
Lei Wang
Michael Segal
Jenhui Chen
Tie Qiu (Eds.)

LN
CS

 1
34

72 Wireless Algorithms, 
Systems, 
and Applications
17th International Conference, WASA 2022 
Dalian, China, November 24–26, 2022 
Proceedings, Part II



Lecture Notes in Computer Science 13472

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558


Lei Wang ·Michael Segal · Jenhui Chen ·
Tie Qiu (Eds.)

Wireless Algorithms,
Systems,
and Applications
17th International Conference, WASA 2022
Dalian, China, November 24–26, 2022
Proceedings, Part II



Editors
Lei Wang
Dalian University of Technology
Dalian, China

Jenhui Chen
Chang Gung University
Taiwan, China

Michael Segal
Ben-Gurion University of the Negev
Beer-Sheva, Israel

Tie Qiu
Tianjin University
Tianjin, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-19213-5 ISBN 978-3-031-19214-2 (eBook)
https://doi.org/10.1007/978-3-031-19214-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-19214-2


Preface

The 17th International Conference on Wireless Algorithms, Systems, and Applications
(WASA 2022) was held in Dalian during November 24–26, 2022. The conference
focused on new ideas and recent advances in computer systems, wireless networks,
distributed applications, and advanced algorithms that are pushing forward the new
technologies for better information sharing, computer communication, and universal
connected devices in various environments, especially in wireless networks. WASA has
become a broad forum for computer theoreticians, system and application developers,
and other professionals in networking-related areas to present their ideas, solutions,
and knowledge of emerging technologies and challenges in computer systems, wireless
networks, and advanced applications.

The technical program of WASA 2022 consisted of 94 regular papers and 68 short
papers, selected by the Program Committee from 265 full submissions in response to
the call for papers. All submissions were reviewed by at least 115 Program Committee
members in a 115 double blind process. The submissions cover numerous cutting
edge topics: cognitive radio networks; software-defined radio and reconfigurable radio
networks; cyber-physical systems (CPSs) including intelligent transportation systems
and smart healthcare systems; theoretical frameworks and analysis of fundamental
cross-layer protocol and network design and performance issues; distributed and
localized algorithm design and analysis; information and coding theory for wireless
networks; localization; mobility models and mobile social networking; mobile cloud;
topology control and coverage; security and privacy; underwater and underground
networks; vehicular networks; radar and sonar networks; PHY/MAC/routing protocols;
information processing and datamanagement; programmable service interfaces; energy-
efficient algorithms; systems and protocol design; operating system and middleware
support; algorithms, systems, and applications of the Internet of Things (IoT); and
algorithms, systems, and applications of edge computing, etc. In the first place, we
would like to express our grateful appreciation for all Program Committee members
for their hard work in reviewing all submissions. Furthermore, we would like to give
our special thanks to the WASA Steering Committee for their consistent leadership and
guidance; also, we would like to extend our gratitude to the the local chairs (Jingang
Yu, Zumin Wang, and Jie Wang), the publication chairs (Chi Lin, Lei Shu, Guangjie
Han, and Pengfei Wang), the publicity chairs (Zichuan Xu, Haipeng Dai, Zhibo Wang,
and Chenren Xu), organizing chairs (Dongsheng Zhou and Zhenquan Qin), and theWeb
chair (Bingxian Lu) for their remarkable contributions to WASA 2022, ensuring that it
was a successful conference. In particular, we wish to express our deepest respect and
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thankfulness to all the authors for submitting and presenting their outstanding ideas and
solutions at the conference.

November 2022 Lei Wang
Michael Segal
Jenhui Chen

Tie Qiu
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Algorithms, Systems, and Applications
of Internet of Things



Unsupervised Deep Learning-Based
Hybrid Beamforming in Massive MISO

Systems

Teng Zhang1, Anming Dong1,2(B) , Chuanting Zhang3 , Jiguo Yu2 ,
Jing Qiu4 , Sufang Li1 , Li Zhang1,2, and You Zhou5

1 School of Computer Science and Technology, Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250353, China
tengzhang qlu@163.com, anmingdong@qlu.edu.cn

2 Big Data Institute and School of Mathematics and Statistics, Qilu University
of Technology (Shandong Academy of Sciences), Jinan 250353, China

3 Department of Electrical and Electronic Engineering, University of Bristol,
Bristol BS8 1UB, UK

4 School of Mathematical Science, Qufu Normal University, Qufu 273100, China
5 Shandong HiCon New Media Institute Co., Ltd., Jinan, China

Abstract. Hybrid beamforming (HBF) is a promising approach for bal-
ancing the hardware cost, training overhead and system performance
in massive MIMO systems. Optimizing the HBF through deep learn-
ing (DL) has gained considerable attention in recent years due to its
potential in dealing with the nonconvex problems. However, existing DL-
based HBF methods require wider or deeper neural networks to guaran-
tee training performance, which not only leads to higher complexity in
training and deploying, but also increases the risk of over-fitting. In this
paper, we propose a low-complexity HBF method based on convolutional
neural network (CNN) to solve the spectral efficiency (SE) maximization
problem with constant modulus constraint for the analog phase shifters
over the transmit power budget in a multiple-input single-output (MISO)
system. An unsupervised learning strategy is derived for the constructed
CNN to learn to generate feasible beamforming solutions adaptively and
thus avoiding any label data when training them. Simulations show its
advantages in both SE and complexity over other related algorithms.
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1 Introduction

Massive multiple-input multiple-output (MIMO) has been proposed as a promis-
ing solution to meet the requirements of high rate and low latency [1–3], which
can compensate for the severe path loss of millimeter wave (mmWave) signals by
utilizing a large number of antennas at the transceivers. However, new challenges
are posed to massive MIMO since the traditional fully digital beamforming is pro-
hibitively expensive, where dedicated radio frequency (RF) chain is demanded
for each antenna [4]. To overcome such issue, hybrid beamforming (HBF) is
proposed by combining baseband digital beamformer and analog beamformer
in RF domain [5,6]. The HBF architecture significantly reduces the number
of RF chains by connecting much fewer RF chains to the antennas via analog
phase shifters thereby lowering hardware costs. It gains the benefits of tradi-
tional beamforming while providing high beamforming gain. Implementing HBF
is non-trivial, since the phase shifters introduce nonconvex constant modulus
constraint. Many efforts have been dedicated to address the HBF optimiza-
tion. Paper [7] proposed an orthogonal matching pursuit-based spatially sparse
(SOMP) algorithm that transforms the HBF matrix design into reconstruct-
ing the sparse matrix of the signal. An orthogonal codebook vector model is
designed in [8] to avoid matrix inverse operations in the optimization process,
thus reducing the computational complexity. Paper [9] proposed an manifold
optimization-based alternating minimization (MO-AltMin) HBF algorithm. An
element-based iterative algorithm was proposed in [10] to further improve the
performance. In [11], an exhaustive search method is used for beam selection
based on the maximum signal-to-noise ratio (SNR). These works focus mainly
on iterative algorithms, which require considerable time for iterative operations
and high computational complexity.

Deep learning (DL) is a powerful tool to deal with complex nonconvex opti-
mization problems for its excellent learning and feature extraction capabilities
[12–14]. A boom in applying DL to HBF design has emerged in recent years [15–
20]. In [15], the authors considered a coordinated beamforming system that uses
a DL model to learn how to predict the beamforming vector directly by using
the signal received at the distributed base station (BS). [16] used deep neu-
ral networks to establish mapping relationships to enhance HBF performance.
[17] solved three beamforming optimization problems using DL to design near-
optimal beamformer. All these papers use supervised learning to train the net-
work. Supervised learning based on local optimal cannot achieve good perfor-
mance, since it is hard to obtain global optimal solutions for nonconvex optimiza-
tion problems. Moreover, the performance of supervised learning relies heavily
on a large amount of label data, but the label data is not easily available in
wireless communication. Besides, [18,19] using multiple fully connected layers to
construct network models may increase the computational complexity.



Unsupervised DL-Based Hybrid Beamforming in Massive MISO Systems 5

Fig. 1. SU-MISO system architecture with hybrid (analog and baseband) beamforming.

To overcome these challenges, we propose a low-complexity HBF scheme based
on convolutional neural network (CNN) trained by an unsupervised learningmech-
anism. Specifically, we formulate a HBF optimization problem for a multiple-input
single-output (MISO) system to maximize the throughput subject to constant
modulus constraint of the phase shifters and power constraint at the transmit-
ter. To solve such a nonconvex problem, we construct a novel CNN architecture,
which takes the analog beamformer as the optimization target. It employs multiple
convolutional blocks to extract more channel features. Besides, a self-defined net-
work layer is designed to make the output satisfy the constant modulus constraint.
CNN automatically extracts all important features during the weight updating
back-propagation process, which offers a greater advantage over the inefficient
manual feature extraction [21]. Compared with fully connected neural network
(FCNN)-based algorithm [18], the number of parameters and floating-point oper-
ations (FLOPs) of our proposed CNN are reduced significantly due to the fea-
ture sharing of convolutional operations, which will result in lower computational
complexity. Considering that it is nontrivial to obtain high quality label data, we
attempt to train the CNN through an unsupervised mechanism. To this end, we
construct a loss function that is the negative of the objective function of the formu-
lated noncovex problem. Given the channel state information (CSI) data, the CNN
is then trained by minimizing such a loss function, which equivalently maximizes
the achievable rate, without needing any optimal beamformers as label data. Sim-
ulations shown that the proposed CNN-based unsupervised learning HBF scheme
is capable of optimizing the beamformers effectively and performs superior to the
referenced FCNN-based scheme with much lower complexity.

2 System Model and Problem Formulation

2.1 System Model

We consider a downlink MISO communication system shown in Fig. 1, which
transmits data to the user by a HBF transmitter. In this scenario, a BS equipped
with a single RF chain and Nt antennas transmits a data stream to a single
antenna user in an ideal channel environment. We assume that the BS at the
transmitter is equipped with the uniform linear array (ULA) consisting of Nt
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antenna units. Generally, the antenna spacing r is half of the transmission wave-
length λ, i.e., r = 0.5λ. The input signal s at BS obeys a complex Gaussian
distribution with mean 0 and variance 1, i.e., it satisfies s ∼ CN(0, 1).

In the HBF system, the input signal s first passes through the digital beam-
former vD, which is actually a scalar since there is only one RF chain at the
transmitter side. The signal s is then converted to analog phase shifters through
a RF chain, and then the transmit signal x = vAvDs ∈ C

Nt×1 is constructed by
passing through the analog beamforming vector vA ∈ C

Nt×1. The whole down-
link HBF vector can be expressed as v = vAvD, where v is an Nt×1-dimensional
complex vector. After that the transmit signal x passes through a channel h to
get the received signal y at the receiver side. The received signal at the user is
given as

y = hHvAvDs + n, (1)

where h ∈ C
Nt×1 denotes the downlink channel gain complex vector. n stands for

the additive Gaussian white noise obeying a complex Gaussian distribution with
zero mean and variance σ2, i.e., n satisfies n ∼ CN(0, σ2). Besides, σ2 represents
the noise power. The achievable spectral efficiency (SE) of the HBF system is
then calculated as R = log2

(
1 + |hHvAvD|2

σ2

)
.

2.2 Problem Formulation

We assume that the analog beamformer is implemented by simple phase shifters
with adjustable phase and nonadjustable amplitude. Under this assumption,
the elements of the analog beamforming vector vA are constrained by constant
modulus, i.e., |[vA]i|2 = 1,∀i = 1, 2, . . . , Nt. The goal is to find the feasible
beamformer by maximizing the SE of the MISO system subject to the constant
modulus constraint and transmit power constraint, which is formulated as

max
v

log2
(
1 +

|hHvAvD|2
σ2

)
(2a)

s.t. |vAvD|2 ≤ Pmax, (2b)

|[vA]i|2 = 1,∀i = 1, 2, . . . , Nt. (2c)

Since ‖vA‖2F = Nt, the constraint term (2b) is equivalent to |vD|2 ≤
Pmax/Nt. Moreover, the rate function is monotone increasing on |vD|2, which
means the equality of (2b) must be satisfied, otherwise the rate can be fur-
ther improved by increasing the transmit power. The optimal digital precoding
parameter is then given by v∗

D =
√

Pmax

Nt
. As a result, HBF optimization prob-

lem (2) is regenerated to find the optimal analog beamforming vector, which is
written as

max
vA

log2
(
1 +

Pmax|hHvA|2
Ntσ2

)
(3a)

s.t. |[vA]i|2 = 1,∀i = 1, 2, ..., Nt. (3b)
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Fig. 2. The proposed neural network architecture for hybrid beamforming design.

Problem (3) is still nonconvex due to the constant modulus constraint thus
hard to solve. Recently, a FCNN-based deep learning method is proposed to solve
it in [18]. Although the FCNN-based method is verified to be effective in finding
a solution, it is not known whether better solutions can be achieved by other
deep learning methods. This motivates our work in this paper to develop a dif-
ferent neural network architecture on top of CNN to solve the HBF optimization
problem (3).

3 Proposed CNN-Based Hybrid Beamforming
Optimization

In this section, we propose a CNN-based framework to solve the HBF opti-
mization problem. CNN is chosen since it not only has better feature extraction
capability, but also can reduce the number of learning parameters by sharing
weights and biases through convolution kernels, which is potential in improving
performance with low computational complexity. We also derive an unsupervised
scheme to train the CNN.

3.1 CNN Structure

Our designed CNN structure is shown in Fig. 2, which consists of an input layer,
multiple convolutional (Conv) blocks, a fully connected layer, two self-defined
layers, and an output layer. We adopts three Conv blocks for feature extraction.
Each Conv block includes a Conv layer, a batch normalization (BN) layer, an
activation layer and a dropout layer inside. The hyperparameter settings of each
layer are shown in Table 1. A brief description of these network layers is given
below.

1. Input Layer: A three-dimensional (3-D) matrix with real numbers of size
1×Nt×2, as the input of the first Conv layer. To simplify complex operations,
we convert the complex CSI vector h into its corresponding real part and
imaginary part, which is fed to the neural network. In this work, we split the
real and imaginary part of each complex channel vector and rearrange them
into a 3-D real matrix with size 1 × Nt × 2 in an element-wise manner.
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Table 1. Parameters of the proposed DL-based HBF model

Layer No × Co Activation func. Number of params.
(when Nt = 64)

Input Nt × 2 – 0

Conv Block 1 (Nt − 2) × 16 ELU 176

Conv Block 2 (Nt − 4) × 8 ELU 424

Conv Block 3 (Nt − 6) × 4 ELU 116

Flatten 4 (Nt − 6) – 0

Dense Nt × 1 Sigmoid 14912

Lambda-1 Nt × 1 – 0

2. Conv Blocks: The Conv layer takes the input signal and convolves it by con-
volution kernels to produce the output signal. Specifically, The Conv layer
employs Co kernels of size 1 × 3 with stride 1 to perform feature extraction
for the real and imaginary parts of the input channel matrix, respectively.
The BN layer normalizes the output of the Conv layer. BN is a regularization
technique that prevents overfitting and achieves faster learning, thus acceler-
ating convergence. The Exponential Linear Units (ELU) activation function
performs activation on the output of the BN layer. It can alleviate the gradi-
ent disappearance problem by positive value identification. And it has better
robustness to negative value input. After that, Dropout layer is added, which
is a technique to force the output of some neurons to zero with random prob-
ability. The random probability is set to 0.05 to avoid the over-regularization
problem.

3. Flatten Layer: After extracting the features from the CNN blocks, the Flatten
layer converts these multi-dimensional features into a one-dimensional vector.
In order to improve convergence, we add a BN layer after the Flatten layer,
which is omitted in Fig. 2 for simplicity.

4. Dense Layer: The Dense layer consists of Nt neurons, which is connected to
the outputs of the Flatten layer. The output of the Dense layer corresponds to
the phase vector θ of the analog beamformer, which can be used to construct
the analog beamformer through the relationship of vA = ej2πθ . The sigmoid
activation function is used to map the output of the neurons of the Dense layer
to the range of (0, 1). The activated output vector of this layer is denoted
as co = Sig (x) (Woci + bo), where Sig (x) � 1

1+e−x denotes the sigmoid
activation function, co ∈ R

Nt×1, Wo ∈ R
Nt×4(Nt−6), ci ∈ R

4(Nt−6)×1 and
bo ∈ R

Nt×1 represent output vector, weight matrix, input vector and bias
vector of this layer, respectively.

5. Lambda Layers: Since we expect to obtain the analog beamformer through
the relationship vA = ej2πθ , we devise a Lambda layer for such a transform,
which is named as Lambda-1 in Fig. 2 and the output of which is vA. Through
the Lambda-1 layer, we map the real values of θ into complex values of
vA. Moreover, we further devise the Lambda-2 layer to convert the analog
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beamformer vA into a real value through a function FLoss (v∗
D,vA) � −R,

which denotes the loss function and is defined as the negative of the rate
function. We note that the output layer is used also as the loss function,
this is a key point to design an unsupervised training scheme, which will be
described in the following.

3.2 Training Strategy

The goal of the training is to find the feasible analog beamformer by maximiz-
ing the SE. The channel samples are fed into the proposed CNN-based model
in batches for offline training. Note that the training weights are saved during
the training process. We train the proposed CNN-based model with 1000 epochs
and there are 16 batches per epoch. We use the Adam optimizer to update the
network parameters such as weights and biases with the initial learning rate
of 0.01. A learning rate dynamic decay strategy is also used. Specifically, if no
improvement in model performance was seen in each 20 epochs, the learning rate
was reduced by the factor of 0.2. We train the network using the unsupervised
learning mechanism, which is achieved through the Lambda-2 layer. Recall that
the Lambda-2 is designed to be the loss function, the output of which is the neg-
ative of the rate. By defining such a Lambda function, we can train CNN without
using the label data, i.e., the optimal analog beamformers for the input CSI sam-
ples, and thus achieve unsupervised learning for the constructed network. The
parameters of the CNN network are then optimized though batch optimization.
For the given training batch, the parameters are updated by minimizing the loss

FLoss = − 1
N

N∑

n=1

log2
(
1 +

γn|hH
n v(n)

A |2
Nt

)
(4)

where N denotes the total number of training samples in a batch. γn = Pmax

σ2 , hn,
v(n)
A represent the SNR value, channel vector and analog beamforming vector of

the n-th sample in the training batch.

3.3 Complexity Analysis

Considering only the online stage, we compare the complexity of the proposed
CNN-based HBF scheme, the FCNN-based scheme [18] and traditional HBF
scheme [9,10] in terms of the number of parameters and FLOPs. Assume that
the number of input neurons in each layer is Ni, the number of output neurons is
No, the number of input channels is Ci, and the number of output channels is Co.
Each Conv layer consists of Co kernels of size 1 × z, where we set z = 3, and we
also learn that No = Ni−z+1 for each Conv layer. When calculating FLOPs, we
consider bias, so the number of FLOPs in the Conv layer is 2×z ×Ci ×Co ×No,
and the number of FLOPs in the Dense layer is 2 × Ni × No. According to
the parameters shown in Table 1, it can be calculated that the total number of
FLOPs for the proposed CNN-based algorithm is about 0.09 million, the number
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of FLOPs for the FCNN-based algorithm [18] is around 0.15 million while Nt =
64. However, the traditional HBF schemes such as [9,10] have higher complexity
due to a large number of complex iterative operations, and the number of FLOPs
is approximately 0.26 million.

4 Simulation Results

We consider a downlink MISO system model where a BS equipped with Nt trans-
mit antennas and one RF chain serves a single-antenna user for HBF design. This
section compares the performance of the proposed CNN-based HBF algorithm
with the full digital beamforming algorithm and two traditional HBF schemes
[9,10], using simulation experiments. Furthermore, we refer to the network archi-
tecture in [18] and comparison with the FCNN-based HBF algorithm. To ensure
the generality of the network, we have given different realizations of h to con-
struct two datasets, each consisting of 100 channel samples. 90% of the first
dataset is selected as the train set for training the network model, and the
remaining 10% is used as the validation set. The validation set is used to adjust
the hyperparameters of the neural network during the training process to maxi-
mize the generalization ability of the model to achieve accurate prediction of new
data. The second dataset is used as the test set to evaluate the final performance
of the model. The simulation experiment environment is deployed on a computer
with Windows 10 OS as well as NVIDIA GeForce GTX 1650 GPU and Intel(R)
Core(TM) i7-10750 CPU, and the model training is based on Python 3.7 and
Tensorflow 2.0.0. All simulation results are obtained by taking the average of all
channel realizations.

Specifically, we use two typical channel models (i.e., Rayleigh fading channel
and geometric mmWave channel) as the channel h between BS and user for
correlation simulations. We assume the elements of Rayleigh fading channel are
independent and identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian random variables. Besides, we adopt a geometric mmWave
channel model with limited clusters, which can be expressed as

hH =

√
Nt

L

L∑

l=1

αlaH
t (θl) , (5)

where L = 3 denotes the number of clusters between the BS and the user.
αl ∼ CN(0, 1) stands for the complex gain of the l-th cluster. at (θl) indicates
the transmitting antenna array response vector at the BS, and furthermore θl is
the azimuth angles of departure(AoD) of the l-th cluster.

The learning rate setting is crucial when training the model, since it controls
the magnitude of parameters updated per time. Figure 3 shows the SE perfor-
mance versus SNR of the proposed scheme with various learning rates in large
geometric mmWave channel with Nt = 64. Obviously, the learning rate setting
of 0.01 has the highest SE value, while setting it to 0.5 or 0.0001 will not give
excellent SE performance. This is because too high the learning rate will cause



Unsupervised DL-Based Hybrid Beamforming in Massive MISO Systems 11

larger update amplitude and the parameters to be optimized fluctuate around
the minimum value and do not converge, while too low will cause converge slowly.

Figure 4 illustrates the convergence performance of the proposed CNN struc-
ture with 1000 epochs and learning rate of 0.01 in large geometric mmWave
channel with Nt = 64. At the beginning of the training stage, the training
weight parameters are not optimal, thus the loss value for the first few epochs
are quite large. As the training proceeds, the parameters tend to be optimal
and the loss decreases abruptly. After that, the system loss function tends to be
stable with very small fluctuations and low loss value.
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Fig. 3. SE performance versus SNR of the proposed scheme under various learning
rates in geometric mmWave channel with Nt = 64.
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Fig. 4. Convergence performance of the proposed scheme in geometric mmWave chan-
nel with Nt = 64.

Figure 5 gives the comparison of SE performance under different beamform-
ing schemes in large Rayleigh fading channel with Nt = 64. The full digital
beamforming method provides higher SE compared to HBF schemes. It can
be seen that under the same channel samples, the proposed CNN-based HBF
scheme achieved better performance than traditional HBF iterative algorithms,
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and obtained higher SE than the FCNN-based scheme. Furthermore, except for
Rayleigh fading channels, our proposed HBF design scheme is also applicable to
mmWave channel with limited clusters. Figure 6 compares the performance of
the proposed algorithm with other beamforming algorithms in large geometric
mmWave channel when Nt = 64. With increasing SNR, the performance of our
proposed algorithm is followed only by the fully digital beamforming algorithm
and has much higher SE than other HBF algorithms. As mentioned above, in
both classical channel scenarios, our proposed CNN-based scheme has higher SE
performance compared to the traditional HBF algorithms and FCNN.
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Fig. 5. Comparison of spectral efficiency performance under different schemes in
Rayleigh fading channel with Nt = 64.
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Fig. 6. Comparison of spectral efficiency performance under different schemes in geo-
metric mmWave channel with Nt = 64.

Finally, the detailed complexity comparison when Nt = 64 is shown in
Table 2. The analysis of the number of parameters and FLOPs shows the great
superiority of the proposed CNN-based scheme over other scheme in terms
of complexity. Moreover, the significant reduction in complexity leads to the
increase in execution speed. We also compare the average execution time of
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the proposed CNN-based HBF scheme, the FCNN-based scheme as well as the
two traditional schemes, as shown in Table 3, where we set Nt = 64. It can be
noticed that the traditional scheme [9] has the highest execution time, followed
by scheme [10]. The execution times of the two HBF traditional schemes are
much higher than the two schemes using DL. Since FCNN has the ability of
global perceptive, FCNN has a serious issue, i.e., there are too many parame-
ters. While CNN can achieve local perception, the weights of different neurons in
the Conv layer are shared, which greatly reduces the parameters and improves
the training performance of the whole network, and can extract features more
effectively. Meanwhile, CNN can handle the coupling between different elements
more efficiently than FCNN [20]. It is shown that the proposed CNN model
obtained superior performance compared to FCNN.

Table 2. Complexity comparison

HBF scheme Number of params. Number of FLOPs

Proposed CNN-based 16556 0.09 million

FCNN-based [18] 75720 0.15 million

Traditional – 0.26 million

Table 3. Execution time comparison

HBF scheme Execution time

Proposed CNN-based 0.3223 s

FCNN-based [18] 0.3338 s

Traditional [9] 11.9553 s

Traditional [10] 9.5333 s

5 Conclusion

In this paper, we proposed a low-complexity HBF optimization scheme for the
downlink MISO system, which employed a CNN-based network framework and
used an unsupervised learning mechanism for training. The simulation results
demonstrated the effectiveness of the scheme. The proposed scheme was com-
pared with other existing works in terms of complexity and SE performance.
Our proposed CNN-based HBF algorithm achieved higher SE performance with
lower complexity compared to traditional HBF algorithms and FCNN. The work
we have done provides a novel solution and offers an effective fresh idea for the
HBF optimization.
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Abstract. PIFuHD can generate high-resolution model in the process of human
3D reconstruction. However, PIFuHDwill produce debris outside the human body
when the image background is more complex. In order to solve this problem, this
paper develops an adaptive BSCO algorithm for the background of human body
and image of human body in 3D reconstruction system. The BSCO algorithm is
divided into four steps in processing. First, BSCO algorithm uses Go-selfies to
separate the background. Second,BSCOalgorithmconverges theRGBof all pixels
of the character into a set. Third, BSCO algorithm finds the greatest difference
from the set through HSV conversion. Fourth, BSCO algorithm weighs the set
and then calculates the RGB score. The highest score of RGB is used as the RGB
of the background after solid color optimization. The experimental results show
that the proposed method improves the reconstruction effect of PIFuHD.

Keywords: PIFuHD · 3D reconstruction · Image processing · Background
adaptive

1 Introduction

1.1 A Subsection Sample

Nowadays, the intelligent devices have been popularized to all walks of life, such as
clothing industry, medicine, etc. This makes 3D human modeling of images not only a
reality, but also a trend of universal application. The relevant applications are as follows.
Combining 3D reconstruction and 3D topology can handle 3D fingerprint recognition
[1]. The volumetric network predicts the animated skeleton of the 3D joint model to help
the doctor’s treatment [2]. 3D reconstruction could identify hidden 3D living space for
search and rescue management [3]. These applications have higher requirements for the
completeness and accuracy of the reconstruction of the human body model.

Until this moment, the best 3D reconstruction algorithm for the image of human
body is PIFuHD proposed by Shunsuke Saito et al. [4]. It is a multi-level pixel alignment
implicit function for high-resolution 3Dhumanbodydigitization. It solves the limitations
of deep neural networks in the field of 3D reconstruction by developing an end-to-end
trainable multi-level architecture.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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However, all 3D reconstruction methods including PIFuHD have a problem that
the reconstruction effect is greatly affected by background factors. The background
mentioned in this article shows the person/object in the photo such as tennis player will
be the foreground of the photo. Also, everything related to the person including their
items, clothes, etc. will not be regarded as the background. Due to the complexity of the
real world, the 3D reconstruction effect of the picture is poor in some cases. For example,
the reconstruction of athletes wears green sportswear on the green field. Affected by the
background color, the current algorithm is hard to distinguish which part is the green
field and which part is the athlete.

Therefore, background processing plays a very important role in the reconstruc-
tion process. To solve the above problems, this paper proposes the Background Solid
ColorOptimization algorithm(BSCO). Thismethod reduces the influence of background
factors on the reconstruction effect by optimizing the background.

The contributions of this paper are summarized as the following as two parts.

1. This paper firstly proposes BSCO algorithm. It reduces the influence of background
factors on 3D reconstruction by optimizing the original image. BSCO algorithm can
be used for 3D reconstruction of human body in any scene.

2. This paper improves PIFuHD algorithm. The BSCO algorithm combines PIFuHD
to make the output of the final 3D reconstruction method more accurate.

The structure of this paper is as follows. The second part is related work, which
introduces the 3D modeling technology and lists the relevant symbols of the formula.
The third section introduces the method of this paper. The fourth part is the experimen-
tal results and analysis. Finally, the fifth part presents conclusions and future research
directions.

2 Related Work

2.1 Research Status of 3D Reconstruction Technology

Early 3D reconstruction, such as [5, 6], uses a set of simple geometric elements for
reconstruction. Also, some models can show human facial expressions [7]. Later, some
papers mention that deep neural network is used for reconstruction [8, 9]. Thesemethods
are only limited for the bare human body, not for reconstructed clothes or accessories.
In order to solve this problem, [10] proposes a contour based on reconstruction method
of dressed human body. Up to now, many methods have solved the problems of memory
efficiency and resolution through implicitly defined continuous neural representation.
PIFuHD is based on the Pixel-Aligned Implicit Function (PIFu) framework. In order
to get higher resolution outputs, PIFuHD superimposes an additional pixel alignment
prediction module on this framework. In the prediction module, the fine module inputs
an image with a resolution of 1024 × 1024 and then encodes it into an image feature
with a resolution of 512 × 512 [4].

2.2 Symbol Table

This section summarizes the related symbols and meanings as shown in Table 1.
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Table 1. Symbol table.

Symbol Meaning

yP Predictive value

yt The label of the corresponding pixel

IL Low-resolution image

FL Frontal normal graph

BL Negative normal graph

gL Multi layer perceptron for processing low-pixel images

Z Depth under the camera’s visual angle

IH High-resolution image

FH High-resolution frontal normal map

BH High-resolution negative normal map

gH Multi layer perceptron for processing high-pixel images

�(X) Global characteristics of the previous stage

xnew Performance evaluation results

xav Average value of single experiment

xmin Minimum value during a single experiment

xmax Maximum value during a single experiment

BGRGB Final background color

3 Method

The algorithm proposed in this paper is an improvement of PIFuHD algorithm, which
combines BSCO and PIFuHD. Part A introduces the overall framework of the algorithm.
Part B describes the BSCO algorithm proposed in this paper. And then, part C introduces
PIFuHD algorithm.

3.1 PIFuHD Algorithm Framework for Solid Color Optimization

The algorithm proposed in this paper consists of two parts. First, the background is
adaptive conversion based on BSCO algorithm. The BSCO algorithm is divided into four
steps, background removal, RGB conversion, weight processing, and weight statistics.
Second, the function of PIFuHD algorithm is reconstruction. Also, the image processed
by BSCO is used as the input of PIFuHD. Finally, PIFuHD outputs the reconstructed
model.

As shown in Fig. 1, compared with the original PIFuHD algorithm, the algorithm
proposed in this paper has four steps to process the original image. There are Go-selfies,
RGB conversion function �(RGB), weight processing function �(�), and statistical
function of RGB score δ(�). After the above four steps, the algorithm can generate
1024 * 1024 high-resolution image and 512 * 512 low-resolution image. As shown in
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Fig. 1. PIFuHD algorithm framework for solid color optimization

➀ and ➁, the algorithm respectively generates the image features of both 512 * 512 and
128 * 128 after coding. As long as passing through the multi-layer perceptron, the 3D
embedding generated by 128 * 128 image features is combined with the 3D embedding
generated by 512 * 512 image features. The high-resolution result is generated through
the multi-layer perceptron. Also, the 3D embedding generated by 128 * 128 image
features produces low resolution results through multi-layer perceptron.

3.2 BSCO

This section introduce BSCO algorithmwhich flow chart is shown as Fig. 2. The process
is divided into four steps as below.

Step (1) Background Removal. This step removes the background of the image and
reduces the influence of background factors on 3D reconstruction algorithm. The Go-
selfies are used by BSCO for background removal. It uses the model architecture of
encoder and decoder. The encoder is based on VGG16 and ResNet34 classification
models. The decoder is composed of up-sampling featuremap and corresponding feature
map of decode. Go-selfies find the best learning rate through the circular learningmethod
and fine tune the model [13]. It establishes eight models for experiments according to
different resolutions and encoders. The best model is determined by comparing dice
coefficient, binary cross entropy loss, and confusion matrix [14]. The specific evaluation
indicators are as follows.

Dice coefficient. It needs predicted data and real data. The closer the coefficient is
to 1, the better the performance of the model. Both |X| and |Y| represents the number
of pixels in the foreground. The definition is as following as formula (1).

Dice = 2|X ∩ Y|
|X| + |Y| (1)
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Fig. 2. The flow chart of BSCO algorithm

Binary cross entropy loss. The yp is the predicted value and yt is the label of the
pixel. The loss function is defined as formula (2).

loss = (−ytlog(yp) − (1 − yt)log(1 − yp)) (2)

Confusion matrix. The N is the number of images as defined in formula (3).

Accuracy =
∑

NCorrect predicted pixels
All pixels in each image

N
(3)

Step (2) RGB Conversion. This step converts RGB values of pixels to HSV values and
applies to supplement the preprocessing of the character background. Function �(RGB)

can return an RGB set�. The element of the set has the largest difference from the RGB
of the pixel corresponding to the character. First, it converts the RGB of each pixel of the
character intoHSV.Then, it set R

′
i = Ri

255 ,G
′
i = Gi

255 , P
′
i = Pi

255 , Cmax = max(R
′
,G

′
,B

′
),

and Cmin = min(R
′
,G

′
,B

′
). RGB conversion is shown in formulas (4), (5), and (6).

H =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if Cmax = Cmin

60 × ( G
′−B

′
Cmax−Cmin + 0), if Cmax = R

′

60 × ( B
′−R

′
Cmax−Cmin + 2), if Cmax = G

′

60 × ( R
′−G

′
Cmax−Cmin + 4), if Cmax = B

′

(4)

S =
{
0, if Cmax = 0
Cmax−Cmin

Cmax ,Otherwise
(5)

V = Cmax (6)

The HSV is then processed to set. Hi = ⌊ H
60

⌋
mod6, P = V× (1−S), q = V× (1−

( H
60 − Hi) × S), t = V × (1 − (1 − H

60 + Hi) × S). And then, the formula (7) converts
HSV to RGB.

(R,G,B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(V, t, p), if H = 0
(q,V, p), if H = 1
(p,V, t), if H = 2
(p, q,V), if H = 3
(t, p,V), if H = 4
(V, p, q), if H = 5

(7)
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Step (3) Weight Processing. This step assigns weights for each element of RGB set
after Step (2). The RGB weights of each part of the human body are different. The
function of character and background is very important for 3D modeling. Therefore,
BSCO algorithm does weight processing for different parts of character.

As shown in Fig. 3, the weights of different parts of character are 0.6, 0.3, and 0.1
from outside to inside. The outer layer of character has the greatest influence on the
modeling results. So it occupies the largest weight. The middle layer and inner layer still
have an impact on the modeling results. For example, the color of the clothes is the same
as the background color. At this time, the middle layers and inner layers will affect the
algorithm’s judgment on the outline and details of the character. However, this effect is
mainly reflected in the reconstruction of character details. The middle layers and inner
layers have little effect on the algorithm’s judgment of the character contour, so the total
impact is 0.4. The calculation is shown in formula (8). In the formula (8), �i is the RGB
set of the layer i.

� =
∑3

i=1
�i × Wi (8)

W1=0.6 W2=0.3

W3=0.1

Fig. 3. Weight distribution graph

Step (4) Weight Statistics. Based on the result of Step (3), this step finds a maximum
value of weight for the final image background. The function of δ(�) is to count the
scores of all RGBs in set �. The highest score is the solid color of the character image
to optimize the background color. The pseudo code is as follows.



22 C.-H. Hsieh et al.

Algorithm Statistics of background adaptation results

Input: The result set obtained by weighting Λ
Output: Final background color BGRGB
1:  Define κ as the set of RGB that exists in Λ
2:  for rgb1 in Λ
3:    for rgb2 in κ
4:      if rgb1 = rgb2
5:     The corresponding RGB in κ plus the rgb1 score

6:      end if

7:    end for

8:  end for

9:  Define BGRGB   and set the initial value to 0

10:  for rgb in κ
11:    if rgb > BGRGB
12:      BGRGB   

13:    end if

14:  end for

15: return 

The pseudocode is described as follows. First, the algorithm defines κ to include all
RGB in�. All elements in κ can not be repeated. Next, the algorithm traverses all RGBs
in set � and calculates the score of each RGB into � to generate a complete κ. Finally,
the algorithm returns the RGB with the highest score in κ. This score is the RGB of the
dynamically optimized background color.

3.3 PIFuHD

PIFuHD realizes 3D modeling through rough estimation and fine reconstruction. First,
in the rough estimation operation, the resolution of the input image is 512 × 512. After
processing, it obtains the embedded features of 128 × 128. In the fine reconstruction
operation, the resolution of the input image is 1024 × 1024. After processing, it obtains
the embedded features of 512× 512. Then, the extracted high-resolution embedded fea-
tures and the roughly estimated low-resolution embedded features are used to predict the
position of the three-dimensional point [4]. PIFuHD improves the traditional modeling
method and proposes a multi-layer method. It inputs high-resolution images to establish
a high-precision model. This algorithm is divided into two stages.
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1) The first stage. The original input image is sampled to generate a 512 × 512
low-resolution image. A 128 × 128 low-resolution image feature is achieved through
the model. At the same time, the input includes both front and back normal map as
following by the formula(9). The XL(xL ∈ R2) is the position of the 3D point X image
space projection.

fL(X) = gL(�L(xL, IL,FL,BL, ),Z) (9)

2) The second stage. The resolution of the input image is 1024 × 1024. After
processing, it obtains the image feature model of 512 × 512. This is different from
the first stage resolution 128 × 128 image feature. The 512 × 512 resolution image
feature obtains the three-dimensional model fine details. Both the original 1024 × 1024
resolution image and 512 × 512 resolution image features need to be input together, as
well as high-resolution frontal and backside normal maps. Because the second stage is
based on the features of the first stage construction, so the result is better than the output
of the first stage. The fine level is denoted as belows.

fH(X) = gH(�H(xH, IH,FH,BH, ),�(X)) (10)

In the formula (10), XH(xH ∈ R2) is the high-resolution 2Dprojection position. Function
�H extracts image features from high-resolution input and its structure is similar to
low-resolution feature extractor �L.

4 Experiment

This experiment compares the modeling results preprocessed by BSCO algorithm with
the modeling results without preprocess. At the same time, this paper analyzes the model
reconstruction effect, face details, time consumption, and CPU utilization.

4.1 Experimental Environment

The hardware configuration of the experiment is Intel i5-7200u processor, NVIDIAGTX
1650 4 GB video memory. The test set is 1000 human body images randomly selected
from the COCO [15] data set.

4.2 Experimental Results

The results of modeling by PIFuHD are compared with the results of modeling after
BSCO algorithm preprocessing, as shown in Fig. 4(a), (b), (c), and (d).
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Fig. 4. Comparison of modeling results

4.3 Experimental Analysis

1) Data analysis. The comparison of reconstruction time, reconstruction effect, and
quantitative results is analyzed as follows.

Fig. 5. Time consuming experimental results
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a) Reconstruction time
As shown in Fig. 5, the reconstruction with BSCO pretreatment took 70 s. The

reconstruction without BSCO pretreatment took 74 s. The BSCO pretreatment only
took 8 s.

b) Reconstruction effect
It can be seen from Fig. 4 that the 3D reconstruction effect of human body has been

improved to a certain extent after background optimization. For example, the prediction
of the back of the human body in Fig. 4(a) is more precise. The reconstruction of the
tennis racket can be shown in Fig. 4 (b). And, both the front and back of the human body
in Fig. 4(c) have a good reconstruction effect, which reflects the better results of this
paper.

Table 2. Quantitative results.

Methods Norm Cosine ↓ Norm L2 ↓ CD (cm)↓ Occ L1 ↓
PIFuHD [4] 0.181 0.544 2.008 5.837

PIFu [11] 0.103 0.376 0.592 2.079

PaMIR [12] 0.097 0.361 0.554 1.977

Our 0.180 0.550 2.002 5.832

c) Comparative analysis of quantitative results
Norm Cosine, Norm L2, CD, and Occ L1 were calculated as shown in Table 2. This

experiment consideres the surface normal of the reconstructed mesh and the ground
active mesh. It calculates the L2 and cosine distances between Norm Cosine and Norm
L2. Also, it calculates the chamfer distance (CD) between the ground live mesh and
the reconstructed mesh. The results can be used to measure the overall quality of the
reconstruction. Finally, this experiment calculates the average between the predicted
and actual ground occupancy (Occ L1), which can evaluate the algorithm’s original
prediction of the character. Because BSCO algorithm is used for preprocessing before
PIFuHD algorithm to reconstruct the picture, the quantitative comparison of the four
methods is similar to PIFuHD. The difference for output image is more accurate than
PIFuHD.

2) Performance evaluation. This experiment records the average CPU utilization, aver-
age RAM usage, and time consumption of each experiment in the process. The min-max
formula (11) is used to standardize the three parameters. The evaluation index SUM is
used to evaluate the performance of each experiment as shown in formula (12).

Xnew = xav − xmin

xmax − xmin
(11)

SUM = (CO + MFP) × 0.5 + CPUtime × 0.5 (12)

Among them, CO represents the average CPU utilization of a single experiment. MFP
represents the average RAM usage of a single experiment. The CPUtime shows the
completion time.
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Table 3. Equipment occupancy.

BSCO algorithm used CPU CPUtime RAM SUM

N 4.313 7.3 4.60 8.10

Y 7.022 6.7 4.71 9.22

As shown in Table 3, the SUMwith BSCO algorithm is 9.22. Also, the SUMwithout
BSCO algorithm is 8.10. From the Table 3, the image using BSCO algorithm for 3D
reconstruction has the better effect than image without BSCO algorithm.

5 Conclusion and Future Work

This paper uses the BSCO algorithm to improve the stability of the PIFuHD algorithm
for background adaptation. The experimental result represents to BSCO algorithm that
can get great 3D reconstruction effect. This paper proves the effectiveness of the 3D
reconstruction method. In the future, the 3D reconstruction of human faces should be
one of important research topics.
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Abstract. Line crossing detection is to check whether people or objects
go across a given barrier line, which is quite common and important
in our daily life, such as the EAS checkpoint in a retail store or the
finish line in track and field. Although existing solutions to line crossing
detection have achieved great advancement, they do not function well
when multiple objects or people cross the line at the same time. In this
paper, we propose a new RFID-based solution called RF-Line to the
problem of line crossing detection, especially for multi-object scenarios.
The biggest challenge is that the RFID reader’s coverage zone is invisible
and irregular; we cannot roughly take the time when a tag is seen by the
reader for the first time as the time when line crossing occurs. In RF-
Line, we deploy two antennas opposite each other and collect the RF
phase profiles of two antennas at the same time. By a series of geometric
transformations and mathematical derivations, we find that summing up
the two phase profiles will get a new phase curve, in which the inflection
point of the curve is the time of line crossing. We implement RF-Line with
commodity RFID systems. Extensive experiments show that RF-Line
can achieve accurate line crossing detection with a small error of 6.1 cm,
with no need for any system calibration or complicated deployment.

Keywords: RFID · Line crossing detection · Mobile localization

1 Introduction

Line crossing detection is to check whether and when people or objects go across
a given barrier line, which is quite common and important in our daily life. For
example, in a retail store, line crossing detection is deployed on the electronic
article surveillance system (EAS) for detecting pass in and out of customers [1].
If an attacker passes the EAS door with improperly bought items, the system
sets off alarms and alerts staff to an attempted theft in progress. In track and
field, high-resolution cameras are used to capture images and compute the time
when athletes hit the finish line, which determines the winner and ranking of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Applications of line crossing detection.

the game. In robotics, the technology of line crossing detection can be applied to
create a virtual wall, which is an invisible barrier that robots won’t cross. That
makes it easy to confine a robot to a particular area or room, and prevents it
from approaching anything dangerous [2,3], which is shown in Fig. 1.

Existing solutions to line crossing detection generally fall into three cate-
gories: infrared sensor [4,5], camera [6,7], and virtual wall [2,3]. Infrared sensor
detects line crossing by measuring infrared light radiating from objects in its field
of view, which is widely used in security alarms. It tracks general movements
but does not tell who or what moved. Camera uses image processing algorithm
to recognize the movement of people or objects over a given virtual line. It can
be used to detect people crossing over the fence or entering some restricted area.
In robotics, a robot constructs the virtual wall, which is an invisible barrier that
the robot cannot cross in automatic path planning. Although existing solutions
to line crossing detection have achieved great advancement, they do not func-
tion well in the case of detecting concurrent line crossing, i.e., multiple objects
or people cross the line at the same time.

In this paper, we propose a new solution called RF-Line to the problem of
line crossing detection by using Radio Frequency Identification (RFID). As a
non-contact passive sensing technology, RFID has attracted increasing attention
in recent years and has been widely used in various fields, such as object tracking
[8–13], warehouse inventory [14–17], library management [18]. Each RFID tag
has a unique ID that exclusively indicates every tagged object and brings them
item-level intelligence. By tracking tags in real-time, we can figure out when the
tagged people or objects go across a given barrier line, especially for multi-target
scenarios. However, this is not easy. The biggest challenge of RF-Line is that
the interrogation zone of an RFID reader is irregular and unpredictable since
the reader’s signals are susceptible to various factors, e.g., the reader planning,
multi-path effects, material of tagged objects, surroundings. We cannot roughly
take the time when a tag is seen by the reader for the first time as the time
when line crossing occurs. Mobile RFID localization is a feasible solution, but it
needs complicated system deployment, accurate calibration, or high computation
overhead. For example, PinIt and BackPos [10,19] have to perform a set of
calibration experiments to eliminate diversity. Tagoram [8] needs to know the
antenna’s position in advance and is also compute-intensive.
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Fig. 2. The tag passes the y-axis.

Unlike localization, line crossing detection concerns whether and when people
or objects go across a given barrier line, instead of the tag’s coordinates at any
time. RF-Line breaks down this problem into two parts. First, when the tag
moves along the line parallel to the plane of the antenna (e.g., tagged luggage on
conveyor belt), we keep collecting RF phases of the tag and form a phase profile
with timestamps. By removing the periodicity of the phase profile and using
curve-fitting of hyperbola, we are able to get an inflection point that indicates
the time when line crossing happens. Second, in a more generalized case where
the tag’s trajectory is uncertain, we deploy two antennas opposite to each other
and collect the RF phase profiles of two antennas at the same time. By a series of
geometric transformations and mathematical derivations, we find that summing
up the two phase profiles will get a new phase curve, in which the inflection
point is the time of line crossing. We implement RF-Line with commercial off-
the-shelf (COTS) RFID reader (Impinj R420 [20]) equipped with two antennas
(Laird S9028PCR [21]). Extensive experiments show that RF-Line can achieve
accurate line crossing detection with a small error of 6.1 cm, with no need for
any system calibration nor complicated deployment.

2 Problem Definition

An RFID system typically consists of some tags and one or more readers (anten-
nas). Each tag is attached to an object to exclusively indicate the associated
object. By communicating with a tag, the antenna can obtain the attributes of
the tagged object or the information of physical-layer signals emitted by the tag.
As shown in Fig. 2, let the center of an antenna be the origin O. If one antenna
is used, the y-axis is on the line perpendicular to plane of the antenna. If two
antennas are deployed, the y-axis is the line that goes through the two centers of
the antennas. The x-axis is perpendicular to the y-axis. In RF-Line, the problem
of line crossing detection is to check whether and when people or objects go
across the y-axis. This is quite common and important in our daily life, such as
the EAS checkpoint in a retail store or the finish line in track and field.

The difficulty is that the interrogation zone of an RFID antenna is not a
line. Instead, its shape is irregular and unpredictable since the antenna’s signals
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are susceptible to various factors, e.g., the antenna planning, multi-path effects,
and surroundings. We cannot roughly take the time when a tag is seen by the
antenna for the first time as the time when line crossing occurs. For ease of
presentation, we just use a one-tag case to show how RF-Line works in what
follows. If multiple tagged targets go across the line at the same time, we can
classify the collected data based on the tag ID and deal with each tag’s data
individually. Hence, the multi-tag case can be easily reduced to one-tag case.

As the tagged target moves, the distance between the antenna and the tag
keeps changing, which leads to the variance of RF phase that is our vehicle
for line crossing detection. The RF phase reflects the offset degree between the
received signal and the sent signal of electromagnetic wave, ranging from 0 to
2π (360◦), which is a common parameter supported by COTS readers, e.g.,
Impinj R420 [20]. Suppose the distance between the reader antenna and the tag
is d. According to the round-trip backscatter communication, the signal travels
a total distance of 2d. In addition, the tag’s reflection coefficient, the reader’s
transmission circuit, and the reader’s receiver circuits will also cause extra phase
rotations, which are denoted as θTAG, θTX and θRX respectively. The phase
output θ can be expressed as follows:{

θ = (2π × 2d
λ + μ) mod 2π

μ = θTX + θRX + θTAG,
(1)

where λ is the wavelength. The term μ is called diversity term, which is deter-
mined by hardware characteristics. As shown in Fig. 2, when a tagged object
moves, the antenna keeps querying tags and collecting a sequence of RF phase
values together with the corresponding timestamps, which is a phase profile of
the tag, denoted by {(θ̂1, t1), ..., (θ̂n, tn)}. The objective of RF-Line is to use this
profile to estimate whether and when the tag crosses the y-axis.

3 RF-Line

3.1 Basic Idea

We first consider a simple case that the tag moves along the x-axis at a constant
speed, which is demonstrated in Fig. 2. This can be used in some applications
such as conveyor belt in the airport for baggage check or delivery of cargo from
storage. In this case, we use one antenna and keep collecting signals from the
tag and label each of the corresponding phase value with the timestamps. The
labeled RF phase is denoted by {(θ̂1, t1), ..., (θ̂n, tn)}, which forms a phase profile.
In this profile, the x-coordinate is the timestamp and the y-coordinate is the
phase value. We find that the phase value looks symmetrical due to the tag’s
movement. As the tag moves, the displacement between the antenna and the
tag first decreases and then increases after reaching a minimum when crossing
the barrier line, resulting in a symmetrical phase pattern in the phase profile.
We draw a typical pattern in Fig. 3. As we can see, the phase value repeatedly
reduces from 2π to 0 until the tag reaches the nearest place to the antenna. After
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Fig. 5. With DTW.

that, the phase value starts to increase from 0 to 2π periodically and results in
an inflection point in this pattern. The inflection point happens when the tag
passes the antenna. Through its timestamp, we can easily know when the tag
crosses the line (i.e., the y-axis of the coordinate). To find the zero-crossing of
the derivative, we use a threshold test. The phase value whose first derivative is
equal to zero will be chosen as the inflection point and its y-coordinate indicates
when the tag crosses the line.

3.2 Line Crossing Detection with Time Warping

In this subsection, we consider a more generalized case that the object moves
at a non-uniform speed. In this case, the curve of RF phase will be compressed
or stretched as the speed of the tag changes. To solve this problem, we use
the Dynamic Time Warping(DTW) algorithm. DTW is one of the algorithms
for measuring similarity between two temporal sequences, which might be with
different lengths. Assume two phase profiles are X and Y with the lengths of
M and N respectively. DTW defines a warping path w in the form of w =
w1, w2, ..., wK , where Max(M,N) ≤ K ≤ M +N . The form of wk is (i, j), where
i represents the ith coordinate in M and j represents the jth coordinate in N .
The warping path W must begin with w1 = (1, 1) and end with wK = (M,N)
for ensuring that every coordinate in M and N appears in W . In addition, i and
j of w(i, j) in W must be monotonically increased, which means:

wk = (i, j), wk+1 = (i′, j′), i ≤ i′ ≤ i + 1, j ≤ j′ ≤ j + 1. (2)

The result warping path is the one with the shortest distance D as follows:

D(i, j) = Dist(i, j) + min{D(i − 1, j),D(i, j − 1),D(i − 1, j − 1)}, (3)

where Dist(i, j) = ||xi − yj ||, xi and yj are the ith and jth elements of phase X
and phase Y. The aim of the algorithm is to find out the final warping path w
that minimizes D(M,N) by using dynamic programming.

Figure 4 and Fig. 5 show the results of DTW algorithm. The curve of the
measured phase profile and the theoretical phase profile matches well. DTW



RF-Line: RFID-Based Line Crossing Detection 33

Fig. 6. Two antennas. Fig. 7. The sum of phases
of two antennas.

Fig. 8. Non-linear trajec-
tory.

algorithm uses global matching to get the best matching point. The point in the
measured phase curve which corresponds to the inflection point of the theoretical
curve with DTW is considered as the time when the tag passes y-axis.

3.3 Generalized Cases

In this subsection, we discuss three more generalized situations. First, we assume
that the tag moves along a straight line which is not parallel to x-axis, at a
constant speed. The point closest to the antenna is not on the line perpendicular
to plane of the antenna, which means the x-coordinate of the inflection point
of the phase profile does not correspond to the time when the tag passes the
y-axis. To handle this problem, we deploy one more antenna and try to find the
inflection point by jointly considering both of their phase values. As shown in
Fig. 6, two antennas are on the y-axis, opposite to each other. The inflection
points happen when the tag is located at p1 and p2. Let t1, t2, and t be the time
when the tag passes p1, p2, and the y-axis, respectively. We have:

t1 − t

a1
=

t − t2
a2

, (4)

where a1 and a2 means the distance from p1 to A and that of p2 to B. According
to Sect. 3.1, t1 and t2 can be calculated. If the value of a1 and a2 can be obtained,
then we can get the time t as desired. To do so, we can deal with a1 and a2

individually. Hence, the problem is reduced to one-antenna case. As shown in
Fig. 2, the antenna is at the origin and the coordinate of the tag is (a, b). When
the tag moves at a constant speed of v along the x-axis, the location of the tag
is (a − vt, b) at the time t. Hence, the distance d at the time t is:

d =
√

b2 + (a − vt)2. (5)

Substituting Eq. (5) in Eq. (1) and remove the periodical pattern of the phase
profile, we get the phase value:

θ =
4π

λ

√
b2 + (a − vt)2 + μ. (6)
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Fig. 9. System deployment.

Deforming the formula, we have:

(θ − μ)2

( 4π
λ )2b2

− (t − a
v )2

b2

v2

= 1, (7)

where a, b and v are considered as constants, θ and t are variables. This formula
shows that the curve of the phase profile is actually half of a hyperbola. Hence,
we can get the estimates of b by using one of the existing curve-fitting algorithms
of hyperbola. Then we can use this method to calculate a1 and a2 in Eq. (4),
and finally calculate the desired time t.

However, when the tag does not move at a constant speed, the above method
does not work. As a result, we propose a new method by jointly considering the
phase measurements from the two antennas. As shown in Fig. 7, when the object
moves, we assume the distances from the tag to the two antennas are d1 and d2
and the distance between two antennas is d. Obviously, d1 + d2 ≥ d because the
sum of the two sides of a triangle is greater than the third. The value of d1 + d2
reaches the minimum when the object passes the y-axis. Assume that the phase
values of the object read by the two antennas are θ1 and θ2 respectively, then
we can get the formula according to Eq. (1):

θ1 + θ2 = (
4π(d1 + d2)

λ
+ μ) mod 2π. (8)

As aforementioned, the sum of the two phases also first repeatedly reduces from
2π to 0, then suddenly changes to 2π. When the object passes the y-axis, the
sum reaches a local minimum and then starts to increase, from 0 to 2π. So the
figure of θ1 + θ2 also has an inflection point with x-coordinate corresponding
to the time when the object passes the y-axis, which is similar to the method
we introduced in Sect. 3.1. We also determine this by calculating the first-order
derivative and the point whose first-order derivative is equal to 0 is just the
inflection point and its x-coordinate is just the line crossing time.

Note that the method we introduced above also works when the tag does
not move linearly as shown in Fig. 8. In this case, the minimum of the sum of



RF-Line: RFID-Based Line Crossing Detection 35

the two phases also holds if and only if the tag crosses the y-axis. Therefore, the
same method can be used to infer the time when the tag’s trajectory is a curve.

4 Evaluation

4.1 System Setup

As shown in Fig. 9, we build a prototype of RF-Line. The system mainly con-
sists of two parts: an RFID module and a robot module. The RFID module
consists of an RFID reader, two antennas, and several RFID tags. The reader
model is Impinj Speedway R420 [20] with working frequency ranging from 920
to 924 MHz. The antenna model is Laird S9028PCL [21] with 8 dBm signal gain.
The two RFID antennas are deployed in opposite directions and both of them
are connected to the same reader through a cable line. The tag model is Impinj
H47 [20]. The valid data acquired by the reader will be forwarded to a backend
server through WIFI. We use the Robot Operating System (ROS) to synchro-
nize the clock of the reader and the backend server. The robot module consists
of a robot and several RFID tags. We attach tags to the robot, which is used
to perform line crossing. The robot model is TurtleBot2 [22] with programable
moving trajectory. The ground truth is recorded through a camera.
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Fig. 10. Accuracy of different trajectories.
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Fig. 11. Impact of moving speed.

4.2 Accuracy

In this subsection, we set up the real scenarios and compare the accuracy of RF-
Line with a state-of-the-art localization method called Tagoram [8]. We use the
exact passing line time obtained by the camera as ground truth. Tagoram is a
localization work that can also be used to detect passing line time obviously. We
study the impact of different parameter settings on distance error and compare
the performance of our method with Tagoram under different scenarios.

We keep collecting phase values from the tag while the tag on the robot
is moving in three different trajectories: straight line, slanted line and curved
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line, respectively denoted as case 1, case 2 and case 3. Then we observe the
distance errors of RF-Line, Baseline solution and Tagoram. As shown in Fig. 10,
the distance errors of Tagoram and RF-Line are 7.90 cm and 4.47 cm respectively
in the straight line scenario. The distance errors of Tagoram and RF-Line are
9.01 cm and 6.23 cm respectively in the slanted line scenario. The distance errors
of Tagoram and RF-Line are 11.33 cm and 7.48 cm respectively in the curved
line scenario. Clearly, we can see that RF-Line is superior to Tagoram under
the three cases. Figure Next, we discuss the impact of different factors on the
accuracy, i.e., the moving speed, the number of tags, and the angle of antenna
rotation.

Impact of Moving Speed. In the experiment, we vary the speed v of the
robot from 20 cm/s to 45 cm/s, which covers most of the situations in practice.
As shown in Fig. 11, the results show that RF-Line outperforms Tagoram at
all testing speeds. The distance errors are 4.47 cm, 5.01 cm, 5.48 cm, 5.55 cm,
5.82 cm, 7.39 cm when the speed is 20 cm/s, 25 cm/s, 30 cm/s, 35 cm/s, 40 cm/s,
45 cm/s. Besides, it is worth noting that the detection error increases as the
speed of robot increases. This is because a higher speed will reduce the sampled
data from the tags, which has same impact on the estimate accuracy.
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Fig. 13. Impact of antenna placement.

Impact of Number of Tags. In a multi-tag case, the system needs to detect
multiple line crossing events at the same time. More tags will decrease the sam-
pling rate of the reader for each tag, which shall have a negative effect on the
detection accuracy. To study this impact, we vary the number of tags used in
the system and test the corresponding accuracy. In all experiments, the robot
moves along a straight line at a constant speed of 20 cm/s. As shown in Fig. 12,
the distance error is 5.69 cm when the number of tags is 200, which is 1.24 cm
bigger than non-interference condition. Clearly, the error is not large as well.
The results illustrate that the number of tags has little impact on our method.
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Impact of Antenna Placement. Next, we collect the data when the two
antennas use different rotation angles. We rotate the angle of two antennas from
5◦ to 30◦, and observe the detection accuracy. The results are shown in Fig. 13.
As we can see, the distance error increases as the rotation angle increases. This
is because the rotation of the antenna will result in some errors in its phase
measurements. A larger angle causes a lower detection accuracy.

5 Related Work

Existing solutions to line crossing detection generally fall into three categories:
infrared sensor based systems [4,5], camera based systems [6,7,23] and virtual
wall [2,3,24]. Infrared sensor detects line crossing by measuring infrared light
radiating from objects. It can detect a line crossing when the object is closed to
sensors, which is widely used in an access control system. Camera based system
recognizes object moving through image processing. By observing the pixels of
the object, the line crossing event can be detected as well. In robotics, a robot
constructs the virtual wall, which is an invisible barrier that the robot can not
cross. When the robot is close to the virtual wall, its navigation system will
give immediately change its moving trajectory. These line crossing systems have
already been widely used but they still do not run well in many practical cases,
i.e., multiple objects or people cross the line at the same time.

RFID, as a non-contact passive sensing technology, can solve this problem.
There is no direct solution to line crossing detection, but similar RFID localiza-
tion work. RFID localization work can be divided into two types, RSSI based
methods [10,25] and RF phase based methods [8,18]. RSSI based methods usu-
ally appear in some early works. These methods commonly need to deploy a large
number of reference tags whose positions are known. Due to the low-resolution
of RSSI and the restrictions of deployment, it is not a very good choice for local-
ization. In recent years, the research starts to shift to using RF phase for RFID
localization. The competitive advantage of RF phase is that it provides us with
a high-resolution measurement of the signals when the tag-reader communica-
tion distance varies. Many advanced phase based methods have been proposed
for dealing with different scenarios, especially for mobile localization. The most
related work is localization of RFID tags moving on a conveyor belt. The work
[25] uses the reader antenna’s radiation pattern together with the RSSI threshold
to determine the order of tagged tires on the conveyor belt. It however cannot
figure out when the tagged tires go across a given line and also suffers from envi-
ronmental affects. The work [26] jointly uses synthetic-array radar principles,
knowledge-based processing, and the reader-tag communication signal to track
tagged items moving along a conveyor belt. The above solutions however are tai-
lored to the applications of conveyor belt, which requires to know the trajectory
and speed of the object.
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6 Conclusion

Line crossing detection is quite common in our daily life. In this paper we propose
a lightweight method called RF-Line that deploys two antennas opposite to each
other to track the objects crossing a given barrier line, without any complicated
system deployment or calibration. By concurrently collecting the RF phase and
jointly estimating an inflection point by two antennas, RF-Line is able to know
whether and when a tagged object crosses the line connecting the center of the
two antennas. We implement a prototype of RF-Line with a commodity RFID
system. Extensive experiments show that RF-Line can achieve a high tracking
accuracy with a small error of 6.1 cm.
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Abstract. With the wide application of Internet of Things (IoT) sys-
tems in the smart ocean, many unmanned surface vehicles (USVs) have
been deployed jointly with unmanned aerial vehicles (UAVs) to monitor
the maritime environment. However, conventional means of maritime
communications fail to provide high-rate services due to the complex
maritime channel conditions and large transmission distance, which will
affect the environmental monitoring performance. In this paper, we pro-
pose a USV-UAV collaborative patrol scheme for maritime environment
monitoring networks. Considering the characteristic of energy concentra-
tion in beamforming, we investigate the joint beamforming and location
deployment optimization problem (BLDO) for UAV relay. Specifically,
we decompose the BLDO problem into two subproblems. In the first
sub-problem, the location deployment of UAV and beam gain allocation
is optimized via an iterative algorithm based on the approximated beam
patterns. The algorithm can effectively reduce the computational com-
plexity of the grid-search method. In the second sub-problem, beamform-
ing optimization is conducted with a high-dimensional constant-modulus
(CM) constraint. A micro-particle swarm optimization-based algorithm
with boundary relaxation (BR−µPSO) is proposed to obtain an optimal
solution. Finally, the simulation results demonstrate that the proposed
algorithms can improve the performance in terms of the achievable sum
rate and the beam gain.

Keywords: UAV · USV · Maritime environment monitoring ·
Deployment · Beamforming

1 Introduction

With the rapid development of the maritime economy, oily wastewater, toxicant-
containing wastewater, and domestic solid wastes, etc., pose a serious threat
to ecological environment protection, which is becoming an urgent issue [1].
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Yan et al. [2] deployed a wireless sensor network (WSN) to locate the source of
pollution in the urban water supply network. However, WSN is inflexible and
has limited monitoring range and unsatisfactory adaptability to the complex
maritime environment. The existing maritime communication systems typically
rely on satellite communications and very-high-frequency (VHF) communica-
tions [3]. However, the high cost of satellite communication and the limited
bandwidth of VHF cannot support the access of multiple acquisition terminals.
Therefore, it is imperative to design efficient data uploading schemes to improve
the communication capacity for maritime environmental monitoring networks.

To increase the communication capacity, multiple antenna technique has been
introduced for maritime communication systems in [4]. Particularly, beamform-
ing (BF) in multiple-input multiple-output (MIMO) system has been considered
as one of the major candidate technologies [6–9]. Beamforming technology pro-
vides the benefits of increased diversity for the BS and user equipment. Smart
antennas enable increase of capacity in wireless communication systems by suc-
cessfully reducing channel interference. Zhu et al. in [6] employed the analog
beamforming to achieve the directional beamforming, which can effectively sup-
press the interference from other users. Su et al. in [7] demonstrated that beam-
forming technique can offer considerable beam gain to overcome the high propa-
gation loss. To further improve the transmission rate, Zhu et al. in [6] and Xiao
et al. in [8] explored the joint power allocation and beamforming for a two-user
downlink and uplink mm-Wave NOMA scenario, respectively. At present, most
of the studies are based on terrestrial communication systems.

Unmanned Aerial Vehicles (UAVs) have been widely employed in emergency
and environmental monitoring tasks in the past few years. However, for the exist-
ing methods on UAV deployment monitoring [9,10,12], beamforming has not been
taken into consideration yet. They may suffer from the interference from the mar-
itime climate and neighboring infrastructures [10]. Considering the flexibility of
UAVs and the advantages of beamforming technology such as anti-interference
and energy concentration, the combination of the two is very promising [11,12].
It can not only improve the communication quality of UAV, but also save commu-
nication energy consumption. However, the joint beamforming and UAV location
optimization problem will be more complicated since it is highly non-convex and
involves high-dimensional, highly coupled variable vectors. For example, Mozaffari
et al. in [12] presented a grid-search method to calculate the maximum achievable
rate of each grid intersection point to determine the approximate optimal location
of the UAV. Whereas the algorithm complexity increases exponentially making it
difficult to determine the optimal grid accuracy.

The aforementioned beamforming schemes are suitable for terrestrial sys-
tems, yet few contributions have been devoted to the problem of maritime
beamforming systems. When designing the UAV-assisted USV patrol scheme,
the following differences between ocean and land have to be investigated:

• Channel distinction: Maritime propagation environment has unique charac-
teristics such as sparsity, instability and the ducting effect over the sea surface.
Therefore, we need to establish a multipath channel model suitable for the
characteristics of the maritime environment.
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• Energy limitation: The offshore relays are usually powered by solar energy
due to the lack of infrastructure. Therefore, we should reduce communication
energy consumption as much as possible.

In order to meet the aforementioned challenges, we investigate the beamforming
and location deployment optimization (BLDO) problem for UAV-assisted mar-
itime environment monitoring networks. Specifically, the energy is concentrated
in the target USV direction through beamforming technology. Since the variables
are coupled with each other and have high dimensions, the BLDO problem is
decomposed into two sub-problems by introducing the ideal beamforming. In the
first stage, an iterative algorithm based on water injection is proposed to find
the UAV’s optimal position. In the second stage, considering the difficulty of
the constant modulus (CM) constraint and the “curse of dimensionality” of the
high-dimensional problems, a micro-particle swarm algorithm (BR − μPSO) is
proposed based on boundary relaxation to obtain the beamforming vector. Our
main contributions are summarized as follows:

• Beamforming technology is combined with UAV assisted communication to
maximize the achievable sum rate of data uploading from the patrol USVs.
The beam gain of the target USV direction is significantly enhanced, thus
solving the problem of limited maritime communication bandwidth without
increasing hardware cost.

• An iterative algorithm and a particle swarm optimization algorithm based
on boundary relaxation (BR − μPSO) are proposed to solve the UAV loca-
tion deployment and beamforming optimization problems, respectively. The
results show that, the energy is concentrated in the direction of target USVs,
and the proposed algorithms can efficiently improve the achievable sum rate
and the beam gain.

The rest of this paper is organized as follows. The system and channel
model of the maritime MIMO system is introduced in Sect. 1. Sections 2 and
3 describe the deployment and analog beamforming optimization of the hov-
ering UAV, respectively. The simulation results are presented and discussed in
Sect. 4. Section 5 concludes this paper.

Notation: In this paper, In stands for an n×n identity matrix, ()H
, || , ‖‖ denote

Hermitian transpose, the absolute value of a complex number, the Euclidean
norm respectively.

2 System Model and Problem Formulation

2.1 System Model

We consider a UAV-assisted USV patrol scheme for maritime monitoring net-
work as depicted in Fig. 1, where one UAV is responsible for air patrol and the
USVs are responsible for information collection. The network is expected to real-
ize high reliability and low delay in information transmission while increasing
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communication capacity. The UAV is equipped with an M -element uniform lin-
ear array (ULA), serving K USVs with a single antenna. To enable multistream
communications, each antenna branch has a phase shifter and a power amplifier
(PA) to drive the antenna.

For the sake of convenience, we establish a 3-D rectangular coordinate system
to represent UAV and USVs’ location relationship, where USVs are distributed
on the horizontal plane located at (xk, yk, 0) and the coordinate of the UAV is
(xu, yu, hu). Note that we use orthogonal frequency division multiplexing (OFDM)
technology, where each USV occupies an independent frequency to transmit the
information sk ∼ CN (0, 1) to the UAV relay. The kth USV transmits signal si to
the UAV with the corresponding transmit power pk, where E(|si|2) = 1. Then the
received signal yUAV ∈ C

M×1 at the UAV can be expressed as

yUAV =
K∑

k=1

HH
k w

√
pksk + n1 (1)

where Hk is channel response vector between the kth USV and the UAV, the
elements of vector n1 represent additive white Gaussian noise (AWGN) with
variance σ2

1 , and w denotes an M × 1 beamforming (BF) vector with CM con-
straint for ULA structure, i.e., |[wk]| = 1√

M
for k = 1, 2, . . . ,M .

Fig. 1. Illustration of a maritime patrol scenario including one UAV, and multiple
USVs.

Due to the lack of scatters in the vast sea area, the line-of-sight (LoS) path will
dominate most of the air-to-sea channels. The Rayleigh fading, generally analyzed
in the terrestrial communication systems, may no longer be suitable for the mar-
itime environment. Instead, the finite scattering channel [13] could be more appro-
priate for the maritime model. Furthermore, the reflection path from the sea sur-
face may exist in some conditions, resulting in severe multipath effects. Therefore,
a sparse multipath channel based on multipath fading is conceived to describe the
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USV-UAV channel in our model. The uplink channel (UL) between USV and UAV
is denoted by hk. Different multipath components (MPCs) have different physi-
cal receive steering angles, i.e., angles of arrival (AoAs). With half-spaced ULAs
adopted at the receiver, the channel matrix can be expressed as

ar (φl) =

√
1
M

[
1, ejπφ, · · · , ejπ(M−1)φ

]T

(2)

φl =
xu − xi√

(xu − xk)2 + (yu − yk)2 + h2
u

(3)

ar (φl) is the antenna array response vector at the UAV, where φl denotes
the real AoA of the lth MPC for the kth USV i.e. φl = cos (AoA), and φl is
within the range of (−1, 1). We only consider the azimuth and neglect elevation
to implement horizontal 2-D beamforming. The extension to 3-D beamforming
by adopting an uniform planar array (UPA) configuration may also be possible.

2.2 Problem Formulation

In this subsection, we aim to maximize the achievable sum uploading rate of all
USVs when the channel is known prior. For each USV, under the constraints
of minimal rate for USVs and antenna structure, the achievable rate Rk is
denoted by

Rk = log2

(
1 +

pk

∣∣hH
k w

∣∣2

σ2

)
(4)

where pk is the transmission power at each USV, and σ2 is the power of Gaussian
white noise at ith USV.

∣∣hH
k w

∣∣2 denotes the effective channel gain between the
kth USV and UAV. In this problem, the UAV deployment intertwines with the
beamforming design, accordingly, the achievable sum rate maximization problem
can be formulated as

P0 : max
w,xu,yu

K∑

k=1

log2

(
1 +

pk

∣∣hH
k w

∣∣2

σ2

)

s.t. C1 :Rk ≥ ζk k = 1, 2 . . . , K

C2 : |[w]i| =
1√
M

i = 1, 2 . . . , N

C3 : (xu, yu) ∈ D

(5)

where ζk denotes the minimum rate requirement for kth USV, and thus, C1
denotes the QoS requirement for each USV. Meanwhile, |[w]| = 1√

M
is the CM

constraint due to using the phase shifters in each antenna branch at the UAV.
The optimization variables are the projected coordinates of UAV (xu, yu) and
the beamforming vector w.
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3 Problem Solution

Directly solving the BLDO problem (5) by using the existing optimization tools
is infeasible, because the problem is non-convex, and the UAV position variables
intertwine with the beamforming vector. Since the location of the UAV crucially
affects the channel matrix, we can resort to the approximate beam pattern and
decompose the BLDO problem into two sub-problems that are relatively easy to
solve one by one.

3.1 UAV Deployment and Beam Gain Allocation Sub-problem

We first resort to approximate beam patterns and try to decompose the deploy-
ment and beamforming variables. Then, we have the following lemma.

Lemma 1: With the ideal beamforming, the beam gains satisfy

δ1∣∣λ̄1

∣∣2 +
δ2∣∣λ̄2

∣∣2 + · · · + δk∣∣λ̄k

∣∣2 = M (6)

Note that in the case of ideal beamforming, the beam gains along the USV
directions are fixed with a beam width of K

M , while those along nonuser direc-

tions are all zeros, i.e., there are no side lobes. Then, we have
K∑

k=1

|hH
k w|2

|λ̄k|2 = M ,

where δk=
∣∣aH

k w
∣∣2 denotes the antenna beam gain of the kth USV, and

∣∣λ̄k

∣∣ =

max
∣∣∣λk

m,l

∣∣∣, denotes the index of the strongest MPC for USVs. For the kth USV,
the UAV maximizes the effective channel gain by fixed beam direction. It can
be approximated as ∣∣hH

k w
∣∣2 ≈ ∣∣λ̄k

∣∣2∣∣aH
k w

∣∣2 (7)

Therefore, based on Lemma 1, we can rewrite the original achievable sum
rate maximization problem with the beamforming gains, and simplify it to the
problems of UAV deployment and beam gain assignment.

P1 : max
(xu,yu),δk

K∑

k=1

log2

⎛

⎜⎜⎝1 +

M∑
m=1

pk
m

∣∣λ̄k

∣∣2δk

σ2

⎞

⎟⎟⎠

s.t. C1 :log2

⎛

⎜⎜⎝1 +

M∑
m=1

pk
m

∣∣λ̄k

∣∣2δk

σ2

⎞

⎟⎟⎠ ≥ ζm,k k = 1, 2 . . . , K

C2 :
K∑

k=1

δk∣∣λ̄k

∣∣2 = M

C3 : (xu, yu) ∈ D ri ∈ R

(8)
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We impose a threshold ζk
m on the SINRk

m for reliable decoding (i.e., SINRk
m ≥

ζk
m). C2 is the constraint on ideal beamforming. At the same time, the CM

constraint can be ignored in the first sub-problem.
The details of the proposed algorithm are presented in Algorithm 1.

We have hereto solved the first subproblem, and obtain an optimal location
of the UAV under the assumption of approximate beamforming.

3.2 Beamforming Optimization Sub-problem

Substituting the obtained optimal location of UAV to the BLDO problem, we
obtain the beamforming sub-problem. Since the analog beamforming should sup-
port all of the patrol USVs, the principle of beamforming design is to maximize
the array gains for all USVs. However, the CM constraint is not accounted for
in P1, and we consider it in the following beamforming sub-problem P2:

P2 :max
w

K∑

k=1

∣∣hH
k w

∣∣2

s.t. C1 :log2
(
1 + ck · ∣∣aH

k w
∣∣2

)
≥ ξk k = 1, 2 . . . ,K

C2 :
K∑

k=1

δk∣∣λ̄k

∣∣2 = M i = 1, 2 . . . , M

C3 : |[w]m| =
1√
M

(9)

where ck =
(

P ·|λk|2
δ2

)
is the channel gain coefficient along the strongest MPC.

Problem P2 is clearly non-convex. In order to ensure that the modulus value
of each element in w is 1/

√
M , we transform it into angle domain, and then

optimize its phase. It has been confirmed that the phase rotation of the BF does
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not affect the optimality of this problem. Let w =
(
1/

√
M

)
· ejϕ , then we have

∣∣hH
k w

∣∣2 = |λk|2 · 1
M

∣∣aH
k ejϕ

∣∣2.
It has been confirmed that the phase rotation of the BF does not affect

the optimality of this problem. Therefore, the elimination norm operation can
be performed, and aH

k ejϕ is real and non-negative. We proposed a suboptimal
solution, meanwhile, we will provide the optimal solution by relaxing P2 into the
following convex problem:

P3 :max
ϕ

K∑

k=1

aH
k ejϕ

s.t. C1 :log2
(
1 + ck · ∣∣aH

k ejϕ
∣∣2

)
≥ ξk k = 1, 2 . . . , K

C2 :
K∑

k=1

δk∣∣λ̄k

∣∣2 = M i = 1, 2 . . . ,M

C3 :Im(aH
k ejϕ ) = 0

(10)

To solve this problem, some swarm-based algorithms can be considered here,
e.g., particle swarm optimization (PSO) algorithm. However, the performance of
PSO algorithm begins to decline for high-dimensional problems. In this paper,
a micro-particle swarm algorithm with boundary relaxation (BR − μPSO) is
proposed. We transform P3 into an unconstrained one by means of the penalty
function, so we redescribe the constraint of C1 as

gi (ϕ) = log2

(
1 + ck · 1

M

∣∣aH
k ejϕ

∣∣2
)

− ξk ≥ 0 (11)

The objective function can be rewritten as:

P4 :Minimize
ϕ

−
K∑

k=1

aH
k ejϕ+μ

K∑

i=1

[max {0,−gi (ϕ)}]2

s.t. C1 :
K∑

k=1

δk∣∣λ̄k

∣∣2 = M i = 1, 2 . . . , M

C2 :Im(aH
k ejϕ ) = 0

(12)

where the penalty function is expressed as

max {0,−gi (ϕ)} =
{

0
−gi (ϕ) (13)

If ϕ is a feasible solution, the value is 0. If not, the value is −gi (ϕ). Each particle
has a memory for its best found position Pbest and the globally best position
Gbest. The rate update formula of Gbest:



48 L. Liu et al.

[V]t+1
g,n = ω [V]tg,n − [X]tg,n +[Gbest]n + [rep]tg,n (14)

For each iteration, the velocity and position of each particle are updated based
on:

[V]t+1
j,n = ω [V]tj,n + rand() ∗ ([Pbest]j,n− [X]tj,n )

+rand() ∗ ([Gbest]n− [X]tj,n )+ [rep]tj,n
(15)

[X]t+1
j,n =

{
[X]tj,n + [V]t+1

g,n , [X]tj,n = [X]tg,n

[X]tj,n + [V]t+1
j,n , else

(16)

The parameter ω is the inertia weight of velocity. [rep]ti,n is the repulsion expe-
rienced from K blacklisted solutions. dki = xi − x̂k is a vector pointing from the
blacklisted solution l to the ith particle. The details of the proposed BR−μPSO
algorithm are presented in Algorithm 2.

Due to the equality constraint, the search space for X is high-dimensional. We
relax the search space to a convex set and adjust the particles on the boundaries
of each iteration. The outer and inter boundary is defined as

{
X|

∣∣∣[X]i,j
∣∣∣ = dbeyond

}
dbeyond =

1√
M

(17)

{
X|

∣∣∣[X]i,j
∣∣∣ = din

}
din =

t

Tmax

1√
M

(18)

For each iteration, the particles out of the boundary are adjusted onto the bound-
ary, and eventually converge.

4 Simulation Results

In this section, simulation results are presented to demonstrate the performance
of our proposed iterative algorithm for UAV deployment and the BR − μPSO
algorithm for beamforming optimization. We consider a scenario that one UAV
serves multiple patrol USVs. In the simulation experiment, the positions of USVs
are randomly generated. Then we set pk = 35 dBm, σ2 = −100 dBm and hu =
200 m, which are some typical parameters of offshore area [8].

First, we evaluate the performance of the proposed UAV deployment app-
roach. Figure 2 compares the random beam pattern with the designed beam
pattern by solving problem P1, where we assume the minimum rate constraints
for each USVs are 1, 4, 4, 3 and 3 bps/Hz, respectively. It shows the uplink
achievable sum rate and the optimal UAV position comparison between the pro-
posed iterative algorithm and the grid-search method in the scenario of five
USVs. Figure 2 (a) shows a 2D scatter plot of the USV-UAV deployment rela-
tionship, which is affected by USVs minimum rate constraints. It can be seen in
Fig. 2 (b) that the proposed iterative algorithm has better performance in terms
of the achievable sum rate than the grid-search method. Then, we evaluate the
performance of the proposed beamforming algorithm. The beamforming vector
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Fig. 2. Location and performance of UAV deployments.
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w is designed to approach the approximate beam gain of each USV. Figure 3 (a)
shows the comparison between the achievable sum rate via the proposed beam
pattern with different numbers of antennas against Pk, M = 8, 16, 32 and K = 2.
Figure 3 (b) shows the beam gain comparison result between the random and
proposed beamforming. We can observe that the proposed beamforming pattern
is effective, and the beam gains are concentrated on the target USVs’ directions.

Fig. 3. The achievable sum rate gain and beam gain of the proposed beam patterns.

5 Conclusion

This paper has investigated the joint beamforming and location deployment
optimization problem (BLDO) for UAV relay, aiming to maximize the uplink
achievable sum rate of the USV-UAV collaborative patrol scheme for maritime
monitoring network. The original formulated BLDO problem has been decom-
posed into two sub-problems by the approximate beam pattern. The subproblem
of deployment and beam gain allocation sub-problem has been first solved via
the proposed alternating optimization. Then, the beamforming sub-problem has
been tackled by the proposed BR − μPSO algorithm. Simulation results have
shown that the proposed scheme could effectively increase the performance of
the achievable sum rate and beam gain in the USVs direction. For future work,
we will investigate the effect of the unstable beam pointing problem.
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Abstract. Providing truly ubiquitous Internet connectivity requires
development of massive satellite constellations, whose interference sce-
nario changes dynamically in time and space, leading to interference
analysis becomes more complicated and challenging. Conventional inter-
ference analysis is restricted to few number of satellites with deterministic
locations which is not capable of evaluating the performance of a massive
satellite network consisting of thousands of satellites. In this paper, we
propose a Monte Carlo algorithm based on stochastic geometry for sim-
ulating massive satellite systems interference. In our algorithm, we first
utilize stochastic geometry to model the satellites’ and user terminals’
location as a randomly distributed points process on a sphere, imitating
the high spatiotemporal dynamic interference characteristics of the sce-
nario. Then, Monte Carlo is used to randomly sample the interference
scenario in an infinite continuous timeline. According to Monte Carlo
simulation, we finally calculate the cumulative probability distribution
of interference indicator, which can be used as the statistical result of
long-term interference of massive satellite constellations.

Keywords: Massive satellite constellations · Interference analysis ·
Stochastic geometry · Monte Carlo

1 Introduction

Since 2014, massive Non-Geostationary Orbit (NGSO) constellation provides
global broadband access services has been a new trend. However, subject to
limited spectrum resources, massive constellations will inevitably face shortage
of frequency resources. Frequency band becomes more and more crowded, which
causes serious interference and even makes the system unusable. On the other
hand, if you want to launch new satellite system, you must provide interference
analysis on the existing satellite systems to ensure that there will be no harmful
interference. Therefore, it is necessary to investigate new evaluation methods to
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analyze interference between massive NGSO; Moreover, it is realistic needs to
design a set of practical interference evaluation methods in engineering.

This paper summarizes that satellite communication interference evaluation
can be roughly divided into two categories: 1) computer simulation based on
time frame (CS-BTF)); 2) Analysis based on mathematical model (A-BMM).

Because the trajectory of satellite changes continuously, CS-BTF captures
the instantaneous trajectory of the satellite, discretizes the dynamic satellite,
and then calculates the interference. Literature [8] submitted an approximate
technology for “in-line” interference analysis between feeder links of NGSO MSS
(mobile satellite services) service, in order to evaluate the feasibility of frequency
sharing between two NGSO MSS networks; References [7,10] respectively realize
the simulation of short-term interference of feeder links between two and four
NGSO MSS networks; Literature [9] realized the C/I simulation of uplink and
downlink of two NGSO networks for 10 d with period of 1 s. However, it takes
a very long time to cover all possible interference scenarios through CS-BTF in
case of large number of user terminals and NGSO satellites.

Some researchers have adopted analysis methods to calculate the statistical
results of interference by means of probability theory and mathematical statis-
tics. Literature [3] introduces an interference analysis method based on reference
satellite position probability. Recently, some scholars have migrated the network
model based on stochastic geometry in wireless network [1,2,5] to the massive
NGSO constellations. Literature [12,13] proposed the analysis of downlink cover-
age and average rate of LEO satellite constellation based on stochastic geometry.
Reference [15] proposed a mathematical framework to analyze uplink interfer-
ence between ground network and satellite network by using stochastic geometry.
However, a common problem of A-BMM is that the actual physical parameters
have not been considered, such as antenna pattern and beam width. In addition,
the theoretical model is too idealized, the calculation process of the formula
derived is too complex, even there is not a closed form expression.

To shorten the simulation time of interference analysis in massive NGSO
constellations, avoid the complexity of theoretical interference derivation and
calculation, and can be applied to the in the real satellite systems, a Monte
Carlo algorithm based on stochastic geometry for simulating satellite systems
interference is proposed in this paper. Firstly, stochastic geometry is used to
model the spatiotemporal characteristics of interference factors in the presence
of massive satellites; Then, Monte Carlo method is used to simulate the model
and calculate the cumulative probability distribution of interference indicator,
which can be used as the statistical result of long-term interference of massive
satellite constellations.

The contributions of this paper are as follows: (1) From the perspective of
stochastic geometry, the satellites and users are modeled as a space point pro-
cess for interference evaluation, which solves the difficulty of calculating the orbit
equation of massive satellite constellation; (2) For the uplink and downlink inter-
ference scenarios, an interference evaluation algorithm suitable for uplink and
downlink is proposed respectively; (3) We validate our interference prediction
results based on the proposed algorithm by comparing it with the interference
prediction results of the state-of-art satellite simulation software.
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2 Problem Definition

Fig. 1. Scenario of co-frequency interference between satellite constellations

As shown in Fig. 1, the satellite establishes a communication connection with
the user through the antenna beam. Due to the dense distribution of satellites
and users, the antenna beam reaching one user may cover the receiving area of
other users, thereby causing interference to the received signals of other users.
This paper believes that the two most critical factors affecting the calculation of
massive constellation interference are the distribution of satellites and users, so
we focus on the modeling of satellite and user distribution. First, we analyze the
dynamic trajectory of the actual massive constellations, which is similar to the
randomly distributed point process in space (Fig. 2); More importantly, relevant
literatures [12,13] have also modeled the dynamic trajectory of satellites as a
space point process. For the distribution model of users, we refer to the model
of base stations in cellular networks [1,2,5], which also model users as a random
point process on the Earth’s surface.

Fig. 2. Starlink constellation vs our model. (a) Starlink constellation of 2806 satellites;
(source: https://satellitemap.space/?constellation=starlink) (b) 2806 random points
uniformly distributed on the surface of sphere.

https://satellitemap.space/?constellation=starlink
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3 Proposed Monte Carlo Algorithm Based on Stochastic
Geometry

3.1 Calculation of C/Iagg

To simplify calculation, we assume that antenna can adjust its direction to cap-
ture satellites or user terminals. It means that in a communication link, satellite
antenna and user antenna point at each other.

Fig. 3. Interference scenario. (a) uplink; (b) downlink.

Figure 3 is the simplest interference scenario of single interferer link, from
which we can easily get C/I for uplink and downlink, respectively. Taking the
uplink as an example, the calculation of C/I includes the following parts,{

C = PGT + G(0)TxGT + G(0)RxSat − FSL (dBw)

I = P
′
GT + G

′
(θ)TxGT + G(ϕ)RxSat − FSL

′
(dBw)

(1)

(
C

I

)
= C − I (2)

where PGT , P
′
GT are transmit power, G(·)TxGT , G(·)RxSat are antenna gains of

victim user terminals and satellite, respectively, and G
′
(·)TxGT is antenna gains

of interferer user terminal.
According to literature [14], free space loss can be written as{

FSL = 20(logfC + logdC) + 32.45 (dB)

FSL
′
= 20(logfI + logdI) + 32.45 (dB)

(3)

where, fC , fI are frequency victim link and interferer link respec-
tively, in MHz. dC =

√
(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2, and dI =√

(x1 − x4)2 + (y1 − y4)2 + (z1 − z4)2 which are distances of victim link and
interferer link.
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Let a = (x1 − x4, y1 − y4, z1 − z4), b = (x2 − x4, y2 − y4, z2 − z4), where
(x1, y1, z1), (x2, y2, z2), (x4, y4, z4) are position vectors of victim satellite, inter-
ferer satellite and interferer user terminal, respectively. Therefore, θ can be writ-
ten as

θ = cos−1 a · b
||a|| · ||b|| (4)

Let c = (x3 − x1, y3 − y1, z3 − z1), d = (x4 − x1, y4 − y1, z4 − z1), where
(x1, y1, z1), (x3, y3, z3), (x4, y4, z4) are position vectors of victim satellite, inter-
ferer user terminal and interferer user terminal, respectively. Therefore, ϕ can
be written as

ϕ = cos−1 c · d
||c|| · ||d|| (5)

When interference scenario exists multiple interferer links, we need to con-
sider aggregative C/I, which named C/Iagg. Based on C/I of single link, we
summarize C/Iagg as follows

1
C/Iagg

=
N∑

n=1

1
C/In

(6)

where N represents numbers of interferer links, C/In represents n-th interferer
for victim.

Determine Number of Interferer Links N. Communication links are estab-
lished in satellite systems when user terminal in the sight of satellite or satellite
in the sight of user terminal. Figure 4, gives vision filed of victim system.

Fig. 4. Vision field of user terminal and satellite. (a) downlink; (b) uplink. (Color
figure online)

In Fig. 4, blue shadow part is vision field of an user terminal and a satellite.
Re is radius of earth, hv is altitude of satellite. We use dmax represents maximum
distance of user terminal or satellite can see, which can be written as

dmax =
√

2Rehv + h2
v (7)
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Antenna Radiation Pattern. Antenna pattern refers to the law that the
intensity of radio waves changes with the direction in space after being radiated
by antenna. The most important parameter in antenna pattern is antenna gain
G(·), which is used to measure the ability of the antenna to transmit and receive
signals in a specific direction.

According to S.465 [6], the reference radiation pattern suitable for ground
user terminal antenna is given by

G(φ) =

{
32 − 25logφ dBi φmin � φ � 48◦

− 10 dBi 48◦ � φ � 180◦ (8)

where φ is off-axis angle of antenna. When the ratio of antenna diameter (D)
and wavelength (λ) D/λ < 50, φmin = max(2◦, 114(D/λ)−1.09).

According to ITU-R S.1528 [11], the reference radiation pattern for low Earth
orbit satellite antenna, whose antenna diameter to wavelength ratio D/λ < 35,
is given by

G(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Gm dBi 0 ≤ φ � φb

Gm − 3(φ/φb)2 dBi φb < φ � Y

Gm + LS − 25log(φ/Y ) dBi Y < φ � Z

LF dBi Z < φ � 180◦

(9)

where Gm simplifies maximum gain in the main lobe, φb represents one half the
3 dB beamwidth in the plane of interest at the largest off-axis angle, Ls is main
beam and near-in side-lobe mask cross point below peak gain, LF is the far-out
side-lobe level, equals to 0 for ideal patterns, and Y and Z are calculated by
Y = φb

√−Ls/3 and Z = Y ·100.04(Gm+LsLF ), respectively. Typically for a LEO
satellite, Ls = 6.75 and Y = 1.5φb.

3.2 Monte Carlo Method

The basic idea of Monte Carlo method is that when the problem to be solved is
probability of a random event, the probability of this random event can be esti-
mated by frequency of this event through some experimental simulation method.
Therefore, the flow of interference calculation algorithm based on Monte Carlo
is as follows. Firstly, establish the stochastic geometry model of interference
scenario. And then the model is randomly simulated, statistically sampled to
calculate the interference indicator C/Iagg. Finally, use the obtained results to
calculate statistical estimate of C/Iagg, which is used as the approximate solution
of the original problem.

To obtain statistical characteristics of C/Iagg, we define the cumulative dis-
tribution function of carrier interference ration probability. The probability is
that C/Iagg less than a certain threshold T, that is:

p = P{C/Iagg < T} (10)
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Before introduce proposed Monte Carlo algorithm based on stochastic geom-
etry, the parameters used in the whole algorithm flow are described in the fol-
lowing Table 1:

Table 1. Parameters Description in the proposed algorithm

Parameter Description Parameter Description

Re Earth radius pI Interferer transmit power

hV Victim satellite altitude fV Frequency of victim system

hI Interferer satellite fI Frequency of interferer system

NS Number of interferer satellites T Threshold of C/Iagg

NE Number of interferer user terminal num Number of Monte Carlo simulations

pV Victim transmit power

Based on the theory in Sect. 3.1, we use Monte Carlo Method to simulate
interference scenario in satellite systems. Algorithm 1 and algorithm 2 describe
the long-term interference estimation flow of uplink and downlink respectively.

Algorithm 1: Uplink interference estimation algorithm
Input: Re, hV , hI , NS , NE , pV , pI , fV , fI , T, num.
Output: Output: carrier interference ration probability p.
for i=1:num do

Generate victim satellite SV position (xSV , ySV , zSV ) randomly;
Calculate maximum sight of SV according to Eq. (12);
Generate position (xEV , yEV , zEV ) of victim user terminal EV randomly in
the sight of SV ;
Generate set of all interferer satellites positions randomly
CSI = {(x1

SI
, y1

SI
, z1

SI
), (x2

SI
, y2

SI
, z2

SI
), (xi

SI
, yi

SI
, zi

SI
), . . .}, i = 1, 2, . . . , NS ;

Generate set of all interferer user terminals positions randomly
CEI = {(x1

EI
, y1

EI
, z1

EI
), (x2

EI
, y2

EI
, z2

EI
), (xi

EI
, yi

EI
, zi

EI
), . . .}, i = 1, 2, . . . , NE ;

In the set CEI , find interferer user terminals which are in the sight of SV to

compose set C
′
EI

;

for (xj
EI

, yj
EI

, zj
EI

) in C
′
EI

do

find the nearest satellite position (xk
SI

, yk
SI

, zk
SI

) in CSI to

(xj
EI

, yj
EI

, zj
EI

);

After obtain (xSV , ySV , zSV ), (xEV , yEV , zEV ), (xj
EI

, yj
EI

, zj
EI

) and

(xk
SI

, yk
SI

, zk
SI

), calculate θ,ϕ according to Eq. (4) and Eq. (5);
Calculate C/Ij according to Eq. (1) and Eq. (2);

end
Calculate aggregate interference C/Iagg according to Eq. (6);
Put C/Iagg into CIRList;

end
for i in CIRList do

if i¿T then
count++;

end

end
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Algorithm 2: Downlink interference estimation algorithm
Input: Re, hV , hI , NS , NE , pV , pI , fV , fI , T, num.
Output: Output: carrier interference ration probability p.
for i=1:num do

Generate victim user terminal EV position (xEV , yEV , zEV ) randomly;
Calculate maximum sight of EV according to Eq. (12);
Generate position (xSV ,ySV ,zSV ) of victim satellite SV randomly in the
sight of EV ;
Generate set of all interferer satellites positions randomly
CSI = (x1

SI
, y1

SI
, z1

SI
), (x2

SI
, y2SI , z

2
SI

), (xi
SI

, yi
SI

, zi
SI

), . . ., i = 1, 2, . . . , NS ;
Generate set of all interferer user terminals positions randomly
CEI = (x1

EI
, y1

EI
, z1

EI
), (x2

EI
), y2

EI
, z2

EI
), (xi

EI
), yi

EI
, zi

EI
), . . ., i = 1, 2, . . . , NE ;

Generate position (xEV , yEV , zEV ) of victim user terminal EV randomly in
the sight of SV ;
Generate set of all interferer satellites positions randomly
CSI = {(x1

SI
, y1

SI
, z1

SI
), (x2

SI
, y2

SI
, z2

SI
), (xi

SI
, yi

SI
, zi

SI
), . . .}, i = 1, 2, . . . , NS ;

Generate set of all interferer user terminals positions randomly
CEI = {(x1

EI
, y1

EI
, z1

EI
), (x2

EI
, y2

EI
, z2

EI
), (xi

EI
, yi

EI
, zi

EI
), . . .}, i = 1, 2, . . . , NE ;

In the set CEI , find interferer user terminals which are in the sight of SV to

compose set C
′
EI

;

for (xj
EI

, yj
EI

, zj
EI

) in C
′
EI

do

find the nearest satellite position (xk
SI

, yk
SI

, zk
SI

) in CSI to

(xj
EI

, yj
EI

, zj
EI

);

After obtain (xSV , ySV , zSV ), (xEV , yEV , zEV ), (xj
EI

, yj
EI

, zj
EI

) and

(xk
SI

, yk
SI

, zk
SI

), calculate θ,ϕ according to Eq. (4) and Eq. (5);
Calculate C/Ij according to Eq. (1) and Eq. (2);

end
Calculate aggregate interference C/Iagg according to Eq. (6);
Put C/Iagg into CIRList;

end
for i in CIRList do

if i¿T then
count++;

end

end

4 Performance Evaluation

4.1 Simulation Settings

According to the algorithm proposed in Sect. 3.2, we use the parameters in the
actual system to verify the performance of the algorithm [4]. The values of the
parameters are shown in the following table.
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Table 2. Constellation orbital configuration parameters and communication parame-
ters of victim and interferer

Parameters Victim constellation Interferer constellation

Total number of satellites 720 1584

Orbital planes 18 72

Satellites per plane 40 22

Altitude 1200 km 550 km

Inclination 87.9◦ 53◦

Frequency 14.25GHz (uplink) 14.25GHz (uplink)

11GHz (downlink) 11GHz (downlink)

Maximum transmit gain of
satellite

28.6 dBi 28.6 dBi

3dB half beamwidth of
satellite transmitting antenna

6.5◦ 6◦

Satellite antenna diameter 0.5m 0.5m

Antenna radiation pattern of
satellite

ITU-R S.1528 ITU-R S.1528

Transmit power of satellite 14.3 dBW 11dBW

Maximum receive gain of
user terminal

49.2 dBi 44 dBi

User terminal antenna
diameter

0.5m 0.5m

Antenna radiation pattern of
user terminal

ITU-R S.465 ITU-R S.465

4.2 Simulation Results

In the numerical simulation, we obtain cumulative distribution probability p of
C/Iagg corresponding to different thresholds T. Then, we discuss the influence of
key parameters of the simulation on p, including the number of Monte Carlo num,
the number of interferer satellites NS and number of interferer user terminals
NE . Finally, based on the existing satellite interference simulation tools on the
market, we compare the experimental results with them to verify the reliability
of the algorithm proposed in this paper.



Algorithm for Simulating Satellite Systems Interference 61

Fig. 5. Performance of key parameters in uplink and downlink.

Figure 5 shows uplink and downlink performance under different parameters.
The results of different num are shown in Fig. 5(a) and (d). We can see that
both of simulation results have converged when num = 500. Figure 5(b) presents
uplink results under different NS , with the increase of NS , the change of cumu-
lative distribution probability p is not significant. While Fig. 5(e) indicates that
with the increase of NS in downlink scenario, the curve about cumulative dis-
tribution probability tends to move to the left side, which implies that more
interferer satellites, smaller C/Iagg in downlink. Figure 5(c) shows that with the
increase of NE in uplink scenario, the curve about p tends to move to the left
side, which implies that more interferer user terminals, smaller C/Iagg in uplink.
Figure 5(f) shows that number of NE has little impact on cumulative distribution
probability in downlink scenario.

Therefore, we conclude that number of interferer user terminals affect uplink
interference, while number of interferer satellites affect downlink interference.
The reason is that interference signal is transmitted from the user terminal
in uplink, more interferer user terminal means more interference source. On
the contrary, the interference source is on satellite in the downlink, increase of
satellites means that the interference source also increases, so the interference
signal received by the victim user terminal also increases.

In order to verify the reliability of the satellite systems interference evaluation
algorithm proposed in this paper, we compare the algorithm proposed in this
paper (Monte Carlo) with the existing satellite interference simulation software.
Limited by the satellite interference simulation software, we only compared the
downlink interference scenarios, and the satellite antenna beam was changed to
point to the center of Earth rather than the user terminal, and user terminal
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antenna beam was changed to be vertical to the ground. The simulation results
are shown in Fig. 6.

Fig. 6. Downlink performance comparison between Monte Carlo algorithm based on
stochastic geometry and software tool

From Fig. 6, we can find that the range of C/Iagg calculated by the algorithm
proposed in this paper completely covers the results of software calculation,
which proves that the algorithm can be applied to satellite systems interference
simulation engineering in the real world. In addition, we find that the calculation
results of the algorithm in this paper are generally smaller than those of the
software. We believe that this may be because the software does not fully consider
the complete long-term interference scenario of massive satellite systems due to
the limitation of simulation time.

Finally, when the actual satellite system runs for 24 h, the simulation time
of the software is 661.798 s; The simulation duration of Monte Carlo is 5.612 s.
Therefore, the superiority of the algorithm proposed in this paper in simulation
time exceeds the current mainstream software.

5 Conclusion

This paper presents a fast algorithm to evaluate the interference between dif-
ferent satellite systems. Firstly, the position of satellites is modeled randomly
according to stochastic geometry, and then the probability distribution of C/Iagg
is calculated by Monte Carlo simulation, which can represent the long-term inter-
ference by other satellite systems. Secondly, the key parameters which affect the
interference result is analyzed and discussed. The results can be used as a refer-
ence for determining the optimal system scale in the construction of actual satel-
lite system. Finally, the simulation results of the proposed method are compared
with the current mainstream simulation software to illustrate the reliability of
the proposed method.
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1 Introduction

At present, SpaceX has launched 2566 Starlink non-geostationary satellite orbit
(“NGSO”) satellites in a new lower shell of the constellation, marking the arrival
of the era of large scale constellations and ushering a change in human telecom-
munications. The large scale constellations have the advantages of wide trans-
mission bandwidth, high communication quality, low transmission delay, and
low terrain limitation [1,2]. Compared with the traditional geostationary earth
orbit (“GSO”) satellite, large scale NGSO constellations are more suitable for
the future 6G communication network [3,4], so as to achieve ubiquitous, 100%
geographic coverage with terrestrial-satellite communication networks [5].

The progress of large scale constellations in foreign countries has developed
rapidly, the more representative systems are Starlink, OneWeb and Kuiper.
Starlink system will eventually build nearly 42000 satellites, OneWeb system
plans to launch 8368 satellites and Kuiper system has completed the applica-
tion of 3236 satellites. Signal of the large scale constellations can overlap almost
everywhere on the earth, and thus would have considerable effect on the exist-
ing systems in services. Analysing the information submitted to the Interna-
tional Telecommunication Union (“ITU”) [6] and the Federal Communications
Commission (“FCC”) [7], the frequency resources used by these NGSO systems
are concentrated mainly in the Ku and Ka frequency bands, which inevitably
causes co-frequency conflicts to GSO systems [8]. According to Article 9 and 11
of the ITU Radio Regulations (“RR”), in the stage of satellite frequency and
orbit coordination, the GSO satellite network has the priority in application and
deployment, while the large scale NGSO satellite network shall send a coordina-
tion request to the GSO network, as well as using the interference distribution
and the interference analysis to prove. However, in the process of coordination,
the two parties will continue to discuss and consult, the traditional Monte Carlo
interference calculation model based on time-slice often runs for several days,
which is not suitable for interference calculation between large scale constella-
tions and GSO systems [9].

Most of the current researches focus on obtaining more accurate interfer-
ence analysis models in different scenarios while less research on simplifying the
calculation model of large scale satellite system under real constellation configu-
rations. The most commonly used and widely recognized interference calculation
method is Monte Carlo calculation model based on time-slice [10], which storing
the positions of satellites and earth stations at each time, then to judge the visual
range and calculate the interference links. This method is suitable for scenarios
with a small number of satellites, when conducting interference analysis between
large scale constellations, the performance of computer equipment and simula-
tion duration will become restrictive factors. Yastrebova [11] and Okati [12] used
stochastic geometry and Poisson point process to construct satellite network and
calculate interference and analysis, which is a mathematical analysis model and
still has some differences with the actual satellite constellation configuration,
whether it will become a general model still has some doubts. Fortes proposed to
complete the interference analysis by the probability method [13,14]. By deriving
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the satellite probability density function and using the global integral to calcu-
late and analyze interference distribution. However, there is no specific example
analysis and meshing criteria. Lin carried out further analysis on this basis [15],
the accuracy is verified by giving specific experimental methods, analysis and
meshing standards. Nevertheless, tens of thousands of satellites in large scale
constellation bring new problems to the construction and position data storage
of the whole constellation. Therefore, the research on large scale constellations
interference calculation needs to be more in-depth.

Contributions of this paper can be briefly summarized as follows:

– We propose an efficient and fast interference calculation model based on satel-
lite probability analysis, which can be applied by different configurations of
large scale constellations, as well as can provide a reliable reference for the
frequency and orbit coordination between satellite systems.

– The proposed model can save the time when establishing the large scale con-
stellation, and it saves the storage space and computation when calculate
the position of whole system at each time, which can improve the computing
efficiency and reduce the performance requirements of simulation equipment.

– Combined with actual systems parameters, the interference calculation model
based on position probability and time-slice are used for calculation respec-
tively. The theoretical and simulation results show that the accuracy proposed
in this paper is the same or even better than that of the time-slice, and the
total simulation duration has been improved at least 518 times.

The structure of this paper is as follows. Section 2 introduces the interference
scenario and probability analysis method. Section 3 establishes the visual area
and then calculates and statistics the aggregate interference. Section 4 describes
the simulation results and effectiveness of the proposed model. Section 5 gives
the conclusion.

2 Scenario Model

2.1 Interference Scenario

The large scale constellation satellites provide seamless coverage of service areas
within their orbital inclination. The GSO system, due to its unique orbital char-
acteristics and launch configuration, its earth stations are deployed mainly at
latitude 30◦ within, and principally provides broadband services for middle and
low latitudes, which makes a huge difference from the original design intention of
the large scale NGSO systems to provide global services. Meanwhile, the NGSO
constellation systems have a huge number of satellites, multiple NGSO satellites
will appear in the visual area of the GSO earth station at any time, and limited
by the current scarce satellite communication spectrum resources, the large scale
NGSO constellation systems will inevitably interfere to the GSO system. This
paper considers the interference scenario of spectrum coexistence between the
GSO system and the large scale NGSO system, and the interference distribution
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Fig. 1. Downlink interference scenario between the GSO system and the large scale
NGSO system

is calculated fast and efficiently according to the corresponding mathematical
model.

Figure 1 contains the GSO and the NGSO satellite systems. The GSO system
consists of one satellite and one earth station, while the NGSO system consists of
a NGSO constellation and several NGSO earth stations. In this paper, the inter-
ference scenario is established, then calculating the aggregate interference of the
NGSO constellation to the GSO earth station based on the position probability
of each initial NGSO satellite.

In the interference scenario, the links from GSO satellite to GSO earth station
and NGSO satellites to NGSO earth stations are useful link, which represented
by the solid blue line and solid green lines. And the links between NGSO satellites
and GSO earth station are interference links, they are indicated by the red dotted
lines. Angle ϕ represent the transmit off-axis angle and θ represent the receive
off-axis angle.

2.2 Probability Method

Probabilistic analysis is to identify the sampling density required of each prob-
ability distribution and directly in sequence check all possible values to derive
a quasi-analytic calculation of the S[X]. This methodology is the basis of Rec.
ITU-R S.1529 [16], which can be used to analyze interference between NGSO
Fixed-Satellite Service (FSS) systems and GSO or other NGSO systems. The
key concept of the method is to identify the orbital shell, by controlling the
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simulation step, each cell should be sufficiently small that the link or interfer-
ence metric would not vary significantly across it, then the probability that the
satellite is in the cell can be calculated.

For example, the Fig. 2 draws the orbital shell of the interfering satellite
within the visual area of the GSO earth station and meshes it into small cells.
For the satellite communication system with determined operation mode and
communication parameters, when the initial satellite is determined, the position
distribution of the whole constellation can be determined. Setting the initial
satellite in the center of the small cell to determine the distribution of interfer-
ing satellites in the visual area, then the aggregate interference can be calculated.
Traversing all small cells in the visual area, and analyzing the interference dis-
tribution. In the Fig. 2, the blue square background is the initial satellite set in
position 1, and the blue satellites are the distribution of interfering satellites at
position 1, the orange satellites are at initial position 2 distribution.

Fig. 2. Cells division of the visual area and the distribution of interfering satellites

3 Interference Calculation Model

3.1 Determine the Visual Area

GSO System Model
In general, the representation of the earth station and the satellite adopts a geo-
graphic coordinate system in which the positions’ representation on the earth
surface in form of longitudes and latitudes. For subsequent calculate the inter-
ference with the NGSO system, the geographic coordinate systems need to be
converted into the ECF geocentric coordinate system.

Assume that the sub-satellite point of a GSO satellite, GSO earth station and
NGSO earth station are (λlonw, λlatw), converting it to a geocentric coordinate
system, which can be expressed as Eq. (1):
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⎡
⎣

xw

yw

zw

⎤
⎦ = (Re + Hw)

⎡
⎣

cos λlatw cos λlonw

cos λlatw sinλlonw

sinλlatw

⎤
⎦ (1)

In Eq. (1), Re is the radius of the earth, Hw is the altitude above ground,
and λlonw and λlatw express longitude and latitude respectively, where the GSO
satellite is running over the equator, the latitude of the GSO satellite is at 0◦.
The altitude of a GSO earth station is negligible compared with the radius of
the earth.

Visual Area Determination
The GSO earth station has its fixed visual field angle and is aligned with its own
GSO satellite. As shown in Fig. 3, O is the geocentric point, the green area is
the equatorial plane and the purple area is the visible range of the GSO earth
station.

Fig. 3. Schematic diagram of the GSO earth station visual area

Through the coordinate conversion in the previous step, the visual area of
the GSO earth station can be determined, and its expression is as follows:

⎧
⎪⎪⎨
⎪⎪⎩

cos α =
→

EG ·
→

EN∣
∣
∣
∣

→
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∣
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·
∣
∣
∣
∣

→
EN

∣
∣
∣
∣∣∣∣∣

→
ON

∣∣∣∣ = (Re + Hw)
(2)

where, α is the maximum visual field angle of the GSO earth station, E is GSO
earth station and G is GSO satellite, N is the intersection point of the edge
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of GSO earth station visible area and the NGSO satellite system orbital shell.
Taking the north pole as the azimuth 0◦and traversing all azimuth angles, it can
obtain the intersection point set.

Visual Area Meshing
Based on the intersection point set, projecting the edge of GSO earth station
visible area onto the earth’s surface, the expression is as follows:

{
λlatw = arcsin( zw

Re+Hw
)

λlonw = arctan(yw/xw)
(3)

Meshing the projection area and calculating the satellite occurrence prob-
ability. The key step is dividing the projection area to sufficiently small cells,
which makes the probability of NGSO satellite appearing at any position of the
cell is the same. In this paper, the divided cells varies according to the change
of simulation accuracy, and the cells are small enough. Therefore, the central
coordinate of the cell represents the position of the cell.

The probability formula of the Walker Constellation in different longitudes
and latitudes is as Eq. (4), where I represents the orbital inclination:

pX(λlonw, λlatw) =

⎧
⎨
⎩

1
2π2

cos(λlatw)√
sin2(I)−sin2(λlatw)

−π < λlonw < π
−I < λlatw < I

0 others (4)

3.2 Determine the Position of the NGSO Satellites in the Visual
Area

Walker Constellation has the characteristics of uniform satellite distribution and
good global coverage, which makes it the most commonly used constellation con-
figuration for NGSO constellation application and initial deployment. Therefore,
the scenario selected in this paper will be focused on the efficient interference
analysis and calculation in the Walker constellation.

Initial Satellite Position Determination
When building Walker Constellation, the six Kepler orbital elements are often
used to describe the satellite position. In ITU recommendation S.1325 [17], exist-
ing studies can convert the position of a NGSO satellite in the geodetic coordi-
nate system into the ECF geocentric coordinate system. The expression of the
NGSO satellite position in ECF coordinate system is:

⎡
⎣

xns

yns

zns

⎤
⎦ = r

⎡
⎣

cos Ω cos M − sinΩ cos I sin M
sin Ω sinM + cos Ω cos I sin M

sin I sinM

⎤
⎦ (5)
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where (xns, yns, zns) is the NGSO satellite coordinate in ECF, r is the NGSO
satellite orbital radius, Ω is the right ascension of ascending node (RAAN) of
the orbit, M is the mean anomaly, and I is the inclination of the orbit.

According to the coordinate conversion formula (5), through the known of
the initial NGSO satellite position in ECF coordinate system, that would deter-
mine the initial satellite position in geodetic coordinate system. It’s important
to note that the orbital inclination changes according to the change of orbit
configuration, when the orbital configuration is determined, the I is a constant.

{
M= arcsin( zns

r·sin I )
Ω = arccos(xns/r·sinM+yns/r·m

sinM cosM+m2 )
(6)

where m = cos I sin M .

Determine the Distribution Position of the NGSO Satellites Within
the Visual Range
The Walker constellation was first proposed in 1970, which can be divided into
star constellation and rose constellation, and it is currently adopted by most
systems due to its characteristics of uniform distribution [18]. Walker Constel-
lation can be fully described by three parameters: T/P/F , where T represents
the total number of the constellation satellites, P represents the number of the
orbital planes, F represents the phase factor of phase difference between adja-
cent satellites in adjacent orbital planes, which the value is usually between 1 to
P − 1.

When the initial satellite in Walker constellation is determined, which means
the (Ω0,M0) is known, then according to the formula (7) of star constellation,
the distribution of NGSO satellites in the GSO earth station visible area can be
determined.

{
Ωi,j = Ω0 ± i(π/P )
Mi,j = M0 ± 2π(Fi/T + Pj/T )

i = 0, ......, roundup((dif lon · P )/π)
j = 0, ......, roundup((dif lat · T )/(2π · P ))

(7)

where, i represents i-th orbital plane, j represents j-th satellite in i-th orbital
plane, roundup means rounding up function, dif lon is the visible area maximum
longitude difference and dif lat is the visible area maximum latitude difference.

When the configuration of Walker Constellation is rose, the total period of
RAAN difference between adjacent tracks is 2π, therefor, the formula can be
expressed as:

⎧
⎪⎪⎨
⎪⎪⎩

{
Ωupi,j = Ω0 ± i(π/P )
Mupi,j = M0 ± 2π(Fi/T + Pj/T ){
Ωdowni,j = Ω0 ± (i + P

2 )(π/P )
Mdowni,j = M0 ± 2π(Fi/T + P (j + T/P

2 )/T )
i = 0, ......, roundup((dif lon · P )/π)
j = 0, ......, roundup((dif lat · T )/(2π · P ))

(8)
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Because the ascending orbits of rose constellations are distributed in the
period range of 2π, the ascending orbit and the descending orbit will intersect.
Therefore, within the visual range of GSO earth station, it should be discussed
the distribution of interfering satellites in ascending orbit and descending orbit
respectively.

3.3 Interference Calculation

This paper takes the downlink interference scenario of the NGSO system to the
GSO system as an example. For each NGSO satellite in the visual area of the
GSO earth station, it will interfere to the GSO earth station, the single link
interference formula is as follows:

Im = Pt,m · Ooverlop · Gt (ϕm) · Gr (θm) /Lfs,m (9)

where, Im represents the interference power from the m − th NGSO satellite
to the GSO earth station, Pt,m is the transmitting power of the m − th NGSO
satellite beam, Op is the frequency overlap factor, Gt (ϕm) is the gain of NGSO
satellite where the off-axis angle between two links equals to ϕm and Gr (θm) is
the gain of GSO earth station when the off-axis angle between two links equals
to θm. Lfs is the free space path loss. Therefore, it needs to be adjusted by the
frequency overlap factor. The formula for Op is as follows:

O = min
{

Bg, Bn,
(Bg+Bn)

2 − |fg − fn|
}

Op = O
Bn

(10)

where, Bg is the GSO link bandwidth, Bn is the NGSO signal bandwidth, fg is
the GSO signal centre frequency and fn is the NGSO signal centre frequency.

The free space path loss is related to the distance between the NGSO satellite
and the GSO earth station, the formula is as Eq. (11):

Lfs = (
4πr

λ
)2 = (

4π · dkm · fMHz · 109

c
)2 (11)

where, dkm is the distance between two separated location in km and fMHz is
the centre frequency in MHz.

Due to the large scale NGSO system, multiple NGSO satellites will appear
simultaneously in the visual area of the GSO earth station. Therefore, the aggre-
gate interference of the NGSO constellation to the GSO earth station will be
calculated finally, the calculation formula is as follows:

Iagg =
M∑
m

10Im/10 (12)

where, M is the number of NGSO satellites in the GSO earth station visible
area. Aggregate interference-to-noise ratio (Iagg/N) is:

Iagg/N = Iagg/(K · T · B) (13)
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where, K is the Boltzmann constant, K = 1.38 × 10−23J/K, T is the equivalent
noise temperature of the GSO earth station receiving system and B is the GSO
earth station receiving bandwidth.

3.4 Interference Probability Distribution Statistics

In previous sections, firstly meshing the visual area of the GSO earth station,
then according to the cell division accuracy, we can determine the coordinates
of the center point of the small cell in the visible area of the GSO earth station.
The initial satellite is placed at the center of the each cell respectively, Using
Eq. (4) to determine the position occurrence probability of the initial satellite.

In order to overcome the difference of the cell division accuracy and make
the statistical results of interference distribution more realistic, it is necessary
to normalize the initial NGSO satellite position probability. The normalization
formula is as follows:

pX(λlonw, λlatw) =
p′

X(λlonw, λlatw)
W∑

w=1
p′

X(λlonw, λlatw)
, w = 1, 2, ...,W (14)

where, pX(λlonw, λlatw) is the position occurrence probability of the w − th
initial NGSO interference satellite after normalization, p′

X(λlonw, λlatw) is the
position occurrence probability of the w − th initial NGSO interfering satellite
determined by the longitude and latitude of the cell center, W is the total number
of small cells in the visual area of the GSO earth station.

When the NGSO constellation configuration and initial satellite are deter-
mined, the global distribution of interfering constellation is determined. The
distribution and specific position of the interfering satellites in the visual area of
the GSO earth station are derived from the initial NGSO satellite position. Using
the calculation formula of interference-to-noise ratio, the aggregate interference
Iagg/N corresponding to the w − th initial satellite position can be calculated.
Traversing and calculating the aggregate interference corresponding to all cells
in the visual area of the GSO earth station, and statistical aggregate interference
probability distribution. The statistical method is as follows: incorporation the
Iagg,w/N into corresponding interval Iagg/N , the probability corresponding to
the Iagg,w/N will be accumulated as the probability value of the current inter-
val Iagg/N . Setting s dB as interval granularity, counting the probability of the
Iagg,w/N in interval [a − s, a). Where a is the statistical of the Iagg,w/N value,
and the statistical formula is as Eq. (15):

p(a) =
W∑

w=1

p(Iagg w/N), a − s ≤Iagg w/N < a (15)

Repeating above process for all aggregate interference and position probabil-
ity, and finally obtaining the probability distribution of the Iagg/N .
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4 Experiment

4.1 Simulation Model

To verify the accuracy and efficiency of the proposed model, the interference
scenario is constructed according to the parameters in Table 1. The interference
calculation model based on satellite position probability and Monte Carlo inter-
ference calculation model based on time-slice are used for interference analysis,
then comparing the simulation results and simulation duration.

Table 1. Satellite systems communication parameters

Parameters SinoSat-5 Constellation B Constellation C

Earth station field angle (◦) 45 53 42

Constellation orbital altitude (km) 35794 800 550

Constellation orbital inclination (◦) 0 66 53

Number of satellites 1 1584 3872

Number of orbital planes 1 72 44

Constellation phase factor / 1 1

Constellation configuration / rose star

Frequency (GHz) 12.5 12.5 12.5

Bandwidth (MHz) 250 250 250

Satellite transmitting antenna peak gain (dBi) 37 26.3 26.3

Half-power beam angle of satellite transmitting

antenna (◦)
0.82 3.2 3.2

Satellite transmitting antenna pattern S.672 S.1528 [19] S.1528

Satellite transmitting power (dBW) 16.3 8.5 8.5

Earth station receiving antenna peak gain (dBi) 52.9 19.9 19.9

Half-power beam angle of earth station receiving

antenna (◦)
0.4 8.8 8.8

Earth station receiving antenna pattern S.1428 [20] AP8 AP8

Earth station receiver system noise temperature (K) 240 120 120

Propagation model P.525 P.525 P.525

Table 1 shows the parameters of the interfered GSO system. In this paper,
SinoSat − 5 GSO system will be selected as an example. The SinoSat-5 satellite
operates on the equatorial synchronous orbital plane and stationary relative to
the earth station, the satellite transmitting antenna and the receiving antenna
of the earth station are always targeting. Since the SinoSat − 5 system has
been in orbit, querying the data submitted to ITU and determining the system
communication parameters, which will be better fit the actual scenario.

Table 1 also shows the parameters of the interfering NGSO constellation sys-
tem B and C, where B and C choose different constellation configurations and
orbital parameters respectively. In order to verify that the proposed calculation
model is more suitable for large scale constellations, the communication param-
eters adopted in this paper will refer to the application documents submitted by
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NGSO system to the ITU. Since the NGSO system configuration will be large,
then the fixed antenna of satellites can provide global services.

4.2 Results and Discussion

Deploying the GSO earth station at (120◦E, 27◦), and the GSO satellite oper-
ating at (120◦E, 0◦). Due to the limitation of antenna pointing and visual field
angle, the visual area of the GSO earth station is an irregular area. In Fig. 4,
three initial positions are selected respectively, and the distribution of interfering
satellites is drawn within the visual area of GSO earth station, where the pink
circle is the visual area edge line of GSO earth station on the earth’s surface,
the blue star is the distribution of interfering satellites in the initial position 1,
the red and green stars are at the initial positions 2 and 3 respectively.

Fig. 4. The distribution of interfering satellites in the visual area (Color figure online)

As show in Fig. 5(a), the satellite aggregate interference distribution curves
simulated by different models, in which the blue line is the Monte Carlo inter-
ference calculation model based on time-slice, and the red line is the proposed
interference calculation model based on satellite position probability using in
this paper. The experimental results of the two models fit well, and there is
only a slight deviation near the peak of the probability distribution. Figure 5(b)
draws the cumulative distribution curve by two models.

We deploy the GSO earth station at (120◦E, 0◦), and analyzing the aggregate
interference from constellation C to the GSO earth station when the GSO satel-
lite is directly above the GSO earth station. Figure 6 shows the projection edge
of the visual area and the distribution of interfering satellites of the GSO earth
station. Since the GSO earth station is setting directly below the GSO satellite,
the projection boundary of the visible area is a positive circle. Figure 7(a) and
7(b), show the aggregate interference probability distribution and cumulative
distribution received by the GSO earth station respectively when the number
of interfering constellations increases, in which the blue line using the Monte
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Fig. 5. Probability distribution and cumulative probability distribution of the inter-
ference

Carlo interference calculation model and the red line using the proposed model
in this paper. In this experiment, the aggregate interference probability distri-
bution of the two models is quite different between (−10) dB to 0 dB. This is
because the calculation model based on time-slice is the real-time satellite posi-
tion acquisition in the simulation scenario, and the satellite attitude and orbit
control are not considered, which would caused satellite position deviation due to
earth perturbation, atmospheric friction and other factors. In the actual operat-
ing environment, the satellite will operate according to the predetermined orbit.
When the interfering link approaches to the GSO communication link, a slight
position difference of interfering satellites will have a great impact on the antenna
pointing and antenna angles, and then affect on the gain and aggregate interfer-
ence. In addition, the calculation model based on satellite position probability
can more comprehensively include extreme cases such as the worst interference
scenario, and provide more reliable data support for interference analysis.

Fig. 6. The distribution of interfering satellites in the visual area (Color figure online)
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Fig. 7. Probability distribution and cumulative probability distribution of the inter-
ference

Table 2 compares the constellation scenario construct and aggregate interfer-
ence calculate time used by interference calculation model based on time-slice and
on satellite position probability respectively. The workstation used is Dell 5530,
which can build up to about 4000 satellites. Using the calculation model based on
time-slice, the total simulation time is 10 d. The proposed interference calculation
model saves the construction time of interference constellation and increases the
interference calculate time thousands of times. When the number of the interfer-
ing constellation increases, the constellation construction and simulation duration
of the calculation model based on time-slice increases significantly, while the sim-
ulation duration of the calculation model based on satellite position probability
hardly changes, and even the calculation time is shrinking. This is because the
orbital altitude of constellation C is smaller than that of the constellation B com-
pared with the increase of constellation size. With the decrease of the orbital alti-
tude of NGSO constellation, the visual sphere of the GSO earth station will shrink.
Therefore, the main factor affecting the calculation time of this model is the orbit
altitude of interfering constellations, which is less related to the number of constel-
lations. Most of the large scale constellations are Low Earth Orbit constellations,
and the orbital altitude is low or even very low, then the greatest time-consuming
impact on the proposed calculation model can be ignored.

Table 2. The simulation duration of two interference calculation models

Constellation construction Interference calculation

Interference of B to GSO based

on time-slice

1716 (s) 10564 (s)

Interference of B to GSO based

on probability distribution

0 (s) 23.7 (s)

Interference of C to GSO based

on time-slice

24684 (s) 163687 (s)

Interference of C to GSO based

on probability distribution

0 (s) 14.8 (s)
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5 Conclusion

In this paper, we propose a new efficient interference calculation model, which
can calculate the occurrence probability of the initial satellite and deduce the
distribution of interfering satellites in the visual area through the initial satel-
lite, then the model can calculate the aggregate interference from the inter-
fering constellation to the GSO system fast. Compared with the traditional
interference calculation model based on time-slice, the proposed model shows a
great improvement in reducing model complexity, improving model calculation
efficiency, lessening simulation equipment performance requirements and being
suitable for a variety of large scale constellation configurations. By analyzing
the experimental results, it can be seen that the calculation result distribution
of the proposed model is consistent with that of the traditional model, and is
not limited to the total simulation duration, which can include the worst co-line
interference scenario, and it can better reflect the impact of extreme simulation
scenarios on GSO system. What’s more, in the same simulation scenario, the
time-consuming of the proposed model is at least 518 times faster than that of
the traditional model. With the multiplication of the number of interference con-
stellations, the simulation duration of the traditional time-slice model increases
by 15.8 times, while the simulation duration of the proposed model changes
slightly.
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Abstract. Personalized federated learning (PFL) is an improved frame-
work that can facilitate the handling of data heterogeneity by learning
personalized models. As personalization performance directly depends
on the global model, it is desired to acquire a global model with a decent
generalization capability under data heterogeneity. This paper proposes
a novel PFL scheme, FedALP, integrating the clustering method with an
adaptive layer-based fusion algorithm. Experiments are performed using
various neural network models on three standard datasets. Experimen-
tal results demonstrate that, compared with the FedAvg method, our
scheme can significantly improve the local model’s performance with a
negligible decrease in the generalization capability of the global model.
Furthermore, our scheme is customizable for specific PFL applications;
hence it may provide a flexible strategy to effectuate a balanced perfor-
mance for both the global and the local models.

Keywords: Personalized federated learning · Adaptive · Layer-based ·
Non-IID

1 Introduction

Federated Learning (FL) is a distributed deep learning framework [11] that
allows multiple clients to jointly train a shared global model under the coor-
dination of a central server while keeping the participants’ data private. Most of
the existing training methods are variants of the Federated Averaging (FedAvg)
introduced by McMahan et al. [14]. However, in the presence of statistical data
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heterogeneity [20], such as non-IID and imbalanced data, it is difficult for FL to
train a single model that works well for all clients. Optimizing the global model
independently may result in poor performance in the local models [8,20].

Personalized federated learning (PFL) [16] has been proposed as a solution
to mitigate the aforementioned issues. Many efforts [13] have been made to
explore a scheme that exhibits sound global generalization properties and well
personalized local matching properties. Wu et al. [17] proposed a tailored hier-
archical communication architecture that introduced an intermediate layer of
servers between the cloud and the clients for asynchronous training. Arivazha-
gan et al. [1] proposed a neural network architecture where the base layer is
trained on a centralized server using FedAvg, and the top layer is trained locally
using a gradient descent variant. Liang et al. [9] proposed a new FL algorithm
that learns a compact local representation and a global model across all clients.
However, these personalization methods are usually focused on enhancing local
representations, and the generalization capability of the global model is of less
concern.

In the PFL process, many clients may share some similarities in the data dis-
tribution. If these clients can be aggregated for mutual benefits, the performance
may outperform localized adaptation schemes [10]. Briggs et al. [2] proposed a
hierarchical clustering strategy to separate client clusters by comparing their
local updates with the global model. Ma et al. [12] proposed a personalized FL
method that incorporates attention-based clustering to facilitate collaborations
among similar clients. Zhang et al. [19] proposed a PFL framework that can
calculate optimal weighted model combinations for each client. Huang et al. [5]
proposed a attentive message passing mechanism that can assist the collabora-
tion among clients significantly. Instead of maintaining a single global model,
this mechanism retains a personalized cloud model for individual client.

Sattler et al. [15] proposed clustered federated learning paradigm that
exploits geometric properties of the FL loss surface to group the clients into
clusters. However, these approaches do not consider the relationship between
the global model and the personalized local models. The generalization perfor-
mance of the global model can be impaired because of the limited communication
between client groups. Wu et al. [17] pointed out that the comprehensive knowl-
edge from the global model may be beneficial in situations when limited local
data is acquired for training. On the other hand, the global model with a decent
generalization performance can serve as an unbiased initialization for new users.
Hence, it is desirable to explore a novel PFL training framework that ensures
adequate performance for the global model.

This paper proposes a hierarchical PFL framework FedALP named federated
learning with adaptive layer-based personalization. The focus of this framework is
on addressing the above issues. Our contributions can be summarized as follows:

– We propose a novel federated learning framework, which integrates a client
clustering method and an adaptive layer-based fusion algorithm. This frame-
work does not require manual efforts, and it can adaptively allocate layers for
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the personalization model to maintain a decent performance for both local
and global models.

– Our proposed scheme is fully customizable for specific PFL applications;
hence it can provide a flexible strategy to effectuate a balanced performance
for both the global and the local models.

– Experiments have been performed on models with datasets including MNIST,
FashionMNIST, and CIFAR-10. The results demonstrate that FedALP can
improve the performance of the local model by maximum 31.5% with at most
6.8% decrease in the performance of the global model. FedALP on non-IID
data can achieve a comparable or even better performance than the FedAvg
framework on IID data for the same dataset. And as β varies, FedALP can
provide a dynamic performance between an optimized global and personalized
local performance.

2 Methodology

2.1 Motivation

While FL has been shown to be effective in training a single accurate global
inference model, it may not generate a satisfactory global model shared by all
nodes on non-IID dataset. In recent years, in the explorations of PFL, many
researchers have focused on two possible solutions:

1) Clustering-based personalization [2,15,19]. Instead of expecting the
global model to perform well on all clients, this method trains dedicated
models for sharing within a group of clients with similar data distribution.

2) Layer-based personalization [1,3,9]. These method personalizes some lay-
ers of the local model, while the rest are derived from the global model.

However, current clustering-based personalization approaches rarely focus on
model sharing between groups. Consequently, they may compromise the general-
ization performance of the global model. Meanwhile, current layer-based person-
alization approaches lack flexibility and adaptability because they usually adopt
predefined layering. Therefore, they may end up with a suboptimal solution,
leading to an unbalanced performance for both the global and the local models.

The proposed scheme, FedALP, employs an adaptive layer-based PFL scheme
that incorporates a clustering method. In this method, the layer-based person-
alization scheme is applied to a group of clients. Each client can return the per-
formance feedback within the group to regulate the layer-based personalization
training.

2.2 Algorithm Design

Algorithm 1 describes the proposed scheme of FedALP, and a summary of the
symbols is listed in Table 1. In general, FedALP’s workflow consists of three
phases. The first phase is the warm-up phase, where the FedALP initiate the
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global model on the global server and push it to every participating client. The
training process at this phase follows the FedAvg [14] scheme and runs for Tpre

rounds. The second phase performs the clustering and the layer-wise personal-
ization based on the results from the warm-up phase. The third phase is the
main body of FedALP when the groups and the layers are set. In this phase, the
hierarchical PFL training is carried out for (T − Tpre) rounds until the models
achieve satisfactory performance results. Details of the process of FedALP are
elaborated as follows:

Table 1. Notation

Symbol Explanation Symbol Explanation

T Iteration number of overall

training

w(t)
g Global model parameters of

iteration t

Tpre Iteration number of the warm-up

phase

w(t)
m The mth group’s model

parameters of iteration t

K Number of clients Gm Set of client index in mth group

M Number of groups Dm Average gradient of clients within

mth group

ρ Cosine similarity matrix,

ρ ⊂ R
K×K

Ψm Personalization weight of mth

group

l Number of model layers involved

in training

α Dirichlet distribution

parameters,α ∈ [0,+∞)

γk Samples number weight of client k β Personalization factor, β ∈ [0, 1]

Warm-up Phase: At the beginning of FedALP, each client will initialize a
model that is trained and shared at a given frequency (every 20 epochs in our
setting). Meanwhile, the Global server receives clients’ gradients to update the
global model; then it pushes the latest global model to the clients. The process
at the current phase is the same as the standard FedAvg’s setting; the model
training at iteration t + 1 will only begin after successfully receiving w(t). We
train the global model for Tpre iterations, where Tpre is a predefined setting
which is typically set to be 40% to 70% of the overall training iterations T . At
this phase, the global objective function of FedAvg is given by

min
w

{
f(w) �

K∑
k=1

γkFk(w)

}
, (1)

where K is the number of clients, γk is the weight of the k-th client, γk ≥
0,

∑
k γk = 1, and Fk(w) is the local objective functions. The local objective

functions is given by
Fk(w) � E(x,y)∼pk

data
L(x, y; w), (2)

where p
(k)
data is the data distribution of client k, L(·) is the loss function of the

predictions on examples (x, y) made with model parameters w. A global model,
w

(Tpre)
g , can be obtained after Tpre rounds and is shared by each client.
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Layer-wise Personalization with Clustering: This phase starts with a
global model w

(Tpre)
g where its gradient updates {Δw

(Tpre)
k }K

k=1 are noted as
ΔW . Algorithm 2 describes the process of this phase. A pairwise cosine similar-
ity matrix ρ ⊂ R

K×K is constructed with cosine similarity kernel S as follows:

ρ = S(ΔW ), ρij = SC(i, j), (3)

where the cosine similarity SC(·, ·) between the gradient updates of any two
clients i and j is defined by:

SC(i, j) �
< Δw

(Tpre)
i , Δw

(Tpre)
j >

||Δw
(Tpre)
i || ||Δw

(Tpre)
j ||

, (4)

where i, j ∈ {1, 2, · · · ,K}. Then we use a top-down hierarchical clustering algo-
rithm [4] to cluster K clients into M groups based on ρ, and thus produce a
group list, denoted by {Gm}M

m=1. A single process is designated as the group
server for coordinating among clients within the group. The group server main-
tains a group model wm, while the global model is denoted as wg.

