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Abstract. Maritime Ad hoc networks are a type of decentralised wire-
less network with rapid networking and multi-hop routing, which are
independent of fixed base stations. Recently, Ad hoc networks have
started to play an increasingly important role in military command,
emergency rescue, disaster relief, temporary meetings, and other occa-
sions. However, as the network topology changes rapidly and the node
energy and network bandwidth are limited, discovering and maintaining
reliable transmission paths have become a highly topical challenge. In
order to solve the problem that distributed routing planning of large-
scale Ad hoc networks cannot adapt dynamic changes in network topol-
ogy, and considering the differences of network nodes, this paper proposes
federated reinforcement learning to improve the efficiency of distributed
routing planning through the joint learning of similar nodes. Different
network nodes have different routing policies, but the routing tables of
neighboring nodes are very similar. Therefore, our federated reinforce-
ment algorithm learns nodes with similar routing policies. In this study, a
communication system simulation software is specially designed to eval-
uate the performance of the proposed algorithm.

Keywords: Federated reinforcement learning · Routing planning ·
Maritime ad hoc network

1 Introduction

Ad Hoc networks are a distinct type of wireless communication network. And Ad
Hoc networks has a certain flexibility in the networking process and a reasonably
strong ability to adapt to the environment relatively fast. Within a limited area,
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more mobile conditions can be provided to improve the working environment
for the operation of mobile communication equipment and meet specific work
needs. Ad Hoc networks can also be widely used to provide wireless network sup-
port in disaster rescue, remote area development, national defence [11], campus
teaching [13] and maritime communications. In wireless maritime Ad Hoc net-
works, network communication depends on the cooperation between vessels and
information forwarding between vessels [2]. As vessels move, the network topol-
ogy changes dynamically. In wireless self-organising networks, all vessels have
equal status and virtually the same complexity. Two vessels that are far away
and cannot communicate directly can forward control and data messages via
multi-hop relay to complete the communication process. Wireless maritime Ad
Hoc networks have enormous potential, which can be better applied in various
communication fields.

The deployment of multi-hop relay and forwarding has broad future applica-
tion prospects, particularly in deep-sea areas where there are few users as it can
save deployment costs and makes data transmission between users more flexible.
However, many problems related to the reliability of multi-hop relay transmission
still need to be solved to ensure the reliability of service transmission, especially
how to avoid packet congestion in the network. To this end, some recent works
have proposed various solutions [5].

Under the new situation, Ad Hoc network communication can be regarded
as a layered control network system composed of multiple agents, which adopts
edge computing and relies on the distributed parallel mode among intelligent
groups to share information and make collaborative decisions, and finally com-
pletes the communication task [8]. At the same time, edge computing reduces
the network communication load and improves the system operation efficiency
through independent decision-making, key information sharing and task collabo-
ration. In the process of multi-agent execution, cooperative and efficient routing
is crucial to improve network performance. This problem is called multi-agent
communication planning. Designed to generate good communication routes that
guide packets from the source node to the specified destination node.

Recently, many scholars have solved large-scale problems by assigning global
control to local agents, which is a significant improvement over centralized rein-
forcement learning [3]. Unfortunately, in the case of limited communication, each
agent is only partially observable of the environment, so it is easy to fall into local
optimality. However, for large collaborative communication problems, the cen-
tralized RL approach is usually not feasible because: 1) Collecting all the mar-
itime observations in the network to form a global state, which in practice causes
high latency; 2) The joint action space of each agent grows exponentially with the
increase of the number of agents. Therefore, it is more effective and reasonable
to make the large-scale cooperative communication as a cooperative multi-agent
decision-making system, that is, each agent controls by local observation.

Distributed wireless maritime Ad Hoc networks use distributed scheduling
[9], where nodes share local observations to avoid congestion during message
transmission. In distributed networks, nodes only need to maintain and forward
the information of neighbour nodes to complete resource scheduling, therefore
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reducing frequent signalling forwarding between nodes, and greatly reducing
overheads compared with centralised networks [6]. Therefore, the in-depth study
of distributed wireless multi-hop maritime Ad Hoc networks is of great signif-
icance to the development and future application of wireless communication
networks.

