
DP-Opt: Identify High Differential Privacy
Violation by Optimization

Ben Niu1, Zejun Zhou1,2, Yahong Chen1,2, Jin Cao3, and Fenghua Li1,2(B)

1 Institute of Information Engineering, CAS, Beijing, China
zhouzejun@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 School of Cyber Engineering, Xidian University, Xi’an, China

Abstract. Differential privacy has become a golden standard for design-
ing privacy-preserving randomized algorithms. However, such algorithms
are subtle to design, as many of them are found to have incorrect privacy
claim. To help identify this problem, one approach is designing disprovers
to search for counterexamples that demonstrate high violation of claimed
privacy level. In this paper, we present DP-Opt(mizer), a disprover that
tries to search for counterexamples whose lower bounds on differential pri-
vacy exceed the claimed level of privacy guaranteed by the algorithm. We
leverage the insights of counterexample construction proposed by the lat-
est work, meanwhile resolve their limitations. We transform the search
task into an improved optimization objective which takes into account the
empirical error, then solve it with various off-the-shelf optimizers. An eval-
uation on a variety of both correct and incorrect algorithms illustrates that
DP-Opt almost always produces stronger guarantees than the latest work
up to a factor of 9.42, with runtime reduced by an average of 19.2%.
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1 Introduction

Differential Privacy (DP) [11] has become a golden standard that measures the
level of privacy guaranteed by randomized mechanisms. DP protects individ-
ual’s information because attackers cannot tell if an output was generated from
database a1, or its neighbor A = a2 with that individual’s record changed.
However, designing such differentially private mechanisms can be error-prone,
as existing papers have already identified incorrect privacy claims of published
mechanisms [8,15]. Therefore, an important area of research is to verify the
privacy level of a differentially private mechanism.

Generally, related works are divided into three types: formal verification, dis-
prover, and the combination of both. Formal verification methods develop a proof
system and use it to prove that mechanisms satisfy differential privacy [1,4,5,
18,20]. However, these techniques are not able to disprove an incorrect privacy
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claim. On the contrary, disprovers try to search for counterexamples of a mech-
anism that violate the claimed differential privacy level [2,6,7,10,19]. Typically,
two approaches are taken. On one hand, StatDP [10] constructs and tests a sta-
tistical hypothesis. Given a preconceived privacy parameter ε0 > 0, it tries to
find a counterexample that violates the privacy condition, therefore rejects incor-
rect mechanisms. On the other hand, works like DP-Finder [6] and DP-Sniper [7]
search for the lower bound on differential privacy. Such lower bound is found by
maximizing the privacy loss function derived from DP definition. Inputs to this
function is considered a counterexample if the corresponding lower bound exceeds
the claimed privacy level. Both approaches try to identify counterexamples so as
to demonstrate that the privacy claim is incorrect, and further provide insights for
developers to fix the bugged mechanism. As opposed to formal verification meth-
ods, a disprover cannot prove that a mechanism satisfies the claimed privacy if it
fails to generate any counterexample. Another type of methods [3,14,17] combines
the previous two methods, and either synthesizes proofs for correct mechanisms or
generates counterexamples for incorrect mechanisms.

This Work. We present an enhanced disprover DP-Opt, which aims to resolve
the limitations in counterexample construction of the latest work DP-Sniper [7]
and produce higher privacy violations. Specifically, our contributions are:
– DP-Opt, an algorithm that leverages the idea of optimization to resolve the

limitations of DP-Sniper by transforming the search task into an improved
optimization objective to be solved with off-the-shelf numerical optimizers.

– An implementation1 and evaluation of DP-Opt on a wide variety of random-
ized algorithms demonstrating significantly higher guarantees on privacy by
a factor up to 9.42 with an average reduced runtime of 19.2%, compared with
the latest work.