Algorithm 1: FL with Adaptive Layer-based Personalization (FedALP)
Procedure FedALP SERVER TRAINING:

Input: Round number Tpre, T , local epochs E, batch size B, learning rate η

Output: Global model w
(T )
g and group models {w

(T )
m }M

m=1

1 Get w
(Tpre)
g by FedAvg [14] with E, B, η, Tpre

2 Execute FEDALP INITIALIZATION (Algorithm 2)

3 Initialize group model {w
(Tpre)
m }M

m=1 with w
(Tpre)
m ← w

(Tpre)
g

4 for each global round t = Tpre+1, Tpre+2, · · · , T do
5 for m = 1, 2, · · · , M do

6 Wnew=MixByLayer(w
(t−1)
m , w

(t)
g , Ψm)

7 Server broadcasts Wnew to client k ∈ Gm

8 for each client k ∈ Gm do

9 Δw
(t+1)
k ←ClientUpdate(k, Wnew)

10 w
(t+1)
m ← w

(t)
m +

∑
k∈Gm

γkΔw
(t+1)
k

11 w
(t+1)
g ← ∑M

m=1

{
(
∑

k∈Gm
γk)w

(t+1)
m

}
Function MixByLayer(wm, wg, Ψm):

1 for each model layer l = 1, 2, · · · , L do

2 w(l) ← Ψ
(l)
m w

(l)
m + (1 − Ψ

(l)
m )w

(l)
g

3 return w ← {w(l)}L
l=1

Function ClientUpdate(i, w):
1 ŵ ← w

2 for each local epoch e = 1, 2, · · · , E do
3 w ← w − η · ∇L(b; w) for local batch b ∈ Bi

4 return Δw ← w − ŵ
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Next, the group server adopts the proposed adpative layer-based fusion algo-
rithm to generate a layer-wise weight list Ψ . The procedure of getting Ψ is given
as follows: Given a group Gm, we first calculate the average gradient updates
Dm within each group as given by:

Dm =
∑

k∈Gm

γkΔw(k). (5)

Then the updates can be divided into individual sets of layers as given by

Dm =
[
D(1)

m , D(2)
m , · · · , D(l)

m

]
, (6)

where l represents the total number of model layers involved in the training.
We define a tensor δm to represent the Euclidean distance of each layer in

the model within mth group. δm can be derived from Dm as given by

δm ←
{

||D(1)
m ||2, ||D(2)

m ||2, · · · , ||D(l)
m ||2

}
, (7)

where the Euclidean norm, ||D(n)
m ||2, represents the update distance of the nth

layer and n ∈ {1, · · · , l}. It is worth noting that ||D(n)
m ||2 is proportional to the

degree of the personalization for the layer.
We define a personalization factor β and then the layer-based personalization

weights Ψm is calculated as given by

Ψm = β · δm/max(δm). (8)

The personalization factor β is a parameter that can have an impact on the per-
sonalization degree of FedALP. When β = 0, FedALP turns into FedAvg; when
β = 1, some layers are completely localized at the expense of the generalization
capability of the global model.

FedALP Hierarchical PFL Training: In this phase, the group server takes
over the global sever as the organizer within each group, where clients’ gradients
are sent to update the group model wm, and the latest group model is sent back
to the clients. While the global server only communicates with the group servers.
The global model wg is updated by averaging the wm at every global iteration.
Figure 1 describes current phase of FedALP.

At the beginning of each iteration, the global server sends the latest global
model wg to each group server. Then, the global model is weighted and fused
with the group model wm layer-by-layer. The model parameter of the nth layer
at group m is given by

W(n)
new = Ψ (n)

m w(n)
m + (1 − Ψ (n)

m )w(n)
g , (9)



86 Z. Xie et al.

Fig. 1. FedALP training process

where W(n)
new represents the n-th layer of Wnew and n ∈ {1, · · · , l}. For each

group, the model Wnew has l layers and is given by

Wnew ←
{

W(1)
new, W(2)

new, · · · , W(l)
new

}
. (10)

Here Wnew serves as the starting point for the next iteration and is broadcasted
within the group. The client trains the model Wnew for several epochs (we pick
20 as our setting) and they are aggregated to update the group model wm.

The training process repeats until the desired number of iterations or the
accuracy reaches a given threshold. Thus it concludes the FedALP process. In
our method, all model aggregations are weighted based on the amount of data
owned by the client to optimize the model performance further.

Algorithm 2: Layer-wise Personalization Algorithm with Clustering
Procedure LAYER-WISE PERSONALIZATION WITH CLUSTERING

Input: Group number M , personalization factor β, gradients {Δw
(Tpre)

k }K
k=1

Output: {Gm}M
m=1 and {Ψm}M

m=1

1 Estimated hierarchical clustering P with Ward method from the similarity

matrix ρ, where ρi,j = SC(Δw
(Tpre)
i , Δw

(Tpre)
j ), i, j ∈ {k}K

k=1 (Eq. 4)

2 Intersect P to determine M groups {Gm}M
m=1, Gm = {k | client k in group m}

3 for m = 1, 2, · · · , M do

4 Dm ← ∑
k∈Gm

γkΔw
(Tpre)

k

5 Ψm ←LayersWeight(Dm, β)

Function LayersWeight(D, β):
1 D = [D(1), D(2), · · · , D(L)]

2 for each model layer l = 1, 2, · · · , L do

3 δ(l) ← ||D(l)||2
4 δ ← {δ(1), δ(2), · · · , δ(L)}
5 return Ψ ← β · δ/max(δ)

In summary, the proposed method can adaptively get the optimized layer-
based personalization for various models. Compared to personalizing the entire
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model, our layer-based personalization can improve the performance of the local
model with a minimal impact on the global model generalization performance.
While implementing personalization, we also optimize the global model. Hence,
the global model facilitates communication among groups, and every client may
obtain knowledge from the global model and avoid overfitting and a locally opti-
mal result. The global model provides a generalization capability for other appli-
cations that may exploit its ability. It is worth mentioning that, since our layer-
wise algorithm is personalized, each group can have its own layer-based weights
Ψm, which will allow using different personalization within different groups.

Our approach is flexible compared with some state-of-the-art layer-based
personalization schemes [1,3,9]. This is because the proposed layer-wise algo-
rithm is adaptable by incorporating the personalization factor, β. A balanced
performance can be achieved for both the global and the local models that are
tailored for specific PFL applications. For example, when β = 0, FedALP turns
into FedAvg; when β = 1, FedALP becomes a variant of [1], some layers are
completely localized at the expense of the generalization capability of the global
model.

3 Experiments

3.1 Datasets and Model Architectures

We evaluated the performance of FedALP with four models on three non-IID
datasets based on MNIST, FashionMNIST, CIFAR-10. It is worth noting that,
various kinds of non-IID data partition scheme exist and our data partition is
the same as in [4].

A. MNIST [7]. We generated a non-IID dataset consisting of 100 clients, where
each client has 500 training samples and 100 test samples that consist of only
one digit. Each digit is owned by 10 clients.

B. FashionMNIST [18]. We follow the same procedure as MNIST to create a
non-IID dataset using FashionMNIST.

C. CIFAR-10 [6]. We partition the CIFAR-10 dataset using the Dirichlet dis-
tribution, DIR(α), to provide the corresponding cross-category partition for
each client. The parameter α controls the heterogeneity of the generated
dataset. When α = 0, it means that each client gets only one category of
sample, and when α → +∞, it means that all categories of sample are uni-
formly distributed on each client. We consider 100 clients and assign datasets
to clients under the IID and Dirichlet distribution with α ∈ {0.001, 0.01, 0.1}.
Clients will have unbalanced amount of samples.

The experiments utilized four models to evaluation the FedALP scheme.
The first model is a fully connected network with only one hidden layer, named
MNIST-NN. The second model is a CNN named MNIST-CNN. It consists of 3
convolutional layers and 2 fully connected layers. The third one is also a CNN
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named CIFAR10-CNN and it consists of 3 convolutional layers and 2 fully con-
nected layers. The fourth one is an AlexNet model accustomed to the CIFAR-10
dataset, and it consists of 5 convolutional layers and 3 fully connected layers.
Both MNIST-NN and MNIST-CNN were used on the MNIST and FashionM-
NIST datasets, while both CIFAR10-CNN and AlexNet were used on CIFAR-10.

3.2 FedALP Evaluation

In our experiments, the FedAvg algorithm [14] is used as the baseline for training
on both the IID dataset and the non-IID dataset. In each experiment, the global
model maintained by the FedALP algorithm is named FedALP global. Three
sets of experiments have been performed.

1. Experiment 1 describes the comparison of the accuracy performance between
FedAvg and FedALP on both IID and non-IID datasets.

2. Experiment 2 compares the model’s accuracy performance of FedAvg and
FedALP on both IID and non-IID CIFAR-10 by varying α, the degree of
non-IID in datasets.

3. Experiment 3 compares the model’s accuracy performance of FedALP on
non-IID CIFAR-10 by varying β, the personalization factor of FedALP.

Experiment 1: Fig. 2 describes the experimental results and the accuracy values
are listed in Table 2. This experiment evaluates the accuracy performance of all
three datasets in four different cases: (1) FedAvg on IID datasets (green line), (2)
FedAvg on non-IID datasets (orange line), (3) the global model performance

Fig. 2. Comparison of FedAvg on IID, FedAvg on non-IID, and FedALP on non-IID
datasets (α = 0.001, β = 0.6) with various models. (Color figure online)
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Table 2. The accuracy comparison of FedAvg and FedALP with various models.

Dataset Model Accuracy Ratio

Non-IID (α = 0.001) IID

FedAvg FedALP global FedALP FedAvg

MNIST MNIST-NN 87.25 (↓ 0.69%)86.65 (↑ 10.56%)94.46 94.37 102.21%

MNIST-CNN 92.55 (↓ 0.75%)91.86 (↑ 4.45%)96.67 96.04 100.66%

FashionMnist MNIST-NN 73.48 (↓ 0.91%)72.81 (↑ 31.52%)96.64 81.05 119.24%

MNIST-CNN 68.86 (↓ 5.63%)65.01 (↑ 15.65%)79.67 80.99 98.37%

CIFAR10 CIFAR10-CNN 54.86 (↓ 6.33%)51.39 (↑ 23.57%)67.79 65.82 102.99%

CIFAR10-AlexNet 51.73 (↓ 6.79%)48.22 (↑ 22.83%)63.54 66.82 91.60%

of FedALP on non-IID datasets, α = 0.001 (magenta line), (4) the average local
model performance of FedALP on non-IID datasets, α = 0.001 (blue line).

We observe that FedAvg on non-IID data significantly decreases its accuracy
performance compared with FedAvg on IID data. Since the starting point of
the FedALP is set to be at iteration Tpre, a notable performance enhancement
is demonstrated, as shown in Fig. 2. We found that our FedALP outperforms
FedAvg on non-IID by maximum 31.5% in the average local model performance,
while a slight decrease (maximum 6.8%) is observed in the global model perfor-
mance. The adaptively layer-based fusion method can accommodate some lay-
ers by adjusting their personalization contribution, preventing the overall model
from deviating too far from the global model. Interestingly, our FedALP method
on non-IID datasets and the FedAvg method on IID datasets are comparable in
accuracy performance. An intuitive explanation is that since our approach can
adaptively adjust the personalized layering scheme for each group, it may boost
the accuracy performance even with data discrepancy.
Experiment 2: Experimental results is summarized in Fig. 3 and the accuracy
values are listed in Table 3. This experiment evaluates the test accuracy per-
formance of CIFAR-10 by setting α to three different values {0.001, 0.01, 0.1}.
Results are collected for four cases: (1) FedAvg on IID datasets (green line), (2)
FedAvg on non-IID datasets (orange line), (3) the global model performance
of FedALP on non-IID datasets (magenta line), (4) the average local model
performance of FedALP on non-IID datasets (blue line).

We observe that in all cases with non-IID datasets, our FedALP outper-
forms the FedAvg methods. In addition, we observe that our FedALP approach
demonstrates excellent effectiveness in the accuracy performance as α decreases.
This is because α is a parameter that determines the degree of non-IID, and
the reduction in α will produce a performance degradation on FedAvg. At the
same time, our FedALP method can mitigate the data discrepancy and boost
performance.
Experiment 3: In this experiment, we evaluate the accuracy of both the global
and local models by varying the personalization factor, β, as shown in Fig. 4.
Two models, including CIFAR10-CNN and AlexNet, are employed on the non-
IID CIFAR-10 datasets (α = 0.001). This experiment aims to demonstrate the
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dynamic performance of FedALP that may be regulated for a balanced global
and personalized local performance.

In Fig. 4, we compare the accuracy versus rounds by varying β from 0 to 1
with 0.3 as the step. It is worth noting that the solid lines describe the average
result for the local models, and the dash-dotted lines illustrate the results for
the global model.

We observe that the average local model’s accuracy improves significantly as
β increases-i.e., the degree of personalization of each layer increases, resulting
in an improved local model. Meanwhile, the global model’s accuracy degrades
slightly. When β = 0, our proposed scheme produces the exact results as FedAvg.
This is because all the layers contribute to the training of the global model. When
β = 1, the personalization layers do not contribute to the training of the global
model; hence, a maximum local model accuracy can be attained with a 12%
decrease in the global accuracy performance compared with FedAvg.

In conclusion, by carefully choosing β, our scheme can significantly improve
the local model’s performance with a negligible decrease in the global model’s
accuracy. Our proposed method can adaptively accommodate specific PFL appli-
cations, providing flexibility to produce a balanced performance for both the
global and the local models.

Fig. 3. Comparison of FedAvg on IID and non-IID data, FedALP on non-IID CIFAR-
10 datasets with two models by varying α ∈ {0.001, 0.01, 0.1}. (Color figure online)
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Table 3. The accuracy comparison of FedAvg and FedALP by varying α.

Dataset-model α Accuracy

FedAvg FedALP global FedALP

CIFAR10-CNN 0.1 62.81 (↑ 1.11%)63.51 (↑ 3.30%)64.88

0.01 57.03 (↓ 0.79%)56.58 (↑ 19.48%)68.14

0.001 54.86 (↓ 6.33%)51.39 (↑ 23.57%)67.79

CIFAR10-AlexNet 0.1 63.19 (↑ 0.43%)62.92 (↑ 1.88%)63.38

0.01 56.06 (↓ 2.23%)54.81 (↑ 13.66%)63.72

0.001 51.73 (↓ 6.79%)48.22 (↑ 22.83%)63.54

Fig. 4. FedALP on non-IID CIFAR-10 with various β ∈ {0, 0.3, 0.6, 0.9, 1}.

4 Conclusion

This study describes a novel personalization federated learning method that
utilizes adaptive layer-based personalization and a clustering method. Exper-
imental results show that the proposed method can significantly improve the
local model’s performance with a negligible decrease in the generalization capa-
bility of the global model. The training results on non-IID data with FedALP are
comparable to a standard FedAvg on the IID data. Results also reveal that our
scheme can provide a flexible strategy that effectuates a balanced performance
for both the global and the local models for specific PFL applications.
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Abstract. In many scenarios, people have a demand for deploying the
artificial intelligence applications on the edge device of IoT. For some
special applications, these embedded devices are always required real-
time reponse; hence, it is necessary to process machine learning algo-
rithms on microprocessors. However, these devices may be subjected to
side-channel attacks (SCA). During the execution, these devices will gen-
erate the leakage information can be captured to get the secret data. In
this work, we investigate how to reverse engineer the weights of a con-
volutional neural network (CNN) which is deployed on ARM Cortex-M3
using Chosen Pixel Horizontal Power Analysis (CP-HPA).

We conduct the experiment on ELMO emulating leaks for the ARM
Cortex-M3. ARM Cortex-M3 microprocessors are often used to deploy
CNNs. Here, we show that it is possible to recover the weights of a CNN
using CP-HPA assuming that the adversary only has the knowledge of
the architectures. We increase the accuracy of our attack through set-
ting up chosen input pixel to correlate the selected multiplication. We are
able to successfully recover the weights of a CMSIS-NN implementation
CNN, and accuracy of our attack is 84.625%.

Keywords: SCA · CNN · ARM Cortex-M3 · CP-HPA

1 Introduction

With the continuous development of machine learning algorithms, artificial intel-
ligence has gradually become mainstream across industries. Numerous examples
prove its validity for several applications, such as image recognition [14], robotics
[11], natural language processing [20], etc. Deep research in machine learning
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leads to more development of machine learning algorithms on edge devices of
internet of things (IoT). Therefore, more neural network (NN) models have been
implemented on low-cost micro-controllers, such as cortex core, or neural net-
work hardware accelerators, such as FPGA.

The owners of NN models tend to spend plenty of time, fund, and human
resource to collect and process data and consume a lot of computing power to
train models. Hence, as the network is of commercial interest, its details are
always kept secret. For some special applications, the NN models may contain
private information which are sensitive to consumers. In these scenarios above,
the NN models must not be disclosed. In recent years, many attack techniques for
the neural network have been proposed. Side-channel attacks (SCA) are effective
attack techniques for embedded systems that adversary can use information
leakage, such as power consumption, electromagnetic emanations, timing, etc.,
generated during the execution to recover the secret data. For embedded neural
network implementations, SCA is also a matter of concern.

There has been many work about SCA for attacking NN. Previous work in
this field primarily focused on recovering model architectures or the informa-
tion of inputs at the inference stage. Hua et al. [9] reversed engineered AlexNet
and SqueezeNet deployed on CNN accelerator using memory and timing side-
channel leakages generated by off-chip memory access patterns during dynami-
cally zero pruning. The method of [9] relied on the memory access of adaptive
zero pruning techniques that feature maps contain a large number of zeros after
executing ReLU function, and the accelerator only reads and writes none-zero
values. Thus, this attack assumed that the adversary possesses the knowledge of
memory access patterns of the targeted accelerator. Batina et al. [2] completely
recovered the NN architectures through electromagnetic side-channel using cor-
relation power analysis (CPA), which is a special case of DPA, over the multipli-
cation operations. In [2], they needed to correlate a large number of Waveform,
which may bring adversary significant computation overheads. Batina et al. [3]
used horizontal power analysis (HPA) to predict the input using electromag-
netic emanations (EM) leakage by calculating the correlations from side-channel
samples with Hamming weight of each multiplication result. Batina et al. [3]
targeted the information of inputs and demonstrate the attacks on the MNIST
dataset. The attacks for weights had not been discussed in [3]. Maji et al. [18]
recovered the neural networks (floating point, fixed point, binary NNs) and the
inputs (MNIST, CIFAR-10 and ImageNet) using timing/SPA attacks.

The main contributions of our work are as follows:

1) Our work recovers weights of the NN model which is CMSIS-NN implemen-
tation on ARM Cortex -M3 core processor using CP-HPA, and we present
a comparison about requirement for trace number of respectively using CPA
and CP-HPA to attack the weights of targeted CNN. Traces requirement of
using CP-HPA to attack one weight is only one-twentieth that of CPA.

2) CP-HPA use a method of setting up special input values to correlate the
selected multiplications to increase the accuracy of our attack. CP-HPA will
be lead to a higher accuracy than HPA.
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3) We reverse engineer the weights respectively using CPA, HPA, CP-HPA.
Compared with CPA, CP-HPA have a lower traces requirement. In HPA
experiment, we face a problem that the recovery of current weight is related
to the previous weight; therefore, errors in the recovery of one weight leads
to errors in the following series of weights. Hence, the accuracy of HPA is
low. We solve the problem through CP-HPA, and this method leads to a high
accuracy.

The paper is organized as follow: Sect. 2 introduces the theory behind side-
channel attack and CNN. Then, in Sect. 3, we describe details about the targeted
model and our attack method. At last, we describe our experimental results in
Sect. 4 and conclude our work in Sect. 5.

2 Background

In this section, we introduce the concept of side-channel attack and several side
attack methods used in this paper. Next, we give details about CMSIS-NN and
CNN.

2.1 Side-Channel Attack

SCA is a commom attack method against embedded devices that adversary
uses the energy consumption characteristic in the executing device to obtain
the secret information of an algorithm. Based on existing analysis techniques,
SCA has different variants. Simple Power Analysis (SPA) reveals the sensitive
information using only a small amount of energy traces, utilizing the charac-
teristics that equipment energy consumption depends on different operations.
Correlation Power Analysis (CPA) [4] and Differential Power Analysis (DPA)
[12] are advanced form of SCA. In addition to the two above, TA (template
attack) [5] is a popular form of SCA as well. SCA and defense for it has been an
important branch of cryptography study, and much SCA attacks for symmetric
cryptographic algorithm (such as AES [17], DES [10]) and traditional public key
cryptography algorithm (such as ECC [7], RSA [1]) has been proposed.

Correlation Power Attack. CPA uses many energy traces to analyze the
consumption of the device for one operation and get the secret data by computing
the correlation between candidates data and side-channel measurements using
hamming weight model. It is assumed that CPA targets an operation f (m,s) of
a known input m with a secret value s. The adversary calculates the hamming
weight of f for predicted m with all the hypothesis values s. Then the attack
computes ρ(hw,p) that ρ is the Pearson correlation coefficient, hw is the hamming
weight for all the hypothesis s, and p is side-channel measurement. The correct
value of s will lead to a higher correlation than other candidates, shown in Fig. 1.
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Fig. 1. Correlation power analysis

Horizontal Power Attack. HPA [6] is an improvement of CPA. As the secret
s perform multiple f (m,s) with the different input m, one waveform can be split
into multiple blocks according to f (m,s), shown in Fig. 2. We use these blocks
to launch CPA, which is introduced above so that we can reverse engineer the
secret value using a few side-channel measurements.

Fig. 2. One wareform consised of 4 f (m,s) aligned horizontally can be splited to 4
blocks which has one f (m,s).

2.2 Convolutional Neural Network and CMSIS-NN

Inspired by Hubel and Wiesel’s research on biological processes of animals’ visual
cortex, CNN (Convolutional Neural Network) was proposed [16]. In recent years,
CNN has been continuously developing in multiple directions and making break-
throughs in image recognition, natural language learning, motion analysis, etc.
From the perspective of computation, CNN is not much different from ordinary
networks, and they are made of many 2-dimensional layers, each of which con-
sists of neurons. CNNs mainly use three types of layers: convolutional layers,
pooling layers, and fully-connected layers.

In a convolutional layer, the convolution operation is performed on two matri-
ces. A convolution layer extracts a new feature map by computing a dot product
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between the kernel and the input feature map, shown in Fig. 3. Pooling layers,
which are always inserted between convolution layers, are used to reduce the
feature dimensions in order to compress the images. Average pooling, which
calculates the average value, and max pooling, which calculates the maximum
value, are two common types of pooling layers, shown in Fig. 4. Fully-connected
layer combines multiple feature maps after convolution and pooling and connects
each neuron with its respective weight, shown in Fig. 5. Next, the results of the
full-connected layer are given to the Softmax function for classification and CNN
output final results.

Fig. 3. On the left is input feature
map, the convolution kernel is in the
middle and the output feature map is
on the right. The convolution kernel
slides on the input feature map with
fixed stride and performs dot product
operation to obtain the output feature
map.

Fig. 4. Average pooling, which calcu-
lates the average value, and max pool-
ing, which calculates the maximum
value, are two commom types of pool-
ing layers.

Fig. 5. In fully-connected layer, multiple feature maps are combined to a column matrix
and each neuron connect with weights respectively.
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Nowadays, a large number of edge devices of the IoT are put into use. Most of
them adopt the cloud data processing method that collected data are uploaded
to the cloud, processed on the server, and then returned to the microprocessor.
This approach is not suitable for devices with real-time reponse requirements.
Hence processing machine learning algorithms, especially CNN, on microproces-
sors has become a technological necessity. CMSIS-NN is one of the solutions.
CMSIS-NN software library is a efficient kernels which is developed to apply
machine learning applications to ARM Cortex-m series processors core. This
library contains a number of functions, each covering a specific category: con-
volution functions, activation functions, fully-connected layer functions, pooling
functions, SVDF layer functions, softmax functions, basic math functions, enable
Arm Cortex-M processors core to implement neural network applications with
maximum performance and minimize memory footprint. Additional information
about CMSIS-NN can be acquired in [15].

3 Chosen Pixel Horizontal Power Analysis

In this section, we give details about the targeted model we use and propose the
method about recovering the weights paraments of CNN through CP-HPA.

3.1 Targeted Model

Our targeted network is CNN, implemented by CMSIS-NN on ARM Cortex-M3
core processor. This CNN, totally 7 layers, consists of 3 convolutional layers: 3
max-pooling layers, and 1 fully-connected layer. The targeted CNN is applied
to image classification, input is CIFAR-10 dataset [13] which consists of 60000
color images in classes.

For the neural network, the weights of each layer are of value. In this example,
these weights are stored using 8-bits data(int8 t). In this CNN, weights computed
in convolutional layer which call functions arm convolve HWC q7 RGB() and
arm convolve HWC q7 fast(). These two methods are originated from CMSIS-
NN both and used to implement convolution operation respectively for the first
convolutional layer and the second and third convolutional layer. These two keep
consistent in algorithm logic and implementation details, only have difference in
data size of input parameter.

3.2 Correlating Selected Multiplications to Reverse the Weights
of CNN

As storing of resulting multiplication is existed during the execution, targeting
this temporary variable is feasible. In this example, as weights is 8-bits data,
this hypothetical value of the parameter ranges from 0 to 256. For each hypoth-
esis, the attack calculates the temporary variable using the weight w and the
input and gets their correlation coefficient. The correct assumption has a higher
correlation.
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Fig. 6. In the first convolutional layer, 32 kenerls output 32 feature which is 32∗32 for
a 32 ∗ 32 ∗ 3 input feature as padding is 2 and stride is 1.

Fig. 7. The output value of each multiplication result is related to the previous multi-
plication in a receptive field of the input feature map.

CPA targets only one multiplication on each trace. Hence, this method
requires a large number of traces. Apart from the attack points and their adja-
cent field, the rest of the side-channel waveform is unused. In this example, The
execution contain many multiplications in the convolutional layer. As one weight
perform multiplications with different input respectively during the execution,
multiple attack points can be found on one trace. Splitting one trace into mul-
tiple blocks according to multiplication and launching CPA using these blocks
can reverse engineer weights of this CNN.

In the first convolutional layer of the targeted NN model, the size of the input
feature is 32 ∗ 32 ∗ 3; the output size is 32 ∗ 32 ∗ 32, size of kernels is 5 ∗ 5 ∗ 3 ∗ 32.
Each 5 ∗ 5 ∗ 3 kernel and input feature performs a convolution operation to
generate an output feature which is 32 ∗ 32, shown in Fig. 6. Each weight and
respective input data perform a multiplication calculation as a kernel slides once.
In our targeted NN model, each weight will perform such multiplication 784
times during the first convolutional layer. In our Experiment, we use 9 trace and
correlate 784 multiplications for each trace, we found that the accuracy of attack
is low in this way. As we correlate 784 multiplications to reverse Engineering
kernels, recovering any weight incorrectly will lead to subsequent weights can
not being recovered correctly as well. The output value of each multiplication
result is related to the previous multiplication in a receptive field of the input
feature map, shown in Fig. 7. If we incorrectly recover w1, we will not get the
correct result of the multiplication for w2. Hence, we can not incorrectly recover
w2, the same is for w3, and the mistake will continue until the last weight. For the
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whole reverse Engineering, methods with low fault tolerance are unacceptable.
Therefore, we need to make some change in our attack, we set up special input
values in order that we only trace chosen multiplication. We set only one non-
zero value in a receptive field, and the rest are set at zero value so that kernel
slides several times to generate a non-zero multiplication result for each weight.
The purpose of this is to make each multiplication result we use only related to
one targeted weight. Applying it to our targeted CNN, one non-zero value is set
for every 75 bytes only in order that the kernel slides 5 steps to get a non-zero
multiplication result that is related to the targeted weight only, shown in Fig. 8,
and we can use 36 multiplication in the first convolutional layer totally. Then,
we merge and correlate multiplications of more traces to recover each weight.

Fig. 8. As w1 is targeted, one value which is respective to w1 in a receptive field is set
to non-zero for every 75 bytes only in order that kernel slides 5 times to get a non-zero
multiplication result which is related to targeted weight only.

Launching CPA requires abundant consumption traces. As the SNR of mea-
surements is low, the adversary needs more traces, sometimes millions. Not only
numerous traces increase the acquisition time, but also processing masses of
waveform requires more computation complexity. Hence, attacks for each weight
involve time and computation overheads due to processing abundant measure-
ments. However, even a small-scale network owns thousands of weights, the time
required for recovery of all weights is overcharged. In HPA, by reasons of correlat-
ing multiple multiplications in each trace, the requirement of waveforms could
be greatly reduced. However, the accuracy of HPA is low as discussed above.
For using CP-HPA to reverse engineer the entire network, time, computation
complexity, accuracy are all acceptable for adversary.
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4 Experiments

In the previous section, we discuss the threat model, which is CMSIS-NN imple-
mentation, and the purpose of the methodology to reverse engineer the weights of
the targeted model. After that, we present a complexity analysis of our method.
In this section, we conduct the experiment on emulating leaks for the ARM
Cortex-M3.

We use the ELMO, which is a power trace simulator, to generate waveforms.
ELMO is able to simulate power traces for any given Thumb binary, and its
source code is available in [8]. ELMO can evaluate Leaks for the ARM Cortex-M0
and Cortex-M3 based on the Thumb instruction set. Additional information for
the theory and development of the ELMO power model can be acquired in [19].
We simply remove the defines FIXEDVSRANDOM, MASKFLOW, ENERGY-
MODEL and define the coeffs M3.txt as COEFFSFILE from the elmodefines.h
file [8] in order to generate waveforms of the target model for ARM Cortex-M3.
After that, we add gaussian noise on each trace to generate the final waveform
which is used for our attack.

Table 1. Assembly for multiplication from input x and weight w: con out + = x ∗ w,
the result is stored in a 32-bit register.

# Instruction Comment

237 bl starttrigger trigger up

... ... taking address for x

261 ldr r3, [r7,#12] loading x

262 adds r3,r3,r2 loading x

263 ldrb r3,[r3] loading x

264 lsls r3,r3,#24 loading x

265 asrs r3,r3,#24 loading x

266 move r0,r3 loading x

... ... taking address for w

304 ldr r3, [r7,#4] loading w

305 adds r3,r3,r2 loading w

306 ldrb r3,[r3] loading w

307 lsls r3,r3,#24 loading w

308 asrs r3,r3,#24 loading w

309 muls r3,r0 multiplication of x and w

310 ldr r2, [r7,#24] taking preious result

311 adds r3,r2,r3 accumulation

312 str r3,[r7,#24] storing result

313 bl endtrigger trigger down
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For this experiment, we target the multiplication operation from the weight
and the input. This result of the multiplication is stored in a temporary int vari-
able (see in Table 1). Each measurement that is generated by ELMO is divided
into many blocks for multiplication (see in the previous section). In our exper-
iment, we use 100 traces respectively for each weight of the first convolutional
layer of the targeted NN model, and we divide these traces into 3600 blocks
totally. Each block has 121 points, and we correlate the field which ranges from
point 104 to point 108. These five points in measurements reflect the power con-
sumption of storing the multiplication result. In Fig. 9(a), around 40 traces will
be required before the correct weights can be distinguished from other candi-
dates. It can be seen that the correlation of correct weights and wrong hypothesis
can be distinguished around 1000 traces, shown in Fig. 9(b). The targeted CNN
has three convolutional layers; the attack for each convolutional layer are the
same. The input of the next convolutional layer can be chosen based on the
previous convolutional layer which has been recovered in order that we can also
implement the method discussed in Sect. 3.2 for the subsequent convolutional
layer. In our experiment, we first launch the HPA to recover the weight of the
first convolutional layer of the targeted CNN, and the accuracy of this method is
18.7917%. Then, we reverse engineer the weights of the first convolutional layer
of the targeted CNN using CP-HPA, and the accuracy of our attack is 84.625%.

Fig. 9. The correlation of correct weight and other candidates respectively using hori-
zontal CP-HPA and CPA can be distinguished. The red one represents correct weight
and the rest represents other candidates. (Color figure online)
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5 Conclusion

Numerous design strategies for the neural network have been proposed with the
popularity of neural network algorithms, and the trained weights have become
one of the main factors in determining the efficiency of neural networks. In this
work, we demonstrate reverse engineering of weights of a CNN using side-channel
analysis techniques. Concrete attacks are performed on simulation data which is
generated by ELMO for chosen neural network implemented on ARM Cortex-
M3. We conclude that all of the weights of the first convolutional layer can
be recovered using the CP-HPA technique. The proposed attacks draw on the
previous work, we target the other parameters and make changes in the method
according to our target compared to them.
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Abstract. Distress signal identification has great significance in saving
lives in coal mine rescue. In response to the rescue in the long-distance
coal mine tunnel full of dust and dangerous gas, we propose a distress ges-
ture sensing system utilizing LoRa technology, called MineSOS. Inspired
by the Morse code “SOS” and binary code, we first present a set of dis-
tress gestures with an error-check design, only requiring one hand move-
ment. For signal processing, we propose a novel metric to choose the opti-
mal LoRa attribute due to the observation of the complementary relation-
ship between amplitude and phase variation. Finally, a double-check mech-
anism is presented to recognize and verify the distress information. We
conducted extensive experiments to evaluate MineSOS’s performance, and
results show that it can achieve high accuracy for gesture recognition in a
coal mine lab. MineSOS system also has the capability of long-range sens-
ing, which is believed to benefit emergency coal mine rescue.

Keywords: LoRa · Distress gesture recognition · Coal mine rescue

1 Introduction

Underground coal mines are hazardous environments facing numerous problems
such as ground movements, gas explosions, and air blasts, resulting in great
potential for large-scale environmental damage and loss of life [9]. When a mine
accident occurs, the most urgent and essential task is to explore the vital signs
and distress information of the trapped miners, including the thermal radiation
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signs of the personnel, distress cries or tapping sounds, and photoelectric signals
using wireless equipment.

One of the promising life detectors is based on infrared sensors or thermal
infrared cameras through detecting radiant heat radiated by human bodies even
in the darkness [4]. However, dusty and foggy environments and the construction
of long and narrow tunnels limit its detection range and make it fail when rock
obstructions are blocking in between. Acoustic life detector is used to refine the
sonic caused by vocal signs or knocking, while its detection quality is severely
affected by environmental noises [10]. Radiofrequency signals such as Wi-Fi can
also monitor human’s vital signs [8,11], but it suffers from the limitation of short
sensing range.

This paper proposes a novel contactless sensing system based on the emerging
LoRa technology, which is more suitable for long-range emergency coal mine res-
cues. LoRa, a Low Power Wide Area Network (LPWAN) technology, is designed
to allow long-range wireless communications in low-power and low-cost ways
[2,5]. LoRa can enable effective data transmission in urban areas to a few kilome-
ters and has strong penetration capability through obstacles. This paper explores
the opportunities and feasibility of LoRa technology for human life detection in
coal mine rescues.

Fig. 1. Concept of MineSOS system for coal mine rescues.

The high-level idea of our designed system is shown in Fig. 1. When a person
regains consciousness after the accident, he/she can make some distress ges-
tures. The rescue robot carrying a pair of LoRa transceiver devices runs along
the mine tunnel to collect echo signals. By analyzing the characteristics of the
signal reflected by human activities, we can parse out the distress information
embedded in gestures. However, it does not make sense to make gestures ran-
domly. How to design a series of emergency gestures that carry certain distress
information and are suitable for long-range mine rescues becomes a challenging
issue.

Inspired by that the international distress signal “SOS” is an unbroken
sequence of three dots, three dashes and three dots, we realize that we can splice
several sub-gestures together to present one piece of information. In this paper,
we first give the design of sub-gestures and then the distress signal “SOS” is com-
posed of the combination of corresponding sub-gestures. In response to the issue
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that existing research always uses one attribute of LoRa signal, either amplitudes
[12] or phases [6] for processing, resulting in performing not well at different loca-
tions, we carefully analyze the effect of the relationship between amplitudes and
phases on sensing performance in theory and propose a novel method to choose
the optimal attribute of LoRa signals for gesture identification. Another issue is
that the gesture patterns are not clear and inconsistent with the ideal ones as
signals get attenuated and become blurred after long-range propagation, causing
identification errors. In response to this problem, we propose a gesture identifica-
tion algorithm combining gesture pattern recognition and correlation coefficient
comparisons. Finally, we introduce the verification mechanism with check codes
to double-check the distress information. The main contributions of this paper
are summarized as follows.

– We propose MineSOS, a distress gesture sensing system for emergency res-
cues, which only requires only one arm movement. By combining with LoRa
sensing technology, this system can effectively work in the long-range coal
mine environment.

– We design a series of distress gestures with a verification mechanism to be
friendly used for the trapped user and to be reliably recognized after long-
distance propagation. We also introduce a novel method to choose the optimal
LoRa attribute for sensing and a double-check approach for gesture recogni-
tion.

– We prototype MineSOS and evaluate it in both indoor scenarios and a real
coal mine environment with different users. Extensive experimental results
show that MineSOS can recognize distress gestures with an accuracy of 94%.

2 System Overview

Figure 2 illustrates the outline of our proposed system. A set of user-friendly
distress gestures are the foundation. We pick up several common sub-gestures
to present the information elements like dot and dash. With a certain coding
rule, several sub-gestures can build up a piece of distress information. A check
code mechanism is added to make the information robust after identification.
When the transceiver devices collect a period of LoRa signals, the system will
do a series of data processing methods for distress information analysis. After
denoising raw signals, we propose a metric, MVSR, to judge whether amplitude
or phase is the optimal attribute for sensing. Then, we segment the LoRa signals
into several fragments to better identify each sub-gesture. Finally, we restore the
information of this set of gesture sequences and utilize a double-check mechanism
to verify the correctness of the distress information.
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Fig. 2. Overview of the MineSOS system.

3 Gesture Design

3.1 Sub-gestures

Morse code is a method to encode text characters as standardized sequences
of two different duration called dot and dash [3]. In the international Morse
code, three dots form the letter “S” and three dashes make the letter “O”,
so the distress signal “SOS” is correspondingly the order of dots and dashes.
Binary code is another encoding text method that is often used in computing
and telecommunications, where the two symbols are “0” and “1”. To better
express the distress information in a united way, we map the “dot” and “dash”
in Morse codes to the symbols “0” and “1”, respectively. As shown in Fig. 3,
we design a series of sub-gestures to represent basic symbols requiring only one
hand. To clarify the completeness of a piece of information, we design the hand-
up gesture [Fig. 3(a)] as the start point and the hand-down gesture [Fig. 3(b)]
as the end point. The gesture wave-to-one-side [Fig. 3(d)] corresponds to the
symbol “0” and the gesture wave-left-and-right [Fig. 3(e)] corresponds to the
symbol “1”. The gesture hand-upright [Fig. 3(c)] represents the pause between
symbols. These sub-gestures utilize the natural hand actions and can easily make
up a piece of distress information.

3.2 Distress Information Expression

There are two categories of information that a trapped miner can delivery: 1)
the SOS signal and 2) the health status to express emergency level. We transfer
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(a) (b)

(c) (d) (e)

Fig. 3. Sub-gestures.

the Morse codes of “SOS” into binary codes and then the gestures sequence is
shown in Fig. 4(a). For the consideration of allocation of rescue resources, health
statuses are classified into four levels: 1) bad, 2) fair, 3) good and 4) excellent.
Corresponding to 2-bit binary numbers, they are “00”, “01”, “10”, and “11”,
respectively. To avoid fault identification of one bit in sub-gestures, we add an
even parity bit for error detection. For a given set of bits, if the occurrence count
of the bit “1” is odd, the parity bit value is set to 1, making the total occurrence
count of the bit “1” in the whole set (including the parity bit) an even number.
If the count in a given set of bits is already even, the parity bit’s value is 0.
Finally, the gestures sequences for health statuses are illustrated in Fig. 4(b).
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000111000
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(a) expression of distress signal and gestures

(b) expressions of health status and gestures

Fig. 4. Distress information expressions.
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3.3 Observation

It is known that the larger the signal variation, the better the recognition per-
formance [6]. However, we observe that for one set of LoRa signals, variations
of its two attributes (i.e., amplitude and phase) have different changing scales.
The rationale of this situation can be analyzed by vector expressions as shown in
Fig. 5. From sent by a LoRa node to collected by a receiver, LoRa signals propa-
gate along with two categories of paths: static and dynamic paths. Static paths
are composed of the line-of-sight (LoS) path and reflected paths from walls or
grounds, represented as a static vector Vs in I/Q space. Dynamic paths are the
motion-reflected signal paths, represented as a dynamic vector Vd rotating with
respect to the static vector. The composite signal is what we retrieve from the
receiver, and its vector representation Vc is the sum of Vs and Vd. We record the
average vector of the rotating Vd as Vda. It is observed that with different angle
differences between Vs and Vda, the variations of amplitude and phase present
different scales. This angle difference can be a random value ranging from 0 to
360 ◦C as a fine environmental change can cause a casual change of the initial
phase. The angle difference is 90◦ [Fig. 5(a)], the amplitude varies larger than
the phase, while the situation becomes the opposite when the difference is 180◦

[Fig. 5(b)].
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Fig. 5. Rational of LoRa sensing in the vector space.
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We simulate all the situations of signal variation induced by different angle
differences and show the maximized amplitude and phase variations in Fig. 6. It
can be inferred that the amplitude and phase are complementary in the variation
scale, and we can utilize this characteristic to choose an attribute with larger
variation to recognize gestures better.

4 MineSOS System Design

In this section, we will introduce core modules of MineSOS system: 1) optimal
attribute selection and 2) emergency gesture recognition.

4.1 Optimal Attribute Selection

Signal Preprocessing. In MineSOS, the receiver is equipped with two anten-
nas; thus, two LoRa streams can be obtained simultaneously from sampled pack-
ets. We first calculate the ratio of two signal streams to remove random phase
offsets for further processing [6]. Then, we separately calculate the normalized
attributes, i.e., amplitude and phase of the signal-ratio. We plot the normal-
ized amplitude in Fig. 8 and consider it as an instance to introduce methods of
segmentation and MVSR-assisted selection.

Sub-gesture Segmentation. Figure 7 shows the amplitude variation scales
that are calculated as the differences between the maximum and minimum ampli-
tudes in each 0.5-s sliding window with a step of 0.2 s. As we can seen from Fig. 8,
the amplitude variation of the static gesture hand-upright is almost 0.25. In order
to distinguish different consecutive gestures, we apply a threshold to separate
sub-gestures. The threshold is set to 0.25 in our design and is denoted as the
horizontal red line in Fig. 7. Then the signal is accordingly segmented to different
parts for sub-gestures.
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Fig. 7. Sub-gesture segmentation.
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MVSR-Assisted Selection. As mentioned in Fig. 6, amplitude and phase
are complementary in variation scale, and we should choose the attribute with
larger variation for gesture sensing. We create a new metric, named Motion
gesture induced Variation to Static gesture induced variation Ratio (MVSR),
to quantify the variation performance. Taking Fig. 8 as an example, one LoRa
stream is separated into different parts for sub-gestures. We calculate the max-
min variation of each sub-gesture, and then MVSR is defined as the ratio of
variation sum of motion gestures to that of static gestures. Finally, we select
amplitude or phase with larger MVSR for further processing.
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Fig. 8. Signals for three consecutive gestures wave-to-one-side.

4.2 Emergency Gesture Recognition

Sub-gesture Identification. We propose a double-check mechanism for sub-
gesture identification. The first-level identification is to compare the similarity
of the segmented signal with the signal pattern, where the signal patterns for
sub-gestures are obtained from a pre-experiment. By leveraging the dynamic
time warping (DTW) algorithm [7], we can find the best-matching reference
pattern for one segmented signal. After one round of sub-gesture identification,
the second-level identification for symbols “0” and “1” starts working. We cal-
culate the correlation coefficient between every two-segmented signals that are
recognized as the same symbol. If one symbol “0” is misidentified as “1”, the cor-
relation coefficient between the error symbol and each other symbol “1” may be
much lower than the correlation coefficient between correct symbols “1”. When
the correlation coefficient is more than twice as small as others, we shall correct
it to the opposite symbol.

Expression Decoding and Verification. The expression can be obtained
by splicing the identified symbols, and the distress information is decoded by
matching the binary expressions. When a piece of health information is got,
we can perform the exclusive or (XOR) operations among all bits to verify its
correctness. If the XOR result is “0”, the information is decoded correctly, while
the result is “1”, it means that the information is invalid.
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Fig. 9. Experimental implementation: (a) hardware, (b) indoor lab scenario, and (c)
coal mine lab scenario.

5 System Evaluation

5.1 Implementation

Figure 9 presents the system implementations, including hardware equipment
and experimental scenarios. The transmitter is a Semtech SX1276 LoRa shield
[1], which is connected to a 9-dbi directional antenna. A USRP X310 connecting
with two antennas is served as the receiver, working with the Labview software
to retrieve LoRa signals. As shown in Fig. 9 (b) and (c), the transmitting antenna
and receiving antennas are put on one side of the lab, while a target is operating
gestures on the other side of the lab. The default distance between the transceiver
pair is 1.4 m, and the default height is 1.2 m. The target makes gestures 10 m
away from the transceiver pair in the indoor lab while 5 m in the coal mine lab.
In two scenarios, we recruit four volunteers and ask each volunteer to repeat
each sub-gesture and distress information over one hundred times.

5.2 Overall Performance

Su
b-

ge
st

ur
es

Sub-gestures

0.91

0.89

0.94

0.93

0.04 0.03 0.02

0.05 0.04 0.01

0 0 0.07

0.060 0

0.94

0.94

0.93

0.95

0.02 0.04 0

0.03 0.03 0

0 0 0.05

0.070 0

Sub-gestures

Su
b-

ge
st

ur
es

(a)

(b)

(d)

(e)

(a)

(b)

(d)

(e)

(a) (b) (d) (e) (a) (b) (d) (e)

(a) (b)

Fig. 10. Confusion matrix of sub-gesture recognition in (a) indoor lab and (b) coal
mine lab.

This section shows MineSOS’s overall performance of gesture recognition in two
different scenarios. We utilize recognition accuracy as the metric to measure the
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system performance, where the accuracy is the percentage of correctly recognized
sub-gestures or distress information. Figure 10 shows the confusion matrices of
recognition accuracy of four sub-gestures. It is noted that gesture hand-upright is
used to separate other sub-gestures, and its accuracy is not counted in the results.
Figure 11 shows the recognition accuracy of different distress information. It can
be inferred that MineSOS performs well for all distress information, achieving
93.6% and 94.3% recognition accuracy on average for indoor scenario and coal
mine scenario, respectively.
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Fig. 11. Accuracy of distress information.

5.3 Evaluation of Designed Methods

This experiment evaluates the proposed optimal attribute selection method.
Figure 12 shows the accuracy of gesture recognition by comparing methods of
only using amplitude or phase for gesture recognition.
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Fig. 12. Evaluation of optimal attribute selection.

For sub-gesture recognition, average accuracies obtained by the three meth-
ods are 80.6%, 76.4% and 94.2%, respectively. It can be seen from the experimen-
tal results that the complementary nature of amplitudes is helpful in obtaining
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optimal attribute signals with strong sensing performance, thereby improving
the accuracy of gesture recognition.

We also evaluate the double-check mechanism and present the gesture recog-
nition accuracies in Fig. 13. Compared with only using DTW for gesture match-
ing, the accuracy of the double-check mechanism has been improved by 9.6%.
It can be seen that the double-check mechanism can effectively correct indi-
vidual wrongly recognized sub-gestures and improve the performance of gesture
recognition.
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Fig. 13. Evaluation of double-check mechanism.

5.4 Exploring the Limit of Sensing Range

In this section, we explore the limit of MineSOS’s sensing range in an LoS
environment. We carry out the experiments in an indoor corridor, where the
transceiver setup is similar to in the coal mine lab. We vary the distance between
the target and the transceiver pair from 10 m to 40 m in a step of 10 m. The accu-
racy decreases as the distance increases, and the corresponding accuracies are
94%, 92%, 90% and 88%, respectively. When we try to enlarge the distance to
50 m, the signal patterns are not clear anymore and then we conclude that our
designed system MineSOS can achieve a limit of 40 m in gesture sensing range.

6 Conclusion

In this paper, we have designed a LoRa-based contactless gesture recognition sys-
tem for coal mine rescue. Combining the Morse code and binary code, we design a
series of distress gestures for SOS distress information and expressions of health
status. Through an in-depth analysis of the rationale of LoRa-based activity
sensing, we observe a complementary relationship between LoRa amplitude and
phase. We then propose a novel metric, MVSR, to choose the optimal attribute
for gesture recognition. After utilizing a double-check mechanism, MineSOS can
identify different sub-gestures and decode the distress information. Extensive
experiments have verified the effectiveness of our system in both indoor and coal
mine environments. It can achieve a 40 m sensing range with good recognition
accuracy.
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Abstract. With high mobility and adaptability, the Unmanned Aerial
Vehicle (UAV) has provided a promising solution for data collection in
Wireless Sensor Networks (WSNs). However, few existing works consid-
ered that data overwritten would occur if the UAV can not collect data
from sensors in time, which will cause data loss in WSNs. Moreover,
the importance of data stored in different sensors may vary significantly
according to the application scenario. In this paper, we formulate a novel
Loss Minimization Problem (LMP) in a UAV-enabled WSN. The objec-
tive is to minimize the volume of weighted data loss in the WSN by
jointly considering the UAV hovering locations and hovering durations,
subject to the limited energy capacity. We first devise a novel one-to-
many data collection scheme that enables the UAV to collect data from
multiple sensors simultaneously. Then we discrete the infinite hovering
locations of the UAV into finite to reduce computational complexity.
We instead propose efficient heuristic and approximation algorithms for
the optimization problem. Finally, we evaluate the performance of the
proposed algorithms through extensive experimental simulations. Simu-
lation results demonstrated that the proposed algorithms are promising.

Keywords: Unmanned aerial vehicle · Wireless sensor network · Data
collection · Data loss minimization · Trajectory optimization

1 Introduction

Wireless Sensor Networks (WSNs) have recently risen to prominence as a promis-
ing technology for various applications, including smart cities [13], industrial
monitoring [4] and so on. In a WSN, numerous low-cost sensors are deployed in
detection areas to monitor the environment and periodically generate massive
sensing data. However, constrained by the portable size, most sensors typically
have limited storage capacities and are powered by batteries with limited energy
sources. Therefore, to prolong the lifetime of WSNs, it’s unrealistic to transmit
their sensing data to the base station (BS) directly because of the significant
transmission energy consumption [5]. Furthermore, sensors continuously gener-
ate massive sensing data with limited storage, rendering it a critical issue to
collect data timely in WSNs to avoid data loss and data overwritten [12].
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With the high mobility and adaptability, Unmanned Aerial Vehicles (UAVs)
have recently emerged as a promising solution for data collection in WSNs [6,10].
In a UAV-enabled WSN, when sensors request data collection, the BS dispatches
UAVs to fly close to and hover at specific locations to collect sensing data and
deliver it back to the BS. Since sensors are generally deployed in complex envi-
ronments such as cities and hilly terrain, UAVs with high mobility can easily
reach destinations compared to conventional terrestrial collectors. On the other
hand, the communications between UAVs and sensors are less affected by chan-
nel impairments such as shadowing and fading, enabling UAVs to reach better
communication quality and a more extended transmission range [14].

In recent years, extensive studies have been conducted to explore data col-
lection in UAV-enabled WSNs [5,8]. However, most existing studies face the
potential data loss risk. When the size of the WSN is large, sometimes there
may be a significant number of sensors requesting data collection concurrently.
Limited by the number of available UAVs, we cannot always collect data from
all sensors in time. By most existing data collection schemes, people tend to
prioritize sensors that have stored more data to maximize the gains of a single
trip, ignoring that data overwritten would occur while the UAV can not collect
data from sensors in time, which may incur critical data loss. Moreover, unlike
existing studies that consider all sensors as isomorphic and ignore the different
importance of data stored in different sensors, we notice that the importance of
data stored in sensors may vary significantly, determined by the scenario they
monitor. For example, sensors monitoring vehicle traffic are more critical than
monitoring city temperatures.

As the above observation, we formulate a novel Loss Minimization Prob-
lem (LMP): schedule hovering locations and hovering durations for an energy-
constrained UAV to collect data from sensors such that the volume of weighted
data loss in the WSN is minimized. Tackling this problem faces many challenges.
For example, in WSNs, a UAV is typically powered by an energy-limited battery,
so the data collection path should be a closed tour so that the UAV can complete
the task before the battery dead. Furthermore, while planning the UAV hovering
locations and durations, we should trade off the remaining storage capacities of
sensors and the UAV moving time, making the problem further complex. More-
over, there are infinite potential hovering locations for the UAV in the area, which
impose a significant computational burden to determine the finalized path. To
this end, we propose a spatial discretization algorithm to reduce computational
complexity, and we devise efficient heuristic and approximation algorithms for
LMP, which significantly decline the data loss in the WSN compared with three
baseline algorithms.

The main contributions of this paper are summarized as follows:

– We formulate a novel Loss Minimization Problem (LMP) to minimize the
volume of weighted data loss in the WSN under the assumption that the
energy capacity of the UAV is limited. We consider a one-to-many data col-
lection scheme that enables the UAV to collect data from multiple sensors
simultaneously, improving the data collection efficiency significantly.
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– To make the problem tractable, we first discrete the infinite hovering locations
of the UAV into finite. Then we devise an efficient heuristic algorithm for the
optimization problem by jointly considering the energy capacity of the UAV
and the priorities of sensors.

– We finally evaluate the performance of the proposed algorithm through exten-
sive experimental simulations. Simulation results demonstrate that the pro-
posed algorithm is promising.

2 Related Work

This section reviews the literature related to the scheduling of the UAV for
data collection in WSNs. Based on the number of UAVs in WSN, we classify
the investigated problems into two types: single-UAV WSN and multiple-UAV
WSN.

Single-UAV WSN: Li et al. [5] investigated the problem of employing an
energy-constrained UAV to collect data from IoT sensors in a sparse WSN,
aiming to maximize the accumulative volume of data collected per tour. They
constructed a closed tour for the UAV to fully or partially collect data from sen-
sors, consisting of hovering locations and the sojourn duration at each hovering
location. In [11], Dai et al. assigned dynamical priorities to the data according
to the importance of reconnaissance areas. They aimed to maximize the overall
reconnaissance utility subject to the UAV energy constraint and priorities. In
[12] Samir et al. studied a time-constrained IoT devices data collection problem,
where each device has its own target data upload deadline. They jointly opti-
mized the trajectory of a UAV and the radio resource allocation to maximize
the number of served IoT devices.

Multiple-UAV WSN: In [16], Xu et al. considered a problem of employing the
minimum number of UAVs to collect data from sensors and constructed closed
tours for them, subject to the constraint that the duration of each data collection
tour is no longer than a given delay. In [8] Luo et al. investigated a novel fine-
grained trajectory plan problem in which multiple UAVs are employed for data
collection. The objective of the problem is to minimize the maximum flight time
while guaranteeing all sensing data of WSN is fully collected. In [17] Zhan et
al. studied the data collection problem in WSNs enabled by multiple UAVs to
minimize the maximum mission completion time. They jointly optimized the
UAV path and sensors wake-up scheduling while guaranteeing that UAVs can
successfully collect data from each sensor with a given energy budget. In [15],
Xiang et al. jointly optimize the route selection, sensing time, and delivery weight
allocation while accounting for interdependency between flying/sensing and the
UAV delivery weight, to maximize delivery and sensing utility with the limited
energy of UAVs.

However, few existing works considered that data overwrite would occur while
the UAV can not gather data from sensors timely. In this paper, we investigates
the Loss Minimization Problem, which aims to minimize the volume of weighted
data loss in WSN subject to the UAV energy capacity.
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3 Preliminaries

In this section, we first introduce the system model and then formulate the loss
minimization problem precisely.

3.1 System Model

We consider a WSN where a set of N sensors V = {vi|1 ≤ i ≤ N} are distributed
over a two-dimensional to-be-monitored area on the ground. Denote by (xi, yi, 0)
the coordinate of sensor vi ∈ V . Assume that each sensor vi continuously moni-
tors its surroundings and generates ri units of data per second, with Di units of
data stored locally waiting to be collected, and the storage capacity is capped at
Ci. Denote by rti the remaining time of sensor vi, where rti = Ci−Di

ri
, implying

that data overwritten will occur if data collection on vi cannot begin within this
duration. We employ a weight variable wi to measure the importance of data
generated by sensor vi, where 0 < wi ≤ 1. A higher value of wi means that the
data is of greater importance, so we should try to avoid or reduce data loss in
such a sensor. The value of wi is predetermined according to the importance
of the monitoring scenario of the sensor vi. When the storage capacity Ci falls
below a predefined threshold θ, sensor vi will send a data collection request to
the BS, and the BS will insert vi into a to-be-collected queue Qt.

When the UAV is available, the BS will construct a data collection plan
according to the information from the sensors in Qt. The UAV takes off from
the BS and moves along the path to collect data from sensors at a constant speed
s and a fixed altitude H above the ground. Since a UAV is typically powered
by an energy-limited battery, it must return to the base station for recharging
before its battery dead, indicating that the data collection path must be closed.
Assuming the energy capacity of the UAV is E , the energy consumption in the
tour includes the UAV moving consumption Ef and the energy consumption Eh

for hovering to collect data from sensors.
Supporting by the Orthogonal Frequency Division Multiple Access

(OFDMA) technique [9], the UAV can simultaneously collect data from mul-
tiple sensors within its communication range R. Specifically, each sensor vi can
transmit its data to the UAV when the distance between vi and the UAV is no
greater than R. The UAV hovers at specific locations to collect data from sen-
sors. Denote by H = {h0, h1, ..., hK} the sequence of hovering locations for the
UAV in the tour, where h0 is the BS, and {Xk, Yk,H} denotes the coordinate
of hk, where 0 < H ≤ R. Denote by V (hk) the set of sensors whose data can be
collected while the UAV is hovering at hk, i.e.,

V (hk) = {vi|dis(vi, hk) ≤ R2, vi ∈ V }, (1)

where dis(vi, hk) is the distance between hovering location hk and sensor vi.
Let Bik denotes the data transmission rate of sensor vi ∈ V (hk) when the

UAV hovers at hk. Following the equation in [1,8], Bik can formulate as

Bik = log(1 +
σ0

dis(vi, hk)α
), (2)
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where σ0 is the transmission power of vi, and α is the path loss exponent.
When the UAV hovers at hk to collect data from sensors in V (hk), its hovering

duration t(hk) can be calculated as

t(hk) = max
vi∈V (hk)

{ Di

Bik
}, (3)

where Di is the volume of data stored in vi. Denote by f(hk−1, hk) = dis(hk−1,hk)
s

the moving time for the UAV to fly from location hk−1 to hk, where s is the
moving speed of the UAV. The total length of the data collection tour for the
UAV is Dis(H) =

∑K
i=0 dis(hi, hi+1), where h0 and hK+1 are the BS.

3.2 Problem Formulation

Based on the models above, we define a novel Loss Minimization Problem (LMP).
We aim to schedule the hovering locations and hovering duration for a UAV to
minimize the volume of weighted data loss in the WSN while guaranteeing the
battery energy of the UAV is not exhausted during the whole data collection tour.
We define S(vi) as the state of vi. A sensor have two states: remaining spare
storage space (S(vi) = 0) and running out of storage (S(vi) = 1, overflow), we
can express it as

S(vi) =

{
0, Ti ≤ rti

1, Ti > rti.
(4)

Ti is the arrival time that the UAV starts collecting data from sensor vi, rti refers
to the remaining time of vi. We employ a metric DL to measure the volume of
weighted data loss in a data collection tour, i.e.,

DL =
N∑

i=1

S(vi)(Ti − rti)wiri, (5)

where N is the number of sensors in the WSN, ri is the data generating rate of
vi, wi is the priority of vi with 0 < wi ≤ 1, the more critical the data stored in
vi, the higher its value of wi. The objective of our LMP can be formalized as

minimize DL (6)

subject to:

Ef =
K∑

k=0

f(hk, hk+1)ηf , (7)

Eh =
K∑

k=1

t(hk)ηh, (8)

Ef + Eh ≤ E , (9)
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Constraint (7) and (8) shows the accumulative energy consumption of the
UAV for moving and hovering over the tour, where ηf and ηh are the energy
consumption rate of the UAV for moving and hovering, respectively. Constraint
(9) shows that the energy capacity E constrains the energy consumption of the
UAV in the data collection tour.

4 The Proposed Scheme

This section details our schemes for LMP and shows theoretical analysis.

4.1 Potential Hovering Locations Discretization

To solve the problem, we need to plan the sequence of hovering locations for
the UAV to collect data from sensors. However, the potential hovering locations
in the given area are infinite, posing heavy computational complexity. To tackle
this challenge, inspired by the work in [5], we discretize the objective area to
reduce the infinite numbers of potential hovering locations into finite.

For each sensor vi, let v
′
i be its projection on the UAV moving plane, whose

coordinate is (xi, yi,H), where H is the flight altitude of the UAV. We can get
a set of circles Φ(v

′
i) centered at v

′
i with radius R0 =

√
R2 − H2, where R is the

data transmission range. The UAV can collect data from vi when it hovers within
Φ(v

′
i). We partition the circle Φ(v

′
i) into finite numbers of equal squares with edge

length l > 0. The locations within a square can be regarded as indistinguishable
when the value of l is small enough, so we can assume that the UAV only hovers
at the center of the square area. Consequently, we can discretize the given area
into a set of finite potential hovering locations P = {p1, p2, ..., pM}.

4.2 Data Collection Tour Planning Algorithm

We construct a feasible data collection tour by selecting a sequence of hovering
locations in P iteratively. The Data Collection Tour Planning algorithm (DCTP)
proceeds as follows.

At first, the BS responds to the data collection requests and inserts them into
a to-be-collected queue Qt. We discretize the UAV hovering area into a sequence
of potential hovering locations P to reduce the computational complexity.

Denote by RT (pi) the remaining time of each hovering location pi ∈ P, i.e.,

RT (pi) = min
vj∈V (pi)

rtj , (10)

where V (pi) is the set of sensors whose data can be collected when the UAV
hovers at pi, rtj is the remaining time of sensor vj ∈ V (pi), RT (pi) is deter-
mined by the minimum remaining time of the sensor in V (pi). Since the primary
objective of this work is to minimize the volume of weighted data loss, the UAV
should preferentially visit the hovering location with the most urgent remaining
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Algorithm 1: Data Collection Tour Planning
Input: A to-be-collected queue Qt.
Output: A data collection tour H and the volume of weighted data loss DLH.

1 Discrete the potential hovering locations of sensors into P;
2 Sort all hovering locations in P in increasing order of their remaining time;
3 H ← {h0};
4 while Qt �= ∅ and E(H) < E do

5 Select the first hovering location pj from P; H′ ← H ∪ {pj};
6 Calculate the time T arr

j for the UAV to arrive at pj ;

7 if T arr
j < RT (pj) and E(H′

) ≤ E then

8 H ← H′
;

9 else
10 Call Algorithm 2 to optimize H;
11 for i ← 1 to |H| do
12 Insert pj as the ith hovering location hi to join H;

13 Form a tour H′
by minimizing the volume of weighted data loss and

promise E(H′
) ≤ E ;

14 H ← H′
;

15 Update the state of each sensor in V (pj);
16 Qt ← Qt − V (pj);
17 Update the hovering locations set P;

18 Finally obtain the data collection tour H of the UAV.

time. We sort the hovering locations in P in increasing order of their remaining
time, where a shorter remaining time indicates a higher visit priority.

Initially, the data collection tour only includes the BS h0. For each itera-
tion, we expand H by selecting an unvisited hovering location pj with the most
urgent remaining time as the new hovering location to insert into H. The proce-
dure will repeat until the to-be-collected queue Qt is empty or the total energy
consumption E(H) of data collection tour exceeds the UAV energy capacity E .
Supported by the OFDMA technology, the UAV can simultaneously collect data
from multiple sensors in V (pj) when it hovers at pj . So the arrival time Ti of
each sensor vi ∈ V (pj) equals the arrival time T arr

j of pj , which can formulate
as

T arr
j =

K−1∑

i=0

(f(hi, hi+1) + t(hi)). (11)

If the UAV can timely reach pj and meets both the energy and temporal
constrain, pj will be inserted at the end of H as the following hovering location
to expand the data collection tour. If it fails, we invoke Algorithm2 to optimize
the current data collection tour by adjusting the order of hovering locations.
We scan each sojourn location from h1 to hK in the optimal tour to find the
best insertion position for pj . The final chosen insertion position should satisfy
the two conditions: (i) The energy consumption of the tour does not exceed the
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Algorithm 2: Data Collection Tour Optimization
Input: An original data collection tour H.
Output: An optimized data collection tour Hopt.

1 count ← 0, K ← |H|;
2 while count < M do
3 Initialize an empty queue Htemp;
4 Randomly select two non-negative integers i and j (i < j ≤ K) from H;
5 Take the sub-path from h0 to hi−1 and add them in order to Htemp;
6 Take the sub-path from hi to hj and add them in reverse order to Htemp;
7 Take the sub-path from hj+1 to hK and add them in order to Htemp;
8 if Dis(Htemp) < Dis(H) and DLHtemp ≤ DLH then
9 H ← Htemp, count ← 0;

10 else
11 count ← count + 1;

12 Hopt ← H;

energy capacity of the UAV; (ii) The volume of weighted data loss should be
minimal under the constrain (i).

After expanding the tour H, we update the state S(vi) of each sensor vi ∈
V (hk), where hk is the hovering location in H. Then update the to-be-collected
queue Qt to avoid repeated visits to the same sensors. Finally, we update the
potential hovering locations set P based on the updated Qt and sort it.

The detailed process of DCTP algorithm is given in Algorithm1.

4.3 Data Collection Tour Optimization Algorithm

As demonstrated in line 10 of Algorithm 1, we use Algorithm 2 to optimize
obtained path to minimize the weighted data loss further. In Algorithm1, we
first select the hovering location with the most urgent remaining time and insert
it after the sequence without considering the spatial consumption, which may
incur a redundant moving distance. To this end, we introduce a Data Collection
Tour Optimization algorithm (DCTO) to reduce the detour by optimizing the
order of hovering locations. The DCTO algorithm proceeds as follows.

Initially, there are K hovering locations in an original data collection tour H
waiting for optimization. We first construct an empty queue Htemp to store the
optimized tour, then we randomly select two non-negative integers i and j, where
i < j ≤ K. We intercept the sub-path h0 → hi−1 from H and add them into
Htemp in order. Then we take the sub-path hi → hj and add them into Htemp in
reverse order. Subsequently, we also intercept the sub-path hj+1 → hK and add
then into Htemp in order. After reordering H, we check the traveling length of
the optimized tour Htemp and update H if the traveling length is shorter without
causing more data loss in the network. The optimization process will repeat until
continuous M-times rounds can not lead to a better result.

The details of DCTO algorithm are presented in Algorithm 2.
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4.4 Algorithm Analysis

We prove that the number of partitioned hovering locations is finite and show
the theoretical analysis of the proposed algorithms.

Theorem 1. The number of potential hovering locations in P is no greater than
(πR2

0
l2 + 1)|Qt|.

Proof. Since the number of sensors in the to-be-collected queue is |Qt|, the size
of the UAV hovering area is no greater than πR2

0|Qt|, where R0 is the radius of
the projection circles. We can partition this contiguous area into a maximum of
∑

v∈Qt
�πR2

0
l2 � ≤ (πR2

0
l2 + 1)|Qt| identical squares with length l. So we can reduce

the potential hovering locations into a finite number which is linearly related to
the size of Qt.

Theorem 2. The solution of DCTO gets roughly
√

K approximation ratio to
the optimal solution, and its time complexity is bounded by O(K10 log K), where
K is the number of hovering locations in the data collection tour H.

Proof. The DCTO algorithm adapted from a local search algorithm 2-opt, a
well-known algorithm proposed to solve the Traveling Salesman Problem (TSP).
The algorithm iteratively selects two hovering locations and reverses the order
between them to optimize the data collection tour. In [7], Liu et al. show that
we can achieve an approximation ratio of roughly

√
K, with a similar theoretical

derivation as shown in [2]. Furthermore, in [3], Englert et al. proved the time
complexity of 2-opt is bounded by O(K10 log K), whose proof process is rather
complex. Here we omit the specific proof process due to space limitation.

5 Performance Evaluation

In this section, we carry out experimental simulations to evaluate the critical
performance metrics of the proposed algorithms. And we investigate the impacts
of essential parameters on the performance under different settings.

5.1 Simulation Setup

We consider a WSN consisting of 100–600 sensors randomly deployed within a
1500 m×1500 m square area and the BS located at the centre of the ground. The
storage capacity Ci of each sensor is 1000 MB. The volume of data Di stored
in each sensor is randomly drawn from 0 MB to 1000 MB. The data generate
rate ri of each sensor ranges from 0 KB/s to 100 KB/s. The weight priority wi

of each sensor is randomly set between 0 to 1. A sensor will immediately send
a data collection request to the BS when its storage capacity falls below the
threshold θ = 25%. Here we employ a single UAV for data collection tasks,
hovering at the altitude of H = 60 m, with a const moving speed s = 10 m/s
[16]. The UAV equips with a battery whose energy capacity E = 3 × 105 J,
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and the moving and hovering energy consumption rates are ηf = 100 J/s and
ηh = 150 J/s, respectively [5]. The data transmission range R and the channel
bandwidth W are set as 100 m and 20 MB/s, respectively. We set the reference
SNR at transmission distance 1 m to γ0 = 80 dB and the path loss exponent to
α = 3 [8].

Since LMP is a novel problem, to evaluate the performance of the proposed
algorithm lmpAlg for the weighted data loss minimization problem, we introduce
a benchmark heuristic greAlg. The algorithm first discrete the monitoring area
into a series of hovering locations, then expands the path by selecting the location
with the most urgent remaining time until the energy of the UAV is exhausted or
all sensors have been visited. We mainly contrast our algorithm to appAlg [5] and
cAlg [1]. appAlg constructs a closed tour for an energy-constrained UAV to max-
imize the volume of collected data. cAlg iteratively expand the data collection
tour and then prune the path according to the data collection efficiency ratio.
For each parameter setting, we obtain the average results from 50 instances.

5.2 Performance Evaluation of Different Algorithms

Following, we investigate the performance impact of the number of sensors, the
data transmission range, the moving speed, and the energy capacity of the UAV.

We first vary the number of sensors in the WSN from 100 to 600. As shown
in Fig. 1(a), lmpAlg significantly outperforms other algorithms. The average
weighted data loss of lmpAlg is about 37% to 96% less than those three algo-
rithms. Figure 1(a) also shows that the weighted data loss of algorithms is pro-
portional to the number of sensors in the network. The reason is that with the
increase in sensors, the WSN generates more data simultaneously. The UAV can
not timely collect data from some sensors, which will incur more data loss.

Then we vary the data transmission range from 80 m to 260 m, with 400 sen-
sors distributed in the network randomly. Figure 1(b) depicts that the weighted
data loss of lmpAlg, appAlg and greAlg monotonically declines with the data
transmission range increase. The reason is that a longer data transmission range
makes more sensors covered by the UAV at the same hovering location, thus lead-
ing to fewer weighted data loss. However, as shown in Fig. 1(b), the weighted data
loss of cAlg increases when the data transmission range is between 140 m and
180 m. The reason is that cAlg will optimize the data collection path only when
the energy consumption of the data collection tour exceeds the battery capac-
ity. When the data transmission range is larger than 140 m, the UAV energy
consumption to collect data from sensors is small enough that the total energy
consumption of the UAV will not exceed the energy limit, so Alg1 does not opti-
mize the path. Moreover, when the data transmission range is larger than 180 m,
the UAV can complete the data collection task by hovering at a few hovering
locations. So the weighted data loss decreased again because of a shorter moving
distance.

Subsequently, we randomly deploy 400 sensors in the WSN and increase the
value of the UAV flying speed from 5 m/s to 50 m/s. Figure 1(c) shows that the
weighted data loss of lmpAlg, appAlg and greAlg decline against the increase
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Fig. 1. Performance evaluation of algorithms.

of the UAV moving speed. The reason is that with a faster speed, the UAV
consumes less time moving between sensors and can collect data in a more timely
manner, which helps reduce data overwritten. However, when the moving speed
of the UAV is between 15 m/s and 20 m/s, the volume of weighted data loss of
cAlg temporarily increases, for a similar reason in Fig. 1(b).

Finally, we vary the energy capacity from 0.7 × 105 J to 2 × 105 J, with 200
sensors distributed in the network randomly. Figure 1(d) depicts the weighted
data loss monotonically declines with the increase of the UAV energy capacity. A
UAV with low energy capacity needs to return to the BS frequently to recharge,
which prevents it from accessing sensors on time. In addition, greAlg has tens of
times more data loss than the others, so it does not appear in the diagram.

5.3 Impacts of Parameters on the Performance of Algorithm

In this section, we investigate the impact of parameters on performance in lmpAlg
by randomly deploying 400 sensors in the network.

The edge length l of discretization squares determines the number of potential
hovering locations (in step 1 of Algorithm 1), which will impact the algorithm
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Fig. 2. The impact of simulation parameters on the performance of lmpAlg.

performance. Specifically, we decrease the length l of squares from 2R0 to R0
5 , and

present the results in Fig. 2(a). The weighted data loss decreases from 603 MB
to 494 MB when the square edge length l declines from 2R0 to R0. As shown
in theorem 1, when l = 2R0, the UAV can only hover above sensors, while
the value of l ranges from R0 to R0

5 , the UAV can hover in the neighbors of
sensors. In addition, the smaller l is, the finer the division of hovering location is.
Consequently, the UAV can trade off the moving distance and hovering duration.
Figure 2(a) also shows that a further decrease in the l will not lead to a better
result in the same WSN.

Then we investigate the impact of the max iteration times M in data collec-
tion path optimization (in step 2 of Algorithm 2). Figure 2(b) depicts that the
weighted data loss decreased from 529 MB to 478 MB against the max iteration
times growth from 10 to 60. Because more iterations mean more optimization
schemes, the data collection path is more likely to converge to the best result.

6 Conclusion

This paper investigates the Loss Minimization Problem (LMP), which minimizes
the weighted data loss in a UAV-enabled WSN by scheduling the UAV hovering
locations and durations, subject to the UAV energy capacity. We first devise a
novel one-to-many data collection scheme by adopting the OFDMA technique
and then discrete the number of infinite potential hovering locations into finite.
We instead design efficient heuristic and approximation algorithms for it and
evaluate the performance of proposed algorithms through extensive experimental
simulations. Simulation results show that the proposed algorithms are promising.
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Abstract. Attitude analysis and recognition can be applied in wearable
computing for medical assistance, motor-function assessment and dex-
terous human-robot interaction. The main problems, however, are seri-
ous drift and instability during traditional motion measurement fusion
methods due to the high dynamic complexity of limb movements. To
the best of our knowledge, it is the first attempt to employ an adaptive
robust cubature Kalman filtering algorithm in the human attitude anal-
ysis based on wearable inertial sensors with time-varying state-process
noise. Experiment results show that the adaptive robust CKF algorithm
based on quaternion and gyroscope error modeling proposed in this paper
can solve motion attitude solution. Lastly, we compare our method with
CKF and EKF algorithm, the proposed algorithm can effectively improve
the precision of attitude analysis.

Keywords: Cubature Kalman filter · Body sensor network · Sensor
fusion · Adaptive factor · Robust filter

1 Introduction

It is well known that magnetic and inertial measurement units (MIMUs), com-
prised of a tri-axial accelerometer, gyroscope, and magnetometer, are used to
track the displacement and orientation of a rigid body in real-time. Because of
their lightweight, small size, and low cost properties, MIMUs have been used
extensively as an ideal tool in target tracking, unmanned vehicle navigation,
robotics, and human motion capture [1,2]. However, each of these sensors have
limitations and may yield poor results when they are used alone [3]. In almost all
applications, whether walking trajectory tracking or joint angle measurement,
sensor fusion algorithms (SFA) [4–6] may be the first option.
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Among different sensor fusion algorithms for attitude estimation, the simplest
and widely used one are the Kalman Filter(KF)-based attitude estimation meth-
ods [7]. For decades, some extensions of the KF are proposed since many practical
problems do not satisfy the linear hypothesis. The extended Kalman filter (EKF)
become an important tool to tackle most of the filtering problems [8–10]. How-
ever, the EKF may become unstable when the systems are strongly nonlinear,
since the linearization causes a large truncation error. Unscented Kalman filter
(UKF) performs better than EKF in terms of robustness and speed of conver-
gence, but suffers from computational complexity (sometimes referred to as the
“curse of dimensionality”) [11,12]. To overcome these deficiencies, Arasaratnam
and Haykin [13] proposed the so-called cubature Kalman filter (CKF), which
offers a numerically stable solution with a low computational effort to the non-
linear state estimation problem. CKF has been used in many applications such
as, spacecraft attitude estimation [14], underwater target tracking [15,16], and
power system dynamic state estimation [17,18]. Stochastic stability and conver-
gence of CKF were reported in [19] and [20], where it is shown that under mild
assumptions, the estimation error is bounded.

Although the popular uses of inertial sensors in motion capture, technique
challenges still exist in detecting dynamic motion of human limbs. As a mat-
ter of fact, the covariance matrix of process noise may be amplified due to the
use of low-cost inertial sensors and errors of gyroscopes in the applications of
magnetic and inertial measurement units. Meanwhile, the output errors of gyro-
scopes increases with the scale factor errors during the violent maneuvering,
which will lead to a prior uncertainty, the filter may face the situation that
the measurement noise model is unknown [21,22], and the system model cannot
be described accurately. As a result, the accuracy of the sensor fusion system
will decrease. To reduce the effect of unknown measurement noise on the filter-
ing results, various adaptive robust filtering algorithms such as adaptive CKF
(ACKF) [26,27], improved CKF (ICKF) [28], and robust CKF (RCKF) [29,30]
have been proposed.

However, as far as we know, there is no literature on the application of adap-
tive cubature Kalman filter to human posture calibration and motion analysis.
In this study, therefore, a human attitude data fusion algorithm with the adap-
tive CKF (ACKF) is developed. In this way, the accurate and robust human
attitude estimation in complex noise environment using simple wearable sensors
are expected.

In order to deal with time-varying state-process noise, a adaptive factor
method was utilized in this paper. Then, by using Huber-based robust filter-
ing proposed in [28] as a starting point, we derive an enhanced version of the
CKF for attitude estimation. Compared with the traditional algorithms EKF
and UKF, the proposed ACKF generally has the following advantages:

1) Moderate computational complexity.
2) Higher stability, convergence, and reliability of filtering.
3) Strong robustness with respect to model parameters.
4) Lower sensitivity to random noise and initial state statistical properties.
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5) Strong ability to track the abrupt state and maintain this ability when the
filter reaches steady state.

The organization of this paper proceeds as follows. Section 2 introduces the
conversion of quaternions to Euler angles, and the initial attitude calibration.
Then, the adaptive robust CKF with quaternions including the combination of
robust estimation methodology with the adaptive factor based on the estimated
covariance matrix of the predicted residuals in CKF framework and the former
combining with multiple fading factors CKF are developed in Sect. 3. The effec-
tiveness of the proposed filtering algorithm for human attitude estimation is
investigated in Sect. 4. Finally, some conclusions are drawn in Sect. 5.

2 Attitude Estimation System

The commonly used attitude matrix representation methods include directional
cosine method, Euler angle transformation method and quaternion method.
Among these, a more viable choice is often quaternion [31], which is a four-
component object with three vectors and a scalar that captures the current
attitude. The primary advantage of using the quaternion is that they are less
computationally intensive, facilitate interpolation operations, and also avoid the
gimbal lock problem, thus providing many flexible operations.

Define quaternion as:

q = q0 + q1i + q2j + q3k (1)

where q0, q1, q2 and q3 are real numbers, i, j and k are imaginary units, i2 =
j2 = k2 = −1. Given the unit-quaternion constraint ‖q‖ = 1.
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For the purpose of equestrian motion capture, three coordinate systems which
are navigation coordinate system, body coordinate system and sensor coordinate
system are defines as Fig. 1.

2.1 Attitude Update Model

The quaternion differential equation is used to update the attitude of the carrier
in the navigation coordinate system [32]:

q̇ =
1
2
Ω (ωs

k) q, Ω (ωs
K) =

⎡
⎢⎢⎣

0 −ω̂s
x −ω̂s

y −ω̂s
z

ω̂s
x 0 ω̂s

z −ω̂s
y

ω̂s
y −ω̂s

z 0 ω̂s
x

ω̂s
z ω̂s

y −ω̂s
x 0

⎤
⎥⎥⎦ (2)

where ω̂s
k = [ω̂s

x, ω̂s
y, ω̂s

z]
T indicates the corrected measurement of the angular

velocity projection of the gyroscope in sensor coordinate system. In view of (2),
the quaternion can be solved by solving the differential equation, and then the
posture of human body can be calculated.

Quaternions can be used to represent rotation relationships between coor-
dinates, we need a more intuitive euler angle representation of these rotations.
The relation between quaternion and Euler angle can be calculated by using the
relation between direction cosine matrix and quaternion and Euler angle [28]:

γ = arctan
(

2(q2q3 + q0q1)
q20 − q21 − q22 + q23

)
(3)

θ = arcsin (−2(q1q3 − q0q2)) (4)

ϕ = arctan
(

2(q1q2 + q0q3)
q20 + q21 − q22 − q23

)
(5)

where γ, θ and ϕ indicate roll angle, pitch angle and taw angle respectively.

2.2 Attitude Estimation Model

Let the state-space model of the attitude estimation system be expressed as [28]
{

xk+1 = f (xk) + wk

zk+1 = h (xk) + vk
(6)

where xk ∈ Rn denotes the state at time k and f(·) is the nonlinear state
function. zk ∈ Rm represents the measurement vector and h(·) is the nonlinear
measurement function. The process and measurement noise are represented as
wk(0, Qk) and vk(0, Rk), which are zero-mean Gaussian distributed with covari-
ances Qk ≥ 0 and Rk ≥ 0 respectively.

In this paper, we choose quaternions and as the bias of gyroscope the vari-
ables, one has,

xk = [qk, bωk]
T (7)
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where qk and bωk represent the quaternions and the bias of gyroscope at time k,
respectively.

Gravity acceleration vector can observe the errors of pitch and roll of carrier,
and the magnetic field vector can observe the errors of yaw. So we select the
system measurement quantity based on gravity acceleration vector and magnetic
field vector.

z(t) =
(
as

x(t), a
s
y(t), a

s
z(t), ϕm(t)

)T (8)

where as
x(t), as

y(t) and as
z(t) are the measurements of 3-axis accelerations, ϕm(t)

indicates the yaw angle by projection of the output value of magnetometer. In
this paper, the system noise covariance matrix Q(t) are regard as time-varying:

Q(0) =
[

σqI4×4 0
0 σwI4×4

]
(9)

where σq is the variance of the angle calculated using acceleration and magnetic
field strength, σw is the angular rate variance of the three axes. In this paper, an
adaptive random extinction factor method is employed to deal with time-varying
covariance matrix Q(t).

3 Design of Attitude Data Fusion Algorithm

This section presents the new adaptive robust attitude data fusion algorithm.

3.1 Data Fusion Scheme Design

The CKF uses the third-order volume rule and the numerical integration to
approximate the Gauss weighted integration. The core problem of CKF is to solve
the integral whose integral form is nonlinear function multiply Gauss density
function. The weighted sum of a set of equal weight volume points is used instead
of the weighted Gauss problem. CKF is similar to UKF, but it has more rigorous
theoretical analysis and uses less sampling points than UKF. The EKF method
was utilized in [24] to fuse the wearable sensons. To the best of our knowledge,
the CKF has not used in human attitude analysis based on wearable inertial
sensors.
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In order to integrate the advantages of gyroscope, accelerometer and magne-
tometer in solving attitude and make up for their respective shortcomings, this
paper designs an attitude data fusion scheme based on the adaptive cubature
Kalman filter algorithm (ACKF) as shown in Fig. 2.

3.2 Robust Adaptive Cubature Kalman Filter Algorithm

The ACKF includes the standard steps of initialization, time update, and mea-
surement update, but an extra step of robust correction is interposed between the
time and measurement update steps, lastly, the adaptive factor will be updated.
The underpinning mathematics of these steps are as follows. The entire robust
cubature Kalman filter algorithm with adaptive factor based on attitude esti-
mation is presented as follows:

Algorithm 1: Adaptive Robust Cubature Kalman Filter
Input : ax, ay, az, ωx, ωy, ωz, mx, my, mz, qinit

Output: q0, q1, q2, q3

1 Parameter initialization: x0, P0, Q0, R0 ;
2 Time update: Calculate the cubature points Xi,k−1|k−1 and bring the

cubature points into f(·);
3 Measurement update: Recalculate the cubature points Xi,k|k−1 bring the

cubature points into h(·). Then, update the innovation-correlative
covariance matrix Pzz,k|k−1 and cross-correlation covariance matrix
Pxz,k|k−1.;

4 State update: Calculate the Kalman gain K. Update the estimate of the
state vector x̂k according to x̂k = x̂k|k−1 + K(zk − ẑk|k−1);

5 Adaptive factor update: Update the adaptive factor update according to
Q̂k = Qk−1/

√
μk ;

Initialzation

x̂0 = E(x0), P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(10)

Time Update
Calculate the cubature points:

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1, i = 1, 2, · · · , 2nx (11)

where Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1 and ξi =

√
nx[1]i represents the ith cuba-

ture point.
Bring cubature points into the nonlinear function:

Xi,k|k−1 = f(Xi,k−1|k−1), i = 1, 2, · · · , 2nx (12)
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Prediction of the state:

x̂k|k−1 =
1

2nx

2nx∑
i=1

Xi,k−1|k−1 (13)

Evaluated the predicted error covariance:

Pk|k−1 =
2nx∑
i=1

Xi,k|k−1X
T
i,k|k−1−x̂k|k−1x̂

T
k|k−1 + Q̂k−1 (14)

Measurement Update

The Cholesky decomposition of Pk|k−1:

Pk|k−1 = Sk|k−1S
T
k|k−1 (15)

Calculate the cubature points:

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1, i = 1, 2, · · · , 2nx (16)

Bring cubature points into the measurement nonlinear function:

Zi,k|k−1 = h(Xi,k|k−1) (17)

Estimate the predicted measurement at time k:

ẑi,k|k−1 =
1

2nx

2nx∑
i=1

Zi,k|k−1 (18)

Innovation-correlative covariance matrix:

Pzz,k|k−1 =
1

2nx

2nx∑
i=1

Zi,k|k−1Z
T
i,k|k−1 − ẑi,k|k−1ẑ

T
i,k|k−1 + Rk (19)

Cross-correlation covariance matrix:

Pxz,k|k−1 =
1

2nx

2nx∑
i=1

Xi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1 (20)

State Update

The Kalman gain at time k:

K = Pxz,k|k−1P
−1
zz,k|k−1 (21)

The estimated value at time k:

x̂k = x̂k|k−1 + K(zk − ẑk|k−1) (22)
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State error covariance estimate:

Pk = Pk|k−1 − KPzz,k|k−1K
T (23)

Adaptive Factor Update

To improve the robustness of the adaptive filtering algorithm, a process noise
scaling method is introduced here. The process noise covariance is adjusted by
the adaptive factor and can be defined as [32]:

Q̂k = Qk−1/
√

μk (24)

where μk = trace(HkPk|k−1HT
k )

trace(HkP̂k|k−1HT
k )

and Hk is the jacobian matrix of h(·) at time k.

4 Experiment Results and Algorithm Validation

In order to evaluate the accuracy of our method and the system performance,
we utilize 10 sensors nodes on the chest, waist, upper arm, forearm, thigh and
calf of human body respectively. Since the navigation coordinate system was
set as the north-east-ground coordinate system, before the experiment began,
participants stood facing due north with their hands hanging down naturally
and kept perpendicular to the horizontal plane. Then, we will use those sensors
to estimate the body posture when walking stairs, as shown in Fig. 3.

Fig. 3. Attitude estimation of inertial sensors
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Table 1. The computation time of three methods

The method EKF CKF ACKF

Computation time 1.432ms 1.147ms 1.238 ms

After the initial attitude calibration, we carried out the following experiment
of attitude solution, and the measured value of quaternion changing with motion
is shown in Fig. 4. During the whole attitude change period, there is no obvious
phenomenon of leading or lagging, and the solution accuracy is ideal in time-
varying dynamic environment, which meets the actual needs of real-time attitude
tracking system.

We also compare our proposed method with existing mature algorithms (EKF
and CKF). Table 1 compares the execution time of different algorithms, which
is the average value of the algorithm after 1000 times of execution. It can be
found that the running time of ACKF algorithm is about 1.238ms, which is
lower than that of EKF algorithm and slightly higher than that of CKF algo-
rithm. Therefore, relatively speaking, the running time of the algorithm will
be sacrificed to a certain extent when stable results are obtained. In addition,
ACKF requires much less computation than EKF, which computes complex
higher-order Jacobian matrices. Besides, the ACKF has the least computational
complexity compared with the EKF and CKF algorithms.

In this paper, roll angle, pitch angle and yaw angle calculated by ACKF,
EKF and CKF algorithms are compared, as shown in Fig. 5. It can be seen from
the Fig. 5 that the yaw angle calculated by the ACKF algorithm is more stable
than that calculated by EKF.
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5 Conclusion

In this paper, an adaptive quaternion-based ACKF estimator is developed for the
human attitude fusion and estimation by applying the advantages of CKF. Above
experimental results demonstrate that the proposed approach using the ACKF
are accurate, reliable and robust for motion attitude solving. The proposed algo-
rithm can effectively deal with misalignment errors, inherent nonlinearity in the
measurement and model noises, noise-related, and measurement interference. In
addition, the performance of the wearable fusion algorithm for attitude capture
in the outdoor condition needs to be further validated. Thus, the following the-
oretical research needs to be further strengthened and the practical application
of the algorithm needs to be improved.
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Abstract. The bottleneck bandwidth and round-trip propagation time
(BBR) algorithm effectively improves the network bandwidth utilization
by its unique minimum delay and maximum bandwidth detection mech-
anism. However, with the development of 5G communication technology,
whether the 10 s delay detection interval of BBR can meet the new high
throughput and low latency heterogeneous network requirements needs
to be studied. Therefore, based on the ns-3, this paper builds some sce-
narios to simulate the performance of BBR in wired, WiFi, and 5G net-
works. A spindle-shaped network topology is constructed to simulate the
BBR competition. By modifying the delay detection interval of BBR to
5 s and 1 s, the competition among BBR streams with the same round-
trip time (RTT), the competition among BBR streams with different
RTTs, and the competition among BBR and other TCP congestion con-
trol algorithms (CCA) are simulated respectively. Then, a formula for
calculating the delay detection interval is proposed. According to this
formula, we propose a method to dynamically modify the delay detec-
tion interval. The method estimates the network state according to the
change of RTT, and then calculates and updates the delay detection
interval. Simulation results demonstrate that appropriately modifying
the delay detection interval of BBR can alleviate the competition among
BBR and other algorithms in heterogeneous wireless network.

Keywords: TCP-BBR · Heterogeneous network · Delay detection
interval · Competition

1 Introduction

In recent years, with the rapid development of the Industrial Internet and 5G, a
large number of terminal devices and equipment have been added to the network.
At the same time, there are demands for new types of services and guarantees
[1]. These changes make the network more complex and diversified, and make
network services develop towards high throughput and low latency [2].
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In order to meet the requirements of high throughput and low latency, BBR is
proposed [3]. The BBR works through four stages, namely STARTUP, DRAIN,
ProbeBW and ProbeRTT. BBR adjusts the end-to-end sending rate and conges-
tion window (CWND) by periodically detecting the minimum RTT and max-
imum available bandwidth of the network to improve the network bandwidth
utilization. But with the development of communication technology, the net-
work status changes very rapidly. Therefore, the 10 s delay detection interval of
BBR may affect its performance.

In the ultra-reliable and low latency communications scenarios of 5G network,
the latency requirements are particularly strict. This requires CCA to be aware
of the network status, and to take corresponding measures timely according to
network status changes [4]. However, BBR with 10 s delay detection interval may
not grasp the network status in time. For example, when the number of packets
in the network increases, there will be buffer queuing delays. If the BBR fails to
detect the increase of the delay in time because the delay detection interval of
10 s has not expired, the BBR will continue to send data packets to the network
at a higher sending rate, which will cause packet loss and affect the network
performance. However, most of the current studies improve the performance
of BBR by modifying the detection bandwidth stage, and do not consider the
impact of the delay detection interval mechanism on the network performance.

For the purpose of fully simulating the impact of different delay detection
intervals on the performance of BBR, we use ns-3 to build spindle network topol-
ogy, and simulate BBR in wired, WiFi, and 5G networks. The performance of
BBR can be verified by simulation [5]. First, we modify the delay detection
interval of BBR to 5 s and 1 s, and simulate the competition effect among BBR
streams with the same RTT, the competition among BBR streams with differ-
ent RTTs, and the competition among BBR, NewReno, Vegas, Westwood and
Veno algorithms in wired and WiFi networks. Then, based on the analysis and
simulation results, we propose a method to dynamically modify the delay detec-
tion interval according to the change of RTT. The simulation results show that
BBR can quickly fill up the network bandwidth and improve the network band-
width utilization. At the same time, the simulation results also demonstrate that
dynamically modifying the delay detection interval can improve the performance
of BBR and alleviate TCP transmission competition.

2 Related Work

Many scholars have conducted a lot of research on the performance of the BBR
and proposed some improvement schemes. Zhang et al. [6] established different
network communication models using ns-3. By analyzing the simulation data,
they found that the actual throughput of BBR is better than Bic algorithm on
high-latency, high-bandwidth networks, and proved that there is a fairness prob-
lem among BBR and other TCP CCAs. Furthermore, they confirmed that BBR
streams with long RTT occupy more bandwidth than BBR streams with short
RTT. Sun et al. [7] proposed the RFBBR algorithm. The RFBBR can guarantee
the fairness of BBR streams with different RTTs. The simulation results show
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that RFBBR can significantly improve fairness compared with BBR and BBQ
in the wireless network spindle topology scenarios. G. Kim et al. [8] proposed
a BBR adversary congestion control identification model (OI-BBR) based on
a decision tree classifier. In the evaluation experiment using Mininet, OI-BBR
correctly identifies Cubic and performs different operations according to the con-
gestion control behavior of competing algorithms in the network, thus improving
the fairness between protocols by 1.31 times. Sun et al. [9] proposed a MFBBR,
which has moderate fairness. The simulation results on the Mininet show that
MFBBR can improve the fairness of BBR when it coexists with Westwood, and
it also has better fairness compared with delay-based CCAs.

However, existing studies do not consider the delay detection interval of BBR,
nor do they study the effect of different delay detection intervals on the TCP
transmission competition. Therefore, in this paper, we simulate the effect of
different BBR delay detection intervals on TCP transmission competition in
heterogeneous wireless networks, and also propose a method to dynamically
modify delay detection intervals to improve BBR performance.

3 BBR Delay Detection Interval

3.1 Mechanism of Delay Detection Interval

The state transition of BBR is shown in Fig. 1. In the STARTUP stage, BBR
increases the sending rate with a larger coefficient (2.89). When it is detected
that the sending rate does not increase for three consecutive times, BBR enters
the DRAIN stage. During the DRAIN stage, BBR reduces the sending rate and
drains excess packets. In the ProbeBW stage, BBR continuously adjusts the
sending rate to detect available bandwidth of the network. Specifically, BBR
cyclically adjusts the pacing rate coefficient with an array [1.25, 0.75, 1, 1, 1, 1,
1, 1]. Through this array, BBR can dynamically detect network bandwidth and
improve bandwidth resource utilization. BBR enters the ProbeRTT stage every
10 s. In the ProbeRTT stage, BBR will detect the minimum delay of the network.
After the ProbeRTT stage ends, the BBR decides to enter the STARTUP stage
or the ProbeBW stage according to whether the network is fully loaded [3].

Startup Drain ProbeRTTProbeBW

Timeout and full 
bandwidth

Timeout and not full 
bandwidth

Full bandwidth Inflight<=BDP

RTT > RTprop in ten seconds

stable state

Fig. 1. BBR state transition.

BBR enters the ProbeRTT stage every 10 s, which lasts for 200 ms. BBR will
take the minimum RTT in this stage as RTprop. In other stages, if BBR detects
that the current RTT is less than RTprop, it updates RTprop to the current RTT,
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and updates the 10 s delay detection cycle. When the data packets are reduced,
the queuing delay is reduced, and BBR can update RTprop in time. However,
when the number of packets increases, the queuing delay increases. At this time,
the RTprop is less than the current RTT, resulting in BBR mistakenly believing
that the network state is good. Therefore, BBR will send a lot of packets to the
network. However, a too short delay detection interval may reduce bandwidth
utilization. This is because the CWND is only 4 packets in size during the
ProbeRTT stage. Frequently entering the ProbeRTT stage will cause BBR’s
sending rate to drop and the network bandwidth cannot be effectively used.

When multiple BBR streams with the same RTT compete in the network,
modifying the delay detection interval may not change the origin competition.
This is because when the RTTs of the BBR streams are equal, each stream’s
minimum delay is same, and the BDPs calculated in the ProbeBW stage are
equal, so that the dynamic fairness can be maintained. When there are multiple
BBR streams with different RTTs competing in the network, reducing the delay
detection interval may improve fairness. This is because when the delay detection
interval is reduced, the BBR stream with long RTT passes through fewer rounds
of ProbeBW stages in the same time, thereby reducing the amount of data
packets sent. On the other hand, when BBR competes with other CCAs, such
as Westwood, BBR always occupies a large amount of network bandwidth. BBR
detects the available bandwidth due to failure to update RTprop in time, and
sends a large number of data packets to the network. That creates a queue at
the bottleneck, which will cause additional queuing delay, and generate packet
retransmissions. Westwood believes that it is in a congested state, and responds
by reducing its Cwnd. Therefore, BBR will occupy a lot of network bandwidth.

3.2 Dynamic Delay Detection Interval

Through the analysis, we think that moderate delay detection interval will
improve the network bandwidth utilization and increase the fairness of TCP
transmission. Since the network state will change, keeping the delay detection
interval constant may affect the performance of BBR. When the network changes
from a congested state to a non-congested state, keeping the delay detection
interval short will waste network bandwidth. Therefore, we design a method to
dynamically modify the delay detection intervals according to the TCP trans-
mission state. The delay detection interval can be calculated as Eq. (1)

Inew = Iold ∗ F (Rtt, Cwnd, SendRate), (1)

where Inew represents the new delay detection interval, Iold represents the previ-
ous delay detection interval. Rtt represents the round-trip delay of TCP connec-
tion, Cwnd represents the congestion window of TCP connection, and SendRate
represents the sending rate of TCP sender. F (Rtt, Cwnd, SendRate) is the func-
tion to calculate the delay detection interval coefficient. The function evaluates
the current network congestion trend according to the changes of the three
parameters Rtt, Cwnd and SendRate over a period of time, and then calcu-
lates a coefficient to adjust the delay detection interval. This function is only an
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open function and does not include a specific calculation process. According to
this function, we propose a specific algorithm to calculate the delay detection
interval. Cwnd and SendRate are directly related to the stage of the BBR. In
the ProbeBW stage of BBR, the Cwnd and the SendRate are cyclically changed
in synchronization with the sending rate coefficient array. Therefore their chang-
ing relationship cannot accurately display the network status. However, Rtt can
accurately reflect the network state. RTT includes propagation delay, queuing
delay and processing delay. The propagation delay and processing delay are
determined by the current network transmission medium and the processing
capability of the nodes, and cannot be changed with the network state. The
queuing delay is caused by the queuing of data packets at intermediate nodes in
the network, and its value directly reflects the current network state. When the
queuing delay is large, the network may be congested. When the queuing delay
is small, it means that the network is not congested.

Algorithm 1
Input: RTTcur, RTTlast, Count
Output: Inew

1: // RTTcur: The current RTT
2: // RTTlast: The last RTT
3: // Count: The number of times the RTT increases
4: When TCP sender receives ACK, Update RTTlast and RTTcur

5: while ProbeBW do
6: if RTTcur > RTTlast then
7: Count = Count + 1
8: if Count ≥ 3 then
9: Reduce the interval when network is congested

10: Inew = 5
11: Count = 0
12: else
13: Inew = 10

14: else
15: Increase the interval when network is not congested
16: Inew = 10
17: Count = 0
18: Update RTTlast and return Inew

19: RTTlast = RTTcur

20: return Inew

Since the Cwnd and the SendRate fluctuate little during the ProbeBW stage
of BBR, we have not considered them as the influencing factors for modifying
the delay detection interval. We choose RTT, which is directly related to network
congestion, as a factor affecting the delay detection interval. We also simplify the
effect of RTT on the delay detection interval as the conversion between the delay
detection interval of 10 s and 5 s. The pseudocode of dynamically modifying the
delay detection interval method is shown in Algorithm 1.
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Lines 1–3 introduce the meaning of the relevant parameters, and lines 4–
20 introduce the specific method of dynamically modifying the delay detection
interval. Lines 4–11 modify the delay detection interval to 5 s. In the ProbeBW,
when the sender detects that the RTT increases three times in a row, the sender
considers that the network is congested and needs to update the minimum delay
in time, so the delay detection interval is set to 5 s. Lines 12–20 reset the time
delay detection interval to 10 s. When the sender detects that the current RTT is
shorter than the previous RTT, the sender considers that the network congestion
is relieved, and sets the delay detection interval to 10 s. The algorithm only
increases the calculation of some parameters in the ProbeBW stage, so its time
complexity is the same as that of BBR. This method can reduce the delay
detection interval when the network is congested, so that the BBR can detect the
minimum delay more frequently. It can also increase the delay detection interval
of BBR, make full use of the characteristics of BBR, and improve the utilization
rate of network bandwidth when the network status is good.

4 Simulation Setup and Result Analysis

In this section, by modifying the delay detection interval of BBR to 5 s and
1 s, the competition among BBR streams with the same RTT, the competition
among BBR streams with different RTTs, and the competition among BBR and
other TCP CCAs are simulated respectively. Then, the method of dynamically
modifying the delay detection interval is simulated in the WiFi network. The
ns-3 version is 3.33, and the 5G network is based on the NYU mmWave module
[10]. The operating system is ubuntu 20.04.

4.1 Scenarios and Parameters

In the wired network, a spindle-shaped network topology with 5 leaf nodes on
the left and right is built to simulate the competitive characteristics of BBR.
For WiFi network, we build a wireless multi-hop spindle network topology. The
characteristics and competition characteristics of BBR are simulated by allowing
the access devices of the leaf nodes at both ends to communicate. The parameter
settings are shown in Table 1. The network topologys are shown in Fig. 2.
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Table 1. Network parameter setting

Parameter Value

Bottleneck bandwidth 10 Mbps

Bottleneck delay 30 ms

Access bandwidth 40 Mbps

Access delay 5/10/15/20/25 ms

Buffer size 128 KB

4.2 Simulation Results

In order to study the effect of different delay detection intervals on BBR, we
simulate the competitive characteristic of BBR streams with the same RTT and
different delay detection intervals in wired network and WiFi network respec-
tively. The simulation time is set to 20 s, and the sender sends data traffic at 0 s.
The simulation results are shown in Fig. 3.
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Fig. 3. Network bandwidth.

As can be seen from Fig. 3, when the BBR streams with the same RTTs
compete for network bandwidth in wired network, the bandwidth of each stream
is 1.8 Mbps regardless of the delay detection interval. However, as the delay
detection interval becomes shorter, the stability and utilization of the bandwidth
are gradually decreasing. In WiFi network, there is still a correlation between
the bandwidth utilization and the delay detection interval. When the interval
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is 5 s, the bandwidth gap among each stream is reduced compared with when
the interval is 10 s. But when the interval is 1 s, the bandwidth among each
stream varies greatly. The results show that in WiFi network, the delay detection
interval can affect the fairness and bandwidth utilization among BBR streams
of the same RTT.

Then, we compare the fairness among BBR streams of different RTTs in
the wired network. By setting different delay detection intervals, the influence
of delay detection interval on fairness among BBR streams of different RTTs is
simulated. The simulation results are shown in Fig. 4.
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Fig. 4. Network bandwidth.

In Fig. 4(a), When BBR streams with different RTTs compete for network
bandwidth, the bandwidths of BBR streams are 1.4 Mbps, 1.6 Mbps, 1.8 Mbps,
2 Mbps, and 2.2 Mbps. The simulation results show that the fairness among BBR
streams with different RTTs is poor. The specific performance is that the BBR
stream with a long RTT occupies a large bandwidth, and the BBR stream with
a short RTT occupies a small bandwidth. Meanwhile, with the change of the
delay detection interval, the bandwidth gap among BBR streams of different
RTTs is not improved. To make matters worse, as the delay detection interval
decreases, the bandwidth utilization of each stream decreases, and the bandwidth
fluctuation becomes larger.

For fairness among BBR and other CCAs, we simulate BBR, NewReno,
Vegas, Westwood and Veno algorithms in wired and WiFi networks, respectively.
The impact on the network bandwidth utilization and fairness of different CCAs
is simulated by modifying the delay detection interval of BBR. The simulation
results are shown in Fig. 5.

Figure 5 shows the network bandwidth of BBR with different delay detection
intervals, NewReno, Vegas, Westwood and Veno algorithms in wired network and
WiFi network. Among them, the BBR stream has the advantage in competition
(the largest bandwidth), the competitiveness of Vegas is the weakest, and the
fairness between NewReno and Veno is good. The simulation results show that
BBR is more competitive than other TCP CCAs in wired network. Meanwhile,
as the delay detection interval decreases, the bandwidth gap among BBR and
other algorithms is alleviated in wired network. However, in WiFi network, when
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the delay detection interval of BBR is 1 s, BBR will gradually lose bandwidth
until it reaches 0, which indicates that excessively reducing the delay detection
interval will affect the bandwidth utilization of BBR.
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Fig. 5. Network bandwidth.

In addition to these, we also simulate the competition of BBR in 5G network.
Five access devices and 5G base station are set in a LAN, and the 5G base station
is connected to the remote host through the wired network. Let access devices
communicate with remote server host through 5G base station. The network
topology is shown as Fig. 2(c) The simulation results are shown in Fig. 6.
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Fig. 6. Network bandwidth

Figure 6(a) shows the network bandwidth in 5G network. The bandwidth of
BBR is 9 Mbps in the first 10 s and 9.6 Mbps in the last 10 s. The bandwidth of
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Veno is maintained at 9.6 Mbps, and fluctuates up and down periodically. The
bandwidth of Westwood fluctuates greatly. Although the bandwidth utilization
of Veno and Westwood is slightly higher than that of BBR, the bandwidth
stability is worse. Figure 6(b) shows that the bandwidth of BBR is relatively
stable, staying between 1.75 Mbps and 2 Mbps. The results show that BBR can
maintain good fairness in 5G network. Figure 6(c) shows the bandwidth of BBR,
NewReno, Vegas, Westwood and Veno in 5G network. As can be seen from
the figure, BBR has an advantage with a bandwidth of 3 Mbps. Vegas is the
least competitive, with no bandwidth exceeding 1 Mbps. The fairness among
NewReno, Veno and Westwood is better, and the bandwidth is basically equal.
But BBR in 5G networks exhibits different competitive characteristics than in
wired and WiFi networks. We will further study the 5G mmWave module to
verify the correctness of BBR simulation in 5G network.

In order to evaluate the performance of the dynamically modifying the delay
detection interval method, we set up the following scenario. In the WiFi network,
two nodes communicate directly, and two TCP connections are set up. Among
them, the BBR connection communicates for 50 s. Westwood connection starts
sending data traffic at 10 s, and closes the connection at 30 s. When only the BBR
stream is running, the network is not congested. When Westwood is running,
the simulated network is congested. Westwood acts as background traffic in
the simulation. By counting the bandwidth of two streams, the performance of
dynamic delay detection interval method can be evaluated when the network
state changes. The simulation results are shown in Fig. 7.
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Fig. 7. Network bandwidth

The simulation results show that when the network is not congested, the
shorter the delay detection interval, the lower the network bandwidth utiliza-
tion of BBR. When the network is congested (BBR and Westwood compete for
network bandwidth), the 5 s delay detection interval enables BBR to update
the network delay in a more timely manner, reducing the bandwidth gap with
Westwood. When the BBR adopts the method of dynamically modifying the
delay detection, the BBR can set a longer delay detection interval when the
network is not congested, and reduce the delay detection interval when the net-
work is congested. Compared with the results at 5 s, the simulation result of
dynamic modification delay detection reduces the number of times of entering
the ProbeRTT stage and improves the network bandwidth utilization.
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4.3 Result Analysis

Through the above simulations, we summarize the fairness of BBR under dif-
ferent networks and different delay detection intervals. Fairness is divided into
4 levels, namely: excellent, good, medium and poor. The specific summary is
shown in Table 2.

Table 2. Fairness comparison of different delay detection intervals

sameRTT diffRTT diffCCA

10 s 5 s 1 s 10 s 5 s 1 s 10 s 5 s 1 s

Wired Excellent Excellent Good Medium Medium Medium Medium Good Good

WiFi Medium Good Bad – – – Good Good Good

In wired network, the delay detection interval of 5 s does not change the RTT
fairness of BBR, but improves the fairness among BBR and other algorithms.
This is because in the ProbeRTT stage, the CWND of BBR is the size of 4
data packets, and correspondingly, BBR will reduce the sending rate. With fre-
quent detection of the minimum delay, BBR frequently reduces the sending rate,
resulting in a decrease in bandwidth utilization. The delay detection interval of
1 s will break the RTT fairness among BBR streams with same RTT. In WiFi
network, the inter-protocol fairness of BBR is not improved by different delay
detection intervals. This may be because in the wireless network, due to the com-
plex network channel, the BBR frequently changes between the ProbeRTT and
the ProbeBW stage, which will cause network fluctuations, so the advantages of
the BBR cannot be effectively utilized.

By dynamically modifying the delay detection interval, BBR can shorten
the delay detection interval when the network is congested, and increase the
delay detection interval when the network is good, thereby improving network
bandwidth utilization and fairness. However, the results of this method are not
significantly improved from the results at 5 s. This is mainly due to the hysteresis
of the ProbeRTT stage. When the delay detection interval is modified, the next
ProbeRTT stage must be passed through this interval. Since the delay cannot be
detected immediately, the BBR cannot well grasp the network status. Meanwhile,
we only dynamically set two parameters, 10 s and 5 s, in the simulation. Next,
we will continue to adjust the method of dynamic detection, and dynamically
calculate the delay detection interval according to some parameters such as RTT
and CWND, instead of just switching it between 10 s and 5 s.

5 Conclusion

In this paper, we first analyze the effect of different delay detection intervals
on BBR performance. Then a method to dynamically modify the delay detec-
tion interval is proposed. To validate the theoretical analysis, the competition
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among BBR streams with the same RTT, the competition among BBR streams
with different RTTs, and the competition among BBR and other TCP CCAs
are simulated respectively with BBR delay detection intervals of 10 s, 5 s and 1 s.
We also simulate the performance of dynamically modifying the delay detection
interval method in WiFi network. In addition, we also simulate the RTT com-
petition and inter-protocol competition of BBR in 5G network. The simulation
results show that properly reducing the delay detection interval of BBR will not
affect the fairness among BBRs with the same RTT, and can enhance the inter
protocol fairness of BBR, but too short delay detection interval will reduce the
network bandwidth utilization. The simulation results of dynamically modifying
the delay detection interval show that BBR can dynamically adjust the delay
detection interval according to the network state, thereby improving the network
bandwidth utilization and fairness of BBR.

In the future, we will set more complex network scenarios to simulate the
performance of BBR. We will also improve the method of dynamically modify-
ing the delay detection interval, and dynamically calculate the delay detection
interval through deep learning or prediction method.
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Abstract. The lack of floor plans is one of the major obstacles to ubiqui-
tous location-based services indoors. Dedicated mobile robots with high-
precision sensors can scan and produce indoor maps, but the deploy-
ment remains low. Existing smartphone-based approaches usually adopt
computer vision techniques to build the 3D point cloud, at the cost
of extensive image collection efforts and the risk of privacy issues. In
this paper, we propose BatMapper-Plus which constructs accurate and
complete indoor floor plans by acoustic ranging and inertial sensing on
smartphones. It employs acoustic signals to measure the distance to a
nearby wall segment, and produces the accessible area by surrounding
the building during walking. It also refines the constructed floor plan to
eliminate scattered segments, and identifies connection areas including
stairs and elevators among different floors. Extensive experiments in a
teaching building and a residential building have shown our effectiveness
compared with the state-of-the-art, without any privacy concerns and
environmental limitations.

Keywords: Floor plan construction · Acoustic ranging · Inertial
sensing · Smartphone

1 Introduction

Indoor location-based services (LBS) brings great convenience to our modern
life, especially at large-scale hospitals, multi-level shopping malls, and under-
ground parking lots. However, its deployment is still not yet pervasive, and one
of its major obstacles is the lack of floor plans for indoor localization [1] and
navigation [2].

At present, existing dedicated mapping systems [3] rely on mobile robots with
cameras and other high-precision sensors to construct accurate indoor maps.
However, such systems always cost expansively and are not wide-spread at large
scale. With commodity smartphones, some AR/VR applications adopt computer
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vision techniques [4] to build 3D point clouds for indoor objects, but images are
affected by ambient light condition and risk privacy disclosure. Therefore, it is
necessary to construct indoor floor plans without environmental supports and
privacy concerns.

In a recent work [5], we have proposed BatMapper which uses acoustic signals
to measure the distance for indoor mapping. Specially, it adopts a bilateral acous-
tic ranging mechanism that is effective to construct narrow corridors. SAMS [6]
follows this work with higher accuracy by FMCW-based distance measurement.
However, indoor environments are not limited to corridors, but also include wide
areas such as rooms and lobbies. In such places, BatMapper can not produce
satisfactory floor plans due to data association mistakes between wall segments
and distance measurements. In addition, the constructed floor plan should be
further adjusted to eliminate scattered points/segments, and augmented with
connection areas to other floors.

In this paper, we propose BatMapper-Plus which is a smartphone-based
indoor floor plan construction system by acoustic ranging and inertial sensing.
It employs an unilateral ranging mechanism which measures the precise distance
to a nearby wall segment, and produces the accessible area by walking around
the room. It also refines scattered wall segments, and identifies connection areas
to produce a multi-level floor plan. The system can build the indoor floor plan
through a smart phone, which makes it have a low cost. Furthermore, the system
does not need indoor images, so it is not affected by lighting conditions, and has
high privacy.

Specially, we make the following contributions in this work:

– We explore a novel unilateral acoustic ranging method on smartphones. It
emits acoustic signals for distance measurement to a side wall, thus users
can simply surround the building to construct its floor plan with lightweight
human efforts.

– We propose a map refinement algorithm to produce accurate and complete
multi-level floor plans. It automatically adjusts and merges the scattered wall
segments. It also detects and marks connection areas (e.g., stairs and eleva-
tors) on the map.

– We build a prototype and conduct extensive experiments in a teaching build-
ing and a residential building. Results have shown our improvements with
around 2.8% in three experimental scenarios on F-score compared to BatMap-
per.

2 Overview

In this section, we present how the BatMapper works, explain its limitations
during deployment in reality, and depict the overview of our BatMapper-Plus.

Background on BatMapper. BatMapper designs a two-pulse signals with lin-
ear frequency increasing sine waves and Hanning window reshaping for bilateral
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ranging on smartphones. It further explores a probabilistic evidence accumula-
tion (PEA) method to associate the distance measurements to corresponding
wall segments along the long corridor.

Limitation in BatMapper. 1) BatMapper measures the distance from echo
signals which are reflected by two-side walls. This bilateral ranging mechanism
is suitable in narrow areas such as a long corridor, but not designed for spacious
spaces such as large rooms and lobbies. 2) BatMapper produces coarse floor
plans which are composed of scattered points, and they are not consistent with
the actual maps made of line segments. 3) BatMapper only generates the floor
plan for one level, while modern buildings are always comprised of multiple levels
with various connection areas.

BatMapper-Plus Overview. As Fig. 1 shows, BatMapper-Plus employs
acoustic signals and inertial data as inputs. We adopt the Frequency Modulated
Continuous Wave (FMCW) as the speaker’s output signal, use two microphones
(top/bottom) to receive the echo signal reflected from the side-wall, and calcu-
late the distance between the wall and the smartphone. In addition, we collect
the inertial data from smartphone to track the user and identify connection areas
(e.g., stairs and elevators). Finally, we fuse distance measurements, walking tra-
jectories and connection areas to construct and refine the multi-level indoor floor
plan.

Fig. 1. Overview of BatMapper-Plus, which constructs multi-level indoor floor plan by
acoustic ranging and inertial tracking.
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3 Methods

In this section, we present the detailed design of BatMapper-Plus with three
modules: unilateral acoustic ranging, map construction and refinement, and con-
nection area detection.

3.1 Unilateral Acoustic Ranging

Acoustic Signal Design. The frequency of acoustic signal should balance
both physical ability of smartphone and background noises. The sound frequency
of smartphone is usually between 110Hz ∼ 20KHz, while the frequency of
human voice is always less than 1KHz. Through experiments, we found that
a wider frequency range will make the echo peak more obvious. Furthermore,
with the same emission energy, low-frequency sound spreads farther than high-
frequency sound. Therefore, we generate the duration of acoustic signal as 3ms
and its frequency range is 8KHz ∼ 16KHz. Specially, We employ the Frequency
Modulated Continuous Wave (FMCW) to produce the signal (the blue line in
Fig. 2).

Fig. 2. Calculating distance by emited and received signals. (Color figure online)

Delay of Echo Signal. When the emitted acoustic signal meets the wall, its
echo signal is reflected back and received by smartphone’s microphone. At this
time, the waveform of the received signal and the emitted signal are consistent,
with a time delay Δt which is shown in Fig. 2. Specially, the time delay Δt is
computed as:

Δt =
Δf · T

fmax − fmin
(1)

where fmin is the minimum frequency of the emitted signal, fmax is the maximum
frequency of the emitted signal, and T is the duration of the emitted signal.

Distance to Wall. As shown in Fig. 3(a), when a user holds the smartphone
horizontally during walking, Path 1 indicates the propagation path of the sig-
nal received by the top microphone, and Path 2 indicates the propagation path
of the signal received by its bottom microphone. The propagation distance dif-
ference of received signals between by two microphones is the length l of the
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smartphone. Therefore, when the distance difference to the side-wall measured
by two microphones is close to 1

2 l, the received signal is likely to be the echo
reflected from the wall.

In this case, the distance d between the wall and the smartphone (by its top
microphone in Fig. 3(a)) is expressed as:

d =
1
2
Δt · vsound (2)

where vsound is the sound propagation speed.
Through experiments, we found that when there is an angle θ between the

mobile phone and the wall, the detected distance is the vertical distance from
the top microphone to the wall (Path 4 in Fig. 3(b)), rather than the distance
towards the top of the mobile phone (Path 3 in Fig. 3(b)). Therefore, when the
mobile phone is not completely parallel to the wall, the accurate distance can
still be obtained.

In addition, we use one-dimensional sound signal, which can only represent
distance information and cannot distinguish indoor conditions. So this method
has high privacy.

(a) Parallel to the wall (b) Not parallel to the wall

Fig. 3. The position of the speaker and microphone, and the sound signal propagation
path received by the microphone.

3.2 Map Construction and Refinement

Inertial Tracking. We use the dead-reckoning to track the walking user by
his/her stride length, step count and heading orientation. 1) The normal stride
length for an adult is about 60 cm, we use such value as default, and it can
be customized by the outdoor trajectory with GPS [7]. 2) The step count is
calculated by detecting the peak and valley values of vertical accelerations. Based
on our experiments, we set the threshold of their difference as 3m/s2, and set
the duration threshold between two steps as 400ms in order to avoid errors
caused by hand shaking. 3) In order to eliminate drifts from gyroscope and noises
from magnetometer, we calculate the orientation by gamerv API of smartphone,
which fuses accelerometer, gyroscope and magnetometer for robustness.
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Door and Window Detection. We judge the existence of doors and windows
by detecting the distance variation between the smartphone and the side-wall.
When the change exceeds the threshold (20 cm in our system), we regard the
point as a door/window. When the length of door/window is too short, we
remove these points as outliers.

Floor Plan Refinement. The wall segment are positioned as scattered points
on the map by distance measurements oriented to user’s trajectory. Not only it
contains outliers with extreme errors, but also such floor plan is not consistent
with the actual map.

Intuitively, most walls are made of line segments, and their intersections could
be identified by turning events of the walking user. After removing the detected
doors and windows, we fit the rest points as line segments, i.e.,

f(x) = kx + b (3)

where k is the gradient and b is the offset. In order to minimize the errors between
a wall segment and the scattered points, we construct the objective function as:

e =
n∑

i

(kxi + b − yi) (4)

where e represents the sum of errors, n represents the number of points on the
wall, (xi, yi) is the ordinate of the ith point by distance measurement. In order
to minimize e, we calculate the partial derivatives of k and b respectively:

∂e

∂k
= 2(

n∑

i

(kxi + b − yi)xi) = 0 (5)

∂e

∂b
= 2(

n∑

i

(kxi + b − yi)) = 0 (6)

thus

k =
∑n

i (xiyi) − nxy∑n
i (xi)2 − nx2 (7)

b = y − kx (8)

where x is the average value. Thus, we refine the reconstructed floor plan with
wall segments, doors/windows, and corners.

3.3 Connection Area Detection

Since modern buildings are always multi-levels with different types of connection
areas, we automatically identify stairs and elevators to associate each level of
floor plan.
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Stair Detection. Intuitively, there are always large variations in our accelera-
tions when climbing stairs. In order to eliminate the influence of smartphone’s
attitude, we calculate the amplitude value of three-axis accelerations on smart-
phone (Fig. 4(a)). Next, we use a sliding window to dynamically detect the peaks
and valleys along acceleration sequence. In order to avoid errors caused by hand
shaking, the minimum time gap between peaks and valleys is set as 400ms.
Because when holding a mobile phone, it takes one second to take one step.

Elevator Detection. When an elevator starts or stops, the smartphone’s accel-
eration along gravity direction varies accordingly, and it remains stable when the
elevator moves at an uniform speed. As shown in Fig. 4(b) and Fig. 4(c), the ver-
tical acceleration first decreases than increases when the elevator goes down,
and verse versa. We adopt a sliding window of 3 s to detect its rising/sinking
interval, and verify if such two periods are within a reasonable period (30 s in
our system).

(a) Stair (b) An elevator sinks (c) An elevator sinks

Fig. 4. Three-axis acceleration variations at stairs and acceleration variations along
gravity direction when an elevator rises and sinks.

4 Evaluation

We have developed the prototype of BatMapper-Plus on Android Studio and
installed it on MI 10S smartphone for data collection. Experiments are carried
out in a residential building and a teaching building, both with multiple levels.
The ground true distance and floor plan are measured by a laser rangefinder.
Our evaluation includes three aspects, i.e., unilateral acoustic ranging, floor plan
construction, and connection area detection.

4.1 Unilateral Acoustic Ranging

We carried out the acoustic ranging measurements indoors, with different user
states and distances to wall.
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User States. We test the accuracy with static users, walking users and a clut-
tered environment with many obstacles, and compare with the previous BatMap-
per. As shown in Fig. 5(a), our distance measurement error in the static state
is close to that in walking state, with the median value around 0.7 cm and the
maximum value less than 1.5 cm, both are obviously lower than the BatMapper.
In a cluttered environment, the accuracy decreases slightly. This demonstrates
our effectiveness of one-side ranging.

Distance to Wall. Three distances are tested at 60 cm, 70 cm and 80 cm to the
same wall. As shown in Fig. 5(b), all distance measurement errors are less than
2 cm. In addition, such error increases with the farther distance.

(a) Different user states (b) Different distances to wall

Fig. 5. Unilateral acoustic ranging with different user states and distances to wall.

4.2 Floor Plan Construction

Construction Effect. We illustrate the construction effect in an 8.7m × 6.3m
classroom in teaching building, a 7m × 4.5m living room and a 6m × 11m
corridor in residential building. The three experimental scenarios contain several
doors, windows, and blackboards/closets. In order to construct the floor plan, a
user hold the smartphone horizontally and walk along the experimental scenarios
border, and we produce the position of wall segments by acoustic ranging. Such
scattered points are drawn on the map based on the walking trajectory (Fig. 6(b),
Fig. 7(b) and Fig. 8(b)). Next, our refinement algorithm improve the constructed
floor plan with corners and line segments (Fig. 6(c), Fig. 7(c) and Fig. 8(c)).

Quantitative Results. In order to evaluate the reconstructed floor plan pre-
cisely, we overlay it onto the ground truth to achieve the maximum overlap
(Fig. 9), and observe that the location errors of wall segments are all within
0.3m. Next, we define the precision, recall and F-score as:

P =
Sre

⋂
Sgt

Sre
, R =

Sre

⋂
Sgt

Sgt
, F =

2P · R

P + R
(9)
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where Sre denotes the shape of reconstructed map, Sgt denotes the shape of the
ground truth, and Sre

⋂
Sgt represents their overlap area.

Table 1 shows the quantitative results for floor plan construction in classroom,
living room and corridor. Compared with BatMapper and CrowdInside [8], the
recall and F-score of our BatMapper-Plus are significantly higher than the other
methods, which indicates that we produce more precise indoor maps. In addition,
since the other methods generate floor plans with larger areas than the ground
truth, their recall values are higher.

Table 1. Shape evaluation of floor plans.

Sense Classroom Living room Corridor

Criterion R(%) P(%) F(%) R(%) P(%) F(%) R(%) P(%) F(%)
CrowInside 77.28 100 87.18 74.80 100 85.58 58.82 100 74.07
BatMapper 96.36 99.61 97.96 97.46 96.21 96.58 84.71 94.12 89.17
BatMapper-Plus 97.89 99.48 98.68 99.05 98.46 98.75 97.65 91.76 94.61

4.3 Connection Area Detection

Stairs. In order to evaluate the stair detection accuracy, users conduct a 2-
minute walk either on the ground or climbing stairs, and we predict the location
type for each walking step. In addition, we collect the inertial data with different
postures during walking, i.e., holding the smartphone horizontally or with an
arbitrary posture. As shown in Table 2, there are at most six incorrect steps on
each walk for all postures, with an approximate accuracy of 97%. We look into
such incorrect steps and find them are mainly located at the junction area on
each floor, with slight impacts on stair detection.

(a) Ground truth (b) Scattered points (c) Constructed map

Fig. 6. Construction process of a classroom in teaching building.
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(a) Ground truth (b) Raw points (c) Constructed map

Fig. 7. Construction process of a living room in residential building.

(a) Ground truth (b) Raw points (c) Constructed map

Fig. 8. Construction process of a corridor in residential building.

(a) Classroom (b) Living room (c) Corridor

Fig. 9. Comparison between reconstructed floor plans and the ground truth.

Table 2. Accuracy of stair and elevator detection.

Area Stair Elevator

State Arbitrary posture Horizontal posture Rising Stable Sinking
Accuracy 96.84% 97.06% 100% 100% 100%

Elevator. As shown in Table 2, for a statically standing user, all test data are
correctly detected (either on rising/sinking elevators or on the ground), thus the
detection accuracy of elevators reaches 100%.
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5 Related Work

Indoor Floor Plan Construction. At present, the construction of indoor
floor plan is mainly realized by the combination of image and inertial sensor.
Jigsaw [4] obtains the spatial relationship between adjacent landmark objects
from the image taken by the user and the inertial sensor data, and combines the
user’s trajectory and the position of the captured image to generate a complete
plan. Plansketcher [9] uses deep learning technology to extract new compre-
hensive features to identify different landmarks. Then the indoor floor plan is
constructed based on sensing data, depth data and images. [10] combines the
magnetic fingerprint map and user trajectory to build the indoor floor plan.
IndoorCrowd2D [11] uses the image information and sensory data in crowd-
sourcing data to restore the building’s structure. MapGENIE [12] uses syntax to
represent the structural information of buildings, which has a better effect than
simple trajectory mapping.

Acoustic Ranging. Acoustic ranging is a relatively new content in the field
of mobile computing. DeepRange [13] uses a depth neural network to estimate
the distance. [14] proposes an improved TOA estimation method to maintain
high ranging accuracy and robustness in the closed environment of reverberation
room. [15] and DopEnc [16] calculate the distance by measuring the time between
the initial pulse of the smartphone and its reflection.

Inertial Tracking. Indoor tracking has a lot of related researches, mainly
through image and inertial sensor. Walkie-Markie [17] uses WiFi tags and iner-
tial sensor data to build user’s trajectories. Zee [18] uses inertial sensors and
WiFi signals for tracking. VeTrack [19] uses the inertial sensor of the mobile
phone to track the position of the vehicle in real time. [20] tracks the user by
gradually integrating WiFi interface and inertial sensors of smartphones. Eas-
iTrack [21] uses the RF signal to accurately infer the moving distance of the
target to achieve tracking. DeepIT [22] achieves higher precision tracking by
evaluating the reliability of inertial data and synthesizing its data opportuniti-
cally. Imulet [23] adopts machine learning method to reduce the error of inertial
data and improve the accuracy of tracking.

6 Conclusion

In this paper, we propose BatMapper-Plus to construct multi-level indoor floor
plans without heavy human efforts and privacy/copyright concerns. Our uni-
lateral ranging technique eliminates the limitation of existing bilateral ranging
and achieves accurate distance measurements with less than 2 cm errors. We
also refine the reconstructed map with line segments to replace the scattered
points, and identify connection areas among different floors. We build a proto-
type and conduct experiments in two buildings, and the results have shown our
effectiveness.
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Abstract. In recent years, the demand for urban travel is increasing and the travel
modes are diverse. Online car Hailing has become an important way to meet the
travel needs of residents. The online car-hailing platform receives tens of thou-
sands of travel requests every day. However, a large portion of the thousands of
orders are unfinished, that is, canceled by passengers. This not only reduces the
income of drivers but also affects the order dispatching efficiency of the online
car-hailing platform. To predict the cancellation probability of online car-hailing
orders(OCP), the relationship between multi-source heterogeneous data and OCP
is first introduced, in which the presence of idle taxis is the main factor for pas-
sengers to cancel their orders during the waiting period. Secondly, a deep learning
model based on the Seq2Seq structure is designed to predict OCP in real-time. The
model consists of an attribute fusion module, encoder layer, and decoder layer.
Finally, a full experiment is carried out using the Didi Chengdu online car-hailing
order data set to verify the effectiveness of the algorithm.

Keywords: Taxi order cancellation · Urban travel · Feature fusion · Deep
learning

1 Introduction

With the development of the Internet and the popularity of smartphones, online car-
hailing has become the most commonly used travel mode [1]. However, orders are not
all fulfilled.When a user sends an online car-hailing order that is confirmed by the driver,
the user may still cancel it while waiting for a ride [2]. Canceling the answered order
not only increases the no-load cost of the driver, affects the driver’s working mood but
also increases the scheduling cost of the online car-hailing platform [3]. Moreover, it
affects the riding experience of other users. Didi Chuxing proposes an online car-hailing
dispatching algorithm based on the Markov decision process [4]. However, if the user
cancels the order, optimization effect of the algorithmwill be greatly reduced. The online
car-hailing platform has formulated certain punishmentmeasures tominimize the impact
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of users’ cancellation of orders on the order distribution system. However, in the face of
fierce competition in the market, increasing the cost of user rides may lead to the loss of
users [5]. Therefore, the research on OCP has important practical significance.

However, the existing literature rarely studies the cancellation behavior of users to
the confirmed online car-hailing orders. The OCP varies with the distance of the online
car-hailing from the user and the waiting time of the user. And OCP can be influenced
by a variety of factors [6]. Through experiments, we find that OCP is strongly correlated
with the waiting time of users and the distance of the online car-hailing from the user’s
pick-up point. And, the main reason for users to cancel their orders is the appearance
of idle taxis and the arrival of public transportation. It means that most users cancel
confirmed orders not by chance, but by a rational decision after weighing the cost of
travel. In addition, OCP is also related to the total number of online car-hailing orders,
time and other factors. Deep learning has made outstanding achievements in the field
of intelligent transportation [7, 8]. This work designs a deep fusion network DF-OCP
based on the Seq2Seq framework with the goal of real-time OCP prediction. The main
contributions of this work are as follows:

• A variety of data affecting OCP are counted and modeled to assist in predicting OCP.
• A deep fusion network DF-OCP based on the Seq2Seq framework is proposed. The
model consists of an attribute fusion module, an encoder layer, and a decoder layer.
The attribute fusion module is used to fuse different OCP influencing factors. The
encoder layer is used to encode the different input features and extract the implied
features of online car-hailing data. The decoder layer decodes the output based on the
above two to achieve predictive OCP.

• Based on the real data set in the real world, sufficient experiments are carried out to
prove the effectiveness of the method. It is also compared with existing deep feature
fusion models. The experimental results show that the DF-OCP model can achieve
the smallest experimental error.

2 Literature Review

By analyzing the operation data of Didi Chuxing in Shanghai, Wang et al. [9] find that
there is a certain regularity in the time of users’ OCP: the OCP is lowest in the morning
and evening peak period, while it is higher in the flat peak period. Moreover, the travel
distance and pick-up distance of canceled orders are significantly higher than those of
completed orders. When the average pick-up time is longer, the probability of online
car-hailing orders being canceled is lower. Besides, Wang et al. believed that the main
reason for most passengers to cancel their answered orders was the appearance of idle
taxis. The study of He et al. [10], for the first time, considered the cancellation behavior
of customers in the ride-hailing market. And they also solved the optimization design
problem of car-hailing platform pricing and penalty/compensation strategies. Li et al.
[11]. Study the punishment scheme after users cancel the confirmed orders in the car-
hailing platform. They find that a fixed penalty fee is likely to generate more users,
while a time-based penalty scheme can minimize social costs. Abid et al. [12] consider
the user’s behavior of canceling orders in the design of the taxi scheduling algorithm.
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By reducing the number of user cancellations, improving the experience of taxi drivers
and reducing complaints, the effectiveness of taxi scheduling is improved. Lv et al. [13]
predicted taxi traffic using graph convolutional networks. Xu et al. [14] predict travel
demand considering natural environment and socioeconomic factors.

3 Data Design

3.1 Problem Definition

Let the total number of online car-hailing orders be C. For the i-th online car-hailing
order, we use Di = {d1, d2, .., dn} to represent the distance traveled at each sampling
time before reaching the passenger’s boarding point after the online-hailing car receives
the order. Similarly, Wi = {w1,w2, ..,wn} represents the waiting time of passengers at
each sampling time after the driver answers the order. The order cancellation probability
at the j-th sampling moment of this order is represented by pj, Pi = {p1, p2, . . . pN }.
Other data that can affect the OCP are uniformly represented by A. The goal of OCP
prediction is shown in Eq. (1), where f represents the function map, D,W ,P ∈ R

C×N ,
α, β, γ are the parameters to be found.

