higher than in most of the cases. The area of canopies is one of 
the primary data gathered in the conventional vegetation surveys. The other spatial 
factors like perimeter and shape index were also compared between manual and type-
2 models. Due to good boundary adherence, the type-2 canopies had a relatively larger 
perimeter than the manual canopies. The SI indicates objects’ complexity (compact-
ness); most manual-generated canopies have SI lower than one, while type-2 was 
more spread SI and most of it more significant than 1. Hence the type-2 objects are 
more complex than manual ones as they represent the canopies in their proper shape. 
The previous known spectral parameters are analyzed and showed highly similar 
behavior in both models. In B2 (green), there was a bimodal distribution indicating 
two sub-class within. Due to the budding of mango trees, few were not budding then 
and had a darker complexion leading to a slightly bi-modal density histogram of 
the green band. It may further assist in production estimation and Spatio-temporal 
variation in vegetation health assessment. 

The centroid of canopies was quite close in both type-2 and manual models. 
The centroids were used for nearest neighbor detection and proximity analysis. The 
proximity analysis covers two crucial features of vegetation survey, frequency, and 
density of canopies. The canopies were relatively ranked from the centermost to the 
corner-most tree using proximity percentage within the cluster. The overall orchard 
compactness of the tree canopy was calculated and found to be 55.447 m/tree for 
the type-2 model and 55.478 m/tree for the manual approach. It is the mean of the 
distance of all the trees from one another. The smaller the orchard compactness factor 
more densely the canopies are packed. Thus, the UAS-based automated delineation
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is similar to manually extracted objects alongside a few irregularities. Furthermore, 
using canopy positional proximity values provide a better way to analyze and catego-
rize the tree canopies than the conventional method. Also, the Orchard compactness 
factor for a small orchard, which uses the shape and position of individual canopies, 
provides a better understanding than the orchard density factor, another factor to 
relate orchard overall density and shape. Through combining the spatial, spectral, 
and emergent orchard properties, overall orchard canopies were geo-cataloged and 
are easily used for further analysis and management. 

This study used a three visible band (RGB) COTS camera dataset from a single 
UAS flight for developing an Orchard GIS (OGIS). The following case study high-
lights the potential of UAS-RS and promotes further investigation of different 
orchards and sensors with UAS-RS and GIS. The above research likewise high-
lights the possibility of using modern technology for orchard’s tree height, position, 
canopy area, shape, spectra, and derived features for better OGIS than conventional 
techniques. Furthermore, this study may be stretched to study different fields like 
forestry, agriculture, and plantations with UAS-RS with GIS, so they will benefit 
from implementing automated feature extraction and geo-management. 
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High-Speed Wi-Fi Systems for Long 
Range FANETS: Real Problems, 
Experiments, and Lessons Learnt 

Utkarsh Ahuja 

Abstract With the combinational use of geospatial and UAV technology, people 
have shown that much clearer and more precise surface features of the area under 
consideration can be extracted. Usually, for this, a good quality camera with limited 
memory is used. Although there are advancements in battery technology, the amount 
of time required in extracting data, analyze it and then rescheduling another flight 
is still a challenge. With advancements in Wi-Fi chips, which are light, reliable, and 
also cost reasonably less, one can set up a system for the swarm of UAVs to collect 
geospatial imagery data and simultaneously send that data over to the ground for real-
time analysis. This will not only save the time for gathering data but will also provide 
newer opportunities for research. Also as the overall integrated systems are costly, this 
technology can be used for smaller missions and tinkered UAV projects. This paper 
discusses vastly experiments that were done for high-speed data transfer rates, the 
problem one faces during the design of such systems, and lessons learned for further 
research. FANETS—Flying Ad-Hoc NETworkS are being widely studied. These 
days much of the discussions are limited to radio connectivity, which is dependent 
on heavy equipment loaded on large UAVs. The scope of this study is limited to more 
affordable, medium to small UAVs that are widely used in geospatial technology as 
they are agile and small in size. This paper also gives a brief about probabilistic 
aspects of regular practice that leads to a successful connection. Where there is a 
large number of nodes, how can hopping help, is also briefly discussed along with 
its further scopes of research? 
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1 Introduction 

In the 21st century, data and data delivery became the workhorse of modern industries. 
Autonomy in businesses, hardware, travel, and ways of living has shown massive 
productivity in our lives. With the increase in data delivery rates per second, enter-
tainment industries got a sharp boom in the market as high-quality video streaming 
became easy and handy. With the incoming of Artificial Intelligence data under-
standing and deciding, results became much faster but presenting them across 
multiple computers required increasing the speed of the internet. On wireless commu-
nication, this required an increase in frequency. Increasing frequency reduces the 
wireless range of connectivity. But if lesser data speeds that will imply lesser data 
delivery. UAVs, these days require faster data speeds for quicker results, along with 
a good reasonable wireless range. Thus, we need to find a solution for both longer 
ranges as well as reliable and faster data speeds. The networking should be robust 
and intelligent. Autonomy must be part of the system and decisions must be taken 
quickly without human intervention. 

2 Limiting the Scope 

With the limited apparatus, the scope of experiments and conclusions are limited. 
Thus for connectivity small Wi-Fi modules were used that worked on 2.4 GHz, small 
System On Chip (SOC) Computers that had 5 GHz Wi-Fi Technology, a quality 
long-range powerful router with both 2.4G and 5G channel frequency, a long-range 
powerful repeater, and some lab equipment to put all of them together. The apparatus 
is an implementation of FANET [1–3]. The repeater and router became part of the 
ground control station while the Wi-Fi modules and SOC computers became part of 
FANETs. The path was given, waypoints were decided and geo-fencing algorithms 
were implemented on the flying UAVs. This information was known to all other 
UAVs that were part of the experiment. The prominent spatial information of all 
UAVs is shared in the entire network. 

3 Setting Up the Apparatus 

The Router was configured such that it serves both 2.4G and 5G frequencies simul-
taneously. This was done so that the communication to the ground has a completely 
different spectrum than that of the data delivery. Thus, keeping both the data delivery 
and communication differences one can have better reliability of the system. 

The Flight Controller was already coded with the software that had waypoints and 
pathways that UAV had to follow. It could be controlled from the ground using the 
Wi-Fi module. With advancements in a tracking system, adaptive flight control and
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decision-making using SOC Computer, instructions to the flight controller could be 
given from the SOC in the future. The source of power for the flight controller was 
the same as that for the whole system. The controller had hard wire connections 
with a Wi-Fi module, with SOC Computer, with GPS receiver, and a battery for 
operation. All the outputs from the Flight Controller were limited to information 
signals only, since the power for the Wi-Fi module, SOC Computer was provided 
from the battery directly, implying that there is no power loss from the flight controller 
to any electronics attached to it. The flight controller can be instructed from the ground 
by both the Wi-Fi module as well as by onboard SOCC. This redundancy was made 
to be sure of optimum communication. 

The Wi-Fi Module was well suited for the long-range purpose, as it didn’t require 
great power, was comparable to the costs of connecting wires and solder, and had 
a quick response and less boot-up time to get connected. The overall module is 
a microcontroller in itself in which one could burn small scripts for routing the 
information received from the ground. It works on IEEE 802.11 b/g modes so it 
has great transferable speeds for instructive data packets coming from the ground. 
These systems also come with an additional antenna that could be strapped to the 
airframe such that to receive the maximum signal from the ground. Some researchers 
have shown much better ways to pick up signals from the ground by making specific 
hardware that rotates and moves the antenna around the airframe eventually getting 
maximum signal power reception [4]. The Wi-Fi module had its own power source 
that could sustain for about 16 h. Voltage regulator modules were placed between the 
wiring from Flight Controller to Wi-Fi Module as well as between the battery and Wi-
Fi module. This was done to ensure a steady current flow across this module as there 
are spikes of current output from the Flight Controller, whenever the power intake 
of the power distribution board connected to the Flight Controller increases. These 
overshoot signals were quite common during the system design and its testing. Thus 
keeping the Wi-Fi module protected and healthy, only then we can have reliable 
connectivity across the swarm. The other hardwired connection was between this 
system as well as SOC Computer. Over the air (OTA) programming was enabled. 
In this configuration, the module can be programmed while in the air. The only 
operational part could be programmed. Some modules come with additional memory 
chips as well that could be only modified by wiring them up. So basic Read Only 
Code for communication could be done on the ground while the operational part 
could be modified with ease while the system is airborne. This ensures permanent 
system security with system accessibility. 

The SOC Computer (SOCC) had a running script for data delivery. Since it is an 
onboard computer it can make decisions based on the algorithm that was running 
over it. Also giving autonomy to the system can only be done through this hardware. 
There are two ways to communicate with the SOCC. One was from the SOCC 
itself and the other was from the Wi-Fi module. The basic instruction code for 
safe landing and Return to Home (RTH) was burnt in all three devices namely the 
SOCC, Wi-Fi module, and the flight controller. The action could be called from 
either of the communication channels. The SOCC further can perform other tasks



414 U. Ahuja

such as tracking, following, giving coordinates for pattern formation, etc. to the Flight 
Controller autonomously. 

The GPS Receiver was attached to both Flight Controller and to SOCC. The idea 
behind this is again the redundancy as discussed earlier. Also if the swarm is made 
for Remote Sensing then pictures need to be aligned precisely with the earth coordi-
nates for an accurate result. Also, this gives the idea about the position when high-
speed data transmission is in trouble. The power for the receiver was given from the 
power source of the Wi-Fi module with voltage and current regulators between the 
connection ensuring durability and reliability of the system. 

The Data Delivery system is basically a software implementation of networking 
protocols. There are many APIs and different classes in computer languages that 
already serve this purpose. Thus the system can be developed based on any rele-
vant and needed routing schemes [1]. The data stack that is supposed to be sent is 
decided. The stack includes the data along with its GPS coordinates along with a time 
stamp that should be the same as both the collected image/data and GPS coordinates. 
Although all the flight data is stored in the flight controller which is also shared via 
Wi-Fi module to the ground. Another copy of that data is made and stored on the 
SOCC as well. This data is shared among UAVs when one of them stops listening 
on the 5G Network. This redundancy helps in retrieving information about the UAV 
and answering the question that what was UAV doing at what location and what did 
it capture before it went disconnected. The data is saved on Secure Digital (SD) card 
and is easily accessible. 

Positioning all the hardware onto the UAV is really important. If the UAV is large then 
the flight controller is placed in the center of the surface plate with no high current 
wires around it. This is to ensure that magnetic effects due to the high current drawn by 
motors shouldn’t affect the magnetic sensor readings. The Global Positioning System 
(GPS) Receiver module could be placed near the flight controller. The SOCC can 
also be placed near the Flight Controller with power input to the opposite side of 
the Flight Controller to ensure no current problems. The battery is at the center but 
below the surface plate. This is because all the electronics need to be at the top to 
receive signals. Although the antenna, if present for the Wi-Fi module is at the center 
perpendicular to the plane of the battery, hangs vertical pointing to the ground. Since 
the antenna is usually long, minor eddy currents due to battery drain will not hamper 
what the antenna will receive. In some situations, people have placed a polystyrene 
slab and then fixed the antenna in between to have more distance from the battery 
and to avoid vibrations from the airframe. The former makes more sense than the 
latter. Also keeping the shape aerodynamic is another problem. The antenna mustn’t 
receive vortex or turbulence from the propellers and wings. This will add a lot of 
noise to the signal received. In the absence of the antenna, the Wi-Fi module can be 
placed on one of the legs of the UAV and the same weight can be towed to the other 
leg for much greater stability. A few grams of extra weight will not affect much of 
the battery performance as compared to the few processing power used for stability
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will. This is done to avoid any electronic interferences from the equipment that might 
be lying in the vicinity of the antenna. 

The area for  testing  was an open grass field. The field had been mowed properly 
and then watered. This was done to avoid any flying dust and husk that could collide 
with the propellers. Also, the particle size is comparable to the wavelengths used, 
thus to avoid Mie scattering watering was important. 

The Waypoints were already decided on the ground and all nodes are aware of the 
path that is planned for the UAVs. The person on the ground can perform multiple 
operations for the path planning that could be done for the UAVs in real-time. 

For every experiment Wind and Weather Conditions were noted. Although in 
gusts of wind only a communication system was tested and UAVs weren’t flown. 

The Long Range Wi-Fi Repeater worked on a 2.4G frequency. In normal weather 
conditions (no precipitation and winds speed <5kmph) the range can reach up to 7 
kilometers. Thus for the system for long-range Wi-Fi connectivity, this was the best 
choice. 

Possible Scenarios 

For the systems to be durable one needs to understand what sorts of situations UAVs 
might be used. There are five main elements, air, water, earth, fire, and space. Space 
will remain out of our scope. 

Earth: Remote Sensing; Water: Flying in situations while raining, fog, or 
snowfall; Air: Dusty Winds; Fire: domestic and forest. 

We can think of all other possibilities and can create situations to test the system’s 
performance. Based on the conditions then bring improvements to the system. With 
the addition of Artificial Intelligence (AI), the system can self-regulate under different 
conditions. This concept is also known as situational awareness. Thus, the research 
is limited to gathering active concepts and parameters that will allow the system to 
respond autonomously in different situations. 

4 System Design Proposal 

Network hopping as described in [5] appears easy but apparently is more difficult 
to implement. This idea can be taken and further recommendations could be made. 
As discussed earlier, all three major systems namely the Flight Controller, SOCC, 
and Wi-Fi module can be controlled from the ground. Also, Flight Controller can be 
controlled from both SOCC and Wi-Fi Module. There is another interdependency, 
the Wi-Fi Module can control SOCC when the module is reprogrammed from the 
ground. The control is limited to rule out major risks, thus it can just request the 
SOCC to change its mode from client to an access point (turning on hotspot). In this 
case, the more reliable network from the Wi-Fi module can still remain in contact 
with the ground while nodes that have lost connection totally from the ground can
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connect to this access point to transfer their data to the ground. The limitation is 
that the bandwidth is less and only required important data (totally dependent on 
situations) is sent back to the ground. 

Firstly the major question that arises is that when multiple nodes are connected 
to the access point and there is no connection from the ground how will data reach 
the ground? In this case, quick switching is done. The moment the farthest node 
loses connection since its last location is known, the node next to the farthest visible 
node in the same direction is requested to give an access point. Now the moment this 
step is taken the nodes within its near range switch their connection to a new access 
point. The names and addresses of these access points are pre-decided so the lost 
node tries to connect all the nodes which were in its near region through AP. Also, 
the lost node has lost communication over 5G, and 2.4G is still connected. Since 
the range of both nodes (lost and AP) overlap, this new access point is discovered 
and quickly connected. The data transmission then is such that the incoming data is 
chunked and sent to all other discoverable nodes with a tag ‘for ground’. Then these 
nodes send this data via a 2.4G network to the ground. In this case, the performance 
of the system falls but reliability is still maintained. Also, there is a memory limit on 
all of these nodes, thus, the data they are collecting themselves has to be sent to the 
ground. 

In continuation of this process, after a while when data limits are approachable the 
system that being is the host, requests the ground that limit is being reached, and the 
ground requests the other node to be an access point. The other node first sends all 
its data via the 5G network after switching, then it becomes an access point. During 
data relieving all other nodes also do the same, but not the earlier node serving as 
the access point. The farthest node records the data but doesn’t share it. The earlier 
access point node relieves the data and flags, ‘not to be served for AP’ or access 
point and moves away from the local network formed over the air. The new node is 
now discoverable by the lost node. The process repeats as earlier. In this case, the 
ground decides which node is to be the access point. Although there are proposals 
for this system to be automated as well, just on one condition that the edge node 
should never be an access point. Figure 1 explains well.

4.1 Common Situations and Practices 

Situation: What if the node serving as Access Point fails? 
Practice: OTA network is sharing information directly to the ground using a 2.4G 

network. If any case ground doesn’t receive any reply from the access point serving 
node, then it checks the data coming from all other nodes. In this case, all other nodes 
have a flag enabled that contains information about the access point and if it is active 
or not. The ground checks for that flag. 

In the case where the ground is receiving a connection, and the 5G connection 
fails, the other nodes will not have the flag and then the ground will request a new 
node to serve as an access point. This failed node will return home.
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Fig. 1 Communication 
process in proposed FANET
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Situation: Flying the FANETs in open fields for research and testing. 
Practice: Antenna Configuration: Never point all the antennas in one direction. 

In the case where the router at the ground has four antennas, point three of them 
inclined with the three axes (XYZ) and the last one inclined forty-five degrees to all 
of them for maximum reception. Some researchers have shown antenna arrays to be 
promising [6]. Field: Watering the field is important for avoiding any dust and husk 
particles that could harm the propeller and hamper the strength of the signal due to Mie 
scattering. Ground Control Fencing: Usually people tend to protect their area with 
metallic fencing or nets that have thin metallic wires winded into ropes. The fencing 
will interfere with the signals. Never let anything or anyone stay in between the line 
of sight of the communication system [7]. Always keep your Personal Computer 
systems away from multiple electronic devices during the test as they too interfere 
with the signals. Flying the UAVs in such that they are collinear with the router is 
not recommended, this causes interference in communication. Although choosing 
different channels using MIMO (Multiple Input and Output) Antennas can help lower 
down the effect, provided that the frequency the channel exploits aren’t overlapping. 
But remember that the nodes flying farther use channels with lesser frequency. 

Probabilistic View: Given the surrounding and weather conditions in the case of 
the 2.4G network, consider the probability of successful connection between a single 
FANET node to the Ground node as ‘p’. And of failure as 1 − p. Let ‘X’ be our 
random variable. 

So P(X= successful connection) = p 
P(X= unsuccessful connection) = 1 − p 
Also, let ‘q’ define the probability of successful connection of lost node to Access 

Point Node on 5G network. Then that of failure is 1 − q. 
Since both events are independent thus, expectation E for successful connection 

during a lost node is ‘PQ’ and for unsuccessful is (1 − p) * (1 − q). Also, the joint 
distribution of both events will also be the same since both events are independent. 
Since: 

p, q < 1 

Thus, PkQt, where both k, t > 1, which implies multiple hops, the expectation of 
the event involving multiple hops will always be less than ‘PQ’ 

Naturally pkqt < PQ. Thus more hopping implies a lesser probability of successful 
connection. 

In the next section let us see how different scenarios affect these variables. 

5 Experiments and Solutions 

Fire: In all sorts of fire, domestic, commercial, and forest, soot particles whose size 
is comparable to the frequencies used in this system (Mie Scattering), along with 
ionized air will interfere with the frequencies. Thus if the probability of success drops
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by some amount ‘t’, then: Expectation will be as (p − t) * (q − t), which is quadratic 
with ‘t’. If there is another hop then Expectation drops as (p − t) * (q − t)2. This  
implies the expectation of successful connection drops exponentially with more hops 
of the data packet sent from the lost node to the ground. Now let us understand how 
does ‘t’ change with different types of fires. For domestic fires, many researchers 
have shown how UAVs help in extinguishing fires, by spraying water through the 
windows. In this case ‘t’ is negligibly small. Thus this scenario is similar to Open 
Field. 

Now consider a large commercial fire, in this case, large UAVs with water pockets 
for spraying will have to enter the arena of fire. The communication pathway will 
look like the Fig. 2. 

Hopping is a requirement, because if communication is done in the line of sight, 
then the path from ground to UAV will be close enough to fire and soot, thus making 
values of ‘t’ larger. 

In case of forest fires hopping will have to be increased. The approach toward 
the fire must be from the direction of the wind. This is to avoid drag and smoking 
(Fig. 3). 

In this case, the middle UAV will serve as Access Point for the 5G network. The 
node connected directly to the ground shall communicate over 2.4G. The last node 
(rightmost), as we call it ‘explorer node’ will not be able to connect over a 2.4G 
network, it will use only 5G to connect to the middle node.

Fig. 2 FANET Schematic in 
case of Commercial Fire 

Fig. 3 FANET Schematic in 
case of Forest Fire 
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Fig. 4 FANET Schematic in 
case of Remote Sensing in 
mountainous regions

      

Earth: Consider remote sensing in mountainous regions. The first preference must 
be that the ground station should be at a greater or comparable height as compared 
to the sensing area. Greater height will give an advantage, lesser hopping will be 
required. Figure 4 depicts it well. 

In this case, switching is required to be done. The right-most node is the explorer 
node, and adjacent to it is the switching node. Since this node is also not visible this 
will act as virtual ground (VG) for the explorer node. The virtual ground will be 
geofenced and if it crosses that region farther from the ground, it will autonomously 
come near to the ground to get connected, while the explorer will either hover or 
land. The second node from the left will act as AP. The way this works is as: 

Step 1: Only the explorer node can wander, the rest of the nodes are geofenced and 
can be treated as static nodes [3]. 

Step 2: The node adjacent to the explorer node will become VG. This node will 
receive data from a wanderer, the wander knows the data holding capacity of this 
node, thus after a certain amount of data is sent, it will stop sending data over a 5G 
network. Although it will send location and other high priority (example: system 
information) data via 2.4G to VG. 

Step 3: Data held by VG has to be relieved, thus VG’s 5G network switches to the 
client, while 2.4G is still an AP. In this configuration, the last node explorer node is 
still connected over to the ground. The VG, which is a client on 5G now will connect 
to the node serving AP. It will deliver data to it. 

Step 4: Once all data is relieved, it will switch back to VG continuing the same 
process as before. This sort of hopping or relaying, though is not that efficient in 
data delivery, but is reliable and can serve exploring areas under threat or not easy 
to reach. 

Problems faced: Such tests are carried out at higher altitudes, thus fog, clouds, and 
high-speed winds must be avoided. For such situations, directional antennas could 
be used [8]. 

Similar strategies could be used in urban areas with taller buildings around. This 
will help to analyze areas around the building. This system gives an opportunity
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in civil engineering to remotely sense and create models for larger structures of 
buildings. There are studies and results that depict about the scattering of signals by 
the walls and materials in it. The power consumption is also calculated [9]. 

Water: In the case of rainfall, and snowfall, Mie Scattering effect is prevalent. Also 
while propagating through water, light bends, some part of it is reflected and the light 
that emerges is not intended to follow the path towards which it was sent to. In cases 
like these, a hefty amount of noise is added. Also, the same signal will be received 
multiple times. This is because a ray of light that passes through more drops will be 
received a little time after than the ones that traveled a lesser number of drops. Thus 
during rainfall, this system will have a very short range. 

6 Lessons Learnt 

Results from an experiment like these vary a lot due to so many natural random 
effects. Thus results will never be consistent. Although the conclusion will always 
be so. 

For all situations, research and development are majorly focused on the variable 
‘t’. The idea is how should we reduce ‘t’ based on different scenarios. The practices 
that we have discussed help in the propagation of the signal with minimum interfer-
ence. Experiments, if carried out in different environments will give different results, 
thus discussing the practices and lessons learned to become more relevant. 

The major factors that relate to the value of ‘t’ directly are, transmission power, 
Antenna directionality, radiation pattern, and medium of travel. These factors 
are prevalent, however, custom designing of communication systems and many other 
factors will involve. But presently that research and its result are out of our scope. 
Smart antennas could be a better solution in open fields as they can form beams in 
the direction of the receiver [10]. Such systems can be used on grounds because the 
antennas are larger in size. For medium, to large UAVs, these systems can be helpful. 

In open spaces, one should always take care of the weather conditions, antenna 
configuration, large metallic structures, dust, line of sight and fog conditions 

In closed testing areas, one should see that large safety nets aren’t in the pathway 
of the signal along with the factors discussed above. 

7 Conclusions 

Table 1 concludes with possible factors that affect the signal strength. While 
designing this phenomenon must be taken into consideration.
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Table 1 Major phenomenon adding to loss of signal strength thereby increasing values of ‘t’ 

Medium of travel Dispersion, scattering, diffraction 

Antenna Orientation and inclination, low transmission power, ineffective 
beamforming, and directionality 

Weather Dusty winds, fog, and mist 

Pathway Larger objects and interfering blockages 

Computational power The weak processing power of router, inefficient processing of 
SOCC 

Architectural and civil design of the ground station, light echo 

Electronics Interfering electronics 
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Algal Bloom Detection Using UAV 
Imagery: A Case Study on Waddepally 
Lake, Warangal 

Allu Ayyappa Reddy, M. Shashi, and Kumarapu Kumar 

Abstract Algal blooms are commonly grown in the aquatic environment due to 
the excessive nutrients (nitrogen and phosphorous) present in ponds and reservoirs. 
Harmful algal blooms can produce toxic compounds that can contaminate the water 
and cause serious and harmful effects on aquatic life. Along with algal blooms 
the presence of other organic matter also makes huge gallons of water unfit for 
consumption. Remote Sensing is one of the efficient and well-established technolo-
gies that is used for the detection of phytoplankton present in the water. Monitoring 
the rapid growth of algal blooms continuously requires high-resolution spatial and 
temporal satellite data sets that are costly and hard to get. The images acquired 
through Unmanned Air Vehicle (UAV) produce high spatial resolution information 
to continuously monitor the algal bloom growth variation cost-effectively. In this 
proposed work, the algal bloom presented in the Waddeaplly Lake (Warangal, India) 
was captured by using a multispectral sensor mounted in DJI Phantom 4 Pro V2.0. 
RGB images were acquired and pre-processed in Pix4D Mapper Pro to develop the 
orthomosaic image. NGRDI, NGBDI, GNDVI, and ExGI indices are used in this 
proposed work to extract the algal bloom matter present in the lake and the data 
is compared with the Sentinel-2A images for validation purposes. UAV plays an 
important role in continuously monitoring the algae biomass and developing the 
precautionary warning system accurately. 
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1 Introduction 

Algal blooms are naturally occurring phenomena in marine and freshwater ecology 
is the study of environmental factors such as nutrient and light availability, water pH, 
wind speed, and water temperatures. Toxic and non-toxic algal species can clog fish 
gills, deplete oxygen levels in the water, release toxins and kill fish and other organ-
isms. Dinoflagellates, diatoms, and cyanobacteria are the main causes of harmful 
algal blooms (HABs). Toxins produced by each of these phytoplankton groups may 
be harmful to aquatic and terrestrial organisms. So many methods are used to detect 
and estimation of algae present in the water. In that, the Remote Sensing technique 
is used to detect the phytoplankton (algae) presence based on the spectral reflectance 
of the surface features but the accuracy is low because the spatial resolution of the 
satellite imagery is at meter level [1, 2]. High spatial resolution (in centimeter-level) 
imagery will be helpful to identify the macrophytes and phytoplankton presented in 
water but it is cost-effective and the revisit period is more [3, 4]. 

UAVs are flying at the terrestrial level and the images have a high spatial resolu-
tion (in centimeters) but the spectral bands are limited. UAVs are generally having 
RGB bands, which are used to identify the surface features but their internal struc-
tures will not be captured [2]. The spectral reflectance of algae blooms is sensitive 
to red and green bands, and a regular RGB digital camera sensor can be used to 
estimate the coverage of algae on the water surface. Combinations of RGB bands 
from a RGB camera, including NGRDI (Normalized Green Red Difference Index), 
NGBDI (Normalized Green Blue Difference Index), GNDVI (Green Normalized 
Difference Vegetation Index), and ExGI (Excess Green Index) were used to distin-
guish offshore floating green tide [3, 5–7]. A supervised, pixel-based Random Trees 
classifier was utilized as a detection mechanism to estimate the percent cover of 
submerged filamentous algae and rooted macrophytes from aerial photos. Multi-
spectral and hyperspectral bands are used to classify the different features based on 
their spectral reflectance of the features on a particular band. 

In the present study, RGB bands are used for capturing the algal parameters present 
in the water body. Algal bloom images are easy to mosaicking by the generation of 
ground control points (GCPs) based on the tone and texture parameters but water is 
difficult to image because of wave interference, sunlight reflection, shadows, water 
turbidity, and the absence of ground control points or unique landscape features 
in a continuous body of water [3, 6, 8]. Fluid-lensing techniques and structure-
from-motion photogrammetry algorithms are being developed in response to ripple 
distortion to enhance the clarity and dimensions of water imagery [6]. To improve 
the chances of smooth mosaicking in water, UAV pilots can fly with a fraction of 
land, coast, or a specific object in the photos but for a large area of water bodies, it is 
difficult to maintain. The coverage area of the phytoplankton presence in the water 
is to be measured from the orthorectified image product mosaicked from a picture 
assortment, wherever the geometric distortion has been corrected and therefore the 
imagination has been color balanced to supply a seamless mosaic dataset. The amount
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of coverage area can be determined using several mechanisms, with supervised pixel-
based random classifiers and maximum likelihood algorithms being particularly 
useful for detecting submerged filamentous algae and rooted macrophytes from a 
UAV orthomosaic image [8]. 

The main objective of the present study is the detection and classification of 
algal blooms from RGB images of UAV imagery using indices and classification 
algorithms and validation with the classified images from Sentinel—2A images. 

2 Study Area 

For the tri-cities of Warangal urban, drinking water is supplied from the Waddepally 
Lake and Bhadrakali Lake, which was located in Warangal, Telangana, India (see 
Fig. 1). In those two, the Kakatiya Rajulakam digs Waddepally Lake and it is not 
only used for drinking purposes but also irrigating the surrounding lands. Waddepally 
Lake covered an area of 272.45 ha and the perimeter is 26.35 km in the position of 
17.983° N and 79.511° E. It has a storage reservoir to sustain the needs of drinking 
water in summer and the storage capacity is 0.8 TMC (Thousand Million Cubic Feet). 
A railway track has divided the lake into a lake and storage part. In this study area, 
excessive nutrients passed from the surrounding crops and rainwater to the storage 
point of the lake, and a huge volume of macrophytes and floating algae were found 
which was identified by using the UAV images. 

Fig. 1 Waddepally Lake location in Telangana
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3 Methodology 

The methodology of detection and validation of algal bloom present in the lake from 
the UAV imagery and satellite imagery are shown in Fig. 2. 

3.1 Data Collection 

UAV: 

Aerial images were acquired using a DJI Phantom 4 Pro V2.0 Quadcopter attached 
with a 20-megapixel camera which is moving at speed of 10 m/s to detect the phyto-
plankton and macrophytes presence in the water. CMOS sensor was attached to the 
camera to capture the RGB images using the wavelengths of 660 nm (Red), 550 nm 
(Green), and 470 nm (Blue). This camera has an 8.8 mm focal length and the resolu-
tion is 5472 × 3648 pixels. Flights were conducted to acquire the images of the lake 
at a height of 100 m with 70% overlapping, face toward the center and the camera 
angle is 90°. The flight path of the UAV is designed in the Pix4Dcapture application 
along with the supporting application of Ctrl + DJI. DJI Phantom 4 Pro V2.0 Quad-
copter rotorcraft is capable to perform a survey on the field for a period of 20–30 min 
with one battery. For acquiring the total images of the lake, 7 flights were performed.

Fig. 2 Methodology flowchart of the algal detection using UAV imagery 
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Satellite Imagery: 

Sentinel—2 images were collected to validate the analysis of UAV imagery. A 
10 m spatial resolution and multispectral bands of Sentinel—2A L1C products are 
collected on the date of 12th February 2021 from USGS GloVis website. Layer 
stacks Band—2, 3, 4, and 8 (Blue, Green, Red, and NIR) were used to perform the 
classification of the land cover features present in the lake. 

