l‘)

Check for
updates

Edge Collaborative Task Scheduling
and Resource Allocation Based on Deep
Reinforcement Learning

Tianjian Chen', Zengwei Lyu'3®) Xiaohui Yuan?, Zhenchun Wei3®),
Lei Shi'?, and Yuqi Fan's

1 School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei 230009, China
2 Department of Computer Science and Engineering University of North Texas
Denton, Denton, TX 76203, USA
3 Engineering Research Center of Safety Critical Industrial Measurement
and Control Technology, Ministry of Education, Hefei 230009, China
9863971420qq . com

Abstract. With the development of the sixth generation mobile net-
work (6G), the arrival of the Internet of Everything (IoE) is accelerat-
ing. An edge computing network is an important network architecture
to realize the IoE. Yet, allocating limited computing resources on the
edge nodes is a significant challenge. This paper proposes a collaborative
task scheduling framework for the computational resource allocation and
task scheduling problems in edge computing. The framework focuses on
bandwidth allocation to tasks and the designation of target servers. The
problem is described as a Markov decision process (MDP). To minimize
the task execution delay and user cost and improve the task success rate,
we propose a Deep Reinforcement Learning (DRL) based method. In
addition, we explore the problem of the hierarchical hash rate of servers
in the network. The simulation results show that our proposed DRL-
based task scheduling algorithm outperforms the baseline algorithms in
terms of task success rate and system energy consumption. The hierar-
chical settings of the server’s hash rate also show significant benefits in
terms of improved task success rate and energy savings.

Keywords: Edge collaborative - Task scheduling - Deep reinforcement
learning - Hierarchical server

1 Introduction

Field of metaverse and autonomous driving, massive amounts of data place
incredibly high demands on hash rate, and the construction of a mobile edge
computing (MEC) network platform is expected to cope with this challenge

Supported by the Natural Science Foundation of Anhui Province (2108085MF202).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Wang et al. (Eds.): WASA 2022, LNCS 13473, pp. 598-606, 2022.
https://doi.org/10.1007/978-3-031-19211-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19211-1_49&domain=pdf
https://doi.org/10.1007/978-3-031-19211-1_49

Edge Collaborative Task Scheduling and Resource Allocation 599

[1,2]. The network of edge nodes allocates computing resources upon requests of
offloading a task to the network. Scheduling methods have been developed, e.g.,
workflow-based dynamic scheduling algorithms [3,4], self-adaptive learning par-
ticle swarm optimization (SLPSO) [5,6]. Methods based on Deep Reinforcement
Learning are developed for the task scheduling problem [7] in the MEC system.

In addition, setting optimization goals is essential in algorithm evaluation.
Many scholars use task delay [8] and energy consumption [9,10] as evaluation
goals [11-14].

This paper proposes an optimal scheduling strategy suitable for delay con-
straints and user rent constraints to address this challenge. We propose an
improved DRL-based task scheduling algorithm to solve multiple tasks’ edge
cooperative scheduling problem. Our main contributions are as follows:

e An edge collaborative task scheduling framework is proposed for the compu-
tational resource allocation and task scheduling problems in edge scenarios.
The problem considers the bandwidth resources of the server, task character-
istics, task queue state of the target server, and arithmetic power level.

e We propose a DRL-based algorithm to solve this scheduling problem, improv-
ing algorithm convergence and minimizing the weighted sum of task latency
and cost by allocating appropriate bandwidth resources and target servers.

e Simulation results demonstrate that the proposed method outperforms the
baseline algorithms. In addition, the hierarchical settings of arithmetic power
for servers in the network effectively reduces the system energy consumption.

The rest of this article is organized as follows. Section 2 introduces the sys-
tem model and describes the problem. Section 3 presents our proposed algorithm
including algorithm design and process description. Section 4 presents our exper-
imental results and discussion. Section 5 concludes this paper with a summary.

2 System Model and Problem Description

2.1 Model Overview

As shown in Fig. 1, our model consists of servers with hierarchical hash rate and
multiple end-users. There are two waiting queues on each server, the waiting
scheduling queue, and the waiting execution queue. The edge servers can be rep-
resented as M = {1,2,... ,M}. N ={1,2,..., N} represents a task generated
by the end-user.

Users send task requests to the closest server m/’ first, which we define as the
local server. The local server receives the task A, = {Cpn, Linn, CoStyin},
where C,,/, denotes the task size and L,,,, Cost,,, denotes the task’s latest
response time and the maximum acceptable overhead for that task, respectively.

2.2 Task Scheduling Model

After the user sends a task request to the local server m’, the scheduler in the
local server m’ allocates transmission bandwidth and gives it to the specified
target server m for execution. The entire scheduling process can be divided into
the following four stages.