P = f (αD + βW + γA) (1)

3.2 Social Factors

To facilitate the statistics and calculation of information, we use regular hexagons
to divide the main urban area of Chengdu into 8519 different areas. We separately
count the idle taxi transfer rate, online car-hailing demand, taxi distribution, and public
transportation resource information in each hexagonal area.

Fig. 1. OCP fluctuations caused by changes in travel demand supply and demand.

Supply and Demand of Travel Demand. For each car-hailing order, we add a car-
hailing travel request for the area where the starting position of the order is located.
For each ordinary taxi order, we add an idle taxi for the end location of the order. We
use O ∈ R

M×N to denote the total demand for online taxis and E ∈ RM×N to denote
the total number of idle taxis, where M represents the total number of areas.
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We randomly selected six areas and counted the relationship between the total number
of online car-hailing orders and the number of canceled orders (normalized to 0–1) in
units of 30 min. The results are shown in Fig. 1 left. From the figure, we can see that
with the continuous increase of the total amount of online car-hailing orders, the value
of OCP gradually decreases as a whole. Besides, we counted the relationship between
the number of idle cabs and the number of canceled orders (normalized to 0–1) in each
area, and the results are shown on the right in Fig. 1. As can be seen from the figure,
with the increase in the number of idle taxis, the OCP also increases. This shows that if
the user encounters an idle taxi, there is a high probability of canceling the confirmed
order and taking an idle taxi instead.

When a passenger encounters an idle taxi while waiting, the passenger will measure
the current travel cost and further decide whether to cancel the order. We assume that
it takes S time slices to reach the destination by taking a car-hailing or a taxi, and the
car-hailing arrives at the user’s pick-up point at time t. When the user encounters an idle
taxi at t’, the travel cost of choosing to continue waiting is shown in Eq. (2), where α is
the time cost of taking the car-hailing, and θ is the time cost of waiting. The travel cost
of users choosing to cancel this order and take an idle taxi is:

C1 = αS + θ t (2)

C2 = μS + θ t
′ + F (3)

where μ is the time cost of taking a idle taxi, and F is the penalty for canceling the
current online car-hailing order. When the cost of canceling an order is lower than the
cost of continuing to wait, users are more inclined to cancel their current order and take
an idle taxi. Therefore, we use I = C2 − C1 to denote the effect of idle taxis on OCP.
The larger the value, the more likely the user is to cancel the order.

Idle Taxi Transfer Rate. Idle taxi transfer rate refers to the probability of taxis trans-
ferring from one area to another. It reflects the spatial transfer of idle online car-hailing
vehicles. Taking the area A at time t as an example, PI represents the sum of idle taxi
transfer rate from other areas to A, and PO represents the sum of idle taxi transfer rate
from A to other areas. Then the idle taxi transfer rate of area A is shown in Eq. (4).

Pidle
At = f (x) =

{ PI
1−PO , PO < 1
0, PO ≥ 1

(4)

The idle taxi transfer rate in area A reflects the possibility of idle car-hailing vehicles
in the surrounding area entering area A. The larger the value, the greater the demand
for car-hailing in the area A than in the surrounding area. At this time, OCP in area A is
lower.

Time. Figure 2 shows the normalized hourly average of OCP (averaged over the same
time slice on the same weekday in different weeks). From Fig. 2 we can see that the daily
fluctuations in the OCP show a similar intraday pattern, which is a strong indication of
the reproducibility and predictability of the OCP on an hourly average. The minimum
occurs from 7:00 to 9:00 and from 18:00 to 20:00. Due to work and other reasons,
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Fig. 2. The number of canceled orders in a day trended over time

Fig. 3. Comparison of the relationship between public transportation resources and the total
amount of online car-hailing order cancellations (normalized)

the overall demand for travel in the morning and evening peak hours is large and the
timeliness requirements are high, so the demand for online car-hailing is high.

3.3 Public Transportation Resources

Public transportation resources are another important incentive for users to cancel online
car-hailing orders [15]. Figure 3(a) is a heat map of Chengdu’s public transportation
resources, and Fig. 3(b) is a heat map of the number of canceled car-hailing orders.
The public transport resource counts the number of bus stops and subway stations in
different areas. It can be clearly seen that the hot spots for the number of canceled online
car-hailing orders are concentrated in areas with more public transportation resources.

4 Model Design

In this session, we will explain to the proposed DF-OCP model as shown in Fig. 4. DF-
OCP consists of three components: attribute fusion module, encoder layer and decoder
layer. The attribute fusion module is used to deal with external factors. The encoder
layer uses Gated Recurrent Unit(GRU) [16] to learn the impact on OCP from the data
of ride-hailing distance and passenger waiting time. Finally, the decoder layer obtains
the predicted value of the OCP.
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Fig. 4. Illustration of the proposed model for prediction of OCP

4.1 Attribute Fusion Module

We designed a simple and effective module to integrate the external factors into our
model. Timedata anddistribution data of bus and subway are not in vector form, soweuse
the Embeddingmethod [17] to encode attribute values as low-dimensional dense vectors.
The specific method is to use a parameter matrix W to encode the feature attributes as
vectors of specified dimensions. Equation 5 represents converting an E-dimensional
feature into an F-dimensional vector where W ∈ R

E×F .

RF = RE ∗ W (5)

We encode both the time data and the distribution data of bus and subway as N-
dimensional vectors. Embedding method can reduce the dimension of input features
and reduce the computational pressure of deep learning models. The encoded temporal
features and public transport features will be combined with other factors.

4.2 Encoder Layer

Algorithm1: Principal Components Analysis
Input: Sample set Dimensionality of output features k;
Output
1.  // Centralization
2.  Calculate the covariance matrix of the sample 
3. Eigenvalue decomposition of covariance matrix 
4. Take the eigenvector corresponding to the largest k eigenvalues 
5. 
6.  
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The encoder layer is mainly composed of a Principal Component Analysis (PCA) [18]
module and a series-connected GRU module. After the driver confirms the order, there
is a linear relationship between the distance traveled by the car-hailing and the waiting
time of the user. To eliminate this collinearity problem, we combined two features into
one feature using PCA. The calculation process is shown in Algorithm 1.Concating D
andW to get the input I of PCA, I ∈ R

2T×N . The output of PCA isOp,Op ∈ R
T×N .Op

is input into the GRUmodule in series. Compared to Long Short-TermMemory(LSTM)
[19], it combines the forget gate and input gate into a single update gate. Taking the
input xt at time t as an example, suppose the hidden state at time t − 1 is ht−1, then the
reset gate rt and the update gate zt are:

rt = σ(Wrxt + Urht−1) (6)

zt = σ(Wzxt + Uzht−1) (7)

where W and U are trainable parameters, and σ(·) is the sigmoid activation function.
Then we need to calculate the candidate hidden layer h′, which can be regarded as the
new information at the current moment. Finally, the update gate zt controls how much
information needs to be forgotten from the hidden layer ht−1 at the previous moment,
how much information of the hidden layer at the current moment needs to be added, and
the final output ht is obtained.

h
′ = tanh(Wxt + rtUht−1) (8)

ht = (1 − zt) � ht−1 + zt � h′ (9)

The hidden state of each GRU unit will be fed into the next parallel GRU with the
same structure to learn more abstract and deeper features in the ride-hailing trip data.
There is no complex convolution structure and fewer training parameters, which makes
GRU computation fast.

4.3 Decoder Layer

In the decoder, we use the attention mechanism [20] to reflect the importance of the
current input features to the OCP to improve the learning effect of the model. Let the
output of the i-th time slice encoder be hi, and the output of the attribute fusion module
be ci. hi has captured the driving data characteristics of the online car-hailing, while ci
has captured the impact of external factors on OCP at the same time. We can get the
online car driving data with the attention weight added:

hat =
N∑
i=1

αi · hi (10)

where αi = eηi∑
j e

ηj , ηi =< σat(ci), hi >, <> represents the inner product operator, and

σat(ci) represents the nonlinear mapping to map ci into a vector of the same length as hi.
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αi is the weight of the i-th time slice data, and the sum of all data weights is 1. After the
attention mechanism adds the weights, the data is fed to GRU for decoding. The output
of the GRU in the decoder will be passed to several equal-sized fully connected layers.
The output of the fully connected layer is the real-time prediction result of OCP.

5 Experiments

5.1 Dataset Introduction

The car-hailing order dataset used in this experiment is provided by theDidiGaia Project.
The dataset includes trajectory data, order cancellation probability data, hexagonal grid
data, and idle car transfer rate of Didi Express orders in the urban area of Chengdu,
with a total of 210,000 records. The sampling interval of the trajectory points is 2–4 s.
The public transportation resources dataset counts the number of bus stops and subway
stations in different hexagonal areas of Chengdu. The idle taxi dataset includes vehicle
ID, latitude, longitude, occupancy, and time. We counted the number of unloaded taxis
in different hexagonal areas at different times.

5.2 Quantitative Analysis

To verify the performance of our method in predicting OCP, we compare it with several
state-of-the-art baselines.

• ARIMA [21]: ARIMA is an autoregressive model based on mathematical statistics
that combines moving average and autoregression to model time series.

• RNN [22]: RNN can obtain “memory” information from previously input data to
influence current input and output.

• TCN[23]: TCN is aCNN-based convolutional neural network for processing sequence
data.

• VMD-LSTM [24]: The model first uses Variational Mode Decomposition (VMD)
to decompose the time series data into Intrinsic Mode Functions (IMFs) at different
time scales. Then combined with long short-term memory neural network (LSTM) to
predict time-series data.

• MLRNN [25]: This model designs a taxi area clustering algorithm. Local and
global-level prediction modules are developed to extract intra-cluster and inter-cluster
features, respectively.The OCP is predicted by combining these two modules.

• DF-TAR [26]: The DF-TARmodel consists of convolutional blocks, recursive blocks,
fusion blocks, and fully connected blocks. Convolutional blocks are used to learn
hidden representations of spatial features of the data.

The prediction errors of the different models mentioned above are shown in Table 1.
The underlined data represents the best baseline, and the bolded data represents the
minimumerror. It is found that theARIMAprediction results based on statisticalmethods
have the highest error. Among the deep learning models, RNN has the largest prediction
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Table 1. Comparison of prediction errors of different models

Model MAE MAPE (%) RMSE

ARIMA 19.2 21 26

RNN 8.4 8.9 12.3

TCN 6.1 7.9 8.6

VMD-LSTM 4.3 5 6.8

MLRNN 3.8 4.8 5.9

DF-TAR 3.5 4.5 5.5

DF-OCP 2.7 3.1 4.3

Improvements 22.8% 31.1% 21.8%

error, followed by TCN. Compared with the above two models, the error of the VMD-
LSTM model has been greatly reduced. Compared with other baselines, the DF-TAR
model achieves the smallest error under all three indicators and is the optimal baseline.

The main reason for the poor performance of ARIMA is that OCP has no significant
autocorrelation in time. RNN can use the historical information in the car-hailing data
to assist in predicting the OCP at the current moment. However, when the online car-
hailing data is too long, the RNN can only memorize local historical information and
cannot perceive the global situation, so the prediction accuracy is limited. TCN expands
the receptive field by dilated causal convolution, enabling it to extract more time-series
feature information. Therefore, TCN has improved prediction accuracy compared to
RNN. Through variational modal decomposition, the noise generated by the fusion of
multi-source data is avoided, and the prediction accuracy is improved, but it is still not
ideal. The OCP in different areas will be greatly affected by other factors, but the OCP
in different areas will not affect each other. Moreover, when clustering areas, the setting
of the number of clusters lacks theoretical guidance. The convolutional block of the DF-
TAR model can learn the hidden features of the environment of the car-hailing trip data.
In the fusion module, the above- learned feature data is rescaled, and only the features
that have an important impact on OCP are retained. This feature extraction approach not
only fully extracts the deep representation of the online car-hailing driving data, but also
enables the dimensionality reduction operation of the learned features. Therefore, the
model achieves the optimal baseline. However, since different online car-hailing orders
have no obvious interdependence in space, its recursive module does not perform as
expected. The DF-OCP model first performs feature dimension reduction on the input
data through PCA. At the encoder layer, the input features are encoded with GRU and
fused with external attributes. After obtaining the deep representation of the driving data
of the online car-hailing vehicle, the GRU is used to decode the information and perform
real-time prediction of OCP. This encoding-decoding data processing method is more
suitable for feature extraction and representation of online car-hailing data. Therefore,
DF-OCP achieves the smallest error.
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5.3 Ablation Experiment

To verify the contribution of different factors to OCP prediction, we selected different
factors each time to conductmultiple experiments and compared the experimental results.
The effects of different features on OCP prediction results are shown through multiple
experiments. The experimental results are shown in Table 2.

As shown in Table 2, among all external factors, the most influential factor on the
prediction accuracy is the idle taxi data, followed by public transportation resources.
The total number of online car-hailing orders and the idle car transfer rate have a similar
impact on the forecast results. The time factor improves the accuracy of prediction
results better than the above two factors. In the absence of external factors to assist the
prediction, the prediction error of the DF-OCP model increases significantly.

Table 2. The effect of using different influencing factors on prediction accuracy

Model MAE MAPE (%) RMSE

DF-OCP-without extra
factors

4.8 6.4 7.2

+Online car-hailing
order

3.6 5.4 5.8

+Time information 3.4 4.7 5.7

+Idle taxi transfer rate 3.6 4.6 5.8

+Public transport
resources

3.2 4 5.3

+Idle taxi 3 3.8 5.2

+ALL 2.7 3.1 4.3

Improvements 10% 15.7% 5.7%

From the experimental results, the factors that have the greatest impact on OCP are
the distribution of idle taxis and the distribution of public transportation resources. Due
to similar prices and service content, there is such strong substitutability between online
car-hailing and taxis in real life. Online car-hailing passengers often encounter idle taxis
while waiting to be picked up. If a passenger calls and waits for an online car-hailing
near public transportation facilities, the online car-hailing order may be canceled due to
the arrival of public transportation during the waiting, and the public transportation is
used instead. The ride-hailing order data and car-hailing idle transfer rate together reflect
the demand for car-hailing in each area. The idle car transfer rate intuitively expresses
the spatial flow of idle car-hailing vehicles. According to the origination location of each
online car-hailing order, the DF-OCPmodel can use the idle car transfer rate to judge the
impact of the online car-hailing travel demand on the cancellation probability of each
order.

As shown in Fig. 5, we compare the prediction results of different models using dif-
ferent external factors. Here we only compare two state-of-the-art deep learning models.
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Fig. 5. Comparison of prediction results under different models and factors.

It can be seen from the figure that when each model uses external factors to assist in
predicting OCP, the MAPE will decrease, and the most important improvement in accu-
racy is the idle taxi data. Additionally, the prediction accuracy of our proposed DF-OCP
model consistently outperforms the other two models.

Combining the prediction results of the other two models, the factor that has the
greatest impact onOCP is always the emergence of idle taxis. Therefore,we can conclude
that the emergence of idle taxis is the most important factor causing users to cancel their
current orders. In addition, the prediction accuracy of both the DF-TAR model and
the MLRNN model improves when using other different factors. This also verifies the
effectiveness of our proposed multi-source heterogeneous data fusion.

6 Conclusion

Aiming at the practical problem of users’ cancellation probability of answered online
car-hailing orders, this work first designs a variety of OCP-related data. Second, a deep
fusion network DF-OCP based on the Seq2Seq structure is designed to predict OCP. The
model consists of three parts: attribute fusion module, encoder layer, and decoder layer.
Finally, we conduct sufficient experiments with real-world real datasets to demonstrate
the effectiveness of the DF-OCPmodel. The experimental results show that the proposed
method can effectively predict OCP. Also, the factors that have the most influence on
the probability of cancellation of confirmed orders are the presence of idle taxis and the
availability of public transport.
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Abstract. Federated Learning (FL) lately has shown much promise in
improving sharing model and preserving data privacy. However, these
existing methods are only of limited utility in the Internet of Things
(IoT) scenarios, as they either heavily depend on high-quality labeled
data or only perform well under idealized distribution conditions, which
typically cannot be found in practical applications. In this work, we pro-
pose FedGAN, a Generative Adversarial Network (GAN) based federated
learning method for semi-supervised image classification. In IoT scenar-
ios, a big challenge is that decentralized data among multiple clients
are normally non-independent and identically distributed (non-IID),
leading to performance degradation. To address this issue, we further
propose a dynamic aggregation mechanism that can adaptively adjust
client weights in aggregation. Extensive experiments on three bench-
marks demonstrate that FedGAN outperforms related federated semi-
supervised learning methods, including a 55.36% accuracy on CIFAR-
10 with 2k labels and 70.65% accuracy on SVHN with 1k labels - just
100 labels per class. Moreover, we carry out an extensive ablation and
robust study to tease apart the experimental factors that are important
to FedGAN’s improvement.

Keywords: Federated learning · Internet of Things · Self-supervised
learning · Unsupervised learning

1 Introduction

Federated Learning (FL) [1] are ubiquitously employed to protect data privacy
on IoT clients (e.g., mobile devices, laptops and wearable devices) for collaborate
optimize model, e.g., user habits prediction [2], wireless network optimization [3],
personalized recommendation [4]. However, a fundamental weakness of deep neu-
ral network is that it typically requires a lot of labeled data to work well, as shown
in Fig. 1 (a), while data on devices always come with few accompanying labels,
which limited FL applications. Existing methods usually leverages transfer learn-
ing to classify unlabeled data, which lacks robustness in case of non-IID data
distribution. A universal FL method should work in both supervised and semi-
supervised settings, which inspired the recent work to integrate semi-supervised
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 181–192, 2022.
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Fig. 1. (a) Federated Learning, which can only train labeled data. (b) Federated
Semi-supervised Learning, which is insufficient robust in data non-IID scenarios. (c)
FedGAN, which is an efficient method that optimizes sharing model when clients come
with few labeled data and is robust to data non-IID.

learning techniques into the FL framework [5,6] (i.e. employing domain confu-
sion between clients to train unlabeled data), as shown in Fig. 1 (b). However,
for different devices, data are commonly non-IID since users always have differ-
ent habits and usage frequencies. These independent are almost unable to be
learned and optimized by knowledge transfer or domain confusion techniques.

The GAN [7] based semi-supervised learning have achieved great success
in various applications, which learns the data classifier via an adversarial dis-
criminator. Specifically, the generator G attempts to learn the data from real
data pairs distribution to make the fake data distinguishable to the adversarial
discriminator D. In this work, we propose FedGAN, a collaborative federated
learning method for semi-supervised image classification. The framework of our
FedGAN is shown in Fig. 1 (c). In FedGAN, inspired by Triple GAN [8] and Bad
GAN [9] methods, we propose a GAN-based Training Mechanism (GTM) and
a Dynamic Aggregation Mechanism (DAM). Specifically, GTM consists of three
generators and a discriminator network to learn the correlation between labeled
and unlabeled data, respectively. Then, all clients’ model parameters are updated
to the cloud server, and each client’s network parameters weights are calculated
by DAM adaptively. We validate our method empirically through a range of
experiments on commonly used semi-supervised tasks. We show that FedGAN
can reach similar accuracy levels to full-label tasks on real-world datasets such
as Mini-ImageNet and COVID-19.

To summarize, we make the following contributions:

– We introduce a new method, FedGAN, to address an important but over-
looked problem: leveraging unlabeled data from multiple parties for semi-
supervised learning while preserving data privacy.
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Fig. 2. The overall pipeline of FedGAN. Given a set of IoT clients C with labeled
and unlabeled data {xL,xU}, our goal is to learn a sharing model NG. FedGAN con-
sists of two components: (a) GAN-based training mechanism; (b) dynamic aggregation
mechanism.

– We propose a GAN-based training mechanism (GTM) for disjoint learning
on labeled and unlabeled data by analyzing the impact of non-IID data in
IoT scenarios.

– We propose a new module, dynamic aggregation mechanism (DAM), to
dynamically adjust local model aggregation weight based on optimization
difficulty caused by data non-IID.

– To the best of our knowledge, we are the first to use GAN-based federated
learning to address the Semi-Supervised Learning (SSL) problem in IoT sce-
narios.

2 Overview

To outline our method, we consider the same SSL problem as in IoT scenar-
ios. As shown in Fig. 2, given a set of IoT devices {c1, c2, ..., cn} and a cloud
server, each client possesses a local dataset {xL,xU} including a relatively small
labeled dataset (xl, yl) ∼ pl(x, y) and a large unlabeled dataset (xu) ∼ pu(x), let
{1, 2, ...,K} be the label space for classification task. Suppose the real data distri-
bution as p(x, y), we aim to training a sharing classifier C that can approximate
the conditional distribution pC(y|x) ∼ p(y|x). To achieve this, we will utilize
the adversarial process that enables the classifier to learn from both labeled and
unlabeled data.
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Fig. 3. The training process of FedGAN. The solid arrows represent the gradient flow
from the local training procedure, and the dotted arrows represent the model update
from the server. The dotted block means model parameters are fixed during this step
and the solid block indicates that the model is being updated.

2.1 Objective of FedGAN

The FedGAN is based on the UGAN [10], for semi-supervised setting, each local
model Nc has the same structure and are trained in an asynchronized fashion,
the optimize objective of each local model is

min
C,G

max
D

V (C,D,G) = − Ex,y∼p(x,y)[logD(x, y)]

+ Ey∼p(y),y∼pG(z)[log(1 − D(G(y, z), y))]
+ Ex∼p(x),y∼pC(y|x)[log(1 − D(x, y))], (1)

where z is latent space (e.g., uniform or standard normal). G consists of two gen-
erator networks, Gg and Gc, that generate pseudo examples given real labels,
and generate complement examples, respectively. The conditional classifier C
and discriminator D are used to generate pseudo labels given data and distin-
guish the generated data-label pairs from the real data-label pairs, respectively.

In the FedGAN, local GANs are distributed over n clients, these local GAN
individually optimized by a subnet of local datasets. Thus the loss function of
our FedGAN can be represented as

min
C,G

max
D

V (C1:n,D1:n, G1:n) =
∑

i⊆n

αi{−Ex,y∼p(x,y)[logDi(y|x)]

+ Ey∼p(y),y∼pG(y)[log(1 − Di(Gi(y, z), y))]
+ Ex∼p(x),y∼pC(y|x)[log(1 − Di(x, y))]}, (2)

where αi are used to balance the weight of each client. The loss function of each
client is obtained by GTM, and αi is computed by the proposed DAM. We will
detail the optimization process, the GTM and the DAM in Sects. 2.2, 2.3, and
2.4 respectively.

2.2 Optimization Process

The optimization process of the FedGAN is shown in Fig. 3. In each commu-
nication round, the server randomly selects partial clients B to participate in
training, then the global model NG is updated iteratively in the following order:



FedGAN: A Federated Semi-supervised Learning from Non-IID Data 185

Fig. 4. Pipeline of the GTM. GTM consists of four components: (1) generator Gg,
generate pseudo data given real labels; (2) conditional generator Gc, generate com-
plement data to obtain class boundaries in low-density areas; (3) conditional classifier
C, generate pseudo labels given data; (4) discriminator D distinguishes the generated
data-label pairs from the real data-label pairs.

1) Calculating the participate clients loss Lc and weight αc, where i ⊂ B,
then update global model NG using local losses LTotal =

∑
c∈B αcLc.

2) After the global model is updated, all client models will be updated by
Nc ← NG, completing a communication round.

We apply the cross-entropy loss in local model training and further analyze
the FedGAN framework in semi-supervised settings. Note that the framework
can be applied to various neural network models including VGG-Net and ResNet.

2.3 GAN-Based Training Mechanism

A powerful GAN can memorize the empirical distribution from a real labeled
dataset on each client. As shown in Fig. 4, the main idea of the competition
mechanism is that through controlling generator G to make domain confusion
and compromises the classification ability, meanwhile, LC and LD try to improve
the classification ability and compromise the domain confusion.

Given this setup, there are two questions we need to address. The first is
how the classifier benefits from joint training with generators. For this, FedGAN
contains two generator G = {Gg, Gc}, as the weighted average between two
objective functions: the good generator Gg are used to generate distribution pg

exactly matches the true data distribution p. The loss function of generator Gg

follows the base GAN, represented as

LGg
= −Ex,y∼pGg (x,y)[1 − pD(x, y)], (3)

Then, the complement generator Gc are used to encourage the discriminator
to obtain class boundaries in low-density areas to improve sharing model gen-
eralization performance, thus the objective function of LGc

can be represented
as

LGc
= −H[pGc

] +
∥∥Ex,y∼pu(x,y)f(x) − Ex,y∼pGc (x,y)f(x)

∥∥2

2
, (4)

where −H[pGc
(x)] is the negative entropy of samples generated by Gc, which is

used to avoid collapsing issues during training.
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The second question is how to employ the classifier in the context of the semi-
supervised setting. For this, we classified input samples by a classifier C which
approximately the conditional discriminative distribution pC(y|x) ≈ p(y|x). The
classifier C takes four types of samples (labeled samples, samples from Gg and
Gc, and unlabeled samples) and produces pseudos labels for them according
to conditional distribution pC(y|x). For the labeled samples xl and generated
by Gg, we hope C put them to right class, while for the samples from Gc and
unlabeled samples, we hope C put them to the K +1 class as negative samples.
We refer to the loss function of C as

LC = LC1 + LC2 + LC3 + LC4 = − Ex,y∼pl(x,y)[log(pC(y|x, y ≤ K))]
− Ex,y∼pGg (x,y)[log(pC(y|x, y ≤ K))]

− Ex,y∼pu(x)[log(1 − pC(y = K + 1|x))]
− Ex,y∼pGc (x,y)[log(pC(y = K + 1|x))], (5)

where LC1 and LC2 represent cross-entropy loss for labeled data and Gg gener-
ated samples, respectively. The LC3 forces the C generate labels that conform
to the real data for the unlabeled data p(xu)pC(y|xu), and the LC4 are used to
make the data generated by the completion generator be recognized as negative
data.

The discriminators are not the key points of our work, thus we follow the
definition in [7,10] expressed as

LD = − Ex,y∼pl(x,y)[log(pD(x, y))]

− 1
2
Ex,y∼pGg (x,y)[1 − log(pD(x, y))]

− 1
2
Ex,y∼pC(x,y≤K)[1 − log(pC(x, y ≤ K))], (6)

where discriminator D only treats the labeled data paris as positive samples,
while the pseudo paris from both G and C as negative samples.

2.4 Dynamic Aggregation Mechanism

In this subsection, we define the clients’ weight in parameters aggregation and
detail how we dynamically adjust it, based on labeled data size and optimization
difficulty.

While the local loss is continuous, there are indirect effects when data non-
IID on each client, this can have a drastic effect on the aggregation process. As
an extreme example, the global model could degeneracies, where all local model
parameters get the same weights, making convergence impossible. To address this
problem, we utilize the Dynamic Task Prioritization (DTP) [11] to adjust the
model aggregation weights, for each client c, we select a performance indicator
denoted by κt ∈ [0, 1], the κt is a average precision list. In FedGAN, we compute
κt as an exponential changing average

κ(t) = θκt + (1 − θ)κ(t−1), (7)
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where t is the communication rounds, θ ∈ [0, 1] is a discount factor to measure
priorities of historical recent performance. We adopt the Focal Loss [12] instead
of cross-entropy loss as our way to down-weight easier task, task weight defined
as

FL(κt; γ) = −(1 − κt)γ log(κt), (8)

where γ is the focusing factor, setting γ > 0 will reduces the weight for a well-
performance clients. Then we scale each client-specific loss Lc by computing the
optimize difficulty FL(κt; γt), our total aggregation loss can be represent as

LTotal =
|n|∑

c=1

μ · FL(κt; γt)Lc, (9)

where Lc is the losses of local GANs, μ = exp(
∣∣∣x

c

L

xL

∣∣∣) is the proportion of labeled
data in total data for client c, the weight αc in Eq. 2 is calculated by μ·FL(κt; γt).

3 Experiment

In the following experiments, we mainly evaluate the performance of FedGAN
on three aspects, average accuracy, robustness, and scalability.

Datasets. We evaluate the efficacy of FedGAN on several commonly used SSL
benchmarks. Specifically, we perform experiments with varying labeled data size
on MNIST, CIFAR-10, and SVHN, following standard semi-supervised learning
evaluation protocols [13]. The previous works were almost performed with a
balanced split of data in which every client was assigned the same size of data
points. In realistic IoT scenarios, however, the data sets on different clients will
typically vary heavily in and labeled size. To simulate different degrees of non-
IID, we split the data according to [14], the data size of each client defined
as

ϕc(λ, σ) =
λ

n
+ (1 − λ)

σc

∑n
c=1 σc

, (10)

where λ controls the minimum data size on each client, and σ controls the data
concentration.

Experimental Setting. Our FedGAN is implemented in PyTorch, and all
experiments are performed on a server with four NVIDIA Geforce RTX 3090
GPUs. For all experiments, by default, we set n = 20 in Eq. (2), θ = 0.75
in Eq. (7), γ = 0.6 in Eq. (8), and we fixed λ = 0.1 and σ = 0.9 in Eq.
(10). Each local training epoch set 50 iterations, and batch number set 32. The
local GAN architecture adopt is based on TripleGAN [8] and BadGAN [9], and
the optimization is Adam, learning rate is 0.0002 and momentum parameters
β1 = 0.5, β2 = 0.999.
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Table 1. Ablation study on our improvements

Inprovement Average accuracy(%)
Component MNIST CIFAR-10 SVHN

W/O Gc 75.86 53.85 69.74
W/O C 73.66 50.61 66.85
W/O DAM 72.38 54.22 66.29
FedGAN 77.43 55.36 70.65

3.1 Ablation Study

Since FedGAN is a combination and improvement of existing techniques and
achieves better performance, we report the results of the ablation study in
Table 1. In the following, we analyze the effects of several improvements in our
method.

Influence of GAN-based Training Mechanism. We train on the CIFAR-10
dataset ten times and reach between 78.56% and 75.27% test accuracy rate with
a median of 77.43%. Then we removed the Gc in FedGAN and compared it with
FedGAN with default hyperparameters, experimental results in Table 1 show
that the model performance has slightly dropped around 1.57%, which means
the complement generator can effectively preserve classification knowledge from
previous training.

To further analyze the influence of GTM, we removed the classifier C and
extend the discriminator D as classifier [7], we observe that the average model
performance on three datasets has dropped (3.77%–4.70%). This gap tells us
that our GTM improves model optimization while keeping reliable classification
knowledge.

Influence of Dynamic Aggregation Mechanism. We removed the DAM in
FedGAN evaluation and the results are shown in Table 1, our method without
DTM shows a decline compared with FedGAN (1.14%–5.05%), which indicates
that the DTM component is essential to adjust the loss weight between clients,
and this implies that our improvement effectively utilizes inter-client knowledge
in this imbalanced setting.

Influences of Discount and Focusing Factor. We study the interactions
between the discount factor θ and focusing factor γ. We fix γ, the experimental
results in Fig. 5 left show that a too higher priority will ignore historical training
performance and make the partial local model overfit. Therefore, we set θ = 0.5
as our default value. As shown in Fig. 5 right, we vary γ between 1.0 and 2.0 in
our experiments. We observe that a larger γ forces the network to focus on the
more difficult classification task, although at the cost of easier task performance.
Here, we set γ = 1.6 as our default value.



FedGAN: A Federated Semi-supervised Learning from Non-IID Data 189

3.2 Comparison with Related Methods

We compare FedGAN with related Federated Semi-Supervised Learning (FSSL)
methods which have the potential to optimize sharing model in semi-supervised
settings. For a fair comparison, we utilize the same labeled dataset setting to
optimize the model, their results are generated by running author-released codes
with default settings.

Fig. 5. Analysis of (a) impact of discount factor and (b) impact of focusing factor on
the performance of FedGAN. The average accuracy of FedGAN with default hyperpa-
rameters is in the red dotted line. (Color figure online)

Table 2. Compared with SSL-based and GAN-based methods

Method MNIST CIFAR-10 SVHN

SSL-based methods
FL UDA 68.64 52.69 64.31
FL Pseudo Label 70.75 44.63 52.79
DS-FL 75.32 53.63 66.83
GAN-based methods
FL FM-GAN 73.85 53.28 68.25
FL Triple-GAN 73.83 51.26 68.56
FL BadGAN 75.47 53.64 65.84
FedGAN(Ours) 77.43 55.36 70.65

The first class is SSL-based methods (including UDA [15], Pseudo Label [16],
DS-FL [5]), Table 2 shows averaged local model accuracy on non-IID tasks. We
observe that our FedGAN outperforms other FSSL methods with better perfor-
mance (1.73%-17.86%). The second class we compared is GAN-based methods
(including FM-GAN [7], Triple-GAN [8], BadGAN [9]), the average accuracy
is shown in Table 2, our proposed method outperforms GAN-based methods
with higher accuracy (1.72%-4.81%). Particularly, for the prior work of semi-
supervised GAN [8–10], we observe that the classification performance of their
methods heavily relies on the adversarial learning between generator and classi-
fier which lead to the decline of model performance in a distributed environment.
Contrarily, our method is more robust with the non-IID settings.
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3.3 Robustness

Below we conduct a series of experiments to evaluate the model robustness of
our FedGAN in a real-world application.

Fig. 6. Robustness evaluation on the different number of client and labels. (a) results
of differently labeled data per class. (b) results under different number of clients.

Influence of the Number of Labels per Class. To evaluate the method
robustness, we conduct a comparative experiment on related works of FSSL
and our method (including DS-FL [5], FedMatch [6], AsynDGAN [17]). Experi-
mental results in Fig. 6 left show that FedGAN achieves consistent performance
improvement (0.91%–11.80%) as the number of labeled data increases. Interest-
ingly, we observe those baseline methods significantly affected by labeled data
numbers compared with FedGAN, which means our method effectively addresses
the issues of lack labeled caused by requirements of various application scenarios.

Influence of the Number of Clients. The comparison results in Fig. 6 right
show that with the increase of clients, our method achieves better performance
compared with the baselines (0.12%–8.73%). Moreover, although the model per-
formance of our method is slightly lower than baseline methods when there are
fewer clients, due to the huge amount of IoT devices in the actual application
scenario, our method still has strong advantages.

3.4 Scalability

Then, to evaluate whether FedGAN can scale to problems with a large scale and
higher difficulty, we now turn to the Mini-ImageNet dataset [18] and COVID-19
Radiography dataset [19] with supervised and semi-supervised settings.

Specifically, we consider two experiment settings with different natures:

– We use all images and training ResNet-50 and VGG-19 with a centralized
method.

– We use 1K labeled data training with a semi-supervised method.
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The results are summarized in Table 3. In the first setting, even with only 1K
labeled data, FedGAN can offer decent or even competitive performances com-
pared to the centralized methods trained with full supervised data. In the second
setting, FedGAN consistently bing significant gains compared to the unsuper-
vised baseline. This shows that FedGAN is not only able to scale but also able
to utilize out-of-domain unlabeled data to improve model performance.

Table 3. Top-1/Top-5 accuracy on two real-world datasets

Method SSL Mini-ImageNet COVID-19

ResNet-50 � 72.17/84.54 90.26/95.27
VGG-19 � 70.36/85.47 91.56/95.61
AsynDGAN � 47.32/72.51 81.38/88.56
FedMatch � 66.48/77.68 83.03/89.68
FedGAN(Ours) � 71.55/81.14 88.25/93.47

4 Conclusion

In this paper, we propose FedGAN, a federated learning method for semi-
supervised image classification where each IoT clients learn with partially labeled
data. To guarantee such sharing methods are efficient and robust, we proposed
a GAN-based training mechanism and a dynamic aggregation mechanism.

Our experimental results suggest that FedGAN can effectively optimize shar-
ing model in semi-supervised and non-IID settings while preserving accuracy. At
the same time, we note that FedGAN also provides good scalability, our analysis
in Sect. 3.4 suggests that this may be since it preserves the original knowledge
for each client, and optimized the weight between clients.
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Abstract. Image semantic segmentation is the basis of performing various tasks
in computer vision. It has been widely used in medical imaging, robotics and
many other fields. However, the existing image semantic segmentation technology
cannot improve the segmentation speedwhile ensuring the segmentation accuracy,
and cannot meet the requirements of real-time applications. Therefore, this paper
proposes a real-time image semantic segmentation method based on dual efficient
attention mechanism (DEANet). Pyramid sampling is introduced into the channel
dimension to extract multi-scale information, and higher resolution aggregation
features are adopted as the input of the spatial dimension. It can achieve high
efficiency and accuracy of image semantic segmentation. The proposed DEANet
was tested on two classic datasets. On the Cityscapes dataset, when the input
size is 512 × 1024, the segmentation accuracy reaches 74.90% mIoU, and the
segmentation speed reaches 99.91FPS. On the CamVid dataset, when the input
size is 360 × 480, the segmentation accuracy reaches 70.07% mIoU and the
segmentation speed reaches 142.72 FPS.

Keywords: Real-time semantic segmentation · Channel · Attention spatial
attention

1 Introduction

As an indispensable part of computer vision, image semantic segmentation has been
applied in many fields. It has been used in satellite remote sensing, medical imaging,
and robotics. However, with the promotion and in-depth application, it also brings new
challenges to image semantic segmentation. For example, in some fields the requirement
of segmentation speed is very high. For the reason that improve the segmentation speed,
it is often at the expense of the segmentation accuracy. Thus, how to strike a balance
between segmentation speed and accuracy has become an urgent problem to be solved in
image semantic segmentation. With the continuous development and progress of deep
learning, deep neural networks with high accuracy have emerged one after another.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 193–205, 2022.
https://doi.org/10.1007/978-3-031-19214-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-19214-2_16


194 X. Liu et al.

And some of them have achieved good segmentation accuracy on classic datasets, for
instance FCN [1], ResNet [2], PSPNet [3], etc. In recent years, many real-time semantic
segmentation methods have also been proposed, such as ENet [4], ERFNet [5] and
so on. Some of these methods improve the segmentation speed, but the segmentation
effect is unsatisfactory. Or some methods maintain high segmentation effect, but the
improvement of segmentation speed is very limited.

With the emergence of the attention mechanism, researchers have found that the
attention mechanism is beneficial for feature aggregation with only a small increment in
parameters and computation. Inspired by this, we consider adding an attention mecha-
nism in a light-weight network to improve the accuracy and maintain a high segmenta-
tion speed at the same time. Therefore, this paper proposes a real-time image semantic
segmentation network based on dual efficient attention mechanism (DEANet). Among
them, CPA (Channel Pyramid Attention Module) and SEA (Spatial Efficient Attention
Module) are used to refine the results of the backbone network. Experimental results
show that this method not only achieves high segmentation accuracy, but also has high
segmentation speed.

The main contributions of this paper are summarized as follow:
This paper proposes a dual efficient attention module. In the channel dimension,

the pyramid sampling is introduced to collect multiscale information. In the spatial
dimension, usinghigh-resolution featuremaps as input, so that features canbe aggregated
together efficiently and the refine segmentation results can be got.

Based on the dual efficient attention module, a real-time image semantic segmenta-
tion network (DEANet) is proposed. The results on the Cityscapes and CamVid datasets
show that DEANet has significantly improved the segmentation speed and segmentation
accuracy while maintaining similar performance in accuracy and speed.

2 Related Work

After the emergence of convolutional neural network, it has been highly applied in the
field of image processing. In 2015, Shelhamer et al. proposed FCN to classify images at
the pixel level. Compared with traditional methods, the segmentation results are signif-
icantly improved. From then on, the semantic segmentation technology has entered the
era of deep learning.

2.1 Real-Time Semantic Segmentation

Recently, real-time semantic segmentation task has attracted a lot of attention. The real-
time semantic segmentation method applied to images starts with SegNet [6] proposed
by Kendall et al. It encodes the effective information through the encoder, and then
decodes it through the decoder to achieve image segmentation. Compared with AlexNet
[7], VGG [8], ResNet [2] and other networks, in terms of saving expenses and increasing
the nonlinear fitting ability of the neural network, the neural network has been deeply
designed. However, themore complex the network is, themore computational operations
and network parameters are required, so the image processing speed is greatly affected.
To address the speed issue, Adam et al. proposed an efficient neural network ENet [4].
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Different with SegNet, ENet adopts a completely symmetric encoder-decoder structure.
Adam et al. considered that decoding only up-samples the outcome of the encoder, so
the design of the decoder is relatively simple. Therefor the overall network structure
parameters are reduced accordingly, and the speed of processing images is improved.
Yu et al. proposed BiSeNet [9]. The Spatial Path is used to extract feature maps to obtain
accurate information, and the Context Path is used for fast down-sampling. Through
the fusion module, the features output by the two are combined. The BiSeNet not only
improves the segmentation speed, but also improves the segmentation effect.

With the development of computer vision, many application scenarios require more
accurate segmentation results in a shorter response time. However, segmentation speed
and segmentation accuracy are a pair of opposing indicators. So, it is difficult to make
both of them achieve satisfactory results at the same time. Although many works have
been done by researchers, there is still much room for improvement.

2.2 Attention Mechanism

Attention mechanisms are highly applied in computer vision tasks. And this is helpful
for semantic segmentation. Hu et al. proposed a channel attention module in SENet [11].
Zhu et al. proposed ANNNet [13]. The network adopts two modules, APNB and AFNB.
The APNB module embeds SPP nonlocality to enhance the global representation and
reduce computational overhead. The AFNB module is used to integrate different levels
of functions. Tian et al. proposed DANet [14] for scene segmentation. Two attention
modules are added to the FCN with dilated convolution. PAM is used to learn the
dependencies on spatial features, and CAM is used to learn the dependencies on the
channel dimension.

The fundamental of the attention module is to give the same weights to the same
areas in the feature map, so that it could collect the useful information in the feature
map, while suppressing the useless information. On the other hand, attention module
could obtain global context information and this is available to improve the segmentation
accuracy. In this paper, we proposed a dual efficient attention module. In the channel
dimension, we propose to combine the attentionmodule and pyramid sampling to collect
multi-scale information. In the spatial dimension, high-resolution features are efficiently
aggregated for inferring segmentation results.

3 Methodology

In this chapter, we will recommend the ensemble framework of DEANet, the attention
modules, and how they are aggregated together for fine-grained semantic segmentation.



196 X. Liu et al.

3.1 Network Structure of DEANet

Most of the real-time semantic segmentation neural networks use the structure of
encoder-decoder, such as ERFNet [5]. The encoder extracts feature and the decoder
decodes feature to realize segmentation. As the attention mechanism is highly applied
in computer vision tasks, researchers have found that the attention module can extract
features more conveniently. Moreover, as the ERFNet is a lightweight network and the
attention module adds only a small amount of computation, so the DEANet could main-
tain a high image processing speed. The ensemble framework of DEANet is shown in
Fig. 1.

Fig. 1. The overall framework of DEANet.

In this paper, the encoder of ERFNet is used as the backbone ofDEANet, and the dual
efficient attention module is proposed to replace the decoder based on encoder-decoder.
As shown in Fig. 1 above, the image input is used to extract the feature map through the
encoder, and the feature map gets the Segcoarse through the classification layer. Then the
Segcoarse are input into the dual efficient attention module for feature extraction. Finally,
the Segfine is obtained. As shown in Fig. 1 above, the attention module consists of two
parts, CPA module and SEA module. Pass through CPA and SEA module in turn to
perform feature aggregation and finally achieves fine segmentation result. The process
can be formulated as follows:

x = Cla(X ) (1)

y = Channel Attention(x) (2)

Segfine = Spatial Attention(y) (3)

Among them, x represents the feature maps obtained by the backbone network, Cla()
represents the classification layer in the backbone, x is the coarse segmentation result,
y is the aggregated feature obtained by the CPA module, and Segfine indicates the final
fine segmentation result obtained by the SEA module. According to the theoretical
analysis, by removing the decoder part instead of using the attention module, DEANet
can achieve finer segmentation results and improve the efficiency. And in the framework,
the encoder in any encoder-decoder network can be used as the backbone. Because
ERFNet is a lightweight semantic segmentation network, and it achieves a fine balance
between segmentation accuracy and speed. In this paper, we choose the ERFNet as the
baseline model. The encoder part of DEANet comes from ERFNet, and the decoder part
is replaced by the CPA module and the SEA module proposed in this paper.
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3.2 Attention Module

In this semantic segmentation framework, pyramid sampling is introduced into the chan-
nel dimension to extract multi-scale information. The channel pyramid attention module
can overcome the shortcomings of the traditional convolution layer and extract global
information. Using down-sampling in SEA can consume lesser computing resources
without reducing the attention resolution. In the design of attention module, attention
module is used to replace the up-sampling module in the original ERFNet to improve
the accuracy without adding additional parameters. A better balance between speed and
accuracy can be found by adjusting the pyramid pooling in CPA and the super param-
eters in down-sampling in SEA. In this paper, we refer to the channel spatial attention
mechanism proposed by Tian et al. [14]. They proposed two modules, which introduced
global information from the spatial attention mechanism and channel attention mech-
anism respectively. And the local features and global dependencies can be integrated
adaptively.

Channel Pyramid Attention Module
We believe that in the current deep neural network, a series of convolutional layers
constitute the main architecture of the neural network. The convolution kernel of each
layer of the network performs convolution operations on the input of this layer. And this
makes the output feature map can only sense the information of the surrounding points
corresponding to the input feature map point. Only when the number of network layers is
deep enough, the receptive field of the feature map will be large enough. This makes the
neural network have obvious shortcomings when integrating nonlocality information. In
deep neural networks, such as VGGNet, compared with AlexNet, they are composed of
convolution layer and fully connected layers. The difference is that VGGNet explores
the relationship between depth and performance in convolutional neural networks. For a
given receptive field, the small convolution kernel with stacking is better than the large
convolution kernel. And while not increasing the number of parameters, we can improve
the performance by deepening the network structure.

In [10],Wang et al. proposed the non-local block, in which the features of all relevant
positions are weighted while calculating a certain position. And this helps the deep
neural network to integrate non-local information effectively. In [12], Li et al. proposed
(PAN), in which the attention module and the spatial pyramid were combined together to
construct FPA.TheFPAcanbe used to obtain the dense feature and semantic information.
Inspired by these works, in the DEANet proposed in this paper, we add pyramid pooling
to the non-local module to make the most of the global context information and provide
sufficient feature information for global semantic scene.
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Fig. 2. Channel pyramid attention module. Fig. 3. Spatial efficient attention module.

The coarse segmentation result is treated as the input of the CPA module (as shown
in Fig. 2) which is denoted as x ∈ RC×H×W . C represents the number of channels, H
represents the height of the image, and W represents the width of the image. Two new
features are generated by two convolution operations, where the features generated by
K and V are x1 ∈ RC/2×H×W , x2 ∈ R1×H×W , respectively. And then they are input
into the pyramid pooling module. The pyramid pooling module combines the features
of 4 different pyramid scales. In the network of this paper, the compression ratio is set
to 1, 3, 6, and 8. The outputs of different levels have different scales. And the feature
maps of different scales provide multi-scale information. Then the 4 pooling results are
concatenated as the input of the next layer. After processing of the CPA module, the
output is shown in Eq. 4:

y = Channel Attention(x)

= {softmax(α(x1) ⊗ α(x2)} � x (4)

where α represents the reshape operation and softmax represents the calculation proba-
bility operation,⊗ represents the matrix multiplication,� represents the Channel-Based
Multiplication. Thematrixmultiplication is performed between the transformed features
x1, x2 to obtain a new feature Q ∈ RC/2×1×1. Finally, a channel-based multiplication
operation is performed with the initial feature input x ∈ RC×H×W to obtain the channel
attention result denoted as y.

Spatial Efficient Attention Module
In [20], Fan et al. proposed the STDC module, in which is used to collect deep features
with retractable receptive fields and multi-scale information. Inspired by STDC [20],
we use down-sampling in the SEA module to reduce the number of feature channels
while maintaining high attention resolution in the feature input dimension. Improve the
accuracy and efficiency of segmentation with less computational resource consumption.

As shown inFig. 3, theSEAmodule takes the output of theCPAmodule y ∈ RC×H×W

as the input. New featuresq, k, v are obtained through three 1x1 convolution operations.
Among them, the feature k is down-sampled to obtain k1 ∈ RC/2×H×W , k2 ∈ RC/2×H×W .
In this process, the feature dimension is reduced from C × H × W to C/2 × H × W .
The purpose of this is to deepen the network depth with less computational resources
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while maintaining a high attention resolution. Then perform matrix multiplication on
the features q and k1 to obtain the aggregated feature y1 as shown in Eq. 5:

y1 = q ⊗ k1 (5)

Then the aggregated feature y1 is processed by the softmax operation and perfume the
matrix multiplication with k2 to obtain a new aggregated feature y2, as shown in Eq. 6:

y2 = softmax(y1) ⊗ k2 (6)

After the reshape operation, y2 performs a space-based multiplication operation with the
feature v ∈ RC×H×W and finally obtains the fine segmentation result Segfine as shown
in Eq. 7:

Segfine = α(y2) � y3 (7)

4 Experiments

We have carried out many experiments on the public data sets Cityscapes and CamVid
to verify the validity of the method proposed in this paper. The final results show that
DEANet proposed in this paper not only maintains a high speed, but also makes a
significant improvement in accuracy. Next, the dataset, experimental details, ablation
experiments and comparative experiments will be introduced in detail.

4.1 Dataset

Cityscapes [16]: The Cityscapes has two evaluation criteria datasets: fine dataset and
coarse dataset. The former contains 5000 finely labeled images, and the latter contains
5000 fine labeled images and 20000 coarse labeled images. For equitable comparison,
we apply fine dataset as evaluation criteria in our experiments.

CamVid [17]: CamVid is video collection with target semantic tags, from which
more than 700 images can be specified for pixel level semantic segmentation.

4.2 Evaluation Indicators and Experimental Details

All evaluation indicators are based on a RTX2080Ti graphics card and Ubuntu operating
system. We implement our approach based on Pytorch. IOU (Intersection over Union),
the ratio of intersection and union. In semantic segmentation, the intersection ratio is
the ratio of the intersection and union of ground truth labels and predicted values. mIoU
(Mean Intersection over Union) is the average of the intersection ratio of each class in
the dataset. In the training process, the data will be enhanced by random horizontal flip
and random scale transformation. To verify the validity of the module, we use the same
hyperparameter settings as the original network. For the Cityscapes dataset we employ
SGD to optimize our network. Num_works is set to 4, batch_size is set to 8, the number
of training epochs is set to 2000, and 512 × 1024 high-resolution original images are
randomly cropped as training input. For the CamVid dataset the Adam optimizer is
applied and the network has been trained for 400 epochs. The size of input image is 360
× 480.
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4.3 Ablation Experiment

The Validity Verification of the Redesigned Attention Module
To verify the validity of the dual efficient attention module in this paper, we use ERFNet
as the backbone and the PSA module [15] proposed by Liu et al. as the reference. The
performances of some different combinations of channel-space attention modules are
compared. The polarized self-attention module PSA proposed by Liu et al. includes two
branches. One branch is channel-dimensional self-attention (CSA for short), and the
other branch is spatial-dimensional self-attention (SSA for short). The above two self-
attention mechanisms can form four different combinations with the channel-dimension
pyramid attention (CPA for short) and the spatial-dimension efficient attention (SEA for
short) proposed in this paper.

Table 1. mIoU on the Cityscapes test set,
√

means adopting this module, × means abandoning
this module.

Method CSA SSA CPA
(ours)

SEA
(ours)

mIoU

PSANet
√ √ × × 70.68

CSENet
√ × × √

72.65

SCPNet × √ √ × 73.47

DEANet × × √ √
74.90

Compared with self-attention module, the pyramid attention module in channel
dimension and the efficient attention module in spatial dimension both improve the
experimental results to a certain extent (1.97% and 2.79% respectively). This is because
adding pyramid pooling in the channel modules can fully utilize the global context infor-
mation. For the semantic segmentation task, global context information and multi- scale
information provides rich semantic information and preserves detailed semantic fea-
tures. Adding down-sampling to the spatial attention module while maintaining a higher
resolution could reduce computational resource consumption and improve the segmen-
tation accuracy. Moreover, the experimental results achieved the greatest improvement
when the CPA module and the SEA module were used meanwhile (compared to the
self-attention module by 4.22%). This shows that the two attention modules proposed
in this paper have complementary functions (Table 1).

Network Performance Verification Under Different Structures
To verify the effects of CPA module and SEA module on network performance under
different structures, we validate dual attention modules with 3 different structures on
the same experimental setup. Structure 1: The two attention mechanisms use a parallel
structure; Structure 2: The two attention mechanisms use a serial structure, with spatial
attention in the front and channel attention in the back; Structure 3: The two attention
mechanisms use a serial structure, the CPA is in the front, and the SEA is in the back.
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Table 2. mIoU on the Cityscapes test set,1 means before, 2 means after.

Structure CPA SEA mIoU

Parallel
√ √

72.32

Serial 2 1 73.48

Serial 1 2 74.90

After experimental comparison, we found that the two attention mechanisms adopt
a serial structure, and the CPA module is in the front and the SEA module is behind, the
optimal results are obtained. This is because when the channel attention is in the front,
the weight of each channel will be calculated first, and the key information channels will
be aggregated. Thereby the ability of feature representation is improved. Based on the
channel attention, the spatial attention module weights and integrates the features based
on the channel direction. And the feature aggregation is further improved (Table 2).

Validation of the Reconstruction of the Network Structure
To verify the validity of the lightweight segmentation network constructed based

on dual efficient attention module (DEA) proposed in this paper, we compare the rep-
resentation of 3 neural networks with diverse structures on the Cityscapes validation
set. Accuracy-speed trials including the complete body ERFNet, ERFNet encoder with
classification layer, and DEANet using ERFNet encoder as backbone.

Table 3. Comparison of accuracy and speed on Cityscapes.

Model Parameters Speed(ms) FPS mIoU

ERFNet-base 2.067 M 11.76 85 72.46

ERFNet-enc 1.876 M 8.20 121.95 70.60

DEANet-ERF 1.877 M 10.01 99.91 75.78

Table 3 shows that the ERFNet encoder with a classification layer is faster than the
complete body ERFNet, but the lack of a decoder causes a large drop in segmentation
accuracy. Compared with the baseline, DEANet has improved the accuracy by 3.32
percentage points, and the speed has also improved. The visualization results of the
Cityscapes dataset are shown in Fig. 4. It can be seen from Fig. 4 that the network in
this paper can better deal with details.
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Fig. 4. Visualizing the results on the Cityscapes dataset.

4.4 Comparison with Other Methods

Our previous series of experiments have demonstrated that DEANet can improve the
current image real-time semantic segmentation methods. Both in speed and precision.
Next in this subsection, we compare DEANet with the current state-of-the-art models
on the Cityscapes dataset. All results are obtained from the experimental results of the
official website of the Cityscapes dataset or the author’s paper.

Table 4. Comparison with state-of-the-art results on Cityscapes dataset.

Model Pretrain InputSize Parameters FPS mIoU

ENet [4] ImageNet 512 × 1024 0.37 M 76.9 58.3

ERFNet [5] No 512 × 1024 2.07 M 41.7 68.0

DABNet [18] No 512 × 1024 0.76 M 104.2 70.1

BiseNet [9] No 1563 × 768 55.3 M- 45.7 73.6

EDANet [19] No 512 × 1024 0.68 M 108.7 67.3

FRFNet [23] No 512 × 1024 4.02 M 225 68.2

BiseNetv2 [22] No 512 × 1024 – 156 72.6

STDC2-Seg50 [20] No 512 × 1024 12.5 M 188.6 73.4

CSRNet [21] No 512 × 1024 – 56 74.0

PP-LiteSeg-T1 [24] No 512 × 1024 – 273.6 72.0

DEANet No 512 × 1024 1.88 M 99.91 74.90

As shown in Table 4, we show the three metrics including parameter volume, infer-
ence speed and segmentation accuracy. When the input size of DEANet is 512 × 1024,
the processing speed can reach 99.91FPS while the mIoU reaches 74.90%. Compared
with other networks with similar performance in segmentation speed, the accuracy has
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been significantly improved. For example, compared with DABNet [18], the speed is
104.2FPS compared to 99.91 FPS, and the accuracy is 70.1%mIoU compared to 74.90%
mIoU. In the newly proposed STDC2-Seg50 [20] network, an STDCmodule is designed
to remove structural redundancy and improve network performance at a certain compu-
tational cost. Compared to the STDC2-Seg50 [20] network, our network parameters are
reduced to only 1.88 M and the segmentation accuracy is also improved by 1.5 percent-
age points. Compared with CSRNet [21], the segmentation accuracy of our network is
improved by 0.9 percentage points and the speed is enhanced by nearly 50 FPS.

Table 5. Comparison with state-of-the-art results on CamVid dataset.

Model InputSize Parameters FPS mIoU

ENet [4] 360 × 480 0.37 M 111 51.3

ERFNet
[5]

360 × 480 2.07 M 133 65.0

DABNet
[18]

360 × 480 0.76 M 104 66.4

EDANet
[19]

360 × 480 0.68 M – 66.4

FRFNet
[23]

360 × 480 4.02 M 225 68.2

DEANet 360 × 480 1.88 M 142.72 70.07

We also evaluate DEANet on the CamVid dataset. We show the three indicators of
parameter volume, inference speed and segmentation accuracy in Table 5. As can be seen
fromTable 5, theDEANet in this paper has improved in speed and accuracy. For example,
compared with ERFNet [5], the speed improves 9.72 FPS and the accuracy improves
5.07%. Compared with FRFNet [23], although our speed is reduced, our parameter
volume is reduced and the accuracy is improved.

5 Summary

In this paper, we have proposed a real-time image semantic segmentation network based
on a dual efficient attention module named as DEANet. The proposed dual efficient
attention module is more suitable for image semantic segmentation and can perform
feature aggregation more efficiently. In addition, a lightweight backbone network is used
to improve the image processing speed while improving the segmentation accuracy. We
have carried out many experiments on the Cityscapes and CamVid datasets and better
segmentation results were obtained under a high segmentation speed.

In the next, we will continue to explore real-time semantic segmentation tasks, but
pay more attention to segmentation speed. Try a lighter backbone network to increase
segmentation speed without losing accuracy.
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Abstract. In this paper, we investigate device-free fall detection based
on wireless channel state information (CSI). Here, we mainly propose
a method that uses continuous wavelet transform (CWT) to generate
images and then uses transform learning of convolutional networks for
classification. In addition, we add a wavelet scattering network to auto-
matically extract features and classify them using a long and short-term
memory network (LSTM), which can increase the interpretability and
reduce the computational complexity of the system. After applying these
methods to wireless sensing technology, both methods have a higher accu-
racy rate. The first method can cope with the problem of degraded sens-
ing performance when the environment is not exactly the same, and the
second method has more stable sensing performance.

Keywords: Intelligent wireless sensing · Fall detection · Continuous
wavelet transform · Deep learning

1 Introduction

Perception of the physical world has entered a new stage of ubiquitous intel-
ligence. The Internet of Things and artificial intelligence technology together
promote the human society from the interconnection of everything to the intelli-
gent connection of everything [1]. While sensors get smaller and data collection
is widely used, a problem emerges: due to the high deployment cost of sensing
systems and the increased range and scale of sensing, it is difficult and costly to
deploy and maintain large-scale sensing systems for long-term stable operation.
So is it possible to sense various environmental information without deploying
any dedicated sensors? Currently, Wireless networks are widely used to sense
the environment. It is possible to use wireless sensing technology to sense human
behavior and also to detect the health and behavioral understanding of people,
etc. [2–4].
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Wireless sensing technology is mainly used to perceive the scene by analyzing
the changes of wireless signals during propagation and obtaining the character-
istics of the signal propagation space [5]. RF signals, commonly used in wireless
sensing technologies, are mainly generated by radio waves from a signal transmit-
ter, and during the propagation of the RF signals, physical phenomena such as
direct transmission, reflection as well as scattering often occur, resulting in mul-
tiple propagation paths. This makes the multipath superimposed signal formed
at the signal receiver carry information reflecting the signal propagation space.
Previously, received signal strength (RSSI) was widely used in scene perception.
For example, when we use a cell phone, the signal is strong when we are close to
the base station. This allowed us to infer the location of the transmitter and the
environment it was in, but RSSI is a coarse-grained piece of information with
limited accuracy. Channel state information (CSI) is now commonly used in the
perceived environment [6]. CSI is a fine-grained information in WIFI commu-
nication, which describes how the signal propagates in the wireless channel by
combining the effects of time delay, energy fading and phase shift. There are 30
subcarriers in each packet, containing amplitude and phase information. Differ-
ent subcarriers correspond to the amplitude and phase of multipath propagation
at different frequencies [7]. However, CSI phase information usually contains a
lot of noise so it needs to be processed before using.

There has been abundant recent research using WiFi CSI for sensing human
activities and has been applied to various fields such as healthcare and security.
It has been reported that the aging population has been growing at a rapid rate,
and people over 65 years old account for about one-third of the global population.
One of the main causes of accidental death among the elderly is the lack of timely
assistance after a fall, especially since more and more elderly people are living
alone nowadays. Thus, it is necessary to design a reliable fall detection system.
Currently, there are many studies on fall detection using cameras and sensors
in addition to device-free sensing. However, cameras require light and have the
disadvantage of invading people’s privacy. In addition, sensors need to be carried
around, and elderly people might forget to wear them. Using device-free sensing
for falls can be a good solution to the above problems.

The current research on fall detection based on WiFi CSI has made great
progress [8–10], but there are still some shortcomings. There are two main prob-
lems: one is that most of the research is still processing classification on the study
of time-series data, which will make the classification less interpretable and the
extracted features less comprehensive; the second is that the sensing performance
will be significantly reduced when some changes occur in the environment where
the target is located.

Aiming at overcoming the above challenges, in this paper, we design a method
based on wavelet analysis and deep learning to detect falls. First, due to the large
amount of noise in the original CSI, we have to preprocess the data. Then the
processed data is used to generate images using continuous wavelet transform,
and finally a convolutional neural network with transform learning [11] is used to
classify these images. In addition, we add a wavelet scattering network approach
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that increases the interpretability and reduces the computational complexity of
the system.

2 Related Work

2.1 Fall Detection

At present, WiFi-based CSI for fall detection systems are Wifall [8], RTFall
[9], and FallDeFi [10]. The first two mainly extract time-domain features to
detect falls while the latter one detect falls by extracting time-frequency features.
Compared with pure time domain or pure frequency domain features, the time-
frequency domain features contain both time and frequency domain information,
bringing more significant advantages. FallDeFi proposes a power burst curve
(PBC) to pre-screen fall behavior before using a support vector machine (SVM)
to determine whether it is a fall behavior or not.

2.2 Image Classification

Classification of time-series data has now been widely studied, and one of them
is called visibility algorithm, which converts time series into graphs [12]. The
advantage of the algorithm is that both global and local features can be consid-
ered. We apply this idea to device-free fall detection by first converting to an
image and then performing image classification. Image classification is the clas-
sification of different images into different categories to achieve the minimum
classification error [13]. The models that are now widely used are GoogLeNet
and ResNet. GoogLeNet adopts the structure of Inception, which is to put mul-
tiple convolution or pooling operations together to assemble a network module
and to design neural networks to assemble the whole network structure as a mod-
ule. GoogLeNet uses multiple convolutional kernels to extract information from
different scales of the image and then fuse the image to obtain a better image
representation [14]. ResNet mainly alleviates the problem of gradient dissipa-
tion in neural networks by connecting across layers, which enables the training
of multi-layer networks [15].

3 Methods

3.1 System Overview

The system is divided into four parts: data collection, data pre-processing, fea-
ture extraction and classification, as shown in Fig. 1. The system deploys a pair
of transceivers then uses an Intel 5300 NIC to collect raw CSI. In the data pre-
processing part, we first perform linear interpolation and use CSI ratio [16] to
eliminate carrier bias, and then perform denoising with discrete wavelet trans-
form to obtain clear and rich information. Following that, we analyze the cor-
relation between subcarriers. Next, we propose a method of image generation
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using continuous wavelet transform to generate images for extracting features.
Finally, transform learning using convolutional neural networks is used to clas-
sify falls. In addition, a wavelet scattering network approach is added, which can
automatically extract features to reduce computational complexity, but is more
dependent on environment.

Fig. 1. Framework of system.

3.2 Data Preprocessing

Weak signals in some links due to non-line of sight connections usually lead to
some packet loss when collecting data. To solve this problem, we usually use
a linear interpolation method to make all recording channels have the same
sampling rate. After linear interpolation, the CSI of the two antennas with the
highest power is selected to do the ratio, which can eliminate the high impulse
noise and burst noise that are difficult to eliminate in the original CSI ampli-
tude. The obtained signal is then used with discrete wavelet transform (DWT)
to eliminate the in-band noise. By discrete wavelet transform, the signal will be
decomposed into several frequency levels and we can get the frequency level we
need. The highest frequency stage contains mainly noise. DWT works mainly by
first estimating the threshold of the level, adjusting the threshold to a lower fre-
quency level and then removing the noise at all wavelet levels without significant
distortion of the signal components. Finally, the denoised signal in the wavelet
domain is transformed back to the time domain to obtain the information seg-
ment we need. Since not every subcarrier is representative, we next analyze the
correlation between the subcarriers. There are 30 subcarriers in each packet and
we observe the distribution of each subcarrier. The data distribution of each
subcarrier is essentially the same and there are some subcarriers with higher
correlations in both fall and non-fall actions. Based on the results of the analysis
of the two correlations, it is found that the best results are obtained with both
correlation thresholds set to 0.7.
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3.3 Feature Extraction

After data preprocessing, we use continuous wavelet transform (CWT) to gen-
erate scale maps and then perform image classification. Some systems use Short
Time Fourier Transform (STFT) for time-frequency feature extraction, which is
a windowed Fourier transform that decomposes the entire time-domain process
into an infinite number of small processes of equal length and each small process
is approximately smooth in the Fourier transform. The definition of CWT is
shown in Eq. (1). The CWT identifies the frequency components of the signal.
The main reason for using CWT instead of STFT here is that STFT’s window
size is not easy to set. CWT can determine the signal frequency as well as its
corresponding time interval and can tell the magnitude of the frequency from
the thickness of the stripes. So here CWT is used to do the time-frequency
transformation.

W (a, b) =
∫ ∞

−∞
x(t)

1√
a
ψ(

t − b

a
)dt (1)

We firstly compute a filter bank of CWT, obtain the CWT of the signal and
give the coefficients to obtain its scale map. Figure 2 show the spectrogram of a
single subcarrier for a fall action and a unfall action. From the figure, we can see
that the scale maps generated for the two different actions are clearly different. In
the unfall action, the thin stripes at low frequencies indicate a higher frequency
resolution and the stripes span a larger interval in accordance with the unfall
action characteristics. In the fall action, the presence of high-frequency streak
segments with shorter streak spanning intervals indicates that a short-duration
high-frequency event, i.e., a fall, occurred at this time. After generating scale
maps, RGB images are created for them and these images are used as input for
classification.

Fig. 2. Scale maps of a single subcarrier for a unfall (left) and a fall (right).
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3.4 Classification

Neural network models of deep learning have also been widely used in the field of
wireless sensing. When faced with a specific problem in a domain, it is difficult
to find enough training data. Therefore, it has been investigated that if we
can use models trained from other data sets and then modify and refine the
models according to the specific problem, we can use them repeatedly to solve
the problem of insufficient amount of data. The technique to solve this problem
is transform learning, which is to transfer the model parameters trained to a new
model to help the new model training. Because most of the data or tasks are
correlated, the learning speed of the new model can be accelerated by transfer
learning. For example, it is much easier to learn to use an electric bike when we
have already learned a bicycle. The first few layers of the network of transfer
learning can reveal the contour of the image, which can be used to identify the
image generated after wavelet transform. Here we use transformation learning
based GoogLeNet and SqueezeNet for classification.

When using GoogLeNet, we firstly need to modify the network parameters
on top of the original network. Because we need to merge the features extracted
form the network into different information types such as category probabilities,
loss values and predictive labels, we need to replace some layers in the original
network with new layers that fit our data. The main goal of GoogLeNet is to
improve the accuracy of recognition, so it takes the approach of deepening the
network structure and enhancing the functionality of the convolution module,
which will lead to an increasingly complex network and memory. SqueezeNet can
maximize the computational speed without reducing the accuracy of the model,
and the number of parameters is reduced by a factor of tens. The innovation
of SqueezeNet in both squeezing and expanding, which can reduce the dimen-
sionality of the feature map. SqueezeNet is used here instead of ResNet, because
SqueezeNet is optimized for ResNet and a better structural design reduces the
size of the network and the associated parameters without the need for complex
compression algorithms. Again, the use of SqueezeNet has to modify the network
parameters according to our data.

3.5 Wavelet Scattering Network

We additionally add a wavelet scattering network approach that consumes less
memory and reduces computational complexity. This method is identical to the
continuous wavelet transform image generation method in terms of data prepro-
cessing, and then feature extraction is performed using the wavelet scattering
network method. Wavelet scattering is a technique that can be used to auto-
matically extract low variance and compact features that minimize intra-class
variation while preserving the distinguishability between individual classes. The
main procedure is to first construct a wavelet time scattering network with a filter
bank. After that, the scattering coefficients of the training data are represented
in matrix form. These multi-signal scattering transforms are then reconstructed
into a matrix as the input to the LSTM classifier. LSTM is a recurrent neural
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network, which is usually used to study time series data. It learns long-term
correlations between time steps of time-series data and is suitable for analyzing
time-series data.

4 Performance Evaluation

4.1 Experiment Setup

Dataset. The data collected by FallDeFi [10] is used for the experimental data
in this paper. The experimental environment for its data collection was selected
from five experimental areas: two bedrooms, a hallway, a kitchen, a bathroom
and a laboratory. The data were collected by transmitters sending 100B packets
for a duration of 10 s at a data rate of 800 kb/s. 10,000 packets were collected
for each activity, corresponding to 30 * 10000 CSI values per antenna pair. All
experiments were performed on the 5.2 GHz frequency band. The data from the
corridor, bedroom, kitchen and bathroom were divided into two groups, A and
B. There were some differences between groups A and B in terms of days or
equipment settings. For example, the collection interval between group B and
group A data in the corridor environment is 7 days and the transmitter moves
0.5 m from the original distance; the collection interval between group B and
group A data in the bedroom environment is 33 days and there is one more
person; the collection interval between group B and group A data in the kitchen
environment is 33 days and there is another person, in addition to moving non-
line of sight furniture; in the bathroom environment the laboratory was used
as the experimental environment for the robustness study with only one set of
data. The data used in our experiments are shown in Table 1.

Table 1. Data collection

Group Measurements Corridor Bedroom Kitchen Bathroom Lab Total

A Falls 33 21 39 40 45 178

Others 21 29 43 33 35 161

B Falls 21 28 30 30 – 109

Others 28 35 31 36 – 130

Changes from A to B Diff. in days 7 33 33 10

Diff. in
environment

Tx. moved
by 0.5 m

+1 person +1 person,
furniture
moved
nLoS

+1 person,
Tx. moved
by 0.5 m

Evaluation Metrics. For the evaluation metrics of the results the accuracy
is mainly used here. A test result that matches the true result is defined as a
correct prediction (CP), and a test result that does not match the true result
is defined as an incorrect prediction (IP). Then accuracy is defined as shown in
Eq. (2).

Accuracy =
CP

CP + IP
, (2)
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4.2 Comparison of the Two Methods

Result of the First Method. The first method performs continuous wavelet
transform after data acquisition and preprocessing to generate scale maps and
then uses pre-trained convolutional networks for classification. Here mainly
GoogLeNet and SqueezeNet are used. The experimental results of these two
networks are shown in Fig. 3 and Fig. 4.

As can be seen from the figures, both networks perform well on a single data
set, with results above 95% for almost all environments and above 90% for a few
individual ones. When the environment changes, the detection results of fall to
action are not as good as the single data set, but still slightly improve overall.
The performance of the two networks of the first approach does not differ much
in the same dataset. However, when the environment changes, the results of
SqueezeNet network outperform GoogLeNet, indicating that SqueezeNet is less
dependent on the environment. However, the detection results of GoogLeNet
are more stable than those of SqueezeNet, and the results fluctuate within 10%,
while the detection results of SqueezeNet sometimes vary widely and therefore
it requires several experiments.

Fig. 3. Results of performance GoogLeNet across different environments.
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Fig. 4. Results of performance of SqueezeNet across different environments.

Result of the Second Method. The second method extracts features using
wavelet scattering network after data acquisition and pre-processing and then
classifies them using LSTM network. The experimental results of this method are
shown in Fig. 5. From the figure, we can observe that the performance of the met-
rics for training and testing on the same dataset is better, almost always above
95%. However, when the environment changes, the method does not work very
well, especially in the bedroom environment. The reason for this problem may
be that the method is more demanding on the environment, and the extracted
wavelet scattering features are still more environment-dependent. Another rea-
son may be that there is a problem in the data acquisition process. However,
there is still some improvement in the overall performance, especially in the same
environment.

4.3 Comparison with Existing Fall Detection Efforts

Since the work in the FallDeFi paper has been compared with WiFall as well
as RTFall [10], and outperformed these systems in terms of accuracy, here we
only compare with FallDeFi. We use the data shown in Table 1 for comparison
experiments, and then we average the accuracy experimental results of the four
environments in four different training test sets to compare. The experimental
results are shown in Fig. 6. Both methods improve the accuracy by 3%–10%
over FallDeFi when trained and tested in the same environment. When the
environment changes, SqueezeNet is more effective and slightly more accurate
than FallDeFi.
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Fig. 5. Results of performance of wavelet scattering network across different environ-
ments.

Fig. 6. Comparison with existing fall detection efforts.
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5 Conclusion and Future Work

In this paper, we focus on the detection of fall behavior based on CSI of WiFi.
We mainly adopt a method based on continuous wavelet transform for fall detec-
tion, which uses continuous wavelet transform to generate scale maps for feature
extraction and then uses a pre-trained convolutional neural network for classifi-
cation. However, convolutional neural networks still lack interpretability and are
usually designed manually in a tedious trial-and-error process. Therefore, we also
adopt the method of automatic feature extraction by wavelet scattering network
and then classification by LSTM network. The average accuracy is above 95%
in the pre-trained system and above 75% when the environment changed.

For fall detection the two methods proposed in this paper have improved in
terms of detection accuracy, but there are still problems. The features selected
in this paper remain environmentally relevant, thus the accuracy of fall detec-
tion needs to be improved when the environment changes. In future work, it is
necessary to find features that are less dependent on the environment so that
the accuracy of fall detection results will not decrease when the environment
changes.
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Abstract. In this paper, we study sensory data collection of IoT devices
in a wireless sensor network, employing a given number of UAVs. We
observe that most existing studies ignored the different importance of data
stored in IoT devices and simply minimized the longest data collection
latency of IoT devices. Then, it is possible that the data collection latency
of a IoT device may be long, the data collection priority of the IoT device is
high and its data should be collected faster than IoT devices with low pri-
orities. Considering the data collection priority of each IoT device, we for-
mulate a novel weighted data collection latency minimization problem to
collect data stored in IoT devices using the UAVs, by finding a closed tour
for each UAV such that the maximum weighted data collection latency of
IoT devices is minimized, where the data collection latency of IoT devices
is composed of the hovering time of UAVs for data collection and the fly-
ing time of UAVs from one hovering location to another hovering loca-
tion. To deal with the above NP-hard problem, we first propose a sim-
plified data collection latency minimization problem which does not take
account of the data collection priorities of IoT devices and base stations.
Then, we devise an approximation algorithm for the simplified problem
and further employ it to deal with the weighted data collection latency
minimization problem. Finally, we evaluate the performance of the pro-
posed algorithms through experimental simulations. Experimental results
show that the proposed algorithms are very promising.

Keywords: IoT devices · Data collection · Flying tour scheduling ·
Approximation algorithm

1 Introduction

With the dramatically advanced technologies of UAVs over the past few decades,
now UAVs are commonly known for features of low cost, swift deployment, high
maneuverability and strong expandability. Due to the above inherent advantages,
the utilization of UAVs has been widely expanded from military to plenty of appli-
cations. Especially, with the expansion of communication equipment, the mobil-
ity of UAVs offers a new opportunity for stable data transmission performance
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enhancement for IoT devices, as short-range air-to-ground communication links
with less effect of signal fading and shadowing can be established between UAVs
and IoT devices [8,11,13]. UAVs with flexible location movement also state to fast
and best suit the diverse and complex environments of IoT devices without more
infrastructures, and such data collection systems are typically appealing for sce-
narios, e.g., undeveloped areas suffering serve shadowing, sudden or temporary
events without the support of conventional terrestrial networks [12]. For exam-
ple, in an area after disaster, terrestrial communication infrastructures (e.g., sig-
nal towers and cables) here may suffer great damage and can not relay data, then
UAVs can be deployed to get close to IoT devices and act as mobile data collectors,
which can play an important role in disaster area surveillance [5,7,10].

In recent years, there are plenty of studies focused on dispatching UAVs to
perform data collection tasks in wireless sensor networks [7,9,14]. Kim et al. [7]
employed multiple UAVs to collect the data of nodes in a two-dimensional space,
such to minimize the data collection latency of nodes. But they ignored the serv-
ing time that UAVs need for collecting data, which also contributed to the data
collection latency of nodes. Luo et al. [9] meticulously optimized the flying tra-
jectory when UAVs are in the transmission range of sensors, such to minimize
the flight times of UAVs. Zhan et al. [14] investigated a problem of finding fly-
ing tours for multiple UAVs to collect data from sensors so that the maximum
time spent by the UAVs is minimized, by devising a genetic algorithm. Afshani
et al. [1] proposed an approximation algorithm for the patrol-scheduling of mul-
tiple robots to visit sites at different frequencies, with the aim of minimizing the
duration between consecutive visits of each site.

Unlike the existing studies that ignored the different importance of data
stored in IoT devices and simply minimized the longest data collection latency
of IoT devices, we notice that the data collection priorities of different IoT devices
may vary significantly, especially when the UAVs need to repeatedly collect the
data of IoT devices over an extended time period. For example, in a disaster
rescue scenario where UAVs are deployed to repeatedly collect the fresh data of
IoT devices, the data of a IoT device deployed to collect data of trapped people
has a higher data collection priority than a IoT device that collects data for
normal infrastructure, e.g., roads and bridges. Otherwise, people trapped here
who have suffered accidents may wait for a long time, resulting in more casualties.
Here, the data collection latency of a IoT device is defined as the consumed time
of the tour which contains the IoT device. By existing algorithms, it is possible
that the data collection latency of a high-priority IoT device found is just as
long as the latency of a low-priority IoT device, and it thus will lead to a result
that the data of the high-priority IoT device can not be updated in time.

As the above observation, in this paper, we schedule multiple UAVs to collect
the data of IoT devices while considering the data collection priority of each IoT
device, such to minimize the maximum weighted data collection latency of IoT
devices. The data collection task poses many challenges, including: (i) how to
assign IoT devices with data collection priorities to multiple UAVs, such that
the data collection task is divided properly; (ii) how to schedule a flying tour
for each UAV, so that the maximum weighted data collection latency of IoT
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devices is minimized; and (iii) how to ensure that the tour of each UAV contains
a base station, such that the UAV can return the base station after completing
one round of data collection missions.

To address the above challenges, we propose a weighted data collection
latency minimization problem to schedule flying tours of multiple UAVs to collect
data from IoT devices on the ground. The novelties of this paper lie in we take
not only the data collection latency of IoT devices but also the data collection
priority of each IoT device into consideration. We also propose an approxima-
tion algorithm for the weighted problem, such that the maximum weighted data
collection latency of IoT devices is minimized.

The main contributions of this paper are summarized as follows.

– We first formulate a weighted data collection latency minimization problem,
which is to find K rooted flying tours for a given number K of UAVs to
collect the data of IoT devices with different data collection priorities, such
that the maximum weighted data collection latency among the IoT devices
is minimized.

– To deal with the weighted data collection latency minimization problem, we
simplify the original problem to a simplified data collection latency mini-
mization problem which does not consider the data collection priorities of
IoT devices and base stations. For the simplified problem, we propose a
(2 · OPT + 8 r′

η )(1 + ε)-approximation algorithm, where OPT is the optimal
value of the simplified problem, r′ is the radius of disks (potential hovering
areas) of IoT devices, η is the flying speed of UAVs, ε is a given constant in
[2].

– By invoking the approximation algorithm for the simplified problem, we
devise an approximation algorithm for the weighted data collection latency
minimization problem, whose approximation ratio performs well in practice.

– We finally evaluate the performance of the proposed algorithms via simulation
environments, and experimental results show that the proposed algorithms
are very promising. Especially, the maximum weighted data collection latency
of the IoT devices delivered by the proposed algorithm for the weighted data
collection latency minimization problem is up to 32% shorter than those by
existing algorithms.

2 Preliminaries

2.1 Network Model

We consider a data collection scenario where IoT devices are deployed in a to-be-
monitored three dimensional area. Denote V as a set of the above IoT devices,
i.e., V = {v1, v2, . . . , vn} and n = |V |. Let (xi, yi, zi) be the coordinates of each
IoT device vi with 1 ≤ i ≤ n. Without loss of generality, we assume that all IoT
devices are on a plane and the coordinate zi of each IoT device vi in V is zero
[8,9], i.e., zi = 0. Each IoT device vi transmits its sensing data to a data collec-
tor (UAV) when the distance between the UAV and vi is no more than a data
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transmission range r, e.g., r = 100 m, when employing orthogonal frequency
division multiple access (OFDMA) [8,11]. Denote li as the data collection prior-
ity of each IoT device vi, where 0 < li ≤ 1. And a larger value of li means that
the data of vi should be collected faster.

To gather the data from IoT devices in V , K UAVs are employed as collectors
to approach the IoT devices and obtain their data. BS is a set of K base stations
of the UAVs, i.e., BS = {BS1, BS2, . . . , BSK}. UAVs take off from base stations,
and go back to base stations after completing one round of data collection mis-
sions to replenish energy. For crash avoidance and ease of operation, let z′ be a
fixed flying altitude of the UAVs, which is no more than the data transmission
range r [8,9]. To make a feasible flying scheduling to collect the data of IoT
devices in V , we need to not only assign each IoT device in V to the K UAVs,
but also arrange the flying tour of each UAV. Suppose that IoT devices in a set
Vk = {v1, v2, . . . , vnk

} are assigned to UAV k, where 1 ≤ k ≤ K, nk = |Vk|,
V1 ∪ V2 ∪ · · · ∪ VK = V and V1 ∩ V2 ∩ · · · ∩ VK = ∅. Then, UAV k can collect the
data of each IoT device vi in Vk when it hovers at one point in the neighborhood
of IoT device vi. For example, in Fig. 1, a UAV can collect the data of IoT device
v1 when it hovers at point p1 in the neighborhood of v1. The neighborhood of IoT
device vi is represented as a disk si and si = {p|(x−xi)2+(y−yi)2 ≤ r′2}, where
r′ =

√
r2 − z′2 is the radius of disk si, p is a point contained in si with coordi-

nates (x, y, z′), v′
i is the center of si with coordinates (xi, yi, z

′). Without loss of
generality, we assume that any two disks si and sj do not overlap with each other
[7–9]. Denote S as a set of disks over IoT devices in V , and S = {s1, s2, . . . , sn}.
Denote V ′ as a set of centers of the disks in S, and V ′ = {v′

1, v
′
2, . . . , v

′
n}. Figure 1

also shows an example of two flying tours for UAVs in a network.

Fig. 1. An illustration of a network.

For each UAV k (1 ≤ k ≤ K), the consumed time of visiting each IoT device
vi in Vk consists of two parts, one is the hovering time h(vi) for collecting the
data of vi, i.e., h(vi) = D(vi)

Bt , where D(vi) and Bt are the volume of stored data
and transmission bandwidth of vi [8], respectively, another one is the flying time
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f(vi−1, vi) from the former IoT device vi−1 to vi, i.e., f(vi−1, vi) = d(pi−1,pi)
η ,

where η is the flying speed of UAVs, d(pi−1, pi) is the flying Euclidean distance of
a UAV between IoT device vi−1 and vi, pi−1 and pi are points that a UAV hovers
over vi−1 and vi, respectively. It’s worth noting that here we do not consider the
limited flight time constraint of UAVs, as [5] provides a solution to extend an
algorithm subject to the constraint.

For each UAV k, denote Ck as the tour to collect all data from IoT devices in
Vk assigned to UAV k. The total consumed time w(Ck) of tour Ck is calculated
as the sum of hovering time h(vi) for each IoT device vi in Vk and the flying
time between the IoT devices, i.e.,

w(Ck) =
∑

vi∈Vk

h(vi) +
∑

vi,vi+1∈Vk

f(vi, vi+1) + f(BSk, v1) + f(vnk
, BSk), (1)

where BSk is the base station assgined to UAV k.
For each IoT device vi in Vk that assigned to UAV k, the weighted data

collection latency of vi is li · w(Ck), where li is the data collection priority of vi,
w(Ck) is the consumed time of tour Ck which contains vi.

2.2 Problem Definition

Given a set V of IoT devices with coordinates where each IoT device vi has a data
collection priority li, a disk set S of potential hovering areas over IoT devices in
V , and the hovering time h(vi) of UAVs over each IoT device vi, we propose a
novel weighted data collection latency minimization problem, which is to find K
rooted tours for K UAVs to collect the data of IoT devices in V , where ‘rooted’
means that each tour contains a base station as its root, such that the maximum
weighted data collection latency of IoT devices in V , i.e., maxK

k=1{lk · w(Ck)},
is minimized, where lk is the maximum data collection priority of IoT devices
in Vk that assigned to UAV k, i.e., lk = maxvi∈Vk

li, and w(Ck) represents the
consumed time of tour Ck.

3 Algorithm for the Simplified Problem

It is easily proven that the weighted data collection latency minimization prob-
lem is NP-hard, as its special case when the data transmission range r of IoT
devices tends to the flying altitude z′ of UAVs, the data collection priority of
each IoT device is equal and K = 1, i.e., the TSP problem, is NP-hard. To solve
the NP-hard weighted problem, in this section, we propose a simplified data col-
lection latency minimization problem which ignores the data collection priorities
of IoT devices and base stations. And we further propose an algorithm for the
simplified problem which will be employed to deal with the weighted problem in
the next section.

Here, we give a detailed definition of the simplified data collection latency
minimization problem. Given a set V = {v1, v2, . . . , vn} of IoT devices, a set
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S of disks over each IoT device in V , and the hovering time h(vi) of each IoT
device vi in V , the simplified data collection latency minimization problem is to
find K tours that visit all the disks over IoT devices in V , such that the longest
data collection latency of each IoT device in V , i.e., maxK

k=1 w(Cs
k), is minimized,

where Cs
k is the tour of UAV k, and w(Cs

k) is the consumed time of tour Cs
k.

We introduce the framework of the algorithm for the simplified problem.
Suppose that C∗

1 , C∗
2 , . . ., C∗

K form an optimal solution to the problem, and
OPT is the optimal value for the problem, i.e., OPT = maxK

k=1 w(C∗
k), where

w(C∗
k) is the consumed time of tour C∗

k , K is the number of UAVs. With a guess
value B (B ≥ OPT ) of OPT , the algorithm first assigns each disk in the set S
into some subsets where each subset is disjoint with others. For each subset, the
algorithm then constructs an approximate tour to visit each disk si contained
in the subset, and shortcut the approximate tour into several sub-tours with the
consumed time of each sub-tour is no more than (2B + 8 r′

η )(1 + ε), where r′ is
the radius of each disk, η is the flying speed of UAVs, and ε is a given constant in
[2]. Obviously, the optimal value OPT can be found through invoking a binary
search and an approximate solution thus can be obtained [5]. The range of the
binary search is set from 0 to w(C), where w(C) is the consumed time of a tour
C which contains all center nodes of disks in S, and the tour C can be obtained
by invoking Christofides’ algorithm.

In the following, we will go over the algorithm. Firstly, we break the disk set
S up into several disjoint sub-sets. With the given node set V ′ which are centers
of disks in S, we construct an auxiliary complete graph Ga = (V ′, Ea), where
Ea is a set of edges between any two nodes in V ′. Here, f(si, sj) represents the
minimum flying time between disk si and sj , i.e., f(si, sj) = (d(v′

i, v
′
j) − 2r′)/η,

where v′
i and v′

j are the centers of disks si and sj , respectively; d(v′
i, v

′
j) is the

Euclidean distance between node v′
i and v′

j , r′ is the radius of disks in S, and η
is the flying speed of UAVs. Then, with the given guess B (B ≥ OPT ) of OPT ,
we divide the complete graph Ga into several connected components CC1, CC2,
. . ., CCq through deleting each edge (v′

i, v
′
j), once the flying time f(si, sj) is

strictly larger than B
2 . According to CC1, CC2, . . ., CCq, we divide the disk

set S into q disjoint sub-sets S1, S2, . . ., Sq, when the center v′
i of each disk

si in St (1 ≤ t ≤ q) is contained in the connected component CCt, where
S1 ∪ S2 ∪ · · · ∪ Sq = S and S1 ∩ S2 ∩ · · · ∩ Sq = ∅.

For each disk sub-set St (1 ≤ t ≤ q), suppose that St = {s1, s2, . . . , snt
},

where nt = |St|. A tour C ′
t which visits disks s1, s2, . . . , snt

can be found by
invoking the (1 + ε)-algorithm in [2] for the traveling salesman problem with
disjoint neighborhood. Assume that C ′

t = p1 → p2 → · · · → pnt
, where pi (1 ≤

i ≤ nt) is a point located in disk si. It’s worth noting that although the (1 + ε)-
algorithm in [2] do not consider the hovering time, it is still applicable in this
paper according to [4,5]. And the consumed time w(C ′

t) of tour C ′
t is no more

than (1 + ε)w(C∗
t ), i.e., w(C ′

t) ≤ (1 + ε)w(C∗
t ), where C∗

t is a tour that visits all
disks s1, s2, . . . , snt

with a minimum consumed time.
After obtaining q tours C ′

1, C ′
2, . . ., C ′

q, we need to check the consumed time
w(C ′

t) of each tour C ′
t (1 ≤ t ≤ q) to see if it is greater than (2B +8 r′

η )(1+ ε). If

w(C ′
t) ≤ (2B +8 r′

η )(1+ε), then we can obtain a tour which is as the same as the
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tour C ′
t. Otherwise, we construct sub-tours whose consumed times are no more

than (2B + 8 r′
η )(1 + ε) by invoking a similar splitting procedure in [5]. When

B ≥ OPT , it can be proved that the number of obtained sub-tours is no more
than K.

The algorithm for the simplified data collection latency minimization problem
is assigned as Algorithm 1.

Algorithm 1: Algorithm for the simplified data collection latency mini-
mization problem
Data: Given a set V of IoT devices, a set S of disks over IoT devices in V , the

hovering time h(vi) of each vi in V .
Result: K tours Cs

1 , Cs
2 , . . . , Cs

K .
begin

Let Bs
l = 1, Bs

u = w(C)
1 while Bs

l + 1 < Bs
u do

Let B = �Bs
l +Bs

u
2

� /* B is a guess of OPT . */
Obtain q disk sets S1, S2, . . ., Sq with B
for t ← 1 to q do

For the tth disk set St, obtain a tour C′
t by invoking [2] and

construct sub-tours whose consumed times are no more than
(2B + 8 r′

η
)(1 + ε)

if the number of obtained subtours is no more than K then
Bs

l ← B; Skip to the next while loop

else
Bs

u ← B; Skip to the next while loop

Construct K tours Cs
1 , Cs

2 , . . . , Cs
K from the obtained sub-tours

Lemma 1. Given a set V = {v1, v2, . . . , vn} of IoT devices, a set S of disks over
IoT devices in V , and the hovering time h(vi) of each IoT device vi in V , there is
a (2OPT +8 r′

η )(1+ ε)-approximation algorithm, Algorithm 1, for the simplified
data collection latency minimization problem, where OPT is the optimal value
of the simplified problem, r′ is the radius of disks over IoT devices, η is the
flying speed of UAVs, and ε is a given constant in [2]. The time complexity of
Algorithm 1 is O(nO(m′)), where m′ and ε are constants in [2], and n is the
number of IoT devices in V .

Proof. The proof is omitted, due to space limitation.

4 Algorithm for the Weighted Data Collection Latency
Minimization Problem

In this section, we will deal with the weighted data collection latency mini-
mization problem which considers the data collection priorities of IoT devices
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and base stations. We will propose an algorithm for the weighted problem while
invoking the algorithm for the simplified problem in the previous section. We first
show the basic idea of the algorithm for the weighted problem, then introduce
the detail of the algorithm.

The basic idea of the algorithm is to deal with the weighted problem in two
steps. The first step is to decide the set of IoT devices assigned to each UAV
k (1 ≤ k ≤ K) while invoking the algorithm for the simplified problem, and
the second step is scheduling the flying tour of UAV k to collect the data of
IoT devices assigned to UAV k. We describe the basic idea of the first step as
follows. Suppose that OPT ′ is the optimal value of the weighted data collection
latency minimization problem. We guess a value B′ of OPT ′ with B′ ≥ OPT ′,
and find a tour cover for each UAV k (1 ≤ k ≤ K), such that the weighted
data collection latency of each IoT device is no more than αmKB′, where α is
the ratio of Algorithm 1 for the simplified problem, K is the number of UAVs,
m = log2� lmax

lmin
	, lmax and lmin are the maximum and minimum data collection

priorities of IoT devices in V , respectively. Through a binary search for the
optimal value OPT ′, we can get a tour cover Ck for each UAV k.

Then, we introduce the basic idea of the second step. From the tour cover
Ck which assigned to UAV k, we can get a tour Ck by invoking the algorithm in
[2]. By invoking the algorithm in [5], we find a proper base station from the K
base stations for tour Ck.

We elaborate the detail of the algorithm for the weighted data collection
latency minimization problem as follows. Recall that there is a set S of disks
over IoT device vi. According to the data collection priorities of IoT devices in
V , we divide disks in S into different groups as follows. Denote by lmax and
lmin as the maximum and minimum data collection priorities of IoT devices in
V , respectively, where lmax ≥ lmin > 0. And m is logarithm of the ratio of the
maximum priority lmax and the minimum priority lmin, i.e., m = log2� lmax

lmin
	.

Without loss of generality, we assume that the maximum priority among IoT
devices in V is 1, i.e., lmax = 1. For each priority li of IoT device vi in V , we
assign l′i = sup{2x · lmax|x ∈ Z and 2x · lmax ≥ li} as the virtual priority of vi.
From the definition of the virtual priority l′i, we have li ≤ l′i < 2li. We assume
that the number of different virtual priorities of IoT devices in V is ns, which
is no more than m, i.e., ns ≤ m. Due to space limitation, the proof is omitted.
For IoT devices whose virtual priorities are same, we assign them to a group.
According to the groups of IoT devices, we also assign the disks in S into ns

groups, i.e., S′
1, S′

2, . . ., S′
ns

.
For each group of disk S′

j (1 ≤ j ≤ ns), Algorithm 1 is employed to obtain a
t-min-max tour cover {Cj,1, Cj,2, . . ., Cj,t} with the consumed time of each tour
contained in the tour cover is no more than αB′, where t is a smallest integer
between 1 and K, B′ is the guess value of OPT ′ (B′ ≥ OPT ′), and α is the ratio
of Algorithm 1. Assume that there are qj obtained tours {Cj,1, Cj,2, . . ., Cj,qj}
on the disk set S′

j . After the above operation, we get ns min-max tour covers.
Then, we assign the disks visited by each tour contained in the ns min-max tour
covers to the K UAVs as follows.
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For each tour Cj,i (1 ≤ j ≤ ns, 1 ≤ i ≤ qj), denote N as the set of disks
contained in tour Cj,i, i.e., N = S(Cj,i). We assign each disk s in N to a non-
free UAV k (1 ≤ k ≤ K) if the flying time between s and the first tour Cj′

assigned to the UAV k is no more than 2j′−1B′, i.e., f(s, Cj′
) ≤ 2j′−1B′, and

f(s, Cj′
) = min∀u∈Cj′ {f(s, u)}, j′ is the virtual priority of IoT devices visited

by tour Cj′
, u is a disk contained in tour Cj′

and u ∈ S. If there are still some
disks in N that are not assigned to any UAV, then assign them to a free UAV.

Through a binary search for OPT ′ with the guess B′ in range [0, lmax ·w(C)],
we can find a tour cover Ck for each UAV k, where lmax is the maximum data
collection priority of IoT devices in V , w(C) is the consumed time of a tour
C which contains all center nodes of disks in S by invoking Christofides’
algorithm.

For each UAV k (1 ≤ k ≤ K) with the tour cover Ck, a tour Ck that contains
a base station in BS can be obtained by invoking the algorithm in [2,5].

The algorithm for the weighted data collection latency minimization problem
is presented in Algorithm 2.

Lemma 2. Given a set V of IoT devices, a set S of disks over each IoT device
in V , the hovering time h(vi) of each IoT device vi in V and K base stations,
there is a O(mK)-approximation algorithm, Algorithm 2, for the weighted data
collection latency minimization problem, where m = log2� lmax

lmin
	, lmax and lmin

are the maximum and minimum priority of IoT devices in V , respectively, K is
the number of UAVs. The time complexity of Algorithm 2 is O(nO(m′)), where
m′ is a constant [2], and n is the number of IoT devices in V .

Proof. The proof is omitted, due to space limitation.

5 Performance Evaluation

5.1 Simulation Environment

In this section, we evaluate the performance of the proposed algorithms through
extensive experiments. In a 10 km × 10 km × 100 m three-dimensional Euclidean
space, we consider a network which consists of 25 to 150 IoT devices. The data
volume of each IoT device is randomly drawn in the range from 100 MB to
1,000 MB, and the data transmission bandwidth of each IoT device is 150 MB/s
[8,9]. The radius of the disk over each IoT device is 50 m [3,8]. The number of
UAVs varies from 2 to 10. The UAV has a constant flying speed η = 10 m/s
[5]. Base stations are randomly located at the border of the space. For each
parameter setting, we obtain average results from 100 instances.

To evaluate the performance of the proposed algorithm approAlg for the
weighted data collection latency problem, we here introduce three benchmarks.
Algorithm approAlgMultiRoots finds K flying tours, such that the maximum
consumed time among the flying tours is minimized, while ignoring data collec-
tion priorities of IoT devices [3]. Algorithm multiNei [6] constructs flying tours
with the longest tour time 369 ·OPTm + c · r for the multi-rooted min-max cycle
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Algorithm 2: Algorithm for the weighted data collection latency mini-
mization problem (approAlg)
Data: Given a set V of IoT devices, a set S of disks over IoT devices in V , the

hovering time h(vi) of each vi in V , and a set BS of base stations.
Result: K tours C1, C2, . . . , CK .
begin

Let Bl = 1, Bu = lmax · w(C)
1 while Bl + 1 < Bu do

Let B′ = �Bl+Bu

2
� /* B′ is a guess of OPT ′. */

Obtain ns disk sets S′
1, S′

2, . . ., S′
ns

for j ← 1 to ns do
For the jth disk set S′

j , obtain a t-min-max tour cover {Cj,1, Cj,2,
. . ., Cj,qj} on S′

j by invoking Algorithm 1 where t is a smallest
integer in range [1, K], such that the consumed time of each tour is
no more than α · 2j−1B′

if the tour cover on S′
j is not successfully obtained then

Bl ← B′; Skip to the next while loop

for j ← 1 to ns do
for i ← 1 to qj do

N ← S(Cj,i) /*Assign all disks contained in Cj,i to N*/
for every non-free UAV k (1 ≤ k ≤ K) do

N ← S(Cj,i); Cj′ ← the first tour assigned to the UAV k;

N ′ ← {s|s ∈ N, f(s, Cj′
) ≤ 2j′−1B′}; Construct a tour

C(N ′) by invoking [4] and assign it to UAV k; N ← N\N ′

if N �= ∅ then
if there is no free UAV then

Bl ← B′; Skip to the next while loop

else
Assign tour C(N) to a free UAV k′ as the first tour

Obtain the set Ck of tours assigned to UAV k
if all disks in S are assigned to some UAV then

Bu ← B′; Skip to the next while loop

for k ← 1 to K do
Obtain a new tour Ck which contains a base station for the UAV k from
the set Ck of tours assigned to UAV k by invoking [4] and [7]

cover problem with neighborhoods, where OPTm is the optimal value of the
problem. Algorithm approSim employs Algorithm 1 for the simplified problem
mentioned in this paper while invoking the procedure in [5], such to find a base
station for each UAV.



228 Q. Guo et al.

5.2 Algorithm Performance

In the following, we study the impact of the network size, the number of UAVs
and the speed of UAVs.

We first evaluate the performance of the proposed algorithm approAlg
against existing algorithms approSim and approAlgMultiRoots and multiNei
by varying the number n of IoT devices from 25 to 150, while the num-
ber K of UAVs is 6. Figure 2(a) shows that the maximum weighted data
collection latencies by the algorithms increase as the number of IoT devices
grows, as UAVs fly longer distances when there are more IoT devices. And
it also shows that the maximum weighted data collection latency of IoT
devices delivered by the proposed algorithm approAlg is about 25% to 32%
less than those by existing algorithms. For example, when there are n = 100
IoT devices, the maximum weighted data collection latencies by algorithms
approAlg, approAlgMultiRoots, approSim and multiNei are 46, 52, 58, 61 min.
The reason behind this is that the existing algorithms do not take into account
the data collection priorities of IoT devices. Finally, Fig. 2(b) shows the running

Fig. 2. Performance of algorithms multiNei, approSim, approAlgMultiRoots and
approAlg by varying the number n of IoT devices from 25 to 150, while the num-
ber K of UAVs is 6.

Fig. 3. Performance of different algorithms by increasing the number K of UAVs from
2 to 10, when there are 100 IoT devices.
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times of the mentioned algorithms, from which it can be seen that the running
time of the proposed algorithm approAlg is acceptable in practice, e.g., no more
than 0.5 s when there are 150 IoT devices.

We then investigate the algorithm performance by varying the number K of
UAVs from 2 to 10 when the number of IoT devices is fixed to 100. Figure 3(a)
shows that the maximum weighted data collection latencies by the algorithms
decrease as the number K of UAVs increases. This is because that the num-
ber of IoT devices assigned to each UAV decreases as the number of UAVs
increases. From Fig. 3, we also observe that the maximum weighted data collec-
tion latency by algorithm approAlg is much shorter than those by algorithms
approAlgMultiRoots, approSim and multiNei, while the maximum data col-
lection latency by algorithm approAlg is longer than those by the benchmarks.

Fig. 4. Performance of different algorithms by increasing the speed η of each UAV from
6 m/s to 14 m/s, when there are 100 IoT devices and 6 UAVs.

We finally study the algorithm performance by increasing the speed η of each
UAV from 6 m/s to 14 m/s, when there are 100 IoT devices and 6 UAVs. Figure 4
demonstrates that the maximum weighted data collection latencies by the four
algorithms decrease with a larger flying speed of each UAV, and the maximum
weighted data collection latency of algorithm approAlg is about from 15% to
32% smaller than those by other algorithms.

6 Conclusion

In this paper, we studied a problem of finding flying tours for multiple UAVs
such that the maximum weighted data collection latency of IoT devices is min-
imized, where each IoT device owns a data collection priority. In order to solve
the NP-hard problem, we first proposed a simplified data collection minimiza-
tion problem which ignores the priorities of IoT devices and base stations, then
devise an approximation algorithm for the simplified problem. Further, we dealt
with the original problem through invoking the approximation algorithm for
the simplified problem and finally evaluated the proposed algorithms through
experimental simulation. The simulation results demonstrated that the proposed
algorithms are very promising.
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Abstract. Recently, automated machine learning (AutoML) and neural
architecture search (NAS), regarded as promising techniques to design
deep learning (DL) models automatically, have received increasing atten-
tion from both industry and academia. NAS will generate a large num-
ber of candidate models, which typically consist of numerous common
substructures, providing a vast opportunity for cross-model optimization
(e.g., operator batching) to improve training efficiency. However, most of
the existing AutoML frameworks do not make use of operator batching
and we also lack an efficient batching strategy. In this work, we pro-
pose a heuristic scheme named DPBat to guide the operator batching
among multiple models in NAS. For most models, the operator batch-
ing of DPBat can be finished in just a few seconds, which is negligible
compared to the subsequent training. We adopt Microsoft’s open source
AutoML framework NNI to implement DPBat to real NAS scenarios.
Extensive experiments show that DPBat is highly effective in improving
training efficiency and reducing the overhead of operator batching, with
a throughput 3.7× higher than the standard practice of running each job
without batching.

Keywords: AutoML · NAS · Operator batching

1 Introduction

In recent years, deep learning has achieved great success in various domains,
including image classification [7,8], natural language translation [13], and object
detection [9]. However, this success has been accompanied by a growing demand
for architectural engineering. Most of the complex neural architectures are
manually designed (e.g., VGG-16 [10], BERT [4] and GPT-3 [1]), which is
time-consuming and requires lots of expertise experience. Therefore, automated
machine learning (AutoML) and neural architectures search (NAS) have received
more and more attention from both industry and academia. Some institutions
have launched their framework that implements the search for neural network
architectures, such as Microsoft’s NNI, Huawei’s Vega, and Amazon’s Auto-
Gluon.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. An overview of AutoML pipeline

A typical AutoML pipeline contains four parts as Fig. 1 shows: data prepa-
ration, feature engineering, model generation, and model evaluation. As a key
component of AutoML, the search space defines which neural architectures the
NAS method can discover in principle. The number of models covered by the
search space is enormous, and searching for an optimal model could take up to
hundreds of hours [14]. We first investigate how NAS generates models to reduce
the training cost and optimize hardware resource usage. The optimization in
model generation can be divided into hyperparameter optimization (HPO) and
architecture optimization (AO). Models for hyperparameter tuning often have
the same types of operators with the same shape. Analogously, models in archi-
tecture optimization scenarios tend to have significant similarities as they share
a common skeleton [14]. Operators with the same type and parameters can
potentially be batched together and computed in a single operator kernel, which
enables more fine-grained GPU sharing by using less GPU memory to increase
SIMD utilization. Therefore, there are huge opportunities for AutoML frame-
works to optimize the training of multiple similar models and improve hardware
utilization.

Figure 2 illustrates an example that two models share multiple common oper-
ators, where Model 1 and Model 2 both have conv 3× 3 and ReLU. After batch-
ing, the input of the common operators (conv 3× 3, ReLu) are fused along the
batch dimension, and the outputs are split when operators (BatchNorm2d) vary.

Fig. 2. Operator batching: an example



Cross-Model Operator Batching for Neural Network Architecture Search 233

In the literature, there are apparent gaps between the requirement to support
this kind of cross-model optimization and the existing operator batching method.
[12] came up with the idea of inter-model horizontal fusion, which only deals
with HPO scenarios. However, the submitted training tasks generated in NAS
are disorder, which [12] would fail to deal with. Besides, the implementation
of operators batching in [14] is limited. First, the types of operator batching
it supports are limited (Conv2d only). Second, the operator batching strategy
in [14] is rudimentary. Specifically, this algorithm uses the idea of breadth-first
search (BFS) to compare the operators of each layer between the models until
they are different, which means that when the first few layers of the models are
different, the strategy’s performance will degrade.

To narrow the gaps mentioned above, we propose a scheme to improve the
batching efficiency in NAS scenarios. Our objective is to make full use of the
similarities among the models and improve training throughput, which is a key
performance indicator of training efficiency. Our contributions can be summa-
rized as follows:

– We formulate the DL job clustering and batching problem in NAS scenarios
described in Sect. 3. The objective is to maximize the throughput of model
training per unit time and help accelerate the process of model generation.

– We propose a novel Dynamical Programming based Batching strategy,
named DPBat. DPBat includes an efficient cluster algorithm that takes advan-
tage of the similarity among the models generated in NAS. Based on the
clustering result, DPBat determines an operator batching strategy by com-
prehensively investigating the performance improvement and overhead.

– We conduct extensive experiments by using Microsoft’s open source AutoML
framework NNI to evaluate the performance of our algorithm in real NAS
scenarios. The experimental results indicate that DPBat can significantly
improve training efficiency and reduce the overhead of operator batching,
achieving up to 3.7× higher throughput than the standard practice of run-
ning each job on a separate accelerator.

2 Motivation

Lack of Indicators to Measure Which Models Should be Batched
Together. The DNN models generated from the same search space tend to
have similarities, and those with the highest similarity should be put together
for operator batching. This is not taken into account by the existing batching
algorithm due to the lack of indicators that can accurately describe the simi-
larity of models. For example, the maximum common subgraph is not a good
indicator. Although a DNN model architecture can be depicted as a data flow
graph (DFG), the model similarity is not equivalent to the size of the largest
common subgraph. As Fig. 3(a) shows, each model is abstracted into a DFG,
where each node represents an operator or a subgraph. Obviously, model 1 and
model 2 have the largest common subgraph. But model 1 and model 3 can batch
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Fig. 3. Similarity and overhead in operator batching

more nodes with smaller common subgraphs. So a wiser solution should be to
batch model 1 and 3 together instead of model 1 and 2, even though they share
a larger common subgraph.

Limitation of the Current Batching Schemes. The idea of inter-model
horizontal fusion in [12] only applies to the situation where the models are all
the same except for hyperparameters. It can not handle the situation when
the architectures of submitted training models get different. Besides, there are
limitations in the implementation of operators batching in [14]. The types of
operator batching it supports are limited, and there is no efficient algorithm to
achieve operator batching between multiple models.

Lack of Consideration for Batching Cost. [12,14] take no consideration
of batching cost. Different from models in [12] which have the same architec-
ture, each layer of operators in the model can be batched without breakpoints
(the position that generates the batch/unbatch cost). In more general scenarios,
operators that can be batched are not continuous. As depicted in Fig. 3(b), the
input of common operators needs to be concated along the channel dimension
while the output is split at the breakpoint. The operations of concating and
splitting bring extra overhead in time and memory. At the same time, batching
of different operators brings different performance improvements. The factors
mentioned above will affect the choice of operators to be batched.

3 Problem Formulation

3.1 System Model

We consider a system with D = {d1, ..., d|D|} computing devices (e.g., GPUs)
and a set of training jobs J = {j1, ..., j|J |} generated by NAS approaches.
Each device di has a limited memory dmem

i . The architecture of each job can
be depicted as a data-flow graph (DFG) Gi(Ni, Ei). Here, Ni is the set of nodes
belonging to graph Gi, Ei is the set of directed edges defining the dependence
among nodes. A single node in graph Gi represents an operator (or a sub-graph)
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with one or multiple input and output tensors. Each node has its own runtime
and memory footprint, denote as nt

ij the execution time of node nij and nmem
ij

the memory occupied by nij . The training time of job ji in one iteration is
jti =

∑
nij∈Ni

nt
ij . And the memory occupied in the training process of ji is

jmem
i =

∑
nij∈Ni

nmem
ij .

3.2 Batching

If JK = {j1, ..., jk} is a job set selected for operator batching, assuming that all
nodes can be divided into b categories according to their attributes. The nodes
in the same category can be batched together. We denote as Ni = {n1

i , ..., n
|Ni|
i }

the nodes in the ith category. After batching, Ni will be replaced by a new
BatchNode Bi. The execution time Bt

i is usually smaller than N t
i . We denote as

pti = N t
i −Bt

i the benefit after batching Ni. The input of Bi need to be concated
along the channel dimension and the output are split when the successor node
of Bi is not BatchNode, which brings extra overhead in time. Denote as J̌K the
production of batching JK . All benefits and costs are P t

K =
∑b

i=1 pti and Bt
K ,

respectively.

3.3 Problem Definition

Based on the above system model, given the set of computing devices D and jobs
J , the execution time jti and occupied memory jmem

i of each job ji, as well as the
possible overhead in operator batching process, our problem is to select the jobs
with the most similar model architecture for operator batching without exceeding
the device memory limit. Our goal is to maximize the utilization of devices by
maximizing the average throughput of training models. Divide the task set J
into several subsets S = {s1, ..., s|S||∀i �= j, si ∩ sj = ∅, s1 ∪ ...∪ s|S| = J } based
on their similarity. The training jobs in si are Ji. For each set si, we need to
find a batching strategy that maximize P t

i −Bt
i , making J̌ t

i as small as possible.
A smaller J̌ t

i means the training process has higher throughput.

4 Algorithm Design

There are several parts to deal with operator batching between multiple models.
The first part is to calculate the similarity of two models (Algorithm 1) and then
cluster multiple models based on similarity (Algorithm 2). The next part is the
design of batching strategy of clustered models (Algorithm 3).

4.1 Clustering Based on Model’s Similarity

Since each model can be represented by a DFG, the similarity between models
correlates with the similarity between graphs. The methods of measuring graph
similarity include maximum common subgraph [2], graph edit distance [6], graph
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Algorithm 1: similarity
1 Input job ji, jk
2 Output similarity of ji and jk
3 Let Hi and Hk be the hash value lists of the topologically sorted nodes from

graph gi and gk ,respectively ;
4 lik ← length of the longest common subsequence of Hi and Hk;
5 ni, nk ← the number of nodes of ji and jk;

6 return 2×lik
ni+nk

isomorphism [5], etc. They cannot usually be solved in polynomial time. We
made some modifications based on the longest common subsequence (LCS) and
calculated the similarity between models by simplifying the graph’s structure.
We describe the details in Algorithm 1.

Algorithm 1 topologically sorts the nodes of the model’s graph and sets the
hash value of each node according to its parameters and attributes. Nodes with
the same hash value mean they can be batched together. Therefore, we use an
ordered list of hash values Hi to approximate the architecture of the original
model’s graph gi (Line 3). And refer to the idea of LCS (Line 4), the final result
lik can be used for measuring jobs’ similarity (Line 5 to Line 6).

By approximately calculating the similarity of the models by Algorithm 1,
we can cluster the job set J . Divide J into several subsets based on similarity
among models. The number of models in each subset depends on the sum of
the model memory, which cannot exceed the device memory limit. We describe
the details of how to cluster job set J in Algorithm 2. At the beginning of
each round of clustering, select a job ji that has not been clustered from the
job set and remove it from J (Line 6). Assign ji to set s (Line 7). When the
model memory in s does not exceed the limit, select a job from the unclustered
job set J and the clustered job set s respectively, and their similarity is the
highest among all the current jobs (Line 8 to Line 9). Add candidate model to
s without exceeding memory constraints and remove it from J (Line 10 to Line
12). Otherwise, restart the next round of clustering (Line 13 to Line 15).

Fig. 4. Possible situations of operator batching
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Algorithm 2: clustering
1 Input training jobs J
2 Output clustered job set S = {s1, s2, ...}
3 S ← ∅;
4 while J �= ∅ do
5 s ← ∅;
6 randomly select a model ji from J and remove it from J ;
7 s ← s ∪ ji;
8 while J �= ∅ and s does not exceed device memory do
9 jcand ← arg maxjm∈J maxjs∈s similarity(js, jm);

10 if s ∪ jcand won’t exceed device memory then
11 s ← s ∪ jcand;
12 Remove jcand from J ;

13 else
14 S ← S ∪s;
15 break;

4.2 Design of Batching Strategy

We first consider batching strategy design for two models and then extend it
to multiple models. For a pair of similar models j1 and j2, we can get l12 (the
maximum number of operators can be batched between model j1 and j2) by
LCS. However, greedy batching of all l12 operators maybe not be guaranteed
to bring the most benefits. Figure 4(a) shows one possible scenario. Because the
length of the operator sequence that can be continuously batched is too short, the
benefit of batching operator h may be less than the additional cost of integrating
and splitting tensors, leading to negative returns. In this case, the strategy that
batching the maximum number of operators is suboptimal.

Besides, the benefits of operator batching are also related to the type of
operators. As Fig. 4(b) shows, there are two batch strategies. Although strategy
2 batches fewer operators, it may yield greater benefits than strategy 1. The
number of breakpoints also affects the training time of the batched model. As
Fig. 4(c) shows, there are two types of fusion strategies that batch the same type
and number of operators. It can be concluded that strategy 2 is better than
strategy 1 because of fewer breakpoints and less overhead.

Therefore, in order to maximize the benefits of operator batching and reduce
the additional overhead, we propose DPBat (Algorithm 3), which takes break-
points, operator types, etc. into account. We guide the multi-model operator
batching through the optimal batching strategy of the two models. The details
are described in Algorithm 3. We use a 4-dimensional array to record the net
benefit generated during the operator batching process. For dp[i][j][0..1][0..1],
the 0 and 1 in the last two dimensions indicate whether the ith and jth ele-
ments are in the batched state, respectively. When the last two dimensions are
1 simultaneously, it means that the ith and jth elements are identical and can
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Fig. 5. Transition equation

be batched. Other values indicate that the ith and jth elements are different
and can not be batched. In addition to adding the benefit p of batching, dp also
needs to subtract the corresponding batch/unbatch cost at the breakpoint. The
specific transition equation is shown in Fig. 5. For a job set si, which includes
multiple models with similar architectures. We select a model from si and ši
respectively. Their similarity is the highest among all current model pairs. ši
stores those models that have been batched (Line 6 to Line 8). Using the tran-
sition equation in Fig. 5 to calculate the maximum net benefit of batching two
models. The batching strategy λ of two models corresponding to the maximum
value in dp is optimal. We incorporate the strategy λ obtained at each round
into the final result λ∗ until job set si becomes empty. (Line 9 to Line 11).

Algorithm 3: DPBat
1 Input similar job set si = {ji1, ji2, ...}
2 Output batching strategy λ∗

3 ši ← {ji1} and remove ji1 from si;
4 λ∗ ← ∅ ;
5 while si �= ∅ do
6 Select a pair of jobs j1, j2 with the highest similarity, j1 ∈ si, j2 ∈ ši. Let

H1, H2 be the hash value lists of their topologically sorted nodes;
7 ši ← ši ∪ j1 ;
8 Remove j1 from si;
9 Calculate the net benefit brought by different operator batching strategies

using equation in figure 5 ;
10 Let λ be the batching strategy corresponding to the maximum value in dp;
11 λ∗ ← λ∗ ∪ λ
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5 Evaluation

In this section, we evaluate the performance of DPBat in real NAS scenarios and
compare it with three baselines. Overall, the key findings include: DPBat signifi-
cantly improves training efficiency and reduces the overhead of operator batching.
DPBat achieves up to 3.7× higher training throughput than running each job seri-
ally, which is a common practice employed by the AutoML framework.

5.1 Experiment Settings

To evaluate DPBat in real scenarios, we used Microsoft’s NAS tool NNI which
can separate the cross model optimization from model generation. We follow the
same configurations as Retiarii [14], select representative NAS solutions MnasNet
[11], MobileNetV2-based model space and reinforcement learning exploration
strategy. In the experiment, the NAS approach will generate 1000 models in
10 batches(100 models each batch). DPBat and the other baselines are given
the same set of models in the same order for a fair comparison. These models
use the same batch size, which is 8 images (ImageNet’s training images [3]) per
mini-batch. We implemented the experiments on 4 NVIDIA Tesla P100 GPUs of
16GB GPU memory. The performance is measured by averaging the throughput
over 1000 mini-batches.

5.2 Three Baselines

We compare DPBat with the following three baselines.

– Serial: each training job is executed on a single accelerator, which is employed
by most DL frameworks [14].

– FCFS: FCFS is the policy used by NNI’s cross-graph optimization engine
and it clusters the jobs by order of arrival rather than similarity. Training
jobs arrive in batches of 100 models, sequentially dividing the task set J into
several subsets. Each subset contains the maximum number of models before
the GPU runs out of memory. For example, training jobs {j1, j2, ..., ji} are
divided into subset s1, {ji+1, ji+2, ..., jk} are divided into s2 and so on. The
design of the operator batching strategy is also extended from two models to
multiple models. For a pair of models, use the idea of BFS to compare the
DFG of the two models layer by layer and stop batching when the layer depth
is the same but the layer nodes are different.

– Greedy: Greedy is the policy described in Retiarii [14] which fuses all
common operators. It does not consider batch/unbatch cost and different
benefits of batching different kinds of operators, which means setting the
batch/unbatch cost and benefit in DPBat to 0.

5.3 Experiment Results

In this part, we present the experimental results on 1000 models and dissect
the source of improvement brought by DPBat. In all cases, our algorithm DPBat
outperforms the other baseline.
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Fig. 6. Performance of different algorithms

The Overall Performance. Figure 6(a) illustrates the four algorithms’ average
throughput of 1000 models. DPBat achieves higher throughput than all baselines,
2.1× (up to 4.7×) over Serial, 1.92× over FCFS, 1.25× over Greedy. FCFS
cannot make full use of the similarity between models because of the lack of
clustering. Moreover, its batching strategy cannot select all the operators that
can be batched either. Greedy focuses on the number of operators that can
be batched. While maximizing the number of batched operators, the additional
batch/unbatch overhead increases. It also ignores the fact that the benefit of
batched operators is related to the operator’s type. Figure 6(b) shows the average
batch/unbatch cost of 1000 models. Because taking breakpoints into account,
DPBat can significantly reduce additional overhead compared to Greedy.

Fig. 7. Performance of different operators

Sources of Improvements. To understand why DPBat achieves better perfor-
mance than the other baselines, we perform a deeper analysis using the PyTorch
profiler to measure the time and memory consumption of the model’s opera-
tors. The advantage of DPBat and Greedy is that they can dynamically select
batched models according to models’ characteristics, which leads to much higher
utilization of GPU memory. Batched operators enable more fine-grained GPU
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sharing by using less GPU memory to increase SIMD utilization. DPBat per-
forms better than Greedy mainly because of its awareness of operator batching
costs.

Fig. 8. Contribution of different operators to the performance improvement

We analyze the contribution of different types of operators to performance
improvement. The operator types in the training models mainly include ReLU,
Dropout, Linear, BatchNorm, and Conv2d. Figure 7 shows the running time
of different types of operators. When batching the same number of operators,
the benefits are obviously different. Batching Conv2d brings the highest bene-
fits, followed by BatchNorm. As Fig. 8 shows, Conv2d and BatchNorm are the
main sources of the benefit brought by operator batching. DPBat is better than
Greedy in picking out the type of operator that brings the most performance
improvement.

6 Conclusion

In this paper, we study the multi-model operator batching strategy in the NAS
scenario. By characterizing the model architecture as a DFG, calculating the
similarity of graphs approximately, and batching common operators of models
to improve training efficiency. Our objective is to maximize the throughput of
model training per unit time. We propose a heuristic algorithm named DPBat
to guide the operator batching among multiple models. Based on Microsoft’s
AutoML framework NNI, we apply DPBat to real NAS scenarios. Experiment
results show that DPBat significantly improves training efficiency and reduces
the overhead of operator batching. Furthermore, DPBat achieves up to 3.7×
higher training throughput than running each job on a separate accelerator,
which is a common practice employed by the AutoML framework. Although we
only focus on models whose DFGs are directed acyclic graphs, we believe our
results will inspire future work on optimizing batching strategy between multiple
models in a more general setting.
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Abstract. Nowadays, Time-Sensitive Networking (TSN) has widespread
application in many industrial fields, aiming to provide deterministic low-
latency network transmission. Traffic in TSN is roughly divided into three
categories: Time-Triggered (TT) traffic, Audio-Video-Bridging (AVB)
traffic, and Best-Effort (BE) traffic. These different traffic needs to travel
the network satisfying their respective reliability and performance require-
ments. Existing traffic routing and scheduling mechanisms mainly focus
on TT traffic but pay little attention to other traffic types. In this paper,
we present a novel Optimization Modulo Theories (OMT) formulation for
a comprehensive traffic routing and scheduling problem in TSN. Based on
this, we propose a novel reliability-aware routing and scheduling mech-
anisms for all traffic types, in order to improve their own transmission
reliability and performance. We conduct extensive evaluations to validate
the effectiveness of the proposed mechanisms, and the results confirm that
the proposed mechanism can really guarantee the reliability and latency
requirements of TT flows and improve the transmission utility of all flows
to a large extent.

Keywords: Time-Sensitive Networking · Optimization Modulo
Theories · Routing · Scheduling · Reliability-aware

1 Introduction

With the development of Internet and emergence of new industries, extensive
real-time applications need network connections with millisecond-level delay or
even lower [1]. In this case, the IEEE Time-Sensitive Networking working group
develops a series of standards and enhance Ethernet to TSN. TSN complies with
the standard Ethernet protocol system, thus can interconnect isolated industrial
control networks. Through various enhancing mechanisms like time synchroniza-
tion, traffic classification, shaping, scheduling and reliability standards, TSN can
provide low-latency and low-jitter transmission guarantees and support traffic
of different service types to transmit in the common network.

TSN divides traffic into three categories: Time-Triggered (TT) traffic, Audio-
Video-Bridging (AVB) traffic, and Best-Effort (BE) traffic. TT traffic represents
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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the highest-criticality traffic, which is used to provide deterministic low-latency
transmission for time-sensitive applications. AVB is a type of traffic with lower
criticality, which mainly supports various multimedia applications based on audio
and video and has more slack delay requirement than TT traffic. BE is the traf-
fic type with the lowest criticality, which includes traditional Internet traffic and
has no performance guarantees. To provide different levels of transmission reli-
ability for these traffic types, Frame Replication and Elimination for Reliability
(FRER) mechanism [2] allows the network to provide redundant paths for critical
frame transmissions and assigns each traffic type a redundancy level (RL) based
on how critical it is. And to support different levels of delay and bandwidth guar-
antees, different traffic types enter different queues at switch egress ports and the
Time Aware Shaper (TAS) controls the opening and closing of gates at the exit
of each queue and in-queue frame transmission according to the gate control list
(GCL). In this case, to optimize the overall network transmission performance,
the traffic control mechanism should characterize all routing paths and transmis-
sion time of all types of traffic. However, existing mechanisms mainly focus on
TT traffic scheduling under various performance goals and scenarios [3–11] but
leave out other traffic types’ utilities and lead to suboptimal overall transmission
performance.

In this paper, we formalize the joint routing and scheduling problem for
all types of traffic with diverse reliability and delay requirements as a mixed
ingeger programming problem based on Optimization Modulo Theories (OMT).
Therefore, a larger solution space can provide better scheduling options, either
improving the schedulability or enabling better scheduling quality. Based on for-
malization, we propose a reliability-aware comprehensive routing and scheduling
mechanisms, overally optimizing transmission utility of all traffic in the condition
of meeting delay and reliability requirements. We distinguish the reliability level
of different traffic, and then the routing paths and GCLs are solved, improving
the overall network transmission efficiency.

2 Related Work

At present, there are many studies on TT flow routing and scheduling, but less
work focuses on other traffic types. Craciunas et al. put forward a complete set
of constraints and some optimization suggestions in [3], but they do not propose
a complete scheduling optimization. In [4], a scheduling mechanism of TT flows
with the goal of minimizing the sum of application response time is proposed. In
[5], a variety of solutions are proposed to minimize the TT queue number, includ-
ing ILP and greedy algorithms. Pahlevan et al. [6] propose a list algorithm to
minimize the total transmission time, and Gavrilut et al. [7] study the scheduling
of TT and AVB flows with the objective of maximizing the soft real-time flow
utility function. In [8], a greedy algorithm is proposed to schedule AVB flows
in order to maximize bandwidth utilization. In [9], a strict priority algorithm is
proposed to schedule all flows. However, they do not take into account the effect
of routing on the network, which can lead to bandwidth underutilization and
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reduced schedulability. With the study of routing, Schweissguth et al. [10] pro-
posed an integer linear programming to minimize the sum of all flow latencies.
In [11], the author pays attention to schedulability of AVB flows, iteratively exe-
cutes k-shortest path algorithm and GRASP algorithm to search for the optimal
solution under this path, but the shortest path algorithm is not necessarily an
effective method that helps to enhance schedulability. Moreover, we can see that
reliability level has not been elaborately characterized in existing studies, while
it is an indispensable prerequisite of traffic going through the network reliably.

3 System Model

In this section, we establish the network architecture model of TSN, including
end devices, switches and physical links. On this basis, we model TSN traffic
according to their temporal and spatial characteristics.

3.1 Network Architecture Model

The network can be represented by a directed graph G = (V,E), where V is
the set of nodes, which refers to all devices in the network, and includes sub-
sets of switches and end stations, denoted as ES and SW separately. Therefore,
V = ES ∪ SW . E is the set of directed edges connecting nodes to each other.
The directed edge from va ∈ V to vb ∈ V represents a unidirectional commu-
nication link from va to vb. Hence, the full-duplex communication link between
va and vb is represented as two edges, [va, vb] ∈ E and [vb, va] ∈ E. Figure 1
shows a network with four end stations and six switches, where the black double
arrow represents the physical full duplex link, and the blue dotted lines indicate
different redundant traffic routes in the FRER mechanism.

Each switch egress port has 8 queues to store different types of traffic. Link
attributes are represented by a tuple 〈[va, vb].s, [va, vb].d〉, where [va, vb].s denotes
the bandwidth capacity of the link, and [va, vb].d denotes the propagation delay
on the medium. This model can describe links with different capacities and
delays.

Fig. 1. Network model in FRER Fig. 2. Traffic model and parameters
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3.2 Traffic Model

In TSN, devices communicate with each other through flows. A flow refers to
a group of periodic or aperiodic transmission of unicast data from a sender to
a receiver, and a frame is the data transfer unit within a flow. Typically, the
sender and receiver are both end stations, and the intermediate forward nodes
are switches. We use S to denote the set of all flows in a network, si ∈ S to denote
a flow. The flow path from the source node to the destination node through
intermediate nodes is expressed as [[vi1, vi2], ..., [vi(n−1), vin]]. The attributes of
a flow are represented by a tuple 〈si.T, si.D, si.S, si.rl〉, where si.T represents
the period of the flow, si.D indicates the maximum allowable end-to-end delay,
si.S denotes the message size in one cycle, and si.rl is the redundancy level,
which means the number of frame replicas. If si is aperiodic, si.T = ∞. If si has
no deadline, si.D = ∞.

The jth frame transmission instance of flow si on link [va, vb] is defined
by f

[va,vb]
i,j , where [va, vb] is a part of the communication path of si, and

the subscript i and j represent the indices of flow and frame, respectively.
Because of Ethernet’s Maximum Transmission Unit (MTU), a message may
be divided into multiple frames, each of which is smaller than or equal to
the MTU. The attributes of a frame instance are represented by a tuple
〈f [va,vb]

i,j .ρ, f
[va,vb]
i,j .T, f

[va,vb]
i,j .φ, f

[va,vb]
i,j .L〉. The four elements represent the size

of frame in bytes, the period, offset, and transmission duration of the frame,
respectively. f

[va,vb]
i,j .L is jointly determined by the link capacity [va, vb].s and

frame size f
[va,vb]
i,j .ρ, and the calculation formula is f

[va,vb]
i,j .L =

f
[va,vb]
i,j .ρ

[va,vb].s
. We

define the variable s
[va,vb]
i .q as the ID of the queue in which the flow resides.

Figure 2 shows the traffic model and the associated parameters.

4 Joint Routing and Scheduling Mechanism

In this section, we formalize the reliability-aware joint routing and schedul-
ing problem. We first propose the routing constraints, guaranteeing flows are
transmitted along practical paths and follow reliability levels. Then we propose
scheduling constraints, which not only formally regulate the transmission behav-
ior of flows, but also ensure the definite end-to-end performance metrics. Finally,
we analyze the utilities of different types of traffic as well as their relationships
with the end-to-end delay, and get their utility functions. According to these
functions, the optimization objective is set to improve the transmission utility
of all traffic.

4.1 Route Constraints

In order to describe the routing effect, we define a variable u
[va,vb]
i,m , which denotes

whether the mth replica of flow si uses link [va, vb]. The value of u
[va,vb]
i,m equals

1 if the flow replica passes through [va, vb] and 0 otherwise.
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Source Node Constraint. For each flow si in the network, it must start from
one end station and finish at another end station. Therefore, the flow will only
depart from but do not enter into the source node.

∀si ∈ S,∀vx ∈ V,∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl} :

∑

[vi1,vx]∈E

u
[vi1,vx]
i,m −

∑

[vx,vi1]∈E

u
[vx,vi1]
i,m = 1 (1)

For each si, the number of its outgoing links must be larger by 1 than that of
its ingoing links at its source node vi1.

Destination Node Constraint. For each flow si, its route must reach the
destination node. Therefore, similar to the previous constraint, the destination
node of the route only has incoming but no outgoing. The constraint is as follows:

∀si ∈ S,∀vx ∈ V,∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl} :

∑

[vin,vx]∈E

u
[vin,vx]
i,m −

∑

[vx,vin]∈E

u
[vx,vin]
i,m = −1 (2)

For each si, the number of its ingoing links must be larger by 1 than that of its
outgoing links at its destination node vin.

Intermediate Node Constraint. Besides source and destination nodes, each
flow will also go through intermediate nodes. The intermediate nodes have two
situations. If flow si passes through an intermediate node, there should be one
input and one output. If flow si does not pass through the node, there should be
no input or output. These two movements can be represented by the constraint:
as follows:

∀si ∈ S,∀va ∈ V \{vi1, vin},∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl} :

∑

[va,vb]∈E

u
[va,vb]
i,m −

∑

[vb,va]∈E

u
[vb,va]
i,m = 0 (3)

where va, vb represent the nodes on flow si’s path other than the source and
destination nodes of flow si.

Avoid Loop Constraint. When looking for the right route, there is no doubt
that one link should not be passed repeatedly, and the generation of loops should
be avoided. Therefore, we add constraints to make it impossible for all flows to
be routed via the loop. The constraint is as follows:

∀si ∈ S,∀va, vb ∈ V,∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl} :

∑

[va,vb]∈E

u
[va,vb]
i,m ≤ 1 (4)

Non-overlap Constraint. TSN addresses reliability in a spatially redundant
manner by FRER, which relies on multi-path routing. For traffic with differ-
ent criticality levels, redundancy levels are assigned in advance. The routes of
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flow replicas generated by a certain flow cannot overlap except the source and
destination links.

∀si ∈ S, ∀vx ∈ V \{vi1, vi2, vi(n−1), vin}, ∀m, r ∈ {x ∈ N
+| 0 < x ≤ si.rl}, m �= r :

∑

[vx,va]∈E

u
[vx,va]
i,m +

∑

[vx,vb]∈E

u
[vx,vb]
i,r ≤ 1 (5)

4.2 Scheduling Constraints

The task of scheduling is to get GCLs, thus each flow’s queue assignment on
each passing egress port s

[va,vb]
i .q and each frame’s transmission offset on each

passing egress port f
[va,vb]
i,j .φ should be decided.

Frame Constraint. For frames of any flows, this constraint guarantees that
each frame must be transmitted no earlier than time zero but within the frame
cycle.

∀si ∈ S, ∀[va, vb] ∈ E, ∀f
[va,vb]
i,j ∈ s

[va,vb]
i , ∀m ∈ {x ∈ N

+| 0 < x ≤ si.rl}, u
[va,vb]
i,m �= 0 :

(f
[va,vb]
i,j .φ � 0) ∧ (f

[va,vb]
i,j .φ + f

[va,vb]
i,j .L � f

[va,vb]
i,j .T )

(6)

Link Constraint. For any two frames, this constraint is to ensure they will not
overlap in time on the same link.