2 DP Disprover Background

2.1 Differntial Privacy

Formally, given a mechanism M : A → B that inputs database a ∈ A and outputs
b ∈ B, M is ε-differentially private (ε-DP) if for every pair of neighboring inputs
(a1, a2) ∈ N and for every attack S ⊆ B,

ln (Pr[M(a1) ∈ S]) − ln (Pr[M(a2) ∈ S]) ≤ ε, (1)

where the neighborhood N ⊆ A×A consists of neighboring database pairs that
differ in only one record. The privacy parameter ε ∈ [0,∞) quantifies the privacy
level guaranteed by M , where smaller ε corresponds to higher privacy guarantees,
and contrarily, ε = ∞ means no privacy at all.

2.2 Prior Knowledge of DP-Sniper

Power. Derived from Eq. 1, power [7] of a witness (a1, a2,S) is defined as

E(a1, a2,S) := ln (Pr[M(a1) ∈ S]) − ln (Pr[M(a2) ∈ S]) .

1 Available at https://github.com/barryZZJ/dp-opt.

https://github.com/barryZZJ/dp-opt
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The highest power found by disprover is regarded as the lower bound on the
privacy level of M . Therefore, we aim to find the maximum power so as to
measure the level of violation against the claimed privacy of M .

Estimation. With samples b(0), . . . , b(N−1) ∼ M(a), we can estimate the proba-

bility Pr[M(a) ∈ S] as P̂N
M(a)∈S =

1
N

∑N−1
i=0 Pr[b(i) ∈ S]. Therefore, estimation

of power Ê(a1, a2,S) is computed by replacing the probability terms with their
estimations.

Threshold Attack. Threshold attack [7] is a type of randomized attack that
selects b probabilistically according to the membership function St,q : B → [0, 1].
Specifically, it utilizes the novel idea of posterior probability p(a1|b) that defines
the probability that an output b originates from M(a1), as opposed to M(a2).
A threshold attack incorporates the output whose posterior probability is above
some threshold t, in order to produce high power. Additionally, an output is only
included with probability q if its posterior probability is equal to t. This limits
the size of the threshold attack and ensures continuousness of power. Formally,
the membership function of threshold attack St,q(b) is defined as

Pr[b ∈ St,q] = [p(a1|b) > t] + q · [p(a1|b) = t], (2)

where the Iverson bracket [φ] outputs 1 if φ is true, and 0 otherwise. Moreover,
estimation of Pr[M(a) ∈ St,q] is computed as

P̂N
M(a)∈St,q =

1
N

N−1∑

i=0

[p(a1|b(i)) > t] +
1
N

· q

N−1∑

i=0

[p(a1|b(i)) = t]. (3)

Parameter c. According to [7], the deviation of P̂N
M(a)∈S increases rapidly when

it becomes smaller, causing estimation on power unreliable. To avoid this issue,
DP-Sniper discards small probabilities below some constant c ∈ (0, 1]. However,
this predefined parameter makes a considerable impact on results, as illustrated
in the next section.

3 Motivation and Ideas

3.1 Limitations of DP-Sniper

We now demonstrate the issue of predefining c with the following example.

Example 1. Consider the 0.5-DP Laplace mechanism L0.5(a) = a + lap(0, 2),
which adds Laplace noise with mean 0 and scale 1/0.5 = 2 to its input a ∈ R [7,
Ex. 1]. The top plot in Fig. 1 shows the cumulative distribution function of
L0.5(0) and L0.5(1) (blue and orange solid line respectively) by constructing the
attack St,q = (−∞, b), with c set to c∗ = 0.2 (red dashed line). The bottom plot
demonstrates the corresponding power by the brown solid line.
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Fig. 1. Cumulative distribution function
and power of L0.5, with confidence intervals
indicated by the shaded area. (Color figure
online)

Fig. 2. Experiment values of
E(a1, a2, St,0).

In Example 1, for a pair of neighboring inputs (0, 1) ∈ N , DP-Sniper con-
structs the threshold attack St∗,q∗

by selecting t∗, q∗ that satisfy Pr[L0.5(1) ∈
St∗,q∗

] = 0.2. This automatically ensures Pr[L0.5(0) ∈ St∗,q∗
] ≥ 0.2 according to

the properties of posterior probability. After the external algorithm DD-Search
[7] generates different neighboring inputs, it invokes DP-Sniper and selects the
best witness constructed, in this case (0, 1,St∗,q∗

). With this, it calculates the
lower bound on power E ≈ 0.2 (discussed in Sect. 3.2), as indicated by the red
dot in Fig. 1. However, as the brown shaded area demonstrates, better lower
bound on power can be achieved if c∗ was initialized otherwise (in this case to
around 0.3).

