
MEBV: Resource Optimization for Packet
Classification Based on Mapping

Encoding Bit Vectors

Feng Guo1,2, Ning Zhang1(B), Qian Zou1,2, Qingshan Kong1, Zhiqiang Lv1,2,
and Weiqing Huang1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
zhangning@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Packet classification plays a key role in network security sys-
tems such as firewalls and QoS. The so-called packet classification is to
classify packets into different categories according to a set of predefined
rules. When the traditional classification algorithm is implemented based
on FPGA, memory resources are wasted in storing a large number of
identical rule subfields, redundant length subfields, and useless wildcards
in the rules. At the same time, due to the rough processing of range
matching, the rules are extended. These problems seriously waste mem-
ory resources and pose a huge challenge to FPGAs with limited hardware
resources. Therefore, a field mapping encoding bit vector (MEBV) scheme
is proposed, which consists of a field-splitting-recombination architecture
that can accurately divide each field into four mapping preparation fields
according to the matching method, field reuse rate, and wildcard ratio,
and also consists of four mapping encoding algorithms to complete the
length compression of the rules, to achieve the purpose of saving resources.
Experimental results show that for the 1K OpenFlow 1.0 ruleset, the algo-
rithm can achieve a significant reduction in memory resources while main-
taining high throughput and support range matching, and the scheme
method can save an average of 38% in memory consumption.

Keywords: Packet classification · Bit-vector · Memory compression ·
Mapping encoding · FPGA

1 Introduction

With the rapid development of Internet technology and the gradual increase
of network security requirements, people are looking for various solutions to
cope with various network attacks while the business requirements are gradually

Supported by the Chinese Academy of Sciences Project under grant NO. KGFZD-145-
21-03.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 84–95, 2022.
https://doi.org/10.1007/978-3-031-19211-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19211-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-19211-1_7


MEBV for Resource-Optimized Packet Classification 85

increasing. Packet classification is a technology that divides traffic into different
flows based on a set of predefined rules. It can not only realize the blacklist
function of separating and discarding the flow containing malicious traffic, and
transparently transmitting other flows; it can also realize a similar whitelist func-
tion. As such, it is more challenging, especially in environments where packets
must be processed at wire speed. And packet classification is also the core issue
of OpenFlow-based software-defined networking (SDN) [1]. The ever-increasing
number of fields and ever-expanding rulesets pose great challenges to practical
packet classification solutions with high throughput and low memory consump-
tion. From a hardware perspective, the main challenges for packet classification
include: (1) supporting large rulesets, and (2) maintaining high performance.

In the past decade or so, software-based decision tree algorithms [2] and tuple
space search algorithms [3] proposed for classical problems have been used on
CPU processing platforms. However, the performance of software-based meth-
ods is limited by the CPU memory system. Hardware-based ternary content-
addressable memory (TCAM) [4] solutions have also been widely used in indus-
try due to their parallel lookup of wire-speed classification rules. But it has the
disadvantages of being expensive, power-hungry, and limited capacity. Field Pro-
grammable Gate Arrays (FPGA) [5] have been widely used to process real-time
networks. Algorithms based on bit vectors can make good use of the hardware
parallelism of FPGAs through rule decomposition. The currently proposed bit-
vector-based algorithm [6–14] can achieve high throughput by exploiting a homo-
geneous pipeline structure (PE) consisting of sorting processes. But as match
fields and rulesets increase, the FPGA’s master clock frequency decreases rapidly
and range matching is not supported. To solve the above issues, [9] divides the
N-bit vector into smaller sub-vectors to improve the overall performance of clas-
sified PE in FPGA. And [12] proposed an algorithm to support range matching
using precoding. However, the above approach does not reduce the required
memory resources. Therefore, to achieve resource optimization while taking into
account range matching and throughput, a memory-optimized scheme called
MEBV based on field mapping encoding is proposed. Our contributions to this
work include:

A field-splitting-recombination architecture: The architecture can
accurately divide each field into four mapping preparation fields according to
the matching method, field reuse rate, and wildcard ratio.