∀si, sj ∈ S, i �= j, ∀[va, vb] ∈ E, ∀f
[va,vb]
i,k ∈ s

[va,vb]
i ,

∀f
[va,vb]
j,l ∈ s

[va,vb]
j , ∀α ∈ [0,

hpj
i

si.T
− 1], ∀β ∈ [0,

hpj
i

sj .T
− 1],

∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl}, ∀r ∈ {x ∈ N

+| 0 < x ≤ sj .rl}, u
[va,vb]
i,m + u

[va,vb]
j,r � 2 :

(f
[va,vb]
i,k .φ + α × f

[va,vb]
i,k .T � f

[va,vb]
j,l .φ + β × f

[va,vb]
j,l .T + f

[va,vb]
j,l .L)∨

(f
[va,vb]
j,l .φ + β × f

[va,vb]
j,l .T � f

[va,vb]
i,k .φ + α × f

[va,vb]
i,k .T + f

[va,vb]
i,k .L)

(7)
where hpj

i = lcm(si.T, sj .T ) is the hyper period of si and sj . The hyper period is
calculated by the function lcm() that gives the least common multiple of flows’
periods. And α, β are indices of flows’ round within the hyper period.

Stream Transmission Constraint. For each frame, its transmission must be
along the flow routing path in order. According to the time synchronization pro-
tocol, we define δ to be the worst-case difference between any two synchronized
local clocks. The constraint is as follows:

∀si ∈ S,∀[va, vx], [vx, vb] ∈ E,∀f
[va,vx]
i,j ∈ s

[va,vx]
i ,∀f

[vx,vb]
i,j ∈ s

[vx,vb]
i ,

∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl}, u

[va,vx]
i,m + u

[vx,vb]
i,m � 2 :

(f [vx,vb]
i,j .φ − δ) � (f [va,vx]

i,j .φ + f
[va,vx]
i,j .L + [va, vx].d)

(8)



Reliability-Aware Comprehensive Routing and Scheduling 249

This constraint states that only after received on the previous link [va, vx] can
a frame be scheduled on the subsequent link [vx, vb].

Latency Constraint. In order to satisfy the timing requirements of flows, we
need to make sure that difference between the arrival and sending time of a flow
does not exceed the given maximum end-to-end latency. [vi1, vi2] denotes the link
starting from the source node of flow si and [vi(n−1), vin] the last link reaching
the destination node. At the same time, f

[va,vb]
i,1 and f

[va,vb]
i,Ni

are first and last

frames of s
[va,vb]
i respectively, where Ni = 	 si.S

MTU 
. And consider the worst-case
local clock differences between nodes δ, the constraint is shown below:

∀si ∈ S,∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl}, u

[vi1,vi2]
i,m + u

[vi(n−1),vin]

i,m � 2 :

(f [vi1,vi2]
i,1 .φ + si.D) ≥ (f [vi(n−1),vin]

i,Ni
.φ + f

[vi(n−1),vin]

i,Ni
.L)

(9)

Stream Isolation Constraint. In order to ensure deterministic transmission
order among flows, only when all frames of one flow leave the downstream egress
queue can the frames of another flow be scheduled from the upstream port. In
this context, the frame transmission order on the egress link is deterministic.
The constraint is shown below:

∀si, sj ∈ S, i �= j, ∀[va, vb] ∈ E, s
[va,vb]
i .q = s

[va,vb]
j .q, ∀f

[va,vb]
i,k ∈ s

[va,vb]
i , ∀f

[va,vb]
j,l ∈ s

[va,vb]
j ,

∀α ∈ [0,
hpji
si.T

− 1], ∀β ∈ [0,
hpji
sj .T

− 1], ∀m ∈ {x ∈ N
+| 0 < x ≤ si.rl},

∀r ∈ {x ∈ N
+| 0 < x ≤ sj .rl}, u

[va,vb]
i,m + u

[vy,va]
j,r � 2 or u

[va,vb]
j,r + u

[vx,va]
i,m � 2 :

(f
[va,vb]
i,Ni

.φ + f
[va,vb]
i,Ni

.L + α × si.T + δ � f
[vy,va]
j,1 .φ + β × sj .T + [vy , va].d)∨

(f
[va,vb]
j,Ni

.φ + f
[va,vb]
j,Ni

.L + β × sj .T + δ � f
[vx,va]
i,1 .φ + α × si.T + [vx, va].d)

(10)

4.3 Optimization Objective

In TSN, different types of traffic may have different sensitivities to their end-
to-end latency. The sensitivity can be represented by different utility functions
of latency. As shown in Fig. 3, the red line represents the TT traffic utility.
When the latency is within the deadline, the utility value remains the same, but
once exceeds the deadline, the utility value will immediately drops to zero. The
blue dotted lines represent utility functions of AVB traffic, whose utility values
gradually decline as latency increases. As is shown in the figure, the decreasing
utility function can be diverse, such as linear function, power function, Sigmoid
function, and so on. BE flow has no latency requirements, so it does not have
utility in context with latency.

We set Ui(ti) to denote the utility function of flow si, where ti refers to
the end-to-end latency of flow si and equals f

[vi(n−1),vin]

i,Ni
.φ + f

[vi(n−1),vin]

i,Ni
.L −

f
[vi1,vi2]
i,1 . On this basis, we determine the optimization goal of routing and
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Fig. 3. Completion-time-dependent utility functions

scheduling, that is maximizing the transmission utility of traffic. The optimiza-
tion objectives are formally expressed as follows:

Maximize
∑

si∈S

Ui(ti)

Ui(ti) =

⎧
⎪⎨

⎪⎩

si.u , ti ≤ si.D, si ∈ STT ,

0 , ti > si.D, si ∈ STT ,

fi(ti) , si ∈ SAV B .

where si.u is the maximum utility value of flow si, fi(ti) denotes the diverse
utility functions of AVB flows shown in Fig. 3.

4.4 Mechanism Design

Through solving the joint routing and scheduling problem defined above, we will
get the transmission path and offsets on of every flow that satisfy all constraints
and maximize the overall utility. Satisfiability Module Theory (SMT) checks the
satisfiability of logical formulas in certain background theories, such as linear
integer arithmetic (LA(Z)) and bit-vectors (BV). We consider that all routing
and scheduling constraints are already expressed in terms of the conjunction nor-
mal form, and are thus suitable for an SMT solver to check their satisfiability.
OMT is a new branch of SMT and can provide the best solution for a given min-
imum or maximum goal on the basis of checking satisfiability. We regard each
constraint as a disjunctive paradigm in the conjunctive paradigm, and the objec-
tive function as the optimization goal of OMT. Therefore, as shown in Algorithm
1, we use the OMT solver to solve our problem, where the check(constrains)
function checks the satisfiability of the constraints.

On the basis of optimal solution of TT and AVB flows, we address routing
and scheduling for BE flows. On one hand, BE flow is random and aperiodic, so it
is impossible to know its arrival time and traffic pattern in advance. On the other
hand, BE flows do not have latency requirement, but expect high throughput.
In this case, each time a BE flow enters the network, we assign it the path with
the most remaining idle time slots after TT and AVB flow allocations, and let it
fill these remaining slots as much as possible to maximize bandwidth utilization.
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Algorithm 1. Based OMT Joint Routing And Scheduling
Input: network topology G(V, E); characteristics of all flows S;
Output: Result: offset, queue ID, and routing path for each frame of all flows, utility

values for all flows;
1: constrains ← (1)...(10); Result ← ∅;
2: if check(constrains) then
3: while true do
4: if OMTsolver(constains, S) output solution then
5: newResult ← OMTsolver(constrains, S);
6: constrains.add(utility > newResult.utility);
7: Result ← newResult;
8: else
9: break;

10: end if
11: end while
12: end if
13: return Result

5 Evaluation

In this section, we conduct a series of simulations to verify the effectiveness of
our proposed mechanism. Firstly, we introduce our simulation settings, and then
we compare several common solutions.

5.1 Simulation Setup

The optimization solver by our code is deployed on an a machine with Intel i7-
9750H 2.60 GHz CPU and 16 GB memory. The objective function and related
constraints are implemented in Python and solved by the cp-model module of
Google’s open source software OR-Tools [12].

Linear, ring, tree, and snowflake are main topological types of industrial
control networks. To evaluate the mechanisms comprehensively, we choose the
actual Orion Crew Exploration Vehicle (CEV) network as the test topology
(Fig. 4), which contains the above topologies locally. In order to increase the
reliability of network, we add some links to facilitate spatial redundancy.

Fig. 4. Orion CEV network topology with added links
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In this group of simulations, we randomly generate a set of flows, selecting
the source and destination nodes of each flow stochastically from the end stations
in Fig. 4. The flow sizes are generated randomly from {100B, 200B, 400B, 800B}
and periods from {1 ms, 2 ms, 4 ms, 8 ms}. We set the redundancy level of TT
flows to 2, and of other flows to 1. We set the time operation granularity to 1 µs,
the bandwidth capacity of all links to 1 Gbps, and we ignore the link propagation
delay.

5.2 Evaluation Results

We consider three different scenarios in the simulation, including 10, 20, and 30
flows respectively to build diverse traffic loads, and the flow set is a mixture of
TT and AVB flows.

In our simulations, we compare our proposed OMT-based comprehensive
routing and scheduling (CRS) mechanism with two-step solutions that compute
routing first and then scheduling of traffic. We adopt two reference mechanisms
for comparison. One is the shortest path routing (SPR), in which each flow is
allocated to the shortest path in the network topology and a feasible scheduling
solution is obtained on these paths, the other is the load balancing routing
(LBR), which routes flows as evenly as possible on all paths and obtains a
feasible scheduling solution based on these paths. The performance metrics we
measured in the simulation are worst-case and average end-to-end delays of AVB
flows and of all flows, as well as overall utility of all flows.

As shown in Fig. 5, in the three scenarios, under our proposed CRS, the aver-
age and worst-case end-to-end delays of AVB flows are smaller than the results
under SPR and LBR. The delays of SPR are the largest, because it only consid-
ers the shortest path for routing, but does not consider bandwidth utilization or
solution space of scheduling from the overall network. Then the delays of LBR
are between those of CRS and SPR. On one hand, it considers load balancing.
On the other hand, it does not consider routing together with scheduling, leaving
out more superior joint solutions for overall utility. The overall results show that
our proposed CRS can indeed improve the transmission utilities of AVB flows.

Fig. 5. AVB flows scheduling results under different scenarios
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Fig. 6. All flows scheduling results under different scenarios

Fig. 7. Utility value for each scenario Fig. 8. Solver runtimes for each solution

Figure 6 shows the end-to-end delays of all flows under three scenarios. In
the scenario 1 and 2 with light traffic load, the routing paths solved by LBR
can already provide enough solution space for scheduling, so the joint solution
of CRS does not show an obvious advantage, and its average end-to-end delays
is slightly smaller than LBR. In the scenario 3 with heavy traffic load, shows a
great advantage of larger solution space so its overall delay is obviously smaller
than those of LBR and SPR.

Figure 7 depicts the total utility of all flows in three scenarios. The columns
in three different colors represent the utility values under CRS, SPR and LBR
respectively. We can see in all cases, the total utility is the largest under CRS, and
as the number of flows increases, the advantage of CRS becomes more significant.

As shown in Fig. 8, we can see that as the number of flows increases, the
runtimes for the three solutions also increase, especially the proposed CRS. The
reason is that although the joint solution provides a larger solution space, it also
requires more time to process. However, the solving process is offline, which will
not harm actual flow transmission. In this case, we can pre-process the solution
space to exclude some infeasible solutions in advance, which is applicable to
larger and more complex networks.

6 Conclusions

In this paper, we propose a reliability-aware comprehensive routing and schedul-
ing mechanism that is applicable to all traffic types in TSN to improve trans-
mission performance. In the constraints of routing and scheduling, we take into
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account the reliability capability of TSN through spatial redundancy. Besides,
we analyze the transmission utilities of different traffic types and maximize the
overall utility in the optimization objective. By solving the optimization problem
using OMT, we propose a comprehensive routing and scheduling mechanism. On
the premise of ensuring delay requirements of TT traffic, the proposed mecha-
nism can effectively improve the transmission utility of all traffic types. We verify
our proposed mechanisms through a group of simulations. The evaluation results
in multiple traffic scenarios show that the proposed mechanism can improve the
overall network performance, and the transmission utility of all flows.
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Abstract. Reconfigurable intelligent surface (RIS) is a promising tech-
nique in the 6G communication system, which effectively improves the
wireless propagation channel. Moreover, the RIS also benefits localiza-
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tion performance of the millimeter-wave (mmWave) system with a given
fixed RIS. The Cramér lower bound (CRLB) is derived for our proposed
3D RIS-based wireless propagation channel. We analyze the localiza-
tion accuracy of time-of-arrival (TOA) and angle-of-arrival (AOA). The
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1 Introduction

The 6G not only can provide intelligent communication for all things but also can
achieve high-precision positioning due to the excellent angular resolution. The
6G brings a myriad of new opportunities for wireless localization and sensing [1].
Moreover, the 6G is folded increases significantly for wireless localization. The
reconfigurable intelligent surface (RIS), which has aroused widespread discus-
sion, is considered as one of the leading enabling techniques of the 6G [2] and is
composed of a large number of low-cost passive units that can reconfigure their
physical parameters under the control of bias voltage [12,16], without any need
for additional baseband processing units, and radio frequency (RF) modules [7].
A RIS unit can operate as an intelligent reflector beyond Snell’s law [14] or as a
lens with nearly a continuous phase profile [8].

The RIS has the following three advantages for wireless positioning. Firstly,
they provide a variable signal propagation channel due to the phase and ampli-
tude of waveform propagation can be controlled in the air [18]. Secondly, they can
be deployed flexibly to extend the communication distance [17]. Thirdly, they
are effective since a large number of cost-effective passive units are equivalent
to large-scale antennas [9,10,19,21]. The RIS is widely used in many practical
communication scenarios, such as cell edge communication and passive beam-
forming, etc., [3,5,10], to improve the signal quality of the receivers. The RIS
has been similarly investigated in several studies in the localization literature,
e.g., [4,6,13,20]. In [4], localization in the near-field range of a RIS, functioning
as a lens, is studied. A single input single output (SISO) 2D localization problem
with synchronized signaling and multiple RIS with a uniform linear array (ULA)
has been investigated in [20] by deriving the Cramér-Rao lower bound (CRLB)
bounds. The CRLB has been derived in [13] for a 2D localization in the presence
of the RIS-aided MISO system with a ULA. In [6], He et al. have proposed a
joint localization and communication for a 2D wireless system comprising mul-
tiple RIS.

However, the fundamental localization analysis for the 6G MIMO system
using RIS has not been thoroughly investigated yet. Therefore, this paper
mainly analyzes the fundamental localization performance of the millimeter-
wave (mmWave) system with a given fixed RIS. First, we present a 3D RIS-based
wireless propagation channel. After that, the Fisher information matrix (FIM)
and the corresponding CRLB are derived for the MIMO 6G system. Finally, We
analyze the localization accuracy of time-of-arrival (TOA) and angle-of-arrival
(AOA). The results indicate that the RIS-based localization can improve local-
ization accuracy. Our main contributions are two folds.

– We employ the method of driving CRLB to analyze the estimation perfor-
mance for the 6G-localization with a given number of RIS units. Such a
method provides a general analytical formulation for the 6G-localization esti-
mation based on TOA or AOA. Thus, the RIS-based localization method can
significantly improve localization accuracy.

– We perform the CRLB simulation for the mobile station (MS) location. Our
results indicate that the TOA-based localization outperforms that based on
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the AOA since the excellent multipath resolution. Thus, the 6G system can
choose TOA as a localization estimation method instead of AOA, even if the
SNR is very low.

2 3D System and Channel Model

2.1 3D System Model

Table 1. Summary of the used notations

Term Definition

sBiRu The Tx signal for the BiRu-th BS

yMjRu The Rx signal for the MjRu-th MS

αB The antenna response matrix for the BS

βM The antenna response matrix for the MS

Φ The RIS signal matrix

˜H The communication channel matrix

N The white Gaussian noise matrix

H The propagation gain matrix

NB The number of the BS

NR The number of the RIS units

NM The number of the MS

θRu The elevation AOD of the Ru-th path

ϕRu The azimuth AOD of the Ru-th path

ϑRu The elevation AOA of the Ru-th path

φRu The azimuth AOA of the Ru-th path

b The position of the BS

m The position of the MS

r The positions of the RIS

We consider a RIS-assisted wireless localization system as depicted in Fig. 1,
which mainly consists of three components: 1) the base station (BS); 2) the
RIS; 3) the MS. In the wireless positioning system, the BS is the transmitter
used to generate the transmitted signals. The RIS is used to reflect the incident
signal to reconfigure the wireless propagation channel intelligently. The MS with
unknown locations is the receiver, such as smart devices, intelligent sensor nodes,
and underwater robots.

As a MIMO system, both the BS and MS are equipped with massive anten-
nas. Define NB , NR, and NM as the number for the BS, RIS and MS, respec-
tively. Therefore, the set of the number of the BS, RIS, and MS are defined as
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NB = {1, 2, · · · , NB}, NR = {1, 2, · · · , NR} and NM = {1, 2, · · · , NM} respec-
tively.

Since the small wavelength of mmWave, they can fit within the compact form.
Therefore, they can be viewed as two points, and their positions are denoted as
b = [bx, by, 0]T and m = [mx,my, 0]T , respectively. Compared with the BS
and MS, the RIS has a much larger size. Thus the RIS needs to be considered
separately. The positions of the Ru-th reflecting element are denoted as r =
[r1, · · · , rRu

· · · , rNR
], where rRu

= [rxRu
, ryRu

, rzRu
]T , in which u ∈ NR. The

values of b and r are assumed to be known, while the value of m is unknown
and requires to be estimated.

Fig. 1. 3D channel model.

We focus on the system is obstructed line-of-sight, where there exist NR

reflection paths through RIS. The TOA of Ru-th path is denoted as τRu
. The

elevation and azimuth angle-of-departure (AOD) of the Ru-th path are repre-
sented as θRu

and ϕRu
. The elevation and azimuth AOA of the Ru-th path are

denoted as ϑRu
and φRu

. Since the positions of BS and RIS are fixed and known,
we can obtain the values of θRu

and ϕRu
by means of the geometrical relation-

ship between them. The values of τRu
and φRu

are unknown and require to be
estimated. In addition, the position estimate is equivalent to the azimuth AOA
and TOA estimates due to the geometrical relationship. The related notations
are summarized in Table 1.

As indicated in Fig. 1, we attain the geometric relationship between the ele-
vation AOA or TOA and position, which is denoted as

φRu
= − arctan

[ |my − ryRu
|

|mx − rxRu
|
]

, (1)

and
τRu

=
1
c
(‖m − rRu

‖2 + ‖|rRu
− b‖2), (2)

where c is the light speed.
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2.2 Channel Model

Assume that the RIS is composed of NR small but large spacing auxiliary local-
ization units, whose matrix is Φ = ρdiag

[
ejψ1 , · · · , ejψNR

]T
, where ejψu , u ∈ NR

is an element-wise power operation, and ψu, u ∈ NR represents the phase shifts
of reflecting unit at RIS.

We ignore the bounce reflections from the ground or other scatterers since
such paths get attenuated much more significantly than the paths through
RIS. Based on the system model given above, the NM × NB channel matrix
is expressed as

H̃ = βM (HΦ)αH
B (3)

where the matrices αB and βM are the array response matrices at BS and MS,
the diagonal matrix H is the propagation gain matrix of NR paths. The array
response matrices αB ∈ CNB×NR and βM ∈ CNM×NR , which depend on the
angular parameters, is defined as

αB =

⎡
⎢⎣

1 · · · ej(1−1)kω̄NR

...
. . .

...
ej(NB−1)kω̄1 · · · ej(NB−1)kω̄NR

⎤
⎥⎦ (4)

βM =

⎡
⎢⎣

1 · · · ej(1−1)kω̌NR

...
. . .

...
ej(NM−1)kω̌1 · · · ej(NM−1)kω̌NR

⎤
⎥⎦ (5)

where ω̄Ru
= sin θRu

cos ϕRu
, and ω̌Ru

= sin ϑRu
cos φRu

, u ∈ NR, the parameter
k = 2πd/λ, where d and λ are the separation between Tx and Rx antennas at
BS or MS and the wavelength of transmitted signal, respectively. The diagonal
matrix H = diag[h], where the NR × 1 vector h = [h1, · · · , hNR

]T represents the
propagation gains of NR reflection paths.

2.3 Received Signal Model

For a 6G system, on the Tx side, the transmitted signal is S =[
sB1 , · · · , sBi

, · · · , sBNB

]T

∈ RNB×1, where sBi
(t) =

∑NM

n=1 Aej2πnf0(it−τRu ),
then f0 and A are the carrier frequency and baseband pulse amplitude with pule
length Ts, respectively.

On the Rx side, the received signal Y =
[
yM1 , · · · , yMj

, · · · , yMNM

]T

∈
CNM×1 at the MS is expressed as

Y = H̃S + N (6)

where matrix N ∈ CNM×1 is an additive white Gaussian noise with the ele-
ments independently drawn from CN (

0, σ2
)
, and the transmit power is PBS =

E
{
SHS

}
.
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3 Cramér-Rao Lower Bound on Position Estimation

The CRLB, which is expressed as the inverse of the FIM, sets the lower bound
of the covariance matrix of any unbiased estimate of unknown parameters [18].
CRLB not only presents the lower bound of estimation error but also indicates
the correlation between estimation error and location position. Therefore, ana-
lyzing CRLB can evaluate the performance of the parameter estimation method.

Based on the 3D communication channel model, the parameters to be esti-
mated can be defined as

η = [φ1, · · · , φNR
, τ1, · · · , τNR

, h1, · · · , hNR
]T (7)

We denote the unbiased estimate of η as η̂ satisfies the following inequality

E
[
(η̂ − η)(η̂ − η)H

] � J−1
η (8)

where A � B should be represented as matrix A − B is non-negative. The
matrix Jη is the 3NR×3NR FIM, and [Jη]−1

p,p is the CRLB for the p-th parameter
estimate. The (p, q)-th entry of Jη is determined as

[Jη ]p,q = E

[
∂ ln f(Y ;η)

∂ηp

∂ ln f(Y ;η)
∂ηq

]
(9)

where f(Y ;η) is the probability distribution function (pdf) of the received signal
Y conditioned on η, and ηp is the p-th entry of η, then p, q ∈ NR. The proof of
the identity in Eq. (9) is given in [15]. With Eq. (6), the pdf can be denoted as

f(Y ;η) =
1

(2π)
NM
2 det

1
2 (C)

e− 1
2 [(Y−μ)HC−1(Y−μ)] (10)

where matrix μ and C are the mean and variance matrix of the received signal
Y conditioned on η.

To further attain the FIM Jη, we employ the following Lemma:

Lemma 1. For the received signal Y ∈ CNM×1 follows the complex Gaussian
distribution CN (μ,C), the (p, q)-th entry of the FIM is expressed as

[Jη ]p,q =2Re
{

∂μH

∂ηp
C−1 ∂μ

∂ηq

}

+ tr
{

C−1 ∂C

∂ηp
C−1 ∂C

∂ηq

} (11)

where symbol Re and tr in the preceding equation indicate real part of a complex
matrix and matrix trace, respectively.

Proof. Please refer [11].
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By using the preceding Lemma, since C = σ2I does not depend on η, the (p, q)-
th entry of Jη in Eq. (9) is rewritten as

[Jη ]p,q =
2
σ2

Re
{

∂μH

∂ηp

∂μ

∂ηq

}
(12)

where the mean vector μ = H̃S.
First, for the azimuth AOA or TOA, we are more interested in the absolute

MS position m = [mx,my, 0]T . We use the chain rule to decompose Jm. The
position FIM is obtained as

Jm = FηmJηFT
ηm (13)

where Fηm = ∂ηT

∂m is the operator of firstorder partial derivatives.
Next, by computing the partial derivatives of the azimuth AOA and TOA

with respect to the MS position, we obtain the submatrices matrix of the Fηm

[Fφm]Ru
=

∂φRu

∂m
= [sin φRu

,− cos φRu
]T (14)

[Fτ m]Ru
=

∂τRu

∂m
=

1
c
[cos ϑRu

, sin ϑRu
]T (15)

Because the 2 × NR submatrix Fhm is a zero matrix, then based on the
multiplication principle of the partitioned matrix, Eq. (13) is simplified as

Jm =
2
σ2

F̃ηmJ̃ηF̃T
ηm (16)

where the matrix F̃ηm consists of the submatrices Fϕm and Fτ m, and the matrix
J̃η is the 2NR × 2NR submatrix as

J̃η =
[

Jφ Jτ φ

Jφτ Jτ

]
(17)

where Jφτ = Jτ φ .
According to Eq. (9) and Eq. (10), we have

[Jφ ]Ru
=

1
3
NM (NM − 1)(2NM − 1)(kω̌Ru

)2γRu
(18)

[Jτ ]Ru
=

4
3
NM (NM + 1)(2NM + 1)(π2κ2)γRu

(19)

where γRu
=

∫ Ts
0 |ρhRusBi

(t)|2 dt

σ2 indicate the signal-to-noise ratio (SNR) of the

Ru-th path, and κ2 =
∫ ∞

−∞ f2|SBi
(f)|2 df

∫ ∞
−∞ |SBi

(f)|2 df
represent the squared effective band-

width of sBi
(t), respectively, with SBi

(f) being the Fourier transform of sBi
(t).

The CRLB for the TOA positioning is expressed as

εTOA = tr
[(

Fτ mJτ FT
τ m

)−1
]

=
tr

(
Fτ mJτ FT

τ m

)
det (Fτ mJτ FT

τ m)
(20)
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Therefore, we have εTOA ≈ 3c2

NRNM (NM+1)(2NM+1)π2γRu (4κ2) . The CRLB
for the AOA positioning is obtained in a similar way, we have εAOA ≈

3
NRNM (NM−1)(2NM−1)γRu (kω̌Ru )2 .

Fig. 2. Simulation comparisons of ε between different positioning approaches.

4 Simulation

4.1 Simulation Setting

We set up the system parameters to be known or have been estimated: the
wavelength of mmWave signal is 0.006 m, and the RIS is a uniform planar array
in the vertical plane. The effective squared bandwidth κ is 500 MHz. To simplify
the simulation, we consider γRu

= γ0, which ranges from −10 to 10 dB.

4.2 Different Positioning Approaches

Fig. 3. Simulation comparisons of ε under different NR using TOA.
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Firstly, we evaluate different positioning approaches on a MIMO system. The
number of the RIS units and the MS are 4 and 6, respectively. The azimuth and
elevation AoA of the Ru-th path are both π/4, and the separation d is λ/2. We
adapt the SNR from −10 dB to 10 dB. Figure 2 indicates the simulation compar-
isons of ε between different positioning approaches. It can be clearly observed
that the localization based on TOA significantly outperforms that based on the
AOA. These comments can be explained to some extent by the detailed expres-
sion of εTOA and εAOA.

Noted that the NM has a greater influence on AOA-based localization, while
TOA-based localization is affected by the effective bandwidth κ. For Tx sig-
nals, the squared effective bandwidth κ is usually greater than 500 MHz, thus
(3c2)/

(
4κ2

)
is quite small. Therefore, AOA-based localization has to largely

increase the number of receive antennas to obtain a comparable accuracy with
TOA-based localization.

Fig. 4. Simulation comparisons of ε under different NR using AOA.

4.3 TOA Based Positioning

Next, we evaluate TOA positioning approaches on a MIMO system. The number
of the MS is 6. The number of RIS units has been increased from 2 to 6. We
adapt the SNR from −10 dB to 10 dB simultaneously. The results are indicated
in Fig. 3, which denotes simulation comparisons of ε under different NR using
TOA. In addition, we observe that the CRLB decreases as the NR and SNR
increases, and the CRLB for the MS position estimation can obtain 10−3 m,
i.e., millimeter-level localization can be attained using the RIS, which meets the
requirements for the 6G system.

4.4 AOA Based Positioning

Finally, we evaluate AOA positioning approaches on a MIMO system. The ele-
vation AOA of the Ru-th path is π/4. We adapt the SNR from −10 dB to 10
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Fig. 5. Simulation comparisons of ε under different azimuth φ using AOA.

Fig. 6. Simulation comparisons of ε under different NM using AOA.

dB. Firstly, we evaluate the impact of NR. In this experiment, The number of
RIS units has been increased from 2 to 6. The results indicate that the CRLB
is inversely proportional to the SNR, and higher accuracy can be attained using
the RIS with a mass of RIS units, as shown in Fig. 4. Secondly, we evaluate the
influence of azimuth φ. In this experiment, The azimuth change from 0 to π/3.
Figure 5 indicates that the CRLB depends on the direction of the incident wave.
When the azimuth φ → 0, we have sin φ → 0, the boundary diverges indefinitely.
Since φ → 0, the visible aperture of the antenna array tends to 0, which will
cause the angular resolution to disappear. Thirdly, we evaluate the influence of
NM . In this experiment, The number of MS has been increased from 2 to 3.
Figure 6 denotes that the dependence of the CRLB on NM . In addition, the
boundary is proportional to N3

M . Therefore the CRLB dependence on the num-
ber of Rx antennas is greatly strong, with dual dependence. On the one hand, the
SNR increases as NM increases. On the other hand, the antenna aperture also
increases with the number of antennas NM . Finally, we evaluate the influence of
the distance d. The distance between the Rx antennas has been increased from
λ/2 to 2λ. Figure 7 represents that the CRLB decreases with the distance d.
Higher accurate localization can be obtained when the distance d and azimuth
φ are large, more MS and more RIS units are utilized.
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In summary, we demonstrate that the positioning accuracy can be enhanced
using the RIS. It provides ideas for multi-path recognition for the 6G system. In
addition, in order to improve positioning accuracy, it is more advantageous to
adopt TOA.

Fig. 7. Simulation comparisons of ε under different d using AOA.

5 Conclusion

In this paper, we take advantage of the mmWave signal technology and introduce
RIS into the 6G communication system to make the localization more accurate.
The first contribution is to model the 3D RIS-assisted wireless localization sys-
tem. Secondly, we derive the CRLB for location estimation. Finally, we analyze
the TOA and AOA localization accuracy. Extensive simulation results indicate
that the RIS-based localization method can significantly improve localization
accuracy, and centimeter-level localization can be attained. Moreover, the simu-
lations also denote that the localization based on TOA outperforms that based
on the AOA when the number of the Rx and RIS units is fixed.
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Abstract. In the current critical situation of novel coronavirus, the use of con-
tactless gesture recognition method can reduce human contact and decrease the
probability of virus transmission. In this context, ultrasound-based sensing has
been widely concerned for its slow propagation speed, low sampling rate, and easy
access to devices. However, limited by the complexity of gestural movements and
insufficient training data, the accuracy and robustness of gesture recognition are
low. To solve this problem, we propose UltrasonicG, a system for highly robust
gesture recognition on ultrasonic devices. The system first converts a single audio
signal into a Doppler shift and subsequently extracts the feature values using the
Residual Neural Network (ResNet34) and uses Bi-directional Long Short-Term
Memory (Bi-LSTM) for gesture recognition. Themethod effectively improves the
accuracy of gesture recognition by combining the information of feature dimen-
sion with time dimension. To overcome the challenge of insufficient dataset, we
use data extension to expand the dataset.Wehave conducted extensive experiments
and evaluations on UltrasonicG in a variety of real scenarios. The experimental
results show thatUltrasonicG can recognize 15 kinds of gestureswith a recognition
distance of 0.5 m. And it has a high accuracy and robustness with a comprehensive
recognition rate of 98.8% under different environments and influencing factors.

Keywords: Ultrasonic sensing · Gesture recognition · Data extension · ResNet ·
Bi-LSTM

1 Introduction

In recent years, the world has suffered from a sudden new coronavirus that has had
a widespread impact on people’s lives. Especially in recent times, with recurrences in
several countries and regions around the world, and the epidemic prevention and control
situation remains severe. One of the main ways of COVID-19 transmission is cross-
contact [1]. And the use of public equipment can indirectly cause human-to-human
contact, raising the risk of virus transmission. Therefore, contactless gesture recognition
becomes an effectivemeans to reduce the risk of contact infection in epidemic prevention
and control.

Previous research work on gesture recognition has been based mainly on RF signals
and visual techniques. Implementing gesture recognition based on RF signals requires
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specialized hardware such as Universal Software Radio Peripherals (USRP), Frequency
Modulated Carrier Wave (FMCW), etc. It leads to high costs and hinders widespread
deployment. Visual-based gesture recognition technology has a high recognition rate,
but it depends on the brightness and background color of the environment and can easily
expose user privacy.

The advent of acoustic technology has overcome the limitations of the above men-
tioned technologies. Acoustics has been used bymany researchers to solve gesture recog-
nition problems due to its slow propagation speed, low sampling rate and easy access
to devices. Gao et al. [2] captures gesture movements using lightweight MobileNet by
using dual speakers and microphones in smartphones. LLAP [3] is able to realize two-
dimensional gesture tracking by measuring the phase change of the received signal.
Strata [4] is able to achieve more accurate recognition of gestures by estimating the
Channel Impulse Response (CIR) of the reflected signal.

Implementing an acoustic-based fine-grained and highly robust gesture recognition
system has two challenges due to the complexity of gesture movements. The first chal-
lenge comes from the lack of training data. There are currently few open source datasets
based on acoustic gesture recognition, but neural networks need sufficient training data.
The second challenge comes from how to recognize fine-grained gesture movements.
The acoustic work described above models the entire hand as a single reflection point. It
ignores the multipath effects caused by finger movements and doesn’t provide sufficient
resolution for gesture recognition.

To this end, this paper proposes the implementation of UltrasonicG, a highly robust
gesture recognition system on ultrasonic devices. First, the gesture action data are col-
lected using the ultrasonic device ASDP, and the amplitude information is used as the
feature value to denoise and smooth, then use Short-Time Fourier Transform (STFT)
to extract the Doppler shift of the motion data, and use the ResNet34 to extract the
feature value, and finally introduce Bi-LSTM to classify and recognize actions. Espe-
cially, we use data extension to address the above challenge of insufficient training data.
Data extension relies on our observation and analysis of experimental data. The spec-
trograms obtained under different gesture speed, hand movement direction and distance
to the transceiver influence factors will produce corresponding patterns, and observing
the change pattern of the spectrograms under different patterns makes the data after
extension cover more actual situations. Specifically, the contributions of this paper are
as follows:

• We propose data extension to automatically generate data without user participation
to meet the challenge of insufficient training data. In addition, we make the dataset
public.

• We improve the accuracy of action recognition by feeding the multiscale seman-
tic features extracted by the ResNet34 into the Bi-LSTM. This method enables the
classification network to combine the information of feature dimension with time
dimension.

• We conduct rigorous performance evaluations of the proposed approach in diverse
real scenarios. The experimental results show that Ultrasonic can reach a recognition
accuracy of about 98.8% and has good robustness.
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2 Related Work

In this section we present the current research related to gesture recognition in terms of
computer vision, Wi-Fi and acoustic waves.

Computer vision-based detection techniques use one or more cameras to capture
images of gesture movements to identify the associated actions. Camgoz et al. [5] pro-
posed an end-to-end deep learning approach to recognize continuous sign language ges-
tures fromvideo frames using SubNet andConnectionist Temporal Classification (CTC).
Umadevi and Divyasri et al. [6] used a segmentation method based on the skin back-
ground minus the hand area to identify five different hand gestures from video capture
data. Wi-Fi-based contactless gesture sensing is able to extract Channel State Informa-
tion (CSI) fromWi-Fi signal data as the sensing medium. Chen et al. [7] used ABLSTM
to implement basic action recognition on raw continuous CSI data. WiCatch [8] uses
a data fusion-based interference canceling algorithm and support vector machines to
accomplish gesture classification. Widar 3.0 [9] achieves cross-scene action recognition
by extracting BVP features from CSI to estimate the velocity component of the action
and the recognition rate is as high as 92.4%.

With speakers and microphones being widely used in electronic devices such as
smartphones, smart speakers and smart watches, acoustic sensing has gained the atten-
tion of many researchers. FingerIO [10] is able to accurately track moving objects by
transmitting Orthogonal Frequency Division Multiplexing (OFDM) modulated acoustic
signals and analyzing the signal variations caused by the moving object. UltraGesture
[11] measures the CIR amplitude of the reflected signal to identify the gesture. Wu et al.
[12] proposed the EchoWrite system, which is scalable to different forms of devices,
does not require a training process, and allows for user information security authenti-
cation through text input. Mao et al. [13] proposed a gesture motion tracking system
that uses a 4-element microphone array and dual speakers to measure the propagation
distance and angle of arrival (AoA) of reflected signals.Wang et al. [14] used a frequency
hopping mechanism to mitigate the frequency selective fading problem caused by mul-
tipath effects, and achieved a breakthrough in accuracy and robustness with respect to
the limitations of acoustic gesture recognition.

Unlike existing solutions mentioned above that either expose the user’s privacy or
interfere more with the multipath effect, not to mention the requirement for accuracy
and real-time in daily-life use. UltrasonicG can solve the above problem and achieve
fine-grained and highly robust gesture recognition.

3 System Design

3.1 Overview

The system proposed in this paper is divided into four main stages: data collection, data
processing, feature extraction and gesture classification. The system flow is shown in
Fig. 1. In the data collection and processing section, two speakers are used as transmitters
to send a single 20 kHz audio signal, a microphone is used as a receiver, and the receiving
device records and stores the original echo signal. After processing, the original echo
signal is converted to aDoppler shift, then filtered using a Butterworth low-pass filter and
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a short-timeFourier transform, followedby aGaussianfilter to smooth the image. Finally,
we use data extension to expand the dataset. In the feature extraction stage, the features of
the spectrogram are extracted using the ResNet34 algorithm to generate feature vectors.
The gesture classification stage inputs the feature vectors into the Bi-LSTM network for
classification and recognition.
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Fig. 1. System flow chart

3.2 Data Collection and Processing

Figure 2 shows a schematic diagram of the 15 gesture types and their corresponding
Doppler effects, with the horizontal axis representing time, the vertical axis representing
frequency, X→ indicating hand motion along the X-axis and double arrows (e.g., X↔)
indicating back-and-forth motion along the X-axis.

Fig. 2. Schematic diagram of hand gestures and their corresponding doppler patterns
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Data Collection. Life noise frequency is usually located at [1000, 4000] Hz, in order
to ensure that the signal frequency used in the experiment does not conflict with the life
noise frequency, this paper sets the speaker to send a single 20 kHz audio signal.

Data Processing. Figure 3 shows the gesture action data processing process, where the
horizontal axis represents time and the vertical axis represents frequency. The interfer-
ence of background noise is first eliminated using a Butterworth bandpass filter with a
frequency of [19000, 21000] Hz, after which the Doppler shift caused by the gesture
motion is extracted using STFT, and we estimate the frequency change of the signal after
reflection by calculating the Doppler shift to obtain the image shown in Fig. 3(a).

� f = f0 ×
∣
∣
∣
∣
1−vs ± vf

vs ∓ vf

∣
∣
∣
∣

(1)

where f0 is the frequency of the signal sent by the speaker (20 kHz), vs is the speed of
sound (340 m/s), and vf is the speed of gesture movement (maximum movement speed
4 m/s). So the synthetic frequency shift is about 470.6 Hz and the effective frequency
range should be within [19530, 20470] Hz.

To eliminate isolated noise generated by sudden hardware noise, the point where the
STFT value changes most dramatically is set as the threshold value, which is set to 0.15.
After that we use a Gaussian filter to smooth the image. For two-dimensional images,
the following Gaussian functions are used for smoothing:

G(x, y) = 1

2πσ 2 exp

(

−x2 + y2

2σ 2

)

(2)

where x is the distance of the horizontal axis from the origin, y is the distance of the
vertical axis from the origin and σ is the standard deviation of the Gaussian distribution.
The processed image is shown in Fig. 3(b).

To mitigate the effect of absolute amplitude and to obtain higher quality images, we
normalize and binarize the amplitude images, respectively. By the above operation, a
clearer spectrum is obtained as shown in Fig. 3(c).

(a) Bandpass Filtering Data (b) Gaussian Smoothing Data (c) Image Enhancement Data

Fig. 3. Gesture data processing

Finally, use data extension to expand the dataset. Data extension relies on our key
observations of the experimental data. Based on the initial experimental results, we
mainly consider the hand-to-device distance, gesture speed, and angle of arrival as the



272 Z. Hao et al.

three factors that may affect the spectrogram in the experiment. The experimental results
are shown in Fig. 4, where the horizontal axis represents time and the vertical axis
represents frequency fluctuations.
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Fig. 4. Exploration of data extension

Hand-to-DeviceDistance.Weexecuted the spread gesturewith the hand at 10 cm, 15 cm,
20 cm and 25 cm from the device, and the experimental results are shown in Fig. 4(a). The
width of the foreground region in the image represents the time to perform the gesture,
and the height represents the range of frequency fluctuations caused by the Doppler
shift. Without considering the gesture execution time, we observe the fore-ground area
of the image is scaled in the vertical direction. The larger frequency fluctuations, the
closer the hand to the device, instead, the farther the hand to the device. Based on the
law of frequency fluctuation with distance, the frequency fluctuation range becomes 1.3
times of the original one for every 5 cm decrease in distance. We can randomly scale the
vertical foreground area in the range of 0.7–1.3 times to simulate more hand-to-device
distance cases.

Different Arrival Angles. We performed the push gesture several times at 15 cm from
the device, holding it at 30°, 60°, 90°, 120°and 270° respectively. As shown in Fig. 4(b),
because the speaker and microphone are omni-directional, there is no difference in the
foreground area of the image when the gesture is executed in front of the device. The
Doppler shift caused by the gesture motion is not acquired when the execution gesture
angle is 270°.

Different Gesture Speeds.We executed the slide left gesture several times at 15 cm from
the device in four speeds from fast to slow. As shown in Fig. 4(c), as the speed gradually
slows down, the foreground area of the image is stretched proportionally in the horizontal
direction and compressed proportionally in the vertical direction. In practice, a gesture
lasts 0.5–2.5 s. Based on the law of frequency fluctuation with time, when the foreground
area time is t, we randomly expand the data in the range of t − 0.5 s to t + 0.5 s, and the
frequency fluctuation range decreases by 0.05 kHz for each 0.1 s increase in time.

In summary, we find that the angle-of-arrival factor does not require data extension,
while the hand-to-device distance and gesture speed require data extension. Data exten-
sion allows users to expand the dataset in a short period of time to meet the needs of the
classifier model even when a small amount of data is collected.
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3.3 Feature Extraction and Gesture Classification

In this paper, we use the ResNet34 [15] to extract features, and its structure is shown
in Fig. 5. The ResNet34 model has 34 convolutional layers and includes a total of 16
residual learning units. The spectrogramobtained fromdata extension is used as the input
to ResNet34, ensuring that the input images are all 64 × 64 pixels in size. After each
convolutional layer and before the activation function, Batch Normalization is used to
accelerate the convergence. The output of the last residual block is reshaped and flattened
to obtain the feature vector y = [

y1, y2, ...yT
]

, , the total number of feature vectors is
256(T = 256), and the length of each feature vector is 16.
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Fig. 5. Structure diagram of ResNet34 network

Bi-LSTM algorithm is used as a gesture recognition classifier, and its structure is
shown in Fig. 6. The feature vectors y extracted by the ResNet34 are passed to two
LSTM layers and each of which has T (T = 256) LSTM memory cell. To improve the
generalization ability of the model, the dropout probability is set to 0.8. These two layers
perform sequence feature extraction in opposite directions, and each LSTMmemory cell
will be computed by three gating units.

ft = σ
(

Wf · [

ht−1, xt
] + bf

)

(3)

it = σ
(

Wi ·
[

ht−1, xt
] + bi

)

(4)

Ct = ft ∗ Ct−1 + it ∗ tanh
(

Wc · [

ht−1, xt
] + bc

)

(5)

ht = σ
(

W0 · [

ht−1, xt
] + b0

) ∗ tanh(Ct) (6)

where ht−1 is the output of the spectrogram sequence at the previous moment, xt is the
input of the spectrogram sequence at the current moment, W and b are the weight term
and bias term to be learned, respectively. σ is the Sigmoid operation, ft is the output result
of the forgetting gate at moment t, it is the information of the spectrogram sequence to
be activated at moment t, Ct−1 and Ct are the state of the spectrogram feature sequence
at moment t−1 and moment t, respectively, and ht is the output result of the output gate
at moment t.

After calculation,Hforward andHbackward can be obtained. Then, we concatenate and
flattenHforward andHbackward to obtain the vector p. Since the classifier eventually needs
to recognize 15 gestures, we design a fully connected neural network with 15 output
neurons. Finally, a softmax operation is performed on the output of the fully connected
layer to accurately classify the different gestures.
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Fig. 6. Structure diagram of Bi-LSTM netwok

4 Experimentation and Evaluation

4.1 Experiment Setup

In this paper, the Acoustic Software Defined Radios Platform (ASDP) [16] equipped
with one microphone and two speakers was selected as the data collection tool, and the
platform is shown in Fig. 7(a). Set the speaker to emit a 20 kHz continuous single audio
signal and set the microphone sampling rate to 44.1 kHz.

Tx Rx

Acoustic 
baseband

Tx
Tx

Rx

Tx
Rx

Tx

(a) Data Collection Equipment (b) Laboratory (c) Hall

Fig. 7. Experimental equipment and experimental environment

In this paper, hand gestures are executed in two scenarios: laboratory and Hall.
Laboratories containing regularly distributed tables and chairs with a high impact of
multipath effects, which can be used as complex environments. Halls are almost free
of obstacles, and the multipath effect has little effect, so they can be used as open
environments. The experimental scenario is shown in Fig. 7(b)(c).

We invited 6 male volunteers and 6 female volunteers to perform 15 gestures and
collected 450 sets of data under 4 practical influencing factors: distance, speed, noise
and angle. After that, 20× data extension is done on the training data, and the amount
of extended data is 9000.

For our experimental evaluation, we explored the error rate of action recognition at
different distances from the device, at different angles, and at different gesture speeds,
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with the error rate defined as follows:

error ratio = Nest − Ntruth

Ntruth
× 100% (7)

where Nest is the number of predicted gestures of a certain type, and Ntruth is the number
of real recorded gestures of a certain type. Note that the error rate of one test may be
negative and the evaluation results are averaged over the test records.

4.2 Experiment Evaluation

Analysis of Different Influencing Factors. In real scenarios, the distance between the
user and the transceiver, the angle of arrival and the speed of the gesture will be different
each time the user performs the action. In order to find the best distance, the best angle
and the best speed when executing the gesture, we explore the different influencing
factors from the perspective of error rate, and the experimental results are shown in
Fig. 8.
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Fig. 8. Impact on different distance, angle and speed

The effect of distance on the error rate of gesture recognition is shown in Fig. 8(a).
It can be seen from the figure that the average gesture recognition error rate reaches

0.02%when the distance from the device is 15 cm.And as the distance increases, the error
rate of gesture recognition keeps increasing, which is due to the increased interference
of the reflected signal by multipath effect. When the distance decreases to less than 15
cm, the signal reflected by the hand is not completely received by the microphone, and
the error rate of gesture recognition rises to 0.17%. The experimental results prove that
the system can maintain a good performance within 35 cm range. The effect of angle of
arrival on the error rate of gesture recognition is shown in Fig. 8(b). The figure shows
that the lowest error rate can be achieved when the experimenter performs the gesture at
90° to the device, which can reach 0.02%. This is because the direction of hand motion
is perpendicular to the signal domain and has a greater effect on the signal. When the
experimenter is at other angles to the device, the error rate of hand gesture recognition
increases slightly, which is due to the fact that the movement of the hand generates a
horizontal motion component, resulting in a smaller amplitude of the signal. The effect
of speed on the error rate of gesture recognition is shown in Fig. 8(c). As can be seen
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from the figure, when the gesture duration is 1.5 s, the error rate of gesture recognition is
the lowest, which can reach 0.01%. When the gesture duration is too short, it is difficult
for the microphone to receive the complete signal, and when the gesture duration is too
long, the signal change caused by Doppler shift is weak. The experimental results prove
that the gesture speed can achieve good performance in the range of 2.5 s.

Analysis of Robust Performance. In order to test the robustness of the system, this
paper designs experiments in terms of three aspects: environmental noise, number of
interfering persons and different users. 1)Ask an experimenter to perform15gestures in a
noise-free, low-frequency noise, 19 kHzultrasonic noise laboratory and hall environment
at a distance of 15 cm from the device, respectively.2) Ask an experimenter to perform
the experiment in four situations with 0, 1 static, 1 mild and 1 severe interference. 3) Ask
Six experimenters to perform the same gesture, with experimenters 1–3 being female (3
being elderly) and experimenters 4–6 being male (4 being elderly). The experimental
results are shown in the Fig. 9.
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Fig. 9. Robustness exploration

The results in Fig. 9(a) show that the gesture recognition accuracy of the system
is maintained above 98% in all cases. From the environmental point of view, it can be
seen that the gesture recognition results are higher in the hall than in the laboratory,
due to the fact that the laboratory contains regularly distributed tables and chairs with
a high influence of multipath effects. From the perspective of noise, it can be seen
that noise has almost no effect on the experimental results, which verifies that the data
processing method proposed in this paper can remove noise well. As can be seen from
Fig. 9(b), the accuracy of gesture recognition is 95.9%when the interferer is static. As the
interference level increases, the gesture recognition accuracydecreases continuously, and
when serious interference occurs, the gesture recognition accuracy still remains above
84%. The experimental results show that the system proposed in this paper has certain
anti-interference capability. Figure 9(c) shows that the system has a high recognition
rate for the actions performed by all six experimenters. From a gender perspective, it
can be seen that the recognition results are slightly higher for males than females, due
to the larger palms of males. The poorer recognition results in the elderly are due to the
slower execution of gestures and the smaller signal changes caused by Doppler shift in
the elderly. The combined results show that the system has high robustness.
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Overall System Performance Evaluation. In order to evaluate the overall perfor-
mance of the system,we conduct a comprehensive investigation in three aspects: different
practical factors, data processing methods and data extension. The experimental results
are shown in Fig. 10.
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Fig. 10. Overall system performance exploration

Figure 10(a) shows the evaluation results of the system under different practical
influence factors. The figure shows that the system exceeds 96% in the three evaluation
metrics of precision, recall and F1 score under each influence factor, and the overall
system performance reaches 98%. Recognition results are slightly degraded when the
gesture is too far from the device or when the gesture speed is too slow. Figure 10(b)
shows the gesture recognition accuracy of multiple alternative models with and without
data extension, respectively. Among them, VGG16, ResNet34 and ResNet101 are CNN
models, and VGG16B, ResNet34B and ResNet101B are “CNN + Bi-LSTM” models.
From the model perspective, it can be seen that the best results can be achieved by
using a combination of ResNet34 extracted feature values and Bi-LSTM classification
recognition. In addition, it is possible to cover more gesture variations by performing
20× data extension. Figure 10(c) shows the Cumulative Distribution Function (CDF) of
each of the three methods. As can be seen from the figure, the CDF value of the method
proposed in this paper is able to reach 1 as soon as possible, while the value of the CDF of
the other two methods rises more slowly. The combined results show that our proposed
method can achieve higher accuracy and robustness in gesture recognition.

5 Conclusion

In this paper, we propose UltrasonicG, a system for implementing highly robust gesture
recognition on ultrasonic devices. The system can recognize 15 types of gestures with
high accuracy and robustness. To achieve fine-grained gesture recognition, ResNet34
is used to extract feature values and Bi-LSTM for gesture classification. To further
improve the robustness of the system, data extension is used for different gesture speed
and transceiver distance influencing factors. Finally, we constructed a dataset containing
gestural behaviors and made it open source. The experimental results show that the
system recognizes a distance of 0.5 m with an overall correct rate of 98.8%. In future
work, we will further investigate how to recognize two-handed and continuous dynamic
gesture behaviors. In addition, we will deploy the scheme to smart devices.
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Abstract. Maritime Ad hoc networks are a type of decentralised wire-
less network with rapid networking and multi-hop routing, which are
independent of fixed base stations. Recently, Ad hoc networks have
started to play an increasingly important role in military command,
emergency rescue, disaster relief, temporary meetings, and other occa-
sions. However, as the network topology changes rapidly and the node
energy and network bandwidth are limited, discovering and maintaining
reliable transmission paths have become a highly topical challenge. In
order to solve the problem that distributed routing planning of large-
scale Ad hoc networks cannot adapt dynamic changes in network topol-
ogy, and considering the differences of network nodes, this paper proposes
federated reinforcement learning to improve the efficiency of distributed
routing planning through the joint learning of similar nodes. Different
network nodes have different routing policies, but the routing tables of
neighboring nodes are very similar. Therefore, our federated reinforce-
ment algorithm learns nodes with similar routing policies. In this study, a
communication system simulation software is specially designed to eval-
uate the performance of the proposed algorithm.

Keywords: Federated reinforcement learning · Routing planning ·
Maritime ad hoc network

1 Introduction

Ad Hoc networks are a distinct type of wireless communication network. And Ad
Hoc networks has a certain flexibility in the networking process and a reasonably
strong ability to adapt to the environment relatively fast. Within a limited area,

Supported by organization 2020YFB1806800.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 279–290, 2022.
https://doi.org/10.1007/978-3-031-19214-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-19214-2_23


280 C. Han et al.

more mobile conditions can be provided to improve the working environment
for the operation of mobile communication equipment and meet specific work
needs. Ad Hoc networks can also be widely used to provide wireless network sup-
port in disaster rescue, remote area development, national defence [11], campus
teaching [13] and maritime communications. In wireless maritime Ad Hoc net-
works, network communication depends on the cooperation between vessels and
information forwarding between vessels [2]. As vessels move, the network topol-
ogy changes dynamically. In wireless self-organising networks, all vessels have
equal status and virtually the same complexity. Two vessels that are far away
and cannot communicate directly can forward control and data messages via
multi-hop relay to complete the communication process. Wireless maritime Ad
Hoc networks have enormous potential, which can be better applied in various
communication fields.

The deployment of multi-hop relay and forwarding has broad future applica-
tion prospects, particularly in deep-sea areas where there are few users as it can
save deployment costs and makes data transmission between users more flexible.
However, many problems related to the reliability of multi-hop relay transmission
still need to be solved to ensure the reliability of service transmission, especially
how to avoid packet congestion in the network. To this end, some recent works
have proposed various solutions [5].

Under the new situation, Ad Hoc network communication can be regarded
as a layered control network system composed of multiple agents, which adopts
edge computing and relies on the distributed parallel mode among intelligent
groups to share information and make collaborative decisions, and finally com-
pletes the communication task [8]. At the same time, edge computing reduces
the network communication load and improves the system operation efficiency
through independent decision-making, key information sharing and task collabo-
ration. In the process of multi-agent execution, cooperative and efficient routing
is crucial to improve network performance. This problem is called multi-agent
communication planning. Designed to generate good communication routes that
guide packets from the source node to the specified destination node.

Recently, many scholars have solved large-scale problems by assigning global
control to local agents, which is a significant improvement over centralized rein-
forcement learning [3]. Unfortunately, in the case of limited communication, each
agent is only partially observable of the environment, so it is easy to fall into local
optimality. However, for large collaborative communication problems, the cen-
tralized RL approach is usually not feasible because: 1) Collecting all the mar-
itime observations in the network to form a global state, which in practice causes
high latency; 2) The joint action space of each agent grows exponentially with the
increase of the number of agents. Therefore, it is more effective and reasonable
to make the large-scale cooperative communication as a cooperative multi-agent
decision-making system, that is, each agent controls by local observation.

Distributed wireless maritime Ad Hoc networks use distributed scheduling
[9], where nodes share local observations to avoid congestion during message
transmission. In distributed networks, nodes only need to maintain and forward
the information of neighbour nodes to complete resource scheduling, therefore
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reducing frequent signalling forwarding between nodes, and greatly reducing
overheads compared with centralised networks [6]. Therefore, the in-depth study
of distributed wireless multi-hop maritime Ad Hoc networks is of great signif-
icance to the development and future application of wireless communication
networks.

We treated each node of the maritime Ad Hoc network as an agent and
transformed the routing planning problem into a multi-agent communication
problem. This paper combines reinforcement and federated learning and pro-
poses that the resulting combined federated reinforcement learning should be
combined to solve the above issues. In reinforcement learning to learning as a
testing evaluation process, the agent chooses an environment action and the
environment, after accepting the action state change, simultaneously produces
a strengthening feedback signal (award or punish) to the agent.

Federated learning stores the data of each node locally so the federated sys-
tem can establish a virtual common model without violating data privacy laws
and regulations by exchanging encrypted parameters [7,12]. In this paper, the
actions selected in federated reinforcement learning (FRL) not only affect the
current node reinforcement value, but also affect the neighbouring states and
final reinforcement value. This virtual model is in effect a combined optimal
model; however, when creating virtual models, the data itself does not move,
nor does it compromise privacy or affect data compliance. In this way, con-
structed models achieve adjacent region goals in their respective regions. The
main contributions of this paper are as follows.

1. Modeling and Formulation: We formulate the distributed joint routing
problem under maritime and network as markov decision process. For dis-
tributed decision making, we aim to reduce the total cost of communication
computation while considering the impact of other agents’ decision results
on the current agent. In addition, we hope that the algorithm can take into
account the similarity and difference between nodes.

2. Algorithm Design: Joint reinforcement learning proposed by us can
improve the efficiency of distributed routing planning through joint learn-
ing of similar nodes. Considering the differences of network nodes, it solves
the problem that distributed routing planning of large-scale Ad hoc networks
cannot adapt to the dynamic changes of network topology.

3. Experimental Verification and Evaluation: We performed extensive sim-
ulations to evaluate the FRL algorithm. The simulation results not only verify
the theoretical tradeoff of FRL, but also show that the FRL algorithm can
effectively reduce the total cost of the system and improve the level of algo-
rithm personalization.

The remainder of this paper is organized as follows. A typical mobile maritime
Ad Hoc network model is given in Sect. 2 and problem formulation is presented
in Sect. 2.4. FRL algorithm is proposed, as well as its advantages in processing
heterogeneous data are demonstrated in Section in Sect. 3. In Sect. 4, Simulation
results of packet routing planning demonstrate the superiority of the proposed
method. We conclude this paper with future work in Sect. 5.
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2 Problem Formulation

Maritime Ad Hoc networks receive signals wirelessly. Information can be for-
warded to other nodes beyond the wireless transmission range of its own node,
that is, any network topology can be formed through wireless connection. It is
also a self-organising, infrastructure-free wireless network.

2.1 The Maritime Ad Hoc Network Model

A typical mobile maritime Ad Hoc network model is shown in Fig. 1. In this
model, every node in the network is mobile, there is no fixed infrastructure,
and the status of nodes is equal. Each node (mobile terminal) is responsible for
forwarding packets, finding routes, and maintaining paths. A node faces both a
user and a device. Due to the wireless coverage of nodes, fixed object blocking
and other reasons, communication between nodes in maritime Ad Hoc networks
is generally multi-hop. As shown in Fig. 1, nodes A and I cannot communicate
directly, but can communicate through the path A-B-D-F-I.

Fig. 1. An illustration of Ad Hoc network

2.2 Data Packet

Network data is transmitted in packets, and each packet has a sending node,
destination node, and a current node [10]. We use the arrival time and arrival
rate of packets to evaluate routing decisions. If the packet arrives at the desti-
nation node before the specified time or exceeds the specified time, the current
packet will be deleted, and new packets will be injected into the network. The
data packets P = {P1, · · · , Pn} can be transmitted on nodes J = {J1, · · · , Jm}.
The packet has parameters i, j, c ∈ {1, · · · ,m}, where i represents the sending
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node, j represents the receiving node, and c represents the current node. Nodes
include sending queues, receiving queues, sending power, growth rate, and other
attributes. The growth rate is expressed as λ ∈ {0, 1}, it represents the change
of the number of packets on nodes.

2.3 Optimization Objectives

The goal is to minimise the total time delay for transferring data depending on
the network state. How to select the route, i.e., which node is the next packet hop
to different nodes, can be summarised as a mathematical agent action selection
problem. In this interpretation, the node plays the role of an agent, the packet
route can be represented by the node action, and the channel quality can be
expressed as the edge weight.

We transformed the maritime Ad Hoc network packet routing problem into
a multi-agent behaviour selection problem. Corresponding to the multi-agent
approach, we use s ∈ S to represent the state set of adjacent nodes, s represents
a specific state, a ∈ A represents a limited action set, and a represents a specific
action. Let T (S, a, S′) ∼ Pr(S, a, S′) be the agent transition model which pre-
dicts the next state s′ based on the current state S and action a, where the Pr

represents the probability of taking action a from s to s′; R(s, a) = E[Rt+1 |s, a ]
be an immediate reward for an action taken by an agent.

2.4 Problem Formulation

In this section, we propose a formula for the time delay minimisation problem
based on reinforcement learning. A certain agent behavioural strategy leads to a
positive reward in the environment, and then the tendency of the agent to enact
this behavioural strategy in the future will be strengthened [4]. The agent’s goal
is to discover the optimal strategy in each discrete state to maximise the desired
discount reward. We assume that the source domain is UA = {(xA

i , yA
i )}MA

i=1 , and
the target domain is UB = {(xB

i , yB
i )}MA

i=1 , DA and DB are the hidden special
invariants between the source domain and the target domain respectively. We
define the classification function of the target domain as:

ψ(dA
i ) =

1
LA

LB∑

j

yB
i dB

i (dA
i )′ = ΦBΩ(dA

i ) (1)

The objective function is shown as follows:

arg min
ΘA,ΘB

L1 =
Mc∑

i

l1(yB
i , Ψ(dA

i )) (2)

arg min
ΘA,ΘB

L2 =
MAB∑

i

l2(dB
i , dB

i ) (3)
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The overall objective function is shown as follows:

arg min
ΘA,ΘB

L = L1 + γL2 +
λ

2
(
∥∥ΘA

∥∥2
+

∥∥ΘB
∥∥2

) (4)

3 Proposed Algorithms

To achieve efficient route allocation with lower time delays, isolated routing
problems are transformed into multi-agent cooperative optimisation problems.
We propose a federated reinforcement learning algorithm, which attaches a fed-
erated learning mechanism with similar nodes to reinforcement learning.

3.1 Motivation for Algorithm

In order to minimise the total packet forwarding process time, i.e., the waiting
time plus transfer time, it is necessary to make optimal routing decisions based
on the observations of surrounding nodes. Considering the policy similarity of
neighbouring nodes, we used federated reinforcement learning to schedule the
next hop packet selection.

The traditional centralized routing decision algorithm is not suitable for this
scenario, especially when the number of packets is large. Another scenario is that
centralized dispatching can lead to significant wait times when the packet is in an
area where communication is poor. Based on the above problems, we consider to
use a distributed routing decision algorithm. Meanwhile, since this problem has
many influencing factors and is entangled with each other, it is not convenient
to solve it in an analytical way, so we use the method of federated reinforce-
ment learning to solve it. Intelligent routing algorithm based on reinforcement
learning is able to handle higher dimensions of state characteristic information
network, adaptive to different application scenarios and changes in the network
environment, the reinforcement learning model and gives the intelligent routing
algorithm not only focus on the current routing effect, more predictable future
network status changes, and in advance to avoid network congestion what might
happen in the future.

3.2 The Learning Common Policy Features of Similar Nodes

In an maritime Ad Hoc network, similar nodes have similar data and rout-
ing policies. They are expected to improve the inference accuracy of the model
through joint learning. We cannot just apply federated learning to both sides of
the data because the routing policies of different nodes are different. Both par-
ties establish a reinforcement learning routing decision model, which have been
recognised by their users in data acquisition. The problem is then how to estab-
lish high-quality models at each terminal. Due to incomplete or insufficient data,
the reinforcement learning model at each end may not be established or lacks the
ideal effect. Federated reinforcement learning can solve this problem by ensuring
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that the data of each node does not go out locally, allowing the federated system
to optimise the learning model of all parties through an encrypted parameter
exchange. However, when creating virtual models, the data itself does not move,
nor does it compromise privacy or affect data compliance. Consequently, the
constructed models serve only local goals within their respective regions.

Fig. 2. Node association learning

Partition neighbor path planning based on federated learning focuses on how
to map the data of neighbor nodes and current nodes from the original feature
space to the new feature space. In this way, the data distribution of the base
neighbor node is roughly the same as that of the current node, so that the labeled
data samples of the base neighbor can be better used for classification training
in the new space, and finally the data of the current node can be classified. To
this end, we carry out feature mapping of nodes with close distance, so that
neighbor nodes can be used to guide the model parameters of joint nodes with
the trained model. Of course, there should be some structural similarity between
the topology diagram of neighbor nodes and the current node. As shown in Fig. 2,
we first train the neural network according to the red node data, and then take
the trained neural network as the alternative network of the actual node. When
new nodes join, or the data packet transmission rule of the current network
changes, for example, the blue node and red topology are updated online by
using federated learning method.

The reinforcement signal provided by the environment in federated reinforce-
ment learning is an evaluation (usually a scalar signal) of the action generated
by the agent, rather than telling the agent how to generate the correct action.
Since the external environment provides little information, the agent must learn
with similar nodes. Therefore, agents gain knowledge in an action-by-action eval-
uation environment and improve action plans to adapt to the environment. The
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aim of the reinforcement learning system is to dynamically adjust the parameters
to achieve the maximum reinforcement signal. As the reinforcement signal R and
the action a generated by the agent do not have a clear functional description,
the gradient information R/a cannot be obtained. Therefore, in the reinforce-
ment learning system, a random unit is needed. With this random unit, the
agent will search in the possible action space and find the correct action.

Fig. 3. An illustration of association learning

3.3 Cooperative Scheduling Mechanism Based on Transmission
Task Completion

In reinforcement learning, the target of an agent is formally represented as a
special signal, called reward, which is transmitted to the agent through the
environment. At each time, reward is a single scalar value. Informally, an agent’s
goal is to maximize the total reward it receives. This means that it’s not the
immediate rewards that need to be maximized, but the cumulative rewards that
need to be maximized over time. The use of reward signals to formalize goals is
one of the most distinctive features of reinforcement learning.

The multi-agent path planning algorithm designed in this paper introduces
the design reward of transmission task completion to carry out cooperative opti-
mization under the framework of reinforcement learning, as demonstrated in
Fig. 3. The principle of cooperative optimization algorithm is to decompose a
complex objective function into simple sub-objective functions, and then carry
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out cooperative optimization of these sub-objective functions. Specifically, col-
laborative optimization is to optimize each sub-objective function while consid-
ering the results of other sub-objective functions, so that the optimization results
among sub-objective functions can be consistent. The consistency of optimiza-
tion results means that the values of each variable can be consistent in the
optimization results of each sub-objective function.

The completion degree of this task represents the completion degree of trans-
mission, and the feedback of task execution takes the difference between decision-
making route and baseline route as reference. Effect prediction action coordina-
tion is mainly responsible for interaction eigenvalues of interested agents within
the communication range. The information exchange of task completion is helpful
for Agent coordination and strategy formulation in real scenes, and the inter-
active environment map information is helpful for a single Agent to execute
decisions and avoid falling into local optimal solutions.

In this architecture, target behavior is learned from downstream task-specific
rewards without any communication oversight. However, complex real-world
tasks may need to take into account the interaction of agents after they complete
their actions, such as the occurrence of congestion. Therefore, this capability
needs to be enhanced by using a multi-round communication method, through
which agents coordinate before taking action on the environment. First of all,
each agent wants to transmit its own expected action and other agents accept
the expected action of other agents at the same time. Then, according to the
expected action of other agents, it changes its own action through the expected
return and makes the real action. The agent then interacts with the real action
environment. The state transition function of the decision is given by:

p(sn
′, a′|sn, a) = Pr(sn+1,t = sn

′, An+1,t

= a′, Rn+1,t = a′|sn,t = sn, An,t = a) (5)

p(sn
′, r|sn, a) = Pr(st+1,t = s,Rt+1,t = a′|s t = s,At = a) (6)

3.4 Common Network Parameter Aggregation Methods

Each neural network is composed of two modules, namely a private network
module and a common network module. In a private network, the federated
reinforcement learning algorithm allows it to retain the private features. With
the adjacent nodes’ features from the common network, the action network out-
put nodes can effectively complete a random search and greatly improve the
possibility of selecting suitable actions. Furthermore, the entire action network
can be trained online. With auxiliary network environment modelling, evalua-
tion of networks based on the current status and external reinforcement signal
simulation environment is used to predict a scalar value. This allows one step,
and multi-step, prediction by the action network current actions to strengthen
the signal applied to the environment, advance to the relevant action network to
provide the candidate actions of intensive signals, and provide more information



288 C. Han et al.

on rewards and punishments (internal reinforcement signal) [1]. This reduces
uncertainty and speeds up learning.

The network operation is divided into two parts: reinforcement feedback cal-
culation and joint parameter calculation. In reinforcement feedback calculation,
the time-series differential prediction method (TD) and back-propagation algo-
rithm (BP) are used to learn the evaluation network whilst genetic operation of
the mobile network is conducted, and the internal reinforcement signal is used as
the mobile network fitness function. Joint parameter calculation determines the
weighted average of the parameters of similar nodes so that they can learn from
each other. The private network provides more effective internal reinforcement
signals to the mobile network, compelling it to produce more appropriate actions.
The common network signals enable both the mobile and evaluation networks to
learn together with similar nodes, thus greatly accelerating the learning of the
two networks.

4 Performance Evaluation

Experimental Setup. The connections between nodes represent specific chan-
nels. When multiple data packets are transmitted on the network, they become
congested at important nodes, which seriously affects the transmission capability
of the entire system. We used federated reinforcement learning to make routing
decisions and plan the routing choices of each packet at different nodes.

Simulation Results and Analysis. To simplify the simulation, we assume
that the order of packets in the transmission queue does not change. Therefore,
if the current packet is blocked, all subsequent packets will be blocked. To ensure
that the total number of packets in the network will not exceed the upper limit,
when the number of packets reaches the upper limit, one packet will be generated
for every delivered packet. The packet generation rule pi,j,k is as follows:

pi,j,k = pi,i,k when pi,j,k = pi,k,k (7)

i, k = random(0, n) (8)

In the simulation we adopted this method to solve the maritime Ad Hoc
network routing decision problem. To demonstrate the advantages of the FRL
method, we chose to use the shortest path algorithm and Q-learning method for
the simulation. The shortest path algorithm is a commonly used algorithm in
the field of routing planning. The shortest path problem is a classical algorithm
problem in graph theory, which aims to find the shortest path between two nodes
in a graph. The learning algorithm allows the system to select the optimal action
set by using the experienced action sequence in the Markov environment.

In Fig. 4, we depict the average delivery time versus the number of packets.
Average delivery time is the time it takes for a packet to travel from its source to
its destination. The number of packets was gradually increased from 500 to 5000,
to study the effect of packet density. The trend of the points in the figure shows
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Fig. 4. Simulation results

that the average delivery time increases with packet density. The FRL algorithm
has a slightly better performance than the Q-learning algorithm and is clearly
better than the shortest path algorithm, thus reflecting the superiority of the
algorithm. The relationship between the number of packets and the average
packet idle time is shown in the Fig. 4. It can be seen that the FRL algorithm
performs better in terms of average packet idle time. Therefore, nodes using the
FRL algorithm have superior scheduling ability and avoid long idle packet times.

Through simulation, it was verified that the FRL algorithm can better solve
packet congestion, ensure the speed of network transmission and make full use
of node performance to avoid long packet idle times.

5 Conclusion

This paper investigated the distributed routing planning problem in maritime
Ad Hoc networks with rapid topology changes and limited network bandwidth.
With the aim of maximising throughput, the problem of transferring data effi-
ciently was transformed into a congestion avoidance problem. Considering the
differences in network nodes, the FRL is proposed to improve the efficiency of
distributed routing planning through joint learning of similar nodes. Based on
the dynamic data of the dedicated communication simulation system, the sim-
ulation results verify the performance of our method. In future work, we will
study the application of FRL in private networks.
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Abstract. Light field (LF) images can store multi-view geometry char-
acteristics about the observed scene, which can be helpful in depth estima-
tion. Depth estimation has attracted much attention in recent years for its
widely use in the computer vision tasks. Many approaches have been pro-
posed to estimate the depth of LF images, including conventional methods
and learning-based methods. But most of them are hard to apply to differ-
ent complex situations. We propose a robust depth estimation network for
LF images with disparity warping (LF-DWNet), which is robust in large
disparity pixels, occlusions, and noise areas. To reduce the effect of large
disparity pixels, we introduce the disparity warping processing on EPI. To
extract the depth feature from warped EPI and reduce the effect of occlu-
sions and noise areas, we design a feature extraction module based on the
attention mechanism. To make full use of the depth feature our attention-
based module gets, we need to guide the depth estimation by the global
structure information. Besides, our LF-DWNet can integrate the depth
feature from multi streams of attention-based feature extraction modules
and get more credible depth map. Experiments on both synthetic and real-
world datasets demonstrate the effectiveness of our method.

Keywords: Light field · Depth estimation · Disparity warping ·
Attention mechanism · Global integration network

1 Introduction

Light field (LF) images acquired by LF cameras can store both spatial and angu-
lar information of the observed scene. Due to the unique advantages of containing
multi-view geometry characteristics, LF images can be helpful in depth estima-
tion and many other fields. Depth estimation has been widly used in 3D recon-
struction, target tracking, virtual reality, and other fields [1], which has attracted
much attention in recent years.
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Fig. 1. The inclined lines on EPI with a large disparity.

To extract LF features for depth estimation, the main approach is to convert
the 4D LF data into various 2D images, such as multi-view images, focal stacks,
and epipolar plane images (EPIs). Methods based on EPI are the most com-
monly used methods in LF depth estimation [2–8]. EPI is the 2D slice of the 4D
LF image, which presents 1D angular information and 1D spatial information
from the same direction of LF. Due to the consistency of multi-view images, EPI
shows patterns of oriented lines with constant colors, and the slope of each line
represents the disparity of corresponding point in the scene. But as shown in
Fig. 1, it can be hard to measure the lines since the insufficient angular resolu-
tion, especially when the scene has a large disparity. Besides, occlusions and noise
can also make the extraction of the lines more difficult. Conventional methods
try many complex optimization approaches to reduce the effect of unsatisfactory
conditions. These years, deep learning has been widely used in LF depth esti-
mation. The data-driven methods show stronger competitiveness when facing
complex and diverse scenes.

In this paper, we propose a learning-based method for LF depth estimation,
which shows strong robustness in large disparity pixels, occlusions, and noise
areas. We use parallelograms with different inclination angles to match lines on
EPI, and warp the parallelograms into rectangles to make the depth feature
free from disturbance of large disparity pixels. Based on the disparity warping
of EPI, we design an attention-based feature extraction module to extract the
depth feature from warped EPI, and propose a global integration network based
on this module to get the credible depth map, which can reduce the effect of
occlusions and noise areas. Experiments on synthetic LF images [9,10] and real-
world LF images [11] can demonstrate the effectiveness of our method.

In summary, the contributions of this paper are as follows:

– To reduce the effect of large disparity pixels, we introduce the disparity warp-
ing processing on EPI, which also make LF data more convenient to handle
with the network.

– To extract the depth feature from warped EPI and reduce the effect of occlu-
sions and noise areas, we design a feature extraction module based on the
attention mechanism.

– Based on the attention-based feature extraction module, we propose the depth
estimation network named LF-DWNet, and it realizes the state-of-the-art
performance in LF depth estimation.
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2 Related Work

2.1 Conventional Methods

Conventional methods of LF depth estimation based on EPI calculate the slope
of the lines on EPI through some conventional measurement formulas to get
the initial depth map, and refine the depth map through some optimization
approaches. Wanner et al. [2] proposed a method based on the structure tensor
to measure the slope of the lines on EPI and get the depth map of the scene.
And they used a fast total variation denoising filter to refine the depth map and
get more credible results. Johannsen et al. [3] used EPI patches to compose a
dictionary with a corresponding known disparity, and query the EPI features
in this original dictionary to get the depth map. Zhang et al. [4] designed a
spinning parallelogram operator (SPO) to measure the slope of the lines on
EPI. They spun the parallelogram to find the direction that is able to divide the
parallelogram into two parts with the largest histogram differences. To reduce the
effect of occlusions, they combined the results from the horizontal EPI and the
vertical EPI based on confidence. And they used the guided filter to provide the
global structure information for the more robust depth map. SPO also inspires
our method, which will be introduced in Sect. 3.2 in detail.

Some methods use stereo matching or focal stacks instead of EPI to get the
depth map of the scene. Chen et al. [12] introduced a method based on the surface
camera (SCam). They used a bilateral consistency metric to tackle occlusions
in LF depth estimation. Jeon et al. [13] proposed a multi-view stereo matching
with a phase-based sub-pixel shift. And they adopted the weighted median filter
and the multi-label optimization to reduce the effect of image noise and the
weak texture regions. Tao et al. [14] combined both defocus and correspondence
depth cues from LF images to get the depth map. They improved the approach
by adding a shading-based refinement technique.

Most of the conventional methods analyze and model only for limited con-
ditions. Even if a series of optimization methods are adopted, it is difficult to
apply to a large number of different complex situations in the actual scene.
Data-driven approaches based on convolutional neural networks (CNN) usually
perform better than these optimization-based methods [15–19]. Although con-
ventional methods are not very competitive today, they can also inspire learning-
based methods.

2.2 Learning-Based Methods

In the past few years, machine learning techniques have been applied to a variety
of LF imaging applications such as super-resolution [20], view synthesis [21],
material recognition [22], and depth estimation [5–8,23–25].

For depth estimation, several methods are proposed to extract the linear
feature of EPI through well-designed networks. Heber et al. [5] trained a CNN
to predict the orientations of lines on EPI, and formulated a global optimization
with a higher-order regularization to refine the predictions of their network.
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Shin et al. [6] proposed an end-to-end network with the multi-stream of EPI to
reduce the effect of occlusions. And they also introduced a specifically designed
data augmentation approach to address the issue of the lack of training data
for the network. Leistner et al. [7] proposed a technique to virtually shift the
LF stack which can keep the slope of the lines on EPI in a small receptive
field, independent of the disparity range. Li et al. [8] also designed an EPI-based
oriented relation network to get the depth map.

Some networks do not utilize EPI. Tsai et al. [23] proposed an attention-based
view selection network to adaptively incorporate LF images of all views for depth
estimation. They used the attention mechanism to extract the feature hidden
behind multi-views and it performed better than methods based on EPI at that
time. Zhou et al. [24] trained a two-pathway CNN to predict the depth of each
pixel from the LF focal stack. Their network learns the depth semantic features
and the low-level structure information from the focal stack and the central
view. Wang et al. [25] proposed the disentangling mechanism and designed three
disentangling networks for LF spatial super-resolution, angular super-resolution,
and disparity estimation. All these three methods based on the disentangling
mechanism show strong competitiveness in their respective fields. Besides, Wang
et al. [26] also proposed a matching cost constructor which is occlusion-aware
and efficient in depth estimation.

These years, learning-based methods of LF depth estimation have attracted
much attention. Large disparity pixels, occlusions, and noise of images prevent
most of them from getting credible results in complex scenes. In this paper, we
address the issue by proposing a new network based on disparity warping of EPI,
and get more robust results through our methods.

3 Method

3.1 Overall Framework

As shown in Fig. 2, our method is to train a global integration network using
an attention-based module to extract the depth feature from warped EPI. Our
network has four different streams based on EPI of horizontal, vertical, left
diagonal, and right diagonal directions, which can improve the robustness to
occlusions and noise. For every stream, we warp the EPI as described in Sect. 3.2,
and extract the depth feature as described in Sect. 3.3.

To make full use of the depth feature our attention-based module gets, we
need to guide the depth estimation by the global structure information. The
attention mechanism on EPI may cause some global structure information in
4D LF images to be ignored, and the warping will also lead to some tiny errors
which should be corrected by the original images. We concatenate the feature
obtained from our attention-based feature extraction module with the original
sub-aperture images corresponding to the EPI used in this stream. Then, we
use three residual blocks for deep feature extraction, which can be expressed as
follows:

Fout,i = Hres,3(Hres,2(Hres,1(Fin,i ⊕ Ii))) (1)
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Fig. 2. The architecture of our network.

where Fout, i denotes the output of stream i (i = 1, 2, 3, 4). Hres,1, Hres,2 and
Hres,3 are three residual blocks. Fin,i denotes the input feature obtained from
the module introduced in Sect. 3.3, and Ii represents the original sub-aperture
images used in this stream.

Four more residual blocks are used to integrate the output from four different
streams and get the credible depth map from integrating data. The residual
structure can extract vital information from the depth feature and prevent our
deep network from the vanishing gradient problem. By training this end-to-end
network, we can get an effective method for LF depth estimation, which is robust
in large disparity pixels, occlusions, and noise areas.

3.2 Disparity Warping of EPI

The 4D LF image can be represented as L(x, y, u, v), where (x, y) is the spatial
coordinate and (u, v) is the angular coordinate. Due to the consistency of multi-
view images, the relationship of pixels between the center and the other views
of the LF image can be expressed as follows:

L(x, y, u, v) = L(x + dx,y × (u′ − u), y + dx,y × (v′ − v), u′, v′) (2)

where dx,y is the disparity of the pixel (x, y) between adjacent views. For the
horizontal EPI, we have the relationship of v = v′ and y = y′, then we can
reformulate the relationship of Eq. 2 as follows:

Ly,v(x, u) = Ly,v(x + dx,y × (u′ − u), u′) (3)
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Fig. 3. The disparity warping of parallelograms on EPI.

This formula expresses the linear feature of EPI, which is widely used in LF
depth estimation.

Inspired by SPO [4], we can use parallelograms with different inclination
angles to match lines on EPI. But the feature is not so easy to extract when the
angular resolution is not so sufficient and the scene has a large disparity. When
we convert the parallelograms into rectangles, as shown in Fig. 3, the successfully
matched rectangle shows a vertical central axis, while other rectangles have an
inclined line passing through the center point. This transformation can make the
feature independent of disparity, which is of great help reduce the effect of large
disparity pixels. We can take a series of disparity labels equidistant according to
the disparity range of scenes, and each label is corresponding to parallelograms
with a certain inclination angle. We warp the pixels from view (u′, v) to (u, v)
based on the disparity label, which results in a spatial transformation from (x′, y)
to (x, y). This transformation is equivalent to warping the parallelograms with
the certain inclination angle into rectangles. In practice, we can warp all the
pixels at once, and recognize the vertical line from each rectangle on warped
EPI. The disparity warping also makes it easier to extract the depth feature
with the network.

To get the sub-pixel information of EPI in the warping, we need to adopt
some interpolation methods. To reduce the errors, we process the warping on
the frequency domain through a 2D Fourier transform, which can be expressed
as follows:

I(x + Δx) = F−1(F (I(x + Δx))) = F−1(F (I(x))e2πiΔx) (4)

where F (·) and F−1(·) are the 2D Fourier transform and the 2D inverse Fourier
transform.

3.3 Attention-Based Feature Extraction Module

Due to the influence of occlusion and noise, lines on the EPI may not be complete
and easy to recognize, which makes it hard to apply some conventional mathe-
matics measurement methods. Learning-based methods can often perform better
on complex classification and identification problems. We propose an attention-
based feature extraction module to find EPI warped based on the ground truth
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Fig. 4. The attention-based feature extraction module.

of disparity rather than some common network models. The attention mecha-
nism has been proved to be able to extract the key feature from a large amount
of information in many other computer vision tasks. In LFattNet [23], it is used
to indicate the importance of every individual view in LF images. To get better
performance in complex scenes, we design an attention-based feature extraction
module and it shows the obvious advantage in extracting the depth feature from
warped EPI mentioned in Sect. 3.2.

As shown in Fig. 4, the input of the attention-based feature extraction module
is the EPIs warped based on different labels of disparity, which are arranged by
channel. So the size of the input feature map is (H,W, kN), where H and W are
the height and width of the LF sub-aperture image, that is, the spatial resolution
of LF images. N denotes the angular resolution of LF images, and k denotes the
number of disparity labels used for warping.

In the attention-based feature extraction module, the global spatial informa-
tion of the feature map is squeezed into a channel descriptor by global average
pooling. Then, we apply two fully-connected (FC) layers to the channel descrip-
tor. The scale can be expressed as follows:

s = f(HFC2(δ(HFC1(Hpooling(Fin))))) (5)

where f(·) and δ(·) denote the sigmoid and ReLU function. Hpooling is the oper-
ation of global average pooling. HFC1 and HFC2 are two FC layers, while HFC1

downsamples the channels and HFC2 upsamples the channels. The output of the
module is:

Fout = s · Fin (6)

Through the attention mechanism on the channel, we can adjust the weights
of channels and find effective information from warped EPI, which is useful in
the LF depth estimation network.
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Table 1. Average MSE and BadPix achieved by different methods on synthetic
datasets.

HCI new SLFD

MSE×100↓ BP0.01↓ BP0.03↓ BP0.07↓ MSE↓ BP0.05↓ BP0.1↓ BP0.3↓
SPO [4] 3.572 61.82 19.23 8.231 1.138 35.81 20.52 6.574

EPINET [6] 1.753 27.33 7.823 3.580 1.597 83.02 67.21 34.96

EPI-Shift [7] 4.948 65.42 32.79 17.08 1.591 67.21 56.46 32.67

EPI ORM [8] 3.155 46.31 15.61 8.738 1.004 63.15 43.83 22.99

LFattNet [23] 1.350 15.07 5.269 2.839 – – – –

DistgDisp [25] 1.415 21.71 7.329 3.867 0.581 42.76 25.18 7.547

Ours 1.243 15.26 5.233 2.884 0.390 35.14 16.65 5.603

4 Experiments

4.1 Datasets and Implementation Details

We use three datasets for the experiment of LF depth estimation, which include
synthetic LF images from HCI new [9] and SLFD [10], and real-world images
provided by Stanford Lytro Light Field Archive [11]. HCI new is the most com-
monly used synthetic LF dataset which provides 24 scenes with ground truth
depth released. SLFD contains 53 synthetic LF images with a much larger dis-
parity range which can evaluate the robustness of methods on large disparity
pixels. The real-world images provided by Stanford are captured by a Lytro
Illum camera. The angular resolution of the Lytro images is 14 × 14, and we use
the middle 9 × 9 views to estimate the depth.

To train our network, we use 16 images from HCI new dataset and crop them
into patches of size 32 × 32. We also apply some data augmentation methods
including random horizontal flipping, vertical flipping, and rotation to prevent
the overfitting problem of our network. We use Adam optimizer and set the
batch size to 16. The learning rate is initially set to 10−5 and decreases to 10−6

after 100 epochs. Our network is implemented in Pytorch and is trained on an
NVIDIA RTX 3090 GPU for about five days. Then we finetune our network and
evaluate the robustness of the method on SLFD dataset.

4.2 Experimental Results

We use mean square error (MSE) and error rate (BadPix) for the quantitative
evaluation of LF depth estimation. In the experiment, we compare our method
with six state-of-the-art methods. Five of them are learning-based methods, and
we train these networks on the same datasets for fairness.

As shown in Table 1, our method achieves the lowest MSE and BadPix on
SLFD, and achieves the lowest MSE and BadPix 0.03 on HCI new. For scenes
with complex occlusions, such as ‘Boxes’, our method is more robust than other
methods. And for the images with a large range of disparity, our method can
perform much better than other methods. The detailed results of every scene
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Table 2. MSE×100/BP0.01/BP0.03/BP0.07 achieved by different methods on
HCI new.

Boxes Cotton Dino Sideboard

SPO [4] 9.107/73.23/29.52/15.89 1.313/69.05/13.71/2.594 0.310/69.87/16.36/2.184 1.024/73.36/28.81/9.297

EPINET [6] 6.036/45.73/18.66/12.25 0.223/25.27/2.217/0.464 0.151/23.44/3.221/1.263 0.806/40.49/11.82/4.783

EPI-Shift [7] 9.790/74.36/44.14/25.95 0.475/46.86/10.68/2.176 0.392/64.16/22.14/5.964 1.261/73.42/36.64/11.80

EPI ORM [8] 4.189/59.68/25.33/13.37 0.287/42.94/5.564/0.856 0.336/41.04/8.993/2.814 0.778/52.59/14.61/5.583

LFattNet [23] 3.996/37.04/18.97/11.04 0.209/3.664/0.697/0.271 0.093/12.22/2.339/0.848 0.530/20.73/7.243/2.869

DistgDisp [25] 3.325/41.62/21.13/13.31 0.184/7.594/1.478/0.489 0.099/20.46/4.018/1.414 0.713/28.28/9.575/4.051

Ours 3.316/35.94/17.76/10.58 0.168/3.670/0.686/0.259 0.106/13.46/2.786/1.038 0.586/21.06/7.468/3.104

Backgammon Dots Pyramids Stripes

SPO [4] 4.587/49.94/8.639/3.781 5.238/58.07/35.06/16.27 0.043/79.20/6.263/0.861 6.955/21.87/15.46/14.97

EPINET [6] 3.909/15.39/4.482/3.287 1.980/44.64/18.70/4.030 0.007/8.913/0.604/0.147 0.915/14.75/2.876/2.413

EPI-Shift [7] 12.79/70.58/40.53/22.89 13.15/74.55/53.18/43.92 0.037/40.48/7.315/1.242 1.686/78.95/47.70/22.72

EPI ORM [8] 3.411/34.32/7.238/3.988 14.48/65.71/47.93/36.10 0.016/19.06/1.301/0.324 1.744/55.14/13.94/6.871

LFattNet [23] 3.648/11.58/3.985/3.126 1.425/15.05/3.012/1.432 0.004/2.063/0.488/0.195 0.892/18.21/5.417/2.933

DistgDisp [25] 4.712/26.17/10.54/5.824 1.367/25.37/4.464/1.826 0.004/4.953/0.539/0.108 0.917/19.25/6.885/3.913

Ours 3.582/11.26/3.798/3.008 1.276/14.98/2.974/1.388 0.005/3.012/0.496/0.202 0.906/18.68/5.894/3.496

Table 3. MSE/BP0.05/BP0.1/BP0.3 achieved by different methods on SLFD.

Electro devices Furniture Lion Toy bricks

SPO [4] 1.734/47.37/26.48/8.525 1.662/53.69/30.50/10.69 0.221/29.14/19.27/4.067 0.936/13.05/5.835/3.013

EPINET [6] 0.756/81.06/61.94/23.77 1.715/84.88/70.76/37.74 3.265/85.98/76.17/55.86 0.652/80.14/59.98/22.48

EPI-Shift [7] 0.742/68.91/58.86/27.94 1.854/76.33/65.48/38.69 2.768/53.41/39.98/28.76 0.998/70.19/61.52/35.28

EPI ORM [8] 0.405/45.39/15.96/5.493 0.893/65.26/49.28/21.58 1.625/72.15/58.63/40.17 1.096/69.78/51.45/24.71

DistgDisp [25] 0.584/43.27/25.18/7.956 0.765/51.83/28.96/9.851 0.285/26.99/19.16/4.213 0.689/48.95/27.43/8.166

Ours 0.426/39.68/21.45/6.398 0.578/42.17/24.99/7.806 0.084/29.75/6.734/2.103 0.472/28.96/13.41/6.105

Fig. 5. Results achieved by different methods on synthetic LF images. The first column
is the ground truth of the disparity map. From the second column to the fifth row:
DistgDisp [25], EPINET [6], SPO [4], Ours.

are listed in Table 2 and Table 3. As a supplement, some results on ‘Boxes’ and
‘Furniture’ are shown in Fig. 5.

To fully demonstrate the robustness of our LF-DWNet, we compare our
method with other methods on real-world images. As shown in Fig. 6, our method
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Fig. 6. Results achieved by different methods on real-world LF images. The first row
is the image of the center view. From the second row to the eighth row: DistgDisp [25],
EPINET [6], EPI-Shift [7], EPI ORM [8], LFattNet [23], SPO [4], Ours.
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is robust in large disparity pixels, such as the handle closest to the camera in
the first scene. For the complex occlusions in the third scene, our method can
also perform well. Compared with other methods, our method is less affected by
the noise of real-world images, and can accurately estimate the depth of distant
objects.

5 Conclusion

In this paper, we propose a learning-based method using disparity warping on
EPI for LF depth estimation. We design an attention-based feature extraction
module to extract the depth feature from warped EPI, and propose a global
integration network based on this module to get the credible depth map. Exper-
iments demonstrate the strong robustness of our network in large disparity pix-
els, occlusions, and noise areas. And our method can achieve state-of-the-art
performance on both synthetic and real-world datasets.
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Abstract. Instant delivery platforms, equipped with professional couri-
ers to provide convenient delivery services, have emerged rapidly in many
cities. For the benefit of platforms, many researchers focus more on max-
imizing overall efficiency but ignore individual fairness. Current fairness
research in mobile systems mainly concentrates on one-sided or two-sided
relationships, such as drivers and customers. However, instant delivery
services have two new characteristics in fairness: (i) multi-stakeholder
involvement, namely couriers, merchants and users should be con-
sidered comprehensively; (ii) more complicated matching relationship
because of the concurrent dispatch mode, meaning one courier will
handle multiple orders simultaneously. To handle this multi-sided fair-
ness problem, our paper proposes a novel order dispatch system to bal-
ance the platform revenue and multi-stakeholder fairness. Motivated by
the analysis of real-world datasets, we formulate the order dispatch prob-
lem as a sequential decision-making problem and incorporate multi-sided
fairness into the decision criteria. Then, we design a multi-sided fairness-
aware deep reinforcement learning algorithm to solve large-scale decision
problem, with the fairness relying on Least Misery Fairness definition
for users and Variance Fairness definition for couriers and merchants.
Finally, extensive experiments show the effectiveness of our model in
balancing multi-sided fairness among stakeholders and long-term profits
of the whole platform.

Keywords: Order dispatch · Multi-sided fairness · Instant delivery ·
Reinforcement learning

1 Introduction

With the rapid development of O2O (online to offline) and New Retailing, instant
delivery services have gained much popularity and facilitate people’s daily lives
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L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 303–316, 2022.
https://doi.org/10.1007/978-3-031-19214-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_25&domain=pdf
https://doi.org/10.1007/978-3-031-19214-2_25


304 Z. Cao et al.

enormously. Driven by the growing demand, many popular platforms (e.g., Door-
Dash, UberEats, Instacart and MeiTuan) provide fast delivery services to help
their customers acquire food, medicine, and groceries quickly. In 2020, mainland
China had over 22.85 billion instant delivery orders, marking a year-on-year
increase of 25%. Although the rapid growth of instant delivery generates huge
economical profit, it leads to multiple challenges in social governance which
deserves to be studied to solve.

Most of the research efforts [7,20,21] for instant delivery services concentrate
on maximizing the efficiency for order dispatch and improving the experiences at
the users’ side. However, the issue of fairness in sharing economy attracts widely
attentions from the whole society. As the number of registered couriers grows,
it is crucial to guarantee the fairness among their incomes, and the same is true
for merchants. Besides, violating user fairness is not only ethically fraught, but
also unfavorable for securing the platform performance in the long term.

The current fair matching mechanism has several drawbacks. Firstly, some
matching models [3,6,9] only pay attention to one-sided fairness but ignore the
overall fairness among other stakeholders. Secondly, instant delivery service has
concurrent dispatch mode, which means one courier can process multiple orders
simultaneously. However, most algorithms only focus on the sequence dispatch
mode which is common on ride-hailing platforms [14,19]. Therefore, these latest
algorithms are not suitable for instant delivery platforms, and we are interested
in investigating a novel order dispatch system to ensure the multi-sided fairness
in instant delivery platforms.

Since order dispatch decisions are ordered by time, we can explore the use
of Reinforcement Learning (RL) [8,10,22] in the instant delivery serving multi-
sided fairness. In addition, with massive historical dispatch and route records, we
can amortize equality in multi-sided systems over longer periods (e.g., weeks or
months) and then extend the concept of fairness to multiple stakeholders based
on an empirical data analysis. Similar ideas of fairness amortization [14] have
been utilized in the context of ranking [2,13] and recommender systems [1,12].

However, seeking an optimal fairness-aware order dispatch algorithm apply-
ing to this new multi-stakeholder commercial platform is not an easy task due
to two challenges: (i) uncertain multi-sided fairness notions as different
stakeholders may have different perceptions of fairness; (ii) potential conflict-
ing relationships within the same stakeholder group and between different
stakeholder groups. For example, reducing income inequality among couriers
may result in inefficient service as well as loss and disparity in customer utilities.

To tackle the above challenges, we propose an Advantage Actor-Critic-based
deep reinforcement learning approach to learn the Multi-sided Fairness-aware
order dispatch policy called A2CMF. Then, we establish two notions of fair-
ness based on the “variance” fairness semantics for the couriers and merchants
to maintain equality, and utilize the “least misery” [18] to guarantee the user
waiting time within reasonable bounds. Specifically, we design a policy network
in A2CMF which integrates state & action embedding features and two fairness
metrics into an accumulated reward. And different from traditional actor-critic
algorithm, the action space as input is designed variable to handle the uncertain
number of optional couriers considering user fairness constraints.



Toward Multi-sided Fairness 305

In summary, the salient contributions of this paper are as follows.

– To the best of our knowledge, we perform the first work on multi-sided (tri-
partite or more) fairness-aware order dispatch policy in an instant delivery
platform. Our approach is proposed with 1,159,371 order records in one month
relevant to 595 merchants and about 4,000 couriers. We believe our proposal
would contribute to further explore the fair matching issue when the new
commercial pattern brings the complicated multiple service suppliers model.

– We consider multi-sided notions of fairness which not only relate to the fair
income distribution for couriers, the fair service experience among customers
and merchants but also the long-term profitability of multi-stakeholder plat-
forms. Such an idea would be helpful to address the fairness concerned issues
in similar sharing economy scenarios.

– More importantly, to better train the A2CMF Network, we design a data-
driven simulator to model the real-time instant delivery environment with
dynamic demand & supply, spatial-temporal features and complicated courier
behaviors. Then we evaluate the performance of A2CMF through extensive
experimentation with data from Eleme (one of the largest instant delivery
companies in China). The evaluation results show that our A2CMF achieves
a 21.3% increase in total revenue, improves the profit fairness of couriers
by 9.7%, and reduces customers’ waiting time and the benefit gap among
merchants by 6.9% and 6.2%, simultaneously.

2 Background and Motivation

2.1 Instant Delivery Scenario

Fig. 1. Four stakeholders in instant
delivery

Table 1. Order progress record

Field Value

User/Courier/Merchant ID U001/C001/M001

Food Amt/Delivery Fee 32.99/3.8

Promise Delivery Time 3300

Merchant Location 121.45916,31.25554

User Location 121.46889,31.25317

Order Create Time 2020/10/1 11:59:00

Accept Order Time 2020/10/1 12:03:00

Arrive Restaurant Time 2020/10/1 12:07:00

Pickup Time 2020/10/1 12:09:00

Delivery Time 2020/10/1 12:17:00

As illustrated in Fig. 1, a typical instant delivery service involves four stake-
holders: couriers, merchants, customers and the platform. And their cor-
responding information combined with five critical timestamps will be recorded
during the order dispatching process (e.g., listed in Table 1). Then, the roles of
the four stakeholders in instant delivery will be briefly introduced.
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(i) Couriers are assigned order tasks by the platform, and need to pick
up orders in merchants and deliver to customers in time. The fairness appeal
of couriers is that they can get the same labour efficiency when having the
same working hours. (ii) Merchants receive orders from customers and are
arranged couriers by platform. From the perspective of merchants, they want
to get couriers to pick up prepared orders as soon as possible. (iii) When cus-
tomers place orders through the platform and look forward to acquiring them
on schedule, it’s better to have early delivery. (iv) As the principal of dispatch
algorithm, platform has the primary aim to obtain more benefit, but it also
has the responsibility to consider the fair requirements of the other three stake-
holders. Only achieve a trade-off among the above four aspects, can the instant
delivery platform realize a stable operation in the long run.

2.2 Characteristics of Fairness in Order Dispatch

Given the historical delivery order data, we conduct a data-driven order dispatch
pattern analysis and obtain the following observations:

Fig. 2. Lorenz curve of courier income Fig. 3. Merchant fairness index

1. Income Inequality among Couriers. Figure 2 shows that after one day,
50% couriers only earned 33% of total income, while 20% most successful
couriers get 35%. Couriers in the bottom ten percent of income almost made
little money, which represents unequal income distribution among couriers.

2. Unfair User Experience. From user comments on the platform, we observe
that positive and negative comments coexist and the comments are even
polarized, showing unfair service experience issues among customers.

3. Inequality in Merchant Benefit. We further analyze the order delivery
rate of each merchant and find the inequality in merchant benefit. It is demon-
strated in Fig. 3 that 20% of merchants are severely lower than the average
level while another 20% are significantly higher than the average.
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3 System and Formulation

3.1 System Overview

We present the overview of our system design in Fig. 4 which is composed of
three modules.

1. An Environment Simulator for Instant Delivery. We introduce a sim-
ulator design that models the events of order generation, order assignments
and key stakeholder behaviors such as distributions across the city, along with
changes in weather and traffic conditions in the real world.

2. A State & Action Feature Extraction Module. This part serves as
a feature extractor to characterize multiple attributes important for order
dispatching decisions, including order features, spatial features, temporal fea-
tures and environmental features.

3. A2CMF-Dispatch Model. This model aims to learn an optimal fairness-
aware order dispatch policy by calculating the long-term value for each can-
didate dispatch action via the Actor Network and then achieves a more stable
and efficient model learning process via the Critic Network.

Fig. 4. System architecture of A2CMF

3.2 Problem Formulation

In this paper, we formulate the multi-sided fairness-aware order dispatch prob-
lem as a multi−agent Markov decision process, which is characterized by five
components: {S,A,R, γ, π}, i.e., the integration of states S, the courier action
space A, the multi-sided fairness-oriented reward R, a discount factor γ and
the policy π to make fair matching decisions. Formally, we present the training
process as finding a target policy π(a|s) so that dispatching actions τ according
to π(a|s), would lead to the maximum expected cumulative reward:

maxπθ
Eτ∼πθ

[R(τ)], (1)
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where R(τ) =
∑|τ |

t=0 r(st, at) and θ denotes policy parameter. The specific defi-
nitions of the multi−agent Markov decision process in our A2CMF are listed
below and policy π is introduced detailed in Sect. 4.2.

– Agent Set. We consider each candidate courier as an agent, and all couriers
share the same dispatch strategy. In our system, the dispatch strategy is
under centralized training, but does a decentralised execution based on every
individual agent (courier) [16].

– State S. We divide one day into T time slots and represent the state at
time slot t as st∼T = {Pt,ST t,Dt, Ct}, where P is the personal attribute of
courier, ST is the set of spatiotemporal features, D is the global information
about the distribution of stakeholders, and C are some contextual features.

• Pt: The personal state of a courier is defined as Pt = [loc, no, to, f, routep],
where loc is courier real-time location, no is the number of existing orders,
to is his/her on-duty time and f marks whether this courier can deliver
the order without disturbing the customer fairness index. Last, we use
the idea designed by Zhang et al. [21] to predict routep.

• ST t: Note that couriers’ locations are continuously changing, which will
affect future order receive rate. We define a local-view state ST t = No

Nc

capturing the income opportunity where No and Nc are the total number
of orders and rival couriers along the planning route, respectively.

• Dt: Shared by all couriers, the global-view state D(consists of O, CO,M
and U) depicts the demand and supply distribution. The four matrices
record the online number of four parts(i.e., orders, couriers, merchants,
users) in each grid, representing a fine-grained distribution.

• Ct: In instant delivery, customers are tolerant of delayed packages [21]
because of factors such as bad weather, rush hours and so on. So, we take
into account those contextual information via one-hot encoding.

– Action A. The agent action in our proposal is to recommend the optimal
order to the courier waiting to be allocated. Thus, action features involve: (1)
order features including price p, the create time tc, the merchant location lm
and the customer location lc; (2) order dispatching attributes including
the delivery distance, the increased route time if the courier takes this order.
Eventually, after choosing an optimal courier to take action, all related states
need a proper transition P (st+1|st, at) : S × A → S.

– Reward R. As the reward function, R = r(st, at) denotes the immediate
reward of the action at at specific state st. It is designed to reach a balance
between the overall platform revenue and the fairness among stakeholders:

r(i)(st, at) = (1 − α − β)PE(i, t) + α · (−CF (t)) + β · (−MF (t)) (2)

where α, β ∈[0, 1] balance the profit efficiency and two-sided fairness.
• PE(i, t) is the profit efficiency of the order i in the time slot t and set as

PE(i, t) = γΔt × feei (3)

where Δt is the actual delivery time, γ is the discount factor in regard to
the influence of time cost and feei is the delivery fee of order i.
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• CF (t) is a metric of profit fairness among couriers. For Variance fairness
semantic, the fairness index is formulated as:

CF (t) =
1

Nc

Nc∑

k=1

(CE(k, t) − CE(t))2, (4)

the variance of profit efficiency CE of all Nc online couriers. And CE
consists of two components: profit efficiency PE of each orderi delivered
by the courierk and working hours Twork measured in one time slot.

CE(k, t) =
∑m

i=1 PE(i, t)
Twork(k, t)

, CE(t) =
1

Nc

Nc∑

k=1

CE(k, t) (5)

• MF (t) describes the profit fairness among merchants and borrows idea
from Meituan that they think it is fair when merchants’ products can be
picked up and delivered to customers in time. Based on this, we define
MF as a variance of the mean product value PV of all Nm merchants.

MF (t) =
1

Nm

Nm∑

m=1

(PV (m, t) − PV (t))2, PV (m, t) =
1

No

No∑

i=1

dist

T
(i)
d − T

(i)
m

(6)
where No, dist, T

(i)
m , T

(i)
d denote the number of orders produced, the deliv-

ery distance, the time when orderi is ready and delivered to the user.
Therefore, the Eq. 2 can be converted to Eq. 7.

r(i)(st, at) = (1 − α − β) · (γΔt · feei)

+α · (− 1
Nc

Nc∑

k=1

(CE(k, t) − CE(t))2) + β · (− 1
Nm

Nm∑

m=1

(PV (m, t) − PV (t))2)

(7)
– Discount factor γ. γ selected from [0,1] discusses the time-based penaliza-

tion for the rewards agent achieved in the past, present, and future.

4 Order Dispatch Model Design

In this section, we show how we solve the above formulated fairness-aware order
dispatch problem with our advantage actor-critic(A2C)-based model A2CMF.

4.1 Environment Simulator Design

As real-world features give crucial content about dispatch decisions and actions
can also affect the environment, an environment simulator for instant delivery
plays a functional role in the performance of A2CMF. To simulate the real
order dispatch environment better, we include the following features, generally
can be classified into five categories:
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– Order Features. Order features provide the basic information(e.g., price,
create time, the corresponding merchant, and customer location).

– Couriers Features. Couriers distinguish from each other by their positions,
capacity, working hours, number of existing orders, and route planning.

– Supply-demand Relationship Features. By capturing the real-time dis-
tribution of couriers and orders at the grid level, this kind of features describe
the fine-grained supply-demand relationship in the instant delivery platform.

– Order Dispatching Features (i.e., Action Features). An order dispatch-
ing action is depicted by the planned route, the distance between merchant
and courier, and the increased delivery time when the order is added.

– Environmental Features. Like meteorological conditions and traffic fleet,
environmental features give contextual content about dispatch decisions.

4.2 Advantage Actor-Critic Network

The basic idea of A2C algorithm is that there are two networks, a policy
network(i.e., Actor, utilized to calculate the possible long-term reward of the
courier-order matching and learn a policy) and a value network (i.e., Critic, a
state-value function and leveraged to evaluate the performance of the actor).

In our problem, we collect nearby couriers under customer fairness constraints
when a new order is created and extract the pair 〈state, action〉 as the input of
Actor. After feeding them into feature embedding layers respectively, we con-
catenate two features and feed the result vectors into hidden layers to calculate
the long-term matching reward Q. Finally, given all possible courierk-orderi

matching value Q(st, at), policy π is parameterized as

π(ak=c
t |si

t; θ) =
exp(Q(si

t, a
k=c
t ))

∑C
c′=c1

exp(Q(si
t, a

k=c′
t ))

(8)

where ak=c
t means dispatching courierc to deliver orderi and θ is weight of Actor.

The second network called Critic judges whether the action selected by policy
π is optimal or not and predicts the state-value function defined in Eq. 9.

V (st;w) = E[
∞∑

k=0

γkrt+k|st] (9)

where w denote the parameters of the Critic.
Then, Actor are updated in the direction of ∇θlogπ(at|st; θ)A(at, st) where

A(at, st) is an advantage function (k = 1 in our experiment) which estimates
the relative benefit of taking action at in state st and computed as Eq. 10.

A(at, st) =
k−1∑

i=0

γirt+i + γkV (st+k) − V (st) (10)

We update the parameters w of the value function V (s;w) by minimizing the
square loss of actual state value and estimated state value:

arg min
w

1
2
[rt+1 + γV (st+1;w) − V (st;w)]2 (11)
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4.3 Order Dispatch Based on A2CMF Model

Lastly, the training process of the A2CMF model will be introduced in detail.

1. Get order information in one small period. At each period, environment
generate orders from real datasets containing information such as merchant
location, customer location, price, promising delivery time and so on.

2. Determine the dispatch range. For each order, couriers in nearby areas
have the chance to take this order. Our A2CMF model selects a proper num-
ber of candidate couriers within severe constraints of user satisfaction to avoid
improper matches disturbing user fairness.

3. Extract order and pending couriers’ features. After determining the
pending couriers, using the environment simulator and feature extraction
module, we extract features including spatial-temporal information, route
planning information, existing order information and weather information.

4. Find optimum courier and dispatch order to him/her. The model
receives each order-courier feature and sends them into the A2C network.
Then Actor network calculates the order-courier matching value and recom-
mends the optimum courier with Softmax function and Critic network works
for advantage function by receiving reward and generating state value.

5. Simulate and execute couriers’ route plan. After all orders in this small
period have been arranged optimum couriers, our system would update the
couriers’ future route plans based on the environment simulator.

6. Record feedback reward and update the A2C network. Our system
would record the reward from environment upon couriers finishing one order.
And using the reward and state and action information, we can optimize the
A2C network making its decisions closer and closer to the final fairness goals.

In a word, based on the environment simulator and feature extraction mod-
ule, the A2CMF model can reasonably simulate the operation of couriers’ move-
ment and order dispatch in instant delivery. Meanwhile, the A2C network and
reward based on multi-sided fairness can effectively guide the dispatch system to
make a reasonable trade-off between system efficiency and multi-sided fairness.

5 Evaluation

5.1 Evaluation Methodology

Parameter Setting. We implement A2CMF and consider order dispatch in a
map of 10 × 10 spatial grids with 167 time steps (i.e., 5 min as a time slot). At
each time step, orders can only be dispatched to the courier whose customers
don’t wait over 8 min in peak hours and 5 min otherwise. And to guarantee the
convergence, we set α = β = 0.3 to balance the profit and fairness.
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Baselines. To show the effectiveness of our system, we compare A2CMF with

– GT(the ground truth) is the order dispatch strategy extracted from the
data simulated by the simulator in Eleme;

– RD(random dispatch) is the algorithm which always selects the courier
with random strategy without considering muti-sided fairness;

– SD2 is the shortest distance based dispatching method [11]. When one new
order is created, it will be dispatched to the nearest courier in line with the
customer is always right philosophy;

– IDT takes into account the influence of the new order added to a courier’s
route plan, using the increased delivery time based policy;

– DDQN-as utilizes a Double-DQN network to learn a order dispatch method
in ride-sharing, with additional capability of carrying out action search [17];

– XgD is a Xgboost-based dispatch method in instant delivery [21]. Xgboost
does ranking considering couriers’ income, delivery distance and the increased
journey time, and orders are dispatched to the courier ranking first.

Metrics. The evaluation metrics for capturing the fairness and efficiency are:

– Total revenue (Rp): From the platform’s perspective, we investigate the
efficiency of different order dispatch algorithms which is defined as the sum
of each order’s profit efficiency (Eq. 3).

– Courier-side profit fairness (Ginic): We investigate income distributions
among n couriers which is given by Gini Coefficient. The lower Ginic =∑n

i=1(2i−n−1)CEi

n
∑n

i=1 CEi
(CE defined in Eq. 5), the better is courier fairness.

– Merchant-side benefit gap (Gm): To capture minimum benefit gap guar-
antee for all merchants, we compute the variance Gm of the merchants’ mean
product value (Eq. 6). The lower Gm, the smaller is merchant benefit gap.

– Customer-side metrics:
• Mean average waiting time (Mw): Although A2CMF ensures Least

Misery Fairness guarantee for customers, here we capture how effectively
this reduces waiting time Mw on average in comparison to the baselines.

• Disparity in waiting time (Dw): We also calculate the standard devi-

ation of customer waiting time, that is, Dw =
√

1
Nm

∑Nm

k=1(T (k) − Mw)2.
The lower the Dw, lesser is the disparity in waiting time.

5.2 Main Performance

Table 2 reports the overall results of our A2CMF model and all the compared
baselines concerning our four metrics. As can be seen, A2CMF achieves the most
well-rounded performance among all the baselines.
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Table 2. Performance comparison

Method Rp Ginic Gm Mw Dw

GT 100% 100% 100% 100% 100%

RD 40.2% 66.4% 85.4% – –

SD2 [11] 67.4% 131.5% 130.4% – –

IDT 92.3% 78.2% 92.8% 81.6% 77.6%

DDQN-as [17] 113.1% 56.3% 111.4% 95.0% 82.3%

XgD [21] 42.8% 76.1% 119.4% – –

A2CMF 137.2% 50.8% 80.1% 93.1% 81.8%

Specifically, our method increases 21.3% of total revenue than DDQN-as
which has the second-best performance. Figure 5 gives a visual confirmation
that the performance is better in enhancing the total revenue when we choose
A2CMF.

In Fig. 6, A2CMF outperforms other baselines in reducing the benefits gap
among merchants, with a 19.9% decrease compared with GT. From Fig. 7 and
Fig. 8, A2CMF’s smallest radian of the Lorenz and the smallest Ginic illustrate
its performance in helping couriers achieve more equitable income distribution.

Fig. 5. Total revenue Fig. 6. Benefit gap Gm Fig. 7. Courier income
Gini

In addition, we present the comparison in terms of customer-side metrics with
GT, IDT, and DDQN-as. Figure 9 and Fig. 10 show that through our dispatch
algorithm, we help users save 6.9% customer’s mean waiting time than GT.
Besides, the variance between the customers becomes smaller since we consider
the fairness among them. Although IDT has a slight advantage over our A2CMF
in minimizing the waiting time, it only focuses on the customer benefit without
considering the potential revenue loss and unfair experience among merchants
and couriers. As can be seen, A2CMF achieves the best overall performance by
improving Rp by 21.3% and reducing (Ginic, Gm) by (9.7%, 6.2%) compared to
the second-best baselines.
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Fig. 8. Rider income
lorenz

Fig. 9. User waiting time Fig. 10. Mw, Dw compar-
ison

6 Related Works

6.1 Fairness in the Matching Mechanisms

Recently, instant delivery service plays an important role in online ordering
and the potential unfairness problem comes into focus. Based on this scenario,
researchers seek for matching mechanisms to guarantee fairness. Tom Sühr et
al. propose a novel framework to think about not requiring every match to
be fair, but rather distributing fairness over time, so they can achieve better
overall benefit for all stakeholders [14]. On the other hand, Wang Guang et al.
consider fairness as an optimization objective by improving overall efficiency and
fairness [16]. And they once leverage greedy algorithm with Pareto improvement
to solve multi-objective optimization [15].

6.2 Order Dispatch Mechanisms Based on Reinforcement Learning

Reinforcement learning is widely applied for sequential decision problems and
particularly has been adopted for order dispatching in recent years. Ding, Yi et
al. build a reinforcement learning model to learn the optimal order dispatching
strategies, together with a profit model as the reward function [4]. Considering
that instant delivery imposes a strict time deadline, Guo Baoshen et al. propose
a Time-Constrained Actor-Critic Reinforcement learning based concurrent dis-
patch system to enhance long-term overall revenue and reduce overdue rate [5].

7 Conclusion

In this paper, we propose the first multi-sided fairness-aware dispatch system
called A2CMF to improve the overall platform revenue and benefit fairness of
all stakeholders. We first conduct a data-driven order dispatch pattern analy-
sis, which shows the unfairness of dispatching problem and provides us insights
into different notions of fairness among stakeholders. We then formulate the
order dispatch as a Markov decision process and use the Advantage Actor-Critic
(A2C) algorithm to tackle this problem. The performance of A2CMF is evaluated
through a real-world dataset obtained from Eleme including over 1.15 million
orders. Experimental results show that our fairness-aware A2CMF effectively
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increases the total platform revenue, improves customer service experience, and
reduces the benefit gap between couriers and merchants by 9.7% and 6.2%.
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Abstract. Head orientation tracking has many potential applications in
various fields, e.g., online courses, online meetings, and somatosensory
games. Undoubtedly, with the information of the user’s head orientation,
these applications will have more opportunities to enhance performance
and provide better user experience. However, reviewing existing works
regarding head tracking, the CV-based solutions have limited tracking
angle range and privacy issues and the IMU-based solutions have accu-
mulated errors. None of these methods provide accurate and stable user
head orientation. In this paper, we propose HeadTracker, a fine-grained
3D head orientation tracking system based on a single headphone. Head-
tracker achieves high-precision head orientation tracking by installing
ultrasonic transmitters on an ordinary headphone and deploying ultra-
sonic receivers in the environment. We conducted experiments to evalu-
ate the performance of HeadTracker in the real use environment, and the
experimental results show that the system can achieve an average error
of 6◦ in the 3D head orientation tracking. To the best of our knowledge,
HeadTracker is the first system to use head-mounted ultrasound device
to achieve 3D head orientation tracking and achieves the state-of-the-art
in this category.
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1 Introduction

User tracking, which refers to locating users in real time, has become the focus of
many research work in recent years [2,5,6,9,12]. Nevertheless, most user tracking
systems only focus on the user’s location but ignore the user’s head orientation,
which can reveal important and valuable information, such as the user’s attention
and intent. If the user’s accurate 3D head orientation can be obtained in real
time, we can envision and expect its wide usage in many scenarios. For example,
in online courses scenarios, we can know where the students’ attention is through
their head orientation. In addition, it also has promising usage in motion-sensing
games as an alternative to mouse and keyboard. Besides, in driving scenarios,
we can implement many intelligent driving applications such as estimating the
driver’s intention based on his head orientation.

According to our survey, most of the existing head orientation tracking work
is based on computer vision [1,10,13]. These CV-based solutions can only achieve
a small range of head tracking due to the narrow angle of view of camera, and
they are severely affected by environmental factors such as light. Moreover, the
use of cameras will bring certain privacy risks. There are also some IMU-based
head tracking solutions [6], but such solutions are limited by the cumulative error
of the six-axis IMU and need to be continuously calibrated in use. Although the
nine-axis IMU addresses the cumulative error problem to a certain extent [4,8],
it is seriously affected by the external magnetic field [3]. Most importantly, both
of the CV-based solutions and the IMU-based solutions obtain head orientation
in their own internal coordinate system, which is difficult to be converted to the
world coordinate system for interaction with other devices. Besides, there are some
solutions based on microphone arrays [15,16], but the accuracy of these solutions
are relatively low.

Fig. 1. HeadTracker

In this paper, we propose HeadTracker (Fig. 1), a fine-grained 3D head ori-
entation tracking system based on headphones. Compared with other existing
work, HeadTracker significantly improves the accuracy of head orientation track-
ing. On the hardware side, we add two ultrasonic transmitters to both sides of



Fine-Grained Head Orientation Tracking System 319

an ordinary headphone and deploy some ultrasonic receivers in the environment
to complete the positioning of the headphone. On the software side, we design
several algorithms to calculate the head orientation and keep the system running
smoothly. Specifically, the contributions of our paper are as follows:

1) We use the Zadoff-Chu sequence as the baseband signal and modulate it to
the ultrasound band as our transmitting signal. We demodulate it on the
receiving side, and decompose different paths from the accurate CIR. On
this basis, we design a frequency division multiplexing method to realize the
simultaneous positioning of two transmitters.

2) To solve the problem that signal direct path is easily blocked, we borrow
the idea of GPS satellite positioning systems [7]. That is, we deploy multiple
receivers in the environment and propose a receiver selection algorithm based
on signal quality to accomplish positioning.

3) We use neural network to design a special head orientation tracking algorithm
based on head movement recognition, which enables approximately 6-DoF
head orientation tracking using only two coordinates on the head.

The remaining of this paper is organized as follows. In Sect. 2, we describe
the system design and processing flow of our proposed approach HeadTracker
in detail. Then, we introduce the deployment of the system and conduct a large
number of experiments to evaluate the effectiveness of it in Sect. 3. Finally, we
conclude this paper in Sect. 4.

2 System Design

In this section, we introduce the technical details of the HeadTracker. The system
mainly consists of four modules: signal process, headphone positioning, movement
recognition, and orientation calculation, as depicted in Fig. 2.

Signal Processing Orientation CalculationMovement RecognitionHeadphone Positioning

Bi-LSTM

ClassificationCIR

ZC Modulation

ZC Demodulation

Receiver Selection

Signal Quality

Ranging

Positioning
Head Orientation

Pivot Point

Head Movement

x1 LSTM LSTM h1 h1x1 LSTM hLSTM 1 h 1

x1 LSTM LSTM h1 h1

x1 LSTM LSTM h1 h1

x1 LSTM LSTM h1 h1

Full Connection

x2 LSTM hLSTM 2 h 2

x3 LSTM hLSTM 3 h 3

xt LSTM hLSTM t h t

Fig. 2. Overview of HeadTracker
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2.1 Signal Progressing

Signal Design. We use ZC sequences as baseband signal as ZC is a kind of
CAZAC (Constant Amplitude Zero AutoCorrelation waveform), which means
ZC sequences have ideal auto-correlation properties [11,14]. Compared with the
common CW (Continuous Wave) signal, ZC signal can separate paths at different
distances and reduce the influence of multipath. And compared with the FMCW
(Frequency Modulated Continuous Wave) signal, ZC signal has better range
resolution. We modulate the ZC sequence by a sinusoid carrier at the transmitter,
and the mathematical form of the ZC sequence is

ZC[n] = e
−j

πun(n+cf +2q)
NZC , (1)

where NZC is the length of ZC sequence, the value range of n is 0 ≤ n < NZC ,
and cf takes 0 or 1 as the remainder of NZC modulo 2. The ZC sequence contains
two integer parameters q and u. Generally, q is set to 0, and the ZC sequence
degenerates into Chu sequence. Moreover, u is in the range [0, NZC ], and it is
relatively prime to NZC .

ZC Modulation and Demodulation. In the process of signal modulation
and demodulation, we use an OFDM-based interval interpolation method, which
makes it possible to modulate two different ZC sequences to the same center fre-
quency. Similarly, in the demodulation process of the received signal, we use the
frequency domain interval sampling method to separate the two ZC sequences
from the same received signal.

We know that according to the characteristics of the ZC sequence, the auto-
correlation result of the ZC sequence is non-zero only at t = 0, which ideally will
be a Dirac impulse function δ (t) and is a sinc function practically due to limited
bandwidth. Because the received signal is composed of multiple transmitted
signals with different time delay versions through multiple different paths, the
result of cross-correlation between the transmitted signal and the received signal
is h (t), which is a combination of δ (t − τi) signals with different time delays τi:

h (t) =
P∑

i=1

Aie
−jφi(t)δ (t − τi) , (2)

where P is the number of paths, Ai is the signal strength of signal path i, and
φi is the phase offset of the signal on path i. And we use Dirac function here
for convenience. We can express the channel impulse response (CIR) as h (t), as
shown in Fig. 3.
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Fig. 3. CIR

Ranging. The abscissa of the CIR corresponds to the delay, while the ordinate
corresponds to the cross-correlation value between transmitted signal ZC [t] and
ZC [t − τi], which is transmitted signal after a certain delay τi. The larger the
cross-correlation value, the stronger the delayed signal. Generally, the path cor-
responding to the highest peak of the CIR is the direct path in the case that it
is not blocked. So we can calculate the direct path using the following equation:

d = arg max
1<=i<=L

2

CIR [i]
c

fs
, (3)

where L is the length of CIR. Therefore, after ranging, we can obtain the straight-
line distance between each transmitter and each receiver, which makes prepara-
tions for our subsequent positioning work.

2.2 Headphone Positioning

Receiver Selection. As is well known, a major challenge for ultrasonic posi-
tioning in practice is that the direct path of sound waves between transmitter and
receiver can be blocked frequently. To solve this challenge, we refer to the idea
of satellite positioning systems like GPS, which is to deploy multiple satellites
in orbit to achieve full coverage of the ground. Similarly, we can deploy multiple
ultrasonic receivers in the environment so that no matter how the user’s head
rotates and moves, the direct path between each transmitter and at least three
receivers is not blocked. To this end, we propose a receiver selection algorithm
by which the system will select the most suitable three receivers to position-
ing the transmitter each time. Firstly, we propose an indicator named SNRlos,
which is used to evaluate the signal quality between receivers and transmitters.
Formally, SNRlos is defined as the ratio of the amplitude of the highest peak to
the average of all other peaks’ amplitude in the CIR.

SNRlos =
max CIR [i]

∑L
2
i=1 CIR [i] − max CIR [i]

. (4)
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Positioning. After the receiver selection, each transmitter has found the three
most suitable receivers. According to the triangulation method, knowing the dis-
tance between a certain point and three known anchor points, a ternary quadratic
equation can be established to calculate this point’s coordinates:

f =

⎧
⎪⎨

⎪⎩

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 − d21

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 − d22

(x − x3)
2 + (y − y3)

2 + (z − z3)
2 − d23,

(5)

where (x, y, z) is the position of the transmitter, (xi, yi, zi) is the position of
selected receiver, and di is the distance between the transmitter and receiver
measured by ultrasonic ranging. We use Newton’s iterative method to solve this
ternary quadratic equation system. To improve the calculation speed, we set the
initial iteration value of each positioning as the result of the last positioning,
which can greatly reduce the number of iterations. Generally, each positioning
can be completed only after three or four iterations in this way. After positioning,
we can obtain the trajectory data of the headphone, which can be used to identify
the current movement of the head.

2.3 Movement Recognition

Roll

Yaw

Pitch

Surge

Heave

Sway

Fig. 4. Head movements
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Fig. 5. Bi-LSTM

Movement Definition. We know that a rigid body has six degrees of freedom
in three-dimensional space. We use the definition in the field of navigation to
describe these movements, which are the three translational movements (surge,
sway, and heave) and the three rotational movements (roll, pitch, and yaw), as
shown in Fig. 4. Specifically, surge, heave, and sway are the translation move-
ments along the x-axis, z-axis, and y-axis, respectively; roll, yaw, and pitch are
the rotation movements around the x-axis, z-axis, and y-axis, respectively.

We ignore overly complicated head movements here as we believe that the
six basic movements account for the vast majority in our daily life, while other
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complex movements are relatively rare. Besides, adding other uncommon move-
ments will increase the complexity of the classification model and reduce the
overall classification performance, which we think is not worth the gain.

Classification Model. Head movements recognition is a classification task with
the data of headphone trajectory. Since trajectory is a kind of time series data,
we adopt Bi-LSTM as the classification model to complete this classification
task. Bi-LSTM is a special kind of recurrent neural network that has a good
representation ability for the time series data. Its excellent performance has
been proven in many fields such as speech recognition. Bi-LSTM combines the
forward LSTM with the backward LSTM as shown in Fig. 5. Therefore, Bi-LSTM
can make better use from the information of the subsequent data compared with
traditional LSTM.

In this step, we use the headphone trajectory as training data to train a clas-
sification model, which can be used to identify the ongoing head movement. After
obtaining the head movement, we can calculate the head orientation according
to some head movement rules, which is the next step of our system.

2.4 Orientation Calculation

Clearly, to determine the posture of an object in three dimensions, at least the
coordinates of three different points need to be known. The posture of the rigid
body is not unique with only two coordinates, because it can rotate around the
axis formed by the two points. But after headphone positioning we can only
obtain two points on the head, now the problem is how to estimate the head
posture based on the positions of only two points?

Fig. 6. Pivot point Fig. 7. Rotation

In fact, the head is not an object that can move freely in three-dimensional
space, which is limited by its connection to the body. By observing and analyzing,
we find some rules of head movement. That is, the movement of the human head
are carried out around a point in the neck, we call it the pivot point (Fig. 6). The
position change of the pivot point is closely related to the head’s movements.
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When the head is only rotating without moving, the absolute position of the
pivot point is almost unchanged (Fig. 7). When the head is only moving without
rotating, the relative position of the pivot point and the headphone remains
almost unchanged. Therefore, these rules give us the possibility to determine
the position of the pivot point by the head’s movement. The relative position
between the pivot point and the headphone is unchanged for a person, which
is determined by the bones of the head and neck. So we only need to initialize
the pivot point once at the beginning and then we can update it in real time
according to the movement of the head.

The pivot point position updating formula is expressed as follows:

Ppivot =

{
Pleft+Pright

2 − Vrelative M ∈ {surge, sway, heave}
Ppre M ∈ {roll, pitch, yaw, static} ,

(6)

where Ppivot is the position of the current required pivot point, Pleft and Pright

are the positions of two transmitters, Vrelative is the vector between the midpoint
of the two transmitters and the pivot point, Ppre is the position of the pivot point
in the previous frame, and M is the ongoing movement of the head.

We now have the coordinates of the three points on the head in total, i.e.,
the pivot point and two transmitters. Sequentially, we can calculate the head
orientation according to the following formula:

Vorientation = (Pright − Ppivot) × (Pleft − Ppivot) . (7)

3 Implementation and Evaluation

3.1 Implementation

(a) Headphone (b) Piezoceramics

(c) Coaxial line (d) NI I/O device

Fig. 8. Hardware Fig. 9. Experimental scene

Figure 8 shows the devices used in our experiment. We choose piezoelectric
ceramics as the transmitter and receiver of ultrasonic waves. We install the two
receivers on both sides of the headphone and install the receivers in the envi-
ronment. We use Murata MA40H1 piezoelectric ceramics as sound sources for
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transmitting and receiving ultrasonic waves. The I/O device we use is USB-6356
produced by National Instruments, which can support up to 2 analog signal out-
puts and 8 analog signal inputs. These piezoelectric ceramics are connected to
I/O device through coaxial cables and the experimental scene is shown in Fig. 9.
In the part of software, we use MATLAB to drive the device for signal acquisi-
tion and data processing. In the experiment, we set the center frequency of ZC
signal to 40 KHz with 96 KHz sampling rate, which is far beyond the hearing
range of human ears. As for the cost of this system, we admit that the price will
be higher than other solutions, such as CV and Bluetooth. We are studying how
to complete this task with the help of loudspeakers and microphones commonly
used in life to reduce costs.

3.2 Performance of Head Movement Recognition

We collect a data set of more than 7000 trajectories information to evaluate the
performance of the head movement recognition module. There are about 1000
trajectories for each type of movements, each of which is a two-second coordinate
sequence of two transmitters. Specifically, 80% of the data in the dataset is used
to train the model while the remaining 20% is used for testing. According to the
confusion matrix in Fig. 10, the average classification accuracy on the dataset is
more than 99%. For a single head movement, the one with the lowest accuracy
is pitch, which achieves the accuracy of 98.64%, and the one with the highest
accuracy is sway, roll, yaw and static movements, which reach 100%. It can be
seen that the classification accuracy of the two movements (i.e., surge and pitch)
are relatively low compared with others. This is also in line with our intuition,
because surge is the forward and backward translation of the head, and pitch
is the forward and backward rotation of the head. The two movements are very
similar when the movement range is not large, so they are easy to be confused.

Fig. 10. Confusion matrix of head movement recognition
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As for the reason why the classification result is so accurate, we believe that
it can be attributed to the strong representation ability of Bi-LSTM for time
series data, the sufficient training data and the simple classification task.

3.3 Performance of Head Orientation Tracking

Fig. 11. Results of head orientation tracking

To get the groundtruth the head is facing, we use a nine-axis IMU (including
accelerometer, gyroscope, and magnetometer). We attach this IMU to the same
headphone together with the HeadTracker system. This IMU can feed back the
three-axis angle changes of the head to us in real time. Based on this, we can
calculate the orientation of the head as the groundtruth. We then compare the
groundtruth with the HeadTracker measurements to evaluate the performance
of the system. However, as we mentioned earlier, the IMU has the problem of
cumulative error, which can adversely affect the experimental results. To reduce
the influence of the cumulative error of the IMU, we try to shorten the duration
of each experiment, which is about 20 s to 60 s. During each experiment, the
participants are first told what to do and then put on the equipment with the help
of the experimenter. The participants will repeat the following actions during the
experiment: surge, sway, heave, roll, pitch, and yaw. During the experiment, we
record the groundtruth of the IMU and the measurements of the HeadTracker
in real time at ten frames per second.

We conduct a total of 6 groups of experiments. The system samples the head’s
orientation at a frequency 10 Hz during the volunteer’s rotation. Figure 11(a)
shows the error of the 6 groups. From the figure, it can be seen that the median
error of each experiment is between 3◦ and 7◦, and the maximum error is about
17.5◦. According to the calculation, the average error of these 6 groups is about
6◦. Figure 11(b) shows the CDF of the errors of all groups, where the 50% error
of data is less than 7◦ and the 90% error of data is less than 12◦.
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3.4 Impact of Speed

Fig. 12. Results for different rotation speeds

We also conduct experiments at different rotation speeds. First of all, according
to the habit of human head rotation, we divide head’s rotation speed into low
speed, medium speed, and high speed. Low speed means that the rotation speed
is about 1.5 degrees per second, medium speed is about 3 degrees per second, and
high speed is about 9 degrees per second. We let the volunteer rotate the head at
different speeds, and then evaluate the head orientation tracking performance.
Figure 12 shows the experimental results at different rotation speeds.

It can be seen from Fig. 12(a) that the error of low-speed rotation is smaller
than that of medium-speed rotation, and the error of medium-speed rotation
is smaller than that of high-speed rotation. Regardless of the average value,
median, maximum value, and other indicators for comparison, the result of low-
speed rotation is almost always the best. Figure 12(b) also shows that the error
of low-speed rotation is the smallest, achieving a result that the 50% error of the
data is less than 5◦ and the 90% error of the data is less than 12◦. The results
are in line with our intuition, because the lower the rotation speed, the more
stable the head is, the easier it is to control the head orientation.

3.5 Impact of Participants

Considering that the performance of our HeadTracker system is closely related to
the user’s physiological characteristics, especially the size and shape of the bones
in the head and neck, different users may bring different experimental results.
To evaluate the robustness of our system to users, we invite 10 participants (7
males, 3 females) to conduct the experiment (Fig. 13). These volunteers range
in age from 20 to 25. We let each participant wear the equipment to conduct
the same experiment and evaluate the results of these experiments. The results
of all experiments are shown in Fig. 14. Because of the different physiological
structure and head movement habits among people, there are some differences
between the results from different participants as shown in Fig. 14(a). Among
them, participant M5 has the largest average error (about 5◦), while participant
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(a) Male1 (b) Male2 (c) Female1 (d) Female2

Fig. 13. Different participants

Fig. 14. Results for different participants

M3 has the smallest average error (about 2.5◦). Moreover, the average error of
all the participants’ data is about 4◦, which is basically the same as the error we
measured above. These experiments show that HeadTracker is robust to different
participants. In addition, we count the head orientation errors of male and female
participants and draw the CDF of them in Fig. 14(b). We can see that the two
curves basically overlap, which prove that the results are almost not affected by
gender.

