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Abstract. With the popularity of intelligent vehicles, computation-
intensive vehicle tasks rise dramatically. Vehicle edge computing (VEC)
is a promising technology that offloads overloaded computation tasks of
intelligent vehicles to the edge. However, VEC servers are constrained
by their available computation capacity while dealing with numerous
tasks. To this end, we propose multi-party cooperation to complete
vehicle task offloading. Computation-assisted vehicles (CAVs) with free
resources assist VEC servers to offload Computation-required vehicles
(CRVs), which enables computation resources of VEC servers and CAVs
for CRVs’ task execution. To motivate positive participation of VEC
servers and CAVs, we design a resource management and pricing mech-
anism by quantifying their gains and costs. Such design efficiently inte-
grate and leverage the communication mode and computing mode among
participants to describe their interactions, which composes two two-
stage Stackelberg games. While Nash equilibrium (NE) for each Stackel-
berg game reaches, none of participants violates unilaterally. Simulation
results demonstrate its effectiveness of the proposed model.

Keywords: Vehicle edge computing · Incentive mechanism ·
Stackelberg game · Resource allocation

1 Introduction

With the rapid development of Internet of Things (IoT), various transport sys-
tem applications win growing popularity in recent years. Intelligent vehicle ser-
vices generate high performance demands, such as low-latency commuication
and intensive computation. Vehicle edge computing (VEC) thus emerges for
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supporting computing, storage and network bandwidth [1]. Many studies intro-
duce a variety of VEC technology, including vehicle fog computing [2], hybrid
combination of fog computing architecture and vehicle cloud computing [3] and
so on. VEC servers execute computation tasks, generated by the vehicles at the
end, while reducing the delay. To improve the QoS of vehicle applications, stud-
ies have investigated if peripheral vehicles with free resources cooperate with
VEC server to complete computing tasks. Authors in [4] studied task scheduling
scheme for enhancing computing resource utilization with system stability and
low latency. Some other studies on vehicle edge computing are also discussed in
[5,6].

In this paper, we are motivated to achieve mutual cooperation for vehicle task
offloading. Vehicles, constrained by limited resources, require VEC serves for task
execution. A large number of computation tasks burden VEC servers. To improve
VEC efficiency, we consider numerous vehicles with free resources to assist the
computing work of VEC servers. However, due to energy usage, most vehicles
unenthusiastically participate in task calculation. In doing so, a framework of
resource allocation and pricing is designed to economically compensate their
costs and stimulate their cooperation.

2 System Module and Game Formulation

2.1 System Model

Our model focuses on task offloading between one VEC server and a group of
vehicles. The proposed model is illustrated. Assume that a VEC server connects
m CRVs and n CAVs within its coverage, denoted by M = {1, 2, . . . ,m} and
N = {1, 2, . . . , n}. We also assume CRV i’s total computation tasks as wr

i ,
i ∈ M. Let pr denote CRVs’ transmit powers over the VEC server’s sub-channels
with pr = {pr

1, p
r
2, . . . , p

r
m} while offloading tasks to VEC server. Specially, pr

i is
the transmit power from CRV i to VEC server, i ∈ M. Similarly, the allocated
powers for transmitting tasks to CAVs are denoted as pa = {pa

1 , p
a
2 , . . . , p

a
n},

where pa
j corresponds to the transmit power from VEC server to CAV j, j ∈ N .

According to the communication model in [7], the channel rate from CRV
i, i ∈ M to VEC server is defined,

Rr
i = Br

i log2

(
1 +

pr
i h

r
i

σ2
i

)
, (1)

The channel rate from VEC server to CAV j is also defined,

Ra
j = Ba

j log2

(
1 +

pa
j ha

j

σ2
j

)
, (2)

where Br
i and Ba

j represent the transmission bandwidth of the subchannel, σi

and σj represent noise power, and hr
i and ha

j represent the subchannel power
gain.
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We here define the utility function of a CRV as the difference between its
gains and its costs. Service satisfaction contributes to its gain. Local computation
cost, incentive payment and task transmission cost incur its total costs. Let T r

i

represent the uplink transmission time of delivering CRV i’s tasks to VEC server,
which indicates its task size of Rr

i T
r
i . Given the unit pricing u0 that VEC server

charges CRVs, we define the utility of CRV i, i ∈ M,

Ur
i (u0, p

r
i ) = sr

i R
r
i T

r
i − εr

i (wr
i − Rr

i T
r
i ) − u0p

r
i − ξr

i pr
i , (3)

where sr
i is CRV i’s internal demand rate, εr

i is the unitary local computation
cost and ξr

i is the unitary transmission cost. Accordingly, the utility of CAV
j, j ∈ N is outlined as,