Four mapping encoding algorithm frameworks, HRME, PMME,
WMME, RMME: According to the characteristics of the mapping prepara-
tion field, four different algorithms are used for mapping encoding to generate
corresponding mapping vectors.

Superior memory optimization: Detailed performance evaluation of our
proposed architecture on state-of-the-art FPGAs. We show in post-place-and-
route results that for a 1K 12-tuple ruleset, the architecture can save 38% mem-
ory consumption on average.

Higher throughput: Compared with algorithms that support range match-
ing, this scheme saves resources while keeping the impact on throughput within
5%, and meets the requirements for wire-speed packet classification.



86 F. Guo et al.

Fig. 1. Schematic diagram of stride BV
algorithm. (W = 4, s = 2)

Fig. 2. Field length and abbreviated
name of OpenFlow entry.

2 Related Work

2.1 BV-Based Packet Classification

The Stride BV [7] algorithm divides a field with a bit width of W bits into
m = W/s subfields, where s is the length of a subfield, and the divided subrules
are encoded and stored separately. This method reduces the bit width of the
internal signal from W to s, which improves the throughput, but consumes
more memory and is not suitable for range matching, the algorithm is shown in
Fig. 1, it illustrates a Stride bv-based packet classification method. The bit vector
S
Vj

i is used to represent the matching result of Vj to the matching subfieldj
corresponding to the subruleseti. In this example, s is set to 2 and n is set to
3. For example, in Fig. 1, if the input packet header has V0 = 10 in subfield0
of subruleset1, extract SV0

1 = 010; this means that only rule R4 of subruleset 1
matches the input in that subfield. The FSBV [8] algorithm is a special case, s =
1. When the bit width W increases, the number of pipeline stages will increase
linearly with W , which will also cause a large delay in packet processing. The
subsequently proposed two-dimensional pipelined stride bit vector (2D Stride
BV, hereinafter referred to as 2D BV) [9], which is based on the Stride BV [7]
algorithm, supports dynamic updates and further improves throughput. But the
above problem still exists. Therefore, in response to the problem of memory
consumption, the wildcard-removed bit-vector (WeeBV) [10] deletes the address
space storing wildcards as much as possible to save memory by making full
use of the characteristics of the ruleset. For the range matching problem, range
bit vector encoding (RBVE) [12] has the same characteristics as Stride BV [7],
and uses specially designed code to store the precomputed results in memory,
which can solve the range matching problem. The subsequently proposed Range
Supported Bit Vector (RSBV) [13] further improves RBVE and achieves high
processing speed. However, the above methods are one of the existing problems,
and cannot support range matching while saving memory.



MEBV for Resource-Optimized Packet Classification 87

2.2 Motivation

The process of packet classification: Given a ruleset, extracting the header field
of the packet when the packet is input. Matching the header field with the
corresponding fields of the ruleset, and processing the packet according to the
specified action in the matched result.

The most classic is to use 5-tuple for packet classification, examining each
incoming packet for the following header tuples: Source IP, Destination IP,
Source Port, Destination Port, Protocol. But to accommodate today’s security
policies, a simple five-tuple is not enough. The OpenFlow 1.0 [15] header includes
12 fields, and the detailed description of the attributes of each field is shown in
Fig. 2. By analyzing the characteristics of the OpenFlow 1.0 ruleset in [10], it
is found that there are various types of search methods for different fields, and
many fields have problems such as single value and a high proportion of wildcard
characters: For example, the IP address field requires prefix matching, the port
field requires range matching, the Ethernet type field has a fixed value and a
large bit width, and the wildcard ratio of fields such as IP ToS is high. Since the
meaning of wildcards is whether the bit matches whether the bit is 0 or 1, these
wildcards don’t mean anything.