4 Conclusion

Users’ head orientation provides valuable information to various fields such
as online courses, online conferences, and somatosensory games. To effectively
obtain and utilize this information, we propose HeadTracker in this paper, which
is a fine-grained 3D head orientation tracking system based on a headphone. To
achieve high-precision tracking, we first install the ultrasonic transmitters on
the headphone and deploy the ultrasonic receivers in the environment to real-
ize the positioning of the user’s headphone. Then, we use the trajectory of the
headphone and Bi-LSTM to complete the recognition of the user’s head move-
ment. Finally, we calculate the real-time position of the pivot point based on
the head movement and then calculate the head orientation. Our experimental
results show that the average error of head orientation tracking is about 6◦ in
real environment, which is the best performance known at present and indicates
that our system has great development potential and application prospects.
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Abstract. When dealing with the real track, the environment is often an unpre-
dictable factor, so filtering is very important. We can use the filter to eliminate
the influence of noise as much as possible. Kalman filter is one of them. In this
work,we proposed a newParticle SwarmOptimization algorithm, called the Sheep
Herding Optimization algorithm, which can obtain higher quality solutions with
faster convergence speed and better stability. Besides, in order to improve the per-
formance of Kalman filter, we apply the Sheep Herding Optimization algorithm
to the filter. The improved Kalman filter can fuse and predict the track, and has
higher computational performance and smaller error.

Keywords: Kalman filter · PSO · KSP · Filtering · Track fusion

1 Introduction

Facing the difficulty of multi-source electromagnetic sensing information estimation
and fusion in multi-sensor networks, aiming at typical application scenarios, research
contents such as target track generation and tracking under low positioning accuracy,
target track fusion under multi-precision hybrid conditions, multi-source information
fusion based on evidence theory is carried out. New technologies and methods for multi-
source electromagnetic sensing data estimation and fusion are established, the prototype
software is developed to provide basic support for the intelligent processing of multi-
source electromagnetic sensing data. In real life, the environment is very complex and
unpredictable, the data we obtained are often accompanied by noise interference, so
signal processing is very important, and filtering is one of the key technologies. Kalman
filter stands out for its excellent estimation ability, it is different from ordinary filters.
Kalman filter algorithm reduces the storage and calculation to a great extent. However,
the traditional Kalman filter algorithm needs to predict the statistical characteristics of
noise in advance, but this is not realistic in general. Kalman filter algorithm is limited,
so we need to introduce a new particle algorithm to optimize and improve it. Particle
swarm optimization algorithm has always been an optimal method in optimization. The
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individual function of particles is very simple and easy to realize, and the information
exchange between particles is not complex.

Therefore, in our work, we adopt the Sheep Herding optimization Algorithm, which
is proved to be more efficient than ordinary PSO algorithms. Besides, the optimization
method is introduced into Kalman filter algorithm, making it perform better. Using
particle algorithm to improve Kalman filter algorithm is of great research significance
and research value.

2 Related Work

2.1 Kalman Filter Algorithm

In practice, it is often impossible to directly obtain the real value of the required state and
variable, because the radar system will have the problem of random jam when detecting
the target, resulting in the random noise in the observed signal; It is very difficult to
separate the motion state of the target, and Kalman filter is a powerful tool to reduce
these noises. Kalman filter needs current measurements and predictions from previous
sampling cycles to estimate state. It is important to note thatwhen thefilter is used to solve
the problem of state estimation for a moving target or entity, its measurement equations
are linear. Scientists have done a lot of research, hoping to modify the KF algorithm to fit
to the actual situation. Dr. Schmidt [1] proposed EKF Kalman Schmidt filter, this filter
was developed to reduce the dimensionality of the state estimation without overlooking
the effects of the additional state on the calculation of the covariance matrix and Kalman
gains. One of themain advantages offered by thismodification is reducing computational
requirements. Bonnabel et al. [2] proposed a new version of the Extended Kalman Filter,
called IEKF, which is proposed for nonlinear systems possessing symmetries. Instead
of using a linear correction term based on a linear output error, it uses a geometrically
adapted correction term based on an invariant output error. Pi et al. [3] proposed an
adaptive extended Kalman filter (AEKF) algorithm to resolve the problem of the error
accumulation. It takes the Taylor series of sampling time inAEKF and use the Sage-Husa
time-varying noise estimator to estimate observation noise in real time. Hesch et al. [4]
proposedOC-EKF (ObservabilityConstrainedExtendedKalmanFilter), it removes false
information along unobservable directions of the estimator. The algorithm improves the
precision and consistency of the inertial navigation system.

The first application of the Kalman filter and its extension was conducted in the
guided navigation field. The KF and its variants have been used in a wide range of
tasks [5]. The paper proposed a pedestrian navigation algorithm based on colored noise
improved Kalman filter, and the experimental result showed that the proposed algorithm
would have higher positioning accuracy than the pedestrian navigation algorithm using
the white noise model. Li et al. [6] researched and simulated how to apply KF to the
radar target tracking system. The algorithm can be used in some single-target tracking
systems directly, or combined with other algorithms for multi-target tracking systems.
What’s more, Assaf et al. [7] studied Kalman Filter (KF) based techniques for tracking
ships using Global Positioning System (GPS) data. The absence and presence problem
of a ship is handled by an applying KF theory to analyze GPS coordinates and compare
current marine vessel routes to previously recorded ones.
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2.2 Particle Swarm Optimization

For the complex optimization problems in various fields in real life, many researchers
choose to seek solutions from the models of nature. The intelligent behavior of social
animals through simple cooperation without centralized control is called swarm intelli-
gence. The agents in a Swarm Intelligence system follow very simple rules [8]. There
is no centralized control structure dictating how individual agents should behave. The
agents’ real behaviors are local, and to a certain degree random; however, interactions
between such agents lead to the emergence of “intelligent” global behavior, which is
unknown to the individual agents. Well- known examples of Swarm Intelligence include
ant colonies, bird flocking, animal herding, bacterial growth, and fish schooling. It has
the characteristics of self-organization, robustness, flexibility and low consumption.
Besides, it can still effectively process a large amount of data due to its characteristics
of distribution and parallelism. So far, particle swarm optimization algorithm is one of
the typical algorithms.

Particle swarm optimization is a part of evolutionary computing. It finds the optimal
solution by cooperating and sharing information among each individual in the group.
It has few parameters need to be adjusted, and is widely used. PSO performs searching
via a swarm of particles that updates from iteration to iteration [8]. To seek the optimal
solution, each particle moves in the direction to its previously best (pbest) position and
the global best (gbest) position in the swarm, so that most particles can gather near the
global optimal solution to solve the problem. Based on this, many researchers made a lot
of efforts to improve the performance of particle swarm optimization algorithm. Yang
et al. [9] proposed an improved PSO algorithm called Elitist promotion strategy, a stored
information recombination method. When criteria are met, the personal best solutions
of particles are used to reconstruct the new individuals through specified operators. In
order to improve the global search ability of the algorithm, the new generated individu-
als with better fitness values are selected as the new personal best solutions and global
best solution. Dong et al. [10] proposed a new approach, introduced the adaptive elite
mutation and nonlinear inertia weight (OPSO-AEM&NIW) to overcome the drawbacks,
such as falling into local optimization, slow convergence speed of opposition-based par-
ticle swarm optimization. Davoodi et al. [11] proposes a new approach, based on a
hybrid algorithm combining of Improved Quantum-behaved Particle Swarm Optimiza-
tion (IQPSO) and simplex algorithms. It can give a good direction to the optimal global
region. IQPSOS has the robustness and better convergence under normal and critical
conditions, when conventional load flow methods fail. Zhang and Wu [12] proposed
adaptive CPSO (ACPSO) to train the weights/biases of two-hidden-layer forward neural
network in order to develop a hybrid crop classifier for polarimetric synthetic aperture
radar images.

PSO has been applied in various academic and industrial fields so far. The hottest
application categories are “electrical and electronic engineering,” “automation control
systems,” “communication theory,” “operations research,” “mechanical engineering,”
etc. Larrea et al. [13] proposed the weighted averaging method, where the parameters
(weights) are tuned with the Particle Swarm Optimization algorithm. And the algorithm



Kalman Filter Algorithm Based on Sheep Herding Optimization 333

helps forecast the short-term consumption reliably, which improves the operations plan
management of the supply companies. Djemama et al. [14] take cellular automata as a
modeling tool, an evolutionary process carried out by the QPSO algorithm attempts to
extract the rules resulting in satisfactory image denoising and edge detection. Experi-
mental results demonstrate the feasibility, the convergence and robustness of the QPSO
algorithm for solving reverse emergence in the specific application of image processing.
Cai andYang [15] proposed an improvedPSO-based approach for a teamofmobile robots
to cooperatively search for targets in complex unknown environments. The improved
cooperation rules for a multirobot system were applied in the potential field function,
which acted as the fitness function of the PSO.

3 Kalman-Sheep Algorithm

Except PSO, there are a lot of other swarm intelligence algorithms, such as Ant colony
optimization (ACO) algorithm, artificial bee colony (ABC) algorithm, cuckoo search
and so on. These algorithms realize intelligent optimization by simulating the behavior
of a group in reality. Because of this, they can’t be completely consistent with the core of
the algorithm. We hope the algorithm, at the beginning, can reasonably carry out global
exploration and local optimization to quickly converge to the feasible solution, timely
judge whether they fall into local optimization and execute the corresponding jump out
mechanism. At the same time, the algorithm should have as few parameters as possible
to maintain simplicity.

In the Kalman filter, the error covariance matrix P of the initial filter can’t be taken
as zero, because this may make Kalman fully believe that the given initial state is the
optimal of the system, so that the algorithm can’t converge. In the progress of Kalman
filter, the matrix P will constantly update itself, but a good initial value can improve the
convergence of the filter and speed up the convergence, so as to make the system enter
a stable state as soon as possible.

Given a value range of P, in which the sheep herding algorithm is used to search the
best value of P, so that when p reaches this value, the effect will be more accurate and the
denoising performance will be better. In this way, the evaluation of Kalman filtering is
equivalent to the fitness function of PSO algorithm. The fitness function’s input variable
is the error covariance matrix P of initial filtering, and its output is the evaluation of
filtering effect, and optimization P is a process in which PSO algorithm constantly calls
filtering algorithm. Therefore, we propose a newKalman-sheep algorithm (KSP), which
is simple, efficient and easy to implement.

3.1 Architecture of the Algorithm

The inputs of the Kalman filter algorithm in the figure are the measured value Zk,
the estimated value Xk and the state covariance matrix Pi at time K. The complete
architecture of the system is illustrated in Fig. 1.
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Fig. 1. Flowchart of the algorithm

a) After Kalman filtering according to Zk, Xk and corresponding parameters Pk, an
optimal estimation value can be obtained, which is recorded as Xk(Pk).

b) Calculate the adaptive function of Xk(Pk) to judge whether the Kalman filter algo-
rithm has reached an efficient operation state. If the system state is not good, enter
the PSO algorithm; If the parameter p reaches a good value, the algorithm ends.

c) Optimize the input parameter P, and finally get a better parameter Pk+1 for the next
round of Kalman filter algorithm.

d) Iteratively update P to obtain an optimal input parameter P.

3.2 Sheep Herding Optimization Algorithm

PSO algorithm is the core part of the algorithm in this paper. In the SHO, the value of P
represents the position of each sheep, which is the parameter. Zk is the measured value,
and Xk is the estimated value at time k.

A fitness function is a particular type of objective function that is used to summarize,
as a single figure of merit, how close a given design solution is to achieving the set aims.
The fitness function to judge the position of each sheep can use the mean square error
between the observed value and the optimal estimate at time k, where M is the number
of iterations.

f(Pk) = 1

M

M∑

k=1

abs(Zk − Xk(Pk))
2

The flowchart of SHO is shown in Fig. 2. The algorithm mainly consists of the
following three parts.

Sheep Lead
In the algorithm, each sheep in the group will move a certain distance towards the head
sheep. In this stage, the input is Xi

old of each non head sheep, and the output is the latest
position Xi

new of each sheep. Xleader indicates the position of the leader at the moment.

Xnew
i = Xold

i + rand(0, 1) ∗
(
Xleader − Xold

i

)
(2)
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The position of each sheep can be updated according to the formula, where rand (0,1)
indicates that the sheep in the group approach the leader randomly in varying degrees.
However, if the fitness function value is not improved after updating, the optimization
will be abandoned.

Herd Interaction
In the algorithm, each sheep will randomly find a sheep in the flock for adjustment. At
this time, the input objects are Xi

old of the sheep and Xj
old of the sheep who is randomly

chosen in the flock. Compare the fitness function values of the two. If the value of the
latter is greater than the former, Xi moves a random distance towards Xj, and Xj moves
away from Xi to a certain extent.

Xnew
i = Xold

i + rand(0, 1) ∗
(
Xold
j − Xold

i

)
(3)

Xnew
j = Xold

j + rand(0, 1) ∗
(
Xold
j − Xold

i

)
(4)

On the contrary, if the fitness function value of the former is large, it will be updated
according to the following formula.

Xnew
i = Xold

i + rand(0, 1) ∗
(
Xold
i − Xold

j

)
(5)

Xnew
j = Xold

j + rand(0, 1) ∗
(
Xold
i − Xold

j

)
(6)

As in the previous stage, if the fitness function values of Xi and Xj are not improved
after the update, the update will be cancelled.

Shepherd Dog Supervision
Once the difference between the old and old fitness function values of the leader is less
than a threshold K, the shepherd dog mechanism will be triggered. In this mechanism,
the number of sheep reset is described by probability P. If the shepherd mechanism is
triggered and a sheep is chosen, it will be reset. If a sheep is not driven by the shepherd
dog, that is, the sheep is not reset, it will randomly select a sheep that has been reset and
move towards it.

Xnew
i = Xold

i + rand(0, 1) ∗
(
Xold
i − Xold

j

)
(7)
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As in the previous stage, if the fitness function values of Xi and Xj are not improved
after the update, the update will be cancelled.

3.3 Kalman Filter Algorithm

Computationally, the multiplication of these probability density functions relates to
the discrete KF equation designed for stochastic systems, which is similar to the state
observer for deterministic systems:

xk+1 = Axk + Bμk + ωk (8)

The state vector xk contains information about the position, direction, and speed,
and these variables should be estimated. It represents the a priori state, while the vector
xk+1 represents the posteriori state. The variables to be estimated are given by matrices
A(state transition matrix) and B(control matrix). The variable μk represents the input
from which the estimate is derived, andωk takes into account the noise. KF is a two-step
algorithm. It consists of a prediction part (time update equations) and an estimation part
(measurement update equations).

Firstly, after measurements are taken, the prediction part is done. The linear system
model, without dynamic noise taken into account, is used to calculate the a priori state
estimate x̂ and the error covariance P:

x̂ = Axk−1 + Bμk (9)

P−
k = APk−1A

T + Q (10)

The a priori error covariance matrix P is based on knowledge about the difference
between measured states and previously estimated states. Matrix Q is the system process
noise covariance matrix, defined in time intervals. It collects data about unmeasured
dynamics and sensor noise.

The second part of the algorithm uses the a priori estimates calculated in the predic-
tion step and updates (correct) them to find the posteriori estimates of the state and to
minimize error covariance. The state estimate of correction is given by:

x̂ = x̂−
k + Kk

(
yk − Hx̂k

)
(11)

Pk = (I − HK)P−
k (12)

where H is a measurement matrix related to the connection between the current state
and measurement. The expression

(
yk − Hx̂k

)
represents the deviation of the actual yk

measurement from the predicted measurement. The Kalman gain Kk is calculated so
that it minimizes the posteriori error covariance:

Kk = P−
k H

T

HP−
k H

T + R
(13)
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where R is the measurement noise matrix. Once the update equations are calculated, in
the next time step, the posterior estimates are used to predict the new a priori estimates,
and the previous steps are repeated. To estimate the current state, the algorithm does not
need all past measurements. Only estimated states, the error covariance matrix from the
previous time step, and the current measurement are needed.

4 Experiment

To evaluate the performance of Sheep Herding optimization algorithm, a comprehensive
set of benchmarks are adopted. These functions had local optima and/or saddles in their
solution spaces where the number of local minima increases exponentially with the
problem dimension. The formulation of each function, feasible solution space, and fmin
are listed in Table 1.

Sphere and Shifted Sphere function are typical representatives of unimodal function,
as Rastrigrin and Ackley function are typical representatives of multimodal function.
Take Sphere function as an example, it is a continuous, convex, symmetrical and uni-
modal function. It is mainly used to test the local search ability of the algorithm. On the
other hand, Rastrigrin function is multi-modal and usually employed for evaluating the
global search ability of the algorithm. Multimodal functions have many local minima
and are difficult to be optimized. For multimodal functions, the final results are more
important to be obtained since they reflect the ability of the algorithm in escaping from
poor local optima and locating a near-global optimum.

Table 1. Benchmark functions.

All of simulations in this paper are executed on a PCwith a 2.66 GHz Intel Processor
and 4.0 GB RAM. All of programs are written and executed in MATLAB 7.6.0. For all
these algorithms, a population of 40 individuals corresponding to the dimensions 30 is
used, themaximum iteration times of unimodal function (f1, f2) andmultimodal function
(f3, f4) are 10000 and 100000 respectively. We set P = 0.2, and ε is the error threshold
of the test function.
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In our work, statistical measures are used to assess performance of these algorithms.
The root-mean-square error (RMSE) is a frequently used measure of the differences
between values (sample or population values) predicted by a model or an estimator and
the values observed. The RMSE represents the square root of the second sample moment
of the differences between predicted values and observed values or the quadratic mean
of these differences. These deviations are called residuals when the calculations are
performed over the data sample that was used for estimation and are called errors (or
prediction errors) when computed out-of-sample. The RMSE serves to aggregate the
magnitudes of the errors in predictions for various data points into a single measure of
predictive power.

RMSE =
√√√√1

n

n∑

i=1

(
xi − xi

∧)2 (14)

4.1 SHO

Table 2 gives the comparison of the processes of SHO and PSO in well-known four
benchmark functions averaged on 100 trial runs. The mean and standard deviation of
solutions found by these algorithms are also listed in Table 2. For unimodal functions, the
performance of so algorithm is significantly better than that of standard PSO algorithm;
For multimodal functions, so algorithm obtains the global optimal value on function F4,
the solution quality is much better than PSO, the solution quality on functions F5 and
F8 is much better than PSO, and the solution quality on functions F6 and F7 is similar
to PSO, The main reason why so algorithm can obtain higher quality solutions than
PSO algorithm is that its head sheep leading mechanism can quickly lead all sheep to
actively approach the currently knownoptimal solution, strengthen the global exploration
ability, and the sheep interaction mechanism can accelerate the sheep to approach the
surrounding optimal solution, actively judge whether they fall into the local optimal
solution and execute the corresponding jump out mechanism while converging rapidly.

Table 2. Comparison of SHO and PSO algorithm

Function Algorithm Mean RMSE Optimal value Worst Value

f1 SHO 1.56E−19 1.35E−19 1.83E−20 5.82E−19

PSO 1.54E−18 2.99E−18 3.05E−21 1.62E−17

f2 SHO 1.50E−13 3.59E−14 1.14E−13 2.27E−13

PSO 1.70E + 02 2.87E + 02 5.68E−14 1.50E + 03

f3 SHO 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

PSO 3.24E + 01 1.07E + 01 1.69E + 01 5.77E + 01

f4 SHO 7.25E−15 1.00E−15 7.11E−15 1.42E−14

PSO 7.39E−15 1.41E−15 7.11E−15 1.42E−14
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4.2 KSP

Figure 3 shows the trajectory of robot. In Fig. 3, there is a deviation between the actual
trajectory and the designed trajectory of the robot because of the noise andmileagemeter
error in the process of robot motion. It also shows deviation curve between EKF and
AEKF.

Fig. 3. The trajectory of boat in KSP and Kalman

In Fig. 4, we introduce a new algorithm, GO-PSO, to compare with KSP. GO-
PSO introduces global optimization method to improve the search efficiency of particle
swarm optimization algorithm and overcome the shortcomings of its easy to fall into
local optimal solution. Figure 4 shows that the MSE of the Kalman algorithm based
on sheep optimization tends to be constant after about 14 iterations, while the optimal
solution of the GO-PSO algorithm tends to be stable after 24 iterations; According to the
curve in Fig. 4, the performance of KSP algorithm is better than GO-PSO algorithm, so
the Kalman optimized by KSP can obtain the global optimal solution in a more accurate
way.

Fig. 4. The relationship between iterations and MSE
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Figure 5 shows the comparison of trace error before and after filtering. Before fil-
tering, the trace error (shown in blue) is at a relatively high level, while after filtering,
the trace error (shown in orange) fluctuates in a relatively low range. It can be seen that
the filter is effective and it can reduce the error to a certain extent and control the error
within an acceptable range.

The error fluctuates with time in the experiment, because it is carried out before and
after the algorithm training, not the real-time error in the training process. Therefore,
the error does not gradually decrease with time, but after training, the average error of
the algorithm has decreased significantly.

Fig. 5. The error before and after filtering

5 Conclusion

In this paper, an optimized Kalman filter method is proposed, which can not only main-
tain the advantages of particle swarm optimization algorithm, but also effectively avoid
particles falling into local optimal solution in the search process; Through dynamic
adjustment, the particles gradually converge to the global optimal value. The KSP algo-
rithm has good convergence effect, and the filtering effect of the optimal parameters is
obviously better than the traditional particle swarm optimization algorithm.
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Abstract. In the field of intelligent security, due to the negative effect of com-
plicated influence factors, such as low video quality, different size of the target
and occlusion, target detection is hard to be well-applicated in real life. Based on
the above problems, this paper proposes a multi-layer feature cascade aggregation
pyramid network (MCA-FPN) on the basis of Faster RCNN, which can fully com-
bine the different level of semantic information to generate optimized featuremaps
and improve the expression ability of different size of features finally. Besides, to
remove the negative effect from the imbalance distribution of samples, this paper
discusses a new sample balanced weighted loss function SB-Loss to increase con-
vergence speed andmake the training process more efficiency. Finally, the method
proposed by this paper has been experimented on the Pascal VOC dataset, with a
maximum accuracy of 86.0%, which is highly competitive in this research area.

Keywords: Target detection · FPN · Sample balanced

1 Introduction

The target detection has raised a lot of attention from both academic and engineering
fields, and it has also been applied to people’s real life. In fact, the process of target
detection achieved by algorithm is very similar with human’s approach, both of which
need to confirm the category and location of target from specific image, so as to complete
the two main tasks of target classification and identification [1]. However, in realistic
application, there will be a lot of factors affecting the accuracy and speed of detection
algorithm, such as the occlusion and frame lost for specific image. These factors may
lead to an information lost phenomenon and make it hard for traditional methods to
analyze images accurately.

In recent years, the emergence of convolution neural network has greatly helped
to increase the accuracy of target detection and has attracted a lot of attention from
the academic field [2]. Neural network method can process wider levels of features
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and extract more detailed information from original image, which solves the problems
mentioned above to some extends. Most of recent research focus on changing or fine-
tuning the existing convolution neural network structures. As shown by the result of
ILSVRC, which is one of the most influential competitions in the computer vision field
[3], it is common to see that the convolution neural network-based method performed
better or even the best in the past few years, which also illustrates the importance of
convolution neural network on target detection.

There are different kinds of classical image detection algorithm. The one-step target
detection algorithm is relatively direct and simple. It usually operates directly on the
feature map and then send the extracted information to the final result, one of the main
advantages of such network structure is to increase the processing speed of network
which leads to a relatively fast detection speed than other methods. The step-by-step
target detection algorithm on the other hand, divide the network into multiple subnets
and process the feature map in different stages. Because most of the two-stage detection
algorithms have more detailed network structures and divisions, they tend to perform
better with higher accuracy than the one-step method. For example, a recent detection
algorithm fast RCNN is a typical representative. Therefore, if there is a way to increase
the accuracy of the one-step target detection method, the algorithm would benefit from
both advantages of fast speed and high accuracy.

One of the main reasons that one-step detection network perform badly can be
attributed to the imbalance division between positive and negative samples. By solving
this disadvantage, the performance of the one-step detection method increases to a sim-
ilar level with the step-by-step method [4]. Meanwhile, the feature pyramid structure
proposed by FPN [5] enables hierarchical processing on the output generated by ResNet
backbone network, so that the shallow and deep features can be effectively utilized,
which enhances the utilization of feature information by the model and improves the
performance of the algorithm.

To solve the practical problems in security monitoring application, this paper pro-
poses d a series of method based on the deep learning target detection model to improve
the performance of detection. The main innovations are as follows:

(1) A new multi-layer feature cascade aggregation pyramid network (MCA-FPN) is
proposed based on the structure of feature pyramid. This module can fully combine
the deep and shallow feature semantic information and improve the representation
ability of each feature.

(2) Optimize the positive and negative sample matching mechanism, and design the
sample equilibrium loss function by asymmetricallyweighting the positive and neg-
ative samples to solve the imbalance existing in the training process. The experiment
result shows that the optimized network model can converge quickly.

(3) The designed multi-layer feature cascaded aggregation pyramid network
(MCAFPN) can be easily applied to other detection algorithms and help to achieve
the algorithm migration on the basis of better performance.
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2 Related Work

2.1 Target Detection

The two-stage target detector is developed based on the RCNN [6] network. RCNN
firstly determines the potential location of the target through the selective search method
and extracts the corresponding features by models. Then, it carries out linear classifica-
tion and prediction of the target in each region through supervised learning method to
identify the target categories. On the basis of RCNN, the deep learning detector of fast
RCNN [4] and regional recommendation network (RPN) are proposed, which reduce the
computational complexity compared to the previous selective search methods. Besides,
as an improvement of the isolated RCNNmodules, modules from Faster RCNN comple-
ment with each other very well, which not only reduces the training loss among different
modules but also greatly meet the requirement of real-time detection. What is more,
some improved research based on the above network are proposed to further decrease
the computational complexity and increase the detection speed. Examples include the
fully convolution RFCN [7] and Lightweight backbone Light-RCNN [8].

For the single-stage target detector, Yolo detection network [9] is the typical repre-
sentative which cuts the input picture into different regions and completes the detection
task based on the pixels of each region. The subsequent improved version of Yolo [10–
12] made further breakthrough in detection speed. SSD [13] detection model optimizes
the resolution and spatial information of the input image, which greatly makes up for the
disadvantages of the single-stage target detector in scale problem. Inspired by the idea
of SSD layered detection of different scale feature maps, RetinaNet [14] is proposed. In
order to solve the problem of uneven foreground and background of the training samples
in the single-stage detection model, RetinaNet designed a new loss function based on the
theory of standard cross semantic entropy loss, to increase the attention towards ‘hard
example’ during the process of network training.

2.2 Feature Pyramid Networks

For the better use of hierarchical feature output extracted by backbone network, people
proposed a pyramid-structured network to process the output fromdifferent layers,which
is called feature pyramid model in research field. SPPNet [5] is the model to study the
pyramid structure.

C2

C3

C4

C5

P2

P3

P4

P5
Features 

from 
shallow 

to 
deep

Fig. 1. Feature pyramid networks
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Based on SPPNet, the feature pyramid structure FPN is proposed to allow the detec-
tion network to adapt to the targets with various sizes in the image and solve the problem
of lowutilization rate of training samples. The basic constructionmethod of FPNnetwork
is shown in Fig. 1.

On the basis of the original FPN structure, many people carried out more detailed
research. Panet [17] realizes the effective utilization of underlying information by adding
cross layer connections on FPN. Stdn [18] makes efficient use of the cross-scale feature
through the scale transmission module. G-frnet [19] utilizes the feature information with
different sizes, which fuse the information from different receptive fields well. NAS-
FPN [6] and auto FPN [4] use e-learning [7] to obtain the best construction method.
And finally, EfficientDet [8] suggests the design of duplicate BiFPN layers. However,
the above methods either add other structures to the original FPN structure to improve
the performance, or improve only one of the two disadvantages. There is no one method
that focuses on solving both of the disadvantages.

2.3 Imbalance of Sample Distribution

The problem of sample distribution imbalance refers to the extremely imbalances among
different kinds of samples during the training process. A recent study shows that it is
difficult for the model to learn useful features continuously from simple samples, by
contrast, sometimes the difficult samples are also helpful for training [9]. For example,
it is easy for model to train when simple sample occupies a large proportion of the whole
sample and the network will be converged quickly. However, such trained network will
perform badly when the distribution of samples changes.

In machine learning, in order to deal with the problem of sample imbalance, data
preprocessing and network fine-tuning are usually selected [10–16]. The preprocessing
method includes data superposition training, category balance selection etc. From the
perspective of network fine-tuning, such as the fast RCNN, the number of positive and
negative samples will be set by super parameters to ensure the balance of samples in the
RPN and ROI pooling stage. For the screening of candidate areas, it firstly determines
a fixed number of positive samples, then manually set the sample selection proportion
to determine other samples. In fact, such empirical setting method is not suitable for
different tasks and data. Moreover, this kind of method only optimizes the number of
positive and negative samples and does not optimize the imbalanced weights of different
samples occupied in loss function.

3 Methodology

3.1 Framework

The whole framework of the proposed model consists of the backbone network Faster
RCNNand twonewmodules: amulti-layer feature cascade aggregation pyramid network
(MCA-FPN) and a sample balanced loss function SB-Loss. The detail of the process are
shown in Fig. 2.
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MCA-FPNResNet

RPN ROI

Class

Bbox

SAW-Loss

Fig. 2. Overall framework flow

To start with, the input image passes through the backbone network and multi-
layer feature cascade aggregation module to generate multi-scale deep features. Then
these features are sent to regional proposed network to produce anchor boxes with
different length-width ratios and sizes. Finally, the output of MCA-FPN module passes
through the ROI pooling layer to obtain down-sampled features, which is used for final
multiclassification and regression operation. The improved methods are introduced in
detail below.

3.2 Multilayer Feature Cascaded Aggregation Pyramid Network (MCA-FPN)

This paper proposes an improved structure based on traditional feature pyramid, as
shown in Fig. 3(1).

1

shallow-deep layer
Aggregate connection

C3

C4

C5

P3

P4

P5

2

P-C layer
Feedback connection

C3

C4

C5

P3

P4

P5

1x1 conv

1x1 conv

Fig. 3. Improved feature pyramid network

Take the P4 layer as example: the original P4 layer is produced by the feature aggre-
gation from P5 layer and C4 layer, which only contains the information from the current
layer (C4) and deep layer (P5).

Our improvement is to add an extra connection fromC3 layer to P4 layer, which helps
P4 layer to learn the information from shallow layer (C3). Such design will not change
the scale of original feature map but will make the network more sensitive towards the
location and category information of target.

Meanwhile, inspired by the improvement on ResNet backbone from [20], another
feedback connection from feature pyramid P to C is added (as shown in Fig. 3(2)). The
ResNet network will allow original input x and feedback input R(f) to be calculated
in the regional proposed network. Significantly, the feedback connection here is only
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operated on the first residual blocks, which has limited negative effect on the whole
network structure.

The input of traditional FPN module is shown below:

Fi
BB = Ci(xi−1)

(1)

Fi
FPN = Pi(fi+1, xi) (2)

whereCi represents the ith operation from thebottom-uppyramid (left side),Pi represents
the ith operation from the up-bottom pyramid (right side), Fi

BB represents the input
feature from backbone network to FPN module

{
Fi
BB|i = 1, . . . , S

}
, Fi

FPN represents
the output feature from FPN module

{
Fi
FPN |i = 1, . . . , S

}
and the S represents the

number of stages.
After improving the shallow to deep aggregation link and P-C feedback link, the

input and output of the model are expressed as follows:

Fi
FPN = Pi

(
Fi+1
FPN , Fi

BB, Fi−1
BB

)
(3)

Fi
BB = Ci

(
Fi−1
BB , Ri

(
Fi
FPNi

))
(4)

Ri

(
Fi
FPNi

)
= Conv

(
Fi
FPNi

)
(5)

3.3 Sample Balanced Loss Function (SB-Loss)

The positive and negative samples participated in the target detection model should be
firstly ensured that their quantity and distribution are appropriate for training; Secondly,
the proportion of positive samples which have limited continuously positive effect on
model training should be reduced. Thirdly, the importance of difficult examples it should
be emphasized. In other words, the proportion of difficult examples should be increased
during the training process.

The fast RCNN loss function is composed of two parts, in which the classification
branch of RPN network selects BCE cross entropy loss:

L = −y log y′ − (1 − y)log
(
1 − y′) (6)

where y represents the label of target which takes a value of 1when the sample is positive,
and 0 when sample is negative, y

′
represents the predicted probability of network for

target y, and the range of y and y
′
are both from 0 to 1. Obviously, for positive samples,

a higher prediction probability the y
′
will lead a lower value of loss function. However,

for negative samples, the lower the predicted probability, the lower the y
′
will be in the

loss function. This design is more likely to lead to a slow training literation phenomenon
when the model trained on the dataset with extreme distribution (too many easy or
difficult samples), sometime it is even hard to be optimal.

To solve the above problems, this paper adds controlling factors into BCE cross
entropy loss function to control the distribution of samples for an appropriate ratio. The
details are as follows:
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Firstly, it introduces k as the controlling factor which balances the negative effect of
unbalanced distribution of positive and negative samples, the value of k ranges from 0
to 1. By this step, the order of training has changed from positive samples to negative
samples, which means that the network will focus on the positive samples first, then the
Eq. (6) changed to:

L =
{−klog y′ y = 1

−(1 − k)log
(
1 − y′) y = 0

(7)

Secondly, it introduces b as the controlling factors which balances the negative effect
of unbalanced distribution of easy and difficult samples, the value of b ranges from 0 to
1. Based on the design of Focal Loss [13], by introducing positive exponential factor b, it

decreases the value of
(
1 − y

′)b
, which allows the model to focus more on difficult and

incorrect classification samples. Combined with Eq. (7), the new loss function becomes:

L =
{

−k
(
1 − y′)blog y′ y = 1

−(1 − k)y
′blog

(
1 − y′) y = 0

(8)

Lastly, based on the Singh’s [21] idea of unbalanced weighted mechanism and Cao’s
[22] idea of importance-based dynamic weight mechanism, this paper proposes a sample
asymmetric weighted loss function SB-Loss, which is shown as Eq. (9):

SAWLoss =
{

− 1
KIoU

(
1 − y′)blog y′ y = 1

−(1 − a)y
′blog

(
1 − y′) y = 0

(9)

On the basis of Eq. (8), it uses the IoU value as the value of controlling factor k
when the sample is positive. By doing this, the samples that have high IoU value are
more likely to be classified as positive easy samples and the value of loss function
obtained from these samples will be smaller. Therefore, the loss function will focus
less on such samples. In comparison, the attention of loss function will focus more
on positive difficult samples which is more important than positive easy samples for
model training. Moreover, because the IoU value calculation is compulsory for Faster
RCNN backbone network, such design will not generate any extra calculations. As
a result, the samples concerned in the training process will become positive-difficult,
negative-difficult, positive-easy and negative easy.

The final loss function for network training is shown as Eq. (10), where the λ is used
to control the loss difference between two branches.

L(pi, ti) = 1

Ncls

∑

i
NLoss

(
pi, p

∗
i

) + λ
1

Nreg

∑

i
Lreg (10)

4 Results

4.1 Training Configuration

In this paper, the experimental setting of Faster RCNN is strictly followed. The size of
the image input to the model is reset to 600 * 800, and the training data are expanded by
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means of flipping and splicing. At the same time, ResNet network adopts ResNet-101
pre-training model in order to ensure the comparative significance of the training results.
Themomentum andweight attenuation parameters are set as 0.9 and 0.0001 respectively.
The change of learning rate adopts preheating strategy. And the IoU crossover ratio
threshold is set to 0.7. For parameter setting, refer to the setting of b and λ in Focal Loss,
where b = 2, λ = 2.

Fig. 4. Training process diagram

The total loss curve in the training process of the network model is shown in Fig. 4.
Compared to the loss function in the Faster RCNN, the improved classified SB-Loss loss
can converge to a stable state faster, which significantly speeds up the training process
and reduces the loss. This effectively improves the learning ability of the network model
for positive and difficult samples.

4.2 Ablation Experiment

In this paper, the improved multi-layer feature cascade polymerization pyramid network
MCA-FPN and the improved sample equalization loss function SB-Loss are introduced
into the original Faster RCNN. Through training and testing the Pascal VOC dataset,
the accuracy and the number of parameters of different improved models were obtained,
and the effectiveness of the proposed scheme in this paper is demonstrated (Table 1).

We usedResNet-101 as the backbone network to extract image features, and themAP
of Faster RCNN on Pascal VOC dataset reached 79.8%. After adding feature pyramid
FPN, themAPwas improved to 82.1%.WhenFPN is not added, the loss function changed
to SB-Loss function, the mAP improved to 83.6%. Without modifying the original loss
function, the FPN of feature pyramid was changed to the MCA-FPN of multi-stage
feature cascade aggregation pyramid module, and the mAP reached 84.5%. Finally,
when we used both the MCA-FPN module and the sample equalizing loss function SB-
Loss, the mAP improved to 86.0%. As the network complexity is smaller, the model
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Table 1. Experimental results on Pascal VOC dataset

Steps Backbone network Added scheme mAP (%) Parameters (M)

1 ResNet-101 / 79.8 160.2

2 ResNet-101 FPN 82.1 163.5

3 ResNet-101 SB-Loss 83.6 163.6

4 ResNet-101 MCA-FPN 84.5 165.4

5 ResNet-101 MCA-FPN + SB-Loss 86.0 165.5

is more suitable for industrial landing and application. Compared with Faster RCNN
+ ResNet-101, the accuracy of the proposed improvement increased by 6.2%, and the
model parameters only increased by 5.3M, indicating that the proposed improvement
did not introduce too much extra calculation.

4.3 Plug and Play Experiment

MCA-FPN, a multi-layer feature cascade aggregation pyramid module, optimizes fea-
tures after feature extraction from the backbone network and improves the ability of
target detection model to deal with scale problems. In this paper, four typical target
detection networks are selected for the multi-layer feature cascade polymerization pyra-
mid network MCA-FPN, and MCA-FPN is embedded into the target detection network.
Experiments are carried out in Pascal VOC dataset, and the experimental results are
compared with the original structure. The specific results are shown in Table 2.

Table 2. Plug and play performance comparison table

Model structure Original mAP (%) MCA-FPN (%) Promote (%)

DarkNet-Yolov3 [10] 60.6 68.9 13.6

ResNet-FOCS [24] 78.7 85.2 8.2

ResNet-RetinaNet [13] 80.7 84.7 4.9

ResNet-Faster RCNN [5] 79.8 84.5 5.8

As shown in Table 2, the MCA-FPN proposed in this paper can be introduced into
other target detection models as a plug and play module, and all of them have cer-
tain performance improvement and universality. At the same time, the detection effect
of the single-stage target is more significant, indicating that the structure has obvious
improvement effect on multi-scale problems.

4.4 Algorithm Comparison Experiment

As shown in Table 3, this paper lists the accuracy results of target detection related
models on VOC datasets in the last five years. It can be seen that the mAP of network
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model proposed in this paper is 1.9% higher than PFPNet, but 0.5% lower than NAS
Yolo, the competition model. The effectiveness and superiority of the proposed method
are fully proved.

Table 3. Comparison table of algorithm accuracy

Algorithm mAP (%) Algorithm mAP (%) Algorithm mAP (%)

Pelee [24] 70.9 MLKP [26] 80.6 RefineDet [29] 83.8

FCOS [23] 78.7 R-DAD [27] 81.2 PFPNet [30] 84.1

HKRM [25] 78.8 RFBNet [28] 82.2 NAS Yolo 86.5

Ours 86.0

4.5 Algorithm Comparison Experiment

Pascal VOC dataset contains 20 detection categories. This paper compares the accuracy
of the improveddetectionmodelwith that of the original baselinemodel, and the accuracy
of each category is shown in Fig. 5. By introducing the MCA-FPN module, it can
effectively deal with the multi-scale problems of similar targets, and is more friendly
to the detection of small size targets. The part of chairs and tables of the picture often
occupies most of the space, which will be hard for network to distinguish the difference
between foreground and background, positive and negative samples. This paper designed
a SB-Loss function which gives different loss function structure to positive and negative
samples and uses the IoU value as the asymmetric weight of loss function for easy
samples, such method effectively improves the network learning ability for positive
samples and difficult samples.

Fig. 5. Accuracy of catagories

The method designed in this paper is intended to improve the ability of the object
detection model to deal with size and sample division problems. Combined with the
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above experiments, various accuracy diagrams clearly showed the effectiveness of the
improved method. Among them, the improvement of the detection accuracy of some
typical categories truly reflect that the method can better solve the problems faced by
the existing detection model. The detection effect diagram of some categories is shown
in Fig. 6.

Fig. 6. Partial category inspection effect picture

The above pictures show the difference between the result of Faster RCNN+ResNet
structure (left side) and our proposed method (right side). This original image contains
some difficult detection tasks such as multi-scaled targets detection and similar back-
ground and targets detection, so the result on this picture could illustrate clearly about the
how proposed method improve the performance. Firstly, our proposed method decreases
the missing rate, such as the successful detection of the waiters in the left top of image,
which fails to be detected by Faster RCNN. Secondly, our proposed method increases
the detection accuracy, such as the accurate detection of the tree in the middle of image.
Moreover, our proposed method could even detect the waiter in the middle of the image
even if the target is blur.

5 Results

To solve the problem of fast RCNN being insensitive to feature scale and the problem
of imbalance in sample distribution, this paper proposes a multi-level feature cascade
aggregation pyramid module MCA-FPN and sample equalization loss function SBLoss.
The MCA-FPN module adds two different direction connections between the feature
maps, which helps model to extract feature more efficiently and analyze information
more accurately. The new sample equalization loss function SB-Loss helps network
to use data with different distribution more efficiently and converge faster by adding
different types of controlling factors. As shown by the results, the improved model
proposed has higher accuracy and faster convergence speed. Besides, from the result
of comparative experiments and module plug experiments on Pascal VOC dataset, it is
proved that the proposed method can be easily added to different backbone networks,
and generate positive effects on their performance.
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Abstract. Unmanned Aerial Vehicles (UAVs) are widely utilized for wireless
communication services, promoting the emergence of promising UAV-assisted
vehicle networks. However, due to the ever-increasing traffic data and diversified
wireless service requirements of vehicles, there are also privacy issues caused by
fraud, which challenges the effective allocation of limited security bandwidth for
secure communications. In this article, to solve these two problems, we firstly
propose a secure bandwidth allocation scheme based on the game theory on the
Internet of Vehicles assisted by UAVs. Secondly, the proposed blockchain-based
system introduces an emerging consensusmechanism that can significantly reduce
the delay in exchanging information and protect data privacy. Furthermore, to allo-
cate the limited safe bandwidth, based on the real-time feedback of each UAV, we
design an optimal decision search algorithm based on gradient descent to achieve
Stackelberg equilibrium. Finally, the simulation results show the superiority of
improving the utility’s security bandwidth allocation scheme.

Keywords: Vehicular Ad-Hoc Network (VANET) · Bandwidth allocation ·
UAV · Game theory · Information security · Privacy protection

1 Introduction

With the rapid popularity of UAVs equipped with wireless transceivers, a promising
UAV-assisted vehicle network has been advocated to provide vehicles with ubiquitous
wireless communications [1, 2, 6, 7 14], . The traditional mobile network uses ground
base stations to adapt to the wireless access of vehicles [13, 15–18]. High data rate
wireless communication for drones. Therefore, the Internet ofVehicles composed of base
stations anddrones has becomeanewparadigm for the next generation of communication
networks.

Specifically, most current data management systems use a Proof-of-Work (PoW)
mechanism in blockchain systems [3]. However, the bandwidth allocation of secure
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spectrum resources is essential for providing vehicles with satisfactory Quality-of-
Experience (QoE) wireless data services [4].

The Proof of Stake (PoS) mechanism has many advantages [5]. In a PoS-based
network, vehicles are essential for maintaining the operation and safety of the network.
Therefore, we propose amodel based on the Stackelberg game to jointlymaximize utility
and secure bandwidth allocation, and then design an optimal decision search algorithm
based on gradient descent to find Stackelberg equilibrium. Finally, simulations verify
the feasibility and effectiveness of the proposed scheme.

We propose a blockchain-based network and game-theoretic security bandwidth
allocation scheme. The contribution of this paper can be summarized as follows:

• We propose a secure bandwidth allocation scheme with game theory to provide se-
cure data services to vehicles in VANET, which jointly considers the cooperation and
competition between drones and vehicles.

• We develop a novel PoS-based framework for service management, including smart
contracts, enabling all vehicles to send feedback messages without any privacy leaks
and get safe bandwidth allocation.

• We design utility functions for vehicles and drones, and we utilize the Stackelberg
game to study the complex interaction between drones and vehicles.

• An optimal decision search algorithm based on gradient descent is designed to find
Stackelberg equilibrium. Finally, through simulation performance, we compare with
other methods to prove the superiority and effectiveness of our method.

2 Our Proposed Scheme

2.1 Network Model

As shown in Fig. 1, we consider a UAV-based VANET, consisting of a single ground
base station, a roadside unit, multiple drones, and vehicles.

The set of UAVs is represented as U = {1, 2, · · ·,U } and the bandwidth of the UAV
is B0. We apply the UAV-to-X communication protocol in the connections between
UAVs and the RSU. During the provision of wireless service, the serving UAV hovers
over the vehicles. In the time slot t, the location of the UAV u is denoted as lu(t) =
{xu(t), yu(t), zu(t)}, where z is the height of the UAV. Due to vehicles’ mobility, the
number of vehicles under each UAV varies over time. At the time slot t, the set of
vehicles under UAV u is denoted as Nt

u = {1, 2, · · ·, ntu, · · ·,Nt
u}. The location of the

vehicle ntu is lntu = {xntu , yntu , 0}. As such, the distance between UAV u and vehicles ntu
at a time slot t is given by

du,ntu(t) =
√

(xu(t) − xntu(t))
2 + (yu(t) − yntu(t))

2 + z2u (1)

We assume that the Line-of-Sight (LOS) chain-link dominates the channel between
the drone and each vehicle. Therefore, the channel gain from UAV u to vehicle ntu is
gu,ntu(t)(t) = g0(du,ntu(t))

−μ where g0 is the UAV-to-ground channel gain with the unit
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distance andμ is the path loss parameter of the LOS link. Then, the signal to interference
plus noise ratio (SINR) at the vehicle ntu is

βntu(t) = Pugu,ntu(t)(t)

σ 2 +
U∑

u′=1,u′ �=u
Pu′gu′,ntu(t)(t) + P0g0,ntu(t)

(2)

where Pu represents the transmission power from the UAV u to each vehicle and σ 2

denotes the white Gaussian noise power. P0 and g0,ntu(t) represents the power of each
vehicle and power gain from the base station to the vehicle. At the time slot t, the
bandwidth data rate from UAV is Rntu = log2(1 + βntu(t)).

Fig. 1. Network model Fig. 2. VANET system and UAV-assisted
system

2.2 Our Proposed UAV-Based VANET System

Our proposed UAV-assisted VANET system maximizes the efficiency of secure band-
width allocation and provides smart contracts in the storage server for protection. The
current VANET [12] system and the UAV assistance system elaborates in Fig. 2. The
process of management includes the following steps:

Step 1. The communication protocol between the base station and the RSU is stored in
the storage server as a smart contract, the program that defines the vehicle. The com-
munication protocol will be automatically executed when the conditions specified by
the smart contract are met. Step 2. When one vehicle desires the RSU for road traffic
information services, the vehicle inquires the RSU through UAV to receive information
about the service. Step 3. If the vehicle decides to enable the service, the request infor-
mation and verification information will hear the address sent to the smart contract by
the RSU. Step 4. Once successfully sent to the smart contract, the RSU will grant the
vehicles access to traffic information directly or through the UAV. Step 5. When one
vehicle finishes using the information service, RSU will send a data packet containing
the provided service to the smart contract address. Step 6. The smart contract will be
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automatically calculated and sent to the base station. It also triggers the information
transmitted from the base station to the RSU.

2.3 The Secure Bandwidth Allocation System

To find the best bandwidth allocation for vehicles and drones. The utility of vehicles and
drones should be designed separately. Their utilities consist of the revenue from the sale
of secure bandwidth and the cost of providing wireless services. Therefore, the utility
function of UAV in the time slot is expressed as

Uu(Pu(t)) =
Nt
u∑

ntu

Pu(t)bntu(t)−
Nt
u∑

ntu=1

cu(t)bntu(t) (3)

Among them, Pu(t) is the security bandwidth price of the drone u cu(t) is the cost of
providing unit security bandwidth for the drone u and bntu(t) is the security bandwidth
obtained by the vehicle ntu in a time slot t. The utility of each vehicle consists of the
satisfaction of obtaining safe bandwidth and the cost of purchasing safe bandwidth from
the associated drone. γntu is the satisfaction parameter of the vehicle ntu, and R

′
ntu

(t) is the

data rate requirement of a vehicle ntu in the time slot t. Formally, the utility function of
a vehicle ntu in the time slot t is

Untu(bntu(t)) = γntu log(1 + Rntu(t)bntu(t)

R′
ntu

(t)
) − pu(t)bntu(t) (4)

2.4 Security Analysis of the Proposed Roaming System

By adopting the Ouroboros consensus mechanism, our roaming management system
can achieve a minimal data exchange delay compared with the current roaming system.
In particular, it takes about 20 s to add a block to the chain and 3 min to confirm the
transaction. Therefore, compared with traditional roaming fraud protection systems,
fraud attacks can be detected approximately 4 h earlier. In addition, the Ouroboros
consensusmechanism has been proven to resist multiple types of attacks, such as double-
spending attacks and grinding attacks [6].

Data authentication and unforgeability: Attackers cannot be used as a legitimate tool
to destroy the trust evaluation storage server because it cannot forge any vehicle to apply
for verification, and maliciously authorized vehicles are also problematic to destroy the
storage server since it is almost impossible to control most entities due to high costs.
Malicious attack: A group of malicious vehicles may produce unfair feedback to deal
with the security bandwidth allocation of the target vehicle. In our system, the UAV
iterative algorithm obtains the allocation, and thus the continuous feedback sent by the
malicious vehicle will not be effective.
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3 Game Theory Analysis

3.1 Game Modeling

In the Stackelberg game, the goal is to maximize their utility. Therefore, we define the
following two problems:

Problem 1.

max { Uu(pu(t)), pu(t)} ≥ 0,B0 ≥
Nt
u∑

ntu=1

bntu(t) (5)

The local condition means that the bandwidth price should be greater than or equal
to zero, and the amount of bandwidth allocated should be less than the owned by the
drone.

Problem 2.

max{Untm(bntm(t)), bntm(t)} ≥ 0 (6)

Among them, the conditionmeans that the amount of bandwidth obtained by vehicles
should be greater than zero.

Assumption 1: bntu(t)
′ and pu(t) are respectively the solutions of UAV ntu problem 2

and problem 1 in time slot t. Let bu(t) be the bandwidth demand vector of vehicles in the
coverage area of UAV u, and b−ntu,u(t)

′ be the vehicle bandwidth demand vector except
for vehicle ntu. We have these two inequalitiesUu(pu(t)′, bu(t)′) ≥ Uu(pu(t), bu(t)′) and
Untu(bntu(t)

′, b−ntu,u(t)
′, pu(t)′) ≥ Uu(bntu(t), b−ntu,u(t)

′, pu(t)′).

3.2 Follower Strategy

By solving problem 2, we obtain the optimal bandwidth purchase strategy for vehicles
according to the following theorem.

Theorem 1: Given the bandwidth price, the optimal bandwidth purchase strategy for
the UAV covered by the vehicle ntu at time t is

bntu(t)
′ = max(

αntu

pu(t)
−

R′
ntu

(t)

log(1 + γntu(t))
, 0) (7)

Proof : We need to know if the utility function has the extremum. The processing of
proof elaborates in Table 1.

Case 1: Low Bandwidth Price Regime. The low price situation corresponds to the sit-

uation where the bandwidth price provided by UAV u is not greater than
αntu

Rntu
(t)

R′
ntu

(t)
.

Therefore, the utility function Untu(bntu(t)) initially increases and then declines bntm(t).
The optimal bandwidth requirement at the time slot t can be obtained by solving
∂Untu

(bntu
(t))

∂(bntu
(t)) = 0. Therefore, within the coverage of UAV u in a time slot t, the optimal

bandwidth requirement of a vehicle ntu is bntu(t)
′ = αntu

pu(t)
− Rntu

(t)

R′
ntu

(t)
.
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Case 2: High Bandwidth Price Regime. The high bandwidth price systemmeans that

the bandwidth price provided by UAV u is greater than . So lim
bntm

(t)→0

∂Untm
(bntm

(t))

∂(bntm
(t)) < 0,

the first derivative of the utility remains negative as the bandwidth demand enhances.
The optimal bandwidth requirement of the vehicle ntu in the UAV u coverage of time slot
t is b′

ntm
(t) = 0.

Table 1. Proof of Theorem 1.

Proof: The max-min value judgment

1: For
∂Untu

(bntu
(t))

∂(bntu
(t)) = αntu

Rntu
(t)

R′
ntu

(t)+Rntu
(t)bntu

(t)
− pu(t)

2: And
∂2Untu

(bntu
(t))

∂(bntu
(t))2

= − αntu
(Rntu

(t))2

(R′
ntu

(t)+Rntu
(t)bntu

(t))2
is less than 0

3: Therefore, the utility function is concave

4: For lim
bntu

(t)→∞
∂Untu

(bntu
(t))

∂(bntu
(t)) = −pu(t) is less than 0

5: And lim
bntu

(t)→0

∂Untu
(bntu

(t))

∂(bntu
(t)) = αntu

Rntu
(t)

R′
ntu

(t)
− pu(t)

6: Therefore, it has a max or min value

Then, we further analyze the optimal bandwidth price strategy of each UAV is

Uu(pu(t)) = (pu(t) − cu(t))
Nt
u∑

ntu=1

max(
αntu

pu(t)
−

R′
ntu

(t)

log(1 + βntu(t))
, 0)

= (pu(t) − cu(t))
Nt
m∑

ntm=1

(
αntu

pu(t)
−

R′
ntu

(t)

log(1 + βntu(t))
)

(8)

The second derivative of the UAV utility function relative to the bandwidth price

pu(t) can be expressed as ∂2Uu(pu(t))
∂(pu(t))2

= −2
Nt
u∑

ntu=1
(

cuαntu
(pu(t))3

) < 0.

We propose an optimal decision search algorithm based on gradient descent to find
the optimal bandwidth pricing strategy for each UAV. By adjusting the policy to improve
the utility, the price of the drone u is updated topu(t)[τ+1] = pu(t)[τ ]+ε∇Uu(pu(t)[τ ]),
where pu(t)[τ ] is the bandwidth price of the UAVm in the τ−th iteration, ε is the number
of iterations of bandwidth price, and ∇Uu(pu(t)[τ ]) is the gradient value. The iterative
process of optimal bandwidth pricing strategy shows in Algorithm 1.
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4 Simulation Performance

Table 2 elaborates the parameters of our experimental environment.
Figure 3 shows the comparison result of the UAV’s utility. When B0 is fixed, the

utility of the UAV in our proposed scheme is greater than that of the other two conven-
tional schemes. In the linear-based allocation scheme, the bandwidth price is determined
according to the linear pricing mechanism. As a result, this bandwidth price is not opti-
mal, and drones cannot have the most excellent utility. In our proposed scheme, the
bandwidth price is determined based on the game theory of the optimal bandwidth
price.

The performance of the proposed scheme is evaluated by comparing it with themany-
to-one scheme [8] scheme, the maximum signal-strength-indicator (max-RSSI) [9]
scheme, themaximum signal-to-interference-plus-noise-ratio (max-SINR) [10] scheme,
the Auction-Based UAV Swarm Many-to-Many scheme (AMMA) and UE-Optimal
Many-to-One Matching scheme (UMOA) [11].

Table 2. Experimental parameters and value.

Parameters Value Parameters Value

Square network 1000 m × 1000 m Gain between BS and vehicle 10 mW–30 mW

Number of UAV 10, 12, 15 Gain between UAV and ground g0 −50 db

Desired data rate 1 Mbps–15 Mbps Path loss μ −2

AWGN variance 10−14 W Number of iterations 0.1
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The system throughput among UAVs and vehicles of our scheme specifies in Fig. 4.
The figure elaborates that our scheme has the highest system throughput. The second
one is about 40.2% lower than ours compared with other schemes.

Fig. 3. Utility of the UAV Fig. 4. System throughput

5 Conclusion

In this paper, we propose a novel security bandwidth allocation scheme based on the
storage server and smart contracts in UAV-assisted VANET with game theory. Specif-
ically, we firstly developed a secure bandwidth allocation framework. To allocate the
secure bandwidth of drones, we design an iterative-based algorithmbased on the needs of
vehicles and the real-time bandwidth of drones, to maximize utility by Stackelberg equi-
librium. Furthermore, we not only elaborate the security analysis of the smart contracts in
the network, and resist fraud andmalicious attacks, respectively, but also achieve privacy
protection and secure bandwidth allocation. Finally, we conduct simulation experiments
to verify the effectiveness of our scheme.
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Abstract. Fine Time Measurement (FTM) protocol is included by
IEEE 802.11–2016 to address the challenging problem of the high accu-
racy of the existing system in Wi-Fi positioning. Although FTM promises
meter-level ranging accuracy in line-of-sight (LOS) conditions, non-line-
of-sight (NLOS) and multipath effects cause accuracy to decline sharply.
In this paper, by diving into fine-grained PHY layer information of higher
time resolution, we explore the relationship deeply between FTM error
and multipath channel response. On this basis, we propose FSI, a method
for calibrating FTM errors using PHY layer information, which can iden-
tify environmental characteristics automatically and estimate the length
of signal propagation paths. Finally, we design an optimation method
based on the mobility of users, to further improve positioning accuracy
in actual environments. Experimental results show that FSI improves
the ranging accuracy by 24.80% and positioning accuracy by 28.45%.

Keywords: FTM · PHY · NLOS · Multipath

1 Introduction

Indoor positioning has always been an active research area. At present, ways
of indoor positioning are varied, including UWB [8], Wi-Fi [12], acoustics [11],
etc. In all of these, technologies that use Wi-Fi infrastructure are attracting
increasing attention due to their popularity in indoor environments.

The IEEE 802.11–2016 standardizes a Fine Time Measurement (FTM) proto-
col, a method based on time-of-flight (TOF) for calculating the distance between
Wi-Fi clients and AP. Currently, FTM is supported by many mobile devices
and routers, such as the Google Pixel series, Samsung Note 10+ and Compu-
lab WILD AP. Compared to received signal strength information (RSSI), FTM
enables the expected meter-level ranging accuracy in open space [4], which deter-
mines wide applications of FTM, such as 3-D indoor localization [17] and vehicle
tracking [5].
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Unfortunately, many works [4,7] have shown the weakness of FTM in non-
line-of-sight (NLOS) and multipath conditions. Due to the complex and change-
able indoor environment, wireless signals will be affected by the multipath effect
and time-varying channel characteristics. When the signal reaches the receiver
through different paths, different lengths of these paths will lead to different
RTTs. Generally, the signal strength of a direct path may be severely reduced
in NLOS, resulting in greater RTT. In this case, a bias is generated regardless
of which path the signal follows to reach the receiver. Considering a LOS con-
dition, the direct signal component is dominant over other signal components,
when FTM returns a more accurate value. In a complex NLOS environment, the
superposition of multipath channel and receiver signals significantly affects the
ranging accuracy. The positioning system has good accuracy as long as it can
distinguish direct paths and reflected paths. Detecting them accurately requires
fine-grained multipath decomposition of channels.

Given this, FTM needs to be calibrated to adapt to changes in the environ-
ment. There has been a lot of work focused on the calibration of FTM by different
methods, including work based on deep learning [3], work based on geometric
[10], and work based on sensor-aided [2]. All the above work requires complex cal-
culations. FUSIC [7] explores the feasibility of calibrating FTM errors by using
Multiple Signal Classification (MUSIC) to process Channel State Information
(CSI), which is a feasible approach to solving multipath and calculating TOF of
the direct path. The propagation model of the wireless signal can be described
by CSI in detail from the perspective of a time domain and frequency domain.
CSI can reflect the multipath characteristics of the channel, making it suitable
for high-precision applications, for example, indoor positioning, wireless ranging
[10], action recognition [1], human tracking [13] and so on. The most prominent
off-the-shelf device that provides CSI information is the Intel 5300 NIC for the
IEEE 802.11n standard. However, 802.11n has been around for 10 years. Newer
standards such as 802.11ac and 802.11ax may provide better performance. We
extract the channel state information (CSI) from the PHY layer as a fine-grained
characteristic using the AX200 NIC and the Picoscence platform [6].

In this paper, we propose an error calibration model FSI based on PHY layer
information, which work under both LOS and NLOS conditions, showing good
positioning ability. The main contributions of this paper are as follows:

– We propose FSI, a ranging error calibration model based on PHY layer infor-
mation, which can estimate distances of signal propagation paths by identi-
fying environmental characteristics automatically.

– Combined with natural human mobility, we design an optimization method
to further improve the accuracy of the length of the paths, which contributes
to the application in practical scenarios.

– We evaluate the FSI in a wide range of environments with different multipath
levels. We analyze the calibration capability of FSI in a corridor, an office, a
classroom, and a laboratory, and extensive experiments show that FSI signif-
icantly improves the ability to provide meter-level indoor positioning.



FSI: A FTM Calibration Method Using Wi-Fi Physical Layer Information 367

2 Preliminary

The Relationship of Ranging Error and PHY Layer Information
Under Different Conditions. As shown in Fig. 1, when the reflector moves,
we can see the changes in characteristics in Fig. 2. We analyze the effect of mul-
tipath on ranging in three dimensions, which are the number, the relative signal
strength, and the time delay difference of paths, respectively.

Fig. 1. Multipath setup
with a moving reflector.
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Fig. 2. Changes in characteristics of signal at 160 MHz.

1) The number of paths changes. When the difference between the reflected path
and the direct path exceeds the resolution of the channel, the reflected path
can be distinguished, resulting in a larger ranging error.

2) The relative signal strength of paths changes. In indoor environments, due to
the diversity of signal propagation paths, the absolute signal strength of the
paths often does not reflect the environmental characteristics well. However,
practical experiments show the relative signal strength ratio of the direct
path shows a trend similar to the error variation as the reflector moves. In
the case of maximum error, the relative signal strength ratio of the direct
path is smaller.

3) The time delay difference of paths changes. As the reflector moves away, the
time delay difference between the direct path and the other reflected paths
gradually becomes larger. Although the estimated distances of the direct and
reflected paths are highly erroneous, the distance differences between the two
path lengths correspond to the actual differences of the path lengths [7].

3 System Design

3.1 Overview

This section illustrates a calibration model that fuses Wi-Fi FTM and CSI to
provide accurate ranging even in the presence of multipath. It takes as input
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raw FTM values, IMU and the CSI matrix, and finally returns the distance of a
transceiver pair. The system overview for the model is shown in Fig. 3.

Fig. 3. System overview of FSI.

3.2 Data Processing

Hardware Error Calibration. We place equipments in a playground and
measure their distances continuously while changing the actual distance between
them from 0.1 m to 32 m. After fitting the curve using a normal distribution in
Fig. 4(b), the distances at all different positions are underestimated by about
μ = −1.12 m and σ = 0.35 m. To better cope with the actual environment, we
choose −1.12 m as the hardware error. The solid gray line in Fig. 4(a) indicates
the estimated distance before correction and the solid blue line indicates the
distance after correction. The corrected distance is closer to the ground truth.

Fig. 4. FTM ranging capability and hardware error correction by Gaussian model.

CSI Processing by MUSIC and TOF Estimation. CSI matrix can be loss-
lessly converted into the time-domain power delay profile (PDP) by an appro-
priate MUSIC [7,15] processing.
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Extract Reliable Paths and Reset Paths Strengths. Since the direct path
traverses the smallest distance of all received paths, its strength is likely to be
present in the earliest component. Actually, different noises often occur in raw
CSI data, leading to the emergence of some low-quality strength peaks. First we
apply Min-Max Normalization to all paths,

P (τk) =
path power(τk) − min(path power)

max(path power) − min(path power)
k ∈ K, (1)

where K is the number of paths and τk is ToF. We consider paths satisfying
P (τk) ≥ ξ as reliable paths, where ξ is a threshold value for classification. In this
paper, we set ξ = 0.2. In fact, by this method, the number of signal propagation
paths is usually less than 5 because typically we see at best five significant paths
in an indoor environment [14].

When we select reliable paths by setting a threshold, it leads to a possible
result that the relative strengths of some signals are overestimated. We define a
function for redividing signal strengths into three levels according to P (τk),

P ∗(τk) = ωkP (τk), (2)

where k is the kth path. When P (τk) belongs to [0, 0.2], it is reassigned to 0.
When P (τk) belongs to (0.2, δ], it is redefined as ωkP (τk), where ωk = 1 −

τk−τ1∑K
k=1(τk−τ1)

. Please note that δ is an experience threshold and is set to 0.8,
which can achieve better performance compared to other parameters. We define
here a weight coefficient ωk related to the time delay difference, which assigns
a lower weight to the signal strength for a longer reflected path. When P (τk)
belongs to (δ, 1], it reserves its own value P (τk).

3.3 FSI Calibration and Results Optimization

The Length of Paths Estimation. FTM is between direct distance and
reflected distance [7], so we have got an assumption from the experimental results
above: the FTM mean output is the result of multipath interaction, and paths
with higher relative signal strength always play a dominant role. The strength
ratio of the kth path is defined as :

Rk =
P ∗(τk)

∑K
k=1 P ∗(τk)

. (3)

We consider R̂k as a weight of length of each path Dk, which finally return
a mean value D̄ftm of sample datas of FTM. For R̂k, we define its function:
R̂k = F (Rk), where F is an increasing function and R̂k is the result of the
function change on Rk. R̂k and Rk may be non-linearly dependent. Here we
assume that R̂k and Rk are directly proportional and the coefficient is 1,

D̄ftm =
K∑

k=1

RkDk. (4)
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Although estimated distances of the direct and reflected paths are highly
erroneous, their distance differences correspond to the actual differences [7]. So
the time difference of two paths corresponds to the actual time difference:

Dk = D1 + (τk − τ1)c, (5)

where c is the speed of light. From the above formulas, we can resolve the length
of each path Dk.

Triangle Inequality-based to Filter Ranging. Given a fixed AP, we can
leverage the mobility of users to collect multiple measurements over different
locations. To filter out estimated distances that are inconsistent with the dis-
placement, additional constraints need to be imposed on them. The appropriate
value can be selected by using the triangular inequality:

|Dftm(A) − Dimu| ≤ Dftm(B) ≤ Dftm(A) + Dimu. (6)

For ranging values that do not satisfy the triangular inequality, we do the
following: if Dftm(B) < |Dftm(A) − Dimu|, Dftm(B) = |Dftm(A) − Dimu|; if
Dftm(B) > Dftm(A) + Dimu, Dftm(B) = Dftm(A) + Dimu.

Fig. 5. Optimize D1 error by using mobility of users.

Distance Optimization Combined with IMU. We can calculate the actual
distance between two positions by accessing the phone’s inertial measurement
unit (IMU) such as accelerometer and gyroscope, a method known as dead reck-
oning. Although IMU-based ranging results in some errors, its accuracy is still
very high when we make a small movement (< 5m) [9,16].

We use the Fig. 5 to explain our idea. When the user moves from position A to
position B, the angle of movement at AP end is noted as Δθ, and by the nature of
the triangle, Δθ can be calculated: Δθ = arccos

(Dftm(A))2+(Dftm(B))2−(Dimu)
2

2Dftm(A)Dftm(B) ,

where Dftm(A) and Dftm(B) are the measured FTM values at A and B positons.
Δθ can be substituted into the following equation to obtain D̂imu:

D̂imu =
√

(D1(A))2 + (D1(B))2 − 2D1(A)D1(B)cosΔθ. (7)
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We assume that a small range of shifts makes a similar impact for Dimu and
Dfsi that are influenced by multipath. Then we can obtain the error on each

meter units: σ = |D̂imu−Dimu|
Dimu

= |D1−Dfsi|
Dfsi

. It is less susceptible to multipath
reflections, especially when D1 is generated by a precise and high time resolution.
Thus we can obtain the calibrated range values. However, we obtain two values.
Since the value of D1 is higher than the ground truth in NLOS and multipath,
we choose the smaller Dfsi of the two,

Dfsi =
D1

1 + σ
. (8)

3.4 Localzation Methods

Since we deploy multiple responders in each scenario, we use Weighted Least-
Squares (WLS) to calculate the location of the initiators,

R̂ = arg min
R

N+1∑

i=1

βi

(
‖R − Ri‖ − d̂fsi(i)

)2

, (9)

where N + 1 is the total number of APs, βi is a weight constant of i th AP with
βi ≥ 0,R = [x, y]T is the actual user location, Ri = [xi, yi]

T is the ith location of
the AP, and R̂ = [x̂, ŷ]T is the estimated location. We select a reference AP as the
smallest measured distance among all the distance measurements by a Reference
Selection (LLS-RS) [3]: (‖R − Ri‖)2 − (‖R − Rr‖)2 = (d̂fsi(i))2 − (d̂fsi(r))2,
where r is rth AP and i = 1, 2, · · · , N +1(i �= r). We can get re-arranging matrix
form as follows:

WAR =
1
2
WB, (10)

where W = diag{β1, β2, · · · , βN+1}. Due to R1 can reflect the magnitude of the
error, we determine the weight constant β based on the strength value of direct
path R1 in Eq. 3. When R1 > 0.5, β = 1. When 0.1 < R1 < 0.5, β = 0.5. When
R1 < 0.1, β = 0. Finally, we can get the optimally estimated coordinates (x, y).

4 Performance Evaluation

4.1 Evaluation Setup

We use Google Pixel 2 phone and a Google Wi-Fi router as the transceiver.
They operate at 80 MHz bandwidth and 5.21 GHz center frequency. We use a
Dell Vostro 3000 series computer with an AX200 NIC. A Xiaomi AX3000 router
is configured at the receiving end. The Xiaomi router operates at 160 MHz band-
width and 5.25 GHz center frequency. In each antenna, we can obtain a CSI
matrix with 2025 sub-carriers, whose carrier bandwidth 78125 Hz.
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4.2 Ranging Error
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Fig. 6. FSI and FTM ranging accuracy in four real indoor rooms.

We set up 20 tested locations in each spatial environment. At each location, we
collect 50 consecutive FTM and take the mean value as well as the CSI matrix.
After collecting the above data, we move the initiator in a small area to collect
again 50 FTM values and the range values returned by the IMU. We focus the
evaluation data set on having a common setup with different movement patterns,
rather than just moving along a straight line in the same direction.

Taking all the data into account in Fig. 6, FSI achieves a median and 90-
percentile of 1.85 m and 3.88 m respectively, outperforming FTM. The ranging
accuracy of FSI improved by 24.80% for the median and 21.14% for
the 90-percentile.

4.3 Positioning Error
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Fig. 7. FSI and FTM localization accuracy in four real indoor rooms.

In addition to evaluating the object measurement error, we also evaluate the posi-
tioning error capability of FSI in the same environment and location. By com-
paring the output location with the known ground truth, Fig. 7 gives the CDF
of the position estimation error for each spatial environment. Overall, taking all
the location estimates into account, FSI achieves a median and 90-percentile of
2.59 m and 4.85 m respectively. The positioning accuracy of FSI improved
by 28.45% for the median and 10.35% for the 90-percentile.
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5 Conclusion and Future Directions

In this study, we explore the relationship between PHY layer information and
FTM error in a high resolution and present FSI, an error calibration model uses
PHY layer information to correct the FTM. Moreover, we use the mobility of the
target to optimize the results, which makes FSI suitable for actual environments.
FSI can be implemented as a standalone application on mobile devices. Extensive
experimental evaluations have validated the feasibility of FSI. As part of future
work, we plan to further improve FTM accuracy by fusing multiple sources of
information, such as AOA and Doppler frequency shift, and apply them to device
tracking. As more Wi-Fi chipsets in mobile devices support larger bandwidth
transmission, the ranging accuracy of FTM will also greatly improve.
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Abstract. The present research on label-consistent invisible backdoor
attacks mainly faces the problem of needing a high poisoning rate to
achieve a high attack success rate. To address the problem, this paper
proposes a low-poisoning rate invisible backdoor attack based on impor-
tant neurons (INIB) by enhancing the connection between triggers and
target labels with the help of the neural gradient ranking algorithm. The
method first identifies the neurons with the most significant influence on
the target label with the help of the neural gradient ranking algorithm,
secondly establishes a strong link between the important neurons and
the trigger using the gradient descent algorithm, and then generates a
trigger based on the established strong link by minimizing the differ-
ence between the current activation value and the expected activation
value of the important neurons, thus causing the important neurons to be
strongly activated when images have the trigger, which in turn causes the
model to misidentify them as the target label. Finally, detailed exper-
imental results show that INIB is able to achieve a very high attack
success rate with a very low poisoning rate. Specifically, INIB achieves
a 98.7% backdoor attack success rate with the poisoning rate of only
1.64% on the MNIST dataset.

Keywords: Invisible backdoor attack · Label consistent ·
Low-poisoning rate · Important neuron

1 Introduction

Deep neural networks (DNNs) have been used in a wide range of real-world
applications [1]. However, a large amount of recent research has shown that
DNNs are highly vulnerable to backdoor attacks. Backdoor attacks [2] are a class
of attacks that inject hidden malicious behaviors into DNNs by manipulating
certain neurons to make the DNN misidentify a particular sample. The two main
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types of attacks are poisoning the training dataset and directly modifying the
model parameters, and the contaminated model is called a backdoor model. For
clean data samples, the backdoor model will identify them correctly, whereas, for
samples with triggers crafted by attackers, the backdoor model will be triggered
to invoke predefined malicious behavior, resulting in incorrect identification. For
example, a tainted autopilot system would recognize a stop sign with a trigger as
speed limit recognition, causing the autopilot system not to apply the brakes [3],
which would pose a serious threat to the lives of passengers and passers-by. To
make matters worse, backdoor attacks only require the manipulation of a very
small number of neurons to embed backdoors, which results in backdoors in
DNNs being difficult to detect. Designing a backdoor attack scheme contributes
to the proposed backdoor defense method, which can reverse the security of DNN
models and thus improve the security of real-world applications [4].

The existing backdoor attack methods are mainly divided into two categories:
non-poisoning-based backdoor attacks and poisoning-based backdoor attacks.
The former refers to the injection of malicious behaviors directly into the model,
which is mainly achieved by modifying training parameters or model weights
but is very difficult to implement and difficult to apply in practice. The lat-
ter is the training of a model using a poisoned training set and occurs mainly
during the training phase of the model. Poisoning-based backdoor attacks are
further divided into two categories: trigger-visible backdoor attacks and invisible
backdoor attacks. Trigger-visible backdoor attacks, in which the attacker uses
poisoned images with obvious triggers to train the model, can make deep learning
models misidentify inputs with malicious triggers, but are difficult to apply in
practice because they are highly detectable. Invisible backdoor attacks, in which
an attacker uses poisoned images with obscure triggers to train a model, are
divided into two categories: label inconsistent and label consistent. The incon-
sistently labeled backdoor attacks refer to an attacker using the steganography
or distorted image to achieve trigger invisibility, but because the label of the
poisoned image does not match its real label, it is difficult to evade manual
visual inspection. In order to solve the above problem, label-consistent invisible
backdoor attacks have emerged, but the attack success rate of such attacks is
low and usually requires a high poisoning rate to achieve a high success rate of
backdoor attacks.

To solve the above problem, this paper proposes a low-poisoning rate invisible
backdoor attack based on important neurons (INIB) by enhancing the connection
between triggers and target labels with the help of the neural gradient sorting
algorithm. The main contributions are as follows:

(1) In order to reduce the poisoning rate of samples, this paper proposes a
trigger generation algorithm based on important neurons, which achieves
the effect of achieving a high attack success rate with a very low poisoning
rate. The method identifies the neuron with the most significant influence
on the target label with the help of a neural gradient ranking algorithm and
then establishes a strong connection between this neuron and the trigger
with the help of a gradient descent algorithm so that the important neuron
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has strong activation when the trigger is present, enhancing the connection
between the trigger and the target label.

(2) To verify the effectiveness of the above scheme, we compare INIB to BadNets
and Hidden with the help of the backdoor attacks success rate. The experi-
mental results show that while INIB ensures stealthiness, and can achieve a
higher success rate of backdoor attacks with a very low poisoning rate. For
example, on the MNIST dataset, only 1.64% of the poisoning rate is needed
to achieve 98.7% of the attack success rate.

2 Related Work

This section describes the current state of research on backdoor attacks in terms
of both poisoning-based backdoor attacks and non-poisoning-based backdoor
attacks.

2.1 Poisoning-Based Backdoor Attacks

(1) Trigger-visible backdoor attacks. Gu et al. [5] first proposed BadNets, which
generate poisoned images by directly hitting the trigger on some of the
benign images, and then use the benign images together with the poisoned
images to train the model. Xue et al. [6] used poisoned images with triggers
as well as their compressed versions to generate a poisoned training set in
order to avoid corrupted features of the triggers.

(2) Invisible backdoor attacks. Barni et al. [7] proposed a clean-label invisible
backdoor attack, which generates poisoned images with labels consistent
with their real labels. Saha et al. [8] proposed a label-consistent hidden
trigger backdoor attack in order to evade manual visual inspection. Nguyen
et al. [9] proposed a WaNet based on image warping, whose attack is mainly
achieved by a small and smooth warping field.

2.2 Non-poisoning-based Backdoor Attacks

Non-poisoning-based backdoor attacks are mainly implemented by directly mod-
ifying the training parameters or model weights. Clements et al. [10] proposed
a method to embed a backdoor by modifying certain computational operations
in a neural network by assuming that the attacker has full access to the model.
Dumford et al. [11] proposed a method to directly modify the model weights in
a neural network by using a greedy algorithm to search for the target weights.
Bagdasaryan et al. [12] proposed a backdoor injection technique that uses the
loss value computation during the training process. Salem et al. [13] proposed
triggerless backdoor attacks that alter the functionality of the model and gener-
ate specific target labels by removing some target neurons during training. The
attacker can trigger the backdoor by deleting these neurons.
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3 Threat Model Definition

The classifier is denoted as Fw : X → [0, 1]|Y |, where w is the model param-
eter, X ⊂ Rd is the instance space and Y = {1, 2, ...,M} is the label
space. F (x) denotes the posterior vector relative to the class M , C(x) =
arg max fw(x) denotes the prediction label, yt denotes the target label, DL =
{(xi, yi)|i = 1, ..., Nl} denotes the training data set, and DsL = {(x, y) ⊂ DL}
denotes a subset of DL.

Backdoor security value Sb: a measure of whether the trigger can successfully
activate a hidden backdoor in the classifier, i.e. the success rate of the backdoor
attack.

Sb(DsL) = E(x,y)∼PDsL
[I {C(x′) = yt}] (1)

Model test safety value St: a measure of model availability, i.e. test accuracy
of the model.

St(DL) = E(x,y)∼PDL
[I {C(x) = y}] (2)

Objective function:

MAXwλ1 · Sb(DsL) + λ2 · St(DL) (3)

where x represents the data in the training dataset, x′ represents the data with
triggers, λ1, λ2 are two non-negative trade-off hyperparameters, |DsL|

|DL| is the
proportion of poisoning, E(x,y)∼PDsL

is the mathematical expectation, and the
I function represents the result of 1 if the latter condition is true.

4 INIB

The scheme in this paper is divided into three main parts: trigger generation
based on important neurons, label-consistent poisoned image generation, and
model retraining.

4.1 Trigger Generation Based on Important Neurons

Dentify Important Neurons. Assume that the DNN model F has M output
classes, T ∈ {1, 2, ...,M} is the target label of the attack, and the last layer of
the model F is a fully connected layer classifier with N output neurons and M
input neurons.

The classifier has a weight matrix of W ∈ RM×N and a loss function of Γ
for model F. For a given set of input samples and their labels, the gradient is
calculated by backpropagation. Noting the ownership value connected to the T
output neuron as gTi, the cumulative gradient is described as:

G =
∂Γ

∂W
=

⎛
⎜⎜⎜⎜⎝

g11 . . . g1N

. . .
gT1

. . .

. . .

. . .

. . .

. . .
gTN

. . .
gM1 · · · gMN

⎞
⎟⎟⎟⎟⎠

(4)
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The neuron with the most significant effect on the output of the target label
T is then identified and using the neural gradient ranking algorithm can be
represented as: {

MAXwb
|[gT1,gT2,...,gTN ]|

wb<N (5)

where the above function returns the index {j} of the gradient gTj neuron with
the highest absolute value connected to the T output neuron of the last layer,
and the value of the returned index also corresponds to the weight.

Trigger Generation. Establishing a strong connection between the initial trig-
ger and a previously selected set of internally important neurons, thus generat-
ing a final trigger such that the important neurons have strong activation in the
presence of that trigger.

The trigger generation algorithm uses gradient descent to find a local mini-
mum of the loss function and iteratively improves the input in the direction of
the decreasing loss function based on the initially assigned value, so that the
final activation of the selected neuron is as close as possible to the expected
activation. The loss function is defined as:

cos t =
1
m

m∑
i=1

I|neuroni−target vi|≤τ
(neuroni−target vi)

2

2 +
I|neuroni−target vi|>τ

(
τ |neuroni − target vi| − 1

2τ2
) (6)

τ in the above equation is a hyperparameter. In Algorithm 1, F denotes
the model, p is the trigger, the threshold is the threshold for the termina-
tion process, epochs is the maximum number of iterations, Lr is the learning
rate, {(neuron1, target v1) , (neuron2, target v2) , · · ·} denotes the set of impor-
tant neurons selected and the neuron activation values.

4.2 Label-Consistent Poisoned Image Generation

In order to generate consistently labeled poisoned images, we optimize the image
with the help of a feature space optimization algorithm. Let f (x) denote the
function that propagates x through the neural network to the penultimate layer,
and call the activation function at this layer the feature space representation of
the input.

The process of attaching the trigger to the source image is represented as:

s′ = (1 − ∂) ⊗ s + ∂ ⊗ p (7)

Optimize the poisoned image by solving the following objective function z:

z = arg min
x

‖ f(x) − f(s′) ‖22 +μ ‖ x − t ‖22
s.t., ||f(x) − f(s′)||2 ≤ σand||x − t||2 ≤ μ

(8)

where s is the source image, p is the trigger generated in the previous step, t is
the target image, and z is the poisoned image. ⊗ refers to pressing the image
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directly, ∂ is a parameter to balance the degree of paste of the trigger, and μ is a
parameter used to balance the similarity relationship between vision and feature
space.

At step i of the optimization algorithm, the following is satisfied:
{||f(x)−f(xi−1)||2≤σi

||x−xi−1||2≤μi
(9)

and the poisoned image generated at each step lies within the input domain:
xi + ηi ∈ [0, 255]. We use a forward-backward splitting iterative process [14],
which first optimises the ||f(x) − f(xi−1)||2 using gradient descent, adjusts the
coefficients μ so that they satisfy the constraints in ||x − xi−1||2 ≤ μi, and then
iterates.

4.3 Model Retraining

During model retraining, we only fine-tune the parameters of the feature space
layer, and we use gradient descent algorithms such as RMSprop and Adam to
update the parameters during model training. Gradient descent uses local gra-
dient information to update the parameters and gradually approximates the
extreme value point of the objective function.

RMSprop:
vt+1 = βvt + (1 − β)g2t
θt+1 = θt − η√

vt+1+ε
(10)

Letting v0 = 0, we obtain:

vt+1 = (1 − β)
t∑

i=0

βt−ig2i (11)

where η is the learning rate, β is a parameter to control the exponentially
weighted average, and gt is the gradient depends entirely on the gradient of
the current batch, so η can be interpreted as how much of the gradient of the
current batch is allowed to affect parameter updates. RMSprop avoids the prob-
lem of too small a coefficient for later updates by adding an exponential decay
factor to the squared gradient, and vt+1 is often referred to as the exponentially
weighted mean.

Adam:
θt+1 = θt − η(

mt+1√
vt+1 + ε

+ λθt) (12)

Neural network models are prevented from overfitting by regularization. For
Adam algorithm, if the model uses L2 regularization, its gradient at moment
t is: gt = ∇θJ(θt) + λθt , where λ is the weight decay. Adam adds the weight
decay term to the gradient update, while gt remains unchanged.
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Fig. 1. Comparison of the attack success rate

5 Experiment

In this section, we introduce the datasets and experimental parameters used
for the experiments in Sect. 5.1. In Sect. 5.2, we verify that this paper’s scheme
INIB can achieve a high attack success rate with a very low poisoning rate by
comparing it with BadNets and Hidden backdoor attack success rate.

5.1 Experimental Parameter Settings

In this paper, four commonly used datasets (i.e., MNIST, CIFAR, GTSRB, Ima-
geNet) are chosen for backdoor attack studies, using the fc7 feature embedding
f(.) of the AlexNet [15]. We use AlexNet as the base network with the remain-
ing layer weight parameters unchanged and fine-tune the parameters of the fc8
layer. In the model retraining phase, we trained for 50 cycles, using 30 images
for testing.
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5.2 Attack Success Rate

To compare the success rate of backdoor attacks, we compare INIB with the
trigger-visible backdoor attack method BadNets [5] and the label-consistent
invisible backdoor attack method Hidden [8].

In the MNIST dataset, we chose the source image class as 1, 2, 5 and the
target image class as 0, and train a multi-classifier. In this experiment, we gen-
erate 60 poisoned images and add the different numbers of poisoned images to
the training set, where the amount of clean images in the poisoning training set
is 3600.

In the CIFAR dataset, we chose the source image class as bird, kitten, dog,
and the target image class as aircraft, and train a multi-classifier. In this experi-
ment, we generate 60 poisoned images and add the different numbers of poisoned
images to the training set, where the amount of clean images in the poisoning
training set is 3600.

In the GTSRB dataset, we chose the source image categories of speed limit
50, speed limit 80, speed limit 100, and the target image category of parking,
and train a multi-classifier. In this experiment, we generate 60 poisoned images
and add the different numbers of poisoned images to the training set, where the
amount of clean images in the poisoning training set is 3860.

In the ImageNet dataset, we chose the source image categories of car, Walk-
man, archway, and the target image category of dog, and train a multi-classifier.
In this experiment, we generate 100 poisoned images and add the different num-
bers of poisoned images to the training set, where the amount of clean images
in the poisoning training set is 1600.

Figure 1(a)–(d) show the comparison of INIB with BadNets, Hidden on the
MNIST, CIFAR, GTSRB and ImageNet dataset, where RMSprop-INIB means
that in our scheme the RMSprop algorithm is used in the model during the
training phase, and Adam-INIB means that in our scheme the Adam algorithm
is used in the model during the training phase.

6 Conclusion

To solve the problem that label-consistent invisible backdoor attacks require a
high poisoning rate, this paper proposes a low poisoning rate, label-consistent
invisible backdoor attack scheme based on important neurons. In this model,
the poisoned images are correctly labeled, while the triggers are not visible in
the training phase and are not easily noticed in the testing phase. Experiments
show that the scheme proposed in this paper requires very few poisoned images
to poison the entire network and that the model has a negligible impact on the
original task.

We hope that the research in this paper will deepen our understanding of
DNNs and reverse the proposed backdoor defense methods, thus better enhanc-
ing the security of deep learning models and improving the security of real-world
applications.
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Abstract. With the explosive growth of mobile traffic and the demand
for privacy protection and network security, mainstream mobile appli-
cations use encryption protocols (mostly TLS), so identifying mobile
encrypted traffic has become critical. Machine learning methods are
based on hand-designed features that are unreliable in the face of complex
traffic data. Deep learning currently performs well on this task, but most
of them only describe traffic data from one view, ignoring the heteroge-
neous nature of traffic. In this paper, we apply multimodal Transformers
to mobile encrypted traffic classification and propose a novel model (DF-
Net) with a deep fusion mechanism. The key point of deep fusion is that
a learnable modal-type embedding enables the model to perform early
and unconstrained fusion and interaction of cross-modal information to
achieve performance improvements. On the premise of ensuring perfor-
mance, DF-Net adopts lightweight design and the parallel mechanism to
improve the overall efficiency of the model. To verify the performance
and efficiency of DF-Net, we implement an automated traffic collection
framework to collect a real-world traffic dataset that covers 48 popular
apps. Experiments show that DF-Net not only achieves excellent perfor-
mance but also more efficient compared to state-of-the-art methods.

Keywords: Traffic classification · Multimodal learning · Feature
fusion

1 Introduction

Traffic classification plays an important role in network management, quality
of service (QoS) and anomaly detection. To meet the requirements of network
security and privacy protection, most applications use encrypted communication
technology (e.g., TLS). According to Google’s Transparency Report on HTTPS
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traffic, as of February 2022, encrypted connections across Android products and
services achieved 95%. Hence, mobile encrypted traffic classification is coming
into focus along with the growing demand. However, traditional approaches that
rely on deep packet inspection (DPI) or rule-based methods have become less
viable, since all the communication contents are randomized after encryption [6].
Recently, end-to-end deep learning (DL) methods [1,3,6,9,10] perform well, but
most models describe traffic from only one view, using unimodal input to train
the model, which cannot consistently outperform in challenging scenarios.

In this paper, we propose a Deep Fusion Network (DF-Net) with multimodal
Transformers [8] for mobile encrypted traffic classification which leverages more
discriminative information from multiple modalities of raw traffic to improve
the classification performance. DF-Net handles two modalities in a deep fusion
manner, it extracts features from the initial TLS packet payload bytes on the
one hand, and learns valid representation from the raw packet length sequences
on the other. Deep fusion means that the model collectively concatenates the
liner projection of payload bytes and the embedded representation of packet
length. Specifically, we use a learnable modal-type embedding layer to fuse the
heterogeneous data representation, and then the unified fusion vector is fed into
the Transformer encoder. Model design follows the single-stream [2] approach
and allows for a deep, early, and unconstrained fusion and interaction of cross-
modal information at the input level. Experiments show that this design not
only improves the performance, but also avoids the introduction of additional
parameters that affect the model efficiency. Moreover, DF-Net adopts the sim-
plest embedding scheme (liner projection) for payload bytes, and the multi-head
self-attention mechanism endows the model with the ability of parallel comput-
ing and feature interactions from different representation subspaces [8]. Both the
lightweight architecture (fewer parameters) and the parallel mechanism (faster
computing speed) can improve the overall efficiency of the model. In order to
obtain reliable data, we implement an automatic traffic collection framework for
Android apps, which traverses all the widgets on the UI based on the depth-first
search (DFS) algorithm to collect abundant and up-to-date traffic. Finally, we
built a new mobile traffic dataset that contains 48 popular Android apps.

2 Related Works

AppScanner [7] utilizes statistical features of packet length to train Support Vec-
tor Machines (SVM) and Random Forest (RF) for recognizing apps. FlowPrint
[4] extracts device, certificate and temporal features to represent each flow, and
constructs a fingerprint library by clustering and cross-correlating for efficient
traffic classification. FOAP [5] aims at open-world android app fingerprinting
which constructs a bilevel recognition model and identifies user actions on spe-
cific UI components through. There are also some studies devoted to using deep
models (e.g., 1DCNN [10] and Autoencoder [3]) to detect malicious traffic. Fs-
Net [6] combines stacked bidirectional GRUs with a reconstruction mechanism
to learn features from packet length sequences. Current multimodal models [1,9]
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rely on CNN and RNN models to extract features separately, and then combine
the outputs of the two branches for classification, but they pay little attention
to the modality fusion strategy and the issue of model efficiency.

3 The Proposed Multimodal Model

3.1 Modal Choices

Fig. 1. Visualization of the payload
bytes

Fig. 2. Packet length trends

In this paper, we describe traffic data from multiple views, allowing the model
to leverage more distinguishable information. As the payload data (TCP/IP
model layer 4) during the initial TLS handshake (i.e., ClientHello and Server-
Hello messages) usually contains plaintext fields. From our observations, there
are significant differences in the cipher suites which can be selected to use accord-
ing to platform support, preference or random selection. Also, some extension
fields such as Server Name Indication (SNI) provide distinguishable features. As
shown in Fig. 1, the raw packets are converted into bytes and visualized. The
L4 layer starts with 900 consecutive bytes of different apps has significant dif-
ferences. However, the plaintext information in the handshake phase is greatly
reduced in TLS 1.3, so it is more necessary to use the packet length feature as a
supplement. Figure 2 plots the interpolation smooth curve of the packet length
of different apps. We can see that the trends and fluctuations of the packet
length of different apps are also significantly different. So we take packet length
sequences and payload bytes as the input data. There are also some metadata
such as Inter Arrival Time (IAT) and message type that can be used, but IAT
is easily affected by the network environment, and the message type sequence
is not ample enough to provide recognition space. Besides, more input is not
conducive to model lightweight.

3.2 Model Architecture

The DF-Net is a hierarchical model as shown in Fig. 3, which consists embedding
layer, Transformer encoder and classification layer.
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Embedding Layer. DF-Net follows the single-stream [2] approach that the
embedding layer collectively operates on a concatenation of multimodal input.
The full vector representation is constructed by summing up three embeddings:
token embedding, position embedding and modal-type embedding.

Fig. 3. The overview of DF-Net architecture

Token Embedding. For packet length sequences, every packet length token is
like a vocab in the dictionary. There is a learnable embedding matrix VL ∈
R

K×d, where K is the size of a dictionary. Here, we set K = 1500 because
the maximum transmission unit (MTU) of the Ethernet is usually 1500 bytes,
and the embedding dimension d is set to 128. Given a packet length sequence
with M elements L = [l1, ..., lM ], each element lm is fed into embedding matrix
VL ∈ R

K×d and converted into a embedding vector elm ∈ R
d. Here, the input

sequence length is required to be at least M = 10 to support the best result.
Finally, we can obtain the embedding sequence:

EL = [el1 , ..., elM ], EL ∈ R
M×d (1)

As for payload bytes, we use patch projection embedding for image classification
because byte sequences are like flattened image pixels. Given input bytes B =
{x1, ...,xN}, where xn ∈ R

P . Here we truncate consecutive 900 bytes for each
flow, so we derive N = 6 patches, and each patch contains P = 150 bytes, that
enough to offer the best result. Followed by linear projection matrix VB ∈ R

P×d,
we obtain the embedding sequence:

EB = [ex1 , ...exN
], EB ∈ R

N×d (2)

Position Embedding. Due to the transmission of traffic data being closely related
to order, positional embedding to ensure that the model pays attention to the
temporal relationship of tokens through relative positions. We denote the posi-
tional embedding of two modalities as: Epos

L ∈ R
(M)×d and Epos

B ∈ R
(N)×d,

where the embedding dimension d is same as token embedding. For each modal-
ity, position information is computed from scratch.
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Modal-type Embedding. We assign different tags to different modals, that fuse the
multimodal data to form a unified input to the Transformer encoder in the early
stage. This allows for a deep and unconstrained interaction of cross-modal infor-
mation at the early stage to improve the model performance. The modal-type
embedding vectors are represented as: Etype

L ∈ R
M×d and Etype

B ∈ R
N×d. Then

the token and position embeddings are summed with their corresponding modal-
type embedding vectors. Finally, the embedding sequence z ∈ R

(M+N+1)×d is
uniformly input to the next layer. We add a special classification token eclass
([CLS]) as the first token of every combined sequence. The final hidden state cor-
responding to the [CLS] token is used as the aggregate sequence representation
(global feature aggregation) for classification task.

z = [eclass;EL + Epos
L + Etype

L ;EB + Epos
B + Etype

B ] (3)

Transformer Encoder. Transformer encoder consists of T = 4 stacked iden-
tical layers. Each layer includes a multi-head self-attention (MSA) block and a
MLP block. Layer normalization (LN) is applied before every block and residual
connections after every block. For standard qkv self-attention (SA), each ele-
ment in an input sequence z ∈ R

(M+N+1)×d, it computes a weighted sum over
all values v in the sequence. The attention weights Aij are based on the pairwise
similarity between two elements of the sequence and their respective query qi

and key ki representations with dimension dk. Multihead self-attention (MSA)
is an extension of SA in which we run h self-attention operations in parallel,
called “heads”, and project their concatenated outputs. To keep compute and
the number of parameters constant when changing h. Besides, each of the layers
contains a fully connected feed-forward network, which is applied to each posi-
tion separately and identically. This consists of two linear transformations with
a ReLU activation in between. In this model, the number of heads set to h = 2.

[q,k,v] = SUqkv (4)

SA(z) = Softmax(qk�/
√
dk)v (5)

MSA(z) = [SA1(z);SA2(z); ...;SAh(z)]Umsa (6)
MLP (z̃) = ReLU(z̃W1 + b1)W2 + b2 (7)

3.3 Classification Layer

A two-layer MLP classifier with GeLU activation (followed by dropout) to pre-
dict the output classes. The first position hidden state zT0 which corresponds
to the special [CLS] token will be employed directly for classification, because
it can learn a robust representation of the entire sequence due to self-attention
mechanism. Softmax classifier outputs the distribution p over the predictions
with ground-truth targets A. In the training phase, we apply the cross-entropy
classification loss to train the model as follows:

p = Softmax(GeLU(zT0 W1 + b1)W2 + b2) (8)
Loss = CrossEntropyLoss(A,p) (9)
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4 Evaluation

4.1 Traffic Collection

DL models are data-driven, so high-quality datasets are crucial. The datasets
used in the past have the potential to be outdated, resulting in Concept Drift.
To obtain reliable ground truth, we implemented an automatic traffic collection
framework for Android apps based on the Appium automation test tool.

Fig. 4. Automatic collection frame-
work

Fig. 5. The workflow of traffic collec-
tion

The collection framework and workflow are shown in Fig. 4 and Fig. 5 respec-
tively. The controller issues the tasks, and the distributed nodes collect traffic
according to the algorithm and store it to the storage servers. For an application,
the Appium program traverses all the widgets on the UI based on the depth-first
search algorithm (DFS) by using XPath to parse the XML source code of the
user interface (UI), which simulates user operations, such as clicking, sliding, etc.
Then the Tcpdump captures traffic during the traversal process. Duo to Proc
file system (/proc/net) will display the socket usage of all UIDs in real-time, we
get the unique identifier (UID) of the app by accessing the ADB to correlate a
Network Flow to an App. The raw traffic will be cleaned and filtered, then we
further extract packet length and the payload information of bidirectional flows,
and these data constitute our dataset in this paper. Compared with other col-
lection methods (e.g., NetLog [9]), our framework has the following advantages:
1)The framework is designed as a distributed architecture. It achieves automatic
collection and labeling, which significantly improves the collection efficiency and
provides support for the construction of large-scale datasets. 2)The traversal
algorithm can trigger various functions of the application, thereby generating
abundant traffic and providing data support for training excellent models. The
original traffic were captured on Android devices and emulators (i.e., Xiaomi Mi
8 and MuMu emulator) during May.2021 - Jul.2021. Raw traffic with 35G, and
the dataset containing 48 applications and 176,200 encrypted network flows. For
brevity, we rank all the apps and present the top 16 apps with the most TLS
flows in Table 1.
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Table 1. Top 16 Apps With The Most TLS flows

ID App Flows ID App Flows

1 com.sankuai.meituan 13890 9 com.xiaomi.shop 5508

2 com.sina.weibo 12706 10 com.dangdang.buy2 4979

3 com.tencent.qqmusic 11780 11 com.qq.ac.android 4826

4 com.youku.phone 8858 12 com.wuba 4485

5 tv.danmaku.bili 8082 13 ctrip.android.view 4064

6 com.baidu.tieba 7963 14 com.zhihu.android 3899

7 com.taobao.idlefish 7820 15 com.sohu.newsclient 3678

8 com.tencent.mm 5526 16 com.sina.news 3606

4.2 Experiments and Analysis

Performance Comparison. Accuracy, Precision and Recall are used as met-
rics. Considering the presence of class imbalance in our multiclass settings, we
use the Macro F -measure to evaluate the overall performance. To facilitate
presentation, the general overview of performance is shown in Table 2.

Statistical Methods. Appscanner [7] derived 54 statistical features from the
packet sizes of each flow. We use the optimal parameters set by the paper and the
same data preprocessing method. As seen in the Table 2, DF-Net significantly
outperforms ML-based methods, with an improvement up to +15.23% on Macro-
F1 compared with the RF method. Furthermore, we can see that the multi-class
SVM method performs poorly with only 55.76% F1-score, which indicates that
SVM is not suitable for multi-class scenarios. It also illustrates that ML-based
methods require careful selection of appropriate models and features to improve
performance, which is complicated and time-consuming.

Table 2. Experiment results of comparison methods

Model type Model name Accuracy Precision Recall Macro-F1

Statistical AppScanner-SVM 56.63± 0.6 52.37± 0.9 59.63± 0.9 55.76± 1.2

AppScanner-RF 78.13± 0.7 81.92± 0.6 76.58± 0.6 79.16± 0.7

Unimodal 1D-CNN 86.36± 0.9 87.62± 0.6 84.79± 0.7 86.18± 0.9

Fs-Net 79.61± 0.5 81.07± 0.5 78.23± 0.6 79.62± 0.7

Multimodal MIMETIC 87.32± 0.4 88.11± 0.6 86.91± 0.5 87.51± 0.8

App-Net 91.24± 0.4 94.26± 0.5 89.87± 0.6 92.01± 0.7

Variant Single-Byte 86.97± 0.5 85.68± 0.4 87.98± 0.6 86.81± 0.8

Single-Length 82.13± 0.5 86.36± 0.6 79.67± 0.7 82.88± 0.9

Dual-Stream 93.37± 0.2 94.69± 0.4 92.02± 0.2 93.33± 0.1

Deep fusion network 95.26±0.2 95.84±0.3 92.98±0.5 94.39±0.4
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Deep models. Compared with 1D-CNN [10] and Fs-Net [6], DF-Net has a signif-
icant performance improvement of +8.21% and +14.77% respectively on Macro-
F1. Moreover, compared with two unimodal variant methods based on pay-
load bytes (Single-Byte) and packet length (Single-Length), DF-Net improves
the Macro-F1 by +7.58% and +11.51%, respectively. This proves that multi-
modal features indeed provide more distinguishable information. Besides, we
observe that the model based on payload bytes outperforms the model based on
packet length, this shows that these plaintext observable data fields, exposed in
TLS connections, have more valuable information that can be used to build a
more excellent classifier. DF-Net also has an overall lead in performance, with
a increase of 6.88% on F1-score compared to MIMETIC [1]. App-Net [9] has a
similar performance to our model with a difference of 2.38% on F1-score, but
there is a problem with efficiency.

In addition, we also conducted a fine-grained performance experiment that
checks their Top-K accuracy (K ∈ {1, 3, 5}) in Fig. 6. Obviously, we can see that
the performance of all classifiers can be improved when relaxing the results. Our
modal also achieves the best performance, when the Top-3 and Top-5 predicted
apps are considered. However, Unimodal classifiers (1D-CNN and Fs-Net) are
not close to the accuracy of the DF-Net or Appscanner-RF because they cannot
infer deep traffic patterns from a single information dimension. We also compare
fusion variant methods Dual-Stream. From the results, the deep fusion technique
achieves the best performance. Although the performance gap is not large, the
joint loss needs to manually set predefined weights for each unimodal feature [9],
which may lead to modal bias. However, our model utilizes MSA mechanism to
learn the feature attention weights for different modalities by itself.

Fig. 6. Top-K Performance compari-
son

Fig. 7. Model complexity analysis

Analysis on Model. We also analyze the complexity of models including train-
able parameters and run-time per epoch for training. The results are shown in
Fig. 7. These experimental results demonstrate that our model has the short-
est training per epoch. Compared with Dual-Stream App-Net [9] with similar
performance, the training time is shortened by 3.6 times, the inference time is
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shortened by 5.1 times, and the parameters are reduced by 21%. MIMETIC
[1] has the fewest parameters, but the two-stage training method increases the
overall training time (+154%) because the serial input mode slows down the
computing speed (inherent flaws of recurrent neural networks). 1D-CNN has
more parameters but a faster training speed, due to the shared parameter mech-
anism of CNN and its stronger parallel ability. In summary, DF-Net adopts
the simplest embedding scheme, and Transformer provides better parallelism to
overcome the inherent defects of RNN that needs to process the input at each
time step serially. Lightweight designs indeed promote model efficiency and meet
the requirements of real-time online detection in the real world.
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Abstract. The ride-hailing app must provide users with appropriate pick-up
points when they submit their travel demands and their locations are recognized,
efficiently reducing users’ operation complexity and optimizing the software per-
formance. Most apps currently try to search for locations near users’ current GPS
locations as the Points of Interest (POIs), which is an efficient method of locat-
ing, but seriously ignores personal preferences. In this paper, we deeply ana-
lyze the historical ride-hailing orders of users on Didi Chuxing platform (http://
www.didiglobal.com). We explore the given dataset, get the general regularity
of users’ commuting, and propose a Pick-Up Points Recommendation Model
(PPRM) based on the clustering algorithm. We cluster users’ historical orders
using Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
according to orders’ spatial information. In this way, the candidate outputs clos-
est to the user’s current environment/feature can be found in a specific category.
The linear addition of the candidate outputs severs as the final pick-up point
provided. Therefore, our model can offer recommendations of the best pick-up
points. In addition, experimental results based on real-world datasets indicate that
our model can efficiently and accurately provide users with optimal points.

Keywords: Pick-up point recommendation · Travel pattern mining · Cluster
analysis · Ride-hailing system · Data analysis

1 Introduction

Pick-up point recommendation is one of the essential functions of ride-hailing apps.
With the increasing of users’ historical ride-hailing orders, it is vital to dig out users’
travel patterns from users’ historical travel records and recommend the optimal pick-up
points that meet their preferences.

Location prediction has been a craze for a long time. Numerous location data
(such as trajectories, social network sign-in data, and location information obtained by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 393–405, 2022.
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various smart terminals) covers the users’ travel characteristics and can be used to pre-
dict the following locations of users [14,20]. For instance, Li et al. [9] and Yoon et al.
[23] predicted individual locations by calculating the similarity of moving behaviors
and trajectories, respectively. Tseng et al. [16] tried to mine the mobile sequential pat-
terns related to users’ movement paths and time intervals and predicted users’ following
locations. The space areas can be divided by the Voronoi diagram, and a Markov loca-
tion prediction model [12,15] based on regional features of users’ movements is pro-
posed. Furthermore, based on the trajectory data generated by smartphones and wear-
able smart devices, Kown et al. [4] proposed a location prediction method via pattern
matching and similarity measurement. In addition, Zhang et al. [25] deeply mined the
users’ moving patterns and used the generated moving rules to predict the following
locations.

The migration of users’ locations has temporal and spatial correlation, and exploring
the temporal and spatial patterns is essential for accurate location prediction. Lei et al. [6]
proposed a spatiotemporal trajectorymodel, which could capture the spatiotemporal fea-
tures of individual trajectories and improve the accuracy of location prediction. Xu et al.
[18] converted the location prediction problem into a classification problemby extracting
the spatiotemporal features in the historical trajectory data and proposed a learner based
on a modified Support Vector Machine. At the same time, temporal and spatial gates
that independently process individual movement information are introduced into Long
Short-Term Memory (LSTM) to effectively extract individual trajectory features [19].
Moreover, Zhang et al. [26] proposed a multi-task location prediction framework based
on LSTM and Convolutional Neural Networks (CNN). In this model, LSTM is responsi-
ble for extracting the location sequence and time attributes, and CNN extracts the spatial
correlation of each location. In addition, LSTM can not only predict the short-term loca-
tion of users but also the long-term movement trajectory by mining the periodicity of
the users’ movement [17]. Location prediction can also be considered as a classification
problem based on the users’ current feature [21,29]. For example, Lei et al. [5] pro-
posed a spatiotemporal trajectory framework, which extracted the spatial information
by the clustering algorithm and then explored individual travel behavior in the form of
a probability suffix tree. Li et al. [10] classified users according to certain classification
standards and proposed corresponding prediction schemes for each category of users.

The methods mentioned above only consider the basic temporal and spatial infor-
mation, while ignore the deeper features such as users’ preferences [22], context [2],
social correlation [3], and location semantics [27]. By analyzing the location informa-
tion recorded by smartphones on social networks, Zhou et al. [28] concluded that collec-
tive spontaneous mobility would affect users’ mobility. And this conclusion is proved
to be effective for location prediction. Zhang et al. [24] represented users’ preferences
with a tensor and used the preference tensor to predict the next location. Moreover, a
multi-context-based deep neural network location prediction model was proposed by
Liao et al. [11], which captures the deep-level preferences by modeling different con-
texts. In addition, the sparsity of historical trajectory data often negatively affects the
accuracy of position prediction. Therefore, individual-group trajectory prediction mod-
els were proposed in [7,8], in which the methods of location extraction, clustering,
matching prediction, and probability suffix tree are used to reduce the impact of data
sparsity on the prediction results and improve the accuracy.
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In this paper, we propose a Pick-Up Point Recommendation Model (PPRM) using
users’ historical ride-hailing data and can determine whether to provide relevant ser-
vices according to users’ requirements on the recommendations. Our contribution can
be summarized in the following points:

1. We deeply dig into the personal travel pattern of users and outline some common-
alities through the detailed analysis of the historical order data in many aspects.
We further design an unique location recommendation model to provide users with
optimal pick-up points which suit their preferences.

2. We introduce DBSCAN, which can be effectively classified without specifying the
number of, to cluster user’s historical orders, and the idea of order clustering before
order matching can effectively reduce the running time and computation complexity
of the location recommendation model.

3. The experimental results show that the models designed in this paper can predict
users’ pick-up points nicely and further optimize the related functions of existing
apps to facilitate the operations of users.

2 Dataset and Dataset Analysis

2.1 Dataset

The dataset used in this paper is the historical ride-hailing orders of Didi Chuxing’s
users from January to June, 2019. The items of each order are as follows:

– User ID and Order ID: Each user or order has a distinctive id.
– Departure time: The user’s pick-up time in each order.
– Starting lat and Starting lng: The latitude and longitude of the user’s pick-

up/starting point, respectively.
– Starting name: The point of interest (POI) of the user’s pick-up points.
– Dest lat and Dest lng: The latitude and longitude of the user’s destination, respec-

tively.
– Dest name: The POI of the user’s destination.

2.2 Dataset Analysis

The distribution of users’ orders is shown in Fig. 1. We can notice that the historical
order volume of most users within half a year is between 280 to 520 (Noted in the
orange box), and only a few have more than 750 orders (Noted in the red box). All
order information has been anonymously summarized, and abnormal orders caused by
the cancellation of passengers or any other reason have been excluded.
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Fig. 1. The numbers of users under different order volumes. (Color figure online)

We separately counted the daily and hourly order volume. The daily order vol-
ume has a stage of rapid decay and rise, as shown in the red box of Fig. 2(a). This
stage starts at the end of January and ends at the beginning of February. Although
the daily order volume later is at a high level, the overall trend is declining. While,
the hourly order volume has three peaks, which are corresponding to rush hour at
morning/afternoon/evening, respectively, as shown in Fig. 2(b). Moreover, users con-
centrate on taking taxis during the day, and the daytime (7:00 am–7:00 pm) order vol-
ume account for about 68% of the total.

(a) Daily order volume. (b) Hourly order volume.

Fig. 2. The volume of orders over time. (Color figure online)

Besides, there are differences between orders on workdays and holidays. Figure 3
respectively depicts the proportion of order volume in each period of workdays and hol-
idays. There are three peaks of order volume on workdays, which is similar to Fig. 2(b).
However, there is no morning peaks on holiday. Traffic jams in the morning on work-
days often occur due to daily commuting. On the contrary, people often choose to go
out relatively late on holidays.
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Fig. 3. The order volume on workdays and holidays.

In addition, the dataset of users’ orders contains 112581 POIs of pick-up points and
88717 POIs of drop-off points. The order volume of each location is listed in Fig. 4.
Since the number of drop-off points only accounts for 78.8% of the number of pick-
up points, the orders in the dataset have a certain degree of aggregation in the spatial
dimension, which can be seen in Fig. 4 marked in the red lines. It is worth noting that
several drop-off points in Fig. 4(b) share extremely high order volume. We check these
locations separately and find that they are all located at commercial spots or train sta-
tions. These areas have always been the places with high demand for urban commuting.

Fig. 4. The order volume for each pick-up and drop-off point. (Color figure online)
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3 User Travel Behavior Analysis

3.1 The Analysis of Temporal Information in Users’ Historical Orders

Figure 5(a–b) shows the temporal distribution of users’ historical orders. It can be seen
that the users took a taxi at least once in 68% of days since the number of workdays
is the majority, the trend of orders on workdays is alike as to the overall trend. There
are three peaks in the order curve of the workday, which is similar to that in Fig. 2(b).
However, the curve of order volume for the weekends is quite different. The trend of
orders on weekends is more gradual compared to workdays, and there is only one peak
at 17:00.

3.2 The Analysis of Spatial Information in Users’ Historical Orders

According to the straight-line distance between the pick-up and drop-off points in each
order, we set three levels to divide the distance: short-distance (<5 km), mid-distance
(5–10 km), and long-distance (>10 km). Figure 5(c–d) describes the distance distribu-
tion. Short-distance and mid-distance trips account for the vast majority of the travel
records. In Fig. 5(d), the hourly short-distance distribution curve has a similar trend to
the hourly order volume curve in Fig. 5(b). The number of mid-distance trips is smaller
than that of short-distance trips but is larger than that of long-distance trips.

The pick-up and drop-off points of most users are highly clustered. We show the rel-
ative positions of pick-up points and drop-off points in all historical orders in Fig. 6(a),
and we can see that most locations are clustered in a certain space range, as shown in
Fig. 6(b).

Through the same analysis of other users, we discover two commonalities of users’
travel behavior:

Fig. 5. The temporal and spatial distribution of historical orders.



Pick-Up Point Recommendation 399

1. The travel time patterns of users can be roughly divided into two categories: regular
and irregular. Most users have obvious different travel patterns in different periods,
such as workdays and holidays. These users have regular travel patterns of relatively
stable travel time and relatively similar pick-up and drop-off points. But there are
also users with no regular patterns. In addition, most users’ pick-up and drop-off
points are clustered, and also, a few users own discrete locations.

2. The average distance of each user’s historical orders is distinct, but most users take
short-distance and mid-distance trips as their primary travel modes.

4 Pick-Up Point Recommendation Model

Pick-up Point Recommendation Model (PPRM) can be briefly stated as follows: First,
the users’ historical orders are clustered by DBSCAN [1] based on the spatial distri-
bution of pick-up points, and the orders that match the users’ current environment are
searched in a certain category. The overall framework of PPRM is shown in Algorithm
1. Note that all feature vectors in our algorithm have been normalized.

4.1 Order Clustering via DBSCAN

DBSCAN is a density-based spatial clustering method, which treats an area with suf-
ficient density as a cluster (category) and can find arbitrary-shaped clusters in spatial
data with noise. Here, a cluster is defined as the largest collection of closely connected
points. Compared with other clustering algorithms, like the k-means clustering algo-
rithm [13], DBSCAN has the advantages as follows:

– DBSCAN does not need to specify the number of clusters manually.
– DBSCAN can find clusters of any shape.
– DBSCAN can identify the noise points.

Fig. 6. The spatial distribution of historical orders.
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Algorithm 1: PPRM
Input: feature vector v, historical order data X
Output: recommended pick-up point xrec

1 // Order clustering
2 The orders are clustered by Algorithm 2;
3 // Order matching
4 The set of best matching orders Vbest is obtained by Algorithm 3;
5 // Pick-up point recommendation
6 if Match failed then
7 The pick-up point is not recommended;
8 else
9 xrec = 1

nbest

∑|nbest|
i=1 xi,best,where nbest denotes the number of samples in Vbest

and xi,best is the sample in Vbest;
10 xrec = Inv-normalized(xrec), where Inv-normalized(·) denotes the inverse operation

of normalization;
11 end

Figure 6(a) has shown the spatial distribution of pick-up points, and outliers can be
regarded as “noise points.” First, we randomly select a point from the set of pick-up
points and search all the points within the specified radius centered on the chosen point.
Then if the number of searched points exceeds the threshold we set, all the searched
points are grouped into one cluster, and the point selected is called the core point. Oth-
erwise, use the next point to continue the above operation. Algorithm 2 shows the com-
plete concept of order clustering based on the pick-up points set.

4.2 Order Matching

According to the clustering results in Sect. 4.1, the current best matching order can be
found from a certain category. Compared to traversing the entire historical order data,
our method has lower time complexity.

First, we calculate the category center of each category Ck, k = 1, 2, . . . ,m, which
can be defined as

ck =
1
nk

nk∑

i=1

xik, (1)

where xik denotes the i-th sample in Ck and nk is the number of samples in Ck. Then,
the feature vector v (normalized latitude and longitude) is extracted according to the
user’s current environment. Finally, the model tries to search for the best historical
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Algorithm 2: Order clustering via DBSCAN
Input: search radius r, minimum number of samples within the search radius t, sample

point collection X = {x1, x2, ..., xn}, n is the number of sample points
Output: all clusters

1 while unclassified samples are existed do
2 // Select the initial point
3 Randomly select an unclassified point as the initial point x and define a new cluster

Ck = {x};
4 //Sample search
5 while untraversed points are existed in Ck do
6 Select an untraversed point xi;
7 if xi is core point then
8 All points within the search radius r of xi are classified to cluster Ck;
9 else

10 continue;
11 end
12 end
13 end
14 Output all clusters Ck, k = 1, 2, . . . ,m;

order matching from the closest category. In this paper, the distance dk between the
feature vector v and the category center Ck is defined as Euclidean distance between v
and ck. Similarly, the distance between two feature vectors is also defined as Euclidean
distance. Algorithm 3 shows the process of order matching.

dk = ‖v − ck‖. (2)

5 Experimental Results and Analysis

In this section, we conduct multiple experiments on our dataset, show the related exper-
imental results, and give the corresponding analysis.

5.1 The Analysis of Order Clustering

The clustering algorithm is carried out only on spatial locations, so we made a data pre-
processing as follows: First, we extract the latitude and longitude of the pick-up points
from each historical order. And then, we set the number of the training set and test set
account for 80% and 20%, respectively. In addition, all samples have been normalized.

Since the data in the training set is unlabeled, we introduce Silhouette Coefficient
(SC) to measure the effect of data clustering, and the Silhouette Coefficient of sample
xi is defined as

SC(i) =
b(i) − a(i)

max{a(i), b(i)} , (3)



402 L. Zhang et al.

Algorithm 3: Order matching
Input: feature vector v, category Ck, k = 1, 2, . . . ,m
Output: the collection of best matching orders Vbest

1 Initialize:Vbest = ∅

2 //Compute the category center
3 for k = 1, 2, . . . ,m do
4 compute ck by Eq. 1;
5 end
6 // Match the category of v
7 for k = 1, 2, . . . ,m do
8 compute dk by Eq. 2;
9 end

10 The category with the short distance is regarded as the category of v, denoted as
Cv = {x1v, x2v, . . . , vnv};

11 // Order matching
12 for i = 1, 2, . . . , n do
13 compute the sample distance div between v and xiv by div = ‖xiv − v‖;
14 end
15 Select at most 3 samples with the geographic distance less than 100m from Cv as the best

matching samples and store them in Vbest;
16 if |Vbest| > 0 then
17 Output Vbest;
18 else
19 Match failed;
20 end

where a(i) denotes the average distance between xi and other samples in the cluster
of xi, and b(i) denotes the average distance between xi and all samples in the cluster
closest to xi. a(i) and b(i) can also be called the degree of dissimilarity, and the value
range of SC(i) is in [−1, 1]. Moreover, the larger the value of the SC is, then the better
the clustering effect will be.

Figure 7(a) describes the performance of DBSCAN under various parameter com-
binations (r and t in Algorithm 2). When t = 2 and r = 0.015 (the actual geographic
distance is about 1 km), the average SC of all users is the smallest. The clustering effect
of each user’s orders under the best parameter is shown in Fig. 7(b), and the results of
most users are satisfactory.

5.2 The Analysis of the Results Obtained by PPRM

In order to ensure the validity of the experiment, we first randomly drift 0–50 m for
each sample in the test dataset. Meanwhile, two metrics are introduced to measure the
performance of PPRM, i.e., prediction rate (PDR) and distance error (DisErr). PDR is
defined as

PDR =
nrec

ntext
× 100%, (4)
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Fig. 7. Clustering results via DBSCAN.

where nrec denotes the number of test samples with the pick-up points, and ntest is the
number of test samples. PPRM outputs the predicted locations in the form of latitude
and longitude, so DisErr is defined as the geographic distance by calculating the latitude
and longitude of the predicted locations and the actual locations.

According to the parameter combinations of r and t, the results of PPRM are shown
in Fig. 8. It shows that the average PDR can reach 82.38%. In other words, PPRM is
able to handle 82.38% of the demand scenarios. Moreover, the average DisErr is only
23.14 m, so the recommended and the actual point-up point can be considered as the
same POI.

In addition, for the situation where the remaining PPRM doesn’t work, our solution
is to search for the POIs, which are closest to the user from the database as the rec-
ommended pick-up points. The recommended locations in this way may not be in line
with the user’s preferences, but the unnecessary troubles caused by the user entering the
wrong location information can be avoided in many cases.

Fig. 8. The results obtained by PPRM, where the two red lines denote the mean values of PDR
(82.38%) and DisErr (23.14 m). (Color figure online)

6 Conclusion

In this paper, we deeply mine the users’ travel patterns from both temporal and spatial
information of users’ historical ride-hailing orders and summarize the general regularity
characteristics of users’ travel behavior. According to the spatial distribution of users’
historical pick-up points, we propose a pick-up point recommendation model (PPRM)
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based on DBSCAN. PPRM consists of two components: order clustering and location
recommendation. First, the historical orders of each user are clustered according to the
density of pick-up points. Then, the feature vector is extracted from the user’s current
environment. Finally, the most similar orders are searched and used as the matched
orders, and the latitude and longitude of the recommended pick-up point are output by
fusing the matched orders. The final experiment results based on real-world datasets
show that PPRM can efficiently and accurately provide users with ideal pick-up points.
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under Grant No. 2019YFB1600300.
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Abstract. Differential privacy has become a golden standard for design-
ing privacy-preserving randomized algorithms. However, such algorithms
are subtle to design, as many of them are found to have incorrect privacy
claim. To help identify this problem, one approach is designing disprovers
to search for counterexamples that demonstrate high violation of claimed
privacy level. In this paper, we present DP-Opt(mizer), a disprover that
tries to search for counterexamples whose lower bounds on differential pri-
vacy exceed the claimed level of privacy guaranteed by the algorithm. We
leverage the insights of counterexample construction proposed by the lat-
est work, meanwhile resolve their limitations. We transform the search
task into an improved optimization objective which takes into account the
empirical error, then solve it with various off-the-shelf optimizers. An eval-
uation on a variety of both correct and incorrect algorithms illustrates that
DP-Opt almost always produces stronger guarantees than the latest work
up to a factor of 9.42, with runtime reduced by an average of 19.2%.

Keywords: Differential privacy · Disprover · Lower bounds

1 Introduction

Differential Privacy (DP) [11] has become a golden standard that measures the
level of privacy guaranteed by randomized mechanisms. DP protects individ-
ual’s information because attackers cannot tell if an output was generated from
database a1, or its neighbor A = a2 with that individual’s record changed.
However, designing such differentially private mechanisms can be error-prone,
as existing papers have already identified incorrect privacy claims of published
mechanisms [8,15]. Therefore, an important area of research is to verify the
privacy level of a differentially private mechanism.

Generally, related works are divided into three types: formal verification, dis-
prover, and the combination of both. Formal verification methods develop a proof
system and use it to prove that mechanisms satisfy differential privacy [1,4,5,
18,20]. However, these techniques are not able to disprove an incorrect privacy
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claim. On the contrary, disprovers try to search for counterexamples of a mech-
anism that violate the claimed differential privacy level [2,6,7,10,19]. Typically,
two approaches are taken. On one hand, StatDP [10] constructs and tests a sta-
tistical hypothesis. Given a preconceived privacy parameter ε0 > 0, it tries to
find a counterexample that violates the privacy condition, therefore rejects incor-
rect mechanisms. On the other hand, works like DP-Finder [6] and DP-Sniper [7]
search for the lower bound on differential privacy. Such lower bound is found by
maximizing the privacy loss function derived from DP definition. Inputs to this
function is considered a counterexample if the corresponding lower bound exceeds
the claimed privacy level. Both approaches try to identify counterexamples so as
to demonstrate that the privacy claim is incorrect, and further provide insights for
developers to fix the bugged mechanism. As opposed to formal verification meth-
ods, a disprover cannot prove that a mechanism satisfies the claimed privacy if it
fails to generate any counterexample. Another type of methods [3,14,17] combines
the previous two methods, and either synthesizes proofs for correct mechanisms or
generates counterexamples for incorrect mechanisms.

This Work. We present an enhanced disprover DP-Opt, which aims to resolve
the limitations in counterexample construction of the latest work DP-Sniper [7]
and produce higher privacy violations. Specifically, our contributions are:
– DP-Opt, an algorithm that leverages the idea of optimization to resolve the

limitations of DP-Sniper by transforming the search task into an improved
optimization objective to be solved with off-the-shelf numerical optimizers.

– An implementation1 and evaluation of DP-Opt on a wide variety of random-
ized algorithms demonstrating significantly higher guarantees on privacy by
a factor up to 9.42 with an average reduced runtime of 19.2%, compared with
the latest work.

2 DP Disprover Background

2.1 Differntial Privacy

Formally, given a mechanism M : A → B that inputs database a ∈ A and outputs
b ∈ B, M is ε-differentially private (ε-DP) if for every pair of neighboring inputs
(a1, a2) ∈ N and for every attack S ⊆ B,

ln (Pr[M(a1) ∈ S]) − ln (Pr[M(a2) ∈ S]) ≤ ε, (1)

where the neighborhood N ⊆ A×A consists of neighboring database pairs that
differ in only one record. The privacy parameter ε ∈ [0,∞) quantifies the privacy
level guaranteed by M , where smaller ε corresponds to higher privacy guarantees,
and contrarily, ε = ∞ means no privacy at all.

2.2 Prior Knowledge of DP-Sniper

Power. Derived from Eq. 1, power [7] of a witness (a1, a2,S) is defined as

E(a1, a2,S) := ln (Pr[M(a1) ∈ S]) − ln (Pr[M(a2) ∈ S]) .

1 Available at https://github.com/barryZZJ/dp-opt.

https://github.com/barryZZJ/dp-opt
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The highest power found by disprover is regarded as the lower bound on the
privacy level of M . Therefore, we aim to find the maximum power so as to
measure the level of violation against the claimed privacy of M .

Estimation. With samples b(0), . . . , b(N−1) ∼ M(a), we can estimate the proba-

bility Pr[M(a) ∈ S] as P̂N
M(a)∈S =

1
N

∑N−1
i=0 Pr[b(i) ∈ S]. Therefore, estimation

of power Ê(a1, a2,S) is computed by replacing the probability terms with their
estimations.

Threshold Attack. Threshold attack [7] is a type of randomized attack that
selects b probabilistically according to the membership function St,q : B → [0, 1].
Specifically, it utilizes the novel idea of posterior probability p(a1|b) that defines
the probability that an output b originates from M(a1), as opposed to M(a2).
A threshold attack incorporates the output whose posterior probability is above
some threshold t, in order to produce high power. Additionally, an output is only
included with probability q if its posterior probability is equal to t. This limits
the size of the threshold attack and ensures continuousness of power. Formally,
the membership function of threshold attack St,q(b) is defined as

Pr[b ∈ St,q] = [p(a1|b) > t] + q · [p(a1|b) = t], (2)

where the Iverson bracket [φ] outputs 1 if φ is true, and 0 otherwise. Moreover,
estimation of Pr[M(a) ∈ St,q] is computed as

P̂N
M(a)∈St,q =

1
N

N−1∑

i=0

[p(a1|b(i)) > t] +
1
N

· q

N−1∑

i=0

[p(a1|b(i)) = t]. (3)

Parameter c. According to [7], the deviation of P̂N
M(a)∈S increases rapidly when

it becomes smaller, causing estimation on power unreliable. To avoid this issue,
DP-Sniper discards small probabilities below some constant c ∈ (0, 1]. However,
this predefined parameter makes a considerable impact on results, as illustrated
in the next section.

3 Motivation and Ideas

3.1 Limitations of DP-Sniper

We now demonstrate the issue of predefining c with the following example.

Example 1. Consider the 0.5-DP Laplace mechanism L0.5(a) = a + lap(0, 2),
which adds Laplace noise with mean 0 and scale 1/0.5 = 2 to its input a ∈ R [7,
Ex. 1]. The top plot in Fig. 1 shows the cumulative distribution function of
L0.5(0) and L0.5(1) (blue and orange solid line respectively) by constructing the
attack St,q = (−∞, b), with c set to c∗ = 0.2 (red dashed line). The bottom plot
demonstrates the corresponding power by the brown solid line.
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Fig. 1. Cumulative distribution function
and power of L0.5, with confidence intervals
indicated by the shaded area. (Color figure
online)

Fig. 2. Experiment values of
E(a1, a2, St,0).

In Example 1, for a pair of neighboring inputs (0, 1) ∈ N , DP-Sniper con-
structs the threshold attack St∗,q∗

by selecting t∗, q∗ that satisfy Pr[L0.5(1) ∈
St∗,q∗

] = 0.2. This automatically ensures Pr[L0.5(0) ∈ St∗,q∗
] ≥ 0.2 according to

the properties of posterior probability. After the external algorithm DD-Search
[7] generates different neighboring inputs, it invokes DP-Sniper and selects the
best witness constructed, in this case (0, 1,St∗,q∗

). With this, it calculates the
lower bound on power E ≈ 0.2 (discussed in Sect. 3.2), as indicated by the red
dot in Fig. 1. However, as the brown shaded area demonstrates, better lower
bound on power can be achieved if c∗ was initialized otherwise (in this case to
around 0.3).

In fact, this problem occurs for almost all mechanisms, as confirmed by our
experiments shown in Fig. 2. We enumerated attacks St,0 of various t (with q = 0
for simplicity) and computed each E for 0.1-DP LaplaceMechanism (Fig. 2a) and
∞-DP NoisyMax4 (Fig. 2b). The red dot in each plot is the final lower bound
produced by DD-Search.

3.2 Ideas

Determine Optimization Objective. Inspired by Fig. 1, we decide to skip
the procedure of determining c, and aims to find a threshold attack St�,q�

that
directly maximizes the lower bound on power E for given (a1, a2) ∈ N :

St�,q�
= argmax

t∈[0,1], q∈[0,1]

E (
a1, a2,St,q

)
.

We note that our work also discards small probabilities which induce high devi-
ation, because the lower bound E represents the worst-case scenario, finding the
highest E automatically leaves out imprecise probability estimations.

Now we describe the derivation of the optimization objective. Given mecha-
nism M and neighboring inputs (a1, a2), for each output b, its posterior probabil-
ity p(a1|b) is determined. Thus Pr[b ∈ St,q] only varies by different combination
of t ∈ [0, 1] and q ∈ [0, 1] (recall Eq. 2). Then, according to Eq. 3, P̂N

M(a)∈St,q also
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only relies on t, q. Therefore, given neighboring inputs (a1, a2) ∈ N of mecha-
nism M , lower bound on power E(a1, a2,St,q) can be regarded as a function of
St,q determined by t, q.

As a result, the aim of our work is to search for the best combination of
variables t, q such that the corresponding threshold attack St,q produces the
highest E . This is a maximization problem of a bivariate scalar function E(t, q)
under the constraint of t ∈ [0, 1], q ∈ [0, 1]:

t�, q� = argmax
t∈[0,1], q∈[0,1]

E(t, q). (4)

In addition, the impact of q can be ignored for some mechanisms if p(a1|b(i)) = t
in Eq. 3 rarely occurs. Hence, we transform Eq. 4 into a maximization problem
of a univariate scalar function E(t, 0) constrained by t ∈ [0, 1]:

t� = argmax
t∈[0,1]

E(t, 0), (5)

in expectation of better results in special cases.

Confidence Intervals of Power. We now discuss confidence intervals and
derive bounds on power inspired by [6,7]. First, we apply the Clopper-Pearson
confidence interval [9] on P̂N

M(a)∈S in order to derive the upper bound P
N,α/2

M(a)∈S
and the lower bound P

N,α/2
M(a)∈S , which both hold except with probability α/2. In

the top plot of Fig. 1, such bounds on probabilities are illustrated by the blue
and orange shaded areas around respective solid lines. Then, we can use them
to derive the bounds on power Ê(a1, a2,S).
Theorem 1. For neighboring inputs (a1, a2) ∈ N , lower bound E(a1, a2,S) and
upper bound E(a1, a2,S) on Ê(a1, a2,S) both hold with probability 1 − α, where

E (a1, a2,S) = ln
(
P

N,α/2
M(a1)∈S

)
− ln

(
P

N,α/2

M(a2)∈S
)

,

E (a1, a2,S) = ln
(
P

N,α/2

M(a1)∈S
)

− ln
(
P

N,α/2
M(a2)∈S

)
.

The lower bound on power is depicted by the brown shaded area below the
brown solid line in Fig. 1. This bound holds even if probability estimations p̂ are
imprecise, because Clopper-Pearson interval is a type of exact interval [16] which
has a coverage probability of at least 1 − α for all values of p̂. For this reason,
we use E(a1, a2,S) as both the optimization objective and final output, and
furthermore conclude that the privacy level of M is at best E with probability
1 − α at least.

4 Our Disprover

In this section, we present the flow of our disprover. We first introduce DP-Opt
that searches for optimal threshold attack by solving the optimization objective.
Then we propose the external algorithm PowerSearcher that utilizes DP-Opt
and produces the highest lower bound on power.
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4.1 DP-Opt: Search for Optimal Threshold Attack

Given a neighboring input pair (a1, a2), DP-Opt searches for the optimal thresh-
old attack with the following steps. First, a machine learning classifier pθ(a1|b)
parametrized by θ is trained with Ntrain samples. It approximates the posterior
probability p(a1|b) described in Sect. 2.2. We refer to [7] for more details as this
is not focused in our work. Then, we exploit off-the-shelf numerical optimiz-
ers to solve the optimization objectives Eq. 4 and Eq. 5. Each optimizer tries to
maximize E(t, q) or E(t, 0) with Ncheck samples. Among them, the maximum E is
selected, along with the inputs t�, q�. Finally, the optimal threshold attack St�,q�

for the given input pair is constructed using parameters t�, q�, and returned by
DP-Opt.

4.2 PowerSearcher: Search for High Privacy Violation

Guided by DD-Search [7], we discuss the details of PowerSearcher that leverages
DP-Opt to find the highest E . First, different neighboring input pairs (a(i)

1 , a
(i)
2 )

are generated based on heuristic patterns [10]. For each input pair, a candidate
witness is constructed by combining the input pair with corresponding optimal
attack S(i). Then, among all candidate witnesses, the optimal witness is selected
according to its lower bound E(a1, a2,S) computed with Ncheck samples. While
most works compare the estimation on power, we compare the lower bound in
order to avoid high deviation caused by small probability. In implementation,
we reuse the maximum value found in step two to reduce computational cost.
Finally, the lower bound on power of the optimal witness is computed again with
fresh Nfinal samples and returned by PowerSearcher, along the witness. In this
step, the sample size Nfinal is larger than Ncheck to produce a tighter bound.

5 Evaluation

5.1 Implementation

Inherited from [7], we implemented DP-Opt and PowerSearcher in Python based
on the notion from Li et al. [13]. Since different classifiers have insignificant
impact on performance [7], we only choose logistic regression classifier due to time
limitation. Additionally, in attack searching, we applied binary search and reused
the same sample on different optimizers. This substantially reduced runtime as
computing and optimizing E(t, q) need to repeatedly estimate probabilities and
try various combinations of t, q.