We treated each node of the maritime Ad Hoc network as an agent and
transformed the routing planning problem into a multi-agent communication
problem. This paper combines reinforcement and federated learning and pro-
poses that the resulting combined federated reinforcement learning should be
combined to solve the above issues. In reinforcement learning to learning as a
testing evaluation process, the agent chooses an environment action and the
environment, after accepting the action state change, simultaneously produces
a strengthening feedback signal (award or punish) to the agent.

Federated learning stores the data of each node locally so the federated sys-
tem can establish a virtual common model without violating data privacy laws
and regulations by exchanging encrypted parameters [7,12]. In this paper, the
actions selected in federated reinforcement learning (FRL) not only affect the
current node reinforcement value, but also affect the neighbouring states and
final reinforcement value. This virtual model is in effect a combined optimal
model; however, when creating virtual models, the data itself does not move,
nor does it compromise privacy or affect data compliance. In this way, con-
structed models achieve adjacent region goals in their respective regions. The
main contributions of this paper are as follows.

1. Modeling and Formulation: We formulate the distributed joint routing
problem under maritime and network as markov decision process. For dis-
tributed decision making, we aim to reduce the total cost of communication
computation while considering the impact of other agents’ decision results
on the current agent. In addition, we hope that the algorithm can take into
account the similarity and difference between nodes.

2. Algorithm Design: Joint reinforcement learning proposed by us can
improve the efficiency of distributed routing planning through joint learn-
ing of similar nodes. Considering the differences of network nodes, it solves
the problem that distributed routing planning of large-scale Ad hoc networks
cannot adapt to the dynamic changes of network topology.

3. Experimental Verification and Evaluation: We performed extensive sim-
ulations to evaluate the FRL algorithm. The simulation results not only verify
the theoretical tradeoff of FRL, but also show that the FRL algorithm can
effectively reduce the total cost of the system and improve the level of algo-
rithm personalization.

The remainder of this paper is organized as follows. A typical mobile maritime
Ad Hoc network model is given in Sect. 2 and problem formulation is presented
in Sect. 2.4. FRL algorithm is proposed, as well as its advantages in processing
heterogeneous data are demonstrated in Section in Sect. 3. In Sect. 4, Simulation
results of packet routing planning demonstrate the superiority of the proposed
method. We conclude this paper with future work in Sect. 5.



282 C. Han et al.

2 Problem Formulation

Maritime Ad Hoc networks receive signals wirelessly. Information can be for-
warded to other nodes beyond the wireless transmission range of its own node,
that is, any network topology can be formed through wireless connection. It is
also a self-organising, infrastructure-free wireless network.

2.1 The Maritime Ad Hoc Network Model

A typical mobile maritime Ad Hoc network model is shown in Fig. 1. In this
model, every node in the network is mobile, there is no fixed infrastructure,
and the status of nodes is equal. Each node (mobile terminal) is responsible for
forwarding packets, finding routes, and maintaining paths. A node faces both a
user and a device. Due to the wireless coverage of nodes, fixed object blocking
and other reasons, communication between nodes in maritime Ad Hoc networks
is generally multi-hop. As shown in Fig. 1, nodes A and I cannot communicate
directly, but can communicate through the path A-B-D-F-I.

Fig. 1. An illustration of Ad Hoc network

2.2 Data Packet

Network data is transmitted in packets, and each packet has a sending node,
destination node, and a current node [10]. We use the arrival time and arrival
rate of packets to evaluate routing decisions. If the packet arrives at the desti-
nation node before the specified time or exceeds the specified time, the current
packet will be deleted, and new packets will be injected into the network. The
data packets P = {P1, · · · , Pn} can be transmitted on nodes J = {J1, · · · , Jm}.
The packet has parameters i, j, c ∈ {1, · · · ,m}, where i represents the sending
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node, j represents the receiving node, and c represents the current node. Nodes
include sending queues, receiving queues, sending power, growth rate, and other
attributes. The growth rate is expressed as λ ∈ {0, 1}, it represents the change
of the number of packets on nodes.