3 Proposed Scheme

3.1 Mapping Encoding Bit Vector (MEBV) SCHEME

MEBV is to decompose the entry into the various subfields in Fig. 3. Based
on the matching form of each subfield or the number of wildcards, the F
subfields are recombined into 4 mapping preparation fields. Then, different
mapping algorithms are applied to each mapping preparation field for encod-
ing to generate mapping vectors. Assuming that the lengths of the mapping
preparation fields are L1, L2, L3, L4, and the lengths of the mapping encoding
fields are D1,D2,D3,D4. Respectively, there will be L1 + L2 + L3 + L4 >>
D1 + D2 + D3 + D4.

For example, the OpenFlow 1.0 [15] header includes 12 fields that can be split
into 12 subfields. Then analyze the characteristics of each subfield: the reuse rate
of the Ethernet type and IP PROTOCOL fields is very high. Source IP and des-
tination IP are mostly prefix matching, and the multiplexing rate is high. Source
Port and Destination Port are mostly range matching. The remaining fields are
exact or wildcard matches. According to the wildcard ratio of OpenFlow rule-
set 12-tuple organized in MsBV [11], the fields can be divided more clearly:
these fields can be arranged according to the wildcard ratio from small to large,
to complete the subsequent operation of deleting wildcards. Through analysis,
the detailed subfield division and mapping preparation field classification results
after applying the field rearrangement technology are shown in Fig. 3.

According to the specific matching form of the field (prefix matching, range
matching, exact matching, wildcard matching, etc.) or specific characteristics,
the mapping preparation field adopts a specific algorithm to compress the length



88 F. Guo et al.

Fig. 3. MEBV scheme.

of the rule and improve the matching efficiency. The four specific algorithms of
MEBV are: HRME: high reuse field mapping encoding, PMME: prefix matching
field mapping encoding, WMME: wildcard matrix field mapping encoding, and
RMME: range matching field mapping encoding.

Next, each mapping encoding algorithm will be introduced in detail. Please
note that when this solution is applied to packet classification, rules can be cus-
tomized according to the application scenario, which can achieve good scalability
while compressing resources.

3.2 HRME: High Reuse Field Mapping Encoding

By analyzing a large number of rulesets and observing real traffic data, there
is a serious waste of resources in the highly multiplexed field composed of the
Ethernet type field and the IP protocol type field. The EtherType field has 2
bytes and 16 bits. If the Stride BV [7] algorithm is applied and divided into steps
of 8, 2 ∗ 28 = 512 values are also required.

However, most of the values for this field are clustered around 0x0800 (IPv4),
0x0806 (ARP), 0x8100 (IEEE 802.1Q frame label), 0x86DD (IPv6) and wild-
cards, etc., while for our packet classification techniques such as OpenFlow1. 0
ruleset, all belong to Ethernet II and IEEE802.3 frames. Therefore, the value
of this field is more fixed. To support the blacklist function or the whitelist
function, a linear mapping method can be applied to this field to save a lot of
resources. The linear mapping results are shown in Table 1. The 5-bit width is
selected here mainly to consider the scalability of the coding results of this field.
If the application network environment is more complex, it can be expanded on
this basis.

As shown above, only the five commonly used values and wildcards need to
be encoded, and the other rarely used values are classified together. The method
will not fail when doing a match, since this is only one of the fields. To get the
correct result, the scheme needs to get the matching result of all fields.

The IP protocol type field is very similar to the Ethernet type field. The
commonly used values of the IP protocol type field are 0x01 (ICMP), 0x06



MEBV for Resource-Optimized Packet Classification 89

Table 1. EtherType field mapping encod-
ing result.

ETH TYPE VETH METH

IPv4 0x0800 00000

ARP 0x0806 00001

802.1Q tag 0x8100 00010

IPv6 0x86DD 00011

MPLS 0x8847 00100

else 11111

Table 2. IP protocol type field mapping
encoding result.

IP PROTOCOL VPRO MPRO

ICMP 0x01 0000

IGMP 0x02 0001

TCP 0x06 0010

UDP 0x17 0011

ESP 0x50 0100

else 1111

(TCP), 0x17 (UDP), etc., so the linear mapping method also can be used to get
the encoding result, as shown in the Table 2.