Ua
j

(
ua

j , pa
j

)
= ua

j pa
j − εa

j Ra
j T a

j , (4)

where ua
j is the incentive gain per unitary transmit power, εa

j is the unitary com-
putation consumption. The parameter T a

j represents computation tasks’ uplink
transmission time while delivering from VEC server to CAV j. It indicates the
task size of Ra

j T a
j , offloaded by CAV j. For the VEC server, its gain is the pay-

ment offered by CRVs. The total costs include local computation cost, incentive
payment for CAVs, and power cost of transmitting task to the CAVs. So, the
utility function Uvec of VEC server can be defined as:

Uvec (u0,u
a,pr,pa) =

M∑
i=1

u0p
r
i −

N∑
j=1

ua
j pa

j

−τ

N∑
j=1

pa
j − ε0

⎛
⎝ M∑

i=1

Rr
i T

r
i −

N∑
j=1

Ra
j T a

j

⎞
⎠ ,

(5)

where ε0 is the unitary computation cost of VEC server and τ is the unit trans-
mission cost. Denote ua as ua = {ua

1 , u
a
2 , . . . , u

a
n}. For ease of illustration, we

decompse the utility function in (5) into Uvec = Uvec
1 + Uvec

2 , in which,

Uvec
1 (u0,p

r) =
M∑
i=1

u0p
r
i − ε0

M∑
i=1

Rr
i T

r
i , (6)

Uvec
2 (ua,pa) =

N∑
j=1

ε0R
a
j T a

j −
N∑
j=1

(
ua

j + τ
)
pa

j . (7)

2.2 Problem Formulation

In the three-tiered model, each participant has its own strategy and goal. Their
different goals formulate different computation task management and pricing
problems.



632 C. Song et al.

For player CRV i, ∀i ∈ M, its strategy is to determine the transmit power
pr

i from it to VEC server in order to maxmize the utility in (3). So, the CRV i’s
optimization problem is stated as,

pr
i
∗ = arg maxpr

i >0U
r
i (u0, p

r
i ) (8a)

subject to pr ≤ pr
i ≤ p̄r, (8b)

where pr and p̄r correspond to minimal and maximum transmit powers of CRVs.
For the player of VEC server, its strategy is to decide the pricing u0 of CRVs’s

computation tasks and transmit power pa from it to CAVs in order to maximize
the utility in (5). So, the VEC server’s optimization problem is stated as,

(
pa*

, u0

)
= arg max(pa∗

j ,u0)U
vec (u0,u

a,pr,pa) (9a)

subject to pr ≤ pr
i ≤ p̄r, (9b)

pa ≤ pa
j ≤ p̄a, (9c)

where pa and p̄a correspond to minimal and maximum transmit powers of CAVs.
Since the utility function in (5) can be seperately divided into Uvec = Uvec

1 +
Uvec
2 , problem (9) is thus decomposed into two subproblems as follows,

u∗
0 = arg maxu0U

vec
1 (u0,p

r) (10a)
subject to pr ≤ pr

i ≤ p̄r, (10b)

and,

pa
j = arg maxpa

j
Uvec
2

(
ua

j , pa
j

)
(11a)

subject to pa ≤ pa
j ≤ p̄a. (11b)

For player CAV j,∀j ∈ N , its strategy is to determine the pricing ua
j of VEC

server’s overloaded tasks for maximizing the utility in (4). So, the CAV j’s
optimization problem is described as,

ua∗
j = arg maxua

j >0U
a
j

(
ua

j , pa
j

)
(12a)

subject to pa ≤ pa
j ≤ p̄a. (12b)

2.3 Stackelberg Game Building

We here build two consecutive Stackelberg games for describing the interactions
among CRVs, CAVs and VEC server, shown in Fig. 2. The VEC server acts as
the leader of CRVs to determine the power pricing u0 for CRVs’ task. CRVs,
as the followers of VEC server, then decide their transmit power strategy pr.
The interactions between CRVs and VEC server formulates the first two-stage
Stackelberg game. Problem (8) and Problem (10) jointly formulates such nonco-
operative game GCRV =

{M, {pr
i }i∈M, {Ur

i }i∈M
}
, where M is the set of CRVs,

{pr
i }i∈M is the strategy set and {Ur

i }i∈M is the cost function set.
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CAVs, as the leaders, determine power pricing ua for VEC server’s over-
loaded tasks. Accordingly, VEC server acts as the follower of CAVs in the
second stage to determine its transmit power strategy pa. The interaction
between CAVs and VEC server formulates the second two-stage Stackelberg
game. In detail, Problem (11) and Problem (12) composes CAVs’ game GCAV ={

N ,
{
ua

j

}
j∈N ,

{
Ua

j

}
j∈N

}
, where N is the set of CAVs,

{
ua

j

}
j∈N is the strategy

set and
{
Ua

j

}
j∈N is the set of profit functions.