600 T. Chen et al.

High Computing Power .I

Mid Computing M & I
w‘,mp utin gPower

D

@ server x pasestation [Taskexecute queue 1 ¥p | Task Scheduling Queue

“\\ Optical Fiber Wireless Link

Fig. 1. The structure of our system model.

Task Transmission: After the local server m’ receives the task request, it
allocates appropriate bandwidth resources to it, and the end-user transmits the
task to the local server m’ through the wireless channel, we ignore the time
delay, the uplink transmission rate can be defined as:

m’n hm/n 2
= Qlog (1 - Prtnlfimn|” 5 |) (1)
g

where p,,,/,, is transmission channel bandwidth between the task n and the local
server m/, hyn represents the channel gain, which is time-varying, and o2 is the
noise. The transfer time of the task is:

STyim = <2 2)

m’'n

Task Scheduling: The scheduler of the local server gives the optimal task
scheduling policy according to the currently observed network status, such as
the bandwidth of the local server and the available computing resources of each
server in the network.

Waiting for Execution: We use Que,, to indicate the number of tasks in the
waiting execution queue of the target server m. Therefore, the waiting execution
time of the task is:

|0, Que, =0
Whimn = {freeTmn — AT, else (3)

where freel,,, represents the idle time of the server m after task n arrives.
AT, is the task n arrival time to the target server. If it is in working condition,
the task needs to wait. At this time, the idle time of the target server can be
expressed as:

| freeTmp + ETpmyy, if freelmn > AT,
freeTmn = {ATH/ + BTy, else (4)

Edge Collaborative Task Scheduling and Resource Allocation 601

where n’ represents the previous task of the task n, freeTywn/, ETwmn, ATy
denote respectively the idle time of the target server after task n’ arrive, the
execution time of the task n/, and the arrival time after the task n’ arrives at
the target server.

Task Execution: The task size C,, and server compute speed f,, are known.
So the estimated computing time of the task n on the server m can be expressed

as C
ETp = 2. 5
I ()

In summary, after the completion of task n, the estimated completion time is
the sum of the task n’s transmission time, waiting time for execution, and task
execution time, which is expressed as follows

T = STpm + Wlinn + ETpn. (6)

2.3 User Cost Model

The unit cycle price is u,,, and the higher the hash rate, the greater the u,,.
Therefore, the total cost to be paid to the service after the execution of task n

is o
Uiy, = —— % Uy, 7
. (7)

2.4 Problem Description

Our optimization goal is to minimize task execution delay and user cost overhead.
The optimization problem can be described as follows

N N
P1: min{a* STh+(1—a)x > Umn}
n=1

p n=1
st. Cl:a€(0,1)
C2:0< fp, < frmoe, vYm e M (8)
C3:0 < pryrp < ple®, vym' e M, Vne N
C4:T, <L,, VneN
C5: Upn < Costy, YmeM,VneN

where « represents the weight factor, which the scheduler can define according
to different task requirements [15]. C2 indicates that the server’s hash rate is
limited, and C3 indicates that the transmission power between each server and
the task does not exceed the maximum value. Conditions C4 and C5 represent
the task’s constraints on time and cost.

3 Proposed Method

We transform Problem P1 into an MDP problem and design a Deep Determin-
istic Policy Gradient-based online scheduling and allocation (SA-DDPG) algo-
rithm to solve it. The structure of our proposed network is shown in Fig. 2.

602 T. Chen et al.

[Environment J

a(t)

s(t),s(t+ 1),R(®), Replay Buffer N (50, a0, R, 52 + 1)
s(0),a(),
R(®),s(t+1) Batch
|—' Size

o) | b .

| L '
i il i
! Local Actor Target Actor || | "' Local Critic Target Critic H
1 ! ! i
1 (sel6") W (sdl6*) : L eluade?) Q'(s:/0%) i
1
I
1 « update o e e update @, @ |
1 1.6 Actor Vo] edle?® Mo | oo B
! e L eiler® 8 N
| ¢ Yo ° - °
! @ | e oo 1
1 L ! i
,____} __________________ Vo Y] [o___2
update 6" update 69 1 ¢
Policy Q Loss
Gradient Function

Fig. 2. SA-DDPG algorithm structure.

3.1 MDP-Based Task Scheduling Problems

State Space: The system state s (¢) is consists of two components: the channel
gain Ay, (t) between the user and the local server and the server state informa-
tion s, (t) in the network. Thus, the state space at moment ¢ can be expressed
as :

s(t) ={hmm (t),s1(t),s2(t),...... sm ()} 9)

Action Space: We define the action space as:

a(t) = {pmmn (t),a1n (t),a20 (), .- amn ()} (10)

Here ap,, € {0,1}, and a,,, = 1 represents offloading task n to server m,
Aip +Qon + ...+ amn = 1.