3.3 PMME: Prefix Matching Field Mapping Encoding

In a set of rulesets, the consumption of redundant space can be effectively
reduced by grouping DIP and SIP with the same prefix length. However, if
linear classification is used, when the number of ruleset entries N increases,
the space used for classification will explode, and the classification work will be
extremely cumbersome. So in this scheme decided to use nonlinear classification,
such as hash algorithm. By hash mapping the destination IP (or source IP) fields
classified by prefix length DPLi (or SPLi) (i = 0, 1, 2,..., 32), a hash value of
a specific length H is generated and stored in the corresponding memory. The
architecture is as follows:

The ruleset has a total of N rules, which are classified according to the prefix
length DPLi (i = 0, 1, 2,..., 32). When DPLi < H, the corresponding hash
values are stored in the same memory, and the memory size is n ∗ 2H ; when
DPLi > H, each Pi will maintain a piece of memory for storing the hash value
generated by the IP address belonging to its own prefix length, and the memory
size is also n∗2H , where n represents the number of rules stored in a RAM. The
processing method of SIP is the same as above. The following Fig. 4 illustrates
the mapping and encoding process of the prefix matching field.

3.4 WMME: Wildcard Matrix Field Mapping Encoding

For wildcard matrix fields, the encoding of the field mapping will be different from
the above. Because wildcards represent any value [11], that is, whether the field
value is “0” or “1”, it will be matched. So can aggregate fields with a large number
of wildcards together by field rearrangement to form a wildcard matrix. When a
match operation is performed, the matching result output by this matrix is 1 by
default, that is, full matching. Therefore, eliminating a large number of useless
wildcards in memory is also an effective means to reduce the waste of resources. A
schematic diagram of applying field rearrangement techniques and rule rearrange-
ment techniques to all rules to form a matrix of wildcards is shown in Fig. 5.



90 F. Guo et al.

Fig. 4. Process of PMME. Fig. 5. Process of WMME.

3.5 RMME: Range Matching Field Mapping Encoding

The source port and destination port fields in a ruleset are usually 16-bit ranges.
A 16-bit range is represented by [LR,UR], where LR is the lower range limit
and UR is the upper range limit. In this section, a Range Bit Vector Encoding
(RBVE) [12]-like the scheme is used. In this scheme, a 16-bit range is divided
into two 8-bit subranges. When performing rule matching, this classification
method will cause the matching results of the latter sub-range to be related
to the previous. Therefore, to complete the rule matching operation, a two-
stage pipeline can be designed to place the two sub-range fields. Let VPORT

be a 16-bit input address and divide A into two sub-range fields in stride of
8, VPORTi, i = 0, 1. The specific implementation process used to generate the
matching signal in the RBVE [12] algorithm is shown in the following pseudo-
code Algorithm 1,2 in Fig. 6. The range matching field mapping encoding
process has been introduced, and the matching problem and operations will be
discussed in the following chapters.

3.6 Packet Rule Matching

To better demonstrate our rule matching process, an example is as follows in
Fig. 7, it shows an example of applying the MEBV algorithm to build a mapped
ruleset and matching all fields of the packet to it.

We map and encode the 4 rules in the ruleset to generate mapping rules and
store them in memory. When a data packet is input, the corresponding mapping
encoding will be performed first to obtain the mapping result as shown in the
figure. Since s = 9, the mapping vector produced by the eth type and protocol
fields can be combined into a stride as the input address. The hash result of the
source IP and the destination IP is also nine digits, which is also the length of
a stride. Subsequent wildcard fields will also be divided in steps of s.



MEBV for Resource-Optimized Packet Classification 91

Fig. 6. Process of RMME.