Fig. 1. Interactions in Stackelberg game

Definition 1. Subgame Perfect Equilibrium (SPE) in GCRV : If the stratification
strategy

{
u∗
0,p

r*
}

represents SPE, it can reach NE in each stage of subgame,
i.e.: {

Stage I : u∗
0 = arg maxu0U

vec
1 (u0,p

r)
Stage II : pr

i
∗ = arg maxpr

i
Ur

i (u0, p
r
i ) ∀i ∈ M (13)

Definition 2. Subgame Perfect Equilibrium (SPE) in GCAV : If the stratification
strategy

{
ua*

,pa*
}
represents SPE, it can reach the NE in each stage of subgame,

i.e.: {
Stage I : ua∗

j = arg maxua
j
Ua

j

(
ua

j , pa
j

)
,∀j ∈ N

Stage II : pa*

= arg max
pa* Uvec

2

(
ua

j ,pa*
) (14)

Each game reaches SPE, which corresponds to a stable solution point of
these problems. Under NE, no player has incentive to deviate. In detail, we use
backward induction to analyze Stackelberg game. CRVs initiate the transmis-
sion strategy pr based on VEC server’s pricing u0. To finish CRVs’ computation
tasks, the VEC server also recruits computation-assisted vehicles. CAVs deter-
mine a power pricing for VEC server’s overloaded tasks, on which VEC server
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allocates the transmit power pa for CAVs. The process continues until Nash
equilibrium reaches. The best strategy

{
u∗
0,u

a*
,pr*

,pa*
}

corresponds to the
Nash equilibrium point, which is solved in the following theorems.

Theorem 1. Given the unit price u0, the optimal strategy pr of CRVs is calcu-
lated in (15).

pr
i
∗ = γr

i (pr) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pr if
(sr

i+εr
i )B

r
i T r

i

ln2(u0+ξr
i )

− σ2

hr
i

< pr,

(sr
i+εr

i )B
r
i T r

i

ln2(u0+ξr
i )

− σ2

hr
i

otherwise,

p̄r if
(sr

i+εr
i )B

r
i T r

i

ln2(u0+ξr
i )

− σ2

hr
i

> p̄r.

(15)

Theorem 2. VEC server achieves the unique optimal pricing strategy u∗
0 by

solving subproblem (10) while pr
i ∈ [

pr, p̄r
]
, i ∈ M.

Proof. Substituting (15) into (6), we calculate the first derivative and second
derivative of Uvec

1 with respect to u0,

∂Uvec
1

∂u0
=

M∑
i=1

(sr
i + εr

i + ε0) Br
i T r

i

ln2 (u0 + ξr
i )

− σ2
i

hr
i

− u0 (sr
i + εr

i ) Br
i T r

i

ln2(u0 + ξr
i )2

, (16)

∂2Uvec
1

∂u0
2

= −
M∑
i=1

Br
i T r

i

[
2 (sr

i + εr
i ) ξr

i + ε0 (u0 + ξr
i )

ln2(u0 + ξr
i )3

]
. (17)

Obviously, the second derivative of Uvec
1 on u0 is always negative. So, Uvec

1

is a strict concave function with respect to u0, which indicates the uniqueness
of optimal solution u∗

0. Because of non-linear complexity of ∂Uvec
1

∂u0
in (16), we

approximate u∗
0 by gradient ascent method.

Theorem 3. VEC server achieves the unique optimal transmit power strategy
pa*

in (18) by solving subproblem (11) while pa
j ∈ [

pa, p̄a
]
, j ∈ N .

pa
j

∗ = δa
j (pa) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pa if
ε0Ta

j Ba
j

ln2(ua
j+τ) − σ2

j

ha
j

< pa,

ε0Ta
j Ba

j

ln2(ua
j+τ) − σ2

j

ha
j

otherwise,

p̄a if
ε0Ta

j Ba
j

ln2(ua
j+τ) − σ2

j

ha
j

> p̄a.