Reward Function: Our optimization problem P1 is to minimize the delay and

cost of task completion, so we set the reward to:

Lm/n — Tn n COStm,71 — Umn
Loyn Cost_,

R= (11)

3.2 SA-DDPG Algorithm Framework

We describe the network structure of the algorithm in Fig. 2. The weight param-
eters 0* and 0% of the Actor network and the Critic Network are randomly
initialized at the beginning of the algorithm. We use ' and u’ to improve learn-
ing stability in the target network.

Edge Collaborative Task Scheduling and Resource Allocation 603

Algorithm 1 Deep Deterministic Policy Gradient-based Online Scheduling and
Allocation algorithm

Input: Task Ay = {Cminy Lintn, Costymry b, channel gain by,
Output: Optimal scheduling policy a* (¢)
Initialize critic network Q(s,a|6#?) and actor network p(s|@*) with weights 9 and
o+,
Initialize target network Q' and p’ with weights 9 — 69 and 0* — 6"
Initialize the empty replay buffer B;
fort=1,2,...,T do
Takes system state s(¢) as an input to the actor network and obtains action a(t) =
11 (s (£)[6) + 61
Execute action a(t), obtain the reward R(t) and next state s(t + 1)
Store transition tuple s (t),a(t),R(t),s (¢t + 1) into B
if learning time reaches then
Agent collects K samples from B
Update critic by minimizing the loss function in Equation (13)
Update actor policy by the deterministic policy gradient in Equation (14)
end if
regularly update the target networks:

09 — 769 + (1—1)09
o — o +(1—-71) o+’

end for

Algorithm Training: The Agent obtains states s (¢) from the environment
and selects the current best action a* (¢). After taking action a* (t), the Agent
receives a reward R; and subsequently observes the next state s (¢ + 1). The
transition buffer is {s(¢),a(¢),R(t),s(t+ 1)}, which can be stored into the
experience replay memory B. In addition, the loss function in Fig.2 is:

, 2
L=E {(R(t) 9@ (s(t+1),a(t+1)169) = Q (s (1), a (1) 69)) } (12)
where ~y is the attenuation coefficient. And policy gradient can be expressed as:

VoT = E [VaQ (5,a09) [s=s().amp(s) Vor 1t (s10*) |s1)] (13)

We formalize the SA-DDPG algorithm process in Algorithm 1.

4 Experimental Analysis

4.1 Settings

We compare the task success rate and energy consumption with the random
scheduling algorithm, the round-robin [16] scheduling algorithm, the earliest
scheduling algorithm, and the DRL algorithms of DQN [17] and DDQN. The
detailed simulation parameters are shown in Table 1.

604 T. Chen et al.

Table 1. Simulation Parameters

Parameters | Description Value

fm Server hash rate [12.5 MIPS/s,15 MIPS/s,17.5 MIPS/s]
Cn Size of task n [500 KB, 1200 KB]

M Number of servers 15

Mcapacity | Computing capacity of the server | 1000 MIPS

pZ}m Maximum transmission power 0.2 M

w channel bandwidth 0.5 MHZ

Qactor Actor network learning rate 0.01

Qeritic Critic network learning rate 0.02

y The discount factor 0.9

Success Rate(%)

Fig. 3. The task success rate.

As shown in Fig. 3, the task success rate of the DRL-based family of algo-
rithms is 30%-40% higher than that of the conventional algorithms because the
DRL-based algorithms can make learning based on historical experience and
continuously train to optimize the decisions.

s 3 g

Task Success Rate(%)

8
Task Success Rate(%)

Task Success Rate(%)
3

8

e e~

200 E) S B3 B 0

150 50 160)
Time Slot Time Slot

Time Slot.

(a) =02 (b) a=0.5 (¢) «=0.8

Fig. 4. Impact of different weighting factors a on task success rate.

We set a to 0.2, 0.5, and 0.8 for cost-sensitive tasks, balanced tasks, and
delay-sensitive tasks, respectively. As shown in Fig. 4, the task success rate of
our proposed algorithm consistently outperforms the other baseline algorithms
in the three task type arrival scenarios, converging to about 93%.

Edge Collaborative Task Scheduling and Resource Allocation 605

TotalCost
TotalCost

(a)Consistent hash rate (b)Hierarchical hash rate

Fig. 5. Total energy consumption in different hash rate environments.

Furthermore, we explore the impact of the hierarchical hash rate of the servers
on system energy consumption in Fig. 5. And after the server hash rate is hierar-
chical, the total energy consumption of all algorithms is reduced by about 25%
compared with the ungraded case.