3.2 Data Preprocessing 

The ground control points (GCP) of UAV images are collected automatically by 
using the inbuilt GPS (Global Positioning System) and IMU (Inertial Measurement 
Unit) in a quadcopter. These GCPs help locate the camera positions and the roll, yaw, 
and pitch movement of the quadcopter collected by using the Ctrl + DJI application. 
Based on the inertial measurements and GCP’s Pix 4Denterprice software aligning 
the photos automatically. After aligning the photos, tie points are generated from the 
key points of the cameras to calibrate the images. A Dense point cloud is prepared 
from the automatic tie points of the calibrated images to reconstruct the model and 
it stores the location (latitude, longitude, and altitude) and color information of each 
point, which provides accurate measurements. This point cloud data is useful for 
generating the orthomosaic, DSM (Digital Surface Model), and Reflectance maps. 
3D mesh is created to visualize the shape of the model from the projected images 
and it is decreasing the complexity of the model but it is not useful for performing 
the measurements. 

Sentinel—2A L1C products are ortho-rectified and spatially registered and also 
radiometrically and geometrically corrected products. While preprocessing, atmo-
spheric corrections are performed to the image to remove the atmospheric effects 
from images. 

3.3 Data Processing 

A Point Cloud is a collection of data points, which are generated from the prepro-
cessing of UAV imagery, and these are used to develop the orthomosaic, reflectance 
maps, and 3D meshes. The orthomosaic generation is dependent on orthorectification 
and it eliminates the perspective distortions from the images using the DSM (Digital 
Surface Model). The orthomosaic image is used to perform the measurements and 
classification of the objects using algorithms. The Orthomosaic image of the study 
area is represented in Fig. 3.

Reflectance maps are generated from the surface reflectance of the objects on 
a particular wavelength and the pixel value is computed based on the weighted 
average of all the pixels. Reflectance maps have the radiometric information, which
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Fig. 3 Orthomosaic image of Waddepalli Lake from UAV imagery

is combined to generate the index maps for detecting the features, based on the indices 
values. Reflectance maps of red, green, and blue bands of UAV imagery showed in 
Fig. 4. 

Fig. 4 Reflectance maps of red (a), green (b), and blue (c) bands of UAV imagery
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The corrected products of the Sentinel—2A imagery are layer stacked into a single 
image for classifying the land cover features. 

3.4 Data Analysis 

Indices: 

Reflectance maps of R, G, and B bands are used to develop the NGRDI, NGBDI, 
GNDVI, and ExGI indices for the identification of phytoplankton present in the 
water. The equations of the indices are listed below: 

NG  R  DI  = Green − Red 
Green + Red (1) 

NG  BDI  = Green − Blue 
Green + Blue (2) 

GN  DV  I  = 2 × Green − Red − Blue 
2 × Green + Red + Blue (3) 

ExG  I  = 2 × Green − Red − Blue (4) 

Classification: 

QGIS software was used to train the samples and apply a pixel-dependent super-
vised classifier based on Random Trees to the UAV orthomosaic image. To train the 
dataset, nearly 20 training sites were chosen per each class (algae, water body, and 
road network) and used in the Random Forest (RF) algorithm to classify land cover 
features. 

Layer stack of Sentinel—2A image is classified by using the supervised classifi-
cation method in ERDAS Imagine software. A Maximum likelihood (ML) algorithm 
was performed to classify the image from the signatures of each class and is prepared 
by training the datasets from the layer-stacked image. 

3.5 Validation 

Accuracy of the indices, classified orthomosaic image of UAV, and Sentinel—2A 
image are assessed by comparing the coverage area of the algae and performing 
the accuracy assessment tool using the field data and ground truth data. Accuracy 
assessment tool performed for the land cover classification in Semi Classification 
Plugin (SCP) in QGIS, for that 20 random samples of each class have been taken 
and assign the original class value to each sample.
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4 Results and Discussion 

Observation from the ortomosaic image of UAV imagery (Fig. 3), there is a loss of 
water body in the image because the calibration of the image is not performed due 
to the lack of GCPs in ripple distortion and level surface of a water body but the 
remaining portion of the lake images are produced the centimeter level (2.91 cm 
ground sample distance) information. NGRDI, NGBDI, GNDVI, and ExGI indices 
are used to identify the phytoplankton from the water and soil parameters and also 
to monitor the intensity of vegetation growth from RGB images. 

NGRDI of UAV imagery is used to monitor the intensity of vegetation growth 
and it is shown in Fig. 5. NGRDI values generally vary from −1 to 1 the low value 
indicates the built-up and barren and the higher value represents the vegetation which 
includes algae and macrophytes. Understanding from the Fig. 5 is less than 0.021 is 
built-up, 0.021 to 0.062 represents water, and more than 0.062 indicates the presence 
of vegetation and phytoplankton. 

NGBDI of UAV imagery represents the activity of vegetation and the value varies 
from −1 to 1.0  as  shown in Fig.  6. The lower value (less than 0.091) of NGBDI 
represents the built-up and mud water (high reflectance features), and the high value 
(more than 0.145) represents the phytoplankton.

GNDVI and ExGI indices are used to represent the photosynthetic activity of 
vegetation and distinguish the vegetation from soil and it is shown in Figs. 7 and

Fig. 5 Normalized Green Red Difference Index (NGRDI) of UAV imagery 
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Fig. 6 Normalized Green Blue Difference Index (NGBDI) of UAV imagery

8 respectively. Like the NGRDI and NGBDI, low values of the GNDVI and ExGI 
represent the high reflectance parameters such as buildup, soil, etc. and the high value 
indicates the vegetation parameters such as Algae, macrophytes, trees, etc.

These four indices are producing the information on algae and macrophytes’ 
presence in the total area and are validated by using the land cover classification of 
UAV imagery and sentinel—2A imagery. Land cover classification of UAV imagery 
using the Random forest classification algorithm and Sentinel—2A imagery using 
the Maximum likelihood algorithm is shown in Figs. 9 and 10 respectively.

In this study, RGB images of UAVs are identifying the surface level parameters 
and it is unable to detect the depth of the microphytes below the surface level of the 
water bodies with visible spectral bands. 

The coverage area of algae and the percentage of the accuracy compare the 
accuracy of the indices and classification maps and it is represented in Table 1.

The coverage area of the algae from the indices is nearly equal to each other, 
and the classified UAV imagery is nearly equal to each other. As compared to clas-
sified Sentinel—2A imagery, classified UAV imagery has a higher percentage of 
correctness and a higher Kappa coefficient.
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Fig. 7 Green Normalized Difference Vegetation Index (GNDVI) of UAV imagery 

Fig. 8 Excess Green Index (ExGI) of UAV imagery
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Fig. 9 Land cover classification of UAV imagery using random forest algorithm 

Fig. 10 Land cover classification of Sentinel—2A image using maximum likelihood algorithm
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Table 1 Accuracy and coverage area of the algae from the indices and land cover classification 

Indices/classification The coverage area of algae 
(hectares) 

% of correctness Kappa 

NGRDI 60.12 – – 

NGBDI 64.89 – – 

GNDVI 66.78 – – 

ExGI 65.24 – – 

UAV imagery (RF classification) 68.91 96.04 0.9327 

Sentinel—2A (ML algorithm) 93.52 89.29 0.8571

5 Conclusion 

Algal bloom detection using UAV images is more accurate compared to satellite 
imagery but it is unable to detect the macrophyte’s depth below the water table using 
RGB images. Using the RGB images detection and measurement of the surface 
area of the algae can only perform but the type of algae and volume of the algae 
is not possible to measure. Multispectral and hyperspectral data may provide much 
information like the type, and nature of algae and for measuring the depth of algae 
bathymetry analysis has to be performed. 
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Ballistics Algorithm for Airborne Remote 
Sensor Position in Catastrophe Zones 

Vipinkumar R. Pawar, Sudhakar Mande, and Imdad Rizvi 

Abstract The configuration of the camera and Field Of View (FOV) in a closed range 
photogrammetry are the most important parameters to obtain images of the field in 
quality. UAVs are central Wide Range photogrammetry tools, with cameras for large 
field items, for obtaining the optimal standard of photos by offering different usable 
algorithms of flight planning geographic location. This paper suggests an algorithm to 
find the exact Geo-Coordinates for the location detection of the UAV flight planning 
algorithm for the application of Closed Range Photogrammetry to the Battle field 
Susceptibility Zone analysis. Terrain Slope and Aspect have been considered in order 
to maintain the measured angle of view, field of vision, and land surface image quality. 
Identifying the pitch and aspect terrain (Azimuth) using the Digital Elevation Model 
(DEM) ISRO CartoSat Remote sensing info. In order to improve three-dimensional 
landscape pictures for 3d modelling, Battle Field Analysis, this algorithm should 
maximize the functionality of the numerous usable UAV airplane planners. 

Keywords ISRO · DEM · LISS III · LSI · SI · LRI · OSM · NDVI · VI 

1 Introduction 

1.1 Close Range Photogrammetry in Field Assessment 

Closed range photogrammetry concept was proposed by Aime Laussedat deputed 
in in the French Army Corps of Engineers as a colonel in year 1840. Closed Range 
Photogrammetry is a most popular technique to collect the information about specific
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terrain profile in multidirectional angle of vision. Due to multidirectional graphical 
visualization, analysis of any terrain profile becomes easier [1]. Generally Aerial 
photography is most popular concept to collect data for photogrammetry. For Aerial 
photography, generally Planes, gliders, drones and quadcopters are used to collect 
photographs of specific terrain. Now a days using UAV technology, applications of 
photogrammetry increased rapidly [2]. 

1.2 UAV Role in Closed Range Photogrammetry for Field 
Assessment 

Natural Fields are non-ignoring tragedies, which cannot control by human activities 
and cannot predict. But in some extent, we can predict the pre-activities of Battle 
fields by monitoring the preened symptoms to reduce the human loss. In this paper, 
we have concentrated on Battle field Susceptibility Zones as a study area. 

Analysis of battle field hazard and victim analysis, it is necessary to deploy 
automated UAVs to take real-time photographs of disaster-prone areas [3, 4]. 

Due to large geological structure just like rock, terrain slopes, conventional 
methods for surveying is time-intense and the results are unverifiable, which can 
misjudge the constancy of geological surfaces. The most common techniques are 
digital photogrammetry (DP) practices in the field of natural slopes. 

An IoT enabled unmanned aerial vehicles (UAVs) structure connected through 
Mobile network can identify and verify the strength of disaster [5–7]. 

Real world Calamity management applications of UAVs deviate according to their 
role during several phases of disaster management and can generally be categorized 
as shown in the Fig. 1.

Also, implementation of discharge navigation support sys-tem by factor-
dependent inter-UAVs for disaster risk reduction is realistic possibilities. Generally 
speaking, the software factor produces UAV discharge guidance plans and selects 
the safest plan as the discharge navigation route, taking into account situations 
of calamity and territorial parameters etc. Alternatively, UAVs engage in efficient 
navigation by discharge [7]. 

By considering the role of UAVs in the field of Closed Range Photogrammetry 
for the assessment and analysis of Battle field susceptibility Zone in Battle field, it is 
necessary to optimize the performance of UAV flight planning by providing precised 
Geo-Location in the form of WGS84 coordinate systems as Longitude, Latitude and 
Altitude of Snapping point (Fig. 2).

In this paper, Sect. 2 explained the exact problem statement identified by consid-
ering the decreased quality of images obtained by UAVs only because of unguided 
field of view. 

In Sect. 3, Exact methodology has been proposed with the help of remote sensing 
data collected from Satellite image (ISRO-CARTOSAT and NASA:USGS-ASTER 
DEM) to identify the exact coordinates of UAV position for perfect adjustment of
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Fig. 1 Categorisation of applications of UAVs-based IoT platform in disaster management [5]

Fig. 2 Current image acquisition method by UAVs
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camera field of view. Digital Elevation model is used to identify the terrain slope to 
predict the Battle field Susceptibility Zone stated in Sect. 3.1. 

In Sect. 3.1.3 gives the Battle field Prone area which generally mapped in red 
zone shown if Fig. 18 having heavy risk of battle field. This mapped zone is the exact 
location, where UAV images need to be taken. 

In Sect. 3.2 direction of the slope direction is calculated in the form of aspect, 
which is most effective parameter while identifying position of UAV. Sections 3.1 
and 3.2 combined provides the exact battle field susceptibility area where pre-disaster 
monitoring using UAV is required. This area has been consider as a field of view for 
UAV camera. 

In Sect. 4, results shows the comparative table of center of image and the perpen-
dicular axis of field of view so that, we can identify the practical location of UAV in 
three dimension parameter. 

2 Problem Statement 

In close range photogrammetry, 3D images need to be developed to enhance the 3D 
model of disaster-prone area. Angle of vision of camera must be set in such a way 
that, centroid of image area must be in a line of sight [8]. The angle of vision is the 
degree of the observable object that is perceived at any moment. In the case of optical 
payload, it is a solid angle concluded which a gauge is sensitive to electromagnetic 
radiation. Otherwise image formation may stretch the exact content [8, 9] (Fig. 3). 

Unmanned Aerial Vehicles (UAVs) arise as perfect vision product in the form 
of photography acquisition technology due to having high mobility in complex and

Fig. 3 Current image acquisition method by UAVs 
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heavily built terrain. The non-heritable images can be used to create 3D model 
victimization of traditional multi-angle view approaches to photography in high defi-
nition. Nonetheless, the quality parameters of the resulting 3D model are extremely 
predictable in the anticipatory flight navigation plan requiring skilled human inter-
vention, especially in complicated and uneven urban and hazardous environments 
[10]. 

While taking a photograph to associate as many coded citation point markers 
as possible diffuse over the whole thing, it is important to achieve a high measure 
quality [11]. 

The actual problem statement is found that, in processing a high functioning and 
authentic multiple-spectral 3D photograph capture equip, milestones are primarily 
traced from the following parameters: best sensor payload placement and location 
and FOV (Field of View) as shown in Fig. 4 design, rich and semirigid structural, 
authentic and exact photograph capture and precise multiple-sensor data combination 
[6]. 

As shown in Fig. 4, the field of view (FOV) of each photographic unit should be 
chosen appropriately to deal with the estimated location. In this case, certain methods 
should be used to modify the mechanical instrumentation to make better adjustment 
of the payloads during assembly and inspection phases. Typically most units of data 
capture should have some tolerance angle for tilting or spinning. If one machine is 
installed, the position of each unit marked should be repositioned tightly so that the 
reassembly and reassembly of the unit can be positioned in exactly the same position 
[10]. 

UAVs can be positioned at varying altitudes depending on weather status and user 
requirements. However, by modifying the altitude of the UAVs, the coverage area 
also varies [3]. 

UAV’s 3D placement of the blended integer additive programming problem was 
investigated in order to obtain the best location in the form of latitude and longitude, 
altitude, and users in inclined directions according to WGS84 (Global Geographical 
Coordinate System Standard) [12]. 

Using best track change and facility position issues as a method to detect better 
3D positioning utilizing several UAVs.

Fig. 4 Layout of FOV and 
camera position 
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Currently, positioning algorithm is previously developed by Lin et al. [14], 
in which 2D plane surface is used estimate the location of UAV for taking the 
photographs. 

The positioning association between the UAV and the area of interest on the 2D 
aircraft is shown in Fig. 5. 

x = 
h 

Zb 
Xb; y = 

h 

Zb 
Yb; z = 0 (1)  

In Ref. [15], 3D Placement of UAV in 3 axis coordinate system is proposed (Fig. 6). 
As shown in above figure, location (x0 0; y0 0; zmin) is expected flight location of 

UAV unfortunately, while dealing with external environment, UAV must have to 
navigate through (X, Y, Z) = (Longitude, Latitude, Altitude) navigation coordinates 
systems. In Ref. [15], respective algorithm fails to predict the geocoordinate location 
identification. 

To find out exact and precised geographical location and elevation of UAV for 
Battle field analysis using Closed Range Photogrammetry, Algorithm stated in this 
paper is the final and finest solution to find exact geocoordinates of UAV in 3 axis, 
means in the form of (Longitude, Latitude, Altitude).

Fig. 5 The position 
relationship between the 
UAV and the target location 

Fig. 6 3D placement of 
UAV in 3 axis coordinate 
system [15] 
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Fig. 7 The relationship 
between UAV camera and 
the target object 

In this algorithm, after identification of target object, we can get the exact geo-
coordinates of snapping point of UAV in the form of Longitude, Latitude and 
Elevation as shown in Fig. 3. 

3 Methodology 

3.1 Identification of WSN Cluster for Battle Field Prone 
Area (Fig. 7) 

The location of the target point P = [x, y, z] can be determined using the traditional 
pinhole imaging method [14]. 

3.1.1 Battle Field Index (LI) 

Battle field Index is slope elevation index range from 0 to 1 where 0 means at surface 
and 1 means extremely heavy gradient. It is formulated as, 

SlopeIndex (SI) = 
Slop 

90 
(2) 

Slope is maximum rate of change in pixel of DEM with respect to its neighbor. 
Slope is measured in units of degrees as below (Figs. 8 and 9),

Slope = tans
(
dz 

dx

)2 

X

(
dz 

dy

)2 180 
(3)
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Fig. 8 Comparing values for slope in degrees versus percent 

Fig. 9 Comparing values for slope mapping

While using above formula, we have to take care the following things, consider 3 
× 3 matrix is used to calculate slope from ‘e’, 

dz 

dx 
= 

((i + 2f + c)(g + 2d + a)) 
8 YCellsize 

(4) 

The rate of change in the direction of x for cell e is determined as (Fig. 10), 

dz 

dy 
= 

((i + 2h + g)(c + 2b + a)) 
8 XCellsize 

(5) 

Fig. 10 3 × 3 matrix from 
DEM
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3.1.2 Battle Field Slope Index (LSI) 

Battle field Index is slope elevation index range from 0 to 1 where 0 means at surface 
and 1 means extremely heavy gradient. It is formulated as, 

0 < Battle field Slope Index (LSI) <  0 : 3 (6)  

Battle field Slope Index indicated in Fig. 13, the maximum slope with reference 
to color indicated in red, yellow and green. Where red indicates heavy slope, yellow 
indicates moderate slope and green indicate very low slope profile. LSI ranges from 
0.3 to 1, because normally 30° or more slop profile will be responsible for battle 
field. 

3.1.3 Battle Field Prone Area 

Battle field prone area is defined as, the exact populated area where battle field may 
damage the living things as well as infrastructure. It means that battle field normally 
occurred anywhere heavy terrain profile is available with low vegetation. But not 
all battle fields made affect on human life. Only those battle fields affect the living 
thing, which are occurred either at city area or road area. So, identification of such 
areas called Battle field prone area (LPA). Exact analysis of road and city area, 
OpenStreetMap (OSM) provides vector data of road, highways in form line and city 
area in the form of polygon. Such an area identified as a intersection of Battle field 
Risk Index and vectored area of road and urban zone. 

LPA = (LRI\Road(vectored)) + (LRI\Urban(vectored)) (7) 

Intersection of battle field risk index and road and urban area to identify exact 
battle field susceptible zone where actual sensor network need to deploy. 

3.2 Battle Field Wireless Sensor Network Cluster Zone 

Normally battle fields occurred at any heavy terrain profile area, but all are not 
responsible for human or living loss. Battle field Prone are is Intersection of Battle 
field sensitive area with civilization, normally road and Urban areas consisting human 
movement continuously. so, the battle field area which is nearer to road and urban 
area must be consider as Battle field Prone area which may responsible for heavy 
life loss. 

Battle field Slope Index (LSI) = 
Slope 

90 
> 30◦ (8)
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Slope is maximum rate of change in pixel of DEM with respect to its neighbor 

LCZ = LRI + LPA (9) 

from equation LRI and LSI, LCZ can be calculated as below, 

LCZ = LRI +
[

LRI 
Roadvectored

+ LRI 
Cityvectored

]
(10) 

3.3 DEM Aspect 

While dealing with terrain slope, the direction of slope also makes more impact in 
disaster prone area prediction as flood direction and debris flow direction is related 
to slope direction of any mountain. 

Aspect term is used to provide slope direction from 0 to 360°. 
As shown in above figure, 0° means north direction, 90° represents east direction, 

180° indicates south direction and 270° shows west direction respectively as shown 
in Fig. 11. And related ASPECT image shown in Fig. 12. 

Taking into account the rate of change in both the x and y directions for cell e, 
the dimension is measured using: 

Aspect = atan2
(
dz 

dy
; dz 
dx

)
X57 : 29 : 578 (11) 

The aspect elements is then transformed to compass focal point values (0–360°), 
according to the following rule: if aspect < 0cell = 90:0 aspectelseif aspect > 90:0cell 
= 360:0 aspect + 90:0elsecell = 90:0{aspect.

Fig. 11 Aspect colour code
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Fig. 12 Aspect representation on Map 

Fig. 13 Battelr field risk zone (Map view)

3.4 Identify Risk Zones 

Centroid of all battle field risk zones are the center of angle of vision for UAV 
imagery. But, for identification of exact geographical location and height of UAV 
for taking proper image with perpendicular of surface, Optimized Geo-positioning 
algorithm for UAV need to be used as derived and justified in this paper. In Fig. 13, 
it is observed that, image has been taken having size Bi × Bi. And camera payload 
installed on the drone having focal angle. It is considered as, image taken from the 
surface is completely flat with no slope, respectively having no aspect also (Fig. 14).

As per the following geometry, consider point A is a drone camera payload having 
focal angle. Image need to be taken having width W i.e. Length BC. Center of image 
is point D which is the center of image as Ci shown in above figure (Fig. 15).
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Fig. 14 Battle field risk zone (Graphical / Graphical view)

Fig. 15 Geometry of angle of vision 

Terrain Slope is indicating by. Aspect of terrain slope is indicated by. While 
dealing with geocoordinate latitude and longitude are considered as x–y coordinates 
in cartesian coordinate system to find the exact location of drone in geographical 
area. 

Z value always indicated the height of object with reference to sea surface. Z 
values always recorded in meters. And Geocoordinates are recorded in WGS84 
system. While finding the specific distance with specific direction using Latitude and 
Longitude, geocoordinate constant is to be consider, here geocoordinate constant is 
given as (Fig. 16),



Ballistics Algorithm for Airborne Remote Sensor Position … 447

Fig. 16 Experimental setup for vision-based UAV position 

f(x) = 
W 

2

[
cos θ 
sin θ

]
cos α ∗ k (12)  

where, 1 m = 0.00000625 map units. It has deriving the latitude by considering slope 
and aspect, and = 90 

LatitudeDrone Position = [f(x) cos] +  LatitudeCentroid (13) 

Also can be deriving longitude of drone position as, 

LongitudeDrone Position = [f(x) sin] +  LongitudeCentroid (14) 

To find the expected height of UAV payload with reference to sea surface, We can 
state that with the reference to above image, 

DistanceAE = 
W 

2

[
cos θ cos α 

sin θ

]
sin α 
cos α 

(15) 

Modification of above equation will cancel cos 

DistanceAE = 
W 

2

[
cos θ sin α 

sin θ

]
(16) 

So final equation of drone height will be, 

DistanceAE = 
W 

2

[
sin α 
tan θ

]
(17)
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Fig. 17 Battle field risk zones with flag point i.e. centroid 

But Distance AE is height difference between Centroid of Image and expected 
UAV height, to find the exact elevation above sea level, it is necessary to add elevation 
of centroid of image taken from DEM imagery. 

So, exact height of UAV from above sea surface is noted as Z0 (Fig. 17), 

DistanceAE = 
W 

2 

sin α 
[tan θ ] + Zi 

(18)

4 Results 

Battle field prediction analysis has various parameters like, rainfall, slope, vegetation 
density and water catchment and much more. But fundamental parameters are slope 
index, in which surface slope makes more impact on battle field prediction analysis. 
So, by considering importance and fundamental aspect of battle field, slope index 
has been consider for Battle field Susceptibility area identification. Using slope index 
having above 0.3 rating gives following result. 

Where Zi is the height of centroid of image from sea surface collected from DEM 
imagery (Fig. 18).
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Fig. 18 High risk zone in red color

Area of interest is taken from Saputara hill station, Gujarat which is situated 
near border of Maharashtra-Gujarat territory, in India. This area is surrounded by 
heavy sloped hills and mountains. And lots of terrain variations also available. This 
area is coming under heavy rainfall zone. These battle field susceptibility zones are 
identified by Battle field Slope Index. 

Battle field Slope Index(LSI) = 
Slope 

90 
> 30◦ (19) 

All Battle field susceptibility zones are considered as single image of interest for 
UAV image acquisition. So, centroid of the individual battle field susceptibility zone 
is considered as a center of image which is indicated as shown in Fig. 11 (Fig. 19).

Individual flag is representing the individual image center. By applying Optimized 
Geo-positioning algorithm for UAV, we will get exact X–Y coordinates of Drone 
positioning in WGS84 coordinate system (Fig. 20).

LatitudeDrone Position = [f(x) cos] +  LatitudeCentroid (20) 

where, 

LatitudeCentroid = Latitude of Individual flags in LSI 

and 

LongitudeDrone Position = [f(x) sin] +  LongitudeCentroid (21)
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Fig. 19 Mapped high risk zone

Fig. 20 Targeted flag point for payload penetration
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Fig. 21 Flag point of battle filed for target 

where, 

LongitudeCentroid = Longitude of Individual flags in LSI 

and 
To find the expected altitude for UAV for individual flag point, 

Z0 = 
W 

2

[
sin 

tan

]
+ Zi (22) 

where, Zi represents elevation of individual flag point units in meters taken from 
DEM imagery. And = 90 slope() in degree. 

Figure 21 represents the flag point of Battle field Susceptibility Index (LSI) and 
Optimized Geo-positioning algorithm for UAV based actual positioning. Magnifying 
individual LSI zone is shown as in Fig. 22.

Here, flag point representing the centroid of Battle field Susceptibility Zone and 
Flight point representing the actual optimized position of Point of view or also called 
as cam-era position. In this case, flag point is located at location 72.739914:20.646661 
at elevation 481 m from sea surface. But by considering the slope index as, 33.00309° 
with aspect 36.369198°, perpendicular line of sight for Focal length of camera 
payload gives the optimized location 11.61057522 m away from flag point with 
elevation at 488.262846 m from sea surface. 

In another case, flag point is located at location 72.740731:20.645318 at elevation 
512 m from sea surface (Figs. 23 and 24).

But by considering the slope index as, 33.073549° with aspect 33.578812°, 
perpendicular line of sight for Focal length of camera payload gives the optimized 
location 11.90099797 m away from flag point with elevation at 519.494435 m from 
sea surface (Tables 1 and 2).
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Fig. 22 Flag point of battle filed for target (Zoomed)

Fig. 23 Flag point representing the centroid of battle field susceptibility zone and flight point 
representing the actual optimized position of point of view

5 Conclusion 

In this article, some flight planning algorithms are tested with detailed information 
regarding their flaws pertaining to the imaging process. An algorithm to provide 
accurate snapping position to obtain high quality images without altering the aspect 
ratio of the image is then introduced and implemented successfully by defining exact 
Goe-Coordinates with parameters of camera latitude, duration and altitude. 

Implementation of the suggested algorithm reveals a minimum and maximum 
distance correction vector away from the flag point to be 6.1138 and 292.942613 m. 
The results show that previous algorithms concentrate on only the height profile but 
have taken care of the slopes during the production of algorithms for flight planning.
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Fig. 24 Graph: flag ID versus distance in meters

Table 1 Test area Id Longitude (flag 
point) 

Latitude (flag 
point) 

Elevation (in 
meter) 

1 73.55777778 20.7950203 228 

2 73.80916667 20.7950203 446 

3 73.81847222 20.7950097 470 

4 73.87154231 20.79473843 535 

5 73.93138889 20.79492367 941 

6 73.95844944 20.79494142 828 

7 73.96166667 20.79486111 812 

8 73.81751621 20.7945688 495 

9 73.90860541 20.79445014 546 

10 73.96304986 20.79445014 810 

11 73.81722222 20.79416667 499 

12 73.8729312 20.79418287 538 

13 73.9260509 20.7944582 752 

14 73.94890208 20.79440642 861 

15 73.55804986 20.79389459 219

In order to produce optimal pictures from the open environment of focus areas, 
Algorithms boost the course and trajectory of camera angels of Fantom models I, II, 
III and DJI drones. 

After analysis of total 4340 flag points near Saputara territory, it is observed that, 
optimized location is average 44 m away from flag point.
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Table 2 Location optimization data 

Optimized latitude Optimized 
longitude 

Zi (in meter) Zdist (height from 
flag point) 

Distance of UAV 
from flag point in 
meter 

20.795018 73.557775 235.3376 7.33761175 7.361405371 

20.795045 73.809191 453.4073 7.407331947 14.07267037 

20.794999 73.818462 477.2545 7.254548744 7.701821813 

20.794766 73.871569 542.4919 7.491853811 292.9426126 

20.794905 73.93137 948.4163 7.416343889 9.317594166 

20.794908 73.958416 834.5514 6.551378754 22.6180366 

20.794832 73.961638 819.3316 7.331645475 202.2138202 

20.794558 73.817505 502.344 7.344026554
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Practical Applications for UAS Designed 
to Assist Climatologists in Studying Toxic 
Gas Emissions Relative to Climate 
Change 

Ian Godfrey and José Pablo Sibaja Brenes 

Abstract The rapid advancement of the Unmanned Aerial Systems (UAS) tech-
nology and applications provide a unique opportunity to assist the United Nations 
with their 17 Sustainable Development Goals (SDG’s). Further enhancement of the 
UAS sector has brought forward tangible applications that illustrate how this tech-
nology can assist in improving community health, collective education and stimulate 
economic growth. There are numerous practical examples of how UAS contribute to 
the SDG’s of climatologists today. Outlined in this paper are some of the most promi-
nent UAS applications and their resulting benefits to society. The development and 
global roll out of the UAS has created significant opportunity for climate scientists 
studying toxic gas emissions and the chemistry of Earth’s atmosphere. UAS make 
emission monitoring more accurate, contribute to gas leak detection at industrial 
facilities and greatly assist plant efficiency and optimization. UAS help simplify the 
data collection process by allowing remote pilots to quickly survey industrial plants 
and allow them to carry payloads of scientific equipment such as spectrometers which 
can be used for Differential Optical Absorbance Spectroscopy (DOAS) or thermal 
cameras designed to detect thermal anomalies. The research illustrated here shows 
real-world practical examples of using UAS technology on natural emissions at the 
active crater of the Poás Volcano in Costa Rica and the Industrial power plant of 
Tampa Electric (TECO) in Tampa, Florida. 
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1 Introduction to UAS 

Unmanned Aerial Systems (UAS) and their applications have grown exponentially 
for the past decade and the technology has shown promising advancements in many 
sectors, especially environmental and vegetation mapping and monitoring. Certain 
applications in Earth science and environmental studies have gained significant atten-
tion from professional researchers [1, 2]. Research institutions and universities like 
the Laboratory of Atmospheric Chemistry of the National University (LAQAT) of 
Costa Rica continue to adapt and implement new technological advancements such 
as using UAS and their associated payloads. Scientists stated that drones have the 
potential to revolutionize capabilities for field investigators [3]. 

Various instruments are now being remotely operated especially drones, remote 
control watercraft, and multibeam sonar, all of which are now assisting climatolo-
gists studying climate change to better understand how CO2 emissions correlate to 
the melting ice sheets like the front of a calving glacier in Antarctica [4]. Addition-
ally; Due to high maneuverability, compactness, ease of use, various applications 
continued to be discovered especially in the field of Earth science; where drones 
can be used to study aspects of climate change, glacier dynamics, spring erosion, 
landslides, and volcanic activity or they can be used for atmospheric sampling [1, 5]. 
It’s not just natural resource applications for UAS developing rapidly, others such as 
disaster management, special habitat monitoring, search and rescue, endanger species 
documenting and tracking, cultural heritage management and traffic monitoring all 
serve as lucrative UAS applications [2]. 