2.3 Optimization Objectives

The goal is to minimise the total time delay for transferring data depending on
the network state. How to select the route, i.e., which node is the next packet hop
to different nodes, can be summarised as a mathematical agent action selection
problem. In this interpretation, the node plays the role of an agent, the packet
route can be represented by the node action, and the channel quality can be
expressed as the edge weight.

We transformed the maritime Ad Hoc network packet routing problem into
a multi-agent behaviour selection problem. Corresponding to the multi-agent
approach, we use s ∈ S to represent the state set of adjacent nodes, s represents
a specific state, a ∈ A represents a limited action set, and a represents a specific
action. Let T (S, a, S′) ∼ Pr(S, a, S′) be the agent transition model which pre-
dicts the next state s′ based on the current state S and action a, where the Pr

represents the probability of taking action a from s to s′; R(s, a) = E[Rt+1 |s, a ]
be an immediate reward for an action taken by an agent.

2.4 Problem Formulation

In this section, we propose a formula for the time delay minimisation problem
based on reinforcement learning. A certain agent behavioural strategy leads to a
positive reward in the environment, and then the tendency of the agent to enact
this behavioural strategy in the future will be strengthened [4]. The agent’s goal
is to discover the optimal strategy in each discrete state to maximise the desired
discount reward. We assume that the source domain is UA = {(xA

i , yA
i )}MA

i=1 , and
the target domain is UB = {(xB

i , yB
i )}MA

i=1 , DA and DB are the hidden special
invariants between the source domain and the target domain respectively. We
define the classification function of the target domain as:

ψ(dA
i ) =

1
LA

LB∑

j

yB
i dB

i (dA
i )′ = ΦBΩ(dA

i ) (1)

The objective function is shown as follows:

arg min
ΘA,ΘB

L1 =
Mc∑

i

l1(yB
i , Ψ(dA

i )) (2)

arg min
ΘA,ΘB

L2 =
MAB∑

i

l2(dB
i , dB

i ) (3)
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The overall objective function is shown as follows:

arg min
ΘA,ΘB

L = L1 + γL2 +
λ

2
(
∥∥ΘA

∥∥2
+

∥∥ΘB
∥∥2

) (4)

3 Proposed Algorithms

To achieve efficient route allocation with lower time delays, isolated routing
problems are transformed into multi-agent cooperative optimisation problems.
We propose a federated reinforcement learning algorithm, which attaches a fed-
erated learning mechanism with similar nodes to reinforcement learning.

3.1 Motivation for Algorithm

In order to minimise the total packet forwarding process time, i.e., the waiting
time plus transfer time, it is necessary to make optimal routing decisions based
on the observations of surrounding nodes. Considering the policy similarity of
neighbouring nodes, we used federated reinforcement learning to schedule the
next hop packet selection.

The traditional centralized routing decision algorithm is not suitable for this
scenario, especially when the number of packets is large. Another scenario is that
centralized dispatching can lead to significant wait times when the packet is in an
area where communication is poor. Based on the above problems, we consider to
use a distributed routing decision algorithm. Meanwhile, since this problem has
many influencing factors and is entangled with each other, it is not convenient
to solve it in an analytical way, so we use the method of federated reinforce-
ment learning to solve it. Intelligent routing algorithm based on reinforcement
learning is able to handle higher dimensions of state characteristic information
network, adaptive to different application scenarios and changes in the network
environment, the reinforcement learning model and gives the intelligent routing
algorithm not only focus on the current routing effect, more predictable future
network status changes, and in advance to avoid network congestion what might
happen in the future.

3.2 The Learning Common Policy Features of Similar Nodes

In an maritime Ad Hoc network, similar nodes have similar data and rout-
ing policies. They are expected to improve the inference accuracy of the model
through joint learning. We cannot just apply federated learning to both sides of
the data because the routing policies of different nodes are different. Both par-
ties establish a reinforcement learning routing decision model, which have been
recognised by their users in data acquisition. The problem is then how to estab-
lish high-quality models at each terminal. Due to incomplete or insufficient data,
the reinforcement learning model at each end may not be established or lacks the
ideal effect. Federated reinforcement learning can solve this problem by ensuring
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that the data of each node does not go out locally, allowing the federated system
to optimise the learning model of all parties through an encrypted parameter
exchange. However, when creating virtual models, the data itself does not move,
nor does it compromise privacy or affect data compliance. Consequently, the
constructed models serve only local goals within their respective regions.