When inputting a data packet, the 9-bit mapping vector of the eth type and
the protocol field is used as the first set of input, all possible 9-bit mapping
vectors of the destination IP are used as the second set of input, and all possible
9-bit mapping vectors of the source IP are used as the third set of input. This
example is a brief introduction, so except for the fields above, the rest of the
rule’s fields are set to wildcards. Here, the rules are sorted by wildcard ratio,
and fields with high wildcard ratios end up in a wildcard matrix. Fields with a
low wildcard ratio are listed first and filled into memory according to the actual
value, without mapping and encoding.

The port field is range matching, so this field adopts the RBVE algorithm.
The mapping code value of this field will be directly used for matching judgment,
and the composition of the mapping rule does not include this field.

3.7 Hash Collision Resolution

There will always be a problem with hash collisions when using hashing algo-
rithms. The solution to the hash conflict in this scheme is to maintain two sets
of hash algorithms. When the result of the first hash calculation produces a
hash conflict, the second set of hash algorithms will be enabled. If the calcula-
tion results still conflict, the IP data will be temporarily stored, and the write
address counter in this memory will be read after all the prefix length rules have
been configured. Then choose the lowest address with a write address counter of
0, and force the hash result to encode this address value and store it in memory.
At the same time, to minimize hash collisions under normal circumstances, the
bit width of the hash value will be increased as much as possible.

4 Experimental Results and Analysis

In this section, we present the experimental setup and experimental results,
which are measured in terms of space complexity, throughput, and resource
consumption.

Synthetic classifiers: To test the performance of our scheme and existing
techniques, we used ClassBench-ng [16], an excellent tool inherited from Class-
Bench [17], to generate OpenFlow1.0 rules. ClassBench-ng [16] provides torrents
from real-life rules to get performance as close to practice as possible.



92 F. Guo et al.

Fig. 7. MEBV: mapping encoding of rules and rules matching of packets.

The rulesets such as Accesses Control List (ACL), Firewall (FW) and IP
Chain (IPC) generated by ClassBench [17] only contain traditional 5-tuple, so
we use OpenFlow1.0 containing 13-tuple to prove the advanced nature of the
algorithm. If excellent performance can be achieved on the OpenFlow 1.0 ruleset,
so on other rulesets.

Implementation platform: The experimental environment is a Xilinx Vir-
tex7 xc7vx690t [18] FPGA device. Limited to the experimental platform, simula-
tion software is used to test the performance: Vivado 2018.3 and Modelsim 10.4,
the results presented here are based on the post-place and route performance.

4.1 Space Complexity

Assuming that there are N rules in the ruleset, the rule bit width is W , the field is
divided by stride (s), and each memory stores n rules, then the space complexity
of MEBV is calculated as follows. There are a total of F fields in the rule, of
which f0 fields need to complete HRME, f1 fields need to complete PMME,
f2 fields need to complete WMME, and f3 fields need to complete RMME. In
the mapping preparation stage, f0 and f1 generate 8-bit mapping vector, f2
generates l-bit mapping vector, and f3 generates 3-bit mapping vector and 2-bit
mapping vector in two stages. Therefore, the theoretical space complexity of
MEBV is given by the following equation [13]

STheory(R) = SETH PRO(R) + SIP (R) + SWRD(R) + SPORT (R) (1)

= (9 × (f0 + f1) × 29 + ((
l

s
) × f2 + 5 × f3) × 2s) × N (2)

Because the memory resources that can implement parallel operations are
limited. The minimum granularity of Xilinx FPGA’s [18] 18Kb and 36Kb Block
RAM (BRAM) primitives is 36bit×512 and 72bit×512. Therefore, we set s=9,



MEBV for Resource-Optimized Packet Classification 93

Fig. 8. Simulation of space complexity. Fig. 9. Space complexity comparison.

then the memory depth required for each stage is d=512, and there is F =
f0 + f1 + f2 + f3, then the formulate Summarized as

Sactual(R) = (9 × (f0 + f1) + (
l

s
) × f2 + 5 × f3) × N × d (3)

According to the experimental ruleset, W = 253, N = 1024, F = 12, f0 =
2, f1 = 2, f2 = 6, f3 = 2, l = 25. The value of l here is obtained from [11]. In
addition, according to encoding rules, f0 and f2 should be 1, when calculating.
In summary, the space complexity as a function of s is shown in Fig. 8. It is found
that the optimal step size s in the FPGA implementation is 9, so it is decided to
use a step size of 9 in 2D BV [9]. In the parallel architecture RBVE [12], since
the length of the port field is 16 bits, the step size is 8.