2 Equipment Used 

Parrot Drones Anafi Thermal—which has a folded size of 218 × 69 × 64 mm, its 
unfolded size is 242 × 315 × 64 mm and fits tightly in a compact carrying case. The 
UAS has a total weight of 315 g. The maximum transmission distance for the Anafi 
Thermal is 4 km or 2.4 miles, 4,000 m, or 13,123 ft, making it ideal for long-distance 
UAS missions. The Parrot Skycontroller 3 allows for maximum transmission and 
minimal interference. The maximum flight time is 26 min. The UAS has a maximum 
horizontal speed of 34 mph a maximum vertical speed of 4 m or 13.1 ft/s. Maximum 
wind resistance is 31 mph, and the maximum working altitude is 4,500 m, 14,763 ft 
above sea level. The DJI Phantom 3 and 4 along with a DJI Matrice-200, Matrice-600 
Pro and Mavic Mini were also used in the data collection process.
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3 Imaging 

UASs have successfully been deployed to map fine-scale vegetation and land areas 
used for agriculture, Antarctic ice sheet melting and glacial cracking, soil conditions, 
and to take atmospheric samples. The advantages of UAS are their ability to collect 
images, video and associated data at more economical prices and with lower risk. 
Advancements in payloads have resulted in higher resolution imaging abilities at 
more useful vantage points than ground surveys or satellite platforms [6]. “Images 
taken by small UAS are becoming an alternative to high-resolution satellite images, 
which are much more expensive, to study variations in crop and soil conditions. 
Finding an adequate approach for industrial or rural areas remains a pending task” [3]. 
Therefore by implementing UAS technology many of these SDG’s can be achieved. 
Thermal imaging cameras onboard UAS are excellent tool for forest fire management 
[2]. Adding thermal imaging to your inspection allows you to see thermal anomalies 
and cold spots along areas of sensitive and expensive industrial equipment such 
power lines, solar cells, hot springs and volcanic craters. Thermal imaging cameras 
highlight where anomalies may be present and the images and data can be built into 
existing data bases and used for future investigations. 

The Earth science and climatologists studying the atmosphere have begun utilizing 
various payload packages and software programs. Imaging is important in the data 
collection process for 3D Digital Surface Models DSM and sensors or samplers in 
several unique and innovative applications are taking this even further by allowing 
researchers to plot pollutants and create AERMOD plots. The development of new 
UAS with new imaging capabilities is revolutionizing the potential uses for more 
than just Earth surface imagers. For example, Short Wavelength Infrared or SWIR 
cameras are now being implemented into strategies for UAS solar cell inspections. 
SWIR cameras have the ability to capture pictures through smog, clouds, smoke and 
haze. SWIR cameras are the only wavelength technology that can capture images 
through cloud coverage and have a clear resolution image. This opens a world of 
possibilities for both industrial and Earth science researchers [5]. 

4 Payloads 

Since 2020 there have been several companies making progress with minitur-
ized hardware and advanced software in gas detection applications via UAS for 
both sampeling and imaging. For example, three inovative and useful payloads for 
mapping pollutants are: First the Sniffer 4D by Soarability a company in Shenzen 
China has a software package that can accurately map detailed gas polution anal-
ysis data for simple visualization. Second, the FLIR Systems in the USA has also 
been developing products related to polution distribution. The FLIR Systems MUVE 
C360 has been frequently used in North America for industrial plant gas leak inspec-
tions. Third the AILF U10 Laser by Coptrz is a methane leak detection device which
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enables rapid identification of methane from up to 100 m away. The device is powered 
by DJI SkyPort, the U10 is seamlessly integrated with DJI Matrice 200 V1/or V2 
platforms. Many other beneficial payloads such as compact light weight spectrome-
ters, thermal imaging cameras and other specialized equipment are also contributing 
to the rapid advancement of UAS capeabilities. With proper software, to facilitate 
the data collection process associated with these payloads UAS can fly a specified 
preprogramed grid pattern which can be flown multiple times per day [7]. 

5 Topography 

For topography mapping photogrammetry technique is frequently used by remote 
pilots. The strategy is known as structure from motion SfM, where 2-D images are 
transformed into 3-D topographic surfaces. Structures from Motion techniques were 
successfully implemented to produce high resolution digital elevation models over 
the lower reaches of a glacier in 2015. By using UAS scientists used the models to 
identify areas of interest for further observation and analysis. Many of these areas 
of interest were not otherwise observable without the use of UAS [5]. UAS can be 
ideal for mapping nutrient blooms, red tide outbreaks, sediment plumes and floods, 
UAS were successfully deployed to identify an intermittent stream network in the St. 
Denis National Wildlife Area in Saskatchewan, Canada [5]. It was also determined 
that UAS imagery could be an improvement to Global Positioning System GPS 
acquired ground-truth points for classifying an intermittent stream network across 
the same large-scale satellite image [6]. UAS have become a crucial component 
in precision agriculture especially for specialty crops, forest resource management, 
vegetation monitoring and spring monitoring [2]. 

6 UAS Software 

Software for UAS is advancing simultaneously with the hardware systems. As market 
maturity approaches more emphasis will be placed on software development for 
detect and avoid situations, more precise autonomous flight abilities and enhanced 
data collection capabilities. The development of these technologies will benefit the 
United Nations with their Sustainable Development Goals by utilizing autonomous 
surveillance of industrial infrastructure such as oil and gas pipelines, solar farms, 
mines, and other development projects. This technology is also positioned to assist 
with the surveillance of volcanic terrains, glacial ice sheets, and can benefit natural 
disaster response and relief programs. UAS delivery services are expected to be 
implemented in the US over the next five to ten years and UAS software companies 
are working to secure their space in this market [8]. With so many technical appli-
cations for UAS, the software associated with advanced UAS applications may have
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the most potential. According to the UAV software company Measure, by imple-
menting UAS power companies, oil refineries and other industrial plants can avoid 
hazardous man-hours, save costs, and minimize downtime for inspections without 
sacrificing data quality. For example, in the research paper titled Drones for Power 
Plants, the researchers explain that: “Large structures are particularly well suited for 
drone inspections. A drone can conduct a visual inspection in a fraction of the time 
and a fraction of the cost of other method, while typically providing data that is more 
comprehensive and more detailed. Operators keep their boots on the ground while 
getting a thorough look at the tops of stacks, tanks, or other large structures. With 
professional-level manual flight skills and a high-quality camera payload, knowl-
edgeable pilots can scan surfaces to identify damage and capture images for further 
analysis and classification” [7]. 

According to a research paper titled Drones for Power Plants the software company 
Measure explains; “Mapping using digital terrain model (DTM), digital surface 
model (DSM) and contour maps. Data is typically captured using entry-level commer-
cial drone equipment such as a DJI P4P or Mavic. Data is then transferred to a third 
party or uploaded to an automated software system for processing into a final data 
product. The energy industry has always been a leader in utilizing Geographic Infor-
mation Systems (GIS) and remote sensing data to monitor infrastructure and make 
decisions. From maps of critical infrastructure to inspections of power production 
assets, energy companies have built expensive data bases of information. One of the 
best ways to maximize the return on your drone program is to integrate drone data 
into existing workflow” [7]. 

3D modeling and mapping using UAS has become strategically important for 
climatologists monitoring glacial ice sheets, fresh water spring erosion and water 
levels, volcanic emissions and monitoring agricultural land use [5]. The software 
package Pix4D specialized in photogrammetry the process of measuring from images 
and is frequently used by geologists mapping difficult to reach landscapes. Pix4D 
also utilized data from lasers which are one of the most precise ways to measure 
distances. Pix4D can incorporate data from LiDAR which is being used by UAS 
professionals for various applications. For example ICE the state owned electricity 
and telecommunications company in Costa Rica used LiDAR for mapping electrical 
infrastructure all around the country. Pix4D’s technology is about measuring from 
images, but LiDAR can also be incorporated into the workflow. UAS photogram-
metric are being successfully used to generate DSM illustrating forest canopy metrics 
relative to logging, forest fires, urban development, and landslide results and now 
an enhanced understanding of forest processes can be studied. Complications and 
challenges continue to exist such as rural unstable terrain and heavy cloud coverage 
due to high elevations often seen by researchers in Costa Rica, therefore good pene-
tration capabilities are essential for mapping regions such as tropical forests [9]. For 
example, on the northern flanks of the Irazú volcano there is a nature refuge that can 
be observed and documented more accurately than with ground methods by using 
UAS to generate DSMs.
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7 Costa Rican Institute of Electricity ICE LiDAR 
Application 

By implementing LiDAR technology ICE scanned the 767 km or 476 miles of trans-
mission lines for analysis. ICE needed to complete the topographic survey of the 
2,440 km or 1516 miles of transmission lines of the National Electrical System (SEN). 
This allowed the company to observe objects close to lines, towers and substations 
and make wise decisions that ensured the safety of the transfer of electricity from 
generation plants to distribution centers for a 24/7 supply. Recording data from above 
is much more accurate for complicated topography, such as rivers, mountains, and 
canyons. LiDAR helps these types of institutions determine the minimum distances 
between the conductors and the ground along each line, so that the maximum trans-
mission capacity is defined. This strategy increased the power capacity that lines 
can transfer and optimized their use and helped ICE plan their expansion. LiDAR 
also assisted ICE with the collection of high-precision data to address emergencies, 
such as in the replacement of the transmission line after earthquakes for example, 
identify areas with invasion of wooded areas where trees exist that could fall on 
drivers. LiDAR was also used by ICE to document road junctions to coordinate 
the location of services. LiDAR is also being used for wildlife reserves and facil-
itating the management of natural resources by gathering data sets used to predict 
canopy cover, biomass estimation, health of the forest and growth rate [2]. Therefore 
using LiDAR can also be a beneficial tool for monitoring deforestation which is an 
important subject to the United Nations. 

8 Volcanic Applications 

1. Natural resource management has become one of the most significant appli-
cations for UAS in developing nations [2]. For example researchers from the 
LAQAT used a Phantom 3 to monitor the Poás volcano in Costa Rica and to 
collect a water sample from an active volcanic crater lake over 9,000 ft above 
sea level. Professors from LAQAT have seen possible changes and morphology 
of the Botos Lagoon the dormant crater of the Poás volcano. There is something 
that could be emitting gas at the bottom of the lagoon and that could lead to a 
low pH level. UAS have helped visualize the Crater Lake via images and video 
and also provided a way to take deep water samples. Images obtained by using 
UAS to monitor the Poás volcano have helped investigators locate structures on 
the floor of the Botos Lagoon which may be prehistoric volcanic vents. These 
structures were first identified by using UAS which is a good example of the 
potential for UAS in Earth and environmental sciences. Research like the water 
sampling from the crater lake of the Poás volcano illustrate the immense potential 
for UAS which have exponential potential for monitoring environmental disas-
ters such as oil spills and water sampling of remote or hazardous locations [5,
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10]. The slopes of many volcanoes serve as fertile agricultural regions essential 
to the food supply of the region and are therefore important to monitor for crop 
optimization. Using UAS for checking the health of a crop is a popular appli-
cation in UAS for precision agriculture [2]. By implementing UAS technology 
in the field professors from LAQAT were able to accurately measure the height 
and direction of the volcanic gas plume. Aerial images showed tropical trees of 
various colors fill the forest surrounding the Botos Lagoon and some dead trees 
have fallen into the lake. During periods of increased activity, this UAS observa-
tion method is used before researchers move closer to the active crater for further 
measurement. The measurements at the Poás volcano with UAS have helped to 
search for rivers around the crater and to gather data to that side of the volcano 
where accessibility is much more difficult. 

2. UAS have also assisted the National Commission of Emergency (CNE) in Costa 
Rica by assisting their analysis of the direct impact zone and dead forest to 
the west of the Turrialba volcano. On March 12, 2015 three eruptions of large 
proportion of ash were reported to the CNE, which forced the closure of Juan 
Santamaria International Airport in the capital city San Jose. Due to the expulsion 
of large amounts of gases and ash containing juvenile material, and the output 
of magma, authorities acknowledged that the Turrialba volcano had moved to

Fig. 1 The Poás Volcano 

Fig. 2 Phantom 3 over the 
Botos Lagoon
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Fig. 3 Images of volcanic 
plume height 

Fig. 4 Landslide below 
observation platform 

Fig. 5 Large structure on 
the crater lake floor 

Fig. 6 Small structures on 
the crater lake floor



Practical Applications for UAS Designed to Assist Climatologists … 465

a new much more dangerous activity stage. During October 2015, the volcano 
entered into a period of shorter eruptions, but with a higher level of explosiveness. 
During this time period UAS were essential for the observation and correlated 
safety recommendation for communities surrounding the Turrialba volcano. This 
eruption in 2015 produced a lot of ash dispersion through the Central Valley. 
During the day many people had respiratory and visibility problems which lasted 
for at least three days. The local hospitals in the Central Valley, especially in 
Coronado, were crowded, with people experiencing complications with asthma, 
allergies and eye irritation. The plume rose more than 5 km or 3.1 miles above 
the Turrialba volcano summit. 

These flights circled the active Turrialba crater and then extend outward for 
about 1.3 miles or 2.2 km from the volcano and then returning to the park ranger 
station called La Central. Depending on the findings from the drone flights, 
there were follow up studies to expand on previous research. Since the Turrialba 
emissions have had such a wide range of effects on the entire surrounding region 
the CNE continued using UAS by lining consistent observation flights of the area 
called La Silva which is within the restriction ring around the active crater of the 
Turrialba volcano. These UAS flights provided essential observation of some of 
the most affected areas concerning toxic SO2 emissions, ash fall and burnt up 
volcanic debris that potentially blends with a river or creek. Photographs taken 
by a drone 984 ft or 300 m above the Turrialba volcano summit directly over the 
active crater of the volcano, allowed volcanologists for the first time look inside 
the depths of the active crater unexposed to any risk [10].

Researchers studying the Turrialba Volcano believe there are also small 
magma batches close to the surface here in the active crater of the Turrialba 
volcano. During the time of the fly over the inner crater measured 620 ft or 
189 m wide. By using drone technology and the digital elevation model or DEM

Fig. 7 AERMOD plots of 
May 15, 2015, Turrialba 
volcano eruption 

Fig. 8 AERMOD plots of 
May 15, 2015, Turrialba 
volcano eruption
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Fig. 9 Phantom 4 drone 
flight path 

Fig. 10 Turrialba volcano 
direct impact zone 

Fig. 11 Summit of the 
Turrialba volcano 

Fig. 12 Geological survey 
images from Phantom 4
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generated from images taken by the drone, geologists and volcanologists collab-
orated to monitor the Turrialba volcano. By using UAS and DEM software these 
scientists were able to calculate the volume of material that would fit in that hole 
which was 81.2 ft3 or 2.3 million m3. What was discovered from the drone flight 
images is that the active crater’s inner walls exhibit slopes that exceed 55° of 
inclination and the mouth of the volcano is 413 ft of 126 m deep. The crater 
measured 742,000 ft2 or 69,000 m2 during March of 2016. Images taken by the 
UAS also contributed new data to other areas of interest such as the volcanic vent 
where volcanic gases and other materials like ash get ejected from [10]. 

To create a successful flight plan for an aerial observation with a drone close to 
an active volcano there are several major factors that all have to be met. Weather 
variables such as rain and wind conditions are usually looked at first, if all is 
well then any potential earthquakes in the area much be taken into consideration, 
and also if there is an eruption column releasing gases and ash it’s important to 
monitor the altitude of the eruption column relative to the wind direction and 
speed relative to height of the drones flight plan [10]. The images taken by the 
drone were processed at the National Laboratory of Materials and Structural 
Models at the University of Costa Rica using the Agisoft 3D modeling and 
mapping software. The digital elevation model or DEM generated from images 
taken by the drone were very useful in understanding how volcanic craters form 
and evolve during periods of increased volcanic activity. This UAS evaluation 
of the Turrialba volcano was conducted in March of 2016, right after there were 
several significant eruptions which would inevitably change the geology of the 
crater [10]. 

3. UAS keep researchers and professor away from harm, with the drone we can 
observe up close the intensity of the volcanic fumarole. UAS provide a way to take 
measurements of gas and the temperature of the emissions. UAS were also used 
for a complex volcanic degassing study that investigated the Turrialba volcano 
in Costa Rica and the Masaya volcano in Nicaragua where a low resolution < 1 
ultraviolet (UV) spectrometer was carried by a DJI Matrice 2 in a circular flight 
path around and then threw the volcanic gas plumes to quantify the SO2 flux of 
both the Turrialba and Masaya Volcanoes which at the time in 2018 were the two 
most active volcanoes in Central America [10, 11]. 

The Matrice 2 was capable of carrying payloads of scientific equipment such 
as the Flame spectrometer which was used for the volcanic degassing research 
and Differential Optical Absorbance Spectroscopy (DOAS) at the Turrialba and 
Masaya Volcanoes [11]. Drones are capable of accurately monitoring SO2 emis-
sions coming from both volcanoes and power plants making them very bene-
ficial to climatologists measuring the effects of climate change [3]. LAQAT is 
now using UAS to help students make thesis papers on subjects ranging from 
industrial chemistry, environmental management, and other important topics for 
volcanic studies. Thesis papers and associated projects lead to published papers. 
In the end, the University is giving information to different institutions and local 
governments for control, risk management and sustainable development of the 
natural resources of the nation and UAS are assisting these efforts.
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Implementing an accurate and consistent volcanic gases monitoring program 
in countries of high levels of volcanic activity serves the United Nations sustain-
able development goals and serves as a great eruption forecasting method. The 
dangerous complication arises when volcanologists are tasked with collecting 
gas samples which requires they to enter regions of significant volcanic hazards. 
UAS are providing a safe and effective alternative for volcanologists studying 
volcanic gas plumes [12]. UAS are allowing park rangers and volcanologists to 
observe these danger zones with accuracy and precision, they can share the data 
and compile data bases of information which facilitate the eruption forecasting 
methods of the volcanologists. 

Measuring volcanic gases is an essential eruption forecasting method used 
today because any change in the ratios of certain gases can indicate an imminent 
eruption. The concentrations of carbon dioxide CO2, sulfur dioxide SO2, and 
hydrogen sulfide H2S can be measured by flying UAS right through the eruption 
column [11, 12]. “The total amount of gas being emitted can be used to calculate 
the exchange of volatiles between the deep Earth and the atmosphere. Researchers 
need to know which reactive species are coming out of the volcano so that the 
interactions between volcanoes, climate, and ozone can be better understood. 
These compounds contain such halogens as chlorine and bromine, and a drone

Fig. 13 LAQAT team UAS 
control point 

Fig. 14 Active crater of the 
Turrialba volcano
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Fig. 15 
Telecommunications towers 

Fig. 16 Turrialba summit 

Fig. 17 Turrialba volcano 
summit

hovering directly in the gas at varying distances from the source can help scientists 
determine how the compounds change as the plume ages” [12]. 

The total amount of gas being released from a volcano can be calculated to 
understand the inner working of the Earth. UAS are now assisting these research 
efforts investigating the exchanges of volatiles between the deep Earth and the 
atmosphere. The volcanic emission and atmospheric chemistry of surrounding 
areas can also be used to monitor the volcanic activity and contribute to collective
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Fig. 18 Fumarole at 
Turrialba volcano 

Fig. 19 Active west crater 
of the Turrialba volcano 

Fig. 20 Fumarole releasing 
volcanic gases

knowledge associated with the effects of climate change. This was accomplished 
at the Turrialba volcano by flying transects underneath the entire width of the 
gas plume to measure the total output, or flux, of SO2 [11, 12]. 

One of the most problematic sites of the country was the Irazú volcano 
National Park to the west of Turrialba. This region received a major amount 
of ash from Turrialba because it is a volcanic building higher than the Turrialba
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volcano; the wind direction carried the ash to the Irazú volcano where it actually 
shielded the Central Valley from some ash from the Turrialba volcano eruption. 

4. January 2020 investigators working on a specialized project at the Irazú Volcano 
flew a Mavic Mini into the active crater to make internal observations of the 
crater lake and the crater walls. The study focus was to document the geological 
morphology of the active crater. The images taken by the drone showed close 
up views or sections that cannot be observed from ground observations along 
the crater rim. Photographs showed sections of the southeast wall had large 
vertical cracks developing from increased rain in the region [10].  Due to several  
earthquakes with an epicenter that intersects the fault of the Irazú volcano located 
below the active crater in early 2020 the cracking crater wall was an important 
area requiring an investigation. UAS provided a quick safe and efficient method 
to document these cracks and forward the information to research team in real 
time. 

Fig. 21 UAS image main 
crater of the Irazú volcano 

Fig. 22 UAS image crater 
lake Irazú volcano
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Fig. 23 Erosion on the  
South-East crater wall 

Fig. 24 Cracking on the 
South-East crater wall 

Fig. 25 Rockslides on the 
East crater wall 

Fig. 26 Plant growth on the 
North crater wall
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Fig. 27 Plant growth on the 
West crater wall 

Fig. 28 Rockslide on East 
crater wall 

Fig. 29 Mavic Mini at Irazú 
summit
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Fig. 30 UAS image Diego 
de la Haya crater 

9 Industrial Applications 

UAS are revolutionizing how industrial companies manage data sets. For example 
a construction technology firm named Veerum implemented a UAS for 3D imaging 
tasks to build (Digital Twins) of work in process buildings. This created a new 
validation mechanism for management at Veerum which facilitated overall company 
optimization. Startup firms in the US have raised $3billion to develop certain civil 
UAS applications [8]. In fact using UAS for atmospheric sampling has become 
such a popular application large Fortune 500 and publically traded companies are 
beginning to leverage UAV technologies into their new projects. The DOW Chemical 
Company has begun developing a drone fleet and associated program to measure 
emissions. Further enhancement of the UAS sector has brought forward tangible 
applications that illustrate how this technology can assist in improving community 
health, collective education and stimulate economic growth such as using UAS to 
measure harmful pollutants like Nitrogen dioxide or NO2, Nitrogen oxide or NO 
or a combination of the two chemical species referred to as NOX. Both of these 
pollutants contribute to the formation of acid rain and the deterioration of the ozone 
[10]. Therefore any technology to help monitor and these toxic emissions will serve 
the United Nations and their SDG’s. 

Atmospheric sampling using UAS has been recognized by several advanced 
corporations. During October of 2020, the DOW Chemical Company collaborated 
with Montrose Environmental to test certain UAS for measuring emissions from 
industrial power plants. Dr. Patrick Clark explained that; in order to minimize the 
hazard to employees the Dow Chemical Company collaborated with Montrose Air 
Quality Services LLC from California. Together they evaluated the use of UAS for the 
measuring source emissions from Dow chemical manufacturing facilities. A proof 
of concept test was first conducted at the Dow Chemical Company facility located in 
St. Charles, Louisiana. The Dow Chemical Company flew the DJI Matrice 600 UAS 
equipped with EPA’s Kolibri sensor/sampler attached to the undercarriage. Pollution 
sampling was implemented by flying the UAS downwind to the plume. The Dow 
Chemical Company was measuring for nitrogen oxide NO and nitrogen dioxide NO2
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carbon as carbon dioxide or CO2 and carbon monoxide CO. UAS emission factor 
calculations using the carbon balance method proved accurate. “Emission factors 
were calculated for the nitrogen species emissions NO and NO2. The results deter-
mined by the UAS were compared to EPA Reference Methods conducted at the same 
time and also compared to the facility’s Continuous Emissions Monitoring System 
(CEMS) results” [13]. 

10 TECO Tampa Electric Company 

The Tampa Electric Company (TECO) has been using UAS and has been considering 
hiring a UAS company for more advanced inspection applications. For sophisticated 
UAS projects, service contracts can be easier that starting an employee training 
program from the ground up. 

Fig. 31 TECO Big Bend 
Power Plant Tampa, Florida 

Fig. 32 UAS Thermal 
image of discharge water
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Fig. 33 1 h CO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 34 1 h CO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 35 24 h CO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 36 24 h CO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida
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Fig. 37 1 h NOX dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 38 1 h NOX dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 39 24 h NOX 
dispersion from the TECO 
Big Bend power plant in 
Tampa Florida 

Fig. 40 24 h NOX 
dispersion from the TECO 
Big Bend power plant in 
Tampa Florida
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Fig. 41 1 h SO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 42 1 h SO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 43 24 h SO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida 

Fig. 44 24 h SO2 dispersion 
from the TECO Big Bend 
power plant in Tampa Florida
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11 UAS Solar Farm Application 

Solar farms that adopt new technologies that best serve their owners and their efforts 
will improve overall performance. For example; “DECOM has been an early adopter 
of drone technology to reduce time that managers and crew members are spending 
in the field, improve overall asset and plant performance, and reduce hazardous 
and unsafe tasks for crew members. DECOM turned to a drone service provider 
to perform scheduled inspections via aerial thermal imaging, which has helped to 
reduce the amount of time personnel spend on a single inspection and away from 
other duties. The drone inspections reduce the costly consequences of shutting plants 
down when an isolated issue occurs. Incidents such as blown overhead fuses in a 
transformer line can be inspected by drones while keeping the plant running. In the 
case of an annual substation inspection, the drone is able to perform the inspection 
without the need to shut it down” [14]. 

UAS software companies like Measure have designed sophisticated software to 
assist inspections of industrial infrastructure. Research has shown many benefits 
to using this type of software for advanced UAS applications and that the software 
increases accuracy of image processing. For example; “Thermal images are compiled

Fig. 45 Tampa electric Big 
Bend Solar Farm 

Fig. 46 UAS thermal image 
of Solar Farm 
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into orthomosaics that remove damage artifacts such as solar flares prior to final 
analysis. By mitigating for the potential false positive identification via extensive 
thermal data capture, aerial thermography results have previously been validated by 
DECOM to result in a >98% reporting accuracy” [14]. 

12 UAS for Sustaining Populations of Endangered Species 

There are numerous practical examples of how UAS contribute to the SDG’s of clima-
tologists today. For example, in the state of Florida in the United States specifically the 
Tampa Bay region, UAS systems are being used by United States Geological Survey 
(USGS) and Environmental Service Departments to monitor and track manatee popu-
lations around the waters surounding the powerplants. As endangered species the 
Florida Manatee is closly watched and protected by international institutions like the 
UN and is incorporated into the SDG’s of the organization. 

Warm discharge water and surounding areas become a winter sanctuary for the 
Florida Manatee because when cold fronts decrease the water temperatures in Florida, 
the warmer waters surounding the powerplants become areas where these creatures 
can advoid heat stress. By implimenting UAV technology the staff at Tampa Elec-
tric was able to count daily the manatee population in the waters surounding the 
plant. Taged manatee under observation for rehabilitation purposes are more easily 
identifialbe once released back into the bay. For the 2020–2021 season in the water 
surounding the TECO Big Bend power station there was a daily low count of 57 
manatees and a high count of 568 manatees bringing the daily average to 261 mana-
tees. Florida Manatee (Trichechus manatee latirostris) which is a sub specie of the 
West Indian Manatee is protected by both state and federal laws because sustaining 
the population of these creatures is important to both the state and country. These 
regulations are aligned with those of the United Nations Environmental Plan for 
the Carribean Environment. In the United States; “The manatee are protected under 
federal law by the Marine Mammal Protection Act of 1972 and by the Endangered 
Species Act of 1973, which makes it illegal to harass, hunt, capture or kill any marine 
mammal. The manatee is also protected by the Florida Manatee Sanctuary Act of 
1978, which states: “It is unlawful for any person, at any time, intentionally or negli-
gently, to annoy, molest, harass, or disturb any manatee.” UAS provide a unique 
opportunity for safely monitoring endangered and rare animal species, not just the 
manatee. Research using UAS to track endangered species in real time has proven to 
be more economical concerning the logistics of resources required for such projects. 
UAS are able to cover vast amounts of wildlife reserve where ground based methods 
would otherwise not be possible” [2].
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Fig. 47 Powerplant 
discharge water 

Fig. 48 Resting manatees 

13 Results 

UAS and the various applications for the management of natural resources offer 
many advantages to alternative methods. UAS provide better study design flexibility 
efficiency data collection ability with better resolution at a more economical price 
point compared to high resolution satellite data. Advancements in the UAS sector 
have opened the door to new possibilities for monitor the climate and the environ-
ment, and is therefore of great interest to the United Nations and their Sustainable 
Development Goals [2]. UAS are helping the government of Costa Rica by assisting 
with the generation of terrain maps for hydro-electric projects and assisting with 
aerial watch for any changes in forest density. UAS help professors working for 
the National University by mapping the dangerous volcanic regions with low risk 
to researchers; UAS are providing a way for fast remote measurements with less 
risk. UAS are helping climatologists visualize changes in volcanic lagoons. UAS are 
also extremely beneficial devices for monitoring landslides during the rainy season 
and documenting changes in the volume of the land that has slid from the higher 
elevations. UAS are affective at enhanced pollution detecting and monitoring from 
both industrial sources such as power plants and natural sources like volcanoes. 
UAS provide opportunity to gather complex and sophisticated data sets and they’re 
associated platforms allow users to share valuable information with a multitude
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of collaborators simultaneously providing required data points in decreased time 
frames. 

By implementing UAS technologies several elements of society such as indus-
trial complexes, environmental service providers and conservationists all benefit 
from more precise and accurate information available obtained through deploying 
UAS. Technological advancements in the UAS sector has also greatly contributed to 
the reduction of costs and manpower requirements associated with accomplishing 
these SDG’s. UAS applications continue to grow exponentially with drone delivery, 
LiDAR mapping and industrial plant inspection at the forefront of the industry. The 
AERMOD plots shows that, depending on the wind pattern in the Tampa area, disper-
sion occurs in all directions around the TECO plant, with a major component to the 
southwest of the power generation plant. In the surroundings of the TECO Company 
328 ft or 100 m the influence of CO2, NOX and SO2 is low, for the 1-h or 24 h 
plots. The dispersion has a greater influence towards the area of Apollo Beach and 
Ruskin, where there are areas of accumulation and dilution of pollutants. The levels 
calculated according to the AERMOD program specify that the CO2, NOX and SO2 

values are below the levels recommended by the US-EPA. The height ratio of the 
chimneys/buildings is adequate to have a good dispersion. 