Input Pattern Generation. We used the heuristic patterns proposed by Ding
et al. [10] for input generation. For example, category one above corresponds to
(a1, a2) = ([1, 1, 1, 1, 1], [2, 1, 1, 1, 1]).
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Parameters. Following the guideline in [7], we used sample sizes Ncheck =
Ntrain = 10.7 · 106, and Nfinal = 2 · 108, with α = 0.1. The logistic regression
model is trained using regularized stochastic gradient descent optimization and
binary cross entropy loss, with epoch number 10, learning rate 0.3, momentum
0.3 and regularization weight 0.001.

Optimizers. Upon comparison, we selected several optimizers provided by
SciPy in consideration of both performance and runtime cost. Their orders are
as follows: Nelder-Mead(bi), Nelder-Mead(uni), COBYLA(bi), Differential Evo-
lution(bi), Differential Evolution(uni), Powell(bi), COBYLA(uni), where bi and
uni correspond to bivariate optimization objective E(t, q) and univariate opti-
mization objective E(t) respectively. In implementation, we set initial guesses
t0 = 0.5, q0 = 0.5, and kept the default values for the rest optional parameters.

5.2 Mechanisms Evaluated

We evaluated mechanisms listed in Table 1, including widely used mechanisms
and their variations. They cover a variety of output types such as reals, integers
and boolean values. The second column is their neighborhood definition, where
‖ · ‖p is the p-norm neighborhood N = {(a1, a2) | ‖a1 − a2‖p ≤ 1}.

Table 1. Evaluated mechanisms with their neighborhoods, expected DP and optimiza-
tion objectives.

Mechanism N ε Objective

LaplaceMechanism [11] || · ||1 0.1 E(t, q), E(t)
NoisyHist1 [10, Alg. 9] || · ||1 0.1 E(t, q), E(t)
NoisyHist2 [10, Alg. 10] || · ||1 10 E(t, q), E(t)
NoisyMax1 [10, Alg. 5] || · ||∞ 0.1 E(t, q)
NoisyMax2 [10, Alg. 6] || · ||∞ 0.1 E(t, q)
NoisyMax3 [10, Alg. 7] || · ||∞ ∞ E(t, q), E(t)
NoisyMax4 [10, Alg. 8] || · ||∞ ∞ E(t, q), E(t)
SVT1 [15, Alg. 1] || · ||∞ 0.1 E(t, q)
SVT2 [15, Alg. 2] || · ||∞ 0.1 E(t, q)
SVT3 [15, Alg. 3] || · ||∞ ∞ E(t, q)
SVT4 [15, Alg. 4] || · ||∞ 0.175 E(t, q)
SVT5 [15, Alg. 5] || · ||∞ ∞ E(t, q)
SVT6 [15, Alg. 6] || · ||∞ ∞ E(t, q)
OneTimeRAPPOR [12, Steps 1–2] || · ||1 0.8 E(t, q), E(t)
RAPPOR [12, Steps 1–3] || · ||1 0.4 E(t, q), E(t)
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Parameter Configuration. We set the parameters for each mechanism in
accordance with DP-Sniper. Specifically, let ε0 be the target DP guarantee,

– LaplaceMechanism uses ε0 = 0.1.
– NoisyHist1-2 and NoisyMax1-4 set ε0 = 0.1 with input length 5.
– SVT1-6 are instantiated by ε0 = 0.1 with input length 10 and additional

parameters c = 1,Δ = 1, T = 1 (except T = 0.5 for SVT1).
– OneTimeRAPPOR is initialized with parameters k = 20, h = 4, f = 0.95.
– RAPPOR is parametrized by k = 20, h = 4, f = 0.75, q = 0.55.

The corresponding expected privacy guarantees are listed in the third column of
Table 1. For all mechanisms, we ran our disprover on each optimization objective
(indicated by the last column) for seven times with suitable optimizers.

5.3 Results

Power. Figure 3 compares the average value of the final lower bound E found
between PowerSearcher and DD-Search. Results show that PowerSearcher is gen-
erally better with at least equal results in certain cases. Specifically, for most
mechanisms with finite privacy target, PowerSearcher found tighter bounds,
resolving the uncertainty of DD-Search’s conclusion. For example, for Noisy-
Hist1, DD-Search only narrows ε to [0.098, 0.1] while PowerSearcher ensures it
to be 0.1-DP. Especially, we manage to demonstrate NoisyHist2 to be 10-DP
correctly in contrast to DD-Search only results in 4.605. For mechanisms known
to be ∞-DP, PowerSearcher performs significantly better by a factor up to 9.42,
except for NoisyMax3 which is 0.25-DP when input length is 5 (our config-
uration) [7, Sect. VI]. Unfortunately, for state-of-the-art mechanisms such as
RAPPOR, PowerSearcher fails to derive better results. We attribute this to be
the fundamental inability of threshold attacks.

Runtime. Figure 4 compares the runtime between PowerSearcher and DD-
Search for each mechanism. We managed to reduce an average of 19.2% of
runtime consumption, after exploiting the improvement methods mentioned in
Sect. 4.2 and Sect. 5.1. We note that since our method is more flexible in choosing
optimizers, trade-off between performance and runtime can be further made.
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Fig. 3. Average E found between Pow-
erSearcher and DD-Search, where higher
values are better.

Fig. 4. Runtime of PowerSearcher and
DD-Search.

6 Conclusion

We proposed DP-Opt, an improved disprover on the latest work by maximizing
the lower bound on privacy level for a given mechanism. It exploits off-the-
shelf optimizers to produce threshold attacks that yield optimal lower bound
on power, and also avoids small probabilities that are difficult to estimate accu-
rately. Results demonstrate significant improvement on privacy bounds com-
pared with the latest baseline, with a fair amount of runtime saved. Future
works are expected to employ an optimal optimizer that generalizes well on all
optimization objectives to greatly reduce runtime while preserving better results.
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Abstract. The direct position determination (DPD) method is more
accurate than the previous two-step method in passive positioning. Enor-
mous computational complexity in DPD is a severe drawback, which
causes both real-time and high-accuracy to be challenging to satisfy. We
integrate the formulas of the DPD and the image regression technique
in computer vision, offering the unified computational graphs of both to
investigate the fundamental reason for large time consumption in DPD.
To achieve efficient DPD, we propose a fast DPD with an embedded con-
volutional neural network (CNNDPD), which is an end-to-end passive
positioning network. We use a wavelet transform two-dimensionalization
to convert the time domain signal into a time-frequency map and extract
the time-frequency attributes effectively for the received data required
for positioning. Other information required for positioning is stitched
with the findings of time-frequency map processing and sent into fully-
connected networks, allowing fuse with time-frequency information effec-
tively. The simulation results show that the CNNDPD has the advantage
of fast and highly accurate positioning. In a wide-area localization set-
ting, CNNDPD has 26 times and 46 times faster inference speed than
exhaustive search DPD and genetic algorithm DPD, respectively, with-
out reducing accuracy. Furthermore, CNNDPD has a lower false alarm
rate than the two benchmarks.

Keywords: Direct position determination · Computer vision ·
Convolutional neural network · Maximum likelihood estimation

1 Introduction

Passive positioning is the technology that determines the location of an emit-
ter using the signals intercepted by single or multiple receivers. Different from
active positioning, passive positioning technology has the advantages of high
concealment, strong anti-interference, and low cost in the process of achieving
the position of the emitter. These advantages make it widely used in radar and
wireless communications [1,3,4,7,8,18,20–22,24,25].
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Passive positioning can be mainly divided into the two-step method and
direct position determination (DPD). The two-step method can be divided into
two steps: estimation of localization parameters and equation solving. The local-
ization parameters estimated in the first step are common: phase difference
[1,24], time difference of arrival (TDOA) [3,7], frequency difference of arrival
(FDOA) [8,18], doppler rate [4,25]. The most widely used method for estimation
of these parameters is the Cross-Ambiguity Function. It obtains the maximum
value of the function by searching for feasible localization parameters. In the sec-
ond step, the parameters estimated in the first step are used to establish and solve
the equations. Obviously, the accuracy of solution is limited by the estimation
accuracy of the parameter in the first step. Meanwhile, the parameters are diffi-
cult to be correlated in the two-step method and only obtain accuracy-restriction
results. The DPD [20–22] computes the intercepted signal data instead of esti-
mating the parameters to determine the emitter’s position. By looking for the
feasible localization that optimizes the cost function, it takes into account the
relationship between different parameters. Thus, DPD outperforms the two-step
method in terms of localization accuracy [13,19,21,22] and is a more promising
approach [4].

The most widely used DPD method is maximum likelihood estimation based
(MLE-based) DPD [22]. The most common method to solve the DPD cost func-
tion is exhaustive search (ES). Since it needs to traverse all points within the
range of possible emitter locations to get the final results, it is challenging to
meet the demand for real-time processing, especially in a wide area. This is
because a wide area will bring more possible emitter locations and more emitter
data. Such as, in satellite positioning scenarios, since the satellite often has a
coverage diameter of several hundred to thousands of kilometers, the time of
computation required for reliable accuracy results of all emitters is often intol-
erable. In practice, the estimated result’s value is strongly inversely related to
the time consumed. When the computation time exceeds a certain threshold,
the results will be worthless. For this purpose, we need to reduce the estimation
time of the emitter’s position. However, because of the setting of scale resolution
during the discrete approximation solution of the continuous optimization prob-
lem, ES cannot satisfy both the accuracy and the real-time processing. There
were two main methods to reduce the time-consuming calculation. One was to
apply heuristic algorithms to solve the cost function, e.g., genetic algorithms
(GA) [12,15] and particle swarm algorithms [23]. The other one was to improve
the form of the cost function, such as expectation maximization (EM) [17], alter-
nate projection (AP) [26]. However, all the aforementioned methods mentioned
suffered from the common problem: local extremum problem or sensitivity to
parameter initialization, which causes unreliable results. Since deep learning can
process data efficiently in parallel during the inference phase, we try to use it to
solve this problem.

We propose an end-to-end method, which is called fast DPD with embedded
CNN (CNNDPD). In a wide-area localization setting, CNNDPD has 26 times
and 46 times faster inference speed than ES DPD and GA DPD, respectively,



A Fast Direct Position Determination 419

without reducing accuracy. Furthermore, CNNDPD has a lower false alarm rate
than the two benchmarks. Our contribution can be summarized as follows:

– We investigate the similarities between MLE-based DPD and computer vision
(CV) perception problems by rewriting both formulas.

– We propose the CNNDPD, an end-to-end method, to achieve efficient DPD.
We show how to feed several kinds of input into the CNN effectively in the
DPD problem: received time-domain signals are time-frequency translated
and supplied into the convolutional layer, while the velocities and positions
of receivers are fed into the fully connected layer.

– The experimental results show that our proposed method has higher inference
efficiency with comparable accuracy than traditional methods.

2 Background and Preliminary

2.1 MLE-Based DPD

Consider a three-dimensional space with N receivers whose positions are pi and
velocities are vi , all of which ∈ R

3×1. It exists a emitter whose position is p and
speed is v, all of which ∈ R

3×1. The unknown complex signal send at a particular
time is s. The carrier frequency is fc. The sampling frequency of the receiver is
fs. The sampling time of the receiver is T . We assume that both the velocity
and position of receivers and emitter are constant within the T . All receivers
are synchronized with each other in time and frequency, and the received signals
can be expressed as

yi(t) = ais(t − τi)ej2πfi(t−τi) + ni(t) (1)

where the receiver number i = 1, 2, ..., N , the time t ∈ [0, T ], and the attenuation
coefficient of the signal received by the i-th receiver ai ∈ (0, 1]. Let the time delay
and frequency delay of the signals received by the i-th receiver τi = 1

C ||p − pi ||
and fi = fc

C
(v i−v)T (p−pi )

||p−pi || , respectively (each receiver does down-sampling on the
received signal by default), where [·]T is the transpose operation, and C is the
speed of propagation. The ni is the noise of the i − th received signal, which
is assumed to be complex Gaussian noise and independent of each other. The
mean and standard deviation of the noise are zero and σ, respectively.

After doing the K-sampling discretization, the Eq. 1 can be represented as

yi = aiF iT is + ni (2)

Let the received signal yi = [yi(1), yi(2), ..., yi(K)]T , the signal of emitter s =
[s(1), s(2), ..., s(K)]T , and the noise ni = [ni(1), ni(2), ..., ni(K)]T . The time shift
matrix T i = {tirc}K×K generates the time shift of the signal. When r−c = τi

(T/K) ,
tirc = 1, otherwise tirc = 0. The frequency shift matrix F i = {f i

rc}K×K generates
the frequency shift of the signal. When c = r, f i

rc = ej2πfi(
cT
K −τi), otherwise

f i
rc = 0. The r = 1, 2, ...,K and c = 1, 2, ...,K are the index of the rows and
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columns of the matrix, respectively. When s is unknown, we can obtain the
MLE-based emitter position estimation equation [22].

p̂ = arg max
p

(L(p)) (3)

Let L(p) = λmax{Q̄}, Q̄ = V HV , and V = [T H
1 F H

1 y1, ...,T
H
NF H

NyN ]. The [·]H
is the [·]T with conjugate and λmax{·} is the operation of taking the maximum
eigenvalue.

2.2 CNN-Based CV

CV technology aims to recognize and understand the content in images or videos.
It can be divided into two basic classes: classification and regression. Networks
targeting the classification such as LeNet-5 [11] and AlexNet [16]. Networks tar-
geting the both classes such as Fast R-CNN [5], YOLO [14], and Mask R-CNN
[6]. Despite the different network structures, the common and core part is the
convolution operation. The fundamental reason is that the convolution operation
has an efficient extraction capability of image features due to its three charac-
teristics: sparse interaction, parameter sharing, and translation invariance [2].

A typical network leveraging convolution operation is CNN. The basic struc-
ture of CNN consists of the convolution layers, the pooling layers, and the fully
connected layers. The usage of CNN can mainly be divided into two separate
phases, namely training and testing. The training phase can be divided into
steps of information forward propagation (FP) and error backward propagation
(BP). In the information FP step, the activation values of each network layer
are updated with Eq. 4. In the error BP step, each layer’s weights are updated
with Eq. 5. In the testing phase, only the FP of information is completed.

⎧
⎪⎨

⎪⎩

Conv : al = ϕ(zl) = ϕ(wl ∗ al−1 + bl)

Pool : al = pool(al−1)

FC : al = ϕ(zl) = ϕ((wl)T al−1 + bl)

(4)

ŵ, b̂ = arg max
w,b

(−E(aL)) (5)

where a and z are the activation value and state value of neurons, respectively.
The ∗ is the convolution operation and ϕ is the activation function. The number
of network layers l = 1, 2......, L. b and w are the bias and weights of each
layer, respectively. The pool is the pooling operation. In FC’s formula, a, z, and
b ∈ R

nl×1, w ∈ R
nl−1×nl . n is the number of neurons. In Conv’s formula, b

∈ R
1×1, a and z ∈ R

H×W . H and W are the height and width of input data,
respectively. E is the error function. (̂·) is the updated parameters.
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3 Our Approach

3.1 Reduct of MLE-Based DPD and CNN-Based CV

There is a possible solution to the conflict between time consumption and accu-
racy of MLE-based DPD based on the independence of CNN training and test-
ing phases. Only by FP of information in the testing phase can we move the
time-consuming operation to the training phase of CNN and get the estimation
position efficiently.

Compared with modelling yi directly using fully connected networks, CNN
can process the data more efficiently based on its two mentioned characteristics:
sparse interaction and parameter sharing [2]. In addition, the ultimate goal of
DPD is to find an estimation point such that the time and frequency delays
generated at that point can compensate for the time and frequency delays of
each yi. This is the process of aligning the time and frequency of each yi. While
yi is a complex signal, the alignment of frequencies requires complex numbers
operations. Since the current neural networks are based on real numbers, it is
impossible to operate on frequency information if yi is directly used for mod-
elling. Therefore, we transform yi into a complex time-frequency signal and take
its amplitude as the input to the network. In this way, the alignment of the
time-frequency is done by moving the time-frequency diagrams of each yi to
align the similar parts. In this process, the time alignment is equivalent to the
frequency alignment, and neither of them requires the use of complex number
operations. Identifying similar parts of the image then relies on the translation
invariance feature of the CNN [2].

The wavelet transform (WT) improves the idea of short-time- fourier-
transform (STFT) localization while overcoming drawbacks: the window size
does not vary with frequency. The telescopic translation operation, which can
focus on arbitrary signal details, gradually refines the signal on multiple scales
[9]. This characteristic is critical for the requirement of signal refinement feature
extraction and estimation of localization parameters in passive positioning. As
a result, we use WT to complete the two-dimensionalization.

Table 1. A Unified form of MLE-based DPD and CV regression prob-
lem. Let β1 = {y1, ..., yN , v1, ..., vN , p1, ..., pN , fs, fc, C}, γ1 = {p}, β2 =
{|cwt(y1)|, ..., |cwt(yN )|, v1, ..., vN , p1, ..., pN , fs, fc, C}, and γ2 = {w, b}. cwt(·) is the
operation of WT. | · | is the mode-taking operation. f1, f2 and f3 are the nonlinear
or linear functions. β and γ represent the receiver-related and receiver-independent
parameters, respectively.

Method\Formula g1 = f1(β, γ) g2 = f2(g1) g3 = arg maxβ (g2) p̂ = f3(g3, β)

MLE-based DPD Q̄(β1, γ1)
= V HV

L(p) = λmax

{
Q̄

}
p̃ = arg maxp (L(p)) p̂ = p̃

CNN-based DPD aL(β2, γ2)
= ϕ((wL)TaL−1 + bL)

E(aL) =
∑

i=1 ||aL − pi|| ŵ, b̂ = arg maxw ,b (−E(aL)) p̂ = aL(ŵ, b̂, β2)

We convert the formulas of MLE-based DPD and CNN-based DPD to the
same form by rewriting, as shown in the Table 1. Accordingly, we can derive
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the calculation diagram of the unified form of them as Fig. 1. The reason for
the inefficiency of MLE-based DPD is that each time the position estimation is
performing, all lines in Fig. 1 need to be traversed. In contrast, the CNN-based
DPD traverses along the solid line during training and only along the dashed line
during the testing phase. If f3 is simple enough, it can give the result quickly.

Fig. 1. Calculation diagram of unified form of MLE-based DPD and CNN-based DPD.
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Fig. 2. The framework of CNNDPD. Three convolution layers (conv), three pooling
layers (pool), and six fully connected layers (fc) make up the network. Both the conv
and fc use the rectified linear unit (ReLU) as the activation function, except the output
layer, which has no activation function.

3.2 CNNDPD

With the insight and analysis, we propose CNNDPD to verify the correctness
of the scheme proposed in the third part of Sect. 2. The simplicity of the net-
work becomes our key guiding direction in network building. The framework of
CNNDPD is given in Fig. 2.

The input of the CNNDPD is β2, where we can find it contains many different
types of data. How to input them into CNN simultaneously becomes a question
worth considering. We handle it in the following way. |cwt(yi)| is processed by
convolutional operation because its data amount is large. We need an efficient
way to handle it. Multiple |cwt(yi)| are treated as different channels of the image.
Since the amount of vi and pi data are small and are not the same type of data
as |cwt(yi)|, they are treated as the second input of the network and modeled
directly using fc. This is implemented by stitching the receivers’ velocities and
positions (receiverPosV el) with the data from the last pooling layer flattened as
the input of fc. The process of β2 can be understood as a convolution operation
to extract the TDOA and FDOA in |cwt(yi)|. Then fc used them with the vi

and pi to build the equations and solve. We do not use fc, fs and C in CNNDPD
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because they are the same constants for all samples. Even though they are not
fed into the network, it learns the corresponding values independently. If fc and
fs are variables, they only need to be treated the receiverPosV el. The input
data dimension is 3 × 50 × 128, which is the time-frequency map of 3 receivers
with a data length of 128 and 50 wavelet scale factors. The input data dimension
is determined experimentally, as discussed in Sect. 5.

3.3 Data Pre-processing

To balance the effect of differing magnitudes on the model and enhance train-
ing efficiency, data normalization is necessary. Table 2 depicts the normalization
processes.

Table 2. Normalization of the different magnitude data. max(·) is take maximum
operation. The maximum value of the receiver’s velocity, which is a constant, is Vmax.
A cube of Pmax × Pmax × Pmax is the positioning space. The value of Vmax and Pmax

in this paper are 7554.6 and 1e6, respectively.

Name Magnitudes Normalization operation

WT data 1 |cwt(yi)| ← |cwt(y i)|
max(|cwt(y i)|)

Speed of the receiver m/s vi ← vi/Vmax

Location of the receiver m pi ← pi/Pmax

Location of the emitter m p ← p/Pmax

3.4 Training

The CNNDPD is trained with a total batch size of 50 for 500 epochs, and the
number of samples is 1e5. The samples are divided into 4:1 into the training set
and testing set. We use root mean squard error (RMSE) as the loss function,
which defined by Eq. 6. p̂j and M are the estimated position of the emitter and
the number of samples, respectively. The Adam [10] optimizer is used for updat-
ing the network’s weights with a learning rate of 1e-4. The datasets of different
SNR are trained separately. In practical situations, we can often calculate the
SNR from the received signals and thus select the model closest to it to get a
better result.

loss �

√
√
√
√ 1

M

M∑

j=1

||p̂j − p||2 (6)

4 Simulation Results

4.1 Dataset

Since there is no publicly available dataset for passive positioning, we simulated
it based on Eq. 2 as the following steps:
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– Determine the signal s, center frequency fc, and speed C of propagation of
the emitter.

– Determine the positions pi, velocities vi, sample rate fs of the receivers.
– Randomly generate the position p and velocity v of the emitter at specified

ranges.
– Generate Gaussian white noise ni with specified signal-to-noise (SNR) defined

as Eq. 7.
– Generate the receivers’ signals yi according to Eq. 2.

Finally, the WT of yi, velocities vi and positions pi of the receivers are saved
as “data”. The emitter’s position p is saved as the “label” corresponding to the
“data”. The signal that we used is the Automatic Identification System (AIS)
signal. The fc and fs are 161.975 MHz and 19.2 kHz, respectively. Three receivers
are used for positioning. The pi are 1e6∗[0.5, 0.25, 0.6]T m, 1e6∗[0.05, 0.95, 0.6]T m
and 1e6∗[0.95, 0.95, 0.6]T m, respectively. The vi are all [5500, 5500, 0]T m/s. The
emitter is a random point in the [1e6 × 1e6]m region with a height of 0 and a
random velocity of 0–30 m/s. Since the emitter height is 0, in the following
experiments, all the methods only calculate the values of the emitter’s other
position coordinates. When conducting the experiments, for a given SNR (σy

i and
σ are the standard deviation of yi and ni, separately). 1e5 samples are generated
for training and testing the network, and then 1e3 samples are generated for
completing the monte carlo experiments.

SNR � 10 log10 (
σy

i

σ
)
2

(7)

4.2 Experimental Settings

We use ESDPD [22] and GADPD [15] as the benchmarks to conduct comparison
experiments. We have compared these methods in three aspects: Positioning
Accuracy, Time Consumption and False Alarm Rate (FAR). The standard of
Positioning Accuracy is the mean absolute error (MAE).

MAE � 1
M

M∑

j=1

|p̂j − p| (8)

Since it is not easy to distinguish between the poor positioning accuracy and
a wrong positioning, we give a simple method to quantify the FAR defined as
Eq. 9. We can intuitively find that the FAR is inversely correlated with the mean
of the cumulative distribution function (CDF).

FAR � 1 − mean(CDF ) (9)

The detailed settings of each method are as follows. The grid size of ESDPD
and the population individual coding accuracy of GADPD are set to be twice the
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MAE of CNNDPD. The length of data K used for ESDPD and GADPD local-
ization is set to 384. The K of CNNDPD is set to 128. The values that set above
are discussed further in Sect. 5. The settings of [15] are partially referred to in
the GADPD parameters. 500, 0.9, 0.1, and 0.1, respectively, are the population
size, crossover probability, variation probability, and probability of introducing
a completely new population. We limited the maximum iterations to 10 to guar-
antee running speed.

4.3 Result and Discussion

In terms of Positioning Accuracy (Fig. 4-a), CNNDPD performs better in all SNR
conditions compared to the benchmarks. In terms of Time Consumption (Fig. 4-
b), CNNDPD consumes time in the order of 1e-2s, which is better than the bench-
marks. At SNR = 5 dB, the accuracy of ESDPD is comparable to CNNDPD, but
the time consumption is 26 times longer. In terms of FAR (Fig. 3 and Table 3),
at SNR = −5 dB, the FAR of the benchmarks are about 30% affected by dis-
crete errors and local extremes. In a contrast, the FAR of CNNDPD is only
4.4%, which is lower than the benchmarks. Overall, the CNNDPD we proposed
is more efficient than the benchmarks.

(a) CDF of SNR = -5dB. (b) CDF of SNR = 5dB.

(c) CDF of SNR = 15dB. (d) CDF of SNR = 25dB.

Fig. 3. Comparison of CDF.
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(a) Positioning Accuracy. (b) Time Consumption.

Fig. 4. Comparison of positioning accuracy and time consumption.

Table 3. Comparison of FAR.

Method FAR

SNR = −5 dB SNR = 5 dB SNR= 15 dB SNR= 25dB

CNNDPD 4.4% 0.91% 0.44% 0.33%

GADPD 31.89% 4.86% 2.86% 3.96%

ESDPD 31.09% 0.99% 0.6% 0.52%

5 Ablation Study

In this section, we discuss the effect of input size on the positioning accuracy of
CNNDPD, and the effect of data length on the positioning accuracy of ESDPD.
The results are shown in Fig. 5.

(a) MAE of different number of WT
scale factors (SNR=5dB).

(b) MAE of different data length to ES-
DPD (SNR=5dB, grid size=6Km).

Fig. 5. Ablation studies of WT scale factors and data length. We can find that the
MAE of CNNDPD is decreasing as the number of WT scale factors increases. We choose
“128 × 50” as the input to the network, weighing the accuracy and computation time
of CNNDPD. The data length of “128” is chosen to ensure that it is larger than the
number of data points corresponding to maximum τi of receivers and provides less
computation time. For the ESDPD, when the data length is up to 384, the results
become reliable.
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6 Conclusion

This paper analyzes how MLE-based DPD and CNN-based DPD can be reduced
in formulations and explores ways to achieve efficient DPD. We propose a CNN-
based DPD method called a fast direct position determination with an embedded
convolutional neural network to test the above hypothesis. Furthermore, we solve
the problem of feeding multiple types of data into the CNN simultaneously in
DPD and demonstrate that the end-to-end DPD approach can be implemented
with CNN. CNNDPD can provide accurate and speedy position estimation under
wide-area conditions, according to the experiments.
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Abstract. A private set intersection (PSI) protocol is a protocol to get
the intersection of two sets, each of which belongs to one party, without
disclosing extra information of each party’s set to the other party. In
this paper, we propose a novel semi-honest PSI protocol without using
any encryption primitive in a semi-honest security model. Specifically, we
first slice all elements in the set and inject dummy slices. Then we utilize
the greatest common divisor (GCD) to find the common parts of the
two parties’ slice set product, which is the product of all slices. Finally,
we filter the elements by utilizing the GCD to find out the intersection.
Different from most previous PSI protocols, we get the intersection by
calculation rather than comparison.

Our protocol has many advantages over other state-of-the-art PSI
protocols, such as robust security against quantum attacks, low commu-
nication cost, high computation efficiency when the bandwidth is low,
etc. Through extensive experiments, we find the optimum parameters
in our setting and demonstrate the performance of our protocol. Differ-
ent from previous PSI protocols, the communication cost of our protocol
varies with the cardinality of the intersection. In comparison, the com-
munication cost of our protocol is the lowest, which gains an over 200%
improvement than the communication-optimized PSI protocol spot-low
(Pinkas et al., CRYPTO’19). In addition, the running time of our proto-
col is the lowest when the communication bandwidth is about 1 Mbps.

Keywords: PSI · GCD · Low communication costs

1 Introduction

Private set intersection (PSI) allows two parties P1 and P2, each of which holds a
set X and Y respectively, to identify the intersection X∩Y without revealing any
information about elements that are not in the intersection [15]. PSI is a special
application of the secure multi-party computation (MPC) and has widespread
applications, such as private contact discovery [3,4,7], secure genome analysis
[1,16], P2P bots detection [10], and secure location-based services [11]. Therefore,
the last decade has witnessed a lot of PSI protocols from both academia and
industry.
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1.1 What Should We Value in PSI?

Literally, the goal of PSI is to get the “intersection” (i.e., the correctness), while
the core of PSI is “private” (i.e., the security). In a semi-honest security model,
both parties follow the protocol strictly but are curious to know extra infor-
mation of the counterpart. In this paper, we focus on the semi-honest model.
In addition, there are two important performance metrics: the computational
cost (i.e., the running time) and communication cost (i.e., traffic data usage).
Depending on different applications and scenarios, these two metrics are dif-
ferently prioritized, hence different PSI protocols are designed. For example, in
private contact discovery, the client owns a contact list with hundreds of contacts
while the service provider holds a contact list with millions. It is not appropriate
to return the large contact list being securely processed from the service provider
to the user, otherwise the traffic usage of the user will be too large. Therefore,
it needs to prioritize the communication cost for the user in this case.

1.2 Our Motivations

Although lots of semi-honest balanced PSI protocols have been proposed, the
computation cost and communication cost are still high, especially the commu-
nication cost. One important reason is the overheads caused by using crypto-
graphic primitives. Kolesnikov et al. [8] proposed the fastest PSI protocol called
BaRK-OPRF by using batched oblivious pseudorandom function (OPRF). Even
in comparison with the insecure naive hashing approach, BaRK-OPRF only
showed ×4.3 slower. However, the communication cost is high. When the set
size is n = 220, its communication cost is ×12.85 more expensive than the naive
hashing. As early as 1986, Meadows [9] presented a DH-based PSI protocol,
whose communication cost is only ×10.6 more expensive than the naive hash-
ing. Though it holds competitive communication cost against most existing PSI
protocols, the computation cost is high because of costly public-key operations.
To the best of our knowledge, the semi-honest PSI protocol with the lowest com-
munication cost is spot-low [12], whose communication complexity is specially
optimized and only ×6.2 more expensive when the set size is n = 220. Spot-low
exploits sparse oblivious transfer (OT) to make the achievement. In addition
to spot-low, the authors in [12] also presented spot-fast that is computationally
optimized.

In this paper, instead of relying on expensive encryption techniques, we utilize
the elements themselves and inject dummy elements to achieve PSI. Therefore,
the communication overheads caused by the expensive encryption can be saved.

1.3 An Overview of Our Protocol

In this paper, we design our protocol GCD-Filter, to achieve PSI. The general
idea is to multiply all elements of each party’s set (X and Y ) to get two set
products (Π(X) =

∏
xi∈X xi and Π(Y ) =

∏
yi∈Y yi). The GCD of these two

set products will contain the common elements of the two sets. Then the GCD
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can be used to filter out common elements by testing divisibility between each
element and the GCD. If an element can divide the GCD, we take it as a common
element. Simple as it, there are two main challenges:

1. By directly utilizing the naked elements xi to compute Π(X), the first chal-
lenge is security. For example, if Π(X) = 5×8×14 = 560 and gcd = 40, then
P2 can easily find out that the non-common element in X is 540/40 = 14. How
do we get the common elements without disclosing non-common elements to
the other party?

2. Since each element is also an integer that can be factorized, there may be false
positives due to factor collision between different elements. For example, if
Π(X) = 5 × 8 × 14 = 560 and Π(Y ) = 5 × 13 × 28 = 1820, then gcd = 140.
P2 will think that the common factor is 5 and 28. How do we keep the false
positives in an acceptable low rate?

3. Calculating the set product by multiplying all elements in a set is time-
consuming, especially when the set size is large (e.g., 224). How do we compute
the set product efficiently?

To address the first challenge, we introduce a pre-processing phase to split
each element into several slices and fusing them into the set product such that the
other party can hardly restore them. For example, a decimal integer xi = 1057
can be written as a binary number 010000100001. We break it to three slices
0100||0010||0001 and represent them as decimal (4, 2, 1). Then xi is converted to
x′

i = 4×2×1 = 8 in the pre-processing phase before computing the set product.
This conversion to x′

i can partially hide the value of xi. However, if the size of
intersection is large and x′

i = 8 is the only non-common factor, then P2 can
deduce that xi is one of the six combination of (1, 2, 4), (1, 4, 2), (2, 1, 4), etc. To
solve this problem, P1 needs to inject dummy slices to ensure the security.

To deal with the second challenge, we have implemented extensive experi-
ments to explore the optimum parameters (e.g., the number of slices), such that
the false positives can be kept in a low rate while still keeping the protocol
secure.

Since the time complexity of calculating a set product exponentially increases
with the cardinality of the set. As for the third challenge, we take advantage of
grouping to hash the elements of the large set into small groups, such that the
processing scale can be reduced. Then we can implement our PSI protocol between
each corresponding small groups of X and Y to get the group intersections. Finally,
we concatenate these small group intersections to get the intersection of X and Y .
In addition, we design a new algorithm to accelerate the multiplication.

1.4 Our Contributions

1. New type of PSI without encryption. We are the first one to achieve
PSI without relying on any encryption primitives (e.g., AES). The security of
both parties are ensured by the distribution of the elements themselves and
the dummy elements. Our scheme does not rely on the security of symmetric
encryption or based on some intractability assumptions.
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2. Robust security. Even if a malicious P2 runs a brute-force attack by check-
ing every element in the domain with P1, he/she can only get a candidate
set that is a superset of the intersection. The cardinality of the candidate
set is much larger than that of the real set, which means P2 can get very
limited information of P1. Note that none of the previous works in PSI can
be resistant to the brute-force attack. On the other hand, since our proto-
col does not rely on the security of any encryption primitives, even being
quantum-attacked, it is still robust.

3. Low communication cost. The communication cost of our protocol is the
lowest compared with the state-of-the-art PSI protocols. When the set cardi-
nality is n = 216, our protocol costs 1.35–1.94 MB, while spot-low needs 3.9
MB, which is about ×2.01–2.89 more expensive than ours. Also, the commu-
nication cost of our protocol increases with the size of intersection. Therefore,
our protocol can overcome the deficiency in previous PSI protocols that all
encoded elements have to be transferred even there are a few elements in
common in both sets.

4. High running-time efficiency under low bandwidth. On conditions
that the bandwidth is low, our protocol can show its running-time advan-
tages over other state-of-the-art PSI protocols. When the bandwidth is 1
Mbps and the set size is n = 220, our protocol only consumes 274.7 s when
the intersection is empty, which is about ×2.10 faster than the computation
optimized spot-fast [12] that costs 576.2 s.

2 Related Work

In this section, we survey the related PSI protocols and sort them based on the
techniques they exploit.

Hashing. The intuitive and simplest approach to achieve PSI is by directly
using the hash functions, which is called naive hashing. In naive hashing, both
parties just need to map their elements by using a common secure hash function.
Then one party can share the hash images to get the common elements. Though
it achieves great performance with both low computational cost and commu-
nication cost, it is insecure [13–15]. Among other hashing techniques, cuckoo
hashing [2,7,8,14] is the most popular one because of its ability to build dense
hash tables with high search efficiency. Pinkas et al. [12] proposed a new 2-choice
hashing technique and claimed there is almost no dummy elements.

OT-Based. Many PSI protocols [5–8,13–15] took advantages of Oblivious
Transfer (OT), which achieved the highest computational efficiency. Dong et
al. [5] combined OT, secret sharing, and bloom filter to design a PSI protocol.
In their work, they claimed their protocol was fastest than two previously fastest
protocols. Pinkas et al. [13] claimed their previous OT extension based work [14]
was the fastest one, and improved it by using permutation-based hash functions.
Their further work [7] paid their attention to strike a balance between com-
putation and communication using sparse OT extension. Their latest work [6]
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continued to extend their security model from the semi-honest one to the mali-
cious one by introducing a OT-hybrid model and kept linear communication. In
this work, they also discussed the cases of malicious sender’s set size and mali-
cious receiver’s set size. Kolesnikov et al. [8] presented the ever-known fastest
PSI protocol by using OPRF, which was able to implement batched processes.

Public Key-Based. The earliest known PSI protocol is based on Diffie-Hellman
key exchange (DH). In 1986, Meadows [9] proposed a DH-based PSI protocol.
The key idea of DH approach is to compare (h(x)k1)k2 with (h(y)k2)k1 , where k1
and k2 are the private keys each party holds. Though DH-based PSI protocols
can keep a low communication costs, their computational costs are high due to
the expensive public key operation. Cristofaro and Tsudik [3] utilzed blind-RSA
signatures to construct a PSI protocol that could scale linearly in computation
with the set size.

3 Preliminaries

3.1 Unique Integer Factorization Theorem

According to the unique integer factorization theorem, any integer N can be
factored into a unique product of powers with prime bases:

N = p1
c(p1)p2

c(p2) · · · pν
c(pν) = Πν

i=1pi
c(pi),

where p1 < p2 < · · · < pν are primes, and c(pi) are the number of pi contained
in N , and ν is the number of primes.

3.2 k-Ordered Factorization

Factorization or integer factorization is a process of writing a number as a prod-
uct of its factors. For example, 12 can be written as 2 × 2 × 3. Here we also call
2 × 2 × 3 is a factorization of 12, which can be represented as a 3-tuple (2, 2, 3).
Ordered factorization takes (2, 2, 3), (2, 3, 2), (3, 2, 2) as different ones and k is
the number of factors of a factorization. In this paper, a k-ordered factorization
can correspond to an element.

4 Our Protocol

In this section, we will introduce our protocol step by step. Firstly, each element
in the set is preprocessed by splitting and multiplication to provide security.
Then we introduce the GCD-Naive algorithm, which is the core part for filtering
elements using gcd. Finally, we give the complete GCD-Filter algorithm, which
divides the set into smaller sub-groups for running the GCD-Naive algorithm,
to improve the overall performance.
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Fig. 1. GCD-Naive: get the intersection by directly sending a large set product

4.1 Elements Preprocessing

In reality, the elements in the two sets can be strings or other data types (e.g.,
email addresses, account IDs) and the length may vary. Transforming these ele-
ments into elements from a uniform domain is a common way to protect the
privacy of the users. In this paper, we assume that the elements are uniform
in {0, 1, · · · , 2σ}, where σ is the each element’s bit length. Then we start to
preprocess them. For each element si in a set S, there are two steps:

1. Slice si into a k-tuple (si,1, si,2, · · · , si,k), in which the slices si,j (j = 1, 2, · · · ,
k) are with equal bit length σ/k. For example, when σ = 12 and k = 3, by
slicing si = 105710 = 0100001000012, we can get a triple (01002, 00102, 00012)
= (410, 210, 110); to put it simple, we can slice si = 1057 into a triple (4, 2, 1).

2. Then for each si, we multiply all its slices in its corresponding tuple to get a
new element s′

i, i.e., s′
i =

∏k
j=1 si,j .

In the first step, it is noted that we have si =
∑k

j=1 si,j2(k−i)σ/k. Then it is
obvious that each si can be uniquely represented by a k-tuple; and vice versa. In
the second step, since s′

i is the product for all si’s slices, we call it slice product
of si. After preprocessing for each element si, we can get a new set S′ from S. It
is noted that the S′ can be a multiset due to collision where s′

i = s′
j , i �= j. For

simplicity, we still call S′ as a set. Now do the same processing to X and Y , we
can get X ′ and Y ′, respectively.

4.2 GCD-Naive: Filtering Elements by Using gcd

Figure 1 shows the general protocol for PSI by sending a large number to P2

from P1. In this protocol, step 0 implements the elements preprocessing. In step
0, X ′ and Y ′ are the slice set of X and Y , respectively. D is the dummy set and
D′ is its slice set. We can also use X ′ to distinguish elements in the intersection
and elements not in the intersection, which corresponds to step 5. It is noted
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Fig. 2. The diagram of GCD-Filter

that after step 0, every element in both X and Y is written as an equal k-tuple.
After step 0, all slices of xi are fused into its slice product x′. Furthermore, after
step 1, all slices of xi will be fused into the slice set product Π(X ′ + D′). In
step 5, P1 filters each of its element x in group X by dividing its slice product
x′ with gcd. If x′ can divide gcd, then put x in the intersection I; otherwise not.
It is easy to know the correctness of GCD-Naive. If x is in I, its corresponding
set product must divide gcd; if x’s slice product cannot divide gcd, x must not
be in I. In terms of security, it is difficult for an attacker to extract a k-ordered
factorization that corresponds to an element from the large set product.

4.3 GCD-Filter: Grouping to Reduce the Processing Magnitude

The problem of GCD-Naive is the high computation cost when the set size is
large. In step 1, both parties need to calculate a slice set product, which is the
product of the slices of all elements in the set. When the set size is large, the
multiplication process will become expensive. Theoretically, the computation
complexity of getting the set product is in exponential (i.e., O(2n)). Though
our main focus in this paper is reducing the communication cost, we still need
to consider the computation cost to guarantee the protocol is practical and
applicable.

Grouping is a strategy that can reduce the processing magnitude. The most
popular grouping strategy in existing protocols is based on cuckoo hashing
because of its great ability to build a dense hash table. After grouping by cuckoo
hashing, each item will be mapped its corresponding bin, which has a predefined
size to guarantee security.
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In this paper, since our elements are already uniform, we can simply exploit
the element itself for grouping. Specifically, we truncate each element and reserve
the last �log g� bits for grouping, where g = � n

m� is the number of groups and m
is the group size. Each element will be mapped to its corresponding group based
on its �log g� bits. After grouping, we can turn the computation complexity
from exponential O(2n) to approximate linear O(g2m) = O(� n

m�2m). We call it
“approximate linear” because in each group, the computation complexity is still
exponential O(2m); but the between groups, the computation complexity is O(g).
One more benefit brought by grouping is parallel processing. We can execute
parallel processing between groups to further accelerate the computation.

Let us denote Xi (resp., Yi) as the ith group after grouping X (resp., Y ),
Ii as the intersection got by executing GCD-Naive between Xi and Yi, where
i = 1, 2, · · · , g. By utilizing grouping, we show the general diagram of our new
protocol, GCD-Filter, in Fig. 2.

5 Performance Evaluation

We implement our experiments by running the open-sourced codes of the
authors. To enable big integer calculation, we use NTL library 11.4.3 with
GMP library 6.2.0. In the balanced setting (i.e., n1 = n2), we test set size
n ∈ {216, 220, 224}. Because the real bandwidth is not stable, for fair and reliable
comparisons, we have our implementations in local network as [12] and utilize
wondershaper1 to control the bandwidth. The bandwidth ranges from 1 Mbps,
10 Mbps, 100 Mbps to 1 Gbps. All experiments are done in a laptop with Intel(R)
Core(TM) i5-4210H CPU @ 2.90 GHz and 8 GB RAM.

5.1 Asymptotic Communication Complexity Comparison

The exact communication costs of GCD-Filter include the slice group prod-
ucts (i.e., Π(X ′

i + D′
i), i = 1, 2, · · · , g) and the slice group product GCDs (i.e.,

gcdi, i = 1, 2, · · · , g). For every group i, since gcdi can divide Π(X ′
i + D′

i),
the real communication cost is less than 2ψ(Π(X ′

i + D′
i)), where ψ() is the bit

length counting function. Then for all groups, the communication cost is less
than 2ψ(Π(X ′

i + D′
i))g. Denote L(n) as the expected number of bits of the set

product for set with size n, theoretically, we can write the communication com-
plexity as 2L(m + d)g = 2L(m + d)�n1/m�, where d is the number of dummy
elements. We analyze L(m + d) and find L(28 + 26) can be set as 39113. We
compare the asymptotic communication complexity of different PSI protocols
in Table 1. From this table, we can see our protocol gains obvious advantages
in communication complexity. Also, the communication cost does not rely on
n2. Therefore, even in the unbalanced setting that n2 � n1, our protocol can
still keep low communication cost, while the other listed protocols cannot. To
transfer a large set product online, we can also utilize the unique integer fac-
torization theorem to compress the bit length. Specifically, one can transfer the
1 https://github.com/magnific0/wondershaper.

https://github.com/magnific0/wondershaper
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Table 1. Theoretical communication cost comparison

Protocol Communication (bits) n = n1 = n2

216 220 224

Naive hashing n1(log n1 + log n2 + λ) 72n 80n 88n

DH-ECC [9] (n1 + n2)φ + n1(log n1 + log n2 + λ) 640n 648n 656n

BaRK-OPRF [8] (3 + s)(λ + log(n1n2))n1 + 1.2�n2 1042n 1018n 978n

spot-low [12] 1.02(λ + log(n2) + 2)n1 + �n2 488n 500n 512n

spot-fast [12] 2(λ + log(n1n2))n1 + �(1 + 1/λ)n2 583n 609n 634n

GCD-Filter ≤ 2L(m + d)n1/m ≤ 306n ≤ 306n ≤ 306n

The statistic security parameter is λ = 40; φ = 284 is elliptic curve size; � is the
width of OT extension matrix can be found in [6]; s is the maximum size of the
stash for cuckoo hashing and can be found in [8].

(a) Communication cost (b) Running cost

Fig. 3. The communication cost (MB) and running cost (s) with different common
rates when n1 = n2 = 220.

power c(p1), c(p2), · · · , c(pt) of the prime base p1, p2, · · · , pt. In our experiments,
we find we can save ≥ 25% communication costs when setting t ≥ 90.

5.2 Experimental Evaluation

Table 2 mainly shows the performance comparison between different PSI proto-
cols. In this table, the naive hashing is listed for reference.

Communication. During the interaction of GCD-Filter, only two large num-
bers need to be transferred: a set product, and a gcd. Since the bit length of
the gcd depends on the number of common elements of both sets, the communi-
cation cost varies. We illustrate the communication cost with different common
rates when n1 = n2 = 220 in Fig. 3a. As we can see from this figure, the com-
munication cost increases linearly with the increase of the common rate. For
better evaluation of GCD-Filter, we implement two cases in different settings
based on the common rate of X and Y in Table 2. When the common rate is 0.0
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Table 2. Communication cost in MB and running time in second for different PSI
protocols with single thread.

Cardinality Protocol Commu. (MB) Running time (s)

n1 = n2 1 Gbps 100 Mbps 10 Mbps 1 Mbps

224 naive hashing 176.0 16.8 43.6 316.4 3054.2

DH-ECC [9] – – – – –

BaRK-OPRF [8] 2136.7 182.9 227.1 1924.2 –

spot-low [12] – – – – –

spot-fast [12] 1095.4 505.155 515.4 967.2 –

GCD-Filter(0.0) 324.7 860.5 770.7 1263.7 4310.0

GCD-Filter(1.0) 461.1 914.5 820.3 1696.3 5342.4

220 naive hashing 10.0 0.9 2.4 18.1 174.1

DH-ECC [9] 106.0 989.6 988.2 999.6 1098.7

BaRK-OPRF [8] 128.5 2.1 11.6 111.4 1112.1

spot-low [12] – – – – –

spot-fast [12] 66.5 26.6 27.2 58.4 576.2

GCD-Filter(0.0) 20.9 56.1 58.3 87.1 274.7

GCD-Filter(1.0) 29.9 62.2 63.7 115.5 343.0

216 naive hashing 0.56 0.05 0.13 0.96 10.0

DH-ECC [9] 6.6 61.0 63.4 67.2 118.7

BaRK-OPRF [8] 7.73 0.14 0.72 6.7 68

spot-low [12] 3.9 11.5 11.6 13.2 41.2

spot-fast [12] 4.0 2.02 2.06 3.6 36.0

GCD-Filter(0.0) 1.35 3.60 3.75 5.65 17.40

GCD-Filter(1.0) 1.94 3.86 4.00 7.45 21.91

“-” indicates the corresponding execution runs out of memory or takes too long to run.
The best results except naive hashing for each class are marked in bold.

(i.e., there is no common element), GCD-Filter can achieve its lowest commu-
nication cost. In contrast, when the common rate is 1.0 (i.e., all elements in X
are common elements), the communication cost of GCD-Filter is highest. As is
shown from Table 2, the communication cost of our protocol is the lowest com-
pared with other protocols except naive hashing. Compared with the traditional
DH-based protocol that is known for low communication cost, our protocol is
over 3 times cheaper. Even for spot-low that is specially designed to achieve low
communication cost, our protocol is also much cheaper. When the set size is
216, our protocol only needs 1.94 MB when the common rate is 1.0, which is an
approximate 2 times improvement compared with 3.9 MB of spot-low ; when the
common rate is 0.0, this improvement becomes more obvious. When setting the
common rate ≥ 0.2, the false positive rate ≤ 0.0003.
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Running Cost. We also illustrate the running cost with different common rates
in Fig. 3b. As we can see from this figure, the running cost shows a general
increase trend with the increase of the common rate. The running cost includes
two parts: offline time and online time. Generally, when the bandwidth is high,
the offline time will dominate the running time; otherwise, the online time will
dominate the running time. As is shown in Table 2, when the bandwidth is
no less than 100 Mbps, BaRK-OPRF [8] outperforms other protocols; when the
bandwidth is 10 Mbps, spot-fast [12] is fastest when the set size is over 216. Since
our protocol has great communication saving, the online time is less than other
protocols. When the bandwidth is low, this advantage becomes significant. As is
shown in this table, when the bandwidth is 1 Mbps, our protocol outperforms all
other secure protocols. For n1 = n2 = 220, our protocol needs 343.0 s when the
common rate is 1.0, which is about 1.68 times cheaper than spot-fast that needs
576.2 s. It is noted that spot-fast has been computationally optimized in [12].

6 Conclusion

In this paper, we propose GCD-Filter, a novel PSI protocol without relying
on any encryption primitives. Specifically, we first inject dummy elements, and
slice each element. Then the first party can send the large product of all slices
to the other party to get the GCD, which can be used to filter the common
elements. We demonstrate that GCD-Filter achieves the lowest communication
complexity compared with the-state-of-art PSI protocols. In addition to the low
communication cost, GCD-Filter also takes the least running time when the
bandwidth is low. In the future, we will explore more possibilities to improve
both the computational cost and communication cost.
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Abstract. Lane detection is a challenging task in the field of vision
detection. The annotation information of lane is very sparse, and it is
faced with the interference of occlusion, illumination and other factors,
which seriously affects the capture of lane features by neural network. In
this paper, we propose the Self-Attention Lane Segmentation Network
(SALSN) which allows attention-driven, long-range dependency model-
ing for lane detection task. Although traditional convolutional neural
networks have demonstrated their powerful performance, their ability
to capture global relationships in images has not been fully explored.
We introduce a self-attentive module to model the long-range depen-
dencies between lane features. Lanes have strong shape constraints but
weak coherence. In SALSN, we utilize a dense feature fusion framework
to better capture lane context information and use all element informa-
tion to generate lane segmentation images. Experimental results show
that SALSN is not only effective in learning the remote dependencies of
lane features, but also significantly improves the lane detection perfor-
mance. We have validated our approach on two large-scale lane detection
datasets, and our method can achieve more competitive results.

Keywords: Lane detection · Self-attention · Long-range dependency ·
Multi-stage dependencies

1 Introduction

Lane detection constitutes one of the foundations of automatic driving [1,2] and
becomes more challenging due to the diversity of scenarios (different lighting

This research was supported in part by National Key Research and Development Plan
Key Special Projects under Grant No. 2018YFB2100303, Shandong Province colleges
and universities youth innovation technology plan innovation team project under Grant
No. 2020KJN011, Shandong Provincial Natural Science Foundation under Grant No.
ZR2020MF060, Program for Innovative Postdoctoral Talents in Shandong Province
under Grant No. 40618030001, National Natural Science Foundation of China under
Grant No. 61802216, and Postdoctoral Science Foundation of China under Grant No.
2018M642613.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 441–449, 2022.
https://doi.org/10.1007/978-3-031-19214-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_37&domain=pdf
https://doi.org/10.1007/978-3-031-19214-2_37


442 G. Yuan et al.

Fig. 1. The network architecture of lane detection in this paper. It consists of a self-
attention module, an encoder and a dense skip connection decoder. I represents the
resolution of the input image. ck represents the number of feature map channels at
different levels. ck(i, j) indicates feature extraction (green) and upsampling (blue). At
each scale, the pixel-wise prediction loss is calculated independently. Meanwhile, the
fused maps at all scales are concatenated and fused to product a multi-scale fusion
map. (Color figure online)

conditions, occlusion, and road markings). Traditional lane detection methods
[3] rely on hand-crafted features and heuristics to identify lanes. However, the
heuristic approach has high computational complexity and is not robust enough
for changes in road scenarios. Recently, advanced lane detection methods [4,5]
have focused on using deep networks instead of hand-crafted features to achieve
dense detection, treating lane detection as a semantic segmentation task.

The methods based on end-to-end [6,7] lane detection can classify the pixels
in the image pixel by pixel, and the precise localization makes the accuracy rate
further improved. Zheng et al. [8] proposed a module named REcurrent Feature-
Shift Aggregator (RESA) to enrich lane features based on preliminary feature
extraction using CNN, and also proposed a Bilateral Up-sampling Decoder that
can combines coarse-grained and fine-detail features in the upsampling stage, and
finally restores the low-resolution feature maps to pixel-wise predictions. Liu et
al. [9] proposed a top-to-down lane detection framework, named CondLaneNet,
which first detects lane instances and then dynamically predicts the line shape
of each instance. They also introduced a conditional lane detection strategy
based on conditional convolution and row-wise formulation, while designing a
Recurrent Instance Module (RIM) to overcome the problem of detecting lane
lines with complex topology. Tabelini et al. [10] proposed an anchor-based deep
lane detection model named LaneATT, which is similar to other general-purpose
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deep object detectors, using anchors for a feature pooling step, while proposing
an aggregation Anchor-based attention mechanism for global information.

In this paper, we present a simple and effective way to obtain global infor-
mation. We utilise the self-attention module to obtain long-range, multi-level
dependencies of the lane. The self-attention mechanisms [11] exhibit a good
balance between the ability to construct long-range dependencies and compu-
tational efficiency. The self-attention mechanism has less model complexity and
fewer parameters than the convolutional structure. The model set out in this
paper has better robustness for long continuous structure objects such as lanes
with strong spatial relationships but fewer feature cues. The main contributions
of this paper are as follows:

(1) In this paper, we propose a self-attention lane segmentation network. We
complement the convolutional network with a self-attention module that
enables the network to capture both global and local information to enhance
the learning lane features ability of the convolutional neural network.

(2) We implement multi-scale feature aggregation by densely-connected skip
connections. Feature loss can be effectively avoided by combining global
contextual information.

(3) We consider that lane detection is highly dependent on sparse lane masks
as supervision. Therefore, we exploit lane similarity loss to incorporate lane
geometric features into the network and detect lanes using the priori infor-
mation of lane.

2 Proposed Method

Lane detection is often regarded as a semantic segmentation task. Specifically,
we assign a label Iij (Iij = 1, ..., Nc) to each pixel of the input image X, where
Nc represents the class of segmentation. The goal of the deep network is to learn
the mapping (F : X �→ s) of the input image X to the segmentation map s.
The proposed network in this paper not only efficiently captures the long-range
dependence between lane pixels, but also flexibly aggregates features between
different scales. We call the proposed method Self-Attention Lane Segmentation
Networks (SALSN) because of its self-attention module.

2.1 Network Structure

We apply DenseNet [12] to the network architecture of this paper. The proposed
SALSN can achieve flexible feature fusion in the decoder. We fuse the outputs
of each convolution stage to generate multi-scale and multi-level feature maps.

As shown in Fig. 1, the proposed SALSN extracts lane information from
images based on the encoder-decoder architecture. We designed the backbone
structure of the encoder based on ResNet [13]. First, the encoder incorporating
the self-attention mechanism extracts the feature map and attention map from
the image. Then, flexible feature fusion is implemented in the decoder. To take
full advantage of the different scales and levels of features, we fuse the feature
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Fig. 2. The decoder consists of two different types of modules: feature extractors and
upsampling layers. Cat means cascade. The attention module marked by the dashed
frame is only applied in the top two layers of the decoder, that is, when I/32 and I/16.

maps output from each convolution stage to generate multi-scale features. More
feature information can be captured by using the features of different convolution
stages. From a global perspective, the proposed network is able to make full use
of contextual information.

Since the number of lane pixels is far less than that of background pixels,
we use feature extractors to extract lane features at different convolution stages.
The upsampling module is used to recover the resolution of the feature map.
The proposed network in this paper applies a feature extractor and an upsam-
pling module to achieve flexible feature fusion (see Fig. 2). In addition, each
convolution stage outputs the corresponding feature image and calculates the
loss separately.

2.2 Self-attention Mechanism

As shown in Fig. 3, the self-attention module is able to capture the global geomet-
ric features of the image. The calculation of the attention values can be expressed
as follows: first, the correlation between each value is queried and the weight fac-
tor of each key value is calculated. Then, the weight and the corresponding key
value are weighted and summed. Thus, the self-attentive mechanism can be for-
mulated as a series of key-value mappings:

O =
1

D(x)
V (x) · (S(xj , xi)F (xi)) , (1)

where O ∈ RC×N represents the output of the self-attention layer, D(x) rep-
resents the normalization factor, S(xj , xi) represents the degree of dependence
between the region j and the region i, V (xi) = Wvxi, F (xi) = Wfxi, and W is
the learned weight matrix, which is implemented 1 × 1 convolution. The output
o of the self-attention module has the same size as the input x.
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The self-attention module converts the upper-level feature map x ∈ RC×N

into two feature spaces Q,K for calculation separately, where Q(x) = Wq(x),
K(x) = Wk(x), C indicates the number of channels and N indicates the num-
ber of feature positions of the upper-level features. We compute the similarity
between different regions by extending the Gaussian function, namely:

S(xj , xi) = exp(Q(xi)TK(xj)), (2)

We first process the upper-level features using P (x), K(x). Then, we trans-
pose P (x) and multiply it with K(x) to get S(xj , xi), which represents the
interrelationship among pixels and can be thought of as a correlation matrix.
After that, we normalize S(xj , xi) and activate it using the softmax function
and we can get attentional map.

We combine the self-attention feature map with the input feature map pro-
portionally. Therefore, the final output result is:

yi = γOi + xi, (3)

where γ is a learnable scaler and it is initialized as 0.

2.3 Loss Function

The proposed method uses multi-scale and multi-level features to predict the
probability distribution of pixels. Assume that T is the lane annotation. In this
paper, we compute the classification loss of lanes using the prediction vector z:

Lcls = Lce(z, T ) (4)

where Lce is the cross entropy loss function.
In addition to the classification loss, we also adopt the similarity loss function

which aim at modeling structural relations of lane. The similarity loss function
can be expressed as:

Lsmi =
H∑

i

W∑

j

||zi,j − zi,j+1||1, (5)

where || · ||1 represents the L1 norm.
Moreover, to further improve the ability of network for learning, the shape

loss function is proposed to constrain the shape of the lane. We propose an
equivariant cross regularization loss to constrain the shape of the lane:

Lshape =
H∑

i

W−2∑

j

||(zi,j − zi,j+1) − (zi,j+1 − zi,j+2)||1. (6)

where || · ||1 represents the L1 norm.
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Table 1. Comparison with state-of the art methods on TuSimple and DataLake testing
subset, the left shows the results of the TuSimle test subset, and the right shows
the results of the DataLake test subset. Here “R18-SALSN” denotes ResNet18 as the
backbone. ‘-’ means the result is not available. The best performance and the second
best performance are indicated in red and blue, respectively.

Method Tusimple DataLake Time

Accuracy F-score IoU Accuracy F-score IoU

ResNet-34 [15] 92.88 0.720 0.622 92.11 0.718 0.622 -

RESA [8] 96.33 0.822 0.735 96.63 0.842 0.711 135

CondLaneNet [9] 96.36 0.831 0.704 96.24 0.821 0.703 24

LaneATT [10] 96.38 0.828 0.723 96.31 0.806 0.705 151

SAD [16] 96.66 0.862 0.767 96.55 0.863 0.753 19

SGNet [17] 95.87 0.901 0.811 96.50 0.903 0.788 92

R50-SALSN 96.53 0.823 0.702 96.51 0.827 0.705 52

R101-SALSN 97.13 0.835 0.766 96.71 0.855 0.764 92

R152-SALSN 98.75 0.903 0.823 97.95 0.844 0.792 101

We utilize cross entropy as our auxiliary segmentation loss. In this way, the
total loss can be written as:

L = Lseg + αLcls + βLsmi + γLshape + ηLIoU , (7)

where Lseg is the segmentation loss, LIoU is the intersection-over-union (IoU)
loss. The IoU loss is used to increase the intersection-over-union between the
predicted lane pixels and ground truth lane pixels. The IoU loss can be written
as: LIoU = 1 − Np

Np+Ng+No
, where Np is the predicted number of lane pixels, Ng

is the number of ground truth lane pixels and No is the number of lane pixels
in the overlapped areas between predicted lane areas and ground truth areas. α,
β, γ, and η are loss coefficients utilized to balance the influence of segmentation
loss, similarity loss, shape loss, and IoU loss on the final task.

3 Experiments

In our network, batch normalization is used to speed up the convergence of the
network. Our self-attention model requires a long time to learn the global features
of the lane. During the training process, the initial global learning rate is 0.001 and
decays to 1/10 of the initial after every 10k iterations. The momentum and weight
decay are 0.9 and 0.0005, respectively. We adopted The stochastic gradient descent
with momentum (SGDM) optimizer to minimize the loss function. All experiments
in this paper are performed by using a single GeForce GTX 3090.

The TuSimple dataset [14] contains 3632 training images and 2782 test
images, which are widely used in the field of lane detection. The DataLake
dataset [18] is a large-scale lane detection dataset, which contains 10,161 training
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Fig. 3. Examples of experimental results on TuSimple lane detection dataset. From
left to right: Input image, ResNet-34 [15], RESA [8], CondLaneNet [9], LaneATT [10]
SAD [16], SGNet [17]. Lanes are marked in blue color. Ground truth lanes are drawn
on the input image. (Color figure online)

images and 1,000 test images. The DataLake dataset contains a variety of road
environments. We resize the images size of the TuSample dataset to 512×256 to
save memory usage. The main evaluation criterion is accuracy. Besides, F-score
and IoU are used for performance evaluation of lane detection.

We show the comparison between our method and state-of-the-art algo-
rithms on the TuSimple test set in Table 1. From the quantitative comparisons in
Table 1, our method shows the best performance. It can be clearly seen that our
method has higher accuracy. Under good weather conditions, the performance of
our method is more competitive. The corresponding qualitative analysis is shown
in Fig. 3. It can be clearly seen that our method has higher accuracy. We show
the running time of different algorithms in Table 1 so that we can compare the
performance and complexity of the algorithms. Table 2 shows the F1 scores of
different lane segmentation algorithms in different scenarios. The experimental
results show that our method can achieve accurate lane segmentation in different
scenarios. Table 3 shows the impact of introducing self-attention mechanism at
different locations on network performance. It can be clearly observed that the
introduction of self-attention mechanism in high-level or middle-level improves
the performance of the model most obviously. Introducing the self-attentiveness
mechanism at the low-level layers have a smaller improvement on the network
performance. This is because the long-range dependencies between lanes are
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Table 2. F1 evaluation of lane segmentation algorithms in different road scenarios.

Method Normal Crowd Hlight Night Shadow Curve

ResNet-34 [15] 0.871 0.681 0.519 0.587 0.618 0.626

RESA [8] 0.883 0.692 0.547 0.596 0.624 0.637

CondLaneNet [9] 0.886 0.694 0.569 0.602 0.627 0.642

LaneATT [10] 0.891 0.699 0.583 0.644 0.638 0.652

SAD [16] 0.911 0.705 0.673 0.685 0.670 0.646

SGNet [17] 0.918 0.703 0.634 0.696 0.684 0.672

R50-SALSN 0.890 0.698 0.559 0.628 0.635 0.644

R101-SALSN 0.916 0.702 0.664 0.683 0.675 0.653

R152-SALSN 0.932 0.715 0.694 0.697 0.732 0.738

Table 3. Performance of different location of the self-attention on TuSimple dataset.
cij denotes that the addition of a self-attention module at the ith and jth channels.
ResNet152 as the backbone network. The best performance and the second best per-
formance are indicated in red and blue, respectively.

Location Accuracy Location Accuracy

c01 95.57 c12 97.63

c02 95.33 c13 97.62

c03 95.37 c23 98.75

not effectively captured in the self-attentive mechanism. Besides, the low-level
layer mainly detects low-level details of the image. The self-attention module is
originally designated to encode more global information.

4 Conclusion

Since lanes have strong shape constraints but weak coherence, we model the
long distance dependence between lanes based on a self-attentive mechanism.
The network architecture in this paper can incorporate attention features into
CNNs to achieve accurate lane line detection. To demonstrate the effectiveness
and feasibility of the proposed network, we compare it with advanced lane detec-
tion algorithms separately to evaluate the proposed approach performance in
lane detection. The experimental results demonstrate that our designed network
outperforms all other methods in detecting lane lines. The real-time operation
speed of lane detection algorithms is crucial for autonomous driving, and the
real-time performance of the algorithms and the maximum safe operation speed
of lanes will be the subject of our research in future work.
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Abstract. Image caption is textual explanation automatically gener-
ated by a computer according to the content in an image. It involves both
image and natural language processing, and thus becomes an important
research topic in pattern recognition. Deep learning has been success-
ful in accomplishing this task, and the quality of captions generated by
existing methods is already high. However, due to the broadness and vari-
ety of image caption applications, the current generated captions are still
not sufficiently detailed, and the training efficiency can also be improved.
Therefore, under the encoder-decoder framework of deep learning, how
to use fewer parameters to improve the training efficiency and retain the
quality of the generated image descriptions is a huge challenge. In this
work, we introduce an improved method based on the encoder-decoder
structure, adding an attention mechanism, and applying the content
adaptive recurrent unit (CARU), as the decoder, to generate image cap-
tions. Inspired by GRU, CARU is designed to have comparable perfor-
mance with fewer parameters, and is sensitive to the features in hidden
layers. The experimental results show, based on MsCOCO dataset, the
proposed method achieved better performance than that using GRU as
the decoder, and took less training time, effectively improves the training
efficiency.

Keywords: Image caption generation · Content adaptive recurrent
unit · Feature extraction · Deep learning · Training efficiency

1 Introduction

For an image of complex scenes, people can clearly understand the content and
quickly grasp the key points in the image. But for a computer reading only pixel
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patterns, it is very difficult to understand the image and derive a caption. The
main purpose of image caption is to allow the computer to correctly explain
the scene and content in the image, and generates descriptive sentences with
human reading habits [1]. Image caption is one of the key research goals in the
field of artificial intelligence, and can be widely used in daily life. Such as visual
Q&A, image retrieval, intelligent transportation, intelligent medical treatment,
and intelligent early education [2].

Image caption is unlike other simple tasks such as image classification and
object recognition, but a product of cross-domain fusion. It involves two tech-
nologies: computer vision (CV) and natural language processing (NLP). In recent
years, the generalization ability of deep learning is being continuously applied in
NLP, CV and other AI fields, and many research results have been obtained [3],
it has naturally become the most common approach in image caption [4]. In fact,
it is a combination of deep learning and the encoder-decoder structure, that uses
the convolutional neural networks (CNN) as the encoder to obtain the repre-
sentation vector of the picture, and the recurrent neural network (RNN) as the
decoder to translate the image features into a sentence.

The descriptive sentences generated by this kind of methods are evaluated by
indicators such as BLEU [5] and CIDEr [6], and it is confirmed that good results
have been achieved [7]. However, in the face of a largely growing amount of real-
time image information, it is needed and also very important to generate text
descriptions more efficiently. On the basis of previous research, this work further
discusses how to quickly generate accurate and comprehensive image caption
sentences, and puts forward an improved scheme based on the encoder-decoder
structure, and makes the following contributions.

– Based on the encoder-decoder structure of deep learning, an improved image
caption generation model is proposed, which increases the accuracy of image
comprehension and enhances the efficiency of feature processing.

– The content-adaptive recurrent unit (CARU) [8] is adopted as the decoder,
which has fewer parameters than the gate recurrent unit (GRU), and is more
sensible to the features in hidden layers, thus increasing the decoder perfor-
mance.

– Under the condition of maintaining all the optimization performance of the
original structure, the accuracy and operation speed have been improved to
a certain extent.

2 Related Work

Image caption can be considered as a dynamic target detection, which generates
an image summary from overall information. The previous methods were mainly
based on template matching, using some operators to extract the features of an
image, and obtaining the classification of the objects that may exist in the image.
However, the method of using template matching is not suitable for all types of
the images, and also limits the variety of output. In order to describe the text
features of various images more accurately, Kuznetsova et al. proposed a method
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of similarity testing instead of templates, i.e., a method based on similar space
retrieval [9]. However, the above two methods are not flexible enough. With
the development of deep learning [10,11], it becomes the most commonly used
methods in the field of image caption.

The deep semantic alignment model [1] explicitly aligns multiple local regions
in the image with text description fragments, and proposes to combine Region-
based CNN (R-CNN) and bidirectional RNN to construct an image caption
model. The m-RNN model [12] combines deep CNN and deep RNN, interacts
these two networks in a multi-modal layer, directly models the probability of
input words and generated words, and uses the features to predict the words
corresponding to the current time step, and generate the image description.

Long short-term memory (LSTM) solves the problem of RNN gradient explo-
sion and can remember long sequences. The structure of gate recurrent unit
(GRU) is simpler than that of LSTM, and the network has fewer parameters.
Therefore, LSTM and GRU have been quickly applied to the field of image
caption. The NIC (Natural image caption) model [13] was combined with Incep-
tion V3 and LSTM network to extract image features and generate description
sentences. The two-layer network structure has a deeper network layer and a
stronger memory capacity of the model. The ability to generate corresponding
description sentences has been significantly improved.

Applying GRU as a decoder in image caption results less training time [7],
and it can also improve the accuracy of caption generation to a certain extent.
The BeamAtt [14] model proposes a multi-modal architecture method, which
combines the beam search on the basis of GRU. The feasibility of this method
was justified by the comparisons with other existing methods. In order to make
the generated text description more fluent, Pan et al. [15] used a double-layer
GRU for experiments, and the features extracted from the images were trained
in a shorter time, and it had achieved better performance in many evaluation
indicators.

On the basis of the NIC model, Xu et al. [16] integrated the attention mech-
anism into the LSTM, so that the model was able to generate a description
of a specific field according to the region of the image. The feature weight can
be learned and adjusted to realize the constant attention of image content, and
generate the description word by word.

Although the above methods have made significant achievements in the field
of image caption, due to the complexity of image scenes, it often takes a lot of
time to implement the text description of an image. Therefore, how to enhance
the efficiency of image caption generation is worth our research.

3 Methodology

The deep neural network that is composed of an encoder and a decoder has
achieved good performance in the image caption generation task. Therefore,
we propose our image caption generation model based on the encoder-decoder
structure, combined with ResNet [17], the attention mechanism, and the content
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Fig. 1. Overall framework of the proposed model

adaptive recurrent unit (CARU) [8], to achieve the purpose of more comprehen-
sive and accurate generation of image description, while reducing the number of
parameters to enhance the efficiency.

3.1 Model Overview

Our model mainly consists of three parts: feature extraction, context extraction
and caption generation. The overall framework is shown in Fig. 1. The main
process of the model is as follows.

Feature Extraction. ResNet50 is used to extract the features of an image, and
the residual network is used to build a deep network, which effectively solves the
degradation problem and the gradient problem caused by network deepening, so
that the extracted features can be more comprehensive.

Contextual Information Extraction. We use the image features as input of the
attention mechanism, from a global perspective, combined with contextual infor-
mation. It highlights the more important characteristic information to better
guide the generation of descriptive sentences.

Caption Generation. The feature vector output by the attention mechanism is
used as input of the decoder. We adopt CARU as the decoder, which not only
overcomes the problem of long-term dependence, but also has fewer parameters,
to process the image feature vector to generate a description sentence.
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3.2 Image Feature Extraction

As mentioned earlier, CNN is widely used in feature extraction tasks and has
achieved good results. The introduction of ResNet [17] combines the concept
of residual representation commonly used in CV, and further applies it to the
construction of CNN models. There is even a branch based on residual learning.

ResNet changes the way that most of the original networks have been directly
using parameterized layers to learn the mapping between input and output, and
uses multiple parameterized layers to learn the residual representation between
input and output. Experiments show that trying to learn residuals is much easier
than directly learning the mapping, the convergence speed is much faster, and
higher classification accuracy can be achieved by using more layers. For images,
the deeper the network, the more information at different levels will be extracted,
the more hierarchical information combinations between different levels there will
be, and the richer the feature information will be obtained.

3.3 Context Extraction

In image caption, the encoder must compress all the extracted image features
into a fixed-length vector, and then pass it to the decoder as the input. However,
when the fixed-length vector is compressed, some of the information from the
input sequence may be lost. In addition, the image features extracted by the
encoder, usually only have certain areas that are more relevant to the next word
in the generation of the caption. The attention mechanism can imitate the human
visual mechanism, paying attention to the important part of the information that
assists the judgment in the image, and ignoring the irrelevant information.

By adding an attention mechanism and allowing the decoder to access the
input sequence of the entire ResNet part, we introduce an attention weight α
on the input sequence. The position containing important information can be
prioritized by exploring different targets in the image. Such association between
scenes and semantics enriches contextual information, and guides the generation
of more comprehensive and descriptive sentences.

3.4 Caption Generation

Since image caption is a combination of NLP and CV, we substitute CARU for
the GRU and LSTM as the decoder to generate text description with enhanced
accuracy and efficiency. CARU is an improved RNN, which retains the per-
formance of GRU and can overcome the problem of long-term dependency. It
introduces a content adaptive gate, similar to the reset gate in GRU, which can
convert the hidden states. Prior to this work, CARU has only been applied to
NLP tasks and had no experience in the CV field.

In order to better receive the image feature information filtered by the atten-
tion mechanism and serve as the initial hidden state of CARU, the decoder only
processes the current word instead of facing the entire sequence, as shown below,

rt = Wr · [ht−1, xt], (1)
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where the feature vector is input as the initial hidden state h0, and is delivered
to the content adaptive gate. The rt can control the update of candidate status.
The advantage of using CARU is that it alleviates the long-term dependency
problem of interpretation, by first weighting the currently received input rather
than encoding it directly into a hidden state. The new hidden state zt is generated
by combining the parameters of ht−1 and xt, calculated as,

zt = σ(Wz · [ht−1, xt]). (2)

The purpose is to determine how proportions of the input are to be combined to
the new hidden state. This approach allows tracking arbitrary long-term depen-
dencies in the input sequence, which is computational (or practical) in nature:
the long-term gradients being backpropagated can converge while training an
RNN using the same recurrent unit. The ˜ht is similar to the update gate in
GRU, used for the transformation of hidden state,

˜ht = tanh(W
˜h · [ht−1, xt] + rt). (3)

By using the CARU unit partially, an RNN further solves the vanishing gradient
problem, because CARU units also allow gradients to flow unchanged by the
content-adaptive gate.

We use the � as the Hadamard operator to combine the update gate with
the weight of current feature,

lt = σ(rt) � zt. (4)

By combining the weight of the current feature, we obtain the capability similar
to a GRU reset gate, but only based on the current input instead of the entire
content. More specifically, it can be considered as the tagging task that connects
the relation between the weight and parts-of-speech. The content adaptive gate
combines the current feature with the weight, and finally obtain the output,

ht = (1 − lt) � ht−1 + lt � h̃t. (5)

This affects the gradient amount instead of weakening the current hidden state.
According to the above formulæ, the complete structure of the CARU archi-

tecture is shown in the Fig. 2, where the direction of data flow is represented by
arrows, the yellow rectangle refers to the neural network layer, and the purple
circle refers to the gated operation.

Due to the unique structure of CARU, it has the good performance as LSTM
and GRU, and reduces the use of parameters on the basis of GRU, making the
operation more convenient. Therefore, using CARU as the decoder can maintain
the quality of generated descriptive sentences and improve the training efficiency
of the model to a certain extent.
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Fig. 2. Flow and structure of CARU

4 Experiments

In order to evaluate the proposed method, experiments were conducted on the
public dataset. In the encoder part, ResNet50 is used to extract image features,
and CARU and GRU are used as decoders to generate description sentences
respectively.

4.1 Dataset and Data Pre-processing

The MsCOCO [18] dataset has the largest amount of data, covering a wide range,
and the image subjects involve various fields. It consists of 123,000 images of
complex scenes, in which there are common transactions in people, animals and
natural environments. Each image corresponds to 5 text descriptions.

In order to verify the effectiveness of our model, we chose to evaluate the
performance on the MsCOCO dataset1. Before training the model, all letters
in the text descriptions were converted to lowercase, and non-alphanumerical
characters were trimmed. To avoid the generated text description being dis-
turbed by rare words, it was also necessary to delete the words with a number
of occurrences less than 5 in the text.

4.2 Implementation

First, ResNet50 was used as the encoder to extract the features of the images
in the MsCOCO dataset, and the feature vector was mapped to the semantic
space. The learning rate was set to 1e−4, and Adam algorithm was used as the
optimizer. Next, the attention weight was added to the feature vector, where the
attention dimension was 512. Then CARU was used as the decoder to process
the vocabulary, and Softmax calculated the probability of the next output word,
before finally description sentences were generated. The learning rate was set to
8e−4. Adam was again used for optimization. All experiments used the same
dataset in each test. The batch size was 128, with a total of 200 epochs.
1 In order to facilitate evaluation, we follow the experience of Karpathy et al. to

separate the validation set, dividing the 10,000 images equally into two parts, 5000
for test, 5000 for verify.
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MsCOCO dataset after 200 epoch (b) Images with text descriptions generated by the proposed method

Fig. 3. Performance and output of the proposed method

So as to compare the proposed model, a model using Pytorch to imple-
ment ResNet50 as encoder, overlay attention mechanism, and GRU as decoder,
referred to as the R-GRU model, was constructed, in which the setting of super
parameters was consistent with the proposed model.

4.3 Results and Analysis

The proposed model is compared with the R-GRU model on the MsCOCO
dataset. As expected, the model using CARU has faster convergence speed and
higher accuracy. The comparison of training results is shown in Fig. 3(a).

After the training, several images were randomly selected from the dataset,
and the captions were generated using the proposed model. As shown in Fig. 3(b),
the proposed model can successfully detect the objects, the quantity, the posi-
tions between objects, and the relationship between objects in the images. The
generated text descriptions were relatively smooth and logical, but lacks richer
emotions, which can be further improved.

Additionally, we compared the performance of the proposed model with the
state-of-the-art image caption generation models on the MsCOCO dataset. Due
to the low performance of text descriptions generated by early template-based
methods and retrieval-based methods, and no experiments were conducted using
standard datasets and evaluation metrics, the methods selected for the per-
formance comparisons were all based on deep learning. The selected methods
included those mentioned in Sect. 2: the multi-modal space-based method m-
RNN [12], the visual space-based method NIC [13], the attention-based methods
Soft-Attention [16] and VQA [2], and the R-GRU model for comparing CARU
efficiency. The performance comparison results are summarized in Table 1.

In the table, B@N represents the performance evaluation index BLEU, and
CIDEr is an evaluation index specially used in image description. Except for R-
GRU, the data of each indicator comes from the corresponding original literature,
a ‘–’ is displayed if there is no such an indicator. As mentioned above, the
proposed model outperformed most of the other models.
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Table 1. Performance comparison with state-of-the-art methods on MsCOCO dataset.

Model B@1 B@2 B@3 B@4 CIDEr

m-RNN [12] 67.1 49.0 35.0 25.0 –

NIC [13] 66.6 46.1 32.9 24.6 –

Soft-Attention [16] 70.7 49.2 34.4 24.3 –

VQA [2] 79.8 – – 36.3 120.1

R-GRU 78.8 50.8 35.6 36.1 119.7

Proposed 79.1 51.2 35.7 36.4 121.3

5 Conclusion

In this work, an improved image caption generation model is proposed. We base
the model on the existing encoder-decoder structure, ResNet50 is used as the
encoder, attention mechanism is added, and CARU is used as decoder. Experi-
ments show that the proposed model is better than using GRU as decoder, and
the generated description statements are more in line with human language logic.
Moreover, the proposed model uses fewer parameters and shortens the running
time. Our experience also demonstrates that CARU also has good performance
in solving CV/NLP hybrid problems. Future work will focus on combining other
excellent CNNs to obtain more effective image features to improve the accuracy
and comprehensiveness of caption generation.
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Abstract. Traditional approaches focus on an individual item of most
interest to users. However, in most realistic scenarios, the platform needs
to recommend a group of items at one time for users’ convenience, called
bundle recommendation. e.g., a music playlist containing multiple songs.
The existing bundle recommendations usually use manual methods to
artificially build bundles for different items, ignoring the obtained bun-
dles and the potential relationships among the items in the bundle, espe-
cially the relationships between bundles. Therefore, how integrating mul-
tiple complex interactions into bundles and obtaining high-quality bundle
recommendation is an important problem. To solve the problem, we pro-
pose a novel model named IMBR (short for Interactive Multi-Relation
Bundle Recommendation with Graph Neural Network). Firstly, we con-
struct a multi-relation interaction graph to capture the interaction rela-
tion from the user view. At the same time, we get bundle subordination
relation from the item view. They can obtain richer representations of
users, bundles, and items. Secondly, we design a bundle frequent term
constraint algorithm (BFTC) to constrain the composition of items in
a bundle and pay attention to the similarity between bundles. Finally,
we leverage a multi-task learning framework to capture user personal-
ized preferences to improve the performance of bundle recommenda-
tion. Extensive experiments on two real-world datasets with different
scales show that our method can significantly outperform various base-
line approaches.

Keywords: Recommendation system · Bundle recommendation ·
Graph neural networks

1 Introduction

Recommendation system have been playing an increasingly important role in
informed consumption, services, and decision-making in the overloaded infor-
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mation era and digitized economy [1]. The main purpose of a recommendation
system is to predict users’ preferences according to their historical behavior and
recommend the items they are interested in [2]. However, in many scenarios, the
platform needs to show a set of items to users to get more choices from them,
such as e-commerce platforms recommend clothing packages, music platforms
recommend playlists [3], and so on. We term all such scenarios that concern rec-
ommending a set of items as Bundle Recommendation which needs to predict a
user’s preference on a bundle of items rather than a single item [4].

Traditional collaborative filtering based approaches regard bundles as atomic
units. [3,5] simultaneously utilize the user’s interactions with both items and
bundles under the Bayesian Personalized Ranking(BPR) [6] framework. With
the rise of deep learning, some researchers are applying deep learning techniques
for bundle recommendation. [7] designed an attention network to capture user
preferences for component items to represent bundles, and jointly model user-
bundle interactions and user-item interactions in a multi-task manner, which
transferring the benefits of one task to another utilizing multi-task learning. To
better capture neighbor interaction information, [8] unifies user-item interactions
and user-bundle interactions into a heterogeneous graph with item nodes as the
bridge, and GCN [9] was used to capture the representation of bundles. How-
ever, in most real-world scenarios of bundle recommendation is more complex,
where user preferences can be derived from both interactive items and interactive
bundles. Similarly, there are special relationships between bundles and their con-
taining items. These relationships inevitably affect the performance of bundled
recommendation. In this paper, the main work is to improve the performance of
bundle recommendation by adding these relations to bundle recommendation.

In this paper, we utilize different relations to solve bundle recommendation
problems based on graph neural networks and propose a novel model IMBR.
Recent work [8] has considered utilizing items as middleware to build bundle-
bundle matrices via a path bundle-item-bundle. However, these works do not
consider multiple relations simultaneously to obtain higher-order representations
of users, items, and bundles. Moreover, previous bundle recommendation indi-
cated the user’s preferences by taking the bundle as a whole. Such a training
procedure implicitly assumes each item in the bundle is related to the user’s
preferences, which might not always hold. therefore, this behavior may lead to
unreliable items being mixed into the bundle. It is worth noting that the IMBR
model designs a constraint algorithm to simplify the bundles, considering that
there are many overlapping items between different bundles, which greatly com-
promises the diversity of exposed projects within the bundles. The contributions
of our paper are summarized as follows:

– We present a novel model Interactive Multi-Relation Bundle Recommenda-
tion with Graph Neural Network, which utilizes a combination of different
types of relations between nodes and graph neural networks, effectively solv-
ing the problem that bundle recommendation bundles are too sparse as well
as missing representations and insufficient information.

– We utilize graph neural networks to fuse multiple relationships in the bundle
and constructed the multi-relation interaction graph from the user perspective
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and project perspective to obtain better embedding representations of users,
items, and bundles.

– We design a bundle frequent item constraint algorithm to reduce the rate
of excessive occurrence of identical or similar items in the bundle solve the
problem of similar items in the bundle at the time of characterization and
increase the diversity of the bundle.

– We have conducted a lot of experiments on two real datasets, to verify the
validity of the IMBR. The experimental results show that our model is supe-
rior to the existing mainstream models in solving the bundle problem.

2 Related Work

2.1 Graph Neural Network

In recommendation system, the main challenge is to learn valid user/item rep-
resentations from interactions and auxiliary information (if present). In recent
years, graph neural network techniques have been widely used in recommen-
dation system because most of the information in recommendation system is
essentially graph structure and GNNs have advantages in graph representation
learning. For example, [10] utilized different dependency relations between nodes
to solve the CTR prediction problem. In the bundle recommendation, [8] firstly
constructed the user-item/bundle interaction graphs with GNN.

2.2 Bundle Recommendation

In recommendation domain, several works [9] have been made in solving the
bundle recommendation problem. Bundle recommendation mainly concentrates
on not only capturing the relationships among users, items, and bundles, but
also recommending lists of items to users. LIRE [5] solve the recommenda-
tion problem of user-generated item lists on the Bayesian Personalized Ranking
(BPR) framework. [3] proposed jointly modeling the interaction between user-
item and user-bundle, which combines two types of latent factor models, BPR
and word2vec. DAM [7] design a factorized attention network to aggregate the
item embeddings in a bundle to obtain the bundle’s representation.

3 Problem Formulation

Given a set of users U = {u1, u2, · · · , uN}, a set of items I = {i1, i2, · · · , iM},
and a set of bundles B = {b1, b2, · · · , bK}, where N , M , and K are the number of
users, items, and bundles, respectively. For each bundle bs ∈ B, it consists of a set
of items, bs =

{
is1 , . . . , isj , . . . , is|bs|

}
, where |bs| denotes the bundle size (larger

than 1), and each item vsj in the bundle belongs to the set I (e.g., vsj ∈ I). we
define user-item interactions matrix, user-bundle interactions matrix and bundle-
item subordination matrix as XN×M = {xui|u ∈ U, i ∈ I}, Y N×K = {yub|u ∈
U, b ∈ B}, and ZK×M = {zbi|b ∈ B, i ∈ I} with a binary value at each entry,
respectively. An observed interaction xui = 1 means user u once interacted item
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i, and an observed interaction yub = 1 means user u once interacted bundle
b. Similarly, an entry zbi = 1 means bundle b contains item i. The problem of
bundle recommendation is formulated as follows:

Input: User-bundle interaction matrix XN×M , user-item interaction matrix
Y N×K , and bundle-item subordination matrix ZK×M .

Output: A recommendation model that estimates the probability that user u
will interact with bundle b.

Fig. 1. The framework of the proposed IMBR.

4 Methodology

In this section, we will illustrate the details of our proposed method for bundle
recommendation. The overall architecture of our proposed method is illustrated
in the Fig. 1.

4.1 Multi-relation Graph Representation

To obtain a more meaningful representation of the bundle, we first constructed
three relation graphs that these were the user-item interaction graph, the user-
bundle interaction graph, and the bundle-item subordination graph from the
user-view and the item-view. The interaction relation and subordination rela-
tion can be represented by an undirected graph G = (V, E) where nodes are V
consisting of user nodes u ∈ U , bundle nodes b ∈ B and item nodes i ∈ I. Edges
are E consisting of the user-item interaction edges (u, i) with xui = 1 meaning
an observed interaction between the user u and the item i, user-bundle interac-
tion edges (u, b) with yub = 1 representing an observed interaction between the
user u and the bundle b, and bundle-item subordination edges (b, i) with zbi = 1
meaning that bundle b contains item i.
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For each node on the relational graph, we apply one-hot encoding to its input
and compress it into a dense vector. We use FU , FI , FB to denote the initial
user embedding matrix, the item embedding matrix and the bundle embedding
matrix, which have the same embedding size D, respectively. The dense feature
vector of a user, item and bundle can be defined as follows:

fu = FT
U vu, fi = FT

I vi, fb = FT
B vb (1)

where vu ∈ R
M , vi∈ R

N , vb ∈ R
K , denotes the one-hot feature vector for user

u, item i, and bundle b, respectively.

4.2 Interaction Matrix Construction

The purpose of the recommendation system is to capture the user’s preferences
and recommend items that the user likes. Therefore, from the user’s view, we
can obtain two kinds of interaction relations from the user-item interaction his-
tory and the user-bundle interaction history. We consider the construction of a
corresponding interaction graph for them, the adjacency matrix of interaction
graph as:

Aui =
[

Iu X
XT Ii

]
, Aub =

[
Iu Y
Y T Ib

]
(2)

where Iu ∈ R
N×N , Ii ∈ R

M×M , Ib ∈ R
K×K are identity matrices for users,

items and bundles. Inspired by GCN [9] to avoid ignoring the characteristics
of the nodes themselves, we assume that every node is self-connected. Then we
construct the initial feature matrix of the adjacency matrices H

(0)
ui ∈ R

L1×D,
H

(0)
ub ∈ R

L2×D and L1 = N +M , L2 = N +K, where D is the dimension of the
feature vectors. The feature matrix of is defined as follows:

H
(0)
ui =

[
FU,1 FI,1

]
, H

(0)
ub =

[
FU,2 FB,1

]
(3)

To better capture the representations of users, items, and bundles from user-
item interactions and user-bundle interactions. We refine the representation of
nodes by building an embedding propagation layer that it is similar to the most
GNN-based methods [9,11–13], where the update process for l-th layer is as
follows (Since the update process is the same for both interactions, instead of
the user-item interaction and the user-bundle interaction, we use *):

H
(l+1)
u∗ = σ(D̃− 1

2 Ãu∗D̃− 1
2 H

(l)
u∗W

(l)
u∗ ) (4)

Hu∗ =
l∑

i=0

H
(i)
u∗ (5)

where Ãu∗ is the adjacency matrix of the undirected graph G with added self-
connected. W

(l)
u∗ is the trainable matrix for l-th layer. σ is the sigmoid activation

function. H
(l)
u∗ is the input embedding for l-th layer.

Since the initial feature matrix H
(0)
u∗ is made up of the initial feature matrix

of user and the initial feature matrix of item/bundle, we can get the feature
matrix F ′

I,1 for item, F ′
B,1 for bundle and F ′

U,1, F ′
U,2 for user.
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4.3 Containment Relation Matrix Construction

In the previous section, we constructing the two interactions from the user’s view
and obtain the feature matrix GNN-based methods. Previous bundle recommen-
dation works have focused on the interaction relations. They have ignored the
core of bundle recommendation which is the composition of the bundle.

In this section, we will learn about bundle-item subordination relations. We
construct a subordination relation adjacency matrix from the item view, which
is different from interaction relation. The subordination relation considers the
degree of similarity between bundles and constructs a bundle-bundle similarity
matrix. The adjacency matrix of subordination relation graph is defined as:

Abi =
[

B Z
ZT Ii

]
(6)

where B ∈ R
K×K is the similarity matrix of bundle. H

(0)
bi ∈ R

L×D is the initial
feature matrix containing the bundle nodes and the item nodes, and L = K+M .
The feature matrix of is defined as follows:

H
(0)
bi =

[
FB,2 FI,2

]
(7)

Similar to Eq. (4) and Eq. (5), the process of updating the l-th layer of
subordination relation is as follows:

H
(l+1)
bi = σ(D̃− 1

2 ÃbiD̃
− 1

2 H
(l)
bi W

(l)
bi ) (8)

Hbi =
l∑

i=0

H
(i)
bi (9)

After the above update operation, we can split Hbi into two parts. The feature
matrix of bundle becomes F ′

B,2 and the feature matrix of item becomes F ′
I,1.

4.4 BFTC Algorithms

Due to the complexity of composition terms, the same item may appear in different
bundles. It is will result high similarity between bundle and bundle, which will
lead to inaccurate bundle feature. Therefore, we design a bundle frequent term
constraint algorithm(BFTC), which uses TF-IDF to constrain the composition of
bundles to avoid frequent items from weakening the bundle representation. Let the
items in the bundle more accurately representate the characteristics of the bundle.

TF-IDF is a common method for information retrieval which can be divided
into two phases. It first calculates the frequency of items in the bundle and then
the frequency of items in the inverse bundle of the corpus. In our model, the
corpus can be seen as a record of all user interactions. For the above assumptions,
we first calculates the frequency of occurrence of a item vi in the bundle bu
generated for the user u. The calculation formula is defined as follows:

TFvi
=

nij∑
k nkj

(10)
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Algorithm 1: BFTC Algorithm
Require:

The set of users U = {u1, u2, . . . , uN}; The set of items I = {v1, v2, . . . , vM};
The set of bundles B = {b1, b2, . . . , bK}; constraint rate δ ∈ [0.01, 0.02, 0.05];

Ensure:
The set of constrained bundles B∗ = {b1, b2, . . . , bK′ };

1: for i = 1 to M do
2: ”equation (11)”
3: end for
4: for b = 1 to K do
5: ”equation (10)”
6: for each item i in bundle b do
7: ”formula(12)” and Rank(vi)
8: if Rank(vi) < ceil(|bs| · δ) then
9: drop(vi,b)

10: end if
11: end for
12: end for

where TF vi
is the frequency of item vi appearing in bundle bu,

∑
k nkj is the

number of the items in the bundle. The value of TF vi
is usually normalized.

To some extent, it can indicate the importance of the item vi. At the same
time, the importance of the item vi decreases inversely with the frequency of its
appearance in a large list of bundles. Next, we calculate the reverse frequency
for IDFvi

:

IDFvi
= log

N + 1
Nvi

+ 1
(11)

Cvi
= TFvi

× IDFvi
(12)

Here, N is the total number of bundle lists, and Nvi
is the number of bundles

containing item vi. We calculate the weight Cvi
for item i by multiplying the two

frequencies together, with lower weights indicating more frequent occurrences of
the item. Therefore, we can obtain the frequency of items within a particular
bundle, and the reverse frequency of the item in the overall bundle list.

4.5 Interactive Multi-relation Model Predictions

In summary, we can obtain three relational bipartite graphs that they are the
bundle-item containment bipartite graph, the user-item interaction bipartite
graph, and the user-bundle interaction bipartite graph. We can obtain two kinds
of each node embedding representations from each of the above relationship
graphs. We can concatenate the outputs from each bipartite graph to generate
the final representations of the nodes as follows:

eu = [eu,1, eu,2], ei = [ei,1, ei,2], eb = [eb,1, eb,2] (13)
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where eu,1 ∈ F ′
U,1, eu,2 ∈ FU,2′ , ei,1 ∈ F ′

I,1, ei,2 ∈ F ′
I,2, eb,1 ∈ F ′

B,1, eb,2 ∈ F ′
B,2.

After obtaining a unified representation of each type of node, we propose to
concatenate the unified embedding of two nodes, and then use a two-layer MLP
to learn the complex implicit interactions. The score between a user u and an
bundle b for recommendation task is computed as follows:

ŷub = σ2(WT
2 (σ1(WT

1 ([eu, eb]) + b1)) + b2) (14)

where Wx, bx and σx denote the weight matrix, bias vector and activation func-
tion for the x-th layer of MLP, respectively. Similarly, we can calculate the score
ŷui between user u and item i. We take the bundle with interaction as a positive
sample and randomly select an unobserved bundle as a negative sample. Then
for model optimization, we adopt the Bayesian Personalized Ranking loss [6]:

Lbundle =
∑

(j,e,f)∈R

− ln σ(ŷje − ŷjf ) + λb‖θb‖22 (15)

where R = (j, e, f)|(j, e) ∈ y+, (j, f) ∈ y− denotes the training dataset involving
the observed interactions y+ and unobserved counterparts y−, σ(·)is the sigmoid
function, λ is the coefficient controlling L2 regularization. θb is the set of model
parameters for the bundle prediction task. When there is only one item in the
bundle, the system can also recommend for single item. Similarly, we define the
loss function for the Item prediction task as follows:

Litem =
∑

(s,p,q)∈Q

− ln σ(ŷsp − ŷsq) + λi‖θi‖22 (16)

where Q = (s, p, q)|(s, p) ∈ y+, (s, q) ∈ y− denotes the training dataset involving
the observed interactions y+ and unobserved counterparts y−.

Lloss = Lbundle + Litem (17)

Table 1. Dataset statistics

Dataset NetEase Youshu

User 18,528 8,039

Bundle 22,864 4,771

Item 123,628 32,770

User-Bundle 302,303 51337

User-Item 1,128,065 138,515

Bundle-Item 1,778,838 176,667

5 Experiments

In this section, we conduct experiments on two real-world datasets for bundle
recommendation to evaluate our proposed IMBR, with the purpose of answering
following research questions:
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– RQ1: How does IMBR perform compared with previous approaches?
– RQ2: How do different components affect the results of IMBR?
– RQ3: How do parameters influence the result of IMBR?

5.1 Datasets and Evaluation Metrics

We evaluate the proposed IMBR and all baselines on following two real-world
public datasets are shown in Table 1: NetEase is a music dataset collected from
Netease Cloud Music1 which is provided by the work EFM [3]. The dataset
enables users to construct a list of songs with a specific theme, and we delib-
erately to select the list of users and songs to verify bundle recommendation
algorithm. Youshu is a dataset of book sales, which is obtained from a Chinses
book review site2, similar to netease cloud music. It’s just interaction between
the user and the object item.

In this paper, we conduct experiments in two recommendation tasks. For
top-N recommendation task, we adopt two widely-used evaluation protocols to
evaluate the effectiveness of our proposed method: Recall@K and NDCG@K,
and we set K = {20, 40, 80}.

Table 2. Performance comparison on the two datasets

Dataset Method R@20 N@20 R@40 N@40 R@80 N@80

NetEase MFBPR 0.0355 0.0181 0.0600 0.0246 0.0948 0.0323

GCN 0.0402 0.0204 0.0657 0.0272 0.1051 0.0362

NGCF 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350

RGCN 0.0470 0.0210 0.0667 0.0280 0.1112 0.0378

DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372

BGCN 0.0491 0.0258 0.0828 0.0346 0.1304 0.0453

Ours 0.0633 0.0312 0.1045 0.0395 0.1615 0.0511

Improv. 28.92% 20.93% 26.21% 14.16% 23.85% 12.80%

Youshu MFBPR 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543

GCN 0.2032 0.1175 0.2770 0.1371 0.3804 0.1605

NGCF 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561

RGCN 0.2040 0.1069 0.3017 0.1330 0.4169 0.1595

DAM 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658

BGCN 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851

Ours 0.2690 0.1401 0.3602 0.1642 0.4777 0.1905

Improv. 14.61% 4.16% 10.90% 3.08% 9.69% 2.92%

5.2 Baseline

– MFBPR [6]: This work applies a Bayesian Personalized Ranking learning
framework to the matrix factorization method.

1 http://music.163.com.
2 http://www.yousuu.com.

http://music.163.com
http://www.yousuu.com
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– GCN [9]: This method uses GCN to construct the user-item-bundle tripartite
interaction graph for bundle recommendation.

– NGCF [13]: This method uses NGCF to construct the user-item-bundle tri-
partite interaction graph for bundle recommendation.

– RGCN [14]: RGCN is GCN based method developed to deal with the multi-
relational graph.

– DAM [7]: This work uses the factorized attention mechanism and multi-task
framework to capture bundle-level association and collaborate signals.

– BGCN [8]: BGCN proposes a graph neural network model to explicitly model
complex relations between users, items, and bundles.

5.3 Performance Comparison

The results of all the methods are reported in Table 2. For the results, we have the
following observations. Compared with all advanced baselines IMBR is always
the best performance in two datasets. We can make the following observations
from the experimental results: 1) In the two datasets, IMBR improved by 28.92%
and 14.61% in Recall@20 compared to the best baseline, respectively. In terms
of NDCG@20 compared to baseline and best increased by 20.93% and 4.16%,
respectively. The above results show that IMBR is effective in solving the bundle
recommendation problem by explore multiple relationships. 2) Compared with
traditional method MFBPR, we find that the some GNNs methods [8,9,13,14]
have a significant improvement in bundle recommendation. It is verified that
graph neural networks can capture complex topology and high-order connections
well. 3) DAM still outperforms most GNNs models although without graph
neural networks. Therefore, it can be demonstrated that IMBR is effective to
introduce user-item interaction and multi-task learning methods to the relation
graph structure inspired by DAM.

Table 3. Performance comparison of variations

Model NetEase Youshu

R@20 N@20 R@20 N@20

w/o IR-B 0.0566 0.0262 0.2480 0.1226

w/o IR-I 0.0571 0.0269 0.2488 0.1264

w/o CR 0.0503 0.0247 0.2391 0.1218

w/o BC 0.0577 0.0269 0.2558 0.1326

w/o ML 0.0589 0.0293 0.2688 0.1341

�-1 0.0601 0.0301 0.2611 0.1355

�-2 0.0633 0.0312 0.2690 0.1401

�-3 0.0591 0.0302 0.2549 0.1369

�-4 0.0557 0.0281 0.2513 0.1329

IMBR 0.0633 0.0312 0.2690 0.1401
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5.4 Ablation Study

To learn the importance of interaction relations, subordination relations, bundle
constraint modules, and multi-task learning modules in the IMBR model. We
investigate the underlining mechanism of our IMBR with five ablated models,
and we also research the performance comparison of models with different prop-
agation layers � on all two datasets, in which we vary � from 1 to 4. As shown
in Table 3, we have the following observations:

– IMBR outperforms w/o IR-B and w/o IR-I. User-bundle interaction and User-
item interaction are removed in w/o IR-B and w/o IR-I, which proves that
both interactions are essential in the user-view.

– IMBR outperforms w/o CR. Bundle-item containment relation is removed in
w/o CR, which shows that it is helpful to mine multi-relation in item-view.
Indicates that the composition of the bundle is essential

– IMBR outperforms w/o BC. In this part, we remove the BFTC algorithm
and use the original unprocessed data. The experimental results show that
our algorithm is effective.

– w/o ML is the least competitive. We remove Litem, which shows that our
multi-task learning framework is also helpful for IMBR.

– Study of �-th layer. We find that its performance first improves and then
drops when the layer number increases from 1 to 4. This indicates that will
suffer from oversmoothing issues when higher-order neighbors are used.

(a) learn rate of NetEase (b) learn rate of Youshu

Fig. 2. Impact of learning rate on NetEase and Youshu

5.5 Hyper-Parameters Analysis

We analyze the effects of learning rate. The experimental results are shown in
Fig. 2. The learning rate is selected from [1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3] by
applying grid search. It can be seen that the fold trend generally rises first and
starts to fall after the learn rate reaches 3e-4. The NetEase and Youshu datasets
achieve the best experimental results at a learning rate of 3e-4.
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6 Conclusion

In this paper, we study the multi-relation problem of nodes in the bundle rec-
ommendation. We first propose a novel model IMBR which is based on different
relations between different nodes of graph, and uses graph neural networks to
extract different view of multi-relation from different view, thus representing
users’ preferences more clearly. Next, we consider the complexity of the items in
the bundle and design a bundle frequent item constraint algorithm to obtain a
more accurate representation of the bundle. Finally we use a multi-task learning
framework to model user-items and user-bundles. The performance of bundle
recommendation is further improved. Combined with experiments on two real
datasets, it is demonstrated that our proposed IMBR approach outperforms
existing bundle recommendation methods.
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Abstract. Electronic voting (e-voting) is widely used because of its convenience
and efficiency. In response to the security problems in e-voting, such as the legality
of voters, privacy disclosure, etc., this paper proposes a novel e-voting scheme that
can check the format of ballots without disclosing its content based on homomor-
phic encryption. Firstly, voters encrypt their ballots with Paillier encryption before
sending them to the counter. Then, the counter decomposes the encrypted ballots
using the proposed n-ary conversion protocol, and performs the format check of
the ballots. Only ballots with the correct format are counted. During the whole
process of voting, no one except the voter himself can know each ballot’s content,
even the counter, so that the privacy of ballots is preserved. Finally, the counter
performs an additive homomorphism operation on the encrypted ballots and the
voting manager decrypts it to tally the result. Besides the requirements including
the legality, privacy, and integrity, we furtherly consider the validity of the ballots
in e-voting and make the scheme more practical than the existing methods.

Keywords: E-voting · Format-checkable · Paillier encryption · n-ary conversion
protocol

1 Introduction

In recent years, electronic voting (e-voting) is becoming a popular method of replacing
the traditional paper voting [1]. The e-voting [2] is superior to the traditional voting in
efficiency and economy, but it faces several security threats such as the voter legitimacy,
ballot uniqueness, privacy preserving, etc.

The existing e-voting schemes, mostly use the cryptographic protocol to guarantee
the privacy and the correctness of the voting result, and canbe roughly classified into three
main categories: schemes based on the mix-net [3] schemes based on blind signature [4]
or ring signature [5], and schemes based on homomorphic encryption [6].

The recent work, such as Kumar et al. [7], who proposed a secure end-to-end veri-
fiable e-voting scheme based on identity-based blind signatures, where the end-to-end
verification allows the voter to check whether his ballot was recorded correctly as he
intended. The shortcoming of this scheme is that the selected candidate’s name appears
on the ballot and the privacy of the ballot cannot be preserved well. In 2019, Yining et al.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 475–488, 2022.
https://doi.org/10.1007/978-3-031-19214-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_40&domain=pdf
https://doi.org/10.1007/978-3-031-19214-2_40


476 Y. Sun et al.

[8], proposed an e-voting scheme based on secret sharing and k-anonymity, which satis-
fies unconditional security, but suffers from the problem that it is hard to check whether
the voter has cheating behavior. And in 2016, Shahandashti et al. [9] proposed a voting
strategy named ‘DRE-ip’ that improved the DRE (Direct-Recording Electronic) system
and can publicly verify the voting result without decrypting the ballots. The shortcoming
of this system is that the voting result, even the format check by NIZK, relies on the
recording party heavily. Although the blockchain technology to e-voting can increase
the security and transparency of voting schemes and reduce the reliance on third-party
institutions, an unavoidable fact is that they suffer from the latency due to the verification
in a p2p network, such as [10, 11], etc.

In fact, whether the blind signature-based schemes or the homomorphic encryption-
based schemes must meet such a contradiction: the ballot should be hidden by operation
of encryption or blinding for the privacy before it is issued to the receiver, but the receiver
cannot confirm whether the ballot in a correct format. Examples such as in literatures
[7–14], there are not any format checks before the ballots are accepted. However, in
reality, the voter may cast a ballot that includes more than one “approval” for the same
candidate. The encryption or blinding operation will prevent this behavior from being
discovered.

To solve the above problem, we propose a novel e-voting scheme based on Paillier
encryption that can check the format of the ballot, so that the cheating behavior from
voters can be revealed by the counter. Specifically, the contribution of this paper can be
summarized as follows: i) We investigated the existing e-voting schemes and analyzed
the necessity of format check in reality. ii) A privacy preserving and format check e-
voting scheme based on Paillier encryption is proposed, that can check the format of
the ballot without disclosing its content. iii) We analyzed the proposed scheme from
multiple security requirements. iv) We gave the comparison of the proposed scheme and
other e-voting schemes from the performance.

The rest of the paper is organized as follows. In Sect. 2, some preliminaries are
introduced, and the systemmodel is presented in Sect. 3. Section 4 presents the proposed
format-checkable e-voting scheme. Section 5 provides security analysis. Finally, Sect. 6
concludes the paper.

2 Preliminaries

2.1 Paillier Cryptosystem

KeyGen. Randomly select two large prime numbers p, q, and g ∈ ZN 2 , let N = p · q,
λ = 1cm(p − 1, q − 1), l(u) = u−1

N , gcd
(
l(gλmod N 2),N

) = 1. The public key is
(N , g), and the secret key is λ.

Encrypt. Randomly select integer r ∈ Z∗
N 2 , for the plaintext m ∈ ZN , the ciphertext is

c = gm · rNmod N 2.

Decrypt. The plaintext m = l(cλmod N 2)

l(gλmod N 2)
mod N .

The Paillier cryptosystem has the additive homomorphism [15] property:

E(m1) · E(m2) = (gm1 · rN1 ) · (gm2 · rN2 ) = gm1+m2(r1r2)
N = E(m1 + m2) mod N 2
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2.2 Boneh-Boyen Signature

In this paper, we use the Boneh-Boyen signature scheme as [16].

KeyGen. Let G, GT be prime p order cyclic groups, g is a generator of G, and there
exists a bilinear pairing e: G×G → GT . The secret key is x ∈ Zp, and the corresponding
public key is y = gx.

Sign. The signature on a message m is σ = g1/ (x+m).

Verify. Verification is done by checking that e(σ, y · gm) = e(g, g).

2.3 Secure Bit-Decomposition Protocol (SBD)

Suppose that there are two parties, Alice and Bob. Bob holds the Paillier encrypted
value E(x), where 0 < x ≤ 2μ (μ is the domain size of x in bits). Let

(
x0, x1, · · · , xμ−1

)

denotes the binary representation of x. The goal of SBD is to convert the encryption
of x into the encryptions of the individual bits of x, without disclosing any infor-
mation regarding x to both parties. We use the SBD protocol in this paper as [17,
18]: SBD(E(x)) → (E(x0), · · · ,E(xμ−1)). The details of the protocol are shown in
algorithm 2.

3 System Model and Notations

3.1 System Entities

The main participants of this scheme include the election commission authority (ECA),
voters (Vis), the authentication center (AC), and the counting center (CC), The entities
and their interactions are shown in Fig. 1, and their functions are described as follows.

Election commission authority (ECA): ECA initializes the system, interacts with
the CC during the counting phase, decrypts and announces the final voting results.

Authentication center (AC):AC authenticates voters, verifies the legitimacy of each
voter’s identity, and issues him the unique voting identification IDi, which is unrelated
to his identity information.

Voters (Vi):A voter Vi must be authenticated to obtain a unique voting identification
IDi before participating in the voting.

Counting center (CC):CC collects the encrypted ballots, checks the format of each
ballot, and counts the ballots with the correct format.

3.2 Trust Assumption

In our scheme, the trust assumptions are as follows.

1) ECA is assumed to be honest, it is authoritative and usually acts as the votingmanager
in reality.

2) AC and CC are assumed to be semi-honest, or honest but curious.
3) The voter Vi is not assumed to be honest, because he may cast a ballot consisting of

more than one “approval” for the same candidate.
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Fig. 1. System model

3.3 Notations Description

The notations used throughout the paper are listed in Table 1.

Table 1. Notations and descriptions

Notations Descriptions

Si Identity information of Vi

IDi Unique voting identification of Vi
(
v0, v1, . . . , vm−1

)
Vi’s ballot in plaintext for each candidate

E(Mi) Paillier encryption of decimal ballotMi

E(Mi) → (E(cm−1), . . . ,E(c0)) The n-ary conversion of E(Mi)

SBD (E(Mi)) → (E(β0), . . . ,E(βμ−1)) The SBD conversion of E(Mi)

ListVi List of all legal voters

ListAC List of authenticated voters

ListCC List of voters who have cast their ballot

4 Our Scheme

4.1 Scheme Overview

Our voting scheme can be applied in the scenario of k-out-of-m (voters can choose k
individuals from m candidates, k ≥ 1). The implementation of the proposed scheme
consists of four phases.
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Initialization phase: Each participating entity generates its own public/private keys
following the Paillier cryptosystem and the Boneh-Boyen signature system.

Authentication phase: AC authenticates each voter based on Vi’s identity informa-
tion Si according to ListVi , and issues the encrypted IDi to the legal voter. Lastly, AC
publishes authenticated voters’ IDi in the ListAC .

Voting phase: During the voting phase, Vi generates an encrypted ballot and sends
it to CC. CC firstly decomposes the encrypted ballot, then it checks whether the format
of the ballot is correct.

Counting phase: After format check, CC counts the encrypted ballots with the
correct format by homomorphic addition and sends the result to ECA. ECA decrypts the
counting result and publishes the final voting result. TheCC publishes IDi as the ListCC .

4.2 Initialization Phase

Given a security parameter κ , each participant generates its own public/secret keys, and
publishes their public keys.AC holds theListVi with all legal voters’ identity information,
and generates ListAC with initial values null. CC also initializes ListCC with null.

The Paillier cryptosystem is choosen for the property of additive isomorphism.
Firstly, ECA selects the parameters as (p, q, g), generates its public key (N , g)ECA and
secret key λECA, where N = p ·q, λ = 1cm(p−1, q−1). Similarly, Vi generates public
key (N , g)Vi and secret key λVi . AC generates public key (N , g)AC and secret key λAC .

We choose the short signature of Boneh-Boyen signature system. Firstly, Vi selects
the parameters as (G,GT , g), generates its public key yVi and secret key xVi ∈ Zp,
where yVi = gxVi . Similarly, AC generates public key yAC and secret key xAC ∈ Zp. CC
generates public key yCC and secret key xCC ∈ Zp.

4.3 Authentication Phase

Before voting, each voter must be authenticated. The authentication phase is listed as
follows.

Step1. Vi signs his identity information Si to generate sigVi (Si), then encrypts Si and
sigVi (Si) together using AC’s public key as EAC(Si, sigVi (Si)), and sends it to AC.

Step2. After receiving EAC(Si, sigVi (Si)), AC decrypts it to get (Si, sigVi (Si)), then
checks whether Si is in ListVi . If it is, AC verifies sigVi (Si). The Vi is regarded as a legal
voter if sigVi (Si) is verified. Otherwise, AC rejects this authentication request.

Step3. Next, AC checks whether Si exists in ListAC . If it is not, which means Vi is
authenticated for the first time, then Vi is recorded in ListAC . Otherwise, it indicates Vi

has already authenticated before, and AC rejects this request.
Step4. Vi is considered legal and eligible to vote if it is verified both in Step2 and

Step3. Then AC generates a unique voting identification IDi for Vi independent of Si
to ensure the anonymity of Vi. Each voter only knows his own IDi, and no one can
associate the IDi with his real identity Si except AC. Then AC signs and encrypts the IDi

as EVi (IDi, sigAC(IDi)), and returns it to Vi.
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Step5. Vi decrypts EVi (IDi, sigAC(IDi)) to get IDi and sigAC(IDi), and verifies
sigAC(IDi). If it is valid, Vi keeps (IDi, sigAC(IDi)) as his voting certificate, and AC
appends the Si and IDi to ListAC .

Step6. In the end, all IDi in ListAC are published. Voters can check whether they have
been regarded as legitimate voters. If an authenticated voter cannot find his IDi, he can
apply for authentication again to AC.

4.4 Voting Phase

This scheme assumes that there are N ′ voters (V1, · · · ,VN ′) and m candidates
(C1, · · · ,Cm), and each voter can vote for all candidates. Firstly, the ballot is repre-
sented as an m-bit n-ary number. When the candidate Cj(0 ≤ j ≤ m − 1) is approved,
the j-th bit of the ballot is 1. Otherwise, it is 0. If there are too many voters, CC can
divide N ′ voters randomly into t groups, where each group consists of nt voters. When
CC receives a ballot from a voter, it adopts the proposed n-ary conversion protocol to
decompose the encrypted ballots, where n = nt + 1. Then, CC checks the format of
encrypted ballots without disclosing the content. The voting phase for each group is
listed as follows.

Step1. Vi (0 ≤ i ≤ nt − 1) creates a ballot (v0, v1, · · · , vm−1) for all candidates as
his wish, and converts this ballot from n-ary to a decimal Mi, where Mi = vm−1 · n0 +
· · · + v0 · nm−1. Then, he generates EECA(Mi) using ECA’s public key. Lastly, Vi sends
(IDi, sigAC(IDi),EECA(Mi)) to CC.

Step2. After receiving (IDi, sigAC(IDi),EECA(Mi)), CC firstly checks whether the
IDi exists in ListCC . If it exists, it means that the voter has cast a ballot before, and CC
neglects him. Otherwise, sigAC(IDi) is verified by CC and if it is valid, it indicates that
the Vi is an authorized voter.

Step3. If above verifications are valid, CC decomposes EECA(Mi) from a decimal
number to an n-ary number without decryption. The specific steps are shown in algo-
rithm 1. In this process, the SBD protocol in algorithm 2 is invoked to decompose
EECA(Mi) into bits in binary, and algorithm 4 is invoked to decide whether the last bit
of the data is 0 or 1 in the next operation.

Step4. After decomposing EECA(Mi), CC performs the format check on the
decomposed ballot (EECA(cm−1), · · · ,EECA(c0)). Firstly, CC inputs
(EECA(cm−1), · · · ,EECA(c0)) and 2 into algorithm 5. If the algorithm outputs false,
this means that the format of the ballot is incorrect. Then, CC rejects the ballot and
sends feedback to the Vi. Otherwise, CC appends IDi to ListCC .

Here, we give an example to show how the encrypted ballot decomposition works.
Suppose there are three voters and four candidates, so n = 3+ 1 = 4. Vi creates a ballot
(0011) according to his own will, and calculatesMi = 1 + 1 × 4 = 5, then he encrypts
Mi to get EECA(5) using ECA’s public key. After CC receives the EECA(5), it executes
algorithm 1.
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Firstly, CC executes the SBD protocol to decompose
EECA(5) into (EECA(0),EECA(1),EECA(0),EECA(1)), which is the initial value of q for
the first cycle. After the first cycle of decomposition operation in algorithm 1, CC gets
EECA(c0) = EECA(A) = EECA(1) as shown in Table 2. The last set of q = (0001) is
used as the initial value of q for the next cycle. And similarly, CC gets EECA(c1) =
EECA(1), EECA(c2) = EECA(0), EECA(c3) = EECA(0) in the next three cycles. Finally,
the decomposed encrypted ballot is (EECA(c3),EECA(c2),EECA(c1),EECA(c0)) =
(EECA(0),EECA(0),EECA(1),EECA(1)).
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Table 2. Example of n-ary conversion (j = 0)

Round a q n Operations

1 0000
0000

0101
1010

4 Shift left a and q together
A ← 0 < n,Q ← 1, qμ−1 ← 0

B ← −n · qμ−1 ← 0,A ← A + B ← 0

2 0000
0001

1010
0100

4 Shift left a and q together
A ← 1 < n,Q ← 1, qμ−1 ← 0

B ← −n · qμ−1 ← 0,A ← A + B ← 1

3 0001
0010

0100
1000

4 Shift left a and q together
A ← 2 < n,Q ← 1, qμ−1 ← 0

B ← −n · qμ−1 ← 0,A ← A + B ← 2

4 0010
0101
0001

1000
0000
0001

4 Shift left a and q together
A ← 5 > n,Q ← 0, qμ−1 ← 1

B ← −n · qμ−1 ← −4,A ← A + B ← 1

4.5 Counting Phase

After voting, CC can obtain t groups, where each group consists of nt encrypted ballots
EECA(Mi). Then,CC performs homomorphic addition on ballots for each group. Finally,
ECA decrypts the counting result and announces the final voting result. The counting
phase is listed as follows.

Step1. CC calculates each group of ballots homomorphically to obtain EECA(Mε) =∏nt
i=1 EECA(Mi), where (1 ≤ ε ≤ t).
Step2. For each group, CC signs EECA(Mε) to generate sigCC(EECA(Mε)), and sends

(EECA(Mε), sigCC(EECA(Mε)) to ECA.
Step3. ECA verifies sigCC(EECA(Mε)), decrypts EECA(Mε) to get the voting result

Mε, and convertsMε to the n-ary number, where each digit is the election result for each
candidate in ε-th group. Then, ECA aggregates the result of each group and announces
the results on a bulletin board.

Step4. In the end of counting phase, ListCC is published. Vi can check whether his
IDi exists in ListCC . If Vi cannot find his IDi, he can reapply to CC.

4.6 Complexity

The complexity in the presented scheme is mainly on the computation cost and com-
munication cost. Since the initialization phase and authentication phase are preparation
for the voting, we consider the costs during the voting and the counting phases. Firstly,
a voter creates his ballot by one encryption. Then, the CC checks the legality of the
voter by signature and needs one verification. The CC runs algorithm1 to decompose
the encrypted ballot. In the process, algorithm 2 is called to convert the encrypted ballot
to binary, where μ times of loops for the multiplication and addition and two communi-
cations between CC and ECA are needed. Then, algorithm 1 calls algorithm 4 to decide
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the last bit of the data in the next operation. Algorithm 4 needs two encryptions and
one decryption with two communications between CC and ECA. By the all, algorithm 1
will be completed with the complexity of O(μ + m∗μ∗1) = O(mμ) encryptions and
decryptions and 2mμ communications, where m is the number of candidates and μ is
the bit length of each ballot. Next, algorithm 5 is used to check the format of ballot by
revoking algorithm 4 in m times, and the complexity of the algorithm 5 is O(m). Last,
the CC calculates the encrypted ballot results by multiplying them only by N’ times.

5 Scheme Analysis

5.1 Security Analysis

Correctness. Eachvoter creates his ballot as ann-ary number and converts it to a decimal
number before encryption. The counter uses the n-ary conversion protocol to decompose
the ballots and obtains each encrypted digit of the n-ary number. Since n = nt + 1, the
addition on the nt ballots cannot produce any carry-over, so CC only needs to do the
homomorphic addition once on the encrypted ballots for one group. The AC can decrypt
and aggregate the voting result to get the final result.

Format Check. The CC adopts the ComparePro protocol to check the correctness of
the format of the encrypted ballot. If a voter casts a ballot that contains more than one
“approval” for the same candidate, the ComparePro protocol can detect the incorrect
ballot, and CC rejects the ballot. This solution overcomes the lack of format correctness
checking in existing voting systems, and avoids the possibility of fraud by voters.

Privacy. Privacy includes the privacy of the voter’s identity and the privacy of the
ballot. In the authentication phase, if a voter is authenticated by AC, he can get a voting
identification IDi that is unrelated to his identity. AC can only confirm the legitimacy
of the voter, but cannot know who he is. During the voting phase, voters encrypt their
ballots, so that no one can know the contents of the ballots or link them to the real
identities of voters. In the format checking, the ECA and CC are assumed not to be
colluded, they also cannot know the plaintext of the ballot. The privacy of the voter and
the ballot content can be preserved.

Legitimacy. The AC will authenticate the voter’s identity. Only if the voter’s identity
information exists in the ListVi , the voter will be regarded as a legal voter, and will be
issued a unique voting identification IDi unrelated to his identity. So no illegal person
can obtain the authorization.

Uniqueness. During the authentication phase, only the voter who has been authenti-
cated by the AC can obtain the unique IDi, and the ListAC can guarantee that the voter
cannot be authenticated repeatedly. Throughout the voting process, the voter cannot vote
repeatedly, the ListCC can check if the voter has voted before.

Fairness. Throughout the scheme, the ballot of each voter can only be knownbyhimself,
and no one including the ECA, AC or CC can know the content of the ballot. Any
intermediate voting result cannot be revealed during the scheme until the final results
are published.
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Integrity. Throughout the voting, all authentication information and counting informa-
tion are verified and counted by the AC and CC respectively. The relevant information
is published in the ListAC and ListCC . Each voter can check whether his information is
correctly recorded in the above lists according to his IDi.

Accuracy. Each voter has to pass the authentication of the AC before casting a ballot,
and theCC only receives ballots from the legal voters. Therefore, the final counting result
is legal, and the addictive homomorphism ensures the correctness of the final counting
results.

5.2 Performance Comparison

In this section, the scheme is mainly analyzed in comparison with the schemes proposed
in literature [7–12]. The literature [7] proposes an end-to-end verifiable scheme using
identity-based blind signature. As mentioned in Sect. 1, the scheme cannot preserve
the privacy of each voting, and voters can only vote for one candidate at a time. The
e-voting scheme based on secret sharing in [8] lacks a rigorous authentication process
and format check for ballots. The DRE-ip based voting system such as [9], depends on
the recording machine. The blockchain based voting scheme such as [10] cannot be used
to vote for multiple candidates, besides the latency in verification. The e-voting scheme
in [11] and [12] also lacks of the format check for ballots, besides the voters’ identities
authentication and ballots’ uniqueness. The comparison results are shown in Table 3.

Table 3. Performance comparison of different e-voting schemes

Scheme Legitimacy Privacy Uniqueness Format check Multi choice

[7]
√ √

–
√ × ×

[8]
√
–

√ √ × √

[9]
√ √ √ × √

[10]
√ √ √ × ×

[11]
√ √ √ × √

[12]
√ √ × × √

Ours
√ √ √ √ √

6 Conclusion

In this paper, we propose a privacy-preserving e-voting scheme that can check the format
of the ballot while protecting the privacy of the content. The scheme implements a k-
out-of-m choice for candidates. Voters generate ballots according to their wishes and
encrypt the ballots by Pallier encryption. The counting center uses the n-ary conversion



A Privacy Preserving and Format-Checkable E-voting Scheme 487

protocol and the ComparePro protocol to check the formats of ballots, and only those
ballots that pass the check will be counted. The counting result is obtained through
only one additive homomorphic operation by the counting center. On the one hand,
this scheme does not disclose the privacy of voters and ballots. On the other hand, it
guarantees the correct formats of the ballots. This scheme satisfies the basic properties
of privacy, legality, accuracy, and other requirements of e-voting systems. It is more
useful and practical than existing e-voting systems. However, in the proposed scheme, it
is the counter center, and not the voter, undertakes more computation cost for the format
check. It may result the inefficiency with too many voters in reality and this is the future
work of this paper.

References

1. Pu, H.Q., Cui, Z., Liu, T.: A review of research on secure e-voting schemes. Comput. Sci.
47(9), 8 (2020)

2. Mursi, M.F.M., Assassa, G.M.R., Abdelhafez, A.: On the development of electronic voting:
a survey. Int. J. Comput. Appl. 61(16), 1–11 (2013)

3. Peng, K.: A general and efficient countermeasure to relation attacks in mix-based e-voting.
Int. J. Inf. Secur. 10(1), 49–60 (2011)

4. Ku, W.C., Wang, S.D.: A secure and practical electronic voting scheme. Comput. Commun.
22(3), 279–286 (1999)

5. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45682-1_32

6. He,Q., Shen,W.:Homomorphic encryption-basedmulti-candidate e-voting scheme. Comput.
Syst. Appl. 28(2), 146–151 (2019)

7. Kumar,M., Chand, S., Katti, C.P.: A secure end-to-end verifiable internet-voting system using
identity-based blind signature. IEEE Syst. J. 14(2), 2032–2041 (2020)

8. Liu, Y., Zhao, Q.: E-voting scheme using secret sharing and K-anonmity. World Wide Web
22(4), 1657–1667 (2019)

9. Shahandashti, S.F., Hao, F.: DRE-ip: a verifiable E-voting schemewithout tallying authorities.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS,
vol. 9879, pp. 223–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-
3_12

10. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting with maxi-
mum voter privacy. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 357–375. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_20

11. Chaieb, M., Koscina, M., Yousfi, S., Lafourcade, P., Robbana, R.: Dabsters: a privacy pre-
serving e-voting protocol for permissioned blockchain. In: Hierons, R.M., Mosbah, M. (eds.)
ICTAC 2019. LNCS, vol. 11884, pp. 292–312. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32505-3_17

12. Waheed, A., Din, N., Umar, A.I.: Novel blind signcryption scheme for e-voting system based
on elliptic curves. Mehran Univ. Res. J. Eng. Technol. 40(2), 314–322 (2021)

13. Alam, K., Tamura, S., Rahman, S.: An electronic voting scheme based on revised-SVRM and
confirmation numbers. IEEE Trans. Dependable Secure Comput. 99, 400–410 (2019)

14. Ajish, S., Anilkumar, K.S.: Secure mobile internet voting system using biometric authentica-
tion and wavelet based AES. J. Inf. Secur. Appl. 61(14), 102908 (2021)

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-319-45741-3_12
https://doi.org/10.1007/978-3-319-70972-7_20
https://doi.org/10.1007/978-3-030-32505-3_17


488 Y. Sun et al.

15. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern,
J. (ed.) Advances in Cryptology, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48910-X_16

16. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3_4

17. Samanthula, B.K.K., Chun, H., Jiang, W.: An efficient and probabilistic secure bit-
decomposition. InL ACM SIGSAC Symposium on Information, pp. 541–546. ACM (2013)

18. Liu, X., Deng, R.H., Choo, K.: An efficient privacy-preserving outsourced calculation toolkit
with multiple keys. IEEE Trans. Inf. Forensics Secur. 11(11), 2401–2414 (2016)

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-540-24676-3_4


LogLR: A Log Anomaly Detection
Method Based on Logical Reasoning

Kehan Zhang1,2 , Xiaoqiang Di1,2,3(B) , Xu Liu1,2, Bo Li1,2, Luyue Fang1,2,
Yiping Qin1,2, and Jinhui Cao1,2

1 School of Computer Science and Technology, Changchun University of Science
and Technology, Changchun, China
dixiaoqiang@cust.edu.cn

2 Jilin Province Key Laboratory of Network and Information Security,
Changchun, China

3 Information Center, Changchun University of Science and Technology,

Changchun 130022, China

Abstract. Logs are widespread in large and complex software-intensive
systems. Log-based anomaly detection is used for system diagnosis and
troubleshooting. Existing methods extract log sequences as temporal
log vectors, preserving the timing information between logs. However,
they lack a reasoning mechanism, which prevents the model from min-
ing the logical relationship between logs and loses the logical association
between logs. In this paper, we propose LogLR, a log anomaly detec-
tion method based on logical reasoning. LogLR extracts the logical rela-
tionship between temporal log vectors and improves detection accuracy
by combining Logical Tensor Network (LTN) with LSTM. In order to
overcome the problem of ignoring the logical relationship between logs
in existing statistical methods for data annotation. LogLR uses LTN
to capture the logical relationship between log sequences and obtains
weak labels to train an LSTM model through the weak label estimation
method, which saves time costs. We evaluate LogLR on two widely used
public datasets and the results demonstrate the effectiveness of LogLR.

Keywords: Log anomaly detection · LTN · LSTM · Temporal log
vectors · Weak label estimation

1 Introduction

Logs are important information that records system behavior. As more and more
services appear, many attack behaviors and abnormal states of the system also

This work was supported in part by the Science and Technology Development Plan
Project, Jilin, China, under Grant 20190302070GX, and in part by the Education
Department of Jilin Province under Grant JJKH20220773KJ, and Cernet Next Gener-
ation IT Innovation project under Grant NGIICS20190503, and the National Natural
Science Foundation of China under grant No. U21A20451.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 489–500, 2022.
https://doi.org/10.1007/978-3-031-19214-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_41&domain=pdf
http://orcid.org/0000-0003-1318-6919
http://orcid.org/0000-0001-9432-4564
https://doi.org/10.1007/978-3-031-19214-2_41


490 K. Zhang et al.

increase. The log records the information generated when the system is running,
and analyzing the log can help the system administrator to find the abnormal
behavior of the system. An accurate and efficient anomaly detection method is
the key to maintaining the normal operation of the system.

A structured log is called a log event, and multiple log events within a period
of time are called a log sequence. The log sequence could reflect the order of
task execution. Early PCA [24], IM [12], DT [8] and LogCluster [10], methods
methods detect log sequence anomalies. Among them, DT [8] uses event count
vectors and their labels to build decision trees. While achieving commendable
detection results, the method relies on labeled data. In contrast, LogCluster [10]
performs anomaly detection through clustering of unlabeled data, which gets rid
of the time cost of obtaining labeled data, but the detection result is lower than
that of supervised learning methods. PLELog [25] proposes a semi-supervised
anomaly detection method, which saves time cost while ensuring detection accu-
racy. However, existing semi-supervised methods based on statistical methods
ignore the logical relationship between logs, resulting in a high error rate of data
annotation.

Methods in the field of natural language processing (NLP) extract timing
information in time series, and since log sequences are time series, many meth-
ods in the field of NLP are used for anomaly detection. DeepLog extracts the
timing information between log events by inputting each log event into LSTM
Cell at different time steps. PLELog uses the GRU model to observe the tem-
poral log vectors of log sequences and detect anomalies by binary classification.
These methods improve detection accuracy by obtaining timing information of
log sequences. Although the existing log-based anomaly detection models are
effective, they lack an inference mechanism, which leads to the loss of the logical
relationship between log sequences and the reduction of detection accuracy.

To overcome the above challenges, this paper proposes LogLR, a log anomaly
detection method based on logical reasoning. LogLR adds a reasoning mechanism
by introducing LTN, captures the logical relationship between log sequences, and
uses weak labels to assign probability values to log sequences, which not only
saves time, but also maintains the effectiveness of supervised learning.

The main contributions of this paper are as follows:

1) We point out the problem that the existing data annotation methods based
on statistical methods cannot extract the logical relationship between log
sequences, and extract the logical information of log sequences through the
weak label estimation method, which improves the accuracy of data annota-
tion.

2) We propose LogLR, a log anomaly detection method based on logical reason-
ing. LogLR introduces a reasoning mechanism, and simultaneously extracts
the timing information and logical information between log sequences for the
first time, which improves the detection accuracy.

3) We evaluate the effectiveness of LogLR on two publicly available datasets,
and the results confirm that our method outperforms existing state-of-the-
art methods.
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2 Related Work

Supervised Learning: Supervised learning methods use labeled data to assist
in anomaly detection, so supervised learning methods perform well in detecting
anomalies. Statistical models such as LR [21], DT [8], SVM [9], etc. are widely
used in classification tasks and are trained using event count vectors and their
labels to distinguish normal and abnormal log events. Inspired by SVM [9], meth-
ods such as OC-SVM [18], SVDD [19], etc. obtain spherical boundaries around
the dataset to distinguish normal and abnormal log events. Considering the tem-
poral relationship between log events, many RNN-based methods are used to
extract temporal information between log events. LogRobust [26] extracts the
semantic information of log events and detects anomalies using an attention-
based Bi-LSTM model, capturing the contextual information of log sequences.
OC4Seq [20] jointly detects anomalies using a local representative RNN model
and a global representative RNN model, focusing on local and global informa-
tion in the sequence, respectively. Methods [6,22] use the inference mechanism
of Bayesian network for anomaly detection, LogGAN [23] uses GAN network
to infer data to infer similar data. However, there is currently no method to
effectively combine the inference mechanism with the temporal characteristics
of log sequences. We propose a logical reasoning log anomaly detection method
LogLR, which effectively combines the reasoning mechanism and the time-series
characteristics of log sequences to improve the detection accuracy.

Unsupervised Learning and Semi-supervised Learning: Unsupervised
learning and semi-supervised learning methods use unlabeled or a small amount
of labeled data to assist in anomaly detection, which is more in line with prac-
tical application production environments. Methods such as PCA [24], IM [12],
and LogCluster [10] perform anomaly detection by mining the similarity or lin-
ear relationship between data of the same category. Different from the widely
used TFIDF [17] method, LogClass [14] proposes a new feature representation
method, TFILF, and verifies the effectiveness of this method using classical
machine learning methods. DeepLog [3] uses an LSTM model to preserve timing
information between log events and detect anomalies when log patterns deviate
from models trained under normal log execution. LogAnomaly [15] combines
sequential and quantitative detection for the first time to improve detection per-
formance. PLELog [25] uses some labeled data to label the remaining training
data through probabilistic label estimation, using only a small amount of labeled
data to take advantage of supervised learning. In contrast, LogLR adopts the
weak label estimation method based on logical reasoning, and applies LTN to
data annotation, which improves the accuracy of data annotation.