Fig. 2. Node association learning

Partition neighbor path planning based on federated learning focuses on how
to map the data of neighbor nodes and current nodes from the original feature
space to the new feature space. In this way, the data distribution of the base
neighbor node is roughly the same as that of the current node, so that the labeled
data samples of the base neighbor can be better used for classification training
in the new space, and finally the data of the current node can be classified. To
this end, we carry out feature mapping of nodes with close distance, so that
neighbor nodes can be used to guide the model parameters of joint nodes with
the trained model. Of course, there should be some structural similarity between
the topology diagram of neighbor nodes and the current node. As shown in Fig. 2,
we first train the neural network according to the red node data, and then take
the trained neural network as the alternative network of the actual node. When
new nodes join, or the data packet transmission rule of the current network
changes, for example, the blue node and red topology are updated online by
using federated learning method.

The reinforcement signal provided by the environment in federated reinforce-
ment learning is an evaluation (usually a scalar signal) of the action generated
by the agent, rather than telling the agent how to generate the correct action.
Since the external environment provides little information, the agent must learn
with similar nodes. Therefore, agents gain knowledge in an action-by-action eval-
uation environment and improve action plans to adapt to the environment. The
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aim of the reinforcement learning system is to dynamically adjust the parameters
to achieve the maximum reinforcement signal. As the reinforcement signal R and
the action a generated by the agent do not have a clear functional description,
the gradient information R/a cannot be obtained. Therefore, in the reinforce-
ment learning system, a random unit is needed. With this random unit, the
agent will search in the possible action space and find the correct action.

Fig. 3. An illustration of association learning

3.3 Cooperative Scheduling Mechanism Based on Transmission
Task Completion

In reinforcement learning, the target of an agent is formally represented as a
special signal, called reward, which is transmitted to the agent through the
environment. At each time, reward is a single scalar value. Informally, an agent’s
goal is to maximize the total reward it receives. This means that it’s not the
immediate rewards that need to be maximized, but the cumulative rewards that
need to be maximized over time. The use of reward signals to formalize goals is
one of the most distinctive features of reinforcement learning.

The multi-agent path planning algorithm designed in this paper introduces
the design reward of transmission task completion to carry out cooperative opti-
mization under the framework of reinforcement learning, as demonstrated in
Fig. 3. The principle of cooperative optimization algorithm is to decompose a
complex objective function into simple sub-objective functions, and then carry
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out cooperative optimization of these sub-objective functions. Specifically, col-
laborative optimization is to optimize each sub-objective function while consid-
ering the results of other sub-objective functions, so that the optimization results
among sub-objective functions can be consistent. The consistency of optimiza-
tion results means that the values of each variable can be consistent in the
optimization results of each sub-objective function.

The completion degree of this task represents the completion degree of trans-
mission, and the feedback of task execution takes the difference between decision-
making route and baseline route as reference. Effect prediction action coordina-
tion is mainly responsible for interaction eigenvalues of interested agents within
the communication range. The information exchange of task completion is helpful
for Agent coordination and strategy formulation in real scenes, and the inter-
active environment map information is helpful for a single Agent to execute
decisions and avoid falling into local optimal solutions.

In this architecture, target behavior is learned from downstream task-specific
rewards without any communication oversight. However, complex real-world
tasks may need to take into account the interaction of agents after they complete
their actions, such as the occurrence of congestion. Therefore, this capability
needs to be enhanced by using a multi-round communication method, through
which agents coordinate before taking action on the environment. First of all,
each agent wants to transmit its own expected action and other agents accept
the expected action of other agents at the same time. Then, according to the
expected action of other agents, it changes its own action through the expected
return and makes the real action. The agent then interacts with the real action
environment. The state transition function of the decision is given by:

p(sn
′, a′|sn, a) = Pr(sn+1,t = sn

′, An+1,t

= a′, Rn+1,t = a′|sn,t = sn, An,t = a) (5)

p(sn
′, r|sn, a) = Pr(st+1,t = s,Rt+1,t = a′|s t = s,At = a) (6)