14 Conclusion and Forecasts 

Toxic gas emissions such as Sulfur dioxide or SO2 which are the direct result of 
burning fossil fuels contribute to climate change and acid rain in the region. UAS 
capabilities can now greatly assist climate scientists by providing an aerial obser-
vation perspective which allows for increased data collection with improved safety. 
UAS are now investigating the geothermal energy potential in the northern volcanic 
region of Costa Rica. Helping ICE monitor and maintain the National System of 
Electricity via LiDAR, along with optimizing their solar fields and energy plants 
[10]. UAS are assisting the SINAC with search and rescue, monitoring dangerous 
areas like active craters and to keep an eye on rural areas of the National Parks that 
could otherwise take days to hike out too. UAVs can help boarder protection and 
security to help prevent illegal immigration. UAS also reduce the costs of industrial 
inspections associated with oil, gas and energy production. This research outlines 
practical applications and practices designed to counter the present-day challenges 
deriving from atmospheric pollution and climate change, an essential area of the 
United Nations SDG’s and a crucial component for global sustainability. UAS are 
beginning to transform working strategies and work flow tasks in many industries. 
For example UAS are being used after natural disasters like hurricanes to monitor 
and document asset damage by insurance companies. The UAS market has a fore-
casted annual impact of $31 billion to $46 billion on the GDP of the United States 
by 2026. UAS hardware manufacturing in the US is forecasted to reach $20 billion 
by 2026. When the global growing commercial market is considered especially in 
developed nations such as India, China, United Arab Emirates, European Union and
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Japan the potential is enormous. Studies are being conducted into the feasibility 
of drone delivery services with certain companies like Alphabet (Google), United 
Postal Service (UPS), Amazon and Wallmart already beginning investing [8]. Flytrex 
a startup raised $7.5million in 2019 and now Flyrex and the North Carolina DOT are 
authorized by the Federal Aviation Administration (FAA) to test drone delivery oper-
ations by flying directly over people and moving vehicles, they can fly at night using 
a lighting system onboard the UAS, and they have been authorized to fly beyond 
visual line of sight BVLOS in certain airspaces [15]. The lifespan of lithium-ion 
batteries is expected to double by 2025 making UAS delivery a much more feasible 
and profitable enterprise moving forward [8]. 
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Review of Uncrewed Aerial Vehicle 
Swarm System Coordination 
and Communication 

Chandra Has Singh, Vishal Mishra, and Kamal Jain 

Abstract In this modern era, uncrewed aerial vehicles (UAVs) have effectively 
changed and transformed the aeronautical industry in an effective way. A specific 
technique created to increase this disintegration is the UAV swarm system. The UAV 
swarm has the ability to deliver missions effectively and self-coordinate the oper-
ations of multiple UAVs with no remote operator intervening. This paper compre-
hensively surveys the literature about various UAV swarm functioning. It proposes a 
swarm architecture considering the high parameters that allow wireless radio commu-
nication infrastructure for a high degree of swarm system reliability and autonomy. 
This review paper chronicle did preliminary test development to carry out this 
proposed swarm wireless radio communication system architecture. UAV’s gradual 
integrated development of UAV swarms with UAV communications Autonomous 
self-coordination and organizing capability are central to advancing the utility of UAV 
swarm systems. Several limiting factors hamper the usability of UAVs and reduce 
performance, including communication, various networking challenges, size-load, 
and proper power considerations. In addition, the wireless radio system takes advan-
tage of a highly reliable and robust infrastructure for wireless radio communications 
with secure one machine to another machine. 

Keywords UAV swarm system · Hybrid swarm · Swarm communication · UAV 
ad-hoc network · Flying ad hoc networks
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1 Introduction 

In its first stages of development, unmanned aerial vehicles (UAVs) were used 
for various military surveillance, and their applications mainly included search 
and rescue (SAR) and missions destroying any desired targets [1], and vigilant 
supervision of the border. For real-time activity change detection [2], strategic 
reconnaissance missions, and close support in combat missions [3]. 

Besides military and tactical applications, UAVs also play a vital role in various 
commercial and civilian work, such as post-disaster help and relief [4], coopera-
tive forest fire prevention and surveillance [5, 6], and remote real-time wind turbine 
blades. Inspection [7], civil security operations [8], remote sensing and precision 
agriculture [9], structure inspection [10], track monitoring and management [11], 
UAVs for communication relay systems [12], and aerial and 3D mapping UAVs are 
being used in abundance for this [13]. For example, UAVs in globally very heart-
breaking and known disasters such as the Kedarnath disaster 2013, the Tapovan area 
in Chamoli district of Uttarakhand, Garhwal Himalaya, the earthquake of Lahore, 
and disaster relief and management in Katrina, Tohok earthquake, Typhoon Morkot 
The technique has been used. Haiti has played a vital role in the earthquake and the 
Amfan cyclone. 

The research and development of UAVs have been growing at an unprecedented 
pace in the past few years, owing to its many advantages which cannn cater broad 
need and applicability. More and more UAVs appear to operate in groups or swarms 
of UAVs. Considering the nature of future modern warfare, where machines will be 
more beneficial than humans, in 2015, the United States launched a variety of UAV 
swarm research projects, such as the “Elves” project, which is a defense advanced 
research project. The project is part of the agency’s low-cost UAV Swarm technology. 
Compared to a single-UAV system, there are clear advantages of performing the task 
by forming swarms or formations by multi-UAVs, giving the technology a bright 
future. UAVs have become essential carrier vehicles for multifunctional functions 
in modern times, capable of carrying various payloads without human interaction. 
Therefore, considering the potential of UAVs, the use of military security, and civilian 
applications makes the concept of an attractive proposition. Aircraft flying with 
human pilot controls always have the potential to cause a pilot accident or severe 
damage to the aeroplane, which can be avoided in the case of UAVs. 

With autonomous aircraft systems, these concerns are mitigated; additionally, 
manned aviation is expensive to operate. Human-crewed aircraft are costly to buy 
by any individual, and one has to undergo the process of training and to license to 
work, which makes its use by the individual prohibitive. In addition, a pilot would 
have to pay a lot to fly the aircraft. The high cost of fuel in use and multifunctional 
maintenance are additional prohibitive expenses for general aviation use for all types 
of civil and commercial applications. For these reasons, the role of UAVs has emerged 
as an attractive alternative in many ways.
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Additionally, military applications have many multifaceted advantages for 
unmanned aircraft, although this paper has focused chiefly on protecting humans 
in war zones and various applications of UAVs in commercial applications.

• Mission Stability: In a single-UAV system, if a single UAV is shot down during a 
mission, it is considered a failure of the entire mission, and the task is terminated 
at that point. In the case of a single UAV, the mission ends if the UAV is shot down 
during the mission; however in case of an accident with a UAV in the system of 
UAV swarm, the mission is completed by another UAV and the mission continues 
to operate successfully [14].

• Extensibility: A single UAV has a fixed range of communication during the 
mission, which is a dedicated communication medium between the flying UAV 
and the central control station, whose coverage capability is limited to a limited 
area, ending after a certain point, the coverage area. The range depends on the 
environmental conditions around the mission area. Let’s talk about multiple UAV 
systems than during the mission. The coverage area is extensive, which makes 
the task easy to operate, and its effect increases in many ways [15].

• Mission Speed: Research shows that when a UAV swarm is used to perform 
missions, missions can be completed faster and reduce time consumption. This is 
very useful and true, especially for search operations, as multi-UAV systems can 
operate and monitor search operations entirely and save time by completing tasks 
quickly and using resources completely [16].

• Autopilot: When a single UAV is used during a mission, it is entirely controlled 
by the pilot, direct control of all aircraft systems at the control station on the 
ground, which directly contains the entire mission of the aircraft. In most UAV 
swarm systems, the airborne onboard autopilot ensures controlled flight of the 
mission. It performs the mission in accordance with task and flight plans and 
other mission instructions received from the central control station. To carry out 
any assignment in the UAV Swarm system, all UAVs can adopt the approach while 
being self-sufficient or adopt the master and follower method in the multilayer 
communication system, thereby conducting the mission more smoothly [17].

• Cost: Various research suggests that by using multi-UAV systems, missions can 
be completed at a lower price. Resource mobilization at one time is more likely 
to occur. Still, it is rarely done when looking at the multifaceted benefits of UAV 
swarming in work operations and outcomes [18].

• Communication Range: A single UAV system requires direct communication 
between the UAV and ground pilots at all times or to maintain direct contact with 
central control stations. In contrast, a UAV swarm system divides communication 
into multiple stages with a specific UAV we call a master UAV that represents 
the entire group and controls the group by establishing contact with the ground 
in a way that Sends formation and action messages to other UAVs. It acts as a 
transceiver, expanding the range of our communication and combat capability, 
and can carry missions over great distances [19].

• Radar Signature: UAVs in swarm systems for military reconnaissance and target-
oriented missions produce much smaller radar cross-sections than human-crewed
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military aircraft. The radar of an enemy country does not readily catch that, 
increasing the security of military operations by leaps and bounds [20].

• Field Coverage: Aerial mapping and implementation of the collective behavior 
of UAVs for precision agriculture, which considersall types of onboard processes, 
including intelligent machinevision and avoidance of obstacles on the way. After 
evaluating the efficiency of the proposed system after considering such functions, 
we find that when we perform UAVs in a swarm system, we can execute the task 
with much less time and much greater efficiency and can cover many areas [21]. 

2 Current Development Direction in the UAV Swarm 
Industry 

In today’s era, the utility of UAVs is increasing in every field, and its industry has 
also increased in the same proportion. Developing a UAV swarm is a complicated 
development process. There are several limitations to the operation of UAVs, as they 
are smaller in size and have different payloads that control flight endurance. The 
flight control of the UAV is done through a remote controller operated by the pilot’s 
hands or through software or apps installed on a computer and mobile. 

Flight controls are operated via software that requires appropriate control parame-
ters to be uploaded to the autopilot. The utility of a swarm created by a multiple UAV 
system becomes very attractive as it greatly enhances the functionality and frees it 
from the shackles of various limitations of a single UAV. 

Usually, a UAV swarm is defined as a group or swarm that demonstrates the ability 
of multiple UAVs to work together to accomplish an important task and the ability to 
achieve a mission by coordinating with each other [22]. There are many examples of 
the swarm to be seen in nature itself. Bees live in their herds, coordinating with each 
other or in groups to perform their essential tasks. Migratory birds follow a specific 
flight pattern in coordination to move from one country to another and carry out 
the migration. Similarly, many UAVs direct and control the swarm’s flight through 
interconnected communication devices and different sensor data. The mission is 
accomplished, which completely vanishes all the limitations of a single UAV [23]. 

The specific architectures of the tasks performed by the UAV swarm are shown in 
Fig. 1, showing the functioning of the UAV swarm through two distinct mechanisms 
that can be widely used in military and civil applications.

3 UAV Swarm Communication Implementation 

Since the purpose of this paper is to review the arrangement of the UAV swarm radio 
communication system, the communication system of the UAV swarm is established 
on the one hand by one UAV with the other UAV as well as the connection of the
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Fig. 1 UAV swarm  flow architecture

UAV swarm to the central ground control station installed on the ground. So that the 
entire activity of the mission can be fully controlled when required.

• Semi-autonomous—(Communication of UAV swarm through central control 
station): The UAVs establish direct communication with the Central Control 
Center installed on the ground to receive real-time mission information and forma-
tion changes. Communication in this type of UAV swarm formation clearly estab-
lishes direct transmission of all members of the UAV swarm with the control 
station on the ground [24].

• Fully autonomous—(Mutual communication of one UAV with another UAV 
without direct interference from the ground control station): In this type of 
swarm’s communication system, all UAVs act like a node, which establishes 
communication among themselves when needed each node acts as both transmitter 
and receiver, increasing the UAV swarm manifold’s range of transmission [25]. 

UTU (UAV to UAV) communication and UTC (UAV to control station) commu-
nication are combined through various layers of wireless communication archi-
tecture. In other words, the UAV swarm communication architecture defines the 
mutual communication and information exchange between UAVs and communica-
tion systems and information between central ground control stations. In addition, 
keeping in mind the mutual communication of UAVs, the radio communication archi-
tecture system ensures the most critical and reliable transmission from sender to 
receiver [25]. 

In this review article, various UAV swarm radio communications architecture 
systems are presented and reviewed from the perspectives of both emerging academic 
research and engineering areas. The radio communication architecture compares 
the advantages and disadvantages of different systems considering all the tech-
nical aspects. Based on this, the real-time environment of the mission scenarios 
is discussed.



490 C. H. Singh et al.

The authors hope that the comparative analysis reviewed through the special notes 
made in this paper can be helpful for using effective radio communication architecture 
and reliable radio communication systems for UAV swarms. The remainder of this 
review article is adjusted as follows, presenting a systematic, preliminary, and step-
by-step comparison of the UAV swarm communication architecture that provides 
a comprehensive comparative overview of the existing architecture according to a 
readily accepted classification system [26]. 

4 UAV Swarm Architectures 

The radio communication network system plays a vital role in UAV swarm intel-
ligence missions to enable fully controlled and complete mission implementation 
autonomously. In the early stages of UAV swarm implementation and development, 
a central control station has been established for control and instructions capable and 
powerful for range and multipoint communication in terms of sharing information 
with every UAV of the entire swarm. 

Therefore, the centralized communication approach was extended from the 
traditional UAV control system to the multi- UAV control or swarm communica-
tion control architecture. As the UAV swarm systems grow in size and towards 
executing multiple missions simultaneously, a decentralized approach is apparently 
proposed. Envisioning and implementing radio communication from a decentralized 
approach introduces a complex architecture. Still, this multiple-stage communica-
tion system reduces the dependency of UAV swarms on central control stations for 
any mission-related implementation. 

Many modern-day researchers and UAV experts from different fields have devoted 
themselves entirely to the research of UAV swarm communication architecture. In 
this section, we conduct a multidisciplinary review of these researches and present 
them systematically by adjusting the available general and systematic communication 
architectures for UAV swarm systems. In addition, we also make an economical 
analysis of the pros and cons of these communication architectures [27]. 

First, since wireless transmission time is primarily controlled and related to radio 
antenna array gain, the Yagi Uda antenna is used to transmit in a specific direction, 
significantly increasing the transmission range. In addition, the transmission effi-
ciency can be multiplied by adapting the frequency band as per the requirement in 
the mechanism designed for multiple UAVs. The flight control time is optimized by 
dynamically controlling the UAV velocity dynamically according to the design of the 
UAV trajectory and the value of the optimal value of locations. In these iterations, 
optimization theory can be used to obtain optimal solutions. Even then, it can be 
challenging to guarantee the convergence of the original optimal problem [28].
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Fig. 2 UAV swarm system 
with a centralized ground 
control station 

4.1 Centralized Ground Control Communication 
Architecture 

The centralized communications architecture evolved from the development of 
single-UAV systems and was later applied to the creation of UAV swarm technology. 
As shown in Fig. 2, it primarily consists of a central point to which all UAVs in the 
UAV swarm are effectively connected and responsible for exchanging information. 

In this type of architecture, each UAV directly connects with the GCS (Ground 
Control Station) and receives control commands directly from the central control 
station, as shown in Fig. 2. In this type of system, the transmitter and receiver of 
the ground control station must be abundantly very powerful. So that the maximum 
energy consumption can be done at the central control station, and the UAV flying in 
the air can maximize the flight time to the safe limit by expanding its energy consump-
tion to the minimum. This centralized communication architecture is relatively simple 
and stable, adopts a simple radio mesh algorithm, and is used for small-scale tasks. 
This type of central system is more suitable when the UAV swarm’s size and mission 
coverage areaare small and the mission complexity is relatively low. Among the 
applications of centralized radio communication systems, they are mainly used to 
simultaneously monitor a specific area from a central room and identify particular 
objects. This centralized system is a data-oriented wireless radio communication 
architecture designed for effective crowd monitoring and detecting suspect poachers 
in a forest [28]. 

4.2 Decentralized UAV Swarm Communication Architecture 

However, UAVs generally fly at very high speeds and can increase the range of 
mission operations. UAVs keep connecting and moving with their radio mesh
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Fig. 3 Decentralized 
communication architecture 

network, so the radio mesh network stands out as the best option in the communica-
tion of the UAV swarm. This advantage would have been that each UAV swarm would 
be self-sufficient and have both communication roles, such as sending information 
and receiving sensor data from other UAVs in the network (Fig. 3). 

Under the system of decentralized communication architecture, the UAV operates 
and performs the interactive communication system in real-time in an ad-hoc manner 
as per the requirement of the mission, eliminating the dependency of the central 
control station and all restrictions on the communication system [29]. 

4.2.1 Single Group Swarm Radio Network 

In the “Single group swarm Radio Network” shown in Fig. 4, mutual communication 
between swarm UAVs does not depend on the ground control station. Communication 
between the swarm and the ground control station relies on the functioning of a fast-
processing UAV to process data from a sensor called a master UAV. In this single-
layer radio communication system, the master UAV acts as a transceiver for data 
communication within the group, which is responsible for effectively functioning 
the mission by the UAV swarm and is a crucial component of communication.

UAVs in swarm share position and sensor information in real-time to optimize 
control and improve efficiency over their partners, using the adaptability and effi-
ciency of this method. This enables the master UAV to send and receive swarm 
structural information, including mutual communication between the UAV and the 
central control station and critical command and instructional information. 

Regarding master UAVs, two additional types of transceivers are required for data 
transfer: one for a group of UAVs to consume less energy and power for short-distance 
communication with another UAV and another for transceiver master UAVs. High 
power radio communicates long-term instructions with a centralized ground control 
station with the master UAV. Other UAVs only need to carry lightweight short-range 
transceivers at low energy cost and weight. This increases the communication range
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Fig. 4 Single-group swarm 
radio network

of the network manifold for the coverage requirements of larger missions and makes 
the payload of smaller UAVs more efficient and more useful for tasks with smaller 
UAVs in size. However, to guarantee continuous connectivity of the swarm, the 
“Single group Swarm radio Network” architecture requires that the flight speed and 
flight pattern (heading orientation) of all UAVs in the swarm must be the same. This 
is important for the UAV swarm’s operation, and effectively controlled is necessary. 
Therefore, a group of smaller UAVs is always suitable for scenarios that use a single-
layer radio communication network architecture. A real-time practical application 
of a “single-group swarm radio network” can be done for public safety environments 
where we have to simultaneously monitor security for a small area or security cover 
for a particular object [29]. 

On the other hand, individual operation diversifications on the structure of UAVs 
in a UAV system have resulted in significant demand. We commonly encounter 
the need for a swarm of small, medium, and large UAVs whenever we implement 
real-world applications. 

As a result, the “single-group swarm radio network” architecture described above 
falls short of achieving these objectives. While comparable UAVs commonly fly close 
together, various UAVs may be far apart. As an outcome, the swarm’s UAVs are split 
into groups depending on their mission objectives, with the identical UAVs operating 
in close vicinity. As described below, these architectures are characterized as “mul-
tiple group swarm radio networks” and “multilayer swarm radio communications 
networks”. 

4.2.2 Multiple Group Swarm Radio Mesh Networks 

The “multi-group swarm radio network” presents a viable solution to the problem 
since it eliminates all of the shortcomings of the single-group swarm radio mesh 
network. It has a centralized network design and a single-group swarm radio network.
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Fig. 5 Multiple group 
swarm radio communication 
mesh networks architecture 

Depending on the mission objectives, various kinds of groups have different appli-
cations. Intra-group UAVs interact in a radio mesh network, but inter-group UAVs 
do not (Fig. 5). 

Intra-swarm communication systems are comparable to intra-group communica-
tion structures. Inter-group communication, also referred to as group-to-group (GTG) 
communication, is conducted by the central control station, which indicates master 
UAVs are still in charge of it. A multiple group swarm mesh network topology could 
be used if several types of UAVs are required for mission scenarios. 

However, because the multiple group swarm radio mesh network design is semi-
centralized, it is essential to emphasize the robustness of this architecture. At the 
same time, for G-T-G communication between the two UAVs in separate groups, the 
“multi-group swarm network” design suffers from a range of high latency issues. The 
efficient execution of multi-theater joint operations in various disciplines for military 
operations is a demonstration of how multi-group architecture is used. The central 
command station establishes a connection with multiple swarm groups simultane-
ously through different master UAVs, and the swarm’s groups perform operations 
in diverse locations of the mission area according to the central command station 
instructions [30]. 

4.2.3 Multilayer or Hybrid Swarm Radio Mesh Network 

Another type of architecture considered suitable for any broad and diversified UAV 
mission deployment is the “multilayer swarm radio mesh network” architecture. In 
many respects, as presented in Fig. 6, this architecture departs from the multiple group 
swarm radio mesh network architecture. During the flight, a group of adjacent UAVs 
creates a mesh network, which is incorporated as the first layer of the communication 
architecture. In Sect. 4.2.2, the architecture of intra-group communication is detailed. 
In GTG communication, the various types of UAV groups, along with the second 
layer, rely primarily on master UAVs.
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Fig. 6 Multi-layer swarm 
radio mesh network 
architecture 

Various sorts of UAV groups use master UAVs to perform G-T-G communication, 
with the second layer serving an incredibly significant and active role. The nearest 
operational UAV interacts with the central control station, which is integrated as a 
third layer of the architecture during the flight. Each adjacent UAV can communicate 
effectively in the “multilayer swarm radio mesh network” architecture. The demand 
for a central control station relay is not required. At the first level, UAVs in the 
same group must interact about unlimited flights at different levels. Various groups 
of UAVs communicate with each other through master UAVs. The first and second 
levels, in turn, pass sensor data packets. As an outcome, all UAVs with multilayer 
swarms are self-sufficient and will establish ad-hoc basis communications with their 
nearby networks if mutual communication is not feasible. If mutual communication 
is not possible, it will establish contact with the next available neighbouring UAV. 
This architecture is resilient and secure since failure is not confined to a single spot. 
In a mission, when the number of UAVs changes, “the multilayer swarm radio mesh 
network architecture compensates for the increase or decrease of UAV nodes and 
quickly executes the mission by implementing network construction.” Therefore, 
multilayer swarm radio mesh network architecture best suits mission environments 
that change frequently. 

Due to the complexity of UAV swarm operations, many network architectures 
are continuously changing, and communication between UAV nodes occurs on a 
massive scale. With the progress of research and communication technologies, UAV 
highlights the need for a future enhancement in this type of Swarm networking. The 
number of layers necessary to build a Swarm Radio Mesh Network Architecture with 
more UAVs is included. 

As a result, the challenge of multi-UAV deployment to significantly decrease the 
overall cost of all scheduled users emerges, resulting in a more excellent workspace 
coverage and a much more sustainable and stable network setup. In this scenario, 
the iteration algorithm may be used as a realistic technique to decrease the aware 
applications by adjusting the transmission and flight control times suitably.
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Because UAV wireless transmission primarily depends on antenna array gain 
or array manifolds formed by many UAVs, transmission time may be significantly 
decreased by effectively managing UAV spacing and location. Then, multi-UAV 
flight control time is optimized by dynamically managing the UAV velocity according 
to the effectiveness and optimum positions of the UAV trajectory design. These 
iterations allow us to utilize optimization theory to find a practical solution. However, 
confirming that the original ideal issue is fixed is challenging [31]. 

5 Conclusions and Discussions 

This paper presents a concept-level proposal for using wireless radio networks as 
a communication central control station for various types of UAV swarm systems, 
as well as a comprehensive and in-depth review of the early stages of develop-
ment phases and research. It comprehensively overviews the UAV swarm industry’s 
development activities, extending beyond UAV swarm and in-house applications. 
Reviews developmentally tested paperwork and provide direction for different future 
capabilities work about the UAV swarm. 

The specific development and coordination capabilities of autonomous commu-
nication with UAV-to-UAV communication are in a central role in advancing the 
utility of the UAV swarm system. Although swarm technology is not yet practically 
used in commercial applications, it is a rapidly growing field of potential, with the 
possibility of landing under the UAV industry in the future. 

Using wireless radio frameworks with low power consumption and long distances 
available in the current era reduces the limiting factors for traditional UAV swarm 
communication approaches. The use of wireless radio networks for the UAV 
swarm will in many cases, promote greater efficiency and revolutionize commercial 
usability, especially with the increase of UAV-to-UAV communication capabilities 
in the presence of radio mesh networks with the capabilities of UAV swarm systems. 
Diffusion can be extended to various applications by leaps and bounds. 

With the development of UAV technology and network communication, the mode 
of application of UAVs has also continued to evolve in parallel. The UAV swarm is a 
swarm intelligence-based solution proposed to extend the UAV application function 
and multi-UAV practical cooperative operations. UAV swarm has been used in many 
scenarios, such as wildfire monitoring, range monitoring, and disaster management. 
Therefore, to carry out research on UAV swarm technology is of great practical 
importance. 

UAV swarm missions are highly mobile in operation, and the architecture of 
their mutual radio communications frequently changes, requiring communication 
networks with low latency and high reliability. Therefore, it is necessary to design 
radio communication architecture and mesh protocol with good applicability, high 
flow, and stability for continuous UAV function communication.
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Although existing and consistent theoretical research and experiments in this 
direction have mainly solved some technical problems in UAV swarm communi-
cation architectures and radio mesh networks, many interesting, important, and yet 
challenging open issues are still worthy of further investigation. The solution which 
will bring revolutionary changes in the direction of the UAV swarm some of can be 
summarized as follows:

• Multilayer architecture may be better suited to the characteristics of communi-
cation and security in the needs of better-performing UAV swarm missions but 
simultaneously brings new challenges. Due to the importance of master UAVs 
in swarm communication, master UAVs during the task require a lot of ability 
to detect the failure and overcome it in a timely manner. Also, if a malfunction 
occurs again, it is imperative to have a very reliable and working algorithm to 
select the next UAV to act as a master UAV in such a situation at the same time as 
soon as possible. The data stored in the master UAVs must be synchronized with 
standby to execute the mission accurately and efficiently.

• Swarm communication can be intermittently associated with the increasing feature 
of UAVs in various critical areas and with the continuous change in mesh network 
architecture. Setting up mesh networks correctly and maintaining their protocols 
has always been a critical problem. Therefore, the solution of intermittent connec-
tivity in UAV mesh network communication will remain a significant area for 
future research.

• Most of the researchers currently involved in the research focus more on the 
proposed Mesh Network Routing Protocol performance improvement. At the 
same time, UAV’s mission implementation has far more important aspects to 
consider. However, security is an essential core material that any Also UAV 
swarm cannot be ignored in communication networks. Therefore, it is neces-
sary to propose a solution to this problem by including new mesh networks and 
security components.

• Energy shortages in UAV networks with an energy crisis play an important role in 
limiting the efficiency of mission operations. All concerns about battery savings 
in UAV swarm mesh networks lie in the distance between them with the radio 
network and the wireless sensor network. Several energy-saving radio mesh proto-
cols for UAV swarm radio networks have been tried to develop and implement but 
the applicability of these protocols in various UAV swarm radio network scenarios 
has not yet been proven as far as it is expected. Energy and radio mesh network 
protocols need to be tested in different mission scenarios.
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Simulation of Clustering Protocol 
and Mobility Model for UAV Networks 

Abhishek Joshi, Sarang Dhongdi, and K. R. Anupama 

Abstract The network of autonomous Unmanned Aerial Vehicles (UAVs) is a 
powerful system that can assess the severity of damages during disaster events and 
support search and rescue missions. UAVs can carry payloads such as cameras, 
sensors, and a built-in navigation system and can be readily deployed in the surveil-
lance region with limited or no infrastructure support. This work assumes that UAVs 
can be randomly deployed in the affected area for surveillance. The network is then 
arranged in the form of clusters of UAV nodes to create a hierarchy and aid in 
the collection and routing of sensed data. Metrics of residual energy and connec-
tivity have been used to select a Cluster-Head (CH) node iteratively. This proposed 
clustering algorithm has been detailed in this paper. For the implementation of this 
protocol, an integrated platform of ROS and NS3 has been utilized to provide a more 
realistic deployment scenario. The proposed clustering protocol has been compared 
with prominent clustering protocols of Wireless Sensor Networks (WSNs) such as 
Hybrid Energy-Efficient Distributed (HEED) and Low-Energy Adaptive Clustering 
Hierarchy (LEACH) for analysis of parameters such as the lifetime of the network 
and clustering overhead. The mobility model achieved from the robot simulator has 
been compared against probabilistic mobility models available in the network simu-
lator. The proposed deterministic clustering protocol outperforms in terms of network 
lifetime against prominent clustering protocols. Upon stimulation, it has also been 
observed that the realistic mobility model obtained from the robot simulator is more 
suited for real-world applications. 
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1 Introduction 

Unmanned Aerial Vehicles (UAVs) have been proposed to be used as mobile, adaptive 
communication backbones for ground-based sensor networks. These UAVs and the 
sensor nodes collaboratively form a 3D airborne sensor network called Unmanned 
Aerial Network (UAN) to support civil and military applications. UAN can be unused 
for applications like surveillance, reconnaissance, remote sensing, search and rescue, 
aerial photography, crop surveys, on-demand emergency communications, traffic 
control, monitoring natural resources like oil or gas exploration and so on. The UAVs 
can also provide communication connectivity to sensors that cannot communicate 
because of terrain, distance, or other geographical constraints. Moreover, the UAVs 
themselves can have capabilities in terms of sensing and forming a network that 
can use existing infrastructure. UAVs can also form an ad-hoc network to forward 
network sensed data to the Ground Control Center (GCC) or Base Station (BS) in 
case of unavailability of infrastructure. The ad-hoc network formed by UAVs within 
the network has been termed as Flying Ad-Hoc Network (FANET). FANETs can 
be considered to be the subset of Mobile Ad-Hoc Networks (MANETs). In addition 
to this, FANETs can also be classified as a subset of Vehicular Ad-Hoc Networks 
(VANETs), which can be considered to be a subgroup of MANETs. As an emerging 
area of research, FANETs share common characteristics with these networks, and it 
also has several unique design challenges. Table 1 details FANET design challenges 
that distinguish them from MANETs and VANETs. 

Major application categories of FANETs include search and rescue operations, 
traffic and urban monitoring, surveillance and patrolling, agricultural management, 
environmental sensing, event detection and monitoring and so on. In this paper, a 
FANET has been deployed to monitor a disaster-affected region. FANET deploy-
ment has been depicted in Fig. 1, which considers a single disaster event where 
UAVs have been randomly deployed. The UAVs have been assumed to be equipped

Table 1 FANET design challenges 

Parameter MANET VANET FANET 

Node mobility Low High Very high 

Mobility model Random Regular Regular for pre-defined 
paths but undefined for 
autonomous systems 

Node density Low High Very low 

Radio propagation 
model 

Close to ground Close to ground UAV to UAV, UAV to ground 

Energy efficiency of 
protocols 

Energy efficient Not essential 
requirement 

Energy-efficient protocols 
for the mini-UAVs but not an 
essential requirement for 
small-UAVs 

Computation power Limited High High 
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Fig. 1 FANET deployment for disaster monitoring application 

with the appropriate set of sensors and camera modules to monitor the disaster event. 
The UAVs have also been considered to be equipped with Global Positioning System 
(GPS) and Inertial Measurement Unit (IMU) to fetch absolute geographical coordi-
nates and timing values throughout their flight time. The UAVs within the network 
execute a deterministic clustering protocol proposed in this paper to elect a Cluster-
Head (CH) UAV. The elected CH UAV collects the sensed data from the entire cluster 
and forwards the network data to the nearest BS. 

The proposed clustering protocol has been simulated on a realistic co-simulator 
platform. The co-simulator platform includes Network Simulator-3 (NS-3) and 
Gazebo with Robot Operating System (ROS) as middleware. NS-3 has been selected 
as the preferred network simulator to simulate realistic message exchange within the 
network. Gazebo has been chosen to be the UAV simulator to simulate the physical 
parameters of UAV along with mobility in a realistic manner. The proposed clus-
tering protocol has been thoroughly simulated against prominent clustering protocols 
like LEACH and HEED with varying UAV mobility. The mobility model achieved 
from the robot simulator has been compared against probabilistic mobility models 
available in the network simulator. 

The organization of this paper is as follows: In Sect. 2, the literature survey of 
existing clustering protocols along with simulation platforms has been detailed. In 
Sect. 3, details about the proposed deterministic clustering protocol for FANET 
have been provided. Section 4, implementation of realistic simulation platform, has 
been provided. Results obtained for the proposed clustering protocol along with a 
comparative study of mobility models have been discussed in Sect. 5. Conclusions 
of this research have been provided in Sect. 6.
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2 Literature Survey 

Flying Ad-hoc Networks (FANETs) have been considered to be the emerging cate-
gory of mobile Wireless Sensor Networks (WSNs) [1, 2]. In recent times, FANETs 
have demonstrated their ability in real-world applications such as search and rescue 
operations [3], forest fire monitoring [4], air pollution monitoring [5], flood moni-
toring [6], earthquake monitoring [7], remote sensing [8], precision agriculture [9], 
pipeline inspection [10] and so on. 