In fact, this problem occurs for almost all mechanisms, as confirmed by our
experiments shown in Fig. 2. We enumerated attacks St,0 of various t (with q = 0
for simplicity) and computed each E for 0.1-DP LaplaceMechanism (Fig. 2a) and
∞-DP NoisyMax4 (Fig. 2b). The red dot in each plot is the final lower bound
produced by DD-Search.

3.2 Ideas

Determine Optimization Objective. Inspired by Fig. 1, we decide to skip
the procedure of determining c, and aims to find a threshold attack St�,q�

that
directly maximizes the lower bound on power E for given (a1, a2) ∈ N :

St�,q�
= argmax

t∈[0,1], q∈[0,1]

E (
a1, a2,St,q

)
.

We note that our work also discards small probabilities which induce high devi-
ation, because the lower bound E represents the worst-case scenario, finding the
highest E automatically leaves out imprecise probability estimations.

Now we describe the derivation of the optimization objective. Given mecha-
nism M and neighboring inputs (a1, a2), for each output b, its posterior probabil-
ity p(a1|b) is determined. Thus Pr[b ∈ St,q] only varies by different combination
of t ∈ [0, 1] and q ∈ [0, 1] (recall Eq. 2). Then, according to Eq. 3, P̂N

M(a)∈St,q also
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only relies on t, q. Therefore, given neighboring inputs (a1, a2) ∈ N of mecha-
nism M , lower bound on power E(a1, a2,St,q) can be regarded as a function of
St,q determined by t, q.

As a result, the aim of our work is to search for the best combination of
variables t, q such that the corresponding threshold attack St,q produces the
highest E . This is a maximization problem of a bivariate scalar function E(t, q)
under the constraint of t ∈ [0, 1], q ∈ [0, 1]:

t�, q� = argmax
t∈[0,1], q∈[0,1]

E(t, q). (4)

In addition, the impact of q can be ignored for some mechanisms if p(a1|b(i)) = t
in Eq. 3 rarely occurs. Hence, we transform Eq. 4 into a maximization problem
of a univariate scalar function E(t, 0) constrained by t ∈ [0, 1]:

t� = argmax
t∈[0,1]

E(t, 0), (5)

in expectation of better results in special cases.

Confidence Intervals of Power. We now discuss confidence intervals and
derive bounds on power inspired by [6,7]. First, we apply the Clopper-Pearson
confidence interval [9] on P̂N

M(a)∈S in order to derive the upper bound P
N,α/2

M(a)∈S
and the lower bound P

N,α/2
M(a)∈S , which both hold except with probability α/2. In

the top plot of Fig. 1, such bounds on probabilities are illustrated by the blue
and orange shaded areas around respective solid lines. Then, we can use them
to derive the bounds on power Ê(a1, a2,S).
Theorem 1. For neighboring inputs (a1, a2) ∈ N , lower bound E(a1, a2,S) and
upper bound E(a1, a2,S) on Ê(a1, a2,S) both hold with probability 1 − α, where

E (a1, a2,S) = ln
(
P

N,α/2
M(a1)∈S

)
− ln

(
P

N,α/2

M(a2)∈S
)

,

E (a1, a2,S) = ln
(
P

N,α/2

M(a1)∈S
)

− ln
(
P

N,α/2
M(a2)∈S

)
.

The lower bound on power is depicted by the brown shaded area below the
brown solid line in Fig. 1. This bound holds even if probability estimations p̂ are
imprecise, because Clopper-Pearson interval is a type of exact interval [16] which
has a coverage probability of at least 1 − α for all values of p̂. For this reason,
we use E(a1, a2,S) as both the optimization objective and final output, and
furthermore conclude that the privacy level of M is at best E with probability
1 − α at least.