3 Methodology

In order to overcome the problem of the lack of reasoning mechanism in existing
anomaly detection methods, which prevents the model from mining the logical
relationship between logs. We propose LogLR, a log anomaly detection method
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based on logical reasoning. Figure 1 shows the overview of LogLR. LogLR con-
sists of the following four parts: log parsing, vectorization, weak label estimation
and anomaly detection.

Fig. 1. Overview of LogLR

3.1 Log Parsing

Since logs are unstructured data, they contain a lot of special information (e.g.,
IP addresses, file names, etc.) that prevents the model from automatically detect-
ing. It is necessary to extract this special information before using the raw logs as
input to an anomaly detection model. We call the processed raw logs log events,
and the step of extracting special new ones is log parsing. In this paper, we use
Drain [7], which can parse logs in a streaming and timely manner. To accelerate
the parsing process, Drain uses a fixed depth parse tree, which encodes specially
designed rules for parsing. For example, in Fig. 2, the first log entry “Receiving
block blk 5792489080791696128 src: 10.251.30.6:33145 dest: 10.251.30.6:50010”
is parsed into the log event “Receiving block * src: * dest: *”. Through log pars-
ing, unstructured raw log are transformed into structured log events.

3.2 Vectorization

The vectorization step converts the structured log events into digital vectors.
Since the anomaly detection model requires an input of numeric vectors, log
events need to be vectorized before being fed into the anomaly detection model.
It consists of three parts: log token vectorization, log event vectorization and log
sequence vectorization.

Log Token Vectorization. Treat log events as natural language sentences,
each word in the sentence is called a log token, and the context between log
tokens can better describe the sentence. To extract semantic information between
log tokens, LogLR first splits matching words in log events into separate words
according to Camel Case [2], and removes non-character tokens and stop words in
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Fig. 2. Overview of log parsing

log events to preprocess log events. LogLR then uses the FastText algorithm [16]
to vectorize each log token in the log event. FastText performs word vectorization
through the context of each log token to obtain a log token vector. After the log
token vectorization, each log token is converted into a fixed-dimensional vector.

Log Event Vectorization. To extract semantic information between log
events, LogLR performs weighted summation of the token vector in the log event
to obtain the log event vector, The log event vector V be calculated by Eq. 1:

V =
1
N

N∑

i=1

wi · vi (1)

where N is the number of log tokens in the log event, vi is the log token vector,
and wi is the weight of each log token.

LogLR uses TF-IDF, a weighting technique commonly used in information
retrieval and data mining, to calculate the weight wi for each log token, where
TF is the term frequency and IDF is the inverse text frequency index. TF is the
frequency of occurrence of each log token in log events, calculated as #w

#N , and
IDF is a measure of the general importance of a word, calculated as log( #L

#Lw
),

where #w is the number of log token w in log events, #N is the total number of
log tokens in log events, #L is the total number of different log events, and #Lw

is the log containing log token w number of events. The weight ω is calculated
as TF × IDF . Through weighted summation, LogLR obtains a log event vector
containing semantic information.

Log Sequence Vectorization. After obtaining the log event vector contain-
ing semantic information, LogLR uses LSTM to solve the problem of gradient
disappearance and explosion during long-sequence training, and extract the log
sequence vector. Figure 3 shows the overview of An LSTM Cell.
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Fig. 3. Overview of An LSTM Cell

LSTM uses the gating unit to combine the LSTM state of the previous time
step with the input data of this time step to generate the LSTM state of this
time step. The gating unit is calculated as the Eq. 2:

ft = δ(Wf · [ht−1, xt] + bf )
it = δ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, x] + bc)
ot = δ(Wo · [ht−1, xt] + bo)

(2)

The LSTM state at this time step is calculated as Eq. 3:

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)
(3)

In order to extract the timing information of the log sequence, LogLR connects
multiple LSTM Cell, inputs the log events in the log sequence into different
LSTM Cell in turn, and uses the final hidden ht as the log sequence vector of
the sequence, which is called the temporal log vector.

3.3 Weak Label Estimation

After log-vectorization, LogLR uses LTN [1], a framework that combines tensor
networks with first-order multivalued logical inference, to label unlabeled data.
The structure of LTN is shown in Fig. 4.

Some objects are associated with a set of quantitative properties, represented
by a real-valued n-tuple G(oi) ∈ Rn, which we call grounding, where oi belongs to
an infinite set of objects O =

{
o1, o2, ...

}
. LogLR uses the vectorization process

as the ground, x+ are the normal examples, x− are the abnormal examples input
into G(A|θ) : x → sigmoid(MLP (x)), where MLP is a multilayer perceptron
with one output neuron whose parameter θ needs to be learned. Through Gθ(A),
LogLR obtains a probability value as the label of the input example, and labels
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Fig. 4. Overview of LTN

weak labels for the examples at the boundary of normal examples and abnormal
examples, reducing the impact of data annotation errors on the model.

LTN introduces the inference mechanism by setting the axioms, and in the
back-propagation stage, the model parameters are adjusted by setting the loss
function using the axioms. The axioms are set as shown in Eq. 4:

∀x+A(x+)
∀x−¬A(x−)

(4)

K is a set of closed first-order logic formulas. The objective function with K ={∀x+A(x+),∀x−¬A(x−)
}

is denoted as SatAggφ∈KGθ,x←D(φ). The value of
the objective function represents the satisfaction of the knowledge base and
the confidence that all examples are correctly classified. The loss function is
calculated as 1 minus the value of the objective function. The objective function
of LTN is calculated as Eq. 5:

SatAggGθ(φ)
φ∈K

=

1 − 1
2
(1 − (1 − (

1
|G(x+)|

∑

v∈G(x+)

(1 − sigmoid(MLPθ(v)))2)
1
2 ·2)

+ 1 − (1 − (
1

|G(x−)|
∑

v∈G(x−)

(sigmoid(MLPθ(v)))2)
1
2 ·2))

1
2

(5)

The notation Gx←D(φ(x)) means that the variable x is grounded with the data
D when grounding φ(x).

In the weak label estimation stage, LogLR obtains a true value for the input
sample in the interval [0, 1] as the label value of the unlabeled data. The sam-
ples at the classification boundary are easily mislabeled, and directly classifying
the samples with a large label error rate will change the distribution of the
samples. LogLR uses probability values as weak labels to increase training data
and improve the detection accuracy of the model without changing the overall
distribution of samples as much as possible.
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3.4 Anomaly Detection

In the anomaly detection step, we use the session as the basic unit of classi-
fication of the anomaly detection model. A session is a process of information
exchange between a client and a server. A session is established within a period
of time, during which multiple information transfers are involved. We use two
hyperparameters to divide sessions into log sequences, which are fed into the log
anomaly detection model. A session is considered normal when all log sequences
in the session are classified as normal by the anomaly detection model, but is
considered abnormal when at least one log sequence in it is detected as abnormal.

LogLR detects anomalies using the LTN detection model. After the weak
label estimation stage, LogLR retrains the LTN model with weak labels. LogLR
uses log sequences marked with 0 or 1, where 0 indicates that the log sequence
is abnormal and 1 indicates that the log sequence is normal. Different from
the weak label estimation stage, the anomaly detection stage compares the true
value between [0, 1] obtained by the LTN model with the preset threshold. LogLR
detects the log sequence as normal when the true value of the output is greater
than the threshold, otherwise it is detected as abnormal.

Overall, LogLR processes unstructured logs and converts them into struc-
tured log events. Secondly, construct the log event sequence, and extract the
timing information and logical information in the log sequence and convert it
into a log vector. Then, the training data is increased by the weak label estima-
tion method, and finally the LTN model is used to extract the logical relationship
between log sequences to improve the accuracy of anomaly detection.

4 Evaluation

4.1 Datasets

We evaluate our approach on two publicly available log datasets, including the
HDFS dataset and the BGL dataset.

HDFS dataset: It is generated through running Hadoop-based map-reduce
jobs on more than 200 Amazon’s EC2 nodes, and labeled by Hadoop domain
experts [3]. HDFS dataset has 11197954 log entries, according to the identifiers,
the log sequences are divided into 575061 identifiers. Each identifier is annotated
by domain experts. Among them, 4855 normal log sequences and 1638 abnormal
sequences are selected as the training dataset, and the rest are used as the test
dataset for testing.

BGL dataset: It is generated by the Blue Gene/L supercomputer, which
consisted of 128K processors and was deployed at Lawrence Livermore National
Laboratory(LLNL) [15]. BGL dataset has 4747963 log entries, each log entry is
labeled by domain experts as normal or abnormal, and 348460 logs are labeled
as abnormal. Divide log entries into log sequences, 44054 normal log sequences
and 4050 abnormal sequences are selected as the training dataset, and the rest
are used as the test dataset for testing.
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To execute anomaly detection approaches, we group log entries into different
sessions by an identifier field which for HDFS log is block id and for BGL log
is the sliding window. We divide each dataset into training, validation, and test
sets with a ratio of 6:1:3 to evaluate the performance of log-based anomaly
detection methods. To evaluate the annotation accuracy of the semi-supervised
method LogLR, we sample 50% of the training data as known log sequences and
the remaining log sequences in the training data as unlabeled log sequences to
simulate a semi-supervised scenario.

4.2 Measurements

In this paper, we use Precision, Recall and F1-score scores to measure the effec-
tiveness of abnormal detection based on log-based abnormal detection. Preci-
sion, Recall and F1-score is calculated as TP

TP+FP , TP
TP+FP , 2·(Precision·Recall)

Precision+Recall ,
where TP, FP, and FN refer to the number of true positives(An abnormal log
sequence is detected as an abnormal sequence), false positives(A normal log
sequence is detected as an abnormal sequence), and false negatives(An abnor-
mal log sequence is detected as a normal sequence), respectively.

4.3 Results and Analysis

Comparison with Statistical Methods. Figure 5 shows the superiority of
using LTN for data annotation. Compared with statistical methods, LTN grad-
ually regulates the classification boundary between normal and abnormal log
sequences by automatic learning, and has improved the accuracy of annotation
through the reasoning mechanism to reason log sequences. The experimental
results show that the accuracy of using LTN for data annotation reaches 97.1%,
which is higher than the existing statistical method PCA [4], K-Means [11], MST
[5] and HDBSCAN [13]. LogLR uses weak label estimation method to provide
a probability value for the log sequence labeled by error, thereby reducing the
impact of error annotation on the detection model.

Comparison with Anomaly Detection Methods. Figure 6 shows the supe-
riority of LogLR over other semi-supervised and unsupervised learning methods.
LogLR captures the logical relationship of temporal log vectors through preset
axioms, extracts the logical information of log sequences, and achieves better
detection results. DeepLog and LogAnomaly outperform BGL on HDFS dataset,
This is because there are more unstable data in BGL due to its longer time span
compared with HDFS. More specifically, the BGL dataset is unstable, there are
a lot of data in the test data that did not appear during training. DeepLog and
LogAnomaly predict log events based on log sequences, are sensitive to unseen
log events, and detect unseen log events as anomalies. PLELog only performs
simple binary classification processing on the time log vector, ignoring the log-
ical relationship between log events. Compared with LogGAN, LogLR achieves
better results by pre-extracting the temporal characteristics of log sequences.
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Fig. 5. Experimental results of HDFS dataset data label accuracy

LogLR outperforms existing state-of-the-art unsupervised and semi-supervised
learning methods. Table. 1 shows the comparison of LogLR with the state-of-the-
art supervised learning methods. Although there is a gap between LogLR and
LogRobust, the gap between the three metrics is very small. This shows that
LogLR combines the advantages of supervised learning well with weak label
estimation methods. Moreover, as LogRobust depends on a large amount of
manually labeled training data, LogLR has greater usability in practice.

Fig. 6. Evaluation on two datasets
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Table 1. Comparison with supervised learning method

LogRobust-HDFS LogRobust-BGL LogLR-HDFS LogLR-BGL

Precision 0.98 1.00 0.98 0.98

Recall 1.00 1.00 0.99 1.00

F1-score 0.99 1.00 0.99 0.99

5 Conclusion

Over the years, many log-based anomaly detection methods have been proposed,
but they lack inference mechanisms that prevent models from mining logical
relationships between logs. In this paper, we propose LogLR, a log anomaly
detection method based on logical reasoning. LogLR extracts the temporal and
logical information of log sequences by effectively combining LTN and LSTM.
LogLR uses LTN to detect anomalies while applying LTN to data annotation,
which not only saves time costs, but also maintains the accuracy of supervised
learning. Finally, we demonstrate the effectiveness of LogLR on the two most
widely used public datasets, demonstrating that LogLR outperforms current
state-of-the-art methods.
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bayes feature embedding. Comput. Secur. 103, 102158 (2021)

7. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS),
pp. 33–40. IEEE (2017)

8. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for
anomaly detection. In: 2016 IEEE 27th international symposium on software reli-
ability engineering (ISSRE), pp. 207–218. IEEE (2016)

9. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R.: Failure prediction in IBM bluegene/l
event logs. In: Seventh IEEE International Conference on Data Mining (ICDM
2007), pp. 583–588. IEEE (2007)



500 K. Zhang et al.

10. Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X.: Log clustering based problem
identification for online service systems. In: Proceedings of the 38th International
Conference on Software Engineering Companion, pp. 102–111 (2016)

11. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

12. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs
for system problem detection. In: USENIX Annual Technical Conference, pp. 1–14
(2010)

13. McInnes, L., Healy, J.: Accelerated hierarchical density based clustering. In: 2017
IEEE International Conference on Data Mining Workshops (ICDMW), pp. 33–42.
IEEE (2017)

14. Meng, et al.: LogClass: anomalous log identification and classification with partial
labels. IEEE Trans. Netw. Serv. Manage. 18(2), 1870–1884 (2021)

15. Meng, W., et al.: LogAnomaly: unsupervised detection of sequential and quantita-
tive anomalies in unstructured logs. In: IJCAI, vol. 19, pp. 4739–4745 (2019)

16. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

17. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manag. 24(5), 513–523 (1988)

18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

19. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66
(2004)

20. Wang, Z., Chen, Z., Ni, J., Liu, H., Chen, H., Tang, J.: Multi-scale one-class recur-
rent neural networks for discrete event sequence anomaly detection. In: Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 3726–3734 (2021)

21. Wright, R.E.: Logistic regression. (1995)
22. Wu, D., et al.: LSTM learning with Bayesian and Gaussian processing for anomaly

detection in industrial Iot. IEEE Trans. Industr. Inf. 16(8), 5244–5253 (2019)
23. Xia, B., Bai, Y., Yin, J., Li, Y., Xu, J.: LogGAN: a log-level generative adversarial

network for anomaly detection using permutation event modeling. Inf. Syst. Front.
23(2), 285–298 (2021)

24. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Largescale system problem
detection by mining console logs. In: Proceedings of SOSP 2009 (2009)

25. Yang, L., et al.: Semi-supervised log-based anomaly detection via probabilistic
label estimation. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 1448–1460. IEEE (2021)

26. Zhang, X., et al.: Robust log-based anomaly detection on unstable log data. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, pp.
807–817 (2019)



A Software Security Entity Relationships
Prediction Framework Based

on Knowledge Graph Embedding Using
Sentence-Bert

Yan Wang1, Xiaowei Hou1,2, Xiu Ma1,2, and Qiujian Lv1(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wangyan,houxiaowei,maxiu,lvqiujian}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Science, Beijing, China

Abstract. Recently, the need for complex cyber attack knowledge is
increasing with the rising risk of software vulnerabilities and weaknesses
on the internet. To spread knowledge and strengthen software secu-
rity defense, researchers record software vulnerabilities, weaknesses, and
attack patterns through software databases, including CVE, CWE, and
CAPEC, etc. However, software security databases are time delayed and
thus miss unobserved facts. Attackers can take advantage of this problem
to execute an attack successfully. Therefore, the reasoning task of pre-
dicting software security entity relation is critical to supplementing soft-
ware security data. This paper constructs a software security knowledge
graph and proposes a knowledge graph representation learning method
combining Sentence-Bert and GAT. The way can implement link predic-
tion and classification tasks for knowledge graph completion. We finally
designed a large number of experiments to evaluate the effectiveness of
our model in knowledge graph completion and knowledge graph classifi-
cation. The experimental results demonstrate that the proposed method
can effectively improve the effectiveness of prediction.

Keywords: Software security entity · Entity relation prediction ·
Sentence-bert · Knowledge graph embedding · Graph attention network

1 Introduction

Software security data is stored in knowledge databases, a rich set of relation-
ships between the same type of entities or different types of entities. Researchers
take advantage of these security databases to manage the information on soft-
ware vulnerabilities, weaknesses, and attack patterns to protect security and
share security knowledge with the attacked organization. Common Vulnerabil-
ities and Exposures (CVE) list publicly identified security vulnerabilities. For
example, CVE-2017-0144 is a security vulnerability that uses the SMB protocol
of Windows to obtain the highest permissions of the system so that attackers

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 501–513, 2022.
https://doi.org/10.1007/978-3-031-19214-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19214-2_42&domain=pdf
https://doi.org/10.1007/978-3-031-19214-2_42


502 Y. Wang et al.

can control the compromised computer. The Common Weakness Enumeration
(CWE) presents software weaknesses developed by the security community, such
as CWE-506 is embedded malicious code. Common Attack Pattern Enumeration
and Classification (CAPEC) defines specific attack patterns and relevant solu-
tions to defense. The CAPEC-185 denotes its attack pattern with “Malicious
Software Download”.

Entities in the three security databases have a large number of relations. For
instance, the CAPEC-112, which summarizes the attack pattern of brute force,
can associate the CAPEC-664 with the relation “CanPrecede”. Meanwhile, Par-
entOf and ChildOf relationships between CWE (or CAPEC) reveal similar weak-
nesses (or attack patterns) that may exist in superior-subordinate relationships
such as <CWE-330 ParentOf CWE-804>. Security entity relations give plenty
of security information that benefits experts for security analysis and vulnera-
bility repair. However, the CVE, CWE, and CAPEC databases inevitably miss
software security entity-relationship. We need speed time to wait for software
security databases to be updated, so an attacker can take advantage of this time
gap to implement an attack successfully.

We construct a software security knowledge graph and propose software
security entity-relationship prediction based on graph representation learning
to address the above limitations of security databases. Facing the dynamic com-
plex network environments, internal and external network threat intelligence,
and the increasing need for network defense, knowledge graphs show excellent
application potential in the network security area because of their capabilities in
knowledge aggregation, representation, management, and reasoning [7]. In our
study, the software security knowledge graph construction can associate multi-
source security knowledge based on software security. Therefore, implementing
software security entity-relationship prediction helps achieve threat intelligence
reasoning to improve the ability to protect software security.

We summarize the main contributions as follows:

(1) We design a model based on sentence-Bert representation learning, which
learns the paragraph features an entity and relationship description state-
ments and has better prediction performance.

(2) We enhance the representation vector of our software security knowl-
edge graph by introducing an auxiliary relationship of multi-hop neighbors
between two entities to acquire knowledge from the distant neighbors of an
entity to obtain information about the relationships between triples.

(3) Experiments on scenarios such as relationship prediction, entity predic-
tion, triple classification, and multi-classification of vulnerability severity
are designed to demonstrate their effectiveness on software security knowl-
edge graph reasoning tasks.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 presents the details of the proposed model. Section 4 describes the
detailed setup of the experiments. The experimental results are described in
Sect. 5. Finally, Sect. 6 concludes our research.



A Software Security Entity Relationships Prediction Framework 503

2 Related Work

Firstly, this section introduces three software security databases we used in our
research. Then, we focus on the software security entity prediction models based
on knowledge graph representation learning. Finally, we review some current
models of knowledge graph representation learning.

Knowledge graph representation learning attempts to represent entity and
relation into a low-dimensional dense vector. It is widely used in various domains
and has proven to predict the implied security entity relationships from software
security databases.

CVE, CWE, and CAPEC consist of rich software security knowledge. Com-
mon Vulnerabilities and Exposures (CVE) [3] provides a unique identification
number for each public security vulnerability or exposure. Common Weakness
Enumeration (CWE) [4] is a list of software weakness types developed by the
security community. Common Attack Pattern Enumeration and Classification
(CAPEC) [2] provides a comprehensive dictionary of known attack patterns
that attackers employ to exploit the software weaknesses in the applications and
systems.

In recent work, Han [5] constructed a knowledge graph of common software
weaknesses and proposed a knowledge graph embedding approach to embed the
structural and textual knowledge of CWE into vector representations. Xiao [13]
proposed a knowledge graph embedding approach to embed the knowledge of
security concepts and instances based on the model of CNN. Yuan [15] designed
a text-enhanced GAT model to represent the structural and textual knowledge
from the security knowledge graph.

Knowledge graph embedding can project a large-scale knowledge graph into
a continuous low-dimension vector space. There are many methods for modeling
entities and relations of triples in the knowledge graph. TransE [1], TransH [12],
and TransR [6] are translation-based methods that could achieve the task of link
prediction in the knowledge graph. Among them, TransE is a basic knowledge
graph embedding model, and it interprets the relations as translating operations
between head and tail entities on the low-dimensional vector space. The above
translation-based models focus on the structural information between entities,
regardless of rich information encoded in entity descriptions. There are sev-
eral methods using textual information to help knowledge graph representation
learning. Socher [11] represented the new neural tensor network, which represents
each entity as the average of its word vectors. Xie [14] explored the continuous
bag-of-words and deep convolutional neural models to encode the semantics of
entity description. Reimers [10] introduced the SBERT model, which can create
sentence embedding that outperforms other embedding methods significantly.
However, these models consider the triple independently so that they can not
capture the potential relations in the adjacent neighbors of each entity. To solve
this problem, Nathani [8] introduced the graph attention network represents
each entity with the potential knowledge from its multi-hop neighbors.
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Fig. 1. The architecture of our model.

3 Model Architecture

This section describes the model architecture and the algorithm details behind
our model. Figure 1 illustrates the workflow of our method. We design a method
for reasoning about software security entity relationships based on knowledge
graph representation learning. Our model consists of four parts, and the detailed
description of each step is as follows.

3.1 Knowledge Graph Construction

To aggregate scattered software security information, we construct the software
security knowledge graph using three semi-structured databases, including CVE,
CWE, and CAPEC. We show an example of the software security knowledge
graph in Fig. 2. And it can be typically defined as

G = (E,R, T ) (1)

where G is a labeled and directed multi-graph, E, R, and T are sets of entities,
relations, and triples, respectively. In the knowledge graph, we construct each
triple that is denoted as

T = {(h, r, t) |h, t ∈ E, r ∈ R} (2)
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Fig. 2. An example of software security knowledge graph.

where h, r, and t are the head entity, relation, and tail entity, respectively. This
formula represents a fact, i.e., a relationship between the head and tail entities.
For example, (CWE-330, ContainOf, CVE-2009-2367) is a triple shown in Fig. 2.
CWE-330 is the head entity in this triple, ContainOf is the relation, and CVE-
2009-2367 is the tail entity.

Triples are the generic representation of a knowledge graph. There are 16746
triples in the entire knowledge graph. The entities in all triples have three types,
including CVE ID, CWE ID, and CAPEC ID, because they come from three
heterogeneous databases, respectively. And the number of entities is 4144, of
which 2677 are the entities in CVE, 924 are the entities in CWE, and 544 are
the entities in CAPEC. Moreover, relations contain twelve types of relationships,
such as ChildOf, PeerOf, etc. It is worth noting that we construct a two-way
relationship between entities.

3.2 Structure Embedding Generation

Structure embedding generation, a usual method of knowledge graph trained
by TransH, is the second step of our models. This step aims to mine the po-
tential relationships of triples in the knowledge graph. To improve the model’s
efficiency and consider the one-to-many, many-to-one, and many-to-many char-
acteristics of entities in our knowledge graph, we select the TransH model to
extract the structural features. The TransH models a relation as a hyperplane
and a translation operation on it. Then, the score function is

fr(h, t) = ‖(h − wT
rhwr) + dr − (t − wT

r twr)‖22 (3)

In this way, we can preserve the mapping properties of the given relations.
Meanwhile, the training efficiency of the model exceeds that of the TransE model.
Firstly, we input the training set constructed in the previous step into the TransH
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model, which maps the triple to a continuous vector space. We set the structure-
embedding vector with a dimension of 128 for obtaining adequate information
based on the structure of the knowledge graph. Then, the output is the structure
vector of each security entity.

3.3 Description Embedding Generation

However, limited by the sparseness of the knowledge graph structure, representa-
tion learning only from a structural perspective can no longer meet our research
needs. We introduced the auxiliary information to improve the performance.
Moreover, we regard that the two entities with similar descriptive sentences are
more likely to be related in this phase. Similar ones will obtain a high similar-
ity vector when description statements are mapped into the vector space. We
adopt the Sentence-Bert model to embed the description information of security
entities and relationships equally into a continuous vector space, thus providing
a representation-enhancing effect on the structural embedding. Sentence-BERT
is a modification of the BERT network using triplet networks that can derive
semantically meaningful sentence embedding. Adding a pooling layer to the pre-
trained BERT model produces a high accuracy of sentence embedding. The role
of pooling is to combine these vectors into a fixed-length sentence vector.

Our research extracts the name and description field in three databases as
texture information. For example, the name of CAPEC-112 is brute force. Its
description is The attacker attempts to gain access to this asset by using trial-
and-error to exhaustively explore all the possible secret values to find the secret
that will unlock the asset. We input the texture information of all security enti-
ties in the knowledge graph. Then the pre-trained Sentence-Bert model is loaded
to obtain the sentence vector. And finally, we receive the sentence vector repre-
sentation of the descriptive statements.

The joint embedding vector is generated by concatenating the structure
embedding vector trained by TransH and the texture embedding vector trained
by SBERT. Therefore, the joint embedding vector combines two vector represen-
tations and has a better prediction performance than the vector representation
only based on the structure of the knowledge graph.

3.4 Graph Attention Layer

There are two parts to this section. Firstly, the joint embedding vector is gen-
erated by concatenating the structure embedding vector trained by TransH and
the texture embedding vector trained by SBERT. Therefore, the joint embed-
ding vector combines two vector representations and has a better prediction
performance than the vector representation only based on the structure of the
knowledge graph.

Secondly, we introduce the model of the graph attention. Our software se-
curity knowledge graph represents structural, and texture features as a global
vector. However, we observe that every entity has at least one neighbor who is
an entity in other triples. And then we can find out neighbors of the entities and
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even more. Thus, we can discover the multi-hop neighbors of entities and then
discover the local relationships. Meanwhile, the model of graph attention can
consider the information of neighboring nodes in the knowledge graph to reflect
the diversity of roles of the same security entity in different relationships.

In detail, Our model achieves these objectives by assigning different weights
to different neighborhood nodes and by propagating attention via layers in an
iterative fashion. We introduce an auxiliary edge between multi-hop neighbors,
which allows the flow of knowledge between entities. And then, our model can
allow the flow of knowledge between entities to decrease the negative influence
of the distance between entities.

3.5 Model Training

The objective of our model in this step is to minimize the score function, i.e.,
the loss function:

L =
∑

(h,r,t)∈T

∑

(h′ ,r,t′ )∈T ′
max(γ + E(h, r, t) − E(h

′
, r, t

′
), 0) (4)

where γ is a margin hyperparameter that is limited to be greater than 0. E(h, r, t)
is the energy function, which is defined as

E = Es ⊕ Ed (5)

where Es is the energy function of the structure-based representation, which is
defined as

Es = ‖hs + rs − ts‖ (6)

and Ed is the energy function of the texture-based representation, which is
defined as

Ed = ‖hd + rs − ts‖ (7)

In triple T , head or tail entities are replaced by another entity. And then, an
invalid triple that does not exist in our SSKG is formed, which is defined as

T
′
=

{
(h

′
, r, t)|h′ ∈ E ∪ (h, r, t

′
)|t′ ∈ E

}
(8)

Finally, we adopt the ConvKB algorithm [9] as a decoder to compute the
final score of the triple. And it is trained using soft-margin loss.

4 Experiments Setup

4.1 Datasets

Our study constructs a software security knowledge graph based on CWE, CVE,
and CAPEC databases. The experimental database was collected from the ver-
sion of November 5, 2021. We extract CWE ID, CVE ID, and CAPEC ID as
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entities, the titles and descriptions of CVE, CWE, and CAPEC as texture infor-
mation of the entities, and extract the relations between different entities to
form triples. The type of relation in SSKG is shown in Table 1. We create 12
types of relations and then complement the complementary relationships in the
datasets. We implement this step to help entities as much as possible to find out
their neighbor’s information by the operation of multi-hop.

We remove the entities without descriptions in the pre-processed datasets to
ensure that each entity has a description statement, and we also remove all the
triples containing these entities. There are 16748 triples in the dataset, of which
85% are in the training set, and 15% are in the test set.

4.2 Evaluation Protocols

We implement TransE, TransH, CNN, Sentence-Bert, GAT, and other models
for comparison. The specific experimental settings are: structural embedding
dimension of entities and relations is 128d, textual embedding dimension is 384 d,
GAT embedding dimension is 512 d, final output dimension is 200 d, the learning
rate is set to 1e−3, and margin is set to 1.0.

4.3 Baseline Protocols

We utilize six baseline models on the dataset we construct above. And the base-
line methods adopt the same training set and hyper-parameter settings as our
approach.

Baseline1: Baseline 1 is designed to extract structure-based features in CVE,
CWE, CAPEC entities, and relations using the primary knowledge graph embed-
ding method TransE.

Baseline2: Baseline 2 extracts structure-based features in CVE, CWE,
CAPEC entities, and relations using the baseline knowledge graph embedding
method TransH.

Baseline3: Baseline 3 is designed for extracting texture-based and structure-
based features of entities and relations in triples. It extracts structure-based fea-
tures and texture-based features using TransE and Sentence-Bert, respectively.

Baseline4: Baseline 4 extracts structure-based and texture-based features
using TransH and Sentence-Bert, respectively.

Baseline5: Baseline 5 is proposed by Xiao [13]. A new embedding method is
to create a knowledge graph embedding model based on the translation model,
CNN textual encoding, and word embedding by joint training.

Baseline6: Baseline 6 is proposed by Yuan [15]. It is a textual-enhanced GAT
model for better representing and learning structural and textual knowledge
from the software security knowledge graph, which integrates CVE, CWE, and
CAPEC.
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Table 1. The type of relation in software security knowledge graph.

Type ChildOf ParentOf PeerOf CanPrecede Requires CanAlsoBe

Number 1649 1649 132 293 13 30

Type StartsWith CanFollow BelongOf ContainOf TargetOf CanAttack

Number 3 293 5191 5191 1152 1152

5 Experiments Results

We validate the effectiveness of our model through multi-hop and ablation stud-
ies. And then, we conduct two application experiments on link prediction and
triple classification tasks.

5.1 Multi-hop Study

This section focuses on the impact of neighbor hop times on entity predictive
performance. For example, when n is equal to 1, our model finds out the most
relevant nodes of the graph, namely the node features in a 1-hop neighborhood.
And then, our model extends the attention mechanism in a multi-hop neighbor-
hood of a given node.

The results of evaluating the overall performance on entity predicting are
shown in Table 2. We can see that the 3-hop has the best performance in the task.
The Hits@10 of our model outperforms the 1-hop, 2-hop, 3-hop, 4-hop, and 5-hop
by 0.091, 0.029, 0.063, and 0.086, respectively. And the Mean Rank of our model
outperforms the 1-hop, 2-hop, 3-hop, 4-hop, and 5-hop by 45.5, 3.9, 22.9, and 27.5,
respectively. The multi-hop has better performance than the 1-hop in that multi-
hop encapsulates more rich semantics and potential relationships. However, it does
not mean that the model’s predictive performance is better with more hops. When
n = 4, the model’s performance begins to decline due to over-fitting.

Table 2. Evaluation results on multi-hop study.

Metric Hits@10 Mean rank

1-hop 0.831 72.4

2-hop 0.893 30.8

3-hop 0.922 26.9

4-hop 0.859 49.8

5-hop 0.836 54.4

5.2 Application Studies

Knowledge Graph Link Prediction. In this step, we want to study how our
model can improve the accuracy of knowledge graph link prediction. The task of
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knowledge graph link prediction is to minimize the scoring function T (h, r, t) =
‖h + r − t‖ and to complement a triple (h, r, t) when one of h, t, r is missing.

We treat the knowledge graph link prediction task as two sub-tasks: entity
prediction and relation prediction. And then, we experiment with our method
and several baseline methods with the embedding representations. We use two
metrics to evaluate our experimental results:

(1) The proportion of correct entities ranked in the top 10 of the predicted
entities(Hits@10), and the proportion of correct relations ranked in the top
3 of the predicted relations(Hits@3).

(2) The average ranking of correct entities or relations(Mean Rank).

According to the results in Table 2, our model achieves the best performance
in both evaluation metrics compared with other baseline methods. The Hits10 of
our model outperforms the Baseline1, Baseline2, Baseline3, Baseline4, Baseline5,
Baseline6 by 0.596, 0.436, 0.586, 0.410, 0.262, and 0.058, respectively. Similar
conclusions can be drawn on mean rank. Our model outperforms the Baseline1,
Baseline2, Baseline3, Baseline4, Baseline5, and Baseline6 on mean rank by 533.9,
502.7, 505.1, 403.8, 84.3, and 34.0, respectively.

Meanwhile, the results on relation ranking shown in Table 3 are similar to
the effects on entity ranking. Our model also achieves the best performance
compared with the two baseline methods. The Hits@3 of our model outperforms
the Baseline1 and Baseline3 by 0.160 and 0.176, respectively. And the Mean Rank
of our model exceeds the Baseline1 and Baseline3 by 1.68 and 1.71, respectively.

Our model achieves the best performance on the knowledge graph link
prediction task compared with the baseline approaches. And concatenation of
structure-based and texture-based representation outperforms the model of only
structure-based representation. Therefore, structure-based representation helps
improve link prediction results, but much textual information could lead to bet-
ter performance. Meanwhile, we can infer that our method based on the SBERT
model and GAT can represent the textual information of an entity and extract
more auxiliary relations from the multi-hop neighbors (Table 4).

Table 3. Evaluation results on entity
prediction.

Metric Hits@10 Mean rank

Baseline 1 0.326 559.8

Baseline 3 0.336 531.0

Baseline 2 0.486 528.6

Baseline 4 0.512 429.7

Baseline 5 0.660 110.2

Baseline 6 0.864 59.9

Our model 0.922 25.9

Table 4. Evaluation results on relation
prediction.

Metric Hits@3 Mean rank

Baseline 1 0.784 3.05

Baseline 3 0.768 3.08

Our model 0.944 1.37
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Triple Classification. This section aims to investigate whether and to what
extent our model can correctly classify the heterogeneous triples compared with
the Baseline2 and Baseline4. And the goal of the triple classification task is
to reach a given triple(h, r, t) with the correct triple in the test set and then
determine whether it is a positive triple or not. This problem can be viewed as
a binary classification problem. And similar to link prediction, this experiment
applies only to our model, the Baseline2 and Baseline4.

The evaluation of this task requires setting up negative triples. Because our
dataset contains only correct triples, we need to set some negative triples. The
experimental setup is done in the same way as entity prediction. The head or
tail entities of the triples are replaced by entities from a random list of entities,
denoted as (h’, r, t) or (h, r, t’). And then, a binary classifier is trained. The
purpose of this classifier by the energy function is less than this threshold. The
triple is the positive triple. Otherwise, it is the negative triple. In this task, we
use four metrics, including Accuracy, Precision, Recall, and F1, for evaluating
the overall performance of the triple classification task shown in Table 5.

Therefore, our model can support triples reasoning tasks and achieve the
best performance compared with the baseline models. And Table 5 presents the
results of the triple classification task compared with Baseline2 and Baseline4.

Table 5. Evaluation results on triple classification.

Metric Accuracy Precision Recall F1

Baseline 2 0.749 0.864 0.294 0.438

Baseline 4 0.760 0.836 0.347 0.490

Our model 0.794 0.933 0.394 0.552

Results claim that our model based on knowledge graph embedding can suc-
cessfully support the triple classification task. And our model could slightly out-
perform the only structure-based baseline2 and the concatenation representation
of structure-based and texture-based Baseline4.

6 Conclusion

This paper proposes a model to predict software security entity relation in the
software security knowledge graph we build, and a series of experiments are
conducted on real datasets. As a result, our model can predict entity relation
and classify triples as a general model. It behaves better than the state-of-the-art
methods. Especially, it can learn the paragraph features and the information of
multi-hop neighbors to help models perform better predictions.
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In the future, it is hoped that this method can be validated in network
security problems from various domains. Our model has been tested on real
datasets using software security knowledge graph, which lays a foundation for
application to the problems of predicting knowledge graph entity relation in other
domains. The efforts here may motivate the necessity and encourage further
research into predicting software security and vulnerability detection.
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Abstract. As crowdsourcing continues to evolve, researchers explored
task matching in crowdsourcing extensively. However, the privacy issues
such as task content of publishers and ability or interest of worker
in task matching are often overlooked. Also, the identity of the task
publisher/worker needs to be protected. To address the above issues,
we propose a secure task matching scheme in crowdsourcing based on
blockchain in this paper. Firstly, we implement multi-publisher/multi-
worker task matching in the scheme while protecting task content pri-
vacy. Meanwhile, we take advantage of the immutability of the blockchain
to ensure the reliability of publishing/matching results. We utilize the
smart contract for task publishing/matching without human interven-
tion. Finally, the scheme is shown to be secure and feasible through
theoretical and comprehensive performance evaluations.

Keywords: Task matching · Multi-publisher/Multi-worker ·
Blockchain · Smart contract

1 Introduction

Crowdsourcing is a new distributed paradigm that adopts the idea of gathering
wisdom to accomplish greater tasks and is mainly used for high computational
or wide coverage tasks. With the rise of crowdsourcing in the past few years, lots
of researchers are interested in it [1–3]. At the same time, many companies have
introduced crowdsourcing into their work, such as Amazon Mechanical, MTurk
and CrowdFlower.

Task matching is an integral part of the crowdsourcing system, allowing work-
ers to find the tasks they are interested in. What is noted that privacy protection
in task matching in crowdsourcing is often overlooked. In fact, privacy-preserving
crowdsourcing schemes also exist in existing research, particularly spatial crowd-
sourcing. In schemes [4,5], they protect the worker’s for location services. How-
ever, it is also important to protect the privacy of task content. Due to the lack of
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task content, there is thus the possibility of malicious servers inferring the sensitive
information of task publishers/workers. Therefore, how to protect the privacy of
task content is a challenge.

In order to protect the privacy of task content, it is necessary to encrypt the
task content before publish it, and the ciphertext needs to be matched in the
crowdsourcing system. Searchable encryption will provide a good solution for
task matching in crowdsourcing system. Searchable confidential schemes such
as [6,7] are mainly for single users, users generate their own ciphertexts that
can only be matched by themselves. Nonetheless, with the existence of multi-
publisher/multi-worker in the crowdsourcing system, the above scheme is clearly
not sufficient. Therefore, it is necessary to implement multi-publisher/multi-
worker task matching with the privacy of the task content protected.

When using searchable encryption in task matching, it is important to under-
stand that the crowdsourcing system may be some dishonst behavior [8]. It wants
to explore sensitive information of task publisher/worker, and even gives wrong
matching results to the worker. Therefore, how to avoid the wrong results of
crowdsourcing system is a challenge. With the rise of Bitcoin [9], blockchain is
gradually gaining the attention of researchers [10,11]. As a distributed ledger,
blockchain combines consensus algorithms, cryptography, etc. to achieve the con-
sistency and credibility of multi-party nodes. Smart contracts are codes that run
on the blockchain and use the characteristics of the blockchain to ensure correct
and automatic execution without trusted third parties.

In this paper, considering the above problems of task matching in crowdsourc-
ing, we design a multi-publisher/multi-worker, privacy-preserving task matching
in crowdsourcing system based on the blockchain with smart contract. The main
contributions of this paper can be summarized as follows:

– We design multi-publisher/multi-worker task matching scheme and imple-
ment privacy protection for task content.

– We guarantee correct task matching result adopting smart contracts in the
blockchain. Meanwhile, due to the anonymity of the blockchain, the identity
of the task publisher/task worker is also protected.

– Compared with other schemes, our scheme has advantages in time cost while
ensuring security.

The remainder of this paper is organized as follows. Section 2 introduces
related works. Section 3 describes related preliminaries contained in our scheme.
Section 4 presents the system model, threat model and design goals. Section 5
shows the details of our scheme. Sections 6 and 7 present the security and per-
formance analyses, respectively. Finally, conclusions are drawn in Sect. 8.

2 Related Works

With the rise of crowdsourcing, task matching is becoming increasingly popu-
lar among researchers. At the same time, the privacy protection issue of task
matching in crowdsourcing is gradually coming into the view of researchers.
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To et al. [12] utilized differential privacy techniques to propose a privacy-aware
framework that effectively protected the spatial privacy of workers. Xu et al. [13]
protected the privacy of publishers and workers with inner-product encryption
and one-time anonymous authentication mechanisms, while allowing for detec-
tion of multiple task submissions.

Searchable encryption can be a way to protect the privacy of task content.
Song et al. [6] proposed the first symmetric searchable secrecy scheme in order
to solve the search problem against encrypted data. Boneh et al. [14] constructed
the first public-key searchable encryption algorithm in order to solve the search
problem of public-key encrypted data and with an email sending and receiv-
ing scenario. However, multi-publisher/multi-worker need to be satisfied in task
matching in crowdsourcing. Kiayias et al. [15] utilized the master key to derive
multiple private keys for the purpose of multiple users, but the scheme needed
huge consumption. Furthermore, Shu et al. [16,17] utilized searchable encryp-
tion to protect the privacy of task content, while also devising effective staff
revocation, but the centralized servers that they used may be dishonest.

With the development of the blockchain, some researchers have introduced
the blockchain into the crowdsourcing system. Zhu et al. [18] built a hybrid
blockchain crowdsourcing platform which ensured communication security, ver-
ified transactions and privacy protection through dual ledgers, dual consensus
and smart contracts. Zhang et al. [19] utilized smart contracts, rewritable deter-
ministic hashing and searchable encryption to implement an agent-free privacy-
preserving and federated crowdsourcing system.

3 Preliminaries

3.1 Bilinear Pairings

G1, G2 and GT are all multiplicative cyclic groups of prime order p. Let gi denotes
a generator of Gi. A bilinear map e : G1×G2 → GT has the following properties:

– Bilinearity: For all μ ∈ G1, ν ∈ G2, and a, b ∈ Z∗
p , e(μa, νb) = e(μ, ν)ab.

– Nondegeneracy: e(g1, g2) �= 1.
– Computability: It is efficient to compute e for any input.

3.2 Shamir Threshold Secret Sharing

Shamir threshold secret sharing is a (t, n) threshold secret distribution scheme.
Suppose we exist a secret S. The secret S is subjected to a specific operation to
obtain n secret fragments Si(0 < i <= n), which are given to n individuals to
keep. The original secret S is restored when at least t individuals simultaneously
take out the secret fragments Si they have.

Shamir threshold secret sharing employs Lagrangian interpolation to restore
secret. When the secret S needs to be shared to the n-parties, it picks t − 1
random numbers (a1, a2, ..., at−1) and constructs a secret polynomial f(x) as
follows:

f(x) = S + a1x + a2x
2 + ... + at−1x

t−1
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Then, each of the n parties i will obtain the secret f(i). When the secret S needs
to be restored, the secret set Γ consisting of at least t parties is obtained. For
each party i in Γ , we compute the Lagrangian polynomial:

Li,Γ (x) =
∏

j∈Γ,j �=i

x − j

i − j

Hence, secret S will be restored as follows:

S = f(0) =
∑

i∈Γ

(f(i) · Li,Γ (0))

3.3 Blockchain and Smart Contract

Blockchain essentially works as a distributed ledger, which combines crypto-
graphic algorithms, consensus mechanisms, distributed storage and P2P trans-
mission as a solution to the trust and security problems of multiple nodes.
Blockchain is mainly divided into public chain, private chain and federated chain.
The blockchain consists of many blocks linked together, and the data structure
of the blockchain is shown in the Fig. 1.

Smart contract was originally proposed by Szabo and have since been used
in blockchain. It represents a piece of code that is deployed on the blockchain
and cannot be changed once it is deployed. When the conditions are met, the
smart contract will be executed automatically.

Fig. 1. Block structure

4 System Model, Threat Model, and Design Goals

In this section, we mainly formalize system model, threat model and design
goals.



518 D. Jiang et al.

4.1 System Model

In our scheme, we provide a scheme for task matching in crowdsourcing based
on blockchain. This scheme mainly includes four entities: task publisher, task
worker, key management center (KMC) and blockchain system as shown in Fig. 2

– KMC :KMC mainly performs the initialization of the system, including the
generation and distribution of keys. Meanwhile, KMC is responsible for the
initialization of the blockchain and deployment of smart contracts.

– Blockchain System: The blockchain system contains a lot of nodes, which
execute smart contracts and return the results of the smart contracts after
consensus and upload them to the chain.

– Task Publisher : When a task publisher needs to publish a task, he encrypts
his task content into ciphertext and publishes it using the task publishing
smart contract (TPSC).

– Task Worker : When a task worker needs to match tasks, he generates trap-
doors for the tasks he is interested in. Matching is performed utilizing task
matching smart contract (TMSC).

Fig. 2. System model

4.2 Threat Model

From the above system model, we consider the KMC as honest.

External Attack. An external attacker may intercept the ciphertext/trapdoor
of the task publisher/task worker and guess his sensitive information.
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Internal Attack. Nodes in the blockchain are curious about the sensitive infor-
mation from ciphertext/trapdoor, and there may also be malicious nodes that
wish to return false publishing or matching results.

4.3 Design Goals

Based on the above threat model, the design goals of our scheme are as follows:

– Task confidentiality. After obtaining the ciphertext/trapdoor of the task
publisher/worker, the adversary cannot get information about the task or
distinguish between any two tasks.

– Identity anonymity. The identity anonymity of the task publisher/worker
in the scheme means that the identity and behavior of the publisher/worker
cannot be linked.

– Multi-publisher/Multi-worker matching. While achieving privacy pro-
tection, each task worker can use their own private key for trapdoor genera-
tion.

– Results dependability. The task publisher/worker can get the correct pub-
lishing/matching results.

5 The Proposed Scheme

In this section, we’ll employ blockchain to build a multi-publisher/multi-worker
task matching. And we will describe the details of its build.

5.1 Summary of Model Notations

Table 1 provides a summary of the symbols used in our scheme.

Table 1. Summary of model notations

Notations Description

SMSK System key

SPK Public key

SSKi Private key for each task worker

C, T Task ciphertext/trapdoor for task publisher/worker

f A secret polynomial function

H A hash function

a, b, t, r1, r2 Random numbers

G1, G2 Multiplicative cyclic group

TPSC, TMSC Task publishing/matching smart contract
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5.2 System Initialization

In this process, KMC calls KeyGen and SKeyGen to complete the initializa-
tion of the keys, and distributes the keys. Then, blockchain is initialized and task
publishing smart contract (TPSC) and task matching smart contract (TMSC)
are deployed.

– KeyGen(1λ) → (SMSK,SPK). This algorithm is executed by KMC, and it
is applied to initialize the system key, public key. Taking as input the security
parameter λ, it selects two multiplicative cyclic groups G1 with g1 as the
generator and G2 which have the same prime order p as G1. And it defines a
bilinear map e : G1 × G1 → G2 and a hash function H : {0, 1}∗ → G1. Then,
it chooses some random numbers a, b, t ∈ Z∗

p and gets a secret polynomial
function f(x) = a+ bx. Thus, it outputs the system key SPK and the public
key SMSK as follows.

SPK = (g, g
f(t)

a ), SMSK = (a, b, t)

– SSKeyGen(SMSK,SPK) → SSKi. This algorithm is executed by KMC,
and it is applied to initialize the private keys for each worker. It selects a
random number ti ∈ Z∗

p for each worker and sets Γi = {t, ti}. After that,
it selects a random number s ∈ Z∗

p and outputs the private key SSKi of
each worker which can be obtained according to the Lagrangian interpolation
polynomial as follows.

SSKi = ((Lt,Γi
(0) +

f(ti)
f(t)

Lti,Γi
(0))s, gs)

5.3 Task Publishing

The task publisher who need for task publishing can call the Enc to get the
ciphertext C based on his task content w and the public key SPK.

– Enc(SPK,w) → C. It chooses a random number r1 ∈ Z∗
p and computses the

ciphertext C = (C1, C2) for the keyword w as:

C = (C1, C2) = (H(w)r1 , g
f(t)

a r1)

The nodes on the blockchain invokes the smart contract TPSC to return the
publishing results to the task publisher after consensus. In this paper the task
ciphertext C is stored in the smart contract TPSC.

5.4 Task Matching

The task worker who need for task matching can call the Trap to get the match-
ing trapdoor T based on his matching keyword q and his own private key SSKi.
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– Trap(SSKi, q) → T . It chooses a random number r2 ∈ Z∗
p and computes the

trapdoor T = (T1, T2) for the keyword q as:

T = (T1, T2) = (H(q)(Lt,Γi
(0)+

f(ti)
f(t) Lti,Γi

(0))sr2 , gsr2)

The nodes on the blockchain invokes the smart contract TMSC to return the
matching results to the task worker after consensus. The smart contract TPSC
stores all the tasks published by the task publisher. The smart contract TMSC
achieve the task matching by calling mathbfMatch.

– Match(C, T ) → 0/1. This algorithm will be executed automatically by the
smart contract TMSC. TMSC obtains the task ciphertext C = (C1, C2) in
TPSC and matches with the trapdoor T = (T1, T2). It will check if e(C1, T2)

?=
e(T1, C2). If equal, it returns 1, otherwise it returns 0.

Theorem 1. Matching Correctness. The task matching process is correct. That
is, if Match(C, T ) → 1, then the keyword w of the task publisher is equal to the
keyword q of the worker.

Proof. Suppose Match(C, T ) → 1, and we have

e(C1, T2) = e(T1, C2)

⇔ e(H(w)r1 , gsr2) = e(H(q)(Lt,Γi
(0)+

f(ti)
f(t) Lti,Γi

(0))sr2 , g
f(t)

a r1)

⇔ e(H(w)r1 , gsr2) = e(H(q), g)
r1r2s(f(t)Lt,Γi

(0)+f(ti)Lti,Γi
(0))

a

⇔ e(H(w)r1 , gsr2) = e(H(q), g)r1r2s

⇔ e(H(w), g)r1r2s = e(H(q), g)r1r2s

⇒ H(w) = H(q)

Since H is a hash function, according to its collision-proofness, we can get w = q.
This is the complete proof process.

6 Security Analysis

6.1 External Attack

In task matching, the task publisher/worker generates the ciphertext/trapdoor
by adding random numbers, so that even the same keyword still gets differ-
ent results and cannot be distinguished. In other words, the adversary will not
be able to distinguish the ciphertext/trapdoor of any keyword and obtain the
sensitive information.

6.2 Internal Attack

Similar to the external attack, nodes can not obtain the sensitive information.
At the same time, since the publishing/matching results will be returned after
consensus, it is guaranteed that the results received by the publishers/workers
are correct. Furthermore, random addresses in the blockchain guarantee the
anonymity of task publisher/worker identity information.
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7 Performance Evaluation

In this section, we will implement the proposed scheme, evaluate it and compare
it with related schemes (pMatch [16] and SEMEKS [15]). Table 2 provides a
summary of the symbols used in the evaluation.

Table 2. Summary of evaluation notations

Notations Description

E1, E2 Group exponentiation on G1, G2

P Pairing on 〈G1, G1〉
H1 Hash operation {0, 1}∗ → G1

n Number of publishers/workers

k1, k2 Number of keywords in requirement/query

7.1 Experimental Setting

In order to test our scheme, we implemented the relevant algorithms in the
following environment.

– Ubuntu 20.04.2 virtual machine is built under Windows 10 with 8 GB of
memory.

– PBC v0.5.14, Go1.16 and PBC-Go-Wrapper.

In the comparison of each schemes, our implementation of pMatch, SEMEKS and
our work are based on the elliptic curve SS512(|G1| = 512 bits, |G2| = 1024 bits),
which is a symmetric elliptic curve with base field 512-bit and embedding degree
2. The hash function H is in the PBC library.

7.2 Experimental Results

In our experiments, we compare with related schemes in the task matching
algorithm.

System Initialization. System initialization is done by the key management
center (KMC). It mainly includes keys generation. We set different numbers of
registered workers n from 1000 to 10000 and measure the time consumption of
the different schemes. The computational complexity of SEMEKS, pMatch and
our work are (8E1 + n · 16E1), (3E1 + n · 2E1) and ((n + 1) · E1), respectively.
From Fig. 3(a), our scheme is much less time cost than pMatch and SEMKES.
For example, when the number of workers is 10000, the different schemes are
approximately 228 s, 24 s and 13 s, respectively.
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Fig. 3. System initialization and task publishing

Task Publishing. In the task publishing, the task publisher calls Enc to com-
plete the ciphertext generation. To measure the time cost of ciphertext genera-
tion, we set different numbers of keywords in requirement k1 from 1 to 10. The
computational complexity of SEMEKS, pMatch and our work are (k1 · 9E1),
(k1 · (5E1 + H1)) and (k1 · (2E1 + H1)), respectively. We give the time cost of
different schemes on ciphertext generation in Fig. 3(b). The time cost of our
scheme is lower compared to the other schemes. For example, when the number
of requirement is 10, the time cost of our scheme is about 54ms, while the time
cost of other schemes are 184 ms and 87 ms.

Task Matching. In the task matching, task workers call Trap to generate
trapdoors for task matching. Similar to the ciphertext generation, we also set
different number of keywords in query k2 from 1 to 10 for trapdoor genera-
tion. The computational complexity of SEMEKS, pMatch and our work are
(k2 · 12E1), (k2 · (4E1 + H1)) and (k2 · (2E1 + H1)), respectively. We give the
time cost of different schemes on trapdoor generation in Fig. 4(a). From the
figure we can observe that our scheme has lower time cost than SEMEKS and
pMatch. For example, when the number of keywords in query is 10, the time
cost of our scheme is 54 ms and the other schemes are about 145 ms and 75 ms.
Task matching is mainly done by the smart contract TMSC on the blockchain.
Our experiments focus on time cost tests by executing Match. We set a differ-
ent number of keywords in requirement from 1 to 10 k1 under the trapdoor of
being given a single keyword in query(k2 = 1). The computational complexity of
SEMEKS, pMatch and our work are (k1 · k2 · 5P ), (k1 · k2 · 4P ) and (k1 · k2 · 2P ),
respectively. Figure 4(b) shows that the time cost of our scheme is lower com-
pared to SEMEKS and pMatch. For example, when the number of keywords in
requirement is 10, the time cost of our scheme is about 20 ms, and the other
schemes are about 110 ms and 38 ms.
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Fig. 4. Task matching

8 Conclusion

In this paper, we design a multi-publisher/multi-worker task matching scheme
in crowdsourcing based on the blockchain, in which task content is protected
while enabling multi-publisher/multi-worker task matching. We analyzed the
performance of our scheme from both theoretical and practical aspects. From
the results, it is clear that the scheme is feasible.
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1 Introduction

The textual comment data generated in various fields such as shopping platforms,
forums, and social software have grown exponentially with the development of
the internet and social media. Emotional categories are people’s emotional cog-
nition and evaluation of products, services, social public opinion, etc., and are
generally divided into two categories: positive and negative. Sentiment classi-
fication methods based on machine learning are generally supervised learning
methods. Sentiment classification models are trained on labeled data, and then
use the model to automatically classify sentiment categories of review data [14].

Generally, the domain with labeled data is called the source domain, and the
new domain to be classified is called the target domain. In traditional text sen-
timent classification, the data between the training and testing domains is inde-
pendent and identically distributed. However, there are distribution differences
between different domains under realistic conditions, and the classifier trained
in the source domain is directly used for the sentiment classification task of the
target domain, resulting in a sharp drop in performance. Recalibrating a large
amount of training data for a new domain is undoubtedly time-consuming, labor-
intensive, and even impractical. Cross-domain sentiment classification aims to
train a source domain model with good classification performance using labeled
source domain data and transfer the model to the unlabeled target domain so
that it performs well on the target domain as well [4,6].

Cross-domain sentiment classification tasks mainly revolve around reducing
the domain offset between the source and target domains. It is currently divided
into two categories, the first category is the method based on feature selection
[5,11]. According to the discrete characteristics of text data, the pivot is used
to establish a bridge between source and target domains. The method requires
manual selection of shared feature words between domains, and its use of linear
classifiers will bring huge labor consumption and cannot achieve good classifica-
tion results. The second category is the methods based on domain adversarial
learning [1,2,20,21]. It constructs an adversarial relationship between the dis-
criminator and the feature extractor to reduce the distribution difference between
domains. After iterative training, the discriminator cannot discriminate its real
domain origin for the input data, and the feature extractor captures the largest
common features between domains [7]. However, there are still two challenges:1)
The design of discriminator does not take into account the impact of multiple
modalities of the data and a large number of network parameters on the model
speed, which confuse the domain origin of the data and reduce the discriminative
power and computational speed of the discriminator. It also poses a greater risk
of negative transfer and modal collapse to the model. 2) Unstable label predic-
tion. In practical application scenarios, we often only have a small amount of
labeled data and a large number of unlabeled data samples also have the problem
of category imbalance. It increases the negative migration of the model, poses a
great challenge to our classifier performance, and severely limits the generaliza-
tion of adversarial domain adaptation methods for this class of natural language
processing tasks (NLP).
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The performance of any adversarial network depends heavily on the capabil-
ities of the discriminator. To resolve the above problems, we propose a Dropout-
based ensemble dual discriminator for Cross-Domain Sentiment Classification.
The model uses Dropout-based ensemble dual discriminator (positive sentiment
discriminator and negative sentiment discriminator), utilizing a feature extrac-
tion module for adversarial learning with the discriminator. Then using gradient
reversal (GRL) [7] for parameter updates, the feature extractor learns a con-
tinuous gradient distribution of the data. The sentiment classifier uses standard
cross-entropy and mutual information maximization to train the labeled data
and unlabeled data respectively and then obtains a sentiment classifier with
more accurate label prediction.

Our main contributions in this work are summarized as follows:

1. We use a dual discriminator to decompose the burden of a single discrimi-
nator by setting a positive sentiment discriminator and a negative sentiment
discriminator to be responsible for discriminating the domain origin (source
or target domain) of the data respectively. It achieves high cohesiveness and
low coupling of discriminators and avoids overconfidence of a single discrimi-
nator in judging the source of the sample domain. Fine-grained alignment is
performed on the same classes in different domains to maximize distribution
matching and increasing positive transfer.

2. We incorporate Dropout in a multi-adversarial network, by dropping out a
certain number of neurons from our discriminator to get a dynamic ensemble
discriminator. It enables our model to obtain a continuous gradient distribu-
tion of data without increasing model parameters, reducing prediction vari-
ance, eliminating overfitting, mitigating mode collapse, and capturing fine-
grained domain common features with richer corresponding polarities.

3. We use mutual information maximization techniques to constrain the sen-
timent classifier’s label predictions on unlabeled data so that they do not
unreasonably biased towards a certain class. We only need a small amount of
labeled source domain data.

2 Related Work

2.1 Text Sentiment Classification

With the development of deep learning in the field of NLP, the mainstream mod-
els of text sentiment classification are Transformer [16] and BERT [3]. Trans-
former uses self-attention and fully connected layers for parallel computing,
which can train all words simultaneously and improve the training speed. BERT
is a pre-trained language model trained with a large amount of unlabeled text
in an unsupervised manner. Its architecture is an encoder built by Transformer,
which can directly handle various NLP tasks. These classification models have
excellent performance for sentiment classification in labeled domains, but we
cannot directly use these models for cross-domain sentiment classification tasks.
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2.2 Cross-Domain Sentiment Classification

In the early research on cross-domain sentiment classification, the typical way
is to use some statistical measures to quantify the difference in distribution,
such as KL divergence [15], maximum mean discrepancy (MMD) [13], etc. The
approach is suitable for cross-domain tasks with significant differences in the
edge distributions of the two domains.

Adversarial-based domain adaptation has made good progress in domain
adaptation tasks [18,20]. Ganin et al. [7] proposed Adversarial Domain Adap-
tive Neural Network (DANN) to apply generative adversarial ideas to transfer
learning for the first time. It constructs the adversarial training of the discrim-
inator and the feature extractor, and cooperates with the gradient flip layer in
the process of backpropagation, so that the discriminator cannot identify the
domain source of the sample, so as to extract the domain invariant. Volpi et al.
[17] augmented the feature representation in a noisy manner to make the training
process more robust and shared a feature extractor for both source and target
domains. The feature extractor only learned the point distribution of the data. A
single discriminator only pays attention to the coarse-grained information of sen-
timent polarity and easily leads to overconfident reasoning and decision-making,
which brings challenges for the feature extractor to learn domain-invariant fea-
tures. Saito et al. [12] used two independent classifiers to indirectly optimize
the decision boundary of the domain by iteratively maximizing and minimizing
the discriminative conflicting regions of the two classifiers. Although the above
method decomposes the discriminative pressure of a single discriminator, what
our feature extractor learns is still not a continuous gradient distribution but
two gradient values. Meanwhile, it also involves an increase in the number of net-
work parameters, which makes the model complex and computational overhead
severely limits the generalization performance of adversarial domain adaptation
methods for cross-domain sentiment classification tasks.

3 Methods

In the cross-domain sentiment classification task, we define Ns1 labeled samples

from a source domain Ds1 =
{
xs1

i , ys1
i

}Ns1

i=1
, and ys1

i =

{
0, xs1

i ∈ neg

1, xs1
i ∈ pos

, neg rep-

resents a collection of negative emotional comments, pos represents a collection
of positive emotional comments. Ns2 unlabeled samples from a source domain
Ds2 =

{
xs2

i

}Ns2

i=1
. Nt unlabeled samples from a target domain Dt =

{
xt

j

}Nt

j=1
.

Ds = Ds1 ∪ Ds2, the distributions of Ds and Dt are different due to the domain
discrepancy.

As shown in Fig. 1, we concatenate the word2vec [10] word embedding and
the BERT context embedding to obtain the input vector ei. The feature vector
hi is obtained by using BERT for feature extraction on the input vector ei. The
sentiment classifier network C performs label prediction on the feature vector hi

to obtain ŷ (ŷ0 and ŷ1 represent the sentiment category as negative and positive).
According to the prediction ŷ of the sentiment classifier, the sample data is
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Fig. 1. Dropout-based ensemble dual discriminator for Cross-Domain Sentiment Clas-
sification. The feature extraction module f conducts adversarial training with the
Dropout ensemble discriminator, and the parameters are updated by gradient reversal
(GRL). The sentiment classifier uses standard cross-entropy and mutual information
maximization to constrain training on labeled and unlabeled data.

respectively sent to the specified Dropout-based ensemble discriminator (Dneg

represents the negative sentiment discriminator, Dpos represents the positive
sentiment discriminator) combined with the corresponding feature vector di for
domain discrimination and gradient reversal for parameter update of the feature
extractor.P (d|x) is the predicted distribution of the discriminator for the domain
to which the input data belongs.

3.1 Sentiment Classifier Module

We use mutual information technology to constrain the relationship between
unlabeled samples and predicted labels, as shown in (Eq. 1).

I (X,Y ) = H (Y ) − H (Y |X) (1)

X is the unlabeled sample, and Y is the label prediction result of our sen-
timent classifier. The larger H (Y ), the richer the label prediction; The smaller
H (Y |X) , more accurate the prediction for the unlabeled sample label. Mutual
information maximization I(X,Y )max is to maximize H (Y ) while minimizing
H (Y |X).

The unlabeled data loss function LMI is shown in (Eq. 2), θf is the parameter
of the feature extractor, and θc is the parameter of the sentiment classifier:

LMI (θf , θc) = Ey [log pθ (y)] − Ex

[
∑

y

pθ (y|x) log pθ (y|x)

]

(2)
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pθ (y|x) denotes the logits of input, pθ (Y ) represents the distribution of pre-
dicted target labels. When calculating we use the mean pθ (y|x) as an approxima-
tion pθ (Y ). In the first iteration of training y ∼ pθ (Y ), from the second iteration
of training x ∼ pθ (X).

For labeled data, we use the standard cross-entropy to calculate the classifi-
cation loss Lsent, as shown in (Eq. 3).

Lsent (θf , θc) =
1

Ns1

∑

xi∈Ds1

L1 (C (f (xi)) , yi) (3)

f is the feature extraction network, C is the sentiment classifier network, and
L1 is a standard cross-entropy function.

In summary, the loss LC of our sentiment classifier is (Eq. 4).

LC (θf , θc) = Lsent (θf , θc) + LMI (θf , θc) (4)

3.2 Dropout-Based Ensemble Dual Discriminator Module

Set up a group of Dropout-based ensemble discriminator ( Dneg and Dpos ),
each discriminator focuses on learning more fine-grained and richer sentiment
features in a specified category. The relationship between θf , θc, θd and the loss
of the discriminator are shown in (Eq. 5).

LD (θf , θc, θd) = −λ
∑

xi∈Ds∪Dt

Ld (Dneg (f (xi)) , di)

−λ
∑

xi∈Ds∪Dt

Ld (Dpos (f (xi)) , di)

(
θ̂f , θ̂c

)
= arg min

θf ,θc

L
(
θf , θc, θ̂d

) (
θ̂d

)
= arg max

θd

L
(
θ̂f , θ̂c, θd

)

(5)

Ld is the binary cross-entropy loss between the discriminator output and
the desired output, θd is the network parameter of the discriminator, di = 0
represents the sample comes from the source domain, di = 1 represents the
sample comes from the target domain, λ is the trade-off parameter between the
two objectives.

As shown in Fig. 2, we adopt the Bernoulli dropout method [8] to deactivate
a certain number of neurons from the discriminator network with a certain prob-
ability, and then the discriminator for each class becomes a dynamic ensemble
model. Randomly deactivating neurons ensures that the output of our discrimi-
nator does not depend on connections between specific neurons, and each of our
neurons depends on the aggregation of several other neurons, facilitating model
generalization.

3.3 Training

In the cross-domain sentiment classification task, our ultimate goal is that the
sentiment classifier can classify the target domain well.
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Fig. 2. Dropout-based ensemble dual dropout discriminator structure. pKneg (d|x) and
pKpos (d|x) are the predicted distribution of the kth discriminator for the domain to
which the input data belongs in the dynamic ensemble discriminator Dneg and Dpos.

We minimize Pr(x,y)∼q [C (f (x)) �= y] to reduce distribution variance and
increase positive transfer through multi-adversarial training. The training pro-
cess is shown in Algorithm 1 ,our objective function is:

Ltotal = LC + LD (6)

4 Experiment

4.1 Dataset

To evaluate the effectiveness of the proposed model, we conduct experiments
on the Amazon review dataset which has been widely used for cross-domain
sentiment classification task. [5] and the Airlines review dataset (https://github.
com/quankiquanki/skytrax-reviews-dataset). As shown in Table 1, the Amazon
dataset contains reviews in four domains, books (B), DVDs (D), electronics(E),
and kitchen products (K). The Airlines dataset contains reviews of airlines. It
is far from the domain in the Amazon dataset, which makes the cross-domain
problem more challenging. we randomly sample 1000 positive reviews and 1000
negative reviews from the aviation dataset as labeled data, and the remaining
data are de-labeled as unlabeled data.

Table 1. Statistics of Amazon review dataset and Airlines review dataset. “pos : neg”
denotes the ratio of unlabeled positive samples over unlabeled negative samples on that
domain.

Domains Labeled Unlabeled pos : neg

Books 2000 6000 6:1

DVD 2000 30000 7:1

Electronics 2000 10000 3:1

Kitchen 2000 10000 4:1

Airlines 2000 30000 1:1

https://github.com/quankiquanki/skytrax-reviews-dataset
https://github.com/quankiquanki/skytrax-reviews-dataset
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Algorithm 1 Training strategy of cross-domain sentiment classification with
Dropout-based ensemble dual discriminator

Input: Labeled source data Ds1 =
{
xs1

i , ys1
i

}Ns1

i=1
, unlabeled source data Ds2 =

{
xs2

i

}Ns2

i=1
, unlabeled target data Dt = {xt

i}Ns2
i=1 , minibatch size m, training

step n;
Output: Target domain sentiment label yt;
1: repeat
2: Sample minibatch

{
xi

s1, y
i
s1

}m

i=1
,
{
xi

s2

}m

i=1
, from Ds1,Ds2,Dt;

3: ei = [word2vec (si) ;BERTsi
] � input vector;

4: for j = 1, ... , n do
5: hs, ht = BERT (es, et) � feature vectors;
6: update parameters θc to minimize LC (θf , θc) � (Equation4);
7: if ŷ = 0 then
8: d̂ = Dneg (f (xi));
9: else

10: d̂ = Dpos (f (xi));
11: end if
12: update parameters θd to minimize Ld (θf , θc, θd) � (Equation5);

13: update parametersθf
GRL←−−− � (Equation5);

14: update parametersθf , θc, θd � (Equation6);
15: end for
16: until θf , θc, θd converge;

yt = fC (dt)

Given the computation cost and the scale of the datasets, we pick 12 pairs
of domains as source and target respectively to evaluate the proposed method,
namely B->D,B->E,B->K,D->B,D->E,D->K,E->B,E->D,E->K,K->B,K->D
and K->E. In each of the settings, we randomly choose 500 samples of the
source labeled data for development (dev set), and use the rest of 1500 source
labeled data, along with unlabeled data from both domains for training. All
labeled data from the target domain are used for testing.

4.2 Baselines

We mainly compare with EADA [21] and DAAT* [4] methods based on BERT
as a feature extractor. The traditional methods DANN [2], HAGAN-C [12], and
HATN [19] are also included. We train BERT [3] using labeled data from the
source domain and then test it directly on the target domain data.
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4.3 Experimental Parameter Settings

As for training strategy, we train the models for 10 epochs, using the AdamW
[9], optimizer with learning rate 2× 10−5. The value of Dropout is set according
to different cross-domain pairs, where B->E, D->K, K->E is 0.5, E->K is 0.4,
and the rest are 0.45. In the gradient reversal layer of our model, we define the
training progress as p = t

T , where t and T are the current training step and
the maximum training step respectively, and the adaptation rate λ is increased
following λ = 2

1+exp(−γp) . We choose γ from 0.25, 0.5, 0.75, 1.0 on different
domain settings.

4.4 Experimental Results and Analysis

Comparison with Baselines. The performance index of the evaluation model
is the accuracy of text sentiment classification. Table 2 presents the accuracy
of each method on the 12 DA tasks. Our proposed method can outperform
the previous state-of-the-art method DAAT* by 0.81% on average. Relying on
the strong ability of BERT to extract universal high-quality features, greatly
improves overall cross-domain sentiment classification performance. Despite the
high baseline accuracy given by BERT and DAAT*, our model outperforms them
by 2.68% and 0.81% on average.

Table 2. Shows the performance of our model as well as the baselines on the bench-
marks.

S>T DANN AMN HAGAN-C EADA BERT DAAT* Ours

B->D 83.25 81.32 84.60 86.05 88.98 89.70 90.85
B->E 77.42 80.07 80.12 89.35 86.15 89.57 91.50
B->K 78.50 81.00 82.00 89.65 89.05 90.75 92.50

D->B 81.60 81.52 81.69 88.10 89.40 90.86 91.00
D->E 79.80 80.00 80.99 87.15 86.55 89.30 90.25
D->K 80.80 83.88 81.50 89.20 87.53 90.50 91.65

E->B 77.60 77.80 79.23 85.25 86.50 88.91 89.75
E->D 77.90 77.51 80.65 85.35 87.95 90.13 88.15
E->K 83.95 87.10 84.99 90.50 91.6 93.18 94.60

K->B 76.52 79.37 78.99 81.20 87.55 87.98 89.00
K->D 78.65 80.03 80.91 80.35 87.30 88.81 88.60
K->E 85.26 81.97 85.23 85.11 90.45 91.72 93.30

Avg 80.10 80.96 81.56 86.44 88.25 90.12 90.93

To demonstrate the better robustness of our model, we additionally select
the Airlines reviews dataset with a large distribution differs from the electron-
ics (E). In this experiment, we choose typical DANN and BERT models to be
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Table 3. Cross-domain sentiment classification accuracy by different models on the
Airlines review dataset.

S>T DANN BERT Ours

E>A 78.00 86.50 87.50

A>E 80.40 88.65 89.08

experimentally validated together with our model. The experimental results are
shown in Table 3. We can find that our model is better than other models in
A->E or E->A, which also verifies the robustness of our model.

Ablation Study. To better demonstrate the impact of improvements made
in our model on model performance, we conduct ablation experiments on the
type and number of discriminators. According to Table 4, we can see that the
accuracy of sentiment classification is gradually improving from top to bottom.
It illustrates the Dropout-based ensemble single discriminator achieves 5.35%
and 2.85% higher scores than the traditional single discriminator in B->E and
K->E.

Table 4. Evaluation results on different discriminator

Single Dual Dropout-based - single Dropout-based - dual Accuracy
B->E K->E

� 86.15 90.45
� 89.89 91.25

� 90.90 92.15
� 91.50 93.30

It is worth noting that the classification accuracy using the Dropout-based
ensemble dual discriminator is all higher than other type discriminators. It sug-
gests that we set the discriminator of a specific sentiment category according to
the two modalities of the data, which can fine-grained alignment of the same
category in different domains, maximize distribution matching, and increase
positive transfer. The classification accuracy of the Dropout-based ensemble sin-
gle discriminator is 1.01% higher than the ordinary dual discriminator. It illus-
trates that the Dropout-based ensemble discriminator does not rely too much
on local features when discriminating the domain source of the data, so our
feature extractor does not rely on a specific type of discriminator to learn the
trick of deceiving the discriminator and learns that the data is more real rich
domain-invariant features.
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Fig. 3. t-SNE projection of (a) BERT-base hidden feature, (b) our model hidden fea-
ture. Note that the margin between the positive cluster and negative cluster on the
target domain becomes clearer from left to right. The red and purple dots respectively
represent the feature of positive and negative samples on the source domain, and the
blue and green dots represent those on the target domain. (Color figure online)

Visualization. To visualize the effect of our model, we use different models to
visualize the distribution of positive and negative samples in the source and tar-
get domains by t-SNE in B->K. As shown in Fig. 3. Figure 3(a) uses the BERT
model for adaptation. We can find that the positive and negative polarity clas-
sification in the source domain is better, but the positive and negative samples
in the target domain are confused, and the boundaries between domains are
confused. Figure 3(b) uses our model for adaptation, not only the boundaries
of positive and negative samples in the target domain are clear, but also the
domains are separable. This shows that we use the unlabeled data of the mutual
information maximization technique for constraint training to make our sen-
timent classification model prediction distribution more balanced, expand the
boundary of our sentiment polarity classification, and make the classes better
separated. The training effect of the Dropout-based ensemble dual discriminator
allows the feature extractor to capture more abundant common features between
domains, and also makes the domains separable.

5 Conclusion

In this paper, we propose use of a Dropout-based ensemble dual discriminator
promotes domain positive transfer. The use of a sampling-based ensemble results
in an improved discriminator without increasing the number of parameters. Our
proposed model beats strong baselines and visualization results also show the
efficacy of our model. Extensive ablation studies unveil how to label distribution
shift may interact with our model. Furthermore, we will extend our work to
larger real-world datasets on new emerging domains with less labeled data.
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Abstract. Obtaining valuable information from massive data efficiently
has become our research goal in the era of Big Data. Text summarization
technology has been continuously developed to meet this demand. Recent
work has also shown that transformer-based pre-trained language models
have achieved great success on various tasks in NLP. Aiming at the
problem of Chinese news text summary generation and the application
of Transformer structure on Chinese texts, this paper proposes a Chinese
news headline generation model CNsum based on Transformer structure,
and tests it on Chinese datasets such as THUCNews. The results of
the conducted experiments show that CNsum achieves better ROUGE,
BLEU and BERTScore scores than the baseline models, which verifies
the outperformance of the model.

Keywords: Abstractive summarization · Pre-trained language model ·
Seq2Seq · Chinese news headlines

1 Introduction

In recent years, the rapid development of information technology has led to an
exponential increase in the amount of data, and more and more data appear on
the Internet in various forms. But not all data can directly provide the infor-
mation we want to obtain, which requires us to invest a lot of time and energy
to understand massive text data. How to quickly filter and obtain information
from massive texts has become an urgent problem to be solved. The task of
the text summarization is to condense long documents into short summaries
while preserving the important information and meaning of the documents [1].
Generating news headlines is a typical application field of text summarization
techniques. Simple news classification has been difficult to meet the needs of
news reading because of misleading headlines. The application of automatic text
summarization technology has provided solutions, which could greatly improve
the efficiency of news reading and selecting valuable information from the mas-
sive news.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 539–547, 2022.
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2 Related Work

At present, the research on automatic text summarization technology in
academia and industry has made great progress, and good results have also
been achieved in practical applications. The research on automatic text summa-
rization technology begins with the method based on word frequency statistics,
trying to find the key words and central sentences in the text through statistical
technology, and then combine them to achieve text summarization [2]. H. P.
Luhn [3] calculated the relative importance through the statistical information
obtained from word frequency and distribution, becoming the first automatic
text summarization system.

Automatic text summarization technology mainly includes two types: extrac-
tive text summarization and adstractive text summarization [4]. The former
mainly extracts keywords and sentences in text data through some scoring cri-
teria to generate summaries. The abstractive summarization method is closer to
the understanding of text summarization and it mainly generates a new abstract
based on the learning of the source text. At present, most abstractive summa-
rization models are based on the Seq2seq framework, which was first proposed
by Sutskever et al. [5] and Cho et al. [6]. It is mainly composed of an encoder
and a decoder and it performed well in abstractive summarization tasks.

The application of deep learning methods, especially Transformers [7], has
greatly improved the performance of automatic text summarization. And related
researchs and comparisons proved that the use of neural networks had better
performances [4]. However, almost all pre-trained language models currently are
based on English, and these pre-trained language models’ performances in Chi-
nese are not as effective as their in English [8]. Moreover, research based on
Chinese text summaries has developed slowly in recent years. Based on this
and inspired by GPT2-chinese [21], this paper studies the performance of the
Transformer-based pre-trained language model in generating Chinese news head-
lines.

3 Model

We proposed CNsum in this paper and it mainly includes two stages: the first
stage is to realize the encoder output based on Bert’s preprocessing method of
Chinese news texts, that is, to encode the Chinese text and convert the Chinese
news text into processable sequences; the second-stage decoder is composed of
GPT-2 parts. With the help of its powerful text generation ability, it can generate
Chinese news headlines. Figure 1 shows the construction of CNsum.

3.1 BERT-Based Encoder

Language model (LM) is a basic concept in natural language processing. The
language model task is also the core problem in the field of NLP. After using
the language model to process the text data related to the natural language, a
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Fig. 1. The basic architecture of CNsum is a Seq2Seq model composed of encoder-
decoder. The encoder mainly uses the BERT pre-trained language model to complete
the encoding. The decoder is based on the GPT-2 model and is composed of 6 layers of
Transformer-decoder stacked to realize the generations. The CNsum model is trained
on the NLPCC2017 dataset.

language representation that can be processed by a computer can be obtained,
which is convenient for the processing of the text data. The calculation of prob-
ability of the sequence occurrence is shown in Eq. (1).

p(S) = p(w1, w2, w3, . . . , wn) =
∏n

i
p(wi|w(i − n + 1), . . . , w(i − 1)) (1)

The BERT pre-training language model uses a bidirectional Transformer as
an encoder for feature extraction, and based on the attention mechanism, it can
better extract text information features. The two-way language representation
of the system provides high-quality textual data information for downstream
tasks. The Transformer coding unit mainly includes two parts, namely the self-
attention mechanism and the feed-forward neural network. The self-attention
mechanism can pay attention to the internal correlation of data or features, and
is less dependent on external information, which is an effective capture method.
The feedforward neural network is composed of two fully connected layers, which
are mainly used to strengthen the nonlinear ability, learn more abstract features,
and enhance the performance of the model.

Attention(Q,K, V ) = softmax((QKT )/
√

dk))V (2)

As Eq. (2) shows, the input part of the self-attention mechanism includes
Query vector (Q), Key vector (K) and Value vector (V). The Query vector and
Key vector of text data are multiplied to obtain QKT , and then

√
dk is used to

ensure that the obtained results meet the specifications, then input the results
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to the softmax layer for normalization to obtain the probability of the text
data, then obtain the word vector representation in the text data. Therefore,
the BERT-based encoder can better complete the processing of Chinese news
text data, and input the sequence information which contains embedding vector
sequence and position encoding into CNsum’s decoder.

3.2 GPT-2-Based Decoder

The GPT-2 model has outperformance on text generation. Based on the pow-
erful text generation capability of GPT-2, the model proposed in this paper is
composed of the decoder part of the multi-layer one-way Transformer, so the
model only considers the influence of the words on the left side of the position of
the word to be predicted on the predicted word when processing text data, and
calculates self-attention based on these. The researchers [7] found that in Trans-
former, the Query vector (Q), the Key vector (K) and the Value vector (V) were
first linearly transformed, and then input to the scaled dot product Attention.
After multiple calculations, the results can be stitched together to achieve better
results. The effect, that is, the realization of multi-head self-attention allows the
model to learn relevant information in different dimensions. So similar to BERT,
it is multi-heads self-attention that the model need to calculate when processing
text information to Self-attention mechanism.

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (4)

As Eq. (3) and Eq. (4) show, headi represents NO.i self-attention, WQ
i ∈

R(dmodel×dk), WK
i ∈ R(dmodel×dk), WV

i ∈ R(dmodel×dv), WO ∈ R(hdv×dmodel).
The model need to calculate 8 self-attentions, which means the number of heads
is 8. For each self-attention calculation, dk = dv = dmodel/h = 64.

FFN(x) = max(0, xW1,+b1)W2 + b2 (5)

Using the Mask can mask the information of all the data to the right of
the current calculation position when calculating the self-attention, which can
enhance the model’s attention to the information of the current position. Using
the Layer Norm layer can stabilize the distribution of data features, thereby
accelerating the convergence of model training. In the Feed Forward Neural Net-
work layer, the RELU activation function is used. It calculates the loss between
news headlines and generated headlines to train the model. And in view of
resource consumption, we only use a 6-layer network based on the existing model.

4 Experiments

4.1 Datasets

NLPCC2017: Provided by the 2017 CCF International Conference on Natural
Language Processing and Chinese Computing (NLPCC2017), including 49500
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news texts in the training set and 500 news texts in the test and validation set.
Articles obtained from news websites such as Sina and summaries of experts. It
is used for model training and testing in the experiment.

SogouCS: Compiled by Sogou Lab and came from Sohu News. In this experi-
ment, 500 samples are randomly selected to be used to test the performance of
the model.

LCSTS: It was organized by Hu et al. [10] and created the dataset based on
news abstracts published by news media on Weibo. It has the characteristics
of short length and more noise. 300 samples are randomly selected as the test
dataset.

THUCNews: Tsinghua News (THUCNews) is compiled by the NLP Lab of
Tsinghua University. It is filtered and generated according to the historical data
of the Sina News. It is used for model training and testing in the experiment.

4.2 Evaluation Metrics

ROUGE: ROUGE [19] is a summary evaluation tool based on recall statistics.
It can reflect the coverage of the abstract to the news text.

ROUGE − N =

∑
S∈RS

∑
gn∈S Countm (gn)

∑
S∈RS

∑
gn∈S Count (gn)

(6)

As Eq. (6) shows, RS represents the artificial standard abstract, that is, the
reference abstract, Countm(gn) represents the maximum number of the same
n-grams that appear between the generated abstract and the reference abstract,
and Count(gn) represents the number of n-grams in standard summary.

ROUGE − L = FLCS =

(
1 + β2

)
RLCSPLCS

RLCS + β2PLCS
(7)

As Eq. (7) shows, LCS(S,RS) represents the length of the longest common
subsequence, len(S) and len(RS)are the lengths of the summary, RLCS, PLCS
are respectively Recall and Precision.

BLEU: Proposed by researchers at IBM in 2002 [20], BLEU can calculate the
similarity between the summaries computed by the model and the reference
summaries.

BERTScore: Tianyi Zhang et al. [11] proposed BERTScore, an evaluation met-
ric for calculating the similarity. Compared with ROUGE and BLEU, this indi-
cator is closer to human understanding of similarity. BERTScore uses contextual
embeddings to compute token similarity.
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4.3 Baseline Models

The experiments in this paper select 7 models as baseline models:

LexPageRank: LexPageRank system defines sentence centrality based on
graph-based prestige [15]. It Applies the PageRank algorithm to the textual
sentence relational representation and the extractive summarization.

MEAD: MEAD system is a extractive summarization baseline system. Text
summaries are selected by scoring the importance of sentences by considering
their centroids, positions, common sequences, and keywords [16].

SuBmodular: SuBmodular system treat the text summarization problem as
maximizing a submodular function under a budget constraint [16].

UniAttention: UniAttention system is the basic sequence-to-sequence model.
The model takes into account the attention mechanism in the process of text
summarization [18].

NLPONE: NLPONE proposes to add an new attention mechanism on output
sequence and uses the subword method. And it gets a significant improvement
[12].

PGN: PGN: Proposed in ACL2017, which used pointer networks and attention-
based Seq2Seq models to get improvements [13].

TKF: TFK system is a multi-attention sequence-to-sequence model that pays
attention to topic keyword information [14].

4.4 Results

We use the Adam optimizer [22] and set the learning rate to be 1e-8, with a batch
size of 8 and 10 epochs. Hugging Face’s Transformers library [23] was used in all
our experiments. In this paper, based on comparing with the running tests of the
baseline models, the results are shown in Table 1. In order to verify the reliability
of the model, we tested it on several different Chinese corpus, and the results
are shown in Table 2. Figure 2 shows the summaries automatically generated by
different models based on the same news article. It can be concluded that CNsum
pays more attention to the generalization of the news content and the complete
expression of the key information of the source text. It can be concluded that
the model proposed in this paper has a good effect in Chinese news headline
generation task.
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Table 1. Results comparison of overall summarization. The index data results of the
models marked with * come from the reference to the literature [21]

Models Rouge-1 Rouge-2 Rouge-L

LexPageRank* 0.23634 0.10884 0.17578

MEAD* 0.28674 0.14872 0.22365

SuBmodular* 0.29704 0.15283 0.21668

UniAttention* 0.33752 0.20067 0.29462

NLPONE* 0.34983 0.21181 0.30686

PGN* 0.36022 0.21978 0.29888

TKF* 0.37667 0.24077 0.32886

CNsum 0.38021 0.24083 0.34764

Table 2. Evaluations of CNsum on different datasets.

Metrics nlpcc2017 SogouCS LCSTS THUCNews

ROUGE-1 0.38021 0.33659 0.36493 0.29897

ROUGE-2 0.24083 0.21353 0.17257 0.15616

ROUGE-L 0.34764 0.24964 0.33244 0.17600

BLEU 0.45976 0.28173 0.38521 0.22807

BERTScore 0.50149 0.51382 0.53468 0.50031

Fig. 2. Comparison of summaries generated by the models on the same news article.
The results of the Chinese news headlines generated by the model marked * refer to
the literature [21]
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5 Conclusion

In this work, we proposed CNsum, a Seq2Seq model for abstractive text summa-
rization on Chinese News texts. Experiments show that in the task of generating
Chinese news headlines, CNsum generates a summary that is closer to the stan-
dard summary and contains key information of the source text. According to
the indicators ROUGE, BLEU and BERTScore of model effect evaluation, the
model has achieved good results. The results show that the model’s BERTScore
scores are always greater than 0.5, which verifies the model’s outperformance on
headlines generations. After training on the news corpus, the model has achieved
better performance than the baseline models in the task of generating news head-
lines, which has certain application values. Tests on similar Chinese news corpus
shows that the model has good generalization ability. The experiments’ results
also have certain reference value for applying the pre-trained language model
trained in English to other languages. Compared with the benchmark model, it
is improved by several percentage points. We will continue to pay attention to
the development of Chinese text summarization techniques to further improve
the accuracy and objectivity of Chinese text summarization generation.
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Abstract. Encrypted traffic has become the primary carrier of network
transmission, and encrypted traffic classification is essential for advanced
network management and security protection. Existing studies mainly
focus on encrypted traffic feature engineering and classification model
design, aiming to select more expressive features from encrypted traffic
and achieve high-performance classification. The most commonly used
features in the feature engineering process are statistical features and
sequence features obtained in network or transport layers, which are
more inclined to represent the factors of network transmission rather
than the data attributes of applications or services. As a result, the rel-
evance of the features and application or services is not strong, leading
to unsatisfactory performance. To solve this problem, we introduce the
Application Data Unit (ADU) and put forward the application layer fea-
ture engineering, which uses the features of the highest protocol level
- the application layer to achieve better HTTPS classification. In order
to compare the classification effects of features of different layers, we
carried out experiments on traditional machine learning models based
on statistical features and deep learning models based on sequence fea-
tures, respectively. The results show that the proposed ADU features are
better than the segment granularity features of the TLS layer and far
better than the packet granularity features both in statistical and length
sequence features. The average F1-score increase in the encrypted traffic
application classification scenario is more than 10%.
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1 Introduction

As the main form of Internet traffic, full encryption of Web traffic has become an
inevitable trend. According to the Google Transparency report “HTTPS Encryp-
tion on the Web” [4], 99% of Chrome loading web pages are encrypted, and the
protocol most used in web traffic is the HTTPS. HTTPS combines HTTP appli-
cation protocol and TLS encryption protocol, using TCP as the transport layer
protocol to form the TCP-TLS-HTTP protocol stack.

Traffic management and security protection used to rely on the Deep Packet
Inspection (DPI) [10] approach, but encryption has rendered this approach obso-
lete. As an alternative, machine learning methods were proposed, using statistical
or sequence features [1], which are not hidden by encryption.

The existing research on encrypted traffic classification can be divided into
two categories. Most research tries to improve the classification efficiency from
the perspective of classifiers (e.g., introducing new models [7,8], combining or
transferring from the prior models [5,6]). The other part of the study focuses on
the in-depth mining of more expressive complex features from the perspective of
feature engineering [2].

However, the features considered are basically at the network layer or the
transport layer, and only a very few studies [3] investigate higher-level protocol
features for classification. Different layers and protocols have their own unique
Protocol Data Unit (PDU). It can be seen from the protocol stack pattern that
the PDU sequence of the higher layer protocol is more similar to the data. As the
highest layer in the current widely used TCP/IP protocol stack, the application
layer is the protocol layer closest to the data.

Therefore, this paper proposes the concept of application layer feature engi-
neering. First, we introduce the concept of Protocol Unit (PU), PDU, and Appli-
cation Data Unit (ADU) under HTTPS encrypted traffic. Then, we propose dif-
ferent traffic feature engineering schemas in HTTPS, especially the application
layer feature engineering. In addition, we use a variety of existing models to
conduct sufficient and meticulous experiments of encrypted traffic classification
on the statistical features and length sequence features of three different PDUs.

Our main contributions are as follows:

– We propose the concept of application layer feature engineering. It breaks the
limitation that existing encrypted traffic classification methods mainly utilize
statistical or sequence features of packet or flow. According to the current
usage of PDU length sequence, PDU is extended to statistical features, and
the ADU is proposed as a new unit to construct statistical features and length
sequence features for encrypted traffic classification.

– Experiment results show that in machine learning and ensemble learning
methods consistent with the statistical features, the performance of ADU fea-
tures is better than TLS segment features and TCP packet features, both in
full flow and the fixed data size. In the state-of-the-art deep learning methods
consistent with length sequence features, the performance of ADU features is
still satisfactory and better than other PDUs. It demonstrates the advantage
of application layer feature engineering.
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2 Related Works

The mainstream research on encrypted traffic classification includes the model
selection and feature engineering optimization, and these two research fields are
also complementary and promote each other.

2.1 Encrypted Traffic Classification Models

Traditional machine learning methods were first applied in encrypted traffic
classification. The most typical ones are the decision tree C4.5 and the SVM
[1]. However, these methods lack experimental verification in an open world
environment and have preconditions of feature engineering.

Later, several ensemble learning models were proposed. The most represen-
tative one is random forest [7]. Ensemble learning achieves better classification
results, but it requires considerable computing costs and is prone to over-fitting.

With the generation of neural networks, deep learning is applied to encrypted
traffic classification. The specialty of automatic feature selection can learn
directly from the original input without prior expert knowledge of features. 1D-
CNN was first used [8]. Then, the LSTM model, as the most widely used variant
of RNN, is presented to depict the sequence relations between packets [11].

With the development of semi-supervised learning and hardware computing
capability, some studies superimpose various models to improve the classification
effect, such as Deep Packet [6], and SAM [9].

2.2 Encrypted Traffic Feature Engineering

Statistical features are considered first for the classification of encrypted traffic.
However, they can not reflect the local bursts. Moreover, deep learning meth-
ods specializing in automatic feature selection are convenient, but the features
selected are not necessarily superior, and the procedure is not interpretable.

Therefore, some researchers are dedicated to select more suitable features by
feature engineering to depict the local sequential Markov properties effectively.
The most common one is the length sequence, which is less affected by the
network environment and encryption. The FS-Net [5] model is based on the
GRU model and representation learning, which takes a full-flow length sequence
as input.

Due to the layered design of network protocols, data needs to be segmented
during actual transmission. As a result, the packet length obtained at the net-
work layer or transport layer differs significantly from the actual application
layer length. The PDU [2] was proposed to reduce the influence caused by pro-
tocol segmentation to solve this problem. In this field, the most representative
one is LSCDL architecture [3], which takes PDU length sequence as input with
N-gram hyper length sequence as the feature.

The current encrypted traffic feature engineering ignores the impact of net-
work protocol engineering on encrypted traffic data segmentation. Therefore,
this paper studies the application layer feature engineering of encrypted traffic
to improve the expression ability of the selected features.



Higher Layers, Better Results: Application Layer Feature Engineering 551

3 Preliminaries

3.1 Protocol Unit and Protocol Data Unit

A PU is the smallest unit each protocol owns in each layer of the network protocol
stack. It contains the protocol header and the corresponding data. A PDU is the
smallest unique unit of transmission data the protocol owns. Protocol objectives
lead to differences in PUs and PDUs between protocols even at the same level.
Generally speaking, PU is the whole of the atomized protocol header and data
body, while PDU is the atomized data body. It is important to note that not
every PU contains a data body (such as TCP ACK packets), but all PUs have
a protocol header.

In the network transmission, the size of PDU is limited. A larger PDU will
increase the number of data that need to be scheduled at a single time, while a
smaller PDU will increase the number of times that need to be scheduled with
the same amount of data. Therefore, an appropriate size should be set for the
PDU to meet the current protocol and network requirements.

3.2 Application Data Unit

ADU is the PDU of the application layer. As this paper focuses on classifying
encrypted traffic over HTTPS, we will consider only ADUs of HTTP. We give
the following definition: the ADU of HTTP refers to all data transmitted by
the HTTP protocol body in a request and response process. Since the request
and response are paired in a successful request, the ADUs are also paired, even
though the request may not carry a data body.

If the classified unit is unidirectional, the ADUs in the two directions will
be separated during feature extraction. If the classification element is bidirec-
tional flow, it is considered whether to add direction identifiers for some features
according to the selected feature space.

3.3 Encrypted Traffic Classification

In the network transmission, a flow refers to a packet set consisting of quintuples
of IP addresses and ports of both parties with the transport layer protocols in a
single transmission. It can be expressed as:

F =< srcIP , dstIP , srcport, dstport, tproto > (1)

Encrypted traffic classification is the process that classifies encrypted traffic
to specific services or applications based on certain features when classification
atoms (usually flows) and category labels are determined. Assuming there are N
samples to be classified and C different categories, then the i-th sample (assum-
ing the feature space size is m) xi = [f (i)

1 , f
(i)
2 , · · · , f

(i)
m ], where f

(i)
j refers to the

j-th feature of the input. If the real category of xi is Si, the goal of the encrypted
traffic classification is to build a model φ(xi) to get a predicted label Ŝi which
is expected to be the real label Si.
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4 Traffic Feature Engineering in Different Layers
of HTTPS

In the HTTPS scenario, feature engineering can be divided explicitly into feature
engineering at the TCP, TLS, and HTTP layers.

4.1 TCP Layer Feature Engineering

Feature engineering of the TCP layer refers to feature selection and extraction
with TCP PDU as a feature unit. It is worth noting that although the TCP layer
has its own maximum limit of TCP load length called MSS, the TCP is respon-
sible for timeout and retransmission because there is no timeout retransmission
mechanism at the IP layer. Therefore, in the actual network environment, the
MSS negotiated by TCP handshake ensures that the length of IP packets does
not exceed the MTU of the data link layer. This phenomenon makes the data
fragment of TCP PDU and IP PDU the same as that of the packet.

4.2 TLS Layer Feature Engineering

The feature engineering of the TLS layer is TLS-oriented PDU, i.e., the segment
of TLS. HTTPS traffic information obtained through passive measurement is
expressed in packets in the actual network. To obtain the segment of TLS, we
need to concatenate TCP packets. The splicing is produced by concatenating
TCP packets with the same ACK number in the same direction, which is also
how the TLS segment is acquired in the actual network.

TLS is a special protocol with two distinct phases, the handshake, and the
record, implemented by nesting two layers of different headers. As TLS headers
are also variable-length headers, PU and PDU of TLS need to consider the
information in the handshake and record phases when constructing statistical
features. In TLS layer feature engineering, length sequence is still data-oriented,
so TLS header information is also not considered. Only the length sequence of
the segments in the record phase is considered, that is, the data length of TLS
Application Data PU.

4.3 Application Layer Feature Engineering

The feature engineering of the application layer is different from that of the other
two layers. First, HTTP requests and responses are strictly corresponding, and
a successful request can only get one response. In most cases, the request does
not carry actual data; that is, the length of the ADU of the HTTP request is
0. In HTTPS, the application layer is encrypted, and the HTTP header and the
HTTP ADU are bound together and encrypted. The application layer header
and ADU cannot be directly distinguished without other methods.

However, this situation will not affect the application layer feature engineer-
ing. In the training stage of encrypted traffic classification, we can decrypt the
obtained samples to obtain their actual header and ADU lengths to realize fea-
ture calculation with ADU as the unit.
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5 Evaluation

5.1 Dataset

We collected and labeled the traffic samples in the large-scale network environ-
ment of CERNET. The dataset covers ten kinds of currently the most popu-
lar HTTPS applications on the global Chinese Internet. The dataset is called
CERNET-1.1-10 and is available at https://data.iptas.edu.cn/web/tbps. It is
worth mentioning that all the flows we collected are complete TCP flows defined
by Eq. (1), including handshake packets and end packets. The dataset is divided
into balanced training and testing sets by a strict 8:2 ratio.

5.2 Experiments

In statistical features, traditional machine learning and ensemble learning meth-
ods are mainly used, including kNN, C4.5, SVM, AdaBoost, and RF. In length
sequence features, the latest deep learning methods are mainly compared, includ-
ing FS-Net [5], LS-CapsNet [2], and LS-LSTM [3].

Classification Experiments in Statistical Features. The experiments are
divided into a full flow and a fixed data volume scenario. The full flow scenario
represents the offline classification that can totally express the features. The
fixed data volume scenario represents the near-real-time online classification, in
which the total size of a flow cannot be sure.

The learning curves of five different models under three PDUs with the full
flow scenario are shown in Fig. 1. It can be seen that RF stands out among the
five models under any PDU. Moreover, the overall effect of ADU is better than
the other two PDUs.

Fig. 1. Learning curves of five models in full flow scenario

Since it is not possible to directly determine the appropriate amount of data
in a fixed data volume scenario, RF was used to conduct experiments under
different total numbers of input packets, and the results are shown in Table 1.
Because both segment and ADU are spliced, the number of these two PDUs
changes and is much smaller than the number of packets. The results show that
300 packets are a suitable choice.

https://data.iptas.edu.cn/web/tbps
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Table 1. Classification accuracy for fixed data sizes of RF

Fixed data sizes (Input packet counts) 100 200 300 400 500

HTTP ADU 0.7250 0.7458 0.7539 0.7378 0.7465

TLS segments 0.7033 0.7226 0.7236 0.7129 0.7079

TCP packets 0.6367 0.6168 0.6352 0.6584 0.6530

With fixed 300 packets as input, we further conducted ten experiments for
each model and the F1-score box plots are shown in Fig. 2. The results show that
ADU statistical features significantly improve the classification performance by
more than 10% in the three valid models with fixed data volume. It is consistent
with our experiment in the full flow scenario.

Fig. 2. Box-plot of five models in fixed 300 packets scenario with F1-score

Classification Experiments in Length Sequence Features. To further
prove the advantages of application layer feature engineering, we conducted con-
trol experiments on three state-of-the-art deep learning methods on the length
sequence features. However, given the input differentiae of the selected model,
it is not suitable to conduct the experiment under full flow or fixed data.

The convergence curves of three different models under three PDUs using
length sequence features are shown in Fig. 3. It can be seen that the performance
of ADU length sequence features under the three models is better than that of
the other two PDUs, and the convergence speed under the LS-LSTM and FS-Net
models is faster than that of other PDUs.

The classification result of three PDUs in three methods using length
sequence features is shown in Table 2. The classification effect of ADU length
sequence features is far superior to segment and packet in both precision and
recall rate.
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Fig. 3. Convergence curves of three PDUs in three methods using length sequence

Table 2. Classification precision and recall of three PDUs in three methods using
length sequence

Methods Packet Segment ADU

Pr Rc F1-score Pr Rc F1-score Pr Rc F1-score

LS-LSTM 0.6912 0.6232 0.6554 0.9372 0.9362 0.9367 0.9761 0.9728 0.9744

FS-Net 0.6649 0.6014 0.6316 0.8999 0.8964 0.8982 0.9504 0.9477 0.9490

LS-CapsNet 0.6664 0.4938 0.5673 0.8512 0.8505 0.8508 0.8780 0.8771 0.8775

6 Conclusions

In order to further improve the effect of encrypted traffic classification, we pro-
pose the concept of application layer feature engineering, which breaks the lim-
itation of the features from the network or transport layer. We introduce the
concepts of PU and PDU, combined with the particularity of the HTTPS pro-
tocol stack. The application layer feature engineering is instantiated as the fea-
ture engineering of HTTP ADU. We prove the effectiveness of application layer
feature engineering in HTTPS encrypted traffic classification through detailed
experiments. Experimental results show that ADU features outperform TLS seg-
ment and TCP packet in both statistical features and length sequence features.

However, HTTPS application layer feature engineering still faces two prob-
lems. The first is the error of the ADU length value caused by TLS encryption.
The ADU length obtained directly contains the HTTP header length. Since
HTTP headers are variable-length protocol headers, the ADU length deviation
caused by the HTTP header needs to be reduced. Otherwise, the input will
have interference. The second problem is caused by multiplexing and nested
transport in the HTTP-2.0 scenario, where a PDU may contain multiple ADUs
in different request-response pairs. Therefore, future research should focus on
accurately restoring ADU to achieve encrypted traffic classification based on the
ADU length sequence.

Acknowledgement. This paper is supported by the General Program of the National
Natural Science Foundation of China under Grant No. 62172093.



556 Z. Chen et al.

References

1. Bagui, S., Fang, X., Kalaimannan, E., Bagui, S.C., Sheehan, J.: Comparison of
machine-learning algorithms for classification of VPN network traffic flow using
time-related features. J. Cyber Secur. Technol. 1(2), 108–126 (2017)

2. Chen, Z., Cheng, G., Jiang, B., Tang, S., Guo, S., Zhou, Y.: Length matters: Fast
internet encrypted traffic service classification based on multi-PDU lengths. In:
2020 16th International Conference on Mobility, Sensing and Networking (MSN),
pp. 531–538 (2020)

3. Chen, Z., Cheng, G., Xu, Z., Guo, S., Zhou, Y., Zhao, Y.: Length matters: Scalable
fast encrypted internet traffic service classification based on multiple protocol data
unit length sequence with composite deep learning. Digit. Commun. Netw. 8, 289–
302 (2021)

4. Google: HTTPS encryption on the web - Google Transparency Report (2022).
https://transparencyreport.google.com/https/overview

5. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: FS-Net: a flow sequence network for
encrypted traffic classification. In: IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, pp. 1171–1179 (2019)

6. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: A novel
approach for encrypted traffic classification using deep learning. Soft. Comput.
24(3), 1999–2012 (2020)

7. Shi, Y., Ross, A., Biswas, S.: Source identification of encrypted video traffic in the
presence of heterogeneous network traffic. Comput. Commun. 129(Sep.), 101–110
(2018)

8. Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z.: End-to-end encrypted traffic
classification with one-dimensional convolution neural networks. In: 2017 IEEE
International Conference on Intelligence and Security Informatics (ISI), pp. 43–48.
IEEE (2017)

9. Xie, G., Li, Q., Jiang, Y.: Self-attentive deep learning method for online traffic
classification and its interpretability. Comput. Netw. 196, 108267 (2021)

10. Yang, B., Liu, D.: Research on network traffic identification based on machine
learning and deep packet inspection. In: 2019 IEEE 3rd Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), pp. 1887–
1891 (2019)

11. Yao, H., Liu, C., Zhang, P., Wu, S., Jiang, C., Yu, S.: Identification of encrypted
traffic through attention mechanism based long short term memory. IEEE Trans.
Big Data 8, 241–252 (2019)

https://transparencyreport.google.com/https/overview


P-LFA: A Novel LFA-Based Percolation Fast
Rerouting Mechanism

Minghao Xu, Tao Feng(B), Xianming Gao, Shanqing Jiang, Shengyuan Qi,
and Zhongyuan Yang

National Key Laboratory of Science and Technology on Information System Security, Institute
of System Engineering, PLA Academy of Military Science, Beijing, China

xumingh_16@163.com

Abstract. Loop Free Alternate (LFA for short) is designed to avoid the inter-
ruption of transmission paths during routing convergence when a network suffers
from single point failures (e.g. node failure, or link failure). Unfortunately, once
more than one associated failure occurs simultaneously, the LFA protocol cannot
strictly guarantee lossless packets. Therefore,we propose aLFA-based percolation
routing mechanism (P-LFA for short). It establishes the shortest paths and their
backup paths by using distributed routing protocol and LFA, and uses a percola-
tion rerouting algorithm to calculate the percolation paths. Once the shortest path
and corresponding backup path are interrupted, the network node immediately
selects the percolation paths to continue transmitting packets without dropping
any packets. And this mechanism allows each node to cache packets. This way
can efficiently avoid packet loss when the path to the destination node is unreach-
able. The experimental results show that P-LFAcan effectively guarantee zero-loss
packets when some related failures occur. Meanwhile, even though there do not
exist reachable paths to the destination node, the P-LFA mechanism can cache
unreachable packets into the network node that is the closest to the destination
node, and continue to re-forward packets when paths recover.

Keywords: Route convergence · Zero-loss · Percolation idea · Packet caching

1 Introduction

With the rapid development of networking technology, Internet has already become
a vital information infrastructure carrying people’s economic, social, communication,
and other activities. People have increased expectations for network transmission per-
formance, particularly for dependable transmission. However, several factors will lead
to transmission failure, such as software failure, hardware failure and data failure. Since
these failures are unpredictable and unavoidable, the network typically adopts distributed
routing protocols to improve its robustness. Once the link is not reachable, the network
restarts the process of routing convergence, by sending the latest link information to
neighbors. And then other nodes recalculate the forwarding tables based on the received
link information. Unfortunately, packets continue to transmit along the interrupted trans-
mission path until the network calculates new paths, and these packets will be discarded.
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For a business with high real-time and time-sensitive services, the massive loss of pack-
ets caused by a single failure is intolerable. Therefore, how to construct a network of
lossless transmission is a hot spot, which has attracted more attention from industry and
academia.

In the early stage, researchers focused on shortening the network convergence time,
mainly including two methods: fault detection efficiency and fault recovery efficiency:
1) fault detection efficiency. Bidirectional Forwarding Detection (BFD for short) is
designed, which focuses on the fault detection of the forwarding plane. It can achieve the
rapid fault detection in 30 ms and has been widely used [1]. 2) fault recovery efficiency.
Researchers have improved the speed of transmission path recalculation by reducing
the diffusion time of routing information and routing calculation time [2]. Although
these methods effectively reduce network convergence time, they are still not ideal for
high real-time and time-sensitive services. Researchers propose a better network fast
recovery mechanism to reduce packet loss, which is called FRR [3]. FRR adopts the
pre-calculation way to calculate the backup paths, which is used to avoid packets as far
as possible when the network is affected by failure [4].When the network occurs a single
failure, the node can immediately use the pre-calculated backup path to transmit packets
without waiting for network convergence. However, it is just suitable for a single failure.
Once the network occurs multipoint failure, the backup path may be also interrupted,
which results in the packet loss.

In this paper, we propose a LFA-based percolation fast rerouting mechanism, which
is called Percolation Loop Free Alternates (P-LFA). It has three paths: 1) the shortest
paths calculated using the SPF algorithm, 2) the backup paths calculated by TI-LFA, and
3) the percolation paths calculated using the percolation rerouting algorithm.When both
the shortest paths and the backup paths are interrupted, the node selects the percolation
paths to transmit packets. P-LFA also uses caching mechanism to prevent packet loss,
and each node caches packet. Thus P-LFA ensures that packets are cached at the closest
node to the destination when there is no path to the destination node, and the packets
are sent firstly to the destination node when the failure is recovered. The effectiveness
of the algorithm is verified by a simulation experiment. The experiment shows that the
P-LFA mechanism inherits the advantages of TI-LFA and can achieve 100% coverage.
It is concluded that the P-LFA mechanism can effectively improve the reachability of
packets through qualitative and quantitative analysis.

The paper is structured as follows. Section 2 describes related work about FRR.
Section 3 introduces the P-LFA framework including routing calculation, forwarding
table, and forwarding processing. Then, in Sect. 4 we explain the percolation rerouting
algorithm. Afterwards, we describe the packet forwarding process in Sect. 5. And we
verified the effectiveness and feasibility of P-LFA through experiments in Sect. 6. Finally,
Sect. 7 presents the conclusions and directions for future research work.

2 Related Work

In recent years, IP FRR has been deployed in almost all production networks. To adapt
different networks, researchers put forward a variety of FRR mechanisms [5–8]. Based
on the differences in implementation mechanisms, FRR mechanisms can be roughly
divided into two methods: Unicast-based IP FRR and multicast-based IP FRR.
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2.1 Unicast-Based IP FRR

Unicast-based IP FRR assumes link or node failure in advance and calculates the backup
path at the source node. When the network node senses the failure, it switches to the
backup path and continues to send packets. As a typical unicast-based IP FRR, LFA is
a simple and feasible mechanism and is widely used in production networks [9]. It only
needs to calculate the backup paths of the link or node according to the network topology
at the source node according to the no loop criterion,without toomuchmodification to the
routingprotocol of the network.When the shortest path is not reachable, the networknode
can achieve fast rerouting by using the pre-calculated backup path, and its convergence
time is genera Chiesa M, Sedar R, Antichi G, et al. Fast ReRoute on Programmable
Switches. IEEE/ACM Transactions on Networking, 2021, 29(2): 637–650.lly less than
50 ms.

However, LFA does not apply to all topologies. When the network node or link does
not meet any loop criterion, that is, there is no potential next hop in a node or link, its
fast rerouting mechanism invalidates. At the same time, the calculated backup path by
the LFA mechanism is usually not the path after convergence. These drawbacks affect
the scope of application of LFA. To expand the applicability of LFA, researchers have
proposed a variety of improvement methods. Csikor L et al. propose the Remote Loop
Free Alternate (RLFA) [10]. The P space and Q space are proposed to find the LFA path,
and the LFA coverage is extended by the way of tunneling, but it introduces additional
sessions and increases the complexity of the operation. Singh JA et al. proposed the
Topology Independent Loop Free Alternate (TI-LFA) mechanism [11]. Based on the
LFA and RLFA mechanisms, this mechanism uses Segment Routing (SR) to ensure
that no additional sessions are introduced during the transmission process. It not only
maintains the simplicity of operation but also achieves 100% coverage irrespective of
network topology, and the calculated backup paths by the TI-LFA mechanism are the
convergence paths.

2.2 Multicast-Based IP FRR

In order to improve the robustness and reachability of the network when faced with
multiple failures at the same time, the multicast-based IP FRR is proposed. Multicast
includes PIM,BIER, etc. Jozef Papan et al. proposed theBitRepair FastReroute (B-REP)
IP FRR Mechanism [12]. This mechanism uses the BIER header field (bit string) to use
backup paths. Themechanism implements hop-by-hop routing using bit-stringmatching
while allowing managers to define backup paths manually. It ignores link metrics when
calculatingpaths, allowing anypossible physical alternative to be selected, thus achieving
100%network coverage.However, B-REPonly provides protection against a single fault.
In order to provide advanced protection againstmultiple faults in a network domain, Jozef
Papan et al. also proposed the new Enhanced Bit Repair (EB-REP) IP FRR Mechanism
[13]. The mechanism improves on the shortcomings of B-REP, and provides protection
for each port to support protection against multiple outages in a single network. By
supporting multiple-network failure protection, the EB-REP mechanism is more robust
and flexible in situations of unexpected network error conditions.
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Papan J et al. proposed the Multicast Repair (M-REP) IP FRR Mechanism [14],
which uses the independent multicast-dense mode (PIM-DM)multicast routing protocol
to randomly generate backup paths. The biggest difference between this mechanism and
others is that there is no need to pre-calculate alternative routes under the assumption of
various network failures. When the path is not reachable, the network node encapsulates
the protected packets into specific multicast packets, floods the packets in a specific
multicast group, and forwards the packets to the destination node. As long as the network
has a reachable path, the packets will be transmitted to the destination node. And this
mechanism can be used in any network topology. In the same year, they expanded
in dealing with multi-point failures on M-REP, and proposed the Enhanced Multicast
Repair (EM-REP) [15]. It enhances the handling of multi-point failures and optimizes
the multicast behavior of multi-area networks such as the IS-IS protocol.

We identify some problem areas that arise from the characteristics of IP FRRmecha-
nisms through look at the issue of IP FRR mechanisms. Table 1 compares the indicators
of the IP FRR mechanism mentioned above. Unicast-based IP FRR solves the problem
of insufficient coverage, but it is only applicable to the scenario of a network single point
of failure. Multicast-based IP FRR effectively improves the network robustness in case
of multi-point failure, but it is difficult to realize considering the problems of complex
multicast network configuration management, limited multicast address space, and low
actual deployment rate of a multicast protocol.

Table 1. Comparison table of key indicators of IP FRR

EB-REP EM-REP LFA RLFA TI-LFA

Coverage 100% 100% 70%–80% 99% 100%

Fault points >1 >1 1 1 1

Packet status (no path) Loss Loss Loss Loss Loss

Pre-calculation Yes No Yes Yes Yes

Change packet Yes Yes No Yes Yes

Backup path optimality No No No No Yes

Tunnel No Yes No Yes No

3 P-LFA Architecture

LFA just solves a single point of failure, such as link failure or node failure. Once the
pre-calculated backup path also fails, the network still suffers from packet loss. In order
to achieve lossless transmission, we propose P-LFA that provides percolation paths to
ensure that packets are still transmitted to the destination node when the network has
multiple points of failure. Besides, packets can be cached in the closest node to the
destination even if there is no reachable way. So P-LFA can achieve a packet loss rate
of 0%.



P-LFA: A Novel LFA-Based Percolation 561

Fig. 1. P-LFA architecture

The P-LFA architecture consists of the control plane and data plane: the control
plane generates routing tables based on topology information; the data plane processes
packets based on the information sent from the control plane. The P-LFA architecture is
shown in Fig. 1. The control plane is responsible for running routing protocols, which
include three core modules: Topology DiscoveryModule, Path CalculationModule, and
Routing Generation Module.

• Topology Discovery Module: It obtains the global topology G (V, E) by exchanging
various network information among network nodes. In G (V, E), V denotes network
nodes, and E denotes network links.

• Path Calculation Module: It calculates the paths by path generation algorithms. Path
generation algorithms include three algorithms: shortest path generation algorithm,
backup path generation algorithm, and percolation path generation algorithm.

• Routing Generation Module: It generates routing tables based on the results of the
path generation module. Three algorithms generate three different routing tables.

The data plane is responsible for forwarding various types of packets, which include
four core operations: Parsing Operation, Matching Operation, Cache Operation, and
Encapsulation Operation.

• Parsing Operation: It extracts the header of the packet for subsequent matching of
tables.

• Matching Operation: It is used to match forwarding entry to find out the next hop.
Once it is successfully matched, it will stop the matching operation.

• Cache Operation: When the next-hop occurs failure, it caches the packet prevent
packet loss.

• Encapsulation Operation: It encapsulates the header before sending the packet to the
output port.
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3.1 Path Calculation

P-LFA consists of three paths: shortest path, backup path, and percolation path. The
three paths are computed by using different algorithms.

• Shortest Path: P-LFA uses a combination of Incremental Shortest Path First (ISPF
for short) algorithm and partial route calculation algorithm to calculate the shortest
paths. It algorithm uses Dijkstra to calculate the shortest paths. Each node generates a
Shortest Path Tree (SPT for short) with itself as the root node and other routers as the
leaf nodes. In contract to SPF, when the link states change, ISPF only calculates all
the nodes in the first calculation, and the affected nodes need to be recalculated when
the link states change. And the partial route calculation algorithm updates the route
based on the SPT calculated by ISPF to complete the recalculation of the shortest
path.

• Backup Path: P-LFA uses the TI-LFA mechanism to calculate the backup paths. TI-
LFA defines P-space and Q-space: P-space is the space of the set of nodes whose
shortest path from PLR to these nodes does not pass through the failure point; Q-
space is the space of the set of nodes whose shortest path from the destination to these
nodes does not pass through the failure point. The algorithm can provide backup paths
for any topology.

• Percolation Path: we propose a percolation rerouting algorithm to calculate perco-
lation paths in P-LFA. This algorithm is distributed, with each node calculating its
percolation paths. The idea of percolation is similar to the idea of “water flowing
downhill”, where packets are expected to keep moving closer to the destination in
case of multiple failures. The algorithm defines the node level (NL for short) and
divides the network topology graph hierarchically. Each node is classified into dif-
ferent NL according to the distance from the destination. The closer the node to the
destination, the higher the NL is. The algorithm also invokes the idea of backtrack,
which allows packets to be sent from a high-level node to a low-level node. The node
determines whether a packet has been backtracked by �t. The node looks for con-
forming nodes to establish percolation paths. A neighboring node is a conforming
node when its NL is greater than or equal to this node. When there are less than three
eligible nodes, the node will take a backtrack operation. The packet will be sent to
nodes with lower NL. When the packet reaches the other node, it will be matched and
forwarded normally.

3.2 Forwarding Table

The node’s forwarding tables provide the next-hop to determine the transmission of
packets, which also includes three forwarding tables in the P-LFA.

Shortest Path Forwarding Table. The shortest path forwarding table is the default
table. It has the highest priority. The packets choose the shortest path as forwarding at
the source. This forwarding table indicates which is the best next hop for the packet. Its
structure is shown in Table 2.
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Table 2. Shortest path forwarding table

Destination address Metric Next hop Output interface

8:: 10 6:: Ens38

The shortest path forwarding table contains the destination address, metric, next hop,
and output interface. When packets are transmitted using the shortest path forwarding
table, the successfulmatch is determined according to the output interface state.When the
output interface state is up, the packet is encapsulated and sent to the output interface. If
the interface state is down, thematch is considered fail. The packetwill change the header
according to the pre-calculated Segment List to achieve the backup path switching.

Backup Path Forwarding Table. The backup path forwarding table is used for match-
ing SRHheaders. Once the local address of the node is the same as the destination address
of the received packet, this node is called Endpoint. When Endpoint receives the packet,
it will match the backup path forwarding table and modify the packet header. The table
specifies that the packet ends the current label and performs the next label. The structure
is shown in Table 3.

Table 3. Backup path forwarding table

Destination address FuncType Flavor Next hop Output interface

4:: End. X -- 5:: Ens38

The backup path forwarding table contains the destination address, functype, flavor,
next hop, and output interface. The operation is divided into two steps when the packet
is matched with the backup path forwarding table. First, the node subtracts one from
Segments Left (SL) in SRH for the next label instruction. Secondly, the node transforms
the destination address into the destination of the next Segment List. And the packet
is forwarded according to the functype in the backup path forwarding table, such as
End, End. X, etc. If the output interface is down, the packet will be matched with the
percolation path forwarding table.

Percolation Path Forwarding Table. Except for node ID、network address, each
node has its node level that is used for the Percolation Path. The percolation path for-
warding table is used to transmit packets when both the shortest path and the backup
path fail. The percolation path forwarding table provides multiple next hops to the des-
tination for the packet. Once the packet matches the percolation path forwarding table
in the node, this node modifies the next hop, NL, and �t in the header. The structure is
shown in Table 4.
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Table 4. Percolation path forwarding table

NL Destination address Next hops �t

1 20:: R2, R3, R4 –

2 30:: R3, R5 –

2 30:: R1, R2 −1

The percolation path forwarding table contains the NL, destination address, next hop
ID, and an operation of �t. When the packet matches the percolation path forwarding
table, the node first changes the packet header. Then the node selects the corresponding
next hops according to the destination node and changes �t according to the forwarding
table instructions. If a node receives a packet carrying �t = 0, it directly matches the
percolation path forwarding table. The packet will be forwarded to the next hops without
changing �t, while the �t of the header is changed to 1. When a node receives a packet
carrying �t = 1, it will no longer match the percolation path forwarding table.

3.3 Forwarding Process

When a packet is sent from the source to the destination, the packet is selected to use
the shortest path for transmission at the source. It will be forwarded to the destination
along the shortest path in normal network condition. When the network fails, i.e., the
shortest path fails, the packet will use the backup path for transmission. The node types
the Segment List into the packet header to guide the subsequent forwarding of the packet.
When the node finds that the backup path has also failed, it will use the percolation paths
for transmission. The node diffuses the packet through the percolation path forwarding
table.

Once a node uses the percolation paths, it first checks whether the header contains
�t and NL. If the header does not contain �t and NL, the node needs to type �t = 1
and the NL of this node and the node ID into the packet header. Then the node diffuses
the packet according to the percolation path forwarding table. When a node receives a
packet containing �t, it means that the packet is forwarded using the percolation path.
The node will first check whether it has accepted the packet. If it has received the packet,
it drops the packet. If it has not received the packet yet, look at the �t in the header. If
�t = 0, it will directly match the percolation path forwarding table. If �t = 1, it will
follow the normal matching process. However, if the next hop ID matches the node ID
in the header, it is considered that the matching fails, and the path switching operation
is performed. When the shortest path and backup path of the node fail again, the packet
no longer matches the percolation path forwarding table. The node will decide whether
to cache according to its own NL and the NL carried in the header. The priority of the
paths is: shortest path > backup path > percolation path.
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4 Percolation Path Algorithm

The principle of the percolation rerouting algorithm is to calculate the percolation paths
by the NL of the nodes. The algorithm is a distributed algorithm, which is calculated
and maintained by each node. The algorithm constructs a network hierarchy topology
to generate nodes’ NL. Each node sends its NL to its neighboring nodes to generate
a percolation path routing table. It generates percolation paths based on the NLs of
neighboring nodes. The process for calculating the percolation paths is as follows.

Fig. 2. Network hierarchy topology diagram

Step 1 Build Network Hierarchy Topology. First, we construct the network hierarchy
topology. The network hierarchy is divided according to the distance of all nodes relative
to the destination. According to the position of all nodes relative to the destination, the
node with fewer hops represents the closer to the destination, and its NL is higher. Take
the network topology shown in Fig. 2a as an example, its network hierarchy topology
is shown in Fig. 2b. The relationships between nodes in Fig. 2b can be divided into
three relationships: a) peer relationship, i.e., nodes have the same node level; b) superior
relationship, such as K is a superior node of D; c) subordinate relationship, such as B is
a subordinate node of D.

Algorithm 1 describes the process of calculating the network hierarchy. In construct-
ing the network hierarchy, it is initiated by the destination. First, the destination sets its
NL (D, D) to 0 and sends broadcast packets with P (D, D) = 1. When the node receives
broadcast packets P (Ni, D) from its neighbor Ni, it will calculate its NL by Algorithm
1.

In Algorithm 1, G (N, E) represents the network topology. N represents the network
node. E represents the link. S is the source. D is the destination.
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Algorithm 1. Network node level calculation

1 0: ( , ), , ,G N E S D Ninput   
2 0 0( , ) NL N Doutput :  
3

00 ( , )NL N D 13

4
0

( , ) 0
( , ) 1 

d

N D
NL D D

P D D

if then

send 

5 0

( , ) 0 s

N S
NL S D

else if   then

6
0

0

0

0 0 0

 ( , ) 

( , ) ( , ) 

( , ) ( , )

( ) 

( , ) ( , ) 1 ;

i

i

i

j

j i

k

P N D

P N D NL N D

NL N D P N D

N Adjacency N

N K
P N D NL N D N

else
for receive then

if  then

for then

if   then
send to end

Step 2 Percolation Path Calculation. Each node sends its NL to neighboring nodes.
The node generates a percolation routing table based on theNL of the neighboring nodes.
The node finds the percolation paths based on the NL of its neighbors. The node finds
nodes to construct percolation paths based on the percolation routing table. The node
first finds a neighboring node with the NL greater than or equal to the node and sets it as
a percolation path. When there are less than three eligible neighbor nodes, the node will
take a backtrack operation. The node not only sends the packet to the eligible nodes but
also sends the packet to neighboring nodes of lower NL. The algorithm sets the number
of times a packet can be backtracked to one. �t is used to determine whether the packet
has been backtracked. When the node performs a backtracking operation, �t is reduced
by 1 to become 0.

In Algorithm 2. N0 represents the failed-aware node. Nk represents the neighboring
nodes of fault-aware nodes.
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Algorithm 2. Percolation path generation algorithm
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5 Packet Caching

During link transmission, packets are dropped and retransmitted due to network failure
problems. These phenomena greatly affect the quality of service. The unicast-based IP
FRR mechanism generates packet loss when the pre-calculated backup path also fails;
the multicast-based IP FRR mechanism can cope with multi-point network failures, but
still takes packet loss when the network has no reachable path. To ensure that packets
are not lost in network transmission, a caching mechanism is proposed for the rerouting
mechanism. Packets are always present in the link during transmission by using the
caching mechanism. When there is no reachable path in the network, the packets can be
cached in the node closest to the destination. This mechanism achieves a packet loss rate
of 0%. This mechanism reduces the long retransmission delay by sending the message
to the destination first after the network failure is recovered.

After the packet ismatchedwithin the node, it is encapsulated and sent to the specified
output port. To support the caching mechanism, the port is assigned the register to cache
packets. When the port is not working properly, packets arriving at the port will be
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cached until the failure is recovered. When the port is restored to normal, messages are
forwarded directly without the need for matching operations. The caching mechanism
will not take effect during normal message transmission. The mechanism is triggered
when the path fails. When a packet fails to match the shortest path forwarding table, the
caching mechanism will copy the packet. The node will cache the copied packet in the
register of the next-hop port. Similarly, when a packet fails to match the backup path, the
caching mechanism also copies the packet and caches it in the corresponding output port
register. The caching mechanism is different when using the percolation path. When the
percolation path fails to match, the NL between the source and this node is compared
to determine whether the packet needs to be cached. If the NL of this node is higher
than that of the source node. This means that the node is closer to the destination than
the sender, then the caching operation is performed. Otherwise, the packet is discarded.
When the port resumes normal operation to send out cached packets, the existing cache
is deleted.

6 Evaluation of P-LFA Mechanism

6.1 Experiment Environment

We develop a simulator to evaluate P-LFA, which runs on a physical device with a CPU
of 3.20 GHz, a memory of 16G, and an operating system of Windows 10. The simulator
can consider a comparison of the packet reachability when using different routing algo-
rithms. Besides, it first calculates the paths based on the source and destination, and then
randomly destroys links in the network. After links are destroyed, it can re-calculate
paths and analyze the packet reachability.

Assume that the topology contains 56 nodes and 103 links, which are designed
according to the real network topology. In our experiment, 100 sets of source and desti-
nation nodes are randomly selected in the network topology. In order to better highlight
experimental results, each group of data was randomly executed 1000 times.

6.2 Path Robustness

When the network link occurs failure, P-LFA will permeate according to the node level
of the neighbor node. After the neighbor node receives the packet, it will continue to
transmit according to the routing table entry, without the need for pre-calculation.

The experimental results show that the path success rate changes significantly as the
number of faulty links increases from one to six, as shown in Fig. 3. When any single
link fails, TI-LFA and P-LFA can ensure that the packet is still 100% reachable, and SPF
has lost packets. As the number of link failures increases, the success rate of P-LFA is
significantly higher than that of TI-LFA.When six link failures occur in the network, the
success rate of TI-LFA is reduced to 96%, while P-LFA can still be maintained above
99%.When a small number of link failures occur in the topology, P-LFA can improve the
reachability of packets and achieve high reliability of packet transmission. Therefore,
the path robustness of P-LFA is better than the existing SPF and TI-LFA.
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Fig. 3. Comparison of the success rates of packet transmission among the threemechanismswhen
a small number of links are faulty. The success rate of the P-LFAmechanism has been higher than
99%.

6.3 Loss Tolerance

Existing LFA mechanisms precompute the backup path based on assumed failure point.
However, this mechanism only considers a single point of failure. When the network
has multiple points of failure, its effectiveness may be greatly reduced.

P-LFA solves the weakness of LFA by introducing the percolation algorithm. The
percolation algorithm is no longer limited to the faulty node, but also considers the
neighboring nodes of the faulty node. When the network encounters one or more fault,
the percolation algorithm takes the faulty node as the center of the circle and selectively
spreads the packet to the neighboring node, which can provide more optional paths for
packet transmission.Meanwhile, P-LFA achieves 100% topology-independent coverage
by using the percolation algorithm between a faulty node and neighboring nodes. When
the packet has no way to go, P-LFA can avoid packet loss by caching packets. When the
fault is recovered, packets can be re-transmitted to the destination host for the first time.
Thus, P-LFA effectively reduces the delay of retransmission and achieves zero-loss.

6.4 Computational Cost

To verify the computational cost of P-LFA, we simulate the time for generating three
different paths. After randomly selecting a set of source and destination nodes, we record
the time when the source node computes the path and generates the forwarding tables.
The computational time represent the computational cost of three algorithms, as shown
in Fig. 4. Due to the large difference in computation time of the three algorithms, we
take eT as the comparison value of T (T is used to indicate computational cost).
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According to the experimental results, the computational time of the shortest path
and the percolation path is nearly equal, which is about 0.1 ms. The computational
time to calculate the backup path is about 294 ms, which is 3000 times as long as
the computational time of percolation path. Therefore, the P-LFA mechanism adds a
small computational cost to the nodes when calculating the percolation path, but the
mechanism shows better protection than the TI-LFA mechanism when dealing with
multi-point failures in the network.

Fig. 4. Computational time of three paths. The computational cost of the algorithm is judged by
Computational time. The computational cost of three algorithms is: shortest path < percolation
path < backup path

7 Conclusions

We propose P-LFA, which utilizes the idea of percolation to provide a more robust
fast re-routing mechanism for IP network. In P-LFA, the percolation algorithm is firstly
proposed to find a reachable path by bypassing link faults without pre-computing paths.
In addition, P-LFA uses cache to ensure that packets are not lost when the paths fail,
avoiding the overhead of packet retransmission. These two mechanisms ensure that P-
LFA can provide better network robustness and enhance link reliability without adding
excessive computational complexity. The next worksmainly analyze how to further learn
from “gravitational potential energy” and to introduce it into the percolation algorithm.
It may let packet forwarding no longer just based on given links.
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Abstract. Although the release and analysis of high-dimensional data
bring tremendous value to people, it causes great hidden danger to par-
ticipants’ privacy in the meantime. Various privacy protection methods
based on differential privacy have been proposed at present. However,
most of them cannot simultaneously solve the problems of high compu-
tational overhead and privacy threats from untrusted servers caused by
the curse of high dimensionality. Therefore, we propose a safer and more
effective high-dimensional data release algorithm based on local differen-
tial privacy, which is referred to as PU Bpub. It effectively preserves the
dimensional correlation of the original high-dimensional data and reduces
the communication overhead of synthetic data. Extensive experiments on
real-world datasets demonstrate that our solution substantially outper-
forms the state-of-the-art techniques in terms of computational overhead,
and the synthetic dataset has high utility.

Keywords: High-dimensional data · Data synthesis and release ·
Local differential privacy · Spectral clustering

1 Introduction

Today, with the continuous progress of science and technology, high-dimensional
datasets released have benefited people greatly. Nonetheless, unprecedented pri-
vacy threats to participants have emerged due to complex correlations among
multiple attributes and the vulnerabilities of untrusted servers.

Currently, the privacy protection of high-dimensional data concerns mainly
covers two-fold challenges: the curse of high dimensionality and non-local pri-
vacy protection [1]. Xiao et al. in [3] and Zhang et al. in [4] built the correlation
models of high-dimensional attributes via dependency graph or threshold fil-
tering to reduce dimensionality. Nevertheless, to high dimensionality, they do
not account for the complex dependency between high-dimensional data, signifi-
cantly reducing data availability. LDP (local differential privacy) can effectively

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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solve non-local privacy protection. However, the LDP also has some shortcom-
ings. If the LDP wants to improve the data available in the training process, it
needs much data, which will bring considerable communication overhead.

Therefore, releasing high-dimensional data with LDP still faces utility and
computational efficiency challenges. We propose a new mechanism to address
these issues. Our significant contributions are listed as follows.

• First, we propose PU Bpub, a high-dimensional data release mechanism based
on Spectral Clustering with LDP. This mechanism uses the dependency graph
and weighted Bayesian network to ensure the complex dependency relation-
ship between data. At the same time, it reduces the synthesis time of high-
dimensional datasets by spectral clustering of the dependency graph.

• Second, we design a new weight selection method to establish a Bayesian
network to better balance privacy and data utility.

• Third, we implement and evaluate our schemes on different real-world
datasets. Experimental results show that our method dramatically reduces
the running time and has high utility for synthetic data under LDP.

The remainder of the paper is organized as follows. Section 2 provides a lit-
erature review. In Sect. 3, we outline the preliminaries. Section 4 introduces our
scheme. Section 5 presents the performance evaluation of our plans. Finally, we
conclude the paper in Sect. 6.

2 Related Work

Currently, the release of high-dimensional datasets based on DP can be divided
into four aspects: feature dimension reduction [6,7], random projection [8], and
probability graph model [9–11]. A full survey of methods to realize differential
privacy is beyond the scope of this work. Here, we identify the most related
efforts and discuss why they cannot fully solve the problems above.

Feature Dimensionality Reduction: Chaudhuri et al. [6] proposed to combine
PCA with CDP to solve the problem of privacy disclosure in high-dimensional
data release. It can reasonably display the data correlation, but it increased the
time complexity.

Random Projection: Sun et al. [8] proposed Multi-RPHM, which was a high-
dimensional numerical data collection algorithm that met the LDP. However,
the inherent structure of data is not considered in the generation of the trans-
formation matrix, which reduces the data utility.