Since FANETs are considered to be a subset of WSNs, they inherit identical 
challenges faced by WSNs. Additional constraints, such as rapid node movement 
and sparse deployment, need to be considered during the deployment and networking 
phases of FANETs. Such networking issues for UAVs have been taken into account in 
[11].  The work in [11] has been considered to be one of the initial works to explore 
networking problems and communication requirements for FANET applications. 
Unique challenges of UAV ad-hoc networks to conventional ad-hoc networks, which 
include rapid mobility of UAV nodes, frequent topology changes and link updates 
within the network, have been detailed in [12]. 

The clustering protocol in FANETs is based upon the formation of clusters where 
a CH node supervises each cluster. It results in the reduction of packets transferred to 
the BS node while reducing the energy consumption of UAV nodes. As a drawback, 
clustering protocols suffer from increased complexity in forming clusters. Promi-
nent WSN clustering protocols, including LEACH and HEED, have been adopted 
for FANETs [13]. CA (Clustering Algorithm) [14] is a clustering-based routing 
protocol which supports real-time missions in FANET. MPCA (Mobility Prediction 
Clustering Algorithm for UAV Networking) [15] is a hierarchical routing protocol 
which predicts UAV movements while electing CH node within a cluster. DTM 
(Disruption Tolerant Mechanism) [16] is a clustering protocol adopted for FANETs 
which makes use of reactive routing protocol [17] to forward cluster data. 

To develop reliable UAV-based networks, it is crucial to simulate UAV operations 
realistically. For FANETs, network simulators have been developed, such as NS-
2 [18], NS-3 [19], QualNet [20] and OMNet [21]. These simulators make use of 
probabilistic mobility models such as Gauss Markov [22] or they can be specified in 
trace files created by other software tools like SUMO [23]. Although this software 
can produce realistic motion patterns of nodes, a few limitations can only make these 
patterns a priori, not on the fly. Also, the mobility model of network simulators is 
based on statistical probability, which implies that previous movements of nodes 
influence the next movement decision in the model; therefore, it has fundamental 
limitations to simulate realistic UAV motions for disaster operations. 

On the other hand, robot simulators like Gazebo [24] can control the physical 
movement of UAVs. Gazebo is a tool widely used for the development of UAVs 
with various physical characteristics. It can incorporate multiple sensor modules for 
these UAVs. These sensor modules can provide realistic data which can be used for 
applications like UAV navigation. But robot simulators lack networking capabilities 
which prevent them from message exchanges within the network. Overall, solely
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using the existing network simulators or robot simulators, we can only test either 
network performance or robot motion operations, not both of them together. To 
handle this issue, a co-simulator platform has been utilized, which combines the 
network simulator (NS-3) and the robot simulator (Gazebo) with the help of the 
Robot Operating System (ROS). 

3 Clustering Protocol for UAV Networks 

During the initial phase of the proposed clustering protocol, an individual 
UAV retrieves its respective ID, residual energy and position. From retrieved 
parameters, the UAV generates Neighbour_Discovery_Message. The  Neigh-
bour_Discovery_Message has been broadcast thrice at different random intervals, 
which has been the primary function of UAV ID (IDi). Concurrently, the UAV also 
keeps listening for received broadcast messages from other UAVs. After receiving 
the broadcast, the UAV extracts the ID, residual energy and position and stores those 
received parameters into the neighbour table entry for a particular received UAV ID. 

After completing a pre-defined time interval, an individual UAV within the cluster 
generates its respective neighbour table. The neighbour table consists of IDs of neigh-
bouring UAVs along with their respective coordinates and residual energy values. 
Analyzing the neighbour table, individual UAV can calculate Connectivity Value 
(Ci). The connectivity Value (Ci) of the UAV represents the number of UAVs from 
which the particular UAV received the broadcast message. Based upon Connectivity 
Value (Ci) and Residual Energy (Ri) of the UAV, the UAV categorizes itself into one 
out of the nine sub-phases described in Table 2. 

As represented in Table 2, essential criteria for sub-phase selection have been 
Residual Energy (Ri) and Connectivity Value (Ci) of the UAV. These parameters 
have been considered to be non-probabilistic parameters that have been an integral 
part of the Cluster-Head (CH) election process. Also, as interpreted from Table 2, the

Table 2 Sub-phase 
categorization 

Sub-phase Residual energy (Ri) 
(%) 

Connectivity value (Ci) 
(%) 

Sub-phase 1 >90 >90 

Sub-phase 2 90–80 

Sub-phase 3 80–70 

Sub-phase 4 90–80 >90 

Sub-phase 5 90–80 

Sub-phase 6 80–70 

Sub-phase 7 80–70 >90 

Sub-phase 8 90–80 

Sub-phase 9 80–70 



506 A. Joshi et al.

Residual Energy (Ri) of the UAV has been given higher priority over the Connectivity 
Value (Ci) of the UAV to improve the energy efficiency of the network. 

The flowchart of the sub-phase selection process of the UAV has been represented 
in Fig. 2. Initially, the UAV retrieves its current Residual Energy (Ri) and Connectivity 
Value (Ci). Then, it compares the present Residual Energy (Ri) against the maximum 
value of Residual Energy (Rmax(i)), which has been assigned to the UAV at the 
beginning of network operation. If the Residual Energy (Ri) is greater than 90% of 
the maximum value of Residual Energy (Rmax(i)) of the UAV, the UAV broadly 
categorizes itself within Sub-Phase-1 to Sub-Phase-3. If the Residual Energy (Ri) 
lies between 90 and 80% of the maximum value of Residual Energy (Rmax(i)) of 
the UAV, then the UAV broadly categorizes itself within Sub-Phase-4 to Sub-Phase-
6. Suppose the Residual Energy (Ri) of the UAV lies between 80 and 70% of the 
maximum value of Residual Energy (Rmax(i)) of the UAV. In that case, the UAV 
broadly categorizes itself from Sub-Phase-7 to Sub-Phase-9.

After broadly categorizing the UAV based upon Residual Energy (Rmax(i)), the 
table takes into account the Connectivity Value (Ci) of the UAV. If Residual Energy 
(Ri) is greater than 90% of the maximum value of Residual Energy (Rmax(i)) and if 
the Connectivity Value (Ci) of the UAV is greater than 90% of the maximum value of 
Connectivity Value (Cmax(i)), the UAV categorizes itself into Sub-Phase-1. Suppose 
the Residual Energy (Ri) is greater than 90% of the maximum value of the Residual 
Energy (Rmax(i)) and the Connectivity Value (Ci) of the UAV lies between 90 and 
80% of the Connectivity Value (Cmax(i)). In that case, the UAV categorizes itself into 
Sub-Phase-2. If the Residual Energy (Ri) is greater than 90% of the maximum value 
of Residual Energy (Rmax(i)) and Connectivity Value (Ci) of the UAV lies between 
80 and 70% of the Connectivity Value (Cmax(i)), the UAV categorizes itself into 
Sub-Phase-3. 

Suppose the Residual Energy (Ri) lies between 90 and 80% of the maximum value 
of Residual Energy (Rmax(i)), and the Connectivity Value (Ci) of the UAV is greater 
than 90% of the Connectivity Value (Cmax(i)). In that case, the UAV categorizes 
itself into Sub-Phase-4. Suppose the Residual Energy (Ri) lies between 90 and 80% 
of the maximum value of Residual Energy (Rmax(i)) and the Connectivity Value (Ci) 
lies between 90 and 80% of the maximum value of the Connectivity Value (Cmax(i)). 
In that case, the UAV categorizes itself into Sub-Phase-5. 

Suppose the Residual Energy (Ri) lies between 90 and 80% of the maximum 
value of Residual Energy (Rmax(i)) and the Connectivity Value (Ci) of the UAV lies 
between 80 and 70% of maximum value of the Connectivity Value (Cmax(i)). In that 
case, the UAV categorizes itself into Sub-Phase-6. 

If the Residual Energy (Ri) lies between 80 and 70% of the maximum value of 
Residual Energy (Rmax(i)) and Connectivity Value (Ci) of the UAV is greater than 
90% of the maximum value of the Connectivity Value (Cmax(i)), the UAV categorizes 
itself into Sub-Phase-7. Suppose the Residual Energy ($Ri$) lies between 80 and 70% 
of the maximum value of the Residual Energy (Rmax(i)), and the Connectivity Value 
(Ci) lies between 90 and 80% of the maximum value of Connectivity Value (Cmax(i)). 
In that case, the UAV categorizes itself into Sub-Phase-8. Suppose the Residual 
Energy (Ri) lies between 80 and 70% of the maximum value of the Residual Energy
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Fig. 2 Flowchart for sub-phase categorization

(Rmax(i)) and the Connectivity Value (Ci) lies between 80 and 70% of maximum 
value of Connectivity Value (Cmax(i)). In that case, the UAV categorizes itself into 
Sub-Phase-9. Suppose the Residual Energy (Ri) of the UAV is less than 70% of 
maximum value of the Residual Energy (Rmax(i)). In that case, the UAV cannot be 
chosen for Cluster-Head (CH) election policy, and it acts as Cluster-Member (CM) 
UAV. 

After an individual UAV in the cluster identifies its sub-phase, the next phase 
of the clustering protocol begins. In this phase, an individual sub-phase has been 
allotted a specific time slot. During this time slot, the UAVs which are eligible from 
that particular sub-phase contend to become Cluster-Head (CH) UAVs. UAVs which 
result in the sub-phase with the lowest phase ID (i.e., P1) have been considered to be 
the most eligible candidates for Cluster-Head (CH) UAV because of the highest value
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Fig. 3 Flowchart for Cluster-Head (CH) election 

of the Residual Energy (Ri) along with the highest Connectivity Value (Ci). Thus, 
P1 sub-phase has been given the initial time slot to elect Cluster-Head UAV. UAVs 
that fall under P1 sub-phase broadcast Temporary Cluster-Head (TCH) message. In 
TCH message, the UAV mentions its ID, (ID_i) along with the sub-phase ID. The 
UAV broadcasts TCH messages within the defined phase at a ransom time interval. 

Upon receiving the broadcast of TCH message, UAVs within individual isolated 
clusters execute the algorithm visualized in Fig. 3 to select the most eligible Cluster-
Head (CH), which results in Final Cluster-Head (FCH). Terminologies used in the 
algorithm have been elaborated below:

• u(cv)—UAV’s own connectivity value
• r(cv)—UAV’s received connectivity value
• u(ev)—UAV’s remaining energy value
• r(ev)—UAV’s received remaining energy value
• u(id)—UAV’s ID
• r(id)—UAV’s received ID 

During the preliminary stage of algorithm execution, the connectivity value of the 
UAV is used as the primary metric for Cluster-Head (CH) election. Upon receiving 
the TCH message, recipient UAV compares its own connectivity value (u(cv)) with 
received connectivity value (r(cv)). If received connectivity value (r(cv)) is lower 
than its own connectivity value (u(cv)), the UAV further compares residual energy 
values. Suppose the residual value of the UAV (u(ev)) is higher than the received
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residual value of energy (r(ev)). In that case, the UAV concludes itself as the possible 
contender for the Cluster-Head election process and broadcasts the TCH message. 
If residual energy values of both UAVs result same, then UAV with higher ID has 
been given precedence. After executing the algorithm, the UAV concludes whether 
it is eligible to contend for Cluster-Head (CH) election process. 

At the end of the individual phase, the UAV which makes the final broadcast 
of the TCH message broadcasts another message termed as Final Cluster-Head 
(FCH) message. The rest of the UAVs within that cluster receive this message. Upon 
receiving the FCH message, the rest of the UAVs which have been contending to get 
elected as Cluster-Head (CH) UAV consider themselves as Cluster-Member (CM) 
UAVs. 

4 Implementation 

Simulation of FANETs should imitate real-world scenarios along with their 
constraints as closely as possible. It helps in understanding network performance 
and the limitations in a real-world situation and helps in accelerating hardware 
deployment. FANET simulators have been broadly categorized into UAV simulators 
and network simulators. UAV simulators are essential in simulating realistic UAV 
mobility and pattern. One of the significant drawbacks of UAV simulators is the lack 
of message exchange capability. The lack of message exchange prevents networking 
protocols from being simulated using UAV simulators. Network simulators support 
message exchange among multiple nodes in the network. They also support physical 
communication and channel interfaces to simulate FANET operation realistically. 
One of the significant drawbacks of network simulators is the mobility models used 
in those simulators. Conventionally, network simulators use probabilistic mobility 
models of Gauss-Markov mobility models. These mobility models do not represent 
real-world UAV mobility in the realistic model. 

A realistic simulation platform has been utilized in this research to overcome 
issues imposed by UAV simulators and network simulators. The preferred UAV 
simulator has been selected as Gazebo, and the preferred network simulator platform 
has been chosen as Network Simulator-3 (NS-3). Robot Operating System (ROS) 
acts as the middleware to integrate Gazebo and ROS. Details about the simulation 
platform have been provided in Fig. 4. The major building blocks of Fig. 4 include 
NS-3, Gazebo and ROS. The simulation platform uses the publisher-subscriber model 
to exchange data between these simulators. Gazebo fetches real UAV positions and 
velocity parameters and publishes them to the ROS node. ROS node subscribes to 
the UAV data and further publishes them to the corresponding UAV node in NS-3. 
UAV node in NS-3 executes network protocols and communicates with neighbouring 
UAV nodes while simulating realistic channel conditions. The neighbouring UAV 
node receives the updated position and velocity parameters and publishes them to 
the ROS node. The ROS node subscribes to the updated UAV parameters and further 
publishes them to the corresponding UAV node in the UAV simulator. The UAV
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Fig. 4 Realistic FANET simulator connecting NS-3 and Gazebo using ROS 

node in the UAV simulator subscribes to the updated UAV parameters and takes the 
UAV to the received position with received velocity while executing topology control 
algorithms and collision avoidance algorithms. 

The proposed clustering protocol has been thoroughly simulated with varying 
UAV velocity. Also, the FANET has been simulated against standalone probabilistic 
models available in the network simulator. Details about the simulation and the 
discussion have been provided in the following section. 

5 Results and Discussions 

The proposed deterministic clustering protocol has been simulated on the network 
simulator against network lifetime parameters with varying UAV mobility. Network 
parameters considered for simulation have been tabulated in Table 3. 

Table 3 Network simulation 
parameters 

Network parameter Value 

Number of UAVs 5–30 

Speed 0–30 m/s 

Mobility model Realistic Gazebo mobility model 

Communication channel 802.11 ad-hoc mode 

Bandwidth 11 Mbps 

Simulation area 2 km  × 2 km  × 100 m 

Low power range for UAV 150 m 

High power range for UAV 1850 m 

Initial energy of UAV 500 mJ



Simulation of Clustering Protocol and Mobility Model for UAV Networks 511

Fig. 5 Comparison of 
network lifetime between 
clustering protocols 

The FANET has been thoroughly simulated for 100 runs to compare the proposed 
deterministic clustering protocol’s performance against prominent clustering proto-
cols available in the literature. Initially, UAV nodes within the clusters have been 
assumed to be hovering within the cluster, which implies no mobility parameter 
involved while simulating the network. Results obtained for stationary FANET have 
been visualized in Fig. 5. 

Low-Energy Adaptive Clustering Hierarchy (LEACH) is considered to be a 
probabilistic clustering protocol in which the CH election policy for UAVs within 
the cluster is defined by random probabilities. LEACH does not regard UAV’s 
remaining energy when electing CH, resulting in the network’s remaining energy 
being exhausted in the fewest number of rounds possible. Hybrid Energy-Efficient 
Distributed (HEED) is a hybrid protocol that selects CH based on probabilistic and 
remaining energy parameters. In terms of the number of rounds needed to deplete 
the network’s capacity, it outperforms LEACH. The clustering protocol proposed is 
fully deterministic. In the proposed clustering protocol, the CH election scheme is 
not dependent on probability. The remaining energy of the UAV is given primary 
selection criteria to elect CH UAV which results in optimum network lifetime in 
terms of the number of rounds for the network to exhaust the remaining energy. 

The proposed deterministic clustering protocol has been compared against promi-
nent clustering protocols like Low-Energy Adaptive Clustering Hierarchy (LEACH) 
and Hybrid Energy-Efficient Distributed (HEED). Due to the deterministic nature 
of its implementation, the proposed clustering protocol outperforms the in terms of 
network lifetime. Further, the FANET has also been simulated with varying UAV 
mobility. Initially, the FANET has been simulated with realistic mobility obtained 
from Gazebo. Later the FANET has been simulated with mobility models available
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in NS-3. Results obtained from different mobility models have been visualized in 
Figs. 6, 7, 8, and 9. The proposed realistic mobility model outperforms the rest of 
the mobility models in terms of network lifetime. 

The realistic mobility model’s performance is better than other group mobility 
models like Reference Point Group Mobility (RPGM) because of the actual exchange 
of position and velocity parameters between network simulator and UAV simulator

Fig. 6 Residual energy of 
network with proposed 
mobility 

Fig. 7 Residual energy of 
network with Random Point 
Group Mobility (RPGM)
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Fig. 8 Residual energy of 
network with Gauss Markov 
(GM) mobility 

Fig. 9 Residual energy of 
network with Random 
Waypoint (RWP) mobility

rather than conventional mobility models probabilistic approach is taken into account 
while calculating mobility of group. At a higher speed, the performance of indi-
vidual mobility models like Random Way-point Mobility (RWP) and Gauss-Markov 
Mobility Model (GM) deteriorates to group mobility models. Group mobility models 
are designed to consider changes in direction and speed; hence, they perform better 
than individual node mobility models. Thus, GM’s performance deteriorates at higher
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speeds due to frequent link breaks, which translates into a reduction in terms of 
network lifetime. 

6 Conclusion 

In this paper, a FANET has been deployed in the disaster-affected area for surveil-
lance. The deployment of UAVs within the network has been considered to be random. 
A deterministic clustering protocol has been proposed in this paper. The proposed 
protocol takes the residual energy of the UAV node and its connectivity value to elect 
CH within the network. The proposed deterministic protocol has been compared 
against prominent clustering protocols in the literature like LEACH and HEED. 
The clustering protocols have been thoroughly simulated against network lifetime 
parameters. The proposed deterministic clustering protocol outperforms LEACH and 
HEED in terms of the lifetime of the network. 

The proposed deterministic clustering protocol has also been tested with varying 
UAV mobility within the network. A realistic simulation platform has been utilized to 
simulate UAV mobility. The realistic simulation platform includes a network simu-
lator (NS-3), a UAV simulator (Gazebo) and ROS. The realistic mobility obtained 
from the UAV simulator has been compared against probabilistic mobility models 
available in the network simulator like RPGM, GM and RWP. The realistic mobility 
model available from the UAV simulator outperforms the network simulator’s prob-
abilistic models in terms of network lifetime when incorporated with the proposed 
deterministic clustering protocol. 
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Obstacle Avoidance for Quadcopters 
in Formation Flying Based on A* 
Algorithm 

Kumud Ranjan Roy 

Abstract Quadcopters take precedence over fixed-wing aircraft within the UAV 
family, owing to their distinctive characteristics such as vertical take-off and landing, 
reduced size and weight, high maneuverability, and more. With recent technological 
advancements, UAVs have become viable for a wide range of applications ranging 
from military to civilian, including traffic monitoring, aerial photography, surveil-
lance, payload carrying search and rescue, and much more, especially for tedious, 
filthy, and dangerous jobs that endanger people, such as building fires and obser-
vatories in the woods, military purposes. To complete some of these missions, a 
swarm of Quadcopters must work together. Determining how a Quadcopter can 
autonomously achieve its goal position despite obstacles in its path is a complex 
issue. This paper uses the A* (A-star) algorithm to model path planning, trajectory 
generation, and autonomous control of a quadcopter. Path planning was thoroughly 
examined using various scenarios with various obstacle positions, and the dimen-
sions of obstacles are much greater than the dimensions of the Quadcopter over the 
map. It was also observed whether the swarm (3 Quadcopters in “vee” formation) 
maintains the necessary formation throughout the created path. 

Keywords A* (A-star) algorithm · Path planning · Trajectory generation ·
Autonomous control · Artificial intelligence 

1 Introduction 

An unmanned aerial vehicle is known as a quadcopter. UAVs are helpful in areas 
where humans cannot reach or perform in a timely and effective manner. Increasing 
work efficiency and productivity, reducing workload and production costs, fine-
tuning services and domain expertise, and addressing security issues on a large scale 
are just a few of the many benefits that UAVs provide to industries worldwide.
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The Newton–Euler technique helps to formulate a detailed mathematical nonlinear 
dynamic model of the Quadcopter derived [1]. A traditional Proportional Integral 
Derivative (PID) and Fuzzy-PID controllers on a circular trajectory to present data 
analysis of Quadcopter dynamic attitude on a circular trajectory. The Simulink 
toolbox from Matlab was used to simulate attitude stability with both control systems. 
As a result, each control system’s identification is easily visible. Each control system 
algorithm that affects the horizontal movement on a circular trajectory, such as roll 
and pitch angles, is thoroughly explained [1, 2]. Sliding mode control (SMC) for 
trajectory tracking and control formation of various unmanned aerial vehicles, based 
on the leader–follower concept (UAV). Sliding mode control is a reliable method for 
controlling nonlinear systems while keeping them impervious to external pertur-
bations. Essentially, it uses the sliding mode control method to track the quad 
rotor-leader trajectory. A Sliding mode control algorithm is then used to control 
the formation during flight. All of the methodology in this paper is implemented 
with the Robot Operating System, and the findings show that the proposed control 
strategy is effective in [3–6]. An environment modeling technique for unmanned 
aerial vehicle (UAV) route planning is presented in this paper, along with height 
dimension reduction. According to the classical grid method, this method considers 
a vertical plane to the yz-plane and includes the start and endpoints. The environment 
model could be created by re-dividing the plane by the grid method and comparing 
its height and obstacles. The above concept condenses the three-dimensional envi-
ronment model’s dimensions and ignores obstacles that are lower than the UAV’s 
flying height. As a result, the proposed environment model method’s accuracy could 
be improved, and the path planning algorithm’s efficiency could be improved even 
more [7, 8]. Using the A-star algorithm for route planning, a simulation experiment 
demonstrates this environment modeling method’s efficacy [8, 9]. For both methods, 
this study conducts a comprehensive and comparative study of existing UAV path 
planning algorithms (Heuristic and non-heuristic or exact techniques are the two 
solution methodologies that categorize path-planning algorithms). Each algorithm 
is put to the test in three different obstacle scenarios. Each algorithm was tested 
with variations in global and local obstacle information availability, and the results 
were compared for computational time and solution optimality [7, 8, 10–12]. In a 
leader–follower configuration [13, 14], this paper presents a control algorithm for 
solving multiple quadrotor formation problems. For trajectory tracking control of 
a single robot, a combination of Sliding Mode Control (SMC) and linear quadratic 
regulator (LQR) is used. Position control, which serves as the outer loop, is governed 
by a linear quadratic regulator, which provides the inner loop with reference attitude 
angles. The inner loop, responsible for attitude angles, is stabilized and converged 
using Sliding Mode Control [13]. The controllers for a multi-quad system that flies 
in a tight, rigid formation are proposed in this paper. The model of the aerial truck 
under consideration is highly nonlinear. As a result, a control strategy for avoiding 
collisions between adjacent vehicles is proposed. The collision avoidance strategy 
is used in particular for the considered system’s flatness property. The simulation 
results show how effective the controller is being submitted [10, 15]. A group of 
quadcopters wanted to run in a formation [3, 11, 13–16]. A PID controller is used to
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control each Quadcopter, and a sliding mode controller is used to solve the formation 
flying problem, which uses a leader–follower structure. Running the Matlab/Simulink 
environments can be used to assess the performance of the control laws [13, 14]. It 
proposes model predictive control (MPC) based formation strategies for quadrotors 
and explains distributed consensus control. First, the problem of formation control 
is split into horizontal and vertical motions. The follower’s horizontal formation 
control uses distributed consensus control and an MPC-based formation approach. 
In horizontal motion, the leader uses the MPC to track the given waypoints and 
produces the desired formation trajectory for each follower based on the follower’s 
flight information, expected trajectory, and given formation pattern [16]. 

This paper proposed a method centered on the discussion mentioned above, the 
use of Quadcopters for applications such as network establishment and airborne 
mapping has increased dramatically. Hence the need to provide the collective efforts 
of a swarm of Quadcopters flying close nearby and these applications will bring 
challenges to automatic flight control systems (FCS) (which produce the necessary 
maneuvering commands to keep the path and formation in place), trajectory planning 
(which defines the path between the given initial and target positions that is optimized 
and free of obstacles) and obstacle avoidance. This paper aims to guide a swarm 
of Quadcopters from point A to point B while avoiding obstacles and finding an 
optimized path that is both efficient and effective. 

The following is the layout of this paper: Sect. 2 provides a short overview of the 
quadrotor system’s nonlinear mathematical model and flight control systems, as well 
as problem statements. Section 3 describes the path planning and formation flying 
of a swarm of Quadcopters. Section 4 presents the numerical simulation results and 
discussions. Finally, in Sect. 5, the conclusion is reached. 

2 Mathematical Modeling 

Four identical, evenly spaced rotors make up a quadrotor UAV. Changes in rotor 
speed produce the quadrotor’s aerodynamic moments. Each rotor generates F1, F2, 
F3, and F4 thrusts, while φ, θ , and ψ reflect roll, pitch, and yaw angles, respectively. 
The dynamics of quadrotors are modeled in both a body frame and an inertial frame 
[17–20]. The quadrotor model’s linear and angular positions can be characterized 
using translational and rotational coordinates, respectively as shown in Fig. 1. Before 
the Quadcopters dynamic model is derived, the following assumptions are made.

Assumptions

(a) The Quadcopter is a rigid body with symmetrical mass distribution. 
(b) Propellers have a rigid design. 
(c) The origin of the body’s fixed frame and the center of gravity are the same. 
(d) The Earth’s gravitational field (g), the Quadcopter’s mass (m), and the 

Quadcopter’s body inertia matrix (j) are all constants.
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Fig. 1 Schematic of a quadcopter having body-fixed and inertial frame of reference

(e) The thrust factor (kn) and torque factor (km) are constants. 
(f) The inertia of motors and rotors is not taken into account. 

There are six degrees of freedom in a quadcopter: three for position and three 
for orientation. The kinematics of a quadcopter is determined using Newton–Euler 
angles rotation matrix Rb 

i , where X 
I , Y I , Z I represent the inertial frame and Xb, Y b, 

and Zb represent the body-fixed reference frame as in the Fig. 1. 
The quadrotor model can be described in translational and rotational coordinates 

that denote its linear and angular positions respectively 

PNE  D  = (x, y, z) ∈ R3 , OB = (φ, θ, ψ)  ∈ R3 (1) 

where PNE  D=(x, y, z), and OB = (φ, θ, ψ)  gives the linear and angular orientation 
of the quadcopter in the inertial frame respectively. 

The rotation matrix transforms the coordinates from the body frame to the inertial 
frame is Rb 

i and it is known as a Direction Cosine Matrix (DCM) or Rotation Matrix 
(Rb 

i ) [21]: 

⎡ 

⎣ 
Xb 

Y b 

Zb 

⎤ 

⎦ = 

⎡ 

⎣ 
1 0 0  
0 cφ sφ 
0 −sφ cφ 

⎤ 

⎦ 

⎡ 

⎣ 
cθ 0 −sθ 
0 1  0  
sθ 0 cθ 

⎤ 

⎦ 

⎡ 

⎣ 
cψ sψ 0 
−sψ cψ 0 
0 0  1  

⎤ 

⎦ 

⎡ 

⎣ 
X I 

Y I 

Z I 

⎤ 

⎦ (2)
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⎡ 

⎣ 
Xb 

Y b 

Zb 

⎤ 

⎦ = 

⎡ 

⎣ 
cθ cψ cθ sψ −sθ 
−cφsψ + sφsθ cψ cφcψ + sφsθ sψ sφsθ 
sφsψ + cφsθ cψ −sφcψ + cφsθ sψ cφcθ 

⎤ 

⎦ 

⎡ 

⎣ 
X I 

Y I 

Z I 

⎤ 

⎦ (3) 

⎡ 

⎣ 
Xb 

Y b 

Zb 

⎤ 

⎦ = Rb 
I 

⎡ 

⎣ 
X I 

Y I 

Z I 

⎤ 

⎦and 

⎡ 

⎣ 
X I 

Y I 

Z I 

⎤ 

⎦ = RI 
b 

⎡ 

⎣ 
Xb 

Y b 

Zb 

⎤ 

⎦ (4) 

where c(.) and s(.) denote cos(.) and sin(.) respectively. When performing a rotation 
in the opposite direction, we must use the orthogonal property to compute the inverse 
of the matrix, i.e., the transpose of a rotation matrix equals the inverse. 

The equation below shows the relationship between propeller thrust and angular 
velocity: 

fi = knω2 
i [N] (5) 

The thrust and torque produced by the propellers have a relationship. Let T repre-
sent the torque generated by the I propeller. The propeller’s torque is affirmed as 
follows: 

Ti = km Fi [N · m] (6) 

km is a constant in the equation that connects the thrust and torque produced by 
propellers. U1, U2, U3, and U4 are the symbols for the four control inputs and are 
used to characterize control inputs: 

U1 = F1 + F2 + F3 + F4 

U2 = F4 − F2 

U3 = F3 − F1 

U4 = T2 + T4 − T1 − T3 

(7) 

The quadrotor model can be presented in state space form as 

X = f (X, U ) (8) 

where X and U represent state vectors, and control inputs respectively. 
The state vector and control input vector is given as follows in the equation as 

shown in Eqs. (10) and (11) 

x1 = φ, x2 = φ̇, x3 = θ,  x4 = θ̇ ,  x5 = ψ, x6 = ψ̇ 
x7 = z, x8 = ż, x9 = x, x10 = ẋ, x11 = y, x12 = ẏ 

(9) 

X = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]T (10)
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Fig. 2 The flight control 
architecture and functional 
block diagram of the 
controller 

U = [U1 U2 U3 U4]T (11) 

To simplify the control architecture as shown in Fig. 2, we consider attitude 
and altitude dynamics in this paper. Let the quadrotor model’s attitude and altitude 
subsystem be expressed as [5] 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

ẋ1 
ẋ2 
ẋ3 
ẋ4 
ẋ5 
ẋ6 
ẋ7 
ẋ9 
ẋ9 
ẋ10 
ẋ11 
ẋ12 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

x2 
a1x4x6 + b1u21 
x4 
a2x2x6 + b2u22 
x6 
a3x2x4 + b3u23 
x8 
−g + b4(cosx1cosx3)u1 
x10 
b4(cosx5sinx3 + sinx5cosx3sinx1)u1 
x12 
b4(sinx5sinx3 − cosx5cosx3sinx1)u1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(12) 

where the following parameters are used: 

a1 = 
lyy  − lxx  

lxx  
, a2 = 

lzz  − l∞ 

lyy  
, a3 = 

lxx  − lyy  
lzz  

b1 = 
1 

lxx  
, b2 = 

1 

lyy  
and b3 = 

1 

lzz  

In Eq. (12), g stands for gravitational acceleration, m for vehicle mass, and 
[Ixx  , Iyy, Izz] for the moment of inertia. 

Stabilization is critical for fully actuated and underactuated devices like the Quad-
copter in Fig. 2, which is inherently unstable because of its six degrees of freedom and 
four actuators. A control system for a quadcopter is modeled using SMC controllers 
having four sliding surfaces to regulate attitude (pitch, roll, and yaw) and altitude (Z
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height). The Quadcopter’s location (X and Y axes) is controlled by an inner feedback 
loop, and the output of these two controllers is fed into the pitch and roll controllers 
of the outer control loop as shown in Fig. 2. 