When s = 9, compared with other algorithms, the space complexity is shown
in Fig. 9, and it is marked whether to support range matching. Where lW rep-
resents how many bits of wildcards are in the WeeBV [10] algorithm.

4.2 Throughput

Next, the scheme compared the throughput of multi-field packet classification.
When there are N = 1K rules in the ruleset, the rule bit width is W = 253,
the s = 9 of 2D BV [9], the s = 8 of RBVE [12], and l = 36 rules are stored in
each memory. The simulation results show that the maximum clock frequency
of the MEBV algorithm is as high as 127.15 MHz. If the block RAM used in
the MEBV algorithm is set as a real dual-port RAM, the throughput of the
algorithm can reach 254.30 MPPS. The comparison of the MEBV algorithm
with existing work is shown in Fig. 10. It can be found that the algorithm can
achieve higher throughput while reducing resource consumption and effectively
supporting range matching. However, the throughput of the MEBV algorithm is
14% lower than 2D BV and 1.2% lower than RBVE. The main reason is that the
algorithm is executed in parallel by 2D BV and RBVE, and the throughput is
determined by the smallest channel. Furthermore, due to the mapping encoding
of this algorithm, this will lead to a certain decrease in the clock frequency.



94 F. Guo et al.

Fig. 10. Throughput comparison between
algorithms.

Fig. 11. Comparison of resource utiliza-
tion between algorithms.

4.3 Resource Consumption

Then, we mainly focus on the FPGA resource consumption of the proposed
MEBV algorithm. N = 1024,W = 253, 2D BV [9] for s = 9, RBVE [12] for s = 8,
l = 36. The FPGA resource consumption comparison of different flow classifica-
tion algorithms is shown in Fig. 11. The MEBV uses mapping encoding to reduce
the length of storage rules, which can save a lot of register resources and LUT
resources, but because it supports range matching and the results of mapping
encoding are stored in BRAM, the consumption of BRAM resources increases.
But in general, a large number of register resources are often built-in FPGA
chips (Virtex 7 xc7vx690t FPGA [18] has built-in 52Mb BRAM resources). In
this scheme, the BRAM resource consumption rate is 23.3%, while the LUT
resource consumption rate is 43.8%, so the extra BRAM cost will not become
a bottleneck, and the saved resources can support more strategies. To make the
experimental results more representative and comparative, the resource utiliza-
tion here is the result after placement and routing.

The broken line in the figure represents the average resource utilization, which
can better reflect the superiority of our scheme. It is worth noting that the
algorithm has the smallest average resource consumption among the algorithms
that support range matching. That is to say, under the premise of the same
resources, the scheme can support more strategies, which undoubtedly further
reduces the bottleneck caused by resources.

5 Conclusion

In this paper, we propose MEBV, a memory-optimized scheme based on field
mapping encoding bit-vectors, which achieves resource optimization while con-
sidering range matching and throughput. Our proposed solution can save 32.6%
of LUT resources and 12.4% of register resources compared to state-of-the-art
algorithms [13] that support range matching, with throughput impact remaining
within 2%. Compared with the matching algorithm [9], 41.6% of LUT resources
and 18.4% of register resources can be saved, and the impact of throughput
remains within 12%. Meet the requirements of wire-speed packet classification.



