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Abstract. Logs are widespread in large and complex software-intensive
systems. Log-based anomaly detection is used for system diagnosis and
troubleshooting. Existing methods extract log sequences as temporal
log vectors, preserving the timing information between logs. However,
they lack a reasoning mechanism, which prevents the model from min-
ing the logical relationship between logs and loses the logical association
between logs. In this paper, we propose LogLR, a log anomaly detec-
tion method based on logical reasoning. LogLR extracts the logical rela-
tionship between temporal log vectors and improves detection accuracy
by combining Logical Tensor Network (LTN) with LSTM. In order to
overcome the problem of ignoring the logical relationship between logs
in existing statistical methods for data annotation. LogLR uses LTN
to capture the logical relationship between log sequences and obtains
weak labels to train an LSTM model through the weak label estimation
method, which saves time costs. We evaluate LogLR on two widely used
public datasets and the results demonstrate the effectiveness of LogLR.

Keywords: Log anomaly detection · LTN · LSTM · Temporal log
vectors · Weak label estimation

1 Introduction

Logs are important information that records system behavior. As more and more
services appear, many attack behaviors and abnormal states of the system also
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increase. The log records the information generated when the system is running,
and analyzing the log can help the system administrator to find the abnormal
behavior of the system. An accurate and efficient anomaly detection method is
the key to maintaining the normal operation of the system.

A structured log is called a log event, and multiple log events within a period
of time are called a log sequence. The log sequence could reflect the order of
task execution. Early PCA [24], IM [12], DT [8] and LogCluster [10], methods
methods detect log sequence anomalies. Among them, DT [8] uses event count
vectors and their labels to build decision trees. While achieving commendable
detection results, the method relies on labeled data. In contrast, LogCluster [10]
performs anomaly detection through clustering of unlabeled data, which gets rid
of the time cost of obtaining labeled data, but the detection result is lower than
that of supervised learning methods. PLELog [25] proposes a semi-supervised
anomaly detection method, which saves time cost while ensuring detection accu-
racy. However, existing semi-supervised methods based on statistical methods
ignore the logical relationship between logs, resulting in a high error rate of data
annotation.

Methods in the field of natural language processing (NLP) extract timing
information in time series, and since log sequences are time series, many meth-
ods in the field of NLP are used for anomaly detection. DeepLog extracts the
timing information between log events by inputting each log event into LSTM
Cell at different time steps. PLELog uses the GRU model to observe the tem-
poral log vectors of log sequences and detect anomalies by binary classification.
These methods improve detection accuracy by obtaining timing information of
log sequences. Although the existing log-based anomaly detection models are
effective, they lack an inference mechanism, which leads to the loss of the logical
relationship between log sequences and the reduction of detection accuracy.

To overcome the above challenges, this paper proposes LogLR, a log anomaly
detection method based on logical reasoning. LogLR adds a reasoning mechanism
by introducing LTN, captures the logical relationship between log sequences, and
uses weak labels to assign probability values to log sequences, which not only
saves time, but also maintains the effectiveness of supervised learning.

The main contributions of this paper are as follows:

1) We point out the problem that the existing data annotation methods based
on statistical methods cannot extract the logical relationship between log
sequences, and extract the logical information of log sequences through the
weak label estimation method, which improves the accuracy of data annota-
tion.

2) We propose LogLR, a log anomaly detection method based on logical reason-
ing. LogLR introduces a reasoning mechanism, and simultaneously extracts
the timing information and logical information between log sequences for the
first time, which improves the detection accuracy.

3) We evaluate the effectiveness of LogLR on two publicly available datasets,
and the results confirm that our method outperforms existing state-of-the-
art methods.
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2 Related Work

Supervised Learning: Supervised learning methods use labeled data to assist
in anomaly detection, so supervised learning methods perform well in detecting
anomalies. Statistical models such as LR [21], DT [8], SVM [9], etc. are widely
used in classification tasks and are trained using event count vectors and their
labels to distinguish normal and abnormal log events. Inspired by SVM [9], meth-
ods such as OC-SVM [18], SVDD [19], etc. obtain spherical boundaries around
the dataset to distinguish normal and abnormal log events. Considering the tem-
poral relationship between log events, many RNN-based methods are used to
extract temporal information between log events. LogRobust [26] extracts the
semantic information of log events and detects anomalies using an attention-
based Bi-LSTM model, capturing the contextual information of log sequences.
OC4Seq [20] jointly detects anomalies using a local representative RNN model
and a global representative RNN model, focusing on local and global informa-
tion in the sequence, respectively. Methods [6,22] use the inference mechanism
of Bayesian network for anomaly detection, LogGAN [23] uses GAN network
to infer data to infer similar data. However, there is currently no method to
effectively combine the inference mechanism with the temporal characteristics
of log sequences. We propose a logical reasoning log anomaly detection method
LogLR, which effectively combines the reasoning mechanism and the time-series
characteristics of log sequences to improve the detection accuracy.