The roll moment control variable has the equation as 

U2 = 
1 

b1

[
k1sgn(s) + k2s − a1 θ̇ ψ̇ + φ̈d + c1

(
φ̇d − φ̇

)]
(13) 

The pitch moment control variable U3 has the equation as 

U3 = 
1 

b2

[
k3sgn(s) + k4s − a2 φ̇ ψ̇ + θ̈d + c2

(
θ̇d − θ̇

)]
(14) 

The yaw moment control variable U4 has the equation as 

U4 = 
1 

b3

[
k5sgn(s) + k6s − a3 φ̇ ̇θ + ψ̈d + c3

(
ψ̇d − ψ̇

)]
(15) 

The altitude having thrust force regulation variable U1 has the equation as 

U1 = m 

cosφcosθ

[
k7sgn(s) + k8s + g + z̈d + c4(zd − ż)

]
(16) 

The x and y linear accelerations of a quadcopter can be condensed into 

Ux = m 
U1

[
k9sgn(s) + k10s + ẍd + c5( ̇xd − ẋ)

]
Uy = m 

U1

[
k11sgn(s) + k12s + ÿd + c6( ̇yd − ẏ)

] (17) 

Now Eqs. (16) and (17) are put in matrix notation:

[
ẍ 
ÿ

]
= 

u1 
m

[
sinϕ cosϕ 
−cosϕ sinϕ

][
∅ 
θ

]
(18) 

The desired pitch and roll:

[
∅d 

θd

]
= 

u1 
m

[−sinϕ −cosϕ 
cosϕ −sinϕ

]−1 

(19)
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3 Flight Controller Design 

The Flight Control System (FCS) referred to as Fig. 2 is critical in controlling 
the movement of a Quadcopter from one stage to another because it provides the 
necessary maneuvering commands during the journey of the Quadcopter. 

This takes the desired location of the Quadcopter as an input and converts it into 
the desired U1, U2, U3, and U4 values, which influence the rotation/rpm of the four 
motors. To perform the above-mentioned task, FCS needs a critical element known 
as a controller [17, 18, 22–24]. 

3.1 Path Planning 

Path planning is computing a continuous path that will take the Quadcopter from 
its starting point to its final destination. As a result, a suitable path is described as a 
set of actions that guide the UAV from its initial configuration (state) through some 
intermediate configurations to its final destination configuration. The route planning 
algorithm can decide the next state and the action to be taken in the current state. 
From the set of all possible states that can be visited from the current state, the 
algorithm selects the next most suitable state. There are two types of route planning 
algorithms discussed [7, 8]: 

• The aim is Point-to-point problems aim to design a waypoint path through an 
obstacle field from one point to another. 

• The goal is to design a way-point path that allows the UAV to cover the entire 
area in a given field. 

Types of Path Planning algorithms are Potential Field, Floyd–Warshall, Genetic 
Algorithm, Dynamic Programming, Approximate RL (Reinforcement Learning), 
MILP (Mixed Integer Linear Programming), A* (A-STAR) algorithm, A* (A-STAR) 
algorithm is used in this paper to design a path that avoids obstacles. 

3.2 A-Star Algorithm 

A-Star Algorithm A*(A-star) is a heuristic function to estimate the path cost from 
the current vertex to the target vertex, focusing on the target, which can help to find 
the path much sooner. It utilizes the best-first search to discover the least expensive 
route from the original node to the target node. It is easy to understand from Fig. 3 
that Quadcopter (Rectangle) has to traverse the terrain and reach the target (Oval). 
A* (A-star) algorithm uses the distance between the current location and the target 
and moves to the square that has the smallest distance [9].
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Fig. 3 Representation of 
initial and target positions in 
a 4  × 4 map  

Total cost function : f (n) = g(n) + h(n) 

where: h(n) = the distance(cost) to that node and g(n) = the distance(cost) to get 
from that node to the target node. 

And, the optimized path between the initial and target position as given in Fig. 4a 
will start like this. 

The start position is (1, 1). The successive node (only one, in this case, is (1, 2). 
There is no ambiguity until the Quadcopter reaches nodes (2, 4). There are two nodes 
(3, 4) and (3, 3). The successor node can be determined by evaluating the cost to the 
target from both nodes. f (n) for (3,3) is the smallest of the two, hence the successor 
node is f (n). Quadcopter runs into a dead end it has to take alternate path to reach 
the target position. From Fig. 5 it has learnt so far that Node (2, 1) will be chosen as 
the successor node instead of Node (1, 2). 

The Quadcopter will continue to traverse the route until it ends up at the block 
at Node (4, 1). And path traversal in the presence of a dead end and this is done by 
maintaining two lists open and closed. The list OPEN stores all successive paths that 
are yet to be explored The list CLOSED stores all paths that have been explored. 

From Fig. 6, the start node has 2 successors (2, 1) and (1, 2). From the initial 
calculation (2, 1) is chosen and the robot travels along that node, how, ever once it

Fig. 4 Determining the 
optimized path between 
initial and target positions 

Fig. 5 Determining 
alternate path in the presence 
of dead end 
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Fig. 6 Path traversal in the 
presence of dead end 

Fig. 7 Formation of 
quadcopters in a 
leader–follower scheme 

quadcopter leader 

reaches the dead end, it discards the node (2, 1) and takes the second successor (1, 
2), and explores that route. 

3.3 Formation Flying 

Formation Flying comprises two or more Quadcopters flying closed together in an 
organized manner. One of the Quadcopters is designated as the leader, and the others 
are called followers as shown in Fig. 7. 

In the leader–follower formation configuration, the leader quadcopter is controlled 
to follow an optimized path, while the followers are controlled to synchronize their 
motion with the leader even in the presence of disturbances or obstacles [15]. 

4 Simulation Results 

Simulink is a multi-domain simulation and Model-Based Concept block diagram 
environment. It helps with embedded device architecture, simulation, automated code 
creation, and continuous testing and verification. Simulink is a tool for modeling and 
simulating dynamic systems that includes a graphical editor, customizable block
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Table 1 Simulation parameter 

Symbol Value Description 

m 0.75 kg The total mass of the quadcopter 

L 0.25 m Distance from centre of quadcopter to the motor 

I 0.019688 × 10−3 Quadcopter moment of inertia around X-axes 

Iyy 0.019688 × 10−3 Quadcopter moment of inertia around Y axes 

Izz 0.039380 × 10−2 Quadcopter moment of inertia around Z axes 

b 7.66 × 10−5 Thrust coefficient 

d 5.63 × 10−6 Drag coefficient 

libraries, and solvers. Model-based design is a method for developing complex 
structures, such as control systems, signal processing systems, and communications 
systems, quickly and affordably. 

In Simulink, design a Quadcopter with its FCS. Some physical parameters are 
needed to create a Simulink model of the quadcopter [25]. In the given Table 1, those 
parameters are mentioned. 

A map is created with predefined obstacles, as well as the starting and ending posi-
tions. The optimized path from initial to goal is created using the A* algorithm, which 
avoids obstacles. The size of the obstacle must be much larger than the Quadcopters’ 
size when using the A* algorithm to generate an optimal course. 

Scenario 1: 

The Fig. 8 depicts the A*-optimized route for the specified obstacle pattern, complete 
with initial and target location fixes. The “*” (stars) denotes a group of obstacles, 
and the line denotes the A* algorithm’s optimized course. 

Scenario 2: 

The terrain map obtained from the obstacles pattern defined in Fig. 8 is depicted in 
Fig. 9.

Fig. 8 Path generated by A* algorithm for given obstacle pattern 
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Fig. 9 Terrain map representing initial and target position fixes 

Fig. 10 Quadcopter flying through terrain from initial position to target 

Scenario 3: 

The terrain map obtained from the obstacles pattern is shown in Fig. 8 and the 
optimized path that the Quadcopter takes through the terrain from its initial location 
to the target position, is shown in Fig. 10. 

Scenario 4: 

The terrain map obtained from the obstacles pattern and the optimized route that a 
swarm of Quadcopters takes through the terrain from their initial position to their 
target position in a formation as defined in Fig. 8 are depicted in Fig. 11. 

Fig. 11 Formation flying through terrain from initial position to target
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Fig. 12 Representing a swarm of quadcopters in (vee) formation 

Scenario 5: 

Figure 12 represents the swarm of Quadcopters moving from the initial position to 
the target position in a formation as specified in Fig. 9. 

A much more complex trajectory is achieved by planning the obstacle pattern 
with narrow spaces in between obstacles. 

5 Conclusion 

The method for achieving optimal path in different scenarios using the A* algorithm 
is given along with a comprehensive explanation of Quadcopter dynamics, math-
ematical model of Quadcopter, and flight control system architecture. Following a 
thorough examination, it was discovered that the stated swarm of Quadcopters (3 
vee formation) is intact while traveling through the created road, which is free of 
obstacles. The path following the algorithm described above is used in a variety 
of 3D terrain models. The detailed simulation results show that a swarm of Quad-
copters successfully avoided obstacles when in formation. The entire work is based 
on the assumption that the obstacles are huge compared to the Quadcopter, limiting 
the Quadcopter’s freedom of motion in one direction. The scope of this work can 
be increased in two ways by taking into account the fact that obstacles will change 
(i.e., providing position and velocity profile to the obstacles), and to obtain 3D route 
planning, the obstacles’ dimensions can be scaled down to the Quadcopter level.
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Coverage Estimation Using Probabilistic 
Line-of-Sight Model for Unmanned 
Aerial Vehicle Communication 

Ankita K. Patel and Radhika D. Joshi 

Abstract Aerial platforms have recently gained significant popularity for the rapid 
development of relief networks in emergencies. These platforms are capable to 
deliver essential wireless communication for various applications such as public 
safety, natural disasters, or adding coverage to existing terrestrial networks. A reli-
able prediction of coverage resulting from an aerial base station is important to 
provide essential air-to-ground wireless services for disaster-affected areas. Line-of-
sight (LoS) is an essential component of air-to-ground wireless channels, particularly 
useful for radio planning and coverage prediction. The performance of an air-to-
ground link can be evaluated on three key parameters: elevation angle, communica-
tion range, and altitude between the aerial base station and ground receiver. In this 
paper, we proposed an elevation-dependent line-of-sight model to estimate the area 
coverage of an aerial base station. The proposed model is derived from statistical 
parameters of building distribution, defined by the International Telecommunica-
tion Union for four urban environments: urban, suburban, dense urban, and high-rise 
urban. Coverage of aerial base station is estimated from building blockage probability 
which is formulated as a weighted function of the developed LoS model. Estimated 
coverage is simulated for elevation angle and communication range between UAV 
and ground receiver for low altitudes up to 500 m. We restricted UAV altitude up to 
500 m due to the limitation on flying altitude by regulating authorities. Our results 
contribute to identifying the optimum elevation angle and communication range 
between UAV and ground receiver for line-of-sight communication. Based on the 
results, we deduced that the optimum elevation angle to attain 100% coverage is 
between 60 and 80° for all urban environments. We observed a significant reduction 
in the communication range with declination in UAV altitude, to attain the same 
amount of coverage for urban, dense urban, and high-rise urban environments. For
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suburban, altitude is not playing a significant role in the range of communication to 
achieve area coverage. 

Keywords Aerial base station · Building blockage probability · Communication 
range · Coverage estimation · Line-of-sight probability · UAV 

1 Introduction 

In recent years Unmanned Aerial vehicles (UAV) discover many applications in 
surveillance and rescue, military, delivery of goods, telecommunication, precision 
farming, wildlife monitoring, and many more [1]. UAV can be used as a relay or 
an aerial base station (ABS) to support in realisation a wireless recovery network 
for a natural disaster where the existing network is destroyed. Homeland Secu-
rity Bureau in the USA deployed this concept as a communication architecture for 
system recovery [2]. The ABSOLUTE [3] project is another example of emergency 
supplementary network deployment funded by the European Commission. 

In an emergency condition, ABS can be deployed quickly, with the minimum 
manpower requirement. The important requirement for these applications is to 
provide adequate coverage over a known radius for emergency response. The most 
unique feature that distinguishes UAV communication from the conventional system 
is the likelihood of establishing a line-of-sight (LoS) link for air-to-ground commu-
nication. The availability of a line of sight has a large effect on wireless channel 
performance. It is particularly useful for radio network planning and area coverage. 
The line-of-sight probability is mainly dependent on UAV altitude, elevation angle, 
environment (urban or rural), and communication range with the ground user. 

For an emergency, the number of deployed ABS could be limited. This fact 
mandates the full exploitation of the deployed ABS by estimating the performance 
of the radio channel. This leads us to develop an analytical model to estimate the 
area coverage for ABS that can be useful for low-altitude UAV communication. We 
developed an elevation-dependent low altitude probabilistic LoS model based on 
statistical parameters of urban scenarios defined by the International Telecommu-
nication Union (ITU). This model will help in RF planning for an aerial network 
without having any site-specific information. In a disaster condition where infras-
tructure is destroyed, it is unlikely to avail city map. In this case, the proposed model 
can be used for RF planning of a city based on statistical parameters of the urban 
environment. The estimation of the area coverage for ABS was obtained from the 
blocking probability of LoS ray for various urban conditions. A simple algorithm is 
used to obtain blocking probability from the proposed LoS model. Performance of 
estimated area coverage is analyzed for elevation angle, UAV altitude, and coverage 
range. 

The structure of the paper is as follows. In Sect. 2 we reviewed the techniques 
proposed in the literature for channel modelling and performance evaluation of links. 
Section 3 discusses the propagation modelling approach of line-of-sight probability
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for urban environments. Section 4 is dedicated to area coverage estimation from the 
developed model. Simulation results of the area coverage are described in Sect. 5. 
Section 6 is for concluding remarks. 

2 Related Work 

For a UAV communication system, it is important to understand the communication 
channel thoroughly and to evaluate the QoS parameters for the same. This motivates 
us to develop a generalized channel model and estimate area coverage from the devel-
oped model. In literature, various studies are available either on channel modelling 
or evaluating the performance of the network. In this study, we have evaluated the 
performance of the channel based on the developed model. 

There is a need for a generalized model which does not rely on sight-specific 
information to evaluate the performance of the channel. In literature, there is a lack 
of a generalized RF propagation model which can easily link with RF propaga-
tion conditions. Many studies are available on measurement-based channel models 
given in [4–6], these are site-specific and do not give a generalized approach for 
channel modelling. Cai et al. [4] modelled a suburban city of Madrid using USRP, 
whereas Khawaza et al. [5] performed ultrawideband (UWB) measurement using 
a P410 UWB kit to model the channel. Suburban and urban measurements for 
three cities are performed by Matolak [6] to model the channel. Geometry-based 
modelling approaches for line-of-sight modelling are available in [7, 8]. Feng et al. 
[7] proposed a theoretical modelling approach for the dense urban city. Statistical 
parameters like building height, building width, street width, street angle distribu-
tion, and building coverage are used for modelling. This approach is very specific to 
geometry considered by the author, not a generalized approach for city modelling. 
Al Hourani [8] developed the line-of-sight analytical model based on the geographic 
model of Melbourne city. A path loss model for line-of-sight, non-line of sight, 
and obstructed line of sight were developed by Feng et al. [9]. This model cannot 
be generalized as it was based on a single city. Holis and Pechac [10] deduced a 
generic statistical model for air-to-ground path loss, but this model was obtained for 
high-altitude platforms. Another generic statistical model approach is given by Al 
Hourani et al. [11], for low altitude platform above 500 m of the ground. In our study, 
we considered an altitude below 500 m due to limitations in the flying altitude of 
UAVs as per guidelines provided by the regulatory authority of India. The proposed 
work presents a generalized line-of-sight modelling approach for four different urban 
environments to evaluate the area coverage of aerial base stations. 

Previous work has attempted to study the performance of coverage such as Zhao 
et al. [12] considered the relative distance between multiple UAVs to estimate area 
coverage for UAV mounted base station for sensor networks. Mozaffari et al. [13] 
studied the performance of air-to-ground channels based on a single UAV’s altitude 
and coverage radius. On-demand user-based coverage is implemented by Hatiao 
et al. [14], where ABS can change its position as per the user’s movement while
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maintaining connectivity between UAVs. A 3D layout of ABS is considered by 
Kalantari et al. [15] to cover a maximum number of users with minimal transmission 
power. Al Hourani [16], estimated ABS coverage and information rate for air-to-
ground links based on the altitude of the UAV. Maurila Matracia et al. [17] present 
a new stochastic framework for urban and rural areas. 

The main contribution of our work is the modelling of line-of-sight probability and 
estimation of area coverage using ITU-R parameters. This allows rapid estimation 
of the link performance without relying on site-specific information. This study will 
help to optimize the key parameters for an aerial base station such as elevation angle, 
altitude, and communication range. 

3 System Model 

Aerial platforms deployed at low altitudes are quasi-stationary platforms such as 
quadcopters, balloons, and helicopters. These are easier to deploy and can go in line 
with the cellular concept, as low altitude combines superior coverage with a confined 
cell radius. These platforms are dependent on the end user’s application. 

3.1 Statistical Propagation Model 

Developing an RF model requires an accurate study of the conditions and constraints 
of the environment. The layout and characteristics of the buildings are some of the 
most important conditions in an urban environment. The international telecommu-
nication union (ITU) [18] has suggested statistical parameters αs, βs and γs, that 
describe the general statistics of a certain area. These parameters are explained below: 

• αs: the ratio of building area covered in a land to the total area of land 
(dimensionless) 

• βs: mean of the number of buildings per unit area in buildings/km2 

• γs: a variable that describes the building height distribution as per Rayleigh 
probability distribution: 

P(h) = 
h 

γs 
e
− h2 

γ 2 s (1) 

where h is the height of the building in meters. By following the steps given in 
[18] Probability of Line of Sight can be obtained is 

P(LoS) =
πm 

n=0 

⎡ 

⎣1 − exp 

⎧ 
⎨ 

⎩− 
(ht − (n+ 1 

2 )(ht−hr) 
m+1 

2γ 2 s 

⎫ 
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Fig. 1 The geometry of line-of-sight scenario for air to ground link 

where m = f loor(R
√

αsβs − 1) and R is the distance between transmitter and 
receiver as depicted in Fig. 1; ht and hr are transmitter and receiver heights, 
respectively. Receiver height hr is much lower as compared to UAV altitude ht 
and building heights; then the ground distance R can be written as ht/tan(θ); where 
θ is the elevation angle as shown in Fig. 1. The resulting plot of the P(LoS) series 
will be smooth for the large values of ht and can be defined as a continuous 
function of θ. Four different environments; suburban, urban, dense urban, and 
high-rise urban are selected for simulation of P(LoS). 

For simulation, buildings are randomly generated using statistical parameters, in 
a 1  × 1 km area with a resolution of 1 m. The statistical parameters; αs is (0.1, 0.3, 
0.5, 0.5), βs is (750, 500, 300, 300) and γs is (8, 15, 20, 50) for suburban, urban, 
dense urban and high-rise urban environment, respectively. The entire area is divided 
into small grids. The calculations were made for azimuthal angles between 0 and 
360° of altitude up to 500 m. The LoS probability for a specific elevation angle is 
calculated as a median of data obtained from an azimuthal angle. The simulation was 
performed for an entire range of elevation angles from 0 to 89° for four simulation 
environments. 

3.2 Modeling Line of Sight Probability 

The simulation results show the LoS probability between UAV and ground receiver. 
The elevation angle between 60 and 90° is more realistic for UAV applications for 
all the environments to ensure 100% line-of-sight communication. We observed that 
trend shown in Fig. 2 can be approximated as a simple S curve equation. The LoS 
probability is modelled as a simple S curve equation of the following form:

PLoS = 1 

a3 + e−(−a1+a2(θ −a4) 
(3)
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Fig. 2 Calculated line-of-sight probability, with their related curve fitting for suburban, urban, 
dense urban and high-rise urban environments

Table 1 Parameters of LoS probability calculation 

Environment a1 a2 a3 a4 

Suburban 2.1778 0.3557 1 0 

Urban 3.0734 0.1565 0.9989 0.158 

Dense urban 3.4912 0.1304 1.007 0.3344 

High-rise urban (0–45°) 4.2234 0.0815 1.5747 0.114 

High-rise urban (45–90°) 4.7313 0.1209 0.9801 13.144 

where a1, a2, a3, and a4 the empirical parameters given in Table 1 are obtained from the 
least-square curve fitting method. These results are compared with the model given 
in [19], where a shadowing model of roadside buildings is explored. Link blockage 
probability is defined as a function of azimuthal and elevation angle. Several test 
cases use from both models and they give similar results. Figure 2 shows that our 
model follows the calculated LoS modelling for all four environments. For high-
rise building distribution, parameters are calculated separately for angles below and 
above 45°. 

4 Coverage Estimation 

An accurate coverage estimation can be achieved by determining an optical line of 
sight in an area where a building and terrain database is available. Building blockage 
probability is the estimate to obtain an optical line of sight between the UAV trans-
mitter (Tx) and receiver (Rx). Building blockage probability states that each building 
lying between UAV and receiver is below the line-of-sight ray as shown in Fig. 3. 
Coverage will depend on the distance between transmitter and receiver and buildings 
which do not obstruct LoS ray. Coverage can be estimated from building blockage 
probability using an algorithm as described in [18], which is based on parameters αs
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Tx 

Rx 

B1 
B2 

B3 

Distance between UAV and Receive (R) 

LoS ray 

Fig. 3 Building geometry for LoS ray between transmitter and receiver 

and βs. The first step is to calculate the number of buildings between the UAV and 
ground receiver with the help of parameters αs, βs, and LoS probability defined in 
Sect. 3. 

4.1 Steps to Estimate Coverage and Building Blockage 
Probability 

Step 1: Calculate the number of buildings between UAV and receiver. 

To obtain the number of buildings between transmitter and receiver, a ray will be 
pass-through 

√
βs buildings, arranged in a rectangular grid. Only a fraction of αs 

land will be covered. The expected number of building pass through per kilometre 
are: 

b = √ 
αsβs (4) 

If R is the distance between transmitter and receiver then the number of the building 
between UAV and receiver are 

Bur = R
√ 

αsβs (5) 

Step 2: Obtain the distance of each building from a transmitter. 

All the buildings are evenly spaced between transmitter and receiver. The distance 
between two buildings is: 

db = R/Bur (6)
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The distance of each building from the transmitter is: 

dx = (x + 1)db (7) 

where x is the count of buildings between Tx and Rx and x is given by {0, 1- -
(Bur − 1)}. 

Step 3: Obtain building blockage probability which describes that LoS ray will be 
present at xth building is given by 

Pb = 
Bur−1π

0 

PLoSdx (8) 

Step 4: Estimate area coverage from building blockage probability: 

C = 
Pb 
Bur 

2 (9) 

Area coverage for a given scenario is estimated from an above-mentioned algo-
rithm, LoS probability given in Eq. 3 and statistical parameters αs, βs. Estimated 
coverage is mainly dependent on three parameters UAV altitude, elevation angle, 
and communication range. Simulation is performed to evaluate the effect of these 
three parameters on estimated coverage. 

5 Simulation and Results 

Simulation is performed for four environments: suburban, urban, dense urban and 
high-rise urban. For a simulation area of 1 × 1 km is considered with randomly 
generated buildings as per statistical parameters defined in [18]. Table 2 shows the 
parameters considered for simulation. 

The results presented in Figs. 4 and 5, were obtained for the estimation of the area 
coverage for elevation angle and communication range for four environments. From 
Fig. 4, it is observed that area coverage is linearly increasing with elevation angle and

Table 2 Simulation 
parameters 

Parameters Value 

Area 1 × 1 km  

UAV altitude 100–500 m 

Elevation angle 0–90° 

Communication range 100 m–1 km 

Distance between buildings 20 m 
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falls after attaining the maximum value. This trend is common in all environments. 
Based on experimental results, we identified the optimum elevation angle to achieve 
maximum coverage in the range of 60–80° for altitudes 200, 300, 400 and 500 m for 
all environments. For an altitude of 100 m, the optimum elevation angle lies between 
35 and 65°. The high elevation angle is recorded for high altitude to attain the same 
amount of area coverage. 

Figure 5 shows the estimation of area coverage with a communication range 
for different altitudes. The maximum altitude considered for the suburban area was 
300 m, above this, there is no significant change was observed. This is due to less

(a) (b) 

(d)(c) 

Fig. 4 Wireless communication coverage estimation with elevation angle between UAV and ground 
receiver: a suburban, b urban, c dense urban, and d high-rise urban
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(a) (b) 

(c) (d) 

Fig. 5 Wireless communication coverage estimation with communication range: a suburban, b 
urban, c dense urban, and d high-rise urban

infrastructure density in the area. The higher the building density lower is the commu-
nication range. It is observed that maximum communication range can be achieved at 
higher altitudes. To cover at least 50% of the area, the distance between the UAV and 
ground receiver should be 500 m. For the suburban scenario, altitude is not having 
a greater impact on the communication range rather for other environments, altitude 
plays a significant role. For suburban areas, altitude does not play a significant role 
while calculating communication range for a certain value of area coverage. Our 
results help to evaluate the performance of the area coverage for an urban scenario
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to elevation angle, altitude, and communication range. This can be utilized for the 
RF planning of disaster-affected areas without prior knowledge of the site. 

6 Conclusion 

This paper developed a generalized low altitude elevation-dependent LoS propa-
gation model for four different urban environments; urban, suburban, dense urban, 
and high-rise urban. This model facilitates RF planning of airborne base stations to 
fulfil connectivity for the disaster-affected area. The proposed technique is based on 
simple statistical urban parameters, not dependent on the 3D model of the site. For 
the disaster-affected areas, the proposed model can be used for RF planning of a city, 
based on statistical parameters without any prior knowledge of the city map. This 
model showed that line-of-sight between UAV and ground receiver can be expressed 
as a function of elevation angle. An algorithm is defined to estimate area coverage 
from the developed model, as a function of building blockage probability. Perfor-
mance of estimated coverage was evaluated for three important parameters of UAV 
propagation: elevation angle, communication range, and UAV altitude. A simulation 
was performed for a low altitude between 100 and 500 m. Results show the optimum 
elevation angle lies between the range of 60–80° for Low altitude LoS propagation. 
UAV altitude plays a significant role to evaluate an optimum communication range 
for more than 50% coverage except for the Suburban environment. 

Future work will include the analysis of air-to-ground UAV channels for large-
scale and small-scale fading effects at low altitudes and estimate performance 
parameters for the same. 
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Blockchain Technology Based Security 
for UAV IoT Environment 

Renu Mishra and Sandeep Saxena 

Abstract Recent emerging technologies are being utilized for the quench of connec-
tivity in real time scenarios. A push is coming to make the information available 
to humans from the real-time environmental data collected through small sensing 
devices. Wireless ad-hoc network is a base architecture for Internet of Things (IoT), 
Unmanned Arial Vehicle (UAV) and drones etc. In this series, IoDT (Internet of 
Drone Things) came as the future of drones backend via the Internet of Things, 
smart vision, cloud computing, enhanced communication, big data, and advanced 
security approaches. Rapid growth in sensing devices connected to the Internet with 
intelligence and capabilities also opens the door for attackers because more devices 
are connected means more chances of security vulnerabilities. Since data authenti-
cation is handled only by the central station, which may lead to the chances of device 
spoofing and false authentication brings less reliability after all. Blockchain (BC) 
technology is introduced to address such security concerns by eliminating the role of 
central authority. Blockchain Technology gives decentralized and non-tamperable 
solutions for the most demanding security service i.e. Authentication. This paper 
starts with unique characteristics and security challenges in such IOT environment 
and further covers the authentication process by blockchain with its potential bene-
fits. The multilayer ecosystem is illustrated to fulfill the requirement of the UAV IoT 
environment, where multiple devices are equally working in a cooperative manner 
to perform an authorized action. The paper presented a complete study about the 
integration of blockchain in IoT enabled UAV. 
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1 Introduction 

These days, we understand the wide useful region caught by IoT pervasively 
like Unmanned Arial Vehicle (UAV), natural engineering, surveillance, modern 
observing, agribusiness area, seismic location and development industry. The capsule 
of IoT Environment and BC has been gaining significant attention. Various more 
opportunities may lie in future applications if combined with emerging technologies 
[1]. Recently more and more new applications are being popular in the commer-
cial sectors that are getting benefits from basic UAV-IoT but the overall prosperity 
depends on how it is integrated with the Internet and other advanced technologies 
[2]. The term “Internet of Drones” (IoD) refers to the networking and collaboration 
of intelligent Air vehicles and drones through the production, transfer, and analysis 
of data while enhancing traffic congestion, travel time, and security. This article is 
a thorough study of different security issues in UAV systems and summarizes the 
various characteristics of blockchain technology and its utility in UAV systems. The 
objective of this work is to give a broader outlook to the readers, on following points.

• How certain blockchain features can help to overcome the security breaches of 
UAV systems

• What will be the potential impact of combining blockchain and UAV technology 
on other emerging technologies

• How different issues can be addressed in the development of derived blockchain-
based UAV systems

• How can someone explore potential research directions that can be beneficial for 
the development of blockchain-based UAV system. 

In this article, we sum up that these Internet of Things (IoT) security issues can be 
reduced with the aid of potent distributed technology, like blockchain, to empower 
the UAVs and make them safer, more accurate, and simpler to control. The paper can 
demonstrate how the use of UAV and blockchain technology can advance a variety 
of industries. We also made an effort to suggest potential research avenues that could 
aid in the creation of a blockchain-based UAV system. 

2 Security Issues and Goals in Internet of Drones (IoD) 
Environment 

Unlike traditional networks, here networks related functions are done by the nodes 
themselves with equal functional responsibility[3]. The security mechanisms for 
any traditional networks, cannot be fully applied in IoT. The absence of central-
ized authority in ad hoc networks makes routing and key management activities 
very crucial because routing is cooperation based. Need has raised to plan a secure 
solution to facilitate the application user, who is having some sensitive informa-
tion and hesitate to take advantage of IoT [4]. Nodes connected to a common link
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should be able to identify the other node’s identity and credentials. These identities 
and credentials must be mutually authenticated and also shielded to avoid future 
questions. The identification also leads to the privacy issue, so a good security solu-
tion must cover confidentiality, availability, and integrity of information carried in 
packets during routing because the information may be forwarded and misused by 
malicious node [5]. During routing an attacker may disturb the control information 
to make other entities benefits in unplanned ways [6] To design an Integrated secure 
routing solution became essential for recent networking paradigms like Content-
based Networking and Internet-of-Things (IoT) [7]. To welcome the advent of new 
ad-hoc networking paradigms, work can be started as an opportunity to propose a 
framework towards secure routing for possible attacks during the routing process. 
At the top level, Quality-of-Service will also be facilitated simultaneously by intro-
ducing security services [8]. Initially, UAV were developed for the military for a 
risky mission to save the life of the pilots and sometimes for providing essential 
supplies to soldiers in batter fields. Recently the researcher’s focus has been shifted 
towards Internet of Drones (IoD)for non-military and commercial domains [2] due 
to efficient hardware which has became very small and powerful and involvement 
of computer software support to provide mobility and autonomous operation [3]. 
Unmanned Arial Vehicle (UAV) consists of Mobile flight nodes, which are more 
vulnerable to security threats with open broadcast it may require individual security 
solutions [9]. Some key security requirements in IoD networking include: 

Availability: It ensures the accessibility of data and services to authorized parties 
at appropriate times. 

Confidentiality: It safeguards the information not to be revealed to an unauthorized 
party, especially in strategic and military applications. Only the intended parties can 
use confidential information. 

Data integrity: It gives the assurance of the accuracy and consistency of a message 
that is going toward the destination. Even in the presence of channel noise, data has 
not tampered over its entire communication cycle. 