MEBV for Resource-Optimized Packet Classification 95

References

1. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

2. Erdem, O., Bazlamaçci, C.F.: Array design for Trie-based IP lookup. IEEE Com-
mun. Lett. 14(8), 773–775 (2010)

3. Song, H., Turner, J., Dharmapurikar, S.: Packet classification using coarse-grained
tuple spaces. In: 2006 Symposium on Architecture For Networking And Commu-
nications Systems, pp. 41–50. IEEE (2006)

4. Yu, F., Katz, R.H., Lakshman, T.: Efficient multimatch packet classification and
lookup with TCAM. IEEE Micro 25(1), 50–59 (2005)

5. Fu, W., Li, T., Sun, Z.: FAS: using FPGA to accelerate and secure SDN software
switches. Secur. Commun. Netw. 2018 (2018)

6. Lakshman, T., Stiliadis, D.: High-speed policy-based packet forwarding using effi-
cient multi-dimensional range matching. ACM SIGCOMM Comput. Commun.
Rev. 28(4), 203–214 (1998)

7. Ganegedara, T., Prasanna, V.K.: StrideBV: single chip 400G+ packet classifica-
tion. In: 2012 IEEE 13th International Conference on High Performance Switching
and Routing, pp. 1–6. IEEE (2012)

8. Jiang, W., Prasanna, V.K.: Field-split parallel architecture for high performance
multi-match packet classification using FPGAS. In: Proceedings of the Twenty-
First Annual Symposium on Parallelism in Algorithms and Architectures, pp. 188–
196 (2009)

9. Qu, Y.R., Prasanna, V.K.: High-performance and dynamically updatable packet
classification engine on FPGA. IEEE Trans. Parallel Distrib. Syst. 27(1), 197–209
(2015)

10. Li, C., Li, T., Li, J., Li, D., Yang, H., Wang, B.: Memory optimization for bit-
vector-based packet classification on FPGA. Electronics 8(10), 1159 (2019)

11. Shi, Z., Yang, H., Li, J., Li, C., Li, T., Wang, B.: MsBV: a memory compression
scheme for bit-vector-based classification lookup tables. IEEE Access 8, 38 673–38
681 (2020)

12. Chang, Y.-K., Hsueh, C.-S.: Range-enhanced packet classification design on FPGA.
IEEE Trans. Emerg. Top. Comput. 4(2), 214–224 (2015)

13. Zheng, L., Jiang, J., Pan, W., Liu, H.: High-performance and range-supported
packet classification algorithm for network security systems in SDN. In: 2020 IEEE
International Conference on Communications Workshops (ICC Workshops), pp. 1–
6. IEEE (2020)

14. Zhou, Q., Yu, J., Li, D.: TSSBV: a conflict-free flow rule management algorithm in
SDN switches. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-
Spring), pp. 1–5. IEEE (2021)

15. Heller, B.: OpenFlow switch specification, version 1.0. 0. Wire, December 2009
16. Matoušek, J., Antichi, G., Lučanskỳ, A., Moore, A.W., Kořenek, J.: ClassBench-

ng: recasting ClassBench after a decade of network evolution. In: 2017 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems
(ANCS), pp. 204–216. IEEE (2017)

17. Taylor, D.E., Turner, J.S.: ClassBench: a packet classification benchmark.
IEEE/ACM Trans. Network. 15(3), 499–511 (2007)

18. XA Programmable: Series FPGAS overview 7


	MEBV: Resource Optimization for Packet Classification Based on Mapping Encoding Bit Vectors
	1 Introduction
	2 Related Work
	2.1 BV-Based Packet Classification
	2.2 Motivation

	3 Proposed Scheme
	3.1 Mapping Encoding Bit Vector (MEBV) SCHEME
	3.2 HRME: High Reuse Field Mapping Encoding
	3.3 PMME: Prefix Matching Field Mapping Encoding
	3.4 WMME: Wildcard Matrix Field Mapping Encoding
	3.5 RMME: Range Matching Field Mapping Encoding
	3.6 Packet Rule Matching
	3.7 Hash Collision Resolution

	4 Experimental Results and Analysis
	4.1 Space Complexity
	4.2 Throughput
	4.3 Resource Consumption

	5 Conclusion
	References