Unsupervised Learning and Semi-supervised Learning: Unsupervised
learning and semi-supervised learning methods use unlabeled or a small amount
of labeled data to assist in anomaly detection, which is more in line with prac-
tical application production environments. Methods such as PCA [24], IM [12],
and LogCluster [10] perform anomaly detection by mining the similarity or lin-
ear relationship between data of the same category. Different from the widely
used TFIDF [17] method, LogClass [14] proposes a new feature representation
method, TFILF, and verifies the effectiveness of this method using classical
machine learning methods. DeepLog [3] uses an LSTM model to preserve timing
information between log events and detect anomalies when log patterns deviate
from models trained under normal log execution. LogAnomaly [15] combines
sequential and quantitative detection for the first time to improve detection per-
formance. PLELog [25] uses some labeled data to label the remaining training
data through probabilistic label estimation, using only a small amount of labeled
data to take advantage of supervised learning. In contrast, LogLR adopts the
weak label estimation method based on logical reasoning, and applies LTN to
data annotation, which improves the accuracy of data annotation.

3 Methodology

In order to overcome the problem of the lack of reasoning mechanism in existing
anomaly detection methods, which prevents the model from mining the logical
relationship between logs. We propose LogLR, a log anomaly detection method
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based on logical reasoning. Figure 1 shows the overview of LogLR. LogLR con-
sists of the following four parts: log parsing, vectorization, weak label estimation
and anomaly detection.

Fig. 1. Overview of LogLR

3.1 Log Parsing

Since logs are unstructured data, they contain a lot of special information (e.g.,
IP addresses, file names, etc.) that prevents the model from automatically detect-
ing. It is necessary to extract this special information before using the raw logs as
input to an anomaly detection model. We call the processed raw logs log events,
and the step of extracting special new ones is log parsing. In this paper, we use
Drain [7], which can parse logs in a streaming and timely manner. To accelerate
the parsing process, Drain uses a fixed depth parse tree, which encodes specially
designed rules for parsing. For example, in Fig. 2, the first log entry “Receiving
block blk 5792489080791696128 src: 10.251.30.6:33145 dest: 10.251.30.6:50010”
is parsed into the log event “Receiving block * src: * dest: *”. Through log pars-
ing, unstructured raw log are transformed into structured log events.

3.2 Vectorization

The vectorization step converts the structured log events into digital vectors.
Since the anomaly detection model requires an input of numeric vectors, log
events need to be vectorized before being fed into the anomaly detection model.
It consists of three parts: log token vectorization, log event vectorization and log
sequence vectorization.

Log Token Vectorization. Treat log events as natural language sentences,
each word in the sentence is called a log token, and the context between log
tokens can better describe the sentence. To extract semantic information between
log tokens, LogLR first splits matching words in log events into separate words
according to Camel Case [2], and removes non-character tokens and stop words in
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Fig. 2. Overview of log parsing

log events to preprocess log events. LogLR then uses the FastText algorithm [16]
to vectorize each log token in the log event. FastText performs word vectorization
through the context of each log token to obtain a log token vector. After the log
token vectorization, each log token is converted into a fixed-dimensional vector.

Log Event Vectorization. To extract semantic information between log
events, LogLR performs weighted summation of the token vector in the log event
to obtain the log event vector, The log event vector V be calculated by Eq. 1:

V =
1
N

N∑

i=1

wi · vi (1)

where N is the number of log tokens in the log event, vi is the log token vector,
and wi is the weight of each log token.

LogLR uses TF-IDF, a weighting technique commonly used in information
retrieval and data mining, to calculate the weight wi for each log token, where
TF is the term frequency and IDF is the inverse text frequency index. TF is the
frequency of occurrence of each log token in log events, calculated as #w

#N , and
IDF is a measure of the general importance of a word, calculated as log( #L

#Lw
),

where #w is the number of log token w in log events, #N is the total number of
log tokens in log events, #L is the total number of different log events, and #Lw

is the log containing log token w number of events. The weight ω is calculated
as TF × IDF . Through weighted summation, LogLR obtains a log event vector
containing semantic information.