3.4 Common Network Parameter Aggregation Methods

Each neural network is composed of two modules, namely a private network
module and a common network module. In a private network, the federated
reinforcement learning algorithm allows it to retain the private features. With
the adjacent nodes’ features from the common network, the action network out-
put nodes can effectively complete a random search and greatly improve the
possibility of selecting suitable actions. Furthermore, the entire action network
can be trained online. With auxiliary network environment modelling, evalua-
tion of networks based on the current status and external reinforcement signal
simulation environment is used to predict a scalar value. This allows one step,
and multi-step, prediction by the action network current actions to strengthen
the signal applied to the environment, advance to the relevant action network to
provide the candidate actions of intensive signals, and provide more information
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on rewards and punishments (internal reinforcement signal) [1]. This reduces
uncertainty and speeds up learning.

The network operation is divided into two parts: reinforcement feedback cal-
culation and joint parameter calculation. In reinforcement feedback calculation,
the time-series differential prediction method (TD) and back-propagation algo-
rithm (BP) are used to learn the evaluation network whilst genetic operation of
the mobile network is conducted, and the internal reinforcement signal is used as
the mobile network fitness function. Joint parameter calculation determines the
weighted average of the parameters of similar nodes so that they can learn from
each other. The private network provides more effective internal reinforcement
signals to the mobile network, compelling it to produce more appropriate actions.
The common network signals enable both the mobile and evaluation networks to
learn together with similar nodes, thus greatly accelerating the learning of the
two networks.

4 Performance Evaluation

Experimental Setup. The connections between nodes represent specific chan-
nels. When multiple data packets are transmitted on the network, they become
congested at important nodes, which seriously affects the transmission capability
of the entire system. We used federated reinforcement learning to make routing
decisions and plan the routing choices of each packet at different nodes.

Simulation Results and Analysis. To simplify the simulation, we assume
that the order of packets in the transmission queue does not change. Therefore,
if the current packet is blocked, all subsequent packets will be blocked. To ensure
that the total number of packets in the network will not exceed the upper limit,
when the number of packets reaches the upper limit, one packet will be generated
for every delivered packet. The packet generation rule pi,j,k is as follows:

pi,j,k = pi,i,k when pi,j,k = pi,k,k (7)

i, k = random(0, n) (8)

In the simulation we adopted this method to solve the maritime Ad Hoc
network routing decision problem. To demonstrate the advantages of the FRL
method, we chose to use the shortest path algorithm and Q-learning method for
the simulation. The shortest path algorithm is a commonly used algorithm in
the field of routing planning. The shortest path problem is a classical algorithm
problem in graph theory, which aims to find the shortest path between two nodes
in a graph. The learning algorithm allows the system to select the optimal action
set by using the experienced action sequence in the Markov environment.

In Fig. 4, we depict the average delivery time versus the number of packets.
Average delivery time is the time it takes for a packet to travel from its source to
its destination. The number of packets was gradually increased from 500 to 5000,
to study the effect of packet density. The trend of the points in the figure shows
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Fig. 4. Simulation results

that the average delivery time increases with packet density. The FRL algorithm
has a slightly better performance than the Q-learning algorithm and is clearly
better than the shortest path algorithm, thus reflecting the superiority of the
algorithm. The relationship between the number of packets and the average
packet idle time is shown in the Fig. 4. It can be seen that the FRL algorithm
performs better in terms of average packet idle time. Therefore, nodes using the
FRL algorithm have superior scheduling ability and avoid long idle packet times.

Through simulation, it was verified that the FRL algorithm can better solve
packet congestion, ensure the speed of network transmission and make full use
of node performance to avoid long packet idle times.

5 Conclusion

This paper investigated the distributed routing planning problem in maritime
Ad Hoc networks with rapid topology changes and limited network bandwidth.
With the aim of maximising throughput, the problem of transferring data effi-
ciently was transformed into a congestion avoidance problem. Considering the
differences in network nodes, the FRL is proposed to improve the efficiency of
distributed routing planning through joint learning of similar nodes. Based on
the dynamic data of the dedicated communication simulation system, the sim-
ulation results verify the performance of our method. In future work, we will
study the application of FRL in private networks.
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