4 Our Disprover

In this section, we present the flow of our disprover. We first introduce DP-Opt
that searches for optimal threshold attack by solving the optimization objective.
Then we propose the external algorithm PowerSearcher that utilizes DP-Opt
and produces the highest lower bound on power.
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4.1 DP-Opt: Search for Optimal Threshold Attack

Given a neighboring input pair (a1, a2), DP-Opt searches for the optimal thresh-
old attack with the following steps. First, a machine learning classifier pθ(a1|b)
parametrized by θ is trained with Ntrain samples. It approximates the posterior
probability p(a1|b) described in Sect. 2.2. We refer to [7] for more details as this
is not focused in our work. Then, we exploit off-the-shelf numerical optimiz-
ers to solve the optimization objectives Eq. 4 and Eq. 5. Each optimizer tries to
maximize E(t, q) or E(t, 0) with Ncheck samples. Among them, the maximum E is
selected, along with the inputs t�, q�. Finally, the optimal threshold attack St�,q�

for the given input pair is constructed using parameters t�, q�, and returned by
DP-Opt.

4.2 PowerSearcher: Search for High Privacy Violation

Guided by DD-Search [7], we discuss the details of PowerSearcher that leverages
DP-Opt to find the highest E . First, different neighboring input pairs (a(i)

1 , a
(i)
2 )

are generated based on heuristic patterns [10]. For each input pair, a candidate
witness is constructed by combining the input pair with corresponding optimal
attack S(i). Then, among all candidate witnesses, the optimal witness is selected
according to its lower bound E(a1, a2,S) computed with Ncheck samples. While
most works compare the estimation on power, we compare the lower bound in
order to avoid high deviation caused by small probability. In implementation,
we reuse the maximum value found in step two to reduce computational cost.
Finally, the lower bound on power of the optimal witness is computed again with
fresh Nfinal samples and returned by PowerSearcher, along the witness. In this
step, the sample size Nfinal is larger than Ncheck to produce a tighter bound.

5 Evaluation

5.1 Implementation

Inherited from [7], we implemented DP-Opt and PowerSearcher in Python based
on the notion from Li et al. [13]. Since different classifiers have insignificant
impact on performance [7], we only choose logistic regression classifier due to time
limitation. Additionally, in attack searching, we applied binary search and reused
the same sample on different optimizers. This substantially reduced runtime as
computing and optimizing E(t, q) need to repeatedly estimate probabilities and
try various combinations of t, q.

Input Pattern Generation. We used the heuristic patterns proposed by Ding
et al. [10] for input generation. For example, category one above corresponds to
(a1, a2) = ([1, 1, 1, 1, 1], [2, 1, 1, 1, 1]).
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Parameters. Following the guideline in [7], we used sample sizes Ncheck =
Ntrain = 10.7 · 106, and Nfinal = 2 · 108, with α = 0.1. The logistic regression
model is trained using regularized stochastic gradient descent optimization and
binary cross entropy loss, with epoch number 10, learning rate 0.3, momentum
0.3 and regularization weight 0.001.

Optimizers. Upon comparison, we selected several optimizers provided by
SciPy in consideration of both performance and runtime cost. Their orders are
as follows: Nelder-Mead(bi), Nelder-Mead(uni), COBYLA(bi), Differential Evo-
lution(bi), Differential Evolution(uni), Powell(bi), COBYLA(uni), where bi and
uni correspond to bivariate optimization objective E(t, q) and univariate opti-
mization objective E(t) respectively. In implementation, we set initial guesses
t0 = 0.5, q0 = 0.5, and kept the default values for the rest optional parameters.

5.2 Mechanisms Evaluated

We evaluated mechanisms listed in Table 1, including widely used mechanisms
and their variations. They cover a variety of output types such as reals, integers
and boolean values. The second column is their neighborhood definition, where
‖ · ‖p is the p-norm neighborhood N = {(a1, a2) | ‖a1 − a2‖p ≤ 1}.

Table 1. Evaluated mechanisms with their neighborhoods, expected DP and optimiza-
tion objectives.