Log Sequence Vectorization. After obtaining the log event vector contain-
ing semantic information, LogLR uses LSTM to solve the problem of gradient
disappearance and explosion during long-sequence training, and extract the log
sequence vector. Figure 3 shows the overview of An LSTM Cell.
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Fig. 3. Overview of An LSTM Cell

LSTM uses the gating unit to combine the LSTM state of the previous time
step with the input data of this time step to generate the LSTM state of this
time step. The gating unit is calculated as the Eq. 2:

ft = δ(Wf · [ht−1, xt] + bf )
it = δ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, x] + bc)
ot = δ(Wo · [ht−1, xt] + bo)

(2)

The LSTM state at this time step is calculated as Eq. 3:

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)
(3)

In order to extract the timing information of the log sequence, LogLR connects
multiple LSTM Cell, inputs the log events in the log sequence into different
LSTM Cell in turn, and uses the final hidden ht as the log sequence vector of
the sequence, which is called the temporal log vector.

3.3 Weak Label Estimation

After log-vectorization, LogLR uses LTN [1], a framework that combines tensor
networks with first-order multivalued logical inference, to label unlabeled data.
The structure of LTN is shown in Fig. 4.

Some objects are associated with a set of quantitative properties, represented
by a real-valued n-tuple G(oi) ∈ Rn, which we call grounding, where oi belongs to
an infinite set of objects O =

{
o1, o2, ...

}
. LogLR uses the vectorization process

as the ground, x+ are the normal examples, x− are the abnormal examples input
into G(A|θ) : x → sigmoid(MLP (x)), where MLP is a multilayer perceptron
with one output neuron whose parameter θ needs to be learned. Through Gθ(A),
LogLR obtains a probability value as the label of the input example, and labels
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Fig. 4. Overview of LTN

weak labels for the examples at the boundary of normal examples and abnormal
examples, reducing the impact of data annotation errors on the model.

LTN introduces the inference mechanism by setting the axioms, and in the
back-propagation stage, the model parameters are adjusted by setting the loss
function using the axioms. The axioms are set as shown in Eq. 4:

∀x+A(x+)
∀x−¬A(x−)

(4)

K is a set of closed first-order logic formulas. The objective function with K ={∀x+A(x+),∀x−¬A(x−)
}

is denoted as SatAggφ∈KGθ,x←D(φ). The value of
the objective function represents the satisfaction of the knowledge base and
the confidence that all examples are correctly classified. The loss function is
calculated as 1 minus the value of the objective function. The objective function
of LTN is calculated as Eq. 5:

SatAggGθ(φ)
φ∈K

=

1 − 1
2
(1 − (1 − (

1
|G(x+)|

∑

v∈G(x+)

(1 − sigmoid(MLPθ(v)))2)
1
2 ·2)

+ 1 − (1 − (
1

|G(x−)|
∑

v∈G(x−)

(sigmoid(MLPθ(v)))2)
1
2 ·2))

1
2

(5)

The notation Gx←D(φ(x)) means that the variable x is grounded with the data
D when grounding φ(x).

In the weak label estimation stage, LogLR obtains a true value for the input
sample in the interval [0, 1] as the label value of the unlabeled data. The sam-
ples at the classification boundary are easily mislabeled, and directly classifying
the samples with a large label error rate will change the distribution of the
samples. LogLR uses probability values as weak labels to increase training data
and improve the detection accuracy of the model without changing the overall
distribution of samples as much as possible.



496 K. Zhang et al.

3.4 Anomaly Detection

In the anomaly detection step, we use the session as the basic unit of classi-
fication of the anomaly detection model. A session is a process of information
exchange between a client and a server. A session is established within a period
of time, during which multiple information transfers are involved. We use two
hyperparameters to divide sessions into log sequences, which are fed into the log
anomaly detection model. A session is considered normal when all log sequences
in the session are classified as normal by the anomaly detection model, but is
considered abnormal when at least one log sequence in it is detected as abnormal.

LogLR detects anomalies using the LTN detection model. After the weak
label estimation stage, LogLR retrains the LTN model with weak labels. LogLR
uses log sequences marked with 0 or 1, where 0 indicates that the log sequence
is abnormal and 1 indicates that the log sequence is normal. Different from
the weak label estimation stage, the anomaly detection stage compares the true
value between [0, 1] obtained by the LTN model with the preset threshold. LogLR
detects the log sequence as normal when the true value of the output is greater
than the threshold, otherwise it is detected as abnormal.

Overall, LogLR processes unstructured logs and converts them into struc-
tured log events. Secondly, construct the log event sequence, and extract the
timing information and logical information in the log sequence and convert it
into a log vector. Then, the training data is increased by the weak label estima-
tion method, and finally the LTN model is used to extract the logical relationship
between log sequences to improve the accuracy of anomaly detection.

4 Evaluation

4.1 Datasets

We evaluate our approach on two publicly available log datasets, including the
HDFS dataset and the BGL dataset.

HDFS dataset: It is generated through running Hadoop-based map-reduce
jobs on more than 200 Amazon’s EC2 nodes, and labeled by Hadoop domain
experts [3]. HDFS dataset has 11197954 log entries, according to the identifiers,
the log sequences are divided into 575061 identifiers. Each identifier is annotated
by domain experts. Among them, 4855 normal log sequences and 1638 abnormal
sequences are selected as the training dataset, and the rest are used as the test
dataset for testing.