Authentication: It is about proving or showing something to be genuine. In the 
process of authentication system recognizes the identity of the peer node. Without 
associating an incoming request with a set of identifying credentials, an attacker 
could enter as a better node. 

Non-repudiation: In terms of security, it is a way to get assurance that the parties 
cannot later deny having sent and received the message. It can help to detect and 
isolates any compromised and undesired function. 

We might make out the details of the IoT security risks related to the UAV 
connection by paying serious attention. Blockchain technology can serve as the 
solution of authentication, authorization, data integrity and protection, confiden-
tiality, access control, and cyber-attack. Additionally, it becomes crucial to create a 
suitable consensus mechanism for IoD and integrate performance enhancing strate-
gies like caching into the ecosystem. This article concludes that these Io-UAV secu-
rity concerns can be reduced with the aid of potent distributed technology, like as 
blockchain, to empower the UAVs and make them safer, more precise, and simpler
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to handle. The article can demonstrate how the use of UAV and blockchain technolo-
gies can advance a variety of sectors. Additionally, we attempted to offer relevant 
research avenues that could aid in the creation of a blockchain-based UAV system. 

3 Challenges and Opportunities Through Blockchain 
in IoDs 

Despite its many benefits, FANET (Flying Adhoc Network) encountered several 
problems that are very typical. 

(a) Autonomous- In FANET we recall the need for self-organized security policies 
in the absence of centralized administration. 

(b) Changing topology- Mobile nodes are roaming very frequently and can be 
connected arbitrarily which pushes the security policy of routing protocols in 
the danger. 

(c) Route discovery-Since node movement has been very often, therefore dynamic 
update mechanism is required to assist automatic best route selection. 

(d) Bandwidth optimization-Wireless Routing protocol has to maintain the topolog-
ical control information which requires extra overhead over bandwidth. Band-
width should not be wasted and protocols should be bandwidth concentric too 
[12]. 

(e) Constraint resources—Node lives on battery power, and also have the scarce 
storage capacity so designing of complex security algorithms is restricted. 

(f) Openness-Mobility of the nodes in FANET brings higher threats by allowing 
the access of network to both genuine users and attackers. 

Blockchain is a specific kind of database where data is kept in blocks that are 
connected together. To achieve security and trust, each new piece of data is kept as 
a separate block and chained onto the previous block in a distributed way, which 
suggests that the information entered is irreversible. Blockchains cannot be changed 
unless a majority has agreed to do so since each block has its own unique mathemat-
ical hash. IOT, like any other communication technology, may have unique flaws or 
vulnerabilities that open doors for attackers [10]. A system becomes vulnerable when 
there is a flaw in the hardware or software, which makes it susceptible to exploita-
tion. The attack might take the form of a channel weakness, which would allow for 
message manipulation and the introduction of bogus information [11]. IOTs require 
many degrees of security techniques because the environment can be accessed by 
both authorized users and adversaries. The only way to authenticate during data 
exchange is through the central authority. The security could be compromised via 
information tampering, device spoofing, and fake authentication when sharing data. 
Blockchain (BC) technology is presented as a component of IOT with the aim of 
eliminating a central server to address such security and privacy problems. Over the 
advantages of blockchain, we have to design an blockchain architectures to set the 
trade-off between power consumption, performance, and security.
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4 Overview of the Previous Blockchain-Based Solutions 
on UAV IoT Environment 

The majority of studies have attempted to use multilevel and multi-domain solu-
tions to address security issues relating to data sharing in IoD networks, but 
none of these approaches are suitable due to intensive computations and limited 
battery capacity. The majority of the security issues with IoD can be resolved 
using Blockchain’s appealing properties, such as decentralization, immutability, and 
tamperproof storage. Over the years, there has been a lot of research and development 
towards putting such a solution into practice. 

Blockchain has been introduced as an alternate technique by a number of 
academics to maintain security and privacy in the IoD [12–14]. For the purpose of 
serving several UAV networks, a literature on the use of blockchain is presented where 
the authors classified various methodologies according to the UAV network appli-
cations [15, 16].Without the need for centralized governance, Blockchain provides 
decentralized architecture with a distributed, shared, and immutable ledger, ensuring 
data security [17, 18]. Numerous efforts have been made in various dimensions to 
secure IoDs, but none of them can be directly applied to IoDs [19, 20]. With off-chain 
data storage to fit into the resource-constrained IoD landscape, derived blockchain 
architecture [21, 22] entered the picture to address the issues mentioned above. To 
separate the data into off-chain and on-chain data and preserve just the on-chain in 
the blockchain, decoupling of data is suggested in [23, 26]. The privacy preserva-
tion and protection difficulties and challenges, in particular authentication, are part 
of the IoD security. The use of a digital signature as an authentication method can 
help to prevent unauthorized changes to fields that can be changed. Digital signa-
tures from all to the intermediate node are appended and verified by the next hope 
to check the misbehavior. Traditional methods for creating digital signature are very 
complex, and cannot be implemented in IoD due to the high computation overhead. 
Vehicle authentication based on Blockchain technologies has been presented with 
smart contracts to identify malicious vehicles. Before being added to the group more 
than 51% of the existed nodes accept the node’s integration then only a new node can 
join. A distributed PKI system is utilized for trusted key distribution. For authentica-
tion, various Blockchain based Authentication and Access control mechanisms are 
also being proposed to maintain the privacy of the participating entities which also 
needs improvement as lightweight algorithm. 

5 Ecosystem of Blockchain Based Secured UAV 

Standard blockchain based proposals were wrapped in huge interactions that are again 
not suitable for such resource constraint environment. The conventional blockchain 
architectures suffers from below specific issues related to IoD.
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• Mining processes for ensuring proof of work are very heavy and battery exhaustive 
even dedicated firms also.

• Consistent state in block chain is also comes after synchronization, which requires 
a huge communications overhead.

• Size of blockchain tends to grow as new blocks are added into so traversing 
transactions in the chain requires huge time.

• High mobility of IoD systems the network typologies tend to change. 

Already a lot of work has been done in a different dimension for making the IoD 
secured, but none can be applied directly for IoDs. Blockchain-based access control 
for IoD must be developed in order to maintain a balance between transparency and 
privacy. To cover above challenges, we must understand the working of different 
phases in blockchain to fulfill the need of IoD as derived blockchain architecture 
with the help of below diagram 

IoD has very much constraint environment which creates hurdles in adoption 
of blockchain as an unconventional security mechanism. Above diagram brings a 
lightweight general architecture for developing Blockchain in IoD. A multilayer 
Ecosystem of Blockchain based secured UAV is illustrated in Fig. 1, which can be 
add-up as security extension to revolutionize the existing system. Different aspects 
of UAV are addressed in different layers as, 

Application plane: All the service providers in different application sectors of 
UAV are using this layer for intercommunications. 

Control plane: Here, Blockchain can be utilized to decouple the data with the 
help of lightweight consensus protocol as proof of work (POF) and smart contract

Fig. 1 Layered ecosystem of blockchain based secured UAV 
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formation with flow control policies, decision related to routing and topology change 
in UAV. A smart contract keeps track of IoT UAV and responds in accordance with the 
access control guidelines it contains. If any security policy is violated and, the system 
notifies based on the smart contract. The registration of a new drone is required for 
access control and traceability. Transactions which are simply the interactions are 
signed to ensure that each drone is in control of its block. The main issue of storage 
requirements must be addressed either by offchain data storage mechanism or data 
compression techniques. 

Data Plane: Different UAVs are interconnected in I-planet which handles packet 
forwarding, security threats and link formation etc. 

In this section, we explained the working flow of blockchain application prototype 
to get the authentication and other security services in UAV environment (Table 1). 

These are crucial steps to implementing a general security framework in any 
existing constrained network. The proposed system model can be further utilized in 
supply chain management, home automation, the manufacturing industry, and many 
other useful scenarios. 

Table1 Work flow of block 
chain prototype 

Phase 1: Transaction initiated 

• One  UAV  A passes certain information to another UAV B 
which is called the transaction 

Phase 2: Transaction is being encrypted and Signed 

• A encrypt the transaction with B’s Public key and uses it’s 
private key to sign the transaction 

Phase 3: Request for the storage on Block chain 

• UAV  A transmits the transaction to a Pear to Pear (P2P) 
network where the blockchain protocols are implemented 

• The blockchain network stores the certain numbers of 
transactions in a Block and broadcast it throughout the 
network 

Phase 4: Transaction validation 

• All the participants UAVs allow to append the Block in the 
chain after achieving successful consensus in the form of 
POW 

• Consensus protocol confirms the block validation from the 
participants 

• The valid block is sent to the participants to permanently 
storage of in the current chain of block 

Phase 5: Data retrieval 

• UAV  B can access the information from the confirmed Block 
using its private key
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6 Future Research Directions 

Researchers and manufacturers both are recommended to reimplement the current 
UAV network to take security advantage of the blockchain and smart contracts. 
However, the widespread use of private blockchains is creating redundant data, frag-
mentation, and also prompting criminal activity. Participating stakeholders of the 
area have raised the demand of interoperability to obtain portability and scalability 
among these isolated blockchains. Intercommunication among different blockchains 
can be guaranteed only if all the common issues are addressed in each of the UAV. In 
Fig. 2 we listed the common issues in UAVs connected through Internet to achieve 
global interoperability. 

Interoperability between blockchains also aims to reduce the cost and volume of 
redundant transactions. Route deconfliction and planning must be in very much effi-
cient way for such resource constraint UAV networks. This is possible by integrating 
a blockchain that links operators and UAVs with airspace authorities. On the other 
hand, geofencing is not explored yet, a blockchain-based solution would be a good fit 
for this application. This is possible by integrating a blockchain that links operators 
and UAVs with airspace authorities.

Fig. 2 Research domains in blockchain based UAV 
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7 Conclusion 

Although UAVs have the potential to significantly improve driving experiences in the 
near future, security for both users and service providers still needs to be improved. In 
order to meet the IoV systems’ security requirements, blockchain has evolved. Even 
so, Blockchain still needs to be customized to excel in such environments. We tried 
to summarize our best knowledge about different application of UAV, challenges 
pertaining to each scenario and also discuss the way to enhance the utility of UAV 
in other scenarios through blockchain. Now it has proved that blockchain is more 
suitable than any other conventional security approaches to open the door as security 
solutions in data sharing and/or storage still further, analysis and research attention 
is required for designing special real-time architectures of blockchain to offer better 
performance and throughput. According to the paper, these UAV security issues 
can be resolved with the aid of potent distributed technology, such as blockchain, 
empowering the UAVs and enhancing their safety, accuracy, and controllability. The 
work can demonstrate how the use of UAV and blockchain technology can advance 
a variety of industries. We also made an effort to suggest potential research avenues 
that could aid in the creation of a blockchain-based UAV system. 
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Power Management of Drones 

D. S. Vohra, P. K. Garg, and S. K. Ghosh 

Abstract The Drones are used for multifarious activities right from surveillance, 
express shipping, precision crop monitoring, geographic mapping of inescapable 
terrain and locations etc. To perform effectively in ibid actions, the drones must keep 
flying for adequate time in the air. Flying for a longer duration is a necessity for 
many applications, which is primarily dependent upon the batteries they are using. 
The batteries which are normally used now-a-days in drones are Lithium Polymer 
(LiPo) batteries. These batteries are rechargeable and are available in various forms 
as per the size and use of drones. The longer sustenance of LiPo batteries depends 
on Voltage level, Capacity, Discharge rate, Activation time, and Charging time. 
Continuous power to drones is generally maintained by charging aforesaid LiPo 
batteries whenever Drone returns to earth/site. However, there are other options also 
to recharge the LiPo batteries, which avoid drones returning to their base. It includes 
using Polls, Recharging Stations, Solar Voltaic Cells based Drones. Moreover, there 
is an advanced methodology through which Drones can be recharged using other 
Drones while in flight. Apropos, this Paper will elaborate upon how to choose an 
appropriate LiPo Battery Pack based upon various parameters for Drones, Basic prin-
ciple of working of LiPo batteries (i.e., Intercalation and De-Intercalation), Various 
forms/Configurations of LiPo batteries and Cell sizes, Maintenance of LiPo batteries 
and alternates to LiPo batteries for drones which include Charging stations, Charging 
Drones while on Flight and Use of Solar voltaic cells. 
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1 Introduction 

Drones are used for diverse activities right from surveillance, express shipping, preci-
sion crop monitoring, geographic mapping of inaccessible terrain and locations [2, 
3]. To perform effectively in ibid actions, the drones must keep flying for some time 
in air. Remaining in air for a good duration is therefore a necessity for drones. Their 
stay in air is totally dependent upon the batteries which they use. The batteries which 
are normally used now-a-days in drones are Lithium Polymer Batteries, also called 
as LiPo batteries. 

The above-mentioned batteries are rechargeable. The options are to recharge 
them once the drone comes back to earth/platform or to recharge them using 
Polls/Recharging Stations. In addition, there are methods through which they can 
be recharged using other drones also while in flight. 

2 Importance of Power Management 

Power management is very important and need to be well understood before moving 
on for making drones for any kind of activity. It is the power which drives a drone. 
The drones get this power from its batteries. A powerful battery ensures that the 
drone flies faster, higher and stays in air for longer amount of duration. Drones are 
required to be in air for longer duration for better photography results. However, the 
weight of the battery increases with more power as more cells are needed to make 
it more powerful. Hence, there is a balance that needed to be established between 
weight and the time for which we want drone to stay in the air. Power management 
therefore plays a pivotal role in increasing the time flight of a drone. The various 
civilian and military application where we require drone to sustain in air for longer 
duration is given in succeeding paragraphs. 

3 Applications 

3.1 Civil Applications 

The various civil applications in which drones are expected to fly for longer duration 
are given below [4, 7, 10, 12, 20, 21]: 

• Providing wireless coverage 
• Inspection of power lines 
• Counting wildlife 
• Delivering medical supplies to inaccessible regions 
• Forest fire detection and monitoring
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• Humanitarian aid 
• Landslide measurement 
• Illegal landfill detection 
• Construction 
• Crowd monitoring 
• Crop surveying 
• Agriculture insurance 
• Soil examination 
• Irrigation monitoring 
• Inspection of airports 
• Urban planning 
• Campus monitoring 
• Contour detection 
• Boundary extraction from images. 

3.2 Military Applications 

The various military applications (throughout the globe) in which drones are expected 
to fly for longer duration are given below [18]: 

• Real-time monitoring 
• Surveillance 
• Patrolling 
• Demining 
• Natural disaster management including landslides 
• Convoy protection 
• Landslide investigation 
• Search and rescue. 

4 General Classification of Drone/UAVs 

The general classification of drones based on different types, range and endurance 
is enunciated in Table 1.

5 Management of Power in Drone 

The maximum power that is consumed in a quadcopter is by the propeller and the 
motors. The motors which are used in drones must be brushless motors so that the 
motors take less power. In addition, the propellers are to be designed in such a way, 
so that with less power more sustenance in the air is possible.
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Table 1 Classification of drones [6] 

Category Type Range (km) Endurance Usage 

Group 1 Very close range 5 20–45 min Reconnaissance 

Group 2 Close range 50 1–6 h Reconnaissance 

Group 3 Short range 150 8–12 h Reconnaissance & surveillance 

Group 4 Mid-range 650 12–24 h Reconnaissance & surveillance 

Group 5 Endurance >650 >24 h Reconnaissance & surveillance

In addition, it is also important that the appropriate battery is used post calculating 
the entire power requirement by the drone and the weight it is going to lift. The users 
should not use a battery that is of higher amperage or less amperage. The flight 
controller also takes a good amount of current. So, if a drone is used for less work, 
least number of sensors are required and consequently, a specific flight controller, 
which is referred to as the brain of the drone, for fulfilling the sensor requirement to 
be used. 

6 Choosing a Battery Pack for Drones 

Choosing the correct battery is very important while provisioning for the power of 
drones. Presently the batteries which are used in Drones are LiPo batteries. The main 
parameters to check while identifying suitable LiPo batteries for Drones are given 
below. 

6.1 Voltage Level 

The nominal voltage for LiPo battery is 3.7 V whereas maximum voltage, they can 
acquire is 4.2 V. However, their voltage can drop down to 3.0 V too, but that condition 
must be avoided each and every-time. The LiPo battery showing a nominal voltage 
is enunciated in Fig. 1. 

Fig. 1 LiPo battery showing 
nominal voltage (3.7 V). 
Courtesy https://learn.ada 
fruit.com/assets/979

https://learn.adafruit.com/assets/979
https://learn.adafruit.com/assets/979
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Fig. 2 Discharge capacity 
versus voltage. Courtesy 
https://learn.adafruit.com/ass 
ets/979 

For example, Fig. 2 shows how a voltage drops from maximum voltage to 3.0 V 
where the circuitry gets automatically cut off. At 3.4 V, the battery starts showing 
sign that it requires a recharge. 

6.2 Capacity 

It is measured in Mili Ampere Hour (mAh). It means how much current can be 
acquired from the battery at a fixed rate of some amperes in total one hour. For 
example, 1000 mAh is equivalent to 1 Amp Hour as shown in Eq. (1). 

1000 mAh = 1 Ah  (1 Ah) (1) 

This also means how much time after we need to recharge the battery. The greater 
the capacity, the more time it will keep the equipment running. In the context of 
drones, 5000 mAh LiPo battery is generally used. There are companies who make 
batteries of larger size, but the grey area is, that the overall weight of the drone will 
increase. The lifting power of a drone will therefore get restricted if we use batteries 
of higher weight. 

In addition, the temperature of the motor must be checked at regular intervals, 
otherwise, there are chances of the battery getting burnt and ultimately the machine 
which is running via such over exhausted LiPo batteries. Voltage is easy to measure 
in comparison of capacity. Voltage is always measured in Voltage and has a direct 
relation with other important parameters. Voltage is like a water in a transparent 
beaker which is easily measured. However, beaker, which is opaque in nature, refers 
to capacity. The only way to measure it to empty the beaker.

https://learn.adafruit.com/assets/979
https://learn.adafruit.com/assets/979
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6.3 Discharge Rate 

It is the rate of discharge of current from battery. The discharge rate is harder to 
understand in comparison of voltage and capacity. The discharge rating is also called 
a C rating. It is measure of what is the maximum rate in which a voltage can be 
discharged from the batteries without the batteries being damaged. It is also known 
as the safe current that can be drawn from a battery. C refers to discharge rate. The 
maximum safe current that can be drawn from a battery can be calculated from the 
Eqs. (2) and (3) 

50C = 50 × Safe Current in Amperes or Capacity, C (2)  

The C rating can be calculated as given in Eq. (3) 

50 × 5A (for battery of 5 A) = 250A (3) 

Therefore, battery can sustain a maximum load of 250 A. A current higher than 
this will lead to damage of the battery. The battery can even burst into flames. The 
battery has two ratings; one is a continuous rating and the second is a burst rating. 
The burst rating is applicable in ten (10) second bursts and not continuously as in 
continuous rating. The burst rating will come in handy when we need to accelerate 
a vehicle. For normal working, we do not consider burst rating. The burst rating of 
a battery is always greater than the continuous rating. The battery discharge rate is 
always measured in terms of continuous rate and not burst rate. To come on to, which 
C rating is better, is a question that is very hard to answer. We should either consider 
the C-rating which is required or consider burst rating also. For example. 

A user wants to purchase Slash VXL R/C truck. It works on a continuous current 
65 A and a burst current of 100 A. Therefore, a 2S 5000mAh 20C LiPo will be 
adequate to meet the requirement. It has a maximum safe current discharge of 20 
× 5 A (=5000 mA) i.e., 100 A which is higher than 65 A and equivalent to 100 A. 
The terrain in which the R/C truck must operate, and the speed in which it must 
operate also plays a pivotal role in deciding the battery. It is very much possible that 
the final requirement of current is higher than the requirement of the battery alone. 
So, a cushion is always required and need to be maintained for the exact magnitude 
of current that is required out of that battery. A battery of more than 200 C suits 
maximum applications. But if we are driving a heavy R/C truck, we must have a 
400 C battery pack. In addition, there are other factors too that influence battery 
selection. Same are given in succeeding Paragraphs. 

Actual ampere required by a drone is the summation of current required for 
propellers and motors, flight controller and other sensors if fixed over drone. For 
example, if a motor draws 9 A of current continuously at a rate of 65% of power, and 
as quadcopter has four brushless motors so 9 times 4 which is equal to 36. Hence, 36 
A current is drawn from the battery. Moreover, (36 * 1000) divided by 60 min = 600 
mAh is consumed per minute by the quadcopter. If user buys a 9000 mAh battery
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for the quadcopter, then 9000/600 = 15 min of 65% continuous power usage will be 
provided by the battery to the drone. For information about safe ampere which can 
be drawn from the battery, refer to Eqs. (2) and (3). 

6.4 Activation Time 

Activation cycles to be strictly adhered to for recharging of batteries. The voltage of 
the battery should not go below 3.0 V in any case at any single instance. The battery 
behaves normally if the battery is always sustained at a voltage level of 3.0 V or 
above. 

6.5 Charging Time 

Battery capacity and charging capacity must be known if needed to calculate the 
charging time. If a battery is of 1500 mAH and a 1 Amp Hour charger is available 
to charge the battery, then charging time can be calculated as in Eq. (4). 

1.5Ah/1Ah = 1.5 h (4)  

6.6 Lifespan 

Life of a LiPo battery can be elongated if we adhere to the basics required for the 
smooth working of the ibid battery. The life of a LiPo battery generally comes out 
to be two years [13]. The following practices need to be adhered to if the battery’s 
lifespan needs to be increased. 

• Never discharge a battery below 3.0 V. 
• Never overcharge above 4.2 V. 
• Never discharge a battery a rate not specifically used for it. 
• Never overheat batteries. 
• Discharge LiPo battery in a LiPo Discharge Bags, as meant for them. Dispose 

them accordingly after full discharge.
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6.7 Cost 

The cost of a battery also plays a pivotal role for a user, as some batteries are of better 
quality, but their rates are very high. The cost of a LiPo battery ranges from Rs. 400 
to Rs. 2500. These batteries can easily be ordered through Flipkart or Amazon in 
India. 

7 Principle of Working of LiPo Battery 

The LiPo batteries work on the concept of intercalation and de-intercalation. Lithium 
ions become a positive electrode material and a negative electrode material, The 
liquid electrolyte becomes the conductive medium in LiPo battery. A microporous 
separator lies between the electrodes, which makes ions migrate from each side. 
Electrolyte is a polymer and not a liquid electrolyte. Higher specific energy is being 
provided by these batteries [19]. The intercalation and deintercalation procedure are 
elucidated in succeeding Paragraphs. 

7.1 Intercalation 

The positive electrode turns into an anode, and the negative electrode turns into a 
cathode during charge. The lithium-oxide electrode becomes the positive electrode. 
During charge, oxidation at the anode produces positively charged and negatively 
charged electrons. The uncharged material, produced during oxidation, stays at the 
anode. Ions move through the electrolyte whereas the electrons move through the 
external circuit. Recombination occurs at the cathode during reduction half-reaction. 
Conductive media is provided by electrolyte and conducting media. 

7.2 Deintercalation 

The electrons flow from anode to cathode via an external circuit. It discharges the 
potential of the cell of the LiPo battery. During charge, electrons move from the 
cathode to the anode via an external circuit. This energy acquired from the charging 
cycle is transformed as chemical energy in the cell of LiPo battery. Cathode and anode 
allow the Li ions to move in and out through a process called insertion or intercalation 
and extraction or deintercalation respectively, as elucidated in Fig. 3. These batteries 
are also called “rocking-chair batteries” or “swing batteries as Lithium ions rock 
back and forth”.
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Fig. 3 Intercalation and de-intercalation [19] 

In the discharge cycle, lithium ions carry the current within the battery from anode 
to cathode, through the electrolyte and microporous separator diaphragm. The loss of 
energy from contact resistance at interfaces of electrodes is equal to twenty percent 
of the total energy flow in batteries. The single Li Cell is charged in two stages viz., 
Constant current (CC) and Constant Voltage (CV) whereas as a Li-ion battery (a 
set of Li-ion cells in series) is charged in three stages as Constant Current, Balance 
and Constant voltage. In the CC phase, constant current is applied to the battery till 
the highest voltage per cell is reached. In the Balance Phase, the charging current is 
reduced. This stage can be skipped by some chargers also. In the CV phase, a voltage 
equal to the maximum cell voltage multiplied by the number of cells in series per 
battery is applied. 

8 Various Forms/Configurations of LiPo Batteries and Cell 
Sizes 

Battery consists of many rectangular cells where each cell holds a charge of 3.7 V. If 
the cells are connected in series, the voltage becomes double of 3.7 V i.e., 7.4 V, if 
two cells are connected. Whereas if the capacity of the battery needs to be increased, 
then the cells are to be connected in parallel. 3S2P means two cells in series and two 
cells in parallel in a battery. More voltage means higher power to drive the cells of 
a battery. For more power, the battery capacity needs to be increased.
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8.1 Battery Voltage 

One LiPo cell has a voltage of 3.7 V. 14.8 V battery means four cells are connected 
in series. A battery of 4S means there are 4 cells in series. So, a four-cell (4S) pack 
is 14.8 V, a three-cell (3S) pack is 11.1 V, and so on. 

3.7 V battery equals One cell × 3.7 V  = 1S battery (5) 

7.4 V battery equals Two cells × 3.7 V  = 2S battery (6) 

11.1 V battery equals Three cells × 3.7 V  = 3S battery (7) 

14.8 V battery equals Four cells × 3.7 V  = 4S battery (8) 

18.5 V battery equals Five cells × 3.7 V  = 5S battery (9) 

22.2 V battery equals Six cells × 3.7 V  = 6S battery (10) 

29.6 V battery equals Eight cells × 3.7 V  = 8S battery (11) 

37.0 V battery equals Ten cells × 3.7 V  = 10S battery (12) 

44.4 V battery equals Twelve cells × 3.7 V  = 12S battery (13) 

The voltage determines the sustenance of drone in the air. It affects the RPM of 
the brushless motor. A brushless motor of 2,500 kV, that motor will spin 2,500 RPM 
for per volt application. More voltage means faster is the Drone [1]. While selecting 
the battery, the current requirement needs to be understood. Voltage affects the motor 
speed too. Voltage is directly proportional to the power of the motor as given in Eq. 
(14). 

X = V ∗ A (14) 

where X refers to power, V refers to voltage, A refers to current. So, in case of some 
hobbyists who are keen to run their machines with greater speed need to have higher 
voltage. The total current drawn can be calculated by the formula as given in Eq. 
(15). 

Max Current Drawn (I ) = Capacity (Amp hour) 

× Rate of discharge (C) 
(15)
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For example, Max current is drawn for 4100 mAh three cell LiPo battery, 10 C rating 
can be calculated as 4.1 × 10 = 41 A. 

9 Maintenance of Lipo Battery 

Maintenance of a battery, if properly done, gives us additional time for drones to 
fly in the air. Moreover, the same battery can be used multiple times. In respect of 
the same, certain precautionary measures to be adhered to are covered in succeeding 
paragraphs so that more are available from the same battery. 

9.1 Charging 

Precautions to be observed during charging of LiPo battery are elucidated below. 

1. Never use Nickel Cadmium (NiCd) or Lead Acid Charger. Use LiPo charger only 
and select LiPo mode in that. 

2. Charge the battery in an open area away from materials that can catch fire. 
3. Batteries are not to be charged inside of the model. 
4. Do not charge batteries below zero degrees i.e., freezing temperature. 
5. Do not charge batteries, if cells are hot from inside. 
6. Put the charger on proper cells count. 

9.2 Discharging 

Precautions to be observed during discharging of LiPo battery are elucidated below. 

1. Do not discharge battery at higher discharge rates. 
2. Temperature of battery should not increase by 140°. 
3. Batteries should never be discharged below 3.0 V. 
4. The recommended cut-off is 3.4 V 
5. User should constantly monitor the discharging process. 
6. In case of an untoward accident, remove the battery for one hour. 
7. User must check the physical condition of the battery before discharging the 

battery.
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10 Alternatives to Lipo Batteries 

The LiPo batteries are those batteries that are used the most in all types of rotor 
Drones. This paper, therefore, focuses on LiPo batteries as the advantages of LiPo 
batteries on Lithium-Ion batteries and Nickel Cadmium batteries are much more. 
The alternatives of LiPo batteries are discussed in the succeeding paragraphs. The 
alternatives are those areas that are also being researched throughout the world. These 
methods have one great advantage over LiPo powered Drones as they can provide 
power for longer times and in some cases, Drone does not have to return to the ground 
for recharging itself. 

10.1 Charging Stations 

Drones, instead of coming back to start, they can also recharge through various 
charging stations which can come in their path. The Drones automatically land on 
these platforms, do recharging of the diffused battery, and again carry on with their 
tasks [16]. 

The charging station is a pole or a platform (Fig. 4) that is specifically made for 
providing power to Drones. It increases the sustenance of Drones in air as Drones 
do not have to come back to earth stations [11]. The charging station consists of the 
following elements broadly:

• A charging system for Drones has a base structure connected to a power grid. 
• A connector extendable from the base structure. 
• Charging interface compatible with a charging port of a Drone. 
• A computerized controller at the base structure enabled to communicate with a 

Drone. 
• To initiate, control and stop charging power. 

There are problems associated with charging poles or platforms, in the form of 
installation, charging, security, ownership, battery allocation and online management 
[8]. There are other problems in relation with locating the ibid charging stations too, 
as the charging stations may have many drones or have less drones. 

10.2 Charging While on Flight 

Drones can be charged while on a flight using other drones. In such cases, a small 
drone carries a battery, and it lands over the bigger Drone which required power to 
remain afloat (Fig. 5) [5, 14]. Docking platform is attached to the main flyer drone. 
A flying Drone, smaller in stature will rest on this docking platform [9] (Fig. 6).
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Fig. 4 Charging station 
(pole) [14]

Fig. 5 Charging while on 
flight [8]

10.3 Solar Batteries 

Solar batteries use sunlight to power the cells of the battery, which will help in 
providing continuous power supply to the drones. This will help the Drones in 
extended sustenance in air and the Drone will not have to return to the ground for 
recharging itself. As the solar power is easily available and is a renewable source of 
energy. Drones can easily use the sunlight. Solar voltaic cells are used in abundance 
in such scenario. Solar voltaic cells have power which is greater than 550 W/Kg
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Fig. 6 Drones using solar 
batteries [16]

or 1.5 MJ/Kg if used in sunlight (full). The energy density of solar batteries is on 
a higher side in comparison to normal batteries. The problem comes as they never 
operate at their full efficiency [17]. 