(18)

Theorem 4. CAV j, j ∈ N reaches the optimal pricing ua∗
j in (19) by solving

problem (12),

ua
j

∗ = Ra
j (ua) =

√(
�1

j − �2
j − 2�3

jτ
)2

+ 4τ�3
j

(
�1

j − �3
jτ

)
−

(
2�3

j + �2
j − �1

j

)

2�3
j

, j ∈ N ,

(19)

with �1
j =

(
ε0 + εa

j

)
T a

j Ba
j ,�2

j = T s
j Ba

j ε0 and �3
j = ln2 σ2

j

ha
j
.
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3 Performance Evaluation

3.1 Simulation Setup

We consider a simulation scenario in which a VEC server provides services for
m CRVs with assistance of n CAVs for task offloading. Each VEC server is able
to cover about 10–30 CRVs. Referring to [8–10], the default model parameters
are stated as follows. It is assumed that the bandwidth of each subchannel is
20 MHz and its channel gain is 53 dbm. The noise power of the channel of the
relevant vehicles is 10 db. The task transmission time T r

i and T a
j is set from 0.5

ms to 1.5 ms. CRVs’ satisfaction on offloaded tasks follows a normal distribution
N (e0, σ0). The number of CRVs and CAVs are 10 and 10 by default.

3.2 Simulation Results

We first investigate the effect of VEC server’s computation cost on its utility
under different number of participants. We see from Fig. 2(a) and (b) that the
increasing number of CRVs and CAVs is indeed helpful for enhancing VEC
utility. While fixing the CRV number and CAV number, we start with observing
a descending trend of VEC utility on computation cost. However, VEC server’s
utility finally improves with incremental computation cost. Such situation is
illustrated in Fig. 2(c) and (d). The growing computation cost incurs CRV’s
decreasing contribution on VEC utility and CAV’s increasing contribution on
VEC utility. While VEC server’ payoff increased by CRV completely cover that
decreased by CAV, VEC utility turns into improvement.

Fig. 2. Effect of computation cost on utility of VEC server

We next observe the comparison by altering the transmit power cost of VEC
server. Figure 3(a) and (b) shows an ascending trend of VEC utility while more
CRVs and CAVs participate in computation offloading. We also observe that the
utility of VEC server tends to decline with the increasing VEC power cost in
Fig. 3(a) and (b). Such result is explained in Fig. 3(c) and (d). VEC power cost
has a negative effect on CAV’ contribution for VEC server’s payoff. However,
CRV’s contribution on VEC server’s payoff don’t follow a significant change.
Accordingly the utility of VEC server decreases.
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Fig. 3. Effect of VEC power cost on profit of VEC server

The CRV computation cost is also explored if it determines the performance
of the proposed model. It can be observed in Fig. 4(a) that local computation
cost of CRV has no obvious effect on pricing, determined VEC server. With
the increase of local computation cost, the steady pricing motivates the CRV
to improve the transmit power for reducing local computation consumption in
Fig. 4(a). We see from Fig. 4(b) that CRV utility depends on its computation
cost, as well as task transmission time. Given a computation task, shorter task
transmission time incurs higher local computation consumption. So, CRV utility
tends to dwindle with the increasing local computation cost.

We finally evaluate CAV computation cost on the model performance.
Figure 4(c) shows the transmit power, allocated by VEC server, and power pric-
ing, determined by CAV. The large CAV computation cost incurs CAV’s high
pricing. Accordingly, VEC server reduces the transmit power for utility maxi-
mization. Therefore, Fig. 4(c) shows an increasing pricing for VEC power, as well
as a decreasing VEC transmit power. Under such scenario, CAV utility gradu-
ally degrades with the increasing CAV computation cost in Fig. 4(d). While the
power pricing is large enough, the VEC power decreases to zero. CAV utility
accords with being zero. Given the computation cost, long task transmission
time for CAV promotes the improvement of power pricing and transmit power,
on which CAV utility increases.

Fig. 4. Effect of CRV and CAV computation cost on utility of VEC server



Incentive Offloading with Communication 637

4 Conclusion

In this paper, we study the incentive mechanism of task offloading based on
vehicle edge computing. Vehicles, constrained by limited computation resources,
request VEC server for executing computation tasks. To avoid more burdens
on VEC server, vehicles with free resources are recruited to assist VEC server’s
computation work. We are motivated to quantify their gains and costs by defin-
ing utility function. Specially, the establishment of utility function considers the
modes of task transmission and task computation among them, which is aimed
to accurately describe their profits. Moreover, we build resource management
and pricing framework by tools of Stackelberg game to ensure that each par-
ticipant has appropriate incentives to participate in task offloading. Simulation
results show that our incentive framework is stable and effective. In the future
work, we will concentrate on computation resource management in extensive
edge computing networks.
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