BGL dataset: It is generated by the Blue Gene/L supercomputer, which
consisted of 128K processors and was deployed at Lawrence Livermore National
Laboratory(LLNL) [15]. BGL dataset has 4747963 log entries, each log entry is
labeled by domain experts as normal or abnormal, and 348460 logs are labeled
as abnormal. Divide log entries into log sequences, 44054 normal log sequences
and 4050 abnormal sequences are selected as the training dataset, and the rest
are used as the test dataset for testing.
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To execute anomaly detection approaches, we group log entries into different
sessions by an identifier field which for HDFS log is block id and for BGL log
is the sliding window. We divide each dataset into training, validation, and test
sets with a ratio of 6:1:3 to evaluate the performance of log-based anomaly
detection methods. To evaluate the annotation accuracy of the semi-supervised
method LogLR, we sample 50% of the training data as known log sequences and
the remaining log sequences in the training data as unlabeled log sequences to
simulate a semi-supervised scenario.

4.2 Measurements

In this paper, we use Precision, Recall and F1-score scores to measure the effec-
tiveness of abnormal detection based on log-based abnormal detection. Preci-
sion, Recall and F1-score is calculated as TP

TP+FP , TP
TP+FP , 2·(Precision·Recall)

Precision+Recall ,
where TP, FP, and FN refer to the number of true positives(An abnormal log
sequence is detected as an abnormal sequence), false positives(A normal log
sequence is detected as an abnormal sequence), and false negatives(An abnor-
mal log sequence is detected as a normal sequence), respectively.

4.3 Results and Analysis

Comparison with Statistical Methods. Figure 5 shows the superiority of
using LTN for data annotation. Compared with statistical methods, LTN grad-
ually regulates the classification boundary between normal and abnormal log
sequences by automatic learning, and has improved the accuracy of annotation
through the reasoning mechanism to reason log sequences. The experimental
results show that the accuracy of using LTN for data annotation reaches 97.1%,
which is higher than the existing statistical method PCA [4], K-Means [11], MST
[5] and HDBSCAN [13]. LogLR uses weak label estimation method to provide
a probability value for the log sequence labeled by error, thereby reducing the
impact of error annotation on the detection model.

Comparison with Anomaly Detection Methods. Figure 6 shows the supe-
riority of LogLR over other semi-supervised and unsupervised learning methods.
LogLR captures the logical relationship of temporal log vectors through preset
axioms, extracts the logical information of log sequences, and achieves better
detection results. DeepLog and LogAnomaly outperform BGL on HDFS dataset,
This is because there are more unstable data in BGL due to its longer time span
compared with HDFS. More specifically, the BGL dataset is unstable, there are
a lot of data in the test data that did not appear during training. DeepLog and
LogAnomaly predict log events based on log sequences, are sensitive to unseen
log events, and detect unseen log events as anomalies. PLELog only performs
simple binary classification processing on the time log vector, ignoring the log-
ical relationship between log events. Compared with LogGAN, LogLR achieves
better results by pre-extracting the temporal characteristics of log sequences.
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Fig. 5. Experimental results of HDFS dataset data label accuracy

LogLR outperforms existing state-of-the-art unsupervised and semi-supervised
learning methods. Table. 1 shows the comparison of LogLR with the state-of-the-
art supervised learning methods. Although there is a gap between LogLR and
LogRobust, the gap between the three metrics is very small. This shows that
LogLR combines the advantages of supervised learning well with weak label
estimation methods. Moreover, as LogRobust depends on a large amount of
manually labeled training data, LogLR has greater usability in practice.

Fig. 6. Evaluation on two datasets
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Table 1. Comparison with supervised learning method

LogRobust-HDFS LogRobust-BGL LogLR-HDFS LogLR-BGL

Precision 0.98 1.00 0.98 0.98

Recall 1.00 1.00 0.99 1.00

F1-score 0.99 1.00 0.99 0.99

5 Conclusion

Over the years, many log-based anomaly detection methods have been proposed,
but they lack inference mechanisms that prevent models from mining logical
relationships between logs. In this paper, we propose LogLR, a log anomaly
detection method based on logical reasoning. LogLR extracts the temporal and
logical information of log sequences by effectively combining LTN and LSTM.
LogLR uses LTN to detect anomalies while applying LTN to data annotation,
which not only saves time costs, but also maintains the accuracy of supervised
learning. Finally, we demonstrate the effectiveness of LogLR on the two most
widely used public datasets, demonstrating that LogLR outperforms current
state-of-the-art methods.
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