11 Conclusion 

The appropriate management of power in drones is the key towards longer suste-
nance of Drones in air for various applications. The LiPo batteries are the best 
batteries which provide power to the Drones in current scenario. It is therefore 
of paramount importance to understand the characteristics and proper use of these 
batteries. However, there are other alternatives to these LiPo batteries viz., Charging 
Stations (Poles), Solar Cells in Drones and Charging Drones while on flight, which 
can be used to keep Drones flying in air for longer durations. This will help in all civil 
and military applications (as covered above) where Drones are required to stay in air 
for longer duration. Based on literature review, being carried out and knowing the 
recent research in respect of power management of Drones, it can be concluded that 
either LiPo batteries need to be evolved or charging stations or charging the Drones 
while in flight need to be more researched. The ibid subject is still at nascent stage 
and lot of development for continuous power to Drones is still required to be done as 
Drones are the future technology and their demands in various civilian and military 
fields are increasing on an exponential scale [15]. 
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Technology for Power Supply to UAVs 
through Medium of Air 

Devineni Pavan and Merugu Suresh 

Abstract In recent years, as the usage of drones is increased, the batteries of the 
drones play a vital role in their function. At the same time, though the capacity of the 
drone battery has been increasing it is not sufficient for many multiple functioning 
of drones. Moreover, the current technology of drones is used for taking pictures. If 
there is sufficient energy for drones, they can be used for many multiple functions. In 
this paper, a new process has been introduced in which the drone batteries are charged 
through the waves transmitted by the device affixed to a tower, where the tower is 
used as a source of medium. The receiver chip is affixed to the battery of drones which 
receives the waves from farther distances and converts them to DC. In this process, 
series resonance is used in the transmitter device to get the waves and is amplified 
to get the desired output. The output is transmitted through directional antennas, 
for overall 36°. These transmitted waves will be received by the receiving chip by 
filtering the noise and converted to DC (Power supply for batteries of electronic 
gadgets). The result of this method is that it revolutionizes drone technology because 
if there are sufficient energy drones can be used for multiple functions. 
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1 Introduction 

Drones are commonly known as Unmanned Aerial Vehicles (UAVs) used in the 
military. 90% of the drone applications are found in the military. With an increase in 
industrial growth, drones find their market in a wide variety of applications for moni-
toring gas and oil operators. UAVs are also used for monitoring natural calamities like 
volcanic [1], earthquakes, etc. UAVs are also used in the operation of surveillance, 
radio access, communications, and commercial purposes [2–6]. As applications of 
UAVs are increasing in many fields, there is a need to improve the battery lifetime 
of drones. However, battery capacity is severely restricted due to constraints on the 
size and weight of drones and also the battery can be easily drained due to more 
power consumption with increased applications. Drones can be operated for a long 
time by providing wireless charging technology. Wireless charging is a technology of 
transmitting power through an air gap to electrical devices for energy replenishment. 
It involves a power transmitting device and a receiver, sometimes in the form of a 
case attached to the drone or even built into the drone itself [7, 8]. 

Drones used in commercial applications operate for less than 20 min which 
deepens the need for wireless charging of drones to operate them continuously. 
Traditional charging methods require the drones to be placed at an exact location in 
the charging stations to get charged wirelessly. Therefore, a new wireless technique is 
needed to charge the drones irrespective of their position in the stations that provide 
charging and also to charge drones in a way that they are in the vicinity of stations 
to provide wireless charging. 

This paper focuses on wireless power transfer using electromagnetic (EM) energy 
specifically Radio frequency (RF) waves. The radio wave is ubiquitous in our daily 
lives in form of signal transmission from TV, Radio, Wireless LAN, mobile phones, 
etc. [8]. This paper represents the system overview in Sect. 2 and series resonance 
in Sect. 3. The working process is represented in Sect. 4. Section 5 represents the 
overall output representing the distance of wireless power supply and rate of power 
received at the receiver part for electronic gadgets. Sections 6 and 7 represent the 
future and conclusion of the paper.
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2 System  Overview  

Overview of System Design 

The above block diagram represents the transmitter and receiver sections. The trans-
mitter device generates the power in the form of electrical waves through a process 
known as series resonance. The electrical energy is converted to electromagnetic 
energy through transmit antenna and is transmitted as radio waves. At the receiver 
section, the waves generated from the transmitter section are received and then 
converted to electrical waves through the receiver antenna. The electrical waves 
are converted to DC providing a power supply to the battery of drones. The receiver 
chip is affixed within the drone, connected to its battery. The receiver chip consists 
of a GPS module that helps to trace the drone through the location of the tower, 
by which the drones are charged. Figure 1 represents the microstrip antenna which 
receives RF waves at the receiving end and converts them to electrical waves.

3 Series Resonance 

Series resonance is a condition that usually occurs in series circuits, where the current 
becomes a maximum when the capacitor and inductor reactance are the same. In 
series resonance, maximum current is obtained at the resonant frequency. In a series 
RLC circuit, a frequency point occurs where the inductive reactance of the inductor 
becomes equal in value to the capacitive reactance of the capacitor. In other words, 
XL= XC. The frequency at which resonance occurs is called the Resonant Frequency 
(ƒo) of the circuit, and as we are analyzing a series R-L-C circuit, a series resonance 
is produced at this resonance frequency. One of the most important circuits used in 
electrical and electronic circuits is Series Resonance circuits. These circuits can be
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Fig. 1 Micro-strip antenna

found in various forms such as in noise filters, A.C mains filters in television and 
radio tuning circuits providing a selective tuning circuit for receiving channels with 
different frequencies. 

We know about R-L-C circuits: i. inductive reactance i.e. XL (XL = ωL= 2fπL). 
ii. Capacitive Reactance i.e. (XC =1/ωC = 1/2fπC). The output is taken at the resistor 
from the circuit. The input given to the series resonance is from the transformer of 
six volts. The components required for a series resonance circuit are: 

Capacitor: 2.2 nF 

Resistor: 5 Ω Inductor: 0.002 mH 

AC power supply of six volts. 

Op-amp feedback resistors: 100 Ω, 100 Ω.
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The above figure represents the Series resonance circuit design that should be 
embedded into the transmitter device. 

Related Work 

The work includes the designing of the circuit and testing the output of series reso-
nance i.e. voltage of series resonance. The time domain output radio wave of AM 
modulator from the transmit antenna and also which is mentioned in detail in the 
next pages. The below figure represents the output waveform of the series resonance 
from resistor output in MultiSim. 

From the above simulation picture, it is shown that the output voltage of the series 
resonance is 5.10. As the frequency of the electrical wave obtained from the series 
resonance circuit is i.e. 1 kHz, we modulate the electrical wave by multiplying it 
with an oscillator with a carrier frequency of 2.5 MHz. The modulator allows the 
transmit antenna size to be less and transmission of signal with less interference. 
After modulation, the received signal frequency is reduced to a charging frequency 
(Range: 80–300 kHz) using a frequency divider and is received using a bandpass 
filter in the charging signal frequency range.
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The below figure represents the time domain output radio wave of AM modulator 
from the transmit antenna in Matlab. 

After modulation, the high-frequency components (3.001 and 2.999 MHz) 
received at the receiver antenna are converted to a charging frequency range using a 
frequency divider by 10, 16, etc. and then the wave is applied to a band pass filter 
and converted to DC. 

4 Working Process 

The process consists of a series resonance that transfers the output from the given 
input of six volts. After the functioning of the series resonance from the inputs as a 
resistor, capacitor and inductor the output frequency from the process is three MHz. 
The power at the resistor in the transmitter section is represented as P (T) i.e. 

P (T)  = 196.405 mW 

Output Frequency = 2.5 MHz. 

P(R) = P (T)  * G (T) * G(R)  * lambda2/(4 * pi * R)2. 

Where lambda = C/F. 
From the above equation P (T) represents the power at the transmitter section and 

G (T) & G(R) represent the gain at Transmitter and receiver. P(R) represents the 
received power.
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P(R) = 196.405 × 10−3 * 1.642 * 1002/(4 * 3.14 * 50)2. 

Where lambda = 3 × 108/3 × 106 = 100 m. 

P(R) = 13.4 mW. 
From the above calculations the output from the transmitter section and the 

receiver section is solved. The waves are transmitted through directional antennas for 
360° to the receiver. From the series resonance circuit, the output from the resistor 
is converted to waveforms and transferred wirelessly through an antenna and the 
receiver antenna receives the RF signal and converts it to the electricity required 
for the drones. Therefore the distance between the Transmitter and receiver is 50 
m where the transmitted waves are received by the receiver which is affixed to the 
battery of drones. 

5 Future Trends and Challenges 

So far, this paper has addressed the wireless charging technologies, with an emphasis 
on those adopted by the WPC. Wireless charging for drones up to 5 W, which makes 
it a suitable technology to cover wireless charging for a wide range of low-power 
products such as mobile phones, iPods, Bluetooth earpieces, etc. It is envisaged that 
future standards will extend the power capability to 120 W so that more portable 
devices such as iPods and notebook computers can be covered. With the increasing 
amount of wireless power, several technical challenges will arise, namely thermal, 
electromagnetic compatibility (EMC), and electromagnetic field (EMF) problems 
etc. Further GPS will be affixed to the receiver of the drones to trace them, from the 
process as, the tower from which the drones are receiving charging, therefore from 
the location of the tower and from the location of the receiver which will be affixed 
to the battery of drones will be traced. 

6 Conclusion 

The commercialization of drones in the 1910s has clearly sped up the research and 
development activities in wireless charging systems. In this paper, the historical 
developments of wireless power transfer technologies for drones have been described. 
The power generated from the series resonance is addressed in terms of frequency. 
The circuit diagram and the simulation output of the series resonance are described. 
The conversion and transmission of the series resonance output frequency are shown 
and the receiving process of frequency and its conversion of electricity to the battery 
of drones is described. The calculations and waveforms for both transmission and 
receiver are shown. In theory, the evolution of wireless power supply systems and 
features of drones for the usage of their batteries was shown and wireless power 
supply can be incorporated into different drones. Therefore this revolutionizes the
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present mode of charging and reduces the time spent on charging the drones and more 
wireless power systems and products are expected to enter the consumer markets 
soon. 

Appendix 

The code for AM modulation in Matlab is given by 
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An Efficient Application of Machine 
Learning for Assessment of Terrain 3D 
Information Using Drone Data 

Ankush Agarwal, Aradhya Saini, Sandeep Kumar, and Dharmendra Singh 

Abstract Plant height is beneficial in defence-related applications during the move-
ment of troops as terrain information is required in advance. This terrain information 
is of utmost importance to obtain knowledge about possible paths especially in unex-
plored areas. This information facilitates safe movement of troops. While exploring 
an unexplored area, vegetation cover area need to be checked carefully, because of 
the tall and dense bushes. During vegetation monitoring various parameters like plant 
growth, soil moisture, water availability, the need for fertilizers, etc. are observed. 
All these parameters are necessarily checked to monitor the growth of the plant. 
The plant growth parameter is reflected from the plant height. In the modern era, 
smart farming and precision agriculture have been applied, in which monitoring of 
plant growth-related parameters are optimized and the necessity of any parameter is 
fulfilled as per the demand and position in the field. In the extension of smart agri-
culture, the need for the usage of drones arises while monitoring the fields. Drones 
provide good spatial resolution and can be flown according to the need and applica-
tion. In this work, the objective is to calculate the plant height using a drone in order 
to ensure safe troops movement and on other side to monitor the healthy growth of 
the plant. The application can be helpful for defense as well as civilian purpose. For 
achieving this, a machine learning-based model has been proposed in which multiple 
ground control points (GCPs) of different heights have been used to train the model, 
which results in minimizing the output error. The challenge is to get drone data and 
manually recorded GCPs height correctly so that the training can be accomplished 
successfully for better results.
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Keywords Crop health · Crop height · Digital surface model · Drone · GCP based 
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1 Introduction 

The process of obtaining information regarding the terrain of an area is of great 
importance in defence applications as it provides state-of-the-art terrain intelligence 
to armed forces. Terrain is militarily critical as it helps to determine the ability of 
armed forces to take and hold areas as well as move troops and material into and 
through areas. The terrain information comprises of the density of vegetation cover 
and the height of the plants present within the cover. This terrain information is 
of utmost importance pertaining to geographical areas that are unexplored as prior 
knowledge about the possible optimal paths (terrain) between source and destination 
in such areas can help the troops in movement [1]. This evaluation of terrain charac-
teristics plays an essential role for defence purposes through derivation of military 
potential of various types of terrains for areas where availability of ground infor-
mation is limited [2]. With reference to the terrain map objectives, constraints are 
dependent on time, avoidance of enemies, distance etc. The terrain may comprise 
of various species of plants such as vegetation, bushes and shrubs in rare or dense 
volume. It is quite important to obtain plant height to know the hideout locations, 
in conjunction with terrain information, as this is imperative for smooth mobility of 
troops from one place to another while assessing mobility potential of inaccessible 
areas. The calculation of plant height helps the troops to perform correct calculations 
regarding the area of movement and be well prepared in advance. This can also help 
them to understand where they have to be alert, as enemies may be hidden in the 
taller and dense bushes. 

Anthesis or flowering is the point at which crop height is considered to be at its 
peak [3]. Crop height can be defined as the shortest distance considered between the 
upper bound of the plant’s main photosynthetic tissues and the ground level [4]. It 
is most commonly observed that the plant height measurement is carried out using 
a measuring rule [5], which in its simple form is an inefficient, laborious, and a 
subjective method for data collection. Therefore, there is a need for precise, rapid, 
in-season data acquisition for monitoring the environmental influences throughout 
the development cycle of the crop. In addition, the method should be sufficiently 
able to meet the needs of the large number of crop trial measurements. 

Alternative methods have been proposed such as Light detection And Ranging 
(LiDAR) or RGB high resolution UAV imagery in order to estimate plant height 
[5–7]. LiDAR is an efficient way of measuring large areas of trees quantitatively. 
However, application of LiDAR scanning performed (from the ground with a terres-
trial laser scanner) to crops with quite limited vertical extent or a canopy volume 
densely populated by leaves and stems appears limited [5]. This is because the 
system demands to be moved over a high number of places and viewing biases
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also get incorporated leading to impact in spatial resolution. Also; very dense vege-
tation may obstruct laser beams from reaching all the way to the bare earth [8]. RGB 
image-based retrieval of crop height has been widely used because of advantages 
such as high versatility, low cost and smaller-cheaper-lighter sensors [5]. 

Precision-agriculture management strategies are quite important for crop health 
improvement. The analysis of plant height, crop density and leaf-area cover are useful 
for increasing the crop yield and subsequently enhancing agricultural production. 
Imaging sensors such as thermal, RGB, multispectral in conjunction with Unmanned 
Aerial Vehicles (UAV) helps to build vegetation index [9, 10], which indicates canopy 
cover, Leaf Area Index (LAI), disease incidence etc. Hyperspectral imagery has been 
collected using UAVs for height estimation and is inclusive of vegetation monitoring 
[11]. Also, the utility of UAVs is well demonstrated through metrics such as thermal 
emittance, plant height which are essential in the field of vegetation monitoring 
environment [12, 13]. A number of UAV applications have been addressed like 
various classification techniques have been critically evaluated to classify remotely 
sensed data by using high-resolution drone imagery for class wise area estimation 
[14, 15]. A machine learning-based approach to calibrate sensor band values for 
computing optimal vegetation index with the drone data [16]. To correctly classify the 
terrain, a technique has been proposed to detect and remove the shadow from the high-
resolution UAV imagery [17]. UAVs helps us by collecting multiple images of the 
same area, which is quite important while assessing the impact of the environmental 
conditions on the plant performance, along with stating it as an essential phenotype 
for the crop product optimization and improvement [18]. Height is a good indicator 
of the yield and carbohydrate storage capacity [19] while also being an important 
parameter for the site-specific agricultural management practices [20]. 

High resolution has always seen to improve the model accuracy of the plant-
height but this approach requires more processing time, higher costs and more sensor 
angle variation [21]. A change detection approach for land terrain monitoring has 
been evaluated with Sentinel-2 and drone data by applying neural network [22]. 
Willkomm et al., [23] modelled plant height to be an average 10–20 cm shorter 
when compared with the ground truth estimates while generating a spatial resolution 
stated as 0.5 cm. However, it can be seen that UAV models have the tendency to 
underestimate heights as, this has been performed for rice plantation and also an 
adjustment of the density of plants also needs to be investigated. Malambo et al. 
[24] has used Digital Surface Model (DSM) and Terrestrial Laser Scanning (TLS) 
for maize and plant height detection. It has suggested the use of laborious height 
management. However, impact of changing canopy structure and wind needs to be 
observed. 

A study for target detection using hyperspectral images for various applications 
has been demonstrated for both defence and civilian [25]. In a comparison of the 
statistical approaches, new technology such as synthetic aperture radar (SAR) data 
and neural network is used for the target detection [26]. A computer vision-based 
approach for extracting and monitoring rail track where UAV imagery has been used 
to calculate gauge and marked over and under measured gauge [27]. A computer 
vision-based approach for joggled fish plate detection has been performed using
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UAV imagery [28]. Vision based correct localization of rail track in UAV imagery 
is proposed using single georeferenced image [29]. A leaf wetness in strawberry 
plant has been detected using the color and thermal imagery and it was found that 
color imaging yielded good classification results for differentiating between wet and 
dry leaf surfaces [30]. The work suggests neural networks and multisource data 
integration have great potential for analysing and interpreting targets. This work 
aims to provide solutions to the army officials for taking decisions regarding the 
movement of army troops in the real world terrain. The proposed tile-based A* 
approach is observed to have gained appreciation for optimal path finding. Also the 
halt schedule has been introduced in this work in order to avoid collision between 
troops [31]. A mathematical formulation for encoding of the transportation network 
between ground-troop movement in a dense and complex terrain has been proposed 
in which they have constructed a generic method for developing infinite number 
of graceful signed graphs for optimal encoding of the road network for planning 
possible automation of troop-movement strategies [32]. In this work employment of 
interoperability and armor protection concerning future of tracked personnel carrying 
vehicles lowers the possible losses. Also the maintenance and procurement costs are 
lowered for Armour Personnel Carriers (APCs) and Infantry Fighting Vehicles (IFVs) 
[33]. 

The main objective of this paper is to estimate terrain information in terms of 
the plant height from the drone data that will be beneficial for defence as well as 
civil application. Estimation of plant height is useful in various applications like 
for planning troop’s movement in defence, terrain actual scenario estimation, plant 
growth and monitoring in precision agriculture etc. Using UAVs with HD camera for 
computing the plant height is less reported in the literatures, therefore in this paper, a 
machine learning-based approach has been proposed and explored to monitor terrain 
scenario by estimating plant height using drone data. Another advantage of using the 
machine learning is that it provides better efficiency and ease in automation. 

Supplementary information from drones and GCPs is used in developing the 
model. The challenge here is a need for drone imagery to provide the precise level of 
terrain information and correctly recorded plant height of GCPs by which the model 
can be precisely trained. 

2 Study Area and Data Description 

The description of the study area and the dataset used in this study is given in the 
subsections.
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Fig. 1 The directed map to reach to the study area as a India political map, zoomed-in segments. 
b Uttarakhand state. c Haridwar district, and d data acquired by drone 

2.1 Study Area 

The study area chosen is located at Dhanori, a place nearby Roorkee which is a 
tehsil of Uttarakhand, a state lying in the northern part of India. It is an agriculture 
field having the central latitude and longitude as 29.930014°N and 77.964504°E 
respectively. The directed map of the study area is shown in Fig. 1. 

2.2 Data Description 

Drone data. The DJI Matrice 100 quadcopter has been used for data acquisition in 
this study which has Zenmuse X3 gimbal with a camera along with the attached GPS 
unit. The camera captures the 4 K RGB HD/FHD/UHD data in the form of images 
(4000 × 3000 at12 M) and video (4096 × 2160p at 12 fps) [34]. The FOV (Field 
of View) of camera is 94° with an aperture of f/2.8 [35]. The drone is flown at an 
altitude of 120 m above the ground level to capture the images having a forward 
and side overlap of 75% and a spatial resolution of 0.05 m. The data is preprocessed 
with the help of a tool which results in the output datum having a map projection of 
UTM WGS-84N 43 zone. The specifications of drone used to capture the data and 
its sensor specifications are listed in Table 1a, b respectively. 

In-situ data. Regular field visits were conducted to record the ground truth infor-
mation and monitor the growth of various crops each of which were in a different 
stage. During the field visits, sugarcane and wheat are the major crops. The data was
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recorded manually as well with the drone. While manually recording the data, in-situ 
plant height is measured using a measuring tape (in cm) along with the geotag infor-
mation. For a plant of small height like wheat, rice, etc., measurements were taken 
from the ground and followed up to the height where most of the plant leaves occur 
and for taller plants like sugarcane, measurements were taken from the ground and 
followed up to the height where most of the leaves started bending. Table 2 shows 
the details of field visits conducted along with the data acquisition date and date ID 
(D_ID) that will be used as a nomenclature in the further sections. Growth stages of 
wheat crop (as sample) on different dates during in-situ data collection is shown in 
Fig. 2 and GCPs overlay on google earth imagery for the D_ID: D1 for the various 
measurements during in-site data collection is shown in the Fig. 3. 

Table 1 a Specifications of 
the drone. b Specifications of 
the sensor 

(a) 

Items Specifications 

Type Quadcopter 

Max takeoff weight 3600 g 

Battery 6000 mAh LiPo 2S 

Battery model TB47D, TB48D 

Flight planning software DJI drone deploy 

Endurance 20 min with each battery 

Maximum speed 17 m/s 

(b) 

Name X3 

Model FC350 

Number of pixels 12.4 M 

Max image size 4000 × 3000 
ISO 100–1600 

Shutter 8–1/8000 s 

FOV 94° 

CMOS Sony EXMOR 1/2.3''

Lens 20 mm, f/2.8

Table 2 Details of field visits 
conducted 

SN D_ID Acquisition date 

1 D1 09-Jan-2019 

2 D2 30-Jan-2019 

3 D3 08-Mar-2019 

4 D4 27-Mar-2019
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(a) (b) 

(c) (d) 

Fig. 2 Growth stages of wheat crop of D_ID, a D1, b D2, c D3, and d D4 

Fig. 3 GCPs overlay on 
google earth imagery
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3 Algorithm Development and Implementation 

The objective of the field visit is to obtain plant height measurement for estimation of 
terrain. The height is recorded manually with their geotag information. Apart from 
this, the drone is used to capture the entire field, which is used for further analysis. The 
workflow of the proposed methodology is shown in Fig. 4. The detailed explanation 
of each step is given in the further section. 

3.1 Preprocessing of Drone Data 

Images collected by the drone during field visits were imported in Pix4D Mapper for 
further preprocessing [36]. The preprocessing steps include aligning of the images, 
building of dense point cloud, generation of orthomosaic and digital surface model. 
The stepwise explanation of each preprocessing step is given below. 

Step 1—Aligning of the images: The first and preliminary step is the aligning 
of images, in which images are matched with each other to determine the camera 
position for each of the image and to calibrate the camera parameters. This process 
ends with the removal of those images that do not fit with the rest of the images and 
are known as distorted images.

Fig. 4 The workflow of the 
proposed methodology 
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(a) 
Low                                                      High 

(b) 

Fig. 5 Sample. a RGB orthomosaic, and b DSM (whereas blue color denotes less height and 
moving towards red denotes high height) 

Step 2—Building of dense point cloud: After aligning of images, a dense point cloud 
is generated on the basis of estimated camera positions which ensures to provide the 
depth map information for each overlap area in images accurately by removing the 
outliers. 

Step 3—Generation of Orthomosaic and DSM: After generation of dense cloud, 
the orthomosaic and DSM are created in which few parameters are considered with 
their values are alignment accuracy: high, dense cloud quality: medium, input image 
resolution: 0.05 m, generated DSM resolution 0.08 m (approx.), and coordinate 
system: WGS 84/UTM, Zone 43 N. The RGB orthomosaic and DSM are shown in 
Fig. 5a, b respectively. 

3.2 Extraction of Topographic Parameters 

The preprocessing steps include changing the map projection, taking the subset, and 
extracting topographic parameters. For this purpose, ENVI tool provided by Harris 
Geospatial Solutions is used [37, 38]. The stepwise explanation of each step is given 
below. 

Step 1—Changing the map projection: In the first step, the map projection of the 
generated orthomosaic and DSM are converted from UTM WGS-84N 43 zone to
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Geographic Lat/Long for further processing. The spatial resolution of both orthomo-
saic and DSM after changing the map projection is 0.092 × 0.082 m from west to 
east and north to south direction respectively. 

Step 2—Subset: After changing the map projection, a subset of the study area is 
cropped from the orthomosaic drone imagery and DSM, which are bounded by same 
latitude-longitude pair of 29.933314°, 29.927528°N and 77.961844°, 77.967663°E. 
The region excluding the study area in the bounded latitude-longitude pair is masked 
with a value 0 and the total number of pixels are 7822 × 6062. The sample subset 
RGB orthomosaic imagery of the study area for the D_ID: D1 is shown in the Fig. 6. 

Step 3—Extracting topographic parameters: The subset received from DSM is 
used to extract the topographic parameters. These topographic parameters are then 
used to generate the relation for the calculation of plant height after getting trained 
with the ground truth height measurement. A total of 11 topographic parameters 
have been extracted out of which only 4 parameters (slope, aspect, shaded relief, and 
profile convexity) are selected for generating the relation for plant height estimation. 
These selected parameters are chosen because it is observed that these parameters are 
directly promotional to the height of the plant. The topographic parameters that are 
extracted from DSM are stored in a file with their geotag information. The parameters 
chosen for estimating the height is shown in the Fig. 7.

Fig. 6 RGB orthomosaic 
imagery of the study area 
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(a) (b) (c) (d) 

Fig. 7 Parameters chosen for estimating the height, a slope, b aspect, c shaded relief, and d profile 
convexity 

3.3 Extraction of Topographic Values for Training 

This step includes the extraction of topographic parameters values of GCPs for 
training purpose and the neural network part which is accomplished with MATLAB 
2018b [39]. 

Step 1—Extraction of parameters values at GCPs: The step starts by loading a 
topographic parameter file which was saved in the previous step, along with a ground 
truth information file (GTIF) which was created during the time of field visit that 
contains latitude, longitude and height information of various GCPs position. The 
required bands are extracted from the topographic parameter file. Then the values 
from these parameters were extracted for the corresponding GCPs from the Fig. 7. 
A total of 150 GCP of different crops having different height and stages of different 
dates were taken, out of which 70, 15, and 15% of GCPs were used for training, 
testing and validation purpose by the neural network. Afterwards, these extracted 
band values of GCPs are given at the input of the neural network to generate the 
relation with the ground truth GCPs height as target. 

Step 2—Training of network: The neural network is a feed-forward backprop-
agation which has 4 input nodes, 10 hidden neurons, and 1 target node. Several 
hidden nodes were experimented and it is found that 10 hidden neurons were given 
better results and thus 10 neurons were considered. At input, the extracted values of 
GCPs from the required bands of topographic parameters are provided and at output 
node, measured height of various GCPs during in-situ data collection are provided. 
This creates a network and generates a relation between topographic parameters and 
targeted height. The generated relation is then validated in the further section and 
the schematic diagram of the neural network which is shown in Fig. 8.
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Fig. 8 The architecture of the neural network 

4 Results and Discussions 

During the field visits, measurement of plant height manually and capturing field 
data using drone are of main concerns. After processing, the result obtained from 
output of network is evaluated in time series for selected area as well as the whole 
image which are shown in the subsequent sections. 

4.1 Height and Error Estimation 

Height was estimated for different dates and it is observed that it is quite matching 
with the ground truth measurement. The generated result from the network is shown 
in Fig. 9. It has been inferred that the red line shows the height measured during field 
visits on D_ID: D2-D4 of various crops, green bars show the height estimated from 
the network, and black line shows the error between measured and estimated height 
that can be calculated with the help of Eq. (1). It is clearly seen that there are few 
outliers which may be because of few boundary GCPs position falls in other class 
and thus result in an error. 

Error = Actual Height − Estimated Height (1)

The same is plotted in the scatter plot and it is observed that there is a good 
agreement between actual and estimated plant height (in cm) as shown in Fig. 10, 
with the Root Mean Square Error (RMSE) of 20.978. On the horizontal axis, ground 
truth measured height is provided while on the vertical axis estimated height from 
the network is provided and red line is 1:1 slope line.
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Fig. 9 Performance evaluation of network

Fig. 10 Scatter plot 

4.2 Time Series Plot of Plant Height 

Plant heights keep on changing during the growing season. As mentioned earlier, 
study area mainly consists of fallow land, wheat (which is sown on different dates at 
the sowing time), and sugarcane (which is at its peak stage and is harvested). Plant 
height measurement (in cm) of wheat crop varied significantly which is at different 
growth stages across the dates as shown in Fig. 2. Plant height estimates from the 
neural network and ground-truth measurement of the wheat crop for D_ID: D2–D4 
are shown in Fig. 11 in which number of samples of the in-situ measured height for 
the D_ID: D2, D3, and D4 are 25, 43, and 27 respectively.
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Fig. 11 Changes in the crop height trend of the wheat crop for D_ID: D2–D4 

4.3 Evaluation for Whole Region 

The generated network is applied to the whole study area for the D_ID: D1 having 
the dimension 7822 × 6062, which results in a good output having a minimum 
and maximum values (in cm) of 2.6666 and 419.9983 while during ground truth 
measurement, the minimum and maximum values (in cm) are 5 and 420. The sample 
result for the D_ID: D1 is shown in Fig. 12 (a). Afterwards, to generate the 3-D plot, 
the drone imagery is up-scaled by a factor of 100 and resultant image has a dimension 
of 78 × 60, which results in a minimum and maximum value (in cm) of 45.0511 and 
320.3055. The up-scaled result in 2-D and 3-D is shown in Fig. 12b, c respectively. 
The same procedure is followed for rest of the D_IDs, whose 3-D results are shown 
in Fig. 12d–f.

To analyze the accuracy and robustness of this methodology, we have taken the 
subset from the study area and the result set of all the D_ID: D1–D4 is shown in the 
Fig. 13 with their respective zoomed-in segments.

4.4 Improvement in Plant Height Accuracy 

A relation between the plant height of ground truth measurement and the height 
estimated from the network is generated in order to minimize the error and improve 
the accuracy of estimation. A relation in the form of y = f(x) is generated, in which 
x is the height estimated from the network and y is the improved calibrated height. 
It is found that the trend line of the calibrated data is much closer to the 1:1 slope 
line than the trend line of before calibrated height. The RMSE values of before 
and after calibration are 20.978 and 13.171 respectively which shows that there 
is a significant improvement in the accuracy. The correlation between the before 
calibration and after calibration height data is shown in Fig. 14. On the horizontal axis,
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(a) (b) (c) 

(d) (e) (f) 

Fig. 12 Estimated height for D_ID: D1 on a drone imagery, up-scaled drone imagery b in 2-D, c 
3-D, for rest of the D_IDs in 3-D for d D2, e D3, and f D4

ground truth measured height is provided while on vertical axis before calibration 
and after calibration heights are provided which are plotted with respect to ground 
truth measured height. The generated relation is shown in the Eq. (2). 

y = 0.9014x + 10 log(x) + exp(log(x)) (2)

The relation is then applied to the same set of GCPs to test the performance of 
the calibration. It is noticed that the plant height estimated from the network is quite 
improved after applying the generated relation. It is fairly noticed from Fig. 15 that 
the error is minimized and accuracy is improved. The generated relation is found 
useful in the sense that it is capable of minimizing the error in the estimation of the 
plant height. The green bars represent the ground truth measured plant height, red 
line represents the plant height estimated from the network (before calibration), and 
black line represents the plant height by improving the relation (after calibration).
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Fig. 13 A subset is in yellow box with zoomed-in segments in 2-D and 3-D of D_ID. a D1, b D2, 
c D3, and d D4

(a) (b) (c) (d) 

Fig. 14 Comparison of before and after calibration data for D_ID. a D2, b D3, c D4, and d D2–D4. 
The black line is 1:1 slope

Fig. 15 Accuracy improvement in plant height
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5 Conclusion 

In this paper, a machine learning based novel approach has been explored in which 
a feed forward neural network is used to estimate the plant height by using drone 
data. The advantage of this method is that it is used to generate the relation between 
ground truth measured height and extracted topographic parameters. The relation is 
then optimized to minimize the error and it is found that a proposed method has good 
potential to estimate the plant height using the RGB drone camera. 
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