Mechanism N ε Objective

LaplaceMechanism [11] || · ||1 0.1 E(t, q), E(t)
NoisyHist1 [10, Alg. 9] || · ||1 0.1 E(t, q), E(t)
NoisyHist2 [10, Alg. 10] || · ||1 10 E(t, q), E(t)
NoisyMax1 [10, Alg. 5] || · ||∞ 0.1 E(t, q)
NoisyMax2 [10, Alg. 6] || · ||∞ 0.1 E(t, q)
NoisyMax3 [10, Alg. 7] || · ||∞ ∞ E(t, q), E(t)
NoisyMax4 [10, Alg. 8] || · ||∞ ∞ E(t, q), E(t)
SVT1 [15, Alg. 1] || · ||∞ 0.1 E(t, q)
SVT2 [15, Alg. 2] || · ||∞ 0.1 E(t, q)
SVT3 [15, Alg. 3] || · ||∞ ∞ E(t, q)
SVT4 [15, Alg. 4] || · ||∞ 0.175 E(t, q)
SVT5 [15, Alg. 5] || · ||∞ ∞ E(t, q)
SVT6 [15, Alg. 6] || · ||∞ ∞ E(t, q)
OneTimeRAPPOR [12, Steps 1–2] || · ||1 0.8 E(t, q), E(t)
RAPPOR [12, Steps 1–3] || · ||1 0.4 E(t, q), E(t)
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Parameter Configuration. We set the parameters for each mechanism in
accordance with DP-Sniper. Specifically, let ε0 be the target DP guarantee,

– LaplaceMechanism uses ε0 = 0.1.
– NoisyHist1-2 and NoisyMax1-4 set ε0 = 0.1 with input length 5.
– SVT1-6 are instantiated by ε0 = 0.1 with input length 10 and additional

parameters c = 1,Δ = 1, T = 1 (except T = 0.5 for SVT1).
– OneTimeRAPPOR is initialized with parameters k = 20, h = 4, f = 0.95.
– RAPPOR is parametrized by k = 20, h = 4, f = 0.75, q = 0.55.

The corresponding expected privacy guarantees are listed in the third column of
Table 1. For all mechanisms, we ran our disprover on each optimization objective
(indicated by the last column) for seven times with suitable optimizers.

5.3 Results

Power. Figure 3 compares the average value of the final lower bound E found
between PowerSearcher and DD-Search. Results show that PowerSearcher is gen-
erally better with at least equal results in certain cases. Specifically, for most
mechanisms with finite privacy target, PowerSearcher found tighter bounds,
resolving the uncertainty of DD-Search’s conclusion. For example, for Noisy-
Hist1, DD-Search only narrows ε to [0.098, 0.1] while PowerSearcher ensures it
to be 0.1-DP. Especially, we manage to demonstrate NoisyHist2 to be 10-DP
correctly in contrast to DD-Search only results in 4.605. For mechanisms known
to be ∞-DP, PowerSearcher performs significantly better by a factor up to 9.42,
except for NoisyMax3 which is 0.25-DP when input length is 5 (our config-
uration) [7, Sect. VI]. Unfortunately, for state-of-the-art mechanisms such as
RAPPOR, PowerSearcher fails to derive better results. We attribute this to be
the fundamental inability of threshold attacks.

Runtime. Figure 4 compares the runtime between PowerSearcher and DD-
Search for each mechanism. We managed to reduce an average of 19.2% of
runtime consumption, after exploiting the improvement methods mentioned in
Sect. 4.2 and Sect. 5.1. We note that since our method is more flexible in choosing
optimizers, trade-off between performance and runtime can be further made.
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Fig. 3. Average E found between Pow-
erSearcher and DD-Search, where higher
values are better.

Fig. 4. Runtime of PowerSearcher and
DD-Search.

6 Conclusion

We proposed DP-Opt, an improved disprover on the latest work by maximizing
the lower bound on privacy level for a given mechanism. It exploits off-the-
shelf optimizers to produce threshold attacks that yield optimal lower bound
on power, and also avoids small probabilities that are difficult to estimate accu-
rately. Results demonstrate significant improvement on privacy bounds com-
pared with the latest baseline, with a fair amount of runtime saved. Future
works are expected to employ an optimal optimizer that generalizes well on all
optimization objectives to greatly reduce runtime while preserving better results.
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