5 Conclusion

In this paper, we study the task scheduling problem in edge scenarios. To solve
the problem of allocating bandwidth resources to servers and scheduling tasks
among servers, we propose a DRL-based algorithm to reduce the total task
latency and user overhead to maximize the success rate of tasks. In addition,
we verified that our algorithm is highly adaptable and capable of handling any
type of task. In future work, we can further explore mobility under multi-edge
networks.

References

1. Kye, B., Han, N., Kim, E., Park, Y., Jo, S.: Educational applications of metaverse:
possibilities and limitations. J. Educ. Eval. Health Prof. 18, 32 (2021)

2. Abbas, M., Siddiqi, M.H., Khan, K., Zahra, K., Naqvi, A.U.: Haematological evalu-
ation of sodium fluoride toxicity in oryctolagus cunniculus. Toxicol. Rep. 4, 450-454
(2017)

3. Cai, Z., Li, X., Ruiz, R., Li, Q.: A delay-based dynamic scheduling algorithm for
bag-of-task workflows with stochastic task execution times in clouds. Futur. Gener.
Comput. Syst. 71, 57-72 (2017)

4. Jiang, H., E, H., Song, M.: Dynamic scheduling of workflow for makespan and
robustness improvement in the iaas cloud. IEICE Trans. Inf. Syst. E100.D(4),
813-821 (2017)

5. Zuo, X., Zhang, G., Tan, W.: Self-adaptive learning pso-based deadline constrained
task scheduling for hybrid iaas cloud. IEEE Trans. Autom. Sci. Eng. 11(2), 564-573
(2014)

6. Fu, Z., Tang, Z., Yang, L., Liu, C.: An optimal locality-aware task scheduling
algorithm based on bipartite graph modelling for spark applications. IEEE Trans.
Parallel Distrib. Syst. 31(10), 2406-2420 (2020)

606

10.

11.

12.

13.

14.

15.

16.

17.

T. Chen et al.

Yan, J., Bi, S., Zhang, Y.J.A.: Offloading and resource allocation with general task
graph in mobile edge computing: a deep reinforcement learning approach. IEEE
Trans. Wireless Commun. 19(8), 5404-5419 (2020)

Du, J., Yu, F.R., Chu, X., Feng, J., Lu, G.: Computation offloading and resource
allocation in vehicular networks based on dual-side cost minimization. IEEE Trans.
Veh. Technol. 68(2), 1079-1092 (2019)

Zhang, J., Hu, X., Ning, Z., Ngai, E.C.H., Zhou, L., Wei, J., Cheng, J., Hu, B.:
Energy-latency tradeoff for energy-aware offloading in mobile edge computing net-
works. IEEE Internet Things J. 5(4), 2633-2645 (2018)

Hong, Z., Huang, H., Guo, S., Chen, W., Zheng, Z.: Qos-aware cooperative com-
putation offloading for robot swarms in cloud robotics. IEEE Trans. Veh. Technol.
68(4), 4027-4041 (2019)

Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J.: Mobile-edge computing: partial
computation offloading using dynamic voltage scaling. IEEE Trans. Commun., 1
(2016)

Shah-Mansouri, H., Wong, V.W.S., Schober, R.: Joint optimal pricing and task
scheduling in mobile cloud computing systems. IEEE Trans. Wireless Commun.
16(8), 5218-5232 (2017)

Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu, Z.: Online optimization for
scheduling preemptable tasks on iaas cloud systems. J. Parallel Distributed Com-
put. 72(5), 666-677 (2012)

Lu, H., He, X., Du, M., Ruan, X., Sun, Y., Wang, K.: Edge qoe: Computation
offloading with deep reinforcement learning for internet of things. IEEE Internet
Things J. 7(10), 9255-9265 (2020)

Chun, B.G., Maniatis, P.: Augmented smartphone applications through clone cloud
execution. In: Proceedings of the 12th Conference on Hot Topics in Operating
Systems, HotOS 2009, p. 8. USENIX Association, USA (2009)

Devi, K., Paulraj, D., and B.M.: Deep learning based security model for cloud
based task scheduling. KSIT Trans. Internet Inf. Syst. 14(9), 3663-3679 (2020)
Van Le, D., Tham, C.K.: A deep reinforcement learning based offload scheme in
ad-hoc mobile clouds. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 760-765 (2018)

	Edge Collaborative Task Scheduling and Resource Allocation Based on Deep Reinforcement Learning
	1 Introduction
	2 System Model and Problem Description
	2.1 Model Overview
	2.2 Task Scheduling Model
	2.3 User Cost Model
	2.4 Problem Description

	3 Proposed Method
	3.1 MDP-Based Task Scheduling Problems
	3.2 SA-DDPG Algorithm Framework

	4 Experimental Analysis
	4.1 Settings

	5 Conclusion
	References