Probability Graphs mainly use Bayesian networks and joint trees: Zhang et
al. [9] based CDP proposed PrivBayes. However, with the increasing number of
attributes and the assumption of a trustworthy server, PrivBayes faces that the
accuracy decreases significantly. To this end, Ren et al. in [10] proposed Lopub
and in [11] proposed LoCop and DR LoCop, which used joint trees to describe
the data correlation and used LDP to protect the privacy of high-dimensional
data. However, due to the estimation of multi-dimensional joint distribution, the
communication overhead of the above methods increases significantly with the
increase of data dimension.



574 A. Lin and X. Ma

3 Preliminaries

3.1 Local Differential Privacy

Generally speaking, a mechanism under differential privacy assumes that the
data aggregation server is trustworthy. Nonetheless, the server may be dishonest
and vulnerable to some inside attacks. To this end, local differential privacy
(short for the LDP) was proposed to ensure the privacy of each individual’s
data on the user side. A formal definition of local differential privacy is given
below.

Definition 1. ((ε)-LDP)) [12]: Given N users, each user has a record and is
given a privacy algorithm M , if algorithm M obtains the same output result s∗

on any two records s and s
′
, the following relationship exists (1), algorithm M

is said to meet ε-LDP.

Pr(M(s) = s∗) ≤ eε × Pr(M(s) = s
′
) (1)

4 System Model

4.1 Basic Idea

We propose a high-dimensional data release algorithm based on LDP, which is
referred to as PU Bpub. LDP is used to disturb high-dimensional data at the
client to prevent the privacy disclosure of sensitive data. The complex dependen-
cies between high-dimensional data are processed through a dependency graph
and weighted Bayesian network so that the synthetic dataset has high utility.
Spectral clustering is used to reduce the problem of significant communication
overhead when synthesizing new datasets.

4.2 Transformation with LDP

In this component, the local client performs data conversion based on RAP-
POR [1]. First, encode the data, then disturb the encoded data, aggregate the
disturbing string of each attribute to form a large string S′ ,and then send it to
the server.

4.3 Multi-dimensional Distribution Estimation

In this component, the multi-dimensional probability distribution can be effi-
ciently estimated through the Lasso regression algorithm from the aggregated
Bloom filter strings. It mainly includes the following steps.

• Forming candidate matrix. The Bloom filter is used as the characteristic vari-
able. A cartesian production connects the binary vectors of different candidate
values to create a matrix M ′, then transforms into a candidate matrix M .

• Counting and estimation. After the server receives the disturbing string S′,
for each bit Si

j [b] in each attribute Aj , the central server counts the number
of “1”. The sum formation vector x̃ of 1 of all bits.
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• Linear Regression. Given a vector x̃ and a candidate matrix M , x̃ = Mβ can
be used to estimate the probability distribution.

• Lasso Regression. Lasso regression reduces the dimension of sparse data, and
then the probability distribution is estimated at β = Lasso(x̃,M).

Algorithm 1. Weighted Bayesian Network
Input: Dataset D, Maximal Degree of Bayesian Network k, Attribute Set A
Output: Weighted Bayesian Network N
1: Initialization: N = ∅, adjacency matrix Gd×d = 0, φm,n = θ
2: for each i ∈ [1, d] do
3: Compute Mutual Information of attributes Am and An:
4: Im,n =

∑
i∈Ωm

∑
j∈Ωn

pij
pij

pi.p.j

5: if Im,n > φm,n then
6:

Gm,n = Gn,m = 1, Get Adjacency Matrix Gd×d

7: end if
8: end for
9: Degree Matrix : Wd×d ← Gd×d

10: Laplacian Matrix : Ld×d = Wd×d − Gd×d

11: Cut the Attribute Graph to get the Attribute Subgraph
12: Compute the weight value of Attribute Subgraph, select the one with the largest

weight value as the initial node
13: return N

4.4 Computing Dependence Structure

In this component, the server calculates the mutual information according to the
multi-dimensional joint probability distribution, obtains the adjacency matrix,
establishes the dependency graph according to the adjacency matrix, then per-
forms spectral clustering on the dependency graph to form the attribute sub-
graph. A dependency graph can represent complex dependencies between high-
dimensional data attributes. However, the improper establishment of a depen-
dency graph will reduce the utility of synthetic data and significantly reduce the
effect in data analysis. Algorithm 1 illustrates the construction process of the
weighted Bayesian network. In this paper, we use mutual information to com-
pute correlations between high-dimensional data. The threshold φm,n is set and
compared with mutual information Im,n to establish a good dependency graph.
The threshold value φm,n is set as follows:

φm,n = min(|Ωn| − 1, |Ωm| − 1) · γ2

2
(2)

where Ωm , Ωn are the domain sizes of attributes Am, An, γ is the dependency
degree that determines the correlation level of the attributes. In statistics, it
is generally recognized that there have correlations between attributes when
0.3 ≤ γ ≤ 0.7. Thus we set dependency threshold γ = 0.3.



576 A. Lin and X. Ma

4.5 Initial Node Selection

In this component, the attribute subgraph with practical significance should be
chosen as far as possible to improve data utility. The specific operational steps
are as follows.

• Firstly, we select the initial node according to the static weight. The degree
matrix Wd×d has been calculated in the third step of the above algorithm.
Therefore, the sum of the degree matrix in the subgraph can be used as the
static weight value to select the initial node. If the sum of the degree matrix
of the subgraph is larger, which is proved that the dependence between the
subgraph nodes is strong and has more practical significance. Thus, the static
weight value can be solved according to the following formula:

weight =
n

∑

j=1

wij (3)

where wij is the diagonal value of the degree matrix.
• Secondly, we select the initial node according to the Information entropy. The

static weight value may be the same when using the weight value of each sub-
graph to select the initial node. When the static weight value of the subgraph
is the same, the weight value of each subgraph is calculated by information
entropy. It can be seen from the formula that the greater the information
entropy, the stronger the correlation between subgraphs. Therefore, the sub-
graph with the largest information entropy is selected first. The calculation
formula of information entropy is as follows:

H(U) = −p (Ui) log p (Ui) (4)

where Ui is the ith possible value of the subgraph, p(Ui) is the edge probability
of the subgraph. From Eqs. (3) and (4), it can be obtained that the time
complexity of using the static weight value is O(n). Using information entropy
as the weight value, the time complexity is O(n log n)), so the combination
of the two can reduce the time complexity.

4.6 Synthesizing New Dataset

In this component, a new dataset is synthesized according to the conditional
probability distribution of each attribute subgraph. Algorithm 2 illustrates the
sampling and synthesizing process. Firstly, we predefined set Y = ∅, which is used
to store the selected attribute subgraph. According to the method of initial node
selection, an attribute subgraph is chosen from the weighted Bayesian network,
and the probability distribution P (AC) of the attribute subgraph is obtained by
estimating the multidimensional joint distribution according to Lasso regression.
We sample and synthesize the dataset until the attribute subgraph is empty.
Repeat the above step until all attribute subgraphs are sampled.
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Algorithm 2. Synthesizing New Dataset
Input: Ç: a collection of attribute index clusters C1, . . . Ck, Aj : k-dimensional
attributes (1 ≤ j ≤ k)

Output: Synthetic Dataset Û

1: Initialization: Y = ∅
2: Repeat:
3: choose an attribute index cluster Cj ∈ Ç:
4: estimate joint distribution P (AC) by JD

5: sample ÛC according to P (AC) until Attribute node sampling complete
6: Ç = Ç − C, Y = Y ∪ C
7: Select the attribute subgraph connected to the sampled node for sampling
8: Until Ç = ∅
9: Return: Û

5 Performance Evaluation

This section demonstrates our scheme’s performance and reports the experimen-
tal results. In the following, we first present the datasets and experimental setup.
Then, we offer experimental results.

5.1 Datasets and Setup

We use three real-world datasets, including Adult, Retail and TPC-E [10,11].
In order to facilitate the comparative experiment, the dataset processing is con-
sistent with the algorithms in [10,11]. All algorithms and experiments were
implemented using Python 2.7, running on a Windows 10 PC with Intel Coreli5-
8250 CPU 1.8 GHz and 8 GB RAM.

(a) TPC-E (b) Adult (c) Retail

Fig. 1. Number of clusters

5.2 Experimental Results

Number of Clusters. Because the change of the Calinski-Harabasz index in
clustering is sometimes not significantly different, they are combined to select
the best number of clusters. The larger they are, the better the clustering effect
is. Thus, Fig. 1 describes TPC-E, Adult, and Retail optimal cluster sizes are 6,
4, and 3, respectively.



578 A. Lin and X. Ma

Accuracy. We use the Average Variation Distance (AVD) to measure the dif-
ference between the joint probability distribution of the synthetic datasets and
the original datasets. The larger the AVD, the greater the error between the
estimated joint distribution P (w) and the original joint distribution Q(w). The
calculation formula of AVD is as follows:

AV D(P,Q) =
1
2

∑

w∈Ω

|P (w) − Q(w)| (5)

where Ω is the size of the dimensional attribute domain.
We test AVD using different k-way marginal (Binary dataset Retail with k =

2, 3, 4, 5, non-binary datasets Adult and TPC-E with k = 2, 3, 4). Figure 2 shows
the AVD of TPC-E and Adult gradually increases with the privacy parameter
f . The change of AVD of the Retail dataset is not apparent, which maintains
within 1%. This is due to the estimated joint distribution of binary datasets
being more accurate than non-binary datasets. The increase in f means that
the better the privacy effect, the greater the disturbance of the data, which will
bring more significant error in the joint distribution.

(a) TPC-E (b) Adult (c) Retail

Fig. 2. K-Way marginals query accuracy

SVM and RF Classifications. The average SVM and RF classification accu-
racy of three datasets are shown in Fig. 3 and Fig. 4, which shows that the
SVM/RF classification accuracy decreases with the flip probability f for all
algorithms. This reflects the impact of privacy protection on the data utility.
Our scheme consistently outperforms Lopub for classification algorithms. And it
has little difference in the accuracy of SVM/RF classification of DR LoCop and
LoCop algorithm synthetic datasets. This is because we establish a dependency
graph based on mutual information to maximize the retention of the attribute
relationship between high-dimensional data after disturbance. As shown in Fig. 4,
the RF classification rate of the Retail dataset is significantly higher than that
of the TPC-E and Adult datasets when f is large, which is due to the large
deviation in the joint distribution estimation of non-binary attributes. Overall,
PU Bpub retains good data utility to a certain extent.
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Running Time. Figure 5 shows that PU Bpub has significantly less running
time for synthetic datasets than previous algorithms. This is because we use spec-
tral clustering to cut the dependency graph and then build a weighted Bayesian
network, which reduces time complexity. The time required for binary dataset
Retail is significantly less than for non-binary datasets TPC-E and Adult. This
is because the calculation of a binary dataset is simpler than that of a non-binary
dataset for joint distribution estimation. To summarize, our scheme is highly effi-
cient when processing high-dimensional data. While reducing the running time,
the new synthetic dataset retains good data utility to a certain extent.

Fig. 3. SVM classification

Fig. 4. RF classification

Fig. 5. Running time
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6 Conclusion

In this paper, we propose a novel solution named PU Bpub to achieve high-
dimensional data release with local differential privacy. In order to effectively
preserve the dimensional correlation of the original high-dimensional data, the
server identifies the dimensional correlation based on the dependency graph
after receiving the data protected by the user’s local privacy. Spectral clustering
divides the high-dimensional data attribute set into several relatively indepen-
dent low-dimensional attribute sets to reduce the communication overhead of
the synthetic data. A weighted Bayesian network is established to synthesize a
new dataset by setting a reasonable weight to select the initial node to improve
the utility of the synthetic dataset. The results show that the mechanism signif-
icantly reduces the communication overhead of synthesizing new datasets and
maintains an excellent private utility trade-off.

Acknowledgement. This paper is supported by Inner Mongolia Natural Science
Foundation (Grant No. 2018MS06026) and the Science and Technology Program of
Inner Mongolia Autonomous Region (Grant No. 2019GG116).
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Abstract. Radio Frequency Identification (RFID) technology plays an
essential role in surveillance scenarios. However, redundant data hinders
the efficient processing of data. The processing of RFID redundant data
is of great importance to reduce the load of the RFID system and quickly
detect the monitored tags. To address the issue, the research community
introduced Bloom filtering technology into the RFID system. However,
existing methods often use fixed thresholds and cannot adapt to complex
environmental conditions. This work presents R-TDBF, a practical solu-
tion that enables data redundancy filtering in complex environments by
rationally setting filtering thresholds. In addition, a signal strength thresh-
old is also introduced in R-TDBF, which reduces the error caused by signal
fluctuation. The experimental results show that the R-TDBF algorithm
can filter redundant data well under different threshold conditions. Com-
pared with the existing algorithms, our method has good practicality with
an average reduction of 73.7% in the detection error rate.

Keywords: Bloom filter · Redundant filtering · Data cleaning · Radio
frequency identification

1 Introduction

Radio Frequency Identification (RFID) is a non-contact automatic identification
technology that mainly uses the backscattering characteristics of radio frequency
signals to achieve automatic identification. It is widely used in surveillance sce-
narios due to its advantages of non-visible communication, low cost, and long-
distance batch reading [1].

In surveillance scenarios, RFID devices are deployed in places that need to
detect the transfer of equipment or documents, such as a warehouse or office
entrance. RFID devices used for item monitoring typically capture data at high
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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frequencies to prevent loss. However, the frequent collection will lead to data
redundancy to a certain extent. Due to the way RFID works, the same tag will
be read multiple times if it stays within the read range of a fixed reader for a
long time, resulting in a large number of duplicate and invalid data [2]. These
redundant data occupy a large number of system storage resources and often lack
practical value, which seriously reduces the operating efficiency of the system.

In order to effectively eliminate the redundant data in the RFID data stream,
the traditional data redundancy processing technology is to store the collected
data in the data warehouse or database and then return the query result [3].
However, with the expansion of the data scale, the query efficiency will decrease,
and the real-time requirements will not be met. Due to the real-time and stream-
ing characteristics of RFID data, redundant data filtering must be carried out
in a limited space and time. Therefore, designing a lightweight and real-time
redundancy data processing method will be the focus of research.

Bloom Filter has received extensive attention for its low memory occupation
and efficient query [4]. For the uncertainty of RFID data, Liao et al. proposed an
approximate probabilistic synthetic Bloom filter based on a block sliding win-
dow model [5]. Liu et al. combined the advantages of adaptive sliding window
and Euclidean distance for filtering RFID stream data [6]. We have proposed a
redundant data processing algorithm called TDBF based on Bloom Filter, which
performs redundant filtering of data in time and distance dimensions [7]. The
TDBF algorithm uses the received signal strength value (RSSI) to represent the
distance from the tag to the reader roughly. However, in practical applications,
due to the influence of environmental factors and multipath effects, the fluctu-
ation of RSSI leads to a decrease in the accuracy of redundant processing. In
addition, the threshold of redundant filtering in TDBF is often set empirically,
which has limitations. Therefore, this research considers the complexity of the
actual environment and illustrates how to set the filtering threshold adaptively.

We propose R-TDBF, a redundant data filtering method with a low error
rate and high practicability. First, we construct a redundant filtering model for
surveillance scenarios. Second, we illustrate how to set the threshold reason-
ably and adaptively adjust the threshold value according to the actual scenario.
Finally, according to the redundancy definition, we perform real-time redun-
dancy filtering on the RFID data stream. The results show that the influence
of RSSI fluctuation is further eliminated in R-TDBF, resulting in a lower error
rate and can be practically applied to different scenarios. The main advantages
of R-TDBF compared to previous methods are as follows.

1. R-TDBF takes into account the influence of environmental factors. The prac-
ticability of the algorithm is effectively improved by setting the filtering
threshold that adapts to the environment.

2. R-TDBF supports the processing of disturbing RSSI values to reduce the
impact of RSSI fluctuations, thereby effectively reducing the detection error
rate of redundant data.
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3. Extensive experiments show that the proposed algorithm achieves real-time
and efficient filtering of redundant data in the Spatio-temporal dimension and
can be practically applied to surveillance scenarios.

2 Related Work

There is a broad interest in filtering the redundant data quickly and effectively.
The literature [8] utilizes a finite state machine model for redundant data clean-
ing. The number of state machines can be limited and is not applicable in com-
plex environments. In addition, with the popularity of machine learning, some
data redundancy processing algorithms based on Bayesian networks and varia-
tional inference-based techniques [9,10] have emerged, which use prior knowledge
to process data redundancy. However, these algorithms are more dependent on
historical data and slower in redundancy decision making, so their applications
are limited in places with strict real-time requirements.

Bloom Filter (BF) has received extensive attention in the field of RFID redun-
dancy filtering due to its lightweight and real-time characteristics [11]. Bloom
Filter is a probabilistic data structure consisting of a bit array of size m and k
independent hash functions h1,h2,...,hk, where the array is used to store data,
and hash functions can be mapped to k different locations of the array. Bloom
Filter can check whether the data is in the filter to achieve a redundant decision.
Many improved algorithms based on Bloom Filter have been proposed [12]. Lee
et al. proposed the Time Bloom Filter (TBF), which saves the timestamp of
the latest data in an array and filters redundant data in the time dimension
[13]. Wang et al. proposed the temporal-spatial bloom filter (TSBF) to han-
dle redundant data from both temporal and spatial dimensions [14]. Zhu et al.
proposed a redundant cleaning model R-TSBF, which introduced RSSI into the
redundant judgment rules and reduced the error rate by retaining the maximum
strength of the data [15]. Cao et al. proposed an algorithm called Time-Distance
Bloom Filter (TDBF), which performs redundant filtering from the two dimen-
sions to realize redundant processing of data within the surveillance range [7].
However, none of the above algorithms considers the threshold setting problem
in redundant filtering, which is challenging to apply to different scenarios.

3 Scheme Overview

3.1 Related Definition

The relevant definitions of RFID redundant data in surveillance scenarios are
given below.

Definition 1 (Surveillance data): Use S to denote a series of RFID
data streams, S = {s1, s2, ..., sn}, where si denotes an RFID triple <
TagID, T ime,RSSI >, where TagID stands for the unique identifier of the
tag, Time is the timestamp of the data acquisition, and RSSI is the signal
strength value.
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Definition 2 (Temporal redundancy): If there are two tag data x ∈ S,
y ∈ S, if x.TagID = y.TagID, x.T ime > y.T ime and x.T ime − y.T ime ≤ τ ,
where τ is a set time threshold. At this time, the data x is considered to be
temporal redundant.

Definition 3 (Distance redundancy): If x ∈ S, y ∈ S exists and the tag data
x and y are, respectively, satisfied x.TagID = y.TagID, x.T ime − y.T ime > 0
and x.RSSI < ε, where ε is the distance threshold. We use the RSSI value to
represent the read distance roughly, and if it is smaller than this threshold, it
indicates that the tag is far away. At this time, the data x is considered distance
redundant.

Definition 4 (Strength redundancy): If x ∈ S, y ∈ S exists and the
tag data x and y are, respectively, satisfied x.TagID = y.TagID,x.T ime >
y.T ime,x.T ime − y.T ime ≤ τ , when x.RSSI − y.RSSI < β, then the data x
is strength redundancy, where β is the strength threshold, which is determined
according to the specific application.

Definition 5 (Error rate): The formula of error rate (ER) is Nf/(Nt + Nf ),
where Nt is the correctly judged RFID data, and Nf is the wrongly judged.

3.2 Redundancy Processing Framework

To further enhance the practicability of the algorithm, we propose an improved
redundant data processing algorithm R-TDBF. The overall framework of R-
TDBF mainly includes three stages(see Fig. 1).

Redundancy 
rules

Delete

Save

Construct the 
R-TDBF model

Online redundancy judgmentsModel construction Adaptive Threshold setting

Set Strength Threshold

Set Distance Threshold

Set Time Threshold
Select hash 
functions

Creat an array Valid

Redundant

Fig. 1. R-TDBF redundant data processing model

Model Construction: The model construction phase is used to determine the
redundant filtering structure of R-TDBF. R-TDBF adopts a two-dimensional
integer array structure, which saves the tag reading time and the received signal
strength value. The parameter Time can filter the data with small time intervals,
and the parameter RSSI can filter the data beyond the detectable area.

Threshold Setting: The threshold setting stage is to determine the redundant
filtering threshold according to the actual scene. First, we analyze the collected
RSSI values to clarify the RSSI values’ fluctuation range to determine the signal
strength threshold. Second, we use the path loss model to get the relationship



586 Z. Cao et al.

between distance and RSSI. The maximum likelihood estimation algorithm fits
the model parameters adapted to the scene to determine the RSSI value corre-
sponding to the distance threshold. Finally, we can determine the time threshold
based on the speed of the monitored object.

Redundancy Judgment: This stage is the process of making redundant deci-
sions for real-time data streams. R-TDBF introduces redundant judgment of
signal strength to reduce the interference data caused by fluctuation of RSSI.

4 Detailed Scheme

4.1 Model Construction

The structure of R-TDBF is shown in Fig. 2. R-TDBF consists of a number of k
hash functions and a two-dimensional array of size m, where the first dimension
stores the timestamp Time read by the tag, and the second dimension stores
the tag received signal strength RSSI. The data of the i unit is represented as
Mi[Time][RSSI], where Mi[Time] = Timei, Mi[RSSI] = RSSIi.

Time RSSI

RFID Data Flow M0

M1

Mm-1

s1=<TagID1,Time1,RSSI1>

s2=<TagID2,Time2,RSSI2>

s3=<TagID3,Time3,RSSI3>

sn=<TagIDn,Timen,RSSIn>

...

s1=<TagID1,Time1,RSSI1>

s2=<TagID2,Time2,RSSI2>

s3=<TagID3,Time3,RSSI3>

sn=<TagIDn,Timen,RSSIn>

...

Hash1

Hash2

Hashk

Hash1

Hash2

Hashk

Fig. 2. R-TDBF algorithm structure diagram.

4.2 Threshold Setting

Strength Threshold. Due to non-line-of-sight and multipath effects, the RSSI
value in the actual scene has some volatility. We collected 300 sets of RSSI
values at the same position (see Fig. 3). We found that the distribution of RSSI
can be approximately considered to obey the Gaussian distribution through the
experimental fitting, and its probability density function is as follows.

f(RSSI) =
1

σ
√
2π

exp
(

− (RSSI − μ)2

2σ2

)
(1)

The mean μ and variance σ of the RSSI data distribution are as follows.
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Fig. 3. Gaussian distribution of signal strength.

μ =
1
n

n∑
i=1

RSSI(i)

,

σ =

√√√√ 1
n − 1

n∑
i=1

(RSSI(i) − μ)2

We choose the region with a probability greater than 0.95 as the high prob-
ability occurrence interval (0.95 is the default confidence interval for normal
distribution). From 0.95 ≤ P (RSSI(i)) ≤ 1, the variation interval of RSSI can
be obtained as follows.

−1.96σ + μ ≤ RSSI(i) ≤ 1.96σ + μ (2)

We consider RSSI within the confidence interval to be reasonably volatile. There-
fore, we get the strength threshold β = 1.96σ.

Distance Threshold. We achieve redundancy filtering in the spatial dimension
by setting a distance threshold ε. In R-TDBF, we use the RSSI value to represent
the tag-to-reader distance [16]. By setting a reasonable RSSI, the redundant fil-
tering of the distance range is realized. We get the relationship between distance
and RSSI according to the ranging model [17].

RSSI(d) = −(10nlgd + A) (3)

where A is the reference RSSI value at 1m, and n is the signal transmission
constant, which is related to the signal propagation environment.
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Table 1. Typical values of A, n in different environments [18]

Environment A n

Staircase balcony 33.4∼44.2 1.4∼2.4
Office 39.0∼50.5 1.4∼2.5
Hallway corridor 35.0∼38.2 1.9∼2.5
Lawn park 32.7∼36.0 3.0∼3.9

As shown in the Table 1, the values of A and n are different in different envi-
ronments [18]. To make the model reflect the signal propagation characteristics
as much as possible, optimising A and n to obtain the parameter values that
best adapt to the environment is necessary.

Define ρi = −10lgdi, i = 1, 2, 3, ...N . It can be seen from the Eq. 1 that the
distribution of RSSI conforms to the normal distribution, so for each value of ρ,
it satisfies RSSI ∼ N(−A + nρ, σ2). From the independence of RSSI, it can be
known that the joint density of RSSI1, RSSI2, ..., RSSIN is as follows.

L =
N∏

i=1

1
σ
√
2π

exp
[
− 1
2σ2

(RSSIi + A − nρi)
2

]

=
(

1
σ
√
2π

)N

exp

[
− 1
2σ2

N∑
i=1

(RSSIi + A − nρi)
2

] (4)

Now use the maximum likelihood estimation method to estimate the
unknown parameters A and n. Obviously, if L wants to take the maximum value,
it only needs to satisfy the minimum function Q(ρ,RSSI) =

∑N
i−1(RSSIi+A−

nρi)2. Take the partial derivatives of Q to A,n and make them equal to zero.
{

∂Q
∂A = 2

∑N
i=1 (RSSIi + A − nρi) = 0

∂Q
∂n = −2

∑N
i=1 (RSSIi + A − nρi) ρi = 0

(5)

According to the formula 5, we can get the value of A,n. Therefore, we can
calculate the best distance estimate according to different scenarios to achieve
redundant filtering in different ranges.

Time Threshold. The time threshold τ is related to speed. Assuming that the
movement speed of the tag is v, then as long as τ ≤ ε/v is satisfied, the valid
tag data can be read at least once within the monitoring distance ε. In actual
scenarios, if τ is too large, important monitoring data may be missed, and if τ is
too small, it is difficult to achieve efficient redundant filtering. Therefore, setting
a reasonable τ is crucial.
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4.3 Online Redundancy Judgment

When new RFID data x arrives, R-TDBF judges whether the data is redundant
in the temporal-spatial dimension. The redundant judgment process is shown in
Algorithm1.

1. Determine the redundant filtering threshold in the actual scene, including the
time threshold τ and the distance threshold ε, and estimate the RSSI value
corresponding to the distance threshold and the strength threshold β.

2. k independent hash functions are used for mapping its unique ID into the
corresponding array unit.

3. If there is i ∈ 1, 2, ..., k, Mi[Time] = 0, x.RSSI > ε, then we can think of
this data x as the new arrival data within the detection range,. At this time,
the time information and signal strength values in k different array units are
updated, which is Mi[Time] = x.T ime, Mi[RSSI] = x.RSSI.

4. If there is i ∈ 1, 2, ..., k, x.T ime − Mi[Time] > τ , x.RSSI > ε, then the
newly arrived data is outside the specified time interval and within the dis-
tance range, so data x is not redundant. At this time, the time information
and signal strength value in k different array units are updated, which is
Mi[Time] = x.T ime, Mi[RSSI] = x.RSSI.

5. If there is i ∈ 1, 2, ..., k, x.T ime − Mi[Time] < τ , x.RSSI > ε, x.RSSI −
Mi[RSSI] > β, then the RSSI of the newly arrived data is within the detec-
tion range and the RSSIincrements exceed the fluctuation threshold β. It is
reasonable to assume that the data x is anomalous and valid. At this time,
the time information and signal strength value in k different array units are
updated, twhich is Mi[Time] = x.T ime, Mi[RSSI] = x.RSSI.

6. Otherwise, x is considered to be redundant and is deleted directly.

Algorithm 1 R-TDBF redundancy processing algorithm
Require: RFID data x:x.TagID, x.T ime, x.RSSI
Ensure: Whether x is redundant
1: Set the filtering threshold τ ,ε,β
2: Seletc k Hash function
3: for i = 0 to k do
4: p[i] = Hashi(x.TagID)
5: if R-TDBFp[i][Time] = 0 and x.RSSI > ε then
6: Update R-TDBF (x.T ime, x.RSSI)
7: else if x.T ime − R-TDBFp[i][Time] > τ and x.RSSI > ε then
8: Update R-TDBF (x.T ime, x.RSSI)
9: else if x.T ime > R-TDBFp[i][Time] and x.RSSI − R-TDBFp[i][RSSI] > β

then
10: Update R-TDBF (x.T ime, x.RSSI)
11: else
12: Drop x
13: end if
14: end for
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5 Evaluation

This experiment uses an Impinj Revolution series passive reader and several
supporting tags for data acquisition. We attach multiple RFID tags to the foam
board to simulate the monitoring item with the attached tag. We use the slide
rail to simulate the trajectory of the monitoring object entering and leaving(see
Fig. 4). The car on the slide rail can freely set the speed.

Fig. 4. Experimental scenario.

5.1 Filtration Performance Evaluation

Analysis of Filtering Performance with Different Distance Thresholds.
This experiment explores the redundant filtering performance of R-TDBF under
different distance thresholds. The ten tags in the experiment reciprocate on a
3m-long slide rail at a speed of 0.5m/s. When τ=1 s, β=2dB, we set the ε to
1m, 2m, and 3m respectively (the estimated RSSI values are −39 dB, -48.9 dB,
−54.7 dB respectively). Since the TDBF algorithm cannot estimate the distance
adaptively, we adopt the same setting as R-TDBF.

Table 2. Comparison of filtering performance under different distance thresholds

Raw data Baseline TDBF R-TDBF

1 m 47162 2000 3932 2378
2 m 47162 4000 7273 4828
3 m 47162 6000 12267 7624

As shown in Table 2, baseline shows the results when RSSI does not fluctuate
under ideal conditions, which is the upper limit of performance. The TDBF and
R-TDBF algorithms show the results of data redundancy filtering in different
detection ranges. The smaller the distance threshold, the better the redundancy
filtering performance. The filtering performance of R-TDBF is better than that
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of the TDBF and is closer to the baseline under the same distance threshold.
Therefore, the R-TDBF algorithm can estimate the detection range adaptively
in the surveillance scene and perform well.

Analysis of Filtering Performance with Different Time Thresholds.
This experiment verifies the effectiveness of R-TDBF by observing the redundant
filtering effect under different time thresholds. We set ε=1.5m (RSSI estimated
value is −44.8 dB), β=2dB, and the time threshold τ is set to ,s and 0.5 s,
respectively. We let ten tags enter the detection range at a speed of 0.5m/s
along a 3m long rail and then leave.
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Fig. 5. Comparison of redundant processing performance under different time thresh-
olds. (a) The time threshold is 1 s (b) The time threshold is 0.5 s.

The curve of the total amount of data filtered by different time thresholds is
depicted in Fig 5. The baseline represents the ideal filter curve. Under different
time thresholds, both TDBF and R-TDBF can effectively filter out the data
outside the detection range. However, as the tags enter the detection range,
the TDBF filtering performance is affected by RSSI fluctuations. The R-TDBF
algorithm introduces the strength threshold that can reduce the interference
caused by the fluctuation of the RSSI value and achieve good filtering within
the detection range. Experiments show that the R-TDBF algorithm can perform
redundant filtering without losing data information, and its performance is better
than the TDBF algorithm and closer to the ideal result.

5.2 Error Rate Analysis

The error rate (ER) of R-TDBF includes false negatives and false positives.
False negative refers to judging RFID tag data belonging to redundant data
as non-redundant and False positive refers to judging those RFID tags that
do not belong to redundant data as redundant data. Hash collisions and RSSI
fluctuations are the main contributors to the error rate.

The Eq. 6 shows the false positives of R-TDBF due to hash collision, where
m represents the size of the R-TDBF array, k represents the number of hash
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functions, and n represents the added data total amount. This error rate is
because R-TDBF may map TagID to k array positions that have changed within
the time threshold τ . Since the probability of this error is too small, its error
rate is negligible in practical scenarios.

P (R-TDBF ) =

(
1 −

(
1 − 1

m

)kn
)k

(6)

In addition, the fluctuation of RSSI may cause it to fail to reflect the distance
accurately or the fluctuation range may exceed the set threshold, which is the
main reason for the error rate in practical scenarios. For example, the data
within the distance threshold is misjudged as outside. Therefore, we conduct
experiments to explore the effect of RSSI fluctuations on the error rate.

Error Rate Analysis for Different Distance Thresholds. This experiment
compares the error rate by setting different distance thresholds. We fixed τ=1 s,
β=2dB, and collected the data of the car moving freely for 10min. When the
distance threshold ε changes, its error rate changes(see Fig. 6).
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Fig. 6. Comparison of error rates for different distance thresholds.

Since TDBF does not consider RSSI fluctuations in redundant filtering, as
the distance increases, the fluctuation range becomes larger and the error rate
increases significantly. However, R-TDBF has a lower error rate and maintains a
relatively stable trend under different distance thresholds. Experiments demon-
strate that R-TDBF maintains a low error rate when the distance threshold
changes.

Error Rate Analysis in Different Scenarios. This experiment compares
the error rate by changing the environment. We test the error rates in three
scenarios: laboratory, corridor, and outdoor. We fixed τ=1 s, ε=1.5m (typical
detection range), and collected the data of the car moving freely for 10min.
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Fig. 7. Comparison of error rates in different scenarios.

The RSSI estimates in the scene are −44.8 dB, −42.6 dB, and −40.6 dB,
respectively, and the strength threshold β is set to 2 dB, 1.8 dB, and 1.8 dB,
respectively. The error rates in different scenarios are shown in Fig 7. By setting
a reasonable threshold, the R-TDBF algorithm produces a lower error rate than
the TDBF. The laboratory error rate drops by 75.6%, the building error rate
drops by 70.5%, and the outdoor error rate drops by 74.9%. The error rate
in different scenarios dropped by 73.7% on average. Experiments show that R-
TDBF can greatly reduce the detection error rate compared with TDBF when
the environment changes.

6 Conclusion

The generation of redundant data hinders efficient data processing in RFID-
based surveillance scenarios. The R-TDBF algorithm proposed in this paper
can filter the redundant data in the RFID data stream in real-time, reducing
the pressure of data transmission and upper-layer application analysis. R-TDBF
realizes data redundancy filtering by setting reasonable thresholds. In addition, a
strength threshold is also introduced in R-TDBF, which reduces the error caused
by signal fluctuation. The experimental results show that the R-TDBF algorithm
can filter redundant data well under different distance and time thresholds. Com-
pared with the TDBF algorithm, R-TDBF reduces the detection error rate by
73.7% on average, which has good practicability.
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Abstract. With the development of urban transportation networks, the flow of
people in cities generally shows the characteristics of concentration, periodicity
and irregularity, and a typical example is rush hour. For most existing taxi-hailing
apps, users frequently queue up for a relatively long time during rush hour and
may even fail to get orders taken due to various factors. To solve this problem, we
propose a users’ departure time prediction model based on Light Gradient Boost-
ing Machine (TP-LightGBM), which will remind users to book taxis before their
journeys. As we know, TP-LightGBM may be the first model for departure time
prediction. We uncover that travel behavior patterns vary under different external
conditions through statistics and analysis of users’ historical orders from multi-
ple perspectives. Furthermore, we extract multiple features from these orders and
select the favorable features by calculating their information gain as the input of
TP-LightGBM to predict users’ departure time. Therefore, our model can provide
users with the recommendations of the best departure time if they need them. The
final experimental results on our datasets indicate that TP-LightGBM has more
excellent performance with great stability in predicting user departure time than
other baseline models.

Keywords: Departure time prediction · Light gradient boosting machine · Data
analysis · Feature engineering · Loss assessment

1 Introduction

The accelerating development of Smart City has put forward new requirements for Intel-
ligent Transportation System and Smart Travel, and the big data on travel provides
strong support for related researches. As an essential part of intelligent travel, accurate
travel time prediction is crucial. Specifically, user departure time prediction refers to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13472, pp. 595–605, 2022.
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data mining from numerous users’ historical travel records to predict where and when
users may have travel plans, so as to timely remind them to arrange travel or book taxis
in advance. As users cannot grasp the specific information of actual traffic flow, it is
difficult to reasonably choose the departure time and travel modes, which is the crux of
contradiction and is also one of the main problems to be solved in Smart Travel.

At present, the increasingly severe traffic jam causes great inconvenience to peo-
ple’s daily travel, especially at some specific time such as the rush hour. Due to the
diversity of individual travel behavior and the complexity of traffic information, the
model of departure time prediction based on historical travel reports cannot always be
accurate. At present, there are few works about users’ departure time prediction. While,
the existing relevant models are passive statistical models, which passively predict the
future through the statistics of actual historical data and analyzing their patterns. The
insufficient information on future travel rein in the performance of models, which leads
to that such models can not consistently maintain high prediction accuracy. However,
the time prediction models based on deep learning require a large amount of data and
complex calculations. Although they can achieve sound prediction effects, it is difficult
for these models to guarantee real-time performance when many users are online.

Therefore, a users’ departure time prediction model based on Light Gradient Boost-
ing Machine (TP-LightGBM) is proposed in this paper. TP-LightGBM can be used to
remind users to arrange travel and to book taxis in advance within a reasonable time.
The prediction results can help users choose their optimal departure time and travel
patterns more freely to reduce information delay, and also can avoid congestion and
significantly improve the quality and efficiency of users’ travel. Of course, whether to
provide relevant services is determined according to users’ requirements on the recom-
mendations of the best departure time.

2 Related Works

Users’ departure time prediction is a necessary function of intelligent transportation and
is also an essential part of intelligent city construction. With the rapid development of
Intelligent Traffic Systems (ITS), various machine learning algorithms have contributed
to traffic data reconstruction, traffic flow prediction, urban traffic pattern mining, and so
on.

There are many methods to predict travel time in previous works, most of which
focus on the travel time prediction of vehicles on the road to assist traffic control, yet
few works are about users’ departure time prediction. For example, Chien et al. pro-
posed a prediction model of bus arrival time based on an artificial neural network by
using the data of trajectories and bus stops [6]. This model for arrival time and loca-
tion prediction combines an artificial neural network, and Kalman filter [4]. It estimates
the arrival time and updates the real-time locations of vehicles according to the data of
automatic passenger counters. In addition, many other works focusing on the prediction
of the travel time of vehicles on the road make it more convenient to analyze the traf-
fic flow [1,18,20]. For example, combined with Decision Tree and Linear Regression,
future highway travel time can be predicted based on flow and occupancy data [13].
Besides, to solve the problem that the travel time is just a simple addition of link time,
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the data for modeling is path-based rather than link-based [3]. Meanwhile, the Kalman
filter is introduced, and through continuous updating state variables as the new obser-
vation variable to predict the traffic on the motorway driving time [7]. As to particular
unpredictable events, a Bayesian dynamic linear learning model [10] was proposed,
which could adjust the parameter settings and noise level adaptively.

The rising Machine Learning and Deep Learning methods in recent years shed light
on a new way to predict travel time. Duan et al. established an LSTM network for
each link [9], which verified the prospects of the deep learning model considering the
time-series relationship in travel time prediction. In addition, Gradient Boosting Deci-
sion Tree (GBDT) is applied to analyzing and modeling the travel time of highway
vehicles [21] and discussing the impact of different parameters on the model’s perfor-
mance. Gradient Boosting Tree(GBT) is a boosting method based on the weak learner
of tree model [14] pertaining two typical usages as Gradient Boosting Decision Tree
(GBDT) and Gradient Boosting Regression Tree (GBRT). GBDT can be applied to the
prediction [5,8,19] and classification [17] problems, and it can effectively merge dif-
ferent types of variables and fit complex nonlinear relationships. However, rather low
efficiency is always a demerit of GBDT, especially with large-scale features and big
data. For this problem, a gradient-based unilateral sampling method [12] is offered
using the information gain of samples with larger gradients to estimate the overall
information gain to improve efficiency with little compromised accuracy. Meanwhile,
a feature selection method based on artificial bee colonies and GBDT was presented in
[16], which globally optimized the feature space to enhance the efficiency and quality.
Besides, Light Gradient Boosting Machine (LightGBM) [12] downsizes the features by
bundling mutual exclusive features and downs sample the data instances by keeping
all instances with big gradients and randomly sampling instances with small gradients,
which reduces the number without changing the distribution of original data by much.

In summary, to improve the performance of individual travel time prediction, we
introduce the LightGBM to predict the user’s departure time based on the historical
taxi orders of Didi Chuxing’s users. More specifically, we have trained a model with
individual characteristics for each user based on his/her historical orders of Didi Chux-
ing, which will remind users to book a taxi in advance before needed. And experiments
prove that our model is not sensitive to the independence between diverse features and
can correctly fit complex feature relationships.

3 The Analysis of Users’ Departure Time and Travel Behaviors

3.1 The Overall Information of Users’ Historical Taxi Orders

In this section, we analyze the users’ historical taxi orders from multiple perspectives
and visualize the results of the data analysis. The dataset used in this paper is the his-
torical taxi orders of users who used Didi Chuxing online taxi-hailing platform, and
the information of each sample mainly includes the user ID, order ID, time, locations,
date attribute, and so on. Where, time (Notation as T ) is the specific time of a day, and
has been processed into the form of periods with hourly granularity. The range of T is
in [0, 23). Besides, we also transform the original time into a day of the week (Nota-
tion as W), so a type of time-series data can be used to mine the regularity of users’
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travel behaviors, and the range of W is in [0,6]. Each location name is mapped to a
corresponding pair of longitude and latitude. The range of the longitude (Notation as
Lng) is in [−180, +180], and the range of Latitude (Notation as Lat) is in [−90, 90].
The attribute values of the date (Notation as D) can be 0 or 1, and 1 stands for work-
ing days while 0 stands for holidays. In addition, all the orders have been anonymized
and aggregated, and we correct the latitude and longitude of all locations and delete
historical orders with abnormal order status.

3.2 The Analysis of Users’ Travel Behaviors

Users’ travel time shows noticeable regularity in a certain period. For example, users
have a relatively regular commute time on weekdays and leisure time to go out on
holidays, and even have regular travel times at several certain workplaces. Therefore,
it is suitable for us to estimate the users’ departure time using their historical orders.
Users’ travel behavior also shows strong regularities in the spatial domain. The follow-
ing discussion is only a starting point, and we can draw similar conclusions in terms
of destination. The spatial distribution of historical orders shows strong sparseness and
concentration. Most of the starting points are concentrated in certain areas, while some
others only appear once.

Moreover, we discover that users’ travel time shows strong regularity in the spatial
domain. The users’ departure time in some places may concentrate on one specific time
period. In addition, there are more cases of calling taxis in similar places in a similar
time period, although there have been some effects of departure time on different start-
ing points. For example, the users’ taxi-hailing locations may be primarily residential
areas in the morning, while workplaces, commercial areas, and entertainment venues at
night.

The analysis result above is drawn from users’ historical orders and reveals some
commonalities in users’ taxi booking behaviors: (1) The taxi-hailing time distribution of
the same user tends to show a concentrated distribution in specific locations and times
rather than a uniform distribution. (2) Most users have distinct travel patterns between
workdays and holidays, and there are differences in users’ departure times when the day
type changes. (3) The same user tends to set the same destination in a certain period and
rarely book a taxi in other periods. (4) Most users tend to go to a certain place within a
fixed time.

3.3 Feature Selection

Feature selection plays a vital role in feature engineering. Due to the limited samples
and the sparsity of distribution of users’ historical orders, we use as few features as pos-
sible to predict users’ departure time so as to avoid the high computational complexity
and performance degradation of models caused by large-scale features. We list several
candidate features which affect users’ travel time, as shown in Table 1.
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Table 1. Information gain (ratio) of each feature.

Feature IG IGR

Origin longitude 1.93 0.47

Origin latitude 1.92 0.47

Destination longitude 1.71 0.43

Destination latitude 1.81 0.33

Date attribute 0.11 0.14

Day of the week 0.55 0.42

Furthermore, we apply the feature selection method based on the Decision Tree.
More specifically, we calculate the Information Gain (IG) and Information Gain Ratio
(IGR) of each feature (see Table 1), which are respectively used in the module of ID3
[14], and C4.5 [15]. The methods to calculate IG and IGR are stated below:

Assume that the dataset is D, which has the size of |D|. The samples in D are
divided into K categories Ck(k = 1, 2, ...,K), and there are |Ck| samples in class Ck.
Then we assume that feature A can take n different values a1, a2, ..., an, which can
divide D into n subsets D1,D2, ...,Dn, and |Di| (i = 1, 2, ..., n) is the number of
samples in Di. In addition, let Dik denotes the sample set of category k in subset Di,
and its size is denoted by |Dik|. Thus, the information gained can be written as

g(D,A) = H(D)− H(D|A) (1)

where, H(D) is the empirical entropy of D, and H(D|A) is the empirical conditional
entropy of feature A to dataset D, H(D) is calculated by

H(D) = −
K∑

k=1

|Ck|
|D| log2

|Ck|
|D| (2)

and H(D|A) is

H(D|A) = −
n∑

i=1

|Di|
|D|

K∑

k=1

|Dik|
|Di| log2

|Dik|
|Di| (3)

The information gain ratio can be calculated by gR(D,A) = g(D,A)
HA(D) , where HA(D)

is the entropy of the dataset D for feature A:

HA(D) = −
n∑

i=1

|Di|
|D| log2

|Di|
|D| (4)

If the feature has a more significant Information Gain (Ratio), it will be more influ-
ential for classification and have a stronger ability to classify the samples. From the
results in Table 1, IG and IGR of date attributes are both the smallest and should be dis-
carded, while others should be retained in principle. However, the users’ destinations
are normally unknown in the actual scenario. If we first predict the destination and then
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the departure time according to the attribute of date, the cost will inevitably arise, and
the accuracy cannot be guaranteed. Moreover, time features are weighty in the travel
prediction. As we analyzed before, the feature day of the week contains information of
regularity. Therefore, we decide to retain the attribute of date and day of the week and
then elide the longitude and latitude of the destination. The experiments also demon-
strate that the outcome using four features of origin longitude, latitude, day of the week,
and date attribute is sounder than the origin longitude and latitude alone.

4 Time Prediction Model for Predicting Users’ Departure Time

Through the in-depth analysis of orders of Didi Chuxing users, we convert users’
departure time prediction into a multivariate classification problem. Users are classi-
fied according to their objective features using the category label of departure time. We
use the hourly granularity as the classification standard and divide the users’ historical
orders into 24 categories.

4.1 Model Description

The probability of a user traveling at a fixed time period can be expressed in the form
of conditional probability using Bayes’ theorem:

P (T = ti|X) =
P (X|T = ti)P (T = ti)∑24
i=1 P (X|T = ti)P (T = ti)

(5)

where X = Lng, Lat,D. The process of solving the conditional probability P (X|T =
ti) is extremely complicated, but the calculation difficulty will be greatly reduced if
the method of conditional independent assumption of features in the naive Bayes algo-
rithm is adopted, i.e. P (X|T = ti) = P (Lng|T = ti)P (LatT = ti|)P (D|T =
ti)P (W |T = ti).

However, the features extracted from actual data are not as independent as the ideal
assumption. Specifically, the latitude Lat and longitude Lng in the users’ historical
orders always emerge in pairs. For example, if location A often appears in one user’s
historical orders, then the latitudeLatA and longitudeLngA of locationA have a highly
correlated relationship, which does not meet the premise of conditional independence
of each feature in the Naive Bayes algorithm. Moreover, taxi-hailing actions are purely
personal behaviors, and regularity and irregularity coexist. The time distribution of taxi
rides of a sample user may be evenly distributed throughout a day, which would con-
found the final prediction. Therefore, Gradient Boosting Decision Tree (GBDT) [11]
is a suitable method for users’ departure time prediction due to less demanding input
features. However, the performance is unsatisfactory when the size of the data balloon.
To balance this drawback, we introduce Light Gradient Boosting Machine (LightGBM)
[12] which has an excellent performance to deal with a large number of data instances.
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4.2 Departure Time Prediction Based on Light Gradient Boosting Machine
(TP-LightGBM)

Decision Tree [14] is a primary classification and regression method, and its classifica-
tion rules can be seen as a grouping of a series of if-then conditional statements or as a
conditional probability model defined on features and class space. GBDT is a boosting
algorithm based on the Classification and Regression Tree (CART) [2] and is one of the
most widely used classification algorithms with high precision. Its main idea is to fit the
residual of the previous base learner through the negative gradient of the loss function
so that the residual estimation of each round declines. GBDT combines Gradient Boost-
ing and Decision Tree to establish a new decision tree model (weak classifiers) in the
gradient direction of the previous model residual reduction at each iteration. Finally, a
well-trained GBDT classification model is a linear combination of these weak classifiers
with different weights. The conventional implementation of GBDT is scanning all the
instances for every feature to locate the optimal split points, which is time-consuming
with big data. LightGBM based on GBDT proposes two techniques: Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to reduce compu-
tational complexities. GOSS downsizes the instances by keeping them with large gradi-
ents and randomly chooses instances with slight gradients. EFB decreases the features
by bundling mutually exclusive features.

The training process of multi-class LightGBM can be viewed as an additive model,
as shown in Algorithm 1. In practice, the multi-class LightGBM generates a tree for
each category during the training process, i.e., a total of K ×M sub-trees are generated
in Algorithm 1, and Softmax obtains the final category result. Specifically, the loss
function we choose is log-likelihood, which can be written as

L(y, f(x)) = −
K∑

k=1

yklog(pk(x)) (6)

where y denotes the actual value of a sample, f(x) is the predictive value, pk(x) repre-
sents the probability that the sample belongs to the category k.

5 The Experimental Results and Analysis

Due to the coexistence of regularity and uncertainty in user travel, we delete orders
whose starting point appeared less than five times in a month. Since each user’s travel
pattern is unique and it is impossible to select every user who travels regularly, we set
a threshold τ to filter the prediction results. The result will be output if its probability
surpasses the threshold τ . Our purpose is to predict the period for taxi-hailing of the
users of Didi Chuxing and does not involve a specific timestamp. Therefore, we take
the prediction time as the midpoint to extend one hour as a period for the final result,
i.e., so the final result will be expressed in [t − 1, t + 1] if the output result is t, and the
actual label of a test sample is regarded as a correct prediction if falls within the interval
[t − 1, t + 1].
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Algorithm 1: The training process of GBDT classifier
Input: iterations (number of weak classifiers) M,number of samples N,
number of categorise K,loss function L(y, f(x)),training set
Ttrain = {(x1, y1), (x2, y2), . . . , (xN , yN )}
Output: GBDT classifier f̂(x)

1 Initialize:weak classifier f0(x) = arg min
θ

∑N
i=1 L(yi, θ);

2 while m = 1, 2, . . . , M do
3 for i = 1, 2, . . . , N do
4 for k = 1, 2, . . . , K do
5 // Calculate the probability of xi ⊆ class k

6 pk(xi) =

[
exp(fk(xi))

∑K
k=1 exp(fk(xi))

]

fk(x)=fk,m−1(x)

;

7 // Calculate negatice gradient error

8 rmik = −
[

∂L(yi, f(xi))

∂f(xi)

]

fk(x)=fk,m−1(x)

= yik − pk(xi);

9 end
10 end
11 // Fit the decision tree
12 use rmik to fit the decision tree, which leaf node area is Rmjk,
13 j = 1, 2, . . . , J, k = 1, 2, . . . , K;
14 // Estimate the gain of leaf nodes
15 for j = 1, 2, . . . , J do
16 for k = 1, 2, . . . , K do

17 θmjk =
K − 1

K

∑

xi∈Rmjk

rmjk

∑

xi∈Rmjk

|rmjk| (1 − |rmjk|) ;

18 end
19 end
20 // Update classification tree

21 fkm(x) = fk,m−1(x) +
∑J

j=1 θmjkI(xi ∈ Rmjk), k = 1, 2, . . . , K;

22 end
23 // Output GBDT classifier

24 f̂k(x) = fkM (x) =
∑M

m=1

∑J
j=1 θmjkI(xi ∈ Rmjk), k = 1, 2, . . . , K;

5.1 Experimental Setups

We randomly select 80% of the dataset as the training set and the other 20% as the test
set, then multiple experiments are conducted using our model under different thresh-
olds, and the results are shown in Fig. 1. We apply two metrics PDP = Nout/Ntest and
AUC = Nauc/Nout to measure the performance of the model. Where Ntest denotes
the number of samples in the test set, Nout is the number of samples with the out-
put results, and Nauc denotes the number of samples accurately predicted. It can be
seen that AUC and PDP are proportional and inversely proportional to the threshold
τ respectively, and the growth rate of AUC slows down, but PDP still has a strong
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downward trend when τ > 0.7. Therefore, we finally adopt the threshold τ = 0.7 to
test our model’s all-around performance.

Fig. 1. An example of indirect blocking

5.2 Experimental Results and Comparative Analysis

In order to verify the superior performance of our model, GBDT, XGBoost, Multinomi-
alNB, GaussianNB, BernoulliNB, and ModeMod are used as the comparison models.
PDP , AUC, Kappa, Hamming(H) and Time(T ) in Table 2 are used as the metrics
of model performance evaluation. Here, Hamming and Time respectively represent
Hamming distance and average time consumption of the models. Kappa (Kappa coef-
ficient) is often used to evaluate prediction accuracy and consistency, and it can be
defined as Kappa = (po − pe)/(1− pe). Where po is the sum of the number of samples
correctly classified in each category divided by the total number of samples, and pe is
the sum of the products of the actual and predicted sample numbers corresponding to
all categories divided by the square of the total number of samples. Therefore, the pre-
diction accuracy is positively correlated with the value of Kappa. Hamming distances
measure the distance between the predicted label and the actual label. Thus, the predic-
tion accuracy is negatively correlated with the value of Hamming distance. It needs to
be stated that all metrics in Table 2 are the average values obtained from all test samples.

From Table 2, It can be seen that ModeMod has the most promising performance in
terms of PDP and Time metrics. ModeMod searches for orders that match the user’s
current status from the historical taxi-hailing orders and extract the departure times that
meet the conditions. Then the departure time with the most occurrences is the predicted
value. In this way, ModeMod shows the best stability and the lowest time complexity.
In addition, the naive Bayes models (MultinomialNB, GaussianNB, and BernoulliNB)
have a higher prediction accuracy than ModeMod. However, as we mentioned before,
the conditional independence relationship between each feature is hard to achieve, and
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Table 2. Experimental results on different models.

PDP AUC Kappa H T (s)

TP-LightGBM 0.35 0.90 0.64 0.14 0.22

GBDT 0.33 0.87 0.58 0.16 0.74

XGBoost 0.33 0.88 0.62 0.17 0.51

MultinomialNB 0.84 0.54 0.16 0.44 0.107

GaussianNB 0.61 0.30 0.23 0.70 0.10

BernoulliNB 0.74 0.55 0.24 0.45 0.10

ModeMod 1.00 0.37 0.30 0.63 0.09

the distribution of features is difficult to determine. In contrast, the evaluation param-
eters of PDP , AUC, Kappa, and Hamming are much better than the set of naive
Bayes models, although the set of GBDT models has the highest time consumption,
which TP-LightGBM can solve. In conclusion, TP-LightGBM only serves about 35%
of orders, but the prediction accuracy has reached 92%. The main idea of TP-LightGBM
is that the GBDT algorithm requires multiple iterations to fit data and train different
weak classifiers, so it has a higher time consumption, but the average prediction time
for each order can still be restrained within one second.

6 Conclusion and Future Work

Users’ departure time prediction is an application of Machine Learning to Smart City
construction. Accurately predicting users’ departure times can remind them to call a
taxi in advance and avoid queuing up during the rush hour. In this paper, we conduct
a multi-perspective analysis and pattern discovery on the historical taxi orders of Didi
Chuxing’s users and verify the possibility of using these orders to predict departure
time. Moreover, we propose such a model based on LightGBM using the users’ current
location, the order of the day of the week, and the date attribute. Finally, the experi-
mental results indicate the superior performance of TP-LightGBM in predicting users’
departure time. However, our model can only serve about 35% of orders. Thus, improv-
ing the prediction probability and expanding the service volume become the focus of
our future research.
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Abstract. Material recognition plays an essential role in areas including
industry automation, medical applications, and smart homes. However,
existing material recognition systems suffer from low accuracy, inconve-
nience (e.g., deliberate measuring procedures), or high cost (e.g., spe-
cialized instruments required). To tackle the above limitations, we pro-
pose a contact-free material recognition system using a millimetre wave
(mmWave) radar. Our approach identifies materials such as metal, wood,
and ceramic tile, according to their different electromagnetic and surface
properties. Specifically, we leverage the following techniques to improve
the system robustness and accuracy: (1) spatial information enhance-
ment by exploiting multiple receiver antennas; (2) channel augmentation
by applying Frequency Modulated Continuous Wave (FMCW) modula-
tion; and (3) high classification accuracy enabled by Artificial Intelligence
(AI) technology. We evaluate our system by applying it to classify five
common materials. The experimental results are promising, with 98%
classification accuracy, which shows the effectiveness of our mmWave-
based material recognition system.

Keywords: Contact-free material recognition · Millimeter wave
radar · Machine learning

1 Introduction

Recognizing materials have a wide range of applications, e.g., categorizing waste
materials in industrial automation [3], detecting normal/cancerous cells in the
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medical field [8,29], and modeling environments in smart homes [15]. With the
development of smart city, material recognition has become an imperative com-
ponent for many intelligent devices. Compared to their contact-based counter-
parts, contact-free material recognition systems are gaining popularity because
of their fewer physical constraints and better user experience.

There are several mainstream methods to build contact-free material recog-
nition systems. (1) Near Infrared (NIR) spectroscopy. NIR spectroscopy is a
method to detect the electromagnetic spectrum from 780 nm to 2500 nm wave-
lengths. It has been applied to recognize many organic materials [16]. However,
NIR spectroscopy has many shortcomings, such as high cost and low accuracy.
(2) Optical sensing technology (e.g., lidar) uses a light resistance with multi-
spectral illumination to identify the surface materials [7], but its accuracy is
severely affected by the visibility degree of objects. (3) Mechanical radars rely
on signal factors such as distances and incident angles to classify materials [19].
However, such sensing technology is complex and expensive, and the hardware
requirements are strict. None of those mentioned above methods provides afford-
able and accurate contact-free material recognition functionality.

In this paper, we propose a mmWave radar system to recognize materials.
Our system has the same merits of robustness and versatility as the mechan-
ical radars have, but ours does not have the problems of complex structures
and challenging operational conditions faced by mechanical radars. Compared
with other frequency bands, mmWave radar achieves a supreme performance
regarding accuracy, cost, and size. Specifically, an mmWave radar system has
the following strength:

1. High Resolution. mmWave radars have high resolutions because of their excel-
lent signal beam-forming. For example, a 76–81 GHz radar’s range resolution
reaches the sub-millimetre level, and the angular resolution is as precise as
1◦ [29,30].

2. Robustness. When the visibility condition is poor, e.g., in rain and mist, the
sensing performance of an mmWave radar is still robust. As a result, an
mmWave system is capable of all-weather and all-time sensing.

3. Lightweight. Thanks to the development of microelectronic technology,
mmWave radars are becoming miniature and low cost. Embedded devices and
wearable devices are highly likely to incorporate mmWave radars to enable
millimeter communications and sensing capability.

Although mmWave signals have incomparable advantages, realizing a practi-
cal and accurate mmWave radar system for material recognition entails careful
considerations. This is because mmWave signals are susceptible to environments.
Therefore, designing a robust and precise feature representation scheme for dis-
tinguishing materials is the core. To improve the material recognition accuracy,
we leverage the following techniques:

1. Aggregation of multiple transmitter-to-receiver (Tx-to-Rx) paths. A typical
mmWave hardware has multiple transmitter and receiver antennas. Each Tx-
to-Rx pair captures different channel information. In light of it, we propose
to incorporate multiple Tx-to-Rx pairs to exploit more spatial information.
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2. Frequency-Modulated Continuous Wave (FMCW) modulation to measure the
Received Signal Strength (RSS) of the signals reflected from a target material.
Compared to a Continuous Wave (CW)-based radar, an FMCW radar enables
more precise RSS profiles since it spans a frequency band.

3. A complete Machine Learning (ML) pipeline. Our system extracts useful fea-
tures from the RSS profiles that are generated by multiple Tx-to-Rx pairs.
Afterwards, it runs a powerful ML model to recognize the materials, which
shows inspiring classification accuracy.

We evaluate our system by classifying five common building materials (cop-
per, wood, acrylic, tile, and drywall), where an mmWave radar is placed at 40 cm
from the materials. The evaluation results show the effectiveness of our system.
In particular, our Convolutional Neural Network (CNN)-based pipeline achieves
inspiring 98% classification accuracy.

This paper is organized in the following manner. First, we provide related
works in Sect. 2. Then, we elaborate our system design in Sect. 3. Afterwards,
we evaluate our system in Sect. 4. We discuss the limitations/opportunities in
Sect. 5. Last, we conclude this paper in Sect. 6.

2 Related Works

This section provides related works in terms of contact-based material recogni-
tion and Radio Frequency (RF)-based contact-free material recognition.

2.1 Contact-Based Material Recognition

Several contact-based systems have been proposed to realize material recogni-
tion by utilizing physical-level features such as chemical properties [21], thermal
properties [20], and optical properties [11]. Despite their industrial deployments,
these solutions are task-oriented and have no mobility. Furthermore, they require
to attach specified sensors to objects for recognition. In comparison, our system
is a contact-free solution and thus is more flexible and user-friendly.

2.2 RF-Based Contact-Free Material Recognition

In addition to localization [1] and perception [5], signal reflection of RF waves
can be used for material recognition. For example, RSA [31] determines curva-
ture and surface material by measuring the reflected mmWave signals at multiple
locations. RadarCat adopts a similar workflow but uses 60 GHz signals [28]. Yang
et al. [26] investigate the feasibility of using 60 GHz millimeter-wave (mmWave)
signal as a ubiquitous and non-invasive way to estimate the Soluble Sugar Con-
tent (SSC) in fruits. Beside, some other RF-based works consider more on mag-
netic properties (e.g., dielectric constant εr, losses tanδ [2,23]), which require
expensive facility like vector network analyzer, with sophisticated calibrating
procedures as beamforming with high-gain dielectric lenses or elliptical mirror.
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In comparison, we only use one mmWave board with onboard transmitters
and receivers. In addition, exiting millimeter works are vulnerable to the posi-
tions of transmitters and receivers, as they rely on sensitive phase information of
signals. Compared to existing mmWave works, our system exploits ML learning
that extracts features from RSS profiles, which is more robust against wavelength
misalignment. Besides mmWave communications, other RF technologies such as
Wi-Fi [6,13], UWB [4], and RFID [24] have been used for material classification.
However, they have much lower classification accuracy in practice because of the
long wavelengths and already congested frequency bands.

3 System Design

Fig. 1. The workflow of our system.

Our system recognizes materials based on the reflected mmWave signals. Figure 1
depicts the workflow of our system. An FMCW modulated chirp signal is emitted
directly toward the target material for recognition, which signal is then reflected
by the material and received by multiple receiver antennas. Afterward, we extract
features from multiple receiver antennas (details in Sect. 3.3). Last, we adopt an
ML model to classify the material.

3.1 Principle of mmWave Material Recognition

In a mono-static radar, the mmWave signal follows the propagation model [14]:

Pr =
PtGtGrλ

2σ

(4π)3d4
(1)

where Pr is the power of received signals, Pt is the transmit power, with Gt and
Gr are the antenna gains for Tx and Rx respectively. λ is the wavelength trans-
mitted in free space. Since mmWave has a short wavelength, it indicates that
mmWave signals suffer severer attenuation than microwave signals. To compen-
sate for signal attenuation, practical mmWave radars use Multiple Input Multiple
Output (MIMO) antenna arrays to obtain high Gt and Gr gains.
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Fig. 2. Illustration of FMCW modulation.

σ is the Radar Cross Section (RCS), a metric to represent the size of an object
that appears in the view of a radar. RCS can be regarded as the electromagnetic
equivalent area of a target object, the area that intercepts the transmitter radar
power and then scatters that power isotropically back to the radar receiver. The
RCS area does not necessarily overlap with the physical area of an object. It is
largely determined by the material reflectivity. For example, metal suffers a 0.6
dB RSS loss while that of wood is 12 dB. Therefore, when we measure objects in a
homogeneous condition (e.g., shape, distance to the radar, radar configurations),
we can leverage Pr (correspondingly σ) to classify their materials.

3.2 Channel Augmentation with FMCW Modulation

FMCW modulates signals in chirps—a sinusoidal wave signal in a linearly
increasing frequency. FMCW is widely used for ranging. We adopt FMCW to
augment channel information by changing the transmission frequency. Therefore,
compared to a single-frequency Continuous Wave (CW) modulation, FMCW
provides more detailed channel information and thus higher material recogni-
tion accuracy.

Figure 2 illustrates the FMCW modulation. For a monostatic radar, the Tx
and Rx signal can be described with real numbers as

ST (t) = AT · cos (2π · fT (t) · t + φT )
SR(t) = AR · cos (2π · fR(t) · t + φR)

(2)

where AT and AR are the amplitude of signal, fT (t) and fR(t) are the run-time
frequency of signal at time t, φT and φR are the initial phrase of transmitted
and received signal respectively. By multiplying ST (t) and SR(t), we obtain the
Intermediate Frequency (IF) signal:
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SIF (t) = ST (t)∗SR(t) ≈ 1
2
AT AR ∗cos {[2π (fT (t) − fR(t))] t + (φT − φR)} (3)

where a low-pass filter is applied to remove the higher frequency.

3.3 Feature Engineering

Fig. 3. The procedure of our feature engineering.

We extract features from SIF (t) and then apply an ML model to classify the
materials based on the extracted features. Figure 3 illustrates our feature engi-
neering procedure. Specifically, we design the following steps:

1. We segment the data stream chirp-wise, where each segment lasts 21 ms and
has 64 Analogue to Digital Converter (ADC) samples. To avoid faraway RF
clutters, the distance resolution and the detection coverage of our mmWave
radar is set to 4 cm and 3 m, respectively.

2. We conduct a 64-point Fast Fourier transform (FFT) to calculate the fre-
quency components of each segment. Before FFT calculation, we apply Ham-
ming windows to mitigate the spectral leakage.

3. We identify the most informative region (7 data points) of the FFT spectrum
by applying a Continuous Wavelet Transform (CWT)-based peak detection
algorithm. We observe that these peak regions are representative of different
materials. Therefore, instead of feeding the whole FFT spectrum to an ML
model for classification, we only extract the region of the peak FFT spectrum,
which is easier for the ML model to learn.

4. We extend the 7 data points from the peak spectrum to 13 points by three-
point parabolic interpolation. This is because the frequency context from a
single channel is coarse-grained, as the 4cm resolution is not precise enough.
As a result, we extract a 1D feature of 13 numbers for each Tx-Rx pair.

5. We concatenate the 1D feature from each Tx-Rx pair into a longer 1D feature
map [17]. For example, our mmWave radar has 4 receiver antennas and thus
the final 1D feature has 52 (4 × 13) numbers. Since Rx antennas are sepa-
rated about 2.5 mm apart, which is larger than the mmWave half wavelength
(1.9 mm), the channel conditions captured by different Tx-Rx pair varies due
to multi-path effect [27]. Therefore, by concatenating features from different
Tx-Rx pairs, we obtain a more “panorama” view of the wireless channels and
thus better classification accuracy.
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3.4 Machine Learning Models

We apply two kinds of machine learning models to classify the materials based
on the extracted feature maps. (1) Support Vector Machine (SVM), as it is one of
the most well-defined supervised learning models [25]. (2) Convolutional Neural
Network (CNN) [22]. We customize a 7-layer CNN as shown in Table 1. For the
1D convolutional layer, we set kernel size to 5 with stride to 1, as a smaller
kernel is more perceived to edge information. The first three fully-connected
layers have 64 neurons, and the forth fully-connected layer has 5 outputs (the
number of materials in our experiments) [22]. Last, a softmax layer is appended
and the material is classified to the output class with the highest probability.

Table 1. Our customized CNN model structure.

Layer Type Output shape

0 Input Layer (52, 1)

1 Conv1D (48, 1)

2 Conv1D (44, 1)

3 Conv1D (40, 1)

4 Fully-Connected Layer (64)

5 Fully-Connected Layer (64)

6 Fully-Connected Layer (64)

7 Fully-Connected Layer (5)

4 Evaluation

In this section, we first introduce the hardware setup of our system. Then, we
explain our collected data set, which is used for the system evaluation. Last, we
present our evaluation results.

4.1 Implementation

Figure 4 shows the experiment setup in a corridor. The material plate is mounted
on a tripod. The mmWave radar is placed at 40 cm away from the target material
plate, with signals transmitted directly to the material plate. In addition, we
attach a vibrator motor to the bottom of the mmWave board tripod to mimic
the hand-held case. The mmWave radar could be mounted on a mobile robot
to search for an optimal distance between the material plate and the mmWave
board, which we leave as future work.
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Fig. 4. Experiment setup

(a) Copper (b) Wood (c) Acrylic (d) Tile (e) Drywall

Fig. 5. Materials used for evaluation.

We use a TI IWR1642 Booster Pack that includes an evaluation board
(IWR1642BOOST) and a real-time data-capture adapter (DCA1000EVM). The
evaluation board has two Tx and four Rx antennas in the 76–81 GHz working
frequency range. We use one Tx antenna to transmit the FMCW signal and all
four Rx antennas to receive the reflected signal. The antenna chip is directly
connected to a laptop (an Intel Core i7-10750H CPU and a 16 GB memory)
through two Micro USB cables, and the DCA1000 data capturer is connected to
it via an Ethernet RJ45 interface. ICBOOST is supported by a 5V/3A AC power
supply adapter, and a 12V/2A adapter powers the vibrator. We use mmWave
studio and Matlab for system configuration and data processing.

We select five most common building materials in our experiments. Figure 5
illustrates our chosen material plates, i.e., copper, wood, arylic, tile, and drywall.
Each plate is square in shape, with 20 cm in length/width and 1mm thickness.

4.2 Data Collection and ML Training Configuration

We enable the vibrator to enforce a slight vibration during data collection. In
our experiments, we collect raw ADC data stream by the data-capture adapter,
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Fig. 6. Confusion matrices of material classification using (a) SVM model and (b) our
customized CNN model.

whose sampling rate is set to 3048 KHz. A range resolution up to 4 cm is obtained.
In total, we collect 200K data samples from different locations, where each type
of material has 40K data samples. Each data sample is an array of 13 floating
numbers, and the peak value is located in the center. The total file size of our
collected dataset is more than 2 GB.

For the SVM model, we use the default configurations in Matlab. Regarding
the CNN model, we adopt the Adam optimizer [12], with a learning rate of 0.001.
We apply 10-fold cross-validation and report the average results.

4.3 Evaluation Results

Figure 6 depict the confusion matrices of our mmWave-based material classifica-
tion system using two different types of ML models. Overall, both models achieve
good classification accuracy, as the diagonal cells are much darker than the non-
diagonal cells. In particular, our CNN model obtains excellent performance in
classifying these materials. In comparison, the SVM model is moderately con-
fused about acrylic and wood. The results indicate that the CNN model structure
is powerful for the mmWave-based material classification.

Table 2. SVM (left) and CNN (right) evaluation metrics.

Accuracy Precision Recall F1

Acrylic 0.86 0.72 0.54 0.62

Copper 0.99 0.96 0.97

Tile 0.95 0.99 0.97

Wall 0.99 0.99 0.99

Wood 0.64 0.79 0.71

Accuracy Precision Recall F1

Acrylic 0.98 0.94 0.95 0.94

Copper 0.99 0.98 0.98

Tile 0.98 0.99 0.98

Wall 1 1 1

Wood 0.95 0.94 0.94
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Table 2 shows the details of the classification performance when the SVM
model and the CNN model are applied, respectively. In addition to the average
accuracy, we also report the precision, recall, and F1 score for each type of
material. On average, our CNN-based system achieves an inspiring 98% accuracy
in classifying these five materials. In addition, our CNN-based system has almost
perfect precision, recall, and F1, with scores all higher than 0.94.

5 Discussion

Although our system achieves approximately perfect accuracy in classifying
materials in our experiments, it has several limitations/opportunities worth fur-
ther investigation.

Recognizing more Types and Forms of Materials. We select the five most common
solid materials in buildings. The chosen materials are diverse, and thus our
results are representative. Nonetheless, we plan to evaluate our system with more
types of materials such as organic material, and even more forms of materials,
including liquid and gas [4,10,18].

Support of Dynamic Number of Receiver Antennas. In our current implementa-
tion, we fix the number of receiver antennas. As a result, the size of the extracted
features and the corresponding ML model are kept the same, which may not be
appropriate for other mmWave hardware equipped with a different number of
receiver antennas. Therefore, we will design an ML component that supports a
dynamic number of antennas. Besides, we will study the classification accuracy
versus the number of antennas in our future work.

Developing Finer Feature Engineering. We propose a feature engineering compo-
nent, which extracts the region around the spectrum peak [9]. In our future work,
we want to explore other feature extraction procedures. For example, instead of
the 1D spectrum, we can also extract the 2D spectrogram features, which could
contain more related information for material recognition.

Support of Less Controlled Experiment Settings. We want to evaluate our sys-
tem in more dynamic and practical settings. For example, we currently fix the
distance between the mmWave board and the material, showing excellent clas-
sification accuracy. In our future work, we want to relax this physical constraint
so that users can place our mmWave board at various distances from the target
material.

6 Conclusion

This paper presents an accurate contact-free material recognition system by
leveraging millimeter wave communication and machine learning technology,
which is verified efficient in the static indoor material experiment. mmWave has
a better sensing capability than other RF technologies because the wavelength
of mmWave is much shorter. To extract informative features from mmWave
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signals, we propose a unique feature engineering procedure that incorporates
frequency domain operations. The extracted features along with our customized
CNN model achieves 98% accuracy in classifying five building materials. Our
material recognition system is promising considering its high accuracy, low cost,
and small size, thanks to the mass-production of mmWave modules. We leave it
as future work to design a mobile version of it.
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Abstract. In this paper, a subcarrier index modulation aided code-
shifted differential chaos shift keying (SIM-CS-DCSK) system based on
orthogonal frequency division multiplexing (OFDM) is proposed. In the
proposed system, the transmitted bits are divided into two parts, where
one part is used for conventional CS-DCSK modulation and the other part,
served as subcarrier mapping bits, is used for the subcarrier index mod-
ulation. Benefiting from index modulation, SIM-CS-DCSK can achieve
higher data rate compared to conventional multicarrier CS-DCSK system.
Numerical simulations indicate that SIM-CS-DCSK has good BER perfor-
mance over the time and frequency selective fading channels. Specifically,
the proposed system outperforms the multicarrier spread-spectrum sys-
tem (MCSS) by 0.5 dB to 2 dB. Real-field experiments in water pool and
lake also confirm the superiority of the proposed system.

Keywords: Code-shifted differential chaos shift keying (CS-DCSK) ·
Orthogonal frequency division multiplexing (OFDM) · Subcarrier index
modulation (SIM) · Underwater acoustic (UWA) communication

1 Introduction

Underwater acoustic (UWA) communications has been continuously studied over
the past two decades. It has been widely applied in military and civil affairs, such
as submarine communication, oil exploration, disaster warning, and so forth [1].
Specially, benefiting from the low probability of detection (LPD), underwater
covert communications has attracted growing attention in scientific and engi-
neering communities [2]. The reasons are twofold: (i) the transmitted signal
with low transmission power is hidden behind background noise, and therefore
the eavesdropper cannot detect the transmitted signal; (ii) the low-power sig-
nal can also reduce the interference for the marine organisms. Therefore, it is
important to study and develop the underwater covert communications.
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However, the UWA channel is considered to be the most complex channel,
where the signal distortion is not only relative to the transmission distance but
also the signal frequency [3]. It is noted that the bandwidth for the UWA com-
munications is quite small. For example, when the transmission distance is more
than 20 km, the available bandwidth is less than 10 kHz [4]. The UWA channel
is a typical doubly selective channel. On the one hand, the speed of underwa-
ter sound is 1500 m/s and the maximum multipath delay is at least 10 ms in
magnitude [5], thereby resulting in the frequency selective fading. On the other
hand, the coherent time of the UWA channel is several seconds [6], and there-
fore the transmitted signal suffers from the time selective fading. Consequently,
it is a challenging work to develop reliable, high-data-rate and low-complexity
underwater covert communications.

The direct sequence spread-spectrum (DSSS) technology is widely used in
the underwater covert communications. DSSS uses the pseudo-random sequence,
such as m-sequence, to spread the information bits, therefore reducing the power
spectrum density of the transmitted signal. The demodulation methods for DSSS
can be categorized into coherent and non-coherent detection. The coherent detec-
tion needs the channel estimation and its complexity is high [7]. For example,
a compressive sensing aided channel estimation was proposed in [8] to demodu-
late the information bits. Moreover, the authors of [9] proposed a joint channel
estimation and interference cancellation technology to retrieve the transmitted
bits. The non-coherent detection has lower complexity than the coherent one.
For example, the double differential demodulation is used in [10], where the
experimental results show that such a method can achieve higher data rate. Fur-
thermore, a low-complexity match filter aided demodulation was proposed in
[11], where multiple spreading sequences are transmitted in a parallel manner.
In [12], the authors designed a bio-friendly covert communication system, and
the filed experiment performed in the North Sea shows the transmission distance
can reach to 10 km.

Different from the m-sequence, chaotic sequence is aperiodic and sensitive
to the initial value. Exploiting the chaotic sequence to spread information bits,
chaotic communications show good resistance against the multipath fading. The
digital chaos shift keying (CSK) proposed in [13] needs the chaos synchroniza-
tion, which increases the system complexity. Different from CSK, different CSK
(DCSK) uses the differential demodulation, where the chaos synchronization and
channel estimation are avoided [14]. The experiment performed in [15] shows that
the chaotic-sequence spread-spectrum system can achieve good performance over
the UWA channel. A low-complexity differential demodulation method was pro-
posed in [16]. Motivated by [16], the authors of [17] proposed a time reversal
mirror demodulation method. The properties of chaotic signals and the feasibil-
ity of chaotic signal over the UWA channel were studied in [18].

Although DCSK is capable of achieving good BER performance over the
multipath fading channel, the energy efficiency and data rate of DCSK are low.
This is because half of the DCSK symbol is used to transmit the non-information-
bearing reference signal. Moreover, the requirement for the delay lines in DCSK
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imposes a burden on system complexity in practical applications. To avoid the
use of delay lines, a code-shifted DCSK (CS-DCSK) system was proposed in
[19], where the reference and information-bearing signals are superimposed in
the same time slot. To increase the date rate, the authors of [20] integrated
the orthogonal frequency division multiplexing (OFDM) into CS-DCSK, and
the resultant system is referred to as multicarrier CS-DCSK (MC-CS-DCSK).
It is shown in [20] that MC-CS-DCSK has good BER performance over the
time-frequency doubly selective UWA channel.

Index modulation (IM) can provide new dimensions for the transmission of
addition information bits. Particularly, additional information bits are transmit-
ted by the ON-OFF state of different entities (such as antennas, sucbarriers,
and so on) without requiring extra energy, and therefore IM-based systems can
achieve a better energy efficiency [22]. In [23], an IM-based OFDM system was
proposed for UWA communications. This system can not only achive higher
energy efficiency, but also better peak to average power ratio (PAPR) perfor-
mance. In order to improve the date rate of DSSS system, a parallel combination
assisted UWA communication system was proposed in [21].

In this paper, a subcarrier index modulation aided CS-DCSK (SIM-CS-
DCSK) system is proposed for the UWA communications, where additional infor-
mation bits are transmitted by the indices of activated subcarries, improving the
data rate. Different from MC-CS-DCSK, only part of subcarriers is activated in
the proposed SIM-CS-DCSK system, which reduces the inter-carrier interference
(ICI). Different from the conventional multicarrier spread-spectrum (MCSS) [24],
SIM-CS-DCSK can achieve higher data rate and energy efficiency at the cost of
system complexity. In order to verify the superiority of SIM-CS-DCSK, the BER
performance of SIM-CS-DCSK is compared to its competitors over the different
UWA channels. Simulation results show SIM-CS-DCSK not only has the ability
to resist Doppler spread, but also harvests the benefits in time diversity. It is also
shown that the proposed SIM-CS-DCSK system has a good trade-off between
the data rate and BER performance.

2 The SIM-CS-DCSK System

2.1 The Transmitter

The block diagram of the SIM-CS-DCSK transmitter is shown in Fig. 1(a). There
are m information bits transmitted in an SIM-CS-DCSK frame, where m bits
are split into G sub-blocks with p bits per sub-block, i.e., m = pG. In each block,
the number of transmitted bits is p = p1 +p2, where the first p1 bits (referred to
as subcarrier index bits) are utilized to determine the positions of the activated
subcarriers for an OFDM symbol, while the remaining p2 bits (referred to as
modulated bits) are loaded into the CS-DCSK modulators to get the subcarrier
modulated symbol.

In an OFDM symbol, there are N subcarriers divided into G sub-blocks with
n subcarriers per sub-block. According to the combinational method [23], in each
subcarrier sub-block, na out of n available subcarriers are activated to transmit
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Fig. 1. The block diagram of the SIM-CS-DCSK system.

the CS-DCSK signals, and the remaining n − na subcarriers are idle. Therefore,
the number of subcarrier index bits is calculated as p1 = �log2C(n, na)�, where
C(·, ·) denotes the binomial coefficient and �·� is the floor function.

According to [19], the reference signal and information-bearing signal are
superimposed to form a CS-DCSK signal, formulated as

dj
g = wR ⊗ c + ag[j]wI ⊗ c, (1)

where wR and wI denote the length-P reference and information-bearing Walsh
codes, respectively. In addition, c = [c1, c2, · · · , cβ ]T is the length-β chaotic
signal, ag[j] ∈ {−1,+1}, j ∈ 1, 2, . . . , na, g ∈ 1, 2, . . . , G is the binary phase shift
keying modulated symbol, and ⊗ is the Kronecker operator. In (1), dj

g is a length-
Pβ signal transmitted by the jth activated subcarrier of the gth sub-block. The
spreading factor of SIM-CS-DCSK is defined as SF = Pβ.

Generally, the subcarrier index vector of the gth sub-block is defined as Ig =
{i1, · · · , iθ, · · · , ina

}, where g ∈ [1, 2, · · · , G] and iθ ∈ [1, 2, · · · , n]. Therefore,
the gth SIM-CS-DCSK symbol in the sub-block can be obtained as

Sg = [S̃(1), S̃(2), · · · , S̃(n)]T , g ∈ [1, 2, · · · , G] (2)

where [·]T is the transpose operation and S̃(j) is given by

S̃(j) =
{

0, j /∈ Ig

dj
g, j ∈ Ig

, j ∈ [1, 2, · · · , n]. (3)

When the G sub-blocks of the SIM-CS-DCSK symbol are connected together to
form

S = [ST
1 , · · · ,ST

G]T . (4)

To enhance the ability of anting frequency selective fading, a chip-based
interleaver is used for the SIM-CS-DCSK system. Specifically, a circular shift
interleaving operation is applied for each column of S, expressed as

S′(j) = Q[j]S(j), j = 1, · · · , Pβ, (5)

where Q[j] is a circular shift matrix used in the jth OFDM symbol.
The duration of an OFDM symbol is T and the length of cyclic prefix (CP)

is Tcp, respectively. Thus, the duration of an OFDM symbol is T + Tcp and the
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subcarrier spacing is Δf = 1/T . Furthermore, the frequency of the kth subcarrier
is

fk = fc + kΔf, k = −N/2, · · · , N/2 − −1, (6)

where fc is the carrier frequency, N is the number of subcarriers, and the band-
width is B = NΔf . In (5), matrix S′ has N rows and Pβ columns. It is assumed
that the jth column of matrix S′ is denoted by xj which corresponds to the jth

OFDM symbol in a frame. For simplification, the subscript of xj is omitted in
the sequel. Therefore, the transmitted pass-band signal is given by

x(t) = Re

{[
N∑

k=1

x[k]ej2πkΔftg(t)

]
ej2πfct

}
, (7)

where x[k] is the kth element of xj and g(t) = 1, t ∈ [−Tcp, T ]. After performing
the parallel-to-serial (P/S) and digital-to-analog conversions, the transmitted
signal x(t) is sent through a UWA channel.

2.2 The Receiver

The block diagram of the SIM-CS-DCSK receiver is shown in Fig. 1(b). The
received signal in passband is

y(t) = Re

{
L∑

l=1

Al

[
N∑

k=1

x[k]ej2πfk(t+at−τl)

]
ej2πfc(t+at−τl)

}
+ n(t), (8)

where n(t) is additive noise. After Doppler mitigating, downshifting, and low
pass filtering, the baseband signal is approximated by

ŷ(t) ≈ ej2πεt
N∑

k=1

{
x[k]ej2πfkt

[
L∑

l=1

Ale
−j2πfkτlg(t − τl)

]}
+ n̂(t), (9)

where ej2πεt can be regarded as the carrier frequency offset (CFO) resulted by
residual Doppler effect. Remove CP from ŷ(t), the received signal becomes

z(t) = ej2πεt
N∑

k=1

{
x[k]ej2πfkt

[
L∑

l=1

Ale
−j2πfkτl

]}
+ n̂(t). (10)

Considering that the SIM-CS-DCSK system is an non-coherent system, the CFO
is not solved. Thus, the output at the kth subcarrier after demodulation is
expressed by

z[k] =
1
T

∫ T

0

z(t)e−j2πfktdt ≈
N/2−−1∑
m=−N/2

H[m, k]x[k] + v[k], (11)

where v[k] is the circularly symmetric independent and identically distributed
(i.i.d.) complex additional white Gaussian noise (AWGN) with zero mean and
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σ2 variance. Put (11) into a vector form, it yields the output of the mth OFDM
symbol

zm = Hmxm + vm,m ∈ [1, 2, · · · , βP ], (12)

where zm = [zm[−N/2], · · · , zm[N/2 − 1]]T , and vm = [wm[−N/2], · · · ,
wm[N/2 − 1]]T . The channel matrix is obtained by [25]

Hm(p; q) =
1
N

N∑
n=1

L∑
l=1

h(n; l) exp
{

j2π
n(q − p) − ql

N

}
(13)

where h(n; l) is the discrete form of the time varying channel impulse response.
After performing the de-interleaving operation, the signal carried by an

OFDM frame is expressed as

Z = [QT
[1]z

1, · · · ,QT
[Pβ]z

Pβ ]T , (14)

where QT
[m] is a circular shift matrix for de-interleaving of the mth OFDM sym-

bol.
The receiver needs to estimate the indices of the activated subcarriers and

retrieve the subcarrier index bits. Then, according to the estimated subcarrier
indices, the modulated bits carried by the activated subcarriers are recovered.
In this paper, a low-complexity greedy detector is presented to detect the active
subcarriers. The gth sub-block of an OFDM frame is given by

Rg = [ZT
(g−1)n+1,Z

T
(g−1)n+2, · · · ,ZT

gn]T . (15)

Here, Zm presents mth row of matrix Z. Thus, Rg is a matrix with n rows and Pβ
columns. To detect indices of the active subcarriers, the n received subcarriers
of each sub-block are processed by the CS-DCSK demodulator. According to
the demodulation principle of CS-DCSK, the decision variable of the CS-DCSK
demodulator for the gth sub-block can be calculated as

Dg = diag([Rg � (wR ⊗ 1n×β)] [Rg � (wI ⊗ 1β×1)]
H), (16)

where � denotes the Hadamard product operation, [·]H is the Hermitian trans-
pose, and diag(A) is the function that takes the diagonal elements of matrix
A.

According to the greedy detection algorithm, the subcarriers correspond-
ing to the na largest absolute values of decision variables are estimated as the
indices of the activated subcarriers. Let |Dg| = {|Dg[1]| , |Dg[2]| , · · · , |Dg[n]|}.
The subcarrier index vector can be estimated by Algorithm 1. Therefore, the
subcarrier index bits are retrieved by the elements of subcarrier index vector, i.e.,
Îg(l) = [Îg[na], · · · , Îg[1]]. Finally, the modulated bits carried by the activated
subcarriers are obtained as

b̂g[j] = sign [Dg [j]] , j ∈ Îg. (17)
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Algorithm 1. Estimate Subcarrier Indices {Îg[q]}na
q=1

1: Initialize: Let i = 1, Ξ = |Dg|.
2:
3: repeat
4: νi = arg max

i=1,··· ,n
(Ξ)

5:
6: Set Ξνi = 0
7:
8: i = i + 1
9:

10: until i == na.
11: Output: [Îg[na], · · · , Îg[1]] = sort([ν1, · · · , νna ]).

3 Numerical Simulations

In this section, Monte Carlo simulations are performed to evaluate the BER
performance of the proposed SIM-CS-DCSK system. Moreover, the BER perfor-
mance of SIM-CS-DCSK is compared to other spread-spectrum systems, such
as MCSS, SIM-MCSS1 and MC-CS-DCSK. It is noted that the MCSS and SIM-
MCSS systems are based on coherent demodulation, where the channel impulse
response is estimated by the least square (LS) algorithm. Unless otherwise stated,
the length of the Walsh code is set to P = 2 in SIM-CS-DCSK and MC-CS-
DCSK. To demonstrate the system reliability under the low signal-to-noise ratio
(SNR) region, the BER performance of all systems is evaluated based on the
chip SNR, where the chip SNR Echip/N0 is given by

(Echip/N0)dB = (Eb/N0)dB − 10 log10(SF )dB, (18)

where Echip and Eb are the chip energy of the chaotic signal and the energy of
transmitting a information bit, respectively. In addition, N0 is the power of a
complex AWGN signal.

Figure 2(a) shows the BER performance of SIM-CS-DCSK over a multipath
fading channel with different Doppler shift fd. The channel is a five path fading
channel with equal path gain. As observed from Fig. 2(a), the BERs of SIM-
CS-DCSK and MC-CS-DCSK don’t deteriorate as increasing of Doppler shift.
For MC-CS-DCSK, when Doppler shift (fd) is half of sub-carrier bandwidth
(ΔF ), it still achieves almost the same BER with zero Doppler shift. Moreover,
SIM-CS-DCSK reach lower BER level at fd = %50ΔF than that of fd = 0.
The performance of conventional OFDM system dose not deteriorate if an ICI
equalizer was applied (see Fig. 2 in [26]). In contrast, there is no channel and
ICI equalizers in the proposed system. Within a certain Doppler shift range, our
proposed chaotic schemes achieve lower BER performance. It shows that MC-
CS-DCSK and SIM-CS-DCSK system harvest the benefits of Doppler diversity.
1 When the subcarrier index modulation is applied in MCSS [24], the resultant system

is referred to as SIM-MCSS.
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Fig. 2. BER performances of SIM-CS-DCSK and other competitors over a multipath
fading channel. (a) BER versus fd, N = 512, Eb/N0 = 17dB, (n, na) = (4, 2). (b) BER
versus L, N = 512, (n, na) = (4, 2).

In addition, from fd = 20%ΔF to fd = 50%ΔF , SIM-CS-DCSK obtains big
performance gains over fd = 0 than that of MC-CS-DCSK. It shows that the
SIM-CS-DCSK has better ani-ICI performance since SIM-CS-DCSK has inactive
subcarriers.

In Fig. 2(b), the BER performance of the proposed SIM-CS-DCSK system is
compared to its competitors over the three-path and five-path Rayleigh fading
channels. When the number of paths is increased, both SIM-CS-DCSK and its
competitors can offer better BER performances. It shows that the proposed SIM-
CS-DCSK also achieve diversity gain. In addition, for L = 5 and BER = 10−4,
the proposed SIM-CS-DCSK system outperforms MC-CS-DCSK and MCSS by
about 1 dB and 3 dB gains, respectively.

We use the Watermark simulator to evaluate the BER performance of SIM-
CS-DCSK. Watermark is a recently proposed benchmark for comparing the per-
formance of physical layer algorithms for underwater acoustic communications
[27]. This channel simulator is driven by channel measurements, thereby pro-
ducing different channel models. It includes a library of channels measured in
Norway, France, and Hawaii, offering three frequency bands (i.e., 4 − 8 kHz,
10 − 18 kHz, and 32.5 − 37.5 kHz), single-hydrophone and array receivers, and
play time varying from 33 s to 1980 s [27].

We show the performance on two channel environments, NOF1 and NCS1,
corresponding to a low Doppler spread and high Doppler spread channel in the
Norwegian shallow water and continental shelf, respectively. The Doppler spec-
trum of NOF1 has a sharp peak around zero frequency while the Doppler spec-
trum of NCS1 is significantly spread out within [-15, 15] Hz. It is clear that the
largest energy of the NOF1 channel is concentrated in a narrow delay-Doppler
window. In contrast, NCS1 has wider Doppler spectrum. Thus, NOF1 is consid-
ered to be a benign channel, the NCS1 channel is more challenging due to its
smaller coherence time.
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Fig. 3. (a) BER performance of SIM-CS-DCSK over the watermark channel NOF1
and NCS1. (b) BER versus na, N = 512.

In Fig. 3(a), the BER performance of SIM-CS-DCSK is compared to that
of MC-CS-DCSK, MCSS and SIM-MCSS over the watermark channel NOF1
and NCS1. Real lines represent BER over NOF1 channel, dot lines represent
BER over NCS1 channel. In the simulations, the carrier frequency is set to fc =
14 kHz while the bandwidth is B = 8 kHz. The system parameters are N = 512,
(n, na) = (4, 2) and SF = 32. Therefore, the number of transmitted bits per SIM-
CS-DCSK frame is 512. In addition, the numbers of transmitted bits per MCSS
and SIM-MCSS frame are 409 and 408, respectively. It can be observed from
Fig. 3(a) that SIM-CS-DCSK achieves best performance among MC-CS-DCSK,
MCSS and SIM-MCSS over the NOF1 channel. Considering a more challenging
NCS1 channel, SIM-CS-DCSK, MC-CS-DCSK offer better BER performance
than MCSS and SIM-MCSS at high SNR range. Meanwhile, SIM-CS-DCSK
achieves higher data rate.

Figure 3(b) evaluates the effect of the number of activated subcarriers in each
sub-block on BER performance in SIM-CS-DCSK system. From the figure, one
see that BER performance is decreased when the number of activated subcarriers
na is decreased from 4 to 1. This is because the bit energy decreases as the
number of activated sub-carriers decreases. However, the data rate of the SIM-
CS-DCSK system is decreased with decreasing of na. Therefore, there is a good
tradeoff between the BER performance and data rate in SIM-CS-DCSK.
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4 Field Experiments

Fig. 4. The snapshots of experiment settings and frame structure of the transmitted
signal for the field experiments.

In this section, the field experiments conducted in the water pool and lake are
used to demonstrate the superiority of SIM-CS-DCSK. The snapshots of pool
and lake experiments are shown in Fig. 4(a). The pool experiment is carried out
in a 22.89 × 5.18 × 1.6 m3 non-anechoic water pool, where the transmitter and
receiver are diagonally placed and their distance is 22 m. The lake experiment is
conducted in Siyuan Lake of Xiamen University. The depth of the lake is about
3 m, and the transmission range is about 150 m.

As shown in Fig. 4(b), to ensure that the transmitted signals of different
systems have the same channel impulse response, the transmitted signals of
SIM-CS-DCSK, MC-CS-DCSK, SIM-MCSS and MCSS are concatenated into a
packet. In addition, the guard interval, synchronization signal and data block
are involved in each transmitted signal, where an linear frequency modulated
(LFM) signal with the duration of 0.1 s is regarded as the synchronization signal
to synchronize different signals.

The parameters of SIM-CS-DCSK and other comparison systems used in
this study are as follows. Center frequency and bandwidth are 25 kHz and 6 kHz,
respectively. The number of subcarrier and subcarrier spacing are 512 and ΔF =
11.72 Hz, respectively. Cyclic prefix (CP) is 19.94 ms. For fairness, spreading
factor of all systems is set to 32. For MCSS and SIM-MCSS systems, a pilot
signal inserts every 4 sub-carriers in the form of comb type pilot to estimate the
channel. Considering the trade-off between data rate and BER performance, the
SIM parameters of SIM-CS-DCSK and SIM-MCSS are set to (n, na) = (4, 2).
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Fig. 5. Channel characteristics of the water pool and lake channels.

4.1 The Pool Experiment

Due to its calm characteristics, the pool channel can be regarded as a time-
invariant multipath UWA channel. Channel impulse responses of water pool
channel are illustrated in Fig. 5(a). From this figure, the energy mainly focuses
on a delay path whose delay is less than 1 ms. It is a channel with slight fre-
quency selective fading. In addition, the Doppler spectrum of the channel has a
sharp peak around zero frequency. Hence, this water pool channel is a benign
channel. Table 1 shows the BERs with different estimated input-SNRs. Specifi-
cally, the signal of data 1 has highest input-SNR, leading to lowest BERs for all
schemes. More importantly, SIM-CS-DCSK achieves the lowest BER among the
four schemes.

Table 1. BER performance comparisons of four systems in the water pool experiment.

Data Estimated SNR(dB) SIM-CS-DCSK MC-CS-DCSK SIM-MCSS MCSS

1 6.57 0.0000 0.0206 0.0569 0.0199

2 6.50 0.0017 0.0349 0.0851 0.0313

3 5.59 0.0016 0.0426 0.0944 0.0353

4 3.79 0.0100 0.0638 0.1715 0.0572

Data rate 179bps 149bps 179bps 149bps

4.2 The Lake Experiment

For lake experiment, we also collected four experiment data. Channel impulse
responses of lake channel are depicted in Fig. 5(b). From the figure, the lake
channel shows lager delay spread than that of water pool channels. Besides,
we can see that the Doppler effect of lake channel is significant. The channel
shows relatively obvious time-varying property due to the fluctuation of the
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lake water. Table 2 shows the BER performances for the lake experiment. In the
table, estimated input-SNRs are also listed. The lake data show lower input-
SNRs than pool data due to long communication distance for lake experiment.
From the BER results, one can see that the proposed SIM-CS-DCSK and MC-
CS-DCSK display an obviously advantage versus MCSS and SIM-MCSS. For
example, the BER of SIM-CS-DCSK reaches to 3% level when the estimated
SNRs are in range [−4,−1.6] dB.

Table 2. BER performance comparisons of four systems in the lake experiment.

Data Estimated SNR(dB) SIM-CS-DCSK MC-CS-DCSK SIM-MCSS MCSS

1 −1.63 0.0000 0.0000 0.0087 0.1664

2 −1.71 0.0472 0.0699 0.3215 0.1764

3 −4.05 0.0346 0.0545 0.3484 0.1112

4 −7.18 0.2777 0.2480 0.4481 0.1842

Data rate 179bps 149bps 179bps 149bps

5 Conclusion

In this paper, an OFDM-based multicarrier differential chaos shift keying with
subcarrier index modulation has been proposed for the UWA communications.
The subcarrier index modulation is used in each sub-block to carry additional
information bits, and therefore the proposed scheme can achieve a higher data
rate than that of MC-CS-DCSK when appropriate parameters are used. The
BER performances of the proposed system and benchmark systems are evaluated
by Watermark simulator, water pool and lake field experiments. For the Water-
mark simulations over the NOF1 and NCS1 channel, SIM-CS-DCSK achieves
better BER performance than its competitors at the high SNR range with appro-
priate SIM parameters. Considering the advantages of SIM-CS-DCSK in terms
of the tradeoff between the data rate and BER performance, the good choice
for number of activated subcarriers is half of the number of subcarriers in each
sub-block. The water pool and lake field experiment results further verify that
the superiority of SIM-CS-DCSK system in terms of BER performance and data
rate.
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Abstract. Graph Convolutional Networks (GCNs) have gained much
attention and have achieved excellent performance in many graph-based
collaborative filtering (CF) tasks in recent years. Its success relies on a fun-
damental assumption that the original graph structure is reliable and con-
sistent with the properties of GNNs. However, most original graphs can
seriously impair model performance due to noise and data sparsity prob-
lems. In addition, for large user-item graphs, the explicit message passing
in traditional GCNs slows down the convergence speed during training and
weakens the training efficiency of the model. Based on this, we propose
Constrained Graph Convolution Networks Based on Graph Enhancement
for Collaborative Filtering (EL-GCCF). The graph initialization learn-
ing module integrates the structural and feature information in the graph
by generating two graph structures. It enhances the original graph and
effectively mitigates the noise problem. Second, the multi-task constrained
graph convolution skips explicit message passing. It effectively mitigates
the over-smoothing problem in training and improves the training effi-
ciency of the model by using an auxiliary sampling strategy. Experimental
results on two real datasets show that the EL-GCCF model outperforms
many mainstream models and has higher training efficiency.

Keywords: Recommendation system · Collaborative filtering · Graph
enhancement · Graph convolutional network

1 Introduction

Graph neural networks (GNNs) have improved recommendation tasks in recent
years. Some recent studies [1,2] chose graph convolution network (GCN) [3] to
learn the embedding of nodes. Currently, the success of existing GCN-based CF
models (NGCF [1], LightGCN [4], and LR-GCCF [5]) relies on an underlying
assumption that the original user-item graph is reliable and consistent with the
properties of GNNs. However, graphs are usually built on complex interactive
systems. In reality, this assumption does not entirely hold. The original graph
inevitably contains noisy information, such as missing, meaningless, or spurious
edges, the propagation of noisy information in the graph deteriorates the quality
of many other representations. Second, data sparsity is also a big problem. Due to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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limited a priori knowledge, the predefined raw graphs carry only partial informa-
tion, limiting the prediction task’s accuracy. Most of the original graphs may not
be optimal for the downstream tasks of the recommendation system. Unreliable
graph structure may severely limit the representational power of GNNs [6].

In downstream tasks, to capture higher-order collaboration signals and bet-
ter model the user-item interaction. Current GCN-based CF models tend to find
increasingly complex network encoders [7]. However, we note that these methods
are difficult to train on large user-item graphs. For this reason, several studies
[4,5] have been carried out to simplify GCN-based CF models. For example, LR-
GCCF borrows the graph linkage theory from SGCN [8], which simplifies the
traditional GCN to a large extent. However, it does not get much improvement
in training speed. Through empirical analysis, it is possible that message pass-
ing of stacking multiple layers causes the model to converge slowly, i.e., message
passing still dominates the model’s training. Therefore, avoiding noisy informa-
tion, alleviating data sparsity, and constructing reliable graph structures while
improving the efficiency of GCN models is still a problem to be solved.

We propose Constrained Graph Convolution Networks Based on Graph
Enhancement for Collaborative Filtering (EL-GCCF) based on the above prob-
lems. The model consists of two modules: (1) Graph initialization learning mod-
ule is used to generate enhanced graphs suitable for downstream tasks. (2) Con-
strained graph convolution module with an auxiliary sampling strategy. Our
main contributions are as follows:

(1) We study the poor performance of existing GCN-based CF models. GNNs
rely on a reliable graph structure. The original graph can seriously impair
the model performance due to noise and data sparsity problems; the explicit
message passing in traditional GCNs largely slows down the convergence
speed of GCNs during training, which weakens the training efficiency of the
model.

(2) We propose a novel EL-GCCF model. It enhances the original graph by the
graph initialization learning method, which effectively alleviates the noise
problem in the graph. In the enhanced graph, it skips explicit message pass-
ing via using constrained graph convolution. Also, it obtains efficient per-
formance by using multi-task learning and auxiliary sampling strategies in
the loss.

(3) Extensive experimental results on two real datasets show that EL-GCCF
outperforms many mainstream GCN models and achieves more than a 4-
fold speedup over LR-GCCF, verifying the model’s effectiveness.

2 Related Work

2.1 Graph Neural Networks

In recent years, graph neural networks have received much attention and have
achieved great success in solving the field of graph-based collaborative filtering
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Fig. 1. Architecture of the proposed model

[1,4,5]. GNNs are used to learn the topology of the graph and the feature infor-
mation of the nodes, and one of the most representative methods is the graph
convolutional network (GCN) [3], which uses explicit message passing. It is an
effective method to extract information from graph structure. The messaging
process is defined as follows:

E(k+1) = σ(D̂− 1
2 ÂD̂− 1

2 E(k)W (k)) (1)

where E(k) and W (k) denote the embedding and weight matrix of the kth layer,
A and D are the adjacency matrix and the diagonal node degree matrix, respec-
tively.

3 Methodology

3.1 Problem Definition

Let G = (V,E, F ) be a graph, where V = {v1, v2, ..., vN} is the set of N nodes,
E is the set of edges, F = [f1, f2, ..., fN ] is the feature matrix of the nodes.
fi is the feature vector of node vi. FU ∈ R|U |×dU

and F I ∈ R|I|×dI

are user
and item feature matrices. |dU | and |dI | are the number of node attributes.
A ∈ R|U |×|I| is the user-item interaction matrix, Aij = <vi, vj> is used to
describe the relationship between nodes. The framework diagram is shown in
Fig. 1.

3.2 Graph Initialization Learning Module

Feature Interaction. The feature interaction graph SUI determines the likeli-
hood of an edge between nodes based on the node features. We adopt a mapping
layer to project the feature f to the dC-dimensional common feature f

′
:

f ′
u = σ(fu · Wu + bu), f ′

i = σ(fi · Wi + bi) (2)
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where σ(.) is the nonlinear activation function, Wu and Wi are the weight matri-
ces, bu and bi are the bias terms, f ′

u ∈ R1×dC

, f ′
i ∈ R1×dC

.
According to the network homogeneity assumption, edges tend to connect

similar nodes [9], and the graph structure can be optimized by promoting strong
relational connections. We use cosine similarity for metric learning [10], threshold
εUI for constraint, and thus capture the interactions in the feature matrix F

′
.

ΓUI(f
′
x, f

′
y) = cos(wUI � f

′
x, wUI � f

′
y)

SUI [x, y] =
{

ΓUI(f
′
x, f

′
y) ΓUI(f

′
x, f

′
y) ≥ εUI

0 otherwise

(3)

where ΓUI(.) is the similarity metric function. By performing metric learning as
in Eq. (3), we learn the feature interaction graph SUI .

Feature Propagation. We calculate the similarity between user nodes in FU to
find similar users. We use the threshold εFU for similarity determination to filter
the edges with small feature similarities. We obtain the user feature similarity
graph SFU ∈ R|U |×|U | by metric learning:

ΓFU (fx, fy) = cos(wFU � fx, wFU � fy)

SFU [x, y] =
{

ΓFU (fx, fy) ΓFU (fx, fy) ≥ εFU

0 otherwise
(4)

Feature similarity propagation generates new interaction edges to obtain the
feature propagation graph SFPU and SFPI . We use topology structure A for
feature similarity propagation:

SFPU = SFU · A
SFPI = A · SFI (5)

Feature Graph Generation. We obtain the feature generation graph by com-
bining two types of graph structures through the graph channel attention layer:

SFeat = h([SUI , SFPU , SFPI ]) (6)

where [SUI , SFPU , SFPI ] ∈ R|U |×|I|×3 is the stacked matrix of three candidate
graphs and SFeat ∈ R|U |×|I| is the feature generation graph. h(.) denotes a graph
channel attention layer whose weight matrix WFeat represents the importance
of different candidate graphs.

3.3 Constrained Graph Convolution Module with an Auxiliary
Sampling Strategy

User-Item Graph Learning. EL-GCCF model uses the limit method to
approximate the final representation of the aggregation process. The final con-
vergence condition of the model can be defined according to the theorem [11]
as:

eu = lim
k→∞

e(k+1)
u = lim

k→∞
e(k)u (7)
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The model reaches convergence when the embedding representations of the
last two layers remain unchanged. For [5], when the model reaches convergence,
its linear embedding process can be rewritten as:

eu =
1
du

eu +
∑
i∈Nu

1
di × du

ei (8)

where eu and ei are the embedding representations of the nodes in the final
convergence state. If each node satisfies the Eq. (9) during the training process,
the model is considered to reach the convergence state of message passing. The
following convergence state can be derived after multi-step simplification:

eu =
∑
i∈Nu

wuiei, wui =
1

di(du − 1)
(9)

We hope the model will no longer use the explicit message passing of stack-
ing multiple layers but directly approximate the convergence state. The most
straightforward way is to minimize the difference between the two sides of the
Eq. (9), i.e., maximize cosine similarity:

max
∑
i∈Nu

wuie
T
u ei,∀u ∈ U (10)

We introduce the sigmoid activation function and the negative log-likelihood
function to facilitate optimisation. The loss function is as follows:

LUI = −
∑
u∈U

∑
i∈Nu

wui log(σ(eTu ei) (11)

where the limit conditions will structurally constrain the loss, LUI is the con-
straint function, and wui is the constraint coefficient.

However, the current loss will still be affected by over-smoothing. User and
item nodes will be easily aggregated into the same embedding. We sample diffi-
cult samples via using an auxiliary sampling strategy during training. We define
a hard positive example as an item that is further from the user than at least
one negative item. Formally, a positive pair {u, i} is selected if:

Eui ≥ min
j∈Nu

Euj − ε (12)

where E is the Euclidean distance, Nu is the set of negative items for u, and ε
is a margin parameter that controls the degree of separation.With the inclusion
of hard positive and negative samples, the loss function can be rewritten as:

LUI = −
∑
u∈U

∑
(u,i)∈N+

(u,j)∈N−

wui log(σ(eTu ei) + wuj log(σ(−eTu ej)) (13)
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where N+ and N− are positive and negative samples respectively. LUI is the
constraint loss function. ŷui = eTu ei is used as the recommended ranking score.
The ranking loss LRank is shown below:

LRank =
∑
u∈U

∑
(u,i)∈N+

(u,j)∈N−

− log(σ(ŷui − ŷuj)) + λ||E(0)||2 (14)

Item-Item Graph Learning. In addition to user-item relationships, item-item
relationships are equally important. We construct the item-item graph GI based
on the co-occurrence of items as follows:

GI = ATA (15)

where each entry denotes the co-occurrences of two items, A is the adjacency
matrix of the user-item graph. We follow Eq. (9) to approximate infinite-layer
graph convolution on GI and derive the new constraint coefficient wij :

wij =
Gi,j

gi − Gi,i
(
gi
gj

)c, gi =
∑
k

Gi,k (16)

where gi and gj denote the degrees (sum by column) of item i and item j in GI ,
respectively. c is usually taken as 0.5 from experience.

Compared with the direct construction of item-item graph, we construct the
co-occurrence relation graph by the adjacency matrix of user-item graph, which
can reduce the training difficulty of the whole multi-task model. The loss function
is as follows:

LII = −
∑

(u,i)∈N+

∑
j∈S(i)

wij log(σ(eTu ej) (17)

where N+ is positive samples. Thus, with this constraint loss, we extend the
model to learn item-item relationships better and ultimately derive the total
training objective for the model:

L = LRank + αLUI + βLII (18)

where α and β are hyper-parameters used to adjust the relative importance of
the user-user and item-item relationships, respectively.

4 Experiments

4.1 Experiment Setup

Datasets and Evaluation Metrics. We have conducted extensive experi-
ments on two available real datasets: MovieLens-1M and Amazon-Books. Table 1
shows the statistical information of the used dataset. Recall@K and NDCG@K
(K = 10, 20) are used as evaluation metrics in this paper.
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Table 1. Statistics of the two datasets

Dataset Users Items Interactions Density

MovieLens-1M 6022 3043 995154 5.431%

Amazon-Books 52643 91599 2984108 0.062%

Table 2. Performance comparison on two datasets

Model Amazon-Books MovieLens-1M

Recall@10 NDCG@10 Recall@20 NDCG@20 Recall@10 NDCG@10 Recall@20 NDCG@20

MF-BPR 0.0607 0.043 0.0956 0.0536 0.1704 0.2044 0.2153 0.2175

NeuMF 0.0507 0.0351 0.0823 0.0447 0.1657 0.1953 0.2106 0.2067

DeepWalk 0.0286 0.02511 0.0346 0.0264 0.1248 0.1025 0.1348 0.1057

Node2Vec 0.0301 0.2936 0.0402 0.0309 0.1347 0.1095 0.1475 0.1186

NGCF 0.0617 0.0427 0.0978 0.0547 0.1846 0.2328 0.2513 0.2511

LightGCN 0.0797 0.0565 0.1206 0.0689 0.1876 0.2314 0.2576 0.2427

LR-GCCF 0.0591 0.0504 0.1135 0.0558 0.1785 0.2051 0.2231 0.2124

EL-GCCF 0.0973 0.0643 0.1363 0.0768 0.1925 0.2636 0.2657 0.2882

Improv 64.64% 27.58% 20.01% 37.63% 7.84% 28.52% 19.09% 35.69%

4.2 Performance Comparison

Table 2 reports the results of the overall performance comparison. We have the
following observations:

Compared to MF-based models(MF-BPR [12], NeuMF [13]), all GCN-based
models perform better. [1,4,5] can use powerful graph convolution to learn
higher-order relationships between users and items to capture deeper collabora-
tive information. GCN-based models outperformed network embedding models
(DeepWalk [14], Node2Vec [15]). It can make full use of the structural infor-
mation of the graph, and graph convolution is more effective than traditional
random walk to capture collaborative information. Compared with GCN-based
models, EL-GCCF performs better. Instead of using explicit message passing,
EL-GCCF learns the nature of infinite-layer graph convolution through the con-
straint loss with multi-tasking. Compared with other baseline models, EL-GCCF
can perform enhanced learning on the original graph using the graph initializa-
tion learning method. It effectively alleviates the problem of noise and data
sparsity in the original graph. In general, EL-GCCF achieves consistent and
better performance on all datasets.

4.3 Ablation Study

Effectiveness of Constrained Graph Convolution with an Auxiliary
Sampling Strategy. In order to compare the effects of different components
on the model, we compared the EL-GCCF model and its variants. In Table 3 are
the results of the comparison.
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Table 3. Performance of variant models on two datasets

Model Amazon-Books MovieLens-1M

Recall@20 NDCG@20 Recall@20 NDCG@20

EL-GCCF(null) 0.1135 0.0558 0.2231 0.2124

EL-GCCF(α) 0.1162 0.0583 0.239 0.2325

EL-GCCF(β) 0.0942 0.0373 0.2187 0.2037

EL-GCCF(n s) 0.1278 0.0688 0.2633 0.2742

EL-GCCF 0.1363 0.0768 0.2657 0.2882

Fig. 2. Effect of different hyperparameters on model performance

(1) Importance of multi-task learning. EL-GCCF(α) uses constrained graph
convolution with an auxiliary sampling only on user-item graphs, EL-
GCCF(β) learns only on item-item graphs. EL-GCCF performs much better
than both EL-GCCF(α) and EL-GCCF(β), indicating that EL-GCCF can
comprehensively learn different types of relationships in the graph via using
multi-task learning.

(2) Importance of constrained graph convolution. EL-GCCF(null) uses tradi-
tional explicit message passing for embedding learning. EL-GCCF, EL-
GCCF(α), and EL-GCCF(β) outperform EL-GCCF(null) in general, indi-
cating that the explicit message passing of stacking multiple layers does
limit the model performance improvement. Constrained graph convolution
can effectively learn the information in the graph to improve the model’s
performance.

(3) Importance of ancillary sampling strategies. EL-GCCF(n s) uses only a sim-
ple sampling strategy. EL-GCCF outperforms EL-GCCF(n s), indicating
that the model uses an auxiliary sampling strategy to consider the training
problem of difficult samples, which can effectively alleviate the problem of
over-smoothing and help the model converge quickly during training.

Effect of Hyperparameters α and β. We first identify the value of hyper-
parameter α from [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4] when the model performs
optimally. Then we test with different β in [0.5, 1, 1.5, 2, 2.5, 3, 3.5] based on
the optimal α. We conducted experiments on the MovieLens-1M dataset, and
the results are shown in Fig. 2. We find that smaller hyperparameters limit the
play of the constraint loss, where β is more significant. EL-GCCF performs best
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when α = 1.2 and β = 2.5. Appropriate parameter settings allow EL-GCCF to
learn different types of relations effectively.

5 Conclusion

In this paper, We study the poor performance of existing GCN-based CF models
and propose constrained graph convolution networks based on graph enhance-
ment for collaborative filtering (EL-GCCF). Finally, The experimental results
on two datasets show the effectiveness of EL-GCCF.
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Abstract. The rapid development of the Internet has brought great changes and
convenience to the society and people. With the development of the Internet, its
security has been paid more and more attention. Intrusion detection can detect
network attacks in real time and respond to them in time, which has become an
essential and important security line. With the novel of network attack and the
diversification of network traffic, traditional intrusion detection based on attack
load matching and the intrusion detection based on machine learning has prob-
lems of inaccurate feature extraction and insufficient detection effect. To solve
the above problems, this paper designs a hybrid neural network DCT-IDS model,
using dense convolution neural network to achieve traffic feature fusion, reducing
the number of parameters, using Transformer to extract time sequence features,
and experimental tests were carried out on the latest dataset CIC-IDS2018. The
experimental results show that the accuracy of the proposed DCT-IDS model
reaches 98%, and all the indexes are better than the existing excellent models.

Keywords: Intrusion detection · Deep learning · Convolutional neural network ·
Transformer

1 Introduction

In recent years, with the emergence of new concepts such as the Internet of everything
and cloud computing, the Internet has entered a new era. The development of the Internet
not only brings breakthrough innovation and historic transformation to the society, but
also provides the possibility for some illegal elements to carry out malicious activities
on the Internet. Internet security is one of the most concerned issues today. Hackers can
steal personal privacy, refuse to provide services, interrupt business, commit financial
fraud, demand ransom, destroy physical equipment and other criminal acts [1] through
the network, which will bring huge losses to individuals, enterprises and governments.
Network threats are increasing day by day.

Intrusion detection can protect the system in real time by monitoring the behavior
of network and host and judging whether it conforms to the preset policy. According
to the detection principle, intrusion detection is mainly divided into anomaly detection
and signature matching detection [2]. Signature matching intrusion detection collects
the features of various attacks and constructs the corresponding feature database. If
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the database finds relevant matching features after analysis, the intrusion is judged to
exist. This method has the advantages of high detection rate, few false positives and no
need to go through complex model calculation. However, its disadvantages are that it
is limited to the detection of known attacks and cannot identify attacks that have not
oc-curred before. Moreover, it is difficult to define the feature database uniformly, and
its iterative update also requires a certain cost. Anomaly detection firstly extracts the
behavior characteristics of normal operations of users, and all operations that do not
conform to normal operations are judged as intrusion behaviors. Because of the novelty
of network attack and the rapid development of Internet, anomaly detection has become
a research hotspot in the academic world and a mainstream intrusion detection method
in industry.

This paper designs a hybrid DCT-IDS model based on convolutional neural net-
work and Transformer, which optimizes the network structure, reduces the number of
parameters, speeds up the training efficiency and improves the detection performance.
Firstly, the structure of traffic data is fully considered, and the dense structure based
CNN network is used to extract the underlying features of data packets, reducing the
number of parameters, and realizing feature fusion by residual structure. Transformer
is used to extract the timing features of data packets, and combined with self-attention
and multi-attention mechanism, on the one hand, it solves the problem of forgetting the
sample information of some attacks lasting for a long time, and on the other hand, it
realizes the self-selection of important features.

2 Related Work

The application of machine learning in the field of intrusion detection has been studied
for 20 years [3], and the literature proves that methods based on machine learning have
better performance than traditional methods. Li et al. [4] designed an IDS based on
PCA-SVM. PCA is first used to extract important features, and then SVM is used for
traffic prediction. PCA uses statistical information to reduce the dimension of feature
vector, which effectively improves the training efficiency of model. Li et al. [4] designed
a new IDS using support vector machine algorithm. The author uses a strategy called
feature removal method for feature selection, which selects the most important features
by evaluating the impact on a specific classifier. Although the algorithm achieves high
accuracy, its tedious feature selection process has a high computational cost, which
cannot meet the needs of practical scenes. Wang et al. [5] used artificial neural network
(ANN) and fuzzy clustering (FC) methods to realize an FC-ANN based IDS, which
improved the detection accuracy and reduced the FAR index.

Because the performance of deep learning in many fields has far exceeded the tradi-
tional machine learning methods, and deep learning does not need Feature Engineering,
a large number of security researchers have carried out research on deep learning. The
research on CNN has a long history. Li et al. Finally used the simple Lenet5 for traffic
classification. Literature [6–11] successively used various variant structures based on
CNN, such as densenet, RESNET and googlenet. After investigation, it is found that the
experimental results of the above model are not much higher than CNN. Cyclic neural
network and its variants have always been a research hotspot, because it can extract
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the time-series characteristics of traffic. Yakubu et al. [12] used the improved bilstm to
improve the accuracy compared with the traditional LSTM, but the training time of the
model also increases. Singh et al. [13] combined Gru and transfer learning. This method
improves the generalization ability of the model, but the improvement of detection rate
is not obvious. Therefore, another research [14–20] starts with the traffic characteristics,
selects the features that aremore beneficial to the detection results throughvarious feature
selectionmethods, and then classifies them in combinationwith the deep learningmodel.
The experiments show that this method does effectively improve the detection accuracy,
and the training time is shortened due to the reduction of features. After that, some
researches began to use different networks for different feature extraction and fusion.
S. et al. [21] and others used CNN and LSTM for spatio-temporal feature extraction
without considering the optimization of network structure. Kanna [22] et al. Connected
CNN and multi-layer LSTM in series and optimized the super parameters of CNN. The
experiment shows that the accuracy can reach more than 90% on unswnb15 data set,
but the training time is not mentioned in the paper. Yao et al. [23] also use CNN and
LSTM. The difference is that the outputs of the two networks will aggregate together
for feature fusion. Experiments show that the performance is improved compared with
series combination. However, the data set used in this paper is nslkdd, which has no
practical value.

Yang [24] used bidirectional LSTM RNN for anomaly detection and multi-
classification attack identification. The results show that although the average accuracy
of BiLSTM can reach 93.00%, which is better than that of ordinary LSTM, the problem
of class imbalance exists, which makes the generalization ability of the system not high.
Hussain [25] andWu et al. [26] used the CNN network based on ResNet and GoogleNet
structure for traffic classification, but the number of original network parameters was
large and there was redundancy. On the basis of previous studies, Shang et al. [27]
proposed to use the combination of DSCNN and BI-LSTM to build a model to obtain
spatio-temporal features, but there are too many model parameters and it is easy to fall
into local optimization.

3 Model Construction

This paper designs an intrusion detection model DCT-IDS based on multi-level feature
ex-traction. This model has the following advantages: firstly, the structure of traffic data
is fully considered, and the underlying features of data packets are extracted by CNN
network [28] based on dense structure [29], and the timing features of data packets
are extracted by Transformer, and feature fusion is realized by residual structure. Sec-
ondly, the dense link mechanism is introduced to reduce the number of parameters and
strengthen feature reuse. Finally, the attention mechanism based on Transformer [30]
structure is introduced. Combining self-attention and multi-attention mechanism, on the
one hand, the problem of forgetting the sample information of some attacks lasting for
a long time is solved, and on the other hand, the self-selection of important features is
realized.

The overall framework of the intrusion detection model DCT-IDS is shown in
Fig. 1. The framework consists of fourmodules: data preprocessingmodule,Dense-CNN
module, Transformer module and classified output module.
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Fig. 1. DCT-IDS model framework

3.1 Dense-CNN Module

Thewhole structure of dense-CNNmodule is shown inFig. 2. The input first goes through
a 3*3 convolution layer and carries out convolution operationwith 64 convolution kernels
to obtain feature vectors of 64 channels. Then it is sent to DenseBlock to extract features.
DenseBlock contains three layers of DenseLayer. The convolution kernel size of each
DenseLayer layer is set to 3*3, and the channel is set to 64. Each layer DenseLayer the
output of the input contains not only the adjacent layer, also include the front all of the
output layer, they together, bymeans of concat fusion with the underlying characteristics
of spatial information, the last layer, DenseLayer, connects all the previous outputs and
inputs together to output the fused eigenvectors.
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Fig. 2. Dense-CNN module

Each DenseLayer layer in the DenseBlock contains 128 1*1 convolution kernels and
64 3*3 convolution kernels. The 3*3 convolution kernel can be used to extract features,
while the 1*1 convolution kernel is needed to reduce computation. In addition, the third
layer DenseLayer adopts the empty convolution with Dilation Rate of 2. By introducing
the parameter of Dilation Rate, the convolution kernel can obtain a larger receptive field
and carry more information. Feature vectors extracted by DenseBlock will be sent to
the maximum pooling layer, which replaces the original Transition layer and is used to
connect two DenseBlock blocks and compress feature maps to reduce computation.

3.2 Transformer Module

As shown in Fig. 3, the structure of timing feature extraction module based on Trans-
former mainly consists of timing encoding, encoder and decoder. The feature vector
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Fig. 3. Sequence feature extraction module structure

extracted from the underlying feature module is a two dimensional X ∈ RS×dmodel , S
is the length of feature vector, dmodel is the dimension of feature after Embedding, this
tensor is input into encoder and decoder respectively after sequence encoding. As men-
tioned earlier, the Transformer input is parallel and lacks the sequential flow sequence
information compared to the serial input, so a sequential encoding module is required
to compute a position vector that can record the sequential flow sequence information
and embed it into the features in an additive manner.

After calculating the eigenvectors and position vectors, we can get X̂ ∈ RS×dmodel ,
then send them respectively to the encoder and decoder as the input, and the input is
the same, the encoding module maps features into feature vector sets containing key
vector K and value vector V, and then sends them to the decoder. The decoder adjusts
the information it focuses on according to the attention vector output by the encoder,
and finally outputs the decoded feature set.

3.3 Classification Output

The module is mainly composed of a global maximum pooling layer, a Dense layer with
32 neural units, and an output layer. The output layer uses the sigmoid activation function,
and the rest of the layer uses the Leaky Relu function. After extracting the underlying
and temporal features, the feature vectors were transformed into one dimensional vectors
through global maximum pooling, and then reduced the feature dimension through the
dense layer, and classified by softmax. In addition, the full connection layer is followed
by alpha dropout, which is set to 0.2 and sets 20% of the neural units to 0 to reduce
computational parameters and avoid overfitting. The loss function adopts cross entropy
function.

4 Data Analysis

This paper adopts CIC-IDS2018 [31] dataset, which is a modern network traffic dataset.
The definition of traffic characteristics and attack behavior is more consistent with con-
temporary network attacks, and the distribution of training set and test set conforms to
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Table 1. Final experimental data distribution

Category Number
of training
sets

Number
of test sets

Category Number
of training
sets

Number
of test sets

Benign 50811 12698 Bot 11452 2863

Brute Force -Web 10669 2667 Brute Force -XSS 7412 1853

SQL injection 84 21 DDOS attack-HOIC 27840 6960

DDOS
attack-LOIC-UDP

1465 366 DDoS
attacks-LOIC-HTTP

23128 5782

DoS
attacks-GoldenEye

16048 4012 DoS attacks-Hulk 18516 4629

DoS
attacks-SlowHTTPTest

55593 13898 DoS
attacks-Slowloris

6396 1599

FTP-BruteForce 488 122 SSH-Bruteforce 177 44

Infilteration 6096 1524

statistical correlation. The dataset contains 3227424 traffic, including six types of attack
methods: brute force cracking, botnet, Dos, DDos,Web attack, and network penetration.
Among them, there are 2678039 normal traffic and 549385 attack traffic. The number
difference is huge, and the normal traffic has great redundancy.

The normal traffic of THE CIC-IDS2018 dataset is simulated by scripts for several
communication protocols. Although the number is large, it is not real. In order to make
the dataset more meaningful, this paper installedWinpcap library andWireshark tool on
threeWindows hosts. The data packet was collected byWireshark for 3 days. During the
period of collection, common online behaviors such as chatting, downloading papers,
browsing the web, sending emails, listening to music and playing online games were
carried out. The collected DATA packets in pcap format are converted into csv files in
network flow format by CICFlowMeter. In order to improve the training efficiency, this
paper filters and combines the attack traffic in IDS2018 dataset and the normal traffic
collected, and the distribution of the finally obtained data is shown in Table 1.

5 Experimental Results and Analysis

5.1 Network Structure Analysis

In order to optimize the model, this paper evaluated the performance of the model under
different dense blocks, and conducted a binary classification experiment. The accuracy
results are shown in Fig. 4. It can be seen that with the increase of DenseBlock, the
accuracy can reach more than 98%, and the change is not great, but the parameters,
complexity and training time of the model will greatly increase, so this paper chooses
one DenseBlock to build our model.
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Fig. 4. Model accuracy under different Dense Blocks

5.2 Classification Experiment

The binary classification of network traffic is called exception detection, just need to dis-
tinguish normal traffic from abnormal traffic. Exception detection is a necessary function
of IDS.Anomaly detection values the ability to identify abnormal traffic, so accuracy and
F1-score are enough to judge the performance of the model. The experimental results
of binary classification are shown in Table 2. It can be seen that in the abnormal detec-
tion scenario, the accuracy of the model for normal traffic and abnormal traffic is up to
98.87%, and the model can accurately detect the most traffic.

Table 2. Dichotomize the experimental results of each category

Category Accuracy Precision Recall F1-score

Attack 0.9887 0.9971 0.9766 0.9867

Benign 0.9887 0.9871 0.9994 0.9932

In order to verify the detection ability of the model proposed in this paper on attack
categories, multi-classification experiments are carried out in this paper. The experimen-
tal results of multi-classification are shown in Table 3. As can be seen from Table 3, for
categories with sufficient training samples, all indicators of the model performed well,
with an accuracy of 98% and an average F1-score of 94.28%. However, for categories
with a small number of training samples, its detection ability was far below our require-
ments, such as SQL Injection. Due to the rarity of training samples, the model could not
learn such features at all, and thus could not detect them correctly, leading to 0 for all four
indicators. The same problem also occurred in SSH-BruteForce, FTP-BruteForce and
DDOS attack-LOIC-UDP categories. This shows that unbalanced datasets have a great
impact on the detection effect of the model, and data balance processing is particularly
necessary. In addition, although the accuracy rate of the model for the Infilteration cate-
gory is as high as 97.01%, the recall rate and accuracy rate are not high, indicating that
the model is not strong in identifying the attack samples of the Infilteration category,
and the high accuracy is because it is judged as other attack categories. The training
samples in the Infilteration category are sufficient, and there is no impact of category
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imbalance. This may be because the Infilteration attack only uses NMAP to scan some
IP addresses, ports and services, and does not cause actual harm. However, in the real
network, such scans are ubiquitous, so the model does not recognize them well. When
defending against such attacks, we can implement import and export policies with the
firewall and filter out such scans by setting the blacklist of firewall ports and IP addresses,
so that such attacks cannot enter the detection range of the intrusion detection system.

Table 3. Experimental results of multiple classification of DCT-IDS model

Category Accuracy Precision Recall F1-score

Benign 0.9792 0.9775 0.9796 0.9785

Bot 0.9896 0.9727 0.9862 0.9794

Brute Force -Web 0.9899 0.9838 0.9750 0.9793

Brute Force -XSS 0.9889 0.9835 0.9749 0.9767

SQL Injection 0 0 0 0

DDOS attack-HOIC 0.9897 0.9828 0.9575 0.9698

DDOS attack-LOIC-UDP 0.9854 0.8477 0.6456 0.7329

DDoS attacks-LOIC-HTTP 0.9841 0.9866 0.9869 0.9867

DoS attacks-GoldenEye 0.9899 0.9933 0.9723 0.9827

DoS attacks-Hulk 0.9896 0.9737 0.9895 0.9815

DoS attacks-SlowHTTPTest 0.9842 0.9814 0.9873 0.9843

DoS attacks-Slowloris 0.9899 0.9827 0.9883 0.9855

FTP-BruteForce 0.9842 0.7022 0.3341 0.4527

SSH-Bruteforce 0.9792 0.8822 0.1251 0.2191

Infilteration 0.9701 0.5596 0.4120 0.4746

5.3 Comparative Experiment

In order to illustrate the advantages of this model in detection performance, SVM [32],
Naive Bayes [33], random forest [34] and KNN [35] models in machine learning algo-
rithm are selected in this paper to conduct transverse comparison experiments with the
model proposed in this paper, and the experimental results are shown in Fig. 5. It can
be obviously found that among machine learning algorithms, random forest has the best
detection effect, but comparedwith themodel proposed in this paper, themodel proposed
in this paper is much better than random forest in accuracy and F1 value.

In order to highlight the advantages of this model, it is necessary to compare the
excellent deep learning models in the field of intrusion detection. In this paper, the
models CNN, LSTM and CNN-LSTM in literature are selected as comparison, and
dichotomous and multi-classification experiments are carried out.
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Fig. 5. Compared with machine learning algorithms of binary classification results

Transverse comparison of experimental results is shown in Fig. 6. It can be seen that
the performance of LSTM is better than CNN, indicating that LSTM is more dominant
in the process of traffic data related to timing. The serial model of CNN and LSTM takes
into account the extraction of spatio-temporal features, and its performance is slightly
worse than that of the model in this paper. However, its structure is single and network
optimization is not taken into consideration deeply. The DCT-IDS model proposed in
this paper is optimized and improved for feature fusion and network structure, and the
experimental results show that the comprehensive performance of this model is better
than other models.

Fig. 6. Dichotomous experimental results of different deep learning models

F1-score of different deep learning models is shown in Table 4. It can be found
that for categories with sufficient training samples, CNN and LSTM have different F1-
score in each category. Due to LSTM’s timing learning ability, its detection ability is
stronger than CNN for time-related attack categories. For example, in the DoS Attacks-
SlowHTTPTest and DoS attacks-Slowloris categories, LSTM outperformed CNN by 2
percentage points. The F1-score of CNN-LSTM series model is better than CNN and
LSTM alone for each category, and the F1-score of the model in this paper is higher than
other models. For a few sample categories, no matter the comparison model or the model
in this paper, due to insufficient training, the detection ability of a few sample categories
is low and not ideal, and F1-score varies greatly. This also indicates that data imbalance
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will greatly affect the detection results. For the Infilteration category, all models have
low detection ability, but this model has the best detection effect. In addition, the model
in this paper can also detect part of SSH-BruteForce data, while F1-score of which is 0
for the comparison model. Based on the above experiments, the model proposed in this
paper has excellent performance in all indicators, and its detection performance is better
than that of the comparative machine learning and deep learning models.

Table 4. F1-score of Multi-classification experiments of different deep learning models

Category CNN LSTM CNN-LSTM DCT-IDS

Benign 0.9624 0.9708 0.9768 0.9785

Bot 0.9662 0.958 0.9675 0.9794

Brute Force -Web 0.9715 0.9636 0.9731 0.9793

Brute Force -XSS 0.9714 0.9675 0.9745 0.9767

SQL Injection 0 0 0 0

DDOS attack-HOIC 0.9514 0.9629 0.9654 0.9698

DDOS attack-LOIC-UDP 0.6441 0.6321 0.70 0.7329

DDoS attacks-LOIC-HTTP 0.9773 0.9718 0.9851 0.9867

DoS attacks-GoldenEye 0.9715 0.9727 0.9745 0.9827

DoS attacks-Hulk 0.9664 0.9752 0.9805 0.9815

DoS attacks-SlowHTTPTest 0.9525 0.9718 0.9772 0.9843

DoS attacks-Slowloris 0.9257 0.9757 0.9788 0.9863

FTP-BruteForce 0 0 0.1538 0.4527

SSH-BruteForce 0 0 0 0.2191

Infilteration 0.4001 0.4026 0.4210 0.4746

6 Conclusion

This paper designs an intrusion detection model based on multi-level feature extraction.
In this model, dense connection mechanism was introduced to design the Dense-CNN
network module, which was used to extract the underlying features of data packets.
Compared with feature extraction based on traditional convolutional neural network,
the calculation of parameters was reduced. Then, a sequence feature extraction module
is designed based on Transformer, which uses multi-head self-attention mechanism and
powerful feature extraction ability to extract the sequence feature of flow, and its parallel
computing feature reduces the training time. The feature vectors after the two modules
are fully fused, and finally the detection results are obtained by the classification output
module. In order to verify the superiority of DCT-IDS model, we combined the latest
dataset CIC-IDS 2018 with the actual collected normal traffic, and designed a binary
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andmulti-classification comparison experimentwithmachine learning and deep learning
model. The experimental results show that the detection performance of the proposed
model is better than